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Disclaimer 

This document does not claim any originality and cannot be used as a substitute for prescribed 

textbooks. The information presented here is merely a collection by the committee members for their 

respective teaching assignments. Various sources as mentioned at the reference of the document as well 

as freely available material from internet were consulted for preparing this document. The ownership of 

the information lies with the respective authors or institutions. Further, this document is not intended to 

be used for commercial purpose and the committee members are not accountable for any issues, legal or 

otherwise, arising out of use of this document. The committee members make no representations or 

warranties with respect to the accuracy or completeness of the contents of this document and specifically 

disclaim any implied warranties of merchantability or fitness for a particular purpose.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SCOPE OF FLUID MECHANICS 

Knowledge and understanding of the basic principles and concepts of fluid mechanics are essential to 

analyze any system in which a fluid is the working medium. The design of almost all means 

transportation requires application of fluid Mechanics. Air craft for subsonic and supersonic flight, 

ground effect machines, hovercraft, vertical takeoff and landing requiring minimum runway length, 

surface ships, submarines and automobiles requires the knowledge of fluid mechanics. In recent years 

automobile industries have given more importance to aerodynamic design. The collapse of the Tacoma 

Narrows Bridge in 1940 is evidence of the possible consequences of neglecting the basic principles fluid 

mechanics. 

 The design of all types of fluid machinery including pumps, fans, blowers, compressors and 

turbines clearly require knowledge of basic principles fluid mechanics. Other applications include 

design of lubricating systems, heating and ventilating of private homes, large office buildings, shopping 

malls and design of pipeline systems. 

The list of applications of principles of fluid mechanics may include many more. The main point 

is that the fluid mechanics subject is not studied for pure academic interest but requires considerable 

academic interest.  

 

 

 

 

 

 

 

 

 

 

 



CHAPTER -1 

Definition of a fluid:- 

Fluid mechanics deals with the behaviour of fluids at rest and in motion. It is logical to begin with a 

definition of fluid. Fluid is a substance that deforms continuously under the application  of shear 

(tangential) stress no matter how small the stress may be. Alternatively, we may define a fluid as a 

substance that cannot sustain a shear stress when at rest. 

A solid deforms when a shear stress is applied , but its deformation doesn’t continue to  

increase  with time.  

Fig 1.1(a) shows  and 1.1(b) shows the deformation the deformation of solid and fluid under the action 

of constant  shear force. The deformation in case of solid doesn’t increase with time   i.e 

tntt   .......21   . 

From solid mechanics we know that the deformation is directly proportional to applied shear stress ( τ =  

F/A ),provided the elastic limit of the material is not exceeded. 

To repeat the experiment with  a fluid between the plates , lets us use a dye marker to outline a fluid 

element. When the shear force  ‘F’ , is applied to the upper plate , the deformation of the fluid element 

continues to increase as long as the force is  applied , i.e 12 tt   . 

Fluid as a continuum :- 

Fluids are composed of molecules. However, in most engineering applications we are interested in 

average or macroscopic effect of many molecules. It is the macroscopic effect that we ordinarily 

perceive and measure. We thus treat a fluid as infinitely divisible substance , i.e continuum and do not 

concern ourselves with the behaviour of individual molecules. 

     The concept of continuum is the basis of classical  fluid mechanics .The continuum assumption is 

valid under normal conditions .However  it breaks down whenever the mean free path of the molecules 

becomes the same order of magnitude as the smallest significant characteristic dimension of the problem 



.In the  problems such as rarefied gas flow (as encountered in flights into the upper reaches of the 

atmosphere ) , we must abandon the concept of a continuum in favour of microscopic and statistical 

point of view. 

As a consequence of the continuum assumption, each fluid property is assumed to have a definite value 

at every point in the space .Thus fluid properties such as density , temperature , velocity and so on are 

considered to be continuous functions of position and time . 

Consider a region of fluid as shown in fig 1.5. We are interested in determining the density at  

 

 

 

 

the 

point 

‘c’, 

whose 

coordinates are   ,    and    . Thus the mean density V would be given by ρ= 
 

 
 . In general, this will 

not be the value of the density at point ‘c’ . To determine the density at point ‘c’, we must select a small 

volume ,   , surrounding point  ‘c’ and determine the ratio 
  

  
 and allowing the volume to shrink 

continuously in size. 

Assuming that volume     is initially relatively larger (but still small compared with volume , V) a 

typical plot might appear as shown in fig 1.5 (b) . When    becomes so small that it contains only a 

small number of  molecules , it becomes impossible to fix a definite value for 
  

  
 ; the value will vary 

erratically as molecules cross into and out of the volume. Thus there  is a lower limiting value  of   , 

designated    ꞌ . The density at a point is thus defined as  

                            ρ =         ꞌ  
  

  
 

Since point ‘c’ was arbitrary  , the density at any other point in the fluid could be determined in a like 

manner. If density determinations were made simultaneously at an infinite number of points in the fluid , 



we would obtain an expression for the density  distribution  as function of the space  co-ordinates , ρ = 

ρ(x,y,z,) , at the given instant. 

Clearly , the density at a point may vary with time as a result of work done on or by the fluid and /or 

heat transfer to or from the fluid. Thus , the complete representation(the field representation)  is given by 

:ρ = ρ(x,y,z,t) 

Velocity field: 

In a manner similar to the density , the velocity field ; assuming fluid to be a continuum , can be  

expressed as :    =     (x,y,z,t)      

The velocity vector can be written in terms of its three scalar components , i.e  

    =u  +v  +w   

In general ; u = u(x,y,z,t) , v=v(x,y,z,t) and  w=w(x,y,z,t) 

If properties at any point in the flow field do not change with time , the flow is termed as steady. 

Mathematically , the definition of  steady flow is 
  

  
 =0 ; where η represents any fluid property. 

Thus for steady flow is 
  

  
 = 0  or  ρ = ρ(x,y,z) 

     

  
 =0 or     =     (x,y,z)     

Thus in steady flow ,any property may vary from point to point in the field , but all properties , but all 

properties remain constant with time at every point. 

One, two and three dimensional flows : 

A flow is classified as one two or three dimensional based on the number of space coordinates required 

to specify the velocity field. Although most flow fields are inherently three dimensional, analysis based 

on fewer dimensions are meaningful.  

Consider for example the steady flow through a long pipe of constant cross section (refer 

Fig1.6a). Far from the entrance of the pipe the velocity distribution for a laminar flow can be described 

as:
 

    
 =     

 

 
   . The velocity field is a function of r only. It is independent of r and  .Thus the 

flow is one dimensional. 



 

Fig1.6a and Fig1.6b 

An example of a two-dimensional flow is illustrated in Fig1.6b.The velocity distribution is  

depicted for a flow between two diverging straight walls that are infinitely large in z direction. Since the 

channel is considered to be infinitely large in z the direction, the velocity will be identical in all planes 

perpendicular to z axis. Thus the velocity field will be only function of x and y and the flow can be 

classified as two dimensional. Fig 1.7 

 

For the purpose of analysis often it is convenient 

to introduce the notion of uniform flow at a given 

cross-section. Under this situation the two 

dimensional flow of Fig 1.6 b is modelled as one 

dimensional flow as shown in Fig1.7, i.e. velocity 

field is a function of x only. However, 

convenience alone does not justify the assumption such as a uniform flow assumption at a cross section, 

unless the results of acceptable accuracy are obtained. 

Stress Field: 

Surface and body forces are encountered in the study of continuum fluid mechanics. Surface forces act 

on the boundaries of a medium through direct contact. Forces developed without physical contact and 

distributed over the volume of the fluid, are termed as body forces . Gravitational and electromagnetic 

forces are examples of body forces . 

Consider an area     , that passes through ‘c’ .Consider a force 

    acting on an area     through point  ‘c’ .The normal stress 

   and shear stress    are then defined as  :   = 

        

   

   
 



   =         

   

   
;Subscript ‘n’ on the stress is included as a reminder that the stresses are associated 

with the surface     , through ‘c’ , having an outward normal in    direction .For any other surface 

through ‘c’ the values of stresses will  be different . 

Consider  a rectangular co-ordinate system , where stresses act on planes whose normal are in x,y and z 

directions. 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.9 

 

Fig 1.9 shows the forces components acting on the area      . 

The stress components are defined as ; 

    =         

   

   
 

    =         

   

   
 

    =         

   

   
 

A double subscript notation is used to label the stresses. The first subscript indicates the plane on which 

the stress acts and the second  subscript  represents the direction in which the stress acts, i.e     

represents a stress that acts on x- plane (i.e  the normal to the plane is in x direction ) and acts  in ‘y’ 

direction . 



Consideration of area element     would lead to the definition of the stresses ,     ,     and     . Use 

of an area element     would similarly lead to the definition     ,     and     . 

An infinite number of planes can be passed through point ‘c’ , resulting in an infinite number of stresses 

associated with planes through that point. Fortunately , the state of stress at a point can be completely 

described by specifying the stresses acting on three mutually perpendicular planes through the point. 

Thus , the stress at a point is specified by nine components and given by : 

   =  

         

         

         

  

 

 

  

 

 

 

 

 

 

 

       Fig 1.10 

 

Viscosity: 

In the absence of a shear stress , there will be no deformation. Fluids may be broadly classified 

according to the relation between applied shear stress and rate of deformation.  

Consider the behaviour of a fluid element between the two infinite plates shown in fig 1.11 . The upper 

plate moves at constant velocity ,  u , under the influence of a constant  applied force ,    . 

The shear stress ,     , applied to the fluid element is given by : 

    =         

   

   
 =

   

   
 



Where ,     is the area of contact  of a fluid element with the plate. During the interval  t , the fluid 

element is deformed from position MNOP to the position        . The rate of deformation of the fluid 

element  is given by: 

Deformation rate =        
  

  
 = 

  

  
 

 

 

 

 

 

 

 

 

To calculate the shear stress,     , it is desirable to express 
  

  
  in terms of readily measurable quantity. 

 l =  u  t 

Also for small angles ,  l =  y    

Equating these two expressions , we have  

  

  
 = 

  

  
 

Taking limit of both sides of the expression , we obtain ; 
  

  
 = 

  

  
 

Thus the fluid element when subjected to shear stress ,     , experiences a deformation rate , given by 
  

  
 . 

#Fluids in which shear stress is directly proportional to the rate of deformation are “Newtonian fluids “ . 

# The term Non –Newtonian  is used to classify in which shear stress is not directly proportional to the 

rate of deformation . 

Newtonian Fluids : 

Most common fluids i.e Air , water and gasoline are Newtonian fluids under normal conditions. 

Mathematically for Newtonian fluid we can write :  

    ∝ 
  

  
 



If one considers the deformation of two different Newtonian fluids , say Glycerin and water ,one 

recognizes that they will deform at different rates under the action of same applied stress. Glycerin 

exhibits much more resistance to deformation than water . Thus we say it is more viscous. The constant 

of proportionality is called , ‘μ’ . 

Thus ,               =μ 
  

  
 

Non-Newtonian Fluids : 

   =k  
  

  
 

 

    , ‘n’ is flow behaviour index  and ‘k’ is consistency index . 

To ensure that     has the same sign as that of  
  

  
  , we can express  

   =k  
  

  
  

   

    
  

  
  = η 

  

  
  

Where ‘η’ = k  
  

  
  

   

 is referred as apparent viscosity. 

 

 

# The fluids in which the apparent viscosity decreases with increasing deformation rate (n<1) are called 

pseudoplastic (shear thining) fluids . Most Non –Newtonian fluids fall into this category . Examples 

include : polymer solutions , colloidal suspensions and paper pulp in water. 

# If the apparent viscosity increases with increasing deformation rate (n>1) the fluid is termed as 

dilatant( shear thickening). Suspension of starch and sand are examples of dilatant fluids . 

# A fluid that behaves as a solid until a minimum yield stress is exceeded and subsequently exhibits a 

linear relation between stress and deformation rate . 



    =         + μ 
  

  
  

Examples are : Clay suspension , drilling muds & tooth paste. 

Causes of Viscosity: 

The causes of viscosity in a fluid are possibly due to two factors (i) intermolecular force of cohesion (ii) 

molecular momentum exchange. 

#Due to strong cohesive forces between the molecules, any layer in a moving fluid tries to drag the 

adjacent layer to move with an equal speed and thus produces the effect of viscosity. 

#The individual molecules of a fluid are continuously in motion and this motion makes a possible 

process of momentum exchange between layers. Such migration of molecules causes forces of 

acceleration or deceleration to drag the layers and produces the effect of viscosity. 

Although the process of molecular momentum exchange occurs in liquids, the intermolecular cohesion 

is the dominant cause of viscosity in a liquid. Since cohesion decreases with increase in temperature, the 

liquid viscosity decreases with increase in temperature. 

In gases the intermolecular cohesive forces are very small and the viscosity is dictated by molecular 

momentum exchange. As the random molecular motion increases wit a rise in temperature, the viscosity 

also increases accordingly. 

Example-1An infinite plate is moved over a second plate on a layer of liquid. For small gap width ,d, a 

linear velocity distribution is assumed in the liquid . Determine : 

 (i)The shear stress on the upper and lower plate . 

 (ii)The directions of each shear stresses calculated in (i). 

 

 

 

 

 

Soln:    =μ
  

  
 

Since the velocity profile is linear ;we have  

    =μ  
       

   
  = μ

  

 
 



Hence;          =             = μ
  

 
 = constant 

Example-2 

An oil film of viscosity μ & thickness h<<R lies between a solid wall and a circular disc as shown in fig 

E .1.2. The disc is rotated steadily at an angular velocity Ω. Noting that both the velocity and shear stress 

vary with radius ‘r’ , derive an expression for the torque ‘T’ required to rotate the disk. 

Soln: 

 

 

 

 

 

Assumption : linear velocity profile, 

laminar flow.u = Ω r;     =μ
  

  
 = μ 

  

 
; dF= τ dA 

dF= μ  
  

 
 2Πr dr 

T=    =      
 

 
   = 

    

 
     

 
dr = 

     

  
 

Vapor Pressure:  

Vapor pressure of a liquid is the partial pressure of the vapour in contacts with the saturated liquid at a 

given temperature. When the pressure in a liquid is reduced to less than vapour pressure, the liquid may 

change phase suddenly and flash. 

Surface Tension:  

Surface tension is the apparent interfacial tensile stress (force per unit length of interface) that acts 

whenever a liquid has a density interface, such as when the liquid contacts a gas, vapour, second liquid, 

or a solid. The liquid surface appears to act as stretched elastic membrane as seen by nearly spherical 

shapes of small droplets and soap bubbles. With some care it may be possible to place a needle on the 

water surface and find it supported by surface tension. 

 A force balance on a segment of interface shows that there is a pressure jump across the 

imagined elastic membrane whenever the interface is curved. For a water droplet in air, the pressure in 

the water is higher than ambient; the same is true for a gas bubble in liquid. Surface tension also leads to 



the phenomenon of capillary waves on a liquid surface and capillary rise or depression as shown in the 

figure below. 

 

 

 

Basic 

flow 

Analysis Techniques: 

There are three basic ways to attack a fluid flow problem. They are equally important for a student 

learning the subject. 

 (1)Control–volume or integral analysis 

 (2)Infinitesimal system or differential analysis 

(3) Experimental or dimensional analysis. 

 In all cases the flow must satisfy three basic laws with a thermodynamic state relation and    associated 

boundary condition. 

