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1. Chapter One: Review and Fundamental concepts:

Mechanics is a branch of the physical sciences that is concerned with the state of rest or motion
of bodies that are subjected to the action of forces. In general, this subject can be subdivided into
three branches: rigid-body mechanics, deformable-body mechanics, and fluid mechanics. In this
semester we will study rigid-body mechanics since it is a basic requirement for the study of the
mechanics of deformable bodies and the mechanics of fluids. Furthermore, rigid-body mechanics
is essential for the design and analysis of many types of structural members, mechanical
components, or electrical devices encountered in engineering. Rigid-body mechanics is divided

into two areas: statics and dynamics.

Statics deals with the equilibrium of bodies, that is, those that are either at rest or move with a
constant velocity; whereas dynamics is concerned with the accelerated motion of bodies. We can
consider statics as a special case of dynamics, in which the acceleration is zero; however, statics
deserves separate treatment in engineering education since many objects are designed with the

intention that they remain in equilibrium.

Scientific method:

> Recognize a question (unexplained fact)

> Make an educated guess (hypothesis)

> Make prediction about the consequences of the hypothesis
» Perform an experiment or make calculations

» [Formulate a general rule
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1.1.Fundamental concepts and units of measurement

The following four quantities are used throughout mechanics:
Length

Time

Mass

A

Force

TABLE 1-1 Systems of Units

Name Length Time Mass Force
International meter second kilogram newton*
System of Units N
SI m S kg kg-m
2
U.S. Customary foot second slug* pound
FPS

Ib - s2
ft : ( S ) Ib
fi

*Derived unit.

TABLE 1-2 Conversion Factors

Unit of Unit of
Quantity Measurement (FPS) Equals Measurement (SI)
Force Ib 4448 N
Mass slug 14.59 kg
Length ft 0.3048 m
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1.2.General procedure for analysis

v Read the problem carefully and try to correlate the actual physical situation with the theory
studied.

v Tabulate the problem data and draw to a large scale any necessary diagrams.

v' Apply the relevant principles, generally in mathematical form. When writing any
equations, be sure they are dimensionally homogeneous.

v Solve the necessary equations, and report the answer with no more than three significant

figures.
v' Study the answer with technical judgment and common sense to determine whether or not

it seems reasonable.

Example:

Convert 2 km/h to m/s. How many ft /s is this?
Solution:

Since 1 km = 1000 m and 1 h = 3600 s, the factors of conversion are arranged in the following

order, so that a cancellation of the units can be applied:

2km 2 dam (1000m )( 1k )_ 2000m _
nh em ) \36005)~ 3e00s - 0000/
From Table 1-2, 1 ft = 0.3048 m. Thus,
m m 1ft
0.556 = = 0.556 = ( ) — 1.82 ft/s
S S 0.3048 m
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2. Chapter Two: Force vectors:

A scalar is any positive or negative physical quantity that can be completely specified by its

magnitude. Examples of scalar quantities include length, mass, and time.

A vector is any physical quantity that requires both a magnitude and a direction for its complete

description. Examples of vectors encountered in statics are force, position, and moment.

2.1.Vector Operations

Procedure for Analysis:

1. Redraw a half portion of the parallelogram to illustrate the triangular head-to-tail addition
of the components.

2. From this triangle, the magnitude of the resultant force can be determined using the law
of cosines, and its direction is determined from the law of sines. The magnitudes of two

force components are determined from the law of sines. The formulas are:

Cosine law:

C = /A2 + B2 — 2AB cos (c)

Sine law:

A B C

sina sinb sinc
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Example: The screw eye in Figure below is subjected to two forces, F1 and F2. Determine the

magnitude and direction of the resultant force.

Solution:

The two unknowns are

The magnitude of Fr and the angle 0 (theta).

Using the law of cosines:

(e}

10
-4 F=15N

Fr = 4/(100)2 + (150)2 — 2(100)(150) cos 115°

Fr = \/10000 + 22500 — 30000 (—0.4226)
Fp = 2126
Applying the law of sines to determine 0,

150 _ 212.6
sin®  sin 115°

150 (sin 115°)
2126

sin@ =

0 = 39.8°

Thus, the direction @ (phi) of Fr, measured from the horizontal, is:

® = 39.8°+15% =54.38°

4 F,=100N
| "‘F""L {
A

| 360° — 2(65°)
s
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Example: Resolve the horizontal 600-Ib force in Figure (a) below into components acting along

the u and v axes and determine the magnitudes of these components.

300 1?() ~

_6001b 600 Ib

(a) (b) (c)

Solution:

The two unknowns are the magnitudes of Fu and Fv. Applying the law of sines,

F, 600
sin 1209 sin 30°

F, =10391b

F, 600
sin30° ~ sin 30°

F,=6001b
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HW: 1tis required that the resultant force acting on the eyebolt in Figure below be directed along

the positive x axis and that F2 have a minimum magnitude. Determine this magnitude, the angle

0, and the corresponding resultant force.

F, = 800N

10
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2.2.Rectangular Components :Two Dimensions

y
Vectors Fx and Fy are rectangular components of F.
F
FA
=
F,
The resultant force is determined from the algebraic sum of its components.
y ¥
F,,
Fr

X
- F3_1' (F R ).r
Fyly

(FR)_r - EF::

F,,
-u..._“h T ¥ — (FR)_v
FQJ: “ﬁ'\- f-—""# F\_ 7]
j e b
“

(FR)y - ZF\

Fr = V(Fp? + (Fp);
(Fr)y
(FR)_X

f = tan”"! ‘

11
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Example: The end of the boom O in Figure (a) below is subjected to three concurrent and
coplanar forces. Determine the magnitude and direction of the resultant force.

y y

F,=250N 250 N
200 N A 45°

F3;=200N

3\5 ’

4~

—X

~ F,=400N O 400N

] (a) (b)
Solution:

Each force is resolved into its x and y components, Figure (b), Summing the x-components
and y-components:

B (Fp). = SF:  (Fp)y = —400N + 250 sin 45°N — 200(%) N
= —3832N = 3832 N«

+1(Fp)y, = 2F;  (Fg)y, = 250 cos 45° N + 200(
= 296.8 N1

) N

Ln e

The resultant force, shown in Figure ¢, has a magnitude of:

Fr = V(=383.2N)? + (296.8 N)>
— 485N

The direction angle 0 is:

0 = tan_l(%) = 37.8°
383.2

12
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HW: Determine the magnitude of the resultant force and its direction measured counterclockwise

from the positive x axis.

F,= 625N

13
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2.3.Rectangular Components: Three Dimensions

The magnitude of F is determined from the positive square root
of the sum of the squares of its components.

F= \/sz +F*+E?

To determine a, 3, and vy:

_F E,
cosa—F , F

1 |

cosf3 = , cosy =

If only two of the coordinate angles are known, the third angle can be found using this equation:

cosa+ cosf+ cosy=1

14
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Example: Two forces act on the hook shown in Fig. below. Specify the magnitude of F, and its

coordinate direction angles so that the resultant force Fr acts along the positive y-axis and has a

magnitude of 800 N.

Solution:

Y. Fx = 0 (Because Fracts along the y-axis)

0 = 300 cos 45° + F,,

F,, = —212.1N

2. Fy = 800N (Because Fracts along the y-axis)
800 = 300 cos 60° + Fyy,

F,y, = 650N

Y. Fz = 0 (Because Fracts along the y-axis)

0 = 300cos120° + F,,

0 = —150 + F,,

F,, = —150N

FZ = \/Fsz + Fzyz + FZZZ

F, = /(=212.1)2 + (650)2 + (150)2

F, = 700 N

cos o, = % = _3(1)(2)'1; o, = 108°
c0582=% =%; B, =21.8°
CoSy, = % = %; Y, = 77.6°

15

<

-

F, = 700N

vy = T1.6°

" B,=218  Fr=800N

a, = 108°

“F, = 300N

(b)
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HW.: Determine the magnitude and coordinate direction angles of the resultant force and sketch

this vector on the coordinate system.

Solution: .
F,=801b
Fy, = 80 cos30 cos40 = 53.1™° = F, ;
) 30° ’
— : — Ib _
Fi, =80 cos30 sin40 = (—) 445 = F, 40°
F,, =80 sin30 = 40 ' YE =1301b
F,=40—-130=—90 x

Fgr =+ 53.12 +44.52 + (=90)2 = 113.6'

_F 531 ey 10
cosa—FR—113.6, o= 62.

