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Abstract: 

Machine Learning (ML) is transforming the world with research breakthroughs that are leading to the progress 

of every field. We are living in an era of data explosion. This further improves the output as data that can be fed 

to the models is more than it has ever been. Therefore, prediction algorithms are now capable of solving many 

of the complex problems that we face by leveraging the power of data. The models are capable of correlating a 

dataset and its features with an accuracy that humans fail to achieve. Bearing this in mind, this research takes an 

in-depth look into the of problem- solving potential of ML in the area of Database Management Systems 

(DBMS). Although ML hallmarks significant scientific milestones, the field is still in its infancy. The 

limitations of ML models are also studied in this paper.  

1. Introduction  

A computer program is said to learn from 

experience E with respect to some class of tasks T 

and performance measure P if its performance at 

tasks in T, as measured by P, improves with 

experience E [33]. In order to fix the ideas, it is 

useful to introduce the machine learning 

methodology as an alternative to the conventional 

engineering approach for the design of an 

algorithmic solution [34]. The goal of machine 

learning is to program computers to use example 

data or past experience to solve a given problem. 

Many successful applications of machine learning 

exist already, including systems that analyze past 

sales data to predict customer behavior, optimize 

robot behavior so that a task can be completed using 

minimum resources, and extract knowledge from 

bioinformatics data. [35] Integrating machine  

learning into DBMS is an ongoing effort in both 

academia and industry. The combination of ML and 

DBMS is attractive because businesses have 

massive amounts of data residing in their existing 

DBMS [36]. Furthermore, relational operators can 

be used to pre-process and denormalize a complex 

schema conveniently before executing ML tasks 

[37].  

DBMS developers have to use heuristics, restrict the 

problem space, or even rely on human intervention 

to solve problems such as query optimization, 

physical database design optimization, and buffer 

management. The goal of these heuristics and 

restrictions is not to find an optimal solution for a 

particular instance, but to find a solution which has 

a safe worst-case performance on all cases. 

Alternatively, ML provides a flexible framework to 

automatically learn an efficient program to solve 

these problems for a specific instance without being 

explicitly programmed by a human developer.  

The paper is primarily focused at relational database 

management systems (RDBMSs) because they 

remain the most widely used DBMS type. We 

survey the existing landscape of ML to solve hard 

programming problems in DBMSs. DBMS is 

divided into three main sub-components in this 

paper: 1) Query Parser, 2) Relational Engine, and 3) 

Execution Engine. After providing some 

background on each of these subcomponents and 

different ML methods, several systems that have 

been proposed using ML are identified. These 

include systems in Query Parser, Relational Engine, 

and Execution Engine in Section 3, 4, and 5, 

respectively. In Section 6, three overarching design 

decisions are identified that a DBMS developer has 
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Figure 1: Systems surveyed in this paper, DBMS component they optimize, and the design choices they make 

(DL: Deep Learning, RL: Reinforcement Learning).  

to make when incorporating ML into a DBMS. An 

abstract summary of where the surveyed systems 

fall in this taxonomy is presented in Figure 1. In 

Section 7, we identify three open challenges to ML: 

1) improving robustness, 2) re-thinking the DBMS 

architecture, and 3) exploiting transfer learning.  

2. Background  

We provide some background on the database 

management system internals and machine learning 

methods to help understand the rest of this survey.  

2.1 Database Management Systems  

 

Figure 2: Steps in query processing 

We identify three main components of a DBMS: 1) 

Query Parser, 2) Relational Engine, and 3) 

Execution Engine. To give a brief introduction to 

each of these components, we next explain the 

journey of a typical SQL query.  

Example Query. Alice is a data analyst at an 

online e-commerce website and she wants to find 

the top 10 products in terms of sales revenue. She 

writes a SQL query using the SQL client in her 

laptop and submits it to the DMBS for execution.  

Query Parser. At the DBMS, the SQL query will 

be first intercepted by the query parser. The query 

parser will verify the query is 1) free from syntax 

and semantic errors, 2) verify the user is authorized 

to execute the query, and 3) convert the query into 

the internal format used by the system.  

Relational Engine. The parsed query is then sent to 

the relational engine which outputs an optimal 

query evaluation plan (QEP) for the given query. It 

does so  

by searching the space of possible query evaluation 

plans and estimating the cost of each option. For 

this task, it relies on the metadata information and 

statistics about the data in the DBMS, which has to 
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be generated beforehand. QEP dictates the order of 

execution of each relational operator and which 

physical operator implementation to be used.  

Execution Engine. Finally, the QEP is sent to the 

execution engine for execution, which is 

responsible for managing all the low-level system 

resources such as memory buffers and thread pools, 

accessing the data and indices, and coordinating the 

execution of the query either on a single machine or 

on multiple machines. It also handles concurrency 

control and failure recovery of the DBMS. The 

output generated by executing the query is sent back 

to Alice.  

Database Administrator. Being complex software 

systems, DBMSs require a significant amount of 

tuning to achieve good performance for a particular 

use case. To worsen the situation, the set of default 

configurations in the DBMS are often obsolete and 

do not match the resource availability of modern 

hardware (e.g., MySQL default buffer pool size is 

128MB!). Thus, in Alice’s use case, the DBMS has 

to be tuned to the schema of the database and the set 

of widely used queries by the analysts in her 

company. Furthermore, for query optimization the 

relevant data statistics have to be generated 

beforehand and kept up to date. Typically, these 

tasks are performed by a database administrator 

who has specialized knowledge about the internals 

of the DBMS.  

2.2 Machine Learning Methods  

For the purpose of this paper, we divide machine 

learning into two major model families: 1) deep 

learning and 2) classical machine learning.  

Deep Learning. Deep learning (DL) [1] is the name 

given to the family of ML models that are 

composed of artificial neural networks (ANNs). 

ANNs are inspired by the structure and function of 

the human brain. They learn a hierarchy of 

parametric features using layers of various types 

(e.g., fully connected, ReLU). All parameters are 

trained using a technique called back-propagation. 