1. Conservation of mass (Continuity) 

2. Balance of momentum (Newton’s 2
nd

 law) 

3. First law of thermodynamics (Conservation of energy) 

4. A state relation like ρ=ρ (P, T) 

5. Appropriate boundary conditions at solid surface, interfaces, inlets and exits. 

Flow patterns: 

Fluid mechanics is a highly visual subject. The pattern of flow can be visualized in a dozen of different 

ways . Four basic type of patterns are : 

1. Stream line- A streamline is a line drawn in the flow field so that it is tangent to the line velocity field 

at a given instant. 



2. Path line- Actual path traversed by a fluid particle. 

3. Streak line- Streak line is the locus of the particles that have earlier passed through a prescribed point. 

4. Time line – Time line is a set of fluid particles  that form a line at a given instant . 

For stream lines :     d   ×   = 0 

 
   

      
   

  = 0 

   ( w dy-v dz ) -   (w dx –u dz ) +   (v dx – u dy ) = 0 

     =v dz  ; w dx = u dz  &  v dx = u dy. 

So ; 
  

 
 

  

 
 

  

 
 

Ex: A velocity field given by     = A x    – A y    . x, y are in meters . units of  velocity in m/s. 

A = 0.3     

(a) obtain an equation for stream line in the x,y plane. 

(b) Stream line plot through (2,8,0) 

(c) Velocity of a particle at a point (2,8,0) 

(d) Position at t = 6s of particle located at (2,8,0) 

(e) Velocity of particle at position found in (d) 

(f) Equation of path line of particle located at (2,8,0) at t=0 

Soln: 

(a) For stream lines ; 
  

 
 

  

 
  

 
  

  
 

  

   
 

  
  

 
 = -  

  

 
 

     = -     + C 

      = C 

 xy  =C 

(b)Stream lime plot through (          ,0)       

      = C 

          
 xy = 16 

        = 0.6   – 0.6    

(d) u = Ax ,      
  

  
 = Ax       ,    

  

 

 

  
 = A   

 

 
  

    
 

  
) = At   ,  

 

  
 =     

    v = - Ay ,    
  

  
 = -Ay       ,    

  

 

 

  
 =- A   

 

 
  



    
 

  
) = -At   ,  

 

  
 =      

At t = 6s ; x=2        = 12.1 m 

               ; y=8          = 1.32 m 

(e)     = 0.3 ×12.1     - 0.3 × 1.32      =   3.63   –   0.396     

(f) To determine the equation of the path line , we use the parametric equation : 

    x =          and    y =           and eliminate ‘t’      

 xy =      

Remarks : 

(a)The equation of stream line through (     ) and equation of the path line traced out by particle 

passing through (    )are same as the flow is steady. 

(b) In following a particle ( Lagrangian method of description ) , both the coordinates of the particle 

(x,y) and the component (        ) are functions of time.  

Example -2: 

A flow is described by velocity field,    =ay    + bt    , where a = 1     , b= 0.5 m/   . At t=2s , what are 

the coordinates of the particle that passed through (1,2) at t=0 ? At t=3s , what are the coordinates of the 

particle that passed through the point (1,2) at t= 2s . 

Plot the path line and streak line through point (1,2) and compare with the stream lines  through the 

same point ( 1,2) at instant , t = 0,1,2 & 3 s . 

Soln: 

Path line and streak line are based on parametric equations for a particle . 

v = 
  

  
   = bt ,    so,   dy = bt dt 

 y -    = 
 

 
 (      

 ) 

& u = 
  

  
 = ay = a [    + 

 

 
 (      

 ) ] 

    
 

  
 =     

 

  
    + 

 

 
 (      

 ) ]}dt 

       ) = a   (t-   ) + 
 

 
 ( 

  

 
      

 t    

  

       + a   (t -   ) + 
  

 
 { (

     
 

 
  -   

 (t-   ) } 

(a) For    = 0 and (   ,   ) = (1,2) , at t = 2s , we have 

 y-2 = 
 

 
(4)   

 y =3 m 

 x = 1 + 2 (2-0) + 
   

  
 [

 

 
 – 0] = 5.67 m 



(b)For    = 2s  and (   ,   ) = ( 1,2) . Thus at t = 3s  

 We have , y -2 = 
 

 
(      

 ) = 
   

 
 (9-4) = 1.25     

 y = 3.25 m 

&    x = 1+ 2 (3-2) + 
   

 
 { (

     

 
  -   (3-2) } 

 x =  1 + 2 (3-2) + 
   

 
 { (

    

 
  - 4(1 ) }= 3.58 m 

(c) The streak line at any given ‘t’ may be obtained by varying ‘  ’ . 

# part (a) : path line of particle located at (   ,   )  at   = 0 s. 

 

  (s) t X(m) Y(m) 

0 0 1 2 

0 1 3.08 2.25 

0 2 5.67 3.00 

0 3 9.25 4.25 

 

#part (b): path lines of a particle located   at (   ,   ) at    = 2s  

 

  (s) t(s) X Y 

2 2 1 2 

2 3 3.58 3.25 

2 4 7.67 5.0 

 

#part (c) :  
  

 
 = 

  

 
      

 dx =  
  

  
 ) dy  

 y dy = 
  

 
 dx 

    = (
   

 
) x + c 

Thus , c =   
  – (

   

 
)    

For (   ,   ) = (1,2) , for different value of ‘t’ . 

For t =0 ; c = (    = 4 

       t = 1 ;c = 4 – ( 
 

 
 )1 = 3 

       t = 2 ;c = 4 – ( 
 

 
 )1 = 2    



       t =3 ;c = 4 – ( 
 

 
 )1 = 1 

t(s) 0 1 2 3 

C= 4 3 2 1 

X Y Y Y Y 

1 2 2 2 2 

2 2 2.24 2.45 2.65 

3 2 2.45 2.83 3.16 

 4 2 2.65 3.16 3.61 

5 2 2.53 3.46 4.0 

6 2 3.0 3.74 4.36 

7 2 3.16 4.00 4.69 

    

 

# Streak line of particles that passed through point (      ) at t = 3s. 

 

  (s) t(s) X(m) Y(m) 

0 3 9.25 4.25 

1 3 6.67 4.00 

2 3 3.58 3.25 

3 3 1.0 2.0 

 

 

 

 

 

 

 

 

 

 

 

 

  



CHAPTER – 2          

FLUID  STATICS 

In the previous chapter , we defined as well as demonstrated that fluid at rest cannot sustain shear stress , 

how small it may be. The same is true for fluids in “ rigid body” motion. Therefore, fluids either at rest 

or in “rigid body” motion are able to sustain only normal stresses. Analysis of hydrostatic cases is thus 

appreciably simpler than that for fluids undergoing angular deformation. 

Mere simplicity doesn’t justify our study of subject . Normal forces transmitted by fluids are important 

in many practical situations. Using the principles of hydrostatics we can compute forces on submerged 

objects, developed instruments for measuring pressure, forces developed by hydraulic systems in 

applications such as industrial press or automobile brakes. 

In a static fluid or in a fluid undergoing rigid-body motion, a fluid particle retains its identity for all time 

and fluid elements do not deform. Thus we shall apply Newton’s second law of motion to evaluate the 

forces acting on the particle. 

The basic equations of fluid statics  : 

 For a differential fluid element , the body force is     
     =     dm  =     ρ d 

(here , gravity is the only body force considered)where,     is   the local gravity vector ,ρ  is the density 

& d is the volume of the fluid element.   In Cartesian coordinates, d= dx dy dz .In a static fluid no 

shear stress can be present. Thus the only surface force is the pressure force. Pressure is a scalar field, p 

= p(x,y,z) ; the pressure varies with position within the fluid. 

  

 

 

 

 

 

 

 

 

 

Pressure at the left face :    = ( p - 
  

  
 
  

 
) 



Pressure at the right face :    = ( p + 
  

  
 
  

 
) 

Pressure force at the left face  :  = ( p - 
  

  
 
  

 
)dx dz    

Pressure force at the right face  :    ( p + 
  

  
 
  

 
)dx dz (-  ) 

Similarly writing for all the surfaces , we have  

d  
     =    (p - 

  

  
 
  

 
)dy dz + (p + 

  

  
 
  

 
)dy dz (-  ) + ( p - 

  

  
 
  

 
)dx dz    

+ ( p + 
  

  
 
  

 
)dx dz (-  ) +  ( p + 

  

  
 
  

 
)dx dy (  ) +( p + 

  

  
 
  

 
)dx dy (-  ) 

Collecting and concealing terms , we obtain : 

d  
     = - (   

  

  
 +    

  

  
 +   

  

  
 ) dx dy dz 

 d  
     = - (∇p  dx dy dz 

Thus  

Net force acting on the body: 

 d   = d  
     + d  

      = ( - ∇p + ρ   ) dx dy dz 

 d   = ( - ∇p + ρ   )d 

or, in a per unit volume basis: 

    

 
 = ( - ∇p + ρ   )                   (2.1) 

For a fluid particle , Newton’s second law can  be expressed as : d   =    dm =    ρ dv 

Or    
    

 
 =    ρ                     (2.2) 

Comparing 2.1 & 2.2 , we have  

- ∇p + ρ   =    ρ                     

For a static fluid ,    = 0 ; Thus we obtain ;   - ∇p + ρ   =0 

The component equations are ;  

-
  

  
 + ρ   = 0 

-
  

  
 + ρ   = 0 

   = -g    

  =0=   



-
  

  
 + ρ   = 0 

Using the value of            we have 

  

  
    

    

  
        

  

  
      ; since P=P(Z) 

We can write       
  

  
 =       

Restrictions: (i) Static fluid  

(ii) gravity is the only body force  

(iii) z axis is vertical upward 

 

 

 

 

#Pressure variation in a static fluid : 

  

  
 = -ρg = constant 

    
 

  
    = - ρg    

 

  
 

      = - ρg(Z-  ) 

      = - ρg(   – Z) = ρgh       

Ex:2.1 A tube of small diameter is dipped into a liquid in an open container. Obtain an expression for 

the change in the liquid level within the tube caused by the surface tension. 

 

 

 

 

 

 

 

Soln: 

     

       

      

P = 0 



   = σ Dcos - ρg = 0 

Neglecting the volume of the liquid above h , we obtain 

 = 
 

 
   h 

Thus ; σ Dcos - ρg 
 

 
   h = 0 

 h = 
     

   
 

Multi Fluid Manometer: 

Ex2.2  Find the pressure at ‘A’. 

 

Soln:   +   g ×0.15 -   g×0.15 +   g ×0.15 -   g×0.3 =    

 

 

 

 

 

 

 

 

 

#Inclined Tube manometer: 

Ex2.3 Given : Inclined–tube reservoir manometer . 

Find : Expression for ‘L’ in terms of P. 

#General expression for manometer sensitivity 

#parameter values that give maximum sensitivity 



 

Soln:  

Equating 

pressures on 

either side of 

Level -2 , we 

have; P =    g 

(h+H) 

To eliminate ‘H’ 

, we recognise 

that the volume 

of manometer liquid remains constant i.e the volume displaced from the reservoir must be equal to the 

volume rise in the tube. 

Thus ; 
 

 
    = 

 

 
    

 H = L 
 

 
   

 P =     g [Lsin + L 
 

 
  ]=   gL[ sin + 

 

 
  ]     

Thus,  L= 
 

           
 

 
 
 
 
 

To obtain an expression for sensitivity , express P in terms of an equivalent water column height ,    

P=   g           

Combining equation 1 &2 , we have  

  gL[ sin + 
 

 
  ]    =   g        

Thus , S = 
 

  
 = 

 

          
  

 

 
 
 

Where , SG = 
  

  
 

The expression ‘S’ for  sensitivity shows that to increase sensitivity SG , sin and 
 

 
 should be made as 

small as possible. 

Hydrostatic Force on the plane surface which is inclined at an angle ‘’ to horizontal free 

surface: 

1 

2 



We wish to determine the resultant hydrostatic force on the plane surface which is inclined at angle ‘’ 

to the horizontal free surface. 

Since there can be no shear stresses in a static fluid  , the hydrostatic force on any element of the surface 

must act normal to the surface .The pressure force acting on an element d   of the upper surface is given 

by d   = - p d   . 

 

 

 

 

 

 

 

 

 

 

 

The negative sign indicates that the pressure force acts against the surface i.e in the direction   opposite 

to the area d   .  
    =        

 
 

If the free surface is at a pressure (    =     ), then , p =    + ρgh 

   
     =      +      

 

 
dA =    +            

 

 
 

    
     =     + ρg sin     

 

 
 

But     
 

 
 =   dA 

Thus ,    
     =     + ρg  A sin = (   + ρg   sin)A 

Where    is the vertical distance between free surface and centroid of the area . 

# To evaluate the centre of pressure (c.p) or the point of application of the resultant force  

The point of application of the resultant force must be such that the moment of the resultant force about 

any axis is equal to the sum of the moments of the distributed force about the same axis. 

If     is the position vector of centre pressure from the arbitrary origin , then 

  

 

Referring to fig 2.3 , we can express  

    ×  
    =     ×d   = -     × p d   



    =       +      

   = x   + y    ; d   = - dA    and   
    =      

Substituting into equation , we obtain 

  (      +      )×      =        +        ×        =       +       
 

 
× p dA    

Evaluating the cross product , we get  

          +        =         
 

 
 x p +    yp) dA 

Equating the components in each direction ,  

      =      
 

 
   and           =      

 

 
   #when the ambient (atmospheric) pressure ,    , acts on both 

sides of the surface , then    makes no contribution to the net hydrostatic force on the surface and it may 

be dropped . If the free surface is at a different pressure from the ambient, then  ‘     should be stated as 

gauge pressure , while calculating the  

net force . 

   = 
     

 
 

  
 = 

           
 
 

         
 

    = 
           

         
 

    = 
   

   
 

      + A   
  But from parallel axis theorem ,     = 

Where         is the second moment of the area about the centroid al   ‘  ’ axis . Thus  

 

 

Or ,    = (
  

   
) + 

         

   
 

Similarly taking moment about ‘y’ axis ; 

      =       

    ρg sin    A =         
 

 
 = ρgsin     

 

 
 

    = 
     

 
 

   
 = 

   

   
 

From the parallel axis theorem ,     =       + A     

Where       is the area product of inertia w.r.t centroid al      axis. 

   =    + 
     

   
  



So,    =    + 
      

   
 

For surface that is symmetric about ‘y’ axis ,    =    and hence usually not asked to evaluate. 

Example Problem: 

Ex 2.4:Rectangular gate , hinged at ‘A’ , w=5m . Find the resultant force ,   
    , of the water and the air 

on the  gate .The inclined surface shown , hinged along edge ‘A’ , is 5m wide . Determine the resultant 

force ,    
    , of the water and air on the inclined surface. 

 

 

 

 

 

 

 

 

 

Soln:- 

  
    =        

 
 =    

 

 
g y sin30 w dy    

   
    = -

   

 
    [ 

  

 
  
  = - 

          

 
 [64-16]   

   
    = -588.01 KN 

Force acts in negative ‘z’ direction. 

To find the line of action : 

Taking moment about x axis through point ‘ O ’ on the free surface , we obtain : 

      =       
 

 
 =                  

 

 
 

       = (
   

 
) [

  

 
  
  = 

          

 
 [    -   ] 

    ×(588.01 ×   ) = 3658.73×    

    = 6.22 m 

#To find    ; we can take moment about y axis through point ‘o’. 