E, —445

y 0
csB=r = 1136 B

E, =90

= = — = 1420

OSY = T 1136 Y

16
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2.4.Moment of a force

Consider a force of magnitude F and a point P, and let’s view them in the di-
rection perpendicular to the plane containing the force vector and the point
(Fig. a ). The magnitude o fthe moment of the force about P is the product
DF, where D is the perpendicular distance from P to the line of action of
the force (Fig. b ). In this example, the force would tend to cause counter-
clockwise rotation about point P. That is, if we imagine that the force acts on

an object that can rotate about point P, the force would cause counterclock-
wise rotation (Fig. ¢ ). We say that the direction o fthe moment is counterclock-
wise. We de fne counterclockwise moments to be positive and clockwise moments
to be negative. (This is the usual convention, although we occasionally en-
counter situations in which it is more convenient to define clockwise moments
to be positive.) Thus, the moment of the force about P is

Mp=FxD

Pe P-%\// P

(a) (b) (c)

17
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Example: what is the moment of the 40N about point A?

Solution:
40 kN

30°
The perpendicular distance from A to the \
line of action of the force is B ———6m
D= (6 m)sin30° = 3m.
Therefore the magnitude of the moment is
(3 m)(40 kN) = 120 kN-m. 40kN_~~

The direction of the moment is
counterclockwise, so A 30°

M,= 120 kN-m. 7

Practice Problem Resolve the 40-kN force into horizontal and vertical components
and calculate the sum of the moments of the components about A.

18




PPN [ oy

(£) ekl 0ol e

e oo (£3 JSo G2y

OB $3 denslr

Thi- Qar University
2002

ENG. MECHANICS (STATICS)
INSTRUCTOR: HAIDER K. SAKBAN

FIRST YEAR

Example:

e

4 kN

Pty

300 mm

i J2en

Yd
4{6|3kN
Y

/5 kN

"300 mm

400 mm

Four forces act on the machine part. What is the sum of the moments of the
forces about the origin O?

Strategy

We can determine the moments of the forces about point O directly from
the given information except for the 4-kN force. We will determine its moment
by expressing it in terms of components and summing the moments of the
components.

Solution

Moment of the 3-kN Force The line of action of the 3-kN force passes
through . It exerts no moment about O.

Moment of the 5-kN Force The line of action of the 5-kN force also passes
through O. It too exerts no moment about O.

Moment of the 2-kN Force The perpendicular distance from O to the line of
action of the 2-kN force is 0.3 m, and the direction of the moment about O is
clockwise. The moment of the 2-kN force about O is

—(0.3 m)(2kN) =

—0.600 kKN-m.

(Notice that we converted the perpendicular distance from millimeters into
meters, obtaining the result in terms of kilonewton-meters.)

Moment of the 4-kN Force In Fig. a, we introduce a coordinate system and ex-
press the 4-kN force in terms of x and y components. The perpendicular distance
from O to the line of action of the x component is 0.3 m, and the direction of the
moment about O is clockwise. The moment of the x component about O is

—(0.3 m)(4 cos 30°kN) = —1.039 kN-m.

o

4sin 30° kN

E4kN
| 4 cos 30° kN

300 quN
mm o)

_l3kN
300

mm

mm

400

— X
|

‘ 5kN

(a) Resolving the 4-kN force into

components.

The perpendicular distance from point O to the line of action of the y compo-
nent is 0.7 m, and the direction of the moment about O is counterclockwise.
The moment of the y component about O is

(0.7 m)(4 sin 30° kN) = 1.400 KN-m.

The sum of the moments of the four forces about point O is

=M, = —0.600 — 1.039 + 1.400 = —0.239 kN-m.

The four forces exert a 0.239 kN-m clockwise moment about point O.

19
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3. Chapter Three: Equilibrium for a Rigid Body

The objectives of this chapter are:

v To develop the equations of equilibrium for a rigid body.
v To introduce the concept of the free-body diagram for a rigid body.

v To show how to solve rigid-body equilibrium problems using the equations of equilibrium.

3.1.Conditions for Rigid-Body Equilibrium
The body is said to be in equilibrium when resultant force and couple moment are both equal to
zero. Mathematically, the equilibrium of a body is expressed as:

ZFx=0
ZFy=0
A

Main Support Reactions

i B

(c)

F M
— A —
- or F,\ — F_\ _(
e T T fixed support _>T
F F, F,
(a) (b) (d) (e) (f)
Roller Pin (hinge) Fixed

20
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Types of Connection

Reaction

Number of Unknowns

&)

cable

One unknown. The reaction is a tension force which acts
away from the member in the direction of the cable.

g \
F

weightless link

One unknown. The reaction is a force which acts along
the axis of the link.

(€)

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

rocker

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

< =

smooth contacting
surface

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

(6)

495‘/ . %

roller or pin in
confined smooth slot

or

F

2&

One unknown. The reaction is a force which acts
perpendicular to the slot.

7)
Q o
" _—
< ? Y
member pin connected
to collar on smooth rod

One unknown. The reaction is a force which acts
perpendicular to the rod.

21
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Types of Connection Reaction

Number of Unknowns

(8) F"T 4

Two unknowns. The reactions are two components of
force, or the magnitude and direction ¢ of the resultant
force. Note that ¢ and ¢ are not necessarily equal [usually
not, unless the rod shown is a link as in (2)].

smooth pin or hinge
©)

¢ /
~y
/ M
member fixed connected
to collar on smooth rod

Two unknowns. The reactions are the couple moment
and the force which acts perpendicular to the rod.

(10)

F,
F,
. Q or
M

fixed support

Three unknowns. The reactions are the couple moment
and the two force components, or the couple moment and
the magnitude and direction ¢ of the resultant force.

3.2.Free-Body Diagrams

A free-body diagram is a sketch of the outlined shape of the body, which represents it as being

isolated or “free” from its surroundings, i.e., a “free body.” On this sketch it is necessary to show

all the forces and couple moments that the surroundings exert on the body so that these effects can

be accounted for when the equations of equilibrium are applied.

To construct a free-body diagram for a rigid body or any group of bodies considered as a single

system, the following steps should be performed:

v" Draw Outlined Shape.

v" Show All Forces and Couple Moments.

v"Identify Each Loading and Give Dimensions.

Note: the weight W of the body locates at the center of gravity.

22
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Springs:

Ead

If a linearly elastic spring (or cord) of undeformed length lo is used to >

support a particle, the length of the spring will change in direct proportion ly 2:

to the force F acting on it, Fig. a. £ g

- _

A characteristic that defines the “elasticity” of a spring is the spring +‘I :;:

constant or stiffness k. The magnitude of force exerted on a linearly elastic

spring which has a stiffness k and is deformed (elongated or compressed)

-
=

a distance s = | - lp, measured from its unloaded position, is:

~
0
~—

F = ks

For example, if the spring in Fig. a has an unstretched length of 0.8 m and a stiffness k = 500 N/m

and it is stretched to a length of 1 m, so thats=1-1lp =1 m - 0.8 m =0.2 m, then a force:

F = ks =500 N /m (0.2 m) = 100 N.

Cables and Pulleys T '6

A cable can support only a tension or “pulling” force, and this force always /
acts in the direction of the cable. Hence, for any angle 6, shown in Fig. b,

the cable is subjected to a constant tension T throughout its length.
/iy

Cable is in tension

(b)

Smooth Contact:

If an object rests on a smooth surface, then the surface will exert

a force on the object that is normal to the surface at the point of

contact.

23
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Example: Draw the free-body diagram of the uniform beam shown in Fig. below. The beam has

a mass of 100 kg.

}t, 5 1200 N

?. A |

! 6 m |
(a)

Solution:

Since the support at A is fixed, the wall exerts three reactions on the beam, denoted as Ax, Ay, and
MA. The magnitudes of these reactions are unknown, and their sense has been assumed. The
weight of the beam, W =100(9.81) N = 981 N, acts through the beam’s center of gravity G, which

is 3 m from A since the beam is uniform.

y 1200 N

‘-— 2m——
‘ x A ~ Effect of applied

V
_f:_f-_—‘j force acting on beam
=

Effect of fixed

A
support acting ] m
on beam Ma ! 3m *
981 N 1
/
Effect of gravity (weight)
acting on beam
(b)

24
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Example: Draw the free-body diagram of the foot lever shown in Fig. a and b below. The
operator applies a vertical force to the pedal so that the spring is stretched 1.5 in. and the force on
the link at B is 20 Ib.