Training a deep learning  

model incurs massive costs: they typically need 

many GPUs for reasonable runtimes, huge labeled 

datasets, and complex hyper-parameter tuning. 

Recently, DL methods have been able to produce 

superior accuracy results outperforming other ML 

methods on hard tasks like computer vision and 

natural language processing. In some cases, they 

have even surpassed the human-level accuracy.  

Classical Machine Learning. Despite many 

successes using DL-based ML methods, in many 

applications that involve working with structured 

data, ML model families like generalized linear 

models, decision tree models, and Bayesian models 

are widely used. Typically, these model families are 

collectively referred to as classical machine 

learning, a term coined to contrast them with DL 

models. Unlike DL models, which can all be trained 

using back-propagation method, each sub-family in 

classical ML uses different statistical learning 

foundations and learning methods. Furthermore, 

their characteristics are also significantly different 

among different sub-families.  

For the above two ML model families, we further 

identify three different learning paradigms: 1) 

supervised learning, 2) unsupervised learning, and 

3) reinforcement learning.  

Supervised Learning. In supervised learning, 

training data consists of a set of input (also called 

features) and output pairs. The goal of the ML 

model is to learn a prediction function that takes in 

unseen inputs and predicts an output value such that 

the discrepancy between the predicted value and the 

actual value corresponding to the unseen input is 

minimized. Supervised learning is applicable in 

settings where there is a direct observable mapping 

between input and output, a large amount of 

training data available, and we are confident that the 

training data covers the entire data distribution.  

Unsupervised Learning. In unsupervised learning, 

the training data contains only the input and no 

explicit output. The purpose of the ML model is to 

learn a function that can discern the latent structure 

of the inputs. Given an unseen test input, the trained 

unsupervised ML model can be used to predict the 

structural properties of the input. Popular  

applications of unsupervised learning include 

probability density function estimation and data 

clustering.  

Reinforcement Learning. The goal of 

reinforcement learning methods is to learn a 

function that takes in an input state and generates an 

action that will maximize the overall cumulative 

reward (not the immediate reward as in supervised 

learning). Unlike supervised learning methods, they 
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do not make any assumptions about the data 

generating process and also do not require a training 

set of state-action (input-output) pairs to be 

presented. State-action pairs are generated as the 

model interacts with the environment and models 

use an explore-exploit paradigm to learn while 

being used to make predictions at the same time. 

Reinforcement learning techniques are useful in 

settings where the reward of action is not directly 

observable and we want the model to try different 

things and pick the best option. However, as there is 

no initial assumption on the data generating process 

(e.g., through training data), in some problems 

reinforcement learning method will fail or take a 

very long time to learn.  

3. Query Parser  

The task of the query parsing sub-component in a 

DBMS is to check whether a given SQL query in 

text format is free from syntax and grammar errors 

and if so, translate it into a relational algebra 

expression, which is an already solved problem. 

Hence, most of the new work on query parsing 

focuses on supporting query modalities beyond text 

and relaxing the grammar of SQL to support natural 

language-based querying. Recent advancements in 

natural language processing using deep learning 

techniques provide a promising opportunity to 

achieve these goals.  

3.1 Expanding the Query Modalities  

3.1.1 Speaking SQL Queries  

SpeakQL [2] provides a speech-driven querying 

interface, which can be used to query data by 

speaking out a SQL query instead of typing it. It 

uses an off the shelf automatic speech recognition 

engine to compile a spoken SQL query into text  

form and use knowledge about the schema of the 

underlying data to refine the structure and the 

literals of the query. SpeakQL is able to capture 

complex SQL queries but puts significant cognitive 

load on the user when dictating such queries.  

3.1.2 Speaking Natural Language Queries  

Seq2SQL [3] and SQLNet [4] are two systems that 

focus on compiling natural language queries into 

SQL. Seq2SQL uses a large dataset (n=84,000) of 

manually annotated natural language-SQL pairs and 

trains a deep reinforcement learning model to 

compile natural language queries into SQL. 

SQLNet uses the same training dataset and uses a 

neural machine translation approach. While these 

systems have shown some early promising results 

for supporting natural language queries over single 

table data, their accuracy significantly suffers for 

complex queries that involve joins over multiple 

tables.  

4. ML for Relational Engine  

Relational Engine is one of the most important 

components in a database management system, that 

has been extensively studied for the last 40 years. 

We identify three different sub-areas of ML 

applications in the relational engine: ML for (1) 

query optimization, (2) physical database design 

automation, and (3) approximate query processing. 

Next, we discuss some of the most prominent works 

in each of these sub-areas.  

4.1 Query Optimization  

The goal of query optimization is to transform an 

input relational algebra expression into an optimal 

query evaluation plan (QEP). To achieve this, 

traditional query optimizers perform a search over 

the space of potential QEPs and pick the one with 

the least total cost. However, estimating the total 

cost is a complex task and it is often approximated 

by estimating the total size of the intermediate 

tuples generated during query evaluation. This is 

called the cardinality estimation problem, which 

remains still an unsolved problem despite 

advancements over many decades. Database 

optimizers often make assumptions such as 

uniformity, independence, and the principle of 

inclusion [5] to perform cardinality  

estimation. These assumptions often do not hold in 

real data and optimizers tend to under- or over- 

estimate the query cost and pick sub-optimal query 

evaluation plans, which can be worse by orders of 

magnitude. We found that the use of ML for query 

optimization can be broadly divided into two major 

approaches. The first approach is to train ML 

models for cardinality estimation and integrate them 

with the existing search strategies in the optimizer. 

The second approach is to completely replace the 

traditional query optimizer by using ML to generate 

the QEP, end-to-end.  

4.1.1 Cardinality Estimation  

We identify three different methods for learning 

ML models for cardinality estimation.  

Predicate Level Models. LEO [6] is one of the 
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very first systems developed to use ML techniques 

to improve the cardinality estimation. It uses the 

optimizer estimated cardinalities and the 

cardinalities observed during execution to learn 

predicate level linear models to predict the correct 

output cardinalities. However, not accounting for 

QEP structure and using the optimizer estimated 

cardinality as the only feature prevents LEO from 

achieving high accuracies.  

