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Foreword

If you’re reading this book, you’re probably already enrolled in an introductory university course
in Mechanical Engineering. The primary goals of this textbook are, to provide you, the student,
with:

An understanding of what Mechanical Engineering is and to a lesser extent what it is not

Some useful tools that will stay with you throughout your engineering education and career

3. A brief but significant introduction to some of the major topics of Mechanical Engineering
and enough understanding of these topics so that you can relate them to each other

4. A sense of common sense

N —

The challenge is to accomplish these objectives without overwhelming you so much that you won’t
be able to retain the most important concepts.

In regards to item 2 above, I remember nothing about some of my university courses, even in
cases where I still use the information I learned therein. In others I remember “factoids” that I still
use. One goal of this textbook is to provide you with a set of useful factoids so that even if you
don’t remember any specific words or figures from this text, and don’t even remember where you
learned these factoids, you still retain them and apply them when appropriate.

In regards to item 3 above, in particular the relationships between topics, this is one area where I
feel engineering faculty (myself included) do not do a very good job. Time and again, I find that
students learn something in class A, and this information is used with different terminology or in a
different context in class B, but the students don’t realize they already know the material and can
exploit that knowledge. As the old saying goes, “We get too soon old and too late smart...”
Everyone says to themselves several times during their education, “oh... that’s so easy... why didn’t
the book [or instructor] just say it that way...” I hope this text will help you to get smarter sooner
and older later.

A final and less tangible purpose of this text (item 4 above) is to try to instill you with a sense of
common sense. Over my 33 years of teaching at the university level, I have found that students
have become more technically skilled and well-rounded but have less ability to think and figure out
things for themselves. I attribute this in large part to the fact that when I was a teenager, cars were
relatively simple and my friends and I spent hours working on them. When our cars weren’t broken,
we would sabotage (nowadays “hack” might be a more descriptive term) each other’s cars. The best
hacks were those that were difficult to diagnose, but trivial to fix once you figured out what was
wrong. We learned a lot of common sense working on cars. Today, with electronic controls, cars
are very difficult to work on or hack. Even with regards to electronics, today the usual solution to a
broken device is to throw it away and buy a newer device, since the old one is probably nearly
obsolete by the time it breaks. Of course, common sense per se is probably not teachable, but a sense
of common sense, that is, to know when it is needed and how to apply it, might be teachable. If I may
be allowed an immodest moment in this textbook, I would like to give an anecdote about my son
Peter. When he was not quite 3 years old, like most kids his age had a pair of shoes with lights
(actually light-emitting diodes or LEDs) that flash as you walk. These shoes work for a few months
until the heel switch fails (usually in the closed position) so that the LEDs stay on continuously for a
day or two until the battery goes dead. One morning he noticed that the LEDs in one of his shoes
were on continuously. He had a puzzled look on his face but said nothing. Instead, he went to look
for his other shoe, and after rooting around a bit, found it. He then picked it up, hit it against
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something and the LEDs flashed as they were supposed to. He then said, holding up the good shoe,
“this shoe - fixed... [then pointing at the other shoe] that shoe - broken!” I immediately thought, “I
wish all my students had that much common sense...” In my personal experience, about half of
engineering is common sense as opposed to specific, technical knowledge that needs to be learned
from coursework. Thus, to the extent that common sense can be taught, a final goal of this text is
to try to instill this sense of when common sense is needed and even more importantly how to
integrate it with technical knowledge. The most employable and promotable engineering graduates
are the most flexible ones, i.e. those that take the attitude, “I think I can handle that” rather than “I
can’t handle that since no one taught me that specific knowledge.” Students will find at some point
in their career, and probably in their very first job, that plans and needs change rapidly due to testing
failures, new demands from the customer, other engineers leaving the company, etc.

In most engineering programs, refention of incoming first-year students is an important issue; at
many universities, less than half of first-year engineering students finish an engineering degree. Of
course, not every incoming student who chooses engineering as his/her major should stay in
engineering, nor should every student who lacks confidence in the subject drop out, but in all cases
it is important that incoming students receive a good enough introduction to the subject that they
make an informed, intelligent choice about whether he/she should continue in engineering.

Along the lines of retaining first-year students in engineering, I would like to give an anecdote.
At Princeton University, in one of my first years of teaching, a student in my thermodynamics class
came to my office, almost in tears, after the first midterm. She did fairly pootly on the exam, and
she asked me if I thought she belonged in Engineering. (At Princeton thermodynamics was one of
the first engineering courses that students took). What was particularly distressing to her was that
her fellow students had a much easier time learning the material than she did. She came from a
family of artists, musicians and dancers and got little support or encouragement from home for her
engineering studies. While she had some of the artistic side in her blood, she said that her real love
was engineering, but she wondered was it a lost cause for her? I told her that I didn’t really know
whether she should be an engineer, but I would do my best to make sure that she had a good
enough experience in engineering that she could make an informed choice from a comfortable
position, rather than a decision made under the cloud of fear of failure. With only a little
encouragement from me, she did better and better on each subsequent exam and wound up
receiving a very respectable grade in the class. She went on to graduate from Princeton with honors
and earn a Ph.D. in engineering from a major Midwestern university. I still consider her one of my
most important successes in teaching. Thus, a goal of this text is (along with the instructor, teaching
assistants, fellow students, and infrastructure) is to provide a positive first experience in engineering.

There are also many topics that should be (and in some instructors’ views, 7ust be) covered in an
introductory engineering textbook but are not covered here because the overriding desire to keep
the book’s material manageable within the limits of a one-semester course:

1. History of engineering
2. Philosophy of engineering
3. Engineering ethics

Finally, I offer a few suggestions for faculty using this book:

1. Projects. 1 assign small, hands-on design projects for the students, examples of which are
given in Appendix A.
2. Demonstrations. Include simple demonstrations of engineering systems — thermoelectrics,

piston-type internal combustion engines, gas turbine engines, transmissions, ...



Computer graphics. At USC, the introductory Mechanical Engineering course is taught in
conjunction with a computer graphics laboratory where an industry-standard software
package is used.

vi



Nomenclature

Symbol | Meaning SI units and/or value
A Area m”’

BTU British Thermal Unit 1 BTU = 1055 ]

Cp Drag coefficient -—-

CL Lift coefficient -—-

Cp Specific heat at constant pressure J/kgK

Cv Specific heat at constant volume J/kgK

c Sound speed m/s

COP Coefficient Of Performance -—-

d Diameter m (meters)

E Energy J (Joules)

E Elastic modulus N/m?

e Internal energy per unit mass J/kg

F Force N (Newtons)

f Friction factor (for pipe flow) ---

g Acceleration of gravity m/s” (earth gravity = 9.81)
o USCS units conversion factor 32.174 Ibm ft/ Ibf sec® = 1
h Convective heat transfer coefficient W/m?K

1 Area moment of inertia m*

1 Electric current amps

k Boltzmann’s constant 1.380622 x 10* J/K
k Thermal conductivity W/mK

L Length m

M Molecular Mass kg/mole

M Moment of force N m (Newtons X meters)
M Mach number ---

m Mass kg

m Mass flow rate kg/s

n Number of moles -—-

Na Avogadro’s number (6.0221415 x 107) | ---

P Pressure N/m?

P Point-load force N

Q Heat transfer ]

q Heat transfer rate W (Watts)

R Universal gas constant 8.314 J/mole K

R Mass-based gas constant = R/M J/kg K

R Electrical resistance ohms

Re Reynolds number ---

r Radius m

S Entropy J/K

T Temperature K

T Tension (in a rope or cable) N




t Time s (seconds)
U Internal energy ]

u Internal energy per unit mass J/kg

Vv Volume m’

\ Voltage Volts

Vv Shear force N

v Velocity m/s

W Weight N (Newtons)
W Work ]

w Loading (e.g. on a beam) N/m

4 Thermoelectric figure of merit 1/K

z elevation m

o Thermal diffusivity m®/s

Y Gas specific heat ratio -

n Efficiency -

€ Strain -

€ Roughness factor (for pipe flow) ---

i Coefficient of friction -

i Dynamic viscosity kg/m's

0 Angle ---

\% Kinematic viscosity = u/p m®/s

v Poisson’s ratio -

p Density kg/m’

p Electrical resistivity ohm m

o Normal stress N/m?

o Stefan-Boltzmann constant 5.67 x 10®* W/m?*K*
o Standard deviation [Same units as sample set]
T Shear stress N/m?

T Thickness (e.g. of a pipe wall) m
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Units conversions

Base units
Type SI unit USCS unit Other conversions
Length meter (m) 3.281 foot (ft) = 1 m 1 m = 100 centimeters (cm)
= 1000 millimeters (mm)
= 39.37 inches (in)
1 kilometer (km) = 1000 m
1 mile (mi) = 5280 ft
Mass kilogram (kg) | 2.205 pounds mass (Ibm) | 1000 grams (g) = 1 kg
=1kg 1 slug = 32.174 Ibm
Time second (s) s 1 minute (min) = 60 s
1 hour (hr) = 60 min
Charge coulomb coul 1 coul = charge on 6.241506 x
(coul) 10" electrons
Derived units
Type SI unit USCS unit Other conversions
Area (length?) m’ 10.76 f£ = 1 m? 1 acre = 43,560 ft*
640 acres = 1 mi®
1 hectare = 10,000 m* = 2.471
acre
Volume (length’) m’ 3532 f¢=1m’ 1 ft* = 7.48 gallons (gal)
= 28,317 cm’ (ml, cc)
1 m’=264.2 gal
1 liter = 0.001 m’
=1000 cm’
= 61.02 in’
Velocity m/s 3.281 ft/s =1m/s 60 mi/hr = 88 ft/s
(length/time)
Acceleration m/s’ 3.281 ft/s* = 1 m/s” 1 g (standard earth gravity)
(length/time?) =9.806 m/s*> = 32.174 ft/s*
Force = 1 Newton (N) | 1 pound force (Ibf) l1dyne=1gecm/s*=10°N
mass x length =1kgm/s’ = 4448 N
time’
Energy = 1 Joule (J) = 1] =0.7376 (ft Ibf) 1 British Thermal Unit (BTU)
mass x length’ 1 kg m*/s* = | (foot-pound) =1055] = 778 ft Ibf
T time? 1 Nm 1 calorie (cal) = 4.184 ]
1 diet calorie = 1000 cal
lerg=1gcm’/s°=10"]
Power = 1 Watt (W) = | 1 horsepower (hp) 1 hp = 550 ft Ibf/s
mass x length’ Lkgm’/s’ = =746 W
T ime 1 Nm/s
Pressure = 1 Pascal (Pa) | 11bf/in* = 6899 Pa 1 standard atmosphere (atm)
force/length? =1N/m? = 101325 Pa
=1kg/ms’ = 14.696 Ibf/in?
1 bar = 10’ Pa
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Type SI unit USCS unit Other conversions
Temperature Kelvin (K) 1.8 Rankine (R) = 1 K See notes below
Heat capacity = 1] /kgK 1 BTU/Ibm°F (Note: that’s not a misprint, the
Energy =1]/kg’C =1 BTU/IbmR conversion  factor  between
mass x temperature =1cal/g’C BTU/Ibm°F and cal/g’C is
exactly 1)