O\ ——
AQ\/ “k =201b/in.

(b)

5in.

Solution:

Since the pin at A is removed, it exerts force components Ax and Ay on the lever. The link exerts
a force of 20 Ib, acting in the direction of the link. In addition the spring also exerts a horizontal
force on the lever. If the stiffness is measured and found to be k = 20 Ib /in., then since the stretch
s=1.5in., using Eq. , Fs=ks =20 Ib/in. (1.5 in.) = 30 Ib. Finally, the operator’s shoe applies a

vertical force of F on the pedal.

F 201b
> f
B .
| 30 1b 1.51in
{ » )
Y | lym
— A ) A,
51in.
A,
(c)
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Example: Two smooth pipes, each having a mass of 300 kg, are supported by the forked tines
of the tractor in Fig. a and b below. Draw the free-body diagrams for each pipe and both pipes

together.

Solution: W =300(9.81) N =2943 N

Effect of B acting on A

Effect of sloped

\30° B X\
blade actingon A [/ —=

\(x Effect of sloped

F  fork acting on A

Effect of gravity
(weight) acting on A P

(c) (d)
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Example: Determine the horizontal and vertical components of reaction on the beam caused

by the pin at B and the roller at A as shown in Fig. a. below. Neglect the weight of the beam.

Solution:

600 N 200N 600 sin 45° N

>\ l 200 N
o 02m o 0.2 m
45 i §00 cos 45 N.y | 1 B

‘<

m i 3m

100 N 100N
(a) (b)

Equations of Equilibrium. Summing forces in the x direction yields

B IF, = 0; 600 cos 45°N — B, = 0
B, = 424 N Ans.

A direct solution for A, can be obtained by applying the moment
equation XMp = 0 about point B.
C+IMy = 0; 100 N(2 m) + (600 sin 45° N)(5 m)

— (600 cos 45° N)(0.2 m) — A (7m) = 0

A, = 319N Ans.

Summing forces in the y direction, using this result, gives

+13F, =0; 319N — 600sin45°N — 100N — 200N + B, = 0
B, = 405N Ans.
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Example: The cord shown in Fig. a. below supports a force of 100 Ib and wraps over the

frictionless pulley. Determine the tension in the cord at C and the horizontal and vertical

components of reaction at pin A.

100 1b 100 Ib T

Solution:

C+EIM, = 0; 1001b (0.5ft) — T(051ft) =0

T = 1001b

Using this result,

B 3F, = 0; —A, + 100sin30°1b = 0
A, =5001b

+13F, =0; A, — 1001b — 100 cos 30°Ib = 0
A, = 1871b
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Example: The member shown in Fig. a. below is pin connected at A and rests against a smooth

support at B. Determine the horizontal and vertical components of reaction at the pin A.

Solution:

Free-Body Diagram. As shown in Fig. (b , the supports are
removed and the reaction N is perpendicular to the member at B. Also,
horizontal and vertical components of reaction are represented at A. The
resultant of the distributed loading is %(1 5 m)(80 N/m) = 60 N. It acts
through the centroid of the triangle, 1 m from A as shown.

Equations of Equilibrium. Summing moments about A, we obtain
a direct solution for Ny,

G+EZM, =0; —90N-m — 60N(1 m) + Ng(0.75m) = 0

Np = 200N
Using this result,
X 3F, = 0; A, —200sin30°N =0

A, = 100N Ans.
+13F, = 0; Ay — 200 cos 30°N — 60N = 0

A, = 233N Ans.
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1. Determine the reactions at the supports:
900 N/m

T 600 N/m

FSm 3m }

2. Determine the reactions at the supports:
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4. Chapter four: Structural Analysis

A truss is a structure composed of slender members joined together at their end points. The

members commonly used in construction consist of wooden struts or metal bars.

= /Purlin \/

AN

l ] T Roof truss T

(a) (b)

Simple trusses are composed of triangular elements. The members are assumed to be pin

connected at their ends and loads applied at the joints.

Assumptions for Design

v All loadings are applied at the joints.

v' The members are joined together by smooth pins.

4.1.Analysis of trusses:

In order to analyze or design a truss, it is necessary to determine the force in each of its members.

There are two main methods:

1. Method of joints.

2. Method of sections.
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4.1.1. The Method of Joints

This method is based on the fact that if the entire truss is in equilibrium, then each of its joints is

also in equilibrium. Therefore, if the free-body diagram of each joint is drawn, the force

equilibrium equations can then be used to obtain the member forces acting on each joint.

Example: Determine the force in each member of the truss shown in Fig. a and indicate

whether the members are in tension or compression. B -
—500 N
B x
-— 500 N FBAl 45° MFpe
(b)
2m X()?.l N
45‘}'
FCA ¢
A
™ ™ ¢ TC-V
! 2m ! ©
(a) I Fgy=500N
A . _
Ae———>F.,=500N
_ 'lA_r
Solution:

(d)
Since we should have no more than two unknown forces at the joint and at least one known force

acting there, we will begin our analysis at joint B.

Joint B. The free-body diagram of the joint at B is shown in Fig. b. applying the equations of

equilibrium, we have:

£ 3F, = 0; 500N — Fprsind5° =0 Fze = 707.1 N (C)
+13F, = 0; Fpocos45° — Fyy =0 Fyzy = 500N (T)
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Since the force in member BC has been calculated, we can proceed to analyze joint C to determine

the force in member CA and the support reaction at the rocker.
Joint C. From the free-body diagram of joint C, Fig. ¢, we have:

H3F, =0; —Fy + 707.1c0s45°N =0 Fg, = 500N (T)
+13F, = 0; C, — 707.1sin45°N =0 C, = 500N

., .,

Joint A. Although it is not necessary, we can determine the components of the support reactions

at joint A using the results of Fca and Fea. From the free-body diagram, Fig. d, we have:

HK3IF, =0, 500N—-A, =0 A, =500N
+13%F,=0; S00N-A,=0 A, =500N

The results of the analysis are summarized in Fig. e below:

B _ 500N

500 N 707.1 N

Tension

* W 707.1 N

500N

* A Tension R
-« > <« > C
S00N Y 500N 500 NA 500 N
500 N
(e)
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H‘M Determine the force in each member of the truss shown in Fig. below. Indicate whether the

members are in tension or compression.

400 N
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4.1.2. The Method of Sections

When we need to find the force in only a few members of a truss, we can analyze the truss using

the method of sections. It is based on the principle that if the truss is in equilibrium then any

segment of the truss is also in equilibrium.

Example: Determine the force in members GE, GC, and BC of the truss shown in Fig. a.

Indicate whether the members are in tension or compression.

G % E

_[— . ; —>»400 N [ — 400 N

3m 3m

LA ’ ¥ B ‘; C .D lA D

(i | < A_!: T |
~—4m-——4m 4 m-— Sm 4m—
Al v ’
1200 N 1200 N ’
(a) (b)

Solution:

Section a a in Fig. a has been chosen since it cuts through the three members whose forces are to
be determined. In order to use the method of sections, however, it is first necessary to determine
the external reactions at A or D. Why? A free-body diagram of the entire truss is shown in Fig. b.

applying the equations of equilibrium, we have:

K 3IF, = 0; 400N —A, =0 A, = 400N
C+3IM, =0, —1200 N(8 m) — 400 N3m) + Dy(12m) = 0
D, = 900N
+13F, = 0; Ay, — 1200N + 900N = 0 A, = 300N
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Free-Body Diagram. For the analysis the free-body diagram of the left portion of

the sectioned truss will be used, since it involves the least number of forces, Fig. c.

G r Fge
T fe=—{——
X =] \\“'\
3N
3m 4 l/&F GC
q—i }—»\ C
400 N 1‘ ‘ Fge
300N

(c)
Equations of Equilibrium. Summing moments about point G eliminates Fee and

Fec and yields a direct solution for Fge.

C+3SM; =0; —300N@m) — 400 NGB m) + Fze(3m) = 0

In the same manner, by summing moments about point C we obtain
a direct solution for FgE.

Since Fp and Fgg have no vertical components, summing forces in
the y direction directly yields F, i.e.,

+13%F, =0; 300N —3Fg; =0

NOTE: Here it is possible to tell, by inspection, the proper direction for
each unknown member force. For example, 3M - = 0 requires Fgg to
be compressive because it must balance the moment of the 300-N
force about C.
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Example: Determine the force in member EB of the roof truss shown in Fig. a. Indicate

whether the member is in tension or compression.