Sub-graph Level Models. CardLearner [7] extends 

the idea of LEO and builds ML models to predict 

cardinalities of commonly occurring query 

templates instead of each predicate. A template is a 

family of queries with the same structure but 

varying parameters and inputs. Instead of training 

one single model for all commonly occurring query 

templates, it trains separate ML models for each 

template. CardLerarner uses several hand-

engineered features including metadata features, 

input cardinalities of all input datasets, and features 

associated with operators. Operating on query 

templates enables CardLearner to capture the 

semantics of the QEP and correlation in data and 

yield better results compared to predicate level 

approaches such as LEO. However, its accuracy 

degrades when faced with new queries and queries 

which have unseen sub- graphs.  

Graph Level Models. One could also train ML 

models to predict the output cardinality of entire 

QEPs. QPPNet uses a novel neural network 

architecture that matches the QEP structure. It is 

composed of stacking sub-neural-modules 

corresponding to each operator in the QEP which 

takes in hand-engineered features as well as output 

from other sub- neural-modules. As a result, it can 

learn the correlation in data, relationships between 

operator features, and plan structure to predict the 

QEP cost more accurately. However, one of the 

limitations of replacing just the cardinality 

estimation component in the optimizer is that the 

model will have zero knowledge about the plans 

that were never generated by the optimizer, which 

limits the optimizer’s ability to generate new and 

better plans.  

Thus, instead of learning from query workloads, 

Naru [8], and DeepDB [9] try to solve the 

cardinality estimation problem by modeling the 

joint probability distribution of the data. Naru uses 

deep autoregressive models and combines it with a 

novel Monte Carlo integration scheme to efficiently 

support range and wildcard queries. DeepDB uses 

Relational Sum-Product Networks (RSPNs), a 

variant of a probabilistic graphical model, to model 

the joint probability distribution.  

It is important to mention that some of the above 

systems (e.g., LEO in IBM DB2 and CardLearner in 

Microsoft SCOPE) have been (or are being) used in 

enterprise systems.  

Query Evaluation Plan Generation The QEP 

search strategy in the optimizer closely resembles 

the reinforcement learning (RL) methods in 

machine learning. Hence, several systems have tried 

to replace the entire QEP generation process using 

RL instead of using ML models to augment an 

existing optimizer. This ability to learn from the 

feedback from the chosen QEPs enables RL models 

to avoid choosing the same bad QEP over and over 

again. We identify two different methods of using 

RL for generating QEPs end-to-end.  

Intra-Query Classical RL. SkinnerDB [10] 

proposes an intra-query regret-bounded RL learning 

strategy to find the optimal join ordering for a QEP.  

Instead of learning from past query executions, it 

uses UTC algorithm [11] to learn from the current 

query execution to optimize the remaining of the 

current query. While this approach incurs some 

overheads due to cold starting for every query, the 

overall overheads remain negligible as it can avoid 

catastrophic join order choices.  

Deep RL. ReJoin [12] and Neo [13] use recent 

advancements in deep reinforcement learning to 

generate optimal QEPs. ReJoin uses the existing 

cost model of the optimizer to learn a policy 

network that can outperform the optimizer search 

strategy after more online training. Neo uses the 

observed latency of QEP executions to learn a value 

network to predict the latency of any new QEP. To 

reduce learning time and avoid choosing and 

evaluating prohibitively expensive join orders, Neo 

bootstraps the value network using latencies 

observed for the QEPs generated by a traditional 

query optimizer.  

While the above systems have shown some early 

promising results on the ability of ML techniques to 

replace the traditional query optimizers, a vast 

number of important challenges remain open to 

enable practical adoption. For example, these 
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systems make simplifying assumptions on the 

grammar of supported queries, do not support 

physical operator selection, and in some cases 

assumes the availability of customized execution 

engines (e.g., SkinnerDB [10]).  

4.2 Physical Database Design Automation  

One of the most important properties of DBMSs is 

physical data independence. This allows changing 

the physical structure of the database without 

requiring to change the user queries. However, the 

physical database design significantly affects the 

performance and has to be tuned for a specific use 

case. Physical database design choices include 

creating indices, selecting materialized views, and 

selecting data partitioning. Traditionally, this has 

been the responsibility of database administration 

personnel and they have used heuristics and human 

judgment to perform these tasks. Several systems 

have used ML techniques that learn from workload  

patterns either to develop decision support systems 

for database administrators or to automate the 

process. We identify two different methods for 

integrating ML for physical database design 

automation.  

4.2.1 Reactive Systems  

SQL Server AutoAdmin [14] system is one of the 

very first systems to adopt ML techniques for the 

physical database design process. It adopts a 

reactive strategy where it takes in a historical query 

work-load and searches for a configuration that 

minimizes the cost of execution of the workload and 

recommends that to the database administrator. The 

chosen configuration dictates which indices and 

materialized-views to be created and which data 

partitioning scheme to be used. The search strategy 

uses a variant of frequent itemsets mining 

techniques to efficiently explore the enormous 

search space generated by a large number of 

possibilities. The search strategy also requires 

estimating the cost of a new configuration without 

actually executing the workload. To achieve this, 

AutoAdmin extends the query optimizer’s cost 

model to support what-if queries which can assume 

the presence of a selected set of configurations 

(either hypothetical or materialized) and ignore the 

presence of other configurations. However, due to 

the well-known limitations of the optimizer’s cost 

model, a configuration that the optimizer thinks is 

better than others can be worse when implemented. 

In a followup work [15], AutoAdmin uses ML 

models trained on past QEP execution experiences 

to obtain confidence in the selected configuration 

before making the actual change. It does so by 

formulating a classification problem to predict 

whether the new configuration will be better than 

the current configuration.  

 

4.2.2 Proactive Systems  

Configurations chosen by reactive systems like 

AutoAdmin may be sub-optimal for the workload in 

the near future. On the contrary systems like 

QB5000 [16] and DQM [17] takes a proactive 

strategy for physical database design that 

completely automates the process without any 

intervention of a human. QB5000 trains ML  

models to predict the query workload to the future 

and uses that to select the best set of indices. DQM 

trains a deep RL model to learn a policy to 

opportunistically select and evict materialized views 

subject to storage constraints, that will have the 

most benefit into the future. While these systems 

have shown promising initial results, much work is 

still needed to improve the robustness before 

incorporating them into enterprise systems.  