      =        
 

 
 =                    

 

 

 

 
 

       =      
 

 
             

 

 
 = 

 

 
                

 

 
 

       = 
 

 
    

    = 
 

 
 = 2.5 m 

Alternative way:   By directly using equations: 

   = ρ g    A = ρ g ( 2+2sin30) 

×4×5 

   =    + 
     

   
 = 6 + 

       

    
 = 6.22m 

   =    + 
     

   
  

       =         
 

 
 =             

 

 

 
 

 

 

 

 
 

 

 = 

0 

Thus ,    =    = 2.5 m 

 

 

Concept of pressure prism:    

     = volume = 
 

 
 (ρgh)hb 

 

 

 

 

 

 

Ex2.5: A pressurised tank 

contains oil (SG=0.9) and has a 



square , 0.6 m by 0.6m plate bolted to its side as shown in fig . The pressure gage on the top of the tank 

reads 50kpa and the outside tank is at atmospheric pressure. Find the magnitude & location of the 

resultant force on the attached plate . 

Soln :   = (   + ρg  ) 0.36 = 24.4 kN 

   =
 

 
ρg(  -  )×0.36 = 0.954kN 

    =    +    = 25.4 kN 

If  ‘   ‘ is the force acting at a distance    for  

the bottom , we have ;      
  =    ×0.3 +    ×0.2   and    = 0.296m 

 

 

 

 

 

 

Ex-2.6 

Soln: Basic equations : 

 
  

  
 = ρg ;    

     =       ; 

   =0;Taking moment about the hinge ‘B’ , we have  

  R =       =          

 dA = r d dr ; 

  y= rsin ; h = H-y 

   =
 

 
                   

 

 

 

 
) r dr d 

    = 
  

 
          

 

 

 
-  sin)dr d 

= 
  

 
    

   

 

 

 
 - 

  

 
 sin   

  sin d 

=
  

 
    

   

 

 

 
 - 

  

 
 sin )sin d 

=
  

 
 [ 

    

 

 

 
 sin d -  

  

 
        

 

 
 ] 



 

=
  

 
 
   

 
          

  - 
  

 
 
  

 
 ×

 

 
 [            

 

 
 ] 

= - 
  

 
 
   

 
 [-1-1] - 

    

 
[  - 

    

 
   

  

= 
      

 
 - 

    

 
 [ Π ] 

    = ρg [ 
    

 
 - 

   

 
 ] 

    = 366 kN           .              (Ans) 

 

Ex-2.7 :- Repeat the example problem 2.4 if the 

C.S area of the inclined surface is circular one , 

with radius R=2. 

Soln: Using integration; 

   =    
 

 
 =       

 

 
 =                 

+y = 6m 

 y = 6 -  = 6 - rsin  

    = ρgsin30                   
 

 

  

 
 

      = 
  

 
                   

 

 

  

 
 

     = 
  

 
      

  

 

  

 
  

  

 
     )  

  d  = 
  

 
         

 
  

  

 
     ) d  

= 
  

 
 [ 3     - 

  

 
(-cos )   

   

=
  

 
 [12×2Π – 0] = 12ρgΠ = 369.458kN 

Similarly for    we can write 

   .    =       =               

 

  

 
 ρgsin dr r d  

By using formula :    = ρg   A = ρg ( 2+2sin30) Π   = 369.458kN 

   =    + 
     

   
  = 6 + 

 
   

  
 

  
   

 
 
 ×

 

 
 



   = 6.166m 

# Find       for a circular C.S 

dA = dr rd  

      =    dA =      

 

  

 
dr d  

       = 
  

 
×2  

But ,      +       =       (perpendicular axis theorem) 

 2      = 
    

 
 

       = 
   

 
 

# Find       for a semi-circle:  

   = 
    

   
 = 

              
 
 

 
 

 
   

 
 

 

   = 
 
  

 
         

 

 
   

 
 

   = 
  

  
   

    = 
   

 
 ( half of the circle) 

     =       + A  
   

 
   

 
 =        + 

   

 
 (

  

  
      

       = 0.1098    

 

 

 

 

 

 

 

 



#Hydrostatic Force on a curved submerged surface: 

Consider the curved surface as shown in fig. The pressure force acting on the element of area , d   is 

given by  

d          

    = -  p    

 
  

We can write;   
    =      +      +       

Where,             are the components of   
    in x, y & z directly respectively. 

    =      
    =      .    =   p    

 
    = -     

 

  
 

Since the direction of the force component can be found by inspection, the use of vectors is not 

necessary. 

Thus we can write:     =      
 

  
  

Where d   is the projection of the element dA on a plane perpendicular to the ‘l’ direction. 

With the free surface at atmospheric pressure, the vertical component of the resultant hydrostatic force 

on a curved submerged surface is equal to the total weight of the liquid above the surface. 

    =      =          =      = ρg 

Ex:2.9:The gate shown is hinged at ‘O’ and has a constant width w = 5m . The equation of the surface is 

x= 
  

   , where a= 4m . The depth of water to the right of the  is D= 4m.Find the magnitude of the force 

,    , applied as shown, required to maintain the gate in equilibrium if the weight of the gate is 

neglected. 

 

 

 

 

 

 

 

 



 

Soln: Horizontal Component of force:- 

     = ρg   (WD) = ρg(0.5) WD = 392kN    

       h
*
 =    + 

     

   
 = 0.5D + 

 
   

  
 

    
 

 
 
  

6
5.0

D
D    =2.67m  

Vertical component: 

   =      
  

 
 

 =        
  

 
 

 = ρgw    
  

 
 

 

    =         
 

  
 

    
  

 
 

    , (where h+y =D, h = D-y = D-(ax      ) 

    =     [ Dx -  
 

 
 

 
 

 

    

  

 = (ρgw   /3a) 

   = 261kN 

              
 

  
          

  

 
 

 

         =      
 

  
 

    
  

 
 

 = 
     

      

   = 
 

  
 (

     

     )= 1.2m 

Summing moments about ‘O’ 

   =        +              =0    

   = 167kN. 

 

 

 

 

 

 



Fluids in Rigid-Body Motion:- 

Basic equation:    +     = ρ   

A fish tank 30cm×60cm×30cm is partially filled with water to be transported in an automobile. Find 

allowable depth of water for reasonable assurance that it will not spill during the trip. 

Soln: b=d=30cm= 0.3m 

  
  

  
  +

  

  
  +

  

  
  ) + ρ (    +    +      = ρ (    +     +       

But;    =0=   &    =0=   

 
  

  
   

 p = p(x,y) 

  
  

   
     

 
  

   
                   (gy= -g)    =-g   

Now we have to find an expression for p(x,y). 

dp = 
  

   
  + 

  

   
   

But since the force surface is at constant pressure , we have to;  

0= 
  

   
  + 

  

   
    

 (
  

  
         =  

  

 
 ( the free surface is a plane) 

 tan = 
     

 
  = 

 

 
(
  

 
  

 e = 
 

 
(
  

 
  = 0.15(

  

 
)       {as b=0.3m} 

The minimum allowable value of ‘e’ = (0.3 - d )m 

Thus; 0.3 – d = 0.15 (
  

 
   

Hence ,      = 0.3 – 0.15 (
  

 
  

#Liquid in rigid body motion with constant angular speed: 

A cylindrical container , partially filled with liquid , is rotated at a constant angular speed ,, about its 

axis. After  a short time there is no relative motion; the liquid rotates with the cylinder as if the system 

were a rigid body .Determine the shape of the free surface. 



 

Soln: In cylindrical co-ordinate; 

 p =   
  

  
+

 

 

  

 
+   

  

  
 

&  p + ρg = ρ   

    
  

  
+

 

 

  

 
+   

  

  
  + ρ(    +    +     ) = ρ(    +    +     ) 

For the given problem ;                 

and                     

The component equations are: 

  

  
   r ; 

  

 
=0 and 

  

  
 = ρg 

Hence , p(r,z) only 

dp = 
  

  
   dr + 

  

  
   dz 

Taking (       as reference point , where the pressure is    and the arbitrary  point (r,z) where the 

pressure is p, we can obtain the pressure difference  as ; 

   
 

  
 =  

  

  
    

 

  
+  

  

  
 dz 

 p   = ρ
 

 
 (     

    ρg(z-  ) 

If we take the reference point at the free surface on the cylinder axis , then; 

  =     ;    =0 and       

p      = ρ
 

 
    ρg(z  ) 

Since the free surface is a surface of constant pressure (p=     ) , the equation of the free surface is 

given by : 



0 = ρ
 

 
    ρg(z  )  

 z =    + 
 

  
   =    + 

    

  
 

Volume of the liquid remain constant . Hence  = Π     ( without rotation) 

With rotation : 

 =     
 

 

 

 
r (   +  

 

  
  ) r.dr 

         
 + 

    

  
]   

            
    

  
  

Finally: z =     
    

  
 [ 

 

 
  

 

 
  ] 

Note that this expression is valid only for   >0 . Hence the maximum value of  is given by  

    = 
         

 
   .   

{ (R  = (    ) ×4g   and    = 
 

  (    ) ×4g                                                          

        For ,    ;       } 

 

 

 

Buoyancy: 

When a stationary body is completely submerged in a fluid or partially immersed in a fluid, the resultant 

fluid force acting on the body is called the ‘Buoyancy’ force. Consider a solid body of arbitrary shape 

completely submerged in a homogeneous liquid. 



d  
  =p       

d    = (    +   )d   = (    +     )d   

d    = (    +   )d   = (    +     )d   

The buoyant force (the net force acting vertically upward) acting on the elemental prism is 

 

 

 

 

 

 

 

 

d  = (d        )= ρg(  -  )d   = ρgd 

Where, d =volume of the prism 

Hence, the buoyant force    on the entire submerged body is obtained as :  

        
 


 ,      i.e       ρg 

Consider a body of arbitrary shape, having a volume  , is immersed in a fluid. We enclose the body in 

a parallelepiped and draw a free body diagram of the parallelepiped with the body removed as shown in 

fig. The forces  ,           are simply the forces acting on the parallelepiped,    is the weight of the 

fluid volume (dotted region);    is the force the body is exerting on the fluid. 

 

Alternate approach:- 

The forces on vertical surfaces are equal and opposite in direction and cancel, 

 i.e         . 

  +   +          or   =          

Also;       g  A   ,          g  A   and      g[A(     )-] 

       g  A   -   g  A   -   g[A(     )-] 

      g , where  is volume of the body 



The direction of the buoyant force, which is the force of the fluid on the body, will be opposite to that of ‘  ’ 

shown in fig (FBD of fluid). Therefore, the buoyant force has a magnitude equal to the weight of the fluid 

displaced by the body and is directed vertically upward. The line of action of the buoyant force can be 

determined by summing moments of the forces w.r.t some convenient axis. Summing the moments 

about an axis perpendicular to paper through point’A’ we have: 

 

 

 

 

 

 

 

 

 

 

                    

Substituting the forces; we have  

   =           

Where  =A(     ). The right hand side is the first moment of the displaced volume  and is equal 

to the centroid of the volume .Similarly it can be shown that the ‘Z’ co-ordinate of buoyant force 

coincides with ‘Z’ co-ordinate of the centroid. 

   =
          


 

 

 

Stability:- 



Another interesting and important problem associated with submerged as well as floating body is 

concerned with the stability of the bodies.  

 

 

 

 

When a body  is submerged , the 

equilibrium requires that the weight of the body acting through its C.G should be collinear with the 

buoyancy force .However in general, if the body is not homogeneous in distribution of mass over the 

entire volume, the location of centre of gravity ‘G’ don’t coincide with the centre of volume i.e centre of 

buoyancy, ‘B’ .Depending upon the relative location of G & B , a floating or submerged body attains 

different states of equilibrium , namely (i) Stable equilibrium (ii) Unstable equilibrium (iii) Neutral 

equilibrium.  

 

 

 

 

 

 

 

Stability of submerged Bodies 

#Stability problem is more complicated for floating bodies, since as the body rotates the location of 

centre of Buoyancy (centroid of displaced volume) may change. 

GM=BM – BG , where  Metacentric Height 



If GM>0 (M is above G) Stable equilibrium 

GM=0 (M coincides with G )Neutral Equilibrium 

 GM<0 (M is below G) Unstable equilibrium 

 

 

 

# Theoritical Determination of Metacentric Height: 

Before Displacement 

   =     =               (1) 

After Displacement, depth of elemental volume immersed is (z+xtan) and the new centre of Buoyancy 

  
  can be expressed as : 

  
   =     +       dA     (2) 

Subtracting eq.1 from eq.2 , we have  

(  
           tan dA = tan    dA 

But     dA =     

Also, for small 

angular 

displacement ;  

=tan 

  
    = BM 

tan     (as   
  - 

   = BM  ) 

Since ,  BM 

tan = tan     

 BM = 
   


          

#Notice that 

                                          

 GM+BG= 
   


           #Notice that  is the immersed volume 



 GM = 
   


   - BG 

 

 

 

 

 

 

 

 

 

 

 

 

Fig:Theoritical Determination of Metacentric Height: 

#Floating Bodies Containing Liquid:-  

If a floating body carrying liquid with free surface undergoes an angular displacement, the liquid will 

move to keep the free surface horizontal. Thus not only the centre of buoyancy moves , but also the 

centre of gravity ‘G’ moves , in the direction of the movement of ‘B’. 

Thus , the stability of the body is reduced. For this reason, liquid which has to be carried in a ship is put 

into a number of separate compartments so as to minimize its movement within  the ship. 

#Period of oscillation: 

From previous discussion we know that restoring couple to bring back the body to its original 

equilibrium position is : WGM sin  

Since the torque is equal to mass moment of inertia ; we can write  

WGM sin = -    (
  

   ), where      mass M.I of the body about its of 

rotation. 

If ‘’ is small, sin =  , and equation can be written as, 
  

    + 
    

  
 = 0  

 (3) 

Eqn (3) represents an SHM. 



The time period, T = 
  

 
= 

  

 
    

  
 
 
 

 = 2Π (
  

    
 

 

  

Here time period is the time taken for a complete oscillation from one side to other and back again. The 

oscillation of the body results in a flow of the liquid around it and this flow has been neglected here. 

Ex-1 

A rectangular barge of width b and a submerged depth of H has its centre of gravity at its waterline. Find 

the metacentric height in terms of 
 

 
 & hence show that for stable equilibrium of the barge 

 

 
    . 

Soln: 

Given that OG = H 

 

Also from geometry  

OB = 
 

 
 , BG = OG-OB = H- 

 

  
 = 

 

 
 

BM= 
 


 = 

   

      
          ( Notice that  ,  is the 

immersed volume) 

BM= 
  

   
 

GM=BM-BG= 
  

   
 

 

 
 = 

 

 
 
 

 
 

 

 
      

For stable equilibrium of the barge; MG   

 

 
 
 

 
 

 

 
 

 

        

 (
 

 
)                 proved. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER – 3          

INTRODUCTION TO DIFFERENTIAL ANALYSIS OF FLUID MOTION 



Differential analysis of fluid motion: 

Integral equations are useful when we are mattered on the gross behaviour of a flow field and its effect 

on various devices .However the integral approach doesn’t enable us to obtain detailed point by point 

knowledge of flow field. 

To obtain this detailed knowledge, we must apply the equations of fluid motion in differential form. 