1000 N 1000 N

3000 N 1000 N 3000 N l
b YE b £

1000N : 4 1000 N I 2}1

F ,__.-—-"'.- -'— — D ‘F - FED ~ N

/ RB .
A0 | C AY 30/ [N T Fep S~ C Fgpcos30°
: o 9 o o R R R R Se—
A a B ‘ A ‘ ! FAB ‘ B A
~—2m | 2m | 2m i 2m-— <~ 2m i 2m | 4m
4000 N 2000 N 4000N Fpp sin 30°
(a) (b)
Solution:

Free-Body Diagrams. By the method of sections, any imaginary section that cuts through EB,

Fig.a, will also have to cut through three other members for which the forces are unknown. For
example, section aa cuts through ED, EB, FB, and AB. If a free-body diagram of the left side of
this section is considered, Fig. b, it is possible to obtain Fep by summing moments about B to
eliminate the other three unknowns; however, Feg cannot be determined from the remaining two
equilibrium equations. One possible way of obtaining Feg is first to determine Fep from section
aa, then use this result on section bb, Fig. 6-18a, which is shown in Fig. c. Here the force system
is concurrent and our sectioned free-body diagram is the same as the free-body diagram for the

joint at E. y

1000 N

I E
— ) ———————— X

\
30"&/\ /\Z 30°
Frr

Fgp = 3000 N
\

Feg

(c)
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Equations of Equilibrium. In order to determine the moment of Fep about point B, Fig. b, we

will use the principle of transmissibility and slide the force to point C and then resolve it into its

rectangular components as shown. Therefore,

C+IMp = 0; 1000 N(4 m) + 3000 N(2 m) — 4000 N(4 m)
+ Fgpsin 30°(4m) = 0

Considering now the free-body diagram of section bb, Fig. c, we have:

K 3IF, = 0; Frcos 30° — 3000 cos 30°N = 0

+13F, = 0; 2(3000sin30°N) — 1000N — Fgz = 0
FEB = 2000 N (T) Ans.

H‘M Determine the force in members AF, BF, and BC, and state if the members are in tension

) ’-— 1.5m —-‘
or compression. 4N El i D
H H

8 kN
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5. Chapter Five: Friction

Friction is a force that resists the movement of two contacting surfaces that slide relative to one
another. This force always acts tangent to the surface at the points of contact and is directed so as
to oppose the possible or existing motion between the surfaces.

Dry friction occurs between the contacting surfaces of bodies when there is no lubricating fluid.

Another type of friction, called fluid friction, is studied in fluid mechanics.

In this chapter, we will study the effects of dry friction, which is sometimes called Coulomb
friction since its characteristics were studied extensively by the French physicist Charles-Augustin
de Coulomb in 1781.

5.1.Theory of Dry Friction

v Equilibrium:
W w
| w [-a /2-a [2+|
v " ;
> . —_— AF, AF, AF, Y e
AF, h
| [ | *——F
I
ﬂﬂ[ﬂ. ANI\ AR, \ | -_\N,,N L] \\lLo
(a) AN, AN,--VAR, AR, YN
Resultant normal
(b) (©) and frictional forces
(d)

The effect of the distributed normal and frictional loadings is indicated by their resultants N and F
on the free-body diagram, Fig. d. Notice that N acts a distance x to the right of the line of action
of W, Fig. d. This location, which coincides with the centroid or geometric center of the normal
force distribution in Fig. b, is necessary in order to balance the “tipping effect” caused by P. For
example, if P is applied at a height h from the surface, Fig. d, then moment equilibrium about point
O is satisfied if Wx = Ph or x = Ph /W.
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v" Impending Motion: In cases where the surfaces of contact are rather “slippery,” the

frictional force F may not be great enough to balance P, and consequently the block will
tend to slip.

Fs = pusN

Where:

Fs, called the limiting static frictional force, us (mu “sub” s), is called the coefficient of static

friction, and N the normal force.

The angle ¢ (phi “sub” s) that Rs makes with N is called the angle of static friction.
From the figure below:

W
_____ Impending w
motion — Motion
|V P,
L]
y p —F,
e ; F,
EN
Equilibrium ’ N R,
(a) (b) (c)

v' Motion: If the magnitude of P acting on the block is increased so that
it becomes slightly greater than Fs, the frictional force at the contacting

surface will drop to a smaller value Fk, called the kinetic frictional force.

F, = mN

Here the constant of proportionality, u, is called the coefficient of kinetic friction.
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r
200:

In this case, the resultant force at the surface of contact, Rk, has a line of action defined by ¢. This

angle is referred to as the angle of kinetic friction, where:

F N
br = tan_l(ﬁ) = tan_l(%) = tan~!

Characteristics of Dry Friction:

® The frictional force acts tangent to the contacting surfaces in a
direction opposed to the motion or tendency for motion of one
surface relative to another.

® The maximum static frictional force F; that can be developed is
independent of the area of contact, provided the normal pressure is
not very low nor great enough to severely deform or crush the
contacting surfaces of the bodies.

® The maximum static frictional force is generally greater than the
kinetic frictional force for any two surfaces of contact. However, if
one of the bodies is moving with a very low velocity over the surface
of another, F; becomes approximately equal to F, i.e., u, = .

® When slipping at the surface of contact is about to occur, the
maximum static frictional force is proportional to the normal force,
such that F;, = u,N.

® When slipping at the surface of contact is occurring, the kinetic
frictional force is proportional to the normal force, such that
Fy = wN.
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5.2.Types of Friction Problems
In general, there are three types of static problems involving dry friction. They can easily be
classified once free-body diagrams are drawn and the total number of unknowns are identified and

compared with the total number of available equilibrium equations.

No Apparent Impending Motion. Problems in this category are strictly equilibrium problems,

which require the number of unknowns to be equal to the number of available equilibrium

equations. Once the frictional forces are determined from the solution, however, their numerical
values must be checked to be sure they satisfy the inequality F < ps N; otherwise, slipping will

occur and the body will not remain in equilibrium.

B
Ad L C
py =03 pe =05
(a)
AB,
B, < > B,
VB

l 100N 100N l
| FA | '

N4 N¢
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Impending Motion at All Points of Contact. In this case the total number of unknowns will equal

the total number of available equilibrium equations plus the total number of available frictional
equations, F = u N. When motion is impending at the points of contact, then Fs = us N; whereas if

the body is slipping, then Fx = i N.

# [.LB=O.4
de
MA 0.3
(a)
F—NB
Fpg

é\llOON

(b)
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Impending Motion at Some Points of Contact. Here the number of unknowns will be less than

the number of available equilibrium equations plus the number of available frictional equations or
conditional equations for tipping. As a result, several possibilities for motion or impending motion

will exist and the problem will involve a determination of the kind of motion which actually occurs.

B
— P
A 4 'C
pa =03 pc=0.5
(a)
B,
L I )
€ -
B, B,
— P
l 100 N 100 N l
<—-T— F, <T— |
N N¢
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Example: The uniform crate shown in Fig. a has a mass of 20 kg. If a force P =80 N is applied

to the crate, determine if it remains in equilibrium. The coefficient of static friction is ps= 0.3.

1962 N
r 0.8 m - ‘
P=80N ~——04m—|—04m—
S | 30°/ o ¥
A\ E] 02m| P 0 
D

Solution:

The resultant normal force Nc must act a distance x from the crate’s center line in order to
counteract the tipping effect caused by P. There are three unknowns, F, Nc, and X, which can be

determined strictly from the three equations of equilibrium.

Equations of Equilibrium.
L 3F, = 0; 80cos30°N — F=0
+13F,=0; —80sin30°N + N — 1962N =0

C+2M, = 0; 80sin30°N(0.4 m) — 80 cos 30°N(0.2m) + No(x) = 0

Solving,

F=693N
Ne = 2362N
x = —0.00908 m = —9.08 mm

Since x is negative it indicates the resultant normal force acts (slightly)
to the left of the crate’s center line. No tipping will occur since
x < 0.4 m. Also, the maximum frictional force which can be developed
at the surface of contact is F, = uNe = 0.3(236.2N) = 709 N.
Since F = 69.3 N < 70.9 N, the crate will not slip, although it is very
close to doing so.
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Example: It is observed that when the bed of the dump truck is raised to an angle

of 0 = 25° the vending machines will begin to slide off the bed, Fig. a. Determine the

static coefficient of friction between a vending machine and the surface of the truck
bed.

