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1 Introduction

1.1 Intended Audience

These lecture notes outline a single-semester course intended for upper-division physics majors.

1.2 Major Sources

The textbooks that I have consulted most frequently while developing course material are:

Fundamentals of Statistical and Thermal Physics: F. Reif (McGraw-Hill, New York NY, 1965).

Introduction to Quantum Theory: D. Park, 3rd Edition (McGraw-Hill, New York NY, 1992).

Classical and Statistical Thermodynamics: A.S. Carter (Prentice-Hall, Upper Saddle River NJ,
2001).

1.3 Why Study Thermodynamics?

In a nutshell, thermodynamics is the study of the internal motions of many-body systems. Virtu-
ally all physical entities that we encounter in everyday life are many-body systems of some type or
other (e.g., solids, liquids, gases, and even electromagnetic radiation). Not surprisingly, therefore,
thermodynamics is a discipline with an exceptionally wide range of applicability. Indeed, ther-
modynamics is one of the most extensively used subfields of physics outside physics departments.
Prospective engineers, chemists, and material scientists generally do not study relativity or particle
physics, but thermodynamics is an integral, and very important, part of their degree courses.

Many people are drawn to physics because they wish to understand why the world around us is
like it is. For instance, why the sky is blue, why raindrops are spherical, why we do not fall through
the floor, et cetera. It turns out that thermodynamics is a very powerful tool for accounting for the
observed features of the physical world. For example, in this course, we shall explain why heat
spontaneously flows from hot to cold bodies; why it is impossible to measure a temperature below
-273◦ centigrade; why there is a maximum theoretical efficiency of a power generation unit that can
never be exceeded, no matter what the design; why the Earth’s atmosphere becomes thinner and
colder at higher altitudes; why the Sun appears yellow, whereas colder stars appear red, and hotter
stars appear bluish-white; and why high mass stars must ultimately collapse to form black-holes.

1.4 Atomic Theory of Matter

According to the well-known atomic theory of matter, the familiar objects that make up the world
around us, such as tables and chairs, are themselves made up of a great many microscopic particles.
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Atomic theory was invented by the ancient Greek philosophers Leucippus and Democritus,
who speculated that the world essentially consists of myriads of tiny indivisible particles, which
they called atoms, from the Greek atomon, meaning “uncuttable.” They speculated, further, that the
observed properties of everyday materials can be explained either in terms of the different shapes
of their constituent atoms, or the different motions of these atoms. In some respects, modern atomic
theory differs substantially from the primitive theory of Leucippus and Democritus. However, the
central ideas have remained essentially unchanged. In particular, Leucippus and Democritus were
correct to suppose that the properties of materials depend not only on the nature of their constituent
atoms or molecules, but also on the relative motions of these particles.

1.5 What is Thermodynamics?

In this course, we shall focus almost exclusively on those physical properties of everyday materials
that are associated with the motions of their constituent atoms or molecules. In particular, we shall
be concerned with the type of motion that we normally call “heat.” We shall try to establish what
controls the flow of heat from one body to another when they are brought into thermal contact. We
shall also attempt to understand the relationship between heat and mechanical work. For instance,
to what extent does the heat content of a body increase when mechanical work is done on it? More
importantly, can we extract heat from a given body in order to do useful work on some other body?
This subject area is called “thermodynamics,” from the Greek roots thermon, meaning “heat,” and
dunamis, meaning “power.”

1.6 Need for Statistical Approach

It is necessary to emphasize, from the very outset, that thermodynamics is a difficult subject. In
fact, this subject is so difficult that we are forced to adopt a radically different approach to that
employed in other areas of physics.

In most areas of physics, we can formulate some exact, or nearly exact, set of equations
that governed the system under investigation. For instance, Newton’s equations of motion, or
Maxwell’s equations for electromagnetic fields. We can then analyze the system by solving these
equations, either exactly or approximately.

In thermodynamics, we have no problem formulating the governing equations. The motions of
atoms and molecules are described exactly by the laws of quantum mechanics. In many cases, they
are also described, to a reasonable approximation, by the much simpler laws of classical mechan-
ics. We shall not be dealing with systems sufficiently energetic for atomic nuclei to be disrupted, so
we need not consider nuclear forces. Also, in general, the gravitational forces between atoms and
molecules are completely negligible. This implies that the forces between atoms and molecules are
predominantly electromagnetic in origin, and are, therefore, very well understood. Thus, we can
formulate the exact laws of motion for a thermodynamical system, including all of the inter-atomic
forces. The problem is the sheer complexity of the resulting system of equations. In one mole of a
substance (e.g., in twelve grams of carbon, or eighteen grams of water) there are Avagadro’s num-
ber of atoms or molecules. That is, about NA = 6 × 10 23 particles. To solve the system exactly, we
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would have to write down approximately 10 24 coupled equations of motion, with the same number
of initial conditions, and then try to integrate the system. This is plainly impossible. It would also
be complete overkill. We are generally not interested in knowing the position and velocity of every
particle in the system as a function of time. Instead, we want to know things like the volume of
the system, the temperature, the pressure, the heat capacity, the coefficient of expansion, et cetera.
We would certainly be hard put to specify more than about fifty, say, interesting properties of a
thermodynamic system. In other words, the number of pieces of information that we require to
characterize the state of the system is absolutely minuscule compared to the number of degrees of
freedom of the system. That is, the number of pieces of information needed to completely specify
its internal motion. Moreover, the quantities that we are interested in calculating do not depend on
the motions of individual particles, or some some small subset of particles, but, instead, depend on
the average motions of all the particles in the system. In other words, these quantities depend on
the statistical properties of the atomic or molecular motion.

The method adopted in thermodynamics is essentially dictated by the enormous complexity
of thermodynamic systems. We generally start off with some statistical information about the
motions of the constituent atoms or molecules, such as their average kinetic energy, but possess
very little information about the motions of individual particles. We then try to deduce some other
properties of the system from a statistical treatment of the governing equations of motion. In fact,
our approach has to be statistical in nature, because we lack most of the information required to
specify the internal state of the system. The best we can do is to provide a few overall constraints,
such as the average volume and the average energy.

Thermodynamic systems are ideally suited to a statistical approach, because of the enormous
numbers of particles that they contain. Statistical arguments actually get more exact as the numbers
involved get larger. For example, consider an opinion poll published in a newspaper. Such a poll
usually specifies how many people were interviewed. This number is significant because, even
if the polling was done without bias, which is extremely unlikely, the laws of statistics say that
there is a intrinsic error (in the fraction of people who supposedly support a given opinion) of
order one over the square root of the number of people questioned. It follows that if a thousand
people were interviewed, which is a typical number, then the error is at least three percent. We
can easily appreciate that if we do statistics on a thermodynamic system containing 10 24 particles
then we are going to obtain results that are valid to incredible accuracy. In fact, in most situations,
we can forget that the results are statistical at all, and treat them as exact laws of physics. For
instance, the familiar equation of state of an ideal gas, P V = νR T (see Section 6.2), is actually
a statistical result. In other words, it relates the average pressure, and the average volume, to the
average temperature. However, for one mole of gas, the relative statistical deviations from average
values are only about 10−12, according to the 1/N 1/2

A law. Of course, it is virtually impossible to
measure the pressure, volume, or temperature of a gas to such accuracy, so it is often convenient
to forget about the fact that the ideal gas law is a statistical result, and treat it as a law of physics
interrelating the actual pressure, volume, and temperature of an ideal gas.
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1.7 Microscopic and Macroscopic Systems

It is useful, at this stage, to make a distinction between the different sizes of the systems that we
are going to examine. We shall call a system microscopic if it is roughly of atomic dimensions, or
smaller. On the other hand, we shall call a system macroscopic if it is large enough to be visible in
the ordinary sense. This is a rather inexact definition. The exact definition depends on the number
of particles in the system, which we shall call N. A system is macroscopic if 1/N 1/2 � 1, which
means that statistical arguments can be applied to reasonable accuracy. For instance, if we wish
to keep the relative statistical error below one percent then a macroscopic system would have to
contain more than about ten thousand particles. Any system containing less than this number of
particles would be regarded as essentially microscopic, and, hence, statistical arguments could not
be applied to such a system without unacceptable error.

1.8 Classical and Statistical Thermodynamics

In this course, we are going to develop some machinery for interrelating the statistical properties
of a system containing a very large number of particles, via a statistical treatment of the laws of
atomic or molecular motion. It turns out that, once we have developed this machinery, we can
obtain some very general results that do not depend on the exact details of the statistical treatment.
These results can be described without reference to the underlying statistical nature of the system,
but their validity depends ultimately on statistical arguments. They take the form of general state-
ments regarding heat and work, and are usually referred to as classical thermodynamics, or just
thermodynamics, for short. Historically, classical thermodynamics was the first type of thermody-
namics to be discovered. In fact, for many years, the laws of classical thermodynamics seemed
rather mysterious, because their statistical justification had yet to be discovered. The strength of
classical thermodynamics is its great generality, which comes about because it does not depend on
any detailed assumptions about the statistical properties of the system under investigation. This
generality is also the principle weakness of classical thermodynamics. Only a relatively few state-
ments can be made on such general grounds, so many interesting properties of the system remain
outside the scope of classical thermodynamics.

If we go beyond classical thermodynamics, and start to investigate the statistical machinery
that underpins it, then we get all of the results of classical thermodynamics, plus a large number
of other results that enable the macroscopic parameters of the system to be calculated from a
knowledge of its microscopic constituents. This approach is known as statistical thermodynamics,
and is extremely powerful. The only drawback is that the further we delve inside the statistical
machinery of thermodynamics, the harder it becomes to perform the necessary calculations.

Note that both classical and statistical thermodynamics are only valid for systems in equilib-
rium. If the system is not in equilibrium then the problem becomes considerably more difficult.
In fact, the thermodynamics of non-equilibrium systems, which is generally called irreversible
thermodynamics, is a graduate-level subject.
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1.9 Classical and Quantum Approaches

We mentioned earlier that the motions (by which we really meant the translational motions) of
atoms and molecules are described exactly by quantum mechanics, and only approximately by
classical mechanics. It turns out that the non-translational motions of molecules, such as their
rotation and vibration, are very poorly described by classical mechanics. So, why bother using
classical mechanics at all? Unfortunately, quantum mechanics deals with the translational mo-
tions of atoms and molecules (via wave mechanics) in a rather awkward manner. The classical
approach is far more straightforward, and, under most circumstances, yields the same statistical
results. Hence, throughout the first part of this course, we shall use classical mechanics, as much
as possible, to describe the translational motion of atoms and molecules, and will reserve quantum
mechanics for dealing with non-translational motions. However, towards the end of this course, in
Chapter 8, we shall switch to a purely quantum-mechanical approach.
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2 Probability Theory

2.1 Introduction

This chapter is devoted to a brief, and fairly low-level, introduction to a branch of mathematics
known as probability theory. In fact, we do not need to know very much about probability the-
ory in order to understand statistical thermodynamics, because the probabilistic calculation that
ultimately underpins the latter subject area is extraordinarily simple.

2.2 What is Probability?

What is the scientific definition of probability? Consider an observation made on a general system,
S . This can result in any one of a number of different possible outcomes. We want to find the
probability of some general outcome, X. In order to ascribe a probability, we have to consider
the system as a member of a large set, Σ, of similar systems. Mathematicians call such a group
an ensemble, which is just the French for “group.” So, let us consider an ensemble, Σ, of similar
systems, S . The probability of the outcome X is defined as the ratio of the number of systems in
the ensemble that exhibit this outcome to the total number of systems, in the limit where the latter
number tends to infinity. We can write this symbolically as

P(X) = ltΩ(Σ)→∞
Ω(X)
Ω(Σ)

, (2.1)

where Ω(Σ) is the total number of systems in the ensemble, and Ω(X) the number of systems
exhibiting the outcome X. We can see that the probability, P(X), must be a number lying between
0 and 1. The probability is zero if no systems exhibit the outcome X, even when the number of
systems goes to infinity. This is just another way of saying that the outcome X is impossible. The
probability is unity if all systems exhibit the outcome X, in the limit that the number of systems
goes to infinity. This is another way of saying that the outcome X is bound to occur.

2.3 Combining Probabilities

Consider two distinct possible outcomes, X and Y , of an observation made on the system S , with
probabilities of occurrence P(X) and P(Y), respectively. Let us determine the probability of ob-
taining either the outcome X or the outcome Y , which we shall denote P(X | Y). From the basic
definition of probability,

P(X |Y) = ltΩ(Σ)→∞
Ω(X |Y)
Ω(Σ)

, (2.2)

where Ω(X | Y) is the number of systems in the ensemble that exhibit either the outcome X or the
outcome Y . It is clear that

Ω(X |Y) = Ω(X) + Ω(Y) (2.3)
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if the outcomes X and Y are mutually exclusive (which must be the case if they are two distinct
outcomes). Thus,

P(X |Y) = P(X) + P(Y). (2.4)

We conclude that the probability of obtaining either the outcome X or the outcome Y is the sum
of the individual probabilities of X and Y . For instance, with a six-sided die, the probability
of throwing any particular number (one to six) is 1/6, because all of the possible outcomes are
considered to be equally likely. It follows, from the previous discussion, that the probability of
throwing either a one or a two is 1/6 + 1/6, which equals 1/3.

Let us denote all of the M, say, possible outcomes of an observation made on the system S by
Xi, where i runs from 1 to M. Let us determine the probability of obtaining any of these outcomes.
This quantity is clearly unity, from the basic definition of probability, because every one of the
systems in the ensemble must exhibit one of the possible outcomes. However, this quantity is
also equal to the sum of the probabilities of all the individual outcomes, by Equation (2.4), so we
conclude that this sum is equal to unity. Thus,∑

i=1,M

P(Xi) = 1, (2.5)

which is called the normalization condition, and must be satisfied by any complete set of proba-
bilities. This condition is equivalent to the self-evident statement that an observation of a system
must definitely result in one of its possible outcomes.

There is another way in which we can combine probabilities. Suppose that we make an obser-
vation on a state picked at random from the ensemble, and then pick a second state, completely
independently, and make another observation. Here, we are assuming that the first observation
does not influence the second observation in any way. In other words, the two observations are
statistically independent. Let us determine the probability of obtaining the outcome X in the first
state and the outcome Y in the second state, which we shall denote P(X ⊗Y). In order to determine
this probability, we have to form an ensemble of all of the possible pairs of states that we could
choose from the ensemble, Σ. Let us denote this ensemble Σ ⊗ Σ. It is obvious that the number
of pairs of states in this new ensemble is just the square of the number of states in the original
ensemble, so

Ω(Σ ⊗ Σ) = Ω(Σ)Ω(Σ). (2.6)

It is also fairly obvious that the number of pairs of states in the ensemble Σ ⊗ Σ that exhibit the
outcome X in the first state, and Y in the second state, is just the product of the number of states
that exhibit the outcome X, and the number of states that exhibit the outcome Y , in the original
ensemble. Hence,

Ω(X ⊗ Y) = Ω(X)Ω(Y). (2.7)

It follows from the basic definition of probability that

P(X ⊗ Y) = ltΩ(Σ)→∞
Ω(X ⊗ Y)
Ω(Σ ⊗ Σ)

= P(X) P(Y). (2.8)

Thus, the probability of obtaining the outcomes X and Y in two statistically independent obser-
vations is the product of the individual probabilities of X and Y . For instance, the probability of
throwing a one and then a two on a six-sided die is 1/6 × 1/6, which equals 1/36.
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2.4 Two-State System

The simplest non-trivial system that we can investigate using probability theory is one for which
there are only two possible outcomes. (There would obviously be little point in investigating a
one-outcome system.) Let us suppose that there are two possible outcomes to an observation made
on some system, S . Let us denote these outcomes 1 and 2, and let their probabilities of occurrence
be

P(1) = p, (2.9)

P(2) = q. (2.10)

It follows immediately from the normalization condition, Equation (2.5), that

p + q = 1, (2.11)

so q = 1 − p. The best known example of a two-state system is a tossed coin. The two outcomes
are “heads” and “tails,” each with equal probabilities 1/2. So, p = q = 1/2 for this system.

Suppose that we make N statistically independent observations of S . Let us determine the
probability of n1 occurrences of the outcome 1, and N − n1 occurrences of the outcome 2, with no
regard as to the order of these occurrences. Denote this probability PN(n1). This type of calculation
crops up very often in probability theory. For instance, we might want to know the probability of
getting nine “heads” and only one “tails” in an experiment where a coin is tossed ten times, or
where ten coins are tossed simultaneously.

Consider a simple case in which there are only three observations. Let us try to evaluate the
probability of two occurrences of the outcome 1, and one occurrence of the outcome 2. There are
three different ways of getting this result. We could get the outcome 1 on the first two observations,
and the outcome 2 on the third. Or, we could get the outcome 2 on the first observation, and the
outcome 1 on the latter two observations. Or, we could get the outcome 1 on the first and last
observations, and the outcome 2 on the middle observation. Writing this symbolically, we have

P3(2) = P(1 ⊗ 1 ⊗ 2 |2 ⊗ 1 ⊗ 1 |1 ⊗ 2 ⊗ 1). (2.12)

Here, the symbolic operator ⊗ stands for “and,” whereas the symbolic operator | stands for “or.”
This symbolic representation is helpful because of the two basic rules for combining probabilities
that we derived earlier in Equations (2.4) and (2.8):

P(X |Y) = P(X) + P(Y), (2.13)
P(X ⊗ Y) = P(X) P(Y). (2.14)

The straightforward application of these rules gives

P3(2) = p p q + q p p + p q p = 3 p 2 q (2.15)

for the case under consideration.
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The probability of obtaining n1 occurrences of the outcome 1 in N observations is given by

PN(n1) = C N
n1, N−n1

p n1 q N−n1 , (2.16)

where C N
n1, N−n1

is the number of ways of arranging two distinct sets of n1 and N − n1 indistin-
guishable objects. Hopefully, this is, at least, plausible from the previous example. There, the
probability of getting two occurrences of the outcome 1, and one occurrence of the outcome 2, was
obtained by writing out all of the possible arrangements of two p s (the probability of outcome 1)
and one q (the probability of outcome 2), and then adding them all together.

2.5 Combinatorial Analysis

The branch of mathematics that studies the number of different ways of arranging things is called
combinatorial analysis. We need to know how many different ways there are of arranging N
objects that are made up of two groups of n1 and N − n1 indistinguishable objects. This is a rather
difficult problem. Let us start off by tackling a slightly easier problem. How many ways are
there of arranging N distinguishable objects? For instance, suppose that we have six pool balls,
numbered one through six, and we pot one each into every one of the six pockets of a pool table
(that is, top-left, top-right, middle-left, middle-right, bottom-left, and bottom-right). How many
different ways are there of doing this? Let us start with the top-left pocket. We could pot any one
of the six balls into this pocket, so there are 6 possibilities. For the top-right pocket we only have 5
possibilities, because we have already potted a ball into the top-left pocket, and it cannot be in two
pockets simultaneously. So, our 6 original possibilities combined with these 5 new possibilities
gives 6 × 5 ways of potting two balls into the top two pockets. For the middle-left pocket we have
4 possibilities, because we have already potted two balls. These possibilities combined with our
6 × 5 possibilities gives 6 × 5 × 4 ways of potting three balls into three pockets. At this stage, it
should be clear that the final answer is going to be 6 × 5 × 4 × 3 × 2 × 1. The factorial of a general
positive integer, n, is defined

n! = n (n − 1) (n − 2) · · · 3 · 2 · 1. (2.17)

So, 1! = 1, and 2! = 2 × 1 = 2, and 3! = 3 × 2 × 1 = 6, and so on. Clearly, the number of ways
of potting six distinguishable pool balls into six pockets is 6! (which incidentally equals 720).
Because there is nothing special about pool balls, or the number six, we can safely infer that the
number of different ways of arranging N distinguishable objects, denoted C N , is given by

C N = N! . (2.18)

Suppose that we take the number four ball off the pool table, and replace it by a second number
five ball. How many different ways are there of potting the balls now? Consider a previous arrange-
ment in which the number five ball was potted into the top-left pocket, and the number four ball
was potted into the top-right pocket, and then consider a second arrangement that only differs from
the first because the number four and five balls have been swapped around. These arrangements are
now indistinguishable, and are therefore counted as a single arrangement, whereas previously they
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were counted as two separate arrangements. Clearly, the previous arrangements can be divided into
two groups, containing equal numbers of arrangements, that differ only by the permutation of the
number four and five balls. Because these balls are now indistinguishable, we conclude that there
are only half as many different arrangements as there were before. If we take the number three ball
off the table, and replace it by a third number five ball, then we can split the original arrangements
into six equal groups of arrangements that differ only by the permutation of the number three, four,
and five balls. There are six groups because there are 3! = 6 separate permutations of these three
balls. Because the number three, four, and five balls are now indistinguishable, we conclude that
there are only 1/6 the number of original arrangements. Generalizing this result, we conclude that
the number of arrangements of n1 indistinguishable and N − n1 distinguishable objects is

C N
n1
=

N!
n1!

. (2.19)

We can see that if all the balls on the table are replaced by number five balls then there is only
N!/N! = 1 possible arrangement. This corresponds, of course, to a number five ball in each
pocket. A further straightforward generalization tells us that the number of arrangements of two
groups of n1 and N − n1 indistinguishable objects is

C N
n1, N−n1

=
N!

n1! (N − n1)!
. (2.20)

2.6 Binomial Probability Distribution

It follows from Equations (2.16) and (2.20) that the probability of obtaining n1 occurrences of the
outcome 1 in N statistically independent observations of a two-state system is

PN(n1) =
N!

n1! (N − n1)!
p n1 q N−n1 . (2.21)

This probability function is called the binomial probability distribution. The reason for this name
becomes obvious if we tabulate the probabilities for the first few possible values of N, as is done
in Table 2.1. Of course, we immediately recognize the expressions appearing in the first four rows
of this table: they appear in the standard algebraic expansions of (p + q), (p + q) 2, (p + q) 3, and
(p+q) 4, respectively. In algebra, the expansion of (p+q) N is called the binomial expansion (hence,
the name given to the probability distribution function), and is written

(p + q) N ≡
∑

n=0,N

N!
n! (N − n)!

p n q N−n. (2.22)

Equations (2.21) and (2.22) can be used to establish the normalization condition for the binomial
distribution function:∑

n1=0,N

PN(n1) =
∑

n1=0,N

N!
n1! (N − n1)!

p n1 q N−n1 ≡ (p + q) N = 1, (2.23)

because p + q = 1. [See Equation (2.11).]
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n1

0 1 2 3 4
1 q p

N 2 q 2 2 p q p 2

3 q 3 3 p q 2 3 p 2 q p 3

4 q 4 4 p q 3 6 p 2 q 2 4 p 3 q p 4

Table 2.1: The binomial probability distribution, PN(n1).

2.7 Mean, Variance, and Standard Deviation

What is meant by the mean, or average, of a quantity? Suppose that we wanted to calculate the
average age of undergraduates at the University of Texas at Austin. We could go to the central
administration building, and find out how many eighteen year-olds, nineteen year-olds, et cetera,
were currently enrolled. We would then write something like

Average Age � N18 × 18 + N19 × 19 + N20 × 20 + · · ·
N18 + N19 + N20 · · · , (2.24)

where N18 is the number of enrolled eighteen year-olds, et cetera. Suppose that we were to pick
a student at random and then ask “What is the probability of this student being eighteen?” From
what we have already discussed, this probability is defined

P18 =
N18

Nstudents
, (2.25)

where Nstudents is the total number of enrolled students. We can now see that the average age takes
the form

Average Age � P18 × 18 + P19 × 19 + P20 × 20 + · · · . (2.26)

There is nothing special about the age distribution of students at UT Austin. So, for a general
variable u, which can take on any one of M possible values, u1, u2, · · · , uM, with corresponding
probabilities P(u1), P(u2), · · · , P(uM), the mean, or average, value of u, which is denoted ū, is
defined as

ū ≡
∑

i=1,M

P(ui) ui. (2.27)

Suppose that f (u) is some function of u. For each of the M possible values of u, there is a
corresponding value of f (u) that occurs with the same probability. Thus, f (u1) corresponds to u1,
and occurs with the probability P(u1), and so on. It follows from our previous definition that the
mean value of f (u) is given by

f (u) ≡
∑

i=1,M

P(ui) f (ui). (2.28)

Suppose that f (u) and g(u) are two general functions of u. It follows that

f (u) + g(u) =
∑

i=1,M

P(ui) [ f (ui) + g(ui)] =
∑

i=1,M

P(ui) f (ui) +
∑

i=1,M

P(ui) g(ui), (2.29)
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so that
f (u) + g(u) = f (u) + g(u). (2.30)

Finally, if c is a general constant then it is clear that

c f (u) = c f (u). (2.31)

We now know how to define the mean value of the general variable u. But, how can we
characterize the scatter around the mean value? We could investigate the deviation of u from its
mean value, ū, which is denoted

∆u ≡ u − ū. (2.32)

In fact, this is not a particularly interesting quantity, because its average is obviously zero:

∆u = (u − ū) = ū − ū = 0. (2.33)

This is another way of saying that the average deviation from the mean vanishes. A more interest-
ing quantity is the square of the deviation. The average value of this quantity,

(∆u) 2 =
∑

i=1,M

P(ui) (ui − ū) 2, (2.34)

is usually called the variance. The variance is clearly a positive number, unless there is no scatter
at all in the distribution, so that all possible values of u correspond to the mean value, ū, in which
case it is zero. The following general relation is often useful

(u − ū) 2 = (u 2 − 2 u ū + ū 2) = u 2 − 2 ū ū + ū 2, (2.35)

giving
(∆u) 2 = u 2 − ū 2. (2.36)

The variance of u is proportional to the square of the scatter of u around its mean value. A more
useful measure of the scatter is given by the square root of the variance,

∆∗u =
[
(∆u) 2

]1/2
, (2.37)

which is usually called the standard deviation of u. The standard deviation is essentially the width
of the range over which u is distributed around its mean value, ū.

2.8 Application to Binomial Probability Distribution

Let us now apply what we have just learned about the mean, variance, and standard deviation of
a general probability distribution function to the specific case of the binomial probability distribu-
tion. Recall, from Section 2.6, that if a simple system has just two possible outcomes, denoted 1
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and 2, with respective probabilities p and q = 1−p, then the probability of obtaining n1 occurrences
of outcome 1 in N observations is

PN(n1) =
N!

n1! (N − n1)!
p n1 q N−n1 . (2.38)

Thus, making use of Equation (2.27), the mean number of occurrences of outcome 1 in N obser-
vations is given by

n1 =
∑

n1=0,N

PN(n1) n1 =
∑

n1=0,N

N!
n1! (N − n1)!

p n1 q N−n1 n1. (2.39)

We can see that if the final factor n1 were absent on the right-hand side of the previous expression
then it would just reduce to the binomial expansion, which we know how to sum. [See Equa-
tion (2.23).] We can take advantage of this fact using a rather elegant mathematical sleight of
hand. Observe that because

n1 p n1 ≡ p
∂

∂p
p n1 , (2.40)

the previous summation can be rewritten as

∑
n1=0,N

N!
n1! (N − n1)!

p n1 q N−n1 n1 ≡ p
∂

∂p

 ∑
n1=0,N

N!
n1! (N − n1)!

p n1 q N−n1

 . (2.41)

The term in square brackets is now the familiar binomial expansion, and can be written more
succinctly as (p + q) N . Thus,

∑
n1=0,N

N!
n1! (N − n1)!

p n1 q N−n1 n1 = p
∂

∂p
(p + q) N = p N (p + q) N−1. (2.42)

However, p + q = 1 for the case in hand [see Equation (2.11)], so

n1 = N p. (2.43)

In fact, we could have guessed the previous result. By definition, the probability, p, is the number
of occurrences of the outcome 1 divided by the number of trials, in the limit as the number of trials
goes to infinity:

p = lt N→∞
n1

N
. (2.44)

If we think carefully, however, we can see that taking the limit as the number of trials goes to
infinity is equivalent to taking the mean value, so that

p =
(n1

N

)
=

n1

N
. (2.45)

But, this is just a simple rearrangement of Equation (2.43).
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Let us now calculate the variance of n1. Recall, from Equation (2.36), that

(∆n1) 2 = (n1) 2 − (n1) 2. (2.46)

We already know n1, so we just need to calculate (n1) 2. This average is written

(n1) 2 =
∑

n1=0,N

N!
n1! (N − n1)!

p n1 q N−n1 (n1) 2. (2.47)

The sum can be evaluated using a simple extension of the mathematical trick that we used previ-
ously to evaluate n1. Because

(n1) 2 p n1 ≡
(
p
∂

∂p

) 2

p n1 , (2.48)

then ∑
n1=0,N

N!
n1! (N − n1)!

p n1 q N−n1 (n1) 2 ≡
(
p
∂

∂p

)2 ∑
n1=0,N

N!
n1! (N − n1)!

p n1q N−n1

=

(
p
∂

∂p

)2
(p + q) N

=

(
p
∂

∂p

) [
p N (p + q) N−1

]
= p

[
N (p + q) N−1 + p N (N − 1) (p + q) N−2

]
. (2.49)

Using p + q = 1, we obtain

(n1) 2 = p
[
N + p N (N − 1)

]
= N p

[
1 + p N − p

]
= (N p) 2 + N p q = (n1) 2

+ N p q, (2.50)

because n1 = N p. [See Equation (2.43).] It follows that the variance of n1 is given by

(∆n1) 2 = (n1) 2 − (n1) 2
= N p q. (2.51)

The standard deviation of n1 is the square root of the variance [see Equation (2.37)], so that

∆∗n1 =
√

N p q. (2.52)

Recall that this quantity is essentially the width of the range over which n1 is distributed around its
mean value. The relative width of the distribution is characterized by

∆∗n1

n1
=

√
N p q
N p

=

√
q
p

1√
N
. (2.53)

It is clear, from this formula, that the relative width decreases with increasing N like N −1/2. So, the
greater the number of trials, the more likely it is that an observation of n1 will yield a result that is
relatively close to the mean value, n1.
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2.9 Gaussian Probability Distribution

Consider a very large number of observations, N 
 1, made on a system with two possible out-
comes. Suppose that the probability of outcome 1 is sufficiently large that the average number of
occurrences after N observations is much greater than unity: that is,

n1 = N p 
 1. (2.54)

In this limit, the standard deviation of n1 is also much greater than unity,

∆∗n1 =
√

N p q
 1, (2.55)

implying that there are very many probable values of n1 scattered about the mean value, n1. This
suggests that the probability of obtaining n1 occurrences of outcome 1 does not change significantly
in going from one possible value of n1 to an adjacent value. In other words,

|PN(n1 + 1) − PN(n1)|
PN(n1)

� 1. (2.56)

In this situation, it is useful to regard the probability as a smooth function of n1. Let n be a contin-
uous variable that is interpreted as the number of occurrences of outcome 1 (after N observations)
whenever it takes on a positive integer value. The probability that n lies between n and n + dn is
defined

P(n, n + dn) = P(n) dn, (2.57)

where P(n) is called the probability density, and is independent of dn. The probability can be
written in this form because P(n, n+dn) can always be expanded as a Taylor series in dn, and must
go to zero as dn→ 0. We can write

∫ n1+1/2

n1−1/2
P(n) dn = PN(n1), (2.58)

which is equivalent to smearing out the discrete probability PN(n1) over the range n1 ± 1/2. Given
Equations (2.38) and (2.56), the previous relation can be approximated as

P(n) � PN(n) =
N!

n! (N − n)!
p n q N−n. (2.59)

For large N, the relative width of the probability distribution function is small: that is,

∆∗n1

n1
=

√
q
p

1√
N
� 1. (2.60)

This suggests that P(n) is strongly peaked around the mean value, n = n1. Suppose that lnP(n)
attains its maximum value at n = ñ (where we expect ñ ∼ n1). Let us Taylor expand lnP(n) around
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n = ñ. Note that we are expanding the slowly-varying function lnP(n), rather than the rapidly-
varying functionP(n), because the Taylor expansion of P(n) does not converge sufficiently rapidly
in the vicinity of n = ñ to be useful. We can write

lnP(ñ + η) � lnP(ñ) + η B1 +
η 2

2
B2 + · · · , (2.61)

where

Bk =
d k lnP

dn k

∣∣∣∣∣∣
n=ñ

. (2.62)

By definition,

B1 = 0, (2.63)

B2 < 0, (2.64)

if n = ñ corresponds to the maximum value of lnP(n).
It follows from Equation (2.59) that

lnP = ln N! − ln n! − ln (N − n)! + n ln p + (N − n) ln q. (2.65)

If n is a large integer, such that n 
 1, then ln n! is almost a continuous function of n, because ln n!
changes by only a relatively small amount when n is incremented by unity. Hence,

d ln n!
dn

� ln (n + 1)! − ln n!
1

= ln
[
(n + 1)!

n!

]
= ln (n + 1), (2.66)

giving
d ln n!

dn
� ln n, (2.67)

for n 
 1. The integral of this relation

ln n! � n ln n − n + O(1), (2.68)

valid for n
 1, is called Stirling’s approximation, after the Scottish mathematician James Stirling,
who first obtained it in 1730.

According to Equations (2.62), (2.65), and (2.67),

B1 = − ln ñ + ln (N − ñ) + ln p − ln q. (2.69)

Hence, if B1 = 0 then
(N − ñ) p = ñ q, (2.70)

giving
ñ = N p = n1, (2.71)

because p+q = 1. [See Equations (2.11) and (2.43).] Thus, the maximum of lnP(n) occurs exactly
at the mean value of n, which equals n1.
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Further differentiation of Equation (2.69) yields [see Equation (2.62)]

B2 = −1
ñ
− 1

N − ñ
= − 1

N p
− 1

N (1 − p)
= − 1

N p q
, (2.72)

because p + q = 1. Note that B2 < 0, as required. According to Equation (2.55), the previous
relation can also be written

B2 = − 1
(∆∗n1) 2 . (2.73)

It follows, from the previous analysis, that the Taylor expansion of lnP can be written

lnP(n1 + η) � lnP(n1) − η 2

2 (∆∗n1) 2 + · · · . (2.74)

Taking the exponential of both sides, we obtain

P(n) � P(n1) exp
[
− (n − n1) 2

2 (∆∗n1) 2

]
. (2.75)

The constant P(n1) is most conveniently fixed by making use of the normalization condition∑
n1=0,N

PN(n1) = 1, (2.76)

which becomes ∫ N

0
P(n) dn � 1 (2.77)

for a continuous distribution function. Because we only expect P(n) to be significant when n lies
in the relatively narrow range n1 ± ∆∗n1, the limits of integration in the previous expression can be
replaced by ±∞ with negligible error. Thus,

P(n1)
∫ ∞

−∞
exp
[
− (n − n1) 2

2 (∆∗n1) 2

]
dn = P(n1)

√
2∆∗n1

∫ ∞

−∞
e−x 2

dx � 1. (2.78)

As is well known, ∫ ∞

−∞
e−x 2

dx =
√
π. (2.79)

(See Exercise 2.1.) It follows from the normalization condition (2.78) that

P(n1) � 1√
2π ∆∗n1

. (2.80)

Finally, we obtain

P(n) � 1√
2π ∆∗n1

exp
[
− (n − n1) 2

2 (∆∗n1) 2

]
. (2.81)
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This is the famous Gaussian probability distribution, named after the German mathematician Carl
Friedrich Gauss, who discovered it while investigating the distribution of errors in measurements.
The Gaussian distribution is only valid in the limits N 
 1 and n1 
 1.

Suppose we were to plot the probability PN(n1) against the integer variable n1, and then fit a
continuous curve through the discrete points thus obtained. This curve would be equivalent to the
continuous probability density curve P(n), where n is the continuous version of n1. According
to Equation (2.81), the probability density attains its maximum value when n equals the mean
of n1, and is also symmetric about this point. In fact, when plotted with the appropriate ratio of
vertical to horizontal scalings, the Gaussian probability density curve looks rather like the outline
of a bell centered on n = n1. Hence, this curve is sometimes called a bell curve. At one standard
deviation away from the mean value—that is n = n1 ± ∆∗n1—the probability density is about 61%
of its peak value. At two standard deviations away from the mean value, the probability density is
about 13.5% of its peak value. Finally, at three standard deviations away from the mean value, the
probability density is only about 1% of its peak value. We conclude that there is very little chance
that n1 lies more than about three standard deviations away from its mean value. In other words,
n1 is almost certain to lie in the relatively narrow range n1 ± 3∆∗n1.

In the previous analysis, we went from a discrete probability function, PN(n1), to a continuous
probability density, P(n). The normalization condition becomes

1 =
∑

n1=0,N

PN(n1) �
∫ ∞

−∞
P(n) dn (2.82)

under this transformation. Likewise, the evaluations of the mean and variance of the distribution
are written

n1 =
∑

n1=0,N

PN(n1) n1 �
∫ ∞

−∞
P(n) n dn, (2.83)

and

(∆n1) 2 ≡ (∆∗n1) 2 =
∑

n1=0,N

PN(n1) (n1 − n1) 2 �
∫ ∞

−∞
P(n) (n − n1) 2 dn, (2.84)

respectively. These results follow as simple generalizations of previously established results for
the discrete function PN(n1). The limits of integration in the previous expressions can be approx-
imated as ±∞ because P(n) is only non-negligible in a relatively narrow range of n. Finally, it
is easily demonstrated that Equations (2.82)–(2.84) are indeed true by substituting in the Gaus-
sian probability density, Equation (2.81), and then performing a few elementary integrals. (See
Exercise 2.3.)

2.10 Central Limit Theorem

It may appear, at first sight, that the Gaussian distribution function is only relevant to two-state
systems. In fact, as we shall see, the Gaussian probability distribution is of crucial importance to
statistical physics because, under certain circumstances, it applies to all types of system.
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Let us briefly review how we obtained the Gaussian distribution function in the first place. We
started from a very simple system with only two possible outcomes. Of course, the probability
distribution function (for n1) for this system did not look anything like a Gaussian. However, when
we combined very many of these simple systems together, to produce a complicated system with
a great number of possible outcomes, we found that the resultant probability distribution function
(for n1) reduced to a Gaussian in the limit that the number of simple systems tended to infinity. We
started from a two outcome system because it was easy to calculate the final probability distribution
function when a finite number of such systems were combined together. Clearly, if we had started
from a more complicated system then this calculation would have been far more difficult.

Suppose that we start from a general system, with a general probability distribution function
(for some measurable quantity x). It turns out that if we combine a sufficiently large number of
such systems together then the resultant distribution function (for x) is always Gaussian. This as-
tonishing result is known as the central limit theorem. Unfortunately, the central limit theorem is
notoriously difficult to prove. A somewhat restricted proof is presented in Sections 1.10 and 1.11
of Reif. The central limit theorem guarantees that the probability distribution of any measurable
quantity is Gaussian, provided that a sufficiently large number of statistically independent obser-
vations are made. We can, therefore, confidently predict that Gaussian probability distributions are
going to crop up very frequently in statistical thermodynamics.

Exercises

2.1 Let Ix =
∫ ∞
∞ e−x 2

dx and Iy =
∫ ∞
∞ e−y 2

dy. Show that

Ix Iy =
∫ ∞

0
2π r e−r 2

dr,

where r 2 = x 2 + y 2. Hence, deduce that Ix = Iy = π 1/2.

2.2 Show that ∫ ∞

−∞
e−β x 2

dx =
√
π

β
.

Hence, deduce that ∫ ∞

−∞
x 2 e−β x 2

dx =
π 1/2

2 β 3/2 .

2.3 Confirm that ∫ ∞

−∞
P(n) dn = 1,∫ ∞

−∞
P(n) n dn = n̄,∫ ∞

−∞
P(n) (n − n̄) 2 dn = ∆∗n,
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where

P(n) =
1√

2π ∆∗n
exp
[
− (n − n̄) 2

2 (∆∗n) 2

]
.

2.4 Show that the probability of throwing 6 points or less with three (six-sided) dice is 5/54.

2.5 Consider a game in which six (six-sided) dice are rolled. Find the probability of obtaining:

(a) exactly one ace.

(b) at least one ace.

(c) exactly two aces.

2.6 In the game of Russian roulette, one inserts a single cartridge into the drum of a revolver,
leaving the other five chambers of the drum empty. One then spins the drum, aims at one’s
head, and pulls the trigger.

(a) Show that the probability of still being alive after playing the game N times is (5/6) N .

(b) Show that the probability of surviving (N − 1) turns in this game, and then being shot
the Nth times one pulls the trigger, is (5/6) N (1/6).

(c) Show that the mean number of times a player gets to pull the trigger is 6.

2.7 A battery of total emf V is connected to a resistor R. As a result, an amount of power
P = V 2/R is dissipated in the resistor. The battery itself consists of N individual cells
connected in series, so that V is equal to the sum of the emf’s of all these cells. The battery
is old, however, so that not all cells are in perfect condition. Thus, there is a probability
p that the emf of any individual cell has its normal value v; and a probability 1 − p that
the emf of any individual cell is zero because the cell has become internally shorted. The
individual cells are statistically independent of each other. Under these conditions, show
that the mean power, P, dissipated in the resistor, is

P =
p 2 V 2

R

[
1 − (1 − p)

N p

]
.

2.8 A drunk starts out from a lamppost in the middle of a street, taking steps of uniform length
l to the right or to the left with equal probability.

(a) Show that the average distance from the lamppost after N steps is zero.

(b) Show that the root-mean-square distance (i.e. the square-root of the mean of the dis-
tance squared) from the lamppost after N steps is

√
N l.

(c) Show that the probability that the drunk will return to the lamppost after N steps is
zero if N is odd, and

PN =
N!

(N/2)! (N/2)!

(
1
2

)N
if N is even.
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2.9 A molecule in a gas moves equal distances l between collisions with equal probabilities in
any direction. Show that, after a total of N such displacements, the mean-square displace-
ment, R 2, of the molecule from its starting point is R 2 = N l 2.

2.10 A penny is tossed 400 times. Find the probability of getting 215 heads. (Use the Gaussian
distribution.)

2.11 Suppose that the probability density for the speed s of a car on a highway is given by

ρ(s) = A s exp
(−s

s0

)
,

where 0 ≤ s ≤ ∞. Here, A and s0 are positive constants. More explicitly, ρ(s) ds gives the
probability that a car has a speed between s and s + ds.

(a) Determine A in terms of s0.

(b) What is the mean value of the speed?

(c) What is the “most probable” speed: that is, the speed for which the probability density
has a maximum.

(d) What is the probability that a car has a speed more than three times as large as the
mean value?
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3 Statistical Mechanics

3.1 Introduction

This chapter is devoted to the analysis of the internal motions of a many-particle system using
probability theory—a subject area that is known as statistical mechanics.

3.2 Specification of State of Many-Particle System

Let us first consider how we might specify the state of a many-particle system. Consider the
simplest possible dynamical system, which consists of a single spinless particle moving classically
in one dimension. Assuming that we know the particle’s equation of motion, the state of the system
is fully specified once we simultaneously measure the particle’s displacement, q, and momentum,
p. In principle, if we know q and p then we can calculate the state of the system at all subsequent
times using the equation of motion. In practice, it is impossible to specify q and p exactly, because
there is always an intrinsic error in any experimental measurement.

Consider the time evolution of q and p. This can be visualized by plotting the point (q, p) in
the q-p plane. This plane is generally known as phase-space. In general, as time progresses, the
point (q, p) will trace out some very complicated pattern in phase-space. Suppose that we divide
phase-space into rectangular cells of uniform dimensions δq and δp. Here, δq is the intrinsic error
in the position measurement, and δp the intrinsic error in the momentum measurement. The area
of each cell is

δq δp = h0, (3.1)

where h0 is a small constant having the dimensions of angular momentum. The coordinates q and
p can now be conveniently specified by indicating the cell in phase-space into which they plot at
any given time. This procedure automatically ensures that we do not attempt to specify q and p to
an accuracy greater than our experimental error, which would clearly be pointless.

Let us now consider a single spinless particle moving in three dimensions. In order to specify
the state of the system, we now need to know three q-p pairs: that is, qx-px, qy-py, and qz-pz.
Incidentally, the number of q-p pairs needed to specify the state of the system is usually called the
number of degrees of freedom of the system. (See Section B.1.) Thus, a single particle moving
in one dimension constitutes a one degree of freedom system, whereas a single particle moving in
three dimensions constitutes a three degree of freedom system.

Consider the time evolution of q and p, where q = (qx, qy, qz), et cetera. This can be visual-
ized by plotting the point (q, p) in the six-dimensional q-p phase-space. Suppose that we divide
the qx-px plane into rectangular cells of uniform dimensions δq and δp, and do likewise for the
qy-py and qz-pz planes. Here, δq and δp are again the intrinsic errors in our measurements of
position and momentum, respectively. This is equivalent to dividing phase-space up into regular
six-dimensional cells of volume h 3

0 . The coordinates q and p can now be conveniently specified
by indicating the cell in phase-space into which they plot at any given time. Again, this procedure
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automatically ensures that we do not attempt to specify q and p to an accuracy greater than our
experimental error.

Finally, let us consider a system consisting of N spinless particles moving classically in three
dimensions. In order to specify the state of the system, we need to specify a large number of
q-p pairs. The requisite number is simply the number of degrees of freedom, f . For the present
case, f = 3N, because each particle needs three q-p pairs. Thus, phase-space (i.e., the space of
all the q-p pairs) now possesses 2 f = 6N dimensions. Consider a particular pair of conjugate
(see Section B.4) phase-space coordinates, qi and pi. As before, we divide the qi-pi plane into
rectangular cells of uniform dimensions δq and δp. This is equivalent to dividing phase-space into
regular 2 f dimensional cells of volume h f

0 . The state of the system is specified by indicating which
cell it occupies in phase-space at any given time.

In principle, we can specify the state of the system to arbitrary accuracy, by taking the limit
h0 → 0. In reality, we know from Heisenberg’s uncertainty principle (see Section C.8) that it is
impossible to simultaneously measure a coordinate, qi, and its conjugate momentum, pi, to greater
accuracy than δqi δpi = �/2. Here, � is Planck’s constant divided by 2π. This implies that

h0 ≥ �/2. (3.2)

In other words, the uncertainty principle sets a lower limit on how finely we can chop up classical
phase-space.

In quantum mechanics, we can specify the state of the system by giving its wavefunction at
time t,

ψ(q1, · · · , qf , s1, · · · , sg, t), (3.3)

where f is the number of translational degrees of freedom, and g the number of internal (e.g., spin)
degrees of freedom. (See Appendix C.) For instance, if the system consists of N spin-one-half
particles then there will be 3N translational degrees of freedom, and N spin degrees of freedom
(because the spin of each particle can either be directed up or down along the z-axis). Alternatively,
if the system is in a stationary state (i.e., an eigenstate of the Hamiltonian) then we can just specify
f + g quantum numbers. (See Sections C.9 and C.10.) Either way, the future time evolution
of the wavefunction is fully determined by Schrödinger’s equation. In reality, this approach is
not practical because the Hamiltonian of the system is only known approximately. Typically,
we are dealing with a system consisting of many weakly-interacting particles. We usually know
the Hamiltonian for completely non-interacting particles, but the component of the Hamiltonian
associated with particle interactions is either impossibly complicated, or not very well known. We
can define approximate stationary eigenstates using the Hamiltonian for non-interacting particles.
The state of the system is then specified by the quantum numbers identifying these eigenstates. In
the absence of particle interactions, if the system starts off in a stationary state then it stays in that
state for ever, so its quantum numbers never change. The interactions allow the system to make
transitions between different “stationary” states, causing its quantum numbers to change in time.
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3.3 Principle of Equal A Priori Probabilities

We now know how to specify the instantaneous state of a many-particle system. In principle, such
a system is completely deterministic. Once we know the initial state, and the equations of motion
(or the Hamiltonian), we can evolve the system forward in time, and, thereby, determine all future
states. In reality, it is quite impossible to specify the initial state, or the equations of motion, to
sufficient accuracy for this method to have any chance of working. Furthermore, even if it were
possible, it would still not be a practical proposition to evolve the equations of motion. Remember
that we are typically dealing with systems containing Avogadro’s number of particles: that is,
about 10 24 particles. We cannot evolve 10 24 simultaneous differential equations. Even if we could,
we would not want to. After all, we are not particularly interested in the motions of individual
particles. What we really want is statistical information regarding the motions of all particles in
the system.

Clearly, what is required here is a statistical treatment of the problem. Instead of focusing on
a single system, let us proceed, in the usual manner, and consider a statistical ensemble consisting
of a large number of identical systems. (See Section 2.2.) In general, these systems are distributed
over many different states at any given time. In order to evaluate the probability that the system
possesses a particular property, we merely need to find the number of systems in the ensemble
that exhibit this property, and then divide by the total number of systems, in the limit as the latter
number tends to infinity.

We can usually place some general constraints on the system. Typically, we know the total
energy, E, the total volume, V , and the total number of particles, N. To be more exact, we can only
really say that the total energy lies between E and E + δE, et cetera, where δE is an experimental
error. Thus, we need only concern ourselves with those systems in the ensemble exhibiting states
that are consistent with the known constraints. We shall call these the states accessible to the
system. In general, there are a great many such states.

We now need to calculate the probability of the system being found in each of its accessible
states. In fact, the only way that we could “calculate” these probabilities would be to evolve all
of the systems in the ensemble in time, and observe how long, on average, they spend in each
accessible state. But, as we have already discussed, such a calculation is completely out of the
question. Instead, we shall effectively guess the probabilities.

Let us consider an isolated system in equilibrium. In this situation, we would expect the prob-
ability of the system being found in one of its accessible states to be independent of time. This
implies that the statistical ensemble does not evolve with time. Individual systems in the ensemble
will constantly change state, but the average number of systems in any given state should remain
constant. Thus, all macroscopic parameters describing the system, such as the energy and the vol-
ume, should also remain constant. There is nothing in the laws of mechanics that would lead us to
suppose that the system will be found more often in one of its accessible states than in another. We
assume, therefore, that the system is equally likely to be found in any of its accessible states. This is
called the assumption of equal a priori probabilities, and lies at the heart of statistical mechanics.
In fact, we use assumptions like this all of the time without really thinking about them. Suppose
that we were asked to pick a card at random from a well-shuffled pack of ordinary playing cards.
Most people would accept that we have an equal probability of picking any card in the pack. There
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is nothing that would favor one particular card over all of the others. Hence, because there are
fifty-two cards in a normal pack, we would expect the probability of picking the ace of spades, say,
to be 1/52. We could now place some constraints on the system. For instance, we could only count
red cards, in which case the probability of picking the ace of hearts, say, would be 1/26, by the
same reasoning. In both cases, we have used the principle of equal a priori probabilities. People
really believe that this principle applies to games of chance, such as cards, dice, and roulette. In
fact, if the principle were found not to apply to a particular game then most people would conclude
that the game was crooked. But, imagine trying to prove that the principle actually does apply to
a game of cards. This would be a very difficult task. We would have to show that the way most
people shuffle cards is effective at randomizing their order. A convincing study would have to be
part mathematics and part psychology.

In statistical mechanics, we treat a many-particle system a little like an extremely large game of
cards. Each accessible state corresponds to one of the cards in the pack. The interactions between
particles cause the system to continually change state. This is equivalent to constantly shuffling the
pack. Finally, an observation of the state of the system is like picking a card at random from the
pack. The principle of equal a priori probabilities then boils down to saying that we have an equal
chance of choosing any particular card.

It is, unfortunately, impossible to prove with mathematical rigor that the principle of equal a
priori probabilities applies to many-particle systems. Over the years, many people have attempted
this proof, and all have failed. Not surprisingly, therefore, statistical mechanics was greeted with
a great deal of scepticism when it was first proposed in the late 1800’s. One of the its main
proponents, Ludvig Boltzmann, became so discouraged by all of the criticism that he eventually
committed suicide. Nowadays, statistical mechanics is completely accepted into the cannon of
physics—quite simply because it works.

It is actually possible to formulate a reasonably convincing scientific case for the principle of
equal a priori probabilities. To achieve this we have to make use of the so-called H-theorem.

3.4 H-Theorem

Consider a system of weakly-interacting particles. In quantum mechanics, we can write the Hamil-
tonian for such a system as

H = H0 + H1, (3.4)

where H0 is the Hamiltonian for completely non-interacting particles, and H1 a small correction
due to the particle interactions. We can define approximate stationary eigenstates of the system
using H0. Thus,

H0 Ψr = Er Ψr, (3.5)

where the index r labels a state of energy Er and eigenstate Ψr. (See Section C.9.) In general, there
are many different eigenstates with the same energy—these are called degenerate states. (See
Section C.10.)

For example, consider N non-interacting spinless particles of mass m confined in a cubic box
of dimension L. According to standard wave-mechanics, the energy levels of the ith particle are
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given by

ei =
�

2π 2

2 m L2

(
n 2

1 i + n 2
2 i + n 2

3 i

)
, (3.6)

where n1 i, n2 i, and n3 i are three (positive integer) quantum numbers. (See Section C.10.) The
overall energy of the system is the sum of the energies of the individual particles, so that for a
general state r,

Er =
∑
i=1,N

ei. (3.7)

The overall state of the system is thus specified by 3N quantum numbers (i.e., three quantum num-
bers per particle). There are clearly very many different arrangements of these quantum numbers
that give the same overall energy.

Consider, now, a statistical ensemble of systems made up of weakly-interacting particles. Sup-
pose that this ensemble is initially very far from equilibrium. For instance, the systems in the
ensemble might only be distributed over a very small subset of their accessible states. If each sys-
tem starts off in a particular stationary state (i.e., with a particular set of quantum numbers) then,
in the absence of particle interactions, it will remain in that state for ever. Hence, the ensemble
will always stay far from equilibrium, and the principle of equal a priori probabilities will never be
applicable. In reality, particle interactions cause each system in the ensemble to make transitions
between its accessible “stationary” states. This allows the overall state of the ensemble to change
in time.

Let us label the accessible states of our system by the index r. We can ascribe a time-dependent
probability, Pr(t), of finding the system in a particular approximate stationary state r at time t. Of
course, Pr(t) is proportional to the number of systems in the ensemble in state r at time t. In
general, Pr is time-dependent because the ensemble is evolving towards an equilibrium state. Let
us assume that the probabilities are properly normalized, so that the sum over all accessible states
always yields unity: that is, ∑

r

Pr(t) = 1. (3.8)

Small interactions between particles cause transitions between the approximate stationary states
of the system. Thus, there exists some transition probability per unit time, Wrs, that a system origi-
nally in state r ends up in state s as a result of these interactions. Likewise, there exists a probability
per unit time Wsr that a system in state s makes a transition to state r. These transition probabilities
are meaningful in quantum mechanics provided that the particle interaction strength is sufficiently
small, there is a nearly continuous distribution of accessible energy levels, and we consider time in-
tervals that are not too small. These conditions are easily satisfied for the types of systems usually
analyzed via statistical mechanics (e.g., nearly-ideal gases). One important conclusion of quan-
tum mechanics is that the forward and backward transition probabilities between two states are the
same, so that

Wrs = Wsr (3.9)

for any two states r and s. This result follows from the time-reversal symmetry of quantum me-
chanics. On the microscopic scale of individual particles, all fundamental laws of physics (in
particular, classical and quantum mechanics) possess this symmetry. So, if a certain motion of
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particles satisfies the classical equations of motion (or Schrödinger’s equation) then the reversed
motion, with all particles starting off from their final positions and then retracing their paths exactly
until they reach their initial positions, satisfies these equations just as well.

Suppose that we were to “film” a microscopic process, such as two classical particles approach-
ing one another, colliding, and moving apart. We could then gather an audience together and show
them the film. To make things slightly more interesting we could play it either forwards or back-
wards. Because of the time-reversal symmetry of classical mechanics, the audience would not
be able to tell which way the film was running. In both cases, the film would show completely
plausible physical events.

We can play the same game for a quantum process. For instance, we could “film” a group of
photons impinging on some atoms. Occasionally, one of the atoms will absorb a photon and make a
transition to an excited state (i.e., a state with higher than normal energy). We could easily estimate
the rate constant for this process by watching the film carefully. If we play the film backwards then
it will appear to show excited atoms occasionally emitting a photon, and then decaying back to
their unexcited state. If quantum mechanics possesses time-reversal symmetry (which it certainly
does) then both films should appear equally plausible. This means that the rate constant for the
absorption of a photon to produce an excited state must be the same as the rate constant for the
excited state to decay by the emission of a photon. Otherwise, in the backwards film, the excited
atoms would appear to emit photons at the wrong rate, and we could then tell that the film was
being played backwards. It follows, therefore, that, as a consequence of time-reversal symmetry,
the rate constant for any process in quantum mechanics must equal the rate constant for the inverse
process.

The probability, Pr, of finding the systems in the ensemble in a particular state r changes with
time for two reasons. Firstly, systems in another state s can make transitions to the state r. The
rate at which this occurs is Ps, the probability that the systems are in the state s to begin with,
multiplied by the rate constant of the transition Wsr. Secondly, systems in the state r can make
transitions to other states such as s. The rate at which this occurs is clearly Pr times Wrs. We can,
thus, write a simple differential equation for the time evolution of Pr:

dPr

dt
=
∑
s�r

PsWsr −
∑
s�r

PrWrs, (3.10)

or
dPr

dt
=
∑

s

Wrs(Ps − Pr), (3.11)

where use has been made of the symmetry condition (3.9). The summation is over all accessible
states.

Consider now the quantity H (from which the H-theorem derives its name), which is defined
as the average value of ln Pr taken over all accessible states:

H ≡ ln Pr =
∑

r

Pr ln Pr. (3.12)
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This quantity changes as the individual probabilities Pr vary in time. Straightforward differentia-
tion of the previous equation yields

dH
dt
=
∑

r

(
dPr

dt
ln Pr +

dPr

dt

)
=
∑

r

dPr

dt
(ln Pr + 1). (3.13)

According to Equation (3.11), this can be written

dH
dt
=
∑

r

∑
s

Wrs (Ps − Pr) (ln Pr + 1). (3.14)

We can now interchange the dummy summations indices r and s to give

dH
dt
=
∑

r

∑
s

Wsr (Pr − Ps) (ln Ps + 1). (3.15)

Finally, we can write dH/dt in a more symmetric form by adding the previous two equations, and
then making use of Equation (3.9):

dH
dt
= −1

2

∑
r

∑
s

Wrs (Pr − Ps) (ln Pr − ln Ps). (3.16)

Note, however, that ln Pr is a monotonically increasing function of Pr. It follows that ln Pr > ln Ps

whenever Pr > Ps, and vice versa. Thus, in general, the right-hand side of the previous equation is
the sum of many negative contributions. Hence, we conclude that

dH
dt
≤ 0. (3.17)

The equality sign only holds in the special case where all accessible states are equally probable,
so that Pr = Ps for all r and s. This result is called the H-theorem, and was first proved by the
unfortunate Professor Boltzmann.

The H-theorem tells us that if an isolated system is initially not in equilibrium then it will
evolve in time, under the influence of particle interactions, in such a manner that the quantity H
always decreases. This process will continue until H reaches its minimum possible value, at which
point dH/dt = 0, and there is no further evolution of the system. According to Equation (3.16),
in this final equilibrium state, the system is equally likely to be found in any one of its accessible
states. This is, of course, the situation predicted by the principle of equal a priori probabilities.

The previous argument does not constitute a mathematically rigorous proof that the principle
of equal a priori probabilities applies to many-particle systems, because we tacitly made an un-
warranted assumption. That is, we assumed that the probability of the system making a transition
from some state r to another state s is independent of the past history of the system. In general, this
is not the case in physical systems, although there are many situations in which it is a fairly good
approximation. Thus, the epistemological status of the principle of equal a priori probabilities is
that it is plausible, but remains unproven. As we have already mentioned, the ultimate justifica-
tion for this principle is empirical—it leads to theoretical predictions that are in accordance with
experimental observations.
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3.5 Relaxation Time

The H-theorem guarantees that an isolated many-particle system will eventually reach an equilib-
rium state, irrespective of its initial state. The typical time required for this process to take place
is called the relaxation time, and depends, in detail, on the nature of the inter-particle interactions.
The principle of equal a priori probabilities is only valid for equilibrium states. It follows that we
can only safely apply this principle to systems that have remained undisturbed for many relaxation
times since they were setup, or last interacted with the outside world.

The relaxation time for the air in a typical classroom is very much less than one second. This
suggests that such air is probably in equilibrium most of the time, and should, therefore, be gov-
erned by the principle of equal a priori probabilities. In fact, this is known to be the case.

Consider another example. Our galaxy, the “Milky Way,” is an isolated dynamical system
made up of about 10 11 stars. In fact, it can be thought of as a self-gravitating “gas” of stars. At
first sight, the Milky Way would seem to be an ideal system on which to test out the ideas of
statistical mechanics. Stars in the Milky Way interact via occasional near-miss events in which
they exchange energy and momentum. Actual collisions are very rare indeed. Unfortunately, such
interactions take place very infrequently, because there is a lot of empty space between the stars.
The best estimate for the relaxation time of the Milky Way is about 10 13 years. This should be
compared with the estimated age of the Milky Way, which is only about 10 10 years. It is clear
that, despite its great age, the Milky Way has not been around long enough to reach an equilibrium
state. This suggests that the principle of equal a priori probabilities cannot be used to describe
stellar dynamics. Not surprisingly, the observed velocity distribution of the stars in the vicinity of
the Sun is not governed by this principle.

3.6 Reversibility and Irreversibility

Previously, we mentioned that, on a microscopic level, the laws of physics are invariant under time-
reversal. In other words, microscopic phenomena look physically plausible when run in reverse.
We usually say that these phenomena are reversible. Does this imply that macroscopic phenomena
are also reversible? Consider an isolated many-particle system that starts off far from equilibrium.
According to the H-theorem, it will evolve towards equilibrium and, as it does so, the macroscopic
quantity H will decrease. But, if we run this process backwards in time then the system will appear
to evolve away from equilibrium, and the quantity H will increase. This type of behavior is not
physical because it violates the H-theorem. In other words, if we saw a film of a macroscopic
process then we could very easily tell if it was being run backwards.

For instance, suppose that, by some miracle, we were able to move all of the oxygen molecules
in the air in some classroom to one side of the room, and all of the nitrogen molecules to the
opposite side. We would not expect this state to persist for very long. Pretty soon the oxygen and
nitrogen molecules would start to intermingle, and this process would continue until they were
thoroughly mixed together throughout the room. This, of course, is the equilibrium state for air.
In reverse, this process appears completely unphysical. We would start off from perfectly normal
air, and suddenly, for no good reason, the air’s constituent oxygen and nitrogen molecules would
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appear to separate, and move to opposite sides of the room. This scenario is not impossible, but,
from everything we know about the world around us, it is spectacularly unlikely. We conclude,
therefore, that macroscopic phenomena are generally irreversible, because they appear unphysical
when run in reverse.

How does the irreversibility of macroscopic phenomena arise? It certainly does not come from
the fundamental laws of physics, because these laws are all reversible. In the previous example,
the oxygen and nitrogen molecules intermingled by continually scattering off one another. Each
individual scattering event would look perfectly reasonable viewed in reverse. However, the net
result of these scattering event appears unphysical when run backwards. How can we obtain an
irreversible process from the combined effects of very many reversible processes? This is a vitally
important question. Unfortunately, we are not quite at the stage where we can formulate a con-
vincing answer. (We shall answer the question in Section 5.6.) Note, however, that the essential
irreversibility of macroscopic phenomena is one of the key results of statistical thermodynamics.

3.7 Probability Calculations

The principle of equal a priori probabilities is fundamental to all of statistical mechanics, and al-
lows a complete description of the properties of macroscopic systems in equilibrium. In principle,
statistical mechanics calculations are very simple. Consider a system in equilibrium that is iso-
lated, so that its total energy is known to have a constant value lying somewhere in the range E to
E + δE. In order to make statistical predictions, we focus attention on an ensemble of such sys-
tems, all of which have their energy in this range. Let Ω(E) be the total number of different states
in the ensemble with energies in the specified range. Suppose that, among these states, there are a
number Ω(E; yk) for which some parameter, y, of the system assumes the discrete value yk. (This
discussion can easily be generalized to deal with a parameter that can assume a continuous range
of values.) The principle of equal a priori probabilities tells us that all of the Ω(E) accessible states
of the system are equally likely to occur in the ensemble. It follows that the probability, P(yk), that
the parameter y of the system assumes the value yk is simply

P(yk) =
Ω(E; yk)
Ω(E)

. (3.18)

Clearly, the mean value of y for the system is given by

ȳ =

∑
k Ω(E; yk) yk

Ω(E)
, (3.19)

where the sum is over all possible values that y can assume. In the previous formula, it is tacitly
assumed that Ω(E) →∞, which is generally the case in thermodynamic systems.

It can be seen that, using the principle of equal a priori probabilities, all calculations in statisti-
cal mechanics reduce to counting states, subject to various constraints. In principle, this is a fairly
straightforward task. In practice, problems arise if the constraints become too complicated. These
problems can usually be overcome with a little mathematical ingenuity. Nevertheless, there is no
doubt that this type of calculation is far easier than trying to solve the classical equations of motion
(or Schrödinger’s equation) directly for a many-particle system.
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3.8 Behavior of Density of States

Consider an isolated system in equilibrium whose volume is V , and whose energy lies in the range
E to E + δE. Let Ω(E,V) be the total number of microscopic states that satisfy these constraints. It
would be useful if we could estimate how this number typically varies with the macroscopic param-
eters of the system. The easiest way to do this is to consider a specific example. For instance, an
ideal gas made up of spinless monatomic particles. This is a particularly simple example, because,
for such a gas, the particles possess translational, but no internal (e.g., vibrational, rotational, or
spin), degrees of freedom. By definition, interatomic forces are negligible in an ideal gas. In other
words, the individual particles move in an approximately uniform potential. It follows that the
energy of the gas is just the total translational kinetic energy of its constituent particles. In other
words,

E =
1

2 m

∑
i=1,N

p 2
i , (3.20)

where m is the particle mass, N the total number of particles, and pi the vector momentum of the
ith particle.

Consider the system in the limit in which the energy, E, of the gas is much greater than the
ground-state energy, so that all of the quantum numbers are large. The classical version of sta-
tistical mechanics, in which we divide up phase-space into cells of equal volume, is valid in this
limit. The number of states, Ω(E,V), lying between the energies E and E + δE is simply equal to
the number of cells in phase-space contained between these energies. In other words, Ω(E,V) is
proportional to the volume of phase-space between these two energies:

Ω(E,V) ∝
∫ E+δE

E
d 3r1 · · · d 3rN d 3p1 · · · d 3pN. (3.21)

Here, the integrand is the element of volume of phase-space, with

d 3ri ≡ dxi dyi dzi, (3.22)

d 3pi ≡ dpx i dpy i dpz i, (3.23)

where (xi, yi, zi) and (px i, py i, pz i) are the Cartesian coordinates and momentum components of the
ith particle, respectively. The integration is over all coordinates and momenta such that the total
energy of the system lies between E and E + δE.

For an ideal gas, the total energy E does not depend on the positions of the particles. [See
Equation (3.20).] This implies that the integration over the position vectors, ri, can be performed
immediately. Because each integral over ri extends over the volume of the container (the particles
are, of course, not allowed to stray outside the container),

∫
d 3ri = V . There are N such integrals,

so Equation (3.21) reduces to
Ω(E,V) ∝ V Nχ(E), (3.24)

where

χ(E) ∝
∫ E+δE

E
d 3p1 · · · d 3pN (3.25)
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is a momentum-space integral that is independent of the volume.
The energy of the system can be written

E =
1

2 m

∑
i=1,N

∑
α=1,3

p 2
α i, (3.26)

because p 2
i = p 2

1 i + p 2
2 i + p 2

3 i, denoting the (x, y, z) components by (1, 2, 3), respectively. The
previous sum contains 3N square terms. For E = constant, Equation (3.26) describes the locus of
a sphere of radius R(E) = (2 m E)1/2 in the 3N-dimensional space of the momentum components.
Hence, χ(E) is proportional to the volume of momentum phase-space contained in the region lying
between the sphere of radius R(E), and that of slightly larger radius R(E + δE). This volume is
proportional to the area of the inner sphere multiplied by δR ≡ R(E +δE)−R(E). Because the area
varies like R 3N−1, and δR ∝ δE/E 1/2, we have

χ(E) ∝ R 3N−1/E 1/2 ∝ E 3N/2−1. (3.27)

Combining this result with Equation (3.24), we obtain

Ω(E,V) � B V N E 3N/2, (3.28)

where B is a constant independent of V or E, and we have also made use of the fact that N 
 1.
Note that, because the number of degrees of freedom of the system is f = 3N, the previous relation
can be very approximately written

Ω(E,V) ∝ V f E f . (3.29)

In other words, the density of states varies like the extensive macroscopic parameters of the system
raised to the power of the number of degrees of freedom. An extensive parameter is one that scales
with the size of the system (e.g., the volume). (See Section 7.8.) Because thermodynamic systems
generally possess a very large number of degrees of freedom, this result implies that the density of
states is an exceptionally rapidly increasing function of the energy and volume. This result, which
turns out to be quite general, is of great significance in statistical thermodynamics.