Conservation of mass/continuity equation: 

The assumption that a fluid could be treated as a continuous distribution of matter – led directly to a 

field representation of fluid properties. The property fields are defined by continuous functions of the 

space coordinates and time. The density and velocity fields are related by conservation of mass. 

Continuity equation in rectangular co-ordinate system:- 

Let us consider a differential control volume of size x, y and z. 

Rate of change of mass inside the control volume = mass flux in – mass flux out                 (1) 

Mass fluxes: 

At left face: ρ u y z 

At right face: ρ u y z + 
          

  
x 

At bottom face: ρ v x z 

At top face: ρ v x z + 
          

  
y 

At back face: ρ w x y + 
          

  
z 

Applying equation (1): 

          

  
 =   

     

  
         

     

  
         

     

  
       

  
  

  
 + 

     

  
+

     

  
+

     

  
 = 0 

  
  

  
+          ) = 0                                                                                (2) 

To find the expression for an incompressible flow: 

  

  
+       +        = 0 

   ( 
  

  
+         + ρ      = 0 



  
  

  
 + ρ       =0                                                                                    (3) 

Let us define;      =  
    

    
 ;    

  =   
  

 
 

 .     = 
    

 
  (      ) [Since      = 

   

   
 = 

    

 

   
 

   
  ] 

  
    

 
         

 

 

  

  
 

    (      )   =   
 

 
    

 
 
 

 

 

  

  
                                                                         

                pp              ∇        

If   [ 
 

 
    

 
 
 

 

 

  

  
                                                                                   (5) 

The velocity field is approximately solenoidal if condition (5) is satisfied. 

For incompressible flow, ρ = constant is a wrong statement.(unfortunately such statements appear in 

standard books). 

For example: Sea water or stratified air where density varies from layer to layer but the flow is 

essentially incompressible as the density of the particles along its path line don’t change. 

  

  
    , doesn’t necessarily mean that ρ = constant  

Hence, for incompressible flow; 

      =0, doesn’t matter whether the flow is steady or unsteady. 

# If ρ = constant then the flow is incompressible, but the converse is not true, i.e. Incompressible flow, 

the density may or may not be constant. 

MOMENTUM EQUATION: 

A dynamic equation describing fluid motion may be obtained by applying Newton’s 2
nd

 law to a 

particle.  

Newton’s 2
nd

 law for a finite system is given by: 

      
    

  
 system                                                                                                         (1) 

where the linear momentum ‘P’ is given by: 

          =          
    

                                                      (2) 

Then, for an infinitesimal system of mass ‘dm’, Newton’s 2
nd

 law can be written as: 



d        
     

  
                                                               (3) 

The total derivative  
     

  
  in equation (3) can be expressed as: 

u  
        

  
+ v  

            

  
 +w 

         

  
  + 

        

  
  

Hence;   

d         
        

  
 +    

            

  
 +   

         

  
 +  

        

  
                                             (4) 

Now the force d   acting on the fluid element can be expressed as sum of the surface forces    ( both 

Normal forces and tangential forces) and body forces (includes gravity field, electric field or magnetic 

fields) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

To obtain the surface forces in x- direction we must sum the forces in x direction. Thus,  

            +  
    

  
                       +     +    

    

  
                      + (   +  

    

  
  

) dx dy -     dx dy 

On simplifying , we obtain ; 



d   =  
    

  
 + 

    

  
 +

    

  
  dx dy dz 

d  =d   + d    =     +  
    

  
 + 

    

  
 +

    

  
  dx dy dz                                (5) 

Similar expression for the force components in y & z direction are: 

d   =     + 
    

  
 +  

    

  
 +

    

  
   dx dy dz                                                    (6) 

d  =     +  
    

  
 + 

    

  
 +

    

  
    dx dy dz                                                     (7) 

Now writing the differential form of equation of motion: 

     + 
    

  
 + 

    

  
 +

    

  
) =   ( 

  

  
 + u  

  

  
 +v 

  

  
 + w 

  

  
 )                            (8) 

     + 
    

  
 + 

    

  
 + 

    

  
) =   ( 

  

  
 + u 

  

  
 + v 

  

  
 + w  

  

  
 )                               (9) 

     +  
    

  
 + 

    

  
 + 

    

  
) =     (

  

  
 + u 

  

  
 + v 

  

  
 + w 

  

  
 )                       (10) 

Newtonian fluid :- Navier-stokes equation: 

The stresses may be expressed in terms of velocity gradients & fluid properties in rectangular co-

ordinates as follows : 

    =     =   ( 
  

  
 + 

  

  
 ) 

    =     =   (
   

  
 + 

  

  
 ) 

    =     =   ( 
  

  
 + 

  

  
 ) 

    = -P - 
 

 
         + 2   

  

  
 

    = -P - 
 

 
          + 2   

  

  
 

    = -P - 
 

 
          + 2   

  

  
 

     
 

 
      +    +       

     -P –           +           

                

Where ‘P’ is the local thermodynamic pressure, and ‘ ’ is co-efficient of bulk viscosity. 



Stream function for two dimensional incompressible flow: 

It is convenient to have a means of describing mathematically any particular pattern of flow. A 

mathematical device that serves this purpose is the stream function, . The stream function is 

formulated as a relation between the streamlines and the statement of conservation of mass. The stream 

function ),,( tyx  is a single mathematical function that replaces two velocity components, ),,( tyxu

and ),,(v tyx . 

For a two dimensional incompressible flow in the xy plane, conservation of mass can be written as :

0
v











yx

u
.  

If a continuous function ),,( tyx  called stream function is defined such that 
y

u






 and 
x





v , 

then the continuity equation is satisfied exactly. 

Then 0
22





















xyyxy

v

x

u 
 and the continuity equation is satisfied exactly. 

If 


ds  is an element of length along the stream line, the equation of streamline is given by: 

0


dsV =      vdxudykjdyidxjviu   

Thus equation of streamline in a two dimensional flow is: 0 vdxudy  

Then we can write: 0








dy

y
dx

x


  ----------- (1) 

Since  tyx ,,   then at any instant 0t ,  0,, tyx  . Thus at a given instant a change in  may be evaluated as 

 yx,  .  

Thus at any instant, dy
y

dx
x

d











          ----------- (2) 

Comparing Eqn.1 and 2, we see that along an instantaneous streamline 0d  or   is constant along a 

streamline. Since differential of    is exact, the integral of  d  between any two points in a flow field depends 

on the end points only, i.e. 12   . 

Example problem: Stream Function flow in a corner: 



The velocity field for a steady, incompressible flow is given as: AyjAxiV 


with A=0.3s-1 

Determine the stream function that will yield this velocity field. Plot and interpret the streamlines in the first 

quadrant of xy plane: 

Solution:
y

Axu






 

Integration with respect to y yields: 

 xfdy
y





 


 =  xfAxy  ;  

where f(x) is an arbitrary function of x. 

f(x) can be evaluated using the expression for v. Thus we 

can write, 

dx

df
Ay

x








v  . 

But from the velocity field description, Ayv .Hence 0
dx

df
 or f(x) =constant. 

Thus, cAxy  . The c is arbitrary constant and can be chosen as zero without any loss in generality. With c=0 

and A=0.3s-1, we have, Axy . The streamlines in the 1st quadrant is shown in Fig.Regions of high speed 

flow occur where the streamlines are close together. Lower-speed flow occurs near the origin, where the 

streamline spacing is wider. The flow looks like flow in a corner formed by a pair of walls.   

 

 

 

 

Before formulating the effects of force on fluid motion (dynamics), let us consider first the motion 

(kinematics) of a fluid element on a flow field. For convenience, we follow a infinitesimal element of a 

fixed identity (mass)  



 

 

As the 

infinitesimal element of mass ‘dm’ moves in a flow field, several things may happen to it. Certainly the 

element translates, it undergoes a linear displacement from x,y,z to x1,y1,z1. The element may also rotate 

(no change in the included angle in adjacent sides). In addition the element may deform i.e. it may 

undergo linear and angular deformation. Linear deformation involves a deformation in which planes of 

element that were originally perpendicular remain perpendicular. Angular deformation involves a 

distortion of the element in which planes that were originally perpendicular do not remain perpendicular. 

In general a fluid element may undergo a combination of translation, rotation, linear deformation and 

angular deformation during the course of its motion.  

For pure translation or rotation, the fluid element retains its shape, there is no deformation. Thus shear 

stress doesn’t arise as a result of pure translation or rotation (since for a Newtonian fluid the shear stress 

is directly proportional to the rate of angular deformation). We shall consider fluid translation, rotation 

and deformation in turn. 

Fluid translation:   Acceleration of a fluid particle in a velocity field.  A general description of a 

particle acceleration can be obtained by considering a particle moving in a velocity field. The basic 

hypothesis of continuum fluid mechanics has led us to a field description of fluid flow in which the 

properties of flow field are defined by continuous functions of space and time. In particular, the velocity 



field is given by    =   (x,y,z,t). The field description is very powerful, since information for the entire 

flow is given by one equation. 

The problem, then is to retain the field description for the fluid properties and obtain an expression for 

acceleration of a fluid particle as it moves in a flow field.  Stated simply, the problem is: 

 Given the velocity field    =   (x,y,z,t), find the acceleration of a fluid particle,         . 

Consider the particle moving in a velocity field. At time ‘t’, the particle is at the position x,y,z  and has 

velocity corresponding to velocity at that point in space at time ‘t’, i.e.   
    ]t=   (x,y,z,t). 

At ‘t+dt’, the particle has moved to a new position with co-ordinates x+dx, y+dy, z+dz and has a 

velocity given by:   
    ]t+dt=   (x+dx,y+dy,z+dz,t+dt). 

Fig4.1 

This is shown in pictorial fig 4.1 

   
        ,the change in velocity of the particle , in moving from location       to       +        , is given by:  
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The total acceleration of the particle is given by : 
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                                                 (4.1) 

The derivative 
         

  
 is commonly called substantial derivative to remind us that it is computed for a 

particle of substance. It is often called material derivative or particle derivative.  

From equation 4.1 we recognize that a fluid particle moving in a flow field may undergo acceleration for 

either of the two reasons.  It may be accelerated because it is convected into a region of higher (lower) 

velocity.  For example, the steady flow through a nozzle, in which by definition, the velocity field is not 

a function of time, a fluid particle will accelerate as it moves through the nozzle. The particle is 

convected into a region of higher velocity. If a flow field is unsteady the fluid particle will undergo an 

additional  “local” acceleration, because the velocity field is a function of time. 

The physical significance of the terms in the equation 4.1 is : 

u 
        

  
+ v 

            

  
 +w 

        

  
= convective acceleration 

        

  
= local acceleration. 

Therefore equation 4.1 can be written as: 
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For a steady and three dimensional flow the equation 4.1 becomes: 
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; which is not necessarily zero.  

Equation 4.1 may be written in scalar component equation as: 
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                                                     (4.2 c)  

 



We have obtained an expression for the acceleration of a particle anywhere in the flow field; this is the 

Eularian method of description. One substitutes the coordinates of the point into the field expression for 

acceleration.                                 

 In the Lagrangian method of description, the motion (position, velocity and acceleration) of a fluid 

particle is described as a function of time. 

Fluid rotation:  A fluid particle moving in a general three dimensional flow field may rotate about all 

three coordinate axes. The particle rotation is a vector quantity and in general  

     =    ωx +     ωy +     ωz  ; where ωx is the rotation about x axis. 

To evaluate the components of particle rotation vector, we define the angular velocity about an axis as 

the average angular velocity of two initially perpendicular differential line segments in a plane 

perpendicular to the axis of rotation. 

 

                    

 

To obtain a mathematical expression for ωz , the component of fluid rotation about the z axis, consider 

motion of fluid in x-y plane. The components of velocity at every point in the field are given by u(x,y) 

and v(x,y). Consider first the rotation of line segment oa of length Δx. Rotation of this line is due to the 

variation of ‘y’ component of velocity. If the ‘y’ component of the velocity at point ‘o’ is taken as Vo , 

then the ‘y’ component velocity at point ‘a’ can be written using Taylor expansion series as: 

                                V = Vo +
  

  
Δx 

ωoa  =       
  

  
 =        

  

  

  
                               

since   Δη= ( Va - Vo ) Δt =
  

  
ΔxΔt 

ωoa  =        
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The angular velocity of ‘ob’ is obtained similarly. If the x- component of velocity at point ‘b’ is uo +
  

  
 

·Δy                                         

ωob  =       
  

  
 =        

  

  

  
 

ub =
  

  
Δy; which will rotate the fluid element in clock-wise direction, thus –ve sign is multiplied to 

make it counter clock-wise direction. 

But        
  

  
ΔyΔt   (-ve sign is used to give +ve value of ωob ) 

Thus ωob  =        
   

  

  
       

    
 =   

  

  
 

The rotation of fluid element about z- axis is the average angular velocity of the two mutually 

perpendicular line segments, oa and ob, in the x-y plane. 

Thus ωz = 
 

 
  

  

  
 

  

  
  

By considering the rotation about other axes : 

ωx = 
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     ; which can be written in vector 

notation as :  
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Under what conditions might we expect to have a flow without rotation ( irrotational flow ) ? 

A fluid particle moving, without any rotation, in a flow field cannot develop rotation under the action of 

body force or normal surface forces. Development of rotation in fluid particle, initially without rotation, 

requires the action of shear stresses on the surface of the particle. Since shear stress is proportional to the 

rate of angular deformation, then a particle that is initially without rotation will not develop a rotation 

without simultaneous angular deformation. The shear stress is related to the rate of angular deformation 

through viscosity. The presence of viscous force means the flow is rotation.  

The condition of irrotationality may be a valid assumption for those regions of a flow in which viscous 

forces are negligible. (For example , such a region exists outside the boundary layer in the flow over a 

solid surface.)  



A term vorticity is defined as twice of the rotation as: 

   =2      =   x     

The circulation,  is defined as the line integral of the tangential velocity component about a closed 

curve fixed in the flow ;                
 

 

where           elemental vector tangent to the curve , a positive sense corresponds to a counter clock-wise 

path of integration around the curve. A relation between circulation and vorticity can be obtained by 

considering the fluid element as shown: 
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 Angular deformation:  Angular deformation of a fluid element involves changes in the perpendicular 

line segments on the fluid. 

 



 

We see that the rate of angular deformation of the fluid element in the xy plane is the rated of decrease 

of angle “γ” between the line oa and ob. Since during interval Δt,  

Δ γ = γ-90 = - ( Δ α+Δ β )  
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Now;  
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INCOMPRESSIBLE INVISCID FLOW 

All real fluids posses viscosity. However, in many flow cases it is reasonable to neglect the effect of 

viscosity. It is useful to investigate the dynamics of an ideal fluid that is incompressible and has zero 

viscosity. The analysis of ideal fluid motion is simpler because no shear stresses are present in inviscid 

flow. Normal stresses are the only stresses that must be considered in the analysis. For a non viscous 

fluid in motion, the normal stress at a point is same in all directions (scalar quantity) and equals to the 

negative of the thermodynamic pressure, σnn =  P. 