Current = 1 Ampere n/a 1 milliamp (mA) = 0.001 A
charge/time (A or amp)

=1 coul/s
Voltage = 1 Volt (V) n/a n/a
energy/charge =1]/coul
Capacitance = 1 Farad (f) n/a 1 microfarad (uf) = 10° f
coul/Volt =1 coul/Volt 1 picofarad (pf) = 10" f

=1 coul’/]
Inductance = 1 Henry (H) n/a 1 millihenry (mH) = 0.001 H
Volt / (amp/s) =1]s*/coul’
Resistance = 1 Ohm (QQ) n/a n/a
Volt/amp =1 Volt/amp

=1]s/coul’

Temperature conversion formulae:

Kelvins (K, not °K) is the absolute temperature scale in SI units.
Rankines (R, not ‘R) is the absolute temperature scale in USCS units.
T (in units of °F) =T (in units of R) - 459.67

T (in units of °C) =T (in units of K) - 273.15

T (in units of “C) = [T (in units of °F) — 32]/1.8

T (in units of °F) = 1.8[T (in units of "C)] + 32

1 K of temperature change = 1°C of temperature change
= 1.8°F of temperature change = 1.8 R of temperature change

Revolution conversion formulae:
1 revolution = 2x radians = 360 degrees

Ideal gas law - note that there are many “flavors” of the ideal gas law:
PV=nRT
PV=mRT
Pv=RT

P = pRT — most useful form for engineering purposes; more useful to work with mass than

moles, because moles are not conserved in chemical reactions!

P = pressure (N/m?); V = volume (m’); n = number of moles of gas

R = universal gas constant (8.314 J/moleK); T = temperature (K)

m = mass of gas (kg); R = mass-specific gas constant = R/M

M = gas molecular mass (kg/mole); v = V/m = specific volume (m’/kg)

p = 1/v = density (kg/m’)




Chapter 1. What is Mechanical Engineering?

“The journey of a thousand miles begins with a single step.”
- Lao Tzu

Definition of Mechanical Engineering
My personal definition of Mechanical Engineering is

If it needs engineering but it doesn’t involve electrons, chemical reactions, arrangement of molecules, life forms, isn’t
a structure (building/ bridge/ dam) and doesn’t fly, a mechanical engineer will take care of it. .. but

if it does involve electrons, chemical reactions, arrangement of molecules, life forms, is a structure or does fly,
mechanical engineers may handle it anyway

Although every engineering faculty member in every engineering department will claim that
his/her field is the broadest engineering discipline, in the case of Mechanical Engineering that’s
actually true (I claim) because the core material permeates all engineering systems (fluid mechanics,
solid mechanics, heat transfer, control systems, etc.)

Mechanical engineering is one of the oldest engineering fields (though perhaps Civil Engineering
is even older) but in the past 20 years has undergone a rather remarkable transformation as a result
of a number of new technological developments including

e Computer Aided Design (CAD). The average non-technical person probably thinks that
mechanical engineers sit in front of a drafting table drawing blueprints for devices having nuts,
bolts, shafts, gears, bearings, levers, etc. While that image was somewhat true 100 years ago,
today the drafting board has long since been replaced by CAD software, which enables a part to
be constructed and tested virtually before any physical object is manufactured.

e Simulation. CAD allows not only sizing and checking for fit and interferences, but the
resulting virtual parts are tested structurally, thermally, electrically, aecrodynamically, etc. and
modified as necessary before committing to manufacturing.

e Sensor and actuators. Nowadays even common consumer products such as automobiles have
dozens of sensors to measure temperatures, pressures, flow rates, linear and rotational speeds,
etc. These sensors are used not only to monitor the health and performance of the device, but
also as inputs to a microcontroller. The microcontroller in turn commands actuators that adjust
flow rates (e.g. of fuel into an engine), timings (e.g. of spark ignition), positions (e.g. of valves), etc.

e 3D printing. Traditional “subtractive manufacturing” consisted of starting with a block or
casting of material and removing material by drilling, milling, grinding, etc. The shapes that can
be created in this way are limited compared to modern “additive manufacturing” or “3D
printing” in which a structure is built in layers. Just as CAD + simulation has led to a new way
of designing systems, 3D printing has led to a new way of creating prototypes and in limited
cases, full-scale production.

e Collaboration with other fields. Historically, a nuts-and-bolts device such as an automobile
was designed almost exclusively by mechanical engineers. Modern vehicles have vast electrical
and electronic systems, safety systems (e.g. air bags, seat restraints), specialized batteries (in the
case of hybrids or electric vehicles), etc., which require design contributions from electrical,



biomechanical and chemical engineers, respectively. It is essential that a modern mechanical
engineer be able to understand and accommodate the requirements imposed on the system by
non-mechanical considerations.

These radical changes in what mechanical engineers do compared to a relatively short time ago
makes the field both challenging and exciting.

Mechanical Engineering curriculum
In almost any accredited Mechanical Engineering program, the following courses are required:

e Basic sciences - math, chemistry, physics

e Breadth or distribution (called “General Education” at USC)

e Computer graphics and computer aided design (CAD)

e Experimental engineering & instrumentation

e Mechanical design - nuts, bolts, gears, welds

e Computational methods - converting continuous mathematical equations into discrete
equations solved by a computer

e Core “engineering science”

Dynamics — essentially F = ma applied to many types of systems

Strength and properties of materials

Fluid mechanics

Thermodynamics

Heat transfer

Control systems

O O O O O O

e Senior “capstone” design project

Additionally you may participate in non-credit “enrichment” activities such as undergraduate
research, undergraduate student paper competitions in ASME (American Society of Mechanical
Engineers, the primary professional society for mechanical engineers), the Formula SAE racecar
project, etc.

‘\.\A : ; ¥ iy

Figure 1. SAE Formula racecar project at USC (photo: http://www.uscformulasae.com)



Examples of industries employing MEs

Many industries employ mechanical engineers; a few industries and the type of systems MEs
design are listed below.
o Automotive

e Combustion
e Engines, transmissions

e Suspensions
o Aecrospace (w/ aerospace engineers)

e Control systems

e Heat transfer in turbines

e  Fluid mechanics (internal & external)
o Biomedical (w/ physicians)

e Biomechanics — prosthesis

e Flow and transport in vivo
o Computers (w/ computer engineers)

e Heat transfer

e Packaging of components & systems
o Construction (w/ civil engineers)

e Heating, ventilation, air conditioning (HVAC)

e Stress analysis
o Electrical power generation (w/ electrical engineers)

e Steam power cycles - heat and work

e Mechanical design of turbines, generators, ...
o Petrochemicals (w/ chemical, petroleum engineers)

e Oil drilling - stress, fluid flow, structures

e Design of refineries - piping, pressure vessels
o Robotics (w/ electrical engineers)

e Mechanical design of actuators, sensors
e Stress analysis



Chapter 2. Units

I often say that when you can measure what you are speaking about, and express it in numbers, you know something
about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meagre and
unsatisfactory kind it may be the beginning of knowledge, but you have scarcely, in your thoughts, advanced to the
stage of science, whatever the matter may be

— William Thomson (Lord Kelvin)

All engineered systems require measurements for specifying the size, weight, speed, etc. of
objects as well as characterizing their performance. Understanding the application of these units is
the single most important objective of this textbook because it applies to all forms of engineering
and everything that one does as an engineer. Understanding units is far more than simply being able
to convert from feet to meters or vice versa; combining and converting units from different sources
is a challenging topic. For example, if building insulation is specified in units of BTU inches per
hour per square foot per degree Fahrenheit, how can that be converted to thermal conductivity in
units of Watts per meter per degree C? Or can it be converted? Are the two units measuring the
same thing or not? (For example, in a new engine laboratory facility that was being built for me, the
natural gas flow was insufficient... so I told the contractor I needed a system capable of supplying a
minimum of 50 cubic feet per minute (cfm) of natural gas at 5 pounds per square inch (psi). His
response was “what’s the conversion between cfm and psi?” Of course, the answer is that there is
no conversion; cfm is a measure of flow rate and psi a measure of pressure. One might as well be
asking what’s the conversion between kilograms and miles.) Engineers must struggle with these
misconceptions every day.

Base units

Engineers in the United States are burdened with two systems of units and measurements:
(1) the English or USCS (US Customary System) & and (2) the metric or ST (Systéme International
d’Unités) ©. Either system has a set of base units , that is, units which are defined based on a
standard measure such as a certain number of wavelengths of a particular light source. These base
units include:

e lLength (meters (m), centimeters (cm), millimeters (mm); feet (ft), inches (in), kilometers
(km), miles (mi))
e 1m=100cm = 1000 mm = 3.281 ft = 39.37 in
e 1km=1000m
e 1 mi=>5280ft
e Mass (Ibm, slugs, kilograms); (1 kg = 2.205 Ibm = 0.06853 slug) (Ibm = “pounds mass”)

e Time (seconds; the standard abbreviation is “s” not “sec”) (same units in USCS and SI!)

e FElectric current (really electric charge in units of coulombs [abbreviation: ‘coul’] is the base
unit and the derived unit is current = charge/time) (1 coulomb = charge on 6.241506 x 10"
electrons) (1 ampete [abbreviation: amp]= 1 coul/s)

Moles are often reported as a fundamental unit, but it is not; it is just a bookkeeping
convenience to avoid carrying around factors of 10* everywhere. The choice of the number of



particles in a mole of particles is completely arbitrary; by convention Avogadro’s number is defined
by Na = 6.0221415 x 10%, the units being particles/mole (or one could say individuals of any kind,
not limited just to particles, e.g. atoms, molecules, electrons or students).