Exercises

3.1 Consider a particle of mass m confined within a cubic box of dimensions Lx = Ly = Lz.
According to elementary quantum mechanics, the possible energy levels of this particle are
given by

E =
�

2π 2

2 m

n 2
x

L 2
x
+

n 2
y

L 2
y

+
n 2

z

L 2
z

 ,
where nx, ny, and nz are positive integers. (See Section C.10.)

(a) Suppose that the particle is in a given state specified by particular values of the three
quantum numbers, nx, ny, nz. By considering how the energy of this state must change
when the length, Lx, of the box parallel to the x-axis is very slowly changed by a
small amount dLx, show that the force exerted by a particle in this state on a wall
perpendicular to the x-axis is given by Fx = −∂E/∂Lx.
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(b) Explicitly calculate the force per unit area (or pressure) acting on this wall. By aver-
aging over all possible states, find an expression for the mean pressure on this wall.
(Hint: exploit the fact that n 2

x = n 2
y = n 2

z must all be equal, by symmetry.) Show that
this mean pressure can be written

p =
2
3

E
V
,

where E is the mean energy of the particle, and V = Lx Ly Lz the volume of the box.

3.2 The state of a system with f degrees of freedom at time t is specified by its generalized
coordinates, q1, · · · , qf , and conjugate momenta, p1, · · · , pf . These evolve according to
Hamilton’s equations (see Section B.9):

q̇i =
∂H
∂pi

,

ṗi = −∂H
∂qi

.

Here, H(q1, · · · , qf , p1, · · · , pf , t) is the Hamiltonian of the system. Consider a statistical
ensemble of such systems. Let ρ(q1, · · · , qf , p1, · · · , pf , t) be the number density of systems
in phase-space. In other words, let ρ(q1, · · · , qf , p1, · · · , pf , t) dq1 dq2 · · · dqf dp1 dp2 · · · dpf

be the number of states with q1 lying between q1 and q1 + dq1, p1 lying between p1 and
p1 + dp1, et cetera, at time t.

(a) Show that ρ evolves in time according to Liouville’s theorem:

∂ρ

∂t
+
∑
i=1, f

(
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

)
= 0.

[Hint: Consider how the the flux of systems into a small volume of phase-space causes
the number of systems in the volume to change in time.]

(b) By definition,

N =
∫ ∞

−∞
ρ dq1 · · · dqf dp1 · · · dpf

is the total number of systems in the ensemble. The integral is over all of phase-
space. Show that Liouville’s theorem conserves the total number of systems (i.e.,
dN/dt = 0). You may assume that ρ becomes negligibly small if any of its arguments
(i.e., q1, · · · , qf and p1, · · · , pf ) becomes very large. This is equivalent to assuming
that all of the systems are localized to some region of phase-space.

(c) Suppose that H has no explicit time dependence (i.e., ∂H/∂t = 0). Show that the
ensemble-averaged energy,

H =
∫ ∞

−∞
H ρ dq1 · · · dqf dp1 · · · dpf ,

is a constant of the motion.
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(d) Show that if H is also not an explicit function of the coordinate qj then the ensemble
average of the conjugate momentum,

pj =

∫ ∞

−∞
pj ρ dq1 · · · dqf dp1 · · · dpf ,

is a constant of the motion.

3.3 Consider a system consisting of very many particles. Suppose that an observation of a
macroscopic variable, x, can result in any one of a great many closely-spaced values, xr.
Let the (approximately constant) spacing between adjacent values be δx. The probability
of occurrence of the value xr is denoted Pr. The probabilities are assumed to be properly
normalized, so that ∑

r

Pr �
∫ ∞

−∞

Pr(xr)
δx

dxr = 1,

where the summation is over all possible values. Suppose that we know the mean and the
variance of x, so that

x =
∑

r

xr Pr

and
(∆x) 2 =

∑
r

(xr − x) 2 Pr

are both fixed. According to the H-theorem, the system will naturally evolve towards a
final equilibrium state in which the quantity

H =
∑

r

Pr ln Pr

is minimized. Used the method of Lagrange multipliers to minimixe H with respect to the
Pr, subject to the constraints that the probabilities remain properly normalized, and that the
mean and variance of x remain constant. (See Section B.6.) Show that the most general
form for the Pr which can achieve this goal is

Pr(xr) � δx√
2π (∆x) 2

−(xr − x) 2

2 (∆x) 2

 .
This result demonstrates that the system will naturally evolve towards a final equilibrium
state in which all of its macroscopic variables have Gaussian probability distributions,
which is in accordance with the central limit theorem. (See Section 2.10.)
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4 Heat and Work

4.1 Brief History of Heat and Work

In 1789, the French scientist Antoine Lavoisier published a famous treatise on chemistry which,
among other things, demolished the then prevalent theory of combustion. This theory, known to
history as the phlogiston theory, is so extraordinary stupid that it is not even worth describing. In
place of phlogiston theory, Lavoisier proposed the first reasonably sensible scientific interpretation
of heat. Lavoisier pictured heat as an invisible, tasteless, odorless, weightless fluid, which he
called calorific fluid. He postulated that hot bodies contain more of this fluid than cold bodies.
Furthermore, he suggested that the constituent particles of calorific fluid repel one another, causing
heat to flow spontaneously from hot to cold bodies when they are placed in thermal contact.

The modern interpretation of heat is, or course, somewhat different to Lavoisier’s calorific
theory. Nevertheless, there is an important subset of problems, involving heat flow, for which
Lavoisier’s approach is rather useful. These problems often crop up as examination questions. For
example: “A clean dry copper calorimeter contains 100 grams of water at 30◦ degrees centigrade.
A 10 gram block of copper heated to 60◦ centigrade is added. What is the final temperature of the
mixture?”. How do we approach this type of problem? According to Lavoisier’s theory, there is an
analogy between heat flow and incompressible fluid flow under gravity. The same volume of liquid
added to containers of different (uniform) cross-sectional area fills them to different heights. If the
volume is V , and the cross-sectional area is A, then the height is h = V/A. In a similar manner,
the same quantity of heat added to different bodies causes them to rise to different temperatures.
If Q is the heat and θ is the (absolute) temperature then θ = Q/C, where the constant C is termed
the heat capacity. [This is a somewhat oversimplified example. In general, the heat capacity is
a function of temperature, so that C = C(θ).] If two containers, filled to different heights, with a
free-flowing incompressible fluid are connected together at the bottom, via a small pipe, then fluid
will flow under gravity, from one to the other, until the two heights are the same. The final height
is easily calculated by equating the total fluid volume in the initial and final states. Thus,

h1 A1 + h2 A2 = h A1 + h A2, (4.1)

giving

h =
h1 A1 + h2 A2

A1 + A2
. (4.2)

Here, h1 and h2 are the initial heights in the two containers, A1 and A2 are the corresponding cross-
sectional areas, and h is the final height. Likewise, if two bodies, initially at different temperatures,
are brought into thermal contact then heat will flow, from one to the other, until the two tempera-
tures are the same. The final temperature is calculated by equating the total heat in the initial and
final states. Thus,

θ1 C1 + θ2 C2 = θC1 + θC2, (4.3)
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giving

θ =
θ1 C1 + θ2 C2

C1 +C2
, (4.4)

where the meaning of the various symbols should be self-evident.
The analogy between heat flow and fluid flow works because, in Lavoisier’s theory, heat is a

conserved quantity, just like the volume of an incompressible fluid. In fact, Lavoisier postulated
that heat was an element. Note that atoms were thought to be indestructible before nuclear reactions
were discovered, so the total amount of each element in the cosmos was assumed to be a constant.
Thus, if Lavoisier had cared to formulate a law of thermodynamics from his calorific theory then
he would have said that the total amount of heat in the universe was a constant.

In 1798, Benjamin Thompson, an Englishman who spent his early years in pre-revolutionary
America, was minister for war and police in the German state of Bavaria. One of his jobs was
to oversee the boring of cannons in the state arsenal. Thompson was struck by the enormous, and
seemingly inexhaustible, amount of heat generated in this process. He simply could not understand
where all this heat was coming from. According to Lavoisier’s calorific theory, the heat must
flow into the cannon from its immediate surroundings, which should, therefore, become colder.
The flow should also eventually cease when all of the available heat has been extracted. In fact,
Thompson observed that the surroundings of the cannon got hotter, not colder, and that the heating
process continued unabated as long as the boring machine was operating. Thompson postulated
that some of the mechanical work done on the cannon by the boring machine was being converted
into heat. At the time, this was quite a revolutionary concept, and most people were not ready to
accept it. This is somewhat surprising, because, by the end of the eighteenth century, the conversion
of heat into work, by steam engines, was quite commonplace. Nevertheless, the conversion of work
into heat did not gain broad acceptance until 1849, when an English physicist called James Prescott
Joule published the results of a long and painstaking series of experiments. Joule confirmed that
work could indeed be converted into heat. Moreover, he found that the same amount of work
always generates the same quantity of heat. This is true regardless of the nature of the work (e.g.,
mechanical, electrical, et cetera). Joule was able to formulate what became known as the work
equivalent of heat. Namely, that 1 newton meter of work is equivalent to 0.241 calories of heat.
A calorie is the amount of heat required to raise the temperature of 1 gram of water by 1 degree
centigrade. Nowadays, we measure both heat and work using the same units, so that one newton
meter, or joule, of work is equivalent to one joule of heat.

In 1850, the German physicist Clausius correctly postulated that the essential conserved quan-
tity is neither heat nor work, but some combination of the two which quickly became known as
energy, from the Greek energeia meaning “activity” or “action.” According to Clausius, the change
in the internal energy of a macroscopic body can be written

∆E = Q −W, (4.5)

where Q is the heat absorbed from the surroundings, and W is the work done on the surroundings.
This relation is known as the first law of thermodynamics.
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4.2 Macrostates and Microstates

In describing a system made up of a great many particles, it is usually possible to specify some
macroscopically measurable independent parameters, x1, x2, · · · , xn, that affect the particles’ equa-
tions of motion. These parameters are termed the external parameters of the system. Examples
of such parameters are the volume (this gets into the equations of motion because the potential
energy becomes infinite when a particle strays outside the available volume), and any applied elec-
tric and magnetic fields. A microstate of the system is defined as a state for which the motions of
the individual particles are completely specified (subject, of course, to the unavoidable limitations
imposed by the uncertainty principle of quantum mechanics). In general, the overall energy of a
given microstate, r, is a function of the external parameters:

Er ≡ Er(x1, x2, · · · , xn). (4.6)

A macrostate of the system is defined by specifying the external parameters, and any other con-
straints to which the system is subject. For example, if we are dealing with an isolated system (i.e.,
one that can neither exchange heat with, nor do work on, its surroundings) then the macrostate
might be specified by giving the values of the volume and the constant total energy. For a many-
particle system, there are generally a very great number of microstates that are consistent with a
given macrostate.

4.3 Microscopic Interpretation of Heat and Work

Consider a macroscopic system, A, that is known to be in a given macrostate. To be more exact,
consider an ensemble of similar macroscopic systems, A, where each system in the ensemble is in
one of the many microstates consistent with the given macrostate. There are two fundamentally
different ways in which the average energy of A can change due to interaction with its surroundings.
If the external parameters of the system remain constant then the interaction is termed a purely
thermal interaction. Any change in the average energy of the system is attributed to an exchange
of heat with its environment. Thus,

∆E = Q, (4.7)

where Q is the heat absorbed by the system. On a microscopic level, the energies of the individual
microstates are unaffected by the absorption of heat. In fact, it is the distribution of the systems in
the ensemble over the various microstates that is modified.

Suppose that the system A is thermally insulated from its environment. This can be achieved by
surrounding it by an adiabatic envelope (i.e., an envelope fabricated out of a material that is a poor
conductor of heat, such a fiber glass). Incidentally, the term adiabatic is derived from the Greek
adiabatos, which means “impassable.” In scientific terminology, an adiabatic process is one in
which there is no exchange of heat. The system A is still capable of interacting with its environment
via its external parameters. This type of interaction is termed mechanical interaction, and any
change in the average energy of the system is attributed to work done on it by its surroundings.
Thus,

∆E = −W, (4.8)
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where W is the work done by the system on its environment. On a microscopic level, the energy of
the system changes because the energies of the individual microstates are functions of the external
parameters. [See Equation (4.6).] Thus, if the external parameters are changed then, in general,
the energies of all of the systems in the ensemble are modified (because each is in a specific mi-
crostate). Such a modification usually gives rise to a redistribution of the systems in the ensemble
over the accessible microstates (without any heat exchange with the environment). Clearly, from a
microscopic viewpoint, performing work on a macroscopic system is quite a complicated process.
Nevertheless, macroscopic work is a quantity that is easy to measure experimentally. For instance,
if the system A exerts a force F on its immediate surroundings, and the change in external parame-
ters corresponds to a displacement x of the center of mass of the system, then the work done by A
on its surroundings is simply

W = F·x : (4.9)

that is, the product of the force and the displacement along the line of action of the force. In a
general interaction of the system A with its environment there is both heat exchange and work
performed. We can write

Q ≡ ∆E +W, (4.10)

which serves as the general definition of the absorbed heat Q. (Hence, the equivalence sign.) The
quantity Q is simply the change in the mean energy of the system that is not due to the modification
of the external parameters. Note that the notion of a quantity of heat has no independent meaning
apart from Equation (4.10). The mean energy, E, and work performed, W, are both physical
quantities that can be determined experimentally, whereas Q is merely a derived quantity.

4.4 Quasi-Static Processes

Consider the special case of an interaction of the system A with its surroundings that is carried
out so slowly that A remains arbitrarily close to equilibrium at all times. Such a process is said
to be quasi-static for the system A. In practice, a quasi-static process must be carried out on a
timescale that is much longer than the relaxation time of the system. Recall that the relaxation
time is the typical timescale for the system to return to equilibrium after being suddenly disturbed.
(See Section 3.5.)

A finite quasi-static change can be built up out of many infinitesimal changes. The infinitesimal
heat, d̄Q, absorbed by the system when infinitesimal work, d̄W, is done on its environment, and its
average energy changes by dE, is given by

d̄Q ≡ dE + d̄W. (4.11)

The special symbols d̄W and d̄Q are introduced to emphasize that the work done, and the heat
absorbed, are infinitesimal quantities that do not correspond to the difference between two works
or two heats. Instead, the work done, and the heat absorbed, depend on the interaction process
itself. Thus, it makes no sense to talk about the work in the system before and after the process, or
the difference between these.
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If the external parameters of the system have the values x1, · · · , xn then the energy of the system
in a definite microstate, r, can be written

Er = Er(x1, · · · , xn). (4.12)

Hence, if the external parameters are changed by infinitesimal amounts, so that xα → xα + dxα for
α in the range 1 to n, then the corresponding change in the energy of the microstate is

dEr =
∑
α=1,n

∂Er

∂xα
dxα. (4.13)

The work, d̄W, done by the system when it remains in this particular state r is [see Equation (4.8)]

d̄W =
∑
α=1,n

Xα r dxα, (4.14)

where
Xα r ≡ −∂Er

∂xα
(4.15)

is termed the generalized force (conjugate to the external parameter xα) in the state r. (See Sec-
tion B.2.) Note that if xα is a displacement then Xα r is an ordinary force.

Consider, now, an ensemble of systems. Provided that the external parameters of the system
are changed quasi-statically, the generalized forces Xα r have well-defined mean values that are
calculable from the distribution of systems in the ensemble characteristic of the instantaneous
macrostate. The macroscopic work, d̄W, resulting from an infinitesimal quasi-static change of the
external parameters is obtained by calculating the decrease in the mean energy resulting from the
parameter change. Thus,

d̄W =
∑
α=1,n

Xα dxα, (4.16)

where

Xα ≡ −∂Er

∂xα
(4.17)

is the mean generalized force conjugate to xα. The mean value is calculated from the equilibrium
distribution of systems in the ensemble corresponding to the external parameter values xα. The
macroscopic work, W, resulting from a finite quasi-static change of external parameters can be
obtained by integrating Equation (4.16).

The most well-known example of quasi-static work in thermodynamics is that done by pressure
when the volume changes. For simplicity, suppose that the volume V is the only external parameter
of any consequence. The work done in changing the volume from V to V+dV is simply the product
of the force and the displacement (along the line of action of the force). By definition, the mean
equilibrium pressure, p̄, of a given macrostate is equal to the normal force per unit area acting on
any surface element. Thus, the normal force acting on a surface element dSi is p̄ dSi. Suppose that
the surface element is subject to a displacement dxi. The work done by the element is p̄ dSi ·dxi.
The total work done by the system is obtained by summing over all of the surface elements. Thus,

d̄W = p̄ dV, (4.18)
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where
dV =

∑
i

dSi ·dxi (4.19)

is the infinitesimal volume change due to the displacement of the surface. It follows from Equa-
tions (4.16) and (4.18) that

p̄ = −∂E
∂V

. (4.20)

Thus, the mean pressure is the generalized force conjugate to the volume, V .
Suppose that a quasi-static process is carried out in which the volume is changed from Vi to

Vf . In general, the mean pressure, p̄, is a function of the volume, so p̄ = p̄(V). It follows that the
macroscopic work done by the system is given by

Wi f =

∫ V f

Vi

d̄W =
∫ V f

Vi

p̄(V) dV. (4.21)

This quantity is just the area under the curve in a plot of p̄(V) versus V .

4.5 Exact and Inexact Differentials

In our investigation of heat and work, we have come across various infinitesimal objects, such as
dE and d̄W. It is instructive to examine these infinitesimals more closely.

Consider the purely mathematical problem where F(x, y) is some general function of two in-
dependent variables, x and y. Consider the change in F in going from the point (x, y) in the x-y
plane to the neighboring point (x + dx, y + dy). This is given by

dF = F(x + dx, y + dy) − F(x, y), (4.22)

which can also be written
dF = X(x, y) dx + Y(x, y) dy, (4.23)

where X = ∂F/∂x and Y = ∂F/∂y. Clearly, dF is simply the infinitesimal difference between two
adjacent values of the function F. This type of infinitesimal quantity is termed an exact differential
to distinguish it from another type to be discussed presently. If we move in the x-y plane from an
initial point i ≡ (xi, yi) to a final point f ≡ (x f , y f ) then the corresponding change in F is given by

∆F = F f − Fi =

∫ f

i
dF =

∫ f

i
(X dx + Y dy). (4.24)

Note that because the difference on the left-hand side depends only on the initial and final points,
the integral on the right-hand side can only depend on these points as well. In other words, the
value of the integral is independent of the path taken in going from the initial to the final point.
This is the distinguishing feature of an exact differential. Consider an integral taken around a
closed circuit in the x-y plane. In this case, the initial and final points correspond to the same
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point, so the difference F f − Fi is clearly zero. It follows that the integral of an exact differential
over a closed circuit is always zero: ∮

dF ≡ 0. (4.25)

Of course, not every infinitesimal quantity is an exact differential. Consider the infinitesimal
object

d̄G ≡ X′(x, y) dx + Y ′(x, y) dz, (4.26)

where X′ and Y ′ are two general functions of x and y. It is easy to test whether or not an in-
finitesimal quantity is an exact differential. Consider the expression (4.23). It is clear that because
X = ∂F/∂x and Y = ∂F/∂y then

∂X
∂y
=
∂Y
∂x
=

∂ 2F
∂x ∂y

. (4.27)

Thus, if
∂X′

∂y
�
∂Y ′

∂x
(4.28)

(as is assumed to be the case), then d̄G cannot be an exact differential, and is instead termed an
inexact differential. The special symbol d̄ is used to denote an inexact differential. Consider the
integral of d̄G over some path in the x-y plane. In general, it is not true that∫ f

i
d̄G =

∫ f

i
(X′ dx + Y ′ dy) (4.29)

is independent of the path taken between the initial and final points. This is the distinguishing
feature of an inexact differential. In particular, the integral of an inexact differential around a
closed circuit is not necessarily zero, so ∮

d̄G � 0. (4.30)

Consider, for the moment, the solution of

d̄G = 0, (4.31)

which reduces to the ordinary differential equation

dy
dx
= −X′

Y ′
. (4.32)

Because the right-hand side is a known function of x and y, the previous equation defines a definite
direction (i.e., gradient) at each point in the x-y plane. The solution simply consists of drawing a
system of curves in the x-y plane such that, at any point, the tangent to the curve is as specified by
Equation (4.32). This defines a set of curves that can be written σ(x, y) = c, where c is a labeling
parameter. It follows that, on a particular curve,

dσ
dx
≡ ∂σ
∂x
+
∂σ

∂y

dy
dx
= 0. (4.33)
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The elimination of dy/dx between Equations (4.32) and (4.33) yields

Y ′
∂σ

∂x
= X′

∂σ

∂y
=

X′ Y ′

τ
, (4.34)

where τ(x, y) is function of x and y. The previous equation could equally well be written

X′ = τ
∂σ

∂x
, Y ′ = τ

∂σ

∂y
. (4.35)

Inserting Equation (4.35) into Equation (4.26) gives

d̄G = τ
(
∂σ

∂x
dx +

∂σ

∂y
dy
)
= τ dσ, (4.36)

or
d̄G
τ
= dσ. (4.37)

Thus, dividing the inexact differential d̄G by τ yields the exact differential dσ. A factor τ that
possesses this property is termed an integrating factor. Because the previous analysis is quite
general, it is clear that an inexact differential involving two independent variables always admits of
an integrating factor. Note, however, this is not generally the case for inexact differentials involving
more than two variables.

After this mathematical excursion, let us return to a physical situation of interest. The macrostate
of a macroscopic system can be specified by the values of the external parameters (e.g., the vol-
ume), and the mean energy, E. This, in turn, fixes other parameters, such as the mean pressure, p̄.
Alternatively, we can specify the external parameters and the mean pressure, which fixes the mean
energy. Quantities such as dp̄ and dE are infinitesimal differences between well-defined quantities:
that is, they are exact differentials. For example, dE = E f − Ei is just the difference between the
mean energy of the system in the final macrostate f and the initial macrostate i, in the limit where
these two states are nearly the same. It follows that if the system is taken from an initial macrostate
i to any final macrostate f then the mean energy change is given by

∆E = E f − Ei =

∫ f

i
dE. (4.38)

However, because the mean energy is just a function of the macrostate under consideration, E f and
Ei depend only on the initial and final states, respectively. Thus, the integral

∫
dE depends only

on the initial and final states, and not on the particular process used to get between them.
Consider, now, the infinitesimal work done by the system in going from some initial macrostate

i to some neighbouring final macrostate f . In general, d̄W =
∑

Xα dxα is not the difference between
two numbers referring to the properties of two neighboring macrostates. Instead, it is merely an
infinitesimal quantity characteristic of the process of going from state i to state f . In other words,
the work d̄W is in general an inexact differential. The total work done by the system in going from
any macrostate i to some other macrostate f can be written as

Wi f =

∫ f

i
d̄W, (4.39)
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where the integral represents the sum of the infinitesimal amounts of work d̄W performed at each
stage of the process. In general, the value of the integral does depend on the particular process
used in going from macrostate i to macrostate f .

Recall that, in going from macrostate i to macrostate f , the change in energy, ∆E, does not
depend on the process used, whereas the work done, W, in general, does. Thus, it follows from the
first law of thermodynamics, Equation (4.10), that the heat absorbed, Q, in general, also depends
on the process used. It follows that

d̄Q ≡ dE + d̄W (4.40)
is an inexact differential. However, by analogy with the mathematical example discussed previ-
ously, there must exist some integrating factor, T (say), that converts the inexact differential d̄Q
into an exact differential. So,

d̄Q
T
≡ dS . (4.41)

It will be interesting to discover the physical quantities that correspond to the functions T and S .
(See Section 5.5.)

Suppose that the system is thermally insulated, so that d̄Q = 0. In this case, the first law of
thermodynamics implies that

Wi f = −∆E. (4.42)

Thus, in this special case, the work done depends only on the energy difference between the initial
and final states, and is independent of the process. In fact, when Clausius first formulated the first
law of thermodynamics, in 1850, he wrote:

If a thermally isolated system is brought from some initial to some final state then the
work done by the system is independent of the process used.

If the external parameters of the system are kept fixed, so that no work is done, then d̄W = 0,
Equation (4.11) reduces to

d̄Q = dE, (4.43)
and d̄Q becomes an exact differential. The amount of heat, Q, absorbed in going from one
macrostate to another depends only on the mean energy difference between them, and is inde-
pendent of the process used to effect the change. In this situation, heat is a conserved quantity, and
acts very much like the invisible indestructible fluid of Lavoisier’s calorific theory.

Exercises

4.1 The mean pressure, p̄, of a thermally insulated gas varies with volume according to the
relation

p̄ V γ = K,

where γ > 1 and K are positive constants. Show that the work done by this gas in a quasi-
static process in which the state of the gas evolves from an initial macrostate with pressure
p̄i and volume Vi to a final macrostate with pressure p̄ f and volume Vf is

Wi f =
1

γ − 1

(
p̄i

Vi
− p̄ f

V f

)
.
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4.2 Consider the infinitesimal quantity

d̄F ≡ (x 2 − y) dx + x dy.

Is this an exact differential? If not, find the integrating factor that converts it into an exact
differential.

4.3 A system undergoes a quasi-static process that appears as a closed curve in a diagram of
mean pressure, p̄, versus volume, V . Such a process is termed cyclic, because the system
ends up in a final macrostate that is identical to its initial macrostate. Show that the work
done by the system is given by the area contained within the closed curve in the p̄-V plane.
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5 Statistical Thermodynamics

5.1 Introduction

Let us briefly review the material that we have covered in this course so far. We started off by
studying the mathematics of probability. We then used probabilistic reasoning to analyze the dy-
namics of many-particle systems, a subject area known as statistical mechanics. Next, we explored
the physics of heat and work, the study of which is termed thermodynamics. The final step in our
investigation is to combine statistical mechanics with thermodynamics. In other words, to investi-
gate heat and work via statistical arguments. This discipline is called statistical thermodynamics,
the study of which will form the central subject matter of this course. This chapter constitutes an
introduction to the fundamental concepts of statistical thermodynamics. The remaining chapters
will then explore the various applications of these concepts.

5.2 Thermal Interaction Between Macrosystems

Let us begin our investigation of statistical thermodynamics by examining a purely thermal inter-
action between two macroscopic systems, A and A′, from a microscopic point of view. Suppose
that the energies of these two systems are E and E′, respectively. The external parameters are held
fixed, so that A and A′ cannot do work on one another. However, we shall assume that the systems
are free to exchange heat energy (i.e., they are in thermal contact). It is convenient to divide the
energy scale into small subdivisions of width δE. The number of microstates of A consistent with
a macrostate in which the energy lies in the range E to E + δE is denoted Ω(E). Likewise, the
number of microstates of A′ consistent with a macrostate in which the energy lies between E′ and
E′ + δE is denoted Ω′(E′).

The combined system A(0) = A + A′ is assumed to be isolated (i.e., it neither does work on, nor
exchanges heat with, its surroundings). It follows from the first law of thermodynamics that the
total energy, E (0), is constant. When speaking of thermal contact between two distinct systems,
we usually assume that the mutual interaction is sufficiently weak for the energies to be additive.
Thus,

E + E′ � E (0) = constant. (5.1)

Of course, in the limit of zero interaction, the energies are strictly additive. However, a small
residual interaction is always required to enable the two systems to exchange heat energy, and,
thereby, eventually reach thermal equilibrium. (See Section 3.4.) In fact, if the interaction between
A and A′ is too strong for the energies to be additive then it makes little sense to consider each
system in isolation, because the presence of one system clearly strongly perturbs the other, and
vice versa. In this case, the smallest system that can realistically be examined in isolation is A(0).

According to Equation (5.1), if the energy of A lies in the range E to E + δE then the energy
of A′ must lie between E (0) − E − δE and E (0) − E. Thus, the number of microstates accessible
to each system is given by Ω(E) and Ω′(E (0) − E), respectively. Because every possible state of A



54 5.2. Thermal Interaction Between Macrosystems

can be combined with every possible state of A′ to form a distinct microstate, the total number of
distinct states accessible to A(0) when the energy of A lies in the range E to E + δE is

Ω (0) = Ω(E)Ω′(E (0) − E). (5.2)

Consider an ensemble of pairs of thermally interacting systems, A and A′, that are left undis-
turbed for many relaxation times, so that they can attain thermal equilibrium. The principle of
equal a priori probabilities is applicable to this situation. (See Section 3.3.) According to this
principle, the probability of occurrence of a given macrostate is proportional to the number of
accessible microstates, because all microstates are equally likely. Thus, the probability that the
system A has an energy lying in the range E to E + δE can be written

P(E) = CΩ(E)Ω′(E (0) − E), (5.3)

where C is a constant that is independent of E.
We know, from Section 3.8, that the typical variation of the number of accessible states with

energy is of the form
Ω ∝ E f , (5.4)

where f is the number of degrees of freedom. For a macroscopic system, f is an exceedingly
large number. It follows that the probability, P(E), in Equation (5.3) is the product of an extremely
rapidly increasing function of E, and an extremely rapidly decreasing function of E. Hence, we
would expect the probability to exhibit a very pronounced maximum at some particular value of
the energy.

Let us Taylor expand the logarithm of P(E) in the vicinity of its maximum value, which is
assumed to occur at E = Ẽ. We expand the relatively slowly-varying logarithm, rather than the
function itself, because the latter varies so rapidly with the energy that the radius of convergence of
its Taylor series is too small for this expansion to be of any practical use. The expansion of lnΩ(E)
yields

lnΩ(E) = lnΩ(Ẽ) + β(Ẽ) η − 1
2
λ(Ẽ) η 2 + · · · , (5.5)

where

η = E − Ẽ, (5.6)

β =
∂ lnΩ
∂E

, (5.7)

λ = −∂
2 lnΩ
∂E 2 = − ∂β

∂E
. (5.8)

Now, because E′ = E (0) − E, we have

E′ − Ẽ′ = −(E − Ẽ) = −η. (5.9)

Here, Ẽ′ = E (0) − Ẽ. It follows that

lnΩ′(E′) = lnΩ′(Ẽ′) + β′(Ẽ′) (−η) − 1
2
λ′(Ẽ′) (−η) 2 + · · · , (5.10)
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where β′ and λ′ are defined in an analogous manner to the parameters β and λ. Equations (5.5) and
(5.10) can be combined to give

ln [Ω(E)Ω′(E′)] = ln [Ω(Ẽ)Ω′(Ẽ′)] + [β(Ẽ) − β′(Ẽ′)] η − 1
2

[λ(Ẽ) + λ′(Ẽ′)] η 2 + · · · . (5.11)

At the maximum of ln [Ω(E)Ω′(E′)], the linear term in the Taylor expansion must vanish, so

β(Ẽ) = β′(Ẽ′), (5.12)

which enables us to determine Ẽ. It follows that

ln P(E) = ln P(Ẽ) − 1
2
λ0 η

2, (5.13)

or

P(E) = P(Ẽ) exp
[
−1

2
λ0 (E − Ẽ) 2

]
, (5.14)

where
λ0 = λ(Ẽ) + λ′(Ẽ′). (5.15)

Now, the parameter λ0 must be positive, otherwise the probability P(E) does not exhibit a pro-
nounced maximum value. That is, the combined system, A(0), does not possess a well-defined
equilibrium state as, physically, we know it must. It is clear that λ(Ẽ) must also be positive, be-
cause we could always choose for A′ a system with a negligible contribution to λ0, in which case
the constraint λ0 > 0 would effectively correspond to λ(Ẽ) > 0. [A similar argument can be used to
show that λ′(Ẽ′) must be positive.] The same conclusion also follows from the estimate Ω ∝ E f ,
which implies that

λ(Ẽ) ∼ f
Ẽ 2

> 0. (5.16)

According to Equation (5.14), the probability distribution function, P(E), is Gaussian. (See
Section 2.9.) This is hardly surprising, because the central limit theorem ensures that the probabil-
ity distribution for any macroscopic variable, such as E, is Gaussian in nature. (See Section 2.10.)
It follows that the mean value of E corresponds to the situation of maximum probability (i.e., the
peak of the Gaussian curve), so that

E = Ẽ. (5.17)

The standard deviation of the distribution is

∆∗E = λ−1/2
0 ∼ E√

f
, (5.18)

where use has been made of Equation (5.16) (assuming that system A makes the dominant contri-
bution to λ0). It follows that the fractional width of the probability distribution function is given
by

∆∗E

E
∼ 1√

f
. (5.19)
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Hence, if A contains 1 mole of particles then f ∼ NA � 10 24, and ∆∗E/E ∼ 10−12. Clearly, the
probability distribution for E has an exceedingly sharp maximum. Experimental measurements of
this energy will almost always yield the mean value, and the underlying statistical nature of the
distribution may not be apparent.

5.3 Temperature

Suppose that the systems A and A′ are initially thermally isolated from one another, with respective
energies Ei and E′i . (Because the energy of an isolated system cannot fluctuate, we do not have to
bother with mean energies here.) If the two systems are subsequently placed in thermal contact, so
that they are free to exchange heat energy, then, in general, the resulting state is an extremely im-
probable one [i.e., P(Ei) is much less than the peak probability]. The configuration will, therefore,
tend to evolve in time until the two systems attain final mean energies, E f and E

′
f , which are such

that
β f = β

′
f , (5.20)

where β f ≡ β(E f ) and β′f ≡ β′(E
′
f ). This corresponds to the state of maximum probability. (See

Section 5.2.) In the special case where the initial energies, Ei and E′i , lie very close to the final mean
energies, E f and E

′
f , respectively, there is no change in the two systems when they are brought into

thermal contact, because the initial state already corresponds to a state of maximum probability.
It follows from energy conservation that

E f + E
′
f = Ei + E′i . (5.21)

The mean energy change in each system is simply the net heat absorbed, so that

Q ≡ E f − Ei, (5.22)

Q′ ≡ E
′
f − E′i . (5.23)

The conservation of energy then reduces to

Q + Q′ = 0. (5.24)

In other words, the heat given off by one system is equal to the heat absorbed by the other. (In our
notation, absorbed heat is positive, and emitted heat is negative.)

It is clear that if the systems A and A′ are suddenly brought into thermal contact then they will
only exchange heat, and evolve towards a new equilibrium state, if the final state is more probable
than the initial one. In other words, the system will evolve if

P(E f ) > P(Ei), (5.25)

or
ln P(E f ) > ln P(Ei), (5.26)
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because the logarithm is a monotonic function. The previous inequality can be written

lnΩ(E f ) + lnΩ′(E
′
f ) > lnΩ(Ei) + lnΩ′(E′i ), (5.27)

with the aid of Equation (5.3). Taylor expansion to first order yields

∂ lnΩ(Ei)
∂E

(E f − Ei) +
∂ lnΩ′(E′i )

∂E′
(E
′
f − E′i ) > 0, (5.28)

which finally gives
(βi − β′i) Q > 0, (5.29)

where βi ≡ β(Ei), β′i ≡ β′(E′i ), and use has been made of Equations (5.22)–(5.24).
It is clear, from the previous analysis, that the parameter β, defined

β =
∂ lnΩ
∂E

, (5.30)

has the following properties:

1. If two systems separately in equilibrium have the same value of β then the systems will
remain in equilibrium when brought into thermal contact with one another.

2. If two systems separately in equilibrium have different values of β then the systems will
not remain in equilibrium when brought into thermal contact with one another. Instead, the
system with the higher value of β will absorb heat from the other system until the two β
values are the same. [See Equation (5.29).]

Incidentally, a partial derivative is used in Equation (5.30) because, in a purely thermal interaction,
the external parameters of the system are held constant as the energy changes.

Let us define the dimensionless parameter T , such that

1
k T
≡ β = ∂ lnΩ

∂E
, (5.31)

where k is a positive constant having the dimensions of energy. The parameter T is termed the
thermodynamic temperature, and controls heat flow in much the same manner as a conventional
temperature. Thus, if two isolated systems in equilibrium possess the same thermodynamic tem-
perature then they will remain in equilibrium when brought into thermal contact. However, if the
two systems have different thermodynamic temperatures then heat will flow from the system with
the higher temperature (i.e., the “hotter” system) to the system with the lower temperature, until
the temperatures of the two systems are the same. In addition, suppose that we have three systems
A, B, and C. We know that if A and B remain in equilibrium when brought into thermal contact
then their temperatures are the same, so that TA = TB. Similarly, if B and C remain in equilibrium
when brought into thermal contact, then TB = TC . But, we can then conclude that TA = TC , so
systems A and C will also remain in equilibrium when brought into thermal contact. Thus, we
arrive at the following statement, which is sometimes called the zeroth law of thermodynamics:
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If two systems are separately in thermal equilibrium with a third system then they must
also be in thermal equilibrium with one another.

The thermodynamic temperature of a macroscopic body, as defined in Equation (5.31), depends
only on the rate of change of the number of accessible microstates with the total energy. Thus, it is
possible to define a thermodynamic temperature for systems with radically different microscopic
structures (e.g., matter and radiation). The thermodynamic, or absolute, scale of temperature is
measured in degrees kelvin. The parameter k is chosen to make this temperature scale accord as
much as possible with more conventional temperature scales. The choice

k = 1.381 × 10−23 joules/kelvin, (5.32)

ensures that there are 100 degrees kelvin between the freezing and boiling points of water at atmo-
spheric pressure (the two temperatures are 273.15 K and 373.15 K, respectively). Here, k is known
as the Boltzmann constant. In fact, the Boltzmann constant is fixed by international convention so
as to make the triple point of water (i.e., the unique temperature at which the three phases of water
co-exist in thermal equilibrium) exactly 273.16 K. Note that the zero of the thermodynamic scale,
the so called absolute zero of temperature, does not correspond to the freezing point of water, but to
some far more physically significant temperature that we shall discuss presently. (See Section 5.9.)

The familiar Ω ∝ E f scaling for translational degrees of freedom (see Section 3.8) yields

k T ∼ E
f
, (5.33)

using Equation (5.31), so k T is a rough measure of the mean energy associated with each degree
of freedom in the system. In fact, for a classical system (i.e., one in which quantum effects are
unimportant) it is possible to show that the mean energy associated with each degree of freedom
is exactly (1/2) k T . This result, which is known as the equipartition theorem, will be discussed in
more detail later on in this course. (See Section 7.10.)

The absolute temperature, T , is usually positive, because Ω(E) is ordinarily a very rapidly in-
creasing function of energy. In fact, this is the case for all conventional systems where the kinetic
energy of the particles is taken into account, because there is no upper bound on the possible en-
ergy of the system, and Ω(E) consequently increases roughly like E f . It is, however, possible to
envisage a situation in which we ignore the translational degrees of freedom of a system, and con-
centrate only on its spin degrees of freedom. In this case, there is an upper bound to the possible
energy of the system (i.e., all spins lined up anti-parallel to an applied magnetic field). Conse-
quently, the total number of states available to the system is finite. In this situation, the density
of spin states, Ωspin(E), first increases with increasing energy, as in conventional systems, but then
reaches a maximum and decreases again. Thus, it is possible to get absolute spin temperatures that
are negative, as well as positive. (See Exercise 5.2.)

In Lavoisier’s calorific theory, the basic mechanism that forces heat to spontaneously flow from
hot to cold bodies is the supposed mutual repulsion of the constituent particles of calorific fluid. In
statistical mechanics, the explanation is far less contrived. Heat flow occurs because statistical sys-
tems tend to evolve towards their most probable states, subject to the imposed physical constraints.
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When two bodies at different temperatures are suddenly placed in thermal contact, the initial state
corresponds to a spectacularly improbable state of the overall system. For systems containing of
order 1 mole of particles, the only reasonably probable final equilibrium states are such that the
two bodies differ in temperature by less than 1 part in 10 12. Thus, the evolution of the system
towards these final states (i.e., towards thermal equilibrium) is effectively driven by probability.

5.4 Mechanical Interaction Between Macrosystems

Let us now examine a purely mechanical interaction between macrostates, where one or more of
the external parameters is modified, but there is no exchange of heat energy. Consider, for the sake
of simplicity, a situation where only one external parameter, x, of the system is free to vary. In
general, the number of microstates accessible to the system when the overall energy lies between
E and E + δE depends on the particular value of x, so we can write Ω ≡ Ω(E, x).

When x is changed by the amount dx, the energy Er(x) of a given microstate r changes by
(∂Er/∂x) dx. The number of states, σ(E, x), whose energy is changed from a value less than E
to a value greater than E, when the parameter changes from x to x + dx, is given by the number
of microstates per unit energy range multiplied by the average shift in energy of the microstates.
Hence,

σ(E, x) =
Ω(E, x)
δE

∂Er

∂x
dx, (5.34)

where the mean value of ∂Er/∂x is taken over all accessible microstates (i.e., all states for which
the energy lies between E and E + δE, and the external parameter takes the value x). The previous
equation can also be written

σ(E, x) = −Ω(E, x)
δE

X dx, (5.35)

where

X(E, x) = −∂Er

∂x
(5.36)

is the mean generalized force conjugate to the external parameter x. (See Section 4.4.)
Consider the total number of microstates whose energies lies between E and E + δE. When the

external parameter changes from x to x + dx, the number of states in this energy range changes by
(∂Ω/∂x) dx. This change is due to the difference between the number of states that enter the range
because their energy is changed from a value less than E to one greater than E, and the number
that leave because their energy is changed from a value less than E+δE to one greater than E+δE.
In symbols,

∂Ω(E, x)
∂x

dx = σ(E) − σ(E + δE) � −∂σ
∂E

δE, (5.37)

which yields
∂Ω

∂x
=
∂(Ω X)
∂E

, (5.38)
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where use has been made of Equation (5.35). Dividing both sides by Ω gives

∂ lnΩ
∂x

=
∂ lnΩ
∂E

X +
∂X
∂E

. (5.39)

However, according to the usual estimateΩ ∝ E f (see Section 3.8), the first term on the right-hand
side is of order ( f /E) X, whereas the second term is only of order X/E. Clearly, for a macroscopic
system with many degrees of freedom, the second term is utterly negligible, so we have

∂ lnΩ
∂x

=
∂ lnΩ
∂E

X = β X, (5.40)

where use has been made of Equation (5.30).
When there are several external parameters, x1, · · · , xn, so that Ω ≡ Ω(E, x1, · · · , xn), the pre-

vious derivation is valid for each parameter taken in isolation. Thus,

∂ lnΩ
∂xα

= β Xα, (5.41)

where Xα is the mean generalized force conjugate to the parameter xα. (See Section B.2.)

5.5 General Interaction Between Macrosystems

Consider two systems, A and A′, that can interact by exchanging heat energy and doing work on one
another. Let the system A have energy E, and adjustable external parameters x1, · · · , xn. Likewise,
let the system A′ have energy E′, and adjustable external parameters x′1, · · · , x′n. The combined
system A(0) = A + A′ is assumed to be isolated. It follows from the first law of thermodynamics
that

E + E′ = E (0) = constant. (5.42)

Thus, the energy E′ of system A′ is determined once the energy E of system A is given, and vice
versa. In fact, E′ could be regarded as a function of E. Furthermore, if the two systems can interact
mechanically then, in general, the parameters x′ are some function of the parameters x. As a simple
example, if the two systems are separated by a movable partition, in an enclosure of fixed volume
V (0), then

V + V ′ = V (0) = constant, (5.43)

where V and V ′ are the volumes of systems A and A′, respectively.
The total number of microstates accessible to A(0) is clearly a function of E, and the parameters

xα (where α runs from 1 to n), so Ω (0) ≡ Ω (0)(E, x1, · · · , xn). We have already demonstrated (in
Section 5.2) that Ω (0) exhibits a very pronounced maximum at one particular value of the energy,
E = Ẽ, when E is varied but the external parameters are held constant. This behavior comes about
because of the very strong,

Ω ∝ E f , (5.44)
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increase in the number of accessible microstates of A (or A′) with energy. However, according
to Section 3.8, the number of accessible microstates exhibits a similar strong increase with the
volume, which is a typical external parameter, so that

Ω ∝ V f . (5.45)

It follows that the variation of Ω (0) with a typical parameter, xα, when all the other parameters
and the energy are held constant, also exhibits a very sharp maximum at some particular value,
xα = x̃α. The equilibrium situation corresponds to the configuration of maximum probability, in
which virtually all systems A(0) in the ensemble have values of E and xα very close to Ẽ and x̃α,
respectively. The mean values of these quantities are thus given by E = Ẽ and x̄α = x̃α.

Consider a quasi-static process in which the system A is brought from an equilibrium state
described by E and x̄α to an infinitesimally different equilibrium state described by E + dE and
x̄α + dx̄α. Let us calculate the resultant change in the number of microstates accessible to A.
Because Ω ≡ Ω(E, x1, · · · , xn), the change in lnΩ follows from standard mathematics:

d lnΩ =
∂ lnΩ
∂E

dE +
∑
α=1,n

∂ lnΩ
∂xα

dx̄α. (5.46)

However, we have previously demonstrated that

β =
∂ lnΩ
∂E

, β Xα =
∂ lnΩ
∂xα

(5.47)

[in Equations (5.30) and (5.41), respectively], so Equation (5.46) can be written

d lnΩ = β

dE +
∑
α

Xα dx̄α

 . (5.48)

Note that the temperature parameter, β, and the mean conjugate forces, Xα, are only well defined
for equilibrium states. This is why we are only considering quasi-static changes in which the two
systems are always arbitrarily close to equilibrium.

Let us rewrite Equation (5.48) in terms of the thermodynamic temperature, T , using the relation
β ≡ 1/k T . We obtain

dS =

dE +
∑
α

Xα dx̄α


/

T, (5.49)

where
S = k lnΩ. (5.50)

Equation (5.49) is a differential relation that enables us to calculate the quantity S as a function
of the mean energy, E, and the mean external parameters, x̄α, assuming that we can calculate the
temperature, T , and mean conjugate forces, Xα, for each equilibrium state. The function S (E, x̄α) is
termed the entropy of system A. The word entropy is derived from the Greek entropē, which means
“a turning towards” or ”tendency.” The reason for this etymology will become apparent presently.
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It can be seen from Equation (5.50) that the entropy is merely a parameterization of the number of
accessible microstates. Hence, according to statistical mechanics, S (E, x̄α) is essentially a measure
of the relative probability of a state characterized by values of the mean energy and mean external
parameters E and x̄α, respectively.

According to Equation (4.16), the net amount of work performed during a quasi-static change
is given by

d̄W =
∑
α

Xα dx̄α. (5.51)

It follows from Equation (5.49) that

dS =
dE + d̄W

T
=

d̄Q
T
. (5.52)

Thus, the thermodynamic temperature, T , is the integrating factor for the first law of thermody-
namics,

d̄Q = dE + d̄W, (5.53)

which converts the inexact differential d̄Q into the exact differential dS . (See Section 4.5.) It
follows that the entropy difference between any two macrostates i and f can be written

S f − S i =

∫ f

i
dS =

∫ f

i

d̄Q
T
, (5.54)

where the integral is evaluated for any process through which the system is brought quasi-statically
via a sequence of near-equilibrium configurations from its initial to its final macrostate. The pro-
cess has to be quasi-static because the temperature, T , which appears in the integrand, is only well
defined for an equilibrium state. Because the left-hand side of the previous equation only depends
on the initial and final states, it follows that the integral on the right-hand side is independent of the
particular sequence of quasi-static changes used to get from i to f . Thus,

∫ f

i
d̄Q/T is independent

of the process (provided that it is quasi-static).
All of the concepts that we have encountered up to now in this course, such as temperature, heat,

energy, volume, pressure, et cetera, have been fairly familiar to us from other branches of physics.
However, entropy, which turns out to be of crucial importance in thermodynamics, is something
quite new. Let us consider the following questions. What does the entropy of a thermodynamic
system actually signify? What use is the concept of entropy?

5.6 Entropy

Consider an isolated system whose energy is known to lie in a narrow range. Let Ω be the number
of accessible microstates. According to the principle of equal a priori probabilities, the system is
equally likely to be found in any one of these states when it is in thermal equilibrium. The ac-
cessible states are just that set of microstates that are consistent with the macroscopic constraints
imposed on the system. These constraints can usually be quantified by specifying the values of
some parameters, y1, · · · , yn, that characterize the macrostate. Note that these parameters are not
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necessarily external in nature. For example, we could specify either the volume (an external pa-
rameter) or the mean pressure (the mean force conjugate to the volume). The number of accessible
states is clearly a function of the chosen parameters, so we can write Ω ≡ Ω(y1, · · · , yn) for the
number of microstates consistent with a macrostate in which the general parameter yα lies in the
range yα to yα + dyα.

Suppose that we start from a system in thermal equilibrium. According to statistical mechanics,
each of the Ωi, say, accessible states are equally likely. Let us now remove, or relax, some of the
constraints imposed on the system. Clearly, all of the microstates formally accessible to the system
are still accessible, but many additional states will, in general, become accessible. Thus, removing
or relaxing constraints can only have the effect of increasing, or possibly leaving unchanged, the
number of microstates accessible to the system. If the final number of accessible states is Ω f then
we can write

Ω f ≥ Ωi. (5.55)

Immediately after the constraints are relaxed, the systems in the ensemble are not in any of the
microstates from which they were previously excluded. So, the systems only occupy a fraction

Pi =
Ωi

Ω f
(5.56)

of the Ω f states now accessible to them. This is clearly not a equilibrium situation. Indeed, if
Ω f 
 Ωi then the configuration in which the systems are only distributed over the originalΩi states
is an extremely unlikely one. In fact, its probability of occurrence is given by Equation (5.56).
According to the H-theorem (see Section 3.4), the ensemble will evolve in time until a more
probable final state is reached in which the systems are evenly distributed over the Ω f available
states.

As a simple example, consider a system consisting of a box divided into two regions of equal
volume. Suppose that, initially, one region is filled with gas, and the other is empty. The constraint
imposed on the system is, thus, that the coordinates of all of the gas molecules must lie within
the filled region. In other words, the volume accessible to the system is V = Vi, where Vi is
half the volume of the box. The constraints imposed on the system can be relaxed by removing
the partition, and allowing gas to flow into both regions. The volume accessible to the gas is
now V = Vf = 2 Vi. Immediately after the partition is removed, the system is in an extremely
improbable state. We know, from Section 3.8, that, at constant energy, the variation of the number
of accessible states of an ideal gas with the volume is

Ω ∝ V N , (5.57)

where N is the number of particles. Thus, the probability of observing the state immediately after
the partition is removed in an ensemble of equilibrium systems with volume V = Vf is

Pi =
Ωi

Ω f
=

(
Vi

Vf

)N
=

(
1
2

)N
. (5.58)

If the box contains of order 1 mole of molecules then N ∼ 10 24, and this probability is fantastically
small:

Pi ∼ exp
(
−10 24

)
. (5.59)
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Clearly, the system will evolve towards a more probable state.
This discussion can also be phrased in terms of the parameters, y1, · · · , yn, of the system. Sup-

pose that a constraint is removed. For instance, one of the parameters, y, say, which originally had
the value y = yi, is now allowed to vary. According to statistical mechanics, all states accessible
to the system are equally likely. So, the probability P(y) of finding the system in equilibrium with
the parameter in the range y to y + δy is proportional to the number of microstates in this interval:
that is,

P(y) ∝ Ω(y). (5.60)

Usually, Ω(y) has a very pronounced maximum at some particular value ỹ. (See Section 5.2.) This
means that practically all systems in the final equilibrium ensemble have values of y close to ỹ.
Thus, if yi � ỹ, initially, then the parameter y will change until it attains a final value close to ỹ,
where Ω is maximum. This discussion can be summed up in a single phrase:

If some of the constraints of an isolated system are removed then the parameters of the
system tend to readjust themselves in such a way that

Ω(y1, · · · , yn)→ maximum.

Suppose that the final equilibrium state has been reached, so that the systems in the ensemble
are uniformly distributed over the Ω f accessible final states. If the original constraints are reim-
posed then the systems in the ensemble still occupy these Ω f states with equal probability. Thus,
if Ω f > Ωi then simply restoring the constraints does not restore the initial situation. Once the sys-
tems are randomly distributed over the Ω f states, they cannot be expected to spontaneously move
out of some of these states, and occupy a more restricted class of states, merely in response to the
reimposition of a constraint. The initial condition can also not be restored by removing further
constraints. This could only lead to even more states becoming accessible to the system.

Suppose that a process occurs in which an isolated system goes from some initial configuration
to some final configuration. If the final configuration is such that the imposition or removal of
constraints cannot by itself restore the initial condition then the process is deemed irreversible.
On the other hand, if it is such that the imposition or removal of constraints can restore the initial
condition then the process is deemed reversible. From what we have already said, an irreversible
process is clearly one in which the removal of constraints leads to a situation where Ω f > Ωi. A
reversible process corresponds to the special case where the removal of constraints does not change
the number of accessible states, so that Ω f = Ωi. In this situation, the systems remain distributed
with equal probability over these states irrespective of whether the constraints are imposed or not.

Our microscopic definition of irreversibility is in accordance with the macroscopic definition
discussed in Section 3.6. Recall that, on a macroscopic level, an irreversible process is one that
“looks unphysical” when viewed in reverse. On a microscopic level, it is clearly plausible that a
system should spontaneously evolve from an improbable to a probable configuration in response
to the relaxation of some constraint. However, it is quite manifestly implausible that a system
should ever spontaneously evolve from a probable to an improbable configuration. Let us consider
our example again. If a gas is initially restricted to one half of a box, via a partition, then the
flow of gas from one side of the box to the other when the partition is removed is an irreversible
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process. This process is irreversible on a microscopic level because the initial configuration cannot
be recovered by simply replacing the partition. It is irreversible on a macroscopic level because it
is obviously unphysical for the molecules of a gas to spontaneously distribute themselves in such
a manner that they only occupy half of the available volume.

It is actually possible to quantify irreversibility. In other words, in addition to stating that
a given process is irreversible, we can also give some indication of how irreversible it is. The
parameter that measures irreversibility is the number of accessible states, Ω. Thus, if Ω for an
isolated system spontaneously increases then the process is irreversible, the degree of irreversibility
being proportional to the amount of the increase. If Ω stays the same then the process is reversible.
Of course, it is unphysical for Ω to ever spontaneously decrease. In symbols, we can write

Ω f − Ωi ≡ ∆Ω ≥ 0, (5.61)

for any physical process operating on an isolated system. In practice, Ω itself is a rather unwieldy
parameter with which to measure irreversibility. For instance, in the previous example, where an
ideal gas doubles in volume (at constant energy) due to the removal of a partition, the fractional
increase in Ω is

Ω f

Ωi
� 10 2 ν×10 23

, (5.62)

where ν is the number of moles. This is an extremely large number. It is far more convenient to
measure irreversibility in terms of lnΩ. If Equation (5.61) is true then it is certainly also true that

lnΩ f − lnΩi ≡ ∆ lnΩ ≥ 0 (5.63)

for any physical process operating on an isolated system. The increase in lnΩ when an ideal gas
doubles in volume (at constant energy) is

lnΩ f − lnΩi = νNA ln 2, (5.64)

where NA = 6 × 10 23. This is a far more manageable number. Because we usually deal with
particles by the mole in laboratory physics, it makes sense to pre-multiply our measure of irre-
versibility by a number of order 1/NA. For historical reasons, the number that is generally used for
this purpose is the Boltzmann constant, k, which can be written

k =
R

NA
joules/kelvin, (5.65)

where
R = 8.3143 joules/kelvin/mole (5.66)

is the ideal gas constant that appears in the well-known equation of state for an ideal gas, P V =
νR T . Thus, the final form for our measure of irreversibility is

S = k lnΩ. (5.67)
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This quantity is termed “entropy”, and is measured in joules per degree kelvin. The increase in
entropy when an ideal gas doubles in volume (at constant energy) is

S f − S i = νR ln 2, (5.68)

which is order unity for laboratory-scale systems (i.e., those containing about one mole of parti-
cles). The essential irreversibility of macroscopic phenomena can be summed up as follows:

S f − S i ≡ ∆S ≥ 0, (5.69)

for a process acting on an isolated system. [This formula is equivalent to Equations (5.61) and
(5.63).] Thus:

The entropy of an isolated system tends to increase with time, and can never decrease.

This proposition is known as the second law of thermodynamics.
One way of thinking of the number of accessible states,Ω, is that it is a measure of the disorder

associated with a macrostate. For a system exhibiting a high degree of order, we would expect a
strong correlation between the motions of the individual particles. For instance, in a fluid there
might be a strong tendency for the particles to move in one particular direction, giving rise to an
ordered flow of the system in that direction. On the other hand, for a system exhibiting a low
degree of order, we expect far less correlation between the motions of individual particles. It
follows that, all other things being equal, an ordered system is more constrained than a disordered
system, because the former is excluded from microstates in which there is not a strong correlation
between individual particle motions, whereas the latter is not. Another way of saying this is that
an ordered system has less accessible microstates than a corresponding disordered system. Thus,
entropy is effectively a measure of the disorder in a system (the disorder increases with increasing
S ). With this interpretation, the second law of thermodynamics reduces to the statement that
isolated systems tend to become more disordered with time, and can never become more ordered.

Note that the second law of thermodynamics only applies to isolated systems. The entropy
of a non-isolated system can decrease. For instance, if a gas expands (at constant energy) to
twice its initial volume after the removal of a partition, we can subsequently recompress the gas
to its original volume. The energy of the gas will increase because of the work done on it during
compression, but if we absorb some heat from the gas then we can restore it to its initial state.
Clearly, in restoring the gas to its original state, we have restored its original entropy. This appears
to violate the second law of thermodynamics, because the entropy should have increased in what
is obviously an irreversible process. However, if we consider a new system consisting of the gas
plus the compression and heat absorption machinery then it is still true that the entropy of this
system (which is assumed to be isolated) must increase in time. Thus, the entropy of the gas is
only kept the same at the expense of increasing the entropy of the rest of the system, and the total
entropy is increased. If we consider the system of everything in the universe, which is certainly
an isolated system because there is nothing outside it with which it could interact, then the second
law of thermodynamics becomes:

The disorder of the universe tends to increase with time, and can never decrease.
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5.7 Properties of Entropy

Entropy, as we have defined it, has some dependence on the resolution, δE, to which the energy of
macrostates is measured. Recall that Ω(E) is the number of accessible microstates with energy in
the range E to E + δE. Suppose that we choose a new resolution δ∗E, and define a new density of
states, Ω ∗(E), which is the number of states with energy in the range E to E + δ∗E. It can easily be
seen that

Ω ∗(E) =
δ∗E
δE

Ω(E). (5.70)

It follows that the new entropy, S ∗ = k lnΩ ∗, is related to the previous entropy S = k lnΩ via

S ∗ = S + k ln
(
δ∗E
δE

)
. (5.71)

Now, our usual estimate that Ω ∼ E f (see Section 3.8) gives S ∼ k f , where f is the number of
degrees of freedom. It follows that even if δ∗E were to differ from δE by of order f (i.e., twenty
four orders of magnitude), which is virtually inconceivable, the second term on the right-hand side
of the previous equation is still only of order k ln f , which is utterly negligible compared to k f . It
follows that

S ∗ = S (5.72)

to an excellent approximation, so our definition of entropy is completely insensitive to the resolu-
tion to which we measure energy (or any other macroscopic parameter).

Note that, like the temperature, the entropy of a macrostate is only well defined if the macrostate
is in equilibrium. The crucial point is that it only makes sense to talk about the number of accessible
states if the systems in the ensemble are given sufficient time to thoroughly explore all of the
possible microstates consistent with the known macroscopic constraints. In other words, we can
only be sure that a given microstate is inaccessible when the systems in the ensemble have had
ample opportunity to move into it, and yet have not done so. For an equilibrium state, the entropy
is just as well defined as more familiar quantities such as the temperature and the mean pressure.

Consider, again, two systems, A and A′, that are in thermal contact, but can do no work on one
another. (See Section 5.2.) Let E and E′ be the energies of the two systems, and Ω(E) and Ω′(E′)
the respective densities of states. Furthermore, let E (0) be the conserved energy of the system as a
whole, and Ω (0) the corresponding density of states. We have from Equation (5.2) that

Ω (0)(E) = Ω(E)Ω′(E′), (5.73)

where E′ = E (0) − E. In other words, the number of states accessible to the whole system is the
product of the numbers of states accessible to each subsystem, because every microstate of A can
be combined with every microstate of A′ to form a distinct microstate of the whole system. We
know, from Section 5.2, that in equilibrium the mean energy of A takes the value E = Ẽ for which
Ω (0)(E) is maximum, and the temperatures of A and A′ are equal. The distribution of E around the
mean value is of order ∆∗E = Ẽ/

√
f , where f is the number of degrees of freedom. It follows that
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the total number of accessible microstates is approximately the number of states which lie within
∆∗E of Ẽ. Thus,

Ω (0)
tot �

Ω (0)(Ẽ)
δE

∆∗E. (5.74)

The entropy of the whole system is given by

S (0) = k lnΩ (0)
tot = k lnΩ (0)(Ẽ) + k ln

(
∆∗E
δE

)
. (5.75)

According to our usual estimate, Ω ∼ E f (see Section 3.8), the first term on the right-hand side
of the previous equation is of order k f , whereas the second term is of order k ln(Ẽ/

√
f δE). Any

reasonable choice for the energy subdivision, δE, should be greater than Ẽ/ f , otherwise there
would be less than one microstate per subdivision. It follows that the second term is less than, or
of order, k ln f , which is utterly negligible compared to k f . Thus,

S (0) = k lnΩ (0)(Ẽ) = k ln[Ω(Ẽ)Ω(Ẽ′)] = k lnΩ(Ẽ) + k lnΩ′(Ẽ′) (5.76)

to an excellent approximation, giving

S (0) = S (Ẽ) + S ′(Ẽ′). (5.77)

It can be seen that the probability distribution forΩ (0)(E) is so strongly peaked around its maximum
value that, for the purpose of calculating the entropy, the total number of states is equal to the
maximum number of states [i.e.,Ω (0)

tot ∼ Ω (0)(Ẽ)]. One consequence of this is that entropy possesses
the simple additive property illustrated in Equation (5.77). Thus, the total entropy of two thermally
interacting systems in equilibrium is the sum of the entropies of each system taken in isolation.

5.8 Uses of Entropy

We have defined a new function called entropy, denoted S , that parameterizes the amount of dis-
order in a macroscopic system. The entropy of an equilibrium macrostate is related to the number
of accessible microstates, Ω, via

S = k lnΩ. (5.78)

On a macroscopic level, the increase in entropy due to a quasi-static change in which an infinitesi-
mal amount of heat, d̄Q, is absorbed by the system is given by

dS =
d̄Q
T
, (5.79)

where T is the absolute temperature of the system. The second law of thermodynamics states that
the entropy of an isolated system can never spontaneously decrease. Let us now briefly examine
some consequences of these results.

Consider two bodies, A and A′, that are in thermal contact, but can do no work on one another.
We know what is supposed to happen in this situation. Heat flows from the hotter to the colder
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of the two bodies until their temperatures become the same. Consider a quasi-static exchange of
heat between the two bodies. According to the first law of thermodynamics, if an infinitesimal
amount of heat, d̄Q, is absorbed by A then infinitesimal heat, d̄Q′ = −d̄Q, is absorbed by A′. The
increase in the entropy of system A is dS = d̄Q/T , and the corresponding increase in the entropy
of A′ is dS ′ = d̄Q′/T ′. Here, T and T ′ are the temperatures of the two systems, respectively. Note
that d̄Q is assumed to the sufficiently small that the heat transfer does not substantially modify the
temperatures of either system. The change in entropy of the whole system is

dS (0) = dS + dS ′ =
(

1
T
− 1

T ′

)
d̄Q. (5.80)

This change must be positive or zero, according to the second law of thermodynamics, so dS (0) ≥ 0.
It follows that d̄Q is positive (i.e., heat flows from A′ to A) when T ′ > T , and vice versa. The
spontaneous flow of heat only ceases when T = T ′. Thus, the direction of spontaneous heat
flow is a consequence of the second law of thermodynamics. Note that the spontaneous flow of
heat between bodies at different temperatures is always an irreversible process that increases the
entropy, or disorder, of the universe.

Consider, now, the slightly more complicated situation in which the two systems can exchange
heat, and also do work on one another via a movable partition. Suppose that the total volume is
invariant, so that

V (0) = V + V ′ = constant, (5.81)

where V and V ′ are the volumes of A and A′, respectively. Consider a quasi-static change in which
system A absorbs an infinitesimal amount of heat, d̄Q, and its volume simultaneously increases by
an infinitesimal amount, dV . The infinitesimal amount of work done by system A is d̄W = p̄ dV
(see Section 4.4), where p̄ is the mean pressure of A. According to the first law of thermodynamics,

d̄Q = dE + d̄W = dE + p̄ dV, (5.82)

where dE is the change in the internal energy of A. Because dS = d̄Q/T , the increase in entropy
of system A is written

dS =
dE + p̄ dV

T
. (5.83)

Likewise, the increase in entropy of system A′ is given by

dS ′ =
dE′ + p̄′ dV ′

T ′
. (5.84)

According to Equation (5.83),

1
T
=

(
∂S
∂E

)
V
, (5.85)

p̄
T
=

(
∂S
∂V

)
E
, (5.86)
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where the subscripts are to remind us what is held constant in the partial derivatives. We can write
an analogous pair of equations for the system A′.

The overall system is assumed to be isolated, so conservation of energy gives dE + dE′ = 0.
Furthermore, Equation (5.81) implies that dV + dV ′ = 0. It follows that the total change in entropy
is given by

dS (0) = dS + dS ′ =
(

1
T
− 1

T ′

)
dE +

(
p̄
T
− p̄′

T ′

)
dV. (5.87)

The equilibrium state is the most probable state. (See Section 5.2.) According to statistical me-
chanics, this is equivalent to the state with the largest number of accessible microstates. Finally,
Equation (5.78) implies that this is the maximum entropy state. The system can never sponta-
neously leave a maximum entropy state, because this would imply a spontaneous reduction in en-
tropy, which is forbidden by the second law of thermodynamics. A maximum or minimum entropy
state must satisfy dS (0) = 0 for arbitrary small variations of the energy and external parameters. It
follows from Equation (5.87) that

T = T ′, (5.88)
p̄ = p̄′, (5.89)

for such a state. This corresponds to a maximum entropy state (i.e., an equilibrium state) provided
that (

∂ 2S
∂E 2

)
V
< 0, (5.90)

(
∂ 2S
∂V 2

)
E
< 0, (5.91)

with a similar pair of inequalities for system A′. The usual estimate Ω ∝ E f V f (see Section 3.8),
giving S = k f ln E + k f ln V + · · · , ensures that the previous inequalities are satisfied in con-
ventional macroscopic systems. In the maximum entropy state, the systems A and A′ have equal
temperatures (i.e., they are in thermal equilibrium), and equal pressures (i.e., they are in mechani-
cal equilibrium). The second law of thermodynamics implies that the two interacting systems will
evolve towards this state, and will then remain in it indefinitely (if left undisturbed).