4.3 Approximate Query Processing  

 

Figure 3: Input Data Size vs Query Response 

Time graph 

While the ever-growing volumes of data enable us 

to glean unprecedented insights, the associated high 

computational and resource costs often become a 

bottleneck. Approximate query processing (AQP) 

techniques try to mitigate this issue by generating 

approximate answers to the original query at a 

fraction of the time and cost of the original query 

execution. The conventional approach to AQP is to 

use query time data sampling and data statistics to 
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answer queries. After the query is executed, the 

work done for that query is never reused. However, 

every new query execution reveals some new 

information about the data and executing more and 

more queries over time enables us to refine that 

information even further. Thus, machine learning 

techniques provide an interesting opportunity to 

learn from past query executions and use that 

learning to approximately answer future queries. 

We identify two different methods of using ML for 

AQP.  

4.3.1 Augmenting Existing AQP Components 

Verdict [18] is one of the first systems to apply this 

technique in the context of AQP. It uses a data 

structure called Query Synopsis to store the past 

query results and uses it to refine the approximate 

answer generated by the system for new queries. 

Thus, Verdict can reduce the runtime required for 

an approximate query for specified error bound or 

reduce the error bound for an approximate query 

with a specified time budget. This is achieved by 

modeling a multivariate normal distribution model 

using the principle of maximum entropy.  

4.3.2 Replacing Existing AQP Components 

Instead of learning from past queries and 

augmenting sampling-based methods with ML 

methods at execution time, DBEst [19] takes a pure 

ML-based approach for answering AQP queries. It 

samples data corresponding to each predicate 

attribute and group by attribute values and trains 

regression and density models. At execution time it 

uses the corresponding models and performs 

integration over those models to generate AQP 

result. Similarly, DeepDB [9] also uses ML 

methods to learn the joint probability distribution of 

the data, which can be used to answer AQP queries. 

The type of the ML models used by DeepDB is 

called Relational Sum-Product Networks (RSPN), 

which belongs probabilistic graphical model family. 

Given a relational database and the correlations 

between columns, DeepDB trains RSPNs for the 

tables and use the RSPN ensemble to answer SQL 

queries by compiling them into inference 

procedures over the RSPNs.  

 

5. ML for Execution Engine  

In this section, we identify several prominent works 

that use ML methods to either augment or replace 

critical components in a database execution engine. 

We categorize them into three major sub-areas: ML 

for 1) knob tuning, 2) scheduling and resource 

provisioning, and 3) data structures and algorithms.  

5.1 Knob Tuning  

The performance of the database execution engine 

is highly dependant on the chosen values of the 

tunable knobs which control nearly all aspects of 

the runtime  

Operations. For example, these knobs control 

aspects such as how much memory to be used for 

caching data versus transaction log buffer, how 

often the data to be written to the disk, and things 

like query execution parallelism. Similar to physical 

data- base design, finding a good knob 

configuration for a target query workload is 

generally the responsibility of database 

administration personnel, for which they either use 

common sense heuristics and/or a trial and error 

procedure. Alternatively, one could use ML 

techniques to automatically find an optimal knob 

configuration for a target query workload.  

iTuned [20] approaches this problem by executing a 

series of carefully-planned experiments and picking 

the configuration which minimizes the overall 

workload time. Given a target query workload 

iTuned uses Latin hypercube sampling to pick an 

initial set of configurations and execute them to 

obtain the execution time. The results are then 

modeled using a Gaussian process representation to 

pick the next configuration to be executed. This 

process continues until a good enough configuration 

is found. It also uses several techniques to reduce 

the overall tuning time including early elimination 

of configurations with insignificant improvements, 

executing parallel experiments, and compressing the 

query workload.  

Similarly, OtterTune [21] also executes a series of 

experiments chosen by modeling a Gaussian 

representation process. However, instead of starting 

with a sampled set of initial configurations, it maps 

the current workload to a similar previous workload 

which has been already tuned and uses that to pick 

the next experiment configuration. Leveraging the 

learning from previous workloads helps OtterTune 

to finish the tuning process much faster than 

iTuned. Workload mapping is achieved through a 

workload characterization step which combines 
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factor analysis (over metrics obtained through 

database monitoring tools) and k-means clustering. 

It also prunes irrelevant knob configurations ranked 

using Lasso feature selection and incrementally 

increase the number of tuned configuration based 

on their importance as tuning progresses.  

iBTune [22] is a system for reducing buffer pool 

sizes of cloud OLTP database instances to reclaim 

memory while conforming to the service level 

agreements (SLA) on query response time. It 

iteratively uses data from other instances with 

similar workloads to choose a target buffer pool size 

using large deviation analysis. But before making 

the change, it uses a pairwise deep neural network 

to predict the new response time and proceeds only 

if the predicted value is within the SLA. One of the 

major bottlenecks for ML-based knob tuning 

methods is not having access to low-level/sub- 

component level system performance metrics. 

While database systems do provide metrics, they 

often happen to be aggregated at the entire system 

level and are less informative to tune sub-

component level knobs. Another bottleneck is the 

inability to change system configuration values 

without complete system restarts. Database systems 

are not designed to be tuned by iteratively executing 

multiple experiments. But, ML-based methods 

require on the fly configuration testing which incurs 

significant overheads.  

5.2 Resource Provisioning and Scheduling  

Execution engines have to make several planning 

decisions to meet the service level objectives 

imposed by users as they execute QEPs. This 

includes resource provisioning: deciding how many 

machines to be used for execution and/or 

scheduling: deciding which QEP to be executed on 

which worker and in which order. The emergence 

of cloud computing environments makes these 

planning decisions even more important because of 

their pay- as-you-go model. The existing approach 

taken by many database systems is to use human-

engineered rules or heuristics-based approaches, 

which are often too rigid and slow to respond to the 

rapid and dynamic query workloads. Alternatively, 

ML provides an opportunity to automatically learn 

these planning decisions using past query 

workloads. We identify two different settings of 

applying ML for resource provisioning and 

scheduling.  