Temperature is frequently interpreted as a base unit but again it is not, it is a derived unit, that is,
one created from combinations of base units. Temperature is essentially a unit of energy divided by
Boltzman’s constant. Specifically, the average kinetic energy of an ideal gas particle in a 3-
dimensional box is 1.5kT, where k is Boltzman’s constant = 1.380622 x 10* J/K (really
(Joules/patticle) /K; every textbook will state the units as just J/K but you'll see below how useful it
is to include the “per particle” part as well). Thus, 1 Kelvin is the temperature at which the kinetic
energy of an ideal gas (and only an ideal gas, not any other material) molecule is 1.5kT =2.0709 x
107 7.

The ideal gas constant (R) with which you are very familiar is simply Boltzman’s constant
multiplied by Avogadro’s number, Ze.

R=kN, =| 138x107 — L (6.02><1023 MJ _g314—t Al ggy_cdl
particle K mole mole K 4.184J mole K

(Equation 1)

In the above equation, note that we have multiplied and divided units such as Joules as if they were
numbers; this is valid because we can think of 8.314 Joules as 8.314 x (1 Joule) and additionally we
can write (1 Joule) / (1 Joule) = 1. Extending that further, we can think of (1 Joule)/(1 kg m?®/s*) =
1, which will be the basis of our approach to units conversion — multiplying and dividing by 1
written in different (and sometimes odd-looking) forms. Note also the value of the “hidden unit”
‘particle’ in the above equation. I find it extremely useful to include such units because the real units
aren’t J/K; if you have 2 particles youll have twice as much energy (J) at the same value of K
(temperature), so the real units ARE in fact ] /(patticle K).

Why does this discussion apply only for an ideal gas? By definition, ideal gas particles have
only kinetic energy and negligible potential energy due to inter-molecular attraction; if there is
potential energy, then we need to consider the total internal energy of the material (E, units of
Joules) which is the sum of the microscopic kinetic and potential energies, in which case the
temperature for any material (ideal gas or not) is defined as

oS

where U is the internal energy of the material (units J), S is the entropy of the material (units J/K)
and V is the volume. This intimidating-looking definition of temperature, while critical to
understanding thermodynamics, will not be needed in this course. (Until you read this you thought
you understood temperature because of its common usage and a handy device called a thermometer;
in fact, temperature is quite difficult to understand. The one thing you should understand is that it’s
the driving force for heat transfer, that is, heat must always flow from a higher to a lower
temperature and never the reverse.)

T= (an (Equation 2)
V=const.



Derived units

Derived units are units created from combinations of base units; there are an infinite number of
possible detived units. Some of the more important/common/useful ones are:

e Area = length’ 640 acres = 1 mile?, or 1 acre = 43,560 ft*
e Volume = length’; 1 ft’ = 7.481 gallons = 28,317 cm’; also 1 liter = 1000 cm® = 61.02 in’
e Velocity = length/time
e Acceleration = velocity/time = length/time” (standard gravitational acceleration on earth =
g = 32.174 ft/s* = 9.806 m/s?)
e Force = mass * acceleration = mass*length/time’
o 1kgm/s® =1 Newton = 0.2248 pounds force (pounds force is usually abbreviated
Ibf and Newton N) (equivalently 1 1bf = 4.448 N)
e Energy = force x length = mass x length®/time”
o 1kgm?/s* =1 Joule (])
778 ft Ibf = 1 British thermal unit (BTU)
1055] =1 BTU
1] =0.7376 ft Ibf
1 calorie = 4.184 |
o 1 dietary calorie = 1000 calories

@)
@)
@)
@)

e Power (energy/time = mass x length®/time’)
o 1]/s=1kgm?/s’ =1 Watt
o 746 W = 550 ft Ibf/sec = 1 horsepower
e Heat capacity = J/moleK or | /kgK or J/mole’C or J/kg°C (see note below)
e DPressure = force/area
o 1N/m?=1 Pascal
o 101325 Pascal = 101325 N/m?* = 14.696 1bf/in” = 1 standard atmosphere
e Current = charge/time (1 amp = 1 coul/s)
e Voltage = energy/charge (1 Volt = 1 J/coul)
e Capacitance = amps / (volts/s) (1 farad = 1 coul’/])
e Inductance = volts / (amps/s) (1 Henry = 1] s* / coul’)
e Resistance = volts/amps (1 ohm = 1 volt/amp = 1 Joule s / coul’)
e Torque = force x lever arm length = mass x length®/time” — same as energy but one would
usually report torque in Nm (Newton meters), not Joules, to avoid confusion.
e Radians, degrees, revolutions — these are all dimensionless quantities, but must be converted
between each other, i.e. 1 revolution = 2w radians = 360 degrees.

Special consideration 1: pounds force vs. pounds mass

By far the biggest problem with USCS units is with mass and force. The problem is that pounds is
both a unit of mass AND force. These are distinguished by lbm for pounds (mass) and Ibf for
pounds (force). We all know that W = mg where W = weight, m = mass, g = acceleration of
gravity. So



11bf =11bm x g = 32.174 Ibm ft/s’ (Equation 3)

Sounds ok, huh? But wait, now we have an extra factor of 32.174 floating around. Is it also true
that

11bf =1 Ibm ft/s’

which is analogous to the SI unit statement that
1 Newton = 1 kg m/s’ (Equation 4)

No, 1 Ibf cannot equal 1 Ibm ft/s* because 1 Ibf equals 32.174 Ibm ft/sec’. So what unit of mass
satisfies the relation

1 1bf = 1 (mass unit) ft/s*?
This mass unit is called a “slug” believe it or not. With use of equation (2) it is apparent that
1 slug = 32.174 Ibm = 14.59 kg (Equation 5)

Often when doing USCS conversions, it is convenient to introduce a conversion factor called g; by
rearranging Equation 3 we can write

32.174 1bm ft
gc = —2 = 1
Ibf's
Since Equation 2 shows that g. = 1, one can multiply and divide any equation by g. as many times as
necessary to get the units into a more compact form (an example of “why didn’t somebody just say that?”).
Keep in mind that any units conversion is simply a matter of multiplying or dividing by 1, e.g.

(Equation 0).

5280t | Tkgm_ 778 fIbf |

mile N2 BTU

For some reason 32.174 Ibm ft/ Ibf s> has been assigned a special symbol called g. even though there
are many other ways of writing 1 (e.g. 5280 ft / mile, 1 kg m / N s* 778 ft Ibf / BTU) all of which
are also equal to 1 but none of which are assigned special symbols.

If this seems confusing, I don’t blame you. That’s why I recommend that even for problems in
which the givens are in USCS units and where the answer is needed in USCS units, first convert
everything to SI units, do the problem, then convert back to USCS units. I disagree with some
authors who say an engineer should have “native fluency” in both systems; it is somewhat useful but
not necessary. The second example in the next sub-section below uses the approach of converting
to SI, do the problem, and convert back to USCS. The third example shows the use of USCS units

employing g..

Special consideration 2: temperature

Many difficulties also arise with units of temperature. There are four temperature scales in
“common” use: Fahrenheit, Rankine, Celsius (or Centigrade) and Kelvin. Note that one speaks of



“degrees Fahrenheit” and “degrees Celsius” but just “Rankines” or “Kelvins” (without the
“degrees”).

T (in units of °F) =T (in units of R) - 459.67

T (in units of °C) =T (in units of K) - 273.15
1K=18R

T (in units of “C) = [T (in units of °F) — 32]/1.8,

T (in units of °F) = 1.8[T (in units of "C)] + 32
Water freezes at 32°F / 0°C, boils at 212°F / 100°C

Special note (another example of “that’s so easy, why didn’t somebody just say that?”). when using units
involving temperature (such as heat capacity, units J/kg"C, or thermal conductivity, units
Watts/m°C), one can convert the temperature in these quantities these to/from USCS units (e.g.
heat capacity in BTU/IbmF or thermal conductivity in BTU/hr ft °F) simply by multiplying or
dividing by 1.8. You don’t need to add or subtract 32. Why? Because these quantities are really
derivatives with respect to temperature (heat capacity is the derivative of internal energy with respect
to temperature) or refer to a temperature gradient (thermal conductivity is the rate of heat transfer
per unit area by conduction divided by the temperature gradient, dT/dx). When one takes the
derivative of the constant 32, you get zero. For example, if the temperature changes from 84°C to
17°C over a distance of 0.5 meter, the temperature gradient is (84-17)/0.5 = 134°C/m. In
Fahrenheit, the gradient is [(1.8%84 +32) — (1.8%17 + 32)]/0.5 = 241.2°F/m or 241.2/3.281 =
73.5°F/ft. The important point is that the 32 cancels out when taking the difference. So for the
purpose of converting between F and “C in units like heat capacity and thermal conductivity, one can use 1°C =
1.8°F. That doesn’t mean that one can just skip the + or — 32 whenever one is lazy.

Also, one often sees thermal conductivity in units of W/m"C or W/mK. How does one convert
between the two? Do you have to add or subtract 273? And how do you add or subtract 273 when
the units of thermal conductivity are not degrees? Again, thermal conductivity is heat transfer per
unit area per unit temperature gradient. This gradient could be expressed in the above example as
(84°C-17°C)/0.5 m = 134°C/m, or in Kelvin units, [(84 + 273)K — (17 + 273)K]/0.5 m = 134K/m
and thus the 273 cancels out. So one can say that 1 W/m°C = 1 W/mK, or 1 J/kg'C =1 J/kegK.
And again, that doesn’t mean that one can just skip the + or — 273 (or 460, in USCS units)
whenever one is lazy.

Examples of the use (and power) of units

Example 1

An object has a weight of 300 Ibf at earth gravity. What is its mass in units of Ibm?

Femamsmet o E(1)=E (g)= 3008 [32.174 llzmﬁ]zmo .
a a a 39 174£ Ibf s
' 2
N

This shows that an object that weighs 300 Ibf at earth gravity has a mass of 300 Ibm. At any other
gravity level, its mass would still be 300 Ibm but its weight would be different, but in all cases this
weight would still be calculated according to F = ma (force = mass x acceleration) or, specifically for
weights, we can use W = mg (weight = mass x acceleration of gravity).



Example 2

What is the weight (in 1bf) of one gallon of air at 1 atm and 25°C? The molecular mass of air is
28.97 g/mole = 0.02897 kg/mole.