5.9 Entropy and Quantum Mechanics

The entropy, S , of a system is defined in terms of the number, Ω, of accessible microstates consis-
tent with an overall energy in the range E to E + δE via

S = k lnΩ. (5.92)

We have already demonstrated that this definition is utterly insensitive to the resolution, δE, to
which the macroscopic energy is measured (See Section 5.7.) In classical mechanics, if a system
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possesses f degrees of freedom then phase-space is conventionally subdivided into cells of arbi-
trarily chosen volume h f

0 . (See Section 3.2.) The number of accessible microstates is equivalent
to the number of these cells in the volume of phase-space consistent with an overall energy of the
system lying in the range E to E + δE. Thus,

Ω =
1

h f
0

∫
· · ·
∫

dq1 · · · dqf dp1 · · · dpf , (5.93)

giving

S = k ln
(∫
· · ·
∫

dq1 · · · dqf dp1 · · · dpf

)
− k f ln h0. (5.94)

Thus, in classical mechanics, the entropy is undetermined to an arbitrary additive constant that
depends on the size of the cells in phase-space. In fact, S increases as the cell size decreases.
The second law of thermodynamics is only concerned with changes in entropy, and is, therefore,
unaffected by an additive constant. Likewise, macroscopic thermodynamical quantities, such as
the temperature and pressure, that can be expressed as partial derivatives of the entropy with re-
spect to various macroscopic parameters [see Equations (5.85) and (5.86)] are unaffected by such
a constant. So, in classical mechanics, the entropy is rather like a gravitational potential—it is
undetermined to an additive constant, but this does not affect any physical laws.

The non-unique value of the entropy comes about because there is no limit to the precision
to which the state of a classical system can be specified. In other words, the cell size, h0, can be
made arbitrarily small, which corresponds to specifying the particle coordinates and momenta to
arbitrary accuracy. However, in quantum mechanics, the uncertainty principle sets a definite limit
to how accurately the particle coordinates and momenta can be specified. (See Section C.8.) In
general,

δqi δpi ≥ �/2, (5.95)

where � is Planck’s constant over 2π, pi is the momentum conjugate to the generalized coordinate
qi, and δqi, δpi are the uncertainties in these quantities, respectively. In fact, in quantum mechanics,
the number of accessible quantum states with the overall energy in the range E to E + δE is
completely determined. This implies that, in reality, the entropy of a system has a unique and
unambiguous value. Quantum mechanics can often be “mocked up” in classical mechanics by
setting the cell size in phase-space equal to Planck’s constant, so that h0 = h. This automatically
enforces the most restrictive form of the uncertainty principle, δqi δpi � �/2. In many systems, the
substitution h0 → h in Equation (5.94) gives the same, unique value for S as that obtained from a
full quantum-mechanical calculation. (See Section 8.10.)

Consider a simple quantum-mechanical system consisting of N non-interacting spinless parti-
cles of mass m confined in a cubic box of dimension L. (See Section C.10.) The energy levels of
the ith particle are given by

ei =
�

2π 2

2 m L 2

(
n 2

1 i + n 2
2 i + n 2

3 i

)
, (5.96)

where n1 i, n2 i, and n3 i are three (positive) quantum numbers. The overall energy of the system is
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the sum of the energies of the individual particles, so that for a general state r,

Er =
∑
i=1,N

ei. (5.97)

The overall state of the system is completely specified by 3N quantum numbers, so the number
of degrees of freedom is f = 3N. The classical limit corresponds to the situation where all of the
quantum numbers are much greater than unity. In this limit, the number of accessible states varies
with energy according to our usual estimateΩ ∝ E f . (See Section 3.8.) The lowest possible energy
state of the system, the so-called ground-state, corresponds to the situation where all quantum
numbers take their lowest possible value, unity. Thus, the ground-state energy, E0, is given by

E0 =
f � 2 π 2

2 m L 2 . (5.98)

There is only one accessible microstate at the ground-state energy (i.e., that where all quantum
numbers are unity), so by our usual definition of entropy,

S (E0) = k ln 1 = 0. (5.99)

In other words, there is no disorder in the system when all the particles are in their ground-states.
Clearly, as the energy approaches the ground-state energy, the number of accessible states

becomes far less than the usual classical estimate E f . This is true for all quantum mechanical
systems. In general, the number of microstates varies roughly like

Ω(E) ∼ 1 +C (E − E0) f , (5.100)

where C is a positive constant. According to Equation (5.31), the temperature varies approximately
like

T ∼ E − E0

k f
, (5.101)

provided Ω 
 1. Thus, as the absolute temperature of a system approaches zero, the internal
energy approaches a limiting value E0 (the quantum-mechanical ground-state energy), and the
entropy approaches the limiting value zero. This proposition is known as the third law of thermo-
dynamics.

At low temperatures, great care must be taken to ensure that equilibrium thermodynamical
arguments are applicable, because the rate of attaining equilibrium may be very slow. Another
difficulty arises when dealing with a system in which the atoms possess nuclear spins. Typically,
when such a system is brought to a very low temperature, the entropy associated with the degrees of
freedom not involving nuclear spins becomes negligible. Nevertheless, the number of microstates,
Ωs, corresponding to the possible nuclear spin orientations may be very large. Indeed, it may
be just as large as the number of states at room temperature. The reason for this is that nuclear
magnetic moments are extremely small, and, therefore, have extremely weak mutual interactions.
Thus, it only takes a tiny amount of heat energy in the system to completely randomize the spin
orientations. Typically, a temperature as small as 10−3 degrees kelvin is sufficient to randomize the
spins.
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Suppose that the system consists of N atoms with nuclei of spin 1/2. Each spin can have two
possible orientations. If there is enough residual heat energy in the system to randomize the spins
then each orientation is equally likely. It follows that there are Ωs = 2 N accessible spin states. The
entropy associated with these states is S 0 = k lnΩs = νR ln 2. Below some critical temperature,
T0, the interaction between the nuclear spins becomes significant, and the system settles down
in some unique quantum-mechanical ground-state (e.g., with all spins aligned). In this situation,
S → 0, in accordance with the third law of thermodynamics. However, for temperatures which
are small, but not small enough to “freeze out” the nuclear spin degrees of freedom, the entropy
approaches a limiting value, S 0, that depends only on the kinds of atomic nuclei in the system. This
limiting value is independent of the spatial arrangement of the atoms, or the interactions between
them. Thus, for most practical purposes, the third law of thermodynamics can be written

as T → 0+, S → S 0, (5.102)

where 0+ denotes a temperature that is very close to absolute zero, but still much larger than T0.
This modification of the third law is useful because it can be applied at temperatures that are not
prohibitively low.

5.10 Laws of Thermodynamics

We have now come to the end of our investigation of the fundamental postulates of classical and
statistical thermodynamics. The remainder of this course is devoted to the application of the ideas
that we have just discussed to various situations of interest in physics. Before we proceed, however,
it is useful to summarize the results of our investigations. Our summary takes the form of a number
of general statements regarding macroscopic variables that are usually referred to as the laws of
thermodynamics:

Zeroth Law: If two systems are separately in thermal equilibrium with a third system
then they must be in thermal equilibrium with one another. (See Section. 5.3.)

First Law: The change in internal energy of a system in going from one macrostate
to another is the difference between the net heat absorbed by the system from its sur-
roundings, and the net work done by the system on its surroundings. (See Section 4.1.)

Second Law: The entropy of an isolated system can never spontaneously decrease.
(See Section 5.6.)

Third Law: In the limit as the absolute temperature tends to zero, the entropy also
tends to zero. (See Section 5.9.)

Exercises

5.1 A box is separated by a partition that divides its volume in the ratio 3:1. The larger portion
of the box contains 1000 molecules of Ne gas, and the smaller, 100 molecules of He gas. A
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small hole is punctured in the partition, and the system is allowed to settle down and attain
an equilibrium state.

(a) Find the mean number of molecules of each type on either side of the partition.

(b) What is the probability of finding 1000 molecules of Ne gas in the larger partition,
and 100 molecules of He gas in the smaller (in other words, the same distribution as
in the initial system)?

5.2 Consider an isolated system consisting of a large number, N, of very weakly-interacting
localized particles of spin 1/2. Each particle has a magnetic moment, µ, that can point
either parallel or antiparallel to an applied magnetic field, B. The energy, E, of the system
is then E = −(n1 − n2) µ B, where n1 is the number of spins aligned parallel to B, and n2 the
number of antiparallel spins.

(a) Consider the energy range between E and E + δE, where δE is very small compared
to E, but is microscopically large, so that δE 
 µ B. Show that the total number of
states lying in this energy range is

Ω(E) =
N!

(N/2 − E/2 µ B)! (N/2 + E/2 µ B)!
δE

2 µ B
.

(b) Write down an expression for lnΩ(E). Simplify this expression using Stirling’s ap-
proximation (i.e. n! � n ln n − n) to obtain

lnΩ(E) � N ln N −
(

N
2
− E

2 µ B

)
ln
(

N
2
− E

2 µ B

)

−
(

N
2
+

E
2 µ B

)
ln
(

N
2
+

E
2 µ B

)
.

(c) Use the definition β = ∂ lnΩ/∂E (where β = 1/k T ) to show that the energy of the
system can be written

E � −N µ B tanh
(
µ B
k T

)
.

(d) Under what circumstances is the temperature negative?

(e) Suppose that two otherwise identical spin systems with equal and opposite temper-
atures are brought into thermal contact. What is the final temperature of the overall
system?

5.3 A glass bulb contains air at room temperature and at a pressure of 1 atmosphere. It is placed
in a far larger chamber filled with helium gas at 1 atmosphere and at room temperature. A
few months later, the experimenter happens to read in a journal that the particular glass of
which the bulb is made is quite permeable to helium, but not to any other gas. Assuming
that equilibrium has been reached by this time, what gas pressure will the experimenter
measure inside the bulb when he/she goes back to check?
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5.4 The heat absorbed by a mole of ideal gas in a quasi-static process in which the temperature,
T , changes by dT , and the volume, V , by dV , is given by

d̄Q = c dT + p dV,

where c is its constant molar specific heat at constant volume, and p = R T/V is its pressure.
Find an expression for the change in entropy of the gas in a quasi-static process which takes
it from the initial values of temperature and volume Ti and Vi, respectively, to the final
values T f and Vf , respectively. Does the answer depend on the process involved in going
from the initial to the final state? What is the relationship between the temperature and the
volume in an adiabatic process (i.e. a quasi-static process in which no heat is absorbed)?
What is the change in entropy in an adiabatic process in which the volume changes from
an initial value Vi to a final value Vf ?

5.5 A solid contains N magnetic atoms having spin 1/2. At sufficiently high temperatures,
each spin is completely randomly oriented. In other words, it is equally likely to be in
either one of two possible states. But at sufficiently low temperature, the interactions be-
tween the magnetic atoms causes them to exhibit ferromagnetism, with the result that their
spins become oriented in the same direction. A very crude approximation suggests that
the spin-dependent contribution, C(T ), to the heat capacity of the solid has an approximate
temperature dependence given by

C(T ) = C1

(
2

T
T1
− 1
)

for T1/2 < T < T1, and
C(T ) = 0,

otherwise. The abrupt increase in specific heat as T is reduced below T1 is due to the
onset of ferromagnetic behavior. Find two expressions for the increase in entropy as the
temperature of the system is raised from a value below T1/2 to one above T1. By equating
these two expressions, show that

C1 = 2.26 N k.
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6 Classical Thermodynamics

6.1 Introduction

We have already learned that macroscopic quantities, such as energy, temperature, and pressure,
are, in fact, statistical in nature. In other words, in an equilibrium state, they exhibit random
fluctuations about some mean value. If we were to plot the probability distribution for the energy
(say) of a system in thermal equilibrium with its surroundings then we would obtain a Gaussian
distribution with a very small fractional width. In fact, we expect

∆∗E

E
∼ 1√

f
, (6.1)

where the number of degrees of freedom, f , is about 10 24 for laboratory-scale systems. This im-
plies that the statistical fluctuations of macroscopic quantities about their mean values are typically
only about 1 part in 10 12.

Because the statistical fluctuations of equilibrium quantities are so small, it is an excellent
approximation to neglect them altogether, and, thereby, to replace macroscopic quantities, such
as energy, temperature, and pressure, by their mean values. In other words, E → E, T → T ,
p → p̄, et cetera. In the following discussion, we shall drop the overbars, so that E should be
understood to represent the mean energy, E, et cetera. This prescription, which is the essence
of classical thermodynamics, is equivalent to replacing all statistically-varying quantities by their
most probable values.

Although, formally, there are four laws of thermodynamics (i.e., the zeroth to the third), the
zeroth law is really a consequence of the second law, and the third law is only important at tem-
peratures close to absolute zero. So, for most practical purposes, the two laws that actually matter
are the first law and the second law.

For an infinitesimal process, the first law of thermodynamics is written

d̄Q = dE + d̄W, (6.2)

where dE is the change in internal energy of the system, d̄Q the heat absorbed by the system from
its surroundings, and d̄W the work done by the system on its surroundings. Note that this particular
formulation of the first law is merely a convention. We could equally well write the first law in
terms of the heat emitted by the system, or the work done on the system. It does not really matter,
as long as we are consistent in our definitions. The second law of thermodynamics implies that

d̄Q = T dS , (6.3)

for an infinitesimal quasi-static process, where T is the thermodynamic temperature, and dS the
change in entropy of the system. Furthermore, for systems in which the only external parameter is
the volume (e.g., gases), the work done on the environment is

d̄W = p dV, (6.4)
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where p is the pressure, and dV the change in volume. Thus, the first and second laws of thermo-
dynamics can be combined to give the fundamental thermodynamic relation

T dS = dE + p dV. (6.5)

6.2 Ideal Gas Equation of State

Let us commence our discussion of classical thermodynamics by considering the simplest possible
macroscopic system, which is an ideal gas. All of the thermodynamic properties of an ideal gas are
summed up in its equation of state, which specifies the relationship between its pressure, volume,
and temperature. Unfortunately, classical thermodynamics is unable determine this equation of
state from first principles. In fact, classical thermodynamics cannot determine anything from first
principles. We always need to provide some initial information before classical thermodynamics
can generate new results. This initial information may come from statistical physics (i.e., from our
knowledge of the microscopic structure of the system under consideration), but, more usually, it
is empirical in nature (i.e., it is obtained from experiments). In fact, the ideal gas law was first
discovered empirically by Robert Boyle. Nowadays, however, it can be justified via statistical
arguments, as is described in the following.

Recall (from Section 3.8) that the number of accessible states of a monotonic ideal gas varies
like

Ω ∝ V N χ(E), (6.6)

where N is the number of atoms, and χ(E) depends only on the energy of the gas (and is, therefore,
independent of the volume). We obtained this result by integrating over the volume of accessible
phase-space. Because the energy of an ideal gas is independent of the atomic coordinates (given
that there are no interatomic forces in an ideal gas), the integrals over these coordinates just re-
duced to N simultaneous volume integrals, giving the V N factor in the previous expression. The
integrals over the particle momenta were more complicated, but were clearly independent of V ,
giving the χ(E) factor in the previous expression. Consider the following statistical result [see
Equation (5.41)]:

Xα =
1
β

∂ lnΩ
∂xα

(6.7)

where Xα is the mean force conjugate to the external parameter xα (i.e., d̄W =
∑
α Xα dxα), and

β = 1/(k T ). For an ideal gas, the only external parameter is the volume, and its conjugate force is
the pressure (because d̄W = p dV). So, we can write

p =
1
β

∂ lnΩ
∂V

. (6.8)

It immediately follows from Equation (6.6) that

p =
N k T

V
. (6.9)
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However, N = νNA, where ν is the number of moles, and NA is Avagadro’s number. Also, k NA = R,
where R is the molar ideal gas constant. This allows us to write the equation of state in its standard
form

p V = νR T. (6.10)

Incidentally, the fact that Ω = Ω(V, E) in Equation (6.6) suggests that the macroscopic state of an
ideal gas can be uniquely specified by giving the values of two independent parameters (e.g., the
energy and the volume, the pressure and the volume, the temperature and the volume, et cetera).

The previous derivation of the ideal gas equation of state is rather elegant. It is certainly
far easier to obtain the equation of state in this manner than to treat the atoms that make up the
gas as tiny billiard balls continually bouncing off the walls of a container. The latter derivation
is difficult to perform correctly, because it is necessary to average over all possible directions
of atomic motion. (See Section 7.16.) It is clear, from the previous derivation, that the crucial
element needed to obtain the ideal gas equation of state is the absence of interatomic forces. This
automatically gives rise to a variation of the number of accessible states with E and V of the
form (6.6), which, in turn, implies the ideal gas law. So, the ideal gas law should also apply to
polyatomic gases with no inter-molecular forces. Polyatomic gases are more complicated that
monatomic gases because the molecules can rotate and vibrate, giving rise to extra degrees of
freedom, in addition to the translational degrees of freedom of a monatomic gas. In other words,
χ(E), in Equation (6.6), becomes much more complicated in polyatomic gases. However, as long
as there are no inter-molecular forces, the volume dependence of Ω is still V N , and the ideal gas
law should still hold true. In fact, we shall discover that the extra degrees of freedom of polyatomic
gases manifest themselves by increasing the specific heat capacity. (See Section 7.13.)

There is one other conclusion that we can draw from Equation (6.6). The statistical definition
of temperature is

1
k T
=
∂ lnΩ
∂E

. (6.11)

[See Equation (5.31).] It follows that
1

k T
=
∂ lnχ
∂E

. (6.12)

We can see that, because χ is a function of the energy, but not of the volume, the temperature must
also be a function of the energy, but not the volume. This implies that

E = E(T ). (6.13)

In other words, the internal energy of an ideal gas depends only on the temperature of the gas,
and is independent of the volume. This is a fairly obvious result, because if there are no inter-
molecular forces then increasing the volume, which effectively increases the mean separation be-
tween molecules, is not going to affect the molecular energies. Hence, the energy of the whole gas
is unaffected.

The volume independence of the internal energy can also be derived directly from the ideal gas
equation of state. The internal energy of a gas can be considered to be a general function of the
temperature and volume, so that

E = E(T,V). (6.14)



80 6.2. Ideal Gas Equation of State

It follows from mathematics that

dE =
(
∂E
∂T

)
V

dT +
(
∂E
∂V

)
T

dV, (6.15)

where the subscript V reminds us that the first partial derivative is taken at constant volume, and
the subscript T reminds us that the second partial derivative is taken at constant temperature. The
first and second laws of thermodynamics imply that for a quasi-static change of parameters,

T dS = dE + p dV. (6.16)

[See Equation (6.5).] The ideal gas equation of state, (6.10), can be used to express the pressure in
term of the volume and the temperature in the previous expression:

dS =
1
T

dE +
νR
V

dV. (6.17)

Using Equation (6.15), this becomes

dS =
1
T

(
∂E
∂T

)
V

dT +
[

1
T

(
∂E
∂V

)
T
+
νR
V

]
dV. (6.18)

However, dS is the exact differential of a well-defined state function, S . This means that we can
consider the entropy to be a function of the temperature and volume. Thus, S = S (T,V), and
mathematics immediately yields

dS =
(
∂S
∂T

)
V

dT +
(
∂S
∂V

)
T

dV. (6.19)

The previous expression is valid for all small values of dT and dV , so a comparison with Equa-
tion (6.18) gives (

∂S
∂T

)
V
=

1
T

(
∂E
∂T

)
V
, (6.20)

(
∂S
∂V

)
T
=

1
T

(
∂E
∂V

)
T
+
νR
V
. (6.21)

A well-known property of partial differentials is the equality of second derivatives, irrespective of
the order of differentiation, so

∂ 2S
∂V ∂T

=
∂ 2S
∂T ∂V

. (6.22)

This implies that (
∂

∂V

)
T

(
∂S
∂T

)
V
=

(
∂

∂T

)
V

(
∂S
∂V

)
T
. (6.23)

The previous expression can be combined with Equations (6.20) and (6.21) to give

1
T

(
∂ 2E
∂V ∂T

)
=

[
− 1

T 2

(
∂E
∂V

)
T
+

1
T

(
∂ 2E
∂T ∂V

)]
. (6.24)
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Because second derivatives are equivalent, irrespective of the order of differentiation, the previous
relation reduces to (

∂E
∂V

)
T
= 0, (6.25)

which implies that the internal energy is independent of the volume for any gas obeying the ideal
equation of state. This result was confirmed experimentally by James Joule in the middle of the
nineteenth century.

6.3 Specific Heat

Suppose that a body absorbs an amount of heat ∆Q, and its temperature consequently rises by ∆T .
The usual definition of the heat capacity, or specific heat, of the body is

C =
∆Q
∆T

. (6.26)

If the body consists of ν moles of some substance then the molar specific heat (i.e., the specific
heat of one mole of this substance) is defined

c =
1
ν

∆Q
∆T

. (6.27)

In writing the previous expressions, we have tacitly assumed that the specific heat of a body is
independent of its temperature. In general, this is not true. We can overcome this problem by only
allowing the body in question to absorb a very small amount of heat, so that its temperature only
rises slightly, and its specific heat remains approximately constant. In the limit that the amount of
absorbed heat becomes infinitesimal, we obtain

c =
1
ν

d̄Q
dT

. (6.28)

In classical thermodynamics, it is usual to define two molar specific heats. Firstly, the molar
specific heat at constant volume, denoted

cV =
1
ν

(
d̄Q
dT

)
V
, (6.29)

and, secondly, the molar specific heat at constant pressure, denoted

cp =
1
ν

(
d̄Q
dT

)
p
. (6.30)

Consider the molar specific heat at constant volume of an ideal gas. Because dV = 0, no work
is done by the gas on its surroundings, and the first law of thermodynamics reduces to

d̄Q = dE. (6.31)
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It follows from Equation (6.29) that

cV =
1
ν

(
∂E
∂T

)
V
. (6.32)

Now, for an ideal gas, the internal energy is volume independent. [See Equation (6.25).] Thus, the
previous expression implies that the specific heat at constant volume is also volume independent.
Because E is a function of T only, we can write

dE =
(
∂E
∂T

)
V

dT. (6.33)

The previous two expressions can be combined to give

dE = ν cV dT (6.34)

for an ideal gas.
Let us now consider the molar specific heat at constant pressure of an ideal gas. In general, if

the pressure is kept constant then the volume changes, and so the gas does work on its environment.
According to the first law of thermodynamics,

d̄Q = dE + p dV = ν cV dT + p dV, (6.35)

where use has been made of Equation (6.34). The equation of state of an ideal gas, (6.10), im-
plies that if the volume changes by dV , the temperature changes by dT , and the pressure remains
constant, then

p dV = νR dT. (6.36)

The previous two equations can be combined to give

d̄Q = ν cV dT + νR dT. (6.37)

Now, by definition,

cp =
1
ν

(
d̄Q
dT

)
p
, (6.38)

so we obtain
cp = cV + R (6.39)

for an ideal gas. Note that, at constant volume, all of the heat absorbed by the gas goes into
increasing its internal energy, and, hence, its temperature, whereas, at constant pressure, some of
the absorbed heat is used to do work on the environment as the volume increases. This means that,
in the latter case, less heat is available to increase the temperature of the gas. Thus, we expect the
specific heat at constant pressure to exceed that at constant volume, as indicated by the previous
formula.

The ratio of the two specific heats, cp/cV , is conventionally denoted γ. We have

γ ≡ cp

cV
= 1 +

R
cV

(6.40)
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cV γ γ
Gas Symbol (experiment) (experiment) (theory)
Helium He 12.5 1.666 1.666
Argon Ar 12.5 1.666 1.666
Nitrogen N2 20.6 1.405 1.407
Oxygen O2 21.1 1.396 1.397
Carbon Dioxide CO2 28.2 1.302 1.298
Ethane C2H6 39.3 1.220 1.214

Table 6.1: Molar specific heats of common gases in joules/mole/degree (at 15◦C and 1 atmosphere).
From Reif.

for an ideal gas. In fact, γ is easy to measure experimentally because the speed of sound in an ideal
gas takes the form

u =
√
γ p
ρ
, (6.41)

where ρ is the mass density. (See Exercise 6.8.) Table 6.1 lists some experimental measurements
of cV and γ for common gases. The extent of the agreement between γ calculated from Equa-
tion (6.40) and the experimental γ is remarkable.

6.4 Calculation of Specific Heats

Now that we know the relationship between the molar specific heats at constant volume and con-
stant pressure for an ideal gas, it would be interesting if we could calculate either one of these
quantities from first principles. Classical thermodynamics cannot help us here. However, it is
straightforward to calculate the specific heat at constant volume using our knowledge of statistical
physics. Recall that the variation of the number of accessible states of an ideal gas with energy and
volume is written

Ω(E,V) ∝ V N χ(E). (6.42)

In fact, for the specific case of a monatomic ideal gas, we worked out a more exact expression for
Ω in Section 3.8: namely,

Ω(E,V) = B V N E 3N/2, (6.43)

where B is a constant independent of the energy and volume. It follows that

lnΩ = ln B + N ln V +
3N
2

ln E. (6.44)

The absolute temperature is given by [see Equation (5.30)]

β ≡ 1
k T
=
∂ lnΩ
∂E

=
3N
2

1
E
, (6.45)

so
E =

3
2

N k T. (6.46)
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Because N = νNA, and NA k = R, we can rewrite the previous expression as

E =
3
2
νR T, (6.47)

where R = 8.3143 joules/mole/degree is the molar ideal gas constant. The previous formula tells
us exactly how the internal energy of a monatomic ideal gas depends on its temperature.

The molar specific heat at constant volume of a monatomic ideal gas is clearly

cV =
1
ν

(
∂E
∂T

)
V
=

3
2

R. (6.48)

This has the numerical value

cV = 12.47 joules/mole/degree. (6.49)

Furthermore, we have

cp = cV + R =
5
2

R, (6.50)

and
γ ≡ cp

cV
=

5
3
= 1.667. (6.51)

We can see from Table 6.1 that these predictions are borne out fairly well for the monatomic
gases helium and argon. Note that the specific heats of polyatomic gases are larger than those of
monatomic gases, because polyatomic molecules can rotate around their centers of mass, as well
as translate, so polyatomic gases can store energy in the rotational, as well as the translational,
energy states of their constituent particles. We shall analyze this effect in greater detail later on in
this course. (See Section 7.13.)

6.5 Isothermal and Adiabatic Expansion

Suppose that the temperature of an ideal gas is held constant by keeping the gas in thermal con-
tact with a heat reservoir. If the gas is allowed to expand quasi-statically under these so-called
isothermal conditions then the ideal gas equation of state tells us that

p V = constant. (6.52)

This result is known as the isothermal gas law.
Suppose, now, that the gas is thermally isolated from its surroundings. If the gas is allowed to

expand quasi-statically under these so-called adiabatic conditions then it does work on its environ-
ment, and, hence, its internal energy is reduced, and its temperature changes. Let us calculate the
relationship between the pressure and volume of the gas during adiabatic expansion. According to
the first law of thermodynamics,

d̄Q = ν cV dT + p dV = 0, (6.53)
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in an adiabatic process (in which no heat is absorbed). [See Equation (6.35).] The ideal gas
equation of state, (6.10), can be differentiated, yielding

p dV + V dp = νR dT. (6.54)

The temperature increment, dT , can be eliminated between the previous two expressions to give

0 =
cV

R
(p dV + V dp) + p dV =

(cV

R
+ 1
)

p dV +
cV

R
V dp, (6.55)

which reduces to
(cV + R) p dV + cV V dp = 0. (6.56)

Dividing through by cV p V yields

γ
dV
V
+

dp
p
= 0, (6.57)

where
γ ≡ cp

cV
=

cV + R
cV

. (6.58)

It turns out that cV is a slowly-varying function of temperature in most gases. Consequently, it is
usually a good approximation to treat the ratio of specific heats, γ, as a constant, at least over a
limited temperature range. If γ is constant then we can integrate Equation (6.57) to give

γ ln V + ln p = constant, (6.59)

or
p V γ = constant. (6.60)

This result is known as the adiabatic gas law. It is straightforward to obtain analogous relationships
between V and T , and between p and T , during adiabatic expansion or contraction. In fact, because
p = νR T/V , the previous formula also implies that

T V γ−1 = constant, (6.61)

and
p 1−γ T γ = constant. (6.62)

Equations (6.60)–(6.62) are all completely equivalent.

6.6 Hydrostatic Equilibrium of Atmosphere

The gas that we are most familiar with in everyday life is, of course, the Earth’s atmosphere. It
turns out that we can use the isothermal and adiabatic gas laws to explain most of the observed
features of the atmosphere.

Let us, first of all, consider the hydrostatic equilibrium of the atmosphere. Consider a thin
vertical slice of the atmosphere, of cross-sectional area A, that starts at height z above ground
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level, and extends to height z + dz. The upward force exerted on this slice by the gas below it is
p(z) A, where p(z) is the pressure at height z. Likewise, the downward force exerted by the gas
above the slice is p(z + dz) A. The net upward force is [p(z) − p(z + dz)] A. In equilibrium, this
upward force must be balanced by the downward force due to the weight of the slice, which is
ρ A dz g, where ρ is the mass density of the gas, and g the acceleration due to gravity. It follows
that the force balance condition can be written

[p(z) − p(z + dz)] A = ρ A dz g, (6.63)

which reduces to
dp
dz
= −ρ g. (6.64)

This result is known as the equation of hydrostatic equilibrium for the atmosphere.
We can express the mass density of a gas in the following form,

ρ =
ν µ

V
, (6.65)

where µ is the molecular weight of the gas, and is equal to the mass of one mole of gas particles.
For instance, the molecular weight of nitrogen gas is 28 × 10−3 kg. The previous formula for the
mass density of a gas, combined with the ideal gas law, p V = νR T , yields

ρ =
p µ
R T

. (6.66)

It follows that the equation of hydrostatic equilibrium can be rewritten

dp
p
= − µ g

R T
dz. (6.67)

6.7 Isothermal Atmosphere

As a first approximation, let us assume that the temperature of the atmosphere is uniform. In such
an isothermal atmosphere, we can directly integrate the previous equation to give

p = p0 exp
(
− z

z0

)
. (6.68)

Here, p0 is the pressure at ground level (z = 0), which is generally about 1 bar (10 5 N m−2 in SI
units). The quantity

z0 =
R T
µ g

(6.69)

is known as the isothermal scale-height of the atmosphere. At ground level, the atmospheric
temperature is, on average, about 15◦ C, which is 288 K on the absolute scale. The mean molecular
weight of air at sea level is 29 × 10−3 kg (i.e., the molecular weight of a gas made up of 78%
nitrogen, 21% oxygen, and 1% argon). The mean acceleration due to gravity is 9.81 m s−2 at
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ground level. Also, the molar ideal gas constant is 8.314 joules/mole/degree. Combining all of this
information, the isothermal scale-height of the atmosphere comes out to be about 8.4 kilometers.

We have discovered that, in an isothermal atmosphere, the pressure decreases exponentially
with increasing height. Because the temperature is assumed to be constant, and ρ ∝ p/T [see
Equation (6.66)], it follows that the density also decreases exponentially with the same scale-
height as the pressure. According to Equation (6.68), the pressure, or the density, of the atmo-
sphere decreases by a factor 10 every ln10 z0, or 19.3 kilometers, increase in altitude above sea
level. Clearly, the effective height of the atmosphere is very small compared to the Earth’s radius,
which is about 6, 400 kilometers. In other words, the atmosphere constitutes a relatively thin layer
covering the surface of the Earth. Incidentally, this justifies our neglect of the decrease of g with
increasing altitude.

One of the highest points in the United States of America is the peak of Mount Elbert in Col-
orado. This peak lies 14, 432 feet, or about 4.4 kilometers, above sea level. At this altitude, Equa-
tion (6.68) predicts that the air pressure should be about 0.6 atmospheres. Surprisingly enough,
after a few days acclimatization, people can survive quite comfortably at this sort of pressure.
In the highest inhabited regions of the Andes and Tibet, the air pressure falls to about 0.5 atmo-
spheres. Humans can just about survive at such pressures. However, people cannot survive for any
extended period in air pressures below half an atmosphere. This sets an upper limit on the altitude
of permanent human habitation, which is about 19, 000 feet, or 5.8 kilometers, above sea level.
Incidentally, this is also the maximum altitude at which a pilot can fly an unpressurized aircraft
without requiring additional oxygen.

The highest point in the world is, of course, the peak of Mount Everest in Nepal. This peak
lies at an altitude of 29, 028 feet, or 8.85 kilometers, above sea level, where we expect the air
pressure to be a mere 0.35 atmospheres. This explains why Mount Everest was only conquered
after lightweight portable oxygen cylinders were invented. Admittedly, some climbers have subse-
quently ascended Mount Everest without the aid of additional oxygen, but this is a very foolhardy
venture, because, above 19, 000 feet, the climbers are slowly dying.

Commercial airliners fly at a cruising altitude of 32, 000 feet. At this altitude, we expect the
air pressure to be only 0.3 atmospheres, which explains why airline cabins are pressurized. In
fact, the cabins are only pressurized to 0.85 atmospheres (which accounts for the “popping” of
passangers ears during air travel). The reason for this partial pressurization is quite simple. At
32, 000 feet, the pressure difference between the air in the cabin, and hence that outside, is about
half an atmosphere. Clearly, the walls of the cabin must be strong enough to support this pressure
difference, which means that they must be of a certain thickness, and, hence, that the aircraft must
be of a certain weight. If the cabin were fully pressurized then the pressure difference at cruising
altitude would increase by about 30%, which means that the cabin walls would have to be much
thicker, and, hence, the aircraft would have to be substantially heavier. So, a fully pressurized
aircraft would be more comfortable to fly in (because your ears would not “pop”), but it would
also be far less economical to operate.
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6.8 Adiabatic Atmosphere

Of course, we know that the atmosphere is not isothermal. In fact, air temperature falls quite
noticeably with increasing altitude. In ski resorts, the general rule of thumb is that the temperature
drops by about 1 degree per 100 meters increase in altitude. Many people cannot understand why
the atmosphere gets colder with increasing height. They reason that because higher altitudes are
closer to the Sun they ought to be hotter. In fact, the explanation is quite simple. It depends on
three important properties of air. The first property is that air is transparent to most, but by no
means all, of the electromagnetic spectrum. In particular, most infrared radiation, which carries
heat energy, passes straight through the lower atmosphere, and heats the ground. In other words,
the lower atmosphere is heated from below, not from above. The second important property of
air is that it is constantly in motion. In fact, the lower 20 kilometers of the atmosphere (the so-
called troposphere) are fairly thoroughly mixed. You might think that this would imply that the
atmosphere is isothermal. However, this is not the case because of the final important property of
air: namely, it is a very poor conductor of heat. This, of course, is why woolly sweaters work—
they trap a layer of air close to the body, and, because air is such a poor conductor of heat, you stay
warm.

Imagine a packet of air that is swirling around in the atmosphere. We would expect it to always
remain at the same pressure as its surroundings, otherwise it would be mechanically unstable. It
is also plausible that the packet moves around too quickly to effectively exchange heat with its
surroundings, because air is very a poor heat conductor, and heat flow is consequently quite a slow
process. So, to a first approximation, the air in the packet is adiabatic. In a steady-state atmosphere,
we expect that, as the packet moves upwards, expands due to the reduced pressure, and cools
adiabatically, its temperature always remains the same as that of its immediate surroundings. This
means that we can use the adiabatic gas law to characterize the cooling of the atmosphere with
increasing altitude. In this particular case, the most useful manifestation of the adiabatic law is

p 1−γ T γ = constant, (6.70)

giving
dp
p
=

γ

γ − 1
dT
T
. (6.71)

Combining the previous expression with the equation of hydrostatic equilibrium, (6.67), we obtain

γ

γ − 1
dT
T
= − µ g

R T
dz, (6.72)

or
dT
dz
= −γ − 1

γ

µ g

R
. (6.73)

Now, the ratio of specific heats for air (which is effectively a diatomic gas) is about 1.4. (See
Table 6.1.) Hence, we can deduce, from the previous expression, that the temperature of the
atmosphere decreases with increasing height at a constant rate of 9.8◦ C per kilometer. This value
is called the (dry) adiabatic lapse rate of the atmosphere. Our calculation accords well with the “1
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degree colder per 100 meters higher” rule of thumb used in ski resorts. The basic reason that air is
colder at higher altitudes is that it expands as its pressure decreases with height. It, therefore, does
work on its environment, without absorbing any heat (because of its low thermal conductivity), so
its internal energy, and, hence, its temperature decreases.

According to the adiabatic lapse rate calculated previously, the air temperature at the cruising
altitude of airliners (32, 000 feet) should be about −80◦ C (assuming a sea level temperature of
15◦ C). In fact, this is somewhat of an underestimate. A more realistic value is about −60◦ C.
The explanation for this discrepancy is the presence of water vapor in the atmosphere. As air
rises, expands, and cools, water vapor condenses out, releasing latent heat, which prevents the
temperature from falling as rapidly with height as the adiabatic lapse rate would predict. (See
Exercise 9.6.) In fact, in the tropics, where the air humidity is very high, the lapse rate of the
atmosphere (i.e., the rate of decrease of temperature with altitude) is significantly less than the
adiabatic value. The adiabatic lapse rate is only observed when the humidity is low. This is the
case in deserts, in the arctic (where water vapor is frozen out of the atmosphere), and, of course, in
ski resorts.

Suppose that the lapse rate of the atmosphere differs from the adiabatic value. Let us ignore the
complication of water vapor, and assume that the atmosphere is dry. Consider a packet of air that
moves slightly upwards from its equilibrium height. The temperature of the packet will decrease
with altitude according to the adiabatic lapse rate, because its expansion is adiabatic. We shall
assume that the packet always maintains pressure balance with its surroundings. It follows that
because ρ T ∝ p, according to the ideal gas law,

(ρ T )packet = (ρ T )atmosphere. (6.74)

If the atmospheric lapse rate is less than the adiabatic value then Tatmosphere > Tpacket implying
that ρpacket > ρatmosphere. So, the packet will be denser than its immediate surroundings, and will,
therefore, tend to fall back to its original height. Clearly, an atmosphere whose lapse rate is less
than the adiabatic value is vertically stable. On the other hand, if the atmospheric lapse rate exceeds
the adiabatic value then, after rising a little way, the packet will be less dense than its immediate
surroundings, and will, therefore, continue to rise due to buoyancy effects. Clearly, an atmosphere
whose lapse rate is greater than the adiabatic value is vertically unstable. This effect is of great
importance in meteorology. The normal stable state of the atmosphere is for the lapse rate to be
slightly less than the adiabatic value. Occasionally, however, the lapse rate exceeds the adiabatic
value, and this is always associated with extremely disturbed weather patterns.

Let us consider the temperature, pressure, and density profiles in an adiabatic atmosphere. We
can directly integrate Equation (6.73) to give

T = T0

(
1 − γ − 1

γ

z
z0

)
, (6.75)

where T0 is the ground-level temperature, and

z0 =
R T0

µ g
(6.76)
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the isothermal scale-height calculated using this temperature. The pressure profile is easily calcu-
lated from the adiabatic gas law p 1−γ T γ = constant, or p ∝ T γ/(γ−1). It follows that

p = p0

(
1 − γ − 1

γ

z
z0

)γ/(γ−1)

. (6.77)

Consider the limit γ → 1. In this limit, Equation (6.75) yields T independent of height (i.e., the
atmosphere becomes isothermal). We can evaluate Equation (6.77) in the limit as γ → 1 using the
mathematical identity

lt m→0 (1 + m x)1/m ≡ exp(x). (6.78)

We obtain

p = p0 exp
(
− z

z0

)
, (6.79)

which, not surprisingly, is the predicted pressure variation in an isothermal atmosphere. In reality,
the ratio of specific heats of the atmosphere is not unity, but is about 1.4 (i.e., the ratio for diatomic
gases), which implies that in the real atmosphere

p = p0

(
1 − z

3.5 z0

)3.5
. (6.80)

In fact, this formula gives very similar results to the isothermal formula, Equation (6.79), for
heights below one scale-height (i.e., z < z0). For heights above one scale-height, the isothermal
formula tends to predict too high a pressure. (See Figure 6.1.) So, in an adiabatic atmosphere,
the pressure falls off more quickly with altitude than in an isothermal atmosphere, but this effect
is only noticeable at pressures significantly below one atmosphere. In fact, the isothermal formula
is a fairly good approximation below altitudes of about 10 kilometers. Because ρ ∝ p/T , the
variation of density with height is

ρ = ρ0

(
1 − γ − 1

γ

z
z0

)1/(γ−1)

= ρ0

(
1 − z

3.5 z0

)2.5
, (6.81)

where ρ0 is the density at ground level. Thus, the density falls off more rapidly with altitude than
the temperature, but less rapidly than the pressure.

Note that an adiabatic atmosphere has a sharp upper boundary. Above height z1 = [γ/(γ−1)] z0,
the temperature, pressure, and density are all zero. In other words, there is no atmosphere. For real
air, with γ = 1.4, the upper boundary of an adiabatic atmosphere lies at height z1 � 3.5 z0 � 29.4
kilometers above sea level. This behavior is quite different to that of an isothermal atmosphere,
which has a diffuse upper boundary. In reality, there is no sharp upper boundary to the atmosphere.
The adiabatic gas law does not apply above about 20 kilometers (i.e., in the stratosphere) because,
at these altitudes, the air is no longer strongly mixed. Thus, in the stratosphere, the pressure falls
off exponentially with increasing height.

In conclusion, we have demonstrated that the temperature of the lower atmosphere should
decrease approximately linearly with increasing height above ground level, while the pressure
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Figure 6.1: The solid curve shows the variation of pressure (normalized to the pressure at ground
level) with altitude (normalized to the isothermal scale-height at ground level) in an isothermal
atmosphere. The dashed curve shows the variation of pressure with altitude in an adiabatic atmo-
sphere.

should decrease far more rapidly than the temperature, and the density should decrease at some
intermediate rate. We have also shown that the lapse rate of the temperature should be about 10◦ C
per kilometer in dry air, but somewhat less than this in wet air. In fact, all of these predictions are,
more or less, correct. It is amazing that such accurate predictions can be obtained from the two
simple laws—p V = constant for an isothermal gas, and p V γ = constant for an adiabatic gas.

6.9 Internal Energy

Equation (6.5) can be rearranged to give

dE = T dS − p dV. (6.82)

This equation shows how the internal energy, E, depends on independent variations of the entropy,
S , and the volume, V . If S and V are considered to be the two independent parameters that specify
the system then

E = E(S ,V). (6.83)

It immediately follows that

dE =
(
∂E
∂S

)
V

dS +
(
∂E
∂V

)
S

dV. (6.84)
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Now, Equations (6.82) and (6.84) must be equivalent for all possible values of dS and dV . Hence,
we deduce that (

∂E
∂S

)
V
= T, (6.85)

(
∂E
∂V

)
S
= −p. (6.86)

We also know that
∂ 2E
∂V ∂S

=
∂ 2E
∂S ∂V

, (6.87)

or (
∂

∂V

)
S

(
∂E
∂S

)
V
=

(
∂

∂S

)
V

(
∂E
∂V

)
S
. (6.88)

In fact, this is a necessary condition for dE in Equation (6.84) to be an exact differential. (See
Section 4.5.) It follows from Equations (6.85) and (6.86) that(

∂T
∂V

)
S
= −

(
∂p
∂S

)
V
. (6.89)

6.10 Enthalpy

The analysis in the previous section is based on the premise that S and V are the two independent
parameters that specify the system. Suppose, however, that we choose S and p to be the two
independent parameters. Because

p dV = d(p V) − V dp, (6.90)

we can rewrite Equation (6.82) in the form

dH = T dS + V dp, (6.91)

where
H = E + p V (6.92)

is termed the enthalpy. The name is derived from the Greek enthalpein, which means to “to warm
in.”

The analysis now proceeds in an analogous manner to that in the preceding section. First, we
write

H = H(S , p), (6.93)

which implies that

dH =
(
∂H
∂S

)
p

dS +
(
∂H
∂p

)
S

dp. (6.94)
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Comparison of Equations (6.91) and (6.94) yields(
∂H
∂S

)
p
= T, (6.95)

(
∂H
∂p

)
S
= V. (6.96)

We also know that
∂ 2H
∂p ∂S

=
∂ 2H
∂S ∂p

, (6.97)

or (
∂

∂p

)
S

(
∂H
∂S

)
p
=

(
∂

∂S

)
p

(
∂H
∂p

)
S
. (6.98)

Thus, it follows from Equations (6.95) and (6.96) that(
∂T
∂p

)
S
=

(
∂V
∂S

)
p
. (6.99)

6.11 Helmholtz Free Energy

Suppose that T and V are the are the two independent parameters that specify the system. Because

T dS = d(T S ) − S dT, (6.100)

we can rewrite Equation (6.82) in the form

dF = −S dT − p dV, (6.101)

where
F = E − T S (6.102)

is termed the Helmholtz free energy.
Proceeding as before, we write

F = F(T,V), (6.103)

which implies that

dF =
(
∂F
∂T

)
V

dT +
(
∂F
∂V

)
T

dV. (6.104)

Comparison of Equations (6.101) and (6.104) yields(
∂F
∂T

)
V
= −S , (6.105)

(
∂F
∂V

)
T
= −p. (6.106)
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We also know that
∂ 2F
∂V ∂T

=
∂ 2F
∂T ∂V

, (6.107)

or (
∂

∂V

)
T

(
∂F
∂T

)
V
=

(
∂

∂T

)
V

(
∂F
∂V

)
T
. (6.108)

Thus, it follows from Equations (6.105) and (6.106) that(
∂S
∂V

)
T
=

(
∂p
∂T

)
V
. (6.109)

6.12 Gibbs Free Energy

Suppose, finally, that T and p are the are the two independent parameters that specify the system.
Because

T dS = d(T S ) − S dT, (6.110)

we can rewrite Equation (6.91) in the form

dG = −S dT + V dp, (6.111)

where
G = H − T S = E − T S + p V (6.112)

is termed the Gibbs free energy.
Proceeding as before, we write

G = G(T, p), (6.113)

which implies that

dG =
(
∂G
∂T

)
p

dT +
(
∂G
∂p

)
T

dp. (6.114)

Comparison of Equations (6.111) and (6.114) yields(
∂G
∂T

)
p
= −S , (6.115)

(
∂G
∂p

)
T
= V. (6.116)

We also know that
∂ 2G
∂p ∂T

=
∂ 2G
∂T ∂p

, (6.117)

or (
∂

∂p

)
T

(
∂G
∂T

)
p
=

(
∂

∂T

)
p

(
∂G
∂p

)
T
. (6.118)
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Thus, it follows from Equations (6.115) and (6.116) that

−
(
∂S
∂p

)
T
=

(
∂V
∂T

)
p
. (6.119)

Equations (6.89), (6.99), (6.109), and (6.119) are known collectively as Maxwell relations.

6.13 General Relation Between Specific Heats

Consider a general homogeneous substance (not necessarily a gas) whose volume, V , is the only
relevant external parameter. Let us find the general relationship between this substance’s molar
specific heat at constant volume, cV , and its molar specific heat at constant pressure, cp.

The heat capacity at constant volume is given by

CV =

(
d̄Q
dT

)
V
= T

(
∂S
∂T

)
V
. (6.120)

Likewise, the heat capacity at constant pressure is written

Cp =

(
d̄Q
dT

)
p
= T

(
∂S
∂T

)
p
. (6.121)

Experimentally, the parameters that are most easily controlled are the temperature, T , and the
pressure, p. Let us consider these as the independent variables. Thus, S = S (T, p), which implies
that

d̄Q = T dS = T

(
∂S
∂T

)
p

dT +
(
∂S
∂p

)
T

dp
 (6.122)

in an infinitesimal quasi-static process in which an amount of heat d̄Q is absorbed. It follows from
Equation (6.121) that

d̄Q = T dS = Cp dT + T
(
∂S
∂p

)
T

dp. (6.123)

Suppose that p = p(T,V). The previous equation can be written

d̄Q = T dS = Cp dT + T
(
∂S
∂p

)
T

[(
∂p
∂T

)
V

dT +
(
∂p
∂V

)
T

dV
]
. (6.124)

At constant volume, dV = 0. Hence, Equation (6.120) gives

CV = T
(
∂S
∂T

)
V
= Cp + T

(
∂S
∂p

)
T

(
∂p
∂T

)
V
. (6.125)

This is the general relationship between CV and Cp. Unfortunately, it contains quantities on the
right-hand side that are not readily measurable.
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Consider (∂S/∂p)T . According to the Maxwell relation (6.119),(
∂S
∂p

)
T
= −

(
∂V
∂T

)
p
. (6.126)

Now, the quantity

αV ≡ 1
V

(
∂V
∂T

)
p
, (6.127)

which is known as the volume coefficient of expansion, is easily measured experimentally. Hence,
it is convenient to make the substitution (

∂S
∂p

)
T
= −V αV (6.128)

in Equation (6.125).
Consider the quantity (∂p/∂T )V . Writing V = V(T, p), we obtain

dV =
(
∂V
∂T

)
p

dT +
(
∂V
∂p

)
T

dp. (6.129)

At constant volume, dV = 0, so we obtain(
∂p
∂T

)
V
= −

(
∂V
∂T

)
p

/ (
∂V
∂p

)
T
. (6.130)

The (usually positive) quantity

κT ≡ − 1
V

(
∂V
∂p

)
T
, (6.131)

which is known as the isothermal compressibility, is easily measured experimentally. Hence, it is
convenient to make the substitution (

∂p
∂T

)
V
=
αV

κT
(6.132)

in Equation (6.125). It follows that

Cp −CV = V T
α 2

V

κT
, (6.133)

and

cp − cV = v T
α 2

V

κT
, (6.134)

where v = V/ν is the molar volume.
As an example, consider an ideal gas, for which

p V = νR T. (6.135)
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At constant p, we have
p dV = νR dT. (6.136)

Hence, (
dV
dT

)
p
=
νR
p
=

V
T
, (6.137)

and the expansion coefficient defined in Equation (6.127) becomes

αV =
1
T
. (6.138)

At constant T , we have
p dV + V dp = 0. (6.139)

Hence, (
∂V
∂p

)
T
= −V

p
, (6.140)

and the compressibility defined in Equation (6.131) becomes

κT =
1
p
. (6.141)

Finally, the molar volume of an ideal gas is

v =
V
ν
=

R T
p
. (6.142)

Hence, Equations (6.134), (6.138), (6.141), and (6.142) yield

cp − cV = R, (6.143)

which is identical to Equation (6.39).

6.14 Free Expansion of Gas

Consider a rigid container that is thermally insulated. The container is divided into two compart-
ments separated by a valve that is initially closed. One compartment, of volume V1, contains the
gas under investigation. The other compartment is empty. The initial temperature of the system is
T1. The valve is now opened, and the gas is free to expand so as to fill the entire container, whose
volume is V2. What is the temperature, T2, of the gas after the final equilibrium state has been
reached?

Because the system consisting of the gas and the container is adiabatically insulated, no heat
flows into the system: that is,

Q = 0. (6.144)
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Furthermore, the system does no work in the expansion process: that is,

W = 0. (6.145)

It follows from the first law of thermodynamics that the total energy of the system is conserved:
that is,

∆E = Q −W = 0. (6.146)

Let us assume that the container itself has negligible heat capacity (which, it turns out, is not a
particularly realistic assumption—see later), so that the internal energy of the container does not
change. Under these circumstances, the energy change of the system is equivalent to that of the
gas. The conservation of energy, (6.146), thus reduces to

E(T2,V2) = E(T1,V1), (6.147)

where E(T,V) is the gas’s internal energy.
To predict the outcome of the experiment, it is only necessary to know the internal energy of

the gas, E(T,V), as a function of the temperature and the volume. If the initial parameters, T1

and V1, are known, as well as the final volume, V2, then Equation (6.147) yields an equation that
specifies the unknown final temperature, T2.

For an ideal gas, the internal energy is independent of the volume: that is, E = E(T ). (See
Section 6.2.) In this case, Equation (6.147) yields

E(T2) = E(T1), (6.148)

which implies that T2 = T1. In other words, there is no temperature change in the free expansion
of an ideal gas.

The change in temperature of an non-ideal gas that undergoes free expansion can be written

T2 = T1 +

∫ v2

v1

η dv, (6.149)

where

η =

(
∂T
∂v

)
E

(6.150)

is termed the Joule coefficient. Here, v = V/ν is the molar volume, where ν is the number of moles
of gas in the container. Furthermore, v1 = V1/ν and v2 = V2/ν.

According to the first law of thermodynamics,

dE = T dS − p dV. (6.151)

However, if the internal energy is constant then we can write

0 = T
[(
∂S
∂T

)
V

dT +
(
∂S
∂V

)
T

dV
]
− p dV. (6.152)
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Gas Symbol pc(bar) Tc(K) a(SI) b(SI)
Helium He 2.27 5.19 3.46 × 10−3 2.38 × 10−5

Hydrogen H 13.0 33.2 2.47 × 10−2 2.65 × 10−5

Nitrogen N2 33.9 126.2 1.37 × 10−1 3.87 × 10−5

Oxygen O2 50.5 154.6 1.38 × 10−1 3.18 × 10−5

Table 6.2: Critical pressures and temperatures, and derived van der Waals parameters, for common
gases.

With the aid of Equations (6.109) and (6.120), this becomes

0 = CV dT +
[
T
(
∂p
∂T

)
V
− p
]

dV. (6.153)

Hence, (
∂T
∂V

)
E
= −

[
T
(
∂p
∂T

)
V
− p
]/

CV , (6.154)

and the Joule coefficient can be written

η = −
[
T
(
∂p
∂T

)
V
− p
]/

cV = −
(
T αV

κT
− p
)/

cV . (6.155)

[See Equation (6.132).] Note that all terms on the right-hand side of the previous expression are
easily measurable.

6.15 Van der Waals Gas

Consider a non-ideal gas whose equation of state takes the form(
p +

a
v 2

)
(v − b) = R T, (6.156)

where a and b are positive constants. (See Section 8.11.) Such a gas is known as a van der Waals
gas. The previous approximate equation of state attempts to take into account the existence of long-
range attractive forces between molecules in real gases, as well as the finite volume occupied by the
molecules themselves. The attractive forces gives rise to a slight compression of the gas (relative
to an ideal gas)—the term a/v 2 represents this additional positive pressure. The parameter b is the
volume occupied by a mole of gas molecules. Thus, v→ b as T → 0. Of course, in the limit a→ 0
and b→ 0, the van der Waals equation of state reduces to the ideal gas equation of state.

The van der Waals equation of state can be written

p =
R T
v − b

− a
v 2 . (6.157)

At fixed temperature, the previous equation yields p(v) curves that exhibit a maximum and a mini-
mum at two points where (∂p/∂v)T = 0. At a particular temperature, the maximum and minimum
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coalesce into a single inflection point where (∂ 2 p/∂v 2)T = 0, in addition to (∂p/∂v)T = 0. This
point is called the critical point, and its temperature, pressure, and molar volume are denoted Tc,
pc, and vc, respectively. It is readily demonstrated that

Tc =
8 a

27 R b
, (6.158)

pc =
a

27 b 2 , (6.159)

vc = 3 b. (6.160)

(See Exercise 6.13.) The critical temperature, Tc, and the critical pressure, pc, of a substance
are easily determined experimentally, because they turn out to be the maximum temperature and
pressure, respectively, at which distinct liquid and gas phases exist. (See Section 9.10.) This allows
a determination of the constants a and b in the van der Waals equation of state. In fact,

a =
27
64

(R Tc) 2

pc
, (6.161)

b =
R Tc

8 pc
. (6.162)

Table 6.2 shows the experimentally measured critical pressures and temperatures, as well as the
derived van der Waal parameters, for some common gases.

Let us calculate the Joule coefficient for a van der Waals gas. It follows from Equation (6.156)
that (

∂p
∂T

)
V

(v − b) = R, (6.163)

which implies that

T
(
∂p
∂T

)
V
=

R T
v − b

= p +
a
v 2 . (6.164)

Substitution into Equation (6.155) gives

η = − a
v 2 cV

. (6.165)

Thus, the Joule coefficient for a van der Waals gas is negative. This implies that the temperature
of the gas always decreases as it undergoes free expansion. Of course, this temperature decrease
is a consequence of the work done in overcoming the inter-molecular attractive forces. Over a
relatively small temperature range, T2 < T < T1, any possible temperature dependence of cV is
negligibly small. Thus, cV can be regarded as essentially constant, and Equations (6.149) and
(6.165) yield

T2 − T1 = − a
cV

(
1
v1
− 1
v2

)
. (6.166)

For an expansion, where v2 > v1, this equation confirms that T2 < T1. In other words, the tempera-
ture of non-ideal gas that undergoes free expansion is reduced.
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In principle, it appears that the free expansion of a gas could provide a method of cooling
the gas to low temperatures. In practice, a substantial difficulty arises because of the appreciable
heat capacity, Cc, of the container. Because the container’s internal energy changes by an amount
Cc (T2 − T1), the molar heat capacity, cV , in Equation (6.166), must be replaced by the total molar
heat capacity, cV + Cc/ν. Given that the heat capacity of the container is generally much greater
than that of the gas (i.e., Cc 
 ν cV), it follows that the actual temperature reduction is much
smaller than that predicted by Equation (6.166).

6.16 Joule-Thompson Throttling

The difficulty associated with the presence of containing walls can be overcome by replacing the
single-event free-expansion process just described (where this one event must supply the energy
necessary to change the container temperature) with a continuous-flow process (where the temper-
ature of the walls can adjust itself initially, and remains unchanged after a steady-state has been
achieved). We shall now discuss a specific example of such a process that was first suggested by
Joule and Thompson.

Consider a pipe with thermally insulated walls. A porous plug in the pipe provides a constric-
tion in the flow. A continuous stream of gas flows through the pipe. The constriction in the flow,
due to the presence of the plug, results in a constant pressure difference being maintained across
the plug. Let p1 and T1 be the pressure and temperature of the gas upstream of the plug, respec-
tively, and let p2 and T2 be the downstream pressure and temperature, respectively. We expect the
upstream pressure to exceed the downstream pressure (i.e., p1 > p2), otherwise gas would not be
forced through the plug (in the upstream to downstream direction). But, how is the downstream
temperature, T2, related to the upstream temperature, T1?

Consider a mass of gas, M, that flows from the upstream to the downstream side of the plug.
In this so-called “throttling” process, the change in internal energy of the mass is

∆E = E2 − E1 = E(T2, p2) − E(T1, p1). (6.167)

However, the mass also does work. Let V1 and V2 be the upstream and downstream volume of the
mass, respectively. The mass does the work p2 V2 in displacing gas on the downstream side of the
plug, whereas the gas on the upstream side of the plug does the work p1 V1 on the mass. Thus, the
net work done by the mass is

W = p2 V2 − p1 V1. (6.168)

No heat is absorbed by the mass of gas in the throttling process that we have just described.
This is not just because the walls of the pipe are thermally insulated, so that no heat enters from
the outside. More importantly, after a steady-state has been achieved, there is no temperature
difference between the walls and the adjacent gas, so there is no heat flow from the walls to the
gas. It follows that

Q = 0. (6.169)

Application of the first law of thermodynamics to the mass of gas yields

∆E +W = Q = 0, (6.170)
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or
(E2 − E1) + (p2 V2 − p1 V1) = 0, (6.171)

where use has been made of Equations (6.167) and (6.168). Now, the enthalpy of the gas mass is
defined

H = E + p V. (6.172)

(See Section 6.10.) Hence, we deduce that

H2 = H1, (6.173)

or
H(T2, p2) = H(T1, p1). (6.174)

In other words, the gas passes through the porous plug in such a manner that its enthalpy remains
constant.

Suppose that H(T, p) is a known function of T and p. In this case, given T1 and p1, as well
as the downstream pressure, p2, Equation (6.174) allows the downstream temperature, T2, to be
determined. In the case of an ideal gas,

H = E + p V = E(T ) + νR T, (6.175)

so that H = H(T ) is a function of the temperature only. Thus, Equation (6.174) reduces to

H(T2) = H(T1), (6.176)

which implies that T2 = T1. Thus, the temperature of an ideal gas does not change in a throttling
process.

For the case of a real gas, the parameter that controls whether the gas is heated or cooled in a
throttling process is

µ =

(
∂T
∂p

)
H
. (6.177)

This parameter is known as the Joule-Thompson coefficient. Given that p decreases in a throttling
process, a positive Joule-Thompson coefficient implies that the temperature also decreases, and
vice versa. Let us derive a convenient expression for µ in term of readily measured experimental
parameters. Starting from the fundamental thermodynamic relation [see Equation (6.5)]

dE = T dS − p dV, (6.178)

we find that
dH = d(E + p V) = T dS + V dp. (6.179)

For the case of throttling, dH = 0. Thus, we can write

0 = T

(
∂S
∂T

)
p

dT +
(
∂S
∂p

)
T

dp
 + V dp. (6.180)
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Figure 6.2: The solid curve shows the normalized inversion curve of a van der Waals gas. The
dashed curve shows the normalized experimental inversion curve of nitrogen gas.

With the aid of Equations (6.119) and (6.121), this becomes

0 = Cp dT +
V − T

(
∂V
∂T

)
p

 dp. (6.181)

Hence,

µ =

(
dT
dp

)
H
=

T
(
∂V
∂T

)
p
− V

/

Cp =

T
(
∂v

∂T

)
p
− v

/

cp, (6.182)

where v = V/ν is the molar volume.
Consider a van der Waals gas. The van der Waals equation of state, (6.156), can be written in

the reduced form
p′ =

(8/3) T ′

v′ − 1/3
− 3
v′ 2
, (6.183)

where p′ = p/pc, T ′ = T/Tc, and v′ = v/vc. [See Equations (6.158)–(6.160) and Exercise 6.13.]
We can also write

µ =
vc

cp
µ′, (6.184)

where

µ′ = T ′
(
∂v′

∂T ′

)
p′
− v′ (6.185)

Differentiation of Equation (6.183) yields(
∂v′

∂T ′

)
p′
=

v′ − 1/3
T ′ − (9/4) (v′ − 1/3) 2/v′ 3

. (6.186)
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Hence,

µ =
vc

3 cp

{
(27/4) [1 − 1/(3 v′)] 2 − T ′

T ′ − (27/4) [1 − 1/(3 v′)] 2 [1/(3 v′)]

}
. (6.187)

Thus, we deduce that µ > 0, which is consistent with cooling of the gas in a throttling process,
provided that T < Tinv, where

Tinv =
27 Tc

4

(
1 − 1

3 v′

) 2

=
2 a
R b

(
1 − b

v

) 2

(6.188)

is known as the inversion temperature. Of course, if T > Tinv then µ < 0, and the gas is heated by
a throttling process. Let p = pinv when T = Tinv. Equations (6.183) and (6.188) give

Tinv

Tc
=

27
4

(
1 − 1

3 v′

) 2

, (6.189)

pinv

pc
=

18
v′
− 9
v′ 2
. (6.190)

These equations define a curve in the p-T plane, known as the inversion curve, that is shown in
Figure 6.2. (Also shown, for comparison, is the experimental inversion curve of nitrogen.) To
the left of the curve, µ > 0, and the gas is cooled by a throttling process. Conversely, to the
right of the curve, µ < 0, and the gas is heated by a throttling process. The maximum possible
inversion temperature is (Tinv)max = (27/4) Tc. Thus, using the data in Table 6.2, we would predict
that the maximum inversion temperatures of helium, hydrogen, nitrogen, and oxygen are 35 K,
224 K, 852 K, and 1044 K, respectively. In fact, the experimentally determined maximum inversion
temperatures are 34 K, 202 K, 625 K, and 760 K, respectively. Thus, our estimate is fairly accurate
in the case of helium, but becomes increasingly less accurate as the atomic weight of the gas
increases. This is merely a deficiency in the van der Waals model.

The so-called Joule-Thompson throttling process, just described, can be used to cool nitrogen
and oxygen to very low temperatures, starting from room temperature, because the maximum
inversion temperatures of these two gases both exceed room temperature. On the other hand, an
attempt to cool helium gas starting from room temperature would result in an increase, rather than
a decrease, in the gas temperature (because room temperature exceeds the maximum inversion
temperature). Thus, in order to use the Joule-Thompson process to cool helium gas to very low
temperatures, it is first necessary to pre-cool the gas to a temperature that is less than 34 K. This
can be achieved using liquid hydrogen.

6.17 Heat Engines

Thermodynamics was invented, almost by accident, in 1825, by a young French engineer called
Sadi Carnot, who was investigating the theoretical limitations on the efficiency of steam engines.
Although, nowadays, we are not particularly interested in steam engines, it is still highly instruc-
tive to review some of Carnot’s arguments. We know, by observation, that it is possible to do
mechanical work w upon a device M, and then to extract an equivalent amount of heat q, which
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goes to increase the internal energy of some heat reservoir. (Here, we use the small letters w and q
to denote intrinsically positive amounts of work and heat, respectively.) An good example of this
process is Joule’s classic experiment by which he verified the first law of thermodynamics. A pad-
dle wheel is spun in a liquid by a falling weight, and the work done by the weight on the wheel is
converted into heat, and absorbed by the liquid. Carnot’s question was the following. Is it possible
to reverse this process, and build a device, called a heat engine, that extracts heat energy from a
reservoir, and converts it into useful macroscopic work? For instance, is it possible to extract heat
from the ocean, and use it to run an electric generator?

There are a few caveats to Carnot’s question. First of all, the work should not be done at the
expense of the heat engine itself, otherwise the conversion of heat into work could not continue
indefinitely. We can ensure that this is the case by demanding that the heat engine perform some
sort of cycle, by which it periodically returns to the same macrostate, but, in the meantime, has
extracted heat from the reservoir, and done an equivalent amount of useful work. A cyclic process
seems reasonable, because we know that both steam engines and internal combustion engines
perform continuous cycles. The second caveat is that the work done by the heat engine should be
such as to change a single parameter of some external device (e.g., by lifting a weight), without
doing it at the expense of affecting the other degrees of freedom, or the entropy, of that device. For
instance, if we are extracting heat from the ocean to generate electricity, we want to spin the shaft
of the electrical generator without increasing the generator’s entropy—that is, without causing the
generator to heat up, or fall to bits.

Let us examine the feasibility of a heat engine using the laws of thermodynamics. Suppose
that a heat engine, M, performs a single cycle. Because M has returned to its initial macrostate, its
internal energy is unchanged, and the first law of thermodynamics tell us that the work done by the
engine, w, must equal the heat extracted from the reservoir, q, so that

w = q. (6.191)

The previous condition is certainly a necessary condition for a feasible heat engine. But, is it
also a sufficient condition? In other words, does every device that satisfies this condition actually
work? Let us think a little more carefully about what we are actually expecting a heat engine
to do. We want to construct a device that will extract energy from a heat reservoir, where it is
randomly distributed over very many degrees of freedom, and convert it into energy distributed
over a single degree of freedom associated with some parameter of an external device. Once we
have expressed the problem in these terms, it is fairly obvious that what we are really asking for is
a spontaneous transition from a probable to an improbable state, which we know is forbidden by
the second law of thermodynamics. So, unfortunately, we cannot run an electric generator off heat
extracted from the ocean, because this is equivalent to expecting all of the molecules in the ocean,
which are moving in random directions, to all suddenly all move in the same direction, so as to
exert a force on some lever, say, that can then be converted into a torque on the generator shaft.
We know, from our investigation of statistical thermodynamics, that such a process—although, in
principle, possible—is fantastically improbable.

The improbability of the scenario just outlined is summed up in the second law of thermody-
namics, which says that the total entropy of an isolated system can never spontaneously decrease,
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so
∆S ≥ 0. (6.192)

For the case of a heat engine, the isolated system consists of the engine, the reservoir from which it
extracts heat, and the outside device upon which it does work. The engine itself returns periodically
to the same state, so its entropy is clearly unchanged after each cycle. We have already specified
that there is no change in the entropy of the external device upon which the work is done. On the
other hand, the entropy change per cycle of the heat reservoir, which is held at absolute temperature
T1, say, is given by

∆S reservoir =

∮
d̄Q
T1
= − q

T1
, (6.193)

where d̄Q is the infinitesimal heat absorbed by the reservoir, and the integral is taken over a whole
cycle of the heat engine. The integral can be converted into the expression −q/T1 because the
amount of heat extracted by the engine is assumed to be too small to modify the temperature of the
reservoir (which is the definition of a heat reservoir), so that T1 is a constant during the cycle. The
second law of thermodynamics reduces to

−q
T1
≥ 0 (6.194)

or, making use of the first law of thermodynamics,

q
T1
=
w

T1
≤ 0. (6.195)

Because we wish the work, w, done by the engine to be positive, the previous relation clearly cannot
be satisfied, which proves that an engine that converts heat directly into work is thermodynamically
impossible.

