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Preface

Our goal in this set of lecture notes is to provide students with a strong foundation in mathematical
analysis. Such a foundation is crucial for future study of deeper topics of analysis. Students should be
familiar with most of the concepts presented here after completing the calculus sequence. However,
these concepts will be reinforced through rigorous proofs.

The lecture notes contain topics of real analysis usually covered in a 10-week course: the
completeness axiom, sequences and convergence, continuity, and differentiation. The lecture notes
also contain many well-selected exercises of various levels. Although these topics are written in a
more abstract way compared with those available in some textbooks, teachers can choose to simplify
them depending on the background of the students. For instance, rather than introducing the topology
of the real line to students, related topological concepts can be replaced by more familiar concepts
such as open and closed intervals. Some other topics such as lower and upper semicontinuity,
differentiation of convex functions, and generalized differentiation of non-differentiable convex
functions can be used as optional mathematical projects. In this way, the lecture notes are suitable
for teaching students of different backgrounds.

Hints and solutions to selected exercises are collected in Chapter 5. For each section, there is at
least one exercise fully solved. For those exercises, in addition to the solutions, there are explanations
about the process itself and examples of more general problems where the same technique may be
used. Exercises with solutions are indicated by a » and those with hints are indicated by a >.

Finally, to make it easier for students to navigate the text, the electronic version of these notes
contains many hyperlinks that students can click on to go to a definition, theorem, example, or
exercise at a different place in the notes. These hyperlinks can be easily recognized because the text
or number is on a different color and the mouse pointer changes shape when going over them.

Changes in the Second Edition

The second edition includes a number of improvements based on recommendations from students
and colleagues and on our own experience teaching the course over the last several years.
In this edition we streamlined the narrative in several sections, added more proofs, many examples



6

worked out in detail, and numerous new exercises. In all we added over 50 examples in the main text
and 100 exercises (counting parts).

We included more prominently the notion of compact set. We defined compactness as what is
more commonly termed sequential compactness. Students find this definition easier to absorb than
the general one in terms of open covers. Moreover, as the emphasis of the whole text is on sequences,
this definition is easier to apply and reinforce.

The following are the more significant changes.

Chapter 1 Added the proofs of several properties of the real numbers as an ordered field.

Chapter 2 We added the proof that compactness is equivalent to closed and bounded in the main
text.

Chapter 3 We added the theorem on extension of uniformly continuous functions and moved the
discussion of Lipschiptz and Holder continuous functions to the section on uniform continuity.
We created a separate section for limit superior/inferior of functions.

Chapter 4 We clarified the statement and the proof of the second version of L’Hospital’s rule.

We have used these notes several times to teach the one-quarter course Introduction to Mathe-
matical Analysis I at Portland State University. As we are now preparing a companion text for the
second term (Introduction to Mathematical Analysis II) we now added the roman numeral I to the
title.



1.1

BASIC CONCEPTS OF SET THEORY

FUNCTIONS

THE NATURAL NUMBERS AND MATHEMATICAL INDUC-
TION

ORDERED FIELD AXIOMS

THE COMPLETENESS AXIOM FOR THE REAL NUMBERS
APPLICATIONS OF THE COMPLETENESS AXIOM

1. TOOLS FOR ANALYSIS

This chapter discusses various mathematical concepts and constructions which are central to the
study of the many fundamental results in analysis. Generalities are kept to a minimum in order to
move quickly to the heart of analysis: the structure of the real number system and the notion of limit.
The reader should consult the bibliographical references for more details.

BASIC CONCEPTS OF SET THEORY

Intuitively, a set is a collection of objects with certain properties. The objects in a set are called
the elements or members of the set. We usually use uppercase letters to denote sets and lowercase
letters to denote elements of sets. If a is an element of a set A, we write a € A. If a is not an element
of a set A, we write a & A. To specify a set, we can list all of its elements, if possible, or we can use
a defining rule. For instance, to specify the fact that a set A contains four elements a,b, c,d, we write

A={a,b,c,d}.
To describe the set E containing all even integers, we write
E = {x: x = 2k for some integer k}.
We say that a set A is a subset of a set B if every element of A is also an element of B, and write
ACBorBDA.

Two sets are equal if they contain the same elements. If A and B are equal, we write A = B. The
following result is straightforward and very convenient for proving equality between sets.

Theorem 1.1.1 Two sets A and B are equal if and only if A C B and B C A.
If A C B and A does not equal B, we say that A is a proper subset of B, and write

ACB.
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The set @ = {x : x # x} is called the empry set. This set clearly has no elements. Using
Theorem 1.1.1, it is easy to show that all sets with no elements are equal. Thus, we refer to the empty
set.

Throughout this book, we will discuss several sets of numbers which should be familiar to the
reader:

e N={1,2,3,...}, the set of natural numbers or positive integers.

e 7=4{0,1,—1,2,-2,...}, the set of integers (that is, the natural numbers together with zero
and the negative of each natural number).

Q= {m/n:m,n € Z,n # 0}, the set of rational numbers.

R, the set of real numbers.

Intervals. For a,b € R, we have

[a,b] ={xeR:a<x<b},
(a,b) ={xeR:a <x<b},
[a,00) ={xeR:a<x},
(a,0) ={xeR:a<x},

8

a,

and similar definitions for (a,b), [a,b), (—oo,b], and (—oo,b). We will say more about the
symbols o and —oo in Section 1.5.

Since the real numbers are central to the study of analysis, we will discuss them in great detail in
Sections 1.4, 1.5, and 1.6.

For two sets A and B, the union, intersection, difference, and symmetric difference of A and B are
given respectively by

AUB={x:x€Aorxe B},
ANB={x:x€Aandx € B},
A\B={x:x€Aandx¢ B},and
AAB=(A\B)U(B\A).
If ANB = 0, we say that A and B are disjoint.
The difference of A and B is also called the complement of B in A. If X is a universal set, that is,

a set containing all the objects under consideration, then the complement of A in X is denoted simply
by A°€.

Theorem 1.1.2 Let A, B, and C be subsets of a universal set X. Then the following hold:

(a) AUAC =X,
(b) ANAC=0;
(©) (A) =4,

(d) (Distributive law) AN(BUC) = (ANB)U(ANC);



(e) (Distributive law) AU(BNC) = (AUB)N(AUC);
(f) (DeMorgan’s law) A\ (BUC) = (A\B)N(A\C);
(2) (DeMorgan’s law) A\ (BNC) = (A\B)U(A\C);
(h) A\B=ANB.

Proof: We prove some of the results and leave the rest for the exercises.

(a) Clearly, AUA® C X since both A and A€ are subsets of X. Now let x € X. Then either x is an
element of A or it is not an element of A. In the first case, x € A and, so, x € A UA€. In the second
case, x € A and, so, x € AUAC. Thus, X C AUAC.

(b) No element of x can be simultaneously in A and not in A. Thus, ANA° = 0.

(d) Let x e AN(BUC). Then x € A and x € BUC. Therefore, x € B or x € C. In the first
case, since x is also in A we get x € AN B and, hence, x € (ANB)U(ANC). In the second case,
x € ANC and, hence, x € (ANB)U(ANC). Thus, in all cases, x € (ANB)U(ANC). This shows
AN(BUC)C (ANB)U(ANC).

Now we prove the other inclusion. Let x € (ANB)U(ANC). Thenx e ANBorx € ANC.
In either case, x € A. In the first case, x € B and, hence, x € BUC. It follows in this case that
x € AN(BUC). In the second case, x € C and, hence, x € BUC. Again, we conclude x € AN (BUC).
Therefore, (ANB)U(ANC) C AN (BUC) as desired. (J

A set whose elements are sets is often called a collection/family of sets and is often denoted by
script letters such as o7 or A.

Let I be a nonempty set such that to each i € I corresponds a set A;. Then the family of all sets
A; as i ranges over [ is denoted by

{Allel}

Such a family of sets is called an indexed family and the set [ is called the index set. Consider the
indexed family of sets {A; : i € I'}. The union and intersection of this family as i ranges over [ is
defined respectively by

JAi = {x:x €A, forsomeic I}

icl
and

ﬂAi ={x:x€A,foreveryiecl}.
iel

m Example 1.1.1 The following examples illustrate the notation.

(a) Let the index set be / = N and for each n € N we have A, = [—n,n]. Then

Ua, =R NA=[-1L1].

neN neN

(b) Here we let the index set be J = (0, 1] and for each @ € J we have A = (—o, ¢). Then

Uda=(-11)  ()4a={0}.

acJ acJ
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The proofs of the following properties are similar to those in Theorem 1.1.2. We include the
proof of part (a) and leave the rest as an exercise.

Theorem 1.1.3 Let {A; : i € I} be an indexed family of subsets of a universal set X and let B be a
subset of X. Then the following hold:

(@) BU (NigAi) = Niey BUA

(b) BN (UiesAi) = Uier BNA;;

(© B\ (MicsAi) = Uier B\ Ai;

(d) B\ (UieIAi) =Nier B\ A3

(e) (ﬂieIAi)C =Uies A

) (UierAi)" = Nics A%
Proof of (a): Let x € BU (N;;A;i). Then x € B or x € ic;A;. If x € B, then x € BUA, for all i € 1
and, thus, x € (;c; BUA;. If x € ;c;Ai, then x € A; for all i € I. Therefore, x € BUA, foralli e[
and, hence, x € ();c; BUA;. We have thus showed BU (ﬂielA,-) CNiesBUA,.

Now let x € ();; BUA;. Then x € BUA; forall i € I. If x € B, then x € BU (;;A;). If x € B,

then we must have that x € A; for all i € 1. Therefore, x € (;c;A; and, hence, x € BU ((;¢;A;). This
proves the other inclusion and, so, the equality. []

We want to consider pairs of objects in which the order matters. Given objects a and b, we will
denote by (a,b) the ordered pair where a is the first element and b is the second element. The main
characteristic of ordered pairs is that (a,b) = (c,d) if and only if @ = ¢ and b = d. Thus, the ordered
pair (0, 1) represents a different object than the pair (1,0) (while the set {0, 1} is the same as the set

1

{1’2i)\/én two sets A and B, the Cartesian product of A and B is the set defined by
AxB:={(a,b):acAandbc B}.

» Example 1.1.2 If A = {1,2} and B = {-2,0, 1}, then
AxB={(1,-2),(1,0),(1,1),(2,-2),(2,0),(2,1) }.

» Example 1.1.3 If A and B are the intervals [—1,2] and [0,7] respectively, then A x B is the
rectangle

[—1,2] x [0,7] ={(x,y): —1<x<2,0<y<T7}

We will make use of cartesian products in the next section when we discuss functions.

Exercises

1.1.1 Prove the remaining items in Theorem 1.1.2.
1.1.2 » Let Y and Z be subsets of X. Prove that

(X\Y)NZ=2\(YNZ).

For a precise definition of ordered pair in terms of sets see [ ]
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1.1.3 Prove the remaining items in Theorem 1.1.3.

1.1.4 Let A, B, C, and D be sets. Prove the following.
(@ (ANB)xC=(AxC)N(BxC).

(b) (AUB)xC=(AxC)U(BxC).

() (AxB)N(CxD)=(ANC)x (BND).

1.1.5 Let A C X and B C Y. Determine if the following equalities are true and justify your answer:
(@) (X xY)\(AXxB)=(X\A)x(Y\B).
(b) (X x¥)\(AxB)=[(X\A) x ¥]U[X x (Y \B)].

1.2 FUNCTIONS

Definition 1.2.1 Let X and Y be sets. A function from X into Y is a subset f C X x Y with the
following properties

(a) For all x € X there is y € Y such that (x,y) € f.
(b) If (x,y) € fand (x,z) € f, theny = z.

The set X is called the domain of f, the set Y is called the codomain of f, and we write f: X — Y.
The range of f is the subset of Y defined by {y € Y : there is x € X such that (x,y) € f}.

It follows from the definition that, for each x € X, there is exactly one element y € Y such that
(x,y) € f. We will write y = f(x). If x € X, the element f(x) is called the value of f at x or the
image of x under f.

Note that, in this definition, a function is a collection of ordered pairs and, thus, corresponds
to the geometric interpretation of the graph of a function given in calculus. In fact, we will refer
indistinctly to the function f or to the graph of f. Both refer to the set {(x, f(x)) : x € X }.

Let f: X — Y and g: X — Y be two functions. Then the two functions are equal if they are
equal as subsets of X x Y. It is easy to see that f equals g if and only if

f(x) =g(x) forallx € X.

It follows from the definition that two equal functions must have the same domain.
Let f: X — Y be a function and let A be a subset of X. The restriction of f on A, denoted by f|4,
is a new function from A into Y given by

fia(a) = f(a) forall a € A.

Definition 1.2.2 A function f: X — Y is called surjective (or is said to map X onto Y) if for every
element y € Y, there exists an element x € X such that f(x) = y.

The function f is called injective (or one-to-one) if for each pair of distinct elements of X, their
images under f are also distinct. Thus, f is one-to-one if and only if for all x and x’ in X, the
following implication holds:

[f(x) = fE)] = [x=x].

If f is both surjective and injective, it is called bijective or a one-to-one correspondence. In this case,
for any y € Y, there exists a unique element x € X such that f(x) = y. This element x is then denoted
by f~!(y). In this way, we already built a function from Y to X called the inverse of f.
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Theorem 1.2.1 Let f: X — Y. If there are two functions g: ¥ — X and h: ¥ — X such that
g(f(x)) = x for every x € X and f(h(y)) =y for every y € Y, then f is bijective and g = h = f~!.

Proof: First we prove that f is surjective. Let y € Y and set x = h(y). Then, from the assumption on
h, we have f(x) = f(h(y)) = y. This shows that f is surjective.

Next we prove that f is injective. Let x,x” € X be such that f(x) = f(x’). Then x = g(f(x)) =
g(f(x")) =x'. Thus, f is injective.

We have shown that for each y € Y, there is a unique x € X, which we denote f~!(y) such that
f(x) =y. Since for such a y, g(y) = g(f(x)) = x, we obtain g(y) = f~'(y). Since f(h(y)) =y, we
also conclude that h(y) =x = f~!(y). O

= Example 1.2.1 Consider the function f: (1,2] — [3,4) given by f(x) =4 — (x — 1)2. We show
that f is bijective. First let x,y € (1,2] be such that f(x) = f(y). Thatis, 4 — (x — 1)> =4 — (y—1)2.
Then (x—1)? = (y — 1)2. Since both x > 1 and y > 1, we conclude that x — 1 =y — 1 and, so, x = y.
This proves f is injective.

Next let y € [3,4). We want x € (1,2] such that f(x) =y. Let us setup 4 — (x — 1)?> =y and
solve for x. We get, x = /4 —y+ 1. Note that since y < 4, y — 4 has a square root. Also note that
since 3 <y <4, wehave 1 >4—y>0and, hence, 2 > \/4—y+1 > 1. Therefore, x € (1,2]. This
proves f is surjective.

Definition 1.2.3 Let f: X — Y be a function and let A be a subset of X. Then the image of A under
f is given by

fA)={f(a):a€A}.
It follows from the definition that
f(A)={beY :b= f(a)forsomea € A}.

Moreover, f is surjective if and only if f(X) =Y.
For a subset B of Y, the preimage of B under f is defined by

fY(B)={xeX:f(x)eB}.

Remark 1.2.2 Note that, despite the notation, the definition of preimage does not require the
function to have an inverse. It does not even require the function to be injective. The examples below
illustrate these concepts.

» Example 1.2.2 Let f: R — R be given by f(x) =3x—1. Let A=[0,2) and B = {1,—4,5}.
Then f(A) = [—1,5) and f~'(B) = {$,-1,2}.

» Example 1.2.3 Let f: R — R be given by f(x) = —x+7. Let A = [0,2) and B = (—oo,3]. Then
f(A)=(57] and f~1(B) = [4,c0).

= Example 1.2.4 Let f: R — R be given by f(x) = x*>. Let A= (—1,2) and B = [1,4). Then
f(A)=10,4) and f~1(B) = (=2,—1]U[1,2).

Theorem 1.2.3 Let f: X — Y be a function, let A be a subset of X, and let B be a subset of Y. The
following hold:

@ AcC f(f(A)).
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(b) f(f'(B)) CB.

Proof: We prove (a) and leave (b) as an exercise.
(a) Let x € A. By the definition of image, f(x) € f(A). Now, by the definition of preimage,

xe f7H(f(4)).0
Theorem 1.2.4 Let f: X — Y be a function, let A,B C X, and let C,D C Y. The following hold:

(a) If C C D, then f~1(C) c f~1(D);
(b) f7H(D\C) =1 (D)\f1(C);
(c) If A C B, then f(A) C f(B);

(d) f(A\B) D f(A)\ f(B).

Proof: We prove (b) and leave the other parts as an exercise.

(b) We prove first that f~!1(D\ C) c f~1(D)\ f~!(C). Letx € f~'(D\ C). Then, from the
definition of inverse image, we get f(x) € D\ C. Thus, f(x) € D and f(x) ¢ C. Hence x € f~!(D)
and x ¢ f~1(C). We conclude that x € f~1(D)\ f~1(C).

Next we prove f~'(D)\ f~1(C) C f~Y(D\C). Letx € f~'(D)\ f~'(C). Thus, x € f~!(D) and
x & f~1(C). Therefore, f(x) € D and f(x) € C. This means f(x) € D\ C and, so,x € f~'(D\C).O

Theorem 1.2.5 Let f: X — Y be a function, let {Ay }4cs be an indexed family of subsets of X, and
let {Bg }gc; be an indexed family of subsets of Y. The following hold:

@ f(UaerAa) =Uqer f(Aa);
®) f(NaecrAa) CNaer f(Aa);
(©) fﬁl(UﬁeJBB) = Uﬁejfil(Bﬁ);
(d) f_l (ﬂBeJBﬁ) = mﬁejf_l (BB)-

Proof: We prove (a) and leave the other parts as an exercise.
(a) Lety € f(UqgerA«a)- From the definition of image of a set, there is x € | J,c;Aq such that
y = f(x). From the definition of union of a family of sets, there is o € I such that x € Ay,. Therefore,

y=f(x) € f(Ag) and, so, y € Uger f(An). O.

Given functions f: X — Y and g: Y — Z, we define the composition function go f of f and g
as the function go f: X — Z given by

(gof)(x) =g(f(x)) forallx € X.

Theorem 1.2.6 Let f: X — Y and g: Y — Z be two functions and let B C Z. The following hold:

(@) (gof)'(B)=f""(g'(B)):;

(b) If f and g are injective, then g o f is injective;
(c) If f and g are surjective, then g o f is surjective;
(d) If go f is injective, then f is injective;

(e) If go f is surjective, then g is surjective.
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Proof: We prove (d) and leave the other parts as an exercise.

(d) Suppose go f is injective and let x,x’ € X be such that f(x) = f(x’). Then (go f)(x) =
g(f(x))=g(f(x)) = (gof)(¥). Since go f is injective, it follows that x = x’. We conclude that f
is injective. [J

Definition 1.2.4 A sequence of elements of a set A is a function with domain N and codomain A.
We discuss sequences in detail in Chapter 2.

Definition 1.2.5 We say that set A is finite if it is empty or if there exists a natural number 7 and a
one-to-one correspondence f: A — {1,2,...,n}. A set is infinite if it is not finite.

We leave it as an exercise to prove that the union of two finite sets is finite. It is also easy to show,
by contradiction, that N is infinite. The following result will be useful when studying sequences and
accumulation points.

Theorem 1.2.7 Suppose A is an infinite set. Then there exists a one-to-one function f: N — A.

Proof: Let A be an infinite set. We define f as follows. Choose any element a; € A and set f(1) =ay.
Now the set A\ {a;} is again infinite (otherwise A = {a} U (A \ {a;}) would be the union of two
finite sets). So we may choose a, € A with ay # a; and we define f(2) = a,”. Having defined
f(1),..., f(k), we choose ay;1 € A such that ax; € A\ {ai,...,a} and define f(k+ 1) = ar4;
(such an ay | exists because A \ {ay,...,a;} is infinite and, so, nonempty). The function f so defined
clearly has the desired properties. [

To paraphrase, the previous theorem says that in every infinite set we can find a sequence made
up of all distinct points.

Exercises
1.2.1 » Let f: X — Y be a function. Prove that:

(a) If f is one-to-one, then A = f~!(f(A)) for every subset A of X.
(b) If f is onto, then f(f~'(B)) = B for every subset B of Y.

1.2.2 Let f: R — R be given by f(x) =x> —3 and let A = [~2,1) and B = (—1,6). Find f(A) and
17(8).
1.2.3 Prove that each of the following functions is bijective.
(@) f: (—o,3] = [~2,00) given by f(x) = lr—3| 2.
. 3
(b) g: (1,2) = (3,°°) given by g(x) = 1
1.2.4 Prove thatif f: X — Y is injective, then the following hold:

(a) f(ANB) = f(A)Nf(B) forA,BCX.
(b) f(A\B)=f(A)\f(B)forA,BCX.

1.2.5 Prove part (2) of Theorem 1.2.3.

2This fact relies on a basic axiom of set theory called the Axiom of Choice. See [ ] for more details.
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1.2.6 Prove parts (1), (3), and (4) of Theorem 1.2.4.
1.2.7 Prove parts (2), (3), and (4) of Theorem 1.2.5.
1.2.8 Prove parts (1), (2), (3), and (5) of Theorem 1.2.6.

1.2.9 Prove that the union of two finite sets is finite. Hint: it is easier to show when the sets are
disjoint.

THE NATURAL NUMBERS AND MATHEMATICAL INDUCTION

We will assume familiarity with the set N of natural numbers, with the usual arithmetic operations
of addition and multiplication on N, and with the notion of what it means for one natural number to
be less than another.

In addition, we will also assume the following property of the natural numbers.
Well-Ordering Property of the Natural Numbers: If A is a nonempty subset of N, then there
exists an element £ € A such that ¢ < x for all x € A.

To paraphrase the previous property, every nonempty subset of positive integers has a smallest
element.

The principle of mathematical induction is a useful tool for proving facts about sequences.

Theorem 1.3.1 — Principle of Mathematical Induction. For each natural number n € N, suppose
that P(n) denotes a proposition which is either true or false. Let A = {n € N : P(n) is true}. Suppose
the following conditions hold:

(a) 1 €A.
(b) Foreachk e N,if k€ A, thenk+1 € A.

Then A = N.

Proof: Suppose conditions (a) and (b) hold. Assume, by way of contradiction, that A # N. Set
B =N\A, that is, B= {n € N : P(n) is false}. Then B is a nonempty subset of N. By the Well-
Ordering Property of the natural numbers, there exists a smallest element £ € B. By condition (a),
1 € B. Hence, ¢ > 2. It follows that k = £ — 1 is a natural number. Since k < ¢, k ¢ B and, hence, we
have that P(k) is true. By condition (b), we obtain that P(k+ 1) is true. But k+ 1 = ¢, and P(¢) is
false, since ¢ € B. This is a contradiction, so the conclusion follows. [

To paraphrase, the principle says that, given a list of propositions P(n), one for each n € N, if
P(1) is true and, moreover, P(k+ 1) is true whenever P(k) is true, then all propositions are true.

We will refer to this principle as mathematical induction or simply induction. Condition (a) above
is called the base case and condition (b) the inductive step. When proving (b), the statement P(k) is
called the inductive hypothesis.

= Example 1.3.1 Prove using induction that for all n € N

1
1424 pn= 2D
2
The statement P(n) is the equality 1 +2+---+n= "("7;1) Now the base case says that 1 = w,

which is clearly true.
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KEED (this is the

Suppose P(k) is true for some k € N. That is, suppose that 1 +2+---+k =
inductive hypothesis). Now we have

k(k+1 k(k+1)+2(k+1 k+1)(k+2
(1) |y KEED 426D (k) (,42).
2 2 2
This shows that P(k+ 1) is true. We have now proved conditions (a) and (b) of Theorem 1.3.1.

Therefore, by the principle of mathematical induction we conclude that

142+ +k+(k+1)=

n(n+1)

1424 4n= foralln € N.

= Example 1.3.2 Prove using induction that for all n € N, 7" — 2" is divisible by 5.

For n =1, we have 7 —2 = 5, which is clearly a multiple of 5.
Suppose that 7¥ — 2% is a multiple of 5 for some k € N. That is, there is an integer j such that
7% — 2k =5;. Let us write 7¢ = 2¥ + 5. Now, substituting this expression below, we have

T okl 7.9k _p.0k =72k 1 5)) —2.2k=7.2k 2.2k 4 7.5 =2K(7—2)+5.7j =5(2" +7)).

It follows that 751 — 251 js a multiple of 5. This proves the inductive step.
We conclude by induction that 7" — 2" is divisible by 5 for all n € N.

= Example 1.3.3 Prove using induction that for all n € N
n+1<2"

Forn =1, we have 1 +1 =2 = 2!, 5o the base case is true.
Suppose next that k+ 1 < 2% for some k € N. Then k+1+1 < 2%+ 1. Since 2* is a positive
integer, we also have 1 < 2k Therefore,

(k+1)+1 <2541 <2k ok =2. 0k = ok,

We conclude by the principle of mathematical induction that n 41 < 2" for all n € N.

The following result is known as the Generalized Principle of Mathematical Induction. It simply
states that we can start the induction process at any integer n, and then we obtain the truth of all
statements P(n) for n > ny.

Theorem 1.3.2 — Generalized Principle of Mathematical Induction. Let ny € N and for each
natural n > no, suppose that P(n) denotes a proposition which is either true or false. Let A = {n €
N: P(n) is true}. Suppose the following two conditions hold:

(a) ng € A.
(b) Foreachk e N, k> ng,if k € A, thenk+ 1 € A.

Then {k € N:k >ng} C A.

Proof: Suppose conditions (a) and (b) hold. Assume, by way of contradiction, that A 2 {k € N :
k>np}. Set B={n € N:n>ny,P(n)is false}. Then B is a nonempty subset of N. By the Well-
Ordering Property of the natural numbers, there exists a smallest element ¢ € B. By condition (a),
no ¢ B. Hence, ¢ > ny+ 1. It follows that k = £ — 1 > ng. Since k < ¢, k ¢ B and, so, we have that
P(k) is true. By condition (b), we obtain that P(k+ 1) is true. But k+ 1 = ¢, and P(¢) is false, since
¢ € B. This is a contradiction, so the conclusion follows. [J
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= Example 1.3.4 Prove by induction that 3n < 2" for all n > 4.
The statement is true for n = 4 since 12 < 16. Suppose next that 3k < 2 for some k € N, k > 4.
Now,

3(k+1)=3k+3 <2k 43 < 2k 42k = okF1 (1.1)
where the second inequality follows since £ > 4 and, so, 2k > 16 > 3. This shows that P(k+1)is
true. Thus, by the generalized principle of induction, the inequality holds for all n > 4.