Ideal gas law: PV = nRT

(P = pressure, V = volume, n = number of moles, R = universal gas constant, T =
temperature)

Mass of gas (m) = moles x mass/mole = nM (M = molecular mass)
Weight of gas (W) = mg, where g = acceleration of gravity = 9.81 m/s’

Combining these 3 relations: W = PVMg/RT

101325 N/m’ ft’ m ' )(0.02897 kg \( 9.8l m
l atm——— || 1 gal -
_ PVMg atm 7.481 gal\ 3.281 ft mole ]

w
RT (8.314Jj(25+273)K
mole
N k m m kg m®

(M) (2] o

W =0.0440 =0.0440 =0.0440——=
( J JK J J
mole K
W =0.0440 N( I Iof )z 0.00989 Ibf = 0.01 Ibf
4.448 N

Note that it’s easy to write down all the formulas and conversions. The tricky part is to
check to see if you’ve actually gotten all the units right. In this case I converted everything
to the SI system first, then converted back to USCS units at the very end — which is a pretty
good strategy for most problems. The tricky parts are realizing (1) the temperature must be
an absolute temperature, i.e. Kelvin not ‘C, and (2) that moles are not the same as mass, so

you have to convert using ‘M. If in doubt, how do you know whether to multiply or divide

by ‘M? Check the units!

Example 3

A car with a mass of 3000 Ibm is moving at a velocity of 88 ft/s. What is its kinetic energy (KE) in
units of ft Ibf? What is its kinetic energy in Joules?



Ibm ft*

2
S

2
KE = %(mass)(velocity)z = %(3000 lbm)(SSEj = 1.16x 107
S

Now what can we do with Ibm ft*/s*??? The units are (mass)(length)*/(time)?, so it is a unit of
energy, so at least that part is correct. Dividing by g., we obtain

2 2 2
KE = [1.16);107 lbm ft j(ijz[l.léxw bm ft j( Ibf's j:3.61x105 ft Ibf

s g s \32.174 1bm fi

1J

KE = (3.61><105 ft lbf)(—
0.7376 ft Ibf

j:4.89x105 J

Note that if you used 3000 Ibf rather than 3000 Ibm in the expression for KE, you’d have the wrong
units — ft Ibf*/lbm, which is NOT a unit of energy (or anything else that I know of...) Also note
that since g = 1, we COULD multiply by g. rather than divide by g the resulting units
(Ibm” £’ /1bf s*) is still a unit of energy, but not a very useful one!

Example 4
. : . . - BTUin
The thermal conductivity of a particular brand of ceramic insulating material is ()_SW ('m

not kidding, these are the units commonly reported in commercial products!) where the standard
abbreviations in = inch and hr = hour are used. What is the thermal conductivity in units of

W

[¢]

? (Here “W” = Watt, not weight.)

BTUin )(1055J)( ft \(3.281ft)( hr (1 W)(1.8°F W
0.5— : =0.0721——
ft> hr °F ) BTU J\12in )\ m  J{3600s )\ 1155 )l °C m °C

Note that the thermal conductivity of air at room temperature is 0.026 Watt/m°C, Z.e., about 3 times
lower than the insulation. So why don’t we use air as an insulator? We’ll discuss that in Chapter 7.

m
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Chapter 3. “Engineering scrutiny”

“Be your own worst critic, unless you prefer that someone else be your worst critic.”
- I dunno, I just made it up. But, it doesn’t sound very original.

Scrutinizing analytical formulas and results

I often see analyses that I can tell within 5 seconds must be wrong. I have three tests, which should
be done in the order listed, for checking and verifying results. These tests will weed out 95% of all
mistakes. I call these the “smoke test,” “function test,” and “performance test,” by analogy with
building electronic devices.

1.

Smoke test. In electronics, this corresponds to turning the power switch on and seeing if the
device smokes or not. If it smokes, you know the device can’t possibly be working right (unless
you intended for it to smoke.) In analytical engineering terms, this corresponds to checking
the units. You have no idea how many results people report that can’t be correct because the
units are wrong (i.e. the result was 6 kilograms, but they were trying to calculate the speed of
something.) You will catch 90% of your mistakes if you just check the units. For example,
if I just derived the ideal gas law for the first time and predicted PV = nR/T you can quickly see
that the units on the right-hand side of the equation are different from those on the left-hand
side. There are several additional rules that must be followed:

e Anything inside a square root, cube root, etc. must have units that are a perfect square (e.g.
m®/sec’), cube, etc.) This does not mean that every term inside the square root must be a
petfect square, only that the combination of all terms must be a perfect square. For
example, the speed (v) of a frictionless freely falling object in a gravitational field is

v=4/2gh, where g = acceleration of gravity (units length/time”) and h is the height from

which the object was dropped (units length). Neither g nor h have units that are a perfect
square, but when multiplied together the units are (length/time?)(length) = length®/time’,
which is a perfect square, and when you take the square root, the units are

v=/length’ [time* = length/timeas required.

e Anything inside a log, exponent, trigconometric function, etc., must be dimensionless (I can
take the log of 6 but I don’t know how to take the log of 6 kilograms). Again, the individual
terms inside the function need not all be dimensionless, but the combination must be
dimensionless.

e Any two quantities that are added together must have the same units (I can’t add 6 kilograms
and 19 meters/second. Also, I can add 6 miles per hour and 19 meters per second, but I
have to convert 6 miles per hour into meters per second, or convert 19 meters per second
into miles per hour, before adding the terms together.)

Function test. In electronics, this corresponds to checking to see if the device does what I
designed it to do, e.g. that the red light blinks when I flip switch on, the meter reading increases
when I turn the knob to the right, the bell rings when I push the button, etc. — assuming that
was what I intended that it do. In analytical terms this corresponds to determining if the result
gives sensible predictions. Again, there are several rules that must be followed:
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Determine if the sign (+ or -) of the result is reasonable. For example, if your prediction of
the absolute temperature of something is —72 Kelvin, you should check your analysis again.
For terms in an equation with property values in the denominator, can that value be zero?
(In which case the term would go to infinity). Even if the property can’t go to zero, does it
make sense that as the value decreases, the term would increase?
Determine whether what happens to y as x goes up or down is reasonable or not. For
example, in the ideal gas law, PV = n'RT:

o At fixed volume (V) and number of moles of gas (n), as T increases then P increases

— reasonable
o At fixed temperature (T) and n, as V increases then P decreases — reasonable
o Etc.

Determine what happens in the limit where x goes to special values, e.g. zero, one or infinity
as appropriate. For example, consider the equation for the temperature as a function of time
T(t) of an object starting at temperature T; at time t = 0 having surface area A (units m?),
volume V (units m’), density p (units kg/m’) and heat capacity Cp (units J/kg"C) that is
suddenly dunked into a fluid at temperature T» with heat transfer coefficient h (units
Watts/m*°C). It can be shown that in this case T(t) is given by

hA
pVC,

T(t)=T,+(T,—T,)exp| — t (Equation 7)

hA/pVCp has units of (Watts/m**C)(m?)/(kg/m’)(m”’)(J/kg’C) = 1/s, so (hA/pVCp)t is
dimensionless, thus the formula easily passes the smoke test. But does it make sense? At 7=
0, Ti = 0 as expected. What happens if you wait for a long time? The temperature can reach
T» but cannot overshoot it (a consequence of the Second Law of Thermodynamics,
discussed in Chapter 7). In the limit #— o, the term exp(-(hA/pVCp)t) goes to zero, thus T'
— T as expected. Other scrutiny checks: if h or A increases, heat can be transferred to the
object more quickly, thus the time to approach Tw decreases. Also, if p, V or Cp increases,
the “thermal inertia” (resistance to change in temperature) increases, so the time required to
approach T« increases. So, the formula makes sense.

If your formula contains a difference of terms, determine what happens if those 2 terms are
equal. For example, in the above formula, if T} = T, then the formula becomes simply T(t)
= Tw for all time. This makes sense because if the bar temperature and fluid temperature are
the same, then there is no heat transfer to or from the bar and thus its temperature never
changes (again, a consequence of the Second Law of Thermodynamics ... two objects at the
same temperature cannot exchange energy via heat transfer.)

Performance test. 1n electronics, this corresponds to determining how fast, how accurate, etc. the
device is. In analytical terms this corresponds to determining how accurate the result is. This
means of course you have to compare it to something else that you trust, i.e. an experiment, a
more sophisticated analysis, someone else’s published result (of course there is no guarantee that
their result is correct just because it got published, but you need to check it anyway.) For
example, if I derived the ideal gas law and predicted PV = 7nRT, it passes the smoke and
function tests with no problem, but it fails the performance test miserably (by a factor of 7). But
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of course the problem is deciding which result to trust as being at least as accurate as your own
result; this of course is something that cannot be determined in a rigorous way, it requires a
judgment call based on your experience.

Scrutinizing computer solutions

(This part is beyond what I expect you to know for AME 101 but I include it for completeness).

Similar to analyses, I often see computational results that I can tell within 5 seconds must be wrong.
It is notoriously easy to be lulled into a sense of confidence in computed results, because
the computer always gives you some result, and that result always looks good when plotted
in a 3D shaded color orthographic projection. The corresponding “smoke test,” “function test,”
and “performance test,” are as follows:

1. Swmoke test. Start the computer program running, and see if it crashes or not. If it doesn’t crash,
you’ve passed the smoke test, part (a). Part (b) of the smoke test is to determine if the computed
result passes the global conservation test. The goal of any program is to satisfy mass, momentum,
energy and atom consetrvation at every point in the computational domain subject to certain constituitive

relations (e.g., Newton’s law of viscosity T« = nou,/0y), Hooke’s Law 6 = Eg) and equations of state
(e.g, the ideal gas law.) This is a hard problem, and it is even hard to verify that the solution is
correct once it is obtained. But it is easy to determine whether or not global conservation is satisfied,
that is,

e s mass conserved, that is, does the sum of all the mass fluxes at the inlets, minus the mass
fluxes at the outlets, equal to the rate of change of mass of the system (=0 for steady
problems)?

e Is momentum conserved in each coordinate direction?

e s energy conserved?

e s cach type of atom conserved?

If not, you are 100% certain that your calculation is wrong. You would be amazed at how many
results are never “sanity checked” in this way, and in fact fail the sanity check when, after months or
years of effort and somehow the results never look right, someone finally gets around to checking
these things, the calculations fail the test and you realize all that time and effort was wasted.