A perpetual motion device, which continuously executes a cycle without extracting heat from,
or doing work on, its surroundings, is possible according to Equation (6.195). In fact, such a device
corresponds to the equality sign in Equation (6.192), which implies that the device must be com-
pletely reversible. In reality, there is no such thing as a completely reversible engine. All engines,
even the most efficient, have frictional losses that render them, at least, slightly irreversible. Thus,
the equality sign in Equation (6.192) corresponds to an asymptotic limit that reality can closely
approach, but never quite attain. It follows that a perpetual motion device is thermodynamically
impossible. Nevertheless, the US patent office receives about 100 patent applications a year re-
garding perpetual motion devices. The British patent office, being slightly less open-minded that
its American counterpart, refuses to entertain such applications on the basis that perpetual motion
devices are forbidden by the second law of thermodynamics.

According to Equation (6.195), there is no thermodynamic objection to a heat engine that runs
backwards, and converts work directly into heat. This is not surprising, because we know that
this is essentially what frictional forces do. Clearly, we have, here, another example of a natural
process that is fundamentally irreversible according to the second law of thermodynamics. In fact,
the statement

It is impossible to construct a perfect heat engine that converts heat directly into work
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is called Kelvin’s formulation of the second law.
We have demonstrated that a perfect heat engine, that converts heat directly into work, is im-

possible. But, there must be some way of obtaining useful work from heat energy, otherwise steam
engines would not operate. The reason that our previous scheme did not work was that it decreased
the entropy of a heat reservoir, held at some temperature T1, by extracting an amount of heat q per
cycle, without any compensating increase in the entropy of anything else, so the second law of
thermodynamics was violated. How can we remedy this situation? We still want the heat engine
itself to perform periodic cycles (so, by definition, its entropy cannot increase over a cycle), and
we also do not want to increase the entropy of the external device upon which the work is done.
Our only other option is to increase the entropy of some other body. In Carnot’s analysis, this other
body is a second heat reservoir held at temperature T2. We can increase the entropy of the second
reservoir by dumping some of the heat that we extracted from the first reservoir into it. Suppose
that the heat per cycle that we extract from the first reservoir is q1, and the heat per cycle that we
reject into the second reservoir is q2. Let the work done on the external device be w per cycle. The
first law of thermodynamics implies that

q1 = w + q2. (6.196)

Note that if q2 < q1 then positive (i.e., useful) work is done on the external device. The total entropy
change per cycle is a consequence of the heat extracted from the first reservoir, and the heat dumped
into the second, and must be positive (or zero), according to the second law of thermodynamics.
So,

∆S =
−q1

T1
+

q2

T2
≥ 0. (6.197)

We can combine the previous two equations to give

−q1

T1
+

q1 − w
T2

≥ 0, (6.198)

or
w

T2
≤ q1

(
1
T2
− 1

T1

)
. (6.199)

It is clear that the engine is only going to perform useful work (i.e., w is only going to be positive)
if T2 < T1. So, the second reservoir must be colder than the first if the heat dumped into the former
is to increase the entropy of the universe more than the heat extracted from the latter decreases it. It
is useful to define the efficiency, η, of a heat engine. This is the ratio of the work done per cycle on
the external device to the heat energy absorbed per cycle from the first reservoir. The efficiency of
a perfect heat engine is unity, but we have already shown that such an engine is impossible. What
is the efficiency of a realizable engine? It is clear, from the previous equation, that

η ≡ w

q1
≤ 1 − T2

T1
=

T1 − T2

T1
. (6.200)

Note that the efficiency is always less than unity. A real engine must always reject some energy
into the second heat reservoir, in order to satisfy the second law of thermodynamics, so less energy
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is available to do external work, and the efficiency of the engine is reduced. The equality sign
in the previous expression corresponds to a completely reversible heat engine (i.e., one that is
quasi-static). It is clear that real engines, which are always irreversible to some extent, are less
efficient than reversible engines. Furthermore, all reversible engines that operate between the two
temperatures T1 and T2 have the same efficiency,

η =
T1 − T2

T1
, (6.201)

irrespective of the manner in which they operate.
Let us consider how we might construct a reversible heat engine. Suppose that we have some

gas in a cylinder equipped with a frictionless piston. The gas is not necessarily a perfect gas.
Suppose that we also have two heat reservoirs held at temperatures T1 and T2 (where T1 > T2).
These reservoirs might take the form of large water baths. Let us start off with the gas in thermal
contact with the first reservoir. We now pull the piston out, very slowly, so that heat energy flows
reversibly into the gas from the reservoir. Let us now thermally isolate the gas, and slowly pull
out the piston some more. During this adiabatic process, the temperature of the gas falls (because
there is no longer any heat flowing into it to compensate for the work it does on the piston). Let us
continue this process until the temperature of the gas falls to T2. We now place the gas in thermal
contact with the second reservoir, and slowly push the piston in. During this isothermal process,
heat flows out of the gas into the reservoir. We next thermally isolate the gas a second time, and
slowly compress it some more. In this process, the temperature of the gas increases. We stop the
compression when the temperature reaches T1. If we carry out each step properly then we can
return the gas to its initial state, and then repeat the cycle ad infinitum. We now have a set of
reversible processes by which a quantity of heat is extracted from the first reservoir, and a quantity
of heat is dumped into the second. We can best evaluate the work done by the system during
each cycle by plotting out the locus of the gas in a p-V diagram. The locus takes the form of a
closed curve. See Figure 6.3. The net work done per cycle is the “area” enclosed within this curve,
because d̄W = p dV [if p is plotted vertically, and V horizontally, then p dV is clearly an element
of area under the curve p(V)]. The engine we have just described is called a Carnot engine, and is
the simplest conceivable device capable of converting heat energy into useful work.

For the specific case of an ideal gas, we can actually calculate the work done per cycle, and,
thereby, verify Equation (6.201). Consider the isothermal expansion phase of the gas. For an ideal
gas, the internal energy is a function of the temperature alone. The temperature does not change
during isothermal expansion, so the internal energy remains constant, and the net heat absorbed by
the gas must equal the work it does on the piston. Thus,

q1 =

∫ b

a
p dV, (6.202)

where the expansion takes the gas from state a to state b. Because p V = νR T , for an ideal gas,
we have

q1 =

∫ b

a
νR T1

dV
V
= νR T1 ln

(
Vb

Va

)
. (6.203)
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Figure 6.3: An ideal-gas Carnot engine.

Likewise, during the isothermal compression phase, in which the gas goes from state c to state d,
the net heat rejected to the second reservoir is

q2 = νR T2 ln
(

Vc

Vd

)
. (6.204)

Now, during adiabatic expansion, or compression,

T V γ−1 = constant. (6.205)

It follows that, during the adiabatic expansion phase, which takes the gas from state b to state c,

T1 V γ−1
b = T2 V γ−1

c . (6.206)

Likewise, during the adiabatic compression phase, which takes the gas from state d to state a,

T1 V γ−1
a = T2 V γ−1

d . (6.207)

If we take the ratio of the previous two equations then we obtain

Vb

Va
=

Vc

Vd
. (6.208)

Hence, the work done by the engine, which we can calculate using the first law of thermodynamics,

w = q1 − q2, (6.209)

is

w = νR (T1 − T2) ln
(
Vb

Va

)
. (6.210)



110 6.18. Refrigerators

Thus, the efficiency of the engine is

η =
w

q1
=

T1 − T2

T1
(6.211)

which, not surprisingly, is identical to Equation (6.201).
The engine described previously is very idealized. Of course, real engines are far more com-

plicated than this. Nevertheless, the maximum efficiency of an ideal heat engine places severe
constraints on real engines. Conventional power stations have many different “front ends” (e.g.,
coal fired furnaces, oil fired furnaces, nuclear reactors), but their “back ends” are all very similar,
and consist of a steam driven turbine connected to an electric generator. The “front end” heats
water extracted from a local river (say), and turns it into steam, which is then used to drive the
turbine, and, hence, to generate electricity. Finally, the steam is sent through a heat exchanger, so
that it can heat up the incoming river water, which means that the incoming water does not have
to be heated so much by the “front end.” At this stage, some heat is rejected to the environment,
usually as clouds of steam escaping from the top of cooling towers. We can see that a power station
possesses many of the same features as our idealized heat engine. There is a cycle that operates
between two temperatures. The upper temperature is the temperature to which the steam is heated
by the “front end,” and the lower temperature is the temperature of the environment into which
heat is rejected. Suppose that the steam is only heated to 100◦ C (or 373 K), and the temperature of
the environment is 15◦ C (or 288 K). It follows from Equation (6.200) that the maximum possible
efficiency of the steam cycle is

η =
373 − 288

373
� 0.23. (6.212)

So, at least 77% of the heat energy generated by the “front end” goes straight up the cooling towers.
Not surprisingly, commercial power stations do not operate with 100◦ C steam. The only way in
which the thermodynamic efficiency of the steam cycle can be raised to an acceptable level is to
use very hot steam (clearly, we cannot refrigerate the environment). Using 400◦ C steam, which is
not uncommon, the maximum efficiency becomes

η =
673 − 288

673
� 0.57, (6.213)

which is more reasonable. In fact, the steam cycles of modern power stations are so well designed
that they come surprisingly close to their maximum thermodynamic efficiencies.

6.18 Refrigerators

Let us now consider refrigerators. An idealized refrigerator is an engine that extracts heat from
a cold heat reservoir (held at temperature T2, say), and rejects it into a somewhat hotter heat
reservoir, which is usually the environment (held at temperature T1, say). To make this engine
work, we always have to do some external work on the engine. For instance, the refrigerator in
your home contains a small electric pump that does work on the freon in the cooling circuit. We
can see that, in fact, a refrigerator is just a heat engine run in reverse. Hence, we can immediately
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carry over most of our heat engine analysis. Let q2 be the heat absorbed per cycle from the colder
reservoir, q1 the heat rejected per cycle into the hotter reservoir, and w the external work done per
cycle on the engine. The first law of thermodynamics implies that

w + q2 = q1. (6.214)

The second law says that
q1

T1
+
−q2

T2
≥ 0. (6.215)

We can combine these two laws to give

w

T1
≥ q2

(
1
T2
− 1

T1

)
. (6.216)

The most sensible way of defining the efficiency of a refrigerator is as the ratio of the heat extracted
per cycle from the cold reservoir to the work done per cycle on the engine. With this definition

η =
T2

T1 − T2
. (6.217)

We can see that this efficiency is, in general, greater than unity. In other words, for one joule of
work done on the engine, or pump, more than one joule of energy is extracted from whatever it is
we are cooling. Clearly, refrigerators are intrinsically very efficient devices. Domestic refrigerators
cool stuff down to about 4◦ C (277 K), and reject heat to the environment at about 15◦ C (288 K).
The maximum theoretical efficiency of such devices is

η =
277

288 − 277
= 25.2. (6.218)

So, for every joule of electricity we put into a refrigerator, we can extract up to 25 joules of heat
from its contents.

Exercises

6.1 Demonstrate that (
∂x
∂y

)
z
= 1
/(
∂y

∂x

)
z
.

This result is known as the reciprocal rule of partial differentiation.

6.2 Prove Euler’s chain rule: (
∂x
∂y

)
z

(
∂y

∂z

)
x

(
∂z
∂x

)
y

= −1.

This result is also known as the cyclic rule of partial differentiation. Hence, deduce that(
∂x
∂y

)
z
= −

(
∂z
∂y

)
x

/ (
∂z
∂x

)
y

.
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6.3 A cylindrical container 80 cm long is separated into two compartments by a thin piston,
originally clamped in position 30 cm from the left end. The left compartment is filled with
one mole of helium gas at a pressure of 5 atmospheres; the right compartment is filled with
argon gas at 1 atmosphere of pressure. The gases may be considered ideal. The cylinder is
submerged in 1 liter of water, and the entire system is initially at the uniform temperature
of 25◦ C (with the previously mentioned pressures in the two compartments). The heat
capacities of the cylinder and piston may be neglected. When the piston is unclamped, a
new equilibrium situation is ultimately reached with the piston in a new position.

(a) What is the increase in temperature of the water?

(b) How far from the left end of the cylinder will the piston come to rest?

(c) What is the increase in total entropy of the system?

One atmosphere is equivalent to 10 5 N m−2. Absolute zero is −273◦ C. The specific heat of
water is 4.18 joules/degree/gram. The density of water is 1 g/cm 3.

6.4 A vertical cylinder contains ν moles of an ideal gas, and is closed off by a piston of mass
M and area A. The acceleration due to gravity is g. The molar specific heat cV (at constant
volume) of the gas is a constant independent of temperature. The heat capacities of the
piston and cylinder are negligibly small, and any frictional forces between the piston and
the cylinder walls can be neglected. The pressure of the atmosphere can also be neglected.
The whole system is thermally insulated. Initially, the piston is clamped in position so that
the gas has a volume V0, and a temperature T0. The piston is now released, and, after some
oscillations, comes to rest in a final equilibrium situation corresponding to a larger volume
of gas.

(a) Does the temperature of the gas increase, decrease, or remain the same?

(b) Does the entropy of the gas increase, decrease, or remain the same?

(c) Show that the final temperature of the gas is

T1 =

(
cV

cV + R

)
T0 +

(
M g/ν A
cV + R

)
V0,

where R is the molar ideal gas constant.

6.5 The following describes a method used to measure the specific heat ratio, γ ≡ cp/cV , of
a gas. The gas, assumed ideal, is confined within a vertical cylindrical container, and
supports a freely-moving piston of mass m. The piston and cylinder both have the same
cross-sectional area A. Atmospheric pressure is p0, and when the piston is in equilibrium
under the influence of gravity (acceleration g) and the gas pressure, the volume of the gas
is V0. The piston is now displaced slightly from its equilibrium position, and is found to
oscillate about this position at the angular frequency ω. The oscillations of the piston are
sufficiently slow that the gas always remains in internal equilibrium, but fast enough that
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the gas cannot exchange heat with its environment. The variations in gas pressure and
volume are therefore adiabatic. Show that

γ =
ω 2 m V0

m g A + p0 A 2 .

6.6 When sound passes through a fluid (liquid or gas), the period of vibration is short com-
pared to the relaxation time necessary for a macroscopically small element of the fluid to
exchange energy with the rest of the fluid through heat flow. Hence, compressions of such
an element of volume can be considered adiabatic.

By analyzing one-dimensional compressions and rarefactions of the system of fluid con-
tained in a slab of thickness dx, show that the pressure, p(x, t), in the fluid depends on the
position, x, and the time, t, so as to satisfy the wave equation

∂ 2 p
∂t 2 = u 2 ∂

2 p
∂x 2

where the velocity of sound propagation, u, is a constant given by u = (ρ κS )−1/2. Here ρ is
the equilibrium mass density of the fluid, and κS is its adiabatic compressibility,

κS = − 1
V

(
∂V
∂p

)
S

:

that is, its compressibility measured under conditions in which the fluid is thermally insu-
lated.

6.7 Demonstrate that
κS =

cV

cp
κT ,

where κT is the isothermal compressibility. Hence, deduce that

κT − κS =
v T α 2

V

cp
,

where v is the molar volume, and αV the volume coefficient of expansion.

6.8 Refer to the results of the preceding two problems.

(a) Show that adiabatic compressibility, κS , of an ideal gas is

κS =
1
γ p

,

where γ is the ratio of specific heats, and p the gas pressure.
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(b) Show that the velocity of sound in an ideal gas is

u =
√
γ p
ρ
=

√
γ R T
µ

,

where ρ is the mass density, R the molar ideal gas constant, T the absolute tempera-
ture, and µ the molecular weight.

(c) How does the sound velocity depend on the gas temperature, T , at a fixed pressure?
How does it depend on the gas pressure, p, at fixed temperature?

(d) Calculate the velocity of sound in nitrogen (N2) gas at room temperature and pressure
(i.e., 15◦ C at 1 bar). Take γ = 1.4.

6.9 Show that, in general, (
∂αV

∂p

)
T
+

(
∂κT

∂T

)
p
= 0,

where αV is the volume coefficient of expansion, and κT the isothermal compressibility.

6.10 Show that (
∂E
∂T

)
p
= Cp − p V αV ,

and (
∂E
∂p

)
T
= p V κT − (Cp − CV)

κT

αV
.

6.11 Liquid mercury at 0◦ C (i.e., 273 K) has a molar volume v = 1.472 × 10−5 m 3, a molar
specific heat at constant pressure cp = 28.0 J mol−1, a volume coefficient of expansion
αV = 1.81× 10−4 K−1, and an isothermal compressibility κT = 3.88× 10−11 (N m−2)−1. Find
its molar specific heat at constant volume, and the ratio γ = cp/cV .

6.12 Starting from the first Maxwell relation,(
∂T
∂V

)
S
= −

(
∂p
∂S

)
V
,

derive the other three by making use of the reciprocal and cyclic rules of partial differenti-
ation (see Exercises 6.1 and 6.2), as well as the identity(

∂x
∂y

)
f

(
∂y

∂z

)
f

(
∂z
∂x

)
f
= 1.

6.13 Consider a van der Waals gas whose equation of state is(
p +

a
v 2

)
(v − b) = R T.
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Figure 6.4: p-V diagram for the Otto cycle.

The critical point is defined as the unique point at which (∂ 2 p/∂v 2)T = (∂p/∂v)T = 0.
(See Section 9.10.) Let pc, vc, and Tc be the temperature, molar volume, and temperature,
respectively, at the critical point. Demonstrate that pc = a/(27 b 2), vc = 3 b, and Tc =

8 a/(27 R b). Hence, deduce that the van der Waals equation of state can be written in the
reduced form (

p′ +
3
v′ 2

) (
v′ − 1

3

)
=

8 T ′

3
,

where p′ = p/pc, v′ = v/vc, and T ′ = T/Tc.

6.14 The behavior of a four-stroke gasoline engine can be approximated by the so-called Otto
cycle, shown in Figure 6.4. The cycle is as follows:

e→ a: Isobaric (i.e., constant pressure) intake (at atmospheric pressure).
a→ b: Adiabatic compression (compression stroke).
b → c: Isochoric (i.e., constant volume) increase of temperature during ignition. (Gas

combustion is an irreversible process. Here, it is replaced by a reversible isochoric
process in which heat is assumed to flow into the system from a reservoir.)

c→ d: Adiabatic expansion (power stroke).
d → a: Isochoric decrease of temperature (exhaust value opened).
a→ e: Isobaric exhaust (at atmospheric pressure).

(a) Assume that the working substance is an ideal gas. Show that the efficiency of the
cycle is

η = 1 −
(
Td − Ta

Tc − Tb

)
= 1 − 1

r γ−1 ,
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where r = V1/V2 is the compression ratio of the engine.

(b) Calculate η for the realistic values r = 5 and γ = 1.5.

Note: Because γ > 1, maximizing r maximizes the engine efficiency. The maximum prac-
tical value of r is about 7. For greater values, the rise in temperature during compression
is large enough to cause ignition prior to the advent of the spark. This process is called
pre-ignition, and is deleterious to the operation of the engine. Pre-ignition is not a problem
for diesel engines (which depend on spontaneous ignition, rather than triggering ignition
via a spark), so higher compression ratios are possible. This is partly the reason that diesel
engines are inherently more efficient than gasoline engines.
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7 Applications of Statistical Thermodynamics

7.1 Introduction

In our study of classical thermodynamics, we concentrated on the application of statistical physics
to macroscopic systems. Somewhat paradoxically, statistical arguments did not figure very promi-
nently in this investigation. The resolution of this paradox is, of course, that macroscopic systems
contain a very large number of particles, and their statistical fluctuations are, therefore, negligible.
Let us now apply statistical physics to microscopic systems, such as atoms and molecules. In this
study, the underlying statistical nature of thermodynamics will become far more apparent.

7.2 Canonical Probability Distribution

We have gained some understanding of the macroscopic properties of the air in a classroom (say).
For instance, we know something about its internal energy and specific heat capacity. How can we
obtain information about the statistical properties of the molecules that make up this air? Consider
a specific molecule. It constantly collides with its immediate neighbor molecules, and occasionally
bounces off the walls of the room. These interactions “inform” it about the macroscopic state of the
air, such as its temperature, pressure, and volume. The statistical distribution of the molecule over
its own particular microstates must be consistent with this macrostate. In other words, if we have
a large group of such molecules with similar statistical distributions then they must be equivalent
to air with the appropriate macroscopic properties. So, it ought to be possible to calculate the
probability distribution of the molecule over its microstates from a knowledge of these macroscopic
properties.

We can think of the interaction of a molecule with the air in a classroom as analogous to the
interaction of a small system, A, in thermal contact with a heat reservoir, A′. The air acts like a heat
reservoir because its energy fluctuations due to interactions with the molecule are far too small to
affect any of its macroscopic parameters. Let us determine the probability, Pr, of finding system A
in one particular microstate, r, of energy Er, when it is thermal equilibrium with the heat reservoir,
A′.

As usual, we assume fairly weak interaction between A and A′, so that the energies of these
two systems are additive. The energy of A is not known at this stage. In fact, only the total energy
of the combined system, A(0) = A + A′, is known. Suppose that the total energy lies in the range
E (0) to E (0) + δE. The overall energy is constant in time, because A(0) is assumed to be an isolated
system, so

Er + E′ = E (0), (7.1)

where E′ denotes the energy of the reservoir A′. LetΩ′(E′) be the number of microstates accessible
to the reservoir when its energy lies in the range E′ to E′ + δE. Clearly, if system A has an energy
Er then the reservoir A′ must have an energy close to E′ = E (0) − Er. Hence, because A is in
one definite state (i.e., state r), and the total number of states accessible to A′ is Ω′(E (0) − Er), it
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follows that the total number of states accessible to the combined system is simply Ω′(E (0) − Er).
The principle of equal a priori probabilities tells us the probability of occurrence of a particular
situation is proportional to the number of accessible microstates. Thus,

Pr = C′ Ω′(E (0) − Er), (7.2)

where C′ is a constant of proportionality that is independent of r. This constant can be determined
by the normalization condition ∑

r

Pr = 1, (7.3)

where the sum is over all possible states of system A, irrespective of their energy.
Let us now make use of the fact that system A is far smaller than system A′. It follows that

Er � E (0), so the slowly-varying logarithm of Pr can be Taylor expanded about E′ = E (0). Thus,

ln Pr = ln C′ + lnΩ′(E (0)) −
[
∂ lnΩ′

∂E′

]
0

Er + · · · . (7.4)

Note that we must expand ln Pr, rather than Pr itself, because the latter function varies so rapidly
with energy that the radius of convergence of its Taylor series is too small for the series to be of any
practical use. The higher-order terms in Equation (7.4) can be safely neglected, because Er � E (0).
Now, the derivative [

∂ lnΩ′

∂E′

]
0
≡ β (7.5)

is evaluated at the fixed energy E′ = E (0), and is, thus, a constant, independent of the energy,
Er, of A. In fact, we know, from Chapter 5, that this derivative is just the temperature parameter
β = (k T )−1 characterizing the heat reservoir A′. Here, T is the absolute temperature of the reservoir.
Hence, Equation (7.4) becomes

ln Pr = ln C′ + lnΩ′(E (0)) − β Er, (7.6)

giving
Pr = C exp(−β Er), (7.7)

where C is a constant independent of r. The parameter C is determined by the normalization
condition, which gives

C −1 =
∑

r

exp(−β Er), (7.8)

so that the distribution becomes
Pr =

exp(−β Er)∑
r exp(−β Er)

. (7.9)

This distribution is known as the canonical probability distribution (it is also sometimes called the
Boltzmann probability distribution), and is an extremely important result in statistical physics.

The canonical distribution often causes confusion. People who are familiar with the principle
of equal a priori probabilities, which says that all microstates are equally probable, are under-
standably surprised when they come across the canonical distribution, which says that high energy
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microstates are markedly less probable then low energy states. However, there is no need for any
confusion. The principle of equal a priori probabilities applies to the whole system, whereas the
canonical distribution only applies to a small part of the system. The two results are perfectly
consistent. If the small system is in a microstate with a comparatively high energy, Er, then the
remainder of the system (i.e., the reservoir) has a slightly lower energy, E′, than usual (because the
overall energy is fixed). The number of accessible microstates of the reservoir is a very strongly
increasing function of its energy. It follows that if the small system has a high energy then signifi-
cantly less states than usual are accessible to the reservoir, so the number of microstates accessible
to the overall system is reduced, and, hence, the configuration is comparatively unlikely. The
strong increase in the number of accessible microstates of the reservoir with increasing E′ gives
rise to the strong (i.e., exponential) decrease in the likelihood of a state r of the small system with
increasing Er. The exponential factor exp(−β Er) is called the Boltzmann factor.

The canonical distribution gives the probability of finding the small system A in one particular
state r of energy Er. The probability P(E) that A has an energy in the small range between E and
E + δE is just the sum of all the probabilities of the states that lie in this range. However, because
each of these states has approximately the same Boltzmann factor, this sum can be written

P(E) = CΩ(E) exp(−β E), (7.10)

where Ω(E) is the number of microstates of A whose energies lie in the appropriate range. Suppose
that system A is itself a large system, but still very much smaller than system A′. For a large system,
we expect Ω(E) to be a very rapidly increasing function of energy, so the probability P(E) is the
product of a rapidly increasing function of E, and another rapidly decreasing function (i.e., the
Boltzmann factor). This gives a sharp maximum of P(E) at some particular value of the energy.
As system A becomes larger, this maximum becomes sharper. Eventually, the maximum becomes
so sharp that the energy of system A is almost bound to lie at the most probable energy. As usual,
the most probable energy is evaluated by looking for the maximum of ln P, so

∂ ln P
∂E

=
∂ lnΩ
∂E

− β = 0, (7.11)

giving
∂ lnΩ
∂E

= β. (7.12)

Of course, this corresponds to the situation in which the temperature of A is the same as that of
the reservoir. This is a result that we have seen before. (See Chapter 5.) Note, however, that the
canonical distribution is applicable no matter how small system A is, so it is a far more general
result than any that we have previously obtained.

7.3 Spin-1/2 Paramagnetism

The simplest microscopic system that we can analyze using the canonical probability distribution
is one that has only two possible states. (There would clearly be little point in analyzing a system
with only one possible state.) Most elements, and some compounds, are paramagnetic. In other
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words, their constituent atoms, or molecules, possess a permanent magnetic moment due to the
presence of one or more unpaired electrons. Consider a substance whose constituent particles
contain only one unpaired electron (with zero orbital angular momentum). Such particles have spin
1/2 [i.e., their spin angular momentum is (1/2) �], and consequently possess an intrinsic magnetic
moment, µ. According to quantum mechanics, the magnetic moment of a spin-1/2 particle can
point either parallel or antiparallel to an external magnetic field, B. Let us determine the mean
magnetic moment (parallel to B), µ‖, of the constituent particles of the substance when its absolute
temperature is T . We shall assume, for the sake of simplicity, that each atom (or molecule) only
interacts weakly with its neighboring atoms. This enables us to focus attention on a single atom,
and to treat the remaining atoms as a heat bath at temperature T .

Our atom can be in one of two possible states. Namely, the (+) state in which its spin points up
(i.e., parallel to B), or the (−) state in which its spin points down (i.e., antiparallel to B). In the (+)
state, the atomic magnetic moment is parallel to the magnetic field, so that µ‖ = µ. The magnetic
energy of the atom is ε+ = −µ B. In the (−) state, the atomic magnetic moment is antiparallel to
the magnetic field, so that µ‖ = −µ. The magnetic energy of the atom is ε− = µ B.

According to the canonical distribution, the probability of finding the atom in the (+) state is

P+ = C exp(−β ε+) = C exp( β µ B), (7.13)

where C is a constant, and β = (k T )−1. Likewise, the probability of finding the atom in the (−)
state is

P− = C exp(−β ε−) = C exp(−β µ B). (7.14)

Clearly, the most probable state is the state with the lower energy [i.e., the (+) state]. Thus, the
mean magnetic moment points in the direction of the magnetic field (i.e., the atomic spin is more
likely to point parallel to the field than antiparallel).

It is apparent that the critical parameter in a paramagnetic system is

y ≡ β µ B =
µ B
k T

. (7.15)

This parameter measures the ratio of the typical magnetic energy of the atom, µ B, to its typical
thermal energy, k T . If the thermal energy greatly exceeds the magnetic energy then y� 1, and the
probability that the atomic moment points parallel to the magnetic field is about the same as the
probability that it points antiparallel. In this situation, we expect the mean atomic moment to be
small, so that µ‖ � 0. On the other hand, if the magnetic energy greatly exceeds the thermal energy
then y 
 1, and the atomic moment is far more likely to be directed parallel to the magnetic field
than antiparallel. In this situation, we expect µ‖ � µ.

Let us calculate the mean atomic moment, µ‖. The usual definition of a mean value gives

µ‖ =
P+ µ + P− (−µ)

P+ + P−
= µ

[
exp( β µ B) − exp(−β µ B)
exp( β µ B) + exp(−β µ B)

]
. (7.16)

This can also be written
µ‖ = µ tanh

(
µ B
k T

)
, (7.17)
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where the hyperbolic tangent is defined

tanh y ≡ exp( y) − exp(−y)
exp( y) + exp(−y)

. (7.18)

For small arguments, y� 1,

tanh y � y − y
3

3
+ · · · , (7.19)

whereas for large arguments, y
 1,
tanh y � 1. (7.20)

It follows that at comparatively high temperatures, k T 
 µ B,

µ‖ � µ
2B

k T
, (7.21)

whereas at comparatively low temperatures, k T � µ B,

µ‖ � µ. (7.22)

Suppose that the substance contains N0 atoms (or molecules) per unit volume. The magnetiza-
tion is defined as the mean magnetic moment per unit volume, and is given by

M‖ = N0 µ‖. (7.23)

At high temperatures, k T 
 µ B, the mean magnetic moment, and, hence, the magnetization, is
proportional to the applied magnetic field, so we can write

M‖ � χ B
µ0
, (7.24)

where χ is a dimensionless constant of proportionality known as the magnetic susceptibility, and
µ0 the magnetic permeability of free space. It is clear that the magnetic susceptibility of a spin-1/2
paramagnetic substance takes the form

χ =
N0 µ0 µ

2

k T
. (7.25)

The fact that χ ∝ T −1 is known as Curie’s law, because it was discovered experimentally by Pierre
Curie at the end of the nineteenth century. At low temperatures, k T � µ B,

M‖ → N0 µ, (7.26)

so the magnetization becomes independent of the applied field. This corresponds to the maxi-
mum possible magnetization, in which all atomic moments are aligned parallel to the field. The
breakdown of the M‖ ∝ B law at low temperatures (or high magnetic fields) is known as saturation.
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7.4 System with Specified Mean Energy

Consider an isolated system, A, that consists of a fixed number of particles contained in a given
volume. Suppose that the the only available information about the system’s energy is its mean
value, E. This might be the case, for example, if the system is brought to some final macrostate as
a result of interaction with other macroscopic systems. Here, the measurement of the macroscopic
work done on the system, or the heat that it absorbs, during this process does not tell us about
the energy of each system in the corresponding ensemble, but, instead, only provides information
about the mean energy of the final macrostate of A.

A system, A, with specified mean energy, E, is also described by a canonical distribution. For,
if such a system were placed in thermal contact with a heat reservoir held at some “temperature,”
β = 1/(k T ), then the mean energy of the system would be determined. Thus, an appropriate choice
of β would guarantee that the mean energy of the system had the specific value E.

We can give a more direct proof of the previous assertion. Let Er be the energy of system A
in some state r. Suppose that the statistical ensemble consists of a very large number, a, of such
systems, ar of which are in state r. Thus, the information available to us is that

1
a

∑
s

as Es = E. (7.27)

Hence, it follows that ∑
s

as Es = a E = constant. (7.28)

This implies that the situation is equivalent to one in which a fixed amount of energy, a E, is to
be distributed over all the systems in the ensemble, such that each system is equally likely to be
in any one state. If a system in the ensemble is in state r then the remaining a − 1 systems must
then have a combined energy E′ = a E − Er. These a − 1 systems are distributed over some very
large number, Φ(E′), of accessible states. In other words, if the one system under consideration
is in state r then the remaining a − 1 systems are distributed with equal probability in any of the
Φ(a E−Er) states accessible to them. Because Er � a E, the mathematical problem here is exactly
the same as that considered in Section 7.2, where we dealt with a system in thermal contact with a
heat bath. In this case, the role of the heat bath is played by the totality of all the other systems in
the ensemble. Accordingly, we again get the canonical distribution,

Pr ∝ exp(−β Er). (7.29)

The parameter β ≡ (∂ lnΦ/∂E′) does not here have any immediate physical significance in terms
of the temperature of a real heat bath. Instead, it is to be determined by the condition that the mean
energy calculated using the distribution has the specified value E. In other words,∑

r exp(−β Er) Er∑
r exp(−β Er)

= E. (7.30)

In conclusion, if one is dealing with a system in contact with a heat bath held at “temperature”
β = 1/(k T ) then the canonical distribution, (7.29), is valid, and the mean energy, E, can be calcu-
lated from Equation (7.30), using the known value of β. On the other hand, if one is dealing with a
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system of specified mean energy, E, then the canonical distribution, (7.29), is again valid, but the
parameter β is to be calculated using Equation (7.30) and the known value of E.

7.5 Calculation of Mean Values

Consider a system in contact with a heat reservoir, or with a specified mean energy. The systems
in the representative ensemble are distributed over their accessible states in accordance with the
canonical distribution. Thus, the probability of occurrence of some state r with energy Er is given
by

Pr =
exp(−β Er)∑
r exp(−β Er)

. (7.31)

The mean energy is written

E =
∑

r exp(−β Er) Er∑
r exp(−β Er)

, (7.32)

where the sum is taken over all states of the system, irrespective of their energy. Note that

∑
r

exp(−β Er) Er = −
∑

r

∂

∂β
exp(−β Er) = −∂Z

∂β
, (7.33)

where
Z =

∑
r

exp(−β Er). (7.34)

It follows that
E = −1

Z
∂Z
∂β
= −∂ ln Z

∂β
. (7.35)

The quantity Z, which is defined as the sum of the Boltzmann factor over all states, irrespective of
their energy, is called the partition function. (Incidentally, the partition function is represented by
the symbol Z because in German it is known as the “zustandssumme,” which means the “sum over
states.”) We have just demonstrated that it is fairly easy to work out the mean energy of a system
using its partition function. In fact, as we shall discover, it is straightforward to calculate virtually
any piece of statistical information from the partition function.

Let us evaluate the variance of the energy. We know that

(∆E) 2 = E 2 − E
2
. (7.36)

(See Chapter 2.) Now, according to the canonical distribution,

E 2 =

∑
r exp(−β Er) E 2

r∑
r exp(−β Er)

. (7.37)

However,

∑
r

exp(−β Er) E 2
r = −

∂

∂β

∑
r

exp(−β Er) Er

 =
(
− ∂
∂β

)2 ∑
r

exp(−β Er)

 . (7.38)



124 7.5. Calculation of Mean Values

Hence,

E 2 =
1
Z
∂ 2Z
∂β 2 . (7.39)

We can also write

E 2 =
∂

∂β

(
1
Z
∂Z
∂β

)
+

1
Z 2

(
∂Z
∂β

)2
= −∂E

∂β
+ E

2
, (7.40)

where use has been made of Equation (7.35). It follows from Equation (7.36) that

(∆E) 2 = −∂E
∂β
=
∂ 2 ln Z
∂β 2 . (7.41)

Thus, the variance of the energy can be worked out from the partition function almost as easily
as the mean energy. Because, by definition, a variance can never be negative, it follows that
∂E/∂β ≤ 0, or, equivalently, ∂E/∂T ≥ 0. Hence, the mean energy of a system governed by the
canonical distribution always increases with increasing temperature.

Suppose that the system is characterized by a single external parameter x (such as its volume).
The generalization to the case where there are several external parameters is straightforward. Con-
sider a quasi-static change of the external parameter from x to x + dx. In this process, the energy
of the system in state r changes by

δEr =
∂Er

∂x
dx. (7.42)

The macroscopic work d̄W done by the system due to this parameter change is

d̄W =
∑

r exp(−β Er) (−∂Er/∂x dx)∑
r exp(−β Er)

. (7.43)

In other words, the work done is minus the average change in internal energy of the system, where
the average is calculated using the canonical distribution. We can write

∑
r

exp(−β Er)
∂Er

∂x
= −1

β

∂

∂x

∑
r

exp(−β Er)

 = −1
β

∂Z
∂x
, (7.44)

which gives

d̄W =
1
β Z

∂Z
∂x

dx =
1
β

∂ ln Z
∂x

dx. (7.45)

We also have the following general expression for the work done by the system

d̄W = X dx, (7.46)

where

X = −∂Er

∂x
(7.47)

is the mean generalized force conjugate to x. (See Chapter 4.) It follows that

X =
1
β

∂ ln Z
∂x

. (7.48)
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Suppose that the external parameter is the volume, so x = V . It follows that

d̄W = p dV =
1
β

∂ ln Z
∂V

dV (7.49)

and
p =

1
β

∂ ln Z
∂V

, (7.50)

where p is the pressure. Because the partition function is a function of β and V (the energies
Er depend on V), it follows that the previous equation relates the mean pressure, p, to T (via
β = 1/k T ) and V . In other words, the previous expression is the equation of state. Hence, we can
work out the pressure, and even the equation of state, using the partition function.

7.6 Partition Function

It is clear that all important macroscopic quantities associated with a system can be expressed
in terms of its partition function, Z. Let us investigate how the partition function is related to
thermodynamical quantities. Recall that Z is a function of both β and x (where x is the single
external parameter). Hence, Z = Z(β, x), and we can write

d ln Z =
∂ ln Z
∂x

dx +
∂ ln Z
∂β

dβ. (7.51)

Consider a quasi-static change by which x and β change so slowly that the system stays close to
equilibrium, and, thus, remains distributed according to the canonical distribution. It follows from
Equations (7.35) and (7.45) that

d ln Z = β d̄W − E dβ. (7.52)

The last term can be rewritten

d ln Z = β d̄W − d
(
E β
)
+ β dE, (7.53)

giving
d
(
ln Z + β E

)
= β
(
d̄W + dE

)
≡ β d̄Q. (7.54)

The previous equation shows that although the heat absorbed by the system, d̄Q, is not an exact
differential, it becomes one when multiplied by the temperature parameter, β. This is essentially
the second law of thermodynamics. In fact, we know that

dS =
d̄Q
T
. (7.55)

Hence,
S ≡ k

(
ln Z + β E

)
. (7.56)

This expression enables us to calculate the entropy of a system from its partition function.
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Suppose that we are dealing with a system A(0) consisting of two systems A and A′ that only
interact weakly with one another. Let each state of A be denoted by an index r, and have a cor-
responding energy Er. Likewise, let each state of A′ be denoted by an index s, and have a corre-
sponding energy E′s. A state of the combined system A(0) is then denoted by two indices r and s.
Because A and A′ only interact weakly, their energies are additive, and the energy of state rs is

E (0)
rs = Er + E′s. (7.57)

By definition, the partition function of A(0) takes the form

Z (0) =
∑
r,s

exp
[
−β E (0)

rs

]
=
∑
r,s

exp(−β [Er + E′s]) =
∑
r,s

exp(−β Er) exp(−β E′s)

=

∑
r

exp(−β Er)


∑

s

exp(−β E′s)

 . (7.58)

Hence,
Z (0) = Z Z′, (7.59)

giving
ln Z (0) = ln Z + ln Z′, (7.60)

where Z and Z′ are the partition functions of A and A′, respectively. It follows from Equation (7.35)
that the mean energies of A(0), A, and A′ are related by

E
(0)
= E + E

′
. (7.61)

It also follows from Equation (7.56) that the respective entropies of these systems are related via

S (0) = S + S ′. (7.62)

Hence, the partition function tells us that the extensive (see Section 7.8) thermodynamic functions
of two weakly-interacting systems are simply additive.

It is clear that we can perform statistical thermodynamical calculations using the partition func-
tion, Z, instead of the more direct approach in which we use the density of states, Ω. The former
approach is advantageous because the partition function is an unrestricted sum of Boltzmann fac-
tors taken over all accessible states, irrespective of their energy, whereas the density of states is a
restricted sum taken over all states whose energies lie in some narrow range. In general, it is far
easier to perform an unrestricted sum than a restricted sum. Thus, it is invariably more straight-
forward to derive statistical thermodynamical results using Z rather than Ω, although Ω has a far
more direct physical significance than Z.

7.7 Ideal Monatomic Gas

Let us now practice calculating thermodynamic relations using the partition function by consid-
ering an example with which we are already quite familiar: namely, an ideal monatomic gas.
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Consider a gas consisting of N identical monatomic molecules of mass m, enclosed in a container
of volume V . Let us denote the position and momentum vectors of the ith molecule by ri and
pi, respectively. Because the gas is ideal, there are no interatomic forces, and the total energy is
simply the sum of the individual kinetic energies of the molecules:

E =
∑
i=1,N

p 2
i

2 m
, (7.63)

where p 2
i = pi ·pi.

Let us treat the problem classically. In this approach, we divide up phase-space into cells
of equal volume h f

0 . Here, f is the number of degrees of freedom, and h0 is a small constant
with dimensions of angular momentum that parameterizes the precision to which the positions and
momenta of molecules are determined. (See Section 3.2.) Each cell in phase-space corresponds
to a different state. The partition function is the sum of the Boltzmann factor exp(−β Er) taken
over all possible states, where Er is the energy of state r. Classically, we can approximate the
summation over cells in phase-space as an integration over all phase-space. Thus,

Z =
∫
· · ·
∫

exp(−β E)
d 3r1 · · · d 3rN d 3p1 · · · d 3pN

h 3N
0

, (7.64)

where 3N is the number of degrees of freedom of a monatomic gas containing N molecules. Mak-
ing use of Equation (7.63), the previous expression reduces to

Z =
V N

h 3N
0

∫
· · ·
∫

exp
(
− β

2 m
p 2

1

)
d 3p1 · · · exp

(
− β

2 m
p 2

N

)
d 3pN . (7.65)

Note that the integral over the coordinates of a given molecule simply yields the volume of the
container, V , because the energy, E, is independent of the locations of the molecules in an ideal
gas. There are N such integrals, so we obtain the factor V N in the previous expression. Note, also,
that each of the integrals over the molecular momenta in Equation (7.65) are identical: they differ
only by irrelevant dummy variables of integration. It follows that the partition function Z of the
gas is made up of the product of N identical factors: that is,

Z = ζ N , (7.66)

where

ζ =
V
h 3

0

∫
exp
(
− β

2 m
p 2
)

d 3p (7.67)

is the partition function for a single molecule. Of course, this result is obvious, because we have
already shown that the partition function for a system made up of a number of weakly interacting
subsystems is just the product of the partition functions of the subsystems. (See Section 7.6.)
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The integral in Equation (7.67) is easily evaluated:∫
exp
(
− β

2 m
p 2
)

d 3p =
∫ ∞

−∞
exp
(
− β

2 m
p 2

x

)
dpx

∫ ∞

−∞
exp
(
− β

2 m
p 2
y

)
dpy

×
∫ ∞

−∞
exp
(
− β

2 m
p 2

z

)
dpz

=


√

2πm
β


3

, (7.68)

where use has been made of Equation (2.79). Thus,

ζ = V
(
2πm
h 2

0 β

)3/2
, (7.69)

and

ln Z = N ln ζ = N
[
ln V − 3

2
ln β +

3
2

ln
(
2πm
h 2

0

)]
. (7.70)

The expression for the mean pressure, (7.50), yields

p =
1
β

∂ ln Z
∂V

=
1
β

N
V
, (7.71)

which reduces to the ideal gas equation of state

p V = N k T = νR T, (7.72)

where use has been made of N = νNA and R = NA k. According to Equation (7.35), the mean
energy of the gas is given by

E = −∂ ln Z
∂β
=

3
2

N
β
=

3
2
νR T. (7.73)

Note that the internal energy is a function of temperature alone, with no dependence on volume.
The molar heat capacity at constant volume of the gas is given by

cV =
1
ν

∂E
∂T


V

=
3
2

R, (7.74)

so the mean energy can be written
E = ν cV T. (7.75)

We have seen all of the previous results before. Let us now use the partition function to calcu-
late a new result. The entropy of the gas can be calculated quite simply from the expression

S = k
(
ln Z + β E

)
. (7.76)
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Thus,

S = νR
[
ln V − 3

2
ln β +

3
2

ln
(
2πm
h 2

0

)
+

3
2

]
, (7.77)

or

S = νR
(
ln V +

3
2

ln T + σ
)
, (7.78)

where

σ =
3
2

ln
(
2πm k

h 2
0

)
+

3
2
. (7.79)

The previous expression for the entropy of an ideal gas is certainly a new result. Unfortunately, it
is also quite obviously incorrect.

7.8 Gibb’s Paradox

First of all, let us be clear why Equation (7.78) is incorrect.
We can see that S → −∞ as T → 0, which contradicts the third law of thermodynamics.

However, this is not a problem. Equation (7.78) was derived using classical physics, which breaks
down at low temperatures. Thus, we would not expect this equation to give a sensible answer close
to the absolute zero of temperature.

Equation (7.78) is wrong because it implies that the entropy does not behave properly as an
extensive quantity. Thermodynamic quantities can be divided into two groups; extensive and in-
tensive. Extensive quantities increase by a factor αwhen the size of the system under consideration
is increased by the same factor. Intensive quantities stay the same. Energy and volume are typ-
ical extensive quantities. Pressure and temperature are typical intensive quantities. Entropy is
very definitely an extensive quantity. We have previously shown that the entropies of two weakly-
interacting systems are additive. [See Equation (7.62).] Thus, if we double the size of a system
then we expect the entropy to double as well. Suppose that we have a system of volume V , con-
taining ν moles of ideal gas at temperature T . Doubling the size of the system is like joining two
identical systems together to form a new system of volume 2 V , containing 2 ν moles of gas at
temperature T . Let

S = νR
(
ln V +

3
2

ln T + σ
)

(7.80)

denote the entropy of the original system, and let

S ′ = 2 νR
[
ln(2 V) +

3
2

ln T + σ
]

(7.81)

denote the entropy of the double-sized system. Clearly, if entropy is an extensive quantity then we
should have

S ′ = 2 S . (7.82)

But, in fact, we find that
S ′ − 2 S = 2 νR ln 2. (7.83)
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So, the entropy of the double-sized system is more than double the entropy of the original system.
Where does this extra entropy come from? Let us consider a little more carefully how we might

go about doubling the size of our system. Suppose that we put another identical system adjacent
to it, and separate the two systems by a partition. Let us now suddenly remove the partition. If
entropy is a properly extensive quantity then the entropy of the overall system should be the same
before and after the partition is removed. It is certainly the case that the energy (another extensive
quantity) of the overall system stays the same. However, according to Equation (7.83), the overall
entropy of the system increases by 2 νR ln 2 after the partition is removed. Suppose, now, that
the second system is identical to the first system in all respects, except that its molecules are in
some way slightly different to the molecules in the first system, so that the two sets of molecules
are distinguishable. In this case, we would certainly expect an overall increase in entropy when
the partition is removed. Before the partition is removed, it separates type 1 molecules from type
2 molecules. After the partition is removed, molecules of both types become jumbled together.
This is clearly an irreversible process. We cannot imagine the molecules spontaneously sorting
themselves out again. The increase in entropy associated with this jumbling is called entropy of
mixing, and is easily calculated. We know that the number of accessible states of an ideal gas varies
with volume like Ω ∝ V N . The volume accessible to type 1 molecules clearly doubles after the
partition is removed, as does the volume accessible to type 2 molecules. Using the fundamental
formula S = k lnΩ, the increase in entropy due to mixing is given by

S = 2 k ln
(
Ω f

Ωi

)
= 2 N k ln

(
Vf

Vi

)
= 2 νR ln 2. (7.84)

It is clear that the additional entropy, 2 νR ln 2, that appears when we double the size of an
ideal gas system, by joining together two identical systems, is entropy of mixing of the molecules
contained in the original systems. But, if the molecules in these two systems are indistinguishable
then why should there be any entropy of mixing? Obviously, there is no entropy of mixing in this
case. At this point, we can begin to understand what has gone wrong in our calculation. We have
calculated the partition function assuming that all of the molecules in our system have the same
mass and temperature, but we have not explicitly taken into account the fact that we consider the
molecules to be indistinguishable. In other words, we have been treating the molecules in our ideal
gas as if each carried a little license plate, or a social security number, so that we could always
tell one from another. In quantum mechanics, which is what we really should be using to study
microscopic phenomena, the essential indistinguishability of atoms and molecules is hard-wired
into the theory at a very low level. Our problem is that we have been taking the classical approach a
little too seriously. It is plainly nonsense to pretend that we can distinguish molecules in a statistical
problem where we cannot closely follow the motions of individual particles. A paradox arises if
we try to treat molecules as if they were distinguishable. This is called Gibb’s paradox, after the
American physicist Josiah Gibbs, who first discussed it. The resolution of Gibb’s paradox is quite
simple: treat all molecules of the same species as if they were indistinguishable.

In our previous calculation of the ideal gas partition function, we inadvertently treated each of
the N molecules in the gas as distinguishable. Because of this, we over-counted the number of
states of the system. Because the N! possible permutations of the molecules amongst themselves
do not lead to physically different situations, and, therefore, cannot be counted as separate states,
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the number of actual states of the system is a factor N! less than what we initially thought. We can
easily correct our partition function by simply dividing by this factor, so that

Z =
ζ N

N!
. (7.85)

This gives
ln Z = N ln ζ − ln N!, (7.86)

or
ln Z = N ln ζ − N ln N + N, (7.87)

using Stirling’s approximation. Note that our new version of ln Z differs from our previous version
by an additive term involving the number of particles in the system. This explains why our cal-
culations of the mean pressure and mean energy, which depend on partial derivatives of ln Z with
respect to the volume and the temperature parameter β, respectively, came out all right. However,
our expression for the entropy S is modified by this additive term. The new expression is

S = νR
[
ln V − 3

2
ln β +

3
2

ln
(
2πm k

h 2
0

)
+

3
2

]
+ k (−N ln N + N). (7.88)

This gives

S = νR
[
ln
(V
N

)
+

3
2

ln T + σ0

]
(7.89)

where

σ0 =
3
2

ln
(
2πm k

h 2
0

)
+

5
2
. (7.90)

It is clear that the entropy behaves properly as an extensive quantity in Equation (7.89). In other
words, it increases by a factor α when ν, V , and N each increase by the same factor.

7.9 General Paramagnetism

In Section 7.3, we considered the special case of paramagnetism in which all the atoms that make
up the substance under investigation possess spin 1/2. Let us now discuss the general case.

Consider a system consisting of N non-interacting atoms in a substance held at absolute tem-
perature T , and placed in an external magnetic field, B = Bz ez, that points in the z-direction. The
magnetic energy of a given atom is written

ε = −µ · B, (7.91)

where µ is the atom’s magnetic moment. Now, the magnetic moment of an atom is proportional to
its total electronic angular momentum, � J. In fact,

µ = g µB J, (7.92)
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where
µB =

e �
2 me

(7.93)

is a standard unit of magnetic moment known as the Bohr magneton. Here, e is the magnitude of
the electron charge, and me the electron mass. Moreover, g is a dimensionless number of order
unity that is called the g-factor of the atom.

Combining Equations (7.91) and (7.92), we obtain

ε = −g µB J · B = −g µB Bz Jz. (7.94)

Now, according to standard quantum mechanics,

Jz = m, (7.95)

where m is an integer that can take on all values between −J and +J. Here, |J| = J (J + 1), where
J is a positive number that can either take integer or half-integer values. Thus, there are 2 J + 1
allowed values of m, corresponding to different possible projections of the angular momentum
vector along the z-direction. It follows from Equation (7.94) that the possible magnetic energies of
an atom are

εm = −g µB Bz m. (7.96)

For example, if J = 1/2 (corresponding to a spin-1/2 system) then there are only two possible
energies, corresponding to m = ±1/2. This was the situation considered in Section 7.3. (To be
more exact, a spin-1/2 system corresponds to J = 1/2 and g = 2.)

The probability, Pm, that an atom is in a state labeled m is

Pm ∝ exp(−β εm) = exp( β g µB Bz m), (7.97)

where β = 1/(k T ). According to Equation (7.92), the corresponding z-component of the magnetic
moment is

µz = g µB m. (7.98)

Hence, the mean z-component of the magnetic moment is

µz =

∑
m=−J,+J exp( β g µB Bz m) g µB m∑

m=−J,+J exp( β g µB Bz m)
. (7.99)

The numerator in the previous expression is conveniently expressed as a derivative with respect to
the external parameter Bz: ∑

m=−J,+J

exp( β g µB Bz m) g µB m =
1
β

∂Za

∂Bz
, (7.100)

where
Za =

∑
m=−J,+J

exp( β g µB Bz m) (7.101)
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is the partition function of a single atom. Thus, Equation (7.99) becomes

µz =
1
Za

1
β

∂Za

∂Bz
=

1
β

∂ ln Za

∂Bz
. (7.102)

In order to calculate Za, it is convenient to define

η = β g µB Bz =
g µB Bz

k T
, (7.103)

which is a dimensionless parameter that measures the ratio of the magnetic energy, g µB Bz, that
acts to align the atomic magnetic moments parallel to the external magnetic field, to the thermal
energy, k T , that acts to keep the magnetic moment randomly orientated. Thus, Equation (7.101)
becomes

Za =
∑

m=−J,+J

exp(m η) = e−η J
∑

k=0,2J

[exp(η)] k. (7.104)

The previous geometric series can be summed to give

Za = e−η J

{
1 − [exp(η)] 2J+1

1 − exp(η)

}
. (7.105)

(See Exercise 7.1.) Multiplying the numerator and denominator by exp(−η/2), we obtain

Za =
exp[−η (J + 1/2)] + exp[ η (J + 1/2)]

exp(−η/2) − exp( η/2)
, (7.106)

or
Za =

sinh[(J + 1/2) η]
sinh(η/2)

, (7.107)

where the hyperbolic sine is defined

sinh z ≡ exp( y) − exp(−y)
2

. (7.108)

Thus,
ln Za = ln sinh[(J + 1/2) η] − ln sinh(η/2). (7.109)

According to Equations (7.102) and (7.103),

µz =
1
β

∂ ln Za

∂Bz
=

1
β

∂ ln Za

∂η

∂η

∂Bz
= g µB

∂ ln Za

∂η
. (7.110)

Hence,

µz = g µB

{
(J + 1/2) cosh[(J + 1/2) η]

sinh[(J + 1/2) η]
− (1/2) cosh(η/2)

sinh(η/2)

}
, (7.111)

or
µz = g µB J BJ(η), (7.112)
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Figure 7.1: The solid, dashed, and dotted curves show the Brillouin function, BJ(η), for J = 1/2,
J = 1, and J = 7/2, respectively.

where

BJ(η) =
1
J

{(
J +

1
2

)
coth

[(
J +

1
2

)
η

]
− 1

2
coth

(
η

2

)}
(7.113)

is known as the Brillouin function.
The hyperbolic cotangent is defined

coth z ≡ cosh z
sinh z

=
exp( z) + exp(−z)
exp( z) − exp(−z)

. (7.114)

For z
 1, we have

coth z � 1. (7.115)

On the other hand, for z � 1,

coth z =
1
z
+

1
3

z + O
(
z 3
)
. (7.116)

Thus, it follows that

BJ(η) =
1
J

[(
J +

1
2

)
− 1

2

]
= 1 (7.117)
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Figure 7.2: The magnetization versus Bz/T curves for (lower curve) chromium potassium alum
(J = 3/2, g = 2), (middle curve) iron ammonium alum (J = 5/2, g = 2), and (top curve)
gadolinium sulphate (J = 7/2, g = 2). The solid lines are the theoretical predictions, whereas the
data points are experimental measurements. The circles, triangles, crosses, and squares correspond
to T = 1.30 K, 2.00 K, 3.00 K, and 4.21 K, respectively. From W.E. Henry, Phys. Rev. 88, 561
(1952).

when η 
 1. On the other hand, when η � 1, we get

BJ(η) =
1
J

{(
J +

1
2

) [
1

(J + 1/2) η
+

1
3

(
J +

1
2

)
η

]
− 1

2

(
2
η
+
η

6

)}

=
1
J

13
(
J +

1
2

) 2

η − 1
12

η

 = η

3 J

(
J 2 + J +

1
4
− 1

4

)
, (7.118)

which reduces to

BJ(η) =
(

J + 1
3

)
η. (7.119)

Figure 7.1 shows how BJ(η) depends on η for various values of J.
If there are N0 atoms per unit volume then the mean magnetic moment per unit volume (or

magnetization) becomes
Mz = N0 µz = N0 g µB J BJ(η), (7.120)

where use has been made of Equation (7.112). If η � 1 then Equation (7.119) implies that Mz ∝
η ∝ Bz/T . This relation can be written

Mz � χ Bz

µ0
, (7.121)
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where the dimensionless constant of proportionality,

χ =
N0 µ0 µ

2
B g

2 J (J + 1)
3 k T

, (7.122)

is known as the magnetic susceptibility. Thus, χ ∝ T −1—a result that is called Curie’s law. (See
Section 7.3.) If η 
 1 then

Mz → N0 g µB J. (7.123)

This corresponds to magnetic saturation—a situation in which each atom has the maximum com-
ponent of the magnetic moment parallel to the magnetic field, g µB J, that it can possibly have.

Figure 7.2 compares the experimental and theoretical magnetization versus field-strength curves
for three different paramagnetic substances containing atoms of total angular momentum 3/2, 5/2,
and 7/2 particles, showing excellent agreement between theory and experiment. Note that, in all
cases, the magnetization is proportional to the magnetic field-strength at small field-strengths, but
saturates at some constant value as the field-strength increases.

The previous analysis completely neglects any interaction between the spins of neighboring
atoms or molecules. It turns out that this is a fairly good approximation for paramagnetic sub-
stances. However, for ferromagnetic substances, in which the spins of neighboring atoms interact
very strongly, this approximation breaks down completely. (See Section 7.17.) Thus, the previous
analysis does not apply to ferromagnetic substances.

7.10 Equipartition Theorem

The internal energy of a monatomic ideal gas containing N particles is (3/2) N k T . This means
that each particle possess, on average, (3/2) k T units of energy. Monatomic particles have only
three translational degrees of freedom, corresponding to their motion in three dimensions. They
possess no internal rotational or vibrational degrees of freedom. Thus, the mean energy per degree
of freedom in a monatomic ideal gas is (1/2) k T . In fact, this is a special case of a rather general
result. Let us now try to prove this.

Suppose that the energy of a system is determined by f generalized coordinates, qk, and f
corresponding generalized momenta, pk, so that

E = E(q1, · · · , qf , p1, · · · , pf ). (7.124)

Suppose further that:

1. The total energy splits additively into the form

E = εi(pi) + E′(q1, · · · , pf ), (7.125)

where εi involves only one variable, pi, and the remaining part, E′, does not depend on pi.

2. The function εi is quadratic in pi, so that

εi(pi) = b p 2
i , (7.126)

where b is a constant.
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The most common situation in which the previous assumptions are valid is where pi is a mo-
mentum. This is because the kinetic energy is usually a quadratic function of each momentum
component, whereas the potential energy does not involve the momenta at all. However, if a co-
ordinate, qi, were to satisfy assumptions 1 and 2 then the theorem that we are about to establish
would hold just as well.

What is the mean value of εi in thermal equilibrium if conditions 1 and 2 are satisfied? If the
system is in equilibrium at absolute temperature T ≡ (k β)−1 then it is distributed according to the
canonical probability distribution. In the classical approximation, the mean value of εi is expressed
in terms of integrals over all phase-space:

εi =

∫ ∞
−∞ exp[−β E(q1, · · · , pf )] εi dq1 · · · dpf∫ ∞
−∞ exp[−β E(q1, · · · , pf )] dq1 · · · dpf

. (7.127)

Condition 1 gives

ε i =

∫ ∞
−∞ exp[−β (εi + E′)] εi dq1 · · · dpf∫ ∞
−∞ exp[−β (εi + E′)] dq1 · · · dpf

=

∫ ∞
−∞ exp(−β εi) εi dpi

∫ ∞
−∞ exp(−β E′) dq1 · · · dpf∫ ∞

−∞ exp(−β εi) dpi

∫ ∞
−∞ exp(−β E′) dq1 · · · dpf

, (7.128)

where use has been made of the multiplicative property of the exponential function, and where the
final integrals in both the numerator and denominator extend over all variables, qk and pk, except
for pi. These integrals are equal and, thus, cancel. Hence,

ε i =

∫ ∞
−∞ exp(−β εi) εi dpi∫ ∞
−∞ exp(−β εi) dpi

. (7.129)

This expression can be simplified further because∫ ∞

−∞
exp(−β εi) εi dpi ≡ − ∂

∂β

[∫ ∞

−∞
exp(−β εi) dpi

]
, (7.130)

so

ε i = − ∂
∂β

ln
[∫ ∞

−∞
exp(−β εi) dpi

]
. (7.131)

According to condition 2,∫ ∞

−∞
exp(−β εi) dpi =

∫ ∞

−∞
exp
(
−β b p 2

i

)
dpi =

1√
β

∫ ∞

−∞
exp
(
−b y 2

)
dy, (7.132)

where y =
√
β pi. Thus,

ln
∫ ∞

−∞
exp(−β εi) dpi = −1

2
ln β + ln

∫ ∞

−∞
exp
(
−b y 2

)
dy. (7.133)
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Note that the integral on the right-hand side is independent of β. It follows from Equation (7.131)
that

εi = − ∂
∂β

(
−1

2
ln β
)
=

1
2 β

, (7.134)

giving

ε i =
1
2

k T. (7.135)

This is the famous equipartition theorem of classical physics. It states that the mean value of
every independent quadratic term in the energy is equal to (1/2) k T . If all terms in the energy are
quadratic then the mean energy is spread equally over all degrees of freedom. (Hence, the name
“equipartition.”)

7.11 Harmonic Oscillators

Our proof of the equipartition theorem depends crucially on the classical approximation. To see
how quantum effects modify this result, let us examine a particularly simple system that we know
how to analyze using both classical and quantum physics: namely, a simple harmonic oscilla-
tor. Consider a one-dimensional harmonic oscillator in equilibrium with a heat reservoir held at
absolute temperature T . The energy of the oscillator is given by

E =
p 2

2 m
+

1
2
κ x 2, (7.136)

where the first term on the right-hand side is the kinetic energy, involving the momentum, p, and
the mass, m, and the second term is the potential energy, involving the displacement, x, and the
force constant, κ. Each of these terms is quadratic in the respective variable. So, in the classical
approximation, the equipartition theorem yields:

p 2

2 m
=

1
2

k T, (7.137)

1
2
κ x 2 =

1
2

k T. (7.138)

That is, the mean kinetic energy of the oscillator is equal to the mean potential energy, which
equals (1/2) k T . It follows that the mean total energy is

E =
1
2

k T +
1
2

k T = k T. (7.139)

According to quantum mechanics, the energy levels of a harmonic oscillator are equally spaced,
and satisfy

En =

(
n +

1
2

)
�ω, (7.140)
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where n is a non-negative integer, and

ω =

√
κ

m
. (7.141)

(See Section C.11.) The partition function for such an oscillator is given by

Z =
∑

n=0,∞
exp(−β En) = exp

(
−1

2
β �ω

) ∑
n=0,∞

exp(−n β �ω). (7.142)

Now, ∑
n=0,∞

exp(−n β �ω) = 1 + exp(−β �ω) + exp(−2 β �ω) + · · · (7.143)

is simply the sum of an infinite geometric series, and can be evaluated immediately to give

∑
n=0,∞

exp(−n β �ω) =
1

1 − exp(−β �ω)
. (7.144)

(See Exercise 7.1.) Thus, the partition function takes the form

Z =
exp[−(1/2) β �ω]
1 − exp(−β �ω)

, (7.145)

and
ln Z = −1

2
β �ω − ln

[
1 − exp(−β �ω)

]
. (7.146)

The mean energy of the oscillator is given by [see Equation (7.35)]

E = − ∂
∂β

ln Z = −
[
−1

2
�ω − exp(−β �ω) �ω

1 − exp(−β �ω)

]
, (7.147)

or

E = �ω
[
1
2
+

1
exp( β �ω) − 1

]
. (7.148)

Consider the limit
β �ω =

�ω

k T
� 1, (7.149)

in which the thermal energy, k T , is large compared to the separation, �ω, between successive
energy levels. In this limit,

exp( β �ω) � 1 + β �ω, (7.150)

so

E � �ω
[
1
2
+

1
β �ω

]
� �ω

[
1

β �ω

]
, (7.151)

giving

E � 1
β
= k T. (7.152)
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Thus, the classical result, (7.139), holds whenever the thermal energy greatly exceeds the typical
spacing between quantum energy levels.

Consider the limit
β �ω =

�ω

k T

 1, (7.153)

in which the thermal energy is small compared to the separation between the energy levels. In this
limit,

exp( β �ω)
 1, (7.154)

and so

E � �ω
[
1
2
+ exp(−β �ω)

]
� 1

2
�ω. (7.155)

Thus, if the thermal energy is much less than the spacing between quantum states then the mean
energy approaches that of the ground-state (the so-called zero-point energy). Clearly, the equiparti-
tion theorem is only valid in the former limit, where k T 
 �ω, and the oscillator possess sufficient
thermal energy to explore many of its possible quantum states.

7.12 Specific Heats

We have discussed the internal energies and entropies of substances (mostly ideal gases) at some
length. Unfortunately, these quantities cannot be directly measured. Instead, they must be inferred
from other information. The thermodynamic property of substances that is the easiest to measure
is, of course, the heat capacity, or specific heat. In fact, once the variation of the specific heat with
temperature is known, both the internal energy and entropy can be easily reconstructed via

E(T,V) = ν
∫ T

0
cV(T,V) dT + E(0,V), (7.156)

S (T,V) = ν
∫ T

0

cV(T,V)
T

dT. (7.157)

Here, use has been made of dS = d̄Q/T , and the third law of thermodynamics. Clearly, the
optimum way of verifying the results of statistical thermodynamics is to compare the theoretically
predicted heat capacities with the experimentally measured values.

Classical physics, in the guise of the equipartition theorem, says that each independent degree
of freedom associated with a quadratic term in the energy possesses an average energy (1/2) k T
in thermal equilibrium at temperature T . Consider a substance made up of N molecules. Every
molecular degree of freedom contributes (1/2) N k T , or (1/2) νR T , to the mean energy of the
substance (with the tacit proviso that each degree of freedom is associated with a quadratic term
in the energy). Thus, the contribution to the molar heat capacity at constant volume (we wish to
avoid the complications associated with any external work done on the substance) is

1
ν

∂E
∂T


V

=
1
ν

∂[(1/2) νR T ]
∂T

=
1
2

R, (7.158)
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per molecular degree of freedom. The total classical heat capacity is therefore

cV =
g

2
R, (7.159)

where g is the number of molecular degrees of freedom. Because large complicated molecules
clearly have very many more degrees of freedom than small simple molecules, the previous for-
mula predicts that the molar heat capacities of substances made up of the former type of molecules
should greatly exceed those of substances made up of the latter. In fact, the experimental heat
capacities of substances containing complicated molecules are generally greater than those of
substances containing simple molecules, but by nowhere near the large factor predicted in Equa-
tion (7.159). This equation also implies that heat capacities are temperature independent. In fact,
this is not the case for most substances. Experimental heat capacities generally increase with in-
creasing temperature. These two experimental facts pose severe problems for classical physics.
Incidentally, these problems were fully appreciated as far back as 1850. Stories that physicists at
the end of the nineteenth century thought that classical physics explained absolutely everything are
largely apocryphal.

The equipartition theorem (and the whole classical approximation) is only valid when the typi-
cal thermal energy, k T , greatly exceeds the spacing between quantum energy levels. Suppose that
the temperature is sufficiently low that this condition is not satisfied for one particular molecular
degree of freedom. In fact, suppose that k T is much less than the spacing between the energy
levels. According to Section 7.11, in this situation, the degree of freedom only contributes the
ground-state energy, E0 (say) to the mean energy of the molecule. Now, the ground-state energy
can be a quite complicated function of the internal properties of the molecule, but is certainly not
a function of the temperature, because this is a collective property of all molecules. It follows that
the contribution to the molar heat capacity is

1
ν

(
∂[N E0]
∂T

)
V
= 0. (7.160)

Thus, if k T is much less than the spacing between the energy levels then the degree of freedom
contributes nothing at all to the molar heat capacity. We say that this particular degree of freedom
is “frozen out.” Clearly, at very low temperatures, just about all degrees of freedom are frozen out.
As the temperature is gradually increased, degrees of freedom successively kick in, and eventually
contribute their full (1/2) R to the molar heat capacity, as k T approaches, and then greatly exceeds,
the spacing between their quantum energy levels. We can use these simple ideas to explain the
behaviors of most experimental heat capacities.