Next we present another variant of the induction principle which makes it easier to prove the

inductive step. Despite its name, this principle is equivalent to the standard one.

Theorem 1.3.3 — Principle of Strong Induction. For each natural n € N, suppose that P(n) denotes
a proposition which is either true or false. Let A = {n € N : P(n) is true}. Suppose the following
two conditions hold:

(a) 1 €A.

(b) Foreachk e N, if1,2,....k€ A, thenk+1 € A.

Then A = N.

Remark 1.3.4 Note that the inductive step above says that, in order to prove P(k+ 1) is true, we
may assume not only that P(k) is true, but also that P(1), P(2),...,P(k— 1) are true.
There is also a generalized version of this theorem where the base case is for some integer ng > 1.

= Example 1.3.5 Prove by induction that every positive integer greater than 1 is either a prime
number or a product of prime numbers.

Clearly, the statement is true for n = 2. Suppose the statement holds for any positive integer
m e {2,...,k}, where k € N, k > 2. If k+ 1 is prime, the statement holds for k + 1. Otherwise,
there are positive integers p,q > 1 such that k41 = pq. Since p, g < k, by the inductive assumption
applied to both p and ¢ we can find prime numbers ry,...,r; and s1,...,s, such that p =r;---ry and
q =51 -+ Sy (note that £ and m may both equal 1). But then

k+1=r1---resy---Sp. (1.2)
Thus, the statement holds true for k+ 1. The conclusion now follows by the Principle of Strong

Induction.

Exercises

1.3.1 Prove the following using Mathematical Induction.

(@ 12422+ +n2= foralln € N.

n(nt1)(2n+1)
6
() B4234-pnd = D foralip € N,
() 14+3+4---+(2n—1)=n’forallnecN.
1.3.2 Prove that for all n € N, 9" — 5" is divisible by 4.

1.3.3 Prove that for all n € N, 7" — 1 is divisible by 3.
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1.3.4 Prove the following using induction.

(@) 2n+1<2"forn >3 (n €N).

(b) n? < 3" forall n € N. (Hint: show first that for all n € N, 2n < n% + 1. This does not require
induction.)

(c) n® < 3" forall n € N. (Hint: Check the cases n = 1 and n = 2 directly and then use induction
forn > 3.)

1.3.5 Given a real number a # 1, prove that

1— n+1
l+a+d®+---+d"= foralln € N.
1.3.6 » The Fibonacci sequence is defined by
ag=ap;=1 and Qnt2 = Apy1 +ay forn > 1.

Prove that

A5 - (5]

1.3.7 Leta > —1. Prove by induction that

a,; —

(I1+a)">1+na foralln e N.

1.3.8 > Leta,b € R and n € N. Use Mathematical Induction to prove the binomial theorem

(atby =Y (Z) db -,

k=0

h n\ n!
Yk TR

1.4 ORDERED FIELD AXIOMS

In this book, we will start from an axiomatic presentation of the real numbers. That is, we
will assume that there exists a set, denoted by R, satisfying the ordered field axioms, stated below,
together with the completeness axiom, presented in the next section. In this way we identify the
basic properties that characterize the real numbers. After listing the ordered field axioms we derive
from them additional familiar properties of the real numbers. We conclude the section with the
definition of absolute value of a real number and with several results about it that will be used often
later in the text.

We assume the existence of a set R (the set of real numbers) and two operations + and - (addition
and multiplication) assigning to each pair of real numbers x,y, unique real numbers x+y and x-y
and satisfying the following properties:

(la) (x+y)+z=x+(y+z) forallx,y,z € R.
(1b) x+y=y+xforall x,y e R.
(1c) There exists a unique element 0 € R such that x40 = x for all x € R.
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(1d) For each x € R, there exists a unique element —x € R such that x+ (—x) = 0.

(2a) (x-y)-z=x-(y-z) forall x,y,z € R.
(2b) x-y=y-xforall x,y € R.
(2c) There exists a unique element 1 € R such that 1 # 0 and x- 1 = x for all x € R.

(2d) For each x € R\ {0}, there exists a unique element x ! € R such that x- (x~!) = 1. (We also
write 1/x instead of x!.)

(2e) x-(y+z) =x-y+x-zforallx,y,z € R.

We often write xy instead of x - y.

In addition to the algebraic axioms above, there is a relation < on R that satisfies the order
axioms below:

(3a) For all x,y € R, exactly one of the three relations holds: x =y, y < x, or x < y.
(3b) For all x,y,z € R,ifx <yand y < z, then x < z.

(3c) Forall x,y,z€e R, ifx <y, thenx+z<y+z.

(3d) Forall x,y,z € R, if x <yand 0 < z, then xz < yz.

We will use the notation x <y to mean x < y or x =y. We may also use the notation x > y to
represent y < x and the notation x > y to mean x >y or x = y.

A set IF together with two operations + and - and a relation < satifying the 13 axioms above is
called an ordered field. Thus, the real numbers are an example of an ordered field. Another example
of an ordered field is the set of rational numbers Q with the familiar operations and order. The
integers Z do not form a field since for an integer m other than 1 or —1, its reciprocal 1/m is not an
integer and, thus, axiom 2(d) above does not hold. In particular, the set of positive integers N does
not form a field either. As mentioned above the real numbers R will be defined as the ordered field
which satisfies one additional property described in the next section: the completeness axiom.

From these axioms, many familiar properties of R can be derived. Some examples are given
in the next proposition. The proof illustrates how the given axioms are used at each step of the
derivation.

Proposition 1.4.1 For x,y,z € R, the following hold:

(@) fx+y=x+z theny=z;

(b) —(—x) =x;

(c) If x# 0 and xy = xz, then y = z;

(d) Ifx#0,then 1/(1/x) =x;

(e) Ox=0=x0;

) —x=(=1)x;

(8) x(—z) = (—x)z=—(xz).

(h) If x > 0, then —x < 0; if x < 0, then —x > O;
(1) If x <yandz<0, then xz > yz;

(G 0<«1.
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Proof: (2) Suppose x+y = x+ z. Adding —x (which exists by axiom (2d)) to both sides, we have
(%) + (x+y) = (=x) + (x+2).

Then axiom (1a) gives
[(=x)+x]+y=[(—x)+x]+z

Thus, again by axiom (2d), 04+y = 0+z and, by axiom (lc),y =z.
(b) Since (—x) +x = 0, we have (by uniqueness in axiom (2d)) —(—x) = x.
The proofs of (c) and (d) are similar.

(¢) Using axiom (2¢) we have Ox = (04 0)x = Ox + Ox. Adding —(0x) to both sides (axiom (2d))
and using axioms (1a) and (1c), we get

0= —(0x) 4+ 0x = —(0x) + (Ox+0x) = (—(0x) + 0x) 4+ 0x = 0+ Ox = Ox.

That Ox = x0 follows from axiom (2b).

(f) Using axioms (2¢) and (2¢) we get x4+ (—1)x = lx+ (—1)x = (1 + (—1))x. From axiom (2d)
we get 1+ (—1) =0 and from part (¢) we get x+ (—1)x = Ox = 0. From the uniqueness in axiom (2d)
we get (—1)x = —x as desired.

(2) Using axioms (2¢) and (lc) we have xz+x(—z) = x(z+ (—z)) = x0 = 0. Thus, using
axiom (2d) we get that x(—z) = —(xz). The other equality follows similarly.

(h) From x > 0, using axioms (3c) and (1c) we have x+ (—x) > 0+ (—x) = —x. Thus, using
axiom (2d), we get 0 > —x. The other case follows in a similar way.

(1) Since z < 0, by part (h), —z > 0. Then, by axiom (3d), x(—z) < y(—z). Combining this with
part (g) we get —xz < —yz. Adding xz + yz to both sides and using axioms (1a), (3¢), (1b), and (1c)
we get

xy = (—xz+xz) +xy = —xz+ (xz+xy) < —xy+ (x2+xy) = —xy+ (xy+x2) = (—xy+xY) +x2 = xZ.

(j) Axiom (2c¢) gives that 1 £ 0. Suppose, by way of contradiction, that 1 < 0. Then by part (i),
1-1>0-1. Since 1-1 =1, by axiom (2¢) and 0-1 = 0 by part (e¢), we get 1 > 0 which is a
contradiction. It follows that 1 > 0. O

Note that we can assume that the set of all natural numbers is a subset of R (and of any ordered
field, in fact) by identifying the 1 in N with the 1 in axiom (2c) above, the number 2 with 1 +1, 3
with 14141, etc. Furthermore, since 0 < 1 (from part (j) of the previous proposition), axiom (3c)
gives, 1 <2 < 3, etc (in particular all these numbers are distinct). In a similar way, can include Z
and QQ as subsets.

We say that a real number x is irrational if x € R\ Q, that is, if it is not rational.

Definition 1.4.1 Given x € R, define the absolute value of x by

X, ifx>0;
x| = .
—x, ifx<O.
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sk

2 fla) = |

Figure 1.1: The absolute value function.

The following properties of absolute value follow directly from the definition.

Proposition 1.4.2 Let x,y,M € R and suppose M > 0. The following properties hold:

(@) |x] >0;
() | —x[=|x|;
(© |xy| = |xllyl;

(d) |x| < M if and only if —M < x < M. (The same holds if < is replaced with <.)

Proof: We prove (d) and leave the other parts as an exercise.

(d) Suppose |x| < M. In particular, this implies M > 0. We consider the two cases separately:
x> 0and x < 0. Suppose first x > 0. Then |x| = x and, hence, —M < 0 < x = |x| < M. Now suppose
x < 0. Then |x| = —x. Therefore, —x < M and, so x > —M. It follows that —-M < x <0 < M.

For the converse, suppose —M < x < M. Again, we consider different cases. If x > 0, then
|x| =x < M as desired. Next suppose x < 0. Now, —M < x implies M > —x. Then |x| = —x <M. O

Note that as a consequence of part (d) above, since |x| < |x| we get —|x| < x < |x].
The next theorem will play an important role in the study of limits.

Theorem 1.4.3 — Triangle Inequality. Given x,y € R,
ey < ]+ [y

Proof: From the observation above, we have
—x[ <x < x|
=l <y <yl

Adding up the inequalities gives

—[x| =yl < x4y < |x|+ ]yl
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Since —|x| — [y| = —(|x| + |y]), the conclusion follows from Proposition 1.4.2 (d). OJ
Corollary 1.4.4 For any x,y € R,
[l = Iyl < e =1

Remark 1.4.5 The absolute value has a geometric interpretation when considering the numbers in
an ordered field as points on a line. The number |a| denotes the distance from the number a to 0.
More generally, the number d(a,b) = |a — b| is the distance between the points a and b. It follows
easily from Proposition 1.4.2 that d(x,y) > 0, and d(x,y) = 0 if and only if x = y. Moreover, the
triangle inequality implies that

d(x,y) <d(x,z) +d(z,y),

for all numbers x,y, z.

Exercises

1.4.1 Prove that n is an even integer if and only if n? is an even integer. (Hint: prove the “if” part
by contraposition, that is, prove that if n is odd, then n? is odd.)

1.4.2 Prove parts (c) and (d) of Proposition 1.4.1

1.4.3 Leta,b,c,d € R. Suppose 0 < a < b and 0 < ¢ < d. Prove that ac < bd.
1.4.4 Prove parts (a), (b), and (c) of Proposition 1.4.2.

1.4.5 » Prove Corollary 1.4.4.

1.4.6 Given two real numbers x and y, prove that

x+y+|x—y|
2

1.4.7 Let x,y,M € R. Prove the following

x+y—|x—y|

and min{x,y} = 5

max{x,y} =

(@) x> ="
(b) |x| <M if and only if x < M and —x < M.
(©) |x+y| = |x|+ |y| if and only if xy > 0.

1.5 THE COMPLETENESS AXIOM FOR THE REAL NUMBERS

There are many examples of ordered fields. However, we are interested in the field of real
numbers. There is an additional axiom that will distinguish this ordered field from all others. In
order to introduce our last axiom for the real numbers, we first need some definitions.

Definition 1.5.1 Let A be a subset of R. A number M is called an upper bound of A if
x< M forall x € A.

If A has an upper bound, then A is said to be bounded above.
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Similarly, a number L is a lower bound of A if
L<xforallxeA,

and A is said to be bounded below if it has a lower bound. We also say that A is bounded if it is both
bounded above and bounded below.

It follows that a set A is bounded if and only if there exist M € R such that |x| < M for all x € A
(see Exercise 1.5.1).

Definition 1.5.2 Let A be a nonempty set that is bounded above. We call a number « a least upper
bound or supremum of A, if

(1) x < o for all x € A (that is, & is an upper bound of A);
(2) If M is an upper bound of A, then o¢ < M (this means « is smallest among all upper bounds).

It is easy to see that if A has a supremum, then it has only one (see Exercise 1.5.2). In this case,
we denote such a number by supA.

= Example 1.5.1

(a) sup[0,3) = sup|0,3] = 3.
First consider the set [0,3] = {x € R: 0 < x < 3}. By its very definition we see that for all
x €1]0,3], x < 3. Thus 3 is an upper bound. This verifies condition (1) in the definition of
supremum. Next suppose M is an upper bound of [0, 3]. Since 3 € [0, 3], we get 3 < M. This
verifies condition (2) in the definition of supremum. It follows that 3 is indeed the supremum
of [0,3].
Consider next the set [0,3) = {x € R: 0 <x < 3}. It follows as before that 3 is an upper bound
of [0,3). Now suppose that M is an upper bound of [0,3) and assume by way of contradiction
that 3 > M. If 0 > M, then M is not an upper bound of [0,3) as 0 is an element of [0,3). If
0<M,setx= % Then 0 < x < 3 and x > M, which shows M is not an upper bound of
[0,3). Since we get a contradiction in both cases, we conclude that 3 < M and, hence, 3 is the
supremum of [0, 3).
(b) sup{3,5,7,8,10} = 10.
Clearly 10 is an upper bound of the set. Moreover, any upper bound M must satisfy 10 < M as
10 is an element of the set. Thus 10 is the supremum.
n
(©) sup{(_l) :nEN} = l
n 2
Note that if n € N is even, then n > 2 and

_1\n
111
n n— 2
If n € N is odd, then
-1 -1 1
(=1) =— <0< =
n n 2

This shows that % is an upper bound of the set. Since % is an element of the set, it follows as

in the previous example that % is the supremum.

(d) sup{x*: —2<x<1,xeR}=4.
SetA={x*: -2 <x<1, xR} Ify € A, then y = x? for some x satisfying —2 < x < 1 and,
hence, |x| < 2. Therefore, y = x> = |x|> < 4. Thus, 4 is an upper bound of A. Suppose M is
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an upper bound of A but M < 4. Choose a number y € R such that M <y <4 and 0 < y. Set
x=—,/y. Then —2 < x <0 < 1 and, so, y = x> € A. However, y > M which contradicts the
fact that M is an upper bound. Thus 4 < M. This proves that 4 = supA.

The following proposition is convenient in working with suprema.

Proposition 1.5.1 Let A be a nonempty subset of R that is bounded above. Then o = supA if and
only if

(') x<aforallxeA;
(2’) For any € > 0, there exists a € A such that @ — € < a.

Proof: Suppose first that &c = supA. Then clearly (1) holds (since this is identical to condition (1)
in the definition of supremum). Now let € > 0. Since o — € < «, condition (2) in the definition of
supremum implies that & — € is not an upper bound of A. Therefore, there must exist an element a
of A such that @ — € < a as desired.

Conversely, suppose conditions (1°) and (27) hold. Then all we need to show is that condition (2)
in the definition of supremum holds. Let M be an upper bound of A and assume, by way of con-
tradiction, that M < a. Set € = oo — M. By condition (2) in the statement, there is a € A such that
a > o — € = M. This contradicts the fact that M is an upper bound. The conclusion now follows. [

The following is an axiom of the real numbers and is called the completeness axiom.

The Completeness Axiom. Every nonempty subset A of R that is bounded above has a least upper
bound. That is, supA exists and is a real number.

This axiom distinguishes the real numbers from all other ordered fields and it is crucial in the
proofs of the central theorems of analysis.
There is a corresponding definition for the infimum of a set.

Definition 1.5.3 Let A be a nonempty subset of R that is bounded below. We call a number 8 a
greatest lower bound or infimum of A, denoted by = infA, if

(1) x > B for all x € A (that is, 8 is a lower bound of A);
(2) If N is a lower bound of A, then B > N (this means f is largest among all lower bounds).

Using the completeness axiom, we can prove that if a nonempty set is bounded below, then its
infimum exists (see Exercise 1.5.5).

= Example 1.5.2
(a) inf(0,3] = inf]0,3] = 0.
(b) inf{3,5,7,8,10} = 3.

(©) inf{(_nl)n:neN} =—1.

1
(@ inf{1+ - :ne N} = 1.
(e) inf{x?: 2<x<1,xeR}=0.



25

The following proposition is useful when dealing with infima and its proof is completely
analogous to that of Proposition 1.5.1.

Proposition 1.5.2 Let A be a nonempty subset of R that is bounded below. Then 8 = infA if and
only if

(1’) x> B forallx € A;
(2’) For any € > 0, there exists a € A such that a < 8 + €.

The following is a basic property of suprema. Additional ones are described in the exercises.

Theorem 1.5.3 Let A and B be nonempty sets and A C B. Suppose B is bounded above. Then
supA < supB.

Proof: Let M be an upper bound for B, then for x € B, x < M. In particular, it is also true that x < M
for x € A. Thus, A is also bounded above. Now, since sup B is an upper bound for B, it is also an
upper bound for A. Then, by the second condition in the definition of supremum, supA < sup B as
desired. [

It will be convenient for the study of limits of sequences and functions to introduce two additional
symbols.

Definition 1.5.4 The extended real number system consists of the real field R and the two symbols
oo and —eo. We preserve the original order in R and define

—oo L x <o

for every x € R
The extended real number system does not form an ordered field, but it is customary to make the
following conventions:
(a) If x is a real number, then
x—|—oo:oo’ x+(—oo):—oo,

(b) If x > 0, then x-c0 =0,  x-(—00) = —co.
(c)Ifx <0, then x-c0o = —oo,  x-(—o00) = oco.
(d) 00+ 00 = o0, —o0-}-(—20) = o0, om0 = (—2) - (o0 = o0, and (—s0) 00 = o0 (—e0) =
We denote the extended real number set by R. The expressions 0 - oo, oo+ (—o0), and (— )
are left undefined.
The set R with the above conventions will be convenient to describe results about limits in later
chapters.

Definition 1.5.5 If A # 0 is not bounded above in R, we will write supA = o. If A is not bounded
below in R, we will write infA = —oo,

With this definition, every nonempty subset of R has a supremum and an infimum in R. To
complete the picture we adopt the following conventions for the empty set: sup @ = —oo and
inf () = oo.

Exercises

1.5.1 Prove that a subset A of R is bounded if and only if there is M € R such that |x| < M for all
x €A
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1.5.2 Let A be a nonempty set and suppose @ and f3 satisfy conditions (1) and (2) in Definition 1.5.2
(that is, both are suprema of A). Prove that a = 3.

1.5.3 For each subset of R below, determine if it is bounded above, bounded below, or both. If it is
bounded above (below) find the supremum (infimum). Justify all your conclusions.

@ {1,5,17}
(b) [0,5)

(©) {1—!-(_’11)”:n€N}

(d) (=3,00)

(e) {xeR:x*—-3x+2=0}
) {x¥*-3x+2:xcR}
(g {xeR:x’—4x <0}
(h) {xeR:1<|x[ <3}

1.5.4 » Suppose A and B are nonempty subsets of R that are bounded above. Define
A+B={a+b:acAandb € B}.
Prove that A 4 B is bounded above and
sup(A + B) = supA + supB.
1.5.5 Let A be a nonempty subset of R. Define —A = {—a:a € A}.

(a) Prove that if A is bounded below, then —A is bounded above.
(b) Prove that if A is bounded below, then A has an infimum in R and infA = —sup(—A).

1.5.6 Let A be a nonempty subset of R and a € R. Define aA = {oa : a € A}. Prove the following
statements:

(a) If ¢ > 0 and A is bounded above, then oA is bounded above and sup *A = o supA.
(b) If o < 0 and A is bounded above, then A is bounded below and inf *A = asupA.

1.5.7 Suppose A and B are nonempty subsets of R that are bounded below. Prove that A + B is
bounded below and

inf(A + B) = infA + inf B.
1.56.8 Let A, B be nonempty subsets of R that are bounded below. Prove that if A C B, then

infA > infB.

APPLICATIONS OF THE COMPLETENESS AXIOM

We prove here several fundamental properties of the real numbers that are direct consequences
of the Completeness Axiom.
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Theorem 1.6.1 — The Archimedean Property. The set of natural numbers is unbounded above.

Proof: Let us assume by contradiction that N is bounded above. Since N is nonempty,
a =supN

exists and is a real number. By Proposition 1.5.1 (with € = 1), there exists n € N such that
a—1<n<a.

But then n+ 1 > «. This is a contradiction since n + 1 is a natural number. []

The following theorem presents several immediate consequences.
Theorem 1.6.2 The following hold:

(a) For any x € R, there exists n € N such that x < n;

(b) For any € > 0, there exists n € N such that 1 /n < €;

(c) For any x > 0 and for any y € R, there exists n € N such that y < nx;
(d) For any x € R, there exists m € Z such that m — 1 < x < m.

Proof: (2) Fix any x € R. Since N is not bounded above, x cannot be an upper bound of N. Thus,
there exists n € N such that x < n.
(b) Fix any € > 0. Then 1/¢ is a real number. By (1), there exists n € N such that

1/e <n.
This implies 1/n < €.
(c) We only need to apply (a) for the real number y/x.
(d) First we consider the case where x > 0. Define the set

A={neN:x<n}.

From part (a), A is nonempty. Since A is a subset of N, by the Well-Ordering Property of the

natural numbers, A has a smallest element £. In particular, x < ¢ and ¢ — 1 is not in A. Since ¢ € N,

either{—1€eNorl—1=0.If/—1€N,since/{—1 ZAwegetl{—1<x If{—1=0, we have

£ —1 =0 < x. Therefore, in both cases we have £/ — 1 < x < ¢ and the conclusion follows with m = /.
In the case x < 0, by part (1), there exists N € N such that

|x| <N.

In this case, —N < x < N, so x+ N > 0. Then, by the result just obtained for positive numbers, there
exists a natural number k such that k — 1 < x+ N < k. This implies

k—N—-1<x<k-—N.

Setting m = k — N, the conclusion follows. The proof is now complete. []
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u Example 1.6.1 Let A = sup{l — ! : n € N}. We claim that supA = 1.
We use Proposition 1.5.1. Since 1 — 1/n < 1 for all n € N, we obtain condition (1”). Next, let
€ > 0. From Theorem 1.6.2 (b) we can find n € N such that % < €. Then

1
l—e<1—-.
n

This proves condition (2°) witha =1 — % and completes the proof.

Theorem 1.6.3 — The Density Property of Q. If x and y are two real numbers such that x < y, then
there exists a rational number r such that

x<r<y.

Proof: We are going to prove that there exist an integer m and a positive integer n such that
x<m/n<y,

or, equivalently,
nx <m<ny=nx+n(y—x).

Since y —x > 0, by Theorem 1.6.2 (3), there exists n € N such that 1 < n(y —x). Then
ny =nx—+n(y—x) > nx+1.

By Theorem 1.6.2 (4), one can choose m € Z such that
m—1<nx<m.

Then nx < m < nx+ 1 < ny. Therefore,
x<m/n<y.

The proof is now complete. [

We will prove in a later section (see Examples 3.4.2 and 4.3.1) that there exists a (unique)
positive real number x such that x> = 2. We denote that number by v/2. The following result shows,
in particular, that R £ Q.

Proposition 1.6.4 The number /2 is irrational.

Proof: Suppose, by way of contradiction, that v/2 € Q. Then there are integers r and s with s # 0,
such that

r
V2=-.
s
By canceling out the common factors of r and s, we may assume that r and s have no common
factors.
Now, by squaring both sides of the equation above, we get
2

2:?,
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and, hence,
252 =12 (1.3)
It follows that 72 is an even integer. Therefore, r is an even integer (see Exercise 1.4.1). We can then

write r = 2 for some integer j. Hence r> = 4%. Substituting in (1.3), we get s> = 2. Therefore,

s% is even. We conclude as before that s is even. Thus, both r and s have a common factor, which is a

contradiction. []

The next theorem shows that irrational numbers are as ubiquitous as rational numbers.

Theorem 1.6.5 Let x and y be two real numbers such that x < y. Then there exists an irrational
number ¢ such that

x<t<y.

Proof: Since x <y, one has
x—V2< y— V2

By Theorem 1.6.3, there exists a rational number r such that
x—V2<r<y—v2

This implies
x<r+v2< y.

Since r is rational, the number ¢ = r+ /2 is irrational (see Exercise 1.6.4) and x < 1 < y. O

Exercises

1.6.1 For each sets below determine if it is bounded above, bounded below, or both. If it is bounded
above (below) find the supremum (infimum). Justify all your conclusions.

(a) {ni’jéL:nGN}
(b) {(—1)"+’11:n6N}
(c) {(—1)”—(_,:)’1 ZHGN}

1.6.2 » Let r be a rational number such that 0 < r < 1. Prove that there is n € N such that

1 1
<r<-.
n+1 n

1
1.6.3 Letx € R. Prove that for every n € N, there is r € Q such that [x — r| < —.
n
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1.6.4 Prove that if x is a rational number and y is an irrational number, then x + y is irrational. What
can you say about xy?