Momentum equation for frictionless flow: Euler’s equations: 

The equations of motion for frictionless flow, called Euler’s equations, can be obtained from the general 

equations of motion, by putting μ = 0 and σnn = -p. 
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In vector form it can be written as: 
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In cylindrical co-ordinates: 
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Euler’s equations in streamline co-ordinates: 

 

                  

 

 

 

 

 



 

Applying Newton’s 2
nd

 law in streamwise (the ‘s’) direction to the fluid element of volume  ds x dn x 

dx, and neglecting viscous forces we obtain: 
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 dn dx –                                  

Simplifying the equation we have: 
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 , we can write: 
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To obtain Euler’s equation in a direction normal to the streamlines, we apply Newton’s 2
nd

 law in the ‘n’ 

direction to the fluid element. Again, neglecting viscous forces; we obtain: 

   
  

  
 
  

 
  ds dx    +

  

  
 
  

 
 ds dx –                                   

where ‘β’ is the angle between ‘n’ direction and vertical and ‘an’ is the acceleration of the fluid particle 

in ‘n’ direction. 

 

 
  

  
                   

Since        
  

  
 , we can write: 

  
 

 
  

  

  
      

  

  
     

The normal acceleration of the fluid element is towards the centre of curvature of the streamline; in the 

negative ‘n’ direction. Thus     
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For steady flow on a horizontal plane, Euler’s equation normal to the streamline can be written as: 

   
 

 
  

  

  
    

  

 
 

Above equation indicates that pressure increases in the direction outward from the centre of curvature of 

streamlines. 

Bernoulli’s equation: Integration of Euler’s equation along a stream line for steady flow( 

Derivation using stream line co-ordinates): 

Euler’s equation for steady flow will be: 

  
 

 
  

  

  
      

  

  
    

  

  
 

If a fluid particle moves a distance ‘ds’ along a streamline, then 

  

  
                                         (the change in pressure along ‘s’) 

  

  
                                         (the change in elevation along ‘s’) 

  

  
                                         (the change in velocity along ‘s’) 

Thus;   
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+                                                                                 (5.1) 

For an incompressible flow, i.e.     is not a function of       we can write: 

 

 

 
+

  

 
+                            

Restrictions:  

i. Steady flow  

ii. Incompressible flow 

iii. Inviscid 

iv. Flow along a stream line     

 



* In general the constant has different values along different streamlines. 

* For derivation using rectangular co-ordinates, refer page-7. 

 

Unsteady Bernoulli’s equation( Integration of Euler’s equation along a stream line): 
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Multiplying ds and integrating along a stream line between two points ‘1’ and ‘2’, 
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 ds =0 

For an incompressible flow, the above equation reduces to : 
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ds 

 

Restrictions:  

i. Incompressible flow 

ii. Frictionless flow 

iii. Flow along a stream line     

 

Ex:  A long pipe is connected to a large reservoir that initially is filled with water to a depth of 3 m. The 

pipe is 150 mm in diameter and 6 m long. Determine the flow velocity leaving the pipe as a function of 

time after a cap is removed from its free end. 



                                                             

 

Ans: Applying Bernoulli”s equation between 1 and 2 we have: 
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ds 

Assumptions: 

i. Incompressible flow 

ii. Frictionless flow 

iii. Flow along a stream line for ‘1’ and ‘2’ 

iv. P1 = P2 = Patm 

v. V1 =0 

vi. Z2=0 

vii. Z1=h 

viii. Neglect velocity in reservoir, except for small region near the inlet to the tube. 

Then;   g z1      
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ds                                              (1) 

In view of assumption ‘viii’, the integral becomes  
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In the tube, V = V2, everywhere, so that         
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Substituting in the equation (1), 
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Separating the variables we obtain: 
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Integrating between limits V = 0 at t = 0 and V = V2 at t = t, 
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Since           = 0, we obtain  
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Bernoulli’s equation using rectangular coordinates: 
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Using the vector identity: 
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For irrotational flow: ∇         
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Consider a displacement in the flow field from position ‘  ’ to ‘    +d  ’, the displacement ‘d  ’ being an 

arbitrary infinitesimal displacement in any direction . Taking the dot product of          =dx    + dy     + dz 

   with each of the terms, we have  
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+     = constant                                                                            (5.2) 

 

Since ‘d  ’ was an arbitrary displacement, equation ‘5.2’ is valid between any two points in a steady, 

incompressible and inviscid flow that is irrotational. 

If ‘d  ’  = ‘d  ’  i.e. the integration is to be performed along a stream line, then taking the dot product of   

  , we get: 

              
 

  
                                   · ds 

Here even though    ∇        is not zero, the product         ∇        · ds 

will be zero as         ∇        is perpendicular to V and hence perpendicular to ds. 

# A fluid that is initially irrotational may become rotational if:- 

1. There are significant viscous forces induced by jets, wakes or solid boundaries. In these cases 

Bernoulli’s equation will not be valid in such viscous regions. 

2. There are entropy gradients caused by shock waves. 

3. There are density gradients caused by stratification (uneven heating) rather than by pressure 

gradients. 

4. There are significant non inertial effects such as earth’s rotation (The Coriolis component). 

 

HGL and EGL: 

Hydraulic Grade Line (HGL) corresponds to the pressure head and elevation head i.e. Energy Grade 

Line(EGL) minus the velocity head. 

EGL = 
 

  
 + 

  

  
+    =H  (Total Bernoulli’s constant) 

 



 

 

Principles of a hydraulic Siphon: Consider a container T containing some liquid. If one end of 

the pipe S completely filled with same liquid, is dipped into the container with the other end being open 

and vertically below the free surface of the liquid in the container T, then liquid will continuously flow 

from the container T through pipe S and get discharged at the end B. This is known as siphonic action 

and the justification of flow can be explained by applying the Bernoulli’s equation.  

Applying the Bernoulli’s equation between point A and B, we can write 
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The pressure at A and B are same and equal to atmospheric pressure. Velocity at A is negligible 

compared to velocity at B, since the area of the tank T is very large compared to that of the tube S. 

Hence we get, 

)(2 BAB ZZgV  = Zg2  



The above expression shows that a velocity head at B is created at the expenses of the potential head 

difference between A and B. 

Applying the Bernoulli’s equation between point A and B, we can write 
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Considering the pipe cross section to be uniform, we have, from continuity, VB=VC 

Thus we can write;  h
g

V

ρg

P

ρg

P BatmC 
2
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Therefore pressure at C is below atmospheric and pressure at D is the lowest as the potential head is 

maximum here. The pressure at D should not fall below the vapor pressure of the liquid, as this may 

create vapor pockets and may stop the flow.  

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER-4 

Hydraulic Machines-Turbines 

A hydraulic turbine  uses  potential  energy and kinetic energy of water and converts it into usable 

mechanical energy. The mechanical energy made available at the turbine shaft is used to run an 

electric power generator which is directly coupled to the turbine shaft. 

 

 The hydraulic turbines are classified according to type of energy available at the inlet of turbine, 

direction of flow through vanes, head at the inlet of the turbines and specific speed of the turbines. 

 

According to the type of energy at inlet: 

Impulse turbine:- In the impulse turbine, the total head of the incoming fluid is converted in to a 

large velocity head at the exit of the supply nozzle. That is the entire available energy of the water is 

converted in to kinetic energy. Although there are various types of impulse turbine designs, perhaps 

the easiest to understand is the Pelton wheel turbine. It is most efficient when operated with a large 

head and lower flow rate. 

 

Reaction turbine :-Reaction turbines on the other hand, are best suited -for higher flow 

rate and lower head situations. In this type of turbines, the rotation of runner or rotor 

(rotating part of the turbine) is partly due to impulse action and partly due to change  

pressure over the runner blades; therefore, it is called as reaction turbine . For, a 

reaction turbine, the penstock pipe feeds water to a row of fixed blades through casing. 

These fixed blades convert a part of the pressure energy into kinetic energy before 

water enters the runner. The water entering the runner of a reaction turbine has both 

pressure energy and kinetic energy. Water leaving the turbine is still left with some 

energy (pressure energy and kinetic energy). Since, the flow from the inlet to tail race 

is under pressure, casing is absolutely necessary to enclose the turbine. In general, 

Reaction turbines are medium to low-head , and high -flow rate devices . The reaction 

turbines in use are Francis and Kaplan. 

 

  According to the direction of flow through runner: 

    Tangential flow turbines : In this type of turbines, the water strikes the runner in the 

    direction of tangent to the wheel. Example: Pelton wheel turbine.  

    Radial flow turbines: In this type of turbines, the water strikes in the radial direction. 

    accordingly, it is further classified as, 



    

   Axial flow turbine:The flow of water is in the direction parallel to the axis of the 

   shaft. Example: Kaplan turbine and propeller turbine. 

   Mixed flow turbine: The water enters the runner in the radial direction and leaves in 

   axial direction. Example: Modern Francis turbine. 
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       Impulse Hydraulic Turbine : The Pelton Wheel 

 

Figure Typical PELTON WHEEL with 21 Buckets 

The only hydraulic turbine of the impulse type in common use, is named 

after an American engineer Laster A Pelton, who contributed much to its 

development around the year 1880. Therefore this machine is known as 

Pelton turbine or Pelton wheel. It is an efficient machine particularly suited 

to high heads. The rotor consists of a large circular disc or wheel on which a 

number (seldom less than 15) of spoon shaped buckets are spaced uniformly 

round is periphery as shown in Figure 1.1. The wheel is driven by jets of 

water being discharged at atmospheric pressure from pressure nozzles. The 

nozzles are mounted so that each directs a jet along a tangent to the circle 

through the centres of the buckets (Figure 1.2). Down the centre of each 

bucket, there is a splitter ridge which divides the jet into two equal streams 

which flow round the smooth inner surface of the bucket and leaves the 

bucket with a relative velocity almost opposite in direction to the original jet. 
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Figure:A Pelton wheel 

For maximum change in momentum of the fluid and hence for the maximum 

driving force on the wheel, the deflection of the water jet should be . In 

practice, however, the deflection is limited to about  so that the water 

leaving a bucket may not hit the back of the following bucket. Therefore, the 

camber angle of the buckets is made as . Figure(1.3a) 

The number of jets is not more than two for horizontal shaft turbines and is 

limited to six for vertical shaft turbines. The flow partly fills the buckets and 

the fluid remains in contact with the atmosphere. Therefore, once the jet is 

produced by the nozzle, the static pressure of the fluid remains atmospheric 

throughout the machine. Because of the symmetry of the buckets, the side 

thrusts produced by the fluid in each half should balance each other. 

Analysis of force on the bucket and power generation  

Figure 1.3a shows a section through a bucket which is being acted on by a 

jet. The plane of section is parallel to the axis of the wheel and contains the 

axis of the jet. The absolute velocity of the jet  with which it strikes the 

bucket is given by 

 



Fundamentals of Fluid Mechanics 
 

69  

 

 

 

 

Figure1.3 

(a)Flow along the bucket of a pelton wheel 

(b) Inlet velocity triangle 

(c)Outlet velocity triangle 

where,      is the coefficient of velocity which takes care of the friction in the 

nozzle. H is the head at the entrance to the nozzle which is equal to the total 

or gross head of water stored at high altitudes minus the head lost due to 

friction in the long pipeline leading to the nozzle. Let the velocity of the 

bucket (due to the rotation of the wheel) at its centre where the jet strikes 

be U . Since the jet velocity    is tangential, i.e.      and U are collinear, the 

diagram of velocity vector at inlet (Fig 26.3.b) becomes simply a straight line 

and the relative velocity is given by 

 

It is assumed that the flow of fluid is uniform and it glides the blade all along 

including the entrance and exit sections to avoid the unnecessary losses due 

to shock. Therefore the direction of relative velocity at entrance and exit 

should match the inlet and outlet angles of the buckets respectively. The 

velocity triangle at the outlet is shown in Figure 1.3c. The bucket 

velocity U remains the same both at the inlet and outlet. With the direction 

of U being taken as positive, we can write. The tangential component of inlet 

velocity (Figure 1.3b) 
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and the tangential component of outlet velocity (Figure 1.3c) 
 

where     and     are the velocities of the jet relative to the bucket at its inlet 

and outlet and  is the outlet angle of the bucket. 

From the Eq. (1.2) (the Euler's equation for hydraulic machines), the energy 

delivered by the fluid per unit mass to the rotor can be written as 

 

 

 
(1.1) 

 (since, in the present situation,   

The relative velocity     becomes slightly less than      mainly because of the 

friction in the bucket. Some additional loss is also inevitable as the fluid strikes 

the splitter ridge, because the ridge cannot have zero thickness. These losses are 

however kept to a minimum by making the inner surface of the bucket polished 

and reducing the thickness of the splitter ridge. The relative velocity at 

outlet  is usually expressed as  where, K is a factor with a value 

less than 1. However in an ideal case ( in absence of friction between the fluid 

and blade surface) K=1. Therefore, we can write Eq.(1.1) 

 

(1.2) 

If Q is the volume flow rate of the jet, then the power transmitted by the fluid to 

the wheel can be written as 

 

  
 

(1.3) 

The power input to the wheel is found from the kinetic energy of the jet arriving 

at the wheel and is given by . Therefore the wheel efficiency of a pelton 

turbine can be written as 
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(1.4) 

It is found that the efficiency  depends on  and  For a given 

design of the bucket, i.e. for constant values of  and K, the efficiency 

becomes a function of  only, and we can determine the condition given 

by  at which  becomes maximum. 

For  to be maximum, 

 

or, 
 

(1.5) 

 is always negative. 

Therefore, the maximum wheel efficiency can be written after substituting the relation 
given by eqn.(1.5) in eqn.(1.4) as 

 

(1.6) 

 

The condition given by Eq. (1.5) states that the efficiency of the wheel in converting 

the kinetic energy of the jet into mechanical energy of rotation becomes maximum 

when the wheel speed at the centre of the bucket becomes one half of the incoming 

velocity of the jet. The overall efficiency  will be less than  because of friction 

in bearing and windage, i.e. friction between the wheel and the atmosphere in which 

it rotates. Moreover, as the losses due to bearing friction and windage increase 

rapidly with speed, the overall efficiency reaches it peak when the ratio  is 

slightly less than the theoretical value of 0.5. The value usually obtained in practice 

is about 0.46. The Figure 2.1 shows the variation of wheel efficiency  with blade 

to jet speed ratio  for assumed values at k=1 and 0.8, and  . An overall 

efficiency of 85-90 percent may usually be obtained in large machines. To obtain 

high values of wheel efficiency, the buckets should have smooth surface and be 

properly designed. The length, width, and depth of the buckets are chosen about 



Fundamentals of Fluid Mechanics 
 

72  

 

2.5.4 and 0.8 times the jet diameter. The buckets are notched for smooth entry of the 

jet. 

 

Figure 2.1 Theoretical variation of wheel efficiency for a Pelton 
turbine with blade speed to jet speed ratio for different values of k 

Specific speed and wheel geometry .  

The specific speed of a pelton wheel depends on the ratio of jet diameter d and the 

wheel pitch diameter. D (the diameter at the centre of the bucket). If the hydraulic 

efficiency of a pelton wheel is defined as the ratio of the power delivered P to the 

wheel to the head available H at the nozzle entrance, then we can write. 