To make further progress, we need to estimate the typical spacing between the quantum energy
levels associated with various degrees of freedom. We can do this by observing the frequency of
the electromagnetic radiation emitted and absorbed during transitions between these energy levels.
If the typical spacing between energy levels is ∆E then transitions between the various levels are
associated with photons of frequency ν, where h ν = ∆E. (Here, h is Planck’s constant.) We can
define an effective temperature of the radiation via h ν = k Trad. If T 
 Trad then k T 
 ∆E, and the
degree of freedom makes its full contribution to the heat capacity. On the other hand, if T � Trad

then k T � ∆E, and the degree of freedom is frozen out. Table 7.1 lists the “temperatures” of
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Radiation type Frequency (hz) Trad(K)
Radio < 10 9 < 0.05
Microwave 10 9 – 10 11 0.05 – 5
Infrared 10 11 – 10 14 5 – 5000
Visible 5 × 10 14 2 × 10 4

Ultraviolet 10 15 – 10 17 5 × 10 4 – 5 × 10 6

X-ray 10 17 – 10 20 5 × 10 6 – 5 × 10 9

γ-ray > 10 20 > 5 × 10 9

Table 7.1: Effective “temperatures” of various types of electromagnetic radiation.

various different types of radiation. It is clear that degrees of freedom that give rise to emission or
absorption of radio or microwave radiation contribute their full (1/2) R to the molar heat capacity at
room temperature. On the other hand, degrees of freedom that give rise to emission or absorption
in the visible, ultraviolet, X-ray, or γ-ray regions of the electromagnetic spectrum are frozen out
at room temperature. Degrees of freedom that emit or absorb infrared radiation are on the border
line.

7.13 Specific Heats of Gases

Let us now investigate the specific heats of gases. Consider, first of all, translational degrees of
freedom. Every molecule in a gas is free to move in three dimensions. If one particular molecule
has mass m and momentum p = m v then its kinetic energy of translation is

K =
1

2 m

(
p 2

x + p 2
y + p 2

z

)
. (7.161)

The kinetic energy of other molecules does not involve the momentum, p, of this particular
molecule. Moreover, the potential energy of interaction between molecules depends only on their
position coordinates, and is, thus, independent of p. Any internal rotational, vibrational, elec-
tronic, or nuclear degrees of freedom of the molecule also do not involve p. Hence, the essential
conditions of the equipartition theorem are satisfied. (At least, in the classical approximation.)
Because Equation (7.161) contains three independent quadratic terms, there are clearly three de-
grees of freedom associated with translation (one for each dimension of space), so the translational
contribution to the molar heat capacity of gases is

(cV)translation =
3
2

R. (7.162)

Suppose that our gas is contained in a cubic enclosure of dimensions L. According to Schrödin-
ger’s equation, the quantized translational energy levels of an individual molecule are given by

E =
�

2 π 2

2 m L 2

(
n 2

1 + n 2
2 + n 2

3

)
, (7.163)
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where n1, n2, and n3 are positive integer quantum numbers. (See Appendix C.) Clearly, the spac-
ing between the energy levels can be made arbitrarily small by increasing the size of the enclo-
sure. This implies that translational degrees of freedom can be treated classically, so that Equa-
tion (7.162) is always valid. (Except very close to absolute zero.) We conclude that all gases
possess a minimum molar heat capacity of (3/2) R due to the translational degrees of freedom of
their constituent molecules.

The electronic degrees of freedom of gas molecules (i.e., the possible configurations of elec-
trons orbiting the atomic nuclei) typically give rise to absorption and emission in the ultraviolet or
visible regions of the spectrum. It follows from Table 7.1 that electronic degrees of freedom are
frozen out at room temperature. Similarly, nuclear degrees of freedom (i.e., the possible config-
urations of protons and neutrons in the atomic nuclei) are frozen out because they are associated
with absorption and emission in the X-ray and γ-ray regions of the electromagnetic spectrum. In
fact, the only additional degrees of freedom that we need worry about for gases are rotational and
vibrational degrees of freedom. These typically give rise to absorption lines in the infrared region
of the spectrum.

The rotational kinetic energy of a molecule tumbling in space can be written

K =
1
2

L 2
x

Ix
+

1
2

L 2
y

Iy
+

1
2

L 2
z

Iz
, (7.164)

where the x-, y-, and z-axes are the so called principal axes of rotation of the molecule (these are
mutually perpendicular), Lx, Ly, and Lz are the angular momenta about these axes, and Ix, Iy, and
Iz are the moments of inertia about these axes. No other degrees of freedom depend on the angular
momenta. Because the kinetic energy of rotation is the sum of three quadratic terms, the rotational
contribution to the molar heat capacity of gases is

(cV)rotation =
3
2

R, (7.165)

according to the equipartition theorem. Note that the typical magnitude of a molecular moment
of inertia is m d 2, where m is the molecular mass, and d is the typical interatomic spacing in the
molecule. A special case arises if the molecule is linear (e.g., if the molecule is diatomic). In this
case, one of the principal axes lies along the line of centers of the atoms. The moment of inertia
about this axis is of order m a 2, where a is a typical nuclear dimension (remember that nearly all
of the mass of an atom resides in the nucleus). Because a ∼ 10−5 d, it follows that the moment of
inertia about the line of centers is minuscule compared to the moments of inertia about the other
two principle axes. In quantum mechanics, angular momentum is quantized in units of �. The
energy levels of a rigid rotator spinning about a principal axis are written

E =
�

2

2 I
J (J + 1), (7.166)

where I is the moment of inertia, and J is a non-negative integer. (See Section C.12.) Note the
inverse dependence of the spacing between energy levels on the moment of inertia. It is clear that,
for the case of a linear molecule, the rotational degree of freedom associated with spinning along
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Figure 7.3: The infrared vibration-absorption spectrum of hydrogen chloride gas.

the line of centers of the atoms is frozen out at room temperature, given the very small moment of
inertia along this axis, and, hence, the very widely spaced rotational energy levels.

Classically, the vibrational degrees of freedom of a molecule are studied by standard normal
mode analysis of the molecular structure. Each normal mode behaves like an independent har-
monic oscillator, and, therefore, contributes R to the molar specific heat of the gas [(1/2) R from
the kinetic energy of vibration, and (1/2) R from the potential energy of vibration]. A molecule
containing n atoms has n − 1 normal modes of vibration. For instance, a diatomic molecule has
just one normal mode (corresponding to periodic stretching of the bond between the two atoms).
Thus, the classical contribution to the specific heat from vibrational degrees of freedom is

(cV )vibration = (n − 1) R. (7.167)

So, do any of the rotational and vibrational degrees of freedom actually make a contribution to
the specific heats of gases at room temperature, once quantum effects have been taken into consid-
eration? We can answer this question by examining just one piece of data. Figure 7.3 shows the
infrared absorption spectrum of hydrogen chloride gas. The absorption lines correspond to simul-
taneous transitions between different vibrational and rotational energy levels. Hence, this is usually
called a vibration-rotation spectrum. The missing line at about 3.47 microns corresponds to a pure
vibrational transition from the ground-state to the first excited state. (Pure vibrational transitions
are forbidden—hydrogen chloride molecules always have to simultaneously change their rotational
energy level if they are to couple effectively to electromagnetic radiation.) The longer wavelength
absorption lines correspond to vibrational transitions in which there is a simultaneous decrease in
the rotational energy level. Likewise, the shorter wavelength absorption lines correspond to vi-
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brational transitions in which there is a simultaneous increase in the rotational energy level. It is
clear that the rotational energy levels are more closely spaced than the vibrational energy levels.
The pure vibrational transition gives rise to absorption at about 3.47 microns, which corresponds
to infrared radiation of frequency 8.5 × 10 13 hertz with an associated radiation “temperature” of
4,100 K. We conclude that the vibrational degrees of freedom of hydrogen chloride, or any other
small molecule, are frozen out at room temperature. The rotational transitions split the vibrational
lines by about 0.2 microns. This implies that pure rotational transitions would be associated with
infrared radiation of frequency 5×10 12 hertz and corresponding radiation “temperature” 240 K. We
conclude that the rotational degrees of freedom of hydrogen chloride, or any other small molecule,
are not frozen out at room temperature, and probably contribute the classical (1/2) R to the molar
specific heat. There is one proviso, however. Linear molecules (like hydrogen chloride) effectively
only have two rotational degrees of freedom (instead of the usual three), because of the very small
moment of inertia of such molecules along the line of centers of the atoms.

We are now in a position to make some predictions regarding the specific heats of various
gases. Monatomic molecules only possess three translational degrees of freedom, so monatomic
gases should have a molar heat capacity (3/2) R = 12.47 joules/degree/mole. Moreover, the ratio
of specific heats γ = cp/cV = (cV + R)/cV should be 5/3 = 1.667. It can be seen from Table 6.1
that both of these predictions are borne out pretty well for helium and argon. Diatomic molecules
possess three translational degrees of freedom, and two rotational degrees of freedom. (All other
degrees of freedom are frozen out at room temperature.) Thus, diatomic gases should have a molar
heat capacity (5/2) R = 20.8 joules/degree/mole. Moreover, the ratio of specific heats should be
7/5 = 1.4. It can be seen from Table 6.1 that these are reasonably accurate predictions for nitrogen
and oxygen. The freezing out of vibrational degrees of freedom becomes gradually less effective as
molecules become heavier and more complex. This is partly because such molecules are generally
less stable, so the force constant, κ, is reduced, and partly because the molecular mass is increased.
Both these effects reduce the frequency of vibration of the molecular normal modes [see Equa-
tion (7.141)], and, hence, the spacing between vibrational energy levels [see Equation (7.140)].
This accounts for the obviously non-classical [i.e., not a multiple of (1/2) R] specific heats of car-
bon dioxide and ethane in Table 6.1. In both molecules, vibrational degrees of freedom contribute
to the molar specific heat. (But not the full R, because the temperature is not sufficiently high.)

Figure 7.4 shows the variation of the molar heat capacity at constant volume of gaseous molec-
ular hydrogen (i.e., H2) with temperature. The expected contribution from the translational degrees
of freedom is (3/2) R (there are three translational degrees of freedom per molecule). The expected
contribution at high temperatures from the rotational degrees of freedom is R (there are effectively
two rotational degrees of freedom per molecule). Finally, the expected contribution at high tem-
peratures from the vibrational degrees of freedom is R (there is one vibrational degree of freedom
per molecule). It can be seen that, as the temperature rises, the rotational, and then the vibrational,
degrees of freedom eventually make their full classical contributions to the heat capacity.
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Figure 7.4: The molar heat capacity at constant volume of gaseous molecular hydrogen versus
temperature.

7.14 Specific Heats of Solids

Consider a simple solid containing N atoms. Now, atoms in solids cannot translate (unlike those
in gases), but are free to vibrate about their equilibrium positions. Such vibrations are termed
lattice vibrations, and can be thought of as sound waves propagating through the crystal lattice.
Each atom is specified by three independent position coordinates, and three conjugate momentum
coordinates. Let us only consider small-amplitude vibrations. In this case, we can expand the
potential energy of interaction between the atoms to give an expression that is quadratic in the
atomic displacements from their equilibrium positions. It is always possible to perform a normal
mode analysis of the oscillations. In effect, we can find 3N independent modes of oscillation of
the solid. Each mode has its own particular oscillation frequency, and its own particular pattern
of atomic displacements. Any general oscillation can be written as a linear combination of these
normal modes. Let qi be the (appropriately normalized) amplitude of the ith normal mode, and pi

the momentum conjugate to this coordinate. In normal-mode coordinates, the total energy of the
lattice vibrations takes the particularly simple form

E =
1
2

∑
i=1,3N

(
p 2

i + ω
2
i q 2

i

)
, (7.168)

where ωi is the (angular) oscillation frequency of the ith normal mode. It is clear that, when
expressed in normal-mode coordinates, the linearized lattice vibrations are equivalent to 3N inde-
pendent harmonic oscillators. (Of course, each oscillator corresponds to a different normal mode.)
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The typical value of ωi is the (angular) frequency of a sound wave propagating through the
lattice. Sound wave frequencies are far lower than the typical vibration frequencies of gaseous
molecules. In the latter case, the mass involved in the vibration is simply that of the molecule,
whereas in the former case the mass involved is that of very many atoms (because lattice vibra-
tions are non-localized). The strength of interatomic bonds in gaseous molecules is similar to
those in solids, so we can use the estimate ω � √κ/m (κ is the force constant that measures the
strength of interatomic bonds, and m is the mass involved in the oscillation) as proof that the typ-
ical frequencies of lattice vibrations are very much less than the vibration frequencies of simple
molecules. It follows, from ∆E = �ω, that the quantum energy levels of lattice vibrations are far
more closely spaced than the vibrational energy levels of gaseous molecules. Thus, it is likely (and
is, indeed, the case) that lattice vibrations are not frozen out at room temperature, but, instead,
make their full classical contribution to the molar specific heat of the solid.

If the lattice vibrations behave classically then, according to the equipartition theorem, each
normal mode of oscillation has an associated mean energy k T , in equilibrium at temperature T
[(1/2) k T resides in the kinetic energy of the oscillation, and (1/2) k T resides in the potential
energy]. Thus, the mean internal energy per mole of the solid is

E = 3 N k T = 3 νR T. (7.169)

It follows that the molar heat capacity at constant volume is

cV =
1
ν

∂E
∂T


V

= 3 R (7.170)

for solids. This gives a value of 24.9 joules/mole/degree. In fact, at room temperature, most
solids (in particular, metals) have heat capacities that lie remarkably close to this value. This fact
was discovered experimentally by Dulong and Petite at the beginning of the nineteenth century,
and was used to make some of the first crude estimates of the molecular weights of solids. (If
we know the molar heat capacity of a substance then we can easily work out how much of it
corresponds to one mole, and by weighing this amount, and then dividing the result by Avogadro’s
number, we can then obtain an estimate of the molecular weight.) Table 7.2 lists the experimental
molar heat capacities, cp, at constant pressure for various solids. The heat capacity at constant
volume is somewhat less than the constant pressure value, but not by much, because solids are
fairly incompressible. It can be seen that Dulong and Petite’s law (i.e., that all solids have a molar
heat capacities close to 24.9 joules/mole/degree) holds pretty well for metals. However, the law
fails badly for diamond. This is not surprising. As is well known, diamond is an extremely hard
substance, so its interatomic bonds must be very strong, suggesting that the force constant, κ, is
large. Diamond is also a fairly low-density substance, so the mass, m, involved in lattice vibrations
is comparatively small. Both these facts suggest that the typical lattice vibration frequency of
diamond (ω � √κ/m) is high. In fact, the spacing between the different vibrational energy levels
(which scales like �ω) is sufficiently large in diamond for the vibrational degrees of freedom to
be largely frozen out at room temperature. This accounts for the anomalously low heat capacity of
diamond in Table 7.2.



148 7.14. Specific Heats of Solids

Solid cp Solid cp

Copper 24.5 Aluminium 24.4
Silver 25.5 Tin (white) 26.4
Lead 26.4 Sulphur (rhombic) 22.4
Zinc 25.4 Carbon (diamond) 6.1

Table 7.2: Values of cp (joules/mole/degree) for some solids at T = 298◦ K. From Reif.

Dulong and Petite’s law is essentially a high-temperature limit. The molar heat capacity cannot
remain a constant as the temperature approaches absolute zero, because, by Equation (7.157), this
would imply S →∞, which violates the third law of thermodynamics. We can make a crude model
of the behavior of cV at low temperatures by assuming that all of the normal modes oscillate at the
same frequency, ω (say). This approximation was first employed by Einstein in a paper published
in 1907. According to Equation (7.168), the solid acts like a set of 3N independent oscillators
which, making use of Einstein’s approximation, all vibrate at the same frequency. We can use the
quantum mechanical result (7.148) for a single oscillator to write the mean energy of the solid in
the form

E = 3 N �ω
(
1
2
+

1
exp( β �ω) − 1

)
. (7.171)

The molar heat capacity is defined

cV =
1
ν

∂E
∂T


V

=
1
ν

∂E
∂β


V

∂β

∂T
= − 1

ν k T 2

∂E
∂β


V

, (7.172)

giving

cV = −3 NA �ω

k T 2

{
− exp( β �ω) �ω

[exp( β �ω) − 1] 2

}
, (7.173)

which reduces to

cV = 3 R
(
θE

T

)2 exp(θE/T )
[exp(θE/T ) − 1] 2 . (7.174)

Here,

θE =
�ω

k
(7.175)

is termed the Einstein temperature. If the temperature is sufficiently high that T 
 θE then k T 

�ω, and the previous expression reduces to cV = 3 R, after expansion of the exponential functions.
Thus, the law of Dulong and Petite is recovered for temperatures significantly in excess of the
Einstein temperature. On the other hand, if the temperature is sufficiently low that T � θE then
the exponential factors appearing in Equation (7.174) become very much larger than unity, giving

cV � 3 R
(
θE

T

)2
exp
(
−θE

T

)
. (7.176)

So, in this simple model, the specific heat approaches zero exponentially as T → 0.
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In reality, the specific heats of solids do not approach zero quite as quickly as suggested by
Einstein’s model when T → 0. The experimentally observed low-temperature behavior is more
like cV ∝ T 3. (See Figure 7.6.) The reason for this discrepancy is the crude approximation that all
normal modes have the same frequency. In fact, long-wavelength (i.e., low-frequency) modes have
lower frequencies than short-wavelength (i.e., high-freqeuncy) modes, so the former are much
harder to freeze out than the latter (because the spacing between quantum energy levels, �ω, is
smaller in the former case). The molar heat capacity does not decrease with temperature as rapidly
as suggested by Einstein’s model because these long-wavelength modes are able to make a signif-
icant contribution to the heat capacity, even at very low temperatures. A more realistic model of
lattice vibrations was developed by the Dutch physicist Peter Debye in 1912. In the Debye model,
the frequencies of the normal modes of vibration are estimated by treating the solid as an isotropic
continuous medium. This approach is reasonable because the only modes that really matter at low
temperatures are the long-wavelength modes: more explicitly, those whose wavelengths greatly
exceed the interatomic spacing. It is plausible that these modes are not particularly sensitive to the
discrete nature of the solid. In other words, the fact that the solid is made up of atoms, rather than
being continuous.

Consider a sound wave propagating through an isotropic continuous medium. The disturbance
varies with position vector r and time t like exp[−i (k· r − ω t)], where the wavevector, k, and the
frequency of oscillation, ω, satisfy the dispersion relation for sound waves in an isotropic medium:

ω = k cs. (7.177)

Here, cs is the speed of sound in the medium. Suppose, for the sake of argument, that the medium
is periodic in the x-, y-, and z-directions with periodicity lengths Lx, Ly, and Lz, respectively. In
order to maintain periodicity, we need

kx (x + Lx) = kx x + 2π nx, (7.178)

where nx is an integer. There are analogous constraints on ky and kz. It follows that, in a periodic
medium, the components of the wavevector are quantized, and can only take the values

kx =
2π
Lx

nx, (7.179)

ky =
2π
Ly

ny, (7.180)

kz =
2π
Lz

nz, (7.181)

where nx, ny, and nz are all integers. It is assumed that Lx, Ly, and Lz are macroscopic lengths, so
the allowed values of the components of the wavevector are very closely spaced. For given values
of ky and kz, the number of allowed values of kx that lie in the range kx to kx + dkx is given by

∆nx =
Lx

2π
dkx. (7.182)
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It follows that the number of allowed values of k (i.e., the number of allowed modes) when kx lies
in the range kx to kx + dkx, ky lies in the range ky to ky + dky, and kz lies in the range kz to kz + dkz, is

ρ d 3k =
(Lx

2π
dkx

) (Ly
2π

dky

) ( Lz

2π
dkz

)
=

V
(2π)3 dkx dky dkz, (7.183)

where V = Lx Ly Lz is the periodicity volume, and d 3k ≡ dkx dky dkz. The quantity ρ is called the
density of modes. Note that this density is independent of k, and proportional to the periodicity
volume. Thus, the density of modes per unit volume is a constant, independent of the magnitude,
or shape, of the periodicity volume. The density of modes per unit volume when the magnitude of
k lies in the range k to k + dk is given by multiplying the density of modes per unit volume by the
“volume” in k-space of the spherical shell lying between radii k and k + dk. Thus,

ρk dk =
4π k 2 dk

(2π)3 =
k 2

2π 2 dk. (7.184)

Consider an isotropic continuous medium of volume V . According to the previous relation, the
number of normal modes whose frequencies lie between ω and ω + dω (which is equivalent to the
number of modes whose k values lie in the range ω/cs to ω/cs + dω/cs) is

σc(ω) dω = 3 V ρk(k)
dk
dω

dω =
3 V

2π 2 c 3
s
ω 2 dω. (7.185)

The factor of 3 comes from the three possible polarizations of sound waves in solids. For every
allowed wavenumber (or frequency), there are two independent torsional modes, where the dis-
placement is perpendicular to the direction of propagation, and one longitudinal mode, where the
displacement is parallel to the direction of propagation. Torsion waves are vaguely analogous to
electromagnetic waves (these also have two independent polarizations). The longitudinal mode is
very similar to the compressional sound wave in gases. Of course, torsion waves can not propagate
in gases, because gases have no resistance to deformation without change of volume.

The Debye approach consists in approximating the actual density of normal modes, σ(ω), by
the density in a continuous medium, σc(ω), not only at low frequencies (long wavelengths) where
these should be nearly the same, but also at higher frequencies where they may differ substantially.
Suppose that we are dealing with a solid consisting of N atoms. We know that there are only 3N
independent normal modes. It follows that we must cut off the density of states above some critical
frequency, ωD (say), otherwise we will have too many modes. Thus, in the Debye approximation
the density of normal modes takes the form

σD(ω) =
{
σc(ω) ω < ωD

0 ω > ωD
. (7.186)

Here, ωD is termed the Debye frequency, and is chosen such that the total number of normal modes
is 3N: ∫ ∞

0
σD(ω) dω =

∫ ωD

0
σc(ω) dω = 3N. (7.187)
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Figure 7.5: The true density of normal modes in diamond (solid curve) compared with the density
of normal modes predicted by Debye theory (dashed curve). Here, ν = ω/2π. From C.B. Walker,
Phys. Rev. 103, 547 (1956).

Substituting Equation (7.185) into the previous formula yields

3V
2π 2 c 3

s

∫ ωD

0
ω 2 dω =

V
2π 2 c 3

s
ω 3

D = 3N. (7.188)

This implies that

ωD = cs

(
6π 2 N

V

)1/3
. (7.189)

Thus, the Debye frequency depends only on the sound velocity in the solid, and the number of
atoms per unit volume. The wavelength corresponding to the Debye frequency is 2π cs/ωD, which
is clearly on the order of the interatomic spacing, a � (V/N) 1/3. It follows that the cut-off of normal
modes whose frequencies exceed the Debye frequency is equivalent to a cut-off of normal modes
whose wavelengths are less than the interatomic spacing. Of course, it makes physical sense that
such modes should be absent.

Figure 7.5 compares the actual density of normal modes in diamond with the density predicted
by Debye theory. Not surprisingly, there is not a particularly strong resemblance between these
two curves, because Debye theory is highly idealized. Nevertheless, both curves exhibit sharp cut-
offs at high frequencies, and coincide at low frequencies. Furthermore, the areas under both curves
are the same. As we shall see, this is sufficient to allow Debye theory to correctly account for the
temperature variation of the specific heat of solids at low temperatures.
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We can use the quantum-mechanical expression for the mean energy of a single oscillator,
Equation (7.148), to calculate the mean energy of lattice vibrations in the Debye approximation.
We obtain

E =
∫ ∞

0
σD(ω) �ω

[
1
2
+

1
exp( β �ω) − 1

]
dω. (7.190)

According to Equation (7.172), the molar heat capacity takes the form

cV =
1

ν k T 2

∫ ∞

0
σD(ω) �ω

{
exp( β �ω) �ω

[exp( β �ω) − 1] 2

}
dω. (7.191)

Making use of Equations (7.185) and (7.186), we find that

cV =
k
ν

∫ ωD

0

exp( β �ω) (β �ω) 2

[exp( β �ω) − 1] 2

3 V
2π 2 c 3

s
ω 2 dω, (7.192)

giving

cV =
3 V k

2π 2 ν (cs β �) 3

∫ β �ωD

0

exp x
(exp x − 1) 2 x 4 dx, (7.193)

in terms of the dimensionless variable x = β �ω. According to Equation (7.189), the volume can
be written

V = 6π 2 N
(

cs

ωD

)3
, (7.194)

so the heat capacity reduces to

cV = 3 R fD(β �ωD) = 3 R fD

(
θD

T

)
, (7.195)

where the Debye function is defined

fD(y) ≡ 3
y 3

∫ y

0

exp x
(exp x − 1) 2 x 4 dx. (7.196)

We have also defined the Debye temperature, θD, as

k θD = �ωD. (7.197)

Consider the asymptotic limit in which T 
 θD. For small y, we can approximate exp x as 1+ x
in the integrand of Equation (7.196), so that

fD(y)→ 3
y 3

∫ y

0
x 2 dx = 1. (7.198)

Thus, if the temperature greatly exceeds the Debye temperature then we recover the law of Dulong
and Petite that cV = 3 R. Consider, now, the asymptotic limit in which T � θD. For large y,∫ y

0

exp x
(exp x − 1) 2 x 4 dx �

∫ ∞

0

exp x
(exp x − 1) 2 x 4 dx =

4π 4

15
. (7.199)
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Solid θD (low temperature) θD (sound speed)
Na Cl 308 320
K Cl 230 246
Ag 225 216
Zn 308 305

Table 7.3: Comparison of Debye temperatures (in degrees kelvin) obtained from the low temper-
ature behavior of the heat capacity with those calculated from the sound speed. From C. Kittel,
Introduction to Solid-State Physics, 2nd Ed. (John Wiley & Sons, New York NY, 1956).

The latter integration is standard (if rather obscure), and can be looked up in any (large) reference
book on integration. Thus, in the low-temperature limit,

fD(y)→ 4π 4

5
1
y 3 . (7.200)

This yields

cV � 12π 4

5
R
(

T
θD

) 3

(7.201)

in the limit T � θD, Note that cV varies with temperature like T 3.
The fact that cV goes like T 3 at low temperatures is quite well verified experimentally, although

it is sometimes necessary to go to temperatures as low as 0.02 θD to obtain this asymptotic behavior.
Theoretically, θD should be calculable from Equation (7.189) in terms of the sound speed in the
solid, and the molar volume. Table 7.3 shows a comparison of Debye temperatures evaluated by
this means with temperatures obtained empirically by fitting the law (7.201) to the low-temperature
variation of the heat capacity. It can be seen that there is fairly good agreement between the
theoretical and empirical Debye temperatures. This suggests that the Debye theory affords a good,
though not perfect, representation of the behavior of cV in solids over the entire temperature range.

Finally, Figure 7.6 shows the actual temperature variation of the molar heat capacities of vari-
ous solids, as well as that predicted by Debye’s theory. The prediction of Einstein’s theory is also
shown, for the sake of comparison.

7.15 Maxwell Velocity Distribution

Consider a molecule of mass m in a gas that is sufficiently dilute for the intermolecular forces to
be negligible (i.e., an ideal gas). The energy of the molecule is written

ε =
p 2

2 m
+ ε int, (7.202)

where p is its momentum vector, and ε int is its internal (i.e., non-translational) energy. The latter
energy is due to molecular rotation, vibration, et cetera. Translational degrees of freedom can
be treated classically to an excellent approximation, whereas internal degrees of freedom usually



154 7.15. Maxwell Velocity Distribution

0

1

2

3

c V
/R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
T/θD

Figure 7.6: The molar heat capacity of various solids. The solid circles, solid triangles, solid
squares, open circles, and crosses correspond to Ag, graphite, Al, Al2O3, and K Cl, respectively.
The solid curve shows the prediction of Debye theory. The dotted curve shows the prediction of
Einstein theory (assuming that θE = θD). From F. Seitz, The Physics of Metals (McGraw-Hill, New
York NY, 1943).

require a quantum-mechanical approach. Classically, the probability of finding the molecule in
a given internal state with a position vector in the range r to r + dr, and a momentum vector
in the range p to p + dp, is proportional to the number of cells (of “volume” h0) contained in
the corresponding region of phase-space, weighted by the Boltzmann factor. In fact, because
classical phase-space is divided up into uniform cells, the number of cells is just proportional to
the “volume” of the region under consideration. This “volume” is written d 3r d 3p. Thus, the
probability of finding the molecule in a given internal state s is

Ps(r, p) d 3r d 3p ∝ exp
(−β p 2

2 m

)
exp(−β ε int

s ) d 3r d 3p, (7.203)

where Ps is a probability density defined in the usual manner. The probability P(r, p) d 3r d 3p of
finding the molecule in any internal state with position and momentum vectors in the specified
range is obtained by summing the previous expression over all possible internal states. The sum
over exp(−β ε int

s ) just contributes a constant of proportionality (because the internal states do not
depend on r or p), so

P(r, p) d 3r d 3p ∝ exp
(
−β p 2

2 m

)
d 3r d 3p. (7.204)
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Of course, we can multiply this probability by the total number of molecules, N, in order to obtain
the mean number of molecules with position and momentum vectors in the specified range.

Suppose that we now wish to determine f (r, v) d 3r d 3v: that is, the mean number of molecules
with positions between r and r + dr, and velocities in the range v and v + dv. Because v = p/m, it
is easily seen that

f (r, v) d 3r d 3v = C exp
(
−βm v 2

2

)
d 3r d 3v, (7.205)

where C is a constant of proportionality. This constant can be determined by the condition∫
(r)

∫
(v)

f (r, v) d 3r d 3v = N. (7.206)

In other word, the sum over molecules with all possible positions and velocities gives the total
number of molecules, N. The integral over the molecular position coordinates just gives the vol-
ume, V , of the gas, because the Boltzmann factor is independent of position. The integration over
the velocity coordinates can be reduced to the product of three identical integrals (one for vx, one
for vy, and one for vz), so we have

C V
[∫ ∞

−∞
exp
(
−βm v 2

z

2

)
dvz

] 3

= N. (7.207)

Now, ∫ ∞

−∞
exp
(
−βm v 2

z

2

)
dvz =

√
2
βm

∫ ∞

−∞
exp
(
−y 2
)

dy =

√
2π
βm

, (7.208)

so C = (N/V) (βm/2π)3/2. (See Exercise 2.2.) Thus, the properly normalized distribution function
for molecular velocities is written

f (v) d 3r d 3v = n
( m
2π k T

) 3/2
exp
(
−m v 2

2 k T

)
d 3r d 3v. (7.209)

Here, n = N/V is the number density of the molecules. We have omitted the variable r in the
argument of f , because f clearly does not depend on position. In other words, the distribution
of molecular velocities is uniform in space. This is hardly surprising, because there is nothing to
distinguish one region of space from another in our calculation. The previous distribution is called
the Maxwell velocity distribution, because it was discovered by James Clark Maxwell in the middle
of the nineteenth century. The average number of molecules per unit volume with velocities in the
range v to v + dv is obviously f (v) d 3v.

Let us consider the distribution of a given component of velocity: the z-component (say).
Suppose that g(vz) dvz is the average number of molecules per unit volume with the z-component
of velocity in the range vz to vz + dvz, irrespective of the values of their other velocity components.
It is fairly obvious that this distribution is obtained from the Maxwell distribution by summing
(integrating actually) over all possible values of vx and vy, with vz in the specified range. Thus,

g(vz) dvz =

∫
(vx)

∫
(vy)

f (v) d 3v. (7.210)
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This gives

g(vz) dvz = n
( m
2π k T

) 3/2 ∫
(vx)

∫
(vy)

exp
[
−
( m
2 k T

)
(v 2

x + v
2
y + v

2
z )
]

dvx dvy dvz

= n
( m
2π k T

) 3/2
exp
(
−m v 2

z

2 k T

) [∫ ∞

−∞
exp
(
−m v 2

x

2 k T

)] 2

= n
( m
2π k T

) 3/2
exp
(
−m v 2

z

2 k T

) 
√

2π k T
m


2

, (7.211)

or

g(vz) dvz = n
( m
2π k T

) 1/2
exp
(
−m v 2

z

2 k T

)
dvz. (7.212)

Of course, this expression is properly normalized, so that∫ ∞

−∞
g(vz) dvz = n. (7.213)

It is clear that each component (because there is nothing special about the z-component) of
the velocity is distributed with a Gaussian probability distribution (see Section 2.9), centered on a
mean value

vz = 0, (7.214)

with variance

v 2
z =

k T
m
. (7.215)

Equation (7.214) implies that each molecule is just as likely to be moving in the plus z-direction as
in the minus z-direction. Equation (7.215) can be rearranged to give

1
2

m v 2
z =

1
2

k T, (7.216)

in accordance with the equipartition theorem.
Note that Equation (7.209) can be rewritten

f (v) d 3v
n

=

[
g(vx) dvx

n

] [
g(vy) dvy

n

] [
g(vz) dvz

n

]
, (7.217)

where g(vx) and g(vy) are defined in an analogous way to g(vz). Thus, the probability that the
velocity lies in the range v to v+dv is just equal to the product of the probabilities that the velocity
components lie in their respective ranges. In other words, the individual velocity components act
like statistically-independent variables.

Suppose that we now wish to calculate F(v) dv: that is, the average number of molecules per
unit volume with a speed v = |v| in the range v to v + dv. It is obvious that we can obtain this
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quantity by summing over all molecules with speeds in this range, irrespective of the direction of
their velocities. Thus,

F(v) dv =
∫

f (v) d 3v, (7.218)

where the integral extends over all velocities satisfying

v < |v| < v + dv. (7.219)

This inequality is satisfied by a spherical shell of radius v and thickness dv in velocity space.
Because f (v) only depends on |v|, so f (v) ≡ f (v), the previous integral is just f (v) multiplied by
the volume of the spherical shell in velocity space. So,

F(v) dv = f (v) 4π v 2 dv, (7.220)

which gives

F(v) dv = 4π n
( m
2π k T

) 3/2
v 2 exp

(
−m v 2

2 k T

)
dv. (7.221)

This is the famous Maxwell distribution of molecular speeds. Of course, it is properly normalized,
so that ∫ ∞

0
F(v) dv = n. (7.222)

Note that the Maxwell distribution exhibits a maximum at some non-zero value of v. The reason for
this is quite simple. As v increases, the Boltzmann factor decreases, but the volume of phase-space
available to the molecule (which is proportional to v 2) increases: the net result is a distribution
with a non-zero maximum.

The mean molecular speed is given by

v =
1
n

∫ ∞

0
F(v) v dv. (7.223)

Thus, we obtain

v = 4π
( m
2π k T

) 3/2 ∫ ∞

0
v 3 exp

(
−m v 2

2 k T

)
dv, (7.224)

or

v = 4π
( m
2π k T

) 3/2
(
2 k T

m

) 2 ∫ ∞

0
y 3 exp

(
−y 2
)

dy. (7.225)

Now ∫ ∞

0
y 3 exp

(
−y 2
)

dy =
1
2

(7.226)

(see Exercise 7.2), so

v =

√
8
π

k T
m
. (7.227)
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Figure 7.7: The Maxwell velocity distribution as a function of molecular speed, in units of the
most probable speed (ṽ). The dashed, dash-dotted, and dotted lines indicates the most probable
speed, the mean speed, and the root-mean-square speed, respectively.

A similar calculation gives

vrms =
[
v 2
] 1/2
=

√
3 k T

m
. (7.228)

(See Exercise 7.14.) However, this result can also be obtained from the equipartition theorem.
Because

1
2

m v 2 =
1
2

m (v 2
x + v

2
y + v

2
z ) = 3

(
1
2

k T
)
, (7.229)

then Equation (7.228) follows immediately. It is easily demonstrated that the most probable molec-
ular speed (i.e., the maximum of the Maxwell distribution function) is

ṽ =

√
2 k T

m
. (7.230)

The speed of sound in an ideal gas is given by

cs =

√
γ p
ρ
, (7.231)

where γ is the ratio of specific heats. This can also be written

cs =

√
γ k T

m
, (7.232)
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because p = n k T and ρ = n m. It is clear that the various average speeds that we have just calcu-
lated are all of order the sound speed (i.e., a few hundred meters per second at room temperature).
In ordinary air (γ = 1.4) the sound speed is about 84% of the most probable molecular speed, and
about 74% of the mean molecular speed. Because sound waves ultimately propagate via molecular
motion, it makes sense that they travel at slightly less than the most probable and mean molecular
speeds.

Figure 7.7 shows the Maxwell velocity distribution as a function of molecular speed in units of
the most probable speed. Also shown are the mean speed and the root-mean-square speed.

7.16 Effusion

Consider a dilute gas enclosed in a container. Let us calculate how many molecules per unit time
strike a unit area of the container wall.

Consider a wall element of area dA. The z-axis is oriented so as to point along the outward
normal of this element. Let v represent a molecular velocity. The Cartesian components of this
velocity are conveniently written v = v (sin θ cosφ, sin θ sinφ, cos θ), where the standard spherical
angles θ and φ specify the velocity vector’s direction. Let us concentrate on those molecules, in the
immediate vicinity of the wall element, whose velocities are such that they lie between v and v+dv.
In other words, the velocities are such that their magnitudes lies between v and v + dv, their polar
angles lie between θ and θ+ dθ, and their azimuthal angles lie between φ and φ+ dφ. Molecules of
this type suffer a displacement v dt in the infinitesimal time interval dt. Hence, all molecules that
lie within the infinitesimal cylinder of cross-sectional area dA, and length v dt (whose axis subtends
an angle θ with the z-axis, and whose two ends are parallel to the wall element), will strike the wall
element within the time interval dt, whereas those molecules outside this cylinder will not. (See
Figure 7.8.) The volume of the cylinder is dA v cos θ dt, whereas the number of molecules per unit
volume in the prescribed velocity range is f (v) d 3v. Hence, the number of molecules of this type
that strike the area dA in the time interval dt is [ f (v) d 3v] (dA v cos θ dt). Dividing this expression
by the area dA, and the time interval dt, we obtain Φ(v) d 3v, which is defined as the number of
molecules, with velocities in the range v to v + dv, that strike a unit area of the wall per unit time.
Thus,

Φ(v) d 3v = f (v) v cos θ d 3v. (7.233)

Let Φ0 be the total number of molecules that strike a unit area of the wall per unit time. This
quantity is simply obtained by summing (7.233) over all possible molecular velocities that would
cause molecules to collide with the element of area. This means that we have to sum over all
possible speeds, 0 < v < ∞, all possible azimuthal angles, 0 < φ < 2π, and all polar angles in
the range 0 < θ < π/2. (Those molecules with polar angles in the range π/2 < θ < π have their
velocity directed away from the wall, and will, hence, not collide with it.) In other words, we
have to sum over all possible velocities, v, subject to the restriction that the velocity component
vz = v cos θ is positive. Thus, we have

Φ0 =

∫
vz>0

f (v) v cos θ d 3v. (7.234)
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Figure 7.8: All molecules with velocity v that lie within the cylinder strike the wall in a unit time
interval.

The element of volume in velocity space can be expressed in spherical coordinates:

d 3v = v 2 dv (sin θ dθ dφ), (7.235)

where sin θ dθ dφ = dΩ is just an element of solid angle. Moreover, in thermal equilibrium, f (v) =
f (v) is only a function of |v|. Hence, Equation (7.234) becomes

Φ0 =

∫
vz>0

f (v) v cos θ (v 2 dv sin θ dθ dφ)

=

∫ ∞

0
f (v) v 2 dv

∫ π/2

0
sin θ cos θ dθ

∫ 2π

0
dφ. (7.236)

The integral over φ gives 2π, whereas that over θ reduces to 1/2. It follows that

Φ0 = π

∫ ∞

0
f (v) v 3 dv. (7.237)

Now, the mean molecular speed is written

v̄ =
1
n

∫
f (v) v d 3v =

1
n

∫ ∞

0

∫ π

0

∫ 2π

0
f (v) v (v 2 dv sin θ dθ dφ), (7.238)

which reduces to

v̄ =
4π
n

∫ ∞

0
f (v) v 3 dv. (7.239)
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Hence, we deduce from Equation (7.237) that

Φ0 =
1
4

n v̄. (7.240)

The previous result can be combined with Equation (7.227), and the ideal equation of state, p̄ =
n k T , to give

Φ0 =
p̄√

2πm k T
. (7.241)

If a sufficiently small hole is made in the wall of the container then the equilibrium of the gas
inside the container is disturbed to a negligible extent. [In practice, a sufficiently small hole is one
that is small compared to the molecular mean-free-path (i.e., the mean distance travelled between
collisions) inside the container.] In this case, the number of molecules that emerge through the
small hole is the same as the number of molecules that would strike the area occupied by the hole
if the latter were closed off. The process by which molecules emerge through a small hole is called
effusion. The number of molecules that have speeds in the range between v and v + dv, and which
emerge through a small hole of area A, into the solid angle range dΩ, in the forward direction
θ = 0, is given by

AΦ(v) d 3v ∝ A [ f (v) v cos θ] (v 2 dv dΩ) ∝ f (v) v 3 dv dΩ

∝ v 3 exp
(
−m v 2

2 k T

)
dv dΩ. (7.242)

Now, it is difficult to directly verify the Maxwell velocity distribution. However, this distribution
can be verified indirectly by measuring the velocity distribution of atoms effusing from a small
hole in an oven. As we have just seen, the predicted velocity distribution of the escaping atoms
varies like v 3 exp(−m v 2/2 k T ), in contrast to the v 2 exp(−m v 2/2 k T ) variation of the velocity dis-
tribution inside the oven. There is good agreement between the experimentally measured velocity
distribution of effusing atoms and the theoretical prediction.

As another example, consider a container that is divided into two parts by a partition containing
a small hole. The container is filled with gas, but one part of the container is maintained at the
temperature T1, and the other at the temperature T2. Let us calculate the relationship between the
mean gas pressures, p̄1 and p̄2, respectively, in the two parts, when the system is in equilibrium.
(That is, when a situation is reached in which neither p̄1 or p̄2, nor the amount of gas in either parts,
changes with time.) If the hole is larger than the molecular mean-free-path then the relationship is
simply p̄1 = p̄2—otherwise, the pressure difference would give rise to bulk motion of the gas from
one side of the container to the other, until the pressures were equalized. But, if the dimensions of
the hole are less than the mean-free-path then we are dealing with effusion through the hole, rather
than hydrodynamical flow. In this case, the equilibrium condition requires that the mass of gas
on each side remain constant. In other words, the effusion rates in both directions must be equal.
Thus, it follows from Equation (7.241) that

p̄1√
T1
=

p̄2√
T2
. (7.243)

Thus, the pressures are not equal. Instead, a higher pressure prevails in the part of the container
held at a higher temperature.
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7.17 Ferromagnetism

Consider a solid substance consisting of N identical atoms arranged in a regular lattice. Each atom
has a net electronic angular momentum, � S, and an associated magnetic moment, µ. [Here, we
use S, rather than J, to denote atomic angular momentum (divided by �) to avoid confusion with
the exchange energy, J, introduced in Equation (7.246).] The atomic magnetic moment is related
to the corresponding total angular momentum via

µ = g µB S, (7.244)

where µB is the Bohr magneton, and the g-factor, g, is a dimensionless number of order unity. (See
Section 7.9.) In the presence of an externally-applied magnetic field, B0 = Bz ez, directed parallel
to the z-axis, the Hamiltonian, H0, representing the interaction of the atoms with this field is written

H0 = −g µB

∑
j=1,N

S j · B0 = −g µB Bz

∑
j=1,N

S j z. (7.245)

Each atom is also assumed to interact with neighboring atoms. The interaction in question is
not simply the magnetic dipole-dipole interaction due to the magnetic field produced by one atom
at the position of another. Such an interaction is, in general, much too small to produce ferromag-
netism. Instead, the predominant interaction is known as the exchange interaction. This interaction
is a quantum-mechanical consequence of the Pauli exclusion principle. (See Section 8.2.) Because
electrons cannot occupy the same state, two electrons on neighboring atoms that have parallel
spins (here, to simplify the discussion of the origin of the exchange interaction, we are temporar-
ily assuming that the electrons all have zero orbital angular momenta, so that their total angular
momenta are solely a consequence of their spin angular momenta) cannot come too close to one
another in space (else they would simultaneously occupy identical spin and orbital states, which is
forbidden). On the other hand, if the electrons have antiparallel spins then they are in different spin
states, so they are allowed to occupy the same orbital state. In other words, there is no exclusion-
related restriction on how close they can come together. Because different spatial separations of the
electrons give rise to different electrostatic interaction between them, the electrostatic interaction
between neighboring atoms (which is much stronger than any magnetic interaction) depends on
the relative orientations of their spins. This, then, is the origin of the exchange interaction, which
for two atoms labelled j and k can be written in the form

Hjk = −2 J S j · Sk. (7.246)

Here, the so-called exchange energy, J, is a parameter (with the dimensions of energy) that depends
on the atomic separation, and which measures the strength of the exchange interaction. If J > 0
then the interaction energy is lower when spins on neighboring atoms are parallel, rather than an-
tiparallel. This state of affairs favors parallel spin alignment of neighboring atoms. In other words,
it tends to produce ferromagnetism. Note that, because the exchange interaction depends on the
degree to which the electron orbitals of the two atoms can overlap, so as to occupy approximately
the same region of space, the exchange energy, J, falls off very rapidly with increasing atomic
separation. Hence, a given atom only interacts appreciably with its n (say) nearest neighbors.
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To simplify the interaction problem, we shall replace the previous expression by the simpler
functional form

Hjk = −2 J S j z S k z. (7.247)

This approximate expression, which is known as the Ising model, leaves the essential physical
situation intact, while avoiding the complications introduced by vector quantities. The Ising model
is equivalent to assuming that all atomic magnetic moments are either directed parallel or anti-
parallel to the z-axis.

The Hamiltonian, H′, representing the interaction energy between atoms is written in the form

H′ =
1
2

2 J
∑
j=1,N

∑
k=1,n

S j z S k z

 , (7.248)

where J is the exchange energy for neighboring atoms, and the index k refers to the nearest neigh-
bor shell surrounding the atom j. The factor 1/2 is introduced because the interaction between the
same two atoms is counted twice in performing the sums.

The total Hamiltonian of the atoms is

H = H0 + H′. (7.249)

The task in hand is to calculate the mean magnetic moment of the system parallel to the applied
magnetic field, Mz, as a function of its absolute temperature, T , and the applied field, Bz. The
presence of the interatomic interactions makes this task difficult, despite the extreme simplicity of
expression (7.248). Although the problem has been solved exactly for a linear one-dimensional ar-
ray of atoms, and for two-dimensional array of atoms when Bz = 0, the three-dimensional problem
is so complex that no exact solution has ever been found. Thus, in order to make further progress,
we must introduce an additional approximation.

Let us focus attention on a particular atom, j, which we shall refer to as the “central atom.”
The interactions of this atom are described by the Hamiltonian

Hj = −g µB Bz S j z − 2 J S j z

∑
k=1,n

S k z. (7.250)

The final term represents the interaction of the central atom with its nearest neighbors. As a
simplifying approximation, we shall replace the sum over these neighbors by its mean value. In
other words, we shall write

2 J
∑
k=1,n

S k z � 2 J
∑
k=1,n

S k z = g µB Bm, (7.251)

where Bm is a parameter with the dimensions of magnetic field-strength, which is called the molec-
ular field, and is to be determined in such a way that it leads to a self-consistent solution of the
statistical problem. In terms of this parameter, expression (7.250) becomes

Hj = −g µB (Bz + Bm) S j z. (7.252)
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Thus, the influence of neighboring atoms has been replaced by an effective magnetic field, Bm.
The problem presented by expression (7.252) reduces to the elementary one of a single atom, of
normalized angular momentum, S , and g-factor, g, placed in an external z-directed magnetic field,
Bz + Bm. Recall, however, that we already solved this problem in Section 7.9.

According to the analysis of Section 7.9,

S j z = S BS (η), (7.253)

where
η = β g µB (Bz + Bm), (7.254)

and β = 1/(k T ). Here, BS (η) is the Brillouin function, for normalized atomic angular momentum
S , that was introduced in Equation (7.113).

Expression (7.253) involves the unknown parameter Bm. To determine the value of this pa-
rameter in a self-consistent manner, we note that there is nothing that distinguishes the central
jth atom from any of its neighboring atoms. Hence, any one of these atoms might equally well
have been considered the central atom. Thus, the corresponding mean value S z is also given by
Equation (7.253). It follows from Equations (7.251) and (7.253) that

2 J n S BS (η) = g µB Bm. (7.255)

The previous two equations can be combined to give

BS (η) =
k T

2 J n S

(
η − g µB Bz

k T

)
, (7.256)

which determines η (and, hence, Bm). Once η has been found, the mean magnetic moment of the
system follows from Equation (7.253):

Mz = g µB

∑
j

S j z = N g µB S BS (η). (7.257)

The solution of Equation (7.256) can be found by drawing, on the same graph, both the Bril-
louin function y = BS (η) and the straight-line

y =
k T

2 J n S

(
η − g µB Bz

k T

)
, (7.258)

and then finding the point of intersection of the two curves. See Figure 7.9.
Consider the case where the external field, Bz, is zero. Equation (7.256) simplifies to give

BS (η) =
(

k T
2 J n S

)
η. (7.259)

Given that BS (0) = 0, it follows that η = 0 is a solution of the previous equation. This solution
is characterized by zero magnetization: that is, Mz = 0. However, there is also the possibility of
another solution with η � 0, and, hence, Mz � 0. (See Figure 7.9.) The presence of such sponta-
neous magnetization in the absence of an external magnetic field is, of course, the distinguishing
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Figure 7.9: Graphical solution of Equation (7.256) that determines the molecular field, Bm, corre-
sponding to the intersection of the curves at η = η′. The dash-dotted straight-line corresponds to
the case where the external magnetic field, Bz, is zero.

feature of ferromagnetic materials. In order to have a solution with η � 0, it is necessary that the
curves shown in Figure 7.9 intersect at a point η � 0 when both curves pass through the origin. The
condition for the existence of an intersection with η � 0 is that the slope of the curve y = BJ(η) at
η = 0 should exceed that of the straight-line y = (k T/2 J n S ) η. In other words,(

dBS

dη

)
η=0

>
k T

2 J n S
. (7.260)

However, when η � 1, the Brillouin function takes the simple form specified in Equation (7.119):

BS (η) � 1
3

(S + 1) η. (7.261)

Hence, Equation (7.260) becomes

1
3

(S + 1) >
k T

2 J n S
, (7.262)

or
T < Tc, (7.263)



166 7.17. Ferromagnetism

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
z
(T

)/
M

z
(0
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T/Tc

Figure 7.10: Spontaneous magnetization of a ferromagnet as a function of the temperature in
the presence of zero external magnetic field. The solid curve is the prediction of molecular field
theory for J = 1/2 and g = 2. The points are experimental data for nickel [from R. Kaul, and
E.D. Thompson, J. appl. Phys. 40, 1383 (1969)].

where

k Tc =
2 J n S (S + 1)

3
. (7.264)

Thus, we deduce that spontaneous magnetization of a ferromagnetic material is only possible below
a certain critical temperature, Tc, known as the Curie temperature. The magnetized state, in which
all atomic magnetic moments can exploit their mutual exchange energy by being preferentially
aligned parallel to one another, has a lower magnetic energy than the unmagnetized state in which
η = 0. Thus, at temperatures below the Curie temperature, the magnetized state is stable, whereas
the unmagnetized state is unstable.

As the temperature, T , is decreased below the Curie temperature, Tc, the slope of the dash-
dotted straight-line in Figure 7.9 decreases so that it intersects the curve y = BS (η) at increasingly
large values of η. As T → 0, the intersection occurs at η → ∞. Because, BS (∞) = 1 [see Equa-
tion (7.117)], it follows from Equation (7.257) that Mz → N g µB S as T → 0. This corresponds to
a state in which all atomic magnetic moments are aligned completely parallel to one another. For
temperatures, T , less than the Curie temperature, Tc, we can use Equations (7.257) and (7.259) to
compute Mz(T ) in the absence of an external magnetic field. We then obtain a magnetization curve
of the general form shown in Figure 7.10.

Let us, finally, investigate the magnetic susceptibility of a ferromagnetic substance, in the pres-
ence of a small external magnetic field, at temperatures above the Curie temperature. In this case,
the crossing point of the two curves in Figure 7.9 lies at small η. Hence, we can use the approxi-
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mation (7.261) to write Equation (7.256) in the form

1
3

(S + 1) η =
k T

2 J n S

(
η − g µB Bz

k T

)
. (7.265)

Solving the previous equation for η gives

η =
g µB Bz

k (T − Tc)
, (7.266)

where use has been made of Equation (7.264). Now, making use of the approximation (7.261),
Equation (7.257) reduces to

Mz =
1
3

N g µB S (S + 1) η. (7.267)

The previous two equations can be combined to give

χ � µ0 Mz

V Bz
=

N µ0 µ
2
B , g

2 S (S + 1)
3 V k (T − Tc)

, (7.268)

where χ is the dimensionless magnetic susceptibility of the substance, and V is its volume. This
result is known as the Curie-Weiss law. It differs from Curie’s law, χ ∝ 1/T (see Section 7.3),
because of the presence of the parameter Tc in the denominator. According to the Curie-Weiss law,
χ becomes infinite when T → Tc: that is, at the Curie temperature, when the substance becomes
ferromagnetic.

Experimentally, the Curie-Weiss law is well obeyed at temperatures significantly above the
Curie temperature. See Figure 7.11. It is, however, not true that the temperature, Tc, that occurs
in this law is exactly the same as the Curie temperature at which the substance becomes ferromag-
netic.

The so-called Weiss molecular-field model (which was first put forward by Pierre Weiss in
1907) that we have just described is remarkably successful at explaining the major features of
ferromagnetism. Nevertheless, there are some serious discrepancies between the predictions of this
simple model and experimental data. In particular, the magnetic contribution to the specific heat is
observed to have a very sharp discontinuity at the Curie temperature (in the absence of an external
field), whereas the molecular field model predicts a much less abrupt change. Needless to say, more
refined models have been devised that considerably improve the agreement with experimental data.

Exercises

7.1 Demonstrate that the geometric series

S n =
∑

k=0,n−1

a r k

can be summed to give

S n = a
(
1 − r n

1 − r

)
.
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Figure 7.11: Plot of ρ/χ (where ρ is the mass density) versus temperature for gadolinium above
its Curie temperature. The curve is (apart from some slight departures at high temperatures) a
straight-line, in accordance with the Curie-Weiss law. The intercept of the line with the temperature
axis gives Tc = 310 K. The metal becomes ferromagnetic below 289 K. Data from S. Arajs, and
R.V. Colvin, J. appl. Phys. 32, 336S (1961).

Here, r � 1. Hence, deduce that

S∞ =
a

1 − r
,

assuming that 0 < r < 1.

7.2 Let

I(n) =
∫ ∞

0
x n e−α x 2

dx.

Demonstrate that

I(n) = −∂I(n − 2)
∂α

.

Furthermore, show that

I(0) =
√
π

2α 1/2

(see Exercise 2.2), and

I(1) =
1

2α
.
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Hence, deduce that

I(2) =
√
π

4α 3/2 ,

I(3) =
1

2α 2 ,

I(4) =
3
√
π

8α 5/2 ,

I(5) =
1
α 3 .

7.3 A sample of mineral oil is placed in an external magnetic field B. Each proton has spin
1/2, and a magnetic moment µ. It can, therefore, have two possible energies, ε = ∓ µ B,
corresponding to the two possible orientations of its spin. An applied radio-frequency field
can induce transitions between these two energy levels if its frequency ν satisfies the Bohr
condition h ν = 2 µ B. The power absorbed from this radiation field is then proportional to
the difference in the number of nuclei in these two energy levels. Assume that the protons
in the mineral oil are in thermal equilibrium at a temperature T that is sufficiently high that
µ B� k T . How does the absorbed power depend on the temperature, T , of the sample?

7.4 Consider an assembly of N0 weakly-interacting magnetic atoms per unit volume, held at
temperature T . According to classical physics, each atomic magnetic moment, µ, can be
orientated so as to make an arbitrary angle θ with respect to the z-direction (say). In the
absence of an external magnetic field, the probability that the angle lies between θ and
θ + dθ is simply proportional to the solid angle, 2π sin θ dθ, enclosed in this range. In the
presence of a magnetic field of strength Bz, directed parallel to the z-axis, this probability is
further proportional to the Boltzmann factor, exp(−β E), where β = 1/(k T ), and E = −µ ·B
is the magnetic energy of the atom.

(a) Show that the classical mean magnetization is

Mz = N0 µL(x),

where x = µ Bz/(k T ), and

L(x) = coth x − 1
x

is known as the Langevin function.
(b) Demonstrate that the corresponding quantum mechanical expression for a collection

of atoms with overall angular momentum J � is

Mz = N0 µBJ(x),

where x = µ Bz/(k T ), µ = g J µB, and

BJ(x) =
[(

2 J + 1
2 J

)
coth

(
2 J + 1

2 J
x
)
− 1

2 J
coth

( x
2 J

)]
is the Brillouin function.
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(c) Show, finally, that the previous two expressions are identical in the classical limit
J 
 1. (This is the classical limit because the spacing between adjacent magnetic
energy levels, Em = µ Bz m/J, where m is an integer lying between −J and +J, is
∆Em = µ Bz/J, which tends to zero as J → ∞.)

7.5 Consider a spin-1/2 (i.e., J = 1/2 and g = 2) paramagnetic substance containing N non-
interacting atoms.

(a) Show that the overall magnetic partition function, Z, is such that

ln Z = N ln
[
2 cosh

(
µB Bz

k T

)]
,

where µB is the Bohr magneton, Bz the magnetic field-strength, and T the absolute
temperature.

(b) Demonstrate that the mean magnetic energy of the system is

E = −N ε tanh
(
ε

k T

)
,

where ε = µB Bz. Show that E → −N ε as T → 0, and E → 0 as T →∞. Plot E/(N ε)
versus k T/ε.

(c) Demonstrate that the magnetic contribution to the specific heat of the substance is

C = N k
(
ε

k T

)2
sech2

(
ε

k T

)
,

and that

C � N k
(

2 ε
k T

)2
exp
(
− 2 ε

k T

)

when k T � ε, whereas

C � N k
(

2 ε
k T

)2
when k T 
 ε. Plot C/(N k) versus k T/ε. The sharp peak that is evident when k T ∼ ε
is known as the Schottky anomaly.

(d) Show that the magnetic contribution to the entropy of the substance is

S = k N
{
ln
[
2 cosh

(
ε

k T

)]
−
(
ε

k T

)
tanh

(
ε

k T

)}
,

and demonsrate that S → 0 as T → 0 and S → N k ln 2 as T → ∞. Plot S/(N k)
versus k T/ε.
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7.6 The nuclei of atoms in a certain crystalline solid have spin one. According to quantum
theory, each nucleus can therefore be in any one of three quantum states labeled by the
quantum number m, where m = 1, 0, or −1. This quantum number measures the projection
of the nuclear spin along a crystal axis of the solid. Because the electric charge distribution
in the nucleus is not spherically symmetric, but ellipsoidal, the energy of a nucleus depends
on its spin orientation with respect to the internal electric field existing at its location. Thus
a nucleus has the same energy E = ε in the state m = 1 and the state m = −1, compared
with energy E = 0 in the state m = 0.

(a) Find an expression, as a function of absolute temperature, T , of the nuclear contribu-
tion to the molar internal energy of the solid.

(b) Find an expression, as a function of T , of the nuclear contribution to the molar entropy
of the solid.

(c) By directly counting the total number of accessible states, calculate the nuclear con-
tribution to the molar entropy of the solid at very low temperatures. Calculate it also
at high temperatures. Show that the expression in part (b) reduces properly to these
values as T → 0 and T → ∞.

(d) Make a qualitative graph showing the temperature dependence of the nuclear contri-
bution to the molar heat capacity of the solid. Calculate the temperature dependence
explicitly. What is the temperature dependence for large values of T?

7.7 A dilute solution of a macromolecule (large molecules of biological interest) at temperature
T is placed in an ultracentrifuge rotating with angular velocity ω. The centripetal accelera-
tion ω 2 r acting on a particle of mass m may then be replaced by an equivalent centrifugal
force mω 2 r in the rotating frame of reference.

(a) Find how the relative density, ρ(r), of molecules varies with their radial distance, r,
from the axis of rotation.

(b) Show qualitatively how the molecular weight of the macromolecules can be deter-
mined if the density ratio ρ1/ρ2 at the radii r1 and r2 is measured by optical means.

7.8 Consider a homogeneous mixture of inert monatomic ideal gases at absolute temperature
T in a container of volume V . Let there be ν1 moles of gas 1, ν2 moles of gas 2, . . . , and νk

moles of gas k.

(a) By considering the classical partition function of this system, derive its equation of
state. In other words, find an expression for its total mean pressure, p.

(b) How is this total pressure, p, of the gas related to the so-called partial pressure, pi, that
the ith gas would produce if it alone occupied the entire volume at this temperature?

7.9 Monatomic molecules adsorbed on a surface are free to move on this surface, and can be
treated as a classical ideal two-dimensional gas. At absolute temperature T , what is the
heat capacity per mole of molecules thus adsorbed on a surface of fixed size?
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7.10 Consider a system in thermal equilibrium with a heat bath held at absolute temperature T .
The probability of observing the system in some state r of energy Er is is given by the
canonical probability distribution:

Pr =
exp(−β Er)

Z
,

where β = 1/(k T ), and
Z =

∑
r

exp(−β Er)

is the partition function.

(a) Demonstrate that the entropy can be written

S = −k
∑

r

Pr ln Pr.

(b) Demonstrate that the mean Helmholtz free energy is related to the partition function
according to

Z = exp
(
−β F

)
.

7.11 Show that the logarithm of the classical partition function of an ideal gas consisting of N
identical molecules of mass m, held in a container of volume V , and in thermal equilibrium
with a heat bath held at absolute temperature T , is

ln Z = N
[
ln
(V
N

)
− 3

2
ln β + σ

]
,

where

σ =
3
2

ln
(
2πm
h 2

0

)
+ 1.

Here, β = k T , and h0 parameterizes how finely classical phase-space is partitioned. Demon-
strate that:

(a)

E =
3
2
νR T.

(b)

H =
5
2
νR T.

(c)

F = −νR T
[
ln
(V
N

)
− 3

2
ln β + σ

]
.

(d)

G = −νR T
[
ln
(V
N

)
− 3

2
ln β + σ − 1

]
.
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(e)
∆∗E

E
=

(
2

3 N

)1/2
.

7.12 Use the Debye approximation to calculate the contribution of lattice vibrations to the ther-
modynamic functions of a solid.

(a) To be more specific, show that

ln Z = −9
8

N
θD

T
− 3 N ln

(
1 − e−θD/T

)
+ N D

(
θD

T

)
,

E =
9
8

N k θD + 3 N k T D
(
θD

T

)
,

S = N k
[
−3 ln

(
1 − e−θD/T

)
+ 4 D

(
θD

T

)]
.

Here, N is the number of atoms in the solid, T the absolute temperature, Z the partition
function, E the mean energy, S the entropy, D(y) ≡ (3/y 3)

∫ y
0 x 3 dx/(e x − 1), θD =

�ωD/k, and ωD is the Debye frequency.

(b) Show that in the limit T � θD,

ln Z
N
� −9

8

(
θD

T

)
+
π 4

5

(
T
θD

)3
,

E
N k T

� 9
8

(
θD

T

)
+

3 π 4

5

(
T
θD

)3
,

S
N k
� 4π 4

5

(
T
θD

)3
.

[Hint:
∫ y

0
x 3 dx/(e x − 1) = π 4/15.]

(c) Show that in the limit T 
 θD,

ln Z
N
� −9

8

(
θD

T

)
− 3 ln

(
θD

T

)
+ 1,

E
N k T

� 9
8

(
θD

T

)
+ 3,

S
N k
� −3 ln

(
θD

T

)
+ 4.

(d) Further, show that

p̄ =
γ E
V
,

where p̄ is the mean pressure, V the volume, and

γ = −d ln θD

d ln V
=

1
3
.
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7.13 For the quantized lattice waves (phonons) in the Debye theory of specific heats, the fre-
quency, ω, of a propagating wave is related to its wavevector, k, by the dispersion relation
ω = cs k, where cs is the velocity of sound. On the other hand, in a ferromagnetic solid at
low temperatures, quantized waves of magnetization (spin waves) have their frequencies,
ω, related to their wavevectors, k, according to the dispersion relation ω = A k 2, where A
is a constant. Show that, at low temperatures, the contribution of spin waves to the heat
capacity of the ferromagnet varies as T 3/2.

7.14 Verify directly that

v 2 =
3 k T

m
for a Maxwellian velocity distribution. Here, m is the molecular mass, and T the absolute
temperature.

7.15 Show that the mean speed of molecules effusing through a small hole in a gas-filled con-
tainer is 3π/8 = 1.18 times larger than the mean speed of the molecules within the con-
tainer.

7.16 A vessel is closed off by a porous partition through which gases can pass by effusion and
then be pumped off to some collecting chamber. The vessel is filled with dilute gas contain-
ing two types of molecule which differ because they contain different atomic isotopes, and
thus have the different masses, m1 and m2. The concentrations of these molecules are c1 and
c2, respectively, and are maintained constant within the vessel by constantly replenishing
the supply of gas in it.

(a) Let c′1 and c′2 be the concentrations of the two types of molecule in the collecting
chamber. What is the ratio c′1/c

′
2?

(b) By using the gas UF6, one can attempt to separate U235 from U237, the first of these
isotopes being the one that undergoes nuclear fission reactions. The molecules in the
vessel are then U235F 19

6 and U238F 19
6 . The concentrations of these molecules in the

vessel corresponds to the natural abundances of the two isotopes: c238 = 99.3 percent,
and c235 = 0.7 percent. What is the ratio, c′235/c

′
238, of the two isotopic concentra-

tions in the gas collected after effusion, compared to the original concentration ratio,
c235/c238?

7.17 Show that the mean force per unit area exerted on the walls of a container enclosing a
Maxwellian gas is

p̄ =
∫
vz>0

2 m vzΦ(v) d 3v =
∫
vz>0

2 m v 2
z f (v) d 3v,

where m is the molecular mass, and the outward normal to the wall element is directed in
the z-direction. Hence, deduce that

p̄ =
1
3

m n v 2 = n k T,
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where n is the molecular concentration, and T the absolute gas temperature.

7.18 Consider a spin-1/2 ferromagnetic material consisting of N identical atoms with S = 1/2
and g = 2. Let each atom have n nearest neighbors.

(a) Show that
B1/2(η) = tanh

(
η

2

)
,

where BS (η) is a Brillouin function.

(b) Use the molecular field approximation to demonstrate that

m = tanh
[
β

βc
(m + βc µB Bz)

]
,

where m = Mz/(N µB), βc = 1/(k Tc), and k Tc = J n/2.

(c) Show that for T slightly less than Tc, and in the absence of an external magnetic field,

m � √3
(
1 − T

Tc

)1/2
,

(d) Demonstrate that exactly at the critical temperature,

m �
(
3 µB Bz

k Tc

)1/3
.

(e) Finally, show that for T slightly larger than Tc,

m � µB Bz

k (T − Tc)
.

[Hint: At small arguments tanh(z) � z − z 3/3.]
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8 Quantum Statistics

8.1 Introduction

Previously, we investigated the statistical thermodynamics of ideal gases using a rather ad hoc com-
bination of classical and quantum mechanics. (See, for example, Sections 7.7 and 7.8.) In fact,
we employed classical mechanics to deal with the translational degrees of freedom of the con-
stituent particles, and quantum mechanics to deal with the non-translational degrees of freedom.
Let us now discuss ideal gases from a purely quantum-mechanical standpoint. It turns out that
this approach is necessary in order to treat either very low-temperature or very high-density gases.
Furthermore, it also allows us to investigate completely non-classical “gases,” such as photons, or
the conduction electrons in a metal.