5.2.1 Provisioning and Scheduling for Batch 

Processing  

WiSeDB [23] is a workload management service 

for cloud databases, which holistically addresses 

both the resource provisioning and scheduling 

problems. It takes in a query workload, the runtime 

of each query on each machine type, a user-defined 

target performance goal (e.g., average/max latency, 

percentile-based metrics), and recommends a set of 

strategies and their associated costs to the user. 

Under certain assumptions, solving the original 

planning problem can be reduced to the bin packing 

problem which is an NP-hard problem. WiSeDB 

samples a large number of small workloads from 

the original workload and solves them using a brute 

force graph search algorithm. It then extracts 

decisions and features from each of the decisions 

made by the graph algorithm and trains a decision 

tree model. Finally, this decision tree model is used 

to generate the planning strategies and their 

associated costs for the original work-load. By 

using a learning-based adaptive strategy, WiSeDB 

can outperform many heuristic-based techniques 

with little training overhead. One of the major 

limitations of WiSeDB is that it requires the user to 

provide cost estimates for each query, and 

accurately estimating the cost of previously unseen 

queries is an open challenge.  

5.2.2 Provisioning and Scheduling for Online 

Processing  

Similar to WiSeDB, Bandit [24] is another system 

for solving the provisioning and scheduling problem 

of cloud database systems which focuses on online 

scheduling rather than batch scheduling. It models 

the planning problem as a multi-tiered contextual 

multi-arm bandit problem (CMAB), a well-known 

reinforcement learning technique. The tiers in the 

CMAB corresponds to the different VM types and 

they are organized in the descending order of their 

capacity/cost. The goal of the CMAB is to reduce 

the overall cost, which can be both monetary cost or 

cost due to not meeting a deadline. When a new 

query arrives, starting from the first  

VM of the first tier the CMAB model iteratively 

makes one of three choices,  

1) Assign the query to the current machine,  

2) Send the query to next machine of the current 

tier,  
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and  

3) Send the query to the next tier. As the context, it 

uses features from both the query and the current 

state of the VM. Hence, it can implicitly estimate 

the cost of a query as part of the learning problem 

and support previously unseen queries. PerfEnforce 

[25] also uses ML techniques based on 

reinforcement learning and multi-layer perceptrons 

to automatically scale the size of a data processing 

cluster to meet the user-defined target performance 

goal.  

While the above systems have shown promising 

results on the ability to replace provisioning and 

scheduling components using ML, there has not 

been much adoption in real-world systems, and 

there is a reluctance among systems developers to 

put scalability decisions in the hands of machine 

learning algorithms. One of the major reasons for 

this is the inability of ML techniques to provide 

bounds on the worst-case scenario. But as ML 

techniques get more robust, it can be expected that 

existing heuristics-based planning modules will get 

replaced by learned components.  

5.3 Data Structures and Algorithms  

Every operation that is executed by the execution 

engine heavily relies on core data structures such as 

index structures and algorithms such as sorting. 

These data structures and algorithms do not make 

any assumptions on the distribution of the data and 

give guarantees on the worst-case performance. 

However, in some cases, if we know certain 

properties about the distribution of the underlying 

data, it is possible to come up with data structures 

and algorithms that can yield superior performance. 

ML provides a flexible framework for learning the 

empirical data distribution and a recent line of 

research has shown the possibility of using ML 

models to replace core data structures and 

algorithms in DBMSs.  

 

5.3.1 Learned B-Tree Indices  

Learned Index [26] is the first system to propose the 

idea of using ML models to replace core data 

structures and algorithms. It focussed mainly on 

replacing B-Tree indices. Given a key, what a B- 

Tree index essentially does is finding its position on 

a sorted list using a series of tree traversals. B- 

Trees also give a guarantee on the error on the 

selected position: the maximum error is bounded by 

the page size. In this sense, a B-Tree index is a 

model that captures the cumulative distribution 

function (CDF) of the key values. Thus, it is 

possible to replace the B-Tree index with an ML 

model that is trained to capture the CDF of the keys. 

The error guarantee of the ML model can be found 

during training, which is the maximum training 

error for any key. Interestingly, unlike other ML 

applications, the objective here is to minimize the 

training error and not the generalization error. The 

advantage of replacing a B-Tree index using an ML 

model is that it reduces both the lookup time and 

memory footprint of the index.  

FITing-Tree [27] is another system that replaces B- 

Tree indices using learned ML models. It uses a set 

of piece-wise disjoint linear functions to 

approximate the CDF distribution of the keys and 

uses a conventional B-Tree index to map a key to 

the correct linear function. Using linear functions 

helps FITing-Tree achieve fast look-ups and also 

support inserts, which was one of the major 

limitations of the Learned Index system. It also 

provides a tunable knob to make the index optimize 

either for faster look-ups or smaller memory 

footprint.  

XIndex [28] is a concurrent learned index that 

supports read, write, and update operations. The 

architecture of XIndex is similar to that of FITing- 

Tree. However, the root node in XIndex also uses a 

linear model, unlike the B-Tree index in the FITing- 

Tree. For enabling concurrent updates it uses a delta 

index and periodically runs a two-phase compaction 

scheme to merge and copy the delta index with the 

main index structure. Concurrency during this 

compaction stage is enabled through classical 

concurrency constructs such as the read-copy-

update  

barrier. In addition to this, XIndex also adapts its 

structure at runtime to optimize for the query 

distribution. During learning, both Learned Index 

and FITing-Tree try to minimize the worst-case 

error. In practice, most query workloads are highly 

skewed and their runtime performance will be 

determined by the performance on a small set of 

hotkeys. XIndex monitors the observed error during 

runtime and tries to split the regions that observe 

high error into multiple models to reduce the error.  
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5.3.2 Other Learned Data Structures and 

Algorithms  

Learned Index system also proposed methods to 

replace several other DBMS data structures and 

algorithms using learned ML models such as 

learned hash maps, sorting, and bloom filters. One 

of the main issues with hash map structures is 

getting hash collisions which increases the latency 

of retrievals. An ML model that captures the CDF 

can be used to replace the hash function and thus 

reduce the number of hash collisions. The same 

CDF model can be used to sort the data more 

efficiently by first ordering the data in nearly sorted 

order and then using insertion/bubble sort. Bloom 

filters can be replaced by training a classification 

model for which the decision threshold is chosen 

such that the false-negative rate is zero. While these 

systems have shown initial promising results for the 

feasibility of replacing core data structures and 

algorithms using ML models, much work is still 

needed to make them available for enterprise 

DBMSs.  