Solution: An idealized model of a vending machine resting on the truckbed is
shown in Fig. b. The dimensions have been measured and the center of gravity has

been located. We will assume that the vending machine weighs W.
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Free-Body Diagram. As shown in Fig. c, the dimension x is used to locate the

position of the resultant normal force N. There are four unknowns, N, F, s, and X.

Equations of Equilibrium.

+N3F, = 0; Wsin25° — F =0 (1)
+7%F, = 0; N — W cos 25° = 2)
C+3IMy, = 0; —W sin25°Q2.5ft) + W cos 25°(x) = 0 (3)

Since slipping impends at § = 25°, using Egs. 1 and 2, we have

F, = u,N, W sin 25° = u (W cos 25°)
r, = tan 25° = 0.466 Ans.

The angle of § = 25° is referred to as the angle of repose, and by
comparison, it is equal to the angle of static friction, 8 = ¢,. Notice
from the calculation that 0 is independent of the weight of the vending
machine, and so knowing 6 provides a convenient method for
determining the coefficient of static friction.

NOTE: From Eq. 3, we find x = 1.17 ft. Since 1.17 ft < 1.5 ft, indeed the vending

machine will slip before it can tip
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Example: The uniform 10-kg ladder in Fig. a rests against the smooth wall at B, and the end

A rests on the rough horizontal plane for which the coefficient of static friction is us = 0.3.
Determine the angle of inclination 6 of the ladder and the normal reaction at B if the ladder is on

the verge of slipping.
Np

1098)N 4

(4 m) sin 6

/f{ F,

g

NA|(2 m)cosf (2m)cos 6

(a) (b)

Solution: As shown on the free-body diagram, Fig. b, the frictional force Fa must act to the

right since impending motion at A is to the left.

Since the ladder is on the
N, = 0.3N,. By inspection, N, can be

L)

verge of slipping, then F, = u
obtained directly.

+T2F_v = 0 Ny, — 109.81)N =0 Ny = 98.1N
Using this result, F, = 0.3(98.1 N) = 29.43 N. Now Nj can be found.
el S E ) 2943N — Nz =0

Nz = 29.43N = 294N

Finally, the angle 6 can be determined by summing moments about

point A.
i +3M, = 0, (2943 N)dm)sin® — [10(9.81) N](2m)cos & = 0
sin @
= tan f = 1.6667
cos 0

f = 59.04° = 59.0°
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Example: Beam AB is subjected to a uniform load of 200 N /m and is supported at B by post

BC, Fig. a. If the coefficients of static friction at B and C are ug = 0.2 and pc = 0.5, determine the

force P needed to pull the post out from under the beam. Neglect the weight of the members and

the thickness of the beam.

- B
i 10.75 m
P
10.25m
C
(a)
Solution:
800 N F,
e
A | |
x A ‘ T FB FC.'
—2m——2m
Arl N, = 400 N

(b)

(c)

The free-body diagram of the beam is shown in Fig. b.

Applying >Ma = 0, we obtain Ng =400 N. This result is shown on the free-body diagram of the

post, Fig. c. Referring to this member, the four unknowns Fg, P, Fc, and Nc are determined from

the three equations of equilibrium and one frictional equation applied either at B or C.
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Equations of Equilibrium and Friction.
L 3SF = 0; P—Fz—F-=0 (1)
+13F, = 0; Ne — 400N = 0 )
C+3M = 0; —P(0.25m) + Fp(1m) = 0 (3)

(Post Slips at B and Rotates about C.) Thisrequires F- = u-N_and

Fy = ugNg; Fzp = 0.2(400N) = 80N
Using this result and solving Egs. 1 through 3, we obtain
P = 320N
Fe = 240N
N¢e = 400N

Since Fr = 240N > ucNe = 0.5400N) = 200N, slipping at C
occurs. Thus the other case of movement must be investigated.

(Post Slips at C and Rotates about B.) Here F; = uzNg and

Fe = peNe; Fc = 0.5N¢ (4)
Solving Egs. 1 through 4 yields
P = 267N Ans.
Ne = 400N
Fe = 200N
Fg = 667N

Obviously, this case occurs first since it requires a smaller value for P.
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Example: Blocks A and B have a mass of 3 kg and 9 kg, respectively, and are connected to

the weightless links shown in Fig. a. Determine the largest vertical force P that can be applied at

the pin C without causing any movement. The coefficient of static friction between the blocks and

the contacting surfaces is us = 0.3.

()

Solution:

The links are two-force members and so
the free-body diagrams of pin C and blocks A and B are shown
in Fig. b. Since the horizontal component of Fac tends to move
block A to the left, Fa must act to the right. Similarly, Fg must
act to the left to oppose the tendency of motion of block B to
the right, caused by Fsc. There are seven unknowns and six
available force equilibrium equations, two for the pin and two
for each block, so that only one frictional equation is needed.
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Equations of Equilibrium and Friction. The force in links AC and
BC can be related to P by considering the equilibrium of pin C.

+13F, = 0; F,ccos 30°— P = 0; O i e
=l 3 S 1 1.155Psin 30° — Fz- = 0; Fzc = 05774P
Using the result for F, ., for block A,
i = 35 A C A CHRIND el W ey o8- lie o il SHHIHD SIS b i 20 & (1)
+T2Fy el G 1T et AT S R i 8 0 | BGSRLSSIMINT) =l

Ny = P+2943N 2)
Using the result for F, for block B,
i el ) SN 1 (0.5774P) — F5 = 0; Fgz = 0.5774P 3)
ol 20 MR - Ng — 9(9.81)N = 0; Ny = 8829 N

Movement of the system may be caused by the initial slipping of either
block A or block B. If we assume that block A slips first, then

Fy = usNy = 03N, 4)
Substituting Eqs. 1 and 2 into Eq. 4,
0.5774P = 0.3(P + 29.43)
P=318N Ans.

Substituting this result into Eq. 3, we obtain Fz = 18.4 N. Since the
maximum static frictional force at B is (Fg)py = #Ng =
0.3(88.29 N) = 26.5 N > Fj, block B will not slip. Thus, the above
assumption is correct. Notice that if the inequality were not satisfied,
we would have to assume slippine of block B and then solve for P.
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6. Chapter six: Center of Gravity and Centroid

6.1.Center of Gravity:

A body is composed of an infinite number of particles of differential size, and so if the body is
located within a gravitational field, then each of these particles will have a weight dW. These

weights will form a parallel force system, and the resultant of this system is the total weight of the

body, which passes through a single point called the center of gravity, G

The coordinates of the location of the center of gravity can be

determined by the following formulas:

]’de /j\?dW /'z“dw

IS

I=~F— §y="F— Z
[aw [aw [aw

=

Where: x

x,y, z are the coordinates of the center of gravity G.
X, y, Z are the coordinates of an arbitrary particle in the body.
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EXAMPLE:
Locate the centroid of the rod bent into the shape of a parabolic arc as y
shown in Fig. 9-8. 1m
SOLUTION

Differential Element. The differential element is shown in Fig. 9-8.
It is located on the curve at the arbitrary point (x, y).

Area and Moment Arms. The differential element of length dL

can be expressed in terms of the differentials dx and dy using the
Pythagorean theorem.

2
= V(dx)* + (dy)* = 4/ (%) + ldy

Since x = y? then dx/dy = 2y. Therefore, expressing dL in terms
of y and dy, we have

Fig. 9-8

dL = \/(Zy)2 + ldy

As shown in Fig. 9-8, the centroid of the element is located at X = x,
y=y

Integrations. Applying Eq. 9-5 and using the integration formula
to evaluate the integrals, we get

I m I m
/3‘5 dL xVdy? + Ldy / y:Vay? + 1dy
JL 40 _ 40

X = - Il m - I m
/L dL Vay? + 1dy Vay? + 1dy

40 J A

~ 0.6063
1.479

dL 4y* + 1d
/ Y / —— Y _0.8484

479 0.574 m Ans.
/LdL / Vdy? + 1dy .

= 0410 m Ans.

NOTE: These results for C seem reasonable when they are plotted on
Fig. 9-8.
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EXAMPLE: Determine the distance y measured from the x axis to the centroid of the area of the

triangle shown in Fig. 9-10 below:

i
h
—y=2(b-%)
R )
&5)
h & [ Y
7\ A
* dy ‘
Y
b, S I X
{ b l

SOLUTION

Differential Element. Consider a rectangular element having a
thickness dy, and located in an arbitrary position so that it intersects
the boundary at (x, y), Fig. 9-10.