8.2 Symmetry Requirements in Quantum Mechanics

Consider a gas consisting of N identical, non-interacting, structureless particles, enclosed within
a container of volume V . Let Qi denote collectively all the coordinates of the ith particle. In
other words, the three Cartesian coordinates that determine its spatial position, as well as the spin
coordinate that determines its internal state. Let si be an index labeling the possible quantum states
of the ith particle. It follows that each possible value of si corresponds to a specification of the three
momentum components of the particle, as well as the direction of its spin orientation. According
to quantum mechanics, the overall state of the system when the ith particle is in state si, et cetera,
is completely determined by the complex wavefunction

Ψs1,··· ,sN (Q1,Q2, · · · ,QN). (8.1)

In particular, the probability of an observation of the system finding the ith particle with coordinates
in the range Qi to Qi + dQi, et cetera, is simply

|Ψs1,··· ,sN (Q1,Q2, · · · ,QN)| 2 dQ1 dQ2 · · · dQN . (8.2)

One of the fundamental postulates of quantum mechanics is the essential indistinguishability
of particles of the same species. What this means, in practice, is that we cannot label particles of
the same species. In other words, a proton is just a proton—we cannot meaningfully talk of proton
number 1, or proton number 2, et cetera. Note that no such constraint arises in classical mechanics.
Thus, in classical mechanics, particles of the same species are regarded as being distinguishable,
and can, therefore, be labelled. Of course, the quantum-mechanical approach is the correct one.

Suppose that we interchange the ith and jth particles: that is,

Qi ↔ Qj, (8.3)

si ↔ s j. (8.4)
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If the particles are truly indistinguishable then nothing has changed. We have a particle in quantum
state si and a particle in quantum state s j both before and after the particles are swapped. Thus, the
probability of observing the system in a given state also cannot have changed: that is,

|Ψ (· · ·Qi · · ·Qj · · · )| 2 = |Ψ (· · ·Qj · · ·Qi · · · )| 2. (8.5)

Here, we have omitted the subscripts s1, · · · , sN for the sake of clarity. Equation (8.5) implies that

Ψ (· · ·Qi · · ·Qj · · · ) = AΨ (· · ·Qj · · ·Qi · · · ), (8.6)

where A is a complex constant of modulus unity: that is, |A| 2 = 1.
Suppose that we interchange the ith and jth particles a second time. Swapping the ith and

jth particles twice leaves the system completely unchanged. In other words, it is equivalent to
doing nothing at all to the system. Thus, the wavefunctions before and after this process must be
identical. It follows from Equation (8.6) that

A2 = 1. (8.7)

Of course, the only solutions to the previous equation are A = ±1.
We conclude, from the previous discussion, that the wavefunction, Ψ , is either completely

symmetric under the interchange of identical particles, or it is completely anti-symmetric. In other
words, either

Ψ (· · ·Qi · · ·Qj · · · ) = +Ψ (· · ·Qj · · ·Qi · · · ), (8.8)

or
Ψ (· · ·Qi · · ·Qj · · · ) = −Ψ (· · ·Qj · · ·Qi · · · ). (8.9)

In 1940, the Nobel prize-winning physicist Wolfgang Pauli demonstrated, via arguments in-
volving relativistic invariance, that the wavefunction associated with a collection of identical integer-
spin (i.e., spin 0, 1, 2, etc.) particles satisfies Equation (8.8), whereas the wavefunction associated
with a collection of identical half-integer-spin (i.e., spin 1/2, 3/2, 5/2, etc.) particles satisfies Equa-
tion (8.9). The former type of particles are known as bosons [after the Indian physicist S.N. Bose,
who first put forward Equation (8.8) on empirical grounds]. The latter type of particles are called
fermions (after the Italian physicist Enrico Fermi, who first studied the properties of fermion gases).
Common examples of bosons are photons and He4 atoms. Common examples of fermions are pro-
tons, neutrons, and electrons.

Consider a gas made up of identical bosons. Equation (8.8) implies that the interchange of any
two particles does not lead to a new state of the system. Bosons must, therefore, be considered as
genuinely indistinguishable when enumerating the different possible states of the gas. Note that
Equation (8.8) imposes no restriction on how many particles can occupy a given single-particle
quantum state, s.

Consider a gas made up of identical fermions. Equation (8.9) implies that the interchange of
any two particles does not lead to a new physical state of the system (because |Ψ | 2 is invariant).
Hence, fermions must also be considered genuinely indistinguishable when enumerating the dif-
ferent possible states of the gas. Consider the special case where particles i and j lie in the same
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quantum state. In this case, the act of swapping the two particles is equivalent to leaving the system
unchanged, so

Ψ (· · ·Qi · · ·Qj · · · ) = Ψ (· · ·Qj · · ·Qi · · · ). (8.10)

However, Equation (8.9) is also applicable, because the two particles are fermions. The only way
in which Equations (8.9) and (8.10) can be reconciled is if

Ψ = 0 (8.11)

wherever particles i and j lie in the same quantum state. This is another way of saying that it is
impossible for any two particles in a gas of identical fermions to lie in the same single-particle
quantum state. This proposition is known as the Pauli exclusion principle, because it was first
proposed by Wolfgang Pauli in 1924 on empirical grounds.

Consider, for the sake of comparison, a gas made up of identical classical particles. In this case,
the particles must be considered distinguishable when enumerating the different possible states of
the gas. Furthermore, there are no constraints on how many particles can occupy a given quantum
state.

According to the previous discussion, there are three different sets of rules that can be used
to enumerate the states of a gas made up of identical particles. For a boson gas, the particles
must be treated as being indistinguishable, and there is no limit to how many particles can occupy
a given quantum state. This set of rules is called Bose-Einstein statistics, after S.N. Bose and
A. Einstein, who first developed them. For a fermion gas, the particles must be treated as being
indistinguishable, and there can never be more than one particle in any given quantum state. This
set of rules is called Fermi-Dirac statistics, after E. Fermi and P.A.M. Dirac, who first developed
them. Finally, for a classical gas, the particles must be treated as being distinguishable, and there
is no limit to how many particles can occupy a given quantum state. This set of rules is called
Maxwell-Boltzmann statistics, after J.C. Maxwell and L. Boltzmann, who first developed them.

8.3 Illustrative Example

Consider a very simple gas made up of two identical particles. Suppose that each particle can be in
one of three possible quantum states, s = 1, 2, 3. Let us enumerate the possible states of the whole
gas according to Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics, respectively.

For the case of Maxwell-Boltzmann statistics, the two particles are considered to be distin-
guishable. Let us denote them A and B. Furthermore, any number of particles can occupy the same
quantum state. The possible different states of the gas are shown in Table 8.1. There are clearly
nine distinct states.

For the case of Bose-Einstein statistics, the two particles are considered to be indistinguishable.
Let us denote them both as A. Furthermore, any number of particles can occupy the same quantum
state. The possible different states of the gas are shown in Table 8.2. There are clearly six distinct
states.

Finally, for the case of Fermi-Dirac statistics, the two particles are considered to be indistin-
guishable. Let us again denote them both as A. Furthermore, no more than one particle can occupy
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1 2 3
AB · · · · · ·
· · · AB · · ·
· · · · · · AB
A B · · ·
B A · · ·
A · · · B
B · · · A
· · · A B
· · · B A

Table 8.1: Two particles distributed amongst three states according to Maxwell-Boltzmann statis-
tics.

1 2 3
AA · · · · · ·
· · · AA · · ·
· · · · · · AA
A A · · ·
A · · · A
· · · A A

Table 8.2: Two particles distributed amongst three states according to Bose-Einstein statistics.

a given quantum state. The possible different states of the gas are shown in Table 8.3. There are
clearly only three distinct states.

1 2 3
A A · · ·
A · · · A
· · · A A

Table 8.3: Two particles distributed amongst three states according to Fermi-Dirac statistics.

It follows, from the previous example, that Fermi-Dirac (FD) statistics are more restrictive (i.e.,
there are less possible states of the system) than Bose-Einstein (BE) statistics, which are, in turn,
more restrictive than Maxwell-Boltzmann (MB) statistics. Let

ξ =
probability that the two particles are found in the same state
probability that the two particles are found in different states

. (8.12)



Quantum Statistics 181

For the case under investigation,

ξMB = 1/2, (8.13)

ξBE = 1, (8.14)

ξFD = 0. (8.15)

We conclude that in Bose-Einstein statistics there is a greater relative tendency for particles to
cluster in the same state than in classical (i.e., Maxwell-Boltzmann) statistics. On the other hand,
in Fermi-Dirac statistics there is a lesser tendency for particles to cluster in the same state than in
classical statistics.

8.4 Formulation of Statistical Problem

Consider a gas consisting of N identical non-interacting particles occupying volume V , and in
thermal equilibrium at absolute temperature T . Let us label the possible quantum states of a single
particle by r (or s). Let the energy of a particle in state r be denoted εr. Let the number of particles
in state r be written nr. Finally, let us label the possible quantum states of the whole gas by R.

The particles are assumed to be non-interacting, so the total energy of the gas in state R, where
there are nr particles in quantum state r, et cetera, is simply

ER =
∑

r

nr εr, (8.16)

where the sum extends over all possible quantum states, r. Furthermore, because the total number
of particles in the gas is known to be N, we must have

N =
∑

r

nr. (8.17)

In order to calculate the thermodynamic properties of the gas (i.e., its internal energy or its
entropy), it is necessary to calculate its partition function,

Z =
∑

R

e−β ER =
∑

R

e−β (n1 ε1+n2 ε2+··· ). (8.18)

Here, the sum is over all possible states, R, of the whole gas. That is, over all the various possible
values of the numbers n1, n2, · · · .

Now, exp[−β (n1 ε1 + n2 ε2 + · · · )] is the relative probability of finding the gas in a particular
state in which there are n1 particles in state 1, n2 particles in state 2, et cetera. Thus, the mean
number of particles in quantum state s can be written

n̄s =

∑
R ns exp[−β (n1 ε1 + n2 ε2 + · · · )]∑

R exp[−β (n1 ε1 + n2 ε2 + · · · )] . (8.19)

A comparison of Equations (8.18) and (8.19) yields the result

n̄s = −1
β

∂ ln Z
∂εs

. (8.20)

Here, β ≡ 1/(k T ).
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8.5 Fermi-Dirac Statistics

Let us, first of all, consider Fermi-Dirac statistics. According to Equation (8.19), the average
number of particles in quantum state s can be written

n̄s =

∑
ns

ns e−β ns εs
∑(s)

n1 ,n2,··· e
−β (n1 ε1+n2 ε2+··· )∑

ns
e−β ns εs

∑(s)
n1 ,n2,··· e

−β (n1 ε1+n2 ε2+··· )
. (8.21)

Here, we have rearranged the order of summation, using the multiplicative properties of the ex-
ponential function. Note that the first sums in the numerator and denominator only involve ns,
whereas the last sums omit the particular state s from consideration (this is indicated by the super-
script s on the summation symbol). Of course, the sums in the previous expression range over all
values of the numbers n1, n2, · · · such that nr = 0 and 1 for each r, subject to the overall constraint
that ∑

r

nr = N. (8.22)

Let us introduce the function

Zs(N) =
(s)∑

n1,n2,···
e−β (n1 ε1+n2 ε2+··· ), (8.23)

which is defined as the partition function for N particles distributed over all quantum states, ex-
cluding state s, according to Fermi-Dirac statistics. By explicitly performing the sum over ns = 0
and 1, the expression (8.21) reduces to

n̄s =
0 + e−β εs Zs(N − 1)

Zs(N) + e−β εs Zs(N − 1)
, (8.24)

which yields

n̄s =
1

[Zs(N)/Zs(N − 1)] e β εs + 1
. (8.25)

In order to make further progress, we must somehow relate Zs(N − 1) to Zs(N). Suppose that
∆N � N. It follows that ln Zs(N − ∆N) can be Taylor expanded to give

ln Zs(N − ∆N) � ln Zs(N) − ∂ ln Zs

∂N
∆N = ln Zs(N) − αs ∆N, (8.26)

where
αs ≡ ∂ ln Zs

∂N
. (8.27)

As always, we Taylor expand the slowly-varying function ln Zs(N), rather than the rapidly-varying
function Zs(N), because the radius of convergence of the latter Taylor series is too small for the
series to be of any practical use. Equation (8.26) can be rearranged to give

Zs(N − ∆N) = Zs(N) e−αs ∆N . (8.28)
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Now, because Zs(N) is a sum over very many different quantum states, we would not expect
the logarithm of this function to be sensitive to which particular state, s, is excluded from consid-
eration. Let us, therefore, introduce the approximation that αs is independent of s, so that we can
write

αs � α (8.29)

for all s. It follows that the derivative (8.27) can be expressed approximately in terms of the
derivative of the full partition function Z(N) (in which the N particles are distributed over all
quantum states). In fact,

α � ∂ ln Z
∂N

. (8.30)

Making use of Equation (8.28), with ∆N = 1, plus the approximation (8.29), the expression
(8.25) reduces to

n̄s =
1

eα+β εs + 1
. (8.31)

This is called the Fermi-Dirac distribution. The parameter α is determined by the constraint that∑
r n̄r = N: that is, ∑

r

1
eα+β εr + 1

= N. (8.32)

Note that n̄s → 0 if εs becomes sufficiently large. On the other hand, because the denominator
in Equation (8.31) can never become less than unity, no matter how small εs becomes, it follows
that n̄s ≤ 1. Thus,

0 ≤ n̄s ≤ 1, (8.33)

in accordance with the Pauli exclusion principle.
Equations (8.20) and (8.30) can be integrated to give

ln Z = αN +
∑

r

ln
(
1 + e−α−β εr

)
, (8.34)

where use has been made of Equation (8.31).

8.6 Photon Statistics

Up to now, we have assumed that the number of particles, N, contained in a given system is a
fixed number. This is a reasonable assumption if the particles possess non-zero mass, because
we are not generally considering relativistic systems in this course (i.e., we are assuming that the
particle energies are much less than their rest-mass energies). However, this assumption breaks
down for the case of photons, which are zero-mass bosons. In fact, photons enclosed in a container
of volume V , maintained at temperature T , can readily be absorbed or emitted by the walls. Thus,
for the special case of a gas of photons, there is no requirement that limits the total number of
particles.
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It follows, from the previous discussion, that photons obey a simplified form of Bose-Einstein
statistics in which there is an unspecified total number of particles. This type of statistics is called
photon statistics.

Consider the expression (8.21). For the case of photons, the numbers n1, n2, · · · assume all
values nr = 0, 1, 2, · · · for each r, without any further restriction. It follows that the sums

∑(s)

in the numerator and denominator are identical and, therefore, cancel. Hence, Equation (8.21)
reduces to

n̄s =

∑
ns

ns e−β ns εs∑
ns

e−β ns εs
. (8.35)

However, the previous expression can be rewritten

n̄s = −1
β

∂

∂εs

ln∑
ns

e−β ns εs

 . (8.36)

Now, the sum on the right-hand side of the previous equation is an infinite geometric series, which
can easily be evaluated. In fact,∑

ns=0,∞
e−β ns εs = 1 + e−β εs + e−2 β εs + · · · = 1

1 − e−β εs
. (8.37)

(See Exercise 7.1.) Thus, Equation (8.36) gives

n̄s =
1
β

∂

∂εs
ln (1 − e−β εs) =

e−β εs

1 − e−β εs
, (8.38)

or
n̄s =

1
e β εs − 1

. (8.39)

This is known as the Planck distribution, after the German physicist Max Planck who first proposed
it in 1900 on purely empirical grounds.

Equation (8.20) can be integrated to give

ln Z = −
∑

r

ln
(
1 − e−β εr

)
, (8.40)

where use has been made of Equation (8.39).

8.7 Bose-Einstein Statistics

Let us now consider Bose-Einstein statistics. The particles in the system are assumed to be massive,
so the total number of particles, N, is a fixed number.

Consider the expression (8.21). For the case of massive bosons, the numbers n1, n2, · · · assume
all values nr = 0, 1, 2, · · · for each r, subject to the constraint that

∑
r nr = N. Performing explicitly

the sum over ns, this expression reduces to

n̄s =
0 + e−β εs Zs(N − 1) + 2 e−2 β εs Zs(N − 2) + · · ·

Zs(N) + e−β εs Zs(N − 1) + e−2 β εs Zs(N − 2) + · · · , (8.41)
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where Zs(N) is the partition function for N particles distributed over all quantum states, excluding
state s, according to Bose-Einstein statistics [cf., Equation (8.23)]. Using Equation (8.28), and the
approximation (8.29), the previous equation reduces to

n̄s =

∑
s ns e−ns (α+β εs)∑

s e−ns (α+β εs) . (8.42)

Note that this expression is identical to (8.35), except that β εs is replaced by α + β εs. Hence, an
analogous calculation to that outlined in the previous section yields

n̄s =
1

eα+β εs − 1
. (8.43)

This is called the Bose-Einstein distribution. Note that n̄s can become very large in this distribution.
The parameter α is again determined by the constraint on the total number of particles: that is,

∑
r

1
eα+β εr − 1

= N. (8.44)

Equations (8.20) and (8.30) can be integrated to give

ln Z = αN −
∑

r

ln
(
1 − e−α−β εr

)
, (8.45)

where use has been made of Equation (8.43).
Note that photon statistics correspond to the special case of Bose-Einstein statistics in which

the parameter α takes the value zero, and the constraint (8.44) does not apply.

8.8 Maxwell-Boltzmann Statistics

For the purpose of comparison, it is instructive to consider the purely classical case of Maxwell-
Boltzmann statistics. The partition function is written

Z =
∑

R

e−β (n1 ε1+n2 ε2+··· ), (8.46)

where the sum is over all distinct states R of the gas, and the particles are treated as distinguishable.
For given values of n1, n2, · · · there are

N!
n1! n2! · · · (8.47)

possible ways in which N distinguishable particles can be put into individual quantum states such
that there are n1 particles in state 1, n2 particles in state 2, et cetera. Each of these possible arrange-
ments corresponds to a distinct state for the whole gas. Hence, Equation (8.46) can be written

Z =
∑

n1,n2,···

N!
n1! n2! · · · e

−β (n1 ε1+n2 ε2+··· ), (8.48)
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where the sum is over all values of nr = 0, 1, 2, · · · for each r, subject to the constraint that∑
r

nr = N. (8.49)

Now, Equation (8.48) can be written

Z =
∑

n1,n2,···

N!
n1! n2! · · · (e

−β ε1)n1 (e−β ε2)n2 · · · , (8.50)

which, by virtue of Equation (8.49), is just the result of expanding a polynomial. In fact,

Z = (e−β ε1 + e−β ε2 + · · · )N , (8.51)

or

ln Z = N ln

∑
r

e−β εr

 . (8.52)

Note that the argument of the logarithm is simply the single-particle partition function
Equations (8.20) and (8.52) can be combined to give

n̄s = N
e−β εs∑
r e−β εr

. (8.53)

This is known as the Maxwell-Boltzmann distribution. It is, of course, just the result obtained by
applying the canonical distribution to a single particle. (See Chapter 7.) The previous expression
can also be written in the form

n̄s = e−α−β εr , (8.54)

where ∑
r

e−α−β εr = N. (8.55)

The Bose-Einstein, Maxwell-Boltzmann, and Fermi-Dirac distributions are illustrated in Fig-
ure 8.1.

8.9 Quantum Statistics in Classical Limit

The preceding analysis regarding the quantum statistics of ideal gases is summarized in the fol-
lowing statements. The mean number of particles occupying quantum state s is given by

n̄s =
1

eα+β εs ± 1
, (8.56)

where the upper sign corresponds to Fermi-Dirac statistics and the lower sign corresponds to Bose-
Einstein statistics. The parameter α is determined via∑

r

n̄r =
∑

r

1
eα+β εr ± 1

= N. (8.57)
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Figure 8.1: A comparison of the Bose-Einstein (solid curve), Maxwell-Boltzmann (dashed curve),
and Fermi-Dirac (dash-dotted curve) distributions.

Finally, the partition function of the gas is given by

ln Z = αN ±
∑

r

ln
(
1 ± e−α−β εr

)
. (8.58)

Let us investigate the magnitude of α in some important limiting cases. Consider, first of all,
the case of a gas at a given temperature when its concentration is made sufficiently low: that is,
when N is made sufficiently small. The relation (8.57) can only be satisfied if each term in the
sum over states is made sufficiently small; that is, if n̄r � 1 or α + β εr 
 1 for all states r. (See
Figure 8.1.)

Consider, next, the case of a gas made up of a fixed number of particles when its temperature is
made sufficiently large. That is, when β is made sufficiently small. In the sum in Equation (8.57),
the terms of appreciable magnitude are those for which α + β εr < 1. (See Figure 8.1.) Thus, it
follows that as β→ 0 an increasing number of terms with large values of εr contribute substantially
to this sum. In order to prevent the sum from exceeding N, the parameter α must become large
enough that each term is made sufficiently small: that is, it is again necessary that n̄r � 1 or
α + β εr 
 1 for all states r.

The previous discussion suggests that if the concentration of an ideal gas is made sufficiently
low, or the temperature is made sufficiently high, then α must become so large that

exp(α + β εr) 
 1 (8.59)

for all r. Equivalently, this means that the number of particles occupying each quantum state must
become so small that

n̄r � 1 (8.60)
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for all r. It is conventional to refer to the limit of sufficiently low concentration, or sufficiently high
temperature, in which Equations (8.59) and Equations (8.60) are satisfied, as the classical limit.

According to Equations (8.56) and (8.59), both the Fermi-Dirac and Bose-Einstein distributions
reduce to

n̄s = exp(−α − β εs) (8.61)

in the classical limit, whereas the constraint (8.57) yields∑
r

exp(−α − β εr) = N. (8.62)

The previous expressions can be combined to give

n̄s = N
e−β εs∑
r e−β εr

. (8.63)

It follows that in the classical limit of sufficiently low density, or sufficiently high temperature,
the quantum distribution functions, whether Fermi-Dirac or Bose-Einstein, reduce to the Maxwell-
Boltzmann distribution. It is easily demonstrated that the physical criterion for the validity of the
classical approximation is that the mean separation between particles should be much greater than
their mean de Broglie wavelengths. (See Exercise 8.21.)

Let us now consider the behavior of the partition function (8.58) in the classical limit. We can
expand the logarithm to give

ln Z = αN ±
∑

r

(
±e−α−β εr

)
= αN + N. (8.64)

However, according to Equation (8.62),

α = − ln N + ln

∑
r

e−β εr

 . (8.65)

It follows that

ln Z = −N ln N + N + N ln

∑
r

e−β εr

 . (8.66)

Note that this expression does not match the partition function ZMB computed in Equation (8.52)
from Maxwell-Boltzmann statistics, which gives

ln ZMB = N ln

∑
r

e−β εr

 . (8.67)

In fact,
ln Z � ln ZMB − ln N!, (8.68)

or
Z =

ZMB

N!
, (8.69)
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where use has been made of Stirling’s approximation (N! � N ln N − N), because N is large.
Here, the factor N! simply corresponds to the number of different permutations of the N particles:
permutations that are physically meaningless when the particles are identical. Recall, that we had
to introduce precisely this factor, in an ad hoc fashion, in Section 7.8, in order to avoid the non-
physical consequences of the Gibb’s paradox. Clearly, there is no Gibb’s paradox when an ideal
gas is treated properly via quantum mechanics.

A gas in the classical limit, where the typical de Broglie wavelength of the constituent particles
is much smaller than the typical inter-particle spacing, is said to be non-degenerate. In the opposite
limit, where the concentration and temperature are such that the typical de Broglie wavelength
becomes comparable with the typical inter-particle spacing, and the actual Fermi-Dirac or Bose-
Einstein distributions must be employed, the gas is said to be degenerate.

8.10 Quantum-Mechanical Treatment of Ideal Gas

Let us calculate the partition function of an ideal gas from quantum mechanics, making use of
Maxwell-Boltzmann statistics. Obviously, such a partition function is only applicable when the gas
is non-degenerate. According to Equations (8.67) and (8.69), we can write the partition function
in the form

Z =
ζ N

N!
, (8.70)

where N is the number of constituent molecules,

ζ =
∑

r

e−β εr (8.71)

is the partition function of an individual molecule, and the factor N! is necessary to take into
account the fact that the molecules are indistinguishable according to quantum theory.

Suppose that the gas is enclosed in a parallelepiped with sides of lengths Lx, Ly, and Lz. It
follows that the de Broglie wavenumbers of the constituent molecules are quantized such that

kx = nx
π

Lx
, (8.72)

ky = ny
π

Ly
, (8.73)

kz = nz
π

Lz
, (8.74)

where nx, ny, and nz are independent integers. (See Section C.10.) Thus, the allowed energy levels
of a single molecule are

εr =
�

2 (k 2
x + k 2

y + k 2
z )

2 m
, (8.75)

where m is the molecular mass. Hence, we deduce that

ζ =
∑

kx,ky,kz

exp
[
−β �

2

2 m
(k 2

x + k 2
y + k 2

z )
]
, (8.76)
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where the sum is over all possible values of kx, ky, kz. The previous expression can also be written

ζ =

∑
kx

e−(β � 2/2 m) k 2
x



∑

ky

e−(β � 2/2 m) k 2
y


∑

kz

e−(β � 2/2 m) k 2
z

 . (8.77)

Now, in the previous equation, the successive terms in the sum over kx (say) correspond to a
very small increment, ∆kx = 2π/Lx, in kx (in fact, the increment can be made arbitrarily small by
increasing Lx), and, therefore, differ very little from each other. Hence, it is an excellent approxi-
mation to replace the sums in Equation (8.77) by integrals. Given that 1 = ∆nx = (Lx/2π) dkx, we
can write

∑
kx

e−(β � 2/2 m) k 2
x �
∫ ∞

−∞
e−(β � 2/2 m) k 2

x

(Lx

2π
dkx

)
=

Lx

2π

(
2πm
β � 2

)1/2
=

Lx

2π �

(
2πm
β

)1/2
. (8.78)

(See Exercise 2.2.) Hence, Equation (8.77) becomes

ζ =
V

(2π �) 3

(
2πm
β

)3/2
= V

(
2πm
β h 2

) 3/2

, (8.79)

where V = Lx Ly Lz is the volume of the gas.
It follows from Equation (8.70) that

ln Z = N (ln ζ − ln N + 1), (8.80)

where use has been made of Stirling’s approximation. Thus, we obtain

ln Z = N
[
ln
(V
N

)
− 3

2
ln β +

3
2

ln
(
2πm
h 2

)
+ 1
]
, (8.81)

and

E = −∂ ln Z
∂β
=

3
2

N
β
=

3
2

N k T, (8.82)

and, finally,

S = k
(
ln Z + β E

)
= N k

[
ln
(V
N

)
+

3
2

ln T + σ0

]
, (8.83)

where

σ0 =
3
2

ln
(
2πm k

h 2

)
+

5
2
. (8.84)

These results are exactly the same as those obtained in Sections 7.7 and 7.8, using classical me-
chanics, except that the arbitrary parameter h0 is replaced by Planck’s constant, h = 6.61×10−34 J s.
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8.11 Derivation of van der Waals Equation of State

We shall now extend the analysis of the previous section to derive an approximate equation of state
for a non-ideal gas. Let us focus attention on a single molecule. It seems reasonable to suppose
that this molecule moves in an effective potential, Ue(r), due to all the other molecules in the gas
(which are assumed to remain unaffected by the presence of the molecule under consideration).
Under these circumstances, the partition function of the gas reduces to that of N independent
particles, each with a kinetic energy p 2/(2 m), and a potential energy Ue.

Proceeding classically (except that the molecules are treated as indistinguishable, and the arbi-
trary parameter h0 is replaced by Planck’s constant), we obtain

Z =
1

N!

[∫ ∫
e−β (p 2/2 m+Ue) d 3r d 3p

h 3

]N

. (8.85)

(See Sections 7.7 and 8.10.) Thus,

Z =
1

N!

∫ exp
(−β p 2

x

2 m

)
dpx

h

∫
exp
−β p 2

y

2 m

 dpy
h

∫
exp
(−β p 2

z

2 m

)
dpz

h

∫
e−βUe d 3r


N

, (8.86)

which yields

Z =
1

N!


(
2πm
β h 2

)3/2 ∫
e−βUe d 3r


N

. (8.87)

(See Exercise 2.2.)
The remaining integral extends over the volume, V , of the container. To make further progress,

we note that there are regions in which Ue → ∞ because of the strong repulsion between molecules
when they approach one another too closely. Thus, the integrand vanishes in these regions, which
are assumed to have a total volume Vx < V . In the remaining volume, V −Vx, where Ue is assumed
to vary relatively slowly with inter-molecular separation, we shall replace Ue by some effective
constant average value, Ue. Thus, the previous equation becomes

Z =
1

N!


(
2πm
h 2 β

)3/2
(V − Vx) e−βUe


N

. (8.88)

It remains to estimate the values of the parameters Ue and Vx. The total mean potential energy
of the molecules is N Ue. But, because there are (1/2) N (N − 1) � (1/2) N 2 pairs of molecules in
the gas, it follows that the total mean potential energy is also (1/2) N 2 ū, where u is the potential
energy of interaction between a given pair of molecules. Equating the different expressions for the
total mean potential energy of the gas, we obtain N Ue = (1/2) N 2 u, or

Ue =
1
2

N u. (8.89)

To estimate the mean potential energy, ū, between a pair of molecules, let us make the simplistic
assumption that the interaction potential takes the form

u(R) =
{ ∞ R < R0

−u0 (R0/R)s R > R0
, (8.90)
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where R is separation between the molecular centers, u0 > 0, and s > 0. Thus, the molecules
act as weakly-attracting hard spheres of radius (1/2) R0. The choice of exponent s = 6 is usually
the most appropriate. (See Exercise 8.8.) Concentrating attention on a particular molecule, and
making the crudest possible approximation, we shall say that another molecule is equally likely to
be anywhere in the container that is a distance R greater than R0 from the given molecule. Thus,
the probability of the distance lying between R and R + dR is (4πR 2 dR)/V , and

ū =
1
V

∫ ∞

0
u(R) 4πR 2 dR = −4π u0

V

∫ ∞

R0

(R0

R

)s
R 2 dR. (8.91)

Let us assume that s > 3: in other words, the potential u(R) falls off sufficiently rapidly for the
previous integral to converge properly. Thus, Equation (8.89) becomes

Ue =
1
2

N u = −a′
N
V
, (8.92)

where

a′ =
2π
3

R 3
0

(
3

s − 3

)
u0. (8.93)

By Equation (8.90), the distance of closest approach between molecules is R0. Thus, in each
encounter between a pair of molecules, there is a volume excluded to one molecule, by virtue of the
presence of the other molecule, that is equal to the volume of a sphere of radius R0. Because there
are (1/2) N (N−1) � (1/2) N 2 pairs of molecules, the total excluded volume is (1/2) N 2 (4/3) πR 3

0 .
But, for the sake of consistency, this volume must be equal to N Vx, because Vx was understood to
be the excluded volume per molecule. Thus, it follows that

Vx = b′ N, (8.94)

where

b′ =
2π
3

R 3
0 = 4

[
4π
3

(R0

2

)3]
(8.95)

is four times the volume of a hard-sphere molecule.
This completes our crude evaluation of the partition function. The equation of state of the gas

is given by

p̄ =
1
β

∂ ln Z
∂V

=
1
β

∂

∂V

[
N ln(V − Vx) − N βUe

]
. (8.96)

Making use of Equations (8.92) and (8.94), we obtain

p̄ =
k T N

V − b′ N
− a′

N 2

V 2 , (8.97)

or (
p̄ + a′

N 2

V 2

) (V
N
− b′
)
= k T. (8.98)
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Now,
N
V
=
νNA

V
=

NA

v
, (8.99)

where v = V/ν is the molar volume. Thus, our approximate equation of state becomes(
p̄ +

a
v 2

)
(v − b) = R T, (8.100)

where

a = N 2
A a′, (8.101)

b = NA b′. (8.102)

Of course, Equation (8.100) is identical to the well-known van der Waals equation of state. (See
Section 6.15.) Our analysis allows us to relate the constants, a and b, appearing in this equation of
state, to the inter-molecular potential.

8.12 Planck Radiation Law

Let us now consider the application of statistical thermodynamics to electromagnetic radiation.
According to Maxwell’s theory, an electromagnetic wave is a coupled self-sustaining oscillation of
electric and magnetic fields that propagates though a vacuum at the speed of light, c = 3×108 m s−1.
The electric component of the wave can be written

E = E0 exp[ i (k·r − ω t)], (8.103)

where E0 is a constant, k is the wavevector that determines the wavelength and direction of propa-
gation of the wave, and ω is the angular frequency. The dispersion relation

ω = k c (8.104)

ensures that the wave propagates at the speed of light. Note that this dispersion relation is very
similar to that of sound waves in solids. [See Equation (7.177).] Electromagnetic waves always
propagate in the direction perpendicular to the coupled electric and magnetic fields (i.e., electro-
magnetic waves are transverse waves). This means that k·E0 = 0. Thus, once k is specified, there
are only two possible independent directions for the electric field. These correspond to the two
independent polarizations of electromagnetic waves.

Consider an enclosure whose walls are maintained at fixed temperature T . What is the nature
of the steady-state electromagnetic radiation inside the enclosure? Suppose that the enclosure is a
parallelepiped with sides of lengths Lx, Ly, and Lz. Alternatively (and more conveniently), suppose
that the radiation field inside the enclosure is periodic in the x-, y-, and z-directions, with periodicity
lengths Lx, Ly, and Lz, respectively. As long as the smallest of these lengths, L, say, is much greater
than the longest wavelength of interest in the problem, λ = 2π/k, then these assumptions should
not significantly affect the nature of the radiation inside the enclosure. We find, just as in our earlier
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discussion of sound waves (see Section 7.14), that the periodicity constraints ensure that there are
only a discrete set of allowed wavevectors (i.e., a discrete set of allowed modes of oscillation of the
electromagnetic field inside the enclosure). Let ρ(k) d 3k be the number of allowed modes per unit
volume with wavevectors in the range k to k + dk. We know, by analogy with Equation (7.183),
that

ρ(k) d 3k =
d 3k
(2π)3 . (8.105)

The number of modes per unit volume for which the magnitude of the wavevector lies in the range
k to k+dk is just the density of modes, ρ(k), multiplied by the “volume” in k-space of the spherical
shell lying between radii k and k + dk. Thus,

ρk(k) dk =
4π k 2 dk

(2π)3 =
k 2

2π 2 dk. (8.106)

Finally, the number of modes per unit volume whose frequencies lie between ω and ω + dω is, by
Equation (8.104),

σ(ω) dω = 2 ρk(k)
dk
dω

dω = 2
ω 2

2π 2 c 3 dω. (8.107)

Here, the additional factor 2 is to take account of the two independent polarizations of the electro-
magnetic field for a given wavevector, k.

Let us consider the situation classically. By analogy with sound waves, we can treat each al-
lowable mode of oscillation of the electromagnetic field as an independent harmonic oscillator.
According to the equipartition theorem (see Section 7.10), each mode possesses a mean energy k T
in thermal equilibrium at temperature T . In fact, (1/2) k T resides with the oscillating electric field,
and another (1/2) k T with the oscillating magnetic field. Thus, the classical energy density of elec-
tromagnetic radiation (i.e., the energy per unit volume associated with modes whose frequencies
lie in the range ω to ω + dω) is

u(ω) dω = k T σ(ω) dω =
k T
π 2 c 3 ω

2 dω. (8.108)

This result is known as the Rayleigh-Jeans radiation law, after Lord Rayleigh and James Jeans
who first proposed it in the late nineteenth century.

According to Debye theory (see Section 7.14), the energy density of sound waves in a solid is
analogous to the Rayleigh-Jeans law, with one very important difference. In Debye theory, there
is a cut-off frequency (the Debye frequency) above which no modes exist. This cut-off comes
about because of the discrete nature of solids (i.e., because solids are made up of atoms instead of
being continuous). It is, of course, impossible to have sound waves whose wavelengths are much
less than the inter-atomic spacing. On the other hand, electromagnetic waves propagate through
a vacuum, which possesses no discrete structure. It follows that there is no cut-off frequency for
electromagnetic waves, and so the Rayleigh-Jeans law holds for all frequencies. This immediately
poses a severe problem. The total classical energy density of electromagnetic radiation is given by

U =
∫ ∞

0
u(ω) dω =

k T
π 2 c 3

∫ ∞

0
ω 2 dω. (8.109)
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This is an integral that obviously does not converge. Thus, according to classical physics, the total
energy density of electromagnetic radiation inside an enclosed cavity is infinite. This is clearly an
absurd result, and was recognized as such in the latter half of the nineteenth century. In fact, this
prediction is known as the ultra-violet catastrophe, because the Rayleigh-Jeans law usually starts
to diverge badly from experimental observations (by over-estimating the amount of radiation) in
the ultra-violet region of the spectrum.

So, how do we obtain a sensible answer? As usual, quantum mechanics comes to our rescue.
According to quantum mechanics, each allowable mode of oscillation of the electromagnetic field
corresponds to a photon state with energy and momentum

ε = �ω, (8.110)

p = � k, (8.111)

respectively. Incidentally, it follows from Equation (8.104) that

ε = p c, (8.112)

which implies that photons are massless particles that move at the speed of light. According to the
Planck distribution, (8.39), the mean number of photons occupying a photon state of frequency ω
is

nω(ω) =
1

e β �ω − 1
. (8.113)

Hence, the mean energy of such a state is given by

ε̄(ω) = �ω nω(ω) =
�ω

e β �ω − 1
. (8.114)

Note that low-frequency states (i.e., �ω� k T ) behave classically: that is,

ε̄ � k T. (8.115)

On the other hand, high-frequency states (i.e., �ω
 k T ) are completely “frozen out”: that is,

ε̄ � k T. (8.116)

The reason for this is simply that it is very difficult for a thermal fluctuation to create a photon with
an energy greatly in excess of k T , because k T is the characteristic energy associated with such
fluctuations.

According to the previous discussion, the true energy density of electromagnetic radiation in-
side an enclosed cavity is written

ū(ω) dω = ε̄(ω)σ(ω) dω, (8.117)

giving

u(ω) dω =
�

π 2 c 3

ω 3 dω
exp(β �ω) − 1

. (8.118)

This is famous result is known as the Planck radiation law. The Planck law approximates to the
classical Rayleigh-Jeans law for �ω � k T , peaks at about �ω � 3 k T (see Exercise 8.15), and
falls off exponentially for �ω
 k T . (See Figure 8.2.) The exponential fall off at high frequencies
ensures that the total energy density remains finite.
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Figure 8.2: The Planck radiation law. Here, ω0 = k T0/k and u0 = �ω
3
0 /(π

2 c 3), where T0 is an
arbitrary scale temperature. The dashed, solid, and dash-dotted curves show ū/u0 for T/T0 = 0.75,
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8.13 Black-Body Radiation

Suppose that we were to make a small hole in the wall of our enclosure, and observe the emitted
radiation. A small hole is the best approximation in physics to a black-body, which is defined as an
object that absorbs, and, therefore, emits, radiation perfectly at all wavelengths. What is the power
radiated by the hole? Well, the power density inside the enclosure can be written

u(ω) dω = �ω n(ω) dω, (8.119)

where n(ω) is the mean number of photons per unit volume whose frequencies lie in the range ω
to ω + dω. The radiation field inside the enclosure is isotropic (we are assuming that the hole is
sufficiently small that it does not distort the field). It follows that the mean number of photons
per unit volume whose frequencies lie in the specified range, and whose directions of propagation
make an angle in the range θ to θ + dθ with the normal to the hole, is

n(ω, θ) dω dθ =
1
2

n(ω) dω sin θ dθ, (8.120)

where sin θ is proportional to the solid angle in the specified range of directions, and∫ π

0
n(ω, θ) dω dθ = n(ω) dω. (8.121)

Photons travel at the velocity of light, so the power per unit area escaping from the hole in the
frequency range ω to ω + dω is

P(ω) dω =
∫ π/2

0
c cos θ �ω n(ω, θ) dω dθ, (8.122)
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where c cos θ is the component of the photon velocity in the direction of the hole. This gives

P(ω) dω = c u(ω) dω
1
2

∫ π/2

0
cos θ sin θ dθ =

c
4

u(ω) dω, (8.123)

so

P(ω) dω =
�

4π 2 c 2

ω 3 dω
exp(β �ω) − 1

(8.124)

is the power per unit area radiated by a black-body in the frequency range ω to ω + dω.
A black-body is very much an idealization. The power spectra of real radiating bodies can

deviate quite substantially from black-body spectra. Nevertheless, we can make some useful pre-
dictions using this model. The black-body power spectrum peaks when �ω � 3 k T . (See Exer-
cise 8.15.) This means that the peak radiation frequency scales linearly with the temperature of
the body. In other words, hot bodies tend to radiate at higher frequencies than cold bodies. This
result (in particular, the linear scaling) is known as Wien’s displacement law. It allows us to esti-
mate the surface temperatures of stars from their colors (surprisingly enough, stars are fairly good
black-bodies). Table 8.4 shows some stellar temperatures determined by this method (in fact, the
whole emission spectrum is fitted to a black-body spectrum). It can be seen that the apparent colors
(which correspond quite well to the colors of the peak radiation) scan the whole visible spectrum,
from red to blue, as the stellar surface temperatures gradually rise.

Name Constellation Spectral Type Surface Temp. (K) Color
Antares Scorpio M 3300 Very Red
Aldebaran Taurus K 3800 Reddish Yellow
Sun G 5770 Yellow
Procyon Canis Minor F 6570 Yellowish White
Sirius Canis Major A 9250 White
Rigel Orion B 11,200 Bluish White

Table 8.4: Physical properties of some well-known stars.

Probably the most famous black-body spectrum is cosmological in origin. Just after the “big
bang,” the universe was essentially a “fireball,” with the energy associated with radiation com-
pletely dominating that associated with matter. The early universe was also fairly well described
by equilibrium statistical thermodynamics, which means that the radiation had a black-body spec-
trum. As the universe expanded, the radiation was gradually Doppler shifted to ever larger wave-
lengths (in other words, the radiation did work against the expansion of the universe, and, thereby,
lost energy—see Exercise 8.13), but its spectrum remained invariant. Nowadays, this primordial
radiation is detectable as a faint microwave background that pervades the whole universe. The mi-
crowave background was discovered accidentally by Penzias and Wilson in 1961. Until recently,
it was difficult to measure the full spectrum with any degree of precision, because of strong mi-
crowave absorption and scattering by the Earth’s atmosphere. However, all of this changed when
the COBE satellite was launched in 1989. It took precisely nine minutes to measure the perfect
black-body spectrum reproduced in Figure 8.3. This data can be fitted to a black-body curve of
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Figure 8.3: Cosmic background radiation spectrum measured by the Far Infrared Absolute Spec-
trometer (FIRAS) aboard the Cosmic Background Explorer satellite (COBE). The fit is to a black-
body spectrum of characteristic temperature 2.735 ± 0.06 K. [Data from J.C. Mather, et al., Astro-
physical Journal Letters 354, L37 (1990).]

characteristic temperature 2.735 K. In a very real sense, this can be regarded as the “temperature
of the universe.”

8.14 Stefan-Boltzmann Law

The total power radiated per unit area by a black-body at all frequencies is given by

Ptot(T ) =
∫ ∞

0
P(ω) dω =

�

4π 2 c 2

∫ ∞

0

ω 3 dω
exp(�ω/k T ) − 1

, (8.125)

or

Ptot(T ) =
k 4 T 4

4π 2 c 2 � 3

∫ ∞

0

η 3 dη
exp η − 1

, (8.126)

where η = �ω/k T . The previous integral can easily be looked up in standard mathematical tables.
In fact, ∫ ∞

0

η 3 dη
exp η − 1

=
π 4

15
. (8.127)

(See Exercise 8.2.) Thus, the total power radiated per unit area by a black-body is

Ptot(T ) =
π 2

60
k 4

c 2 � 3 T 4 = σ T 4. (8.128)
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This T 4 dependence of the radiated power is called the Stefan-Boltzmann law, after Josef Stefan,
who first obtained it experimentally, and Ludwig Boltzmann, who first derived it theoretically. The
parameter

σ =
π 2

60
k 4

c 2 � 3 = 5.67 × 10−8 W m−2 K−4, (8.129)

is called the Stefan-Boltzmann constant.
We can use the Stefan-Boltzmann law to estimate the temperature of the Earth from first prin-

ciples. The Sun is a ball of glowing gas of radius R� � 7 × 10 5 km and surface temperature
T� � 5770 K. Its luminosity is

L� = 4πR 2
� σ T 4

� , (8.130)

according to the Stefan-Boltzmann law. The Earth is a globe of radius R⊕ � 6000 km located an
average distance r⊕ � 1.5 × 108 km from the Sun. The Earth intercepts an amount of energy

P⊕ = L�
πR 2⊕ /r 2⊕

4π
(8.131)

per second from the Sun’s radiative output: that is, the power output of the Sun reduced by the
ratio of the solid angle subtended by the Earth at the Sun to the total solid angle 4π. The Earth
absorbs this energy, and then re-radiates it at longer wavelengths. The luminosity of the Earth is

L⊕ = 4πR 2
⊕ σ T 4

⊕ , (8.132)

according to the Stefan-Boltzmann law, where T⊕ is the average temperature of the Earth’s surface.
Here, we are ignoring any surface temperature variations between polar and equatorial regions, or
between day and night. In steady-state, the luminosity of the Earth must balance the radiative
power input from the Sun, so equating L⊕ and P⊕ we arrive at

T⊕ =
(

R�
2 r⊕

)1/2
T�. (8.133)

Remarkably, the ratio of the Earth’s surface temperature to that of the Sun depends only on the
Earth-Sun distance and the solar radius. The previous expression yields T⊕ � 279 K or 6◦ C (or
43◦ F). This is slightly on the cold side, by a few degrees, because of the greenhouse action of the
Earth’s atmosphere, which was neglected in our calculation. Nevertheless, it is quite encouraging
that such a crude calculation comes so close to the correct answer.

8.15 Conduction Electrons in Metal

The conduction electrons in a metal are non-localized (i.e., they are not tied to any particular
atoms). In conventional metals, each atom contributes a fixed number of such electrons (corre-
sponding to its valency). To a first approximation, it is possible to neglect the mutual interaction of
the conduction electrons, because this interaction is largely shielded out by the stationary ions. The
conduction electrons can, therefore, be treated as an ideal gas. However, the concentration of such
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electrons in a metal far exceeds the concentration of particles in a conventional gas. It is, therefore,
not surprising that conduction electrons cannot normally be analyzed using classical statistics: in
fact, they are subject to Fermi-Dirac statistics (because electrons are fermions).

Recall, from Section 8.5, that the mean number of particles occupying state s (energy εs) is
given by

n̄s =
1

e β (εs−µ) + 1
, (8.134)

according to the Fermi-Dirac distribution. Here,

µ ≡ −k T α (8.135)

is termed the Fermi energy of the system. This energy is determined by the condition that

∑
r

n̄r =
∑

r

1
e β (εr−µ) + 1

= N, (8.136)

where N is the total number of particles contained in the volume V . It is clear, from the previous
equation, that the Fermi energy, µ, is generally a function of the temperature, T .

Let us investigate the behavior of the so-called Fermi function,

F(ε) =
1

e β (ε−µ) + 1
, (8.137)

as ε varies. Here, the energy is measured from its lowest possible value ε = 0. If the Fermi energy,
µ, is such that β µ� −1 then β (ε −µ) 
 1, and F reduces to the Maxwell-Boltzmann distribution.
However, for the case of conduction electrons in a metal, we are interested in the opposite limit,
where

β µ ≡ µ

k T

 1. (8.138)

In this limit, if 0 < ε � µ then β (ε − µ) � −1, so that F(ε) = 1. On the other hand, if ε 
 µ then
β (ε − µ) 
 1, so that F(ε) = exp[−β (ε − µ)] falls off exponentially with increasing ε, just like a
classical Maxwell-Boltzmann distribution. Note that F = 1/2 when ε = µ. The transition region in
which F goes from a value close to unity to a value close to zero corresponds to an energy interval
of order k T , centered on ε = µ. In fact, F = 3/4 when ε = µ − (ln 3) k T , and F = 1/4 when
ε = µ + (ln 3) k T . The behavior of the Fermi function is illustrated in Figure 8.4.

In the limit as T → 0, the transition region becomes infinitesimally narrow. In this case, F = 1
for ε < µ, and F = 0 for ε > µ, as illustrated in Figure 8.4. This is an obvious result, because
when T = 0 the conduction electrons attain their lowest energy, or ground-state, configuration.
Because the Pauli exclusion principle requires that there be no more than one electron per single-
particle quantum state, the lowest energy configuration is obtained by piling electrons into the
lowest available unoccupied states, until all of the electrons are used up. Thus, the last electron
added to the pile has a quite considerable energy, ε = µ, because all of the lower energy states are
already occupied. Clearly, the exclusion principle implies that a Fermi-Dirac gas possesses a large
mean energy, even at absolute zero.
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Figure 8.4: The Fermi function.

Let us calculate the Fermi energy, µ = µF , of a Fermi-Dirac gas at T = 0. The energy of each
particle is related to its momentum p = � k via

ε =
p 2

2 m
=
�

2 k 2

2 m
, (8.139)

where k is the de Broglie wavevector. Here, m is the electron mass. At T = 0, all quantum states
whose energy is less than the Fermi energy, µF , are filled. The Fermi energy corresponds to a
so-called Fermi momentum, pF = � kF, which is such that

µF =
p 2

F

2 m
=
�

2 k 2
F

2 m
. (8.140)

Thus, at T = 0, all quantum states with k < kF are filled, and all those with k > kF are empty.
Now, we know, by analogy with Equation (7.183), that there are (2π)−3 V allowable transla-

tional states per unit volume of k-space. The volume of the sphere of radius kF in k-space is
(4/3) π k 3

F. It follows that the Fermi sphere of radius kF contains (4/3) π k 3
F (2π)−3 V translational

states. The number of quantum states inside the sphere is twice this, because electrons possess
two possible spin states for every possible translational state. Because the total number of occu-
pied states (i.e., the total number of quantum states inside the Fermi sphere) must equal the total
number of particles in the gas, it follows that

2
V

(2π)3

(
4
3
π k 3

F

)
= N. (8.141)

The previous expression can be rearranged to give

kF =

(
3π 2 N

V

)1/3
. (8.142)
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Hence,

λF ≡ 2π
kF
=

2π
(3π 2)1/3

(V
N

)1/3
, (8.143)

which implies that the de Broglie wavelength, λF, corresponding to the Fermi energy, is of order
the mean separation between particles (V/N)1/3. All quantum states with de Broglie wavelengths
λ ≡ 2π/k > λF are occupied at T = 0, whereas all those with λ < λF are empty.

According to Equations (8.140) and (8.142), the Fermi energy at T = 0 takes the form

µF =
�

2

2 m

(
3π 2 N

V

)2/3
. (8.144)

It is easily demonstrated that µF 
 k T for conventional metals at room temperature. (See Exer-
cise 8.17.)

The majority of the conduction electrons in a metal occupy a band of completely filled states
with energies far below the Fermi energy. In many cases, such electrons have very little effect on
the macroscopic properties of the metal. Consider, for example, the contribution of the conduction
electrons to the specific heat of the metal. The heat capacity at constant volume, CV , of these
electrons can be calculated from a knowledge of their mean energy, E, as a function of T : that is,

CV =

∂E
∂T


V

. (8.145)

If the electrons obeyed classical Maxwell-Boltzmann statistics, so that F ∝ exp(−β ε) for all elec-
trons, then the equipartition theorem would give

E =
3
2

N k T, (8.146)

CV =
3
2

N k. (8.147)

However, the actual situation, in which F has the form shown in Figure 8.4, is very different. A
small change in T does not affect the mean energies of the majority of the electrons, with ε � µ,
because these electrons lie in states that are completely filled, and remain so when the temperature
is changed. It follows that these electrons contribute nothing whatsoever to the heat capacity. On
the other hand, the relatively small number of electrons, Neff , in the energy range of order k T ,
centered on the Fermi energy, in which F is significantly different from 0 and 1, do contribute
to the specific heat. In the tail end of this region, F ∝ exp(−β ε), so the distribution reverts to a
Maxwell-Boltzmann distribution. Hence, from Equation (8.147), we expect each electron in this
region to contribute roughly an amount (3/2) k to the heat capacity. Hence, the heat capacity can
be written

CV � 3
2

Neff k. (8.148)

However, because only a fraction k T/µ of the total conduction electrons lie in the tail region of the
Fermi-Dirac distribution, we expect

Neff � k T
µ

N. (8.149)
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It follows that
CV � 3

2
N k

k T
µ
. (8.150)

Because k T � µ in conventional metals, the molar specific heat of the conduction electrons
is clearly very much less than the classical value (3/2) R. This accounts for the fact that the molar
specific heat capacities of metals at room temperature are about the same as those of insulators.
Before the advent of quantum mechanics, the classical theory predicted incorrectly that the pres-
ence of conduction electrons should raise the heat capacities of monovalent metals by 50 percent
[i.e., (3/2) R] compared to those of insulators.

Note that the specific heat (8.150) is not temperature independent. In fact, using the superscript
e to denote the electronic specific heat, the molar specific heat can be written

c(e)
V = γ T, (8.151)

where γ is a (positive) constant of proportionality. At room temperature c(e)
V is completely masked

by the much larger specific heat, c(L)
V , due to lattice vibrations. However, at very low temperatures

c(L)
V = A T 3, where A is a (positive) constant of proportionality. (See Section 7.14.) Clearly, at low

temperatures, c(L)
V = A T 3 approaches zero far more rapidly that the electronic specific heat, as T is

reduced. Hence, it should be possible to measure the electronic contribution to the molar specific
heat at low temperatures.

The total molar specific heat of a metal at low temperatures takes the form

cV = c(e)
V + c(L)

V = γ T + A T 3. (8.152)

Hence,
cV

T
= γ + A T 2. (8.153)

It follows that a plot of cV/T versus T 2 should yield a straight-line whose intercept on the vertical
axis gives the coefficient γ. Figure 8.5 shows such a plot. The fact that a good straight-line is ob-
tained verifies that the temperature dependence of the heat capacity predicted by Equation (8.152)
is indeed correct.

8.16 Sommerfeld Expansion

Let us examine the conduction electrons in a metal in slightly more detail. In particular, let us try
to obtain a more exact expression for the electronic specific heat. We saw in the previous section
that the Fermi energy, µ, is determined by the equation

N =
∑

r

1
e β (εr−µ) + 1

. (8.154)

Likewise, the mean electron energy is

E =
∑

r

εr

e β (εr−µ) + 1
. (8.155)
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Figure 8.5: The low-temperature heat capacity of potassium, plotted as cV/T versus T 2. The
straight-line shows the fit cV/T = 2.08 + 2.57 T 2. From C. Kittel, and H. Kroemer, Thermal
Physics (W.H. Freeman & co., New York NY, 1980).

Because, in general, the energies of the quantum states are very closely spaced, the sums in the
previous two expressions can be replaced by integrals. Now, according to Section 8.12, the number
of quantum states per unit volume with wavenumbers in the range k to k + dk is

ρk(k) dk =
k 2

2π 2 dk. (8.156)

However, the energy of a state with wavenumber k is

ε =
�

2 k 2

2 m
, (8.157)

where m is the electron mass. Let ρ(ε) dε be the number of electrons whose energies lies in the
range ε to ε + dε. It follows that

ρ(ε) dε = 2 V ρk(k)
dk
dε

dε, (8.158)

where the factor of 2 is to take into account the two possible spin states which exist for each
translational state. Hence,

ρ(ε) =
V

2π 2

(2 m)3/2

� 3 ε 1/2. (8.159)

Moreover, Equations (8.154) and (8.155) become

N =
∫ ∞

0
F(ε) ρ(ε) dε, (8.160)

E =
∫ ∞

0
F(ε) ε ρ(ε) dε, (8.161)
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where
F(ε) =

1
e β (ε−µ) + 1

(8.162)

is the Fermi function.
The integrals on the right-hand sides of Equations (8.160) and (8.161) are both of the general

form ∫ ∞

0
F(ε)ϕ(ε) dε, (8.163)

where ϕ(ε) is a smoothly varying function of ε. Let

ψ(ε) =
∫ ε

0
ϕ(ε′) dε′. (8.164)

We can integrate Equation (8.163) by parts to give∫ ∞

0
F(ε)ϕ(ε) dε =

[
F(ε)ψ(ε)

]∞
0 −

∫ ∞

0
F′(ε)ψ(ε) dε, (8.165)

which reduces to ∫ ∞

0
F(ε)ϕ(ε) dε = −

∫ ∞

0
F′(ε)ψ(ε) dε, (8.166)

because ϕ(0) = ϕ(∞) F(∞) = 0. Here, F′(ε) ≡ dF/dε.
Now, if k T � µ then F(ε) is a constant everywhere, apart from a thin region of thickness k T ,

centered on ε = µ. (See Figure 8.4.) It follows that F′(ε) is approximately zero everywhere, apart
from in this region. Hence, the relatively slowly-varying function ψ(ε) can be Taylor expanded
about ε = µ:

ψ(ε) =
∑

m=0,∞

1
m!

[
d mψ

dε m

]
µ

(ε − µ)m. (8.167)

Thus, Equation (8.166) becomes∫ ∞

0
F(ε)ϕ(ε) dε = −

∑
m=0,∞

1
m!

[
d mψ

dε m

]
µ

∫ ∞

0
F′(ε) (ε − µ)m dε. (8.168)

From Equation (8.162), we have∫ ∞

0
F′(ε) (ε − µ)m dε = −

∫ ∞

0

β e β (ε−µ)

[e β (ε−µ) + 1] 2 (ε − µ)m dε, (8.169)

which becomes ∫ ∞

0
F′(ε) (ε − µ)m dε = −β−m

∫ ∞

−β µ

e x

(e x + 1) 2 x m dx, (8.170)

where x = β (ε − µ). However, because the integrand has a sharp maximum at x = 0, and because
β µ
 1, we can replace the lower limit of integration by −∞with negligible error. Thus, we obtain∫ ∞

0
F′(ε) (ε − µ)m dε = −(k T ) m Im, (8.171)
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where

Im =

∫ ∞

−∞

e x

(e x + 1) 2 x m dx. (8.172)

Note that
e x

(e x + 1) 2 ≡
1

(e x + 1) (e−x + 1)
(8.173)

is an even function of x. It follows, by symmetry, that Im is zero when m is odd. Moreover,

I0 =

∫ ∞

−∞

e x

(e x + 1) 2 dx = −
[

1
e x + 1

]∞
−∞
= 1. (8.174)

Finally, it can be demonstrated that

I2 =
π 2

3
. (8.175)

(See Exercise 8.3.) Hence, we deduce that∫ ∞

0
F(ε)ϕ(ε) dε =

∫ µ

0
ϕ(ε) dε +

π 2

6
(k T ) 2

(
dϕ
dε

)
µ

+ · · · . (8.176)

This expansion is known as the Sommerfeld expansion, after its inventor, Arnold Sommerfeld.
Equation (8.160) yields

N =
∫ µ

0
ρ(ε) dε +

π 2

6
(k T ) 2

(
dρ
dε

)
µ

+ · · · . (8.177)

However, it follows from Equation (8.159) that

∫ µ

0
ρ(ε) dε =

V
3π 2

(2 m)3/2

� 3 µ 3/2, (8.178)

(
dρ
dε

)
µ

=
V

4π 2

(2 m)3/2

� 3 µ−1/2. (8.179)

Hence,

N � V
3π 2

(2 m)3/2

� 3 µ 3/2 +
V
24

(2 m)3/2

� 3 (k T ) 2 µ−1/2, (8.180)

which can also be written

µ 3/2
F � µ 3/2 +

π 2

8
(k T ) 2 µ−1/2, (8.181)

where µF is the Fermi energy at T = 0. [See Equation (8.144).] The previous equation can be
rearranged to give

µ � µF

1 + π 2

8

(
k T
µ

)2
−2/3

, (8.182)
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Figure 8.6: The solid curve shows the numerically-calculated exact Fermi energy of a degenerate
electron gas as a function of the temperature. The dashed curve shows the analytic approximation
µ/µF � 1 − (π 2/12) ) (T/TF) 2. Here, TF = µF/k is known as the Fermi temperature.

which reduces to

µ � µF

1 − π 2

12

(
k T
µF

)2 , (8.183)

assuming that k T/µF � 1. Figure 8.6 shows a comparison between the previous approximate
expression for the temperature variation of the Fermi energy of a degenerate electron gas and the
numerically-calculated exact value. It can be seen that our approximate expression is surprisingly
accurate (at least, for T ∼ µF/k).

Equation (8.161) yields

E =
∫ µ

0
ε ρ(ε) dε +

π 2

6
(k T ) 2

[
d(ε ρ)

dε

]
µ

+ · · · . (8.184)

However, it follows from Equation (8.159) that

∫ µ

0
ε ρ(ε) dε =

V
5π 2

(2 m)3/2

� 3 µ 5/2, (8.185)

[
d(ε ρ)

dε

]
µ

=
3 V
4π 2

(2 m)3/2

� 3 µ 1/2. (8.186)

Hence,

E � V
5π 2

(2 m)3/2

� 3 µ 5/2 +
V
8

(2 m)3/2

� 3 (k T ) 2 µ 1/2, (8.187)
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which can also be written

E � 3
5

N µF


(
µ

µF

)5/2
+

5π 2

24

(
k T
µF

)2 (
µ

µF

)1/2 . (8.188)

Making use of Equation (8.183), and only retaining terms up to second order in k T/µF , we obtain

E � 3
5

N µF +
π 2

4
N µF

(
k T
µF

) 2

. (8.189)

Hence, the specific heat capacity of the conduction electrons becomes

C (e)
V =

dE
dT
=
π 2

2
k N

k T
µF

, (8.190)

and the molar specific heat is written

c(e)
V =

π 2

2

(
k T
µF

)
R. (8.191)

Of course, because k T/µF � 1, this value is much less than the classical estimate, (3/2) R.

8.17 White-Dwarf Stars

A main-sequence hydrogen-burning star, such as the Sun, is maintained in equilibrium via the
balance of the gravitational attraction tending to make it collapse, and the thermal pressure tending
to make it expand. Of course, the thermal energy of the star is generated by nuclear reactions
occurring deep inside its core. Eventually, however, the star will run out of burnable fuel, and will,
therefore, start to collapse, as it radiates away its remaining thermal energy. What is the ultimate
fate of such a star?

A burnt-out star is basically a gas of electrons and ions. As the star collapses, its density in-
creases, so the mean separation between its constituent particles decreases. Eventually, the mean
separation becomes of order the de Broglie wavelength of the electrons, and the electron gas be-
comes degenerate. Note, that the de Broglie wavelength of the ions is much smaller than that of the
electrons (because of the ions’ much larger mass), so the ion gas remains non-degenerate. Now,
even at zero temperature, a degenerate electron gas exerts a substantial pressure, because the Pauli
exclusion principle prevents the mean electron separation from becoming significantly smaller than
the typical de Broglie wavelength. (See Section 8.15 and Exercise 8.18.) Thus, it is possible for a
burnt-out star to maintain itself against complete collapse under gravity via the degeneracy pres-
sure of its constituent electrons. Such stars are termed white-dwarfs. Let us investigate the physics
of white-dwarfs in more detail.

The total energy of a white-dwarf star can be written

E = K + U, (8.192)
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where K is the total kinetic energy of the degenerate electrons (the kinetic energy of the ions is
negligible), and U is the gravitational potential energy. Let us assume, for the sake of simplicity,
that the density of the star is uniform. In this case, the gravitational potential energy takes the form

U = −3
5

G M 2

R
, (8.193)

where G is the gravitational constant, M the stellar mass, and R the stellar radius.
Let us assume that the electron gas is highly degenerate, which is equivalent to taking the limit

T → 0. In this case, we know, from Section 8.15, that the Fermi momentum can be written

pF = Λ
(N

V

)1/3
, (8.194)

where
Λ = (3π 2)1/3

�. (8.195)

Here,

V =
4π
3

R 3 (8.196)

is the stellar volume, and N the total number of electrons contained in the star. Furthermore, the
number of electron states contained in an annular radius of p-space lying between radii p and
p + dp is

dN =
3 V
Λ3 p 2 dp. (8.197)

(See Exercise 8.20.) Hence, the total kinetic energy of the electron gas can be written

K =
3 V
Λ3

∫ pF

0

p 2

2 m
p 2 dp =

3
5

V
Λ3

p 5
F

2 m
, (8.198)

where m is the electron mass. It follows that

K =
3
5

N
Λ 2

2 m

(N
V

)2/3
. (8.199)

The interior of a white-dwarf star is composed of atoms like C12 and O16 that contain equal
numbers of protons, neutrons, and electrons. Thus,

M = 2 N mp, (8.200)

where mp is the proton mass.
Equations (8.192), (8.193), (8.195), (8.196), (8.199), and (8.200) can be combined to give

E =
A

R 2 −
B
R
, (8.201)
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where

A =
3

20

(
9π
8

)2/3
�

2

m

(
M
mp

)5/3
, (8.202)

B =
3
5

G M 2. (8.203)

The equilibrium radius of the star, R∗, is that which minimizes the total energy, E. In fact, it is
easily demonstrated that

R∗ =
2 A
B
, (8.204)

which yields

R∗ =
(9π)2/3

8
�

2

m
1

G m 5/3
p M 1/3

. (8.205)

The previous formula can also be written

R∗
R�
= 0.010

(M�
M

)1/3
, (8.206)

where R� = 7 × 105 km is the solar radius, and M� = 2 × 1030 kg the solar mass. It follows
that the radius of a typical solar-mass white-dwarf is about 7000 km: that is, about the same as
the radius of the Earth. The first white-dwarf to be discovered (in 1862) was the companion of
Sirius. Nowadays, thousands of white-dwarfs have been observed, all with properties similar to
those described previously.

8.18 Chandrasekhar Limit

One curious feature of white-dwarf stars is that their radius decreases as their mass increases.
[See Equation (8.206).] It follows, from Equation (8.199), that the mean energy of the degenerate
electrons inside the star increases strongly as the stellar mass increases: in fact, K ∝ M 7/3. Hence,
if M becomes sufficiently large then the electrons become relativistic, and the previous analysis
needs to be modified. Strictly speaking, the non-relativistic analysis described in the previous
section is only valid in the low-mass limit M � M�. Let us, for the sake of simplicity, consider
the ultra-relativistic limit in which p 
 m c.

The total electron energy (including the rest mass energy) can be written

K =
3 V
Λ 3

∫ pF

0

(
p 2 c 2 + m 2 c 4

)1/2
p 2 dp, (8.207)

by analogy with Equation (8.198). Thus,

K � 3 V c
Λ 3

∫ pF

0

(
p 3 +

m 2 c 2

2
p + · · ·

)
dp, (8.208)
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giving

K � 3
4

V c
Λ 3

(
p 4

F + m 2 c 2 p 2
F + · · ·

)
. (8.209)

It follows, from the previous analysis, that the total energy of an ultra-relativistic white-dwarf
star can be written in the form

E � A − B
R
+ C R, (8.210)

where

A =
3
8

(
9π
8

)1/3
� c
(

M
mp

)4/3
, (8.211)

B =
3
5

G M 2, (8.212)

C =
3
4

1
(9π)1/3

m 2 c 3

�

(
M
mp

)2/3
. (8.213)

As before, the equilibrium radius R∗ is that which minimizes the total energy. E. However, in the
ultra-relativistic case, a non-zero value of R∗ only exists for A−B > 0. When A−B < 0, the energy
decreases monotonically with decreasing stellar radius. In other words, the degeneracy pressure of
the electrons is incapable of halting the collapse of the star under gravity. The criterion that must
be satisfied for a relativistic white-dwarf star to be maintained against gravity is that

A
B
> 1. (8.214)

This criterion can be re-written
M < MC , (8.215)

where

MC =
15
64

(5π)1/2 (� c/G)1/2

m 2
p

= 1.72 M� (8.216)

is known as the Chandrasekhar limit, after A. Chandrasekhar who first derived it in 1931. A more
realistic calculation, which does not assume constant density, yields

MC = 1.4 M�. (8.217)

Thus, if the stellar mass exceeds the Chandrasekhar limit then the star in question cannot become
a white-dwarf when its nuclear fuel is exhausted, but, instead, must continue to collapse. What is
the ultimate fate of such a star?