2. Performance test. Comes before the function test in this case. For computational studies, a critical
performance test is to compare your result to a known analytical result under simplified conditions. For
example, if you’re computing flow in a pipe at high Reynolds numbers (where the flow is turbulent),
with chemical reaction, temperature-dependent transport properties, variable density, etc., first
check your result against the textbook solution that assumes constant density, constant
transport properties, etc., by making all of the simplifying assumptions (in your model) that the
analytical solution employs. If you don’t do this, you really have no way of knowing if your
model is valid or not. You can also use previous computations by yourself or others for testing,
but of course there is no absolute guarantee that those computations were correct.

3. Function test. Similar to function test for analyses.
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By the way, even if you're just doing a quick calculation, I recommend not using a calculator. Enter
the data into an Excel spreadsheet so that you can add/change/scrutinize/save calculations as
needed. Sometimes I see an obviously invalid result and when I ask, “How did you get that result?
What numbers did you use?” the answer is “I put the numbers into the calculator and this was the
result I got.” But how do you know you entered the numbers and formulas correctly? What if you
need to re-do the calculation for a slightly different set of numbers?

Examples of the use of units and scrutiny

These examples, particularly the first one, also introduce the concept of “back of the envelope” (that
is, simple, approximate but instructive) estimates, a powerful engineering tool.

Example 1. Drag force and power requirements for an automobile

A car with good aerodynamics has a drag coefficient (Cp) of 0.3. The drag coefficient is defined as

the ratio of the drag force (Fp) to the dynamic pressure of the flow = Y2pv* (where p is the fluid density
and v the fluid velocity far from the object) multiplied by the cross-section area (A) of the object, ze.

1
F,= 2 C, pv'A (Equation 8)

The density of air at standard conditions is 1.18 kg/m’.

(a) Estimate the power (in units of horsepower) required to overcome the aerodynamic drag of such
a car at 60 miles per hour.

60 mi 5280ft m hr min_268m
hr mi  3.281ft 60min 60 s s

Estimate the cross-section area of the caras 2 mx 1.5 m = 3 m?

P =Fv (P =power, F = force, v = velocity); v

1 1 1.18 kg mY kg m
F.==C.ov*A=—(0.3 26.8— | (3 m*)=3814 =381.4N
D 9 pP 2( )( m3 ][ Sj ( ) S2

26.8 m

S

=1.022x104@=1.022x1041=(1.022x104W) Lip |\ 137 pp
746 W

S S

P=Fv=(381.4N)(
which is reasonable.
(b) Estimate the gas mileage of such a car. The heating value of gasoline is 4.3 x 10" J/kg and its

density is 750 kg/m’.

m ft’ gal

mi_mi hr _mihr J ﬁ’(iﬂj J kg ) _mishrJ(kgm f
gal hr gal hr J gal hr

- J s )\ kg gal __E7TE
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mi_(éOmij( s J h (431077 (750@) m Y[
gal hr 1.022x10%J )\ 3600 s kg m’ 3.218ft ) \ 7.481 gal

~199.0706726 -
gal

Why is this value of miles/gallon so high?

o The main problem is that conversion of fuel energy to engine output shaft work is about
20% efficient at highway cruise conditions, thus the gas mileage would be 199.0706726 x 0.2
= 39.81413452 mpg

o Also, besides air drag, there are other losses in the transmission, driveline, tires — at best the
drivetrain is 80% efficient — so now we’re down to 31.85130761 mpg

o Also — other loads on engine — air conditioning, generatort, ...

What else is wrong? There are too many significant figures; at most 2 or 3 are acceptable. When we
state 31.85130761 mpg, that means we think that the miles per gallon is closer to 31.85130761 mpg
than 31.85130760 mpg or 31.85130762 mpg. Of course we can’t measure the miles per gallon to
anywhere near this level of accuracy. 31 is probably ok, 31.9 is questionable and 31.85 is ridiculous.
You will want to carry a few extra digits of precision through the calculations to avoid round-off
errors, but then at the end, round off your calculation to a reasonable number of significant figures
based on the uncertainty of the most uncertain parameter. That is, if I know the drag coefficient only to the
first digit, i.e. I know that it’s closer to 0.3 than 0.2 or 0.4, but not more precisely than that, there is
no point in reporting the result to 3 significant figures.

Example 2. Scrutiny of a new formula

I calculated for the first time ever the rate of heat transfer (q) (in Watts) as a function of time t from
an aluminum bar of radius r, length L, thermal conductivity k (units Watts/m°C), thermal diffusivity
o (units m*/s), heat transfer coefficient h (units Watts/m?°C) and initial temperature T, conducting
and radiating to surroundings at temperature T« as

q=k(T,, ~T,)e"" —m*(T,, —T, -1) (Equation 9)

o0

Using “engineering scrutiny,” what “obvious” mistakes can you find with this formula? What is the
likely “correct” formula?

1. The units are wrong in the first term (Watts/m, not Watts)

2. The units are wrong in the second term inside the parenthesis (can’t add 1 and something
with units of temperature)

3. The first term on the right side of the equation goes to infinity as the time (t) goes to
infinity — probably there should be a negative sign in the exponent so that the whole term

goes to zero as time goes to infinity.

4. The length of the bar (L) doesn’t appear anywhere
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5. The signs on (T — Tw) are different in the two terms — but heat must ALWAYS be
transferred from hot to cold, never the reverse, so the two terms cannot have different signs.
One can, with equal validity, define heat transfer as being positive either to or from the bar,
but with either definition, you can’t have heat transfer being positive in one term and
negative in the other term.

—at/r?
Catlr’) factot,

6. Only the first term on the right side of the equation is multiplied by the ¢
and thus will go to zero as t — . So the other term would still be non-zero even when t —

o, which doesn’t make sense since the amount of heat transfer (q) has to go to zero as t —

. So probably both terms should be multiplied by the e~ factor.

Based on these considerations, a possibly correct formula, which would pass all of the smoke
and function tests is

bar o0

g=[kL(T,, ~T.)+h" (T, ~T,)]e"

Actually even this is a bit odd since the first term (conduction heat transfer) is proportional
to the length L but the second term (convection heat transfer) is independent of L ... a still
more likely formula would have both terms proportional to L, e.g.

9= I:kL (];ar - Too ) +hrL (]}W — TOO )] e—at/r2
Example 3. Thermoelectric generator

The thermal efficiency (1) = (electrical power out) / (thermal power in) of a thermoelectric power
generation device (used in outer planetary spacecraft (Figure 2), powered by heat generated from
radioisotope decay, typically plutonium-238) is given by

n= l—i 127, -1 ;T Ty *1, (Equation 10)
T, )J1+ZT, +T, /T, 2

where T is the temperature, the subscripts L, H and a refer to cold-side (low temperature), hot-side
(high temperature) and average respectively, and Z is the “thermoelectric figure of merit™:

=— (Equation 11)
where S is the Seebeck coefficient of material (units Volts/K, indicates how many volts are produced for

each degree of temperature change across the material), p is the electrical resistivity (units ohm m)
(not to be confused with density!) and k is the material’s thermal conductivity (W/mI).

(a) show that the units are valid (passes smoke test)
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Everything is obviously dimensionless except for ZT,, which must itself be dimensionless so that
I can add it to 1. Note

(Voltj2 (J/coulj2 ( 1 jz L
2 T T 2| —
71 =21 = K K= K g=L2eoul) 1Ky og
pk (ohm m) w Js - J/s J 1 jsl 1
m K coul’ m K coul®) s K
(b) show that the equation makes physical sense (passes function test)

o If the material Z = 0, it produces no electrical power thus the efficiency should be zero. If Z
= 0 then

n= 1_£ y1+07, -1 - 1_£ L= 1_£ L:() OK
TH V1+O];+TL/TH TH \/I"'TL/TH 1+TL/TH

TH
o If Ti. = Th, then there is no temperature difference across the thermoelectric material, and
thus no power can be generated. In this case

1+ 2T, -1 1+ 2T, -1

1= )4/1+ZTa+TL/TH ()«/1+ZTa+TL/TH

o Even the best possible material (ZT, = ®©) cannot produce an efficiency greater than the
theoretically best possible efficiency (called the Carmnot ¢ycle efficiency, see page 91) =1 —

OK

T1./Tn, for the same temperature range. As ZT, —> ©,

nz(l_iJ@~(l_£Jﬁ—l i OK

Ty )ZT, +T,/T, ) T, T,

~

H

Side note #1: a good thermoelectric material such as Bi;Te; has ZT, = 1 and works up to about
200°C before it starts to melt, thus

n=|1-Lo Vitl-l —0.203| 1-2£ |=0203 5.,
T, JNT+1+(25+273)/(200+273) T,

25+273

200+273

=O.203(1 - j =0.0750=7.50%

By comparison, your car engine has an efficiency of about 25%. So practical thermoelectric
materials are, in general, not very good sources of electrical power, but are extremely useful in some
niche applications, particularly when either (1) it is essential to have a device with no moving parts
or (2) a “free” source of thermal energy at relatively low temperature is available, e.g., the exhaust of
an internal combustion engine.
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Side note #2: a good thermoelectric material has a high S, so produces a large voltage for a small
temperature change, a low p so that the resistance of the material to the flow of electric current is
low, and a low k so that the temperature across the material AT is high. The heat transfer rate (in
Watts) q = kKAAT/Ax (see Chapter 7) where A is the cross-sectional area of the material and Ax is its
thickness. So for a given AT, a smaller k means less q is transferred across the material. One might
think that less q is worse, but no. Consider this:
The electrical power = IV = (V/R)V = V?/R = (SAT)*/(pAx/A) = SSAT*A/pAx.
The thermal power = kAAT/Ax
The ratio of electrical to thermal power is [S’AT?A/pAx]/[KAAT/Ax] = (S*°/pk)AT = ZAT,
which is why Z is the “figure of merit” for thermoelectric generators.)
Aluminum Quter Active Cooling System
Cooling Tubes Shell Assembly (ACS) Manifold

Heat Source

~ Pressure
: General Purpose
Support

Gas Management 1 Heat Source (GPHS) Relief Device

Assembly

= ) ) Midspan Heat
Silicon-Germanium Source Support
(Si-Ge) Unicouple

RTG Mounting -
Flange Multi-Foil
Insulation

Figure 2. Radioisotope thermoelectric generator used for deep space missions. Note that
the plutonium-238 radioisotope is called simply, “General Purpose Heat Source.”
Example 4. Density of matter

Estimate the density of a neutron. Does the result make sense? The density of a white dwarf star is
about 2 x 10" kg/m’ — is this reasonable?