6. Design Choices  

We discuss three main overarching design choices 

that one has to make when integrating ML 

components into DBMSs:  

1) integration mode, 2) learning source and 3) 

choice of ML paradigm.  

6.1 Integration Mode  

We found that there are two main engineering 

approaches for integrating ML components into 

DBMSs: external vs. internal integration [29].  

6.1.1 External Integration  

Modern DBMSs are complex systems and they 

allow human database administrators to control the 

query execution performance by (1) optimizing the 

physical database design, (2) providing query 

optimization hints, (3) knob tuning, and (4) resource 

provisioning. They also provide information about 

the system such as resource usage, query traces, and 

performance metrics. Under this context, the focus 

of externally integrated ML components is to 

provide recommendations to human database 

administrators or replace them and automatically 

perform the tasks using the standard configuration 

endpoints provided by the DBMS.  

An enterprise-grade DBMS typically requires 

decades of highly advanced software development 

efforts and thus there is huge resistance among 

DBMS developers to integrate new components that 

require significant architectural changes. External 

integration keeps the ML components outside the 

critical path of a DBMS and still provides a value. 

For this reason, most of the systems surveyed in this 

paper fall into this category (see Figure 1) and some 

have even been successfully adopted by several 

enterprise DBMSs.  

However, external integration also faces several 

limitations. First developing multiple external 

components that operate on different sub-problems 

may lead to interference among the decisions taken 

by those systems. For example, assume an external 

query optimization component that hints a specific 

query plan to DBMS assuming the absence of a 

particular index. At the same time assume there is 

another physical database design component that 

decides to create this index which renders the 

chosen evaluation plan become sub-optimal. 

Avoiding this kind of interference requires co-

ordination among different components, which is 

difficult to implement in external components. 

Second, external components for knob tuning and 

resource provisioning take an iterative approach 

where they try out several different settings before 

picking the best option. Existing DBMSs are not 

optimized for  

such rapid experimentation and hence require 

system downtimes or restarts for the configurations 

to take effect. This significantly increases the time 

required for knob tuning by an ML component. 

Finally, the system information metrics provided by 

the DBMSs are primarily intended to be consumed 

by human database administrators for diagnosing 

performance bottlenecks. Thus, they can be too 

high- level for ML components to learn from.  

6.1.2 Internal Integration  

Internal integration of ML components tries to 

mitigate much of the above-mentioned limitations 

by changing the DBMS architecture to treat ML 

components as first-class components. As a result, 

ML components get more access to the low-level 

information and more fine-grained control to the 

DBMS. Coherence among the decisions taken by 

multiple ML components inside a DBMS can be 

achieved by having a centralized coordinator that 

takes suggested actions from different ML 

components and execute them only if they don’t 
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interfere with other decisions. However, internal 

integration requires tight coupling between the 

components inside a DBMS and can pose query 

execution performance degradation when training 

the ML models. Hence, they are mostly applicable 

to new data system developments that are being 

developed from scratch (also called greenfield 

systems).  

NoisePage [30] is one such green field system for 

in- memory hybrid transactional and analytic 

processing, which can automatically optimize query 

execution without a human database administrator. 

It focusses on knob tuning, resource provisioning, 

and physical database design optimization. It also 

has a modular architecture optimized for efficient 

offline training data collection by ML components. 

Training data for each module (e.g., transaction 

manager) can be obtained in isolation without the 

need of going through the entire DBMS execution 

path. These offline collected data is then combined 

with the data collected through online query 

execution to learn ML models. The ML pipeline in 

NoisePage has three main phases: 1) modeling, 2) 

planning, 3) deployment. In the modeling stage, it  

builds models to predict the future query workload 

and models to predict the behavior of system 

components under different configuration values. In 

the planning stage, it uses reinforcement learning to 

pick actions based on the models trained in the 

modeling phase, instead of interacting with the 

actual system. Finally, in the deployment phase, the 

chosen actions are applied and the observed 

performance metrics are later fed back to modeling 

and planning models to improve their performance.  

SageDB [31] is another system that proposes a 

novel DBMS architecture that uses ML models 

combined with program synthesis techniques to 

generate internal system components like data 

structures and algorithms. To balance the training 

time vs. accuracy it proposes using multiple ML 

models each specialized for a particular task. ML 

models in SageDB are optimized to capture the 

empirical data distribution of the data and not 

optimized for the ability to generalize to unseen 

data. These synthesized systems components are 

used for optimizing data access (e.g., indices), 

query optimization (e.g., cardinality estimation), 

and query execution (e.g., sorting).  

6.2 Learning Source  

The main goal of using ML for DBMS components 

is to improve the performance of the system for 

future query work-loads. Thus, one way for 

adopting ML methods is to learn from past or 

current (in the case of reinforcement learning) 

queries. But the performance of the queries is 

dependant on the state of the underlying data in the 

DBMS. Hence, in some cases, it is also possible to 

achieve the same goal by learning directly from the 

data.  

6.2.1 Learning from Queries  

As shown in Figure 1, learning from query 

workloads is the most widely used approach for 

integrating ML into DBMS across all components. 

Learning from queries enables the ML models to 

learn a narrow-scoped problem which is much 

easier to model/learn and hence improve the overall 

performance of the system.  