1.6.5 Prove that in between two real numbers a and b with a < b, there are infinitely many rational
numbers.

1.6.6 Prove that in between two real numbers a and b with a < b, there are infinitely many irrational
numbers.



2.1

CONVERGENCE

LIMIT THEOREMS

MONOTONE SEQUENCES

THE BOLZANO-WEIERSTRASS THEOREM

LIMIT SUPERIOR AND LIMIT INFERIOR

OPEN SETS, CLOSED SETS, COMPACT SETS, AND LIMIT
POINTS

2. SEQUENCES

We introduce the notion of limit first through sequences. As mentioned in Chapter 1, a sequence
is just a function with domain N. More precisely, a sequence of elements of a set A is a function
f: N— A. We will denote the image of n under the function with subscripted variables, for example,
an, = f(n). We will also denote sequences by {a,}>_,, {a, },. or even {a,}. Each value a, is called
a term of the sequence, more precisely, the n-th term of the sequence.

m Example 2.0.1 Consider the sequence a, = % for n € N. This is a sequence of rational numbers.
On occasion, when the pattern is clear, we may list the terms explicitly as in
1111
PP
m Example 2.0.2 Let a, = (—1)" for n € N. This is a sequence of integers, namely,
-1,1,—-1,1,—1,1,...

Note that the sequence takes on only two values. This should not be confused with the two-element
set {1,—1}.

CONVERGENCE

Definition 2.1.1 Let {a,} be a sequence of real numbers. We say that the sequence {a,} converges
to a € R if, for any € > 0, there exists a positive integer N such that for any n € N with n > N, one
has

la, —a| < € (or equivalently, a — € < a, < a+¢€).
In this case, we call a the limit of the sequence (see Theorem 2.1.3 below) and write lim,,—. a, = a.
If the sequence {a,} does not converge, we call the sequence divergent.

Remark 2.1.1 It follows directly from the definition, using the Archimedean property, that a
sequence {a,} converges to a if and only if for any € > 0, there exists a real number N such that for
any n € N with n > N, one has

la, —a| < €.
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» Example 2.1.1 Let a, = 1 for n € N. We claim that lim,_,a, = 0. We verify it using the
definition. Let € > 0. Choose an integer N > 1/¢. (Note that such an integer N exists due to the
Archimidean Property.) Then, if n > N, we get

1

n

1 1 1
=-<=J €.

—0: — _—
jan =0 n— N 1/e

= Example 2.1.2 We now generalize the previous example as follows. Let & > 0 and consider the
sequence given by

1
an:—afornEN.
n

Let £ > 0. Choose an integer N such that N > (1)!/*. For every n > N, one has n > (%)1/0‘ and,

hence, n% > % This implies

1
€

1 1 1

— —0l=—<——=¢.
n% ' n* " 1/e

We conclude that lim,,_..a,, = 0.

» Example 2.1.3 Consider the sequence {a, } where

3n?+4

I 2 i nts

We will prove directly from the definition that this sequence converges to a = %

Let € > 0. We first search for a suitable N. To that end, we simplify and estimate the expression
|a, — al. Notice that

L3 3 +4 3| 2307 +4)=302° +n+5)| | -T-3n
"2l |22 4n+5 2| 2(2n%2 +n+5) 222 +n+5)
3n+7 10n 10

202 +n+5) A dn

10
To guarantee that the last expression is less than €, it will suffice to choose N > 1 Indeed, if n > N,
we get

10 10 10
<

—a| <~ < o< r=e
an—al < 4 =GN 410

m Example 2.1.4 Let {a,} be given by

4n® — 1
ay, = ——.
" 3n2—n
We claim lim,, o) a, = %.

Let € > 0. We search for a suitable N. First notice that

Feesatt

4n* =1 4] |12n° =3 120" +4n
3n2—n 3| 3(3n> —n)
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Since n > 1, we have n? > n and 4n > 3. Therefore we have

32—n 3| -

4n2—1 4 4n—3 - 4n—3 <4n 4
332 —n) ~— 3(3n2 —n?) ~6n2  6n’

Thus, if N > %, we have, forn > N

_ < —<
3n2—n 3 -

4n*>—1 4] 4 4<“3
~ 6n ~ 6N '

= Example 2.1.5 Consider the sequence given by

_ n?45
C4n?+n’

an

We prove directly from the definition that {a,} converges to %.
Let € > 0. Now,

45 1| |4n°+20—4n°—n|  |20—n]
dn2+n 4| 4(4n?+n) ~ 4(4n2+n)’
If n > 20, then |20 — n| = n — 20. Therefore, for such n we have
w5 1| n-20 _ a1
4n24+n 4| 4(4n2+n) ~ 1602 16n’

Choose N > max{ﬁ,m}. Then, for n > N we get

n*+5 1 _ 1 e
4n2+n 4|~ 16n — 16N )

The following result is quite useful in proving certain inequalities between numbers.

Lemma2.1.2 Let ¢ > 0. If { < e for all € > 0, then £ = 0.

Proof: This is easily proved by contraposition. If ¢ > 0, then there is a positive number, for example
€=1//2,suchthat e < ¢.[J

Theorem 2.1.3 A convergent sequence {a, } has at most one limit.

Proof: Suppose {a,} converges to a and b. Then given € > 0, there exist positive integers N; and
N> such that

|a, —a| < €/2 forall n > N;
and
|an, —b| < €/2 for all n > N,.
Let N = max{N;,N,}. Then
la—b| <l|a—an|+|ay—b| < €/2+€/2=E.
Since € > 0 is arbitrary, by Lemma 2.1.2, |a — b| = 0 and, hence, a = b. J

The following lemma is a simple generalization of (2.1.2).
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Lemma 2.1.4 Given real numbers a,b, then a < b if and only if a < b+ € for all € > 0.

Proof: Suppose a < b+ € for all € > 0. And suppose, by way of contradiction, that @ > b. then set
& = a—b. Then g > 0. By assumption, we should have a < b+ €& = b+a—b = a, which is a
contradiction. It follows that a < b.

The other direction follows immediately from the order axioms. [J

The following comparison theorem shows that (non-strict) inequalities are preserved “in the
limit”.

Theorem 2.1.5 — Comparison Theorem. Suppose {a,} and {b,} converge to a and b, respec-
tively, and a,, < b, for all n € N. Then a < b.

Proof: For any € > 0, there exist N, N, € N such that

€ €
a—§<an<a+§, for n > Ny,

€ €
b—§<bn<b+§, fOI'I’lZNZ.

Choose N > max{N;,N}. Then
£ E

- = <b b+ .

a 5 <ay<by<bD+ 2

Thus, a < b+ € for any € > 0. Using Lemma 2.1.4 we conclude a < b. [J

Theorem 2.1.6 — The Squeeze Theorem. Suppose the sequences {a,}, {b,}, and {c,} satisfy
a, <b,<c,forallneN,

and lim;,_.. a, = lim,_ec, = £. Then lim, 0. b, = £.

Proof: Fix any € > 0. Since lim,,_,. a, = ¢, there exists N; € N such that
l—e<a,<l+E€

for all n > Nj. Similarly, since lim,,_,. ¢, = ¢, there exists N, € N such that
l—e<c,<l+eg

for all n > N,. Let N = max{N;,N, }. Then, for n > N, we have
l—e<a,<b,<c,<l+E,

which implies |b, — ¢| < €. Therefore, lim, b, = ¢. ]

Definition 2.1.2 A sequence {a,} is bounded above if the set {a, : n € N} is bounded above.
Similarly, the sequence {a, } is bounded below if the set {a, : n € N} is bounded below. We say that
the sequence {a, } is bounded if the set {a, : n € N} is bounded, that is, if it is both bounded above
and bounded below.

It follows from the observation after Definition 1.5.1 that the sequence {a, } is bounded if and
only if there is M € R such that |a,| < M for all n € N.
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Theorem 2.1.7 A convergent sequence is bounded.

Proof: Suppose the sequence {a,} converges to a. Then, for € = 1, there exists N € N such that

la, —a| < 1foralln > N.

Since |a,| — |a| < ||an| — |a|| < |a, — a|, this implies |a,| < 1+ |a| for all n > N. Set
M = max{|ay|,...,|an—1],|a| + 1}.
Then |a,| < M for all n € N. Therefore, {a,} is bounded. [J

Definition 2.1.3 Let {a,};_, be a sequence of real numbers. The sequence {b,};_, is called a
subsequence of {a,};_, if there exists a sequence of increasing positive integers

n<ny<nz<---,

such that by = a,, for each k € N.

» Example 2.1.6 Consider the sequence a, = (—1)" forn € N.
Then {ay;} is a subsequence of {a,} and ay, = 1 for all k (here n; = 2k for all k). Similarly,
{aak+1} is also a subsequence of {a,} and a1 = —1 for all k (here ny = 2k + 1 for all k).

Lemma 2.1.8 Let {n}; be a sequence of positive integers with
np<n<ny<---

Then ny > k for all k € N.

Proof: We use mathematical induction. When k = 1, it is clear that n; > 1 since n; is a positive
integer. Assume ny; > k for some k. Now n;, > ny and, since ny and ny | are integers, this implies,
ngy1 > ng + 1. Therefore, ng; > k+ 1 by the inductive hypothesis. The conclusion now follows by
the principle of mathematical induction. [

Theorem 2.1.9 If a sequence {a, } converges to a, then any subsequence {ay, } of {a,} also con-
verges to a.

Proof: Suppose {a,} converges to a and let € > 0 be given. Then there exists N such that
lan —a| < € foralln > N.
For any k > N, since n; > k, we also have
lan, —al < €.
Thus, {ay, } converges to a as k — oo. [

» Example 2.1.7 Let a, = (—1)" for n € N. Then the sequence {a,} is divergent. Indeed, suppose
by contradiction that

lima, =¥.
n—oo
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Then every subsequence of {a, } converges to a number ¢ € R. From the previous theorem, it follows,
in particular, that

£ = lim A = 1 and £ = lim ADk+1 = —1.
k—yo0 k—yo0

This contradiction shows that the sequence is divergent.

Since the sequence {a, } is bounded but not convergent, this example illustrates the fact that the
converse of theorem 2.1.7 is not true.

Remark 2.1.10 Given a positive integer kg, it will be convenient to also talk about the sequence
{an}n>k,, that is, a function defined only for the integers greater than or equal to ko. For simplicity
of notation, we may also denote this sequence by {a,} whenever the integer k is clear from the
context. For instance, we talk of the sequence {a, } given by

n+1
(n—1)(n—2)"

although a; and a, are not defined. In all cases, the sequence must be defined from some integer
onwards.

an =

Exercises
2.1.1 Prove the following directly from the definition of limit.
2n*+2
3+ 1
2
n“+1
b) li o = L.
( ) 1mn% 5n2+n+1 5
_ 2n +1
(¢) limy e a3 —n =

3n*+5

d) lim, oo ——— =
( ) lml’l% 6I’l2+n
, 4n? —1

(e) limy oo ——— =
n-—n

(a) limy_se

A= NI

2.1.2 Prove that if {a,} is a convergent sequence, then {|a,|} is a convergent sequence. Is the
converse true?

2.1.3 Let {a,} be a sequence. Prove that if the sequence {|a,|} converges to 0, then {a,} also
converges to 0.

2.1.4 Prove that lim,_,.. " — .
n

2.1.5 Let {x,} be a bounded sequence and let {y,} be a sequence that converges to 0. Prove that
the sequence {x,y, } converges to 0.

2.1.6 Prove that the following limits are 0. (Hint: use Theorem 2.1.6.)

. n+4cos(n®—3)
R N
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(d) lim n—n (Hint: see Exercise 1.3.4(¢)).

n—oo 3

2.1.7 Prove that if lim,_,..a, = £ > 0, then there exists N € N such that a,, > 0 for all n > N.

2.1.8 » Prove that if lim, . a, = £ # 0, then lim;_, “Z“ = 1. Is the conclusion still true if £ = 0?

2.1.9 Let {a,} be a sequence of real numbers such that lim,_,.a, = 3. Use Definition 2.1.1 to
prove the following

(a) lim3a,—7=2;
n—oo

1
(b) lim 22 F

n—e

4
= §; (Hint: prove first that there is N such that a,, > 1 forn > N.)

2.1.10 Leta, > 0 for all n € N. Prove that if lim, e a, = ¢, then lim, o0 /@y = V/Z.
2.1.11 Prove that the sequence {a,} with a, = sin(nm/2) is divergent.

2.1.12 » Consider a sequence {ay}.

(a) Prove that lim,,_,.a, = £ if and only if limy_,c. ay, = ¢ and limy_,cc a1 = £.
(b) Prove that lim,,_,. @, = £ if and only if limy_,. az = £, limg_,. a3 = £, and
limy 00 a3i42 = /.

2.1.13 Given a sequence {a, }, define a new sequence {b, } by

_artay+...+a,
" .

by

(a) Prove that if lim,_,..a, = ¢, then lim,,_,o. b,, = /.
(b) Find a counterexample to show that the converse does not hold in general.

2.2 LIMIT THEOREMS

We now prove several theorems that facilitate the computation of limits of some sequences in
terms of those of other simpler sequences.

Theorem 2.2.1 Let {a,} and {b,} be sequences of real numbers and let k be a real number. Suppose
{a,} converges to a and {b,} converges to b. Then the sequences {a, + by}, {ka,}, and {a,b,}
converge and

(@) lim,_ye(a, +b,) =a+b;

(b) limy, e (ka,) = ka;

(¢) limy,_,e(ayb,) = ab;

ay

(d) If in addition b # 0 and b,, # 0 for n € N, then { ) } converges and lim,,_, dn _

a
b, b’

n



38 2.2 LIMIT THEOREMS

Proof: (2) Fix any € > 0. Since {a, } converges to a, there exists N; € N such that
€
lan, —a| < 3 foralln > Nj.
Similarly, there exists N, € N such that
€
|bn —b| < 3 foralln > N,.
Let N = max{N;,N,}. For any n > N, one has

E &
|(an +by) — (a+Db)| < |ay —al +|b, —b| < St =¢

Therefore, lim,, . (a, + b,) = a+ b. This proves (a).

(b) If £ =0, then ka = 0 and ka,, = 0 for all n. The conclusion follows immediately. Suppose

€
next that k # 0. Given € > 0, let N € N be such that |a, —a| < 0 for n > N. Then for n > N,

|ka, — ka| = |k||a, —a| < €. It follows that lim,_..(ka,) = ka as desired. This proves (b).

(c) Since {ay,} is convergent, it follows from Theorem 2.1.7 that it is bounded. Thus, there exists
M > 0 such that

|a,| <M foralln € N.
For every n € N, we have the following estimate:

|anb, — ab| = |anb, — ayb + ayb — ab| < |a,||b, — b| + |b||a, — al. (2.1)
Let € > 0. Since {a,} converges to a, we may choose N; € N such that

|a,l—a]<2 for all n > Nj.

L
(bl +1)

Similarly, since {b,} converges to b, we may choose N, € N such that
|b —b]<if0rall >N,
" oM ret

Let N = max{N;,N,}. Then, for n > N, it follows from (2.1) that

€

b, —ab| < M
[anbn = ab] < M

+|b|2 < egforalln>N.

L
(6] +1)

Therefore, lim,,_s. a,b,, = ab. This proves (c).

(d) Let us first show that

o L1
LY
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Since {b,} converges to b, there is N € N such that

6]

|bn — b| < jfornle.

b b b
It follows (using a triangle inequality) that, for such n, —‘2 < |bn| —1b] < ’2| and, hence, ’2| < |bp|.
For each n > Nj, we have the following estimate

2.2)

1 1| |by—b| _2|by—b|
= | = <
by b |balb] = B2

Now let € > 0. Since lim,, .. b,, = b, there exists N> € N such that

b*e
|b, —b| < > foralln > N,.

Let N = max{N;,N,}. By (2.2), one has

< eforalln > N.

11| 2|6y b|
R g
b, b|™ b?

1 1

by b
Finally, we can applr}l/ part (c) and have

It follows that lim,,_c.

im & = lim g, = ¢
nos b e T b

The proof is now complete. [
» Example 2.2.1 Consider the sequence {a,} given by

32 —2n+5

fn = 1 —4n+Tn?

(2.3)

Dividing numerator and denominator by n?, we can write

_ 3-2/n+5/n?

= ajn+ 7 @9

Therefore, by the limit theorems above,

lim a, = lim . —22/n 5/ = l%mn_m 3 limn‘_m 2/n+ 1im,1‘_>(x, 5/ = § (2.5)
n—sco n—eo 1 /02 —4/n+7  limy e l/n? —lim,ed/n+1lim, 57 7

s Example 2.2.2 Leta, = /b, where b > 0. Consider the case where b > 1. In this case, a, > 1
for every n. By the binomial theorem,

b=da,=(a,—1+1)">1+4n(a,—1).
This implies

b—1
P

0<a,—1<
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b—1
For each € > 0, choose N > P It follows that forn > N,

| 1= 1<b_1<b_ <&
a,— 1| =a, — —_— .
" n n — N
Thus, lim, e a, = 1.

In the case where b = 1, it is obvious that a,, = 1 for all n and, hence, lim,, ,.a, = 1.
1
Ifo<b<l,letc= b and define

1
Xp=v/c=—.
n
Since ¢ > 1, it has been shown that lim,_,.x,, = 1. This implies
. 1
lima, = lim — = 1.
n—oo n—ee X,

Exercises
2.2.1 Find the following limits:

@ 1 3n2 —6n+7

VT a3
. 14+3n—n3

® lm S 1

2.2.2 Find the following limits:

. V3n+1
(a) Im ———,
n=e\n++/3

2t
() tim {7
n—soo n

2.2.3 » Find the following limits if they exist:
(@) lim, (VN2 +n—n).

(
(b) limy_ee (V13 4302 —n).
(¢) lim, oo(Vn3 4302 —\/n2 +n).
(
(Vn

() limye(ViF 1 — /).
(e) limye(v/n+1—+/n)/n.

2.2.4 Find the following limits.
(a) For |r| < 1and b € R, lim,_e0(b+ br+br* +---+br").
: 2 2 2
(b) lim, e (10 T2t 10”).

2.2.5 Prove or disprove the following statements:
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(a) If {a,} and {b,} are convergent sequences, then {a, + b, } is a convergent sequence.
(b) If {a,} and {b,} are divergent sequences, then {a, + b, } is divergent sequence.

(c) If {a,} and {b, } are convergent sequences, then {a,b,} is a convergent sequence.
(d) If {a,} and {b,} are divergent sequences, then {a,b,} is a divergent sequence.

(e) If {a,} and {a, + b,} are convergent sequences, then {b,} is a convergent sequence.
(f) If {a,} and {a, + b, } are divergent sequences, then {b,} is a divergent sequence.

2.3 MONOTONE SEQUENCES

Definition 2.3.1 A sequence {a,} is called increasing if
an < apyq foralln € N.

It is called decreasing if
an > ayy for alln € N.

If {a,} is increasing or decreasing, then it is called a monotone sequence.

The sequence is called strictly increasing (resp. strictly decreasing) if a, < a,4+; foralln € N
(resp. a, > a1 for all n € N).

It is easy to show by induction that if {a,} is an increasing sequence, then a, < a,, whenever
n <m.

Theorem 2.3.1 — Monotone Convergence Theorem. Let {a,} be a sequence of real numbers.
The following hold:

(a) If {a,} is increasing and bounded above, then it is convergent.

(b) If {ay} is decreasing and bounded below, then it is convergent.

Proof: (a) Let {a,} be an increasing sequence that is bounded above. Define
A={a,:neN}.

Then A is a subset of R that is nonempty and bounded above and, hence, supA exists. Let £/ = supA
and let € > 0. By Proposition 1.5.1, there exists N € N such that

{—e<ay </t

Since {a, } is increasing,
{—e<ay<a,foralln>N.

On the other hand, since ¢ is an upper bound for A, we have a,, < ¢ for all n. Thus,
{—eg<a,<l+eforalln>N.

Therefore, lim,,_coa, = £.
(b) Let {a,} be a decreasing sequence that is bounded below. Define

b, = —a,.
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Then {b,} is increasing and bounded above (if M is a lower bound for {a,}, then —M is an upper
bound for {b,}). Let

¢ = 1lim b, = lim (—ay).
n—oo n—yoo

Then {a,} converges to —¢ by Theorem 2.2.1. [

Remark 2.3.2 It follows from the proof of Theorem 2.3.1 that if {a,} is increasing and bounded
above, then

lim a, = sup{a, : n € N}.

n—soo

Similarly, if {a,} is decreasing and bounded below, then

lim a, = inf{a, : n € N}.

n—oo

» Example 2.3.1 Given r € R with |r| < 1, define a, = " for n € N. Then

lim a, =0.
n—yoo

This is clear if »r = 0. Let us first consider the case where 0 < r < 1. Then 0 < @, = ra, < a, for
all n. Therefore, {a,} is decreasing and bounded below. By Theorem 2.3.1, the sequence converges.
Let

{ = lim a,.
n—oo

Since a,11 = ra, for all n, taking limits on both sides gives ¢ = r{. Thus, (1 —r)¢ = 0 and, hence,
¢=0. In the general case, we only need to consider the sequence defined by b, = |a,| for n € N; see
Exercise 2.1.3.

» Example 2.3.2 Consider the sequence {a,} defined as follows:

a =2 (2.6)

a,+5

apt1 = forn>1. 2.7

First we will show that the sequence is increasing. We prove by induction that for all n € N,
an < ay1. Since a; = @ = % > 2 = ay, the statement is true for n = 1. Next, suppose a; < aj41

for some k € N. Then ay +5 < agy1 +5 and (ax +5)/3 < (ax+1 +5)/3. Therefore,

ar+5 a1 +5
<
3 3

Ak+1 = = Qg+2-
It follows by induction that the sequence is increasing.

Next we prove that the sequence is bounded by 3. Again, we proceed by induction. The statement
is clearly true for n = 1. Suppose that a; < 3 for some k € N. Then

ag+5 < 3+5 _

3
3 = 3

ag+1 =

Z w0

It follows that a,, < 3 forall n €
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From the Monotone Convergence Theorem, we deduce that there is £ € R such that lim,,_,.. a, = £.
Since the subsequence {a1};_, also converges to /, taking limits on both sides of the equation
in (2.7), we obtain
{+5

3

Therefore, 3¢ = ¢+ 5 and, hence, { =5/2.

! =

» Example 2.3.3 —The number e. Consider the sequence {a,} given by

1 n
an:(l—i—) ,neN.
n

By the binomial theorem,

w = 500

nn—1)1 nh-1)(n-2)1 nn—1)---(n—(n—1)) 1
_ e DD 1 s rm ) L

S R [ e Gl !

The corresponding expression for @, 1 has one more term and each factor (1 — 7) is replaced by the

larger factor (1 — m) It is then clear that a,, < a, for all n € N. Thus, the sequence is increasing.
Moreover,
1

11
e TR TR e

1 1
<24 — P
+12+23+ +(n—1)'n

1
) LN )
+Z<k k+1> 3,3

Hence the sequence is bounded above.
By the Monotone Convergence Theorem, lim,_,.. a, exists and is denoted by e. In fact, e is an
irrational number and e ~ 2.71828.

The following fundamental result is an application of the Monotone Convergence Theorem.

Theorem 2.3.3 — Nested Intervals Theorem. Let {I,}> , be a sequence of nonempty closed
bounded intervals satisfying 1,1 C I, for all n € N. Then the following hold:

@ M1 # 0.
(b) If, in addition, the lengths of the intervals 1, converge to zero, then (;_, I, consists of a single
point.

Proof: Let {I,} be as in the statement with I, = [a,, b,]. In particular, a, < b, for all n € N. Given
that I,y C I, we have a,, < a, and b, < b, for all n € N. This shows that {a, } is an increasing
sequence bounded above by b and {b,} is a decreasing sequence bounded below by a;. By the
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Monotone Convergence Theorem (Theorem 2.3.1), there exist a,b € R such that lim,.a, = a
and lim,_,.. b, = b. Since a, < b, for all n, by Theorem 2.1.5, we get a < b. Now, we also have
an < aand b < b, for all n € N (since {a,} is increasing and {b, } is decreasing). This shows that if
a<x<b,thenx e[, forall n € N. Thus, [a,b] C ,_; I,. It follows that ,_, I, # 0. This proves
part (a).

Now note also that (), I, C [a,b]. Indeed, if x € (,_, I,, then x € I, for all n. Therefore,
an < x < b, for all n. Using Theorem 2.1.5, we conclude a < x < b. Thus, x € [a,b]. This proves the
desired inclusion and, hence, (,_, I, = [a,D].

We now prove part (b). Suppose the lengths of the intervals I, converge to zero. This means
by —ay, — 0 as n — co. Then b = lim,,_,e0 by, = limy, e[ (b — ay) + an| = a. It follows that (., I, =
{a} as desired.

When a monotone sequence is not bounded, it does not converge. However, the behavior follows
a clear pattern. To make this precise we provide the following definition.

Definition 2.3.2 A sequence {a, } is said to diverge to « if for every M € R, there exists N € N such
that

a, > M foralln > N.

In this case, we write lim, ,a, = co. Similarly, we say that {a,} diverges to —oo and write
lim,, . a, = —oo if for every M € R, there exists N € N such that

a, <M foralln > N.

Remark 2.3.4 We should not confuse a sequence that diverges to o (that is, one that satisfies the
previous definition), with a divergent sequence (that is, one that does not converge).

= Example 2.3.4 Consider the sequence a, = ”25:1.

limnﬂm Cln = oo,

Let M € R. Note that

We will show, using Definition 2.3.2, that

n n
Sn 5 5Sn— 5
Choose N > 5M. Then, if n > N, we have

n_ N
ST o
n=735=7%

Th following result completes the description of the behavior of monotone sequences.

Theorem 2.3.5 If a sequence {a,} is increasing and not bounded above, then

lim a,, = oo.
n—ro0

Similarly, if {a, } is decreasing and not bounded below, then

lim a, = —oo.
n—soo

Proof: Fix any real number M. Since {a,} is not bounded above, there exists N € N such that
ay > M. Then

a,>ay>Mforalln >N

because {ay,} is increasing. Therefore, lim,,_, @, = e. The proof for the second case is similar. [J
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Theorem 2.3.6 Let {a,}, {b,}, and {c,} be sequences of real numbers and let k be a constant.
Suppose

lim a;, = o, lim b, = o, and lim ¢, = —oo
n—oo n—oo n—oo

Then

—_— o9;
2

(a) limy,seo(an + by
(b) lim,,yeo(a@nby,) = oo

(©) limy,eo(@ncy) = —o0;

(d) lim,_eka, = oo if k > 0, and 1im,,_e ka, = —oo if k < 0;

~—

(e) lim, .. — = 0. (Here we assume a, #~ 0 for all n.)
an

Proof: We provide proofs for (a) and (e) and leave the others as exercises.
(a) Fix any M € R. Since lim,,_.. a, = oo, there exists N; € N such that

M
a, > > for all n > Nj.
Similarly, there exists N, € N such that
M
b, > > for all n > Nj.