 

(2.1) 

Since [  and  

The specific speed  =  

  

  

The optimum value of the overall efficiency of a Pelton turbine depends both on 

the values of the specific speed and the speed ratio. The Pelton wheels with a 

single jet operate in the specific speed range of 4-16, and therefore the ratio D/d 

lies between 6 to 26 as given by the Eq. (15.25b). A large value of D/d reduces 

the rpm as well as the mechanical efficiency of the wheel. It is possible to 

increase the specific speed by choosing a lower value of D/d, but the efficiency 
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will decrease because of the close spacing of buckets. The value of D/d is 

normally kept between 14 and 16 to maintain high efficiency. The number of 

buckets required to maintain optimum efficiency is usually fixed by the 

empirical relation. 

n(number of buckets) =  
(2.2) 

Govering of Pelton Turbine :  

First let us discuss what is meant by governing of turbines in general. When a 

turbine drives an electrical generator or alternator, the primary requirement is 

that the rotational speed of the shaft and hence that of the turbine rotor has to be 

kept fixed. Otherwise the frequency of the electrical output will be altered. But 

when the electrical load changes depending upon the demand, the speed of the 

turbine changes automatically. This is because the external resisting torque on 

the shaft is altered while the driving torque due to change of momentum in the 

flow of fluid through the turbine remains the same. For example, when the load 

is increased, the speed of the turbine decreases and vice versa . A constancy in 

speed is therefore maintained by adjusting the rate of energy input to the turbine 

accordingly. This is usually accomplished by changing the rate of fluid flow 

through the turbine- the flow in increased when the load is increased and the 

flow is decreased when the load is decreased. This adjustment of flow with the 

load is known as the governing of turbines. 

In case of a Pelton turbine, an additional requirement for its operation at the 

condition of maximum efficiency is that the ration of bucket to initial jet 

velocity  has to be kept at its optimum value of about 0.46. Hence, when U 

is fixed.  has to be fixed. Therefore the control must be made by a variation 

of the cross-sectional area, A, of the jet so that the flow rate changes in 

proportion to the change in the flow area keeping the jet velocity  same. This 

is usually achieved by a spear valve in the nozzle (Figure 2.2a). Movement of 

the spear and the axis of the nozzle changes the annular area between the spear 

and the housing. The shape of the spear is such, that the fluid coalesces into a 

circular jet and then the effect of the spear movement is to vary the diameter of 

the jet. Deflectors are often used (Figure 2.2b) along with the spear valve to 

prevent the serious water hammer problem due to a sudden reduction in the rate 

of flow. These plates temporarily defect the jet so that the entire flow does not 



Fundamentals of Fluid Mechanics 
 

74  

 

reach the bucket; the spear valve may then be moved slowly to its new position 

to reduce the rate of flow in the pipe-line gradually. If the bucket width is too 

small in relation to the jet diameter, the fluid is not smoothly deflected by the 

buckets and, in consequence, much energy is dissipated in turbulence and the 

efficiency drops considerably. On the other hand, if the buckets are unduly 

large, the effect of friction on the surfaces is unnecessarily high. The optimum 

value of the ratio of bucket width to jet diameter has been found to vary 

between 4 and 5. 

 

 

Figure  
(a) Spear valve to alter jet area in a Pelton wheel 

(b) Jet deflected from bucket 

Limitation of a Pelton Turbine:  

The Pelton wheel is efficient and reliable when operating under large heads. To 

generate a given output power under a smaller head, the rate of flow through the 

turbine has to be higher which requires an increase in the jet diameter. The 

number of jets are usually limited to 4 or 6 per wheel. The increases in jet 

diameter in turn increases the wheel diameter. Therefore the machine becomes 

unduly large, bulky and slow-running. In practice, turbines of the reaction type 

are more suitable for lower heads. 
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   Reaction Turbine Francis Turbine 

The principal feature of a reaction turbine that distinguishes it from an impulse 

turbine is that only a part of the total head available at the inlet to the turbine is 

converted to velocity head, before the runner is reached. Also in the reaction 

turbines the working fluid, instead of engaging only one or two blades, 

completely fills the passages in the runner. The pressure or static head of the 

fluid changes gradually as it passes through the runner along with the change in 

its kinetic energy based on absolute velocity due to the impulse action between 

the fluid and the runner. Therefore the cross-sectional area of flow through the 

passages of the fluid. A reaction turbine is usually well suited for low heads. A 

radial flow hydraulic turbine of reaction type was first developed by an 

American Engineer, James B. Francis (1815-92) and is named after him as the 

Francis turbine. The schematic diagram of a Francis turbine is shown in Fig. 

3.1 

 

Figure 3.1 A Francis turbine 

A Francis turbine comprises mainly the four components: 

(i) sprical casing, 

(ii) guide on stay vanes, 
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(iii) runner blades, 

(iv) draft-tube as shown in Figure 3.1 . 

Spiral Casing : Most of these machines have vertical shafts although some 

smaller machines of this type have horizontal shaft. The fluid enters from the 

penstock (pipeline leading to the turbine from the reservoir at high altitude) to a 

spiral casing which completely surrounds the runner. This casing is known as 

scroll casing or volute. The cross-sectional area of this casing decreases 

uniformly along the circumference to keep the fluid velocity constant in 

magnitude along its path towards the guide vane. 

 

Figure  Spiral Casing 

This is so because the rate of flow along the fluid path in the volute decreases 

due to continuous entry of the fluid to the runner through the openings of the 

guide vanes or stay vanes. 

Guide or Stay vane: 

The basic purpose of the guide vanes or stay vanes is to convert a part of 

pressure energy of the fluid at its entrance to the kinetic energy and then to 

direct the fluid on to the runner blades at the angle appropriate to the design. 

Moreover, the guide vanes are pivoted and can be turned by a suitable 

governing mechanism to regulate the flow while the load changes. The guide 

vanes are also known as wicket gates. The guide vanes impart a tangential 

velocity and hence an angular momentum to the water before its entry to the 

runner. The flow in the runner of a Francis turbine is not purely radial but a 

combination of radial and tangential. The flow is inward, i.e. from the 

periphery towards the centre. The height of the runner depends upon the 
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specific speed. The height increases with the increase in the specific speed. The 

main direction of flow change as water passes through the runner and is finally 

turned into the axial direction while entering the draft tube. 

Draft tube: 

The draft tube is a conduit which connects the runner exit to the tail race where 

the water is being finally discharged from the turbine. The primary function of 

the draft tube is to reduce the velocity of the discharged water to minimize the 

loss of kinetic energy at the outlet. This permits the turbine to be set above the 

tail water without any appreciable drop of available head. A clear 

understanding of the function of the draft tube in any reaction turbine, in fact, 

is very important for the purpose of its design. The purpose of providing a draft 

tube will be better understood if we carefully study the net available head 

across a reaction turbine. 

Net head across a reaction turbine and the purpose to providing a draft 

tube . The effective head across any turbine is the difference between the head 

at inlet to the machine and the head at outlet from it. A reaction turbine always 

runs completely filled with the working fluid. The tube that connects the end of 

the runner to the tail race is known as a draft tube and should completely to 

filled with the working fluid flowing through it. The kinetic energy of the fluid 

finally discharged into the tail race is wasted. A draft tube is made divergent so 

as to reduce the velocity at outlet to a minimum. Therefore a draft tube is 

basically a diffuser and should be designed properly with the angle between the 

walls of the tube to be limited to about 8 degree so as to prevent the flow 

separation from the wall and to reduce accordingly the loss of energy in the 

tube. Figure 3.3 shows a flow diagram from the reservoir via a reaction turbine 

to the tail race. 

The total head  at the entrance to the turbine can be found out by applying 

the Bernoulli's equation between the free surface of the reservoir and the inlet 

to the turbine as 

 

(3.1) 

or, 
 

(3.2) 

where  is the head lost due to friction in the pipeline connecting the 

reservoir and the turbine. Since the draft tube is a part of the turbine, the net 

head across the turbine, for the conversion of mechanical work, is the 
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difference of total head at inlet to the machine and the total head at discharge 

from the draft tube at tail race and is shown as H in Figure 3.3 

 

Figure  Head across a reaction turbine 

Therefore, H = total head at inlet to machine (1) - total head at discharge (3) 

 

(3.3) 

 

(3.4) 

The pressures are defined in terms of their values above the atmospheric 

pressure. Section 2 and 3 in Figure 3.3 represent the exits from the runner and 

the draft tube respectively. If the losses in the draft tube are neglected, then the 

total head at 2 becomes equal to that at 3. Therefore, the net head across the 

machine is either  or . Applying the Bernoull's equation 

between 2 and 3 in consideration of flow, without losses, through the draft 

tube, we can write. 

 

(3.5) 

 

(3.6) 

Since , both the terms in the bracket are positive and hence is 

always negative, which implies that the static pressure at the outlet of the 

runner is always below the atmospheric pressure. Equation (3.1) also shows 
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that the value of the suction pressure at runner outlet depends on z, the height 

of the runner above the tail race and , the decrease in kinetic 

energy of the fluid in the draft tube. The value of this minimum pressure 

should never fall below the vapour pressure of the liquid at its operating 

temperature to avoid the problem of cavitation. Therefore, we fine that the 

incorporation of a draft tube allows the turbine runner to be set above the tail 

race without any drop of available head by maintaining a vacuum pressure at 

the outlet of the runner. 

  

Runner of the Francis Turbine 

The shape of the blades of a Francis runner is complex. The exact shape 

depends on its specific speed. It is obvious from the equation of specific speed 

that higher specific speed means lower head. This requires that the runner 

should admit a comparatively large quantity of water for a given power output 

and at the same time the velocity of discharge at runner outlet should be small 

to avoid cavitation. In a purely radial flow runner, as developed by James B. 

Francis, the bulk flow is in the radial direction. To be more clear, the flow is 

tangential and radial at the inlet but is entirely radial with a negligible 

tangential component at the outlet. The flow, under the situation, has to make 

a 90
o
 turn after passing through the rotor for its inlet to the draft tube. Since 

the flow area (area perpendicular to the radial direction) is small, there is a 

limit to the capacity of this type of runner in keeping a low exit velocity. This 

leads to the design of a mixed flow runner where water is turned from a radial 

to an axial direction in the rotor itself. At the outlet of this type of runner, the 

flow is mostly axial with negligible radial and tangential components. Because 

of a large discharge area (area perpendicular to the axial direction), this type 

of runner can pass a large amount of water with a low exit velocity from the 

runner. The blades for a reaction turbine are always so shaped that the 

tangential or whirling component of velocity at the outlet becomes 

zero . This is made to keep the kinetic energy at outlet a minimum. 

Figure 4.1 shows the velocity triangles at inlet and outlet of a typical blade of 

a Francis turbine. Usually the flow velocity (velocity perpendicular to the 

tangential direction) remains constant throughout, i.e.  and is equal 

to that at the inlet to the draft tube. 

The Euler's equation for turbine [Eq.(1.2)] in this case reduces to 
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(4.1) 

where, e is the energy transfer to the rotor per unit mass of the fluid. From the 

inlet velocity triangle shown in Fig.4.1 

 

(4.2a) 

and 
 

(4.2b) 

Substituting the values of  and  from Eqs. (4.2a) and (4.2b) respectively 

into Eq. (4.1), we have 

 

(4.3) 

 

Figure Velocity triangle for a Francis runner 

The loss of kinetic energy per unit mass becomes equal to . Therefore 

neglecting friction, the blade efficiency becomes 
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since 
 

 

 

can be written 

as 

 

The change in pressure energy of the fluid in the rotor can be found out by 

subtracting the change in its kinetic energy from the total energy released. 

Therefore, we can write for the degree of reaction. 

 

[since  

  

 

Using the expression of e from Eq. (4.3), we have 

 

(4.4) 

The inlet blade angle  of a Francis runner varies  and the guide 

vane angle angle  from . The ratio of blade width to the diameter of 

runner B/D, at blade inlet, depends upon the required specific speed and 

varies from 1/20 to 2/3. 

Expression for specific speed. The dimensional specific speed of a turbine, 

can be written as 

 

Power generated P for a turbine can be expressed in terms of available 

head H and hydraulic efficiency  as 

 

Hence, it becomes 
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(4.5) 

Again, , 

Substituting  from Eq. (4.2b) 

 

(4.6) 

Available head H equals the head delivered by the turbine plus the head lost 

at the exit. Thus, 

 

since 
 

 

with the help of Eq. (4.3), it becomes 

 

or, 

 

(4.7) 

Substituting the values of H and N from Eqs (4.7) and (4.6) respectively into 

the expression  given by Eq. (4.5), we get, 

 

Flow velocity at inlet  can be substituted from the equation of continuity 

as 

 

where B is the width of the runner at its inlet 
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Finally, the expression for  becomes, 

 

 

(4.8) 

For a Francis turbine, the variations of geometrical parameters 

like  have been described earlier. These variations cover a range of 

specific speed between 50 and 400. Figure 4.2 shows an overview of a 

Francis Turbine. The figure is specifically shown in order to convey the size 

and relative dimensions of a typical Francis Turbine to the readers. 

KAPLAN TURBINE 

Higher specific speed corresponds to a lower head. This requires that the 

runner should admit a comparatively large quantity of water. For a runner of 

given diameter, the maximum flow rate is achieved when the flow is 

parallel to the axis. Such a machine is known as axial flow reaction turbine. 

An Australian engineer, Vikton Kaplan first designed such a machine. The 

machines in this family are called Kaplan Turbines.(Figure 5.1) 

 

Figure A typical Kaplan Turbine 
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Development of Kaplan Runner from the Change in the Shape of 

Francis Runner with Specific Speed 

Figure 5.2 shows in stages the change in the shape of a Francis runner with 

the variation of specific speed. The first three types [Fig. 5.2 (a), (b) and (c)] 

have, in order. The Francis runner (radial flow runner) at low, normal and 

high specific speeds. As the specific speed increases, discharge becomes 

more and more axial. The fourth type, as shown in Fig.5.2 (d), is a mixed 

flow runner (radial flow at inlet axial flow at outlet) and is known as Dubs 

runner which is mainly suited for high specific speeds. Figure 5.2(e) shows 

a propeller type runner with a less number of blades where the flow is 

entirely axial (both at inlet and outlet). This type of runner is the most 

suitable one for very high specific speeds and is known as Kaplan runner or 

axial flow runner. 

From the inlet velocity triangle for each of the five runners, as shown in 

Figs (5.2a to 5.2e), it is found that an increase in specific speed (or a 

decreased in head) is accompanied by a reduction in inlet velocity . But 

the flow velocity  at inlet increases allowing a large amount of fluid to 

enter the turbine. The most important point to be noted in this context is that 

the flow at inlet to all the runners, except the Kaplan one, is in radial and 

tangential directions. Therefore, the inlet velocity triangles of those turbines 

(Figure 5.2a to 5.2d) are shown in a plane containing the radial ant 

tangential directions, and hence the flow velocity  represents the radial 

component of velocity. 

In case of a Kaplan runner, the flow at inlet is in axial and tangential 

directions. Therefore, the inlet velocity triangle in this case (Figure 30.2e) is 

shown in a place containing the axial and tangential directions, and hence 

the flow velocity  represents the axial component of velocity  .The 

tangential component of velocity is almost nil at outlet of all runners. 

Therefore, the outlet velocity triangle (Figure 5.2f) is identical in shape of 

all runners. However, the exit velocity  is axial in Kaplan and Dubs 

runner, while it is the radial one in all other runners. 
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(a) Francis runner for low specific speeds 

 

(b) Francis runner for normal specific speeds 

 

(c) Francis runner for high specific speeds 

  

(d) Dubs runner 

 

(e) Kalpan runner 
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(f) For allreaction 

(Francis as well as 

Kaplan) runners 

 

Outlet velocity triangle 

Fig. 5.2 Evolution of Kaplan runner form Francis one 
 

  

Figure 5.3 shows a schematic diagram of propeller or Kaplan turbine. The 

function of the guide vane is same as in case of Francis turbine. Between the 

guide vanes and the runner, the fluid in a propeller turbine turns through a 

right-angle into the axial direction and then passes through the runner. The 

runner usually has four or six blades and closely resembles a ship's propeller. 