The mass of a neutron is about one atomic mass unit (AMU), where a carbon-12 atom has a mass of
12 AMU and a mole of carbon-12 atoms has a mass of 12 grams. Thus one neutron has a mass of

(i ) 1 C-12 atom 1 mole C-12 (12gC-12j ke )| c6x10k
12 AMU )\ 6.02x10* atoms C-12 )\ mole C-12 )| 1000 g ) g

A neutron has a radius (r) of about 0.8 femtometer = 0.8 x 10" meter. Treating the neutron as a
sphere, the volume is 47’ /3, and the density (p) is the mass divided by the volume, thus
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mass 1.66x107"kg 7 kg
pP= VOlume: - ; 27.75X107E
~~(0.8x10"m)

By comparison, water has a density of 10° kg/m’ so the density of a neutron is far higher (by a
factor of 10" than that of atoms including their electrons. This is expected since the nucleus of an
atom occupies only a small portion of the total space occupied by an atom — most of the atom is
empty space where the electrons reside. Also, even the density of the white dwarf star is far less
than the neutrons (by a factor of 10°), which shows that the electron structure is squashed by the
mass of the star, but not nearly down to the neutron scale (protons have a mass and size similar to
neutrons, so the same point applies to protons too.)
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Chapter 4. Forces in structures

“The Force can have a strong influence on the weak-minded”
- Ben Obi-wan Kenobi, explaining to Luke Skywalker how he made the famous “these aren’t the
Droids you’re looking for” Jedi Mind Trick work.

Main course in AME curriculum on this topic: AME 201 (Statics).

Forces

Forces acting on objects are vectors that are characterized by not only a magnitude (e.g. Newtons or
pounds force) but also a direction. A force vector F (vectors are usually noted by a boldface letter)
can be broken down into its components in the x, y and z directions in whatever coordinate system
you’ve drawn:

F=Fi+Fj+Fk Equation 12

Where Fy, Fy and F, are the magnitudes of the forces (units of force, e.g. Newtons or pounds force)
in the x, y and z directions and i, j and k are the unit vectors in the x, y and z directions (i.e. vectors
whose directions are aligned with the x, y and z coordinates and whose magnitudes are exactly 1 (no
units)).

Forces can also be expressed in terms of the magnitude = (F,> + F,*> + F,»"? and direction relative
to the positive x-axis (= tan(F,/F,) in a 2-dimensional system). Note that the tan"(F,/F,) function
gives you an angle between +90° and -90° whereas sometimes the resulting force is between +90°
and +180° or between -90° and -180°; in these cases you’ll have to examine the resulting force and
add or subtract 180° from the force to get the right direction.

Degrees of freedom

Imagine a one-dimensional (1D) world, ze., where objects can move (translate) back and forth along
a single line but in no other way. For this 1D world there is only one direction (call it the x-
direction) that the object can move linearly and no way in which it can rotate, hence only one force
balance equation is required. For the field of dynamics this equation would be Newton’s Second Law,
namely that the sum of the forces F; + F.» + F3 + ... + F.» = ma, where m is the mass of the
object and a; is the acceleration of the object in the x direction, but this chapter focuses exclusively
on statics, 1.e. objects that are not accelerating, hence the force balance becomes simply

ZF)”. =0 Equation 13.
i=1

So a 1D world is quite simple, but what about a 2D world? Do we just need a second force balance

equation for translation in the y direction (that is, XF, = 0) and we’re done? Well, no. Let’s look at
a counter-example (Figure 3). The set of forces on the object in the left panel satisfies the
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requirements XF, = 0 and XF, = 0 and would appear to be in static equilibrium. In the right panel,
it is also true that XF, = 0 and XF; = 0, but cleatly this object would not be stationary; instead it
would be rotating clockwise. Why is this? In two dimensions, in addition to the fransiational degrees
of freedom in the x and y directions, there is also one rofational degree of freedom, that is, the object
can rotate about an axis perpendicular to the x-y plane, ze., an axis in the z-direction. How do we
ensure that the object is not rotating? We need to account for the moments of force (M) (discussed in
the next sub-section) in addition to the forces themselves, and just as the forces in the x and y
directions must add up to zero, ze. 2F, = 0 and 2F, = 0, we need to have the moments of force add
up to zero, i.e. XM = 0. So to summarize, in order to have satic equilibrinm of an object, the sum of
all the forces AND the moments of force must be zero. In other words, there are two ways that a
2-dimensional object can translate (in the x and y directions) and one way that in can rotate (with the
axis of rotation perpendicular to the x-y plane.) So there are 3 equations that must be satisfied in
order to have equilibrium,

P

Z”:F;c,i =O;iFyJ =O;ZMA,,{ =0 Equation 14
i=1 j=1

k=1

where the number of forces in the x direction is n, the number of forces in the y direction is m and
p = n + m is the number of moments of force calculated with respect to some point A in the (x,y)
plane. (The choice of location of point A is discussed below, but the bottom line is that any point
yields the same result.)

200 Ibf 200 Ibf

| |

50 Ibf —> <—— 50 Ibf 50 Ibf —> <— 50 Ibf

100 Ibf 100 Ibf 200 Ibf 0 Ibf

Figure 3. Two sets of forces on an object, both satisfying XF, = 0 and ZF, = 0, but one
(Ieft) in static equilibrium, the other (right) not in static equilibrium.

This is all fine and well for a 2D (planar) situation, what about 3D? For 3D, there are 3 directions
an object can move linearly (translate) and 3 axes about which it can rotate, thus we need 3 force
balance equations (in the x, y and z directions) and 3 moment of force balance equations (one each
about the x, y and z axes.) Table 1 summarizes these situations.

21



# of spatial Maximum # of | Minimum # of moment | Total # of unknown
dimensions force balances of force balances forces & moments
1 1 0 1
2 2 1 3
3 3 3 6

Table 1. Number of force and moment of force balance equations required for static
equilibrium as a function of the dimensionality of the system. (But note that, as just
described, moment of force balance equations can be substituted for force balance
equations.)

Moments of forces

Some types of structures can only exert forces along the line connecting the two ends of the
structure, but cannot exert any force perpendicular to that line. These types of structures include
ropes, ends with pins, and bearings. Other structural elements can also exert a force perpendicular
to the line (Figure 4). This is called the moment of force (often shortened to just “moment”, but to
avoid confusion with “moment” meaning a short period of time, we will use the full term “moment
of force”) which is the same thing as forgue. Usually the term torque is reserved for the forces on
rotating, not stationary, shafts, but there is no real difference between a moment of force and a
torque.

The distinguishing feature of the moment of force is that it depends not only on the vector force
itself (F;) but also the distance (d;) from that line of force to a reference point A. (I like to call this
distance the moment arm) from the anchor point at which it acts. If you want to loosen a stuck bolt,
you want to apply whatever force your arm is capable of providing over the longest possible di. The
line through the force Fi is called the /Zne of action. The moment arm is the distance (di again)
between the line of action and a line parallel to the line of action that passes through the anchor
point. Then the moment of force (M;) is defined as

A

o .
~d o e .
~. " Line of action

Force F;

Figure 4. Force, line of action and moment of force (= Fd) about a point A. The example
shown is a counterclockwise moment of force, i.e. force F; is trying to rotate the line
segment d counterclockwise about point A.
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M; = Fdi Equation 15

where F; is the magnitude of the vector F. Note that the units of M, is force x length, e.g. ft Ibf or
N m. This is the same as the unit of energy, but the two have nothing in common — it’s just
coincidence. So one could report a moment of force in units of Joules, but this is unacceptable
practice — use N m, not J.

Note that it is necessary to assign a sign to M; depending on whether the moment of force is trying
to rotate the free body clockwise or counter-clockwise. Typically we will define a clockwise moment
of force as positive and counterclockwise as negative, but one is free to choose the opposite
definition — as long as you’re consistent within an analysis.

Note that the moment of forces must be zero regardless of the choice of the origin (i.e. not just at the
center of mass). So one can take the origin to be wherever it is convenient (e.g. make the moment
of one of the forces = 0.) Consider the very simple set of forces below:

200 Ibf .
07071t A ozore T
AJL" 05ft  05f
............................... ) (................A...............
1 ft B“-
0.5t
0.707 ft .. y o
141.4 Ibf gk’ 141.4 Ibf
D

Figure 5. Force diagram showing different ways of computing moments of force

Because of the symmetry, it is easy to see that this set of forces constitutes an equilibrium condition.
When taking moments of force about point ‘B’ we have:

XF, = +141.4 cos(45°) Ibf + 0 - 141.4 cos(45°) Ibf = 0
XF, = +141.4 sin(45°) Ibf - 200 Ibf + 141.4 sin(45°) = 0
XMg = -141.4 Ibf * 0.707 ft - 200 Ibf * O ft +141.4 1bf * 0.707 ft = 0.

But how do we know to take the moments of force about point B? We don’t. But notice that if we
take the moments of force about point ‘A’ then the force balances remain the same and

XMj = -141.4 1bf * 0 ft - 200 Ibf * 1 ft + 141.4 Ibf * 1.414 ft = 0.

The same applies if we take moments of force about point ‘C’, or a point along the line ABC, or
even a point NOT along the line ABC. For example, taking moments of force about point ‘D’,
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XMp = -141.4 Ibf * (0.707 ft + 0.707 ft) + 200 Ibf * 0.5 ft +141.4 Ibf * 0.707 ft = 0

The location about which to take the moments of force can be chosen to make the problem as
simple as possible, e.g. to make some of the moments of forces = 0.

Excample of “why didn’t the book just say that...?” The state of equilibrium merely requires that 3
constraint equations are required. There is nothing in particular that requires there must be 2 force
and 1 moment of force constraint equations. So one could have 1 force and 2 moment of force
constraint equations:

Zn:F;J =O;iMj7A =O;iMk,B =0 Equation 16
=1 I= =

where the coordinate direction x can be chosen to be in any direction, and moments of force are
taken about 2 separate points A and B. Or one could even have 3 moment of force equations:

n m p
ZM,-,A = OQZMJ',B = Oész,c =0 Equation 17
i=1 J=1 k=1

Also, there is no reason to restrict the x and y coordinates to the horizontal and vertical directions.
They can be (for example) parallel and perpendicular to an inclined surface if that appears in the
problem. In fact, the x and y axes don’t even have to be perpendicular to each other, as long as they
are not parallel to each other, in which case 2F; = 0 and XF, = 0 would not be independent
equations.