Let N = max{N;,N,}. Then it is clear that
a,~+b, > M foralln > N.
This implies (a).

1
(e) Forany € > 0, let M = : Since lim,,_,.. a, = oo, there exists N € N such that

1
an>gf0ralln2N.

This implies that for n > N,

1 1
—O‘ = —<E.
a, ay,

Thus, (e) holds. O

The proof of the comparison theorem below follows directly from Definition 2.3.2 (see also
Theorem 2.1.5).

Theorem 2.3.7 Suppose a, < b, forall n € N.

(a) If lim,,_ca, = oo, then lim,, ., b,, = oo.

(b) If lim,, . b, = —oo, then lim,, o a, = —co.



46 2.3 MONOTONE SEQUENCES

Exercises
2.3.1 » Let a; = /2. Define

ap+1 =V a,+2forn>1.

(a) Prove that a, < 2 forall n € N.
(b) Prove that {a,} is an increasing sequence.
(c) Prove that lim,_,..a, = 2.

2.3.2 > Prove that each of the following sequences is convergent and find its limit.

3f0rn21.

(a) aj =1and a,4+ =

(b) a; =+v6and a1 = Va, +6forn> 1.
1 1

() aps1==|2a,+— | ,n>1,a; >0.
3 a2

n
1 b
(d) a1 =7 <an+> ,b> 0.
2 a
2.3.3 > Prove that each of the following sequences is convergent and find its limit.

@ V2; \/7 \/

(b) 1/2;

2+1/2 ) 1 ’
2+1/2

2.3.4 Prove that the following sequence is convergent:

11 L
=1t +g ot neN.

2.3.5 > Let a and b be two positive real numbers with a < b. Define a; = a, by = b, and

a, + b,

an+1 =\ ayb, and b, = forn > 1.

Show that {a,} and {b,} are convergent to the same limit.
2.3.6 Prove the following using Definition 2.3.2.

2n? 1
(a) hmwz
n—eo  p—2
1—3n?
b) li = —oo,
(b) lim >

n—eo 4

2.3.7 Prove parts (b), (c), and (d) of Theorem 2.3.6.

2.3.8 Prove Theorem 2.3.7.
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2.4 THE BOLZANO-WEIERSTRASS THEOREM

The Bolzano-Weierstrass Theorem is at the foundation of many results in analysis. It is, in fact,
equivalent to the completeness axiom of the real numbers.

Theorem 2.4.1 — Bolzano-Weierstrass. Every bounded sequence {a,} of real numbers has a
convergent subsequence.

Proof: Suppose {a,} is a bounded sequence. Define A = {a, : n € N} (the set of values of the
sequence {a,}). If A is finite, then at least one of the elements of A, say x, must be equal to a, for
infinitely many choices of n. More precisely, By = {n € N : a, = x} is infinite. We can then define
a convergent subsequence as follows. Pick n; such that a,, = x. Now, since By is infinite, we can
choose ny > n; such that a,, = x. Continuing in this way, we can define a subsequence {ay,, } which
is constant, equal to x and, thus, converges to x.

Suppose now that A is infinite. First observe there exist ¢,d € R such that ¢ < a, < d for all
n €N, thatis, A C [c,d].

We define a sequence of nonempty nested closed bounded intervals as follows. Set I} = [c,d].
Next consider the two subintervals [c, ¢t4] and [<£4 d]. Since A is infinite, at least one of AN [c, <t4]

orAN [%,d] is infinite. Let L, = [cz,%] if Azﬂ [c, %] is infinite and I, = [C;d,d] otherwizse.
Continuing in this way, we construct a nested sequence of nonempty closed bounded intervals {7, }
such that I, N A is infinite and the length of [, tends to 0 as n — oo.

We now construct the desired subsequence of {a, } as follows. Let n; = 1. Choose n, > n; such
that a,, € I,. This is possible since /> NA is infinite. Next choose n3 > n such that a,,, € I3. In this
way, we obtain a subsequence {ay, } such that a,, € I for all k € N.

Set I, = [cy,dy]. Then lim,,(d, — ¢,) = 0. We also know from the proof of the Monotone
Convergence Theorem (Theorem 2.3.1), that {c, } converges. Say ¢ = lim,,_,o ¢,,. Thus, lim, . d, =
limy, e[ (dy — cn) + ¢n) = £ as well. Since ¢ < a,, < dy for all k € N, it follows from Theorem 2.1.5

that limy_,.. a,, = £. This completes the proof. []

Definition 2.4.1 (Cauchy sequence). A sequence {a,} of real numbers is called a Cauchy sequence
if for any € > 0, there exists a positive integer N such that for any m,n > N, one has

|am — an| < €.

Theorem 2.4.2 A convergent sequence is a Cauchy sequence.

Proof: Let {a,} be a convergent sequence and let
lim a, = a.
friess
Then for any € > 0, there exists a positive integer N such that
|a, —a| < €/2foralln > N.
For any m,n > N, one has
lam — an| < |am—al|+|a,—a| < €/2+€/2=¢.

Thus, {a,} is a Cauchy sequence. [J
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Theorem 2.4.3 A Cauchy sequence is bounded.

Proof: Let {a,} be a Cauchy sequence. Then for € = 1, there exists a positive integer N such that
|aym —ay| < 1 forallm,n > N.

In particular,
la, —ay| < 1foralln > N.

Let M = max{|a|,...,|lay—1|,1 + |ay|}. Then, for n =1,....N — 1, we clearly have |a,| < M.
Moreover, forn > N,

lan| = |an —ay +an| < |a, —an|+|an| < 14 |an| < M.
Therefore, |a,| < M for all n € N and, thus, {a,} is bounded. [J

Lemma 2.4.4 A Cauchy sequence that has a convergent subsequence is convergent.

Proof: Let {a,} be a Cauchy sequence that has a convergent subsequence. For any € > 0, there
exists a positive integer N such that

|am — ay| < /2 forall myn > N.

Let {ay, } be a subsequence of {a,} that converges to some point a. For the above €, there exists a
positive number K such that

lan, —al < €/2forallk > K.
Thus, we can find a positive integer ny > N such that
lan, —a| < €/2.
Then for any n > N, we have
lan —al| < |a, — an, |+ |an, —al < €.
Therefore, {a, } converges to a. [

Theorem 2.4.5 Any Cauchy sequence of real numbers is convergent.

Proof: Let {a,} be a Cauchy sequence. Then it is bounded by Theorem 2.4.3. By the Bolzano-
Weierstrass theorem, {a,} has a convergent subsequence. Therefore, it is convergent by Lemma
24.4.0

Remark 2.4.6 It follows from Definition 2.4.1 that {a,} is a Cauchy sequence if and only if for
every € > 0, there exists N € N such that

|antp—ay| < € forall n > N and for all p € N.
Definition 2.4.2 A sequence {a,} is called contractive if there exists k € [0, 1) such that

|an12 — any1| < k|ap41 — ay| for alln € N.
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Theorem 2.4.7 Every contractive sequence is convergent.

Proof: By induction, one has
lan+1 — an| < K |ap —ay| foralln € N.
Thus,
|antp — an| < |ans1 — anl +|ans2 — angr |+ -+ anyp — angp—1

<KV K Py —ay
<K+ k+ 2+ kY ay —ay|

n—1

1—k

< lay —ay .

for all n,p € N. Since ¥"~! — 0 as n — oo (independently of p), this implies {a,} is a Cauchy
sequence and, hence, it is convergent. []

m Example 2.4.1 The condition k < 1 in the previous theorem is crucial. Consider the following
example. Let @, = Inn for all n € N. Since 1 < nt2 % for all n € N and the natural logarithm is

n+1
an increasing function, we have

2 2
lant2 —apt1| = |In(n+2) —In(n+1)| = ‘ln (n—i— )‘ =In <n+ >

n+1 n+1

1
<In <n—i— ) =|In(n+1) —Inn| = |ay+1 — an|-
n

Therefore, the inequality in Definition 2.4.2 is satisfied with k = 1, yet the sequence {Inn} does
not converge.

Exercises
2.4.1 » Determine which of the following are Cauchy sequences.
(@ a,=(—1)".
(b) a,=(—1)"/n.
(€) ap=n/(n+1).
(d) a, = (cosn)/n.

2.4.2 Prove that the sequence

ncos(3n® +2n+1)
a, =
" n+1

has a convergent subsequence.
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2.4.3 Let f: [0,00) — R be such that f(x) > 0 for all x. Define

f(n)
fn)+1°

Prove that the sequence a, has a convergent subsequence.

a, =

2.4.4 Define

142

T forn € N.

ap
Prove that the sequence a, is contractive.

2.4.5 Let r € R be such that |r| < 1. Define a, = r" for n € N. Prove that the sequence {a,} is
contractive.

oo

1 . .
2.4.6 Prove that the sequence {} is not contractive.
n

n=1

LIMIT SUPERIOR AND LIMIT INFERIOR

We begin this section with a proposition which follows from Theorem 2.3.1. All sequences in
this section are assumed to be of real numbers.

Proposition 2.5.1 Let {a,} be a bounded sequence. Define

sp =sup{ay : k>n} (2.8)
and

tn =inf{ay : k> n}. (2.9)

Then {s,} and {#,} are convergent.

Proof: If n < m, then {a; : k > m} C {ax: k > n}. Therefore, it follows from Theorem 1.5.3
that s, > s, and, so, the sequence {s,} is decreasing. Since {a,} is bounded, then so is {s,}. In
particular, {s,} is bounded below. Similarly, {z,} is increasing and bounded above. Therefore, both
sequences are convergent by Theorem 2.3.1. [J

Definition 2.5.1 Let {a,} be a sequence. Then the limit superior of {a,}, denoted by limsup,,_. .. an,
is defined by
limsupa, = lim sup{ay : k > n}.
n—soo n—oo
Note that limsup,,_,, a, = lim,,_,. s,, Where s, is defined in (2.8).
Similarly, the limit inferior of {a,}, denoted by liminf,_,a,, is defined by

liminfa, = lim inf{a; : k > n}.
n—oo n—roo

Note that liminf,,_,. a, = lim,_,«1,, where #, is defined in (2.9).
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Theorem 2.5.2 If {a,} is not bounded above, then

lim s,, = oo,
n—soo

where {s,} is defined in (2.8).
Similarly, if {a,} is not bounded below, then

lim ¢, = —oo,
n—oo

where {#,} is defined in (2.9).

Proof: Suppose {a,} is not bounded above. Then for any k € N, the set {a; : i > k} is also not
bounded above. Thus, s, = sup{a; : i > k} = oo for all k. Therefore, lim_,c sx = 0. The proof for
the second case is similar. [

Remark 2.5.3 By Theorem 2.5.2, we see that if {a,} is not bounded above, then

limsupa, = oe.
n—yeo

Similarly, if {a, } is not bounded below, then

liminfa, = —co.
n—oo

Theorem 2.5.4 Let {a,} be a sequence and ¢ € R. The following are equivalent:

(a) limsup,_,.a, =Z.
(b) For any € > 0, there exists N € N such that

a, <f+eforalln> N,
and there exists a subsequence of {ay, } of {a,} such that
,}Lnla”k =/.
Proof: Suppose limsup,,_,,,a, = ¢. Then lim,_,.. s, = ¢, where s, is defined as in (2.8). For any
€ > 0, there exists N € N such that
f—e<s,<l+eforalln>N.
This implies sy = sup{a, : n > N} < {+ €. Thus,
a, < l+eforalln>N.
Moreover, for € = 1, there exists N; € N such that
0—1<sy, =sup{a,:n>N} <{l+1.
Thus, there exists n; € N such that

(—1<a, <t+1.
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1
For € = > there exists N, € N and N, > n; such that

1 1
6—5<sN2:sup{an:n2N2}<£+§.

Thus, there exists n, > n; such that

1 1
€—§<an2<€+§

In this way, we can construct a strictly increasing sequence {n; } of positive integers such that

1 1
E—%<ank<€+%.

Therefore, limy_,c ap, = £.
We now prove the converse. Given any € > 0, there exists N € N such that

ap<l+eandl—€<a, <l+¢
foralln > N and k > N. Let any m > N, we have
sm=sup{ay:k>m} <l+e.
By Lemma 2.1.8, n,, > m, so we also have
Sm=sup{ax:k>m}>a,, K >l(—¢.

Therefore, lim,;, o s, = limsup,, . a, =¢. U

The following result is proved in a similar way.
Theorem 2.5.5 Let {a,} be a sequence and ¢ € R. The following are equivalent:

(a) liminf, ,.a, = .
(b) For any € > 0, there exists N € N such that

a, >f¢—¢eforalln >N,
and there exists a subsequence of {ay, } of {a,} such that
lima,, = /.
k—yo0
The following corollary follows directly from Theorems 2.5.4 and 2.5.5.
Corollary 2.5.6 Let {a,} be a sequence. Then

lim a, = ¢ if and only if limsupa, = liminfa, = £.
n—soo H—y00 n—oo

Corollary 2.5.7 Let {a,} be a sequence.
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(a) Suppose limsup,,_,.,a, = £ and {ay, } is a subsequence of {a, } with
lima,, =/
k—ro0
Then ¢’ < 4.
(b) Suppose liminf,, ;. a, = ¢ and {ay, } is a subsequence of {a, } with
lima,, =/
k—ro0
Then ¢/ > /.

Proof: We prove only (a) because the proof of (b) is similar. By Theorem 2.5.4 and the definition
of limits, for any € > 0, there exists N € N such that

ap<l+eand V' —e<a, <l +e¢
for alln > N and k > N. Since ny > N, this implies
U —e<ay, <l+e.

Thus, ¢ < £+ 2¢ and, hence, ¢’ < ¢ because € is arbitrary. []

Remark 2.5.8 Let {a,} be a bounded sequence. Define
A = {x € R : there exists a subsequence {a,, } with lima,, = x}.

Each element of the set A called a subsequential limit of the sequence {a, }. It follows from Theorem
2.5.4, Theorem 2.5.5, and Corollary 2.5.7 that A # 0 and

limsupa, = maxA and liminfa, = minA.
n—soo R—boo

Theorem 2.5.9 Suppose {a,} is a sequence such that a, > 0 for every n € N and

. ani-1
limsup == =/ < 1.
n—oo Uy

Then lim,,_.a, = 0.
Proof: Choose € > 0 such that £+ & < 1. Then there exists N € N such that

an+1

<{+eforalln>N.

an

Let g = ¢+ €. Then 0 < g < 1. By induction,
0<a,<q" Nayforalln>N.

Since lim,,_,.. ¢ Nay = 0, one has lim,,_,a, = 0. O

By a similar method, we obtain the theorem below.
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Theorem 2.5.10 Suppose {a, } is a sequence such that a, > 0 for every n € N and

. . a
liminf 2L — ¢ > 1.
n—e @,

Then lim,,_yco a,, = oo.

= Example 2.5.1 Given a real number «, define

n

a,=—,neN.
n!
When a = 0, it is obvious that lim,,_. a, = 0. Suppose & > 0. Then
limsupan L — lim =0<1.
n—eo Ay n—eon+ 1

Thus, lim,.a, = 0. In the general case, we can also show that lim,_,.a, = 0 by considering
lim,,_, |a,| and using Exercise 2.1.3.

Exercises

All sequences in this set of exercises are assumed to be in R.

2.5.1 Find limsup,_,.,a, and liminf,_,. a, for each sequence.

(@) a,=(—1)".

(b) a, = sin (%)
1+ (=1)

© a= 1T

d) a, = nsin (%)

2.5.2 For a sequence {ay,}, prove that:
(a) liminf,_,ca, = o if and only if lim,,_. a;,, = oe.

(b) limsup,,_,.,a, = —oe if and only if lim,,_,c @, = —oo.
2.5.3 Let {a,} and {b,} be bounded sequences. Prove that:
(@) supys,(an+bn) < supys, ax +supis, bi.
(b) infy>p(an+by) > infy>, ag + infy>p by.
254 » Let {a,} and {b,} be bounded sequences.

(a) Prove that limsup,,_,.(a, +b,) < limsup,_,. a, +limsup,_, . by.
(b) Prove that liminf, . (a, + b,) > liminf, . a, +liminf, . b,.

(c) Find two counterexamples to show that the equalities may not hold in part (a) and part (b).
Is the conclusion still true in each of parts (a) and (b) if the sequences involved are not necessarily
bounded?

2.5.5 Let {a,} be a convergent sequence and let {b, } be an arbitrary sequence. Prove that

(a) limsup,_..,(a, +b,) =limsup,_, . a, +limsup,_.., b, = lim,_,ea, + limsup,,_, . by.

(b) liminf,_,.(a, + b,) = liminf,, . a, + liminf, . b, = lim, .« a, + liminf,_,.. b,,.
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2.6 OPEN SETS, CLOSED SETS, COMPACT SETS, AND LIMIT POINTS

The open ball in R with center a € R and radius 6 > 0 is the set
B(a;6) = (a—90,a+9).

Definition 2.6.1 A subset A of R is said to be open if for each a € A, there exists § > 0 such that

B(a;6) C A.
» Example 2.6.1 (1) Any open interval A = (c,d) is open. Indeed, for each @ € A, one has ¢ < a < d.
Let
0 =min{a—c,d —a}.
Then

B(a;8) = (a—38,a+d) C A.
Therefore, A is open.

(2) The sets A = (—eo,c) and B = (¢, o) are open, but the set C = [c, o) is not open. The reader can
easily verify that A and B are open. Let us show that C is not open. Assume by contradiction that C
is open. Then, for the element ¢ € C, there exists § > 0 such that

B(c;6)=(c—9d,c+06)CC.
However, this is a contradiction because ¢ — 6 /2 € B(c;8), butc—6/2 ¢ C.

Theorem 2.6.1 The following hold:

(a) The subsets @ and R are open.
(b) The union of any collection of open subsets of R is open.

(c) The intersection of a finite number of open subsets of R is open.

Proof: The proof of (a) is straightforward.
(b) Suppose {Gy, : & € I} is an arbitrary collection of open subsets of R. That means G, is open
for every o € I. Let us show that the set

G=|JGq

acl

is open. Take any a € G. Then there exists ¢ € I such that
a € Gy,
Since G, is open, there exists § > 0 such that
B(a;0) C Gg,-

This implies
B(a;8) C G

because Gy, C G. Thus, G is open.
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(c) Suppose G;,i = 1,...,n, are open subsets of R. Let us show that the set

is also open. Take any a € G. Then a € G; fori = 1,...,n. Since each G; is open, there exists §; > 0
such that
B(a;8;) C G;.

Let § =min{d;:i=1,...,n}. Then 6 >0 and
B(a;0) C G.
Thus, G is open. [J

Definition 2.6.2 A subset S of R is called closed if its complement, S¢ = R\, is open.

» Example 2.6.2 The sets [a,b], (—o0,qa], and [a,) are closed. Indeed, (—oo,a]® = (a,c0) and
[@,00)¢ = (—e0,a) which are open by Example 2.6.1. Since [a,b] = (—oo,a) U (b,o0), [a,b] is open
by Theorem 2.6.1. Also, single element sets are closed since, say, {b}“ = (—o0,b) U (b, o).

Theorem 2.6.2 The following hold:

(a) The sets @ and R are closed.
(b) The intersection of any collection of closed subsets of R is closed.

(¢) The union of a finite number of closed subsets of R is closed.

Proof: The proofs for these are simple using the De Morgan’s law. Let us prove, for instance, (b).
Let {Sq : @ € I} be a collection of closed sets. We will prove that the set

S={5a
oel

is also closed. We have

5= <ﬂ Sa>cz U S5

acl acl

Thus, $€ is open because it is a union of opens sets in R (Theorem 2.6.1(b)). Therefore, S is closed. [J
= Example 2.6.3 It follows from part (c) and Example 2.6.2 that any finite set is closed.

Theorem 2.6.3 A subset A of R is closed if and only if for any sequence {a,} in A that converges
to a point a € R, it follows that a € A.

Proof: Suppose A is a closed subset of R and {a, } is a sequence in A that converges to a. Suppose by
contradiction that a ¢ A. Since A is closed, there exists € > 0 such that B(a; &) = (a — €,a+¢€) C A.
Since {a,} converges to a, there exists N € N such that

a—€E<ay<a-+e.

This implies ay € A€, a contradiction.
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Let us now prove the converse. Suppose by contradiction that A is not closed. Then A€ is not
open. Since A€ is not open, there exists a € A¢ such that for any € > 0, one has B(a;€) NA # 0. In
particular, for such an a and for each n € N, there exists a, € B(a; %) NA. Itis clear that the sequence
{ay} is in A and it is convergent to a (because |a, —a| < 1, for all n € N). This is a contradiction
since a ¢ A. Therefore, A is closed. [J

Theorem 2.6.4 If A is a nonempty subset of R that is closed and bounded above, then max A exists.
Similarly, if A is a nonempty subset of R that is closed and bounded below, then minA exists

Proof: Let A be a nonempty closed set that is bounded above. Then supA exists. Let m = supA. To
complete the proof, we will show that m € A. Assume by contradiction that m ¢ A. Then m € A€,
which is an open set. So there exists & > 0 such that

(m—0,m+98) C A"
This means there exists no a € A with
m—~6 <a<m.

This contradicts the fact that m is the least upper bound of A (see Proposition 1.5.1). Therefore,
maxA exists. [J

Definition 2.6.3 A subset A of R is called compact if for every sequence {a,} in A, there exists a
subsequence {a,, } that converges to a point a € Al

» Example 2.6.4 Let a,b € R, a < b. We show that the set A = [a, )] is compact. Let {a,} be a
sequence in A. Since a < a, < b for all n, then the sequence is bounded. By the Bolzano-Weierstrass
theorem (Theorem 2.4.1), we can obtain a convergent subsequence {ay, }. Say, limy_,.a,, =s. We
now must show that s € A. Since a < a,, < b for all k, it follows from Theorem 2.1.5, thata < s <b
and, hence, s € A as desired. We conclude that A is compact.

Theorem 2.6.5 A subset A of R is compact if and only if it is closed and bounded.

Proof: Suppose A is a compact subset of R. Let us first show that A is bounded. Suppose, by
contradiction, that A is not bounded. Then for every n € N, there exists a, € A such that

lan| > n.
Since A is compact, there exists a subsequence {ay, } that converges to some a € A. Then
|an,| > nk >k for all k.

Therefore, limy_,c, @y, | = oo. This is a contradiction because {|a,, |} converges to |a|. Thus A is
bounded.

Let us now show that A is closed. Let {a, } be a sequence in A that converges to a point a € R.
By the definition of compactness, {a,} has a subsequence {a,, } that converges to b € A. Then
a = b € A and, hence, A is closed by Theorem 2.6.3.

For the converse, suppose A is closed and bounded and let {a,} be a sequence in A. Since A
is bounded, the sequence is bounded and, by the Bolzano-Weierstrass theorem (Theorem 2.4.1), it

I"This definition of compactness is more commonly referred to as sequential compactness.
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has a convergent subsequence, {a,, }. Say, limy_,. a,, = a. It now follows from Theorem 2.6.3 that
a € A. This shows that A is compact as desired. [

Definition 2.6.4 (cluster/limit/accumulation point). Let A be a subset of R. A point a € R (not
necessarily in A) is called a limit point of A if for any § > 0, the open ball B(a; §) contains an infinite
number of points of A.

A point a € A which is not an accumulation point of A is called an isolated point of A.

s Example 2.6.5 (1) Let A =10,1). Then a = 0 is a limit point of A and b = 1 is also a limit
point of A. In fact, any point of the interval [0, 1] is a limit point of A. The set [0, 1) has no
isolated points.

(2) Let A =7. Then A does not have any limit points. Every element of Z is an isolated point of
Z.

(3) Let A= {1/n:n € N}. Then a = 0 is the only limit point of A. All elements of A are isolated
points.

= Example 2.6.6 If G is an open subset of R then every point of G is a limit point of G. In fact,
more is true. If G is open and a € G, then a is a limit point of G\ {a}. Indeed, let & > 0 be such that
B(a;8) C G. Then (G\ {a})NB(a;0) = (a—0,a)U(a,a+ &) and, thus B(a; d) contains an infinite
number of points of G\ {a}.

The following theorem is a variation of the Bolzano-Weierstrass theorem.
Theorem 2.6.6 Any infinite bounded subset of R has at least one limit point.
Proof: Let A be an infinite subset of R and let {a, } be a sequence of A such that

am 7 a, form#n

(see Theorem 1.2.7). Since {a,} is bounded, by the Bolzano-Weierstrass theorem (Theorem 2.4.1),
it has a convergent subsequence {ay, }. Set b = limy_,.a,, . Given § > 0, there exists K € N such
that a,, € B(b;0) for k > K. Since the set {a,, : k > K} is infinite, it follows that b is a limit point of
A. O

The following definitions and results provide the framework for discussing convergence within
subsets of R.

Definition 2.6.5 Let D be a subset of R. We say that a subset V of D is open in D if for everya € V,
there exists 8 > 0 such that

B(a;8)ND C V.

Theorem 2.6.7 Let D be a subset of R. A subset V of D is open in D if and only if there exists an
open subset G of R such that

V=DNG.

Proof: Suppose V is open in D. By definition, for every a € V, there exists &, > 0 such that
B(a;6,)ND C V.

Define
G = UuevB(a; )
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Then G is a union of open subsets of R, so G is open. Moreover,
V C GND =Ugey[B(a;8,)ND] C V.

Therefore, V = GND.
Let us now prove the converse. Suppose V = GN D, where G is an open set. Forany a € V, we
have a € G, so there exists & > 0 such that

B(a;0) C G.
It follows that
B(a;6)NDCGND=V.
The proof is now complete. [

» Example 2.6.7 Let D = [0,1) and V = [0,3). We can write V = DN (-1, ). Since (—1,1) is
open in R, we conclude from Theorem 2.6.7 that V is open in D. Notice that V itself is not an open
subset of R.

The following theorem is now a direct consequence of Theorems 2.6.7 and 2.6.1.
Theorem 2.6.8 Let D be a subset of R. The following hold:

(a) The subsets @ and D are open in D.
(b) The union of any collection of open sets in D is open in D.
(c) The intersection of a finite number of open sets in D is open in D.

Definition 2.6.6 Let D be a subset of R. We say that a subset A of D is closed in D if D\ A is open
in D.

Theorem 2.6.9 Let D be a subset of R. A subset K of D is closed in D if and only if there exists a
closed subset F of R such that

K=DNF.