8.19 Neutron Stars

At stellar densities that greatly exceed white-dwarf densities, the extreme pressures cause electrons
to combine with protons to form neutrons. Thus, any star that collapses to such an extent that its



212 8.20. Bose-Einstein Condensation

radius becomes significantly less than that characteristic of a white-dwarf is effectively transformed
into a gas of neutrons. Eventually, the mean separation between the neutrons becomes comparable
with their de Broglie wavelength. At this point, it is possible for the degeneracy pressure of the
neutrons to halt the collapse of the star. A star that is maintained against gravity in this manner is
called a neutron star.

Neutrons stars can be analyzed in a very similar manner to white-dwarf stars. In fact, the
previous analysis can be simply modified by letting mp → mp/2 and m → mp. Thus, we conclude
that non-relativistic neutrons stars satisfy the mass-radius law:

R∗
R�
= 0.000011

(M�
M

)1/3
, (8.218)

It follows that the radius of a typical solar mass neutron star is a mere 10 km. In 1967, Antony
Hewish and Jocelyn Bell discovered a class of compact radio sources, called pulsars, that emit
extremely regular pulses of radio waves. Pulsars have subsequently been identified as rotating
neutron stars. To date, many hundreds of these objects have been observed.

When relativistic effects are taken into account, it is found that there is a critical mass above
which a neutron star cannot be maintained against gravity. According to our analysis, this critical
mass, which is known as the Oppenheimer-Volkoff limit, is given by

MOV = 4 MC = 6.9 M�. (8.219)

A more realistic calculation, which does not assume constant density, does not treat the neutrons
as point particles, and takes general relativity into account, gives a somewhat lower value of

MOV = 1.5–2.5 M�. (8.220)

A star whose mass exceeds the Oppenheimer-Volkoff limit cannot be maintained against gravity
by degeneracy pressure, and must ultimately collapse to form a black-hole.

8.20 Bose-Einstein Condensation

Consider a gas of weakly-interacting bosons. It is helpful to define the gas’s chemical potential,

µ = k T α, (8.221)

whose value is determined by the equation

N =
∑

r

n̄r =
∑

r

1
e β (εr−µ) − 1

. (8.222)

Here, N is the total number of particles, and εr the energy of the single-particle quantum state r.
Because, in general, the energies of the quantum states are very closely spaced, the sum in the
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previous expression can approximated as an integral. Now, according to Section 8.12, the number
of quantum states per unit volume with wavenumbers in the range k to k + dk is

ρk(k) dk =
k 2

2π 2 dk. (8.223)

However, the energy of a state with wavenumber k is

ε =
�

2 k 2

2 m
, (8.224)

where m is the boson mass. Let ρ(ε) dε be the number of bosons whose energies lies in the range
ε to ε + dε. It follows that

ρ(ε) dε = V ρk(k)
dk
dε

dε, (8.225)

where V is the volume of the gas. Here, we are assuming that the bosons are spinless, so that there
is only one particle state per translational state. Hence,

ρ(ε) =
V

4π 2

(2 m)3/2

� 3 ε 1/2, (8.226)

and Equation (8.222) becomes

N =
∫ ∞

0

ρ(ε)
e β (ε−µ) − 1

dε =
V

4π 2

(2 m)3/2

� 3

∫ ∞

0

ε 1/2

e β (ε−µ) − 1
dε. (8.227)

However, there is a significant flaw in this formulation. In using the integral approximation, rather
than performing the sum, the ground-state, ε = 0, has been left out [because ρ(0) = 0]. Under
ordinary circumstances, this omission does not matter. However, at very low temperatures, bosons
tend to condense into the ground-state, and the occupation number of this state becomes very much
larger than that of any other state. Under these circumstances, the ground-state must be included
in the calculation.

We can overcome the previous difficulty in the following manner. Let there be N0 bosons in
the ground-state, and Nex in the various excited states, so that

N = N0 + Nex. (8.228)

Because the ground-state is excluded from expression (8.227), the integral only gives the number
of bosons in excited states. In other words,

Nex =
V

4π 2

(2 m)3/2

� 3

∫ ∞

0

ε 1/2

e β (ε−µ) − 1
dε. (8.229)

Now, because the ground-state has zero energy, its mean occupancy number is

N0 =
1

e−µ/k T − 1
. (8.230)
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Moreover, at temperatures very close to absolute zero, we expect N0 � N, which implies that

N � 1
e−µ/k T − 1

. (8.231)

We conclude that

− µ

k T
� ln

(
1 +

1
N

)
� 1

N
, (8.232)

for large N. Hence, at very low temperatures, we can safely set exp(−µ/k T ) equal to unity in
Equation (8.229). Thus, we obtain

Nex =
2√
π

(
2πm k T

h 2

)3/2
V
∫ ∞

0

x 1/2

e x − 1
dx, (8.233)

where x = ε/(k T ). The value of the integral is Γ(3/2) ζ(3/2), where Γ(s) =
∫ ∞

0 x s−1 e−x dx is a
Gamma function, and ζ(s) =

∑
n=1,∞ n−s a Riemann zeta function. (See Exercise 8.4.) Furthermore,

Γ(3/2) =
√
π/2, and ζ(3/2) = 2.612. Hence,

Nex = ζ(3/2) V
(
2πm k T

h 2

)3/2
. (8.234)

The so-called Bose temperature, TB, is defined as the temperature above which all the bosons
are in excited states. Setting Nex = N and T = TB in the previous expression, we obtain

TB =
h 2

2πm k

[
N

ζ(3/2) V

] 2/3

. (8.235)

Moreover,
Nex

N
=

(
T
TB

)3/2
. (8.236)

Thus, the fractional number of bosons in the ground-state is

N0

N
= 1 −

(
T
TB

)3/2
. (8.237)

Obviously, the preceding two equations are only valid for 0 < T < TB. For T > TB, we have
N0/N = 0 and Nex/N = 1. Moreover, for 0 < T < TB we have µ/k TB = 0, whereas for T > TB,
combining Equations (8.229) (with Nex = N) and (8.235) yields

Γ(3/2) ζ(3/2) =
(

T
TB

)3/2 ∫ ∞

0

x 1/2

e x−α − 1
dx, (8.238)

where x = ε/(k T ) and α = µ/(k T ). Expanding in powers of e−(x−α), we obtain

Γ(3/2) ζ(3/2) =
(

T
TB

)3/2
Γ(3/2)

∑
n=1,∞

e nα

n 3/2 , (8.239)
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Figure 8.7: Variation with temperature of N0/N (solid curve) and Nex/N (dashed curve) for a boson
gas.

where y = n x (see Exercise 8.4), which reduces to

ζ(3/2) =
(

T
TB

)3/2 ∑
n=1,∞

e−nα

n 3/2 . (8.240)

The previous equation can be solved numerically to give α = µ/(k TB) as a function of T/TB.
Let us estimate a typical value of the Bose temperature. Consider a boson gas made up of

NA/10 = 6.02 × 10 22 He4 atoms confined to a volume of 1 litre. The mass of a He4 atom is
6.65 × 10−27 kg. Making use of Equation (8.235), we obtain

TB =
(6.63 × 10−34) 2

2π (6.65 × 10−27) (1.38 × 10−23)

[
6.02 × 10 22

(2.612) (1 × 10−3)

] 2/3

= 0.062 K. (8.241)

At atmospheric pressure, helium liquifies at 4.12 K, long before the Bose temperature is reached.
In fact, all real gases liquify before the Bose temperature is reached.

Figure 8.7 shows the variation of N0/N and Nex/N with T/TB. A corresponding graph of µ/k TB

[numerically determined from Equation (8.240) when T > TB] is shown in Figure 8.8. The sudden
collapse of bosons into the ground-state at temperatures below the Bose temperature is known as
Bose-Einstein condensation. In 1995, E.A. Cornell and C.E. Wieman led a team of physicists
that created a nearly pure condensate by cooling a vapor of rubidium atoms to a temperature of
1.3 × 10−7 K. (Cornell and Wieman were subsequently awarded the Nobel prize in 2001.)

The mean energy of a boson gas takes the form

E =
∑

r

εr

e β (εr−µ) − 1
. (8.242)
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Figure 8.8: Variation with temperature of µ/k TB for a boson gas.

As before, we can approximate the sum as an integral, and write

E =
∫ ∞

0

ε ρ(ε)
e β (εr−µ) − 1

dε =
V

4π 2

(2 m)3/2

� 3

∫ ∞

0

ε 3/2

e β (εr−µ) − 1
dε. (8.243)

In this case, we do not need to worry about the omission of the ground-state in the integral, because
this state makes no contribution to the mean energy (because ε = 0 in the ground-state). For
temperatures above the Bose temperature, all the bosons are in excited states, and we expect the
mean energy to approach the classical value, (3/2) N k T . However, below the Bose temperature,
a substantial fraction of bosons are in the ground-state, so we expect the mean energy to fall well
below the classical value.

As we have seen, the chemical potential of a boson gas is very close to zero for temperatures
below the Bose temperature. Hence, setting µ = 0 in the previous expression, and making the
substitution x = ε/(k T ), we obtain

E =
2√
π

(
2πm k T

h 2

)3/2
V
∫ ∞

0

x 3/2

e x − 1
dx. (8.244)

The integral is equal to Γ(5/2) ζ(5/2), where Γ(5/2) = 3
√
π/4, and ζ(5/2) = 1.34. (See Exer-

cise 8.4.) Thus, we obtain

E =
3
2
ζ(5/2)
ζ(3/2)

N k T
(

T
TB

)3/2
= 0.770 N k T

(
T
TB

)3/2
(8.245)

where use has been made of Equation (8.235). Note that E ∝ T 5/2 for temperatures below the
Bose temperature, but that E becomes similar in magnitude to the classical value, (3/2) N k T , as
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Figure 8.9: Variation with temperature of E/Eclassical for a boson gas, where Eclassical = (3/2) N k T .

T → TB. The molar specific heat below the Bose temperature is

cV

R
=

1
N k

dE
dT
=

15
4
ζ(5/2)
ζ(3/2)

(
T
TB

)3/2
= 1.92

(
T
TB

)3/2
. (8.246)

Likewise, the mean pressure is

p̄ =
2
3

E
V
=
ζ(5/2)
ζ(3/2)

N k T
V

(
T
TB

)3/2
= 0.513

N k T
V

(
T
TB

)3/2
. (8.247)

(See Exercise 8.7.) In both cases, the quantities become similar in magnitude to their classical
values as T → TB, but fall far below these values when T � TB.

For T > TB, Equation (8.243) becomes

E =
3
2

N k T
(

T
TB

)3/2 1
ζ(3/2)

∑
n=1,∞

e nα

n 5/2 (8.248)

(see Exercise 8.4), where α is determined from the numerical solution of Equation (8.240). Fig-
ure 8.9 shows how the mean energy of a boson gas varies with temperature, and clearly illustrates
that the energy approaches its classical value asymptotically in the limit T 
 TB. Finally, Fig-
ure 8.10 shows how the molar heat capacity of a boson gas varies with temperature. It can be seen
that the cV curve has a change in slope at T = TB, reaching a maximum value there of 1.92 R. At
higher temperatures, cV approaches the classical value, (3/2) R, asymptotically.



218 8.20. Bose-Einstein Condensation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

c V
/c

V
cl
as
si
ca
l

0 1 2 3 4 5
T/TB

Figure 8.10: Variation with temperature of cV/cV classical for a boson gas, where cV classical = (3/2) R.

Exercises

8.1 Let
In =

∫ ∞

0
e−x x n dx,

where n is a non-negative integer. Integrating by parts, demonstrate that

In = n In−1.

Furthermore, show that
I0 = 1.

Hence, deduce that
In = n!.

8.2 Let

Jn =

∫ ∞

0

x n−1 dx
e x − 1

,

where n is an integer greater than unity. Demonstrate that

Jn = (n − 1)! ζ(n),

where
ζ(n) =

∑
k=1,∞

1
k n

is a Riemann zeta function. [Hint: (1 − r)−1 =
∑

k=0,∞ r k, provided that |r| < 1.] In general,
the zeta function must be evaluated numerically. However, it is possible to prove that
ζ(2) = π 2/6 and ζ(4) = π 4/90.
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8.3 Show that ∫ ∞

−∞

e x

(e x + 1) 2 x 2 dx

can be written in the form
4
∫ ∞

0

x
e x + 1

dx.

By expanding the integrand in powers of e−x, demonstrate that∫ ∞

0

x
e x + 1

dx =
∫ ∞

0

(
x e−x − x e−2 x + x e−3 x − x e−4 x + · · ·

)
dx,

and, hence, that ∫ ∞

0

x
e x + 1

dx = 1 − 1
2 2 +

1
3 2 −

1
4 2 + · · · .

Rearrange the right-hand side of the previous expression to give∫ ∞

0

x
e x + 1

dx =
(
1 +

1
2 2 +

1
3 2 +

1
4 2 + · · ·

)
− 2
(

1
2 2 +

1
4 2 +

1
6 2 + · · ·

)

=

(
1 +

1
2 2 +

1
3 2 +

1
4 2 + · · ·

)
− 2

2 2

(
1 +

1
2 2 +

1
3 2 +

1
4 2 + · · ·

)

= ζ(2) − 1
2
ζ(2) =

1
2
ζ(2) =

π 2

12
.

(See Exercise 8.2.) Thus, deduce that∫ ∞

−∞

e x

(e x + 1) 2 x 2 dx =
π 2

3
.

8.4 Consider the integral ∫ ∞

−∞

x s−1

e x − 1
dx,

where s > 1. By expanding in powers of e−x, show that∫ ∞

−∞

x s−1

e x − 1
dx = Γ(s) ζ(s),

where Γ(s) =
∫ ∞

0
x s−1 e−x dx is a Gamma function, and ζ(s) =

∑
n=1,∞ n−s a Riemann zeta

function. Likewise, demonstrate that∫ ∞

−∞

x s−1

e x−α − 1
dx = Γ(s)

∑
n=1,∞

e nα

n s
,

where α < 0.



220 8.20. Bose-Einstein Condensation

8.5 Consider a gas consisting of identical non-interacting particles. The quantum states of a
single particle are labeled by the index r. Let the energy of a particle in state r be εr. Let nr

be the number of particles in quantum state r. The partition function of the gas is thus

Z =
∑

R

exp

−β∑
r

nr εr

 ,
where the first sum is over all allowable values of the nr, and the second is over all single-
particle quantum states. Here, β = 1/(k T ), where T is the absolute temperature.

(a) Demonstrate that

n̄r = −1
β

∂ ln Z
∂εr

.

(b) Show that

n 2
r =

1
β 2 Z

∂ 2Z
∂ε 2

r
=

1
β 2

[
∂

∂εr

(
∂ ln Z
∂εr

)
+ β 2 (n̄r) 2

]
.

(c) Hence, deduce that

(∆nr) 2 =
1
β 2

∂ 2 ln Z
∂ε 2

r
= −1

β

∂n̄r

∂εr
.

8.6 Use the results of the previous exercise to show that:

(a) For identical, non-interacting, particles distributed according to the Maxwell-Boltzmann
distribution,

(∆nr) 2

n̄ 2
r
=

1
n̄r

(
1 − n̄r∑

s n̄s

)
� 1

n̄r
.

(b) For photons,
(∆nr) 2

n̄ 2
r
=

1
n̄r
+ 1.

(c) For identical, non-interacting, massive particles distributed according to the Bose-
Einstein distribution,

(∆nr) 2

n̄ 2
r
=

(
1
n̄r
+ 1
) (

1 +
1
β

∂α

∂εr

)
.

Show, also, that
1
β

∂α

∂εr
= − n̄r (1 + n̄r)∑

s n̄s (1 + n̄s)
.

Hence, deduce that

(∆nr) 2

n̄ 2
r
=

(
1
n̄r
+ 1
) [

1 − n̄r (1 + n̄r)∑
s n̄s (1 + n̄s)

]
� 1

n̄r
+ 1.
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(d) For identical, non-interacting, massive particles distributed according to the Fermi-
Dirac distribution,

(∆nr) 2

n̄ 2
r
=

(
1
n̄r
− 1
) (

1 +
1
β

∂α

∂εr

)
.

Show, also, that
1
β

∂α

∂εr
= − n̄r (1 − n̄r)∑

s n̄s (1 − n̄s)
.

Hence, deduce that

(∆nr) 2

n̄ 2
r
=

(
1
n̄r
− 1
) [

1 − n̄r (1 − n̄r)∑
s n̄s (1 − n̄s)

]
� 1

n̄r
− 1.

Note that, in the case of the Bose-Einstein distribution, the relative dispersion in n̄r is larger
than in the Maxwell-Boltzmann case, whereas in the case of the Fermi-Dirac distribution
the relative dispersion is smaller.

8.7 Consider a non-relativistic free particle of mass m in a cubical container of edge-length L,
and volume V = L 3.

(a) Show that the energy of a general quantum state, r, can be written

εr =
h 2

V 2/3 (n 2
x + n 2

y + n 2
z ),

where nx, ny, and nz are positive integers. Hence, deduce that the contribution to the
gas pressure of a particle in this state is

pr = −∂εr

∂V
=

2
3
εr

V
.

(b) Demonstrate that the mean pressure of a gas of weakly-interacting non-relativistic
particles is

p̄ =
2
3

E
V
,

where E is its mean total kinetic energy, irrespective of whether the particles obey
classical, Bose-Einstein, or Fermi-Dirac statistics.

8.8 As an electron moves in a molecule, there exists, at any instance in time, a separation
of positive and negative charges within the molecule. The molecule therefore possesses
a time-varying electric dipole moment, p. Assuming that the molecule is located at the
origin, its instantaneous dipole moment generates an electric field

E(r) =
3 (p · r) r − r 2 p

4π ε0 r 5 ,
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where r is the vector displacement from the origin. A second molecule, located at position
r, relative to the first, develops an induced dipole moment, p′ = αE(r), in response to the
electric field of the first. Here, α is the molecular polarizability. Moreover, the electric field
generates a force f′ = ∇[p′ · E(r)] acting on the second molecule. (Of course, an equal
and opposite force acts on the first molecule.) Use these facts to deduce that the mean (i.e.,
averaged over time, and all possible orientations of p) inter-molecular potential between a
pair of neutral molecules is attractive, and takes the form

u(r) = − α 〈p 2〉
16π 2 ε 2

0 r 6
,

where 〈· · · 〉 denotes a time average.

8.9 Consider a van der Waals gas whose equation of state is

p̄ =
R T
v − b

− a
v 2 .

Here, a > 0, > 0 are constants, and v is the molar volume. Show that the various thermo-
dynamic potentials of the gas are:

F = −νR T
{

ln
[

nQ

NA
(v − b)

]
+ 1
}
− ν a

v
,

S = νR
{

ln
[

nQ

NA
(v − b)

]
+

5
2

}
,

E =
3
2
νR T − ν a

v
,

H = νR T
(

v

v − b
+

3
2

)
+

2 ν a
v
,

G = νR T
{
− ln

[
nQ

NA
(v − b)

]
+

v

v − b
− 1
}
− 2 ν a

v
.

Here, nQ = (2πm k T/h 2)3/2, where m is the molecular mass, is known as the quantum
concentration, and is the particle concentration at which the de Broglie wavelength is equal
to the mean inter-particle spacing. Obviously, the previous expression are only valid when
NA/v � nQ.

8.10 Show that the energy density of radiation inside a radiation-filled cavity whose walls are
held at absolute temperature T is

ū =
π 2

15
(k T ) 4

(c �) 3 .

Demonstrate that the mean pressure that the radiation exerts on the walls of the cavity is

p̄ =
1
3

ū.

[Hint: Modify and reuse the analysis of Exercise 8.7.]
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8.11 Apply the thermodynamic relation T dS = dE + p̄ dV to a photon gas. Here, we can write
E = V ū, where ū(T ) is the mean energy density of the radiation (which is independent of
the volume). The radiation pressure is p̄ = ū/3.

(a) Considering S as a function of T and V , show that(
∂S
∂V

)
T
=

4
3

ū
T
,

(
∂S
∂T

)
V
=

V
T

dū
dT

.

(b) Demonstrate that the mathematical identity (∂ 2S/∂V ∂T ) = (∂ 2S/∂T ∂V) leads to a
differential equation for ū(T ) that can be integrated to give

ū = a T 4,

where a is a constant.

(c) Hence, deduce that

S =
4
3

E
T
.

8.12 Show that the total number of photons in a radiation-filled cavity of volume V , whose walls
are held at temperature T , is

N = 16π ζ(3) V
(
k T
h c

)3
,

where

ζ(n) =
1

(n − 1)!

∫ ∞

0

x n−1 dx
e x − 1

is a Riemann zeta function. (See Exercise 8.2.) Note that ζ(3) � 1.202. Demonstrate that
the mean energy per photon and the entropy per photon are

E
N
=

π 4

30 ζ(3)
k T = 2.70 k T,

S
N
=

2 π 4

45 ζ(3)
k = 3.60 k,

respectively. Note that the entropy per photon is a constant, independent of the temperature.

8.13 Electromagnetic radiation at temperature T fills a cavity of volume V . If the cavity is
thermally insulated, and expands quasi-statically, show that

T ∝ 1
V 1/3 .

(Neglect the heat capacity of the cavity walls.)
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8.14 (a) The partition function for a photon gas is

ln Z = −
∑

r

ln
(
1 − e−β εr

)
,

where εr = �ωr, and ωr is the frequency of an individual photon state. The spacing
between the allowed frequencies can be made arbitrarily small by increasing the vol-
ume, V , of the container. Hence, the sum can be approximated as an integral. Now,
the number of photon states per unit volume whose frequencies lie between ω and
ω + dω is σ(ω) dω, where

σ(ω) = 2
ω 2

2π 2 c 3 .

(See Section 8.12.) Thus, we can write

ln Z = −V
∫ ∞

0
σ(ω) ln

(
1 − e−β �ω

)
dω.

Show that

ln Z = −8πV
(
k T
h c

)3 ∫ ∞

0
y 2 ln

(
1 − e−y

)
dy.

Integrating by parts, demonstrate that

ln Z =
8π
3

V
(
k T
h c

)3 ∫ ∞

0

y 3

e y − 1
dy.

Hence, deduce that

ln Z =
8π 5

45

(
k T
h c

)3
V.

[Hint: See Exercise 8.2.]

(b) Using the standard results

E = −∂ ln Z
∂β

,

p̄ =
1
β

∂ ln Z
∂V

,

S = k (ln Z + β E),

show that

E =
8π 5

15
(k T )4

(h c)3 V,

p̄ =
E

3 V
,

S =
4
3

E
T
.
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8.15 Show that the power per unit area radiated by a black-body of temperature T peaks at an-
gular frequency ωc, where �ωc = y k T , and y is the solution of the transcendental equation

y = 3 (1 − e−y).

Solve this equation by iteration [i.e., yn+1 = 3 (1 − e−yn), where yn is the nth guess], and,
thereby, show that

�ωc = 2.82 k T.

8.16 A black (non-reflective) plane at temperature Tu is parallel to a black plane at temperature
Tl < Tu. The net energy flux density in vacuum between the two planes is JU = σ (T 4

u −T 4
l ),

whereσ is the Stefan-Boltzmann constant. A third black plane is inserted between the other
two, and is allowed to come to a steady-state temperature Tm. Find Tm in terms of Tu and
Tl, and show that the net energy flux is cut in half because of the presence of this plane.
This is the principle of the heat shield, and is widely used to reduce radiant heat transfer.

8.17 Consider the conduction electrons in silver, which is monovalent (one free electron per
atom), has a mass density 10.5 × 10 3 kg m−3, and an atomic weight of 107. Show that the
Fermi energy (at T = 0) is

µF = 5.6 eV,

and the equivalent temperature—the so-called Fermi temperature—is

TF =
µF

k
= 65, 000 K.

Thus, if T � TF (as is definitely the case at room temperature) then the conduction elec-
trons are highly degenerate. Furthermore, show that at room temperature (T = 300 K), the
contribution of the conduction electrons to the molar specific heat is only

c (e)
V

R
= 2.2 × 10−2.

8.18 Demonstrate that the mean pressure of the conduction electrons in a metal can be written

p̄ =
2
5

N k TF

V

1 + 5π 2

12

(
T
TF

) 2

+ · · ·
 ,

where TF is the Fermi temperature. (Hint: See Exercise 8.17.) Show that for silver (see
previous exercise),

p̄ = 2.1 × 10 10 Pa.

8.19 Show that the contribution of the conduction electrons in a metal to the isothermal com-
pressibility is

κT =
3

5 p̄
,

where p̄ is the electron’s mean pressure. Estimate κT for silver. (See the previous exercise.)
Compare your estimate to the experimental value 0.99 × 10−11 Pa−1.
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8.20 Justify Equation (8.197).

8.21 A system of N bosons of mass m and zero spin is in a container of volume V , at an absolute
temperature T . The number of particles is

N =
V

4π 2

(
2 m
� 2

) ∫ ∞

0

ε 1/2

e (x−µ)/k T − 1
dε.

[See Equation (8.227).] In the limit in which the gas is dilute, exp(−µ/k T ) 
 1, and
the Bose-Einstein distribution becomes the Maxwell-Boltzmann distribution. Evaluate the
integral in this approximation, and show that

exp
(
− µ

k T

)
=

(
d
λ

)3
,

where λ = h/(2πm k T )1/2 is the particles’ de Broglie wavelength, and d = (V/N) 1/3 the
mean inter-particle distance. Hence, deduce that, in the classical limit, the average distance
between particles is much larger than the de Broglie wavelength.
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9 Multi-Phase Systems

9.1 Introduction

Up to now, we have dealt, almost exclusively, with systems consisting of a single phase (i.e., a
single, spatially homogeneous, state of aggregation). In this chapter, we shall employ statistical
thermodynamics to investigate the equilibria of multi-phase systems (e.g., ice and water). Most of
our analysis turns out to be independent of the microscopic details of such systems, and, therefore,
leads to fairly general results.

9.2 Equilibrium of Isolated System

Consider a thermally isolated system, A. According to Section 5.6, any spontaneously occurring
process is such that the system’s entropy tends to increase in time. In statistical terms, this means
that the system evolves toward a situation of greater intrinsic probability. Thus, in any spontaneous
process, the change in entropy satisfies

∆S ≥ 0. (9.1)

It follows that if a stable equilibrium state has been attained [i.e., one in which no further spon-
taneous processes (other than random fluctuations) can take place] then this state is such that S
is maximized. In other words, it is the most probable state of the system, subject to the given
constraints. Thus, we can make the following statement:

For a thermally isolated system, the stable equilibrium state is such that

S = maximum.

Now, in a thermally isolated system, the first law of thermodynamics implies that

0 = Q = W + ∆E, (9.2)

or
W =

(
−∆E

)
. (9.3)

If the external parameters of the system (e.g., its volume) are kept fixed, so that no work is done
(i.e., W = 0), then

E = constant (9.4)

as S evolves toward its maximum value.
We can phrase the previous argument in more explicit statistical terms. Suppose that an isolated

system is described by a parameter y (or by several such parameters), but that its total energy is
constant. Let Ω(y) denote the number of microstates accessible to the system when this parameter
lies between y and y + δy (δy being some fixed small interval). The corresponding entropy of the
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system is S = k lnΩ. (See Section 5.6.) If the parameter y is free to vary then the principle of
equal a priori probabilities asserts that, in an equilibrium state, the probability, P(y), of finding the
system with the parameter between y and y + δy is given by

P(y) ∝ Ω(y) = exp
[
S (y)

k

]
. (9.5)

(See Section 3.3.) The previous expression shows explicitly that the most probable state is one
in which S attains a maximum value, and also allows us to determine the relative probability of
fluctuations about this state.

9.3 Equilibrium of Constant-Temperature System

A knowledge of the equilibrium conditions for an isolated system permits us to deduce similar
conditions for other situations of physical interest. For instance, much experimental work is per-
formed under conditions of constant temperature. Thus, it would be interesting to investigate the
equilibrium of some system, A, in thermal contact with a heat reservoir, A′, that is held at the
constant absolute temperature T0.

The combined system, A(0), consisting of the system A and the heat reservoir A′, is an isolated
system of the type discussed in the previous section. The entropy, S (0), of A(0) therefore satisfies
condition (9.1). In other words, in any spontaneous process,

∆S (0) ≥ 0. (9.6)

However, this condition can also be expressed in terms of quantities that only refer to the system
A. In fact,

∆S (0) = ∆S + ∆S ′, (9.7)

where ∆S is the entropy change of A, and ∆S ′ that of the reservoir. But, if A absorbs heat Q from
the reservoir A′ during the process then A′ absorbs heat (−Q), and suffers a corresponding entropy
change

∆S ′ =
(−Q)

T0
(9.8)

(because it remains in equilibrium at the constant temperature T0). Furthermore, the first law of
thermodynamics implies that

Q = ∆E +W, (9.9)

where ∆E is the change in internal energy of A, and W is the work done by A. Thus, Equation (9.7)
can be written

∆S (0) = ∆S − Q
T0
=

T0 ∆S − (∆E +W)
T0

=
∆
(
T0 S − E

)
−W

T0
, (9.10)

or
∆S (0) =

−∆F0 −W
T0

, (9.11)
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where use has been made of the fact that T0 is a constant. Here,

F0 ≡ E − T0 S , (9.12)

reduces to the Helmholtz free energy, F = E −T S , of system A, when the latter has a temperature,
T , equal to that of the heat reservoir, A′. Of course, in the general case in which A is not in
equilibrium with A′, the former system’s temperature is not necessarily equal to T0.

The fundamental condition (9.6) can be combined with Equation (9.11) to give

W ≤ (−∆F0) (9.13)

(assuming that T0 is positive, as is normally the case). This relation implies that the maximum
work that can be done by a system in contact with a heat reservoir is (−∆F0). (Incidentally, this is
the reason for the name “free energy” given to F.) The maximum work corresponds to the equality
sign in the preceding equation, and is obtained when the process used is quasi-static (so that A is
always in equilibrium with A′, and T = T0). Equation (9.13) should be compared to the rather
different relation (9.3) that pertains to an isolated system.

If the external parameters of system A are held constant then W = 0, and Equation (9.13) yields
the condition

∆F0 ≤ 0. (9.14)

This equation is analogous to Equation (9.1) for an isolated system. It implies that if a system is
in thermal contact with a heat reservoir then its Helmholtz free energy tends to decrease. Thus, we
arrive at the following statement:

If a system, whose external parameters are fixed, is in thermal contact with a heat
reservoir then the stable equilibrium state is such that

F0 = minimum.

The preceding statement can again be phrased in more explicit statistical terms. Suppose that
the external parameters of A are fixed, so that W = 0. Furthermore, let A be described by some
parameter y. The thermodynamic functions of A—namely, S and E—have the definite values
S (y1) and E(y1), respectively, when y has a given value y = y1. If the parameter changes to some
other value, y, then these functions change by the corresponding amounts ∆S = S (y) − S (y1) and
∆E = E(y)−E(y1) = Q. The entropy of the heat reservoir, A′, also changes because it absorbs heat.
The corresponding change in the total entropy of A(0) is given by Equation (9.11) (with W = 0):

∆S (0) = −∆F0

T0
. (9.15)

But, in an equilibrium state, the probability, P(y), that the parameter lies between y and y + δy is
proportional to the number of states, Ω (0)(y), accessible to the isolated total system, A(0), when the
parameter lies in this range. Thus, by analogy with Equation (9.5), we have

P(y) ∝ Ω (0)(y) = exp
[
S (0)(y)

k

]
. (9.16)
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However, from Equation (9.15),

S (0)(y) = S (0)(y1) − ∆F0

T0
= S (0)(y1) −

[
F0(y) − F0(y1)

T0

]
. (9.17)

Now, because y1 is just some arbitrary constant, the corresponding constant terms can be absorbed
into the constant of proportionality in Equation (9.16), which then becomes

P(y) ∝ exp
[
−F0(y)

k T0

]
. (9.18)

This equation shows explicitly that the most probable state is one in which F0 attains a minimum
value, and also allows us to determine the relative probability of fluctuations about this state.

9.4 Equilibrium of Constant-Temperature Constant-Pressure System

Another case of physical interest is that where a system, A, is maintained under conditions of
both constant temperature and constant pressure. This is a situation that occurs frequently in the
laboratory, where we might carry out an experiment in a thermostat at atmospheric pressure (say).
Therefore, let us suppose that A is in thermal contact with a heat reservoir, A′, that is held at the
constant temperature T0, and at the constant pressure p0. The system A can exchange heat with
the reservoir, A′, but the latter is so large that its temperature, T0, remains constant. Likewise, the
system A can change its volume, V , at the expense of that of the reservoir, A′, doing work on the
reservoir in the process. However, A′ is so large that its pressure, p0, remains unaffected by this
relatively small volume change.

The analysis of the equilibrium conditions for system A follows similar lines to the that in the
previous section. The entropy, S (0), of the combined system A(0) = A + A′ satisfies the condition
that in any spontaneous process

∆S (0) = ∆S + ∆S ′ ≥ 0. (9.19)

If A absorbs heat Q from A′ in this process then ∆S ′ = −Q/T0. Furthermore, the first law of
thermodynamics yields

Q = ∆E + p0 ∆V +W ∗, (9.20)

where p0 ∆V is the work done by A against the constant pressure, p0, of the reservoir, A′, and where
W ∗ denotes any other work done by A in the process. (For example, W ∗ might refer to electrical
work.) Thus, we can write

∆S (0) = ∆S − Q
T0
=

T0 ∆S − (∆E + p0 ∆V +W ∗)
T0

=
∆(T0 S − E − p0 V) −W ∗

T0
, (9.21)

or
∆S (0) =

−∆G0 −W ∗

T0
. (9.22)

Here, we have made use of the fact that T0 and p0 are constants. We have also introduced the
definition

G0 ≡ E − T0 S + p0 V, (9.23)
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where G0 becomes the Gibbs free energy, G = E − T S + p V , of system A when the temperature
and pressure of this system are both equal to those of the reservoir, A′.

The fundamental condition (9.19) can be combined with Equation (9.22) to give

W ∗ ≤ (−∆G0) (9.24)

(assuming that T0 is positive). This relation implies that the maximum work (other than the work
done on the pressure reservoir) that can be done by system A is (−∆G0). (Incidentally, this is the
reason that G is also called a “free energy”.) The maximum work corresponds to the equality sign
in the preceding equation, and is obtained when the process used is quasi-static (so that A is always
in equilibrium with A′, and T = T0, p = p0).

If the external parameters of system A (except its volume) are held constant then W ∗ = 0, and
Equation (9.24) yields the condition

∆G0 ≤ 0. (9.25)

Thus, we arrive at the following statement:

If a system is in contact with a reservoir at constant temperature and pressure then the
stable equilibrium state is such that

G0 = minimum.

The preceding statement can again be phrased in more explicit statistical terms. Suppose that
the external parameters of A (except its volume) are fixed, so that W ∗ = 0. Furthermore, let A be
described by some parameter y. If y changes from some standard value y1 then the corresponding
change in the total entropy of A(0) is

∆S (0) = −∆G0

T0
. (9.26)

But, in an equilibrium state, the probability, P(y), that the parameter lies between y and y + δy is
given by

P(y) ∝ exp
[
S (0)(y)

k

]
. (9.27)

Now, from Equation (9.26),

S (0)(y) = S (0)(y1) − ∆G0

T0
= S (0)(y1) −

[
G0(y) −G0(y1)

T0

]
. (9.28)

However, because y1 is just some arbitrary constant, the corresponding constant terms can be
absorbed into the constant of proportionality in Equation (9.27), which then becomes

P(y) ∝ exp
[
−G0(y)

k T0

]
. (9.29)

This equation shows explicitly that the most probable state is one in which G0 attains a minimum
value, and also allows us to determine the relative probability of fluctuations about this state.
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9.5 Stability of Single-Phase Substance

Consider a system in a single phase (e.g., a liquid or a solid). Let us focus attention on a small, but
macroscopic part, A, of this system. Here, A consists of a fixed number of particles, N 
 1. The
remainder of the system is, relatively, very large, and, therefore, acts like a reservoir held at some
constant temperature, T0, and constant pressure, p0. According to Equation (9.25), the condition
for stable equilibrium, applied to A, is

G0 ≡ E − T0 S + p0 V = minimum. (9.30)

Let the temperature, T , and the volume, V , be the two independent parameters that specify the
macrostate of A. Consider, first, a situation where V is fixed, but T is allowed to vary. Suppose
that the minimum of G0 occurs for T = T̃ , when G0 = Gmin. Expanding G0 about its minimum,
and writing ∆T = T − T̃ , we obtain

∆mG0 ≡ G0 −Gmin =

(
∂G0

∂T

)
V
∆T +

1
2

(
∂ 2G0

∂T 2

)
V

(∆T ) 2 + · · · . (9.31)

Here, all derivatives are evaluated at T = T̃ . Because G0 = Gmin is a stationary point (i.e., a
maximum or a minimum), ∆mG0 = 0 to first order in ∆T . In other words,(

∂G0

∂T

)
V
= 0 for T = T̃ . (9.32)

Furthermore, because G0 = Gm is a minimum, rather than a maximum, ∆mG0 ≥ 0 to second order
in ∆T . In other words, (

∂ 2G0

∂T 2

)
V
≥ 0 for T = T̃ . (9.33)

According to Equation (9.30), the condition, (9.32), that G0 be stationary yields(
∂G0

∂T

)
V
=

∂E
∂T


V

− T0

(
∂S
∂T

)
V
= 0. (9.34)

However, the fundamental thermodynamic relation

T dS = dE + p̄ dV (9.35)

implies that if V is fixed then

T
(
∂S
∂T

)
V
=

∂E
∂T


V

. (9.36)

Thus, Equation (9.34) becomes (
∂G0

∂T

)
V
=

(
1 − T0

T

) ∂E
∂T


V

= 0. (9.37)
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Recalling that the derivatives are evaluated at T = T̃ , we get

T̃ = T0. (9.38)

Thus, we arrive at the rather obvious conclusion that a necessary condition for equilibrium is that
the temperature of the subsystem A be the same as that of the surrounding medium.

Equations (9.33) and (9.37) imply that(
∂ 2G0

∂T 2

)
V
=

T0

T 2

∂E
∂T


V

+

(
1 − T0

T

) ∂ 2E
∂T 2


V

≥ 0. (9.39)

Recalling that the derivatives are evaluated at T = T̃ , and that T̃ = T0, the second term on the
right-hand side of the previous equation vanishes, and we obtain∂E

∂T


V

≥ 0. (9.40)

However, this derivative is simply the heat capacity, CV , at constant volume. Thus, we deduce that
a fundamental criterion for the stability of any phase is

CV ≥ 0. (9.41)

The previous condition is a particular example of a very general rule, known as Le Chátelier’s
principle, which states that

If a system is in a stable equilibrium then any spontaneous change of its parameters
must give rise to processes that tend to restore the system to equilibrium.

To show how this principle applies to the present case, suppose that the temperature, T , of the
subsystem A has increased above that of its surroundings, A′, as a result of a spontaneous fluctu-
ation. The process brought into play is the spontaneous flow of heat from system A, at the higher
temperature, to its surroundings A′, which brings about a decrease in the energy, E, of A (i.e.,
∆E < 0). By Le Chátelier’s principle, this energy decrease must act to decrease the temperature
of A (i.e., ∆T < 0), so as to restore A to its equilibrium state (in which its temperature is the same
as its surroundings). Hence, it follows that ∆E and ∆T have the same sign, so that ∆E/∆T > 0, in
agreement with Equation (9.40).

Suppose, now, that the temperature of subsystem A is fixed at T = T0, but that its volume, V , is
allowed to vary. We can write

∆mG0 =

(
∂G0

∂V

)
T
∆V +

1
2

(
∂ 2G0

∂V 2

)
T

(∆V) 2 + · · · , (9.42)

where ∆V = V − Ṽ , and the expansion is about the volume V = Ṽ at which G0 attains its minimum
value. The condition that G0 is stationary yields(

∂G0

∂V

)
T
= 0. (9.43)
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The condition that the stationary point is a minimum gives(
∂ 2G0

∂V 2

)
T
≥ 0. (9.44)

Making use of Equation (9.30), we get(
∂G0

∂V

)
T
=

∂E
∂V


T

− T0

(
∂S
∂V

)
T
+ p0. (9.45)

However, Equation (9.35) implies that

T
(
∂S
∂V

)
T
=

∂E
∂V


T

+ p̄. (9.46)

Hence, (
∂G0

∂V

)
T
= T

(
∂S
∂V

)
T
− p̄ − T0

(
∂S
∂V

)
T
+ p0, (9.47)

or (
∂G0

∂V

)
T
= −p̄ + p0, (9.48)

because T = T0. Thus, the condition (9.43) yields

p̄ = p0. (9.49)

This rather obvious result states that in equilibrium the pressure of subsystem A must be equal to
that of the surrounding medium.

Equations (9.44) and (9.48) imply that(
∂ 2G0

∂V 2

)
T
= −

(
∂p̄
∂V

)
T
≥ 0. (9.50)

When expressed in terms of the isothermal compressibility,

κT = − 1
V

(
∂V
∂p̄

)
T
, (9.51)

the stability criterion (9.50) is equivalent to

κT ≥ 0. (9.52)

To show how the preceding stability condition is consistent with Le Chátelier’s principle, sup-
pose that the volume of subsystem A has increased by an amount ∆V > 0, as a result of a spon-
taneous fluctuation. The pressure, p̄, of A must then decrease below that of its surroundings (i.e.,
∆p̄ < 0) in order to ensure that the net force exerted on A by its surroundings is such as to reduce
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the volume of A back towards its equilibrium value. In other words, ∆V and ∆p̄ must have opposite
signs, implying that κT > 0.

The preceding discussion allows us to characterize the spontaneous volume fluctuations of the
small subsystem A. The most probable situation is that where V takes the value Ṽ that minimizes
G0, so that G0(Ṽ) = Gmin. Let P(V) dV denote the probability that the volume of A lies between V
and V + dV . According to Equation (9.29),

P(V) dV ∝ exp
[
−G0(V)

k T0

]
dV. (9.53)

However, when ∆V = V − Ṽ is small, the expansion (9.42) is applicable. By virtue of Equa-
tions (9.43), (9.50), and (9.51), the expansion yields

G0(V) = G0(Ṽ) − 1
2

(
∂p̄
∂V

)
T

(∆V) 2 = Gmin − (∆V) 2

2 Ṽ κT
. (9.54)

Thus, Equation (9.53) becomes

P(V) dV = B exp
[
− (V − Ṽ) 2

2 k T0 κT Ṽ

]
dV, (9.55)

where we have absorbed Gmin into the constant of proportionality, B. Of course, B can be deter-
mined via the requirement that the integral of P(V) dV over all possible values of the volume, V ,
be equal to unity.

The probability distribution (9.55) is a Gaussian whose maximum lies at V = Ṽ . Thus, Ṽ is
equal to the mean volume, V . Moreover, the standard deviation of the spontaneous fluctuations of
V about its mean value is

∆∗V =
(
k T0 κT V

)1/2
. (9.56)

(See Section 2.9.) The fluctuations in V imply corresponding fluctuations in the number of particles
per unit volume, n = N/V , (and, hence, in the mean density) of the subsystem A. The fluctuations
in n are centered on the mean value n̄ = N/V . For relatively small fluctuations, ∆n ≡ n − n̄ �
−(N/V

2
)∆V = −(n̄/V)∆V . Hence,

∆∗n
n̄
=
∆∗V

V
=

(
k T0 κT

V

)1/2
. (9.57)

Note that the relative magnitudes of the density and volume fluctuations are inversely proportional
to the square-root of the volume, V, under consideration.

An interesting situation arises when (
∂p̄
∂V

)
T
→ 0. (9.58)

In this limit, κT → ∞, and the density fluctuations become very large. [They do not, however,
become infinite, because the neglect of third-order, and higher, terms in the expansion (9.42) is no
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longer justified.] The condition (∂p̄/∂V)T = 0 defines the so-called critical point of the substance,
at which the distinction between its liquid and gas phases disappears. (See Section 9.10.) The
very large density fluctuations at the critical point lead to strong scattering of light. As a result, a
substance that is ordinarily transparent will assume a milky-white appearance at its critical point
(e.g., CO2 when it approaches its critical point at 304 K and 73 atmospheres). This interesting
phenomenon is called critical-point opalecance.

9.6 Equilibrium Between Phases

Consider a system that consists of two phases, which we shall denote by 1 and 2. For example,
these might be solid and liquid, or liquid and gas. Suppose that the system is in equilibrium with
a reservoir at the constant temperature T , and the constant pressure p, so that the system always
has the temperature T and the mean pressure p. However, the system can exist in either one of its
two phases, or some mixture of the two. Let us begin by finding the conditions that allow the two
phases to coexist in equilibrium with one another.

In accordance with the discussion in Section 9.4, the equilibrium condition is that the Gibbs
free energy, G, of the system is a minimum:

G = E − T S + p V = minimum. (9.59)

Let νi be the number of moles of phase i present in the system, and let gi(T, p) be the Gibbs free
energy per mole of phase i at the temperature T and the pressure p. It follows that

G = ν1 g1 + ν2 g2. (9.60)

Furthermore, the conservation of matter implies that the total number of moles, ν, of the substance
remains constant:

ν1 + ν2 = ν = constant. (9.61)

Thus, we can take ν1 as the one independent parameter that is free to vary. In equilibrium, Equa-
tion (9.59) requires that G be stationary for small variations in ν1. In other words,

dG = g1 dν1 + g2 dν2 = (g1 − g2) dν1 = 0, (9.62)

because dν2 = −dν1, as a consequence of Equation (9.61). Hence, a necessary condition for
equilibrium between the two phases is

g1 = g2. (9.63)

Clearly, when this condition is satisfied then the transfer of a mole of substance from one phase to
another does not change the overall Gibbs free energy, G, of the system. Hence, G is stationary,
as required. Incidentally, the condition that G is a minimum (rather than a maximum) is easily
shown to reduce to the requirement that the heat capacities and isothermal compressibilities of
both phases be positive, so that each phase is stable to temperature and volume fluctuations.

Now, for a given temperature and pressure, g1(T, p) is a well-defined function characteristic
of phase 1. Likewise, g2(T, p) is a well-defined function characteristic of phase 2. If T and p are
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g1 > g2

T

g1 < g2
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g1 = g2
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Phase 2Phase 1

Figure 9.1: Pressure-temperature plot showing the domains of relative stability of two phases, and
the phase-equilibrium line.

such that g1 < g2 then the minimum value of G in Equation (9.59) is achieved when all ν moles
of the substance transform into phase 1, so that G = ν g1. In this case, phase 1 is the stable one.
On the other hand, if g1 > g2 then the minimum value of G is achieved when all ν moles of the
substance transform into phase 2, so that G = ν g2. In this case, phase 2 is the stable one. Finally,
if g1 = g2 then the condition (9.59) is automatically satisfied, and any amount, ν1, of phase 1 can
coexist with the remaining amount, ν2 = ν−ν1, of phase 2. The locus of the points in the T -p plane
where g1 = g2 then represents a phase-equilibrium line along which the two phases can coexist in
equilibrium. This line divides the T -p plane into two regions. The first corresponds to g1 < g2, so
that phase 1 is stable. The second corresponds to g1 > g2, so that phase 2 is stable. See Figure 9.1.

9.7 Clausius-Clapeyron Equation

It is possible to characterize the phase-equilibrium line in terms of a differential equation. Referring
to Figure 9.1, consider a point, such as A, that lies on the phase-equilibrium line, and corresponds
to the temperature T and the pressure p. The condition (9.63) implies that

g1(T, p) = g2(T, p). (9.64)

Now, consider a neighboring point, such as B, that also lies on the phase-equilibrium line, and
corresponds to the temperature T + dT and the pressure p + dp. The condition (9.63) yields

g1(T + dT, p + dp) = g2(T + dT, p + dp). (9.65)

Taking the difference between the previous two equations, we obtain

dg1 = dg2, (9.66)
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where

dgi =

(
∂gi

∂T

)
p

dT +
(
∂gi

∂p

)
T

dp (9.67)

is the change in Gibbs free energy per mole of phase i in going from point A to point B.
The change, dg, for each phase can also be obtained from the fundamental thermodynamic

relation
dε = T ds − p dv. (9.68)

Here, ε refers to molar energy (i.e., energy per mole), s to molar entropy, and v to molar volume.
Thus,

dg ≡ d(ε − T s + p v) = −s dT + v dp. (9.69)

Hence, Equation (9.66) implies that

−s1 dT + v1 dp = −s2 dT + v2 dp, (9.70)

or
(s2 − s1) dT = (v2 − v2) dp, (9.71)

which reduces to
dp
dT
=
∆s
∆v
, (9.72)

where ∆s ≡ s2 − s1 and ∆v ≡ v2 − v1. This result is known as the Clausius-Clapeyron equation.
Consider any point on the phase-equilibrium line at temperature T and pressure p. The Clausius-

Clapeyron equation then relates the local slope of the line to the molar entropy change, ∆s, and the
molar volume change, ∆v, of the substance in crossing the line at this point. Note, incidentally, that
the quantities on the right-hand side of the Clausius-Clapeyron equation do not necessarily need to
refer to one mole of the substance. In fact, both numerator and denominator can be multiplied by
the same number of moles, leaving dp/dT unchanged.

Because there is an entropy change associated with a phase transformation, heat must also be
absorbed during such a process. The latent heat of transformation, L12, is defined as the heat
absorbed when a given amount of phase 1 is transformed to phase 2. Because this process takes
place at the constant temperature T , the corresponding entropy change is

∆S = S 2 − S 1 =
L12

T
, (9.73)

where L12 is the latent heat at this temperature. Thus, the Clausius-Clapeyron equation, (9.72), can
also be written

dp
dT
=
∆S
∆V
=

L12

T ∆V
. (9.74)

9.8 Phase Diagrams

Simple substances are capable of existing in three different types of phase: namely, solid, liquid,
and gas. (There may actually be several solid phases with different crystal structures.) In the T -p
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Figure 9.2: Phase diagram for a simple substance. Point A is the triple point, and point B is the
critical point.

plane, the phase-equilibrium lines separating these phases typically appear as indicated in Fig-
ure 9.2. These lines separate solid from liquid, liquid from gas, and solid from gas. The gas phase
is sometimes called the vapor phase. The transformation from solid to liquid is called melting, that
from liquid to gas is called vaporization, and that from solid to gas is called sublimation. The three
phase-equilibrium lines meet at one common point, A, known as the triple point. At this unique
temperature and pressure, arbitrary amounts of all three phases can coexist in equilibrium. (This is
the property that makes the triple point of water so suitable as a readily reproducible temperature
standard.) At point B, the so-called critical point, the liquid-gas equilibrium line ends. The volume
change, ∆V , between the liquid and gas phases is zero at this point. Beyond point B, there is no
further phase transformation, because there exists a single fluid phase (i.e., the very dense gas has
become indistinguishable from the liquid.)

In going from solid (s) to liquid (l), the entropy (or degree of disorder) of the substance almost
always increases. Thus, the corresponding latent heat, Lsl, is positive, and heat is absorbed in
the transformation. In most cases, the solid expands upon melting, so ∆V > 0. In this case, the
Clausius-Clapeyron equation, (9.74), asserts that the slope of the solid-liquid equilibrium line (i.e.,
the melting curve) is positive, as shown in the diagram. However, there exist some substances,
such as water, that contract upon melting, so that ∆V < 0. For these substances, the slope of the
melting curve is negative.

9.9 Vapor Pressure

The Clausius-Clapeyron equation can be used to derive an approximate expression for the pressure
of the vapor in equilibrium with the liquid (or solid) at some temperature T . This pressure is called
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the vapor pressure of the liquid (or solid) at this temperature. According to Equation (9.74),

dp
dT
=

l
T ∆v

, (9.75)

where l = l12 is the latent heat per mole, and v the molar volume. Let 1 refer to the liquid (or solid)
phase, and 2 to the vapor. It follows that

∆v = v2 − v1 � v2, (9.76)

because the vapor is much less dense than the liquid, so that v2 
 v1. Let us also assume that the
vapor can be adequately treated as an ideal gas, so that its equation of state is written

p v2 = R T. (9.77)

Thus, ∆v � R T/p, and Equation (9.75) becomes

1
p

dp
dT
=

1
R T 2 . (9.78)

Assuming that l is approximately temperature independent, we can integrate the previous equation
to give

ln p = − l
R T
+ constant, (9.79)

which implies that

p = p0 exp
(
− l

R T

)
, (9.80)

where p0 is some constant. This result shows that the vapor pressure, p, is a very rapidly increasing
function of the temperature, T .

9.10 Phase Transformations in Van der Waals Fluid

Consider a so-called van der Waals fluid whose equation of state takes the form(
p +

a
v 2

)
(v − b) = R T, (9.81)

where a > 0, b > 0 are constants, and v is the molar volume. (See Sections 6.15 and 8.11.) It is
helpful to write this equation of state in the reduced form

p′ =
8
3

T ′

v′ − 1/3
− 3
v′ 2
, (9.82)

where p′ = p/pc, T ′ = T ′/Tc, and v′ = v/vc. Here, the critical pressure, temperature and molar
volume are pc = a/(27 b 2), Tc = 8 a/(27 R b), and vc = 3 b, respectively. (See Section 6.15.)

Figure 9.3 shows the isotherms of the van der Waals equation of state plotted in the v′-p′ plane.
It can be seen that, for temperatures that exceed the critical temperature (i.e., T ′ > 1), reducing the
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Figure 9.3: Isotherms of the van der Waals equation of state. The thick curve shows the critical
isotherm, T = Tc, which passes through the so-called critical point, v = vc, p = pc, at which the
isotherm has a point of inflection.

molar volume of the fluid causes its pressure to rise monotonically, eventually becoming infinite
when v′ = 1/3 (i.e., when the molecules are closely packed). On the other hand, for temperatures
less than the critical temperature (i.e., T ′ < 1), as v′ is decreased the pressure rises, falls, and then
rises again, which seems to imply that, for some molar volumes, compressing the fluid can cause
its pressure to decrease. However, according to the analysis of Section 9.5, if a phase is such that
compressing it causes its pressure to decrease (i.e., if its isothermal compressibility is negative)
then the phase is unstable to density fluctuations. Thus, below the critical temperature, the stable
states on a given isotherm are divided into two groups. The first group is characterized by relatively
small molar volumes—these are liquid states. The second group is characterized by relatively large
molar volumes—these are gas states. The liquid and gas states are separated by a set of unstable
states. Above the critical temperature, the distinct liquid and gas states cease to exist—there is
only a single stable fluid state. Consider the region of the v′-p′ plane in which the states predicted
by Equation (9.82) are unstable. It turns out that our analysis has broken down here because we
assumed the existence of a single phase, whereas, in fact, in this region of the v′-p′ plane, there
exists a stable mixture of liquid and gas phases in equilibrium with one another. Let us investigate
further.

At a given temperature and pressure, the true equilibrium state of a system is that which mini-
mizes the Gibbs free energy. (See Section 9.4.) For the case of a van der Waals fluid,

G
νR Tc

= −T ′ ln(v′ − 1/3) +
T ′

3 v′ − 1
− 9

4 v′
+ f (T ′), (9.83)

where f (T ′) is an unimportant function of the reduced temperature. (See Exercise 8.9.) In fact,
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Figure 9.4: The reduced Gibbs free energy as a function of pressure for a van der Waals fluid at
T ′ = 0.9. The corresponding isotherm is shown on the right. States in the range 2-3-4-5-6 are
unstable.

defining g(v′, T ′) = G/(νR Tc) − f (T ′), we can write

g = −T ′ ln(v′ − 1/3) +
T ′

3 v′ − 1
− 9

4 v′
. (9.84)

Figure 9.4 shows g plotted as a function of p′ for T ′ = 0.9. Also shown is the corresponding
isotherm in the v′-p′ plane. Although the van der Waals equation of state associates some pressures
with more than one molar volume, the thermodynamically stable state is that with the lowest Gibbs
free energy. Thus, the triangular loop in the graph of g versus p′ (points 2-3-4-5-6) corresponds
to unstable states. As the pressure is gradually increased, the system will go straight from point 2
to point 6, with an abrupt reduction in molar volume. Of course, this corresponds to a gas-liquid
phase transition. At intermediate molar volumes, the thermodynamically stable state is a mixture
of gaseous and liquid phases at the transition pressure, as illustrated by the straight-line in the v′-p′

graph. The curved portion of the isotherm that is cut off by this straight-line correctly indicates
what the allowed states would be if the fluid were homogeneous. However, these homogeneous
states are unstable, because there is always another mixed state at the same pressure that possesses
a lower Gibbs free energy.

The pressure at the phase transition can easily be determined from the graph of g versus p′.
However, it is also possible to determine this pressure directly from the v′-p′ isotherm. Note that
the net change in G in going around the triangular loop 2-3-4-5-6 in Figure 9.4 is zero. Hence,

0 =
∫

loop
dG =

∫
loop

(
∂G
∂P

)
T
=

∫
loop

V dP, (9.85)
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Figure 9.5: Complete v-p phase diagram predicted by the van der Waals model. The isotherms are
for T/Tc ranging from 0.5 to 1.5 in increments of 0.05. The heavy curve shows the critical isotherm
T = Tc. In the region in which the isotherms are horizontal, the stable state is a combination of
liquid and gas phases.

where use has been made of Equation (6.116). It follows that

∫
loop

v′ dp′ = 0. (9.86)

In other words, the straight-line in the right-hand panel of Figure 9.4 must be drawn in such a
manner that the area enclosed between it and the curve 6-5-4 is equal to that enclosed between it
and the curve 4-3-2. Drawing the straight-line so as to enclose equal areas in this manner is known
as the Maxwell construction, after James Clerk Maxwell.

Repeating the Maxwell construction for a variety of temperatures yields the phase diagram
shown in Figure 9.5. [See J. Lekner, Am. J. Phys. 50, 161 (1982) for a practical method of im-
plementing the Maxwell construction analytically. See, also, Exercise 9.7.] For each temperature,
there is a well-defined pressure, known as the vapor pressure, at which the liquid-gas transforma-
tion takes place. Plotting this pressure versus the temperature yields the phase diagram shown in
Figure 9.6. Note that the liquid-gas phase boundary disappears at the critical temperature (T = Tc),
because there is no phase transformation above this temperature. The point at which the phase
boundary disappears is called the critical point. The corresponding temperature, pressure, and
volume are known as the critical temperature, pressure, and volume, respectively. At the critical
point, the properties of the liquid and gas phases become identical.

Consider a phase transformation at some temperature T < Tc in which the gaseous phase has
the molar volume vg, whereas the liquid phase has the molar volume vl < vg. Now, the molar
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Figure 9.6: Complete T -p phase diagram predicted by the van der Waals model.

entropy of a van der Waals gas can be written

s = R ln(v′ − 1/3) + g(T ′), (9.87)

where g(T ′) is an unimportant function of the reduced temperature. (See Exercise 8.9.) Thus, the
molar entropy increase associated with a liquid-gas phase transition is

sg − sl = R ln
(
v′g − 1/3

v′l − 1/3

)
, (9.88)

where v′g = vg/vc and v′l = vl/vc. It follows from Equation (9.73) that the molar latent heat of
vaporization of a van der Waals fluid takes the form

llg

R Tc
= T ′ ln

(
v′g − 1/3

v′l − 1/3

)
. (9.89)

Figure 9.7 shows the latent heat of vaporization of a van der Waals fluid plotted as a function
of the temperature. It can be seen that the latent heat drops abruptly to zero as the temperature
exceeds the critical temperature. Note the great similarity between this figure and Figure 7.10,
which illustrates the variation of the spontaneous magnetization of a ferromagnet with temperature,
according to mean-field theory. This similarity is not surprising, because it turns out that the
simplifying assumptions that were made during the derivation of the van der Waals equation of
state in Section 8.11 amount to a form of mean-field theory.

Exercises

9.1 Consider a relatively small region of a homogeneous substance, containing N 
 1 particles,
that is in equilibrium with the remainder of the substance. The region is characterized by a
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Figure 9.7: Molar latent heat of vaporization of a van der Waals fluid as a function of the tempera-
ture.

volume, V , and a temperature, T .

(a) Show that the properly normalized probability that the volume lies between V and
V + dV , and the temperature lies between T and T + dT , is

P(V, T ) dV dT =
1

2π ∆∗V ∆∗T
exp
−(V − V) 2

2 (∆∗V) 2

 exp
−(T − T ) 2

2 (∆∗T ) 2

 dV dT,

where

∆∗V =
(
k T κT V

)1/2
,

∆∗T =

k T
2

CV


1/2

.

Here, the mean temperature, T , is the same as that of the remainder of the substance,
whereas the mean volume, V , is such that when T = T the pressure of the region
matches that of the surrounding substance.

(b) Hence, deduce that

〈(V − V) (T − T )〉 = 0.

In other words, the volume and temperature fluctuations are uncorrelated.



246 9.10. Phase Transformations in Van der Waals Fluid

(c) Show that for the case of a monatomic ideal gas

∆∗V

V
=

(
1
N

)1/2
,

∆∗T

T
=

(
2

3 N

)1/2
,

∆∗p
p̄
=

(
5

3 N

)1/2
,

where p is the pressure of the region. Furthermore, demonstrate that

〈(p − p̄) (V − V)〉
p̄ V

= − 1
N
,

〈(p − p̄) (T − T )〉
p̄ T

=
2

3 N
.

9.2 A substance of molecular weight µ has its triple point at the absolute temperature T0 and
pressure p0. At this point, the mass densities of the solid and liquid phases are ρs and ρl,
respectively, while the vapor phase can be approximated as a dilute ideal gas. If, at the
triple point, the slope of the melting curve is (dp/dT )m, and that of the liquid vaporization
curve is (dp/dT )v, show that the slope of the sublimation curve can be written(

dp
dT

)
s
=
µ p0

R T0

(
ρs − ρl

ρs ρl

) (
dp
dT

)
m
+

(
dp
dT

)
v

.

9.3 The vapor pressure of solid ammonia (in millimeters of mercury) is given by ln p = 23.02−
3754/T , and that of liquid ammonia by ln p = 19.48−3063/T . Here, T is in degrees kelvin.

(a) Deduce that the triple point of ammonia occurs at 195.2 K.

(b) Show that, at the triple point, the latent heats of sublimation, vaporization, and melting
of ammonia are 31.22 kJ/mol, 25.47 kJ/mol, and 5.75 kJ/mol, respectively.

9.4 Water boils when its vapor pressure is equal to that of the atmosphere. The boiling point
of pure water at ground level is 100◦ C. Moreover, the latent heat of vaporization at this
temperature is 40.66 kJ/mol. Show that the boiling point of water decreases approximately
linearly with increasing altitude such that

Tb(z) � 100 − z
295.0

,

where z measures altitude above ground level (in meters), and Tb(z) is the boiling point
in degrees centigrade at this altitude. In other words, the boiling point of pure water is
depressed by about 3.4◦ C per kilometer increase in altitude.
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9.5 The relative humidity of air is defined as the ratio of the partial pressure of water vapor
to the equilibrium vapor pressure at the ambient temperature. The dew point is defined as
the temperature at which the relative humidity becomes 100%. Show that if the relative
humidity of air at (absolute) temperature T is h(T ) then the dew point is given by

Td � T − R T 2

l
ln
[

1
h(T )

]
.

Here, R is the ideal gas constant, and l the molar latent heat of vaporization of water. The
molar latent heat of water at 25◦ C is 43.99 kJ/mol. Suppose that air at 25◦ C has a relative
humidity of 90%. Estimate the dew point. Suppose that the relative humidity is 40%.
Estimate the dew point.

9.6 When a rising air mass in the atmosphere becomes saturated (i.e., attains 100% relative
humidity), condensing water droplets give up energy, thereby slowing the adiabatic cooling
process.

(a) Use the first law of thermodynamics to show that, as condensation forms during adi-
abatic expansion, the temperature of the air mass changes by

dT =
2
7

T
p

dp − 2
7

l
R

dνw
dν

,

where νw is the number of moles of water vapor, ν the total number of moles, and l
the molar latent heat of vaporization of water. Here, we have assumed that γ = 7/5
for air.

(b) Assuming that the air is always saturated during this process, show that

d
(
νw
ν

)
=

pv(T )
p

l
R T

dT
T
− pv

p
dp
p
,

where pv(T ) is the vapor pressure of water at temperature T , and p is the pressure of
the atmosphere.

(c) Use the equation of hydrostatic equilibrium of the atmosphere,

dp
p
= − µ g

R T
dz,

where z represents altitude, µ is the molecular weight of air, and g the acceleration
due to gravity, to obtain the following expression so-called wet adiabatic lapse-rate
of the atmosphere:

dT
dz
= −

(
2
7
µ g

R

)
1 + (pv/p) (l/R T )

1 + (2/7) (pv/p) (l/R T ) 2 .

Of course, dT/dz = −(2/7) (µ g/R) is the dry adiabatic lapse-rate derived in Sec-
tion 6.8.
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(d) At 25◦ C, the vapor pressure of water is 0.0317 bar, and the molar latent heat of va-
porization is 43.99 kJ/mol. At 0◦ C, the vapor pressure of water is 0.00611 bar, and
the molar latent heat of vaporization is 51.07 kJ/mol. What is the ratio of the wet
adiabatic lapse-rate to the dry adiabatic lapse-rate at these two temperatures?

9.7 Consider a phase transition in a van der Waals fluid whose reduced equation of state is

p′ =
8
3

T ′

v′ − 1/3
− 3
v′ 2
.

Let T ′ and p′v be the constant temperature and reduced vapor pressure at the transition,
respectively, and let v′l and v′g be the reduced molar volumes of the liquid and gas phases,
respectively. The fact that the phase transition takes place at constant temperature and
pressure implies that

p′v =
8
3

T ′

v′l − 1/3
− 3
v′ 2l

=
8
3

T ′

v′g − 1/3
− 3
v′ 2g
.

Moreover, the Maxwell construction yields∫ g

l
v′ dp′ = 0.

(a) Demonstrate that the Maxwell construction implies that

p′v (v′g − v′l) =
8
3

T ′ ln
(
v′g − 1/3

v′l − 1/3

)
+ 3
(

1
v′g
− 1
v′l

)
.

(b) Eliminate T ′ and p′v from the previous equations to obtain the transcendental equation

ln
(
v′g − 1/3

v′l − 1/3

)
=

(
v′g − v′l
v′g + v′l

) (
v′g

v′g − 1/3
+

v′l
v′l − 1/3

)

that relates the molar volumes of the liquid and gas phases.

(c) Writing x+ = 1/(3 v′l − 1) and x− = 1/(3 v′g − 1), show that the previous equation
reduces to

ln
(

x+
x−

)
=

(x+ − x−) (x+ + x− + 2)
(x+ + x− + 2 x+ x−)

.

(d) By setting both sides of the previous equation equal to y, show that it can be solved
parametrically to give

x+ = e+y/2 f (y/2),

x− = e−y/2 f (y/2),

where
f (x) =

x cosh x − sinh x
sinh x cosh x − x

.
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(e) Furthermore, demonstrate that

T ′ =
27
4

f (c + f )
g 2 ,

p′v =
27 f 2 (1 − f 2)

g 2 ,

v′g − v′l =
2 s
3 f

,

sg − sl

R
= y,

where

f = f (y/2),

c = cosh(y/2),

s = sinh(y/2),

g = 1 + 2 c f + f 2.

Here, sg and sl denote the molar entropies of the gas and liquid phases, respectively.