Area and Moment Arms. The area of the element is dA = x dy
b . o | ~
= E(h — y) dy, and its centroid is located a distance y = y from the

X axis.

Integration. Applying the second of Egs. 94 and integrating with
respect to y yields

h
= b
y dA fy{—(h—y)dy]
/4 0 h %bhz

h |
b ~bh
/ —(h — y)dy ?
0 h

== Ans.

=
|
b
=

NOTE: This result is valid for any shape of triangle. It states that the
centroid is located at one-third the height, measured from the base of
the triangle.
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1. Locate the centroid of the area shown in Fig. below:

)(v

o[ (X, ) y

—~ |—dx

2. Locate the centroid of the semi-elliptical area shown in Fig. below:
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EXAMPLE: Locate the y centroid for the paraboloid of revolution, shown in Fig. 9-14.

100 mm

100 mm -

Fig. 9-14

SOLUTION

Differential Element. An element having the shape of a thin disk is
chosen. This element has a thickness dy, it intersects the generating
curve at the arbitrary point (0, y, z), and so its radius is r = z.

Volume and Moment Arm. The volume of the element is
dV = (wz?) dy, and its centroid is located at y = y.

Integration. Applying the second of Egs. 9-3 and integrating with
respect to y yields.

100 mm 100 mm
/ v dv / y(mz?)dy  100a f v2 dy
1% 0 0

y = = = = 66.7mm  Ans

100 mm 100 mm
/d‘/ / (mz%) dy 10071'[ v dy
v 0 0
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6.2.Composite Bodies

A composite body consists of a series of connected “simpler” shaped bodies, which may be
rectangular, triangular, semicircular, etc. Such a body can often be sectioned or divided into its
composite parts and, provided the weight and location of the center of gravity of each of these
parts are known, we can then eliminate the need for integration to determine the center of gravity
for the entire body. The formula for calculating the coordinates of the center of gravity for

composite bodies:

O 3XW . 2 yYW . 3ITW
X = ] = 7 =
w0 sw SW
Where:
X,y,z  represent the coordinates of the center of gravity G of the
composite body.
¥,y,z represent the coordinates of the center of gravity of each

composite part of the body.

SW 1s the sum of the weights of all the composite parts of the
body, or simply the total weight of the body.
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EXAMPLE:
Locate the centroid of the wire shown in Fig. 9-16a.
SOLUTION
Composite Parts. The wire is divided into three segments as shown
in Fig. 9-16b.
Moment Arms. The location of the centroid for each segment is
determined and indicated in the figure. In particular, the centroid of
segment @ is determined either by integration or by using the table
on the inside back cover.
Summations. For convenience, the calculations can be tabulated as
follows:

Segment L (mm) X(mm) y(mm) Z (mm) XL (mm?) yL (mm?) ZL (mm?)
1 w(60) = 188.5 60 —38.2 0 11310 —7200 0
2 40 0 20 0 0 800 0
3 20 0 40 —-10 0 800 —200

3L = 2485 XL = 11310 3XyL = —5600 XZL = —200
%L 1131
%= EELL = 242.50 = 45.5mm Ans.
_ XYL  —5600 oy Y
PESE T Tamm o
__2ZL 200 _
=S5 T ass 0.805 mm Ans.
z
~ ;/Q 40 mm
T/ |\y "
20 mm ||
X
(b)
Fig. 9-16
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EXAMPLE: Locate the centroid of the plate area shown in Fig. 9-17a.

y
2 ft
-
1ft
t
\ \ |
‘ i ‘ 2 ft 3ft ‘
(a)
Fig. 9-17

SOLUTION

Composite Parts. The plate is divided into three segments as shown
in Fig. 9-17b. Here the area of the small rectangle @ is considered
“negative” since it must be subtracted from the larger one @

Moment Arms. The centroid of each segment is located as indicated
in the figure. Note that the ¥ coordinates of (2) and (3) are negative.

Summations. Taking the data from Fig. 9-17b, the calculations are
tabulated as follows:

)
1ft
'

Segment A (f) T(fy Yy XA (D) VA (ft)
1 13)3) = 45 1 1 4.5 4.5
2 (3)3) =9 -15 15 -135 13.5
3 - =-2 =25 2 5 —4
SA =115 SYA= -4 3jA=14
Thus,
F= 24 4 aasn Ans
25 = EA = 115 - b ANS.
VA 14
y=——=—=1221 Ans.
S VIR ‘ "

NOTE: If these results are plotted in Fig. 9-17a, the location of point C
seems reasonable.
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Locate the center of mass of the assembly shown in Fig. 9-18a. The
conical frustum has a density of p, = 8 Mg/m’, and the hemisphere
has a density of p, = 4 Mg/m’. There is a 25-mm-radius cylindrical
hole in the center of the frustum.

mm
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7. Chapter Seven: Moments of Inertia

7.1.Moments of Inertia of an area

The area moment of inertia represents the second moment of the area about an axis. It is frequently

used in formulas related to the strength and stability of structural members or mechanical elements.

For the entire area A the moments of inertia are determined by integration:

I, = / y" dA

A
= / x*dA
' A

From the above formulations it is seen that Ix and ly, will always be positive since they involve the

product of distance squared and area. Furthermore, the units for moment of inertia involve length
raised to the fourth power, e.g., m* mm#, or ft*, in.%.

y
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7.2.Parallel-Axis Theorem for an Area
The parallel-axis theorem can be used to find the moment of inertia of an area about any axis that

is parallel to an axis passing through the centroid and about which the moment of inertia is known.

I_r = ;r_r' + Ad%

I, =1, + Ad;

Ix’and iy’: The first integral represents the moment

of inertia of the area about the centroidal axis. d

A The total area.

dy and dx: The distance between the parallel x* and

X and y’ and y respectively.

7.3.Radius of Gyration of an Area
The radius of gyration of an area about an axis has units of length and is a quantity that is often
used for the design of columns in structural mechanics. Provided the areas and moments of inertia

are known, the radii of gyration are determined from the formulas
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EXAMPLE: Determine the moment of inertia for the rectangular area shown in Fig. 10-5 with

respect to (a) the centroidal x” axis, and (b) the axis x, passing through the base of the rectangle.

SOLUTION: y
dy'
I b
2 T'
y
i I x'
C
h
2
Xp
bl b
2 | 2
Fig. 10-5

Part (a). The differential element shown in Fig. 10-5 is chosen for
integration. Because of its location and orientation, the entire element
is at a distance y' from the x" axis. Here it is necessary to integrate from
y' = —h/2toy" = h/2.Since dA = bdy’, then

B h/2 hf2
I, = f}-”sz = bAbdy') = b/ y?dy'
A —h/2 —h/2
Io= L ins
x 12 ANS.

Part (b). The moment of inertia about an axis passing through the
base of the rectangle can be obtained by using the above result of
part (a) and applying the parallel-axis theorem, Eq. 10-3.

Xp x' ¥
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EXAMPLE: Determine the moment of inertia for the shaded area shown in Fig. 10-6a about the

X-axis.

dy

1t

y 200 mm

~——— 100 mm ——
(a)
SOLUTION:

A differential element of area that is parallel to the x axis, as shown in
Fig. 10-6a, is chosen for integration. Since this element has a thickness
dy and inltersects the curve at the arbitrary point (x, y), its area is
dA = (100 — x) dy. Furthermore, the element lies at the same distance y
from the x axis. Hence, integrating with respect to y, from y = 0 to
y = 200 mm, yields

200 mm
I, = /ysz = / y*(100 — x) dy
A 0

200 mm 2 200 mm 4
= ~2(100 - ’—) dy = (100y2 - )dv
. 400) > 400 ) *

= 107(10%) mm* Ans.
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EXAMPLE: Determine the moment of inertia with respect to the x axis for the circular area shown
in Fig. 10-7a.