Proof: Suppose K is a closed set in D. Then D\ K is open in D. By Theorem 2.6.7, there exists an
open set G such that

D\K=DnNG.
It follows that
K=D\(D\K)=D\(DNG)=D\G=DNG".

Let F = G. Then F is a closed subset of R and K = DN F.
Conversely, suppose that there exists a closed subset ' of R such that K = DN F. Then

D\K=D\(DNF)=D\F =DNF*.

Since F€ is an open subset of R, applying Theorem 2.6.7 again, one has that D \ K is open in D.
Therefore, K is closed in D by definition. [J
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» Example 2.6.8 Let D = [0,1) and K = [}, 1). We can write K = DN [4,2]. Since [},2] is closed

in R, we conclude from Theorem 2.6.9 that K is closed in D. Notice that K itself is not a closed
subset of R.

Corollary 2.6.10 Let D be a subset of R. A subset K of D is closed in D if and only if for every
sequence {x;} in K that converges to a point X € D it follows that X € K.

Proof: Let D be a subset of R. Suppose K is closed in D. By Theorem 2.6.9, there exists a closed
subset F' of R such that

K=DNF.

Let {x} be a sequence in K that converges to a point X € D. Since {x;} is also a sequence in F and
F isaclosed subsetof R, x € F. Thus,x€ DNF =K.

Let us prove the converse. Suppose by contradiction that K is not closed in D or D\ K is not
open in D. Then there exists ¥ € D\ K such that for every 6 > 0, one has

B(x;6)ND ¢ D\K.

In particular, for every k € N,
1
B x; % ND SZ D\K.

For each k € N, choose x; € B(; 1) N D such that x; ¢ D\ K. Then {x;} is a sequence in K and,
moreover, {x;} converges to X € D. Then X € K. This is a contradiction. We conclude that K is
closedin D. ]

The following theorem is a direct consequence of Theorems 2.6.9 and 2.6.2.
Theorem 2.6.11 Let D be a subset of R. The following hold:

(a) The subsets @ and D are closed in D.
(b) The intersection of any collection of closed sets in D is closed in D.

(¢) The union of a finite number of closed sets in D is closed in D.

» Example 2.6.9 Consider the set D = [0, 1) and the subset A = [}, 1). Clearly, A is bounded. We
showed in Example 2.6.8 that A is closed in D. However, A is not compact. We show this by finding
a sequence {a, } in A for which no subsequence converges to a point in A.

Indeed, consider the sequence a, = 1 — 217 for n € N. Then a, € A for all n. Moreover, {a,}
converges to 1 and, hence, every subsequence also converges to 1. Since 1 € A, it follows that A is
not compact.

Exercises

2.6.1 Prove that a subset A of R is open if and only if for any x € A, there exists n € N such that
(x—1/n,x+1/n) C A.

2.6.2 Prove that the interval [0, 1) is neither open nor closed.

2.6.3 » Prove that if A and B are compact subsets of R, then A U B is a compact set.
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2.6.4 Prove that the intersection of any collection of compact subsets of R is compact.

2.6.5 Find all limit points and all isolated points of each of the following sets:

@) A=(0,1).
(b) B=[0,1).
) C=0Q.

(d D={m+1/n: mneN}.

2.6.6 Let D = [0,00). Classify each subset of D below as open in D, closed in D, neither or both.
Justify your answers.

@) A=(0,1).

(b) B=N.

(©) C=QnD.
) D= (—1,1].

(e) E= (_2700)'
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3. LIMITS AND CONTINUITY

In this chapter, we extend our analysis of limit processes to functions and give the precise
definition of continuous function. We derive rigorously two fundamental theorems about continuous
functions: the extreme value theorem and the intermediate value theorem.

LIMITS OF FUNCTIONS
Definition 3.1.1 Let f: D — R and let X be a limit point of D. We say that f has a limit at X if there
exists a real number ¢ such that for every € > 0, there exists § > 0 with

70—t <e
for all x € D for which 0 < |x —X| < §. In this case, we write

lim f(x) = £.
Remark 3.1.1 Note that the limit point X in the definition of limit may or may not be an element of
the domain D. In any case, the inequality |f(x) —¢| < € need only be satisfied by elements of D.

» Example 3.1.1 Let f: R — R be given by f(x) = 5x —7. We prove that lim,_,, f(x) = 3. Let
€ > 0. First note that |f(x) —2| = [5x —7 — 3| = |5x — 10| = 5|x — 2|. This suggests the choice
0 = €/5. Then, if |x — 2| < § we have

|f(x)=2]=5|x—2| <50 =€.

= Example 3.1.2 Let f: [0,1) — R be given by f(x) = x> +x. Let £ = 1 and ¢ = 2. First note that
|f(x) — €] = |¥* +x—2| = |x— 1||x+2| and for x € [0,1), |x+2| < |x| +2 < 3. Now, given € > 0,
choose 6 = €/3. Then, if [x— 1| < § and x € [0, 1), we have

£

1f(x)—€] = | +x—2] = |x—1|[x+2| < 38 =33

=E&.

This shows that lim,_,; f(x) = 2.
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= Example 3.1.3 Let f: R — R be given by f(x) = x>. We show that lim, ., f(x) = 4. First
note that |f(x) — 4| = [x> — 4| = |(x — 2)(x +2)| = |x —2||x +2|. Since the domain is all of R the
expression |x + 2| is not bounded and we cannot proceed as in Example 3.1.2. However, we are
interested only in values of x close to 2 and, thus, we impose the condition § < 1. If |x —2| < 1, then
—1 <x—2<land,so, 1 <x < 3. It follows, for such x, that |x| < 3 and, hence |x| +2 < 5.

Now, given € > 0 we choose 6 = min{1, £}. Then, whenver |x —2| < § we get

If(x)—4|=|x=2]x+2| < |x=2|(]x| +2) < 65 < &.

3x-5 1
m Example 3.1.4 Let f: R — R be given by f(x) = % We prove that lim,_,; f(x) = —5 First
x
we look at the expression | f(x) — (—3)| and try to identify a factor |x — 1| (because here ¥ = 1).
1 3x—5 1 6x—10+x2+3]  |x—1|]x+7] _1
— — = | — — | = = < - _1 7 .
‘f(x) < 2)’ x2—|—3+2’ 2+3 ’ 2(2+3) = o= 1 +7]

Proceeding as in the previous example, if [x— 1| < 1 we get —1 <x—1 < 1 and, so, 0 < x < 2. Thus
|x| <2and [x+7| <|x|+2<09.
Now, given € > 0, we choose § = min{1, %8} It follows that if |x — 1| < & we get

\f<x>—<—1> aul

9
< 28<e.
2‘_ 6 |x \<65_8

The following theorem will let us apply our earlier results on limits of sequences to obtain new
results on limits of functions.

Theorem 3.1.2 — Sequential Characterization of Limits. Let f: D — R and let x be a limit point
of D. Then

lim f(x) =4 (3.1)
X—X

if and only if
lim f(x,) =/ (3.2)
n—soo

for every sequence {x,} in D such that x, # % for every n and {x, } converges to X.

Proof: Suppose (3.1) holds. Let {x,} be a sequence in D with x,, # X for every n and such that {x, }
converges to X. Given any € > 0, there exists d > 0 such that | f(x) — ¢| < € whenever x € D and
0 < |x—x| < 8. Then there exists N € N with 0 < |x, —%| < 6 for all n > N. For such n, we have

|f () — €] <.

This implies (3.2).
Conversely, suppose (3.1) is false. Then there exists & > 0 such that for every é > 0, there
exists x € D with 0 < |x— x| < 0 and | f(x) — £| > &. Thus, for every n € N, there exists x,, € D with
1
0 < |x, —%| < — and | f(x,) — ¢| > &. By the squeeze theorem (Theorem 2.1.6), the sequence {x,}
n

converges to X. Moreover, x,, # X for every n. This shows that (3.2) is false. It follows that (3.2)
implies (3.1) and the proof is complete. [
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Corollary 3.1.3 Let f: D — R and let x be a limit point of D. If f has a limit at X, then this limit is
unique.
Proof: Suppose by contradiction that f has two different limits ¢; and ¢,. Let {x,} be a sequence
in D\ {x} that converges to . By Theorem 3.1.2, the sequence {f(x,)} converges to two different
limits ¢; and ¢,. This is a contradiction to Theorem 2.1.3. [J

The following corollary follows directly from Theorem 3.1.2.

Corollary 3.1.4 Let f: D — R and let X be a limit point of D. Then f does not have a limit at & if
and only if there exists a sequence {x,} in D such that x,, # X for every n, {x,} converges to %, and
{f(x,)} does not converge.

m Example 3.1.5 Consider the Dirichlet function f: R — R given by
1, if xeQ@Q;
fx) = . .
0, if xeQ-.

Then lim,_,z f(x) does not exist for any X € R. Indeed, fix ¥ € R and choose two sequences {r,},
{sn} converging to X such that r, € Q and s, ¢ Q for all n € N. Define a new sequence {x, } by

re, if n=2k;
Xp =
Sk if n=2k—1.

It is clear that {x, } converges to X. Moreover, since {f(r,)} converges to 1 and {f(s,)} converges
to 0, Theorem 2.1.9 implies that the sequence {f(x,)} does not converge. It follows from the
sequential characterization of limits that lim,_,z f(x) does not exist.

Theorem 3.1.5 Let f,g: D — R and let x be a limit point of D. Suppose that

llmf(x) = 617 lgmg(x) = 627

X—X
and that there exists 0 > 0 such that
f(x) < g(x) forall x € B(x;6) N D,x # X.

Then 51 S Eg.

Proof: Let {x,} be a sequence in B(X;0) D = (X — 6,X+ ) N D that converges to X and x,, # & for
all n. By Theorem 3.1.2,

lim f(x,) = ¢, and lign g(xy) = o,

n—oo

Since f(x,) < g(x,) for all n € N, applying Theorem 2.1.5, we obtain ¢; < ¢,. [

Theorem 3.1.6 Let f,g: D — R and let X be a limit point of D. Suppose

lim f(x) = £1, limg(x) = {2,

X—X

and ¢; < ¢5. Then there exists 6 > 0 such that

f(x) < g(x) forall x € B(x;6) N D,x # X.
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Proof: Choose € > 0 such that ¢; 4+ € < ¢, — € (equivalently, such that € < @) Then there exists
6 > 0 such that

Oh—e<fx)<li+eandlh—e<g(x)<lr+e
for all x € B(%;8) N D,x # x. Thus,
fx)<tli4+e<t,—e<gx) forall x € B(x;0) ND,x # x.
The proof is now complete. [

Theorem 3.1.7 Let f,g,h: D — R and let X be a limit point of D. Suppose there exists & > 0
such that f(x) < g(x) < h(x) for all x € B(x;6) N D,x # x. If lim,_z f(x) = lim,_,sh(x) = ¢, then
lim,_,zg(x) = ¢.

Proof: The proof is straightforward using Theorem 2.1.6 and Theorem 3.1.2. [J

Remark 3.1.8 We will adopt the following convention. When we write lim,_, f(x) without speci-

fying the domain D of f we will assume that D is the largest subset of R such that if x € D, then
f(x) results in a real number. For example, in

1
lim
—2x+3
we assume D = R\{—3} and in

lim+/x
x—1

we assume D = [0,00).

Exercises
3.1.1 Use the definition of limit to prove that

(a) lim, ,p3x—7=—1.
(b) lim,,3(x*+1) = 10.
x+3
li — = =2
(¢) lim,_,, 1

(d) lim,_,0/x=0.
(e) limy_,rx> =8.

3.1.2 Prove that the following limits do not exist.
_ X
(a) limy o —.
]
(b) lim,_,gcos(1/x).
3.1.3 Let f: D — R and let X be a limit point of D. Prove that if lim,_,z f(x) = ¢, then
tim /()| = |

Give an example to show that the converse is not true in general.
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3.1.4 Let f: D — R and let X be a limit point of D. Suppose f(x) > 0 for all x € D. Prove that if
lim,_,z f(x) = ¢, then

lim\/f(x) = V7.

X—X
3.1.5 Find lim,_,gxsin(1/x).

3.1.6 » Let f be the function given by

I E? if xeQnJo,1];
J) = {lx, if xeQ°n[o,1].

Determine which of the following limits exist. For those that exist find their values.

(a) limy_,; /5 f(x).
(b) limy_,o f(x).
(C) hmx—)lf(x)-

LIMIT THEOREMS

Here we state and prove various theorems that facilitate the computation of general limits.

Definition 3.2.1 Let f,g: D — R and let ¢ be a constant. The functions f+ g, fg, and cf are
respectively defined as functions from D to R by

(f+8)(x) = f(x) +g(x),
(f8)(x) = f(x)g(x),
(cf)(x) = cf(x)

forx e D. Let D = {x € D: g(x) # 0}. The function f is defined as a function from D to R by
8

(o3

forx € D.

Theorem 3.2.1 Let f,g: D — R and let ¢ € R. Suppose X is a limit point of D and

lim f(x) = ¢, limg(x) = m.
X—X

X—X

Then
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Proof: Let us first prove (a). Let {x,} be a sequence in D that converges to X and x,, # ¥ for every n.
By Theorem 3.1.2,

r}grolof(xn) =/ and r}gl;g(xn) =m.

It follows from Theorem 2.2.1 that
lim (£(%,) +g(xa)) = £ +m.
n—soo

Applying Theorem 3.1.2 again, we get lim,_z(f + g)(x) = £+ m. The proofs of (b) and (c) are
similar.

Let us now show that if m # 0, then % is a limit point of D. Since  is a limit point of D, there is
a sequence {uy} in D converging to X such that u; # X for every k. Since m # 0, it follows from an
easy application of Theorem 3.1.6 that there exists 6 > 0 with

g(x) # 0 whenever 0 < |x— x| < J,x € D.
This implies
x € D whenever 0 < |x—x| < §,x € D.

Then u; € D for all k sufficiently large, and hence X is a limit point of D. The rest of the proof of (d)
can be completed easily following the proof of (a). [J

24+ 2x—3
= Example 3.2.1 Consider f: R\ {—7} — R given by f(x) = % Then, combining all
x
parts of Theorem 3.2.1, we get

B lim, , »(x*>+2x—3) _ lim,, o x4 limyy_2x —limy_,_»3

lim f(x)=

x——2 ]imx_>_2(x—i—7) N limy,_, px+1lim,, »7

~ (limy,px)? 4+ 2lim, ox—lime, 3 (—2)242(-2)—-3 3

lim,, px+lim,, 57 B —2+7 -5
= Example 3.2.2 We proceed in the same way to compute the following limit.

1+ (2x—1)?  limy ol +1lime,0(2x—1)2 141 2

w0 247 limye@+lim,e7 047 7T

= Example 3.2.3 We now consider
x> 46x+5
im ———.
x——1 x+1

Since the limit of the denominator is 0 we cannot apply directly part (d) of Theorem 3.2.1. Instead,
we first simplify the expression keeping in mind that in the definition of limit we never need to
evaluate the expression at the limit point itself. In this case, this means we may assume that x #= —1.
For any such x we have

K+6x+5  (x+1)(x+5)

— Xx+5.
X+ 1 X+ 1 X+
Therefore,
2
fim 2% i s —a

x——1 x+1 x——1
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Theorem 3.2.2 (Cauchy’s criterion) Let f: D — R and let X be a limit point of D. Then f has a
limit at ¥ if and only if for any € > 0, there exists 0 > 0 such that

|f(r)— f(s)] < € whenever ,s € Dand 0 < |[r— x| < 8,0 < |s—X| < §. (3.3)

Proof: Suppose lim,_,z f(x) = £. Given € > 0, there exists 6 > 0 such that
|f(x)—£] < g whenever x € D and 0 < |x—x| < 4.

Thus, for r,s € D with 0 < |[r —x| < § and 0 < |s — x| < &, we have

|f(r)=f) < |f(r) =€+ 6= f(s)| <€

Let us prove the converse. Fix a sequence {uy,} in D such with lim,,_,.. 1, = X and u,, # X for every n.
Given € > 0, there exists & > 0 such that

|f(r)— f(s)] < € whenever r,s € Dand 0 < |[r—x| < 6,0 < |s — x| < J.
Then there exists N € N satisfying

0< |u, —x| < dforallnm > N.
This implies

|f(un) — f(um)| < € forall myn > N.
Thus, {f(u,)} is a Cauchy sequence, and hence there exists ¢ € R such that

lim f (1) = L.

n—oo

We now prove that f has limit ¢ at ¥ using Theorem 3.1.2. Let {x, } be a sequence in D such that
lim,, . x, = X and x,, #  for every n. By the previous argument, there exists ¢ € R such that

lim f(x,) = 2.

n—oo

Fix any € > 0 and let § > 0 satisfy (3.3). There exists K € N such that
|up —X| < 8 and |x, — x| < &

forall n > K. Then | f(u,) — f(x,)| < € for such n. Letting n — oo, we have [¢ —¢'| < €. Thus, £ = ¢’
since € is arbitrary. It now follows from Theorem 3.1.2 that lim,_,z f(x) = ¢. O
The rest of this section discussed some special limits and their properties.

Definition 3.2.2 Let a € R and 6 > 0. Define
B_(a;8)=(a—68,a) and By (a;8) = (a,a+ ).

Given a subset A of R, we say that a is a left limit point of A if for any § > 0, B_(a; ) contains
an infinite number of elements of A. Similarly, a is called a right limit point of A if for any 6 > 0,
B (a;§) contains an infinite number of elements of A.
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It follows from the definition that a is a limit point of A if and only if it is a left limit point of A
or it is a right limit point of A.

Definition 3.2.3 (One-sided limits) Let f: D — R and let X be a left limit point of D. We write

lim f(x)=/¢

X=X~

if for every € > 0, there exists 6 > 0 such that
|f(x) =¥ < eforall x € B_(X;0).

We say that / is the left-hand limit of f at X. The right-hand limit of f at X can be defined in a similar
way and is denoted lim,_,z+ f(x).

» Example 3.2.4 Consider the function f: R\ {0} — R given by

Let ¥ = 0. Note first that 0 is a limit point of the set D =R\ {0} — R. Since, for x > 0, we have
f(x) =x/x=1, we have

lim f(x) = lim 1 = 1.

x—xt x—0t

Similarly, for x < 0 we have f(x) = —x/x = —1. Therefore,

lim f(x) = lim —1=—1.

X=X~ x—0~
= Example 3.2.5 Consider the function f: R — R given by
x+4, ifx < —1;
X) = 34
J) {xz—l, ifx>—1. ©h
We have

lim f(x)= lim x*—1=0,

x——1* x——1*

and

lim f(x)= lim x+4=3,

x——1- x——1-
The following theorem follows directly from the definition of one-sided limits.

Theorem 3.2.3 Let /: D — R and let X be both a left limit point of D and a right limit point of D.
Then

lim f(x) = ¢

X—X

if and only if
lim f(x) =¢and lim f(x) = /.

x—xt X—x~
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A1)
X

» Example 3.2.6 It follows from Example 3.2.4 that lim,_,(
limits do not agree.

does not exists, since the one-sided

Definition 3.2.4 (monotonicity) Let f: (a,b) — R.

(1) We say that f is increasing on (a,b) if, for all x;,x; € (a,b), x; < x, implies f(x;) < f(x2).
(2) We say that f is decreasing on (a,b) if, for all x1,x, € (a,b), x; < x» implies f(x1) > f(x2).

If f is increasing or decreasing on (a,b), we say that f is monotone on this interval. Strict mono-
tonicity can be defined similarly using strict inequalities: f(x;) < f(x2) in (1) and f(x;) > f(x2)
in (2).

Theorem 3.2.4 Suppose f: (a,b) — R is increasing on (a,b) and X € (a,b). Then lim, ,z f(x)
and lim, .3+ f(x) exist. Moreover,

sup f(x) = lim f(x) < (%) < lim f(x) = inf f(x).

a<x<i x<x<b

Proof: Since f(x) < f(x) for all x € (a,x), the set

{f(x) :x € (a, %)}

is nonempty and bounded above. Thus,

(= sup f(x)

a<x<x

is a real number. We will show that lim, ,z- f(x) = £. For any € > 0, by the definition of the least
upper bound, there exists a < x; < ¥ such that

l—e< f(xl).
Let 8 = X — x; > 0. Using the increasing monotonicity, we get
l—e< f(x)) < fx) <l<l+egforallx € (x1,X) =B_(X;9).

Therefore, lim,_, ;- f(x) = £. The rest of the proof of the theorem is similar. (J

Let
By(%;8) =B_(%;8)UBL(%;0) = (x— 8,4+ 0) \ {x}.
Definition 3.2.5 (infinite limits) Let f: D — R and let X be a limit point of D. We write

lim f(x) = oo

X—X

if for every M € R, there exists 0 > 0 such that
f(x) > M for all x € By(x;0)ND.

Similarly, we write

lim £ (x) = —eo

X—X

if for every M € R, there exists > 0 such that

f(x) <M for all x € By(x;8)ND.
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Infinite limits of functions have similar properties to those of sequences from Chapter 2 (see

Definition 2.3.2 and Theorem 2.3.6).
= Example 3.2.7 We show that lim,_,; & 11)2 = oo directly frorn Definition 3.2.5.

Let M € R. We want to find 6 > 0 that will guarantee —-—> > M whenever 0 < |x — 1] < §.

( )
As in the case of finite limits, we work backwards from )2 > M to an inequality for |x — 1].

To simplify calculations, note that [M|+ 1 > M. Next note that i > |M| + 1, is equivalent to

1/W>|X— ’

Now, choose 0 such that 0 < § < Then, if 0 < |x— 1| < § we have

\M|+1

1 1 1

M[+1
as desired.

Definition 3.2.6 (limits at infinity) Let f: D — R, where D is not bounded above. We write

lim f(x) =

X—ro0

if for every € > 0, there exists ¢ € R such that
|f(x)—¢] < eforall x> c,x€D.
Let f: D — R, where D is not bounded below. We write

lim f(x)=¢

X——o0

if for every € > 0, there exists ¢ € R such that
|f(x)—¢] <eforallx < c,x€D.
We can also define

lim f(x) = +ooand lim f(x) = too

X—ro0 X—r—o0

in a similar way.

= Example 3.2.8 We prove from the definition that

lim 3x? +x 3
w22+ 1 2
The approach is similar to that for sequences, with the difference that x need not be an integer.
Let € > 0. We want to identify c so that

32 +x §
2x24+1 2

‘ <€, (3.5)

for all x < c.
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Now, ;ﬁjf{ — %‘ = % Therefore, simplifying, 3.5 is equivalent to
1 22 +1)
Z < vy 3.6
e x_3] (3.6)

. . 2 2 .
We first restrict x to be less than 0, so |2x — 3| > 3. Then, since ‘% < 2%:;‘1), 3.6 will be guaranteed

if 1/ < 4x?/3 or, equivalently /3/(4€) < |x|. We set ¢ < min{0,—/3/(4¢€)}. Then, if x < ¢, we
have \/3/(4€) < —x = |x|. Thus, 1 /€ < 2A2+1) and, hence,

[2x-3|
3x2+x 3 |2x — 3|
5T A T s <&
2241 2| 2(2x2+1)

Exercises
3.2.1 Find the following limits:

, 3x2 —2x+5
(a) llmx—>2 )
x—3

2
. x“4+4x+3
(b) limy , 3= =
x*—9

3.2.2 Let f: D — R and let X is a limit point of D. Prove that if lim,_,z f(x) exists, then

lim[f(x)]" = [lim f(x)]",for any n € N.

X—X X—X

3.2.3 Find the following limits:

) x—1
(@) timy L
x> —1
m_
(b) limy_,; ——, where m,n € N,
xt—1

n

(¢) limy_,; \’{‘/fi—l’ where m,n € N, m,n > 2,

(d) lim, VX VR

x—1

3.2.4 Find the following limits:

(@) limy oo (Va3 +3x2 — Va2 +1).
(b) limy oo (VX3 +3x2 — Va2 +1).

3.25 » Let f: D — R and let ¥ be a limit point of D. Suppose that
|f(x) = f(¥)] < klx—y[forallx,y € D\ {x},
where k > 0 is a constant. Prove that lim,_,z f(x) exists.

3.2.6 Determine the one-sided limits lim,_,3+[x] and lim, ,3- [x], where [x] denotes the greatest
integer that is less than or equal to x.
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3.2.7 Find each of the following limits if they exist:
x+1

x—1

(b) lim,_,o+ | sin(1/x)|.

(c) limy 1 (x—[x]).

(@) limy 1+

3.2.8 Fora € R, let f be the function given by
ﬂ@_{ﬁ, §x>n
ax—1, if x<1.
Find the value of a such that lim,_,; f(x) exists.
3.2.9 Determine all values of X such that the limit lim,_,z(1 4 x — [x]) exists.
3.2.10 Leta,b € R and suppose f : (a,b) — R is increasing. Prove the following.

(a) If f is bounded above, then lim,_,,- f(x) exists and is a real number.
(b) If f is not bounded above, then lim,_,;- f(x) = oo.

State and prove analogous results in case f is bounded below and in case that the domain of f is one
of (—eo,b), (a,), or (—oo, ).

3.3 CONTINUITY

Definition 3.3.1 Let D be a nonempty subset of R and let f: D — R be a function. The function f
is said to be continuous at xy € D if for any real number € > 0, there exists 0 > 0 such that if x € D
and |x —xo| < 0, then

|f(x) = f(x0)| <&

If f is continuous at every point x € D, we say that f is continuous on D (or just continuous if no
confusion occurs).

f(l()) “+€ .
f(z)
f(wo)

f(zo) — €

z0—0 ToT xy+0

Figure 3.1: Definition of continuity.
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= Example 3.3.1 Let /: R — R be given by f(x) =3x+7. Let xp € R and let € > 0. Choose
0 = ¢€/3. Then if |x — x| < &, we have
[f(x) = f(x0)| = [3Bx+7 — (3x0+7)| = [3(x —x0)| = 3]x —x0| <36 =e&.

This shows that f is continuous at xg.

Remark 3.3.1 Note that the above definition of continuity does not mention limits. This allows
to include in the definition, points xo € D which are not limit points of D. If xg is an isolated
point of D, then there is 6 > 0 such that B(xp;6) N D = {xo}. It follows that for x € B(x(;0) N D,
|f(x) — f(x0)| = 0 < € for any epsilon. Therefore, every function is continuous at an isolated point
of its domain.

To study continuity at limit points of D, we have the following theorem which follows directly
from the definitions of continuity and limit.