Neglecting the frictional effects, the flow approaching the runner blades can 

be considered to be a free vortex with whirl velocity being inversely 

proportional to radius, while on the other hand, the blade velocity is directly 

proportional to the radius. To take care of this different relationship of the 

fluid velocity and the blade velocity with the changes in radius, the blades are 

twisted. The angle with axis is greater at the tip that at the root. 
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Fig. A propeller of Kaplan turbine 

Different types of draft tubes incorporated in reaction turbines The draft 

tube is an integral part of a reaction turbine. Its principle has been explained 

earlier. The shape of draft tube plays an important role especially for high 

specific speed turbines, since the efficient recovery of kinetic energy at 

runner outlet depends mainly on it. Typical draft tubes, employed in practice, 

are discussed as follows. 

Straight divergent tube [Fig. 5.4(a)] The shape of this tube is that of 

frustum of a cone. It is usually employed for low specific speed, vertical shaft 

Francis turbine. The cone angle is restricted to 8 0 to avoid the losses due to 

separation. The tube must discharge sufficiently low under tail water level. 

The maximum efficiency of this type of draft tube is 90%. This type of draft 

tube improves speed regulation of falling load. 

Simple elbow type (Fig. 5.4b) The vertical length of the draft tube should be 

made small in order to keep down the cost of excavation, particularly in rock. 

The exit diameter of draft tube should be as large as possible to recover 

kinetic energy at runner's outlet. The cone angle of the tube is again fixed 
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from the consideration of losses due to flow separation. Therefore, the draft 

tube must be bent to keep its definite length. Simple elbow type draft tube 

will serve such a purpose. Its efficiency is, however, low(about 60%). This 

type of draft tube turns the water from the vertical to the horizontal direction 

with a minimum depth of excavation. Sometimes, the transition from a 

circular section in the vertical portion to a rectangular section in the 

horizontal part (Fig. 5.4c) is incorporated in the design to have a higher 

efficiency of the draft tube. The horizontal portion of the draft tube is 

generally inclined upwards to lead the water gradually to the level of the tail 

race and to prevent entry of air from the exit end. 

 

Figure  Different types of draft tubes 

  

Cavitation in reaction turbines 

If the pressure of a liquid in course of its flow becomes equal to its vapour 

pressure at the existing temperature, then the liquid starts boiling and the 

pockets of vapour are formed which create vapour locks to the flow and the 

flow is stopped. The phenomenon is known as cavitation. To avoid 

cavitation, the minimum pressure in the passage of a liquid flow, should 

always be more than the vapour pressure of the liquid at the working 

temperature. In a reaction turbine, the point of minimum pressure is usually 

at the outlet end of the runner blades, i.e at the inlet to the draft tube. For the 

flow between such a point and the final discharge into the trail race (where 

the pressure is atmospheric), the Bernoulli's equation can be written, in 

consideration of the velocity at the discharge from draft tube to be 

negligibly small, as 

 

(6.1) 

where,  and  represent the static pressure and velocity of the liquid at 

the outlet of the runner (or at the inlet to the draft tube). The larger the value 
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of , the smaller is the value of  and the cavitation is more likely to 

occur. The term  in Eq. (6.1) represents the loss of head due to friction in 

the draft tube and z is the height of the turbine runner above the tail water 

surface. For cavitation not to occur  where  is the vapour pressure 

of the liquid at the working temperature. 

An important parameter in the context of cavitation is the available suction 

head (inclusive of both static and dynamic heads) at exit from the turbine 

and is usually referred to as the net positive suction head 'NPSH' which is 

defined as 

 

(6.2) 

with the help of Eq. (6.1) and in consideration of negligible frictional losses 

in the draft tube , Eq. (6.2) can be written as 

 

(6.3) 

A useful design parameter  known as Thoma's Cavitation Parameter (after 

the German Engineer Dietrich Thoma, who first introduced the concept) is 

defined as 

 

(6.4) 

For a given machine, operating at its design condition, another useful 

parameter  known as critical cavitaion parameter is define as 

 

(6.5) 

Therefore, for cavitaion not to occur  (since,  

If either z or H is increased,  is reduced. To determine whether cavitation 

is likely to occur in a particular installation, the value of may be 

calculated. When the value of  is greater than the value of  for a 

particular design of turbine cavitation is not expected to occur. 
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In practice, the value of  is used to determine the maximum elevation of 

the turbine above tail water surface for cavitation to be avoided. The 

parameter of increases with an increase in the specific speed of the turbine. 

Hence, turbines having higher specific speed must be installed closer to the 

tail water level. 

  

Performance Characteristics of Reaction Turbine 

It is not always possible in practice, although desirable, to run a machine at 

its maximum efficiency due to changes in operating parameters. Therefore, 

it becomes important to know the performance of the machine under 

conditions for which the efficiency is less than the maximum. It is more 

useful to plot the basic dimensionless performance parameters (Fig. 6.1) as 

derived earlier from the similarity principles of fluid machines. Thus one set 

of curves, as shown in Fig. 6.1, is applicable not just to the conditions of the 

test, but to any machine in the same homologous series under any altered 

conditions. 

 

Figure performance characteristics of a 

reaction turbine (in dimensionless parameters) 

Figure 6.2 is one of the typical plots where variation in efficiency of 

different reaction turbines with the rated power is shown. 
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Figure  Variation of efficiency with load 
 

 

Comparison of Specific Speeds of Hydraulic Turbines 

Specific speeds and their ranges of variation for different types of hydraulic 

turbines have already been discussed earlier. Figure 7.1 shows the variation 

of efficiencies with the dimensionless specific speed of different hydraulic 

turbines. The choice of a hydraulic turbine for a given purpose depends 

upon the matching of its specific speed corresponding to maximum 

efficiency with the required specific speed determined from the operating 

parameters, namely, N (rotational speed), p (power) and H(available head). 

 

Figure Variation of efficiency with specific speed for hydraulic 

turbines 
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CHAPTER-5 

Pumps 

A pump is a device where mechanical energy is transferred from the rotor to the 

fluid by the principle of fluid motion through it. The energy of the fluid can be 

sensed from the pressur and velocity of the fluid at the delivery end of the 

pump. Therefore, it is essentially a turbine in reverse. Like turbines, pumps are 

classified according to the main direction of fluid path through them like (i) 

radial flow or centrifugal, (ii) axial flow and (iii) mixed flow types. 

Centrifugal Pumps 

The pumps employing centrifugal effects for increasing fluid pressure have 

been in use for more than a century.The centrifugal pump, by its principle, is 

converse of the Francis turbine. The flow is radially outward, and the hence the 

fluid gains in centrifugal head while flowing through it. Because of certain 

inherent advantages,such as compactness, smooth and uniform flow, low initial 

cost and high efficiency even at low heads, centrifugal pumps are used in almost 

all pumping systems. However, before considering the operation of a pump in 

detail, a general pumping system is discussed as follows. 

General Pumping System and the Net Head Developed by a Pump 

The word pumping, referred to a hydraulic system commonly implies to convey 

liquid from a low to a high reservoir. Such a pumping system, in general, is 

shown in Fig. 33.1. At any point in the system, the elevation or potential head is 

measured from a fixed reference datum line. The total head at any point 

comprises pressure head, velocity head and elevation head. For the lower 

reservoir, the total head at the free surface is  and is equal to the elevation of 

the free surface above the datum line since the velocity and static pressure 

at A are zero. Similarly the total head at the free surface in the higher reservoir 

is ( ) and is equal to the elevation of the free surface of the reservoir 

above the reference datum. 

The variation of total head as the liquid flows through the system is shown in 

Fig. 33.2. The liquid enters the intake pipe causing a head loss  for which the 

total energy line drops to point B corresponding to a location just after the 

entrance to intake pipe. The total head at B can be written as 
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As the fluid flows from the intake to the inlet flange of the pump at elevation 

 the total head drops further to the point C (Figure 33.2) due to pipe friction and 

other losses equivalent to  . The fluid then enters the pump and gains energy 

imparted by the moving rotor of the pump. This raises the total head of the fluid 

to a point D (Figure 33.2) at the pump outlet (Figure 33.1). 

In course of flow from the pump outlet to the upper reservoir, friction and other 

losses account for a total head loss or  down to a point E . At E an exit 

loss  occurs when the liquid enters the upper reservoir, bringing the total heat 

at point F (Figure 33.2) to that at the free surface of the upper reservoir. If the 

total heads are measured at the inlet and outlet flanges respectively, as done in a 

standard pump test, then 

 

Figure  A general pumping system 
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Figure  Change of head in a pumping system 

Total inlet head to the pump =  

Total outlet head of the pump =  

where  and  are the velocities in suction and delivery pipes respectively. 

Therefore, the total head developed by the pump, 

 

(33.1) 

The head developed H is termed as manometric head . If the pipes connected to 

inlet and outlet of the pump are of same diameter,  and therefore the head 

developed or manometric head H is simply the gain in piezometric pressure 

head across the pump which could have been recorded by a manometer 

connected between the inlet and outlet flanges of the pump. In practice, ( 

) is so small in comparison to  that it is ignored. It is therefore not 

surprising o find that the static pressure head across the pump is often used to 

describe the total head developed by the pump. The vertical distance between 

the two levels in the reservoirs  is known as static head or static lift. 

Relationship between , the static head and H , the head developed can be 

found out by applying Bernoulli's equation between A and C and 

between D and F (Figure 33.1) as follows: 

 

(33.2) 
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Between D and F , 

 

(33.3) 

substituting  from Eq. (33.2) into Eq. (33.3), and then with the help of Eq. 

(33.1), 

we can write 

 

  

  
 

(33.4) 

Therefore, we have, the total head developed by the pump = static head + sum 

of all the losses. 

 The simplest from of a centrifugal pump is shown in Figure 33.3. It consists of 

three important parts: (i) the rotor, usually called as impeller, (ii) the volute 

casing and (iii) the diffuser ring. The impeller is a rotating solid disc with 

curved blades standing out vertically from the face of the disc. The impeller 

may be single sided (Figure 33.4a) or doublesided (Figure 33.4b). A double 

sided impeller has a relatively small flow capacity. 

 

Figure A centrifugal pump 

The tips of the blades are sometimes covered by another flat disc to give 

shrouded blades (Figure 33.4c), otherwise the blade tips are left open and the 

casing of the pump itself forms the solid outer wall of the blade passages. The 

advantage of the shrouded blade is that flow is prevented from leaking across 

the blade tips from one passage to another. 
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(a) Single sided 

impeller 

(b) Double sided 

impeller 
(c) Shrouded impeller 

Figure  Types of impellers in a centrifugal pump 

  

As the impeller rotates, the fluid is drawn into the blade passage at the impeller 

eye, the centre of the impeller. The inlet pipe is axial and therefore fluid enters 

the impeller with very little whirl or tangential component of velocity and flows 

outwards in the direction of the blades. The fluid receives energy from the 

impeller while flowing through it and is discharged with increased pressure and 

velocity into the casing. To convert the kinetic energy or fluid at the impeller 

outlet gradually into pressure energy, diffuser blades mounted on a diffuser ring 

are used. 

The stationary blade passages so formed have an increasing cross-sectional area 

which reduces the flow velocity and hence increases the static pressure of the 

fluid. Finally, the fluid moves from the diffuser blades into the volute casing 

which is a passage of gradually increasing cross-section and also serves to 

reduce the velocity of fluid and to convert some of the velocity head into static 

head. Sometimes pumps have only volute casing without any diffuser. 

Figure 34.1 shows an impeller of a centrifugal pump with the velocity triangles 

drawn at inlet and outlet. The blades are curved between the inlet and outlet 

radius. A particle of fluid moves along the broken curve shown in Figure 34.1. 
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Figure  Velocity triangles for centrifugal pump 

Impeller 

Let  be the angle made by the blade at inlet, with the tangent to the inlet 

radius, while  is the blade angle with the tangent at outlet.  and  are the 

absolute velocities of fluid at inlet an outlet respectively, while  and are 

the relative velocities (with respect to blade velocity) at inlet and outlet 

respectively. Therefore, 

Work done on the fluid per unit 

weight =  
(34.1) 

A centrifugal pump rarely has any sort of guide vanes at inlet. The fluid 

therefore approaches the impeller without appreciable whirl and so the inlet 

angle of the blades is designed to produce a right-angled velocity triangle at 

inlet (as shown in Fig. 34.1). At conditions other than those for which the 

impeller was designed, the direction of relative velocity  does not coincide 

with that of a blade. Consequently, the fluid changes direction abruptly on 

entering the impeller. In addition, the eddies give rise to some back flow into 

the inlet pipe, thus causing fluid to have some whirl before entering the 

impeller. However, considering the operation under design conditions, the inlet 

whirl velocity and accordingly the inlet angular momentum of the fluid 
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entering the impeller is set to zero. Therefore, Eq. (34.1) can be written as 

Work done on the fluid per unit weight =  (34.2) 

We see from this equation that the work done is independent of the inlet radius. 

The difference in total head across the pump known as manometric head, is 

always less than the quantity  because of the energy dissipated in 

eddies due to friction. 

The ratio of manometric head H and the work head imparted by the rotor on the 

fluid  (usually known as Euler head) is termed as manometric 

efficiency . It represents the effectiveness of the pump in increasing the total 

energy of the fluid from the energy given to it by the impeller. Therefore, we 

can write 

 

(34.3) 

The overall efficiency  of a pump is defined as 

 

(34.4) 

where, Q is the volume flow rate of the fluid through the pump, and P is the 

shaft power, i.e. the input power to the shaft. The energy required at the shaft 

exceeds  because of friction in the bearings and other mechanical 

parts. Thus a mechanical efficiency is defined as 

 

(34.5) 

so that 

 
 

(34.6) 
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Slip Factor 

Under certain circumstances, the angle at which the fluid leaves the impeller 

may not be the same as the actual blade angle. This is due to a phenomenon 

known as fluid slip, which finally results in a reduction in  the tangential 

component of fluid velocity at impeller outlet. One possible explanation for slip 

is given as follows. 

In course of flow through the impeller passage, there occurs a difference in 

pressure and velocity between the leading and trailing faces of the impeller 

blades. On the leading face of a blade there is relatively a high pressure and low 

velocity, while on the trailing face, the pressure is lower and hence the velocity 

is higher. This results in a circulation around the blade and a non-uniform 

velocity distribution at any radius. The mean direction of flow at outlet, under 

this situation, changes from the blade angle at outlet  to a different angle 

 as shown in Figure 34.2 Therefore the tangential velocity component at 

outlet  is reduced to  , as shown by the velocity triangles in Figure 34.2, 

and the difference  is defined as the slip. The slip factor  is defined as 

 

  

 

Figure  Slip and velocity in the impeller blade passage of a 

centrifugal pump 

With the application of slip factor , the work head imparted to the fluid 

(Euler head) becomes  . The typical values of slip factor lie in the 
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region of 0.9. 

Losses in a Centrifugal Pump 

•  Mechanical friction power loss due to friction between the fixed and rotating 

parts in the bearing and stuffing boxes. 

•  Disc friction power loss due to friction between the rotating faces of the 

impeller (or disc) and the liquid. 