(f) Finally, by considering the limits y
 1 and y� 1, show that

p′v = 27 exp
(
− 27

8 T ′

)
,

llg

R Tc
=

27
4
,

in the limit T ′ � 1, and

v′g − v′l = 4 (1 − T ′)1/2,

llg

R Tc
= 6 (1 − T ′)1/2,

in the limit T ′ → 1. Here, llg is the molar latent heat of vaporization.
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A Physical Constants

Planck constant : h = 6.62606957 × 10−34 J s

Reduced Planck constant : � = h/(2π) = 1.05457173 × 10−34 J s

Electron mass : me = 9.10938291 × 10−31 kg

Electron charge (magnitude) : e = 1.60217657 × 10−19 C

Proton mass : mp = 1.67262178 × 10−27 kg

Electric permittivity of free space : ε0 = 8.85418782 × 10−12 F m−1

Magnetic permeability of free space : µ0 = 4π × 10−7 H m−1

Speed of light in vacuum : c = 2.99792458 × 10 8 m s−1

Bohr magneton : µB = 9.27400968 × 10−24 J T−1

Molar ideal gas constant : R = 8.3144621 J K−1

Boltzmann constant : k = 1.3806488 × 10−23 J K−1

Avogadro number : NA = R/k = 6.0221409 × 10 23

Absolute zero : T0 = 273.15◦ C

Stefan-Boltzmann constant : σ = 5.670367 × 10−8 W m−2 K−4

Gravitational constant : G = 6.67408 × 10−11 m 3 kg−1 s−2
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B Classical Mechanics

B.1 Generalized Coordinates

Let the qi, for i = 1,F , be a set of coordinates that uniquely specifies the instantaneous con-
figuration of some classical dynamical system. Here, it is assumed that each of the qi can vary
independently. The qi might be Cartesian coordinates, or polar coordinates, or angles, or some
mixture of all three types of coordinate, and are, therefore, termed generalized coordinates. A dy-
namical system whose instantaneous configuration is fully specified by F independent generalized
coordinates is said to have F degrees of freedom. For instance, the instantaneous position of a par-
ticle moving freely in three dimensions is completely specified by its three Cartesian coordinates,
x, y, and z. Moreover, these coordinates are clearly independent of one another. Hence, a dynam-
ical system consisting of a single particle moving freely in three dimensions has three degrees of
freedom. If there are two freely moving particles then the system has six degrees of freedom, and
so on.

Suppose that we have a dynamical system consisting of N particles moving freely in three
dimensions. This is an F = 3N degree of freedom system whose instantaneous configuration can
be specified by F Cartesian coordinates. Let us denote these coordinates the x j, for j = 1,F . Thus,
x1, x2, x3 are the Cartesian coordinates of the first particle, x4, x5, x6 the Cartesian coordinates of
the second particle, et cetera. Suppose that the instantaneous configuration of the system can also
be specified by F generalized coordinates, which we shall denote the qi, for i = 1,F . Thus, the qi

might be the spherical coordinates of the particles. In general, we expect the x j to be functions of
the qi. In other words,

x j = x j(q1, q2, · · · , qF , t), (B.1)

for j = 1,F . Here, for the sake of generality, we have included the possibility that the functional
relationship between the x j and the qi might depend on the time, t, explicitly. This would be the
case if the dynamical system were subject to time-varying constraints. For instance, a system
consisting of a particle constrained to move on a surface that is itself moving. Finally, by the chain
rule, the variation of the x j caused by a variation of the qi (at constant t) is given by

δx j =
∑

i=1,F

∂x j

∂qi
δqi, (B.2)

for j = 1,F .

B.2 Generalized Forces

The work done on the dynamical system when its Cartesian coordinates change by δx j is simply

δW =
∑
j=1,F

f j δx j (B.3)
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Here, the f j are the Cartesian components of the forces acting on the various particles making up
the system. Thus, f1, f2, f3 are the components of the force acting on the first particle, f4, f5, f6 the
components of the force acting on the second particle, et cetera. Using Equation (B.2), we can also
write

δW =
∑
j=1,F

f j

∑
i=1,F

∂x j

∂qi
δqi. (B.4)

The previous expression can be rearranged to give

δW =
∑

i=1,F
Qi δqi, (B.5)

where

Qi =
∑
j=1,F

f j
∂x j

∂qi
. (B.6)

Here, the Qi are termed generalized forces. More explicitly, Qi is termed the force conjugate
to the coordinate qi. Note that a generalized force does not necessarily have the dimensions of
force. However, the product Qi qi must have the dimensions of work. Thus, if a particular qi is a
Cartesian coordinate then the associated Qi is a force. Conversely, if a particular qi is an angle then
the associated Qi is a torque.

Suppose that the dynamical system in question is energy conserving. It follows that

f j = −∂U
∂x j

, (B.7)

for j = 1,F , where U(x1, x2, · · · , xF , t) is the system’s potential energy. Hence, according to
Equation (B.6),

Qi = −
∑
j=1,F

∂U
∂x j

∂x j

∂qi
= −∂U

∂qi
, (B.8)

for i = 1,F .

B.3 Lagrange’s Equation

The Cartesian equations of motion of our dynamical system take the form

mj ẍ j = f j, (B.9)

for j = 1,F , where m1,m2,m3 are each equal to the mass of the first particle, m4,m5,m6 are each
equal to the mass of the second particle, et cetera. Furthermore, the kinetic energy of the system
can be written

K =
1
2

∑
j=1,F

mj ẋ 2
j . (B.10)
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Now, because x j = x j(q1, q2, · · · , qF , t), we can write

ẋ j =
∑

i=1,F

∂x j

∂qi
q̇i +

∂x j

∂t
, (B.11)

for j = 1,F . Hence, it follows that ẋ j = ẋ j(q̇1, q̇2, · · · , q̇F , q1, q2, · · · , qF , t). According to the
previous equation,

∂ẋ j

∂q̇i
=
∂x j

∂qi
, (B.12)

where we are treating the q̇i and the qi as independent variables.
Multiplying Equation (B.12) by ẋ j, and then differentiating with respect to time, we obtain

d
dt

(
ẋ j
∂ẋ j

∂q̇i

)
=

d
dt

(
ẋ j
∂x j

∂qi

)
= ẍ j

∂x j

∂qi
+ ẋ j

d
dt

(
∂x j

∂qi

)
. (B.13)

Now,
d
dt

(
∂x j

∂qi

)
=
∑

k=1,F

∂ 2x j

∂qi ∂qk
q̇k +

∂ 2x j

∂qi ∂t
. (B.14)

Furthermore,
1
2

∂ẋ 2
j

∂q̇i
= ẋ j

∂ẋ j

∂q̇i
, (B.15)

and

1
2

∂ẋ 2
j

∂qi
= ẋ j

∂ẋ j

∂qi
= ẋ j

∂

∂qi

∑
k=1,F

∂x j

∂qk
q̇k +

∂x j

∂t


= ẋ j

∑
k=1,F

∂ 2x j

∂qi ∂qk
q̇k +

∂ 2x j

∂qi ∂t


= ẋ j

d
dt

(
∂x j

∂qi

)
, (B.16)

where use has been made of Equation (B.14). Thus, it follows from Equations (B.13), (B.15), and
(B.16) that

d
dt

12
∂ẋ 2

j

∂q̇i

 = ẍ j
∂x j

∂qi
+

1
2

∂ẋ 2
j

∂qi
. (B.17)

Let us take the previous equation, multiply by mj, and then sum over all j. We obtain

d
dt

(
∂K
∂q̇i

)
=
∑
j=1,F

f j
∂x j

∂qi
+
∂K
∂qi

, (B.18)

where use has been made of Equations (B.9) and (B.10). Thus, it follows from Equation (B.6) that

d
dt

(
∂K
∂q̇i

)
= Qi +

∂K
∂qi

. (B.19)
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Finally, making use of Equation (B.8), we get

d
dt

(
∂K
∂q̇i

)
= −∂U

∂qi
+
∂K
∂qi

. (B.20)

It is helpful to introduce a function L, called the Lagrangian, which is defined as the difference
between the kinetic and potential energies of the dynamical system under investigation:

L = K − U. (B.21)

Because the potential energy, U, is clearly independent of the q̇i, it follows from Equation (B.20)
that

d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi
= 0, (B.22)

for i = 1,F . This equation is known as Lagrange’s equation.
According to the previous analysis, if we can express the kinetic and potential energies of our

dynamical system solely in terms of our generalized coordinates, and their time derivatives, then
we can immediately write down the equations of motion of the system, expressed in terms of
the generalized coordinates, using Lagrange’s equation, (B.22). Unfortunately, this scheme only
works for energy-conserving systems.

B.4 Generalized Momenta

Consider the motion of a single particle moving in one dimension. The kinetic energy is

K =
1
2

m ẋ 2, (B.23)

where m is the mass of the particle, and x its displacement. The particle’s linear momentum is
p = m ẋ. However, this can also be written

p =
∂K
∂ẋ
=
∂L
∂ẋ
, (B.24)

because L = K − U, and the potential energy, U, is independent of ẋ.
Consider a dynamical system described by F generalized coordinates, qi, for i = 1,F . By

analogy with the previous expression, we can define generalized momenta of the form

pi =
∂L
∂q̇i

, (B.25)

for i = 1,F . Here, pi is sometimes called the momentum conjugate to the coordinate qi. Hence,
Lagrange’s equation, (B.22), can be written

dpi

dt
=
∂L
∂qi

, (B.26)
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for i = 1,F . Note that a generalized momentum does not necessarily have the dimensions of linear
momentum.

Suppose that the Lagrangian, L, does not depend explicitly on some coordinate qk. It follows
from Equation (B.26) that

dpk

dt
=
∂L
∂qk
= 0. (B.27)

Hence,
pk = constant. (B.28)

The coordinate qk is said to be ignorable in this case. Thus, we conclude that the generalized
momentum associated with an ignorable coordinate is a constant of the motion.

B.5 Calculus of Variations

It is a well-known fact, first enunciated by Archimedes, that the shortest distance between two
points in a plane is a straight-line. However, suppose that we wish to demonstrate this result from
first principles. Let us consider the length, l, of various curves, y(x), that run between two fixed
points, A and B, in a plane. Now, l takes the form

l =
∫ B

A
[dx 2 + dy 2]1/2 =

∫ b

a
[1 + y′2(x)]1/2 dx, (B.29)

where y′ ≡ dy/dx. Note that l is a function of the function y(x). In mathematics, a function of a
function is termed a functional.

In order to find the shortest path between points A and B, we need to minimize the functional l
with respect to small variations in the function y(x), subject to the constraint that the end points, A
and B, remain fixed. In other words, we need to solve

δl = 0. (B.30)

The meaning of the previous equation is that if y(x) → y(x) + δy(x), where δy(x) is small, then
the first-order variation in l, denoted δl, vanishes. In other words, l → l + O(δy 2). The particular
function y(x) for which δl = 0 obviously yields an extremum of l (i.e., either a maximum or a
minimum). Hopefully, in the case under consideration, it yields a minimum of l.

Consider a general functional of the form

I =
∫ b

a
F(y, y′, x) dx, (B.31)

where the end points of the integration are fixed. Suppose that y(x)→ y(x)+ δy(x). The first-order
variation in I is written

δI =
∫ b

a

(
∂F
∂y

δy +
∂F
∂y′

δy′
)

dx, (B.32)
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where δy′ = d(δy)/dx. Setting δI to zero, we obtain∫ b

a

(
∂F
∂y

δy +
∂F
∂y′

δy′
)

dx = 0. (B.33)

This equation must be satisfied for all possible small perturbations, δy(x).
Integrating the second term in the integrand of the previous equation by parts, we get∫ b

a

[
∂F
∂y
− d

dx

(
∂F
∂y′

)]
δy dx +

[
∂F
∂y′

δy

]b
a
= 0. (B.34)

If the end points are fixed then δy = 0 at x = a and x = b. Hence, the last term on the left-hand
side of the previous equation is zero. Thus, we obtain∫ b

a

[
∂F
∂y
− d

dx

(
∂F
∂y′

)]
δy dx = 0. (B.35)

The previous equation must be satisfied for all small perturbations δy(x). The only way in which
this is possible is for the expression enclosed in square brackets in the integral to be zero. Hence,
the functional I attains an extremum value whenever

d
dx

(
∂F
∂y′

)
− ∂F
∂y
= 0. (B.36)

This condition is known as the Euler-Lagrange equation.
Let us consider some special cases. Suppose that F does not explicitly depend on y. It follows

that ∂F/∂y = 0. Hence, the Euler-Lagrange equation, (B.36), simplifies to

∂F
∂y′
= constant. (B.37)

Next, suppose that F does not depend explicitly on x. Multiplying Equation (B.36) by y′, we obtain

y′
d

dx

(
∂F
∂y′

)
− y′ ∂F

∂y
= 0. (B.38)

However,
d

dx

(
y′
∂F
∂y′

)
= y′

d
dx

(
∂F
∂y′

)
+ y′′

∂F
∂y′

. (B.39)

Thus, we get
d

dx

(
y′
∂F
∂y′

)
= y′

∂F
∂y
+ y′′

∂F
∂y′

. (B.40)

If F is not an explicit function of x then the right-hand side of the previous equation is the total
derivative of F, namely dF/dx. Hence, we obtain

d
dx

(
y′
∂F
∂y′

)
=

dF
dx
, (B.41)
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which yields

y′
∂F
∂y′
− F = constant. (B.42)

Returning to the case under consideration, we have F = (1 + y′ 2)1/2, according to Equa-
tions (B.29) and (B.31). Hence, F is not an explicit function of y, so Equation (B.37) yields

∂F
∂y′
=

y′√
1 + y′ 2

= c, (B.43)

where c is a constant. So,
y′ =

c√
1 − c 2

= constant. (B.44)

Of course, y′ = constant is the equation of a straight-line. Thus, the shortest distance between two
fixed points in a plane is indeed a straight-line.

B.6 Conditional Variation

Suppose that we wish to find the function, y(x), that maximizes or minimizes the functional

I =
∫ b

a
F(y, y′, x) dx, (B.45)

subject to the constraint that the value of

J =
∫ b

a
G(y, y′, x) dx (B.46)

remains constant. We can achieve our goal by finding an extremum of the new functional K =
I + λ J, where λ(x) is an undetermined function. We know that δJ = 0, because the value of J is
fixed, so if δK = 0 then δI = 0 as well. In other words, finding an extremum of K is equivalent to
finding an extremum of I. Application of the Euler-Lagrange equation yields

d
dx

(
∂F
∂y′

)
− ∂F
∂y
+

[
d

dx

(
∂[λG]
∂y′

)
− ∂[λG]

∂y

]
= 0. (B.47)

In principle, the previous equation, together with the constraint (B.46), yields the functions λ(x)
and y(x). Incidentally, λ is generally termed a Lagrange multiplier. If F and G have no explicit
x-dependence then λ is usually a constant.

As an example, consider the following famous problem. Suppose that a uniform chain of fixed
length l is suspended by its ends from two equal-height fixed points that are a distance a apart,
where a < l. What is the equilibrium configuration of the chain?

Suppose that the chain has the uniform density per unit length ρ. Let the x- and y-axes be
horizontal and vertical, respectively, and let the two ends of the chain lie at (±a/2, 0). The equi-
librium configuration of the chain is specified by the function y(x), for −a/2 ≤ x ≤ +a/2, where
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y(x) is the vertical distance of the chain below its end points at horizontal position x. Of course,
y(−a/2) = y(+a/2) = 0.

The stable equilibrium state of a conservative dynamical system is one that minimizes the
system’s potential energy. The potential energy of the chain is written

U = −ρ g
∫

y ds = −ρ g
∫ a/2

−a/2
y [1 + y′ 2]1/2 dx, (B.48)

where ds = [dx 2 + dy 2]1/2 is an element of length along the chain, and g the acceleration due to
gravity. Hence, we need to minimize U with respect to small variations in y(x). However, the vari-
ations in y(x) must be such as to conserve the fixed length of the chain. Hence, our minimization
procedure is subject to the constraint that

l =
∫

ds =
∫ a/2

−a/2
[1 + y′ 2]1/2 dx (B.49)

remains constant.
It follows, from the previous discussion, that we need to minimize the functional

K = U + λ l =
∫ a/2

−a/2
(−ρ g y + λ) [1 + y′ 2]1/2 dx, (B.50)

where λ is an, as yet, undetermined constant. Because the integrand in the functional does not
depend explicitly on x, we have from Equation (B.42) that

y′2 (−ρ g y + λ) [1 + y′ 2]−1/2 − (−ρ g y + λ) [1 + y′2]1/2 = k, (B.51)

where k is a constant. This expression reduces to

y′ 2 =
(
λ′ +

y

h

)2
− 1, (B.52)

where λ′ = λ/k, and h = −k/ρ g.
Let

λ′ +
y

h
= − cosh z. (B.53)

Making this substitution, Equation (B.52) yields

dz
dx
= −h−1. (B.54)

Hence,
z = − x

h
+ c, (B.55)

where c is a constant. It follows from Equation (B.53) that

y(x) = −h
[
λ′ + cosh

(
− x

h
+ c
)]
. (B.56)
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The previous solution contains three undetermined constants, h, λ′, and c. We can eliminate two
of these constants by application of the boundary conditions y(±a/2) = 0. This yields

λ′ + cosh
(
∓ a

2 h
+ c
)
= 0. (B.57)

Hence, c = 0, and λ′ = − cosh(a/2 h). It follows that

y(x) = h
[
cosh

( a
2 h

)
− cosh

( x
h

)]
. (B.58)

The final unknown constant, h, is determined via the application of the constraint (B.49). Thus,

l =
∫ a/2

−a/2
[1 + y′2]1/2 dx =

∫ a/2

−a/2
cosh

( x
h

)
dx = 2 h sinh

( a
2 h

)
. (B.59)

Hence, the equilibrium configuration of the chain is given by the curve (B.58), which is known as
a catenary, where the parameter h satisfies

l
2 h
= sinh

( a
2 h

)
. (B.60)

B.7 Multi-Function Variation

Suppose that we wish to maximize or minimize the functional

I =
∫ b

a
F(y1, y2, · · · , yF , y′1, y′2, · · · , y′F , x) dx. (B.61)

Here, the integrand F is now a functional of the F independent functions yi(x), for i = 1,F . A
fairly straightforward extension of the analysis in Section B.5 yields F separate Euler-Lagrange
equations,

d
dx

(
∂F
∂y′i

)
− ∂F
∂yi
= 0, (B.62)

for i = 1,F , which determine the F functions yi(x). If F does not explicitly depend on the function
yk then the kth Euler-Lagrange equation simplifies to

∂F
∂y′k
= constant. (B.63)

Likewise, if F does not explicitly depend on x then all F Euler-Lagrange equations simplify to

y′i
∂F
∂y′i
− F = constant, (B.64)

for i = 1,F .
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B.8 Hamilton’s Principle

We can specify the instantaneous configuration of a conservative dynamical system with F de-
grees of freedom in terms of F independent generalized coordinates, qi, for i = 1,F . Let
K(q1, q2, · · · , qF , q̇1, q̇2, · · · , q̇F , t) and U(q1, q2, · · · , qF , t) represent the kinetic and potential en-
ergies of the system, respectively, expressed in terms of these generalized coordinates. The La-
grangian of the system is defined

L(q1, q2, · · · , qF , q̇1, q̇2, · · · , q̇F , t) = K − U. (B.65)

Finally, the F Lagrangian equations of motion of the system take the form

d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi
= 0, (B.66)

for i = 1,F .
Note that the previous equations of motion have exactly the same mathematical form as the

Euler-Lagrange equations, (B.62). Indeed, it is clear that the F Lagrangian equations of motion,
(B.66), can all be derived from a single equation: namely,

δ

∫ t2

t1
L(q1, q2, · · · , qF , q̇1, q̇2, · · · , q̇F , t) dt = 0. (B.67)

In other words, the motion of the system in a given time interval is such as to maximize or minimize
the time integral of the Lagrangian, which is known as the action integral. Thus, the laws of
Newtonian dynamics can be summarized in a single statement:

The motion of a dynamical system in a given time interval is such as to maximize or
minimize the action integral.

(In practice, the action integral is almost always minimized.) This statement is known as Hamil-
ton’s principle, and was first formulated in 1834 by the Irish mathematician William Hamilton.

B.9 Hamilton’s Equations

Consider a dynamical system with F degrees of freedom that is described by the generalized
coordinates qi, for i = 1,F . Suppose that neither the kinetic energy, K, nor the potential energy,
U, depend explicitly on the time, t. In conventional dynamical systems, the potential energy is
generally independent of the q̇i, whereas the kinetic energy takes the form of a homogeneous
quadratic function of the q̇i. In other words,

K =
∑

i, j=1,F
mi j q̇i q̇ j, (B.68)
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where the mi j depend on the qi, but not on the q̇i. It is easily demonstrated from the previous
equation that ∑

i=1,F
q̇i
∂K
∂q̇i
= 2 K. (B.69)

Recall, from Section B.4, that generalized momentum conjugate to the ith generalized coordi-
nate is defined

pi =
∂L
∂q̇i
=
∂K
∂q̇i

, (B.70)

where L = K − U is the Lagrangian of the system, and we have made use of the fact that U is
independent of the q̇i. Consider the function

H =
∑

i=1,F
q̇i pi − L =

∑
i=1,F

q̇i pi − K + U. (B.71)

If all of the conditions discussed previously are satisfied then Equations (B.69) and (B.70) yield

H = K + U. (B.72)

In other words, the function H is equal to the total energy of the system.
Consider the variation of the function H. We have

δH =
∑

i=1,F

(
δq̇i pi + q̇i δpi − ∂L

∂q̇i
δq̇i − ∂L

∂qi
δqi

)
. (B.73)

The first and third terms in the bracket cancel, because pi = ∂L/∂q̇i. Furthermore, because La-
grange’s equation can be written ṗi = ∂L/∂qi (see Section B.4), we obtain

δH =
∑

i=1,F
(q̇i δpi − ṗi δqi) . (B.74)

Suppose, now, that we can express the total energy of the system, H, solely as a function of the
qi and the pi, with no explicit dependence on the q̇i. In other words, suppose that we can write
H = H(qi, pi). When the energy is written in this fashion it is generally termed the Hamiltonian of
the system. The variation of the Hamiltonian function takes the form

δH =
∑

i=1,F

(
∂H
∂pi

δpi +
∂H
∂qi

δqi

)
. (B.75)

A comparison of the previous two equations yields

q̇i =
∂H
∂pi

, (B.76)

ṗi = −∂H
∂qi

, (B.77)

for i = 1,F . These 2F first-order differential equations are known as Hamilton’s equations.
Hamilton’s equations are often a useful alternative to Lagrange’s equations, which take the form
of F second-order differential equations.
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C Wave Mechanics

C.1 Introduction

According to classical physics (i.e., physics prior to the 20th century), particles and waves are
distinct classes of physical entity that possess markedly different properties. For instance, particles
are discrete, which means that they cannot be arbitrarily divided. In other words, it makes sense
to talk about one electron, or two electrons, but not about a third of an electron. Waves, on the
other hand, are continuous, which means that they can be arbitrarily divided. In other words, given
a wave whose amplitude has a certain value, it makes sense to talk about a similar wave whose
amplitude is one third, or any other fraction whatsoever, of this value. Particles are also highly
localized in space. For example, atomic nuclei have very small radii of order 10−15 m, whereas
electrons act like point particles (i.e., they have no discernible spatial extent). Waves, on the other
hand, are non-localized in space. In fact, a wave is defined as a disturbance that is periodic in
space, with some finite periodicity length (i.e., wavelength). Hence, it is fairly meaningless to talk
about a disturbance being a wave unless it extends over a region of space that is at least a few
wavelengths in size.

The classical scenario, just described, in which particles and waves are distinct phenomena,
had to be significantly modified in the early decades of the 20th century. During this time pe-
riod, physicists discovered, much to their surprise, that, under certain circumstances, waves act
as particles, and particles act as waves. This bizarre behavior is known as wave-particle duality.
For instance, the photoelectric effect (see Section C.2) shows that electromagnetic waves some-
times act like swarms of massless particles called photons. Moreover, the phenomenon of electron
diffraction by atomic lattices (see Section C.3) implies that electrons sometimes possess wave-like
properties. Wave-particle duality usually only manifests itself on atomic and sub-atomic length-
scales [i.e., on lengthscales less than, or of order, 10−10 m. (See Section C.3).] The classical picture
remains valid on significantly longer lengthscales. Thus, on macroscopic lengthscales, waves only
act like waves, particles only act like particles, and there is no wave-particle duality. However,
on atomic lengthscales, classical mechanics, which governs the macroscopic behavior of massive
particles, and classical electrodynamics, which governs the macroscopic behavior of electromag-
netic fields—neither of which take wave-particle duality into account—must be replaced by new
theories. The theories in question are called quantum mechanics and quantum electrodynamics,
respectively. In this appendix, we shall discuss a simple version of quantum mechanics in which
the microscopic dynamics of massive particles (i.e., particles with finite mass) is described en-
tirely in terms of wavefunctions. This particular version of quantum mechanics is known as wave
mechanics.
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C.2 Photoelectric Effect

The so-called photoelectric effect, by which a polished metal surface emits electrons when illumi-
nated by visible or ultra-violet light, was discovered by Heinrich Hertz in 1887. The following facts
regarding this effect can be established via careful observation. First, a given surface only emits
electrons when the frequency of the light with which it is illuminated exceeds a certain threshold
value that is a property of the metal. Second, the current of photoelectrons, when it exists, is pro-
portional to the intensity of the light falling on the surface. Third, the energy of the photoelectrons
is independent of the light intensity, but varies linearly with the light frequency. These facts are
inexplicable within the framework of classical physics.

In 1905, Albert Einstein proposed a radical new theory of light in order to account for the
photoelectric effect. According to this theory, light of fixed angular frequency ω consists of a
collection of indivisible discrete packages, called quanta,1 whose energy is

E = �ω. (C.1)

Here, � = 1.055 × 10−34 J s is a new constant of nature, known as Planck’s constant. (Strictly
speaking, it is Planck’s constant divided by 2π). Incidentally, � is called Planck’s constant, rather
than Einstein’s constant, because Max Planck first introduced the concept of the quantization of
light, in 1900, when trying to account for the electromagnetic spectrum of a black body (i.e., a
perfect emitter and absorber of electromagnetic radiation).

Suppose that the electrons at the surface of a piece of metal lie in a potential well of depth
W. In other words, the electrons have to acquire an energy W in order to be emitted from the
surface. Here, W is generally called the workfunction of the surface, and is a property of the metal.
Suppose that an electron absorbs a single quantum of light, otherwise known as a photon. Its
energy therefore increases by �ω. If �ω is greater than W then the electron is emitted from the
surface with the residual kinetic energy

K = �ω −W. (C.2)

Otherwise, the electron remains trapped in the potential well, and is not emitted. Here, we are
assuming that the probability of an electron absorbing two or more photons is negligibly small
compared to the probability of it absorbing a single photon (as is, indeed, the case for relatively
low-intensity illumination). Incidentally, we can determine Planck’s constant, as well as the work-
function of the metal, by plotting the kinetic energy of the emitted photoelectrons as a function
of the wave frequency. This plot is a straight-line whose slope is �, and whose intercept with the
ω axis is W/�. Finally, the number of emitted electrons increases with the intensity of the light
because, the more intense the light, the larger the flux of photons onto the surface. Thus, Einstein’s
quantum theory of light is capable of accounting for all three of the previously mentioned obser-
vational facts regarding the photoelectric effect. In the following, we shall assume that the central
component of Einstein’s theory—namely, Equation (C.1)—is a general result that applies to all
particles, not just photons.

1Plural of quantum: Latin neuter of quantus: how much.
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C.3 Electron Diffraction

In 1927, George Paget Thomson discovered that if a beam of electrons is made to pass through a
thin metal film then the regular atomic array in the metal acts as a sort of diffraction grating, so
that when a photographic film, placed behind the metal, is developed, an interference pattern is dis-
cernible. This implies that electrons have wave-like properties. Moreover, the electron wavelength,
λ, or, alternatively, the wavenumber, k = 2π/λ, can be deduced from the spacing of the maxima
in the interference pattern. Thomson found that the momentum, p, of an electron is related to its
wavenumber, k, according to the following simple relation:

p = � k. (C.3)

The associated wavelength, λ = 2π/k, is known as the de Broglie wavelength, because this rela-
tion was first hypothesized by Louis de Broglie in 1926. In the following, we shall assume that
Equation (C.3) is a general result that applies to all particles, not just electrons.

It turns out that wave-particle duality only manifests itself on lengthscales less than, or of
order, the de Broglie wavelength. Under normal circumstances, this wavelength is fairly small.
For instance, the de Broglie wavelength of an electron is

λe = 1.2 × 10−9 [E(eV)]−1/2 m, (C.4)

where the electron energy is conveniently measured in units of electron-volts (eV). (An electron
accelerated from rest through a potential difference of 1000 V acquires an energy of 1000 eV, and
so on. Electrons in atoms typically have energies in the range 10 to 100 eV.) Moreover, the de
Broglie wavelength of a proton is

λp = 2.9 × 10−11 [E(eV)]−1/2 m. (C.5)

C.4 Representation of Waves via Complex Numbers

In mathematics, the symbol i is conventionally used to represent the square-root of minus one: that
is, the solution of i 2 = −1. A real number, x (say), can take any value in a continuum of values lying
between −∞ and +∞. On the other hand, an imaginary number takes the general form i y, where y
is a real number. It follows that the square of a real number is a positive real number, whereas the
square of an imaginary number is a negative real number. In addition, a general complex number
is written

z = x + i y, (C.6)

where x and y are real numbers. In fact, x is termed the real part of z, and y the imaginary part of
z. This is written mathematically as x = Re(z) and y = Im(z). Finally, the complex conjugate of z
is defined z∗ = x − i y.

Just as we can visualize a real number as a point on an infinite straight-line, we can visualize
a complex number as a point in an infinite plane. The coordinates of the point in question are
the real and imaginary parts of the number: that is, z ≡ (x, y). The distance, r = (x 2 + y 2)1/2,
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of the representative point from the origin is termed the modulus of the corresponding complex
number, z. This is written mathematically as |z| = (x 2 + y 2)1/2. Incidentally, it follows that z z∗ =
x 2+y 2 = |z| 2. The angle, θ = tan−1(y/x), that the straight-line joining the representative point to the
origin subtends with the real axis is termed the argument of the corresponding complex number, z.
This is written mathematically as arg(z) = tan−1(y/x). It follows from standard trigonometry that
x = r cos θ, and y = r sin θ. Hence, z = r cos θ + i r sin θ.

Complex numbers are often used to represent waves and wavefunctions. All such representa-
tions ultimately depend on a fundamental mathematical identity, known as Euler’s theorem, which
takes the form

e i φ ≡ cos φ + i sinφ, (C.7)

where φ is a real number. Incidentally, given that z = r cos θ + i r sin θ = r (cos θ + i sin θ), where
z is a general complex number, r = |z| its modulus, and θ = arg(z) its argument, it follows from
Euler’s theorem that any complex number, z, can be written

z = r e i θ, (C.8)

where r = |z| and θ = arg(z) are real numbers.
A one-dimensional wavefunction takes the general form

ψ(x, t) = A cos(ω t − k x − φ), (C.9)

where A > 0 is the wave amplitude, φ the phase angle, k the wavenumber, and ω the angular
frequency. Consider the complex wavefunction

ψ(x, t) = ψ0 e−i (ω t−k x), (C.10)

where ψ0 is a complex constant. We can write

ψ0 = A e iφ, (C.11)

where A is the modulus, and φ the argument, of ψ0. Hence, we deduce that

Re
[
ψ0 e−i (ω t−k x)

]
= Re

[
A e i φ e−i (ω t−k x)

]
= Re

[
A e−i (ω t−k x−φ)

]
= A Re

[
e−i (ω t−k x−φ)

]
. (C.12)

Thus, it follows from Euler’s theorem, and Equation (C.9), that

Re
[
ψ0 e−i (ω t−k x)

]
= A cos(ω t − k x − φ) = ψ(x, t). (C.13)

In other words, a general one-dimensional real wavefunction, (C.9), can be represented as the real
part of a complex wavefunction of the form (C.10). For ease of notation, the “take the real part”
aspect of the previous expression is usually omitted, and our general one-dimension wavefunction
is simply written

ψ(x, t) = ψ0 e−i (ω t−k x). (C.14)

The main advantage of the complex representation, (C.14), over the more straightforward real
representation, (C.9), is that the former enables us to combine the amplitude, A, and the phase
angle, φ, of the wavefunction into a single complex amplitude, ψ0.
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C.5 Schrödinger’s Equation

The basic premise of wave mechanics is that a massive particle of energy E and linear momentum
p, moving in the x-direction (say), can be represented by a one-dimensional complex wavefunction
of the form

ψ(x, t) = ψ0 e−i (ω t−k x), (C.15)

where the complex amplitude, ψ0, is arbitrary, while the wavenumber, k, and the angular frequency,
ω, are related to the particle momentum, p, and energy, E, via the fundamental relations (C.3)
and (C.1), respectively. The previous one-dimensional wavefunction is the solution of a one-
dimensional wave equation that determines how the wavefunction evolves in time. As described in
the following, we can guess the form of this wave equation by drawing an analogy with classical
physics.

A classical particle of mass m, moving in a one-dimensional potential U(x), satisfies the energy
conservation equation

E = K + U, (C.16)

where

K =
p 2

2 m
(C.17)

is the particle’s kinetic energy. Hence,

E ψ = (K + U)ψ (C.18)

is a valid, but not obviously useful, wave equation.
However, it follows from Equations (C.1) and (C.15) that

∂ψ

∂t
= −iωψ0 e−i (ω t−k x) = −i

E
�
ψ, (C.19)

which can be rearranged to give

E ψ = i �
∂ψ

∂t
. (C.20)

Likewise, from Equations (C.3) and (C.15),

∂ψ

∂x
= i kψ0 e−i (k x−ω t) = i

p
�
ψ, (C.21)

∂ 2ψ

∂x 2 = −k 2 ψ0 e−i (k x−ω t) = − p 2

� 2 ψ, (C.22)

which can be rearranged to give

K ψ =
p 2

2 m
ψ = − �

2

2 m
∂ 2ψ

∂x 2 . (C.23)

Thus, combining Equations (C.18), (C.20), and (C.23), we obtain

i �
∂ψ

∂t
= − �

2

2 m
∂ 2ψ

∂x 2 + U(x)ψ. (C.24)
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This equation, which is known as Schrödinger’s equation—because it was first formulated by
Erwin Schrödinder in 1926—is the fundamental equation of wave mechanics.

For a massive particle moving in free space (i.e., U = 0), the complex wavefunction (C.15) is
a solution of Schrödinger’s equation, (C.24), provided

ω =
�

2 m
k 2. (C.25)

The previous expression can be thought of as the dispersion relation for matter waves in free space.
The associated phase velocity is

vp =
ω

k
=
� k
2 m
=

p
2 m

, (C.26)

where use has been made of Equation (C.3). However, this phase velocity is only half the classical
velocity, v = p/m, of a massive (non-relativistic) particle.

Incidentally, Equation (C.21) suggests that

p ≡ −i �
∂

∂x
(C.27)

in quantum mechanics, whereas Equation (C.24) suggests that the most general form of Schrödinger’s
equation is

i �
∂ψ

∂t
= H ψ, (C.28)

where

H(x, p) ≡ p 2

2 m
+ U(x) = − �

2

2 m
∂ 2

∂x 2 + U(x) (C.29)

is the Hamiltonian of the system. (See Section B.9.)

C.6 Probability Interpretation of Wavefunction

After many false starts, physicists in the early 20th century eventually came to the conclusion
that the only physical interpretation of a particle wavefunction that is consistent with experimental
observations is probabilistic in nature. To be more exact, if ψ(x, t) is the complex wavefunction
of a given particle, moving in one dimension along the x-axis, then the probability of finding the
particle between x and x + dx at time t is

P(x, t) = |ψ(x, t)| 2 dx. (C.30)

We can interpret

P(t) =
∫ ∞

−∞
|ψ(x, t)| 2 dx (C.31)

as the probability of the particle being found anywhere between x = −∞ and x = +∞ at time t.
This follows, via induction, from the fundamental result in probability theory that the probability
of the occurrence of one or other of two mutually exclusive events (such as the particle being found
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in two non-overlapping regions) is the sum (or integral) of the probabilities of the individual events.
(See Section 2.3.) Assuming that the particle exists, it is certain that it will be found somewhere
between x = −∞ and x = +∞ at time t. Because a certain event has probability 1 (see Section 2.2),
our probability interpretation of the wavefunction is only tenable provided∫ ∞

−∞
|ψ(x, t)| 2 dx = 1 (C.32)

at all times. A wavefunction that satisfies the previous condition—which is known as the normal-
ization condition—is said to be properly normalized.

Suppose that we have a wavefunction, ψ(x, t), which is such that it satisfies the normalization
condition (C.32) at time t = 0. Furthermore, let the wavefunction evolve in time according to
Schrödinger’s equation, (C.24). Our probability interpretation of the wavefunction only makes
sense if the normalization condition remains satisfied at all subsequent times. This follows because
if the particle is certain to be found somewhere on the x-axis (which is the interpretation put on
the normalization condition) at time t = 0 then it is equally certain to be found somewhere on the
x-axis at a later time (because we are not considering any physical process by which particles can
be created or destroyed). Thus, it is necessary for us to demonstrate that Schrödinger’s equation
preserves the normalization of the wavefunction.

Taking Schrödinger’s equation, and multiplying it by ψ∗ (the complex conjugate of the wave-
function), we obtain

i �
∂ψ

∂t
ψ∗ = − �

2

2 m
∂ 2ψ

∂x 2 ψ
∗ + U(x) |ψ| 2. (C.33)

The complex conjugate of the previous expression yields

−i �
∂ψ∗

∂t
ψ = − �

2

2 m
∂ 2ψ∗

∂x 2 ψ + U(x) |ψ| 2. (C.34)

Here, use has been made of the readily demonstrated results (ψ∗)∗ = ψ and i∗ = −i, as well as the
fact that U(x) is real. Taking the difference between the previous two expressions, we obtain

i �
(
∂ψ

∂t
ψ∗ +

∂ψ∗

∂t
ψ

)
= − �

2

2 m

(
∂ 2ψ

∂x 2 ψ
∗ − ∂

2ψ∗

∂x 2 ψ

)
, (C.35)

which can be written

i �
∂|ψ| 2
∂t
= − �

2

2 m
∂

∂x

(
∂ψ

∂x
ψ∗ − ∂ψ

∗

∂x
ψ

)
. (C.36)

Integrating in x, we get

i �
d
dt

∫ ∞

−∞
|ψ| 2 dx = − �

2

2 m

[
∂ψ

∂x
ψ∗ − ∂ψ

∗

∂x
ψ

]∞
−∞
. (C.37)

Finally, assuming that the wavefunction is localized in space: that is,

|ψ(x, t)| → 0 as |x| → ∞, (C.38)
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we obtain
d
dt

∫ ∞

−∞
|ψ| 2 dx = 0. (C.39)

It follows, from the preceding analysis, that if a localized wavefunction is properly normalized
at t = 0 (i.e., if

∫ ∞
−∞ |ψ(x, 0)| 2 dx = 1) then it will remain properly normalized as it evolves in time

according to Schrödinger’s equation. Incidentally, a wavefunction that is not localized cannot be
properly normalized, because its normalization integral

∫ ∞
−∞ |ψ| 2 dx is necessarily infinite. For such

a wavefunction, |ψ(x, t)| 2 dx gives the relative, rather than the absolute, probability of finding the
particle between x and x + dx at time t. In other words, [cf., Equation (C.30)]

P(x, t) ∝ |ψ(x, t)| 2 dx. (C.40)

C.7 Wave Packets

As we have seen, the wavefunction of a massive particle of momentum p and energy E, moving in
free space along the x-axis, can be written

ψ(x, t) = ψ̄ e−i (ω t−k x), (C.41)

where k = p/�, ω = E/�, and ψ̄ is a complex constant. Here, ω and k are linked via the matter
wave dispersion relation, (C.25). Expression (C.41) represents a plane wave that propagates in the
x-direction with the phase velocity vp = ω/k. However, it follows from Equation (C.26) that this
phase velocity is only half of the classical velocity of a massive particle.

According to the discussion in the previous section, the most reasonable physical interpretation
of the wavefunction is that |ψ(x, t)| 2 dx is proportional to (assuming that the wavefunction is not
properly normalized) the probability of finding the particle between x and x+dx at time t. However,
the modulus squared of the wavefunction (C.41) is |ψ̄| 2, which is a constant that depends on neither
x nor t. In other words, the previous wavefunction represents a particle that is equally likely to be
found anywhere on the x-axis at all times. Hence, the fact that this wavefunction propagates
at a phase velocity that does not correspond to the classical particle velocity has no observable
consequences.

How can we write the wavefunction of a particle that is localized in x? In other words, a particle
that is more likely to be found at some positions on the x-axis than at others. It turns out that we
can achieve this goal by forming a linear combination of plane waves of different wavenumbers:
that is,

ψ(x, t) =
∫ ∞

−∞
ψ̄(k) e−i (ω t−k x) dk. (C.42)

Here, ψ̄(k) represents the complex amplitude of plane waves of wavenumber k within this combi-
nation. In writing the previous expression, we are relying on the assumption that matter waves are
superposable. In other words, it is possible to add two valid wave solutions to form a third valid
wave solution. The ultimate justification for this assumption is that matter waves satisfy the linear
wave equation (C.24).
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There is a fundamental mathematical theorem, known as Fourier’s theorem, which states that
if

f (x) =
∫ ∞

−∞
f̄ (k) e i k x dk, (C.43)

then
f̄ (k) =

1
2π

∫ ∞

−∞
f (x) e−i k x dx. (C.44)

Here, f̄ (k) is known as the Fourier transform of the function f (x). We can use Fourier’s theorem
to find the k-space function, ψ̄(k), that generates any given x-space wavefunction, ψ(x), at a given
time.

For instance, suppose that at t = 0 the wavefunction of our particle takes the form

ψ(x, 0) ∝ exp
[
i k0 x − (x − x0) 2

4 (∆x) 2

]
. (C.45)

Thus, the initial probability distribution for the particle’s x-coordinate is Gaussian (see Section 2.9):

|ψ(x, 0)| 2 ∝ exp
[
−(x − x0) 2

2 (∆x) 2

]
. (C.46)

It follows that a measurement of the particle’s position is most likely to yield the value x0, and very
unlikely to yield a value which differs from x0 by more than 3 ∆x. Thus, Equation (C.45) is the
wavefunction of a particle that is initially localized in some region of x-space, centered on x = x0,
whose width is of order ∆x. This type of wavefunction is known as a wave packet.

According to Equation (C.42),

ψ(x, 0) =
∫ ∞

−∞
ψ̄(k) e i k x dk. (C.47)

Hence, we can employ Fourier’s theorem to invert this expression to give

ψ̄(k) ∝
∫ ∞

−∞
ψ(x, 0) e−i k x dx. (C.48)

Making use of Equation (C.45), we obtain

ψ̄(k) ∝ e−i (k−k0) x0

∫ ∞

−∞
exp
[
−i (k − k0) (x − x0) − (x − x0) 2

4 (∆x) 2

]
dx. (C.49)

Changing the variable of integration to y = (x − x0)/(2∆x), the previous expression reduces to

ψ̄(k) ∝ e−i k x0−β 2/4
∫ ∞

−∞
e−(y−y0) 2

dy, (C.50)

where β = 2 (k−k0)∆x and y0 = −i β/2. The integral in the previous equation is now just a number,
as can easily be seen by making the second change of variable z = y − y0. Hence, we deduce that

ψ̄(k) ∝ exp
[
−i k x0 − (k − k0) 2

4 (∆k) 2

]
, (C.51)
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where

∆k =
1

2∆x
. (C.52)

If |ψ(x, 0)| 2 dx is proportional to the probability of a measurement of the particle’s position
yielding a value in the range x to x + dx at time t = 0 then it stands to reason that |ψ̄(k)| 2 dk is
proportional to the probability of a measurement of the particle’s wavenumber yielding a value in
the range k to k + dk. (Recall that p = � k, so a measurement of the particle’s wavenumber, k, is
equivalent to a measurement of the particle’s momentum, p). According to Equation (C.51),

|ψ̄(k)| 2 ∝ exp
[
−(k − k0) 2

2 (∆k) 2

]
. (C.53)

This probability distribution is a Gaussian in k-space. [See Equation (C.46).] Hence, a measure-
ment of k is most likely to yield the value k0, and very unlikely to yield a value that differs from k0

by more than 3 ∆k.
We have just seen that a wave packet with a Gaussian probability distribution of character-

istic width ∆x in x-space [see Equation (C.46)] is equivalent to a wave packet with a Gaussian
probability distribution of characteristic width ∆k in k-space [see Equation (C.53)], where

∆x∆k =
1
2
. (C.54)

This illustrates an important property of wave packets. Namely, in order to construct a packet that
is highly localized in x-space (i.e., with small ∆x) we need to combine plane waves with a very
wide range of different k-values (i.e., with large ∆k). Conversely, if we only combine plane waves
whose wavenumbers differ by a small amount (i.e., if ∆k is small) then the resulting wave packet
is highly extended in x-space (i.e., ∆x is large).

According to standard wave theory, a wave packet made up of a superposition of plane waves
that is strongly peaked around some central wavenumber k0 propagates at the group velocity,

vg =
dω(k0)

dk
, (C.55)

rather than the phase velocity, vp = (ω/k)k0 , assuming that all of the constituent plane waves satisfy
a dispersion relation of the form ω = ω(k). For the case of matter waves, the dispersion relation is
(C.25). Thus, the associated group velocity is

vg =
� k0

m
=

p
m
, (C.56)

where p = � k0. This velocity is identical to the classical velocity of a (non-relativistic) massive
particle. We conclude that the matter wave dispersion relation (C.25) is perfectly consistent with
classical physics, as long as we recognize that particles must be identified with wave packets
(which propagate at the group velocity) rather than plane waves (which propagate at the phase
velocity).
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Standard wave theory also implies that the spatial extent of a wave packet of initial extent (∆x)0

grows, as the packet evolves in time, like

∆x � (∆x)0 +
d 2ω(k0)

dk 2

t
(∆x)0

, (C.57)

where k0 is the packet’s central wavenumber. Thus, it follows from the matter wave dispersion
relation, (C.25), that the width of a particle wave packet grows in time as

∆x � (∆x)0 +
�

m
t

(∆x)0
. (C.58)

For example, if an electron wave packet is initially localized in a region of atomic dimensions (i.e.,
∆x ∼ 10−10 m) then the width of the packet doubles in about 10−16 s.

C.8 Heisenberg’s Uncertainty Principle

According to the analysis contained in the previous section, a particle wave packet that is initially
localized in x-space, with characteristic width ∆x, is also localized in k-space, with characteristic
width ∆k = 1/(2∆x). However, as time progresses, the width of the wave packet in x-space
increases [see Equation (C.58)], while that of the packet in k-space stays the same [because ψ̄(k) is
given by Equation (C.48) at all times]. Hence, in general, we can say that

∆x∆k �
1
2
. (C.59)

Furthermore, we can interpret ∆x and ∆k as characterizing our uncertainty regarding the values of
the particle’s position and wavenumber, respectively.

A measurement of a particle’s wavenumber, k, is equivalent to a measurement of its momentum,
p, because p = � k. Hence, an uncertainty in k of order ∆k translates to an uncertainty in p of order
∆p = �∆k. It follows, from the previous inequality, that

∆x ∆p �
�

2
. (C.60)

This is the famous Heisenberg uncertainty principle, first proposed by Werner Heisenberg in 1927.
According to this principle, it is impossible to simultaneously measure the position and momen-
tum of a particle (exactly). Indeed, a good knowledge of the particle’s position implies a poor
knowledge of its momentum, and vice versa. The uncertainty principle is a direct consequence of
representing particles as waves.

It is apparent, from Equation (C.58), that a particle wave packet of initial spatial extent (∆x)0

spreads out in such a manner that its spatial extent becomes

∆x ∼ � t
m (∆x)0

(C.61)
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at large t. It is readily demonstrated that this spreading of the wave packet is a consequence of the
uncertainty principle. Indeed, because the initial uncertainty in the particle’s position is (∆x)0, it
follows that the uncertainty in its momentum is of order �/(∆x)0. This translates to an uncertainty
in velocity of ∆v = �/[m (∆x)0]. Thus, if we imagine that part of the wave packet propagates at
v0 + ∆v/2, and another part at v0 − ∆v/2, where v0 is the mean propagation velocity, then it follows
that the wave packet will spread out as time progresses. Indeed, at large t, we expect the width of
the wave packet to be

∆x ∼ ∆v t ∼ � t
m (∆x)0

, (C.62)

which is identical to Equation (C.61). Evidently, the spreading of a particle wave packet, as time
progresses, should be interpreted as representing an increase in our uncertainty regarding the par-
ticle’s position, rather than an increase in the spatial extent of the particle itself.

C.9 Stationary States

Consider separable solutions to Schrödinger’s equation of the form

ψ(x, t) = ψ(x) e−iω t. (C.63)

According to Equation (C.20), such solutions have definite energies, E = �ω. For this reason, they
are usually written

ψ(x, t) = ψ(x) e−i (E/�) t. (C.64)

The probability of finding the particle between x and x + dx at time t is

P(x, t) = |ψ(x, t)| 2 dx = |ψ(x)| 2 dx. (C.65)

This probability is time independent. For this reason, states whose wavefunctions are of the form
(C.64) are known as stationary states. Moreover, ψ(x) is called a stationary wavefunction. Substi-
tuting (C.64) into Schrödinger’s equation, (C.24), we obtain the following differential equation for
ψ(x):

− �
2

2 m
d 2ψ

dx 2 + U(x)ψ = E ψ. (C.66)

This equation is called the time-independent Schrödinger equation. Of course, the most general
form of this equation is

H ψ = E ψ, (C.67)

where H is the Hamiltonian. (See Section C.5.)
Consider a particle trapped in a one-dimensional square potential well, of infinite depth, which

is such that

U(x) =
{

0 0 ≤ x ≤ a
∞ otherwise

. (C.68)
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The particle is excluded from the region x < 0 or x > a, so ψ = 0 in this region (i.e., there is zero
probability of finding the particle outside the well). Within the well, a particle of definite energy E
has a stationary wavefunction, ψ(x), that satisfies

− �
2

2 m
d 2ψ

dx 2 = E ψ. (C.69)

The boundary conditions are
ψ(0) = ψ(a) = 0. (C.70)

This follows because ψ = 0 in the region x < 0 or x > a, and ψ(x) must be continuous [because a
discontinuous wavefunction would generate a singular term (i.e., the term involving d 2ψ/dx 2) in
the time-independent Schrödinger equation, (C.66), that could not be balanced, even by an infinite
potential].

Let us search for solutions to Equation (C.69) of the form

ψ(x) = ψ0 sin(k x), (C.71)

where ψ0 is a constant. It follows that
�

2 k 2

2 m
= E. (C.72)

The solution (C.71) automatically satisfies the boundary condition ψ(0) = 0. The second boundary
condition, ψ(a) = 0, leads to a quantization of the wavenumber: that is,

k = n
π

a
, (C.73)

where n = 1, 2, 3, et cetera. (A “quantized” quantity is one that can only take certain discrete
values.) Here, the integer n is known as a quantum number. According to Equation (C.72), the
energy is also quantized. In fact, E = En, where

En = n 2 �
2 π 2

2 m a 2 . (C.74)

Thus, the allowed wavefunctions for a particle trapped in a one-dimensional square potential well
of infinite depth are

ψn(x, t) = An sin
(
n π

x
a

)
exp
(
−i n 2 E1

�
t
)
, (C.75)

where n is a positive integer, and An a constant. We cannot have n = 0, because, in this case, we
obtain a null wavefunction: that is, ψ = 0, everywhere. Furthermore, if n takes a negative integer
value then it generates exactly the same wavefunction as the corresponding positive integer value
(assuming A−n = −An).

The constant An, appearing in the previous wavefunction, can be determined from the constraint
that the wavefunction be properly normalized. For the case under consideration, the normalization
condition (C.32) reduces to ∫ a

0
|ψ(x)| 2 dx = 1. (C.76)
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It follows from Equation (C.75) that |An| 2 = 2/a. Hence, the properly normalized version of the
wavefunction (C.75) is

ψn(x, t) =
(
2
a

)1/2
sin
(
n π

x
a

)
exp
(
−i n 2 E1

�
t
)
. (C.77)

At first sight, it seems rather strange that the lowest possible energy for a particle trapped in
a one-dimensional potential well is not zero, as would be the case in classical mechanics, but
rather E1 = �

2 π 2/(2 m a 2). In fact, as explained in the following, this residual energy is a direct
consequence of Heisenberg’s uncertainty principle. A particle trapped in a one-dimensional well
of width a is likely to be found anywhere inside the well. Thus, the uncertainty in the particle’s
position is ∆x ∼ a. It follows from the uncertainty principle, (C.60), that

∆p �
�

2∆x
∼ �

a
. (C.78)

In other words, the particle cannot have zero momentum. In fact, the particle’s momentum must be
at least p ∼ �/a. However, for a free particle, E = p 2/2 m. Hence, the residual energy associated
with the particle’s residual momentum is

E ∼ p 2

m
∼ �

2

m a 2 ∼ E1. (C.79)

This type of residual energy, which often occurs in quantum mechanical systems, and has no
equivalent in classical mechanics, is called zero point energy.

C.10 Three-Dimensional Wave Mechanics

Up to now, we have only discussed wave mechanics for a particle moving in one dimension.
However, the generalization to a particle moving in three dimensions is fairly straightforward. A
massive particle moving in three dimensions has a complex wavefunction of the form [cf., Equa-
tion (C.15)]

ψ(x, y, z, t) = ψ0 e−i (ω t−k·r), (C.80)

where ψ0 is a complex constant, and r = (x, y, z). Here, the wavevector, k, and the angular
frequency, ω, are related to the particle momentum, p, and energy, E, according to [cf., Equa-
tions (C.3) and (C.27)]

p = � k = −i �∇, (C.81)

and [cf., Equation (C.1)]
E = �ω, (C.82)

respectively. Generalizing the analysis of Section C.5, the three-dimensional version of Schrödinger’s
equation is [cf., Equations (C.24) and (C.29)]

i �
∂ψ

∂t
= H ψ ≡ − �

2

2 m
∇ 2ψ + U(r)ψ, (C.83)
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where

H =
p 2

2 m
+ U(r) = − �

2

2 m
∇ 2 + U(r) (C.84)

is the Hamiltonian, and the differential operator

∇ 2 ≡ ∂ 2

∂x 2 +
∂ 2

∂y 2 +
∂ 2

∂z 2 (C.85)

is known as the Laplacian. The interpretation of a three-dimensional wavefunction is that the
probability of simultaneously finding the particle between x and x+ dx, between y and y+ dy, and
between z and z + dz, at time t is [cf., Equation (C.30)]

P(x, y, z, t) = |ψ(x, y, z, t)| 2 dx dy dz. (C.86)

Moreover, the normalization condition for the wavefunction becomes [cf., Equation (C.32)]∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|ψ(x, y, z, t)| 2 dx dy dz = 1. (C.87)

It can be demonstrated that Schrödinger’s equation, (C.83), preserves the normalization condi-
tion, (C.87), of a localized wavefunction. Heisenberg’s uncertainty principle generalizes to [cf.,
Equation (C.60)]

∆x ∆px �
�

2
, (C.88)

∆y ∆py �
�

2
, (C.89)

∆z∆pz �
�

2
. (C.90)

Finally, a stationary state of energy E is written [cf., Equation (C.64)]

ψ(x, y, z, t) = ψ(x, y, z) e−i (E/�) t, (C.91)

where the stationary wavefunction, ψ(x, y, z), satisfies [cf., Equation (C.66)]

H ψ ≡ − �
2

2 m
∇ 2ψ + U(r)ψ = E ψ. (C.92)

As an example of a three-dimensional problem in wave mechanics, consider a particle trapped
in a square potential well of infinite depth, such that

U(x, y, z) =
{

0 0 ≤ x ≤ a, 0 ≤ y ≤ a, 0 ≤ z ≤ a
∞ otherwise

. (C.93)

Within the well, the stationary wavefunction, ψ(x, y, z), satisfies

− �
2

2 m
∇ 2ψ = E ψ, (C.94)
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subject to the boundary conditions

ψ(0, y, z) = ψ(x, 0, z) = ψ(x, y, 0) = 0, (C.95)

and
ψ(a, y, z) = ψ(x, a, z) = ψ(x, y, a) = 0, (C.96)

because ψ = 0 outside the well. Let us try a separable wavefunction of the form

ψ(x, y, z) = ψ0 sin(kx x) sin(ky y) sin(kz z). (C.97)

This expression automatically satisfies the boundary conditions (C.95). The remaining boundary
conditions, (C.96), are satisfied provided

kx = nx
π

a
, (C.98)

ky = ny
π

a
, (C.99)

kz = nz
π

a
, (C.100)

where the quantum numbers nx, ny, and nz are (independent) positive integers. Note that a sta-
tionary state generally possesses as many quantum numbers as there are degrees of freedom of the
system (in this case, three). Substitution of the wavefunction (C.97) into Equation (C.94) yields

E =
�

2

2 m
(k 2

x + k 2
y + k 2

z ). (C.101)

Thus, it follows from Equations (C.98)–(C.100) that the particle energy is quantized, and that the
allowed energy levels are

Enx,ny,nz =
�

2

2 m a 2 (n 2
x + n 2

y + n 2
z ). (C.102)

The properly normalized [see Equation (C.87)] stationary wavefunctions corresponding to these
energy levels are

ψnx,ny,nz(x, y, z) =
(
2
a

)3/2
sin
(
nx π

x
a

)
sin
(
ny π

y

a

)
sin
(
nz π

z
a

)
. (C.103)

As is the case for a particle trapped in a one-dimensional potential well, the lowest energy level
for a particle trapped in a three-dimensional well is not zero, but rather

E1,1,1 = 3 E1. (C.104)

Here,

E1 =
�

2

2 m a 2 . (C.105)
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is the ground state (i.e., the lowest energy state) energy in the one-dimensional case. It follows
from Equation (C.102) that distinct permutations of nx, ny, and nz that do not alter the value of
n 2

x + n 2
y + n 2

z also do not alter the energy. In other words, in three dimensions, it is possible for
distinct wavefunctions to be associated with the same energy level. In this situation, the energy
level is said to be degenerate. The ground state energy level, 3 E1, is non-degenerate, because the
only combination of (nx, ny, nz) that gives this energy is (1, 1, 1). However, the next highest energy
level, 6 E1, is degenerate, because it is obtained when (nx, ny, ny) take the values (2, 1, 1), or (1,
2, 1), or (1, 1, 2). In fact, a non-degenerate energy level corresponds to a case where the three
quantum numbers (i.e., nx, ny, and nz) all have the same value, whereas a three-fold degenerate
energy level corresponds to a case where only two of the quantum numbers have the same value,
and, finally, a six-fold degenerate energy level corresponds to a case where the quantum numbers
are all different.

C.11 Simple Harmonic Oscillator

The classical Hamiltonian of a simple harmonic oscillator is

H =
p 2

2 m
+

1
2

K x 2, (C.106)

where K > 0 is the so-called force constant of the oscillator. Assuming that the quantum-
mechanical Hamiltonian has the same form as the classical Hamiltonian, the time-independent
Schrödinger equation for a particle of mass m and energy E moving in a simple harmonic potential
becomes

d 2ψ

dx 2 =
2 m
� 2

(
1
2

K x 2 − E
)
ψ. (C.107)

Let ω =
√

K/m, where ω is the oscillator’s classical angular frequency of oscillation. Furthermore,
let

y =

√
mω

�
x, (C.108)

and
ε =

2 E
�ω

. (C.109)

Equation (C.107) reduces to
d 2ψ

dy 2 −
(
y 2 − ε

)
ψ = 0. (C.110)

We need to find solutions to the previous equation that are bounded at infinity. In other words,
solutions that satisfy the boundary condition ψ→ 0 as |y| → ∞.

Consider the behavior of the solution to Equation (C.110) in the limit |y| 
 1. As is easily
seen, in this limit, the equation simplifies somewhat to give

d 2ψ

dy 2 − y 2 ψ � 0. (C.111)
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The approximate solutions to the previous equation are

ψ(y) � A(y) e±y
2/2, (C.112)

where A(y) is a relatively slowly-varying function of y. Clearly, if ψ(y) is to remain bounded as
|y| → ∞ then we must chose the exponentially decaying solution. This suggests that we should
write

ψ(y) = h(y) e−y
2/2, (C.113)

where we would expect h(y) to be an algebraic, rather than an exponential, function of y.
Substituting Equation (C.113) into Equation (C.110), we obtain

d 2h
dy 2 − 2 y

dh
dy
+ (ε − 1) h = 0. (C.114)

Let us attempt a power-law solution of the form

h(y) =
∑

i=0,∞
ci y

i. (C.115)

Inserting this test solution into Equation (C.114), and equating the coefficients of y i, we obtain the
recursion relation

ci+2 =
(2 i − ε + 1)
(i + 1) (i + 2)

ci. (C.116)

Consider the behavior of h(y) in the limit |y| → ∞. The previous recursion relation simplifies to

ci+2 � 2
i

ci. (C.117)

Hence, at large |y|, when the higher powers of y dominate, we have

h(y) ∼ C
∑

j

y 2 j

j!
∼ C exp

(
+y 2
)
. (C.118)

It follows that ψ(y) = h(y) exp
(
−y 2/2

)
varies as exp

(
+y 2/2

)
as |y| → ∞. This behavior is unac-

ceptable, because it does not satisfy the boundary condition ψ → 0 as |y| → ∞. The only way in
which we can prevent ψ from blowing up as |y| → ∞ is to demand that the power series (C.115)
terminate at some finite value of i. This implies, from the recursion relation (C.116), that

ε = 2 n + 1, (C.119)

where n is a non-negative integer. Note that the number of terms in the power series (C.115) is
n + 1. Finally, using Equation (C.109), we obtain

E = (n + 1/2) �ω, (C.120)

for n = 0, 1, 2, · · · .
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Hence, we conclude that a particle moving in a harmonic potential has quantized energy levels
that are equally spaced. The spacing between successive energy levels is �ω, where ω is the
classical oscillation frequency. Furthermore, the lowest energy state (n = 0) possesses the finite
energy (1/2) �ω. This is sometimes called zero-point energy. It is easily demonstrated that the
(normalized) wavefunction of the lowest-energy state takes the form

ψ0(x) =
e−x 2/2 d 2

π1/4
√

d
, (C.121)

where d =
√
�/mω.

C.12 Angular Momentum

In classical mechanics, the vector angular momentum, L, of a particle of position vector r and
linear momentum p is defined as

L = r × p. (C.122)

In other words,

Lx = y pz − z py, (C.123)

Ly = z px − x pz, (C.124)

Lz = x py − y px. (C.125)

In quantum mechanics, the operators, pi, that represent the Cartesian components of linear
momentum, are represented as the spatial differential operators −i � ∂/∂xi. [See Equation (C.81)].
It follows that:

Lx = −i �
(
y
∂

∂z
− z

∂

∂y

)
, (C.126)

Ly = −i �
(
z
∂

∂x
− x

∂

∂z

)
, (C.127)

Lz = −i �
(
x
∂

∂y
− y ∂

∂x

)
. (C.128)

In addition, let
L 2 = L 2

x + L 2
y + L 2

z (C.129)

be the magnitude-squared of the angular momentum vector.
It is most convenient to work in terms of the standard spherical coordinates, r, θ, and φ. These

are defined with respect to our usual Cartesian coordinates as follows:

x = r sin θ cos φ, (C.130)

y = r sin θ sinφ, (C.131)

z = r cos θ. (C.132)
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We deduce, after some tedious analysis, that

∂

∂x
= sin θ cos φ

∂

∂r
+

cos θ cos φ
r

∂

∂θ
− sinφ

r sin θ
∂

∂φ
, (C.133)

∂

∂y
= sin θ sinφ

∂

∂r
+

cos θ sinφ
r

∂

∂θ
+

cosφ
r sin θ

∂

∂φ
, (C.134)

∂

∂z
= cos θ

∂

∂r
− sin θ

r
∂

∂θ
. (C.135)

Making use of the definitions (C.126)–(C.129), after more tedious algebra, we obtain

Lx = −i �
(
− sinφ

∂

∂θ
− cos φ cot θ

∂

∂φ

)
, (C.136)

Ly = −i �
(
cosφ

∂

∂θ
− sinφ cot θ

∂

∂φ

)
, (C.137)

Lz = −i �
∂

∂φ
, (C.138)

as well as

L2 = −� 2
[

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂ 2

∂φ 2

]
. (C.139)

We, thus, conclude that all of our angular momentum operators can be represented as differen-
tial operators involving the angular spherical coordinates, θ and φ, but not involving the radial
coordinate, r.

Let us search for an angular wavefunction, Yl,m(θ, φ), that is a simultaneous eigenstate of L 2

and Lz. In other words,

L 2 Yl,m = l (l + 1) � 2 Yl,m, (C.140)

Lz Yl,m = m � Yl,m, (C.141)

where l and m are dimensionless constants. We also want the wavefunction to satisfy the normal-
ization constraint ∮

|Yl,m| 2 dΩ = 1, (C.142)

where dΩ = sin θ dθ dφ is an element of solid angle, and the integral is over all solid angle. Thus,
we are searching for well-behaved angular functions that simultaneously satisfy,[

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂ 2

∂φ 2

]
Yl,m = −l (l + 1) Yl,m, (C.143)

∂Yl,m

∂φ
= i m Yl,m, (C.144)

∫ π

0

∫ 2π

0
|Yl,m| 2 sin θ dθ dφ = 1. (C.145)
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As is well known, the requisite functions are the so-called spherical harmonics,

Yl,m(θ, φ) = (−1) m

[
2 l + 1

4π
(l − m)!
(l + m)!

]1/2
Pl,m(cos θ) e i m φ, (C.146)

for m ≥ 0. Here, the Pl,m are known as associated Legendre polynomials, and are written

Pl,m(u) = (−1) l+m (l + m)!
(l − m)!

(
1 − u 2

)−m/2

2 l l!

(
d

du

)l−m (
1 − u 2

) l
. (C.147)

for m ≥ 0. Note that
Yl,−m = (−1)m Y ∗l,m. (C.148)

Finally, the constant l is constrained to take non-negative integer values, whereas the constant m
is constrained to take integer values in the range −l ≤ m ≤ +l. Thus, l is a quantum number
that determines the value of L 2. In fact, L 2 = l (l + 1) � 2. Likewise, m is a quantum number that
determines the value of Lz. In fact, Lz = m �.

The classical Hamiltonian of an extended object spinning with constant angular momentum L
about one of its principal axes of rotation is

H =
L 2

2 I
, (C.149)

where I is the associated principal moment of inertia. Let us assume that the quantum-mechanical
Hamiltonian of an object spinning about a principal axis of rotation has the same form. We can
solve the energy eigenvalue problem,

H ψ = E ψ, (C.150)

by writing ψ(r, θ, φ) = R(r) Yl,m(θ, φ), where R(r) is arbitrary. It immediately follows from Equa-
tion (C.140) that

E =
l (l + 1) � 2

2 I
. (C.151)

In other words, the energy levels are quantized in terms of the quantum number, l, that specifies
the value of L 2.

The classical Hamiltonian of an extended object spinning about a general axis is

H =
L 2

x

2 Ix
+

L 2
y

2 Ly
+

L 2
z

2 Lz
, (C.152)

where the Cartesian axes are aligned along the body’s principal axes of rotation, and Ix, Iy, Iz are
the corresponding principal moments of inertia. Suppose that the body is axially symmetric about
the z-axis. It follows that Ix = Iy. The previous Hamiltonian can be written

H =
L 2

2 Ix
+

(
1

2 Iz
− 1

2 Ix

)
L 2

z . (C.153)
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Let us assume that the quantum-mechanical Hamiltonian of an axisymmetric object spinning about
an arbitrary axis has the same form as the previous Hamiltonian. We can solve the energy eigen-
value problem, H ψ = E ψ, by writing ψ(r, θ, φ) = R(r) Yl,m(θ, φ), where R(r) is arbitrary. It imme-
diately follows from Equations (C.140) and (C.141) that

E =
[l (l + 1) − m 2] � 2

2 Ix
+

m 2
�

2

2 Iz
. (C.154)

In other words, the energy levels are quantized in terms of the quantum number, l, that specifies the
value of L 2, as well as the quantum number, m, that determines the value of Lz. If Iz � Ix (in other
words, if the object is highly elongated along its symmetry axis) then the spacing between energy
levels corresponding to different values of m becomes much greater than the spacing between
energy levels corresponding to different values of l. In this case, it is plausible that the system
remains in the m = 0 state (because it cannot acquire sufficient energy to reach the m = 1 state), so
that

E =
l (l + 1) � 2

2 Ix
. (C.155)