Theorem 3.3.2 Let f: D — R and let xo € D be a limit point of D. Then f is continuous at xg if
and only if

lim f(x) = £ (x0).

X—X0

= Example 3.3.2 Let f: R — R be given by f(x) = 3x> —2x+ 1. Fix xo € R. Since, from the
results of the previous theorem, we have

lim f(x) = lim (3x* —2x+1) = 3x5 — 2x0 + 1 = f(x0),
X—X0

X—X0
it follows that f is continuous at xy.
The following theorem follows directly from the definition of continuity, Theorem 3.1.2 and
Theorem 3.3.2 and we leave its proof as an exercise.
Theorem 3.3.3 Let f: D — R and let xo € D. Then f is continuous at xp if and only if for any
sequence {x;} in D that converges to xy, the sequence { f(x;)} converges to f(xo).

The proofs of the next two theorems are straightforward using Theorem 3.3.3.

Theorem 3.3.4 Let f,g: D — R and let xg € D. Suppose f and g are continuous at xy. Then

(a) f+ g and fg are continuous at xg.

(b) cf is continuous at xq for any constant c.

(c) If g(xo) # 0, then f; (defined on D = {x € D : g(x) # 0}) is continuous at xo.

Proof: We prove (a) and leave the other parts as an exercise. We will use Theorem 3.3.3. Let {x;}
be a sequence in D that converges to xp. Since f and g are continuous at xg, by Theorem 3.3.3 we
obtain that { f(x;)} converges to f(xo) and {g(xz)} converges to g(xo). By Theorem 2.2.1 (a),we
get that { f(xx) + g(xx) } converges to f(xo) + g(xo). Therefore,

lim (f +¢)(v) = lim f () +8(0u) = f(x0) +g(x0) = (f +8)(x0)-

Since {x;} was arbitrary, using Theorem 3.3.3 again we conclude f + g is continuous at xq. [J

Theorem 3.3.5 Let f: D — R andlet g: E — R with f(D) C E. If f is continuous at xo and g is
continuous at f(xp), then go f is continuous at xg.
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Exercises

3.3.1 Prove, using definition 3.3.1, that each of the following functions is continuous on the given
domain:

3.3.2 Determine the values of x at which each function is continuous. The domain of all the
functions is R.

sinx

—, ifx#£0;
(@) f(x)=

1, if x=0.

sinx

—, ifx#£0;
(b) f(x) x|

1, ifx=0.

xsinl if x #£ 0;
(©) f(x) x’ ’

0, ifx=0.

cosﬂ, if x| <1
A f(x) 2’

x—1], if |x| > L

T

e) f(x) —hm sin————, x€R.

2(1+x21)’
3.3.3 Let f: R — R be the function given by
4a, if x>2;
X)) =
U {ax— 1, if x<2.
Find the value of a such that f is continuous.

3.3.4 Let f: D — R and let xop € D. Prove that if f is continuous at xo, then | f| is continuous at
this point. Is the converse true in general?

3.3.5 Prove Theorem 3.3.3. (Hint: treat separately the cases when xy is a limit point of D and when
it is not.)

3.3.6 Prove parts (b) and (c) of Theorem 3.3.4.
3.3.7 Prove Theorem 3.3.5.

3.3.8 » Explore the continuity of the function f in each case below.
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(a) Let g,h:[0,1] — R be continuous functions and define
g(x), if xeQnJ0,1];
f(x) — ( ) ] . [ ]
h(x), if x€Q°N[0,1].

Prove that if g(a) = h(a), for some a € [0,1], then f is continuous at a.
(b) Let f: [0,1] — R be the function given by

X, if xeQnJo,1];
1—x, if xeQ°NJo,1].
Find all the points on [0, 1] at which the function is continuous.

3.3.9 > Consider the Thomae function defined on (0, 1] by
1
-, if x= B, P,q € N,where p and g have no common factors;
) =144 q
0, if xisirrational.
(a) Prove that for every € > 0, the set
Ae={xe (0,1]: f(x) > €}

is finite.

(b) Prove that f is continuous at every irrational point, and discontinuous at every rational point.

3.3.10 > Consider k distinct points x1,x2,...,x; € R, k > 1. Find a function defined on R that is
continuous at each x;, i = 1,.. .k, and discontinuous at all other points.

3.3.11 Suppose that f, g are continuous functions on R and f(x) = g(x) for all x € Q. Prove that
f(x) =g(x) forall x € R.

3.4 PROPERTIES OF CONTINUOUS FUNCTIONS

Recall from Definition 2.6.3 that a subset A of R is compact if and only if every sequence {a, }
in A has a subsequence {ay, } that converges to a point a € A.

Theorem 3.4.1 Let D be a nonempty compact subset of R and let f: D — R be a continuous
function. Then f(D) is a compact subset of R. In particular, f(D) is closed and bounded.

Proof: Take any sequence {y,} in f(D). Then for each n, there exists a, € D such that y, = f(a,).
Since D is compact, there exists a subsequence {ay, } of {a,} and a point a € D such that

lima,, =acD.
k—boo

It now follows from Theorem 3.3.3 that
lim y,, = lim f(a,,) = f(a) € f(D).
k—yoo k—>oo

Therefore, f(D) is compact.
The final conclusion follows from Theorem 2.6.5 I
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Definition 3.4.1 We say that the function f: D — R has an absolute minimum at x € D if
f(x) > f(x) for every x € D.
Similarly, we say that f has an absolute maximum at x if

f(x) < f(x) for every x € D.

Figure 3.2: Absolute maximum and absolute minimum of f on [a,b].

Theorem 3.4.2 — Extreme Value Theorem. Suppose f: D — R is continuous and D is a compact
set. Then f has an absolute minimum and an absolute maximum on D.

Proof: Since D is compact, A = f(D) is closed and bounded (see Theorem 2.6.5). Let

m = infA = inf f(x).

xeD

In particular, m € R. For every n € N, there exists a, € A such that
m<a,<m+1/n.
For each n, since a, € A = f(D), there exists x,, € D such that a, = f(x,) and, hence,
m< f(x,) <m+1/n.

By the compactness of D, there exists an element X € D and a subsequence {x,, } that converges to
X € D as k — . Because

1
m < f(x,,) < m-+ — for every k,
ng

by the squeeze theorem (Theorem 2.1.6) we conclude limy_,. f(x,,) = m. On the other hand, by
continuity we have lim_.. f(x,,) = f(X). We conclude that f(X) =m < f(x) for every x € D. Thus,
f has an absolute minimum at X. The proof is similar for the case of absolute maximum. []

Remark 3.4.3 The proof of Theorem 3.4.2 can be shortened by applying Theorem 2.6.4. However,
we have provided a direct proof instead.

Corollary 3.4.4 If f: [a,b] — R is continuous, then it has an absolute minimum and an absolute
maximum on |a, b].
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Corollary 3.4.4 is sometimes referred to as the Extreme Value Theorem. It follows immediately
from Theorem 3.4.2, and the fact that the interval [a, b] is compact (see Example 2.6.4).

The following result is a basic property of continuous functions that is used in a variety of
situations.

Lemma 3.4.5 Let f: D — R be continuous at ¢ € D. Suppose f(c) > 0. Then there exists 6 > 0
such that

f(x) >0 for every x € B(c;8)ND.

Proof: Let € = f(c) > 0. By the continuity of f at ¢, there exists § > 0 such that if x € D and
|x —c| < 6, then

[f(x)=fle)l <e.

This implies, in particular, that f(x) > f(c) — €& = 0 for every x € B(c;8) N D. The proof is now
complete. [J

Remark 3.4.6 An analogous result holds if f(c) < 0.

Theorem 3.4.7 Let f: [a,b] — R be a continuous function. Suppose f(a)- f(b) < O (this means
either f(a) <0 < f(b) or f(a) >0 > f(b)). Then there exists ¢ € (a,b) such that f(c) = 0.

Proof: We prove only the case f(a) <0 < f(b) (the case f(a) > 0> f(b) is completely analogous).
Define

A={x€ab]: f(x) <O}

This set is nonempty since a € A. This set is also bounded since A C [a,b]. Therefore, ¢ = supA
exists and a < ¢ < b. We are going to prove that f(c) = 0 by showing that f(c) < 0 and f(c) >0
lead to contradictions.

Suppose f(c¢) < 0. Then there exists § > 0 such that

f(x) <Oforallx € B(c;0)N[a,b].

Because ¢ < b (since f(b) > 0), we can find s € (¢,b) such that f(s) < 0 (indeed s = min{c +
0/2,(c+b)/2} will do). This is a contradiction because s € A and s > c.
Suppose f(c) > 0. Then there exists § > 0 such that

f(x)>O0forallx € B(c;0)N[a,b].

Since a < ¢ (because f(a) < 0), there exists 7 € (a,c) such that f(x) > 0 for all x € (¢,¢) (in fact,
t =max{c—8/2,(a+c)/2} will do). On the other hand, since t < ¢ = supA, there exists t' € A
with r <1’ < c¢. Butthent < ¢’ and f(¢') < 0. This is a contradiction. We conclude that f(c) = 0.

Theorem 3.4.8 — Intermediate Value Theorem. Let f: [a,b] — R be a continuous function.
Suppose f(a) <y < f(b). Then there exists a number ¢ € (a,b) such that f(c) = 7.
The same conclusion follows if f(a) > v > f(b).
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f(x)

Figure 3.3: Illustration of the Intermediate Value Theorem.

Proof: Define
@(x) = f(x) =7, x € [a,b].

Then ¢ is continuous on [a, b]. Moreover,

By Theorem 3.4.7, there exists ¢ € (a,b) such that ¢(c) = 0. This is equivalent to f(c) = 7y. The
proof is now complete. [

Corollary 3.4.9 Let f: [a,b] — R be a continuous function. Let
m=min{f(x) : x € [a,b]} and M = max{f(x) : x € [a,b]}.

Then for every y € [m, M|, there exists ¢ € [a,b] such that f(c) = 7.

m Example 3.4.1 We will use the Intermediate Value Theorem to prove that the equation ¢* = —x
has at least one real solution. We will assume known that the exponential function is continuous on
R and that ¢* < 1 for x < 0.

First define the function f: R — R by f(x) = ¢' 4 x. Notice that the given equation has a
solution x if and only if f(x) = 0. Now, the function f is continuous (as the sum of continuous
functions). Moreover, note that f(—1) =e"!+(—1) <1—1=0and f(0) = 1 > 0. We can now
apply the Intermediate Value Theorem to the function f on the interval [—1,0] with ¥ = 0 to conclude
that there is ¢ € [—1,0] such that f(c) = 0. The point ¢ is the desired solution to the original equation.

m Example 3.4.2 We show now that, given n € N, every positive real number has a positive n-th root.
Let n € N and let @ € R with a > 0. First observe that (1 +a)" > 1+ na > a (see Exercise 1.3.7).
Now consider the function f: [0,00) — R given by f(x) =x". Since f(0) =0and f(1+a) > a, it
follows from the Intermediate Value Theorem that there is x € (0, 1 + a) such that f(x) = a. That is,
X" = a, as desired. (We show later in Example 4.3.1 that such an x is unique.)

We present below a second proof of Theorem 3.4.8 that does not depend on Theorem 3.4.7, but,
instead, relies on the Nested Intervals Theorem (Theorem 2.3.3).
Second Proof of Theorem 3.4.8: We construct a sequence of nested intervals as follows. Set
aj=a, by =b,and let ) = [a,b]. Letc; = (a+b)/2. If f(c1) = v, we are done. Otherwise, either

fler) >y or
fler) <.
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In the first case, set ap = a; and b; = ¢;. In the second case, set ap = ¢; and b, = by. Now set
I, = [ay, by]. Note that in either case,

flaz) <y < f(ba).
Set ¢y = (ax +b2) /2. If f(c2) = 7, again we are done. Otherwise, either

flea) >y or
fle2) <.

In the first case, set a3 = ap and b3 = ¢. In the second case, set a3 = ¢ and b3 = b,. Now set
Iz = [a3,b3]. Note that in either case,

flaz) <y < f(b3).

Proceeding in this way, either we find some ¢, such that f(c,,) = ¥ and, hence, the proof is complete,
or we construct a sequence of closed bounded intervals {7, } with I, = [a,, b,] such that for all n,
(i) I, D In+1 s
(ii) by —a, = (b—a)/2""!, and
(iff) f(an) < ¥ < f(bn).
In this case, we proceed as follows. Condition (ii) implies that lim,,_,..(b, — a,) = 0. By the Nested
Intervals Theorem (Theorem 2.3.3, part (b)), there exists ¢ € |a, b] such that (;,_; I, = {c}. Moreover,
as we see from the proof of that theorem, a, — c and b,, — c as n — oo.

By the continuity of f, we get

lim f(ay) = f(c)  and
lim £(b,) = £(0)
Since f(a,) <y < f(by) for all n, condition (iii) above and Theorem 2.1.5 give
fle)<y  and
fle)zr.

It follows that f(c) = y. Note that, since f(a) <y < f(b), then ¢ € (a,b). The proof is now
complete. []

Now we are going to discuss the continuity of the inverse function. For a function f: D — E,
where E is a subset of R, we can define the new function f: D — R by the same function notation.
The function f: D — FE is said to be continuous at a point X € D if the corresponding function
f: D — Ris continuous at x.

Theorem 3.4.10 Let f: [a,b] — R be strictly increasing and continuous on [a,b]. Let ¢ = f(a) and
d = f(b). Then f is one-to-one, f([a,b]) = [c,d], and the inverse function f~! defined on [c,d] by

fY(f(x)) = x where x € [a,b],

is a continuous function from [c,d] onto [a,b].
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Proof: The first two assertions follow from the monotonicity of f and the Intermediate Value
Theorem (see also Corollary 3.4.9). We will prove that £~ is continuous on [c,d]. Fix any 7 € [c,d]
and fix any sequence {yy} in [c,d] that converges to y. Let X € [a,b] and x; € [a, b] be such that

f(%) =y and f(x) = y for every k.

Then f~!(7) =% and f~!(yi) = x; for every k. Suppose by contradiction that {x;} does not converge
to X. Then there exist & > 0 and a subsequence {xi, } of {x;} such that

|xx, —X| > & for every £. (3.7

Since the sequence {xy, } is bounded, it has a further subsequence that converges to xo € [a,b]. To
simplify the notation, we will again call the new subsequence {x;, }. Taking limits in (3.7), we get

Ixo — X| > € > 0. (3.8)

On the other hand, by the continuity of f, {f(xy,)} converges to f(xo). Since f(xy,) =y, — y as
¢ — oo, it follows that f(xo) = y = f(¥). This implies xo = X, which contradicts (3.8). O

Remark 3.4.11 A similar result holds if the domain of f is the open interval (a,b) with some
additional considerations. If f: (a,b) — R is increasing and bounded, following the argument
in Theorem 3.2.4 we can show that both lim,_,,+ f(x) = ¢ and lim,_,,- f(x) = d exist in R (see
Exercise 3.2.10). Using the Intermediate Value Theorem we obtain that f((a,b)) = (¢,d). We can
now proceed as in the previous theorem to show that f has a continuous inverse from (c,d) to (a,b).

If : (a,b) — R is increasing, continuous, bounded below, but not bounded above, then lim,_ .+ f(x) =
¢ € R, but lim, .- f(x) = oo (again see Exercise 3.2.10). In this case we can show using the Inter-
mediate Value Theorem that f((a,b)) = (c¢,*) and we can proceed as above to prove that f has a
continuous inverse from (c, ) to (a,b).

The other possibilities lead to similar results.

A similar theorem can be proved for strictly decreasing functions.

Exercises

3.4.1 Let f: D — R be continuous at ¢ € D and let y € R. Suppose f(c) > y. Prove that there
exists & > 0 such that

f(x) > yforevery x € B(c;8)ND.

3.4.2 Let f,g be continuous functions on [a,b]. Suppose f(a) < g(a) and f(b) > g(b). Prove that
there exists xo € (a,b) such that f(xo) = g(xo).

3.4.3 Prove that the equation cosx = x has at least on solution in R. (Assume known that the
function cosx is continuous.)

3.4.4 Prove that the equation x> —2 = cos(x+ 1) has at least two real solutions. (Assume known
that the function cosx is continuous.)

3.4.5 Let f: [a,b] — [a,b] be a continuous function.
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(a) Prove that the equation f(x) = x has a solution on [a,b].
(b) Suppose further that

[f () = fO)| < |x—ylforall x,y € [a,b],x # y.

Prove that the equation f(x) = x has a unique solution on [a, b].

3.4.6 > Let f be a continuous function on [a,b] and x1,x7,...,x, € [a,b]. Prove that there exists
¢ € [a,b] with
Sx1)+f(x)+- fxn
oy = L)) )

3.4.7 > Suppose f is a continuous function on R such that
|f(x)| < |x| for all x # 0.

(a) Prove that f(0) = 0.
(b) Given two positive numbers a and b with a < b, prove that there exists ¢ € [0, 1) such that

|f(x)| < £|x| for all x € [a,b].
3.4.8 » Let f,g: [0,1] — [0, 1] be continuous functions such that

f(g(x)) = g(f(x)) for all x € [0,1].

Suppose further that f is monotone. Prove that there exists xo € [0, 1] such that

f(x0) = g(x0) = xo.

3.5 UNIFORM CONTINUITY

We discuss here a stronger notion of continuity.

Definition 3.5.1 Let D be a nonempty subset of R. A function f: D — R is called uniformly
continuous on D if for any € > 0, there exists 6 > 0 such that if u,v € D and |u —v| < 8, then

[f(u) = fv)] <e.
m Example 3.5.1 Any constant function f: D — R, is uniformly continuous on its domain. Indeed,
given € > 0, |f(u) — f(v)| = 0 < € for all u,v € D regardless of the choice of J.
The following result is straightforward from the definition.
Theorem 3.5.1 If f: D — R is uniformly continuous on D, then f is continuous at every point
xo € D.

» Example 3.5.2 Let f: R — R be given by f(x) = 7x —2. We will show that f is uniformly
continuous on R.
Let € > 0 and choose 6 = £/7. Then, if u,v € R and |u — v| < §, we have

lf(u)—fW)|=1Tu=2—(Tv=2)|=|Tu—v)|=Tu—v| <78 =¢.
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= Example 3.5.3 Let f: [3,2] — R be given by f(x) = x%. This function is uniformly continuous
on [—3,2].

Let € > 0. First observe that for u,v € [—3,2] we have |u+v| < |u|+|v| < 6. Now set § = £/6.
Then, for u,v € [—3,2] satisfying |u —v| < §, we have

1F(u) = f)| = |u? =V | = [u—v||u+v| < 6lu—v| <65 =¢.

» Example 3.5.4 Let f: R — R be given by f(x) =
continuous on RR.
Let € > 0. We observe first that

. We will show that f is uniformly

N i O 17 Gl O e e O N | 7 B U e (71 3 1)
w+1 v+t | @+ D02+ | @D D) T @@+ 1) +1)
lu—v|(?+1)+(?+1)) 1 1
< |u-— - 4+ — ) <2u—
- (W +1)(»+1) < Ju=v] v2+1+u2+1 < 2fu—vl;

(where we used that |x| < x> + 1 for all x € R, which can be easily seen by considering separately
the cases |x| < 1 and |x| > 1).
Now, set 6 = £/2. In view of the previous calculation, given u,v € R satisfying |u —v| < d we

have

u? v?

|f(u) = f(v)| = 21 21l

Definition 3.5.2 (Holder continuity). Let D be a nonempty subset of R. A function f: D — R is
said to be Holder continuous if there are constants ¢ > 0 and o > 0 such that

<2Ju—v| <20 =¢.

|f(u) — f(v)| < llu—v|* for every u,v € D.

The number « is called the Holder exponent of the function. If o = 1, then the function f is called
Lipschitz continuous.

Theorem 3.5.2 If a function f: D — R is Holder continuous, then it is uniformly continuous.

Proof: Since f is Holder continuous, there are constants £ > 0 and & > 0 such that
|f(u) — f(v)] < llu—v|* for every u,v € D.

If £ =0, then f is constant and, thus, uniformly continuous. Suppose next that £ > 0. For any
£€>0,1et 6 = (%)l/a. Then, whenever u,v € D, with |u —v| < § we have

) = )] < lu—v]® < 5% = e,
The proof is now complete. [

m Example 3.5.5 (1) Let D = [a,), where a > 0. Then the function f(x) = /x is Lipschitz
continuous on D and, hence, uniformly continuous on this set. Indeed, for any u,v € D, we

have
u—v|

1
\f(u)—f(v)!:!\/ﬁ—\ﬁ!:\/;Hrﬁﬁz\/&\u—%

which shows f is Lipschitz with £ = 1/(2+/a).
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Figure 3.4: The square root function.

(2) Let D =[0,0). Then f is not Lipschitz continuous on D, but it is Holder continuous on D and,

hence, f is also uniformly continuous on this set.

Indeed, suppose by contradiction that f is Lipschitz continuous on D. Then there exists a
constant £ > 0 such that

|f(u) — f(V)| = |V/u—+/v| < l|lu—v| for every u,v € D.

Thus, for every n € N, we have

R RCEF

_0’

This implies
Vn<{lorn</(*foreveryneN.

This is a contradiction. Therefore, f is not Lipschitz continuous on D.

Let us show that f is Holder continuous on D. We are going to prove that
1f(u) — f(V)| < |u—v|'/? for every u,v € D. (3.9)
The inequality in (3.9) holds obviously for u = v = 0. For u > 0 or v > 0, we have

() = fW) = V=]

u—vy

— v\u
=V

Note that one can justify the inequality
VIl _
Vit

by squaring both sides since they are both positive. Thus, (3.9) is satisfied.
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While every uniformly continuous function on a set D is also continuous at each point of D, the
converse is not true in general. The following example illustrates this point.

= Example 3.5.6 Let f: (0,1) — R be given by

Figure 3.5: Continuous but not uniformly continuous on (0, o).

We already know that this function is continuous at every x € (0, 1). We will show that f is not
uniformly continuous on (0, 1). Let € =2 and 6 > 0. Set &) = min{d/2,1/4}, x = &, and y = 2.
Then x,y € (0,1) and |x —y| = & < 8, but

_| %
257

y—x

70)— 10| = .

Xy

1 1‘_

This shows f is not uniformly continuous on (0, 1).

The following theorem offers a sequential characterization of uniform continuity analogous to
that in Theorem 3.3.3.

Theorem 3.5.3 Let D be a nonempty subset of R and f: D — R. Then f is uniformly continuous
on D if and only if the following condition holds
(C) for every two sequences {u,}, {v,} in D such that lim, . (u, — v,) = 0, it follows that

limy, o0 (f (un) = f (V) = 0.

Proof: Suppose first that f is uniformly continuous and let {u,}, {v,} be sequences in D
such that lim,,_,e (1, —v,) = 0. Let € > 0. Choose 6 > 0 such that |f(u) — f(v)| < € whenever
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u,v € D and |u—v| < 8. Let N € N be such that |u, — v,| < 6 for n > N. For such n, we have
|f () — f(vn)| < €. This shows limy,_eo(f (1) — f(v)) = 0.

To prove the converse, assume condition (C) holds and suppose, by way of contradiction, that f
is not uniformly continuous. Then there exists & > 0 such that for any o > 0, there exist u,v € D
with

lu—v| < dand|f(u)— f(v)| > €.
Thus, for every n € N, there exist u,,v, € D with

|t —vn| < 1/nand |f(un) — f(va)| = €.

It follows that for such sequences, lim,,_,o (1, — v, ) = 0, but { f(u,) — f(v,)} does not converge to
zero, which contradicts the assumption. [

m Example 3.5.7 Using this theorem, we can give an easier proof that the function in Example 3.5.6
is not uniformly continuous. Consider the two sequences u, = 1/(n+1) and v, = 1/n for all n > 2.
Then clearly, lim,_,o (1, — v,) = 0, but

lim (f(1) — £(v,) = lim (1/(11)1},) — lim (n+1—n) = 1 0.

The following theorem shows one important case in which continuity implies uniform continuity.

Theorem 3.5.4 Let f: D — R be a continuous function. Suppose D is compact. Then f is uniformly
continuous on D.
Proof: Suppose by contradiction that f is not uniformly continuous on D. Then there exists & > 0
such that for any § > 0, there exist u,v € D with

lu—v| < dand|f(u)—f(v)| > .

Thus, for every n € N, there exist u,, v, € D with
|tp —va| < 1/nand [f(un) — f(va)| = €.
Since D is compact, there exist uyp € D and a subsequence {u,, } of {u,} such that
Uy, — Uy aS k — oo,

Then |
unk - Vnk| S ;k7

for all £ and, hence, we also have
Vi, — Uy as k — oo,

By the continuity of f,
S () = f(uo) and f(vn,) = f(uo).-

Therefore, {f(un,) — f(vs,)} converges to zero, which is a contradiction. The proof is now com-
plete. [
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We now prove a result that characterizes uniform continuity on open bounded intervals. We
first make the observation that if f: D — R is uniformly continuous on D and A C D, then f is
uniformly continuous on A. More precisely, the restriction fj, : A — R is uniformly continuous on A
(see Section 1.2 for the notation). This follows by noting that if |f(u) — f(v)| < € whenever u,v € D
with |u —v| < 0, then we also have |f(u) — f(v)| < € when we restrict u,v to be in A.

Theorem 3.5.5 Let a,b € Rand a < b. A function f: (a,b) — R is uniformly continuous if and
only if f can be extended to a continuous function f: [a,b] — R (that is, there is a continuous
function f: [a,h] — R such that f = fl(a,b))'

Proof: Suppose first that theNre exists a continuous function f: [a,b] — R such that f = f| (ab)- BY
Theorem 3.5.4, the function f is uniformly continuous on |a, b]. Therefore, it follows from our early
observation that f is uniformly continuous on (a,b).

For the converse, suppose f: (a,b) — R is uniformly continuous. We will show first that
lim, .+ f(x) exists. Note that the one sided limit corresponds to the limit in Theorem 3.2.2. We will
check that the -6 condition of Theorem 3.2.2 holds.

Let € > 0. Choose & > 0 so that |f(u) — f(v)| < € whenever u,v € (a,b) and |u—v| < d. Set
0 = /2. Then, if u,v € (a,b), |u—a| < 8, and |[v—a| < & we have

u—v|<|u—a|+la—v|<d+6=0

and, hence, |f(u) — f(v)| < €. We can now invoke Theorem 3.2.2 to conclude lim,_,,+ f(x) exists.
In a similar way we can show that lim,_,,~ f(x) exists. Now define, f: [a,b] — R by

f(x), ifx € (a,b);
fx) = lim .+ f(x), ifx=a;
lim, ,,- f(x), ifx=0>.