Types of forces and moments of force

A free body diagram is a diagram showing all the forces and moments of forces acting on an object.
We distinguish between two types of objects:

1. Particles that have no spatial extent and thus have no moment arm (d). An example of this
would be a satellite orbiting the earth because the spatial extent of the satellite is very small
compared to the distance from the earth to the satellite or the radius of the earth. Particles
do not have moments of forces and thus do not rotate in response to a force.

2. Rigid bodies that have a finite dimension and thus has a moment arm (d) associated with each
applied force. Rigid bodies have moments of forces and thus can rotate in response to a
force.

There are several types of forces that act on particles or rigid bodies:

1. Rope, cable, etc. — Force (tension) must be along line of action; no moment of force (1
unknown force)

T <« ®
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2. Rollers, frictionless surface — Force must be perpendicular to the surface; no moment of
force (1 unknown force). There cannot be a force parallel to the surface because the roller
would start rolling! Also the force must be away from the surface towards the roller (in
other words the roller must exert a force on the surface), otherwise the roller would lift off
of the surface.

F

3. Frictionless pin or hinge — Force has components both parallel and perpendicular to the line
of action; no moment of force (2 unknown forces) (note that the coordinate system does not
need to be parallel and perpendicular to either the gravity vector or the bar)

4. Fixed support — Force has components both parallel and perpendicular to line of action plus
a moment of force (2 unknown forces, 1 unknown moment force). Note that for our simple
statics problems with 3 degrees of freedom, if there is one fixed support then we already
have 3 unknown quantities and the rest of our free body cannot have any unknown forces if
we are to employ statics alone to determine the forces. In other words, if the free body has
any additional unknown forces the system is statically indeterminate as will be discussed shortly.

5. Contact friction — Force has components both parallel (F) and perpendicular (N) to surface,
which are related by F = uN, where w is the coefficient of friction, which is usually assigned
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separate values for static (no sliding) (us) and dynamic (sliding) (ua) friction, with the latter
being lower. (2 unknown forces coupled by the relation F = uN). p depends on both of the
surfaces in contact. Most dry materials have friction coefficients between 0.3 and 0.6 but
Teflon in contact with Teflon, for example, can have a coefficient as low as 0.04. Rubber
(e.g. tires) in contact with other surfaces (e.g. asphalt) can yield friction coefficients of almost

2.

Actually, the statement F = uN for static friction is not correct at all, although that’s how it’s almost
always written. Consider the figure on the right, above. If there is no applied force in the horizontal
direction, there is no need for friction to counter that force and keep the block from sliding, so F =
0. (If F # 0, then the object would start moving even though thete is no applied forcel) Of course,
if a force were applied (e.g. from right to left, in the —x direction) then the friction force at the
interface between the block and the surface would counter the applied force with a force in the +x
direction so that XF, = 0. On the other hand, if a force were applied from left to right, in the +x
direction) then the friction force at the interface between the block and the surface would counter
the applied force with a force in the -x direction so that XF. = 0. The expression F = pN only
applies to the maximum magnitude of the static friction force. In other words, a proper
statement quantifying the friction force would be |F| = pN, not F = uMN. If any larger force is
applied then the block would start moving and then the dynamic friction force F = paN is the
applicable one — but even then this force must always be in the direction opposite the motion — so
|F| = paN is an appropriate statement. Another, more precise way of writing this would be

— —

F=uN Y , where v is the velocity of the block and v is the magnitude of this velocity, thus Y s
1% 1%

a unit vector in the direction of motion.

Special note: while ropes, rollers and pins do not exert a moment of force at the point of contact,
you can still sum up the moments of force acting on the free body at that point of contact. In
other words, XM = 0 can be used even if point A is a contact point with a rope, roller or pin joint,
and all of the other moments of force about point A (magnitude of force x distance from A to the
line of action of that force) are still non-zero. Keep in mind that A can be any point, within or
outside of the free body. It does not need to be a point where a force is applied, although it is often
convenient to use one of those points as shown in the examples below.

Statically indeterminate system
Of course, there is no guarantee that the number of force and moment of force balance equations

will be equal to the number of unknowns. For example, in a 2D problem, a beam supported by one
pinned end and one roller end has 3 unknown forces and 3 equations of static equilibrium.
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However, if both ends are pinned, there are 4 unknown forces but still only 3 equations of static
equilibrium. Such a system is called statically indeterminate and requires additional information beyond
the equations of statics (e.g. material stresses and strains, discussed in the next chapter) to determine
the forces.

Analysis of statics problems

A useful methodology for analyzing statics problems is as follows:

1. Draw a free body diagram — a free body must be a rigid object, i.e. one that cannot bend in
response to applied forces

2. Draw all of the forces acting on the free body. Is the number of unknown forces equal to
the total number of independent constraint equations shown in Table 1 (far right column)?
If not, statics can’t help you.

3. Decide on a coordinate system. If the primary direction of forces is parallel and
perpendicular to an inclined plane, usually it’s most convenient to have the x and y
coordinates parallel and perpendicular to the plane, as in the cart and sliding block examples
below.

4. Decide on a set of constraint equations. As mentioned above, this can be any combination
of force and moment of force balances that add up to the number of degrees of freedom of
the system (Table 1).

5. Decide on the locations about which to perform moment of force constraint equations.
Generally you should make this where the lines of action of two or more forces intersect
because this will minimize the number of unknowns in your resulting equation.

6. Write down the force and moment of force constraint equations. If you’ve made good
choices in steps 2 — 5, the resulting equations will be “easy” to solve.

7. Solve these “easy” equations.

Example 1. Ropes

The US Civil War Union ship Monitor and the Confederate ship Merrimack are pulling a Peace
Barge due west up Chesapeake Bay toward Washington DC. The Monitor’s tow rope is at an angle
of 53 degrees north of due west with a tension of 4000 Ibf. The Merrimack’s tow rope is at an angle
of 34 degrees south of due west but their scale attached to the rope is broken so the tension is
unknown to the crew.
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Figure 6. Free body diagram of Monitor-Merrimack system

What is the tension in the Merrimack’s tow rope?

Define x as positive in the eastetly direction, y as positive in the northerly direction. In order for
the Barge to travel due west, the northerly pull by the Monitor and the Southerly pull by the
Merrimack have to be equal, or in other words the resultant force in the y direction, Ry, must be
zero. The northerly pull by the Monitor is 4000 sin(53°) = 3195 Ibf. In order for this to equal
the southerly pull of the Merrimack, we require Fuyerimacsin(34°) = 3195 Ibf, thus Fuyerimee = 5713
Ibf.

What is the tension trying to break the Peace Barge (i.e. in the north-south direction)?
This is just the north/south force just computed, 3195 Ibf

What is the force pulling the Peace Barge up Chesapeake Bay?

The force exerted by the Monitor is 4000 cos(53°) = 2407 Ibf. The force exerted by the
Merrimack is 5713 cos(34°) = 4736 Ibf. The resultant is Rc = 7143 Ibf.

Example 2. Wheels

A car of known weight W is being held by a cable with tension T on an of angle 0 with respect to
horizontal. The wheels are free to rotate, so there is no force exerted by the wheels in the direction
parallel to the ramp surface. The center of gravity of the vehicle is a distance “c” above the ramp, a
distance “a” behind the front wheels, and a distance “b” in front of the rear wheels. The cable is
attached to the car a distance “d” above the ramp surface and is parallel to the ramp.
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Figure 7. Free body diagram for car-on-ramp with cable example

(a) What is the tension in the cable in terms of known quantities, i.e. the weight W, dimensions a, b,
¢, and d, and ramp angle 6?

Define x as the direction parallel to the ramp surface and y perpendicular to the surface as
shown. The forces in the x direction acting on the car are the cable tension T and

component of the vehicle weight in the x direction = Wsin®, thus ZF = 0 yields
Wsin® - T =0 =T = WsinO
(b) What are the forces where the wheels contact the ramp (Fya and Fyp)?

The forces in the y direction acting on the car are Fya, Fyp and component of the vehicle

weight in the y direction = Wecos0. Taking moments of force about point A, that is ZMj =
0 (so that the moment of force equation does not contain Fyx which makes the algebra
simpler), and defining moments of force as positive clockwise yields

(WsinB)(c) + (WcosB)(a) — Fys(a+b) —T(d) = 0
Since we already know from part (a) that T = Wsin0, substitution yields

(WsinB)(c) + (WcosB)(a) — Fys(atb) — (WsinB)(d) = 0

Since this equation contains only one unknown force, namely Fy3, it can be solved directly to
obtain

acos(0)+(c—d)sin(6)
a+b

F =W

».B
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Finally taking 2F, = 0 yields
Fya +Fyp - Weosb =0

Which we can substitute into the previous equation to find Fya:

beos(0)—(c—d)sin(0)
a+b

F =W

»,4

Note the function tests:

2) For 0 =0,T = 0 (no tension required to keep the car from rolling on a level road)
3) As 0 increases, the tension T required to keep the car from rolling increases

4) For 0 =90°, T =W (all of the vehicle weight is on the cable) but note that Fyx and
Fyp are non-zero (equal magnitudes, opposite signs) unless ¢ = d, that is, the line of
action of the cable tension goes through the cat’s center of gravity.

5) For 0 =0,F, .\ = (b/(atb)) and F,3 = (a/(a+b)) (more weight on the wheels closer
to the center of gravity.)

6) Because of the — sign on the 2™ term in the numerator of Fy (-(c-d)sin(0)) and the +

sign in the 2™ term in the numerator of Fyp (+(c-d)sin(0)), as 0 increases, there is a
transfer of weight from the front wheels to the rear wheels.

Note also that Fyx < 0 for b/(c-d) < tan(0), at which point the front (upper) wheels lift off
the ground, and that Fyz < 0 for a/(d-c) > tan(0), at which point the back (lower) wheels lift
off the ground. In either case, the analysis is invalid. (Be aware that ¢ could be larger or
smaller than d, so c-d could be a positive or negative quantity.)