Y

| —y |

(—x,y) /\
*\ ‘x'-lII
dyf )’ (T y)
y
[ l

(a)

SOLUTION I (CASE 1)
Using the differential element shown in Fig. 10-7a, since dA = 2x dy,

we have
I, = /ysz = f}-‘z(h)dy
A A
4

= fyz(fl\faz—yz)dy:ﬂ

a 4

oLl JUiall agd amy oSle | dagiil) e J geaal) 488 48 ja dal (10 y

R r4 R 1 dA
Jo = /r2 dA = / 2arddr = Zﬂ'[—} = —7R%,
A 0 4l 2

e

1 |
]x:I},ZEJ()Zz’ITR, &
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7.4.Moments of Inertia for Composite Areas

A composite area consists of a series of connected “simpler” parts or shapes, such as rectangles,
triangles, and circles. Provided the moment of inertia of each of these parts is known or can be
determined about a common axis, then the moment of inertia for the composite area about this axis

equals the algebraic sum of the moments of inertia of all its parts.

EXAMPLE: Determine the moment of inertia of the area shown in Fig. 10-8a about the x axis.

%100 mm——{ 100 mm —

1 T
25 mm 75 mm 75 mm 25 mm
SN } .|
75 mm 75 mm
L, | .
(a) (b)

The area can be obtained by subtracting the circle
from the rectangle shown in Fig. 10-8b. The centroid of each area is
located in the figure.

The moments of inertia about the x axis
are determined using the parallel-axis theorem and the geometric
properties formulae for circular and rectangular areas I, = jmr;

I, = 15bh?, found on the inside back cover.

Circle

I.\' = jx’ + Ad%

in(zsf‘ + 7(25)%(75)* = 11.4(10% mm*

Rectangle
I, = i.\" + Ad%

= 11—2(100)(150)3 + (100)(150)(75)* = 112.5(10% mm*

The moment of inertia for the area is therefore

I, = —11.4(10% + 112.5(10%)

101(10°) mm*

67




(o a1 oy

e el 63 oo ishy ENG. MECHANICS (STATICS)

OB 3 Aol

ﬁr/;ﬂ: INSTRUCTOR: HAIDER K. SAKBAN

EXAMPLE: Determine the moments of inertia for the cross-sectional area of the member shown

in Fig. 10-9a about the x and y centroidal axes.

SOLUTION:
y
100 mm | |
200 mm
' la
300 TT’“ - 250 mm
B . X

250 mm / e | 300 mm
200 mm | D I

—  —100 mm

(b)
Fig. 10-9
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Composite Parts. The cross section can be subdivided into the three
rectangular areas A, B, and D shown in Fig. 10-9b. For the calculation,
the centroid of each of these rectangles is located in the figure.

Parallel-Axis Theorem. From the table on the inside back cover, or
Example 10.1, the moment of inertia of a rectangle about its centroidal
axisis I = 15bh’. Hence, using the parallel-axis theorem for rectangles A
and D, the calculations are as follows:

Rectangles A and D

I, =1, +Ad} = 1—12(100)(300)3 + (100)(300)(200)?

1.425(10%) mm*
1
 + Ad? = E(300)(100)3 + (100)(300)(250)*

= 1.90(10%) mm*

1 3 9 4
I, = 1 (600)(100)° = 0.05(10°) mm

1
I, = 5(100)(600)3 = 1.80(10°) mm*

Summation. The moments of inertia for the entire cross section
are thus

I, = 2[1.425(10%)] + 0.05(10%)

= 2.90(10”) mm* Ans.
I, = 2[1.90(10%)] + 1.80(10”)
= 5.60(10°) mm* Ans.
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Geometric Properties of Line and Area Elements

Centroid Location

Centroid Location

Area Moment of Inertia

Parabolic area

Triangular area

1 1,
I, —Zr" (CE Ebm 2d)
1 1
I, =3 re+ 2 sin 26)
L=
ST
1
1’.‘ = E ar
Quarter and semicircle arcs Quarter circle area
—a—i A=3h(a+b) y 2
T A=
h ¢ . N L=_n
L/ . I
| b ! T %(2::—:-:: h x I,= l art
Trapezoidal area Semicircular area
y
—b—| A=2%ab A =mr?
'r— g 1
. i ':';a ’ x b= Zmd
S b c |
I, =~
3p 4
8
Semiparabolic area Circular area
!
- A=Lab y v A =bh
b 1l T ] 1= b3
s ab h x T2
— Y _T_ 10 C
ia 4 1
a | | I,=—hb*
a . b 1 S
Exparabolic area Rectangular area
A = 1bh
T - L3
I,=—bl
h /E< | * 36
i \_‘h\xl
! b | T 3k
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8. Chapter Eight: Kinematics of a Particle

Mechanics is a branch of the physical sciences that is concerned with the state of rest or motion

of bodies subjected to the action of forces. Engineering mechanics is divided into two areas of
study, namely, statics and dynamics. Statics is concerned with the equilibrium of a body that is

either at rest or moves with constant velocity. Here we will consider dynamics, which deals with

the accelerated motion of a body.

Problem Solving. Dynamics is considered to be more involved
than statics since both the forces applied to a body and its motion must
be taken into account. Also, many applications require using calculus,
rather than just algebra and trigonometry. In any case, the most
effective way of learning the principles of dynamics is to solve problems.
To be successful at this, it is necessary to present the work in a logical
and orderly manner as suggested by the following sequence of steps:

1.

Read the problem carefully and try to correlate the actual physical
situation with the theory you have studied.

Draw any necessary diagrams and tabulate the problem data.

Establish a coordinate system and apply the relevant principles,
generally in mathematical form.

Solve the necessary equations algebraically as far as practical; then,
use a consistent set of units and complete the solution numerically.
Report the answer with no more significant figures than the accuracy
of the given data.

Study the answer using technical judgment and common sense to
determine whether or not it seems reasonable.

Once the solution has been completed, review the problem. Try to
think of other ways of obtaining the same solution.

In applying this general procedure, do the work as neatly as possible. Being
neat generally stimulates clear and orderly thinking, and vice versa.
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8.1.Rectilinear Kinematics.

The kinematics of a particle is characterized by specifying, at any given instant, the particle’s

position, velocity, and acceleration.

Position (s): The straight-line path of a particle will be defined using a single coordinate axis s,

(0]

O )
|

Position

(a)

Displacement (As): The displacement of the particle is defined as the change in its position.

Velocity (v): If the particle moves through a displacement As during the time interval At, the
average velocity of the particle during this time interval is:

As ds
Vavg = At dt

Acceleration (a): Provided the velocity of the particle is known at two points, the average

acceleration of the particle during the time interval At is defined as:

A dv
avg — % @ = E
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Constant Acceleration

When the accelerating object will change its velocity by the same amount each second. This is
referred to as a constant acceleration since the velocity is changing by a constant amount each

second.

Velocity as a Function of Time:

v =1y + a.t

Constant Acceleration

Position as a Function of Time

§ =855+ vt + %acrz

Constant Acceleration

Velocity as a Function of Position

v = v} + 2a.(s — sp)

Constant Acceleration

Where:

Vo is the velocity at timet =0

v is the velocity at any later time t

ac Is the constant acceleration.

So is the position of the particle att =0

s is the position of the particle at any time

If air resistance is neglected and the distance of fall is short, then the downward acceleration of

the body when it is close to the earth is constant and approximately 9.81 m/s? or 32.2 ft/s?
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EXAMPLE: The car in Fig. 12-2 moves in a straight line such that for a short time its velocity is
defined by v = (3t + 2t) ft/s, where t is in seconds. Determine its position and acceleration

Whent=3s. Whent=0,s=0

SOLUTION:

Coordinate System. The position coordinate extends from the fixed
origin O to the car, positive to the right.

Position. Since v = f(t), the car’s position can be determined from
v = ds/dt, since this equation relates v, s, and 7. Noting that s = 0
when t = 0, we have*

_ds

+ v = = (362 + 2t
(5) 7 ( )
i 1
f ds = / (3% + 2h)dt
0 0
5 t
s| =P+ 7
0 0
s=1r + 1
When t = 3 s,
s = 3) + 3) = 36ft Ans.

Acceleration. Since v = f(t), the acceleration is determined from
a = dv/dt, since this equation relates a, v, and .

(5) a:d—vzi(sr%rz:)
' dt dt
=6t +2
When t = 3 s,
a=6(3)+2=20ft/s*— Ans.

NOTE: The formulas for constant acceleration cannot be used to solve
this problem, because the acceleration is a function of time.
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EXAMPLE: During a test a rocket travels upward at 75 m/s, and when it is 40 m from the ground
its engine fails. Determine the maximum height sg reached by the rocket and its speed just before
it hits the ground. While in motion the rocket is subjected to a constant downward acceleration of

9.81 m/s? due to gravity. Neglect the effect of air resistance.