By its definition f](a’b) = f and, so, f is continuous at every x € (a,b). Moreover, lim,_,,+ f(x) =

lim, .+ f(x) = f(a) and lim,_,j,- f(x) = lim,_,,- f(x) = f(b), so f is also continuous at a and b by
Theorem 3.3.2. Thus £ is the desired continuous extension of f. [J

Exercises

3.5.1 Prove that each of the following functions is uniformly continuous on the given domain:

(@) f(x)=ax+b,a,beR,onR.
(b) f(x) =1/xon [a,eo), where a > 0.

3.5.2 » Prove that each of the following functions is not uniformly continuous on the given domain:
(a) f(x)=x*>onR.
(b) f(x)= sin% on (0,1).
(¢) f(x) =In(x) on (0,e0).

3.5.3 Determine which of the following functions are uniformly continuous on the given domains.
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(@ f(x)=xsin(1) on (0,1).

0) /() = on[0,20)
© f(x)= 1" (0,1).
@ f6) = 75 on (0.1)

3.5.4 Let D C R and k € R. Prove that if f,g: D — R are uniformly continuous on D, then f+ g
and kf are uniformly continuous on D.

3.5.5 Give an example of a subset D of R and uniformly continuous functions f,g: D — R such
that fg is not uniformly conitnuous on D.

3.5.6 Let D be a nonempty subset of R and let f: D — R. Suppose that f is uniformly continuous
on D. Prove that if {x,} is a Cauchy sequence with x,, € D for every n € N, then { f(x,)} is also a
Cauchy sequence.

3.5.7 > Leta,b € Randlet f: (a,b) = R.

(a) Prove that if f is uniformly continuous, then f is bounded.
(b) Prove that if f is continuous, bounded, and monotone, then it is uniformly continuous.

3.5.8 > Let f be a continuous function on [a,0). Suppose

lim f(x) =c.

X—oo

(a) Prove that f is bounded on [a, o).
(b) Prove that f is uniformly continuous on [a, ).
(c) Suppose further that ¢ > f(a). Prove that there exists xo € [a,0) such that

fxo) = inf{f(x) : x € [a,%0)}.

LIMIT SUPERIOR AND LIMIT INFERIOR OF FUNCTIONS

We extend to functions the concepts of limit superior and limit inferior.

Definition 3.6.1 Let f: E — R and let x be a limit point of D. Recall that
By(%;0) =B_(x;0)UBL(x;6) = (Xx— 8,X) U (X, X+ 9).
The [limit superior of the function f at X is defined by

limsup f(x) = inf  sup  f(x).
X% 6>04eBy(%.6)ND

Similarly, the limit inferior of the function f at X is defined by

liminf = inf .
P
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Consider the extended real-valued function g: (0,00) — (—oo,00] defined by

g(6)= sup f(x). (3.10)

xEBo(%:8)ND

It is clear that g is increasing and

limsup f(x) = ég{)g(S).

X—X

We say that the function f is locally bounded above around % if there exists § > 0 and M > 0 such
that

f(x) <M forall x € B(x;0)ND.

Clearly, if f is locally bounded above around &, then limsup,_,; f(x) is a real number, while
limsup,_, f(x) = oo in the other case. Similar discussion applies for the limit inferior.

Theorem 3.6.1 Let f: D — R and let x be a limit point of D. Then ¢ = limsup,_, f(x) if and only
if the following two conditions hold:

(1) For every € > 0, there exists § > 0 such that

f(x) < £+¢forall x € By(x;8)ND;
(2) For every € > 0 and for every 8 > 0, there exists x5 € By(¥;6) N D such that
l—¢e < f(xs).
Proof: Suppose ¢ = limsup,_,; f(x). Then

£ = inf g(§),
égog()

where g is defined in (3.10). For any € > 0, there exists 0 > 0 such that

<g(6)= sup f(x)<l+e.
xEBy(%:8)ND

Thus,
f(x) <f+eforallx € By(x;0)ND,
which proves condition (1). Next note that for any € > 0 and 0 > 0, we have

l—e<l<g(8)= sup f(x).
XEBy(%;6)ND

Thus, there exists xg € By(X; 6) N D with
l—e< f(X5).

This proves (2).
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Let us now prove the converse. Suppose (1) and (2) are satisfied. Fix any € > 0 and let § > 0
satisfy (1). Then

(@)= sp f)<lie
XEBy(X;,0)ND

This implies

limsup f(x) = grii(’)g(S) </l+e.

X—X

Since € is arbitrary, we get

limsup f(x) < £.

X—X

Again, let € > 0. Given 0 > 0, let x5 be as in (2). Therefore,

(—e<fls)< sup  f(x)=g(d).

XEBy (.f;5)ﬂD
This implies

¢—¢ < inf g(8) = limsup f(x).
6>0

X—X

It follows that ¢ < limsup,_,; f(x). Therefore, ¢ = limsup,_,; f(x). O

Corollary 3.6.2 Suppose ¢ = limsup,_,; f(x). Then there exists a sequence {x;} in D such that
{xx} converges to %, x; # X for every k, and

lim f(x;) = £.
k—yoo

Moreover, if {y;} is a sequence in D that converges to X, y; # X for every k, and limy_,o f (yx) = ¢,
then ¢/ < ¢.

1
Proof: For each k € N, take &, = T By (1) of Theorem 3.6.1, there exists & > 0 such that
f(x) < £+ g for all x € By(x; &) ND. 3.11)

Let 6, = min{J, %} Then §; < & and limy_,, 6 = 0. From (2) of Theorem 3.6.1, there exists
xx € Bo(%; 8,) N D such that

=& < fx).

Moreover, f(x;) < £+ & by (3.11). Therefore, {x;} is a sequence that satisfies the conclusion of the
corollary.

Now let {y;} be a sequence in D that converges to X, y; # & for every k, and limy_,., f(yx) = '
For any € > 0, let 8 > 0 be as in (1) of Theorem 3.6.1. Since y € Bo(¥; ) N D when k is sufficiently
large, we have

fu) <l+e

for such k. This implies ¢/ < ¢+ €. It follows that ¢’ < ¢. (J
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Remark 3.6.3 Let f: D — R and let & be a limit point of D. Suppose limsup,_,; f(x) is a real
number. Define

A={leR:Hx} CD,x; #x forevery k,x, — X, f(xx) — £}.
Then the previous corollary shows that A # @ and limsup,_; f(x) = maxA.
Theorem 3.6.4 Let f: D — R and let X be a limit point of D. Then

limsup f(x) = e

X—X

if and only if there exists a sequence {x; } in D such that {x;} converges to &, x; # X for every k, and
limy o0 f(x5) = o0.

Proof: Suppose limsup,_,; f(x) = co. Then

inf g(8) = o
égog() ,

where g is the extended real-valued function defined in (3.10). Thus, g(J) = oo for every 6 > 0.

1
Given k € N, for & = o since

8(8) = sup  f(x)=ee,

XEBy(%;0,)ND

there exists x; € Bo(X; 8 ) N D such that f(x;) > k. Therefore, limy_,o f(x;) = co.
Let us prove the converse. Since limy_,. f(x;) = oo, for every M € R, there exists K € N such
that

f(xx) > M for every k > K.
For any 6 > 0, we have
Xk € Bo(x;0)ND
whenever k is sufficiently large. Thus,

g(0)= sup f(x)>M.
XEBy(%:8)ND

This implies g(8) = oo, and hence limsup, _,; f(x) = eo. [J
Theorem 3.6.5 Let f: D — R and let X be a limit point of D. Then

limsup f(x) = —oo

X—X

if and only if for any sequence {x;} in D such that {x; } converges to &, x; # & for every k, it follows
that limy_,. f(xx) = —eo. The latter is equivalent to lim,_,z f(x) = —oo.

Following the same arguments, we can prove similar results for inferior limits of functions.
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Theorem 3.6.6 Let f: D — R and let X be a limit point of D. Then ¢ = liminf,_,z f(x) if and only
if the following two conditions hold:

(1) Forevery € > 0, there exists 6 > 0 such that
¢ —¢€ < f(x) forall x € By(x;0) N D;
(2) For every € > 0 and for every 0 > 0, there exists x € By(x;8) N D such that

flx) <l+e.

Corollary 3.6.7 Suppose ¢ = liminf,_,z f(x). Then there exists a sequence {x;} in D such that x;
converges to X, x; # x for every k, and

lim f(x;) = .

k—ro0
Moreover, if {y;} is a sequence in D that converges to X, y; #  for every k, and limy_,o. f(yr) = ¢/,
then ¢/ > /.

Remark 3.6.8 Let f: D — R and let X be a limit point of D. Suppose liminf,_,z f(x) is a real
number. Define

B={leR:3Hx} CD,x; # x for every k,x; — X, f(xx) — (}.
Then B # 0 and liminf, 5 f(x) = minB.
Theorem 3.6.9 Let f: D — R and let X be a limit point of D. Then

liminf f(x) = —oo

X—X

if and only if there exists a sequence {x; } in D such that {x; } converges to &, x; # X for every k, and
limk_>.>o f(xk) — —O0o,

Theorem 3.6.10 Let f: D — R and let ¥ be a limit point of D. Then

liminf f(x) = oo

X—X

if and only if for any sequence {x;} in D such that {x;} converges to &, x; # & for every k, it follows
that limy_,. f(xx) = oo. The latter is equivalent to lim,_,z f(x) = oo.

Theorem 3.6.11 Let f: D — R and let X be a limit point of D. Then

lim £ (x) = ¢

X—X

if and only if

limsup f(x) = liminf f(x) = ¢.
X—X

X—X
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Proof: Suppose
lim f(x) = £.

X%
Then for every € > 0, there exists 6 > 0 such that
{—e < f(x) <l+eforall x € By(x;0)ND.
Since this also holds for every 0 < 8’ < &, we get
l—e<g(d)<l+e.
It follows that
(—e< (sigfog(é’) </l+e.

Therefore, limsup,_,; f(x) = ¢ since € is arbitrary. The proof for the limit inferior is similar. The
converse follows directly from (1) of Theorem 3.6.1 and Theorem 3.6.6. [

Exercises
3.6.1 LetDCR, f: D— R, and X be a limit point of D. Prove that liminf,_,z f(x) <limsup,_,; f(x).

3.6.2 Find each of the following limits:

1
(a) limsup,_,;sin <>
x

1
(b) liminf, ,¢sin <) .
X

_ cosx
(c) limsup,_,p —.
x

() liminf, o >%
X

LOWER SEMICONTINUITY AND UPPER SEMICONTINUITY

The concept of semicontinuity is convenient for the study of maxima and minima of some
discontinuous functions.

Definition 3.7.1 Let f: D — R and let ¥ € D. We say that f is lower semicontinuous (1.s.c.) at X if
for every € > 0, there exists & > 0 such that

f(x)—€e < f(x) forall x € B(x;0) N D. (3.12)

Similarly, we say that f is upper semicontinuous (u.s.c.) at X if for every € > 0, there exists d > 0
such that

f(x) < f(x)+eforallx € B(x;0)ND.

It is clear that f is continuous at X if and only if f is lower semicontinuous and upper semicontin-
uous at this point.



95

Figure 3.6: Lower semicontinuity.

Figure 3.7: Upper semicontinuity.

Theorem 3.7.1 Let f: D — R and let X € D be a limit point of D. Then f is lower semicontinuous
at x if and only if

liminf £ (x) > f(%).
X—X
Similarly, f is upper semicontinuous at X if and only if

limsup f(x) < (7).

X—X

Proof: Suppose f is lower semicontinuous at X. Let € > 0. Then there exists & > 0 such that
f(X)—€ < f(x) forall x € B(x;8) N D.

This implies
f(%) =& < h(&),

where

= inf .
h(é) xeBol(gc'l;S)ﬂDf(X)

Thus,

liminf f(x) = suph(8) > h(&) > f(x) — &.
X—X 6>O



96 3.7 LOWER SEMICONTINUITY AND UPPER SEMICONTINUITY

Since ¢ is arbitrary, we obtain liminf,_,z f(x) > f(X).
We now prove the converse. Suppose

liminf f(x) = suph(0) > f(X)

X—X §>0

and let € > 0. Since

suph(6) > f(x) —¢,
6>0

there exists § > 0 such that 4(8) > f(x) — €. This implies
f(x) > f(x) —eforallx € By(x;0) N D.

Since this is also true for x = X, the function f is lower semicontinuous at x.
The proof for the upper semicontinuous case is similar. []

Theorem 3.7.2 Let f: D — R and let x € D. Then f is l.s.c. at X if and only if for every sequence
{x¢} in D that converges to ¥,

liminf f(x;) > f(X).
k—ro0
Similarly, f is u.s.c. at ¥ if and only if for every sequence {x;} in D that converges to ¥,

limsup £ (x;) < f(%).

k—+oo

Proof: Suppose f is l.s.c. at ¥. Then for any € > 0, there exists & > 0 such that (3.12) holds. Since
{xx} converges to X, we have x; € B(X; 8) when & is sufficiently large. Thus,

J(X)—& < flx)
for such k. It follows that f(X) — & < liminfy_,.. f(xx). Since € is arbitrary, it follows that f(x) <
liminfy e f(x%).
We now prove the converse. Suppose liminf_,.. f(x;) > f(¥) and assume, by way of contra-

diction, that f is not l.s.c. at X. Then there exists € > 0 such that for every 8 > 0, there exists
xs € B(x;0) N D with

f(®)— &> flxs).

Applying this for & = % we obtain a sequence {x;} in D that converges to X with
f(x)—& > f(x) for every k.

This implies
£(0) £ > limint (3.

This is a contradiction. [
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Definition 3.7.2 Let f: D — R. We say that f is lower semicontinuous on D (or lower semicontinu-
ous if no confusion occurs) if it is lower semicontinuous at every point of D.

Theorem 3.7.3 Suppose D is a compact set of R and f: D — R is lower semicontinuous. Then f
has an absolute minimum on D. That means there exists X € D such that

f(x) > f(x) for all x € D.

Proof: We first prove that f is bounded below. Suppose by contradiction that for every k € N, there
exists x; € D such that

fxe) < —k.

Since D is compact, there exists a subsequence {xy, } of {x;} that converges to xo € D. Since f is
Ls.c., by Theorem 3.7.2

liminf f(xx,) > f(xo).
{—so0 )
This is a contraction because liminf;_,., f(xg,) = —oo. This shows f is bounded below. Define

y=inf{f(x): x € D}.

Since the set { f(x) : x € D} is nonempty and bounded below, y € R.
Let {u;} be a sequence in D such that { f(ux)} converges to y. By the compactness of D, the
sequence {u} has a convergent subsequence {uy, } that converges to some X € D. Then

Y= lim f(u,) = liminf f(ug,) > £(7) > .
{—so0 f—so0
This implies ¥ = f(X) and, hence,
f(x) > f(x) forall x € D.

The proof is now complete. [

The following theorem is proved similarly.

Theorem 3.7.4 Suppose D is a compact subset of R and f: D — R is upper semicontinuous. Then
f has an absolute maximum on D. That is, there exists X € D such that

£(x) < f(&) forall x € D.
For every a € R, define
Zu(f) ={xeD: f(x) <a}
and
Ua(f) ={x€D: f(x) > a}.

Theorem 3.7.5 Let f: D — R. Then f is lower semicontinuous if and only if .Z,(f) is closed in D
for every a € R. Similarly, f is upper semicontinuous if and only if %,(f) is closed in D for every
acR.
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Proof: Suppose f is lower semicontinuous. Using Corollary 2.6.10, we will prove that for every
sequence {x;} in .Z,(f) that converges to a point X € D, we get X € .Z,(f). For every k, since
X € Za(f), f(x) < a.

Since f is lower semicontinuous at X,
f(5) <liminf (%) <a
—»00

Thus, ¥ € Z,(f). It follows that .Z,(f) is closed.
We now prove the converse. Fix any X € D and € > 0. Then the set

G={xeD: f(x)> f(X)— €} =D\ Lyzr—e()

is open in D and ¥ € G. Thus, there exists 6 > 0 such that
B(x;0)ND CG.

It follows that
f(x)—€e < f(x) forall x € B(x;6) N D.

Therefore, f is lower semicontinuous. The proof for the upper semicontinuous case is similar. []

For every a € R, we also define

L,(f)={xeD: f(x) <a}

and

Us(f) ={xeD: f(x) > a}.

Corollary 3.7.6 Let f: D — R. Then f is lower semicontinuous if and only if U,(f) is open in D
for every a € R. Similarly, f is upper semicontinuous if and only if L,(f) is open in D for every
acR.

Theorem 3.7.7 Let f: D — R. Then f is continuous if and only if for every a,b € R with a < b,
the set

Oup={xeD:a< f(x) <b} = {~((a.,b)

is an open set in D.

Proof: Suppose f is continuous. Then f is lower semicontinuous and upper semicontinuos. Fix
a,b € R with a < b. Then

Oup=Lp,NU,.

By Theorem 3.7.6, the set O, , is open since it is the intersection of two open sets L, and U,.
Let us prove the converse. We will only show that f is lower semicontinuous since the proof of
upper semicontinuity is similar. For every a € R, we have

Usf)=4{xeD: f(x) >a} = UneNf*I((a,a—i-n))

Thus, U, (f) is open in D as it is a union of open sets in D. Therefore, f is lower semicontinuous by
Corollary 3.7.6. 1
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Exercises
3.7.1 Let f be the function given by

X%, if x#£0;
x pry
U {—1, if x=0.

Prove that f is lower semicontinuous.
3.7.2 Let f be the function given by
x2, if x #0;
fx) = :
1, if x=0.
Prove that f is upper semicontinuous.

3.7.3 Let f,g: D — R be lower semicontinuous functions and let k > 0 be a constant. Prove that
f+gand kf are lower semicontinous functions on D.

3.7.4 » Let f: R — R be a lower semicontinuous function such that

lim f(x) = lim f(x) = oo.

X—ro0 X—>—00

Prove that f has an absolute minimum at some xg € R.






4.1

DEFINITION AND BASIC PROPERTIES OF THE DERIVA-
TIVE

THE MEAN VALUE THEOREM

SOME APPLICATIONS OF THE MEAN VALUE THEOREM
L’HOSPITAL’S RULE

TAYLOR’S THEOREM

CONVEX FUNCTIONS AND DERIVATIVES
NONDIFFERENTIABLE CONVEX FUNCTIONS AND SUBD-
IFFERENTIALS

4. DIFFERENTIATION

In this chapter, we discuss basic properties of the derivative of a function and several major
theorems, including the Mean Value Theorem and I’Hopital’s Rule.

DEFINITION AND BASIC PROPERTIES OF THE DERIVATIVE
Let G be an open subset of R and consider a function f: G — R. For every a € G, the function

_ f0)—fla)

X—a

Pa(x)

is defined on G \ {a}. Since G is an open set, a is a limit point of G \ {a} (see Example 2.6.6). Thus,
it is possible to discuss the limit

lim ¢, (x) = lim fx) = fa)

x—a x—a xX—a

Definition 4.1.1 Let G be an open subset of R and let a € G. We say that the function f defined on
G is differentiable at a if the limit

i £ =1(@

x—a xX—a

exists (as a real number). In this case, the limit is called the derivative of f at a denoted by f'(a),
and f is said to be differentiable at a. Thus, if f is differentiable at a, then

@) i T = @)

x—a XxX—a

We say that f is differentiable on G if f is differentiable at every point a € G. In this case, the
function f": G — R is called the derivative of f on G.
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mn Example 4.1.1  (a) Let f: R — R be given by f(x) = x and let a € R. Then

o 0@ | xma

x—a xX—a xsax—a x—a

It follows that f is differentiable at @ and f'(a) = 1.
(b) Let f: R — R be given by f(x) = x* and let a € R. Then
f(x)—fla) . x¥*—d®> . (x—a)(x+a)

lim = lim = lim = lim (x+a) = 2a.
x—a xX—a x—=a x—a x—a X—a x—=a

Thus, f is differentiable at every a € R and f’(a) = 2a.
(c) Let f: R — Rbe given by f(x) = |x| and let a = 0. Then

—f(0
fim 7 =FO) o W Yo
x— 0F x—0 x— 0t X x— 0T X
and 0
tim LSO M =
=0  x—0 =0 X x—=0" X
Therefore, lim,_, ¢ W does not exist and, hence, f is not differentiable at 0.

Theorem 4.1.1 Let G be an open subset of R and let f be defined on G. If f is differentiable at
a € G, then f is continuous at this point.

Proof: We have the following identity for x € G\ {a}:

£ = )~ f(a) + (@)
)

X —

Thus,

lim £(x) = lim | £ =/(@)

x—a x—a xXxX—a

(x—a)+f(a)| = f(a)-0+ f(a) = f(a).
Therefore, f is continuous at @ by Theorem 3.3.2. [

Remark 4.1.2 The converse of Theorem 4.1.1 is not true. For instance, the absolute value function
f(x) = |x| is continuous at 0, but it is not differentiable at this point (as shown in the example above).

Theorem 4.1.3 Let G be an open subset of R and let f,g: G — R. Suppose both f and g are
differentiable at a € G. Then the following hold.

(a) The function f -+ g is differentiable at a and
(f+g)(a) = f(a)+¢'(a)
(b) For a constant ¢, the function cf is differentiable at @ and

(cf)(a) =cf'(a).
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(c) The function fg is differentiable at @ and
(f8)'(a) = f'(a)g(a) + f(a)g'(a).

(d) Suppose additionally that g(a) # 0. Then the function ! is differentiable at @ and
8

L P - f@)g @)
<g) @=""@r

Proof: The proofs of (a) and (b) are straightforward and we leave them as exercises. Let us prove (c).
For every x € G\ {a}, we can write

(f8)(x) — (f8)(a) _ f(x)g(x) — fla)g(x) + f(a)g(x) — f(a)g(a)

X—a X—a

X—a X—a

By Theorem 4.1.1, the function g is continuous at a and, hence,

lim g(x) = g(a). 4.1)

xX—a

Thus,

lim = f'(a)g(a) + f(a)g'(a).

This implies (c).
Next we show (d). Since g(a) # 0, by (4.1), there exists an open interval / containing a such that

g(x)#AOforallxel. Leth= f Then £ is defined on 1. Moreover,
8

M —h@) _ 5~ T
)~ f@)+ e (3(a) - g(x))
e slay LI ) 808

Taking the limit as x — a, we obtain (d). The proof is now complete. []

= Example 4.1.2 Let f: R — R be given by f(x) = x> and let a € R. Using Example 4.1.1(a)
and Theorem 4.1.3(c) we can provide an alternative derivation of a formula for f'(a). Indeed, let
g: R — Rbe given by g(x) =x. Then f =g-g so

f'(a) = (g8)'(a) = g'(a)g(a) +gla)g'(a) = 2¢'(a)g(a) = 2a.

Proceeding by induction, we can obtain the derivative of g: R — R given by g(x) = x" forn € N as
g(a)= nx"~!. Furthermore, using this and Theorem 4.1.3(a)(b) we obtain the familiar formula for
the derivative of a polynomial p(x) = a,x" +--- +aix+ag as p'(x) = na,x" ' 4 --- +2arx +aj.
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The following lemma is very convenient for studying the differentiability of the composition of
functions.

Lemma 4.1.4 Let G be an open subset of R and let f: G — R. Suppose f is differentiable at a.
Then there exists a function #: G — R satisfying

f(x)—f(a) =[f"(a) +u(x)](x—a) forallx € G
and lim,_,, u(x) = 0.

Proof: Define

—f'(a), xe€G\{a}
0, x=a.

Since f is differentiable at a, we have

limu(x) = lim M

x—a x—a X —

—f'(a) = f'(a) = f'(a) = 0.

Therefore, the function u satisfies the conditions of the lemma. [J

Theorem 4.1.5 — Chain rule. Let f: G; — R and let g: G, — R, where G and G, are two open
subsets of R with f(G;) C G,. Suppose f is differentiable at a and g is differentiable at f(a). Then
the function g o f is differentiable at a and

(80f)'(a) =& (f(a))f (a).
Proof: Since f is differentiable at @, by Lemma 4.1.4, there exists a function # defined on G; with
f(x)—f(a) = [f'(a) + u(x)](x —a) for all x € Gy,

and lim,_,, u(x) = 0.
Similarly, since g is differentiable at f(a), there exists a function v defined on G, with

g(t) —g(f(a)) = [g'(f(a)) +v(1)][t — f(a)] for all t € Gy, (4.2)

and lim,_, y(,) v(#) = 0.
Applying (4.2) for t = f(x), we have

8(f(x)) = g(f(a)) = [g'(f(a) +v(f(0)][f (x) = f(a)].

Thus,

g(f(x)) —g(f(a)) = [g'(f(a)) +v(f())][f'(a) + u(x)](x - a) for all x € G.
This implies

g(f(x) —g(f(a))

= [¢'(f(@)) +v(f(0))][f'(a) + u(x)] for all x € Gy \ {a}.

By the continuity of f at a and the property of v, we have lim,_,,v(f(x)) = 0 and, hence,

x—a xX—a
The proof is now complete. [

X—a
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= Example 4.1.3 Consider the function : R — R given by A(x) = (3x*4-x+7)'3. Since h(x) is a
polynomial we could in principle compute /’(x) by expanding the power and using Example 4.1.2.
However, Theorem 4.1.5 provides a shorter way. Define f,g: R — R by f(x) = 3x* +x+7 and
g(x) =x'5. Then h = go f. Given a € R, it follows from Theorem 4.1.5 that

(g0f)'(a) =g (f(a))f'(a) = 15(3a* +a+7)"*(124° + 1).

m Example 4.1.4 By iterating the Chain Rule, we can extended the result to the composition of
more than two functions in a straightforward way. For example, given functions f: G; — R,
g: G» — R, and h: G3 — R such that f(G;) C G2, g(Ga) C Gs, f is differentiable at a, g is
differentiable at f(a), and A is differentiable at g(f(a)), we obtain that ho g o f is differentiable at a
and (hogo f)'(a) =1 (g(f(a)))g'(f(a))f (a).