However, this approach faces three main 

challenges. First, collecting training data for this 

approach can  

be expensive as each query needs to be executed on 

large databases. Second, it does not generalize well 

for unseen workload queries and causes significant 

performance degradation at execution time. Third, 

changes in the workload patterns or underlying data 

require capturing new training data and expensive 

retraining which can cause system downtime.  

6.2.2 Learning from Data  

More recently several systems have been proposed 

that learn from DB-resident data, instead of query 

workloads. These systems train models to learn the 

empirical data distribution of the data and use them 

to improve DBMS performance. For example, 

DBEst [19] and DeepDB [9] uses probability 

distribution models to answer AQP queries. Naru 

[8] and DeepDB [9] use joint probability 

distribution models in the relational engine to 

optimize cardinality estimates. Empirical data 

distribution models are also the main building block 

in learned data structures and algorithms such as 

Learned Index [26], FITing-Tree [27], and XIndex 

[28].  

ML models trained using data can be reused despite 

changes in the workload pattern and are also more 

robust to small changes in the data. More 

importantly, DeepDB [9] has shown that the same 
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probability distribution model can be used in 

multiple tasks such as AQP and cardinality 

estimation, reducing the total training time required. 

However, accurately capturing the joint probability 

distribution of a relational dataset with multiple 

tables is a complex learning task that requires 

models with high learning capacity and training 

time. Furthermore, not all DBMS components can 

be purely learned from data (e.g., execution engine 

knob tuning).  

6.2.3 Hybrid Methods  

While most of the existing systems fall into one of 

the above two approaches, it would be interesting to 

explore the possibility of combining both 

approaches. Some early work in this regard has 

been proposed in the XIndex [28] system. XIndex is 

a learned index structure that replaces B-tree 

indices. It does so by learning the empirical  

cumulative distribution function of the keys of the 

data. During training, the goal is to minimize the 

maximum error made by the model for predicting 

the position of a key. But the performance of a 

particular workload will be dominated by the errors 

made by the model on the keys that are frequently 

used in the workload. Hence, XIndex performs the 

second phase of learning where it dynamically 

further minimizes the error on the most frequently 

used keys.  

6.3 Choice of the ML Paradigm  

We cover the use of different ML model and 

learning paradigms for integrating ML into DBMSs.  

 

6.3.1 ML Model Family  

We observed two prominent families of ML 

models: 1) deep learning and 2) classical ML.  

Deep Learning. It should be noted that much of the 

recent renaissance in applying ML methods for 

DBMS internals, and also systems in general, has to 

be credited to the recent advancements in deep 

learning. Deep learning models have high model 

capacities and hence can learn highly complex data 

distributions. They have shown superior 

performance in hard tasks such as in natural 

language processing (NLP). As a result, the same 

deep NLP models have been used in systems like 

SpeakQL [2], SeqSQL [3], and SQLNet [4] to 

provide spoken and/or natural language interfaces 

for DBMSs. Naru [8] uses a transformer-based deep 

learning model to learn the joint probability 

distribution of the data for cardinality estimation. 

Neo [13], DQM [17], and iBTune [22] also use 

deep learning models for query optimization (QEP 

generation), physical database design 

(materialization optimization), and knob tuning 

(buffer size tuning), respectively.  

However, the high model capacity of deep learning 

models and their ability to learn highly accurate 

models come at a cost. First, these models require 

significantly large amounts of training data without 

which the models will start to overfit. In many 

DBMS components, collecting large amounts of 

training data is expensive as the queries have to be 

executed potentially on large databases. Second,  

deep learning models are highly compute-intensive 

which can require few hours to a few days of 

training even when using expensive hardware 

accelerators such as GPUs. This can cause 

degradation of DBMS query execution 

performance. Furthermore, typically deep learning 

inference times are in few hundreds of milliseconds 

and do not match with the performance 

requirements of the DBMS components such as 

cardinality estimators and indices which have to be 

in the order of few milliseconds. Finally, the 

explainability/debuggability of deep learning 

models is still an active area of research and there is 

minimal understanding of the internal workings of 

them. As a result, while deep learning-based 

methods have shown promising accuracy results, 

they are not yet widely integrated into enterprise 

DBMSs due to the above open challenges.  

Classical ML. We found that classical ML-based 

methods are widely used to integrate ML into 

DBMS components and some of them (e.g., LEO 

[6], CardLearner [7], AutoAdmin [14], and 

VerdictDB [18]) have been even integrated in the 

enterprise systems. Classical ML methods 

overcome much of the limitations of deep learning 

methods: they are less compute-intensive to train, 

require much less training data, have faster 

inference times, and generate much easy to explain 

predictions. However, most classical ML models 

are known to have fewer model capacities and have 

less predictive power compared to deep learning 

models. Thus, their accuracy can be lower.  

6.3.2 Learning Paradigm  
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We explain the use of three learning paradigms that 

systems have used to integrate ML into DBMSs: 1) 

supervised learning, 2) reinforcement learning, and 

3) unsupervised learning.  

Supervised Learning. Out of the systems we 

surveyed supervised learning approach is the most 

widely used learning paradigm (see Figure 1). The 

training data required for supervised learning is 

collected either beforehand or continuously during 

query execution. Seq2SQL [3] and SQLNet [4] use 

a large manually generated dataset of SQL and 

natural language query pairs. Most other systems  

(e.g., CardLearner [7], QPPNet [32], Naru [8], 

AutoAdmin [14, 15], and Learned Index [26]) 

preform initial training from previously collected 

training data and then perform periodic retraining as 

new data becomes available or the query workload 

or the data in the DBMS significantly change. In 

some cases, collecting training data can be 

expensive as it requires executing a large number of 

queries potentially on large databases. However, the 

prevalence of cloud databases has mitigated these 

issues as cloud operators have access to large 

amounts of query execution traces from many 

tenants.  