Example 3. Friction

A 100 Ibf acts on a 300 Ibf block placed on an inclined plane with a 3:4 slope. The coefficients of
friction between the block and the plane are pus = 0.25 and pq = 0.20. The gravitational acceleration
is standard earth gravity.

a) Determine whether the block is in static equilibrium on the ramp

b) If the block is not in static equilibrium (ze., it’s sliding), find the net force on the block
¢) If the block is not in static equilibrium, find the acceleration of the block
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100 Ibf

Figure 8. Free body diagram for sliding-block example

(a) To maintain equilibrium, we require that XF, = 0 and XF, = 0. Choosing the x direction parallel
to the surface and y perpendicular to it,

2F, = N - (4/5)(300 Ibf) = 0 = N = 240 Ibf
so the maximum possible friction force is

Fhiiction, max = N = 0.25 * 240 Ibf = 60 Ibf.
The force needed to prevent the block from sliding is

ZFX - 100 lbf_ (3/5)(300 lbf) + Fnceded = 0
Focedea = 100 Ibf + (3/5)(300 Ibf) = 80 Ibf

Which is more than the maximum available friction force, so the block will slide down the plane.
(b) The sliding friction is given by
Fhiiction, max = N = 0.20 * 240 Ibf = 48 Ibf

so the net force acting on the block in the x direction (not zero since the block is not at equilibrium)
is
2F, =100 Ibf — (3/5)(300 Ibf) + 48 Ibf = -32 Ibf

(b) Note that the mass of an object that weighs 300 Ibf at earth gravity is 300 Ibm (see example 1,
chapter 2). Thus

F = ma = -32 Ibf = (300 Ibm)(2) = a = -32 Ibf/300 Ibm ???
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what does -32 1bf/300 lbm mean? 1bf/lbm has units of force/mass, so it is an acceleration. But
how to convert to something useful like ft/s*> Multiply by 1 in the funny form of g = 1 =
32.174 Ibm ft / Ibf s% of course!

acceleration = (-32 1bf/300 lbm) (32.174 Ibm ft / Ibf s*) = -3.43 ft/s’
o, since gewn = 32.174 ft/s’,
acceleration = (-3.43 ft/s%)/(32.174 ft/s°Gearty) = -0.107 Gearen-
The negative sign indicates the acceleration is in the —x direction, i.e. down the slope of course.

A good function test is that the acceleration has to be less than 1 gearn, which is what you would get
if you dropped the block vertically in a frictionless environment. Obviously, a block sliding down a
slope (not vertical) with friction and with an external force acting up the slope must have a smaller
acceleration.

Example 4. Wheels and friction

A car of known weight W is equipped with rubber tires with coefficient of static friction p.. Unlike
the earlier example, there is no cable but the wheels are locked and thus the tires exert a friction
force parallel to and in the plane of the ramp surface. As with the previous example, the car is on a

({94

ramp of angle 0 with respect to horizontal. The center of gravity of the vehicle is a distance “c
above the ramp, a distance “a” behind the front wheels, and a distance “b” in front of the rear
wheels.

Figure 9. Free body diagram for car-on-ramp with friction
example

(a) What is the minimum p, required to keep the car from sliding down the ramp?
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The unknowns are the resulting forces at the wheels (Fya and Fyp) and the coefficient of
friction .. Taking 2F, = 0, 2F, = 0 and 2Mx = 0 yields, respectively,

-wsFya - wFys + Wsind = 0

Fya +Fyp - Weosb =0

(WsinB)(c) + (Wcos0)(a) — Fyp(at+b) = 0
Which may be solved to obtain

F :Wbcos(é?)—(c—d)sm(é?);F ) :Wacos(0)+csm((9);ﬂx _ sin () _an(6)
. a+b . a+b cos(0)

Note the function tests

1) For 6 = 0, ps = tan(®) = 0 (no friction required to keep the car from sliding on a
level road)

2) As 0 increases, the friction coefficient p, required to keep the car from sliding
increases

3) For 0 =0, Fyx = (b/(atb)) and Fys = (a/(a+b)) (more weight on the wheels closer
to the center of gravity)

4) Because of the — sign on the 2™ term in the numerator of Fya (-c sin(0)) and the +

sign in the 2™ term in the numerator of Fyp (+c sin(®)), as O increases, there is a
transfer of weight from the front wheels to the rear wheels.

Note also that we could have also tried ZF, = 0, XM, and 2Ms = 0:

Fya + Fyp - WeosB =0
(WsinB)(c) + (WcosO)(a) — Fyg(at+b) = 0
(WsinB)(c) - (WcosO)(b) + Fya(atb) =0

In which case, the second equation could have been subtracted from the third to obtain:
Fya + Fyp - WeosB =0

which is the same as the first equation. So the three equations are not independent of each
other, and we can’t solve the system. What’s wrong? The coefficient of friction u; doesn’t appear in

the set of equations XF, = 0, XM and ZMp = 0. We need to have each of the three unknowns
Fya, Fyp and . in at least one of the three equations. The set XF, = 0, ZMa and XM = 0
doesn’t satisfy that criterion.

(b) At what angle will the car tip over backwards, assuming that it doesn’t start sliding down the
ramp at a smaller angle due to low p?
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This will occur when Fyx = 0, i.e. when sin(0)/cos(@) = tan(0) = b/c. This is reasonable
because the tip-over angle should increase when c is made larger (center of gravity closer to
the ground) or b made smaller (center of gravity shifted forward). Notice also that it doesn’t
depend on p, that is, as long as it doesn’t slide due to low ps, the tip-over angle only depends
on the force balance.

For what it’s worth, also note that the tip-over angle equals the sliding angle when tan(0) =
us = b/c. Since generally s < 1, except for a very top-heavy (large c) or rear-weight-shifted
(small b) vehicles, the vehicle will slide down the ramp before it flips over backwards.

Example 5. Pinned joint

4 cos(30)

100 Ibf

8 cos(30°)

All dimensions in inches

Figure 10. Free body diagram for pinned joint example

A straight bar of negligible mass 12 inches long is pinned at its lower end (call it point A) and has a
roller attached to its upper end (call it point B) as shown in the figure. The bar is at a 30° angle from
horizontal. A weight of 100 Ibf is hung 4 inches from the lower end (call it point C).

a) What are the forces in the x and y directions on the pinned end? What is the force in the x
direction on the roller end?

The pinned end can sustain forces in both the x and y directions, but no moment of force. The

roller end can sustain a force only in the x direction, and again no moment of force. Summing
the forces in the y direction

Foa+Fp+Fc=0=Fa+0-1001bf =0 = F,a = +100 Ibf.
In other wotds, in the y direction the vertical force at point A must be +100 Ibf since that is the

only force available to counteract the 100 Ibf weight. Next, taking moments of force about
point A (since the lines of action of two of the unknown forces intersect at point A),
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b)

XM = 0= +(4 in)(cos(307))(100 Ibf) + (6 in)Fxs = 0 = Fyp = -57.7 Ibf.
Finally, for force balance in the x direction,
Foa+Fop+Foc=0=F=-Fg-Fc=--57.71bf) -0 = +57.7 Ibf
Would the forces change if the roller and pinned ends were reversed?
In this case summing the forces in the x direction:
FiatFp+Fc=0=>0+Fz+0=0 = Fg=0.
For force balance in the y direction,
Fya+ Fip + Fic =0= Fya + F s =100 Ibf

Taking moments of force about point C just for variety (not the easiest way, since neither Fyx
nor Fyp are known, we just know that Fyx + Fys = 100 Ibf),

2Mc = 0 = (4 in)(cos(30°))Fya - (8 in)(cos(30°))Fyp + (8 in)(sin(30°))Fxs = 0
= (4 in)(cos(30))(100 Ibf — Fyp) - (8 in)(cos(30°))Fys + 0 =0
= Fp = +33.31bf = F; 4 = +606.7 Ibf

which is quite different from case (a).

What would happen if the lower end were fixed rather than pinned (upper end having the roller
again)?

In this case there are 4 unknown quantities (Fya, Fya, Ma and Fip) but only 3 equations (XF, = 0,

2F, = 0, XM = 0) so the system is statically indeterminate. If one takes away the roller end
entirely, then obviously Fyx = 100 1bf, Fia = 0 and Ma = +(100 1bf)(4 in)(cos(30%)) = 346.4 in
Ibf.
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Chapter 5. Stresses, strains and material properties

“It is not stress that kills us, it is our reaction to it”
- Hans Selye, endocrinologist.

Main course in AME curriculum on this topic: AME 204 (Strength of Materials).

Stresses and strains

As a follow-on to the discussion of statics we need to consider whether a material subject to a given
set of forces will break and if not, how much it will bend. While we will write down many formulas
in this chapter without deriving them, essentially what these equations do is

1. Break an object up into many infinitesimal cubes of dimension dx X dy X dz
Apply the laws of statics you just learned to these infinitesimal cubes of material that may
deform

3. Apply constituitive laws relating the forces (actually s#resses, defined below) acting on each cube
to its deformation and thus displacement from where it was without applied forces

4. Write a set of equations for all these cubes that is mutually consistent, that is, the stress and
displacement on the right face of cube A must be equal to those on the left side of adjacent
cube B

5. Solve this large set of equations to determine the stresses and displacements everywhere in
the object

As this discussion implies, the first step in the process is to compute the s#7ess in the material. There
are two flavors of stress, the nommal stress which is the stress in the direction perpendicular to an
imaginary plane in the material, and the shear stress which is the stress in the direction parallel to that
same imaginary plane. Of course, this imaginary plane could be in any direction, so the magnitude
of the normal and shear stresses depends strongly on the choice of said imaginary plane. How
should one choose said plane and what is the relationship between normal and shear stresses? We’'ll
discuss that shortly, but first we’ll individually define normal then shear stress.

The normal stress (G) in a material is defined as
c=F/A Equation 18

where F is the force (either tension or compression) acting perpendicular to an imaginary plane
surface passing through a piece of material and A is the cross section area. It is called “normal” not
in the sense of being “typical” or “standard” but in the sense of being perpendicular or orthogonal
to the cross-section of the material. Stress is defined as positive if the material is in tension (L.e.
the material is being pulled apart) and negative if the material is in compression (Ze. being
squeezed together). From the definition it is clear that stress has units of force/area, Ze. the same as
pressure. The units are typically N/m’ or Ibf/in®. Sometimes the unit of “kips” (kilopounds per
square inch = 1000 Ibf/in’) is used to report stress.
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In order to characterize the deformation of a material in response to stress we define another
property called strain (€) which is the fractional amount of elongation (increase in length) or
contraction (decrease in length) in a material caused by a stress. For example, if under a given
amount of tensile stress, a steel bar stretches from an initial length (L) of 1.00 inch to a final length
1.01 inch (a change in length, AL, of 0.01 inch) the strain = (1.01 — 1.00)/1.00 = 0.01. In other
wortds,

e=AL/L Equation 19

For most materials (other than gooey ones, i.e. Silly Putty™, Play-Doh™, ...) the maximum strain
before failure of the material is relatively small (Ze. less that 0.1, meaning that the material deforms
less than 10% before failing.)