SOLUTION

Coordinate System. The origin O for the position coordinate s is
taken at ground level with positive upward, Fig. 12-4.

U3=U

Maximum Height. Since the rocket is traveling upward,
v4 = +75m/swhent = 0. At the maximum height s = s; the velocity
vg = 0. For the entire motion, the acceleration is ¢, = —9.81 m/s?
(negative since it acts in the opposite sense to positive velocity or
positive displacement). Since a, is constant the rocket’s position may
be related to its velocity at the two points A and B on the path by using
Eq. 12-6, namely,

+h vp = vy + 2a.(sp — 5a)
0 = (75m/s)* + 2(—9.81 m/s?)(sp — 40 m)
sg = 327m Ans. "ATP mfsf&

Velocity. To obtain the velocity of the rocket just before it hits the A
ground, we can apply Eq. 12-6 between points B and C, Fig. 12-4.

54=40m

+D ve = vg + 2a.(sc — sp)

=0 + 2(—9.81 m/s*)(0 — 327 m)

— tn —=|

ve = —80.1m/s = 80.1 m/s | Ans.
‘ / / Fig. 124

The negative root was chosen since the rocket is moving downward.
Similarly, Eq. 12-6 may also be applied between points A and C, 1.e.,

+h ve = vy + 2a.(sc — 54)
= (75m/s)*> + 2(—9.81 m/s%)(0 — 40 m)
ve = —80.1m/s = 80.1m/s | Ans.

NOTE: It should be realized that the rocket is subjected to a deceleration
from A to B of 9.81 m/s?, and then from B to C it is accelerated at this
rate. Furthermore, even though the rocket momentarily comes to rest
at B (vg = 0) the acceleration at B is still 9.81 m/s* downward!
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EXAMPLE: A particle moves along a horizontal path with a velocity of v = (3t - 6t) m/s, where

t is the time in seconds. If it is initially located at the origin O, determine the distance traveled in

3.5 s, and the particle’s average velocity and average speed during the time interval.

s=—40m s=6.125m

(0,0) (25,0)

(1s,—-3m/s)
(b)
Fig. 12-6

t(s)

SOLUTION

Coordinate System. Here positive motion is to the right, measured
from the origin O, Fig. 12-6a.

Distance Traveled. Since v = f(t), the position as a function of time
may be found by integrating v = ds/dt withr = 0, s = 0.

(i>) ds = vdt
= (3 — 61) dt
/ ds= | 3 — 61 dt
0 0
s=@@-3%)m 1)

In order to determine the distance traveled in 3.5 s, it is necessary
to investigate the path of motion. If we consider a graph of the
velocity function, Fig. 12-6b, then it reveals that for 0 < ¢ < 2 s the
velocity is negative, which means the particle is traveling to the left,
and for r > 2s the velocity is positive, and hence the particle is
traveling to the right. Also, note that v = 0 at t = 2 s. The particle’s
position when r = 0, t = 25, and ¢ = 3.5 s can be determined from
Eq. 1. This yields

SI,:(): 0 S|I=ZS: _40m SII=3.SS= 6]25m
The path is shown in Fig. 12-6a. Hence, the distance traveled in 3.5 s is
st =40+ 40 +6.125 = 14.125m = 14.1m Ans.

Velocity. The displacement fromt = Otot = 3.5sis
As = §|;=355 — §|;=0 = 6.125m — 0 = 6.125 m
and so the average velocity is

- As _ 6125m

& At 35s5-0

The average speed is defined in terms of the distance traveled s;. This
positive scalar is

= 175 m/s— Ans.

s 14125m

- = 4.04 m/: Ans.
At 35s-0 s "

(vsp )av e =

NOTE: In this problem, the accelerationis a = dv/dr = (6r — 6) m/s?,
which is not constant.
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8.2.Conservation of Energy

The total energy E of a system (the sum of its mechanical energy and its internal energies,
including thermal energy) can change only by amounts of energy that are transferred to or from

the system. This experimental fact is known as the law of conservation of energy.

If work W is done on the system, then:

W = AE = AE,och + AEy, + AE

Where:

v W= work: is energy transferred to or from an object via a force acting on the
object.

¥" AE : The change in the total energy.

¥ AE,,ocp: The change in the mechanical energy.
v AEth: The change in the thermal energy.

v" AE,; : The change in the internal energy.

Work (W): is energy transferred to or from an object via a force acting on the object. Energy

transferred to the object is positive work, and from the object, negative work.

The work done on a particle by a constant force (F) during displacement (d) is
W= Fdcos®

In which @ is the constant angle between the directions of (F) and (d).

Units for Work (joule): 1J=1kg-m%s?=1N-m = 0.738 ft - b.
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Power (P): the rate at which work is done by a force. In a more general sense, power P is the rate
at which energy is transferred by a force from one type to another. If an amount of energy AE is
transferred in an amount of time At, the average power due to the force is:

P_AE
At

Mechanical enerqy (AE,,..») Equal to the summation of the change in the kinetic energy

(AK) and the change in the potential energy (AU) of the system.

AEpoch = AK + AU

Kinetic energy (K) is energy associated with the state of motion of an object. The faster the object
moves, the greater is its kinetic energy. When the object is stationary, its kinetic energy is zero.
The Sl unit of kinetic energy (and all types of energy) is the joule (J).

For an object of mass m whose speed v

K= tmov?
—zmv

The potential energy (U): the potential energy associated with a system consisting of Earth and
a nearby particle is gravitational potential energy. If the particle moves from initial height yi to
final height yr, the change in the gravitational potential energy of the particle with mass m and

gravitational acceleration (g) is:

AU = mg(y;— yi)

For a spring that exerts a spring force F = — kx when it’s free end has displacement x, the elastic

potential energy is:

U(x) = % k x?
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Then, AEecn = AK + AU
AEpech = (Ky — K;) + (mg( Y5 — )’i))
AE pech = Gm v? — %m voz) + (m g Ay)

The thermal energy (AE,):

AEy, = Frd= p Fyd = pymgd
Where:
F,, : Frictional force = uy Fy
Uy : The coefficient of kinetic friction,
d : Distance
Fy : The normal force = mg
m : Mass,

g: gravitational acceleration
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EXAMPLE: In Fig. below, a block slides down an incline. As it moves from point A to point B,
which are 5.0 m apart, force acts on the block, with magnitude 2.0 N and directed down the incline.
The magnitude of the frictional force acting on the block is 10N. If the kinetic energy of the block
increases by 35 J between A and B, how much work is done on the block by the gravitational force

as the block moves from A to B?

S~

A

SOLUTION:

AE, = f.d =(10N)(5.0m)=50 J
W =Fd =(2.0N)(5.0m) =10 J.

W=AK +AU +AE,
10 =35+ AU +50

AU=-T5 1.

80




3 a1 bl ey

el g0 ENG. MECHANICS (STATICS)

B JrXy S
i

Mﬁiﬂ@ INSTRUCTOR: HAIDER K. SAKBAN

EXAMPLE: In Fig. below, a 3.5 kg block is accelerated from rest by a compressed spring of
spring constant 640 N/m. The block leaves the spring at the spring’s relaxed length and then travels
over a horizontal floor with a coefficient of kinetic friction px = 0.25. The frictional force stops the

block in distance D = 7.8 m. What are:
(@) The increase in the thermal energy of the block—floor system,
(b) The maximum kinetic energy of the block, and

(c) The original compression distance of the spring?

SOLUTION:

53. (a) The vertical forces acting on the block are the normal force, upward, and the force
of gravity, downward. Since the vertical component of the block's acceleration is zero,
Newton's second law requires Fiy = mg, where m is the mass of the block. Thus /= s Fy
= wymg. The increase in thermal energy is given by AEy, = fd = 1y mgD, where D is the
distance the block moves before coming to rest. Using Eq. 8-29, we have

AE, = bo.zs@bs.s ngGs;.s m/s’ | )78 mg =67]J.

(b) The block has its maximum kinetic energy K,y just as it leaves the spring and enters
the region where friction acts. Therefore, the maximum kinetic energy equals the thermal
energy generated in bringing the block back to rest, 67 J.

(c) The energy that appears as kinetic energy is originally in the form of potential energy

1

in the compressed spring. Thus, K, =U, = Ekx2 , where £k is the spring constant and x is

max

6711
wo [P _ I 046m.
k 640N/m
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