Reinforcement Learning. Reinforcement learning 

(RL) methods are particularly applicable when a 

system component has to make a series of decisions 

and the reward of each decision is not directly 

observable. Thus, RL methods have been used in 

tasks including QEP generation (e.g., SkinnerDB 

[10], ReJoin [12], Neo [13]), materialization 

optimization (e.g., DQM [17]) and scheduling (e.g., 

Bandit [24]). RL methods perform on the job 

training and collect data as the DBMS execute 

queries. Initially, they may generate worse results as 

the models have not converged yet. To overcome 

this, one could use a bootstrapping strategy called 

learn by demonstration where the existing DBMS 

component is used to generate initial training data 

for the RL model to bootstrap. After this initial 

training, the RL model will continue to learn on the 

job and become better than the existing DBMS 

component. For example, Neo [13] showed the 

feasibility of building an RL-based learned query 

optimizer which surpasses the PostgreSQL DBMS 

query optimizer, even though the RL model was 

initially bootstrapped using it.  

Unsupervised Learning. We found that 

unsupervised learning techniques are widely used 

for DBMS knob tuning in systems like iTuned [20], 

OtterTune [21], and QB5000 [16]. One such 

popular technique is to reduce the number of 

different queries by performing clustering based on 

query templates. While DBMS may encounter a 

large number of different queries, most of them are 

different parameterizations of the same query 

template. Thus, by reducing the queries into query  

templates the complexity for the ML model can be 

significantly reduced. iTuned [20] and OtterTune 

[21] also use Gaussian mixture models, another 

unsupervised learning method, to model the DBMS 

performance corresponding to different systems 

configurations settings.  

7. Open Challenges  

Integrating ML methods into DBMS components 

has proven to optimize average system 

performance. Some systems have already integrated 

ML into enterprise DBMSs [6, 7, 18]. However, the 

field is still in its infancy and requires solving many 

open challenges to realize the full potential. Next, 

we identify three such major open challenges:  

7.1 Improving Robustness  

While ML methods improve the average query 

execution performance, they can make 

mispredictions that are significantly off and lend the 

system become unrobust. On the contrary, 

traditional software components are designed to 

minimize the worst-case performance cost. Worst- 

case performance guarantees are a crucial aspect of 

software systems as one single fault can have ripple 

effects and make the entire system unusable 

eventually (e.g., the evaluation time difference 

between a good QEP and bad QEP can be orders of 

magnitude big). Understanding the worst-case 

behavior of ML-driven software components is still 

an untouched area and it is possible that coming up 

with tight theoretical guarantees is a very hard 

problem.  

Another approach to solving the same problem 

would be to integrate adaptive query execution 

strategies with ML-driven components. This 

requires observing the outcome of the decisions 

taken by ML-driven components and dynamically 

adjusting them when a performance degradation is 

detected. Some initial work on this regard is 
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proposed in SkinnerDB [10]. SkinnerDB finds the 

best join ordering for a query by using an intra-

query RL method that switches between different 

orders before it finds the optimal one. It also 

provides worst-case performance guarantees for this 

method. However, this space is still very open and 

much  

work is needed to make ML-driven DBMS 

components more robust.  

7.2 Rethinking the DBMS Architecture  

When people designed DBMS architectures several 

decades ago, enabling autonomous control was not 

a design goal. As a result, when one integrates ML 

into DBMS components, they have to face several 

fundamental architectural limitations. For example, 

the separation of concerns such that the relational 

engine making all the intelligent decisions and the 

execution engine passively executing them no 

longer holds. Decisions taken by the relational 

engine when compiling the QEP may turn out to be 

wrong when executing it. Thus, the relational 

engine should be able to observe the performance of 

a QEP as it executes and refine the decisions as new 

in- formation becomes available. Such an approach 

will require tight-coupling between the relational 

and execution engines with feedback-loops.  

Also, integrating ML into DBMS components 

requires the ability to easily experiment and having 

access to fine-grained system information. In 

current DBMSs, especially with external 

integration, it is very hard to profile and generate 

training data for a specific component without 

invoking the full QEP execution path, which is 

costly. Furthermore, the level of system information 

exposed by the DBMS is very coarse-grained. They 

are intended to be consumed by humans for 

debugging purposes and are too high-level for ML 

model training. Some of these limitations have been 

already identified and are being actively worked on 

[30].  

Exploiting Transfer Learning  

There is limited success in learning transferable 

knowledge that can be reused in multiple different 

settings. For example, most of the ML models used 

in existing DBMS components perform poorly 

when there is a deviation in the query work-load or 

a change in the system context or data. The situation 

is even worse when they are applied to a new 

DBMS instance or it is not possible to apply to a 

new instance at all. This significantly increases the 

cost of training and maintaining ML models and 

faces  

problems like cold-start and the need to 

continuously retrain to keep up with the changes.  

Transfer Learning is a technique that can be applied 

to overcome this limitation, which is popular in 

other fields such as computer vision and natural 

language processing. Instead of training separate 

models for different tasks from scratch, transfer 

learning enables us to reuse a master model and 

fine-tune it to the task at hand using limited 

resources (e.g., compute power and training data). 

This master model is trained on a very large dataset 

so that it can learn most of the relevant information 

for any related task. For example, ImageNet is a 

popular computer vision transfer learning dataset 

that has over 1 million hand-labeled images. 

Identifying and curating such a dataset for DBMSs 

require solving several open challenges. For 

example, one has to select a common representation 

format that can capture the data schema, data 

statistics, query structure, and hardware properties. 

Collecting such a large dataset is also a challenge. 

However, the migration of DBMSs into the cloud 

provides a unique opportunity to centrally collect all 

the relevant information.  

8. Conclusion  

Combining machine learning (ML) tasks with 

database management systems (DBMS) is an active 

research field and there have been many efforts 

exploring this both in research and industry. This 

combination is attractive because businesses have 

massive amounts of data in their existing DBMS 

and there is a high potential for using ML to extract 

valuable information from it [38]. In addition, the 

rich relational operators provided by the DBMS can 

be used conveniently to denormalize a complex 

schema for the purposes of ML tasks [39]. Although 

the field of machine learning is scaling heights, it is 

ridden with several limitations as well. The 

challenge for machine learning is to recover the 

discipline’s original breadth of vision and its 

audacity to develop learning mechanisms that cover 

the full range of abilities observed in humans—who 

remain our only example of truly intelligent systems 

[40].  
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