•  Leakage and recirculation power loss. This is due to loss of liquid from the 

pump and recirculation of the liquid in the impeller. The pressure difference 

between impeller tip and eye can cause a recirculation of a small volume of 

liquid, thus reducing the flow rate at outlet of the impeller as shown in Fig. 

(34.3). 

 

Figure Leakage and recirculation in a centrifugal pump 
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Characteristics of a Centrifugal Pump 

With the assumption of no whirl component of velocity at entry to the impeller 

of a pump, the work done on the fluid per unit weight by the impeller is given 

by Equation( 34.2). Considering the fluid to be frictionless, the head developed 

by the pump will be the same san can be considered as the theoretical head 

developed. Therefore we can write for theoretical head developed  as 

 

(35.1) 

From the outlet velocity triangle figure( 34.1) 

 

(35.2) 

where Q is rate of flow at impeller outlet and A is the flow area at the periphery 

of the impeller. The blade speed at outlet  can be expressed in terms of 

rotational speed of the impeller N as 

 

Using this relation and the relation given by Eq. (35.2), the expression of 

theoretical head developed can be written from Eq. (35.1) as 

 

 

(35.3) 

where,  and  

For a given impeller running at a constant rotational speed.  and  are 

constants, and therefore head and discharge bears a linear relationship as shown 

by Eq. (35.3). This linear variation of  with Q is plotted as curve Iin Fig. 

35.1. 

If slip is taken into account, the theoretical head will be reduced to . 

Moreover the slip will increase with the increase in flow rate Q . The effect of 

slip in head-discharge relationship is shown by the curve II in Fig. 35.1. The 

loss due to slip can occur in both a real and an ideal fluid, but in a real fluid the 

shock losses at entry to the blades, and the friction losses in the flow passages 
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have to be considered. At the design point the shock losses are zero since the 

fluid moves tangentially onto the blade, but on either side of the design point 

the head loss due to shock increases according to the relation 

 

(35.4) 

 

 

Figure  Head-discharge characteristics of a centrifugal pump 

where  is the off design flow rate and  is a constant. The losses due to 

friction can usually be expressed as 

 

(35.5) 

where,  is a constant. 

  

Equation (35.5) and (35.4) are also shown in Fig. 35.1 (curves III and IV) as the 

characteristics of losses in a centrifugal pump. By subtracting the sum of the 

losses from the head in consideration of the slip, at any flow rate (by subtracting 

the sum of ordinates of the curves III and IV from the ordinate of the curve II at 

all values of the abscissa), we get the curve V which represents the relationship 

of the actual head with the flow rate, and is known as head-discharge 

characteristic curve of the pump. 

Effect of blade outlet angle 
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The head-discharge characteristic of a centrifugal pump depends (among other 

things) on the outlet angle of the impeller blades which in turn depends on blade 

settings. Three types of blade settings are possible (i) the forward facing for 

which the blade curvature is in the direction of rotation and, therefore, 

(Fig. 35.2a), (ii) radial, when  (Fig. 35.2b), and (iii) backward facing for 

which the blade curvature is in a direction opposite to that of the impeller 

rotation and therefore,  (Fig. 35.2c). The outlet velocity triangles for all 

the cases are also shown in Figs. 35.2a, 35.2b, 35.2c. From the geometry of any 

triangle, the relationship between  and  can be written as. 

 

which was expressed earlier by Eq. (35.2). 

 

Figure  Outlet velocity triangles for different blade 

settings in a centrifugal pump 

In case of forward facing blade, and hence cot  is negative and 

therefore  is more than . In case of radial blade, and In 

case of backward facing blade, and Therefore the sign of , 

the constant in the theoretical head-discharge relationship given by the Eq. 

(35.3), depends accordingly on the type of blade setting as follows: 

For forward curved blades  

For radial blades  

For backward curved blades  

With the incorporation of above conditions, the relationship of head and 

discharge for three cases are shown in Figure 35.3. These curves ultimately 
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revert to their more recognized shapes as the actual head-discharge 

characteristics respectively after consideration of all the losses as explained 

earlier Figure 35.4. 

For both radial and forward facing blades, the power is rising monotonically as 

the flow rate is increased. In the case of backward facing blades, the maximum 

efficiency occurs in the region of maximum power. If, for some 

reasons, Qincreases beyond  there occurs a decrease in power. Therefore the 

motor used to drive the pump at part load, but rated at the design point, may be 

safely used at the maximum power. This is known as self-limiting 

characteristic. In case of radial and forward-facing blades, if the pump motor is 

rated for maximum power, then it will be under utilized most of the time, 

resulting in an increased cost for the extra rating. Whereas, if a smaller motor is 

employed, rated at the design point, then if Q increases above  the motor will 

be overloaded and may fail. It, therefore, becomes more difficult to decide on a 

choice of motor in these later cases (radial and forward-facing blades). 

 

 

 

 

 

Figure  Theoretical head-discharge characteristic 

curves of a centrifugal pump for different blade 

settings 
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Figure Actual head-discharge and power-discharge 

characteristic curves of a centrifugal pump 
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Flow through Volute Chambers 

Apart from frictional effects, no torque is applied to a fluid particle once it has 

left the impeller. The angular momentum of fluid is therefore constant if friction 

is neglected. Thus the fluid particles follow the path of a free vortex. In an ideal 

case, the radial velocity at the impeller outlet remains constant round the 

circumference. The combination of uniform radial velocity with the free vortex 

(  =constant) gives a pattern of spiral streamlines which should be matched 

by the shape of the volute. This is the most important feature of the design of a 

pump. At maximum efficiency, about 10 percent of the head generated by the 

impeller is usually lost in the volute. 

Vanned Diffuser 

A vanned diffuser, as shown in Fig. 36.1, converts the outlet kinetic energy 

from impeller to pressure energy of the fluid in a shorter length and with a 

higher efficiency. This is very advantageous where the size of the pump is 

important. A ring of diffuser vanes surrounds the impeller at the outlet. The 

fluid leaving the impeller first flows through a vaneless space before entering 

the diffuser vanes. The divergence angle of the diffuser passage is of the order 

of 8-10 ° which ensures no boundary layer separation. The optimum number of 

vanes are fixed by a compromise between the diffusion and the frictional loss. 

The greater the number of vanes, the better is the diffusion (rise in static 

pressure by the reduction in flow velocity) but greater is the frictional loss. The 

number of diffuser vanes should have no common factor with the number of 

impeller vanes to prevent resonant vibration. 
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Figure A vanned diffuser of a centrifugal pump 

Cavitation in centrifugal pumps 

Cavitation is likely to occur at the inlet to the pump, since the pressure there is 

the minimum and is lower than the atmospheric pressure by an amount that 

equals the vertical height above which the pump is situated from the supply 

reservoir (known as sump) plus the velocity head and frictional losses in the 

suction pipe. Applying the Bernoulli's equation between the surface of the liquid 

in the sump and the entry to the impeller, we have 

 

(36.1) 

where,  is the pressure at the impeller inlet and  is the pressure at the 

liquid surface in the sump which is usually the atmospheric pressure, Z1 is the 

vertical height of the impeller inlet from the liquid surface in the sump, is the 

loss of head in the suction pipe. Strainers and non-return valves are commonly 

fitted to intake pipes. The term must therefore include the losses occurring 

past these devices, in addition to losses caused by pipe friction and by bends in 

the pipe. 

In the similar way as described in case of a reaction turbine, the net positive 

suction head 'NPSH' in case of a pump is defined as the available suction head 

(inclusive of both static and dynamic heads) at pump inlet above the head 

corresponding to vapor pressure. 

Therefore, 

 

(36.2) 

  

Again, with help of Eq. (36.1), we can write 

 

The Thomas cavitation parameter s and critical cavitation parameter  are 

defined accordingly (as done in case of reaction turbine) as 
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(36.3) 

and 
 

(36.4) 

We can say that for cavitation not to occur, 

 

In order that s should be as large as possible, z must be as small as possible. In 

some installations, it may even be necessary to set the pump below the liquid 

level at the sump (i.e. with a negative vale of z ) to avoid cavitation. 
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Axial Flow or Propeller Pump 

The axial flow or propeller pump is the converse of axial flow turbine and is 

very similar to it an appearance. The impeller consists of a central boss with a 

number of blades mounted on it. The impeller rotates within a cylindrical 

casing with fine clearance between the blade tips and the casing walls. Fluid 

particles, in course of their flow through the pump, do not change their radial 

locations. The inlet guide vanes are provided to properly direct the fluid to the 

rotor. The outlet guide vanes are provided to eliminate the whirling 

component of velocity at discharge. The usual number of impeller blades lies 

between 2 and 8, with a hub diameter to impeller diameter ratio of 0.3 to 0.6. 

The Figure 37.1 shows an axial flow pump. The flow is the same at inlet and 

outlet. an axial flow pumps develops low head but have high capacity. the 

maximum head for such pump is of the order of 20m.The section through the 

blade at X-X (Figure 37.1) is shown with inlet and outlet velocity triangles in 

Figure 37.2. 

 

A propeller of an axial flow pump 
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Figure  Velocity triangles of an axial flow pump 

Analysis 

The blade has an aerofoil section. The fluid does not impinge tangentially to 

the blade at inlet, rather the blade is inclined at an angle of incidence 

(i) to the relative velocity at the inlet  . If we consider the conditions at a 

mean radius  then 

 

where  is the angular velocity of the impeller. 

Work done on the fluid per unit weight =  
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For maximum energy transfer ,  , i.e  .Again , from the outlet 

velocity triangle, 

 

Assuming a constant flow from inlet to outlet 

 

Then, we can write 

Maximum energy transfer to the fluid per unit weight 

 

(37.1) 

For constant energy transfer over the entire span of the blade from hub to tip , 

the right hand side of Equation (37.1) has to be same for all values of  . It is 

obvious that  increases with radius  , therefore an equal increase in

 must take place, and since  is constant then  must increase. 

Therefore , the blade must be twisted as the radius changes. 

Matching of Pump and System Characteristics 

The design point of a hydraulic pump corresponds to a situation where the 

overall efficiency of operation is maximum. However the exact operating 

point of a pump, in practice, is determined from the matching of pump 

characteristic with the headloss-flow, characteristic of the external system (i.e. 

pipe network, valve and so on) to which the pump is connected. 

Let us consider the pump and the piping system as shown in Fig. 15.18. Since 

the flow is highly turbulent, the losses in pipe system are proportional to the 

square of flow velocities and can, therefore, be expressed in terms of constant 

loss coefficients. Therefore, the losses in both the suction and delivery sides 

can be written as 

 

(37.2a) 

 

(37.2b) 

where,  is the loss of head in suction side and  is the loss of head in 
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delivery side and f is the Darcy's friction factor,  and  are the lengths 

and diameters of the suction and delivery pipes respectively, while  and 

 are accordingly the average flow velocities. The first terms in Eqs. (37.1a) 

and (37.1b) represent the ordinary friction loss (loss due to friction between 

fluid ad the pipe wall), while the second terms represent the sum of all the 

minor losses through the loss coefficients  and  which include losses due 

to valves and pipe bends, entry and exit losses, etc. Therefore the total head 

the pump has to develop in order to supply the fluid from the lower to upper 

reservoir is 

 

(37.3) 

Now flow rate through the system is proportional to flow velocity. Therefore 

resistance to flow in the form of losses is proportional to the square of the flow 

rate and is usually written as 

 = system resistance =  (37.4) 

where K is a constant which includes, the lengths and diameters of the pipes 

and the various loss coefficients. System resistance as expressed by Eq. (37.4), 

is a measure of the loss of head at any particular flow rate through the system. 

If any parameter in the system is changed, such as adjusting a valve opening, 

or inserting a new bend, etc., then K will change. Therefore, total head of Eq. 

(37.2) becomes, 

 

(37.5) 

The head H can be considered as the total opposing head of the pumping 

system that must be overcome for the fluid to be pumped from the lower to the 

upper reservoir. 

The Eq. (37.4) is the equation for system characteristic, and while plotted 

on H-Q plane (Figure 37.3), represents the system characteristic curve. The 

point of intersection between the system characteristic and the pump 

characteristic on H-Q plane is the operating point which may or may not lie at 

the design point that corresponds to maximum efficiency of the pump. The 

closeness of the operating and design points depends on how good an estimate 

of the expected system losses has been made. It should be noted that if there is 

no rise in static head of the liquid (for example pumping in a horizontal 

pipeline between two reservoirs at the same elevation),  is zero and the 

system curve passes through the origin. 
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Figure H-Q Characteristics of pump and system 

Effect of Speed Variation 

Head-Discharge characteristic of a given pump is always referred to a constant 

speed. If such characteristic at one speed is know, it is possible to predict the 

characteristic at other speeds by using the principle of similarity. Let A, B, Care 

three points on the characteristic curve (Fig. 37.4) at speed . 

For points A, B and C , the corresponding heads and flows at a new speed 

 are found as follows: 
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Figure Effect of speed variation on operating point of a centrifugal 

pump 

From the equality of  term [Eq. (3.1)] gives 

 

(since for a given pump D is 

constant) 
(37.6) 

and similarly, equality of  term [Eq. (3.1)] gives 

 

(37.7) 

Applying Eqs. (37.6) and (37.7) to points A, B and C the corresponding 

points  and  are found and then the characteristic curve can be drawn at 

the new speed  

Thus, 

 and  

which gives 

 

or 
 

(37.8) 
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Equation (37.8) implies that all corresponding or similar points on Head-

Discharge characteristic curves at different speeds lie on a parabola passing 

through the origin. If the static lift  becomes zero, then the curve for system 

characteristic and the locus of similar operating points will be the same parabola 

passing through the origin. This means that, in case of zero static life, for an 

operating point at speed , it is only necessary to apply the similarity laws 

directly to find the corresponding operating point at the new speed since it will 

lie on the system curve itself (Figure 37.4). 

Variation of Pump Diameter 

A variation in pump diameter may also be examined through the similarly 

laws. For a constant speed, 

 

and 
 

or, 
 

(38.1) 

Pumps in Series and Parallel 

When the head or flow rate of a single pump is not sufficient for a application, 

pumps are combined in series or in parallel to meet the desired requirements. 

Pumps are combined in series to obtain an increase in head or in parallel for an 

increase in flow rate. The combined pumps need not be of the same design. 

Figures 38.1 and 38.2 show the combined H-Q characteristic for the cases of 

identical pumps connected in series and parallel respectively. It is found that 

the operating point changes in both cases. Fig. 38.3 shows the combined 

characteristic of two different pumps connected in series and parallel. 
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Figure Two similar pumps connected in series 

 

Figure Two similar pumps connected in parallel 

Specific Speed of Centrifugal Pumps 

The concept of specific speed for a pump is same as that for a turbine. 

However, the quantities of interest are N, Hand Q rather than N, H and P like 

in case of a turbine. 

For pump 

 

(38.2) 
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Figure Two different pumps connected in series and 

parallel 

The effect of the shape of rotor on specific speed is also similar to that for 

turbines. That is, radial flow (centrifugal) impellers have the lower values 

of  compared to those of axial-flow designs. The impeller, however, is not 

the entire pump and, in particular, the shape of volute may appreciably affect 

the specific speed. Nevertheless, in general, centrifugal pumps are best suited 

for providing high heads at moderate rates of flow as compared to axial flow 

pumps which are suitable for large rates of flow at low heads. Similar to 

turbines, the higher is the specific speed, the more compact is the machine for 

given requirements. For multistage pumps, the specific speed refers to a single 

stage. 

  

 

 

 

 

 