Definition 4.1.2 Let G be an open set and let f: G — R be a differentiable function. If the function
/' G — Ris also differentiable, we say that f is twice differentiable (on G). The second derivative
of f is denoted by f” or (). Thus, f” = (f'). Similarly, we say that f is three times differentiable
if ) is differentiable, and (f(?))’ is called the third derivative of f and is denoted by " or f©3.
We can define in this way n times differentiability and the nth derivative of f for any positive integer
n. As a convention, f ©) = f.

Definition 4.1.3 Let / be an open interval in R and let f: I — R. The function f is said to be
continuously differentiable if f is differentiable on I and f” is continuous on /. We denote by C!(I)
the set of all continuously differentiable functions on 1. If f is n times differentiable on / and the nth
derivative is continuous, then f is called n times continuously differentiable. We denote by C"(I) the
set of all n times continuously differentiable functions on /.

Exercises
4.1.1 Prove parts (a) and (b) of Theorem 4.1.3.

4.1.2 Compute the following derivatives directly from the definition. That is, do not use Theo-
rem 4.1.3, but rather compute the appropriate limit directly (see Example 4.1.1).

(a) f(x) =mx+b where m,b € R.
() f(x)= % (here assume x # 0).
(¢) f(x) =+/x (here assume x > 0)

4.13 Let f: R — R be given by

xz, ifx>0;
S = {0, if x<0.

(a) Prove that f is differentiable at 0. Find f/(x) for all x € R.
(b) Is f’ continuous? Is f’ differentiable?

4.1.4 Let

x%  ifx>0;
S = {0, if x<0.
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(a) Determine the values of o for which f is continuous on R.
(b) Determine the values of « for which f is differentiable on R. In this case, find f'.

4.1.5 Use Theorems 4.1.3 and 4.1.5 to compute the derivatives of the following functions at the
indicated points (see also Example 4.1.4). (Assume known that the function sinx is differentiable at
all points and that its derivative is cosx.)

3t 4 Tx
(a) f(x) = m ata=—1.

(b) f(x)=sin’(3x*+ Zx) ata =%
4.1.6 Determine the values of x at which each function is differentiable.

1
xsin—, ifx#£0;
X

(@) f(x)=
0, if x=0.
() f(x) = xzsini, if x £ 0;
0, ifx=0.

4.1.7 Determine if each of the following functions is differentiable at 0. Justify your answer.

{ﬁ, if x € Q;

® Flx) ¥, ifx¢Q.

(b) f£(x) = [x]sin®(x).

4.1.8 Let f,g be differentiable at a. Find the following limits:

(@) lim,_,

xf(@) —af(x)

f(x)g(a) — fla)gx)

(b) limy 4
X—a

4.1.9 Let G be an open subset of R and a € G. Prove that if f: G — R is Lipschitz continuous,
then g(x) = (f(x) — f(a))? is differentiable at a.

4.1.10 > Let f be differentiable at @ and f(a) > 0. Find the following limit:
l n
fim (1192
"\ @
2

1

x“sin—+cx, ifx#0;
X

0, if x=0,

4.1.11 » Consider the function

fx) =
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where 0 < ¢ < 1.

(a) Prove that the function is differentiable on R.
(b) Prove that for every a > 0, the function f’ changes its sign on (—a, o).

4.1.12 Let f be differentiable at xy € (a,b) and let ¢ be a constant. Prove that

(@) limyeon [f(x0+ %) — f(x0)] = f'(x0)-

f(xo+ch) — f(x0)
h

=cf'(x0).

(b) limy_
4.1.13 Let f be differentiable at xo € (a,b) and let ¢ be a constant. Find the limit

lim f(xo+ch) — f(xo—ch) _
h—0 h

4.1.14 Prove that f: R — R, given by f(x) = |x|?, is in C>(R) but not in C*(R) (refer to Defini-
tion 4.1.3). (Hint: the key issue is differentiability at 0.)

THE MEAN VALUE THEOREM

In this section, we focus on the Mean Value Theorem, one of the most important tools of calculus
and one of the most beautiful results of mathematical analysis. The Mean Value Theorem we study
in this section was stated by the French mathematician Augustin Louis Cauchy (1789-1857), which
follows from a simpler version called Rolle’s Theorem.

An important application of differentiation is solving optimization problems. A simple method
for identifying local extrema of a function was found by the French mathematician Pierre de Fermat
(1601-1665). Fermat’s method can also be used to prove Rolle’s Theorem.

We start with some basic definitions of minima and maxima. Recall that fora € R and 6 > 0,
the sets B(a; 6), B4 (a;8), and B_(a; 0) denote the intervals (a — 8,a+ 8), (a,a+ ) and (a— J,a),
respectively.

Definition 4.2.1 Let D be a nonempty subset of R and let f: D — R. We say that f has a local (or
relative) minimum at a € D if there exists § > 0 such that

f(x) > f(a) for all x € B(a;6) ND.
Similarly, we say that f has a local (or relative) maximum at a € D if there exists 6 > 0 such that
f(x) < f(a) forall x € B(a;0) ND.

In January 1638, Pierre de Fermat described his method for finding maxima and minima in a
letter written to Marin Mersenne (1588—-1648) who was considered as “the center of the world of
science and mathematics during the first half of the 1600s.” His method presented in the theorem
below is now known as Fermat’s Rule.

Theorem 4.2.1 — Fermat’s Rule. Let / be an open interval and f: I — R. If f has a local minimum
or maximum at a € I and f is differentiable at a, then f’(a) = 0.
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fb)y=0
b

~: “ fw-o

Figure 4.1: Illustration of Fermat’s Rule.

Proof: Suppose f has a local minimum at a. Then there exists 0 > 0 sufficiently small such that
f(x) > f(a) for all x € B(a;9).
Since B (a; 8) is a subset of B(a; §), we have

f(x) — fla)

X—a

>0 forall x € B (a;9).

Taking into account the differentiability of f at a yields

f0)—f@) _ 10— f(a)

! =1 > 0.
! (a) xlﬂnclz X—a x—at xX—a -
Similarly,

FO =1 6 o all x e B (a:).
X—a

It follows that

<0.

o) = i O =1 _ 109

x—a X—a x—a~ X—da

Therefore, f’(a) = 0. The proof is similar for the case where f has a local maximum at a. [J

Theorem 4.2.2 — Rolle’s Theorem. Let a,b € R with a < b and f: [a,b] — R. Suppose f is
continuous on [a,b] and differentiable on (a,b) with f(a) = f(b). Then there exists ¢ € (a,b) such
that

f(c)=0. 4.3)

Proof: Since f is continuous on the compact set [a, b], by the extreme value theorem (Theorem 3.4.2)
there exist ¥; € [a,b] and X, € [a,b] such that

f(x1) =min{f(x) : x € [a,b]} and f(X2) = max{f(x) : x € [a,D]}.
Then

f(x1) < f(x) < f(x,) for all x € [a,b]. (4.4)
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Figure 4.2: Illustration of Rolle’s Theorem.

If X; € (a,b) or %, € (a,b), then f has a local minimum at x; or f has a local maximum at ¥,. By
Theorem 4.2.1, f/(x;) =0 or f'(%) =0, and (4.3) holds with ¢ = X; or ¢ = X;.

If both ¥, and X, are the endpoints of [a,b], then f(X) = f(%2) because f(a) = f(b). By (4.4),
f is a constant function, so f’(¢) = 0 for any ¢ € (a,b). O

We are now ready to use Rolle’s Theorem to prove the Mean Value Theorem presented below.

Figure 4.3: Illustration of the Mean Value Theorem.

Theorem 4.2.3 — Mean Value Theorem. Let a,b € R with a < b and f: [a,b] — R. Suppose f
is continuous on [a, b] and differentiable on (a,b). Then there exists ¢ € (a,b) such that

1y f(b)—fla)
Proof: The linear function whose graph goes through (a, f(a)) and (b, f(b)) is
¢ =TT )i pia)

b—a
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Define
b) —

) = 1) () = 70— | LT 0y 4 fia)| forxefap].
Then h(a) = h(b), and h satisfies the assumptions of Theorem 4.2.2. Thus, there exists ¢ € (a,b)
such that #’(c) = 0. Since

W = - UM
it follows that

b) —
Fo- 101

Thus, (4.5) holds. [J

» Example 4.2.1 We show that |sinx| < |x| for all x € R.
Let f(x) = sinx for all x € R. Then f’(x) = cosx. Now, fix x € R, x > 0. By the Mean Value
Theorem applied to f on the interval [0, x], there exists ¢ € (0,x) such that

sinx —sin0
———— =cosc.
x—0
| sinx| . .
Therefore, ] = |cosc|. Since |cosc| < 1 we conclude |sinx| < |x| for all x > 0. Next suppose
X

x < 0. Another application of the Mean Value Theorem shows there exists ¢ € (x,0) such that

sin0 — sinx
———————— =cosc.
0—x
. |sinx| . , .
Then, again, ‘ =|cosc| < 1. It follows that |sinx| < |x| for x < 0. Since equality holds for
x

x =0, we conclude that |sinx| < |x| for all x € R.

» Example 4.2.2 We show that /1 +4x < (5+2x)/3 for all x > 2.
Let f(x) = +/1+4x for all x > 2. Then

4 2

P = A Vivae

Now, fix x € R such that x > 2. We apply the Mean Value Theorem to f on the interval [2,x]. Then,
since f(2) = 3, there exists ¢ € (2,x) such that

V1i+dx—3=f'(c)(x—2).
Since f(2) =2/3 and f'(c) < f'(2) for ¢ > 2 we conclude that
VIi+4x—-3 < %(x—2).

Rearranging terms provides the desired inequality.
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A more general result which follows directly from the Mean Value Theorem is known as Cauchy’s
Theorem.

Theorem 4.2.4 — Cauchy’s Theorem. Let a,b € R with a < b. Suppose f and g are continuous
on [a,b] and differentiable on (a,b). Then there exists ¢ € (a,b) such that

[f(b) = f(a)lg'(c) = [g(b) — g(a)]f'(c). (4.6)
Proof: Define

h(x) = [f(b) — f(a)]g(x) - [¢(b) — g(a) £ (x) for x € [a,b].
Then h(a) = f(b)g(a) — f(a)g(b) = h(D), and h satisfies the assumptions of Theorem 4.2.2. Thus,
there exists ¢ € (a,b) such that 4'(c¢) = 0. Since

) = L1(6) — @)lg () [¢(6) —gla)) '),
this implies (4.6). [J

The following theorem shows that the derivative of a differentiable function on [a, b] satisfies the
intermediate value property although the derivative function is not assumed to be continuous. To
give the theorem in its greatest generality, we introduce a couple of definitions.

Definition 4.2.2 Leta,b € R, a < b, and f: [a,b] — R. If the limit
o f0) = (@

x—at XxX—a

exists, we say that f has a right derivative at a and write

- 121
If the limit
i £ = F(8)
x—b~ x—>b

exists, we say that f has a left derivative at b and write

£.(b) = tim LSO

x—b~ x—>b

We will say that f is differentiable on [a, ] if f'(x) exists for each x € (a,b) and, in addition, both
fi(a) and f’ (b) exist.

Theorem 4.2.5 — Intermediate Value Theorem for Derivatives. Let a,b € R with a < b. Sup-
pose f is differentiable on [a,b] and

fila) <A <fL(b).

Then there exists ¢ € (a,b) such that

() = A.
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Figure 4.4: Right derivative.

Proof: Define the function g: [a,b] — R by
9(x) = £(x) — Ax.

Then g is differentiable on [a,b] and
¢i(a) <0< g (b).

Thus,

L gl —g(a)

x—at XxX—a

<0.

It follows that there exists 0; > 0 such that
g(x) < g(a) for all x € (a,a+ &) Nla,b].
Similarly, there exists &, > 0 such that
g(x) < g(b) forallx € (b—62,b)N[a,b].

Since g is continuous on [a,b], it attains its minimum at a point ¢ € [a,b]. From the observations
above, it follows that ¢ € (a,b). This implies g'(c) = 0 or, equivalently, that f'(c) = A. O

Remark 4.2.6 The same conclusion follows if f* (a) > A > f’ (b).
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Exercises
4.2.1 > Let f and g be differentiable at xo. Suppose f(xo) = g(xo) and

f(x) <g(x)forallx e R.

Prove that f'(xo) = g’ (xo)-

4.2.2 Prove the following inequalities using the Mean Value Theorem.

(@) V1i4+x< 1—|—%xf0rx>0.
(b) €* > 1+x, for x > 0. (Assume known that the derivative of e* is itself.)

—1
(©) i <Inx <x—1, for x > 1. (Assume known that the derivative of Inx is 1/x.)
X

4.2.3 » Prove that |sin(x) —sin(y)| < |x —y| for all x,y € R.

4.2.4 > Let n be a positive integer and let ai, by € R for k = 1,...,n. Prove that the equation

(agE

x+ ) (arsinkx+bicoskx) =0

k=1

has a solution on (—, 7).

4.2.5 > Let f and g be differentiable functions on [a,b]. Suppose g(x) # 0 and g'(x) # 0 for all
x € [a,b]. Prove that there exists ¢ € (a,b) such that

f(a) f(b)’ L | fle) glc)

1
g(b)—gla)| gla) gb) |~ g(c)| fi(c) &(c)

where the bars denote determinants of the two-by-two matrices.

I

4.2.6 >Let n be a fixed positive integer.
(a) Suppose ay,ay, ... ,a, satisfy

a a
a1+£+"~+l:0.

2 n
Prove that the equation

ar+ax+azx> +- a1 =0

has a solution in (0, 1).

(b) Suppose ag,ai,...,a, satisfy

n
y % _—o
A2k 1
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Prove that the equation

n
Y akcos(2k+1)x=0
k=0

has a solution on (0, 7).

4.2.7 Let f: [0,00) — R be a differentiable function. Prove that if both lim,_,. f(x) and lim, . f(x)
exist, then limy e f7(x) =0

4.2.8 > Let f: [0,0) — R be a differentiable function.

(a) Show that if lim,_,. f'(x) = a, then lim,_,c @ =a.
X

(b) Show that if limy e f’(x) = oo, then lim,_; ﬁ = oo,
x

(c) Are the converses in part (a) and part (b) true?

SOME APPLICATIONS OF THE MEAN VALUE THEOREM

In this section, we assume that a,b € R and a < b. In the proposition below, we show that it is
possible to use the derivative to determine whether a function is constant. The proof is based on the
Mean Value Theorem.

Proposition 4.3.1 Let f be continuous on [a,b] and differentiable on (a,b). If f'(x) = 0 for all
x € (a,b), then f is constant on [a, ).

Proof: Suppose by contradiction that f is not constant on [a, b]. Then there exist @ and b; such
thata < a; < b; <band f(a;) # f(b1). By Theorem 4.2.3, there exists ¢ € (aj,b;) such that

f(b1) = f(ar)

b1 —ay

f(e) = #0,

which is a contradiction. [

The next application of the Mean Value Theorem concerns developing simple criteria for
monotonicity of real-valued functions based on the derivative.
Proposition 4.3.2 Let f be differentiable on (a,b).

(i) If f'(x) > O for all x € (a,b), then f is strictly increasing on (a,b).
(i) If f'(x) < 0 for all x € (a,b), then f is strictly decreasing on (a,b).

Proof: Let us prove (i). Fix any x;,x; € (a,b) with x; < x,. By Theorem 4.2.3, there exists
¢ € (x1,x2) such that

flx2) = f(x1)

o = f'(c) > 0.

This implies f(x;) < f(x2). Therefore, f is strictly increasing on (a,b). The proof of (ii) is similar. [J
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Figure 4.5: Strictly Increasing Function.

= Example 4.3.1 Letn € Nand f: [0,00) — R be given by f(x) = x". Then f’(x) = nx"~!. There-
fore, f'(x) > O for all x > 0 and, so, f is strictly increasing. In particular, this shows that every
positive real number has exactly one n-th root (refer to Example 3.4.2).

Theorem 4.3.3 — Inverse Function Theorem. Suppose f is differentiable on I = (a,b) and
f(x) #0for all x € (a,b). Then f is one-to-one, f(I) is an open interval, and the inverse function
f~': f(I) — I is differentiable. Moreover,

() = , 4.7)

where f(x) =y.
Proof: It follows from Theorem 4.2.5 that

f'(x) > 0 for all x € (a,b), or f'(x) <0 for all x € (a,b).

Suppose f’(x) > 0 for all x € (a,b). Then f is strictly increasing on this interval and, hence, it is
one-to-one. It follows from Theorem 3.4.10 and Remark 3.4.11 that f(I) is an open interval and f~!
is continuous on f(1).

It remains to prove the differentiability of the inverse function f~! and the representation of its
derivative (4.7). Fix any y € f(I) with j = f(x). Let g = f~'. We will show that

lim 80 =80) _ 1

Y Y=y f'(x)
Fix any sequence {y,} in f(I) that converges to y and y; # y for every k. For each yy, there exists
x € I such that f(x;) = yx. That is, g(yx) = xx for all k. It follows from the continuity of g that {x;}
converges to X. Then

im 8O0 —80) _ o WX
koo yp—Y ko f () — £ (X)
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The proof is now complete. [

» Example 4.3.2 Let n € N and consider the function f: (0,00) — R given by f(x) = x". Then f
is differentiable and f’(x) = nx"~! # 0 for all x € (0,0). It is also clear that f((0,%)) = (0,c0). It
follows from the Inverse Function Theorem that f~! : (0,00) — (0,0) is differentiable and given
y € (0,%0)

(o= =
Given y > 0, the value f~!(y) is the unique positive real number whose n-th power is y. We call
f~(y) the (positive) n-th root of y and denote it by /y. We also obtain the formula

1

—1y\/ _
Y0 = s

Exercises

43.1 (a) Let f: R — R be differentiable. Prove that if f'(x) is bounded, then f is Lipschitz
continuous and, in particular, uniformly continuous.

(b) Give an example of a function f: (0,o0) — R which is differentiable and uniformly continuous
but such that f”(x) is not bounded.

4.3.2 » Let f: R — R. Suppose there exist £ > 0 and ¢« > 0 such that
|f(u) — f(v)| < lu—v|* for all u,v € R. (4.8)

(a) Prove that f is uniformly continuous on R.
(b) Prove that if & > 1, then f is a constant function.

(¢) Find a nondifferentiable function that satisfies the condition above for o = 1.
4.3.3 > Let f and g be differentiable functions on R such that f(xo) = g(xo) and
£ (x) < g'(x) for all x > xo.
Prove that
f(x) < g(x) for all x > xo.
4.3.4 Let f,g: R — R be differentiable functions satisfying

(@ f(0)=g(0)=1

fx) _ K
(b) f(x) >0, g(x)>0and 7 > 20 for all x.

Prove that

) e

g(1) f(1)
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4.3.5 > Let f be twice differentiable on an open interval /. Suppose that there exist a,b,c € [
with a < b < ¢ such that f(a) < f(b) and f(b) > f(c). Prove that there exists d € (a,c) such that
f"(d) <o.

4.3.6 > Prove that the function f defined in Exercise 4.1.11 is not monotone on any open interval
containing 0.

L’HOSPITAL’S RULE

We now prove a result that allows us to compute various limits by calculating a related limit
involving derivatives. All four theorems in this section are known as I’Hospital’s Rule.
For this section, we assume a,b € R with a < b.

Theorem 4.4.1 Suppose f and g are continuous on [a,b] and differentiable on (a,b). Suppose
f(x) = g(x) =0, where X € [a,b]. Suppose further that there exists & > 0 such that g’(x) # 0 for all
x € B(x;6)N|a,b], x # .

If
. f(x)
)lg_)rr)lf g(x) b
then
lim @ =/. 4.9
X% g(x)

Proof: Let {x;} be a sequence in [a,b] that converges to X and such that x; # X for every k. By
Theorem 4.2.4, for each k, there exists a sequence {cy }, with ¢ between x; and &, such that

[f (k) = F()]8' (cx) = [g(xe) — g(D)]f (ck)-
Since f(¥) = g(x) =0, and g’(cx) # 0 for sufficiently large k, we have
fO) _ f'(ex)

gn)  gler)

Under the assumptions that g’(x) # 0 for x near ¥ and g(x) = 0, we also have g(x;) # 0 for sufficiently
large k. By the squeeze theorem (Theorem 2.1.6), {c, } converges to x. Thus,

i L0 o fle) )

= =1
ko g(xx) ke gl(ck)  xoa gl (x)

Therefore, (4.9) follows from Theorem 3.1.2. [

= Example 4.4.1 We will use Theorem 4.4.1 to show that

2x -+ sinx
m-—s =
=0 x*+3x
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First we observe that the conditions of Theorem 4.4.1 hold. Here f(x) = 2x +sinx, g(x) = x> 4 3x,
and ¥ = 0. We may take [a,b] = [—1,1], for example, so that f and g are continuous on [a,b]
and differentiable on (a,b) and, furthermore, % is well defined on [a,b] \ {X}. Moreover, taking
0 =17/3, we get g'(x) =2x+3 #0 for x € B(x;6) N [a,b]. Finally we calculate the limit of the

quotient of derivatives using Theorem 3.2.1 to get

fl(x) .. 24cosx lim,,24lim, ocosx 241

li = = 1.
X g/ (x) w0 2x 13 limy 0 2x+3 3
It now follows from Theorem 4.4.1 that lim,_,q % =1 as we wanted to show.

» Example 4.4.2 We will apply L'Hospital’s rule to determine the limit

o3 — 2% 44x—5
lim
xol  4Ax*r—2x—2

Here f(x) = 3x> —2x> +4x — 5 and g(x) = 4x* —2x —2. Thus f(1) = g(1) = 0. Moreover, f'(x) =
9x? —4x+4 and g'(x) = 16x> — 2. Since g'(1) = 14 # 0 and g’ is continuous we have g’(x) # 0 for
x near 1. Now,

hm9x2—4x+4_2
1 163 =2 147

Thus, the desired limit is % as well.

m Example 4.4.3 If the derivatives of the functions f and g themselves satisfy the assumptions of
Theorem 4.4.1 we may apply L'Hospital’s rule to determine first the limit of f’(x)/g’(x) and then
apply the rule again to determine the original limit.
Consider the limit
N
lim ———.
x—0 1 —cosx
Here f(x) = x* and g(x) = 1 — cosx so both functions and all its derivatives are continuous. Now
g'(x) = sinx and, so, g’(x) # 0 for x near zero, x # 0. Also, f'(0) =0=g'(0) and g’ (x) = cosx # 0
for x near 0. Moreover,
f'(x)

lim =lim — = 2.
x—=0g"(x)  x—=0cosx

By L’Hospital’s rule we get
f"(x) 2

/
G . — lim —— = 2.
—0g'(x)  x-0g"(x)  x—0cosx

Applying L’Hospital’s rule one more time we get

2
lim —*— — lim I
=01 —cosx x=0g(x) x-0g(x)
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= Example 4.4.4 Let g(x) = x+3x? and let f: R — R be given by

x*sind, if x #£0;
0, ifx=0.

f(x)

Now consider the limit

2 a1
sin -

fim L) i 2510
x—0 g(x) x—=0x+ 3x2

Using the derivative rules at x # 0 and the definition of derivative at x = 0 we can see that f is
differentiable and

£ 2xsin%—cos%, ifx #0;
X)) =
0, if x =0,

However, f” is not continuous at 0 (since lim,_,o f’(x) does not exist) and, hence, L’'Hospital’s rule
cannot be applied in this case.

2 i 1
. X~ Ssin - .
On the other hand lim,_. el does exist as we can see from

) xzsinx _xsin
lim

1
x—0x+ 3x

1

1 . 1
— lim P limy_,p xsin _o.
2 22014 3x  limyo(1 4+ 3x)

Theorem 4.4.2 Leta,b € R,a < b, and X € (a,b). Suppose f,g: (a,b)\ {¥} — R are differentiable

on (a,b)\ {x} and assume lim,_,z f(x) = lim,_,z g(x) = oo. Suppose further that there exists § > 0
such that g’(x) # 0 for all x € B(x;6) N (a,b), x # X.

If /e R and
/
lim g , 8 (4.10)
then
(x)

lim——+~ =/

X=X g x)

=/,

4.11)

Proof: Since lim,_,; f(x) = lim,_,5z g(x) = e, choosing a smaller positive § if necessary, we can
assume that f(x) # 0 and g(x) # 0 for all x € B(x;0) N (a,b)
We will show that lim,_, 3+ fgxg = /(. The proof that lim,_, ;- féxs = ¢ is completely analogous.
8\ X
Fix any € > 0. We need to find & > 0 such that |f(x)/g(x) — ¢| < € whenever x € B, (X; ) N
(a,b).

From (4.10), one can choose K > 0 and a positive §; < & such that

) FO) e
7 " ‘ <

2
whenever x € B(%;81) N (a,b), x # X.

< K and

4.12)

Fix a € B, (%;61) N (a,b) (in particular, o > X). Since lim,_,z f(x) = o, we can find &, > 0
such that & < min{d;, @ —x} and f(x) # f(@) for x € B, (X;0,) N (a,b) = B (X; 02). Moreover, for
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such x, since g'(z) # 0 if x < z < o, Rolle’s theorem (Theorem 4.2.2) guarantees that g(x) # g(a).
Therefore, for all x € B (%;5,) we can write,

g(a)
) _f0—f@ ' g
gx)  glx)—gla), fla)
f(x)
Now, define
 g(a)
Hy(x) = _‘;((;)) forx € B4(%;6,).
f(x)

Since lim,_,z f(x) = lim,_,5 g(x) = oo, we have that lim, .3+ Hy(x) = 1. Thus, there exists a positive
Y < & such that

£
|Hy(x) — 1] < K whenever x € B, (X;7).

For any x € B, (¥; ), applying Theorem 4.2.4 on the interval [x, &, we can write [f(x) — f(@)]g'(c) =
/

[g(x) —g(a)]f'(c) for some ¢ € (x, @) (note that, in particular, ¢ € B(X: 8;) N (a,b)). For such ¢ we
get
1)@,
g~ glo) e
Since ¢ € B(X: 81) N (a,b), applying (4.12) we get that, for x € B, (%;y) = B+ (%;y) N (a,b),
@ | |£©
g(x) g’ gle) e ) 4
_|f(9) fe)
= | -+ 5
f'(c) TR ACN
Sg'<c>‘H°‘” 1+{55 -
<Kagty=¢

Setting &y = y completes the proof. (]

= Example 4.4.5 Consider the limit

In x2

1111(1) n .
4) -
x + 35

Here f(x) =Inx?, g(x) = 1+ 3 =, X =0, and we may take as (a,b) any open inteval containing

0. Clearly f and g satisfy the dlfferentlablhty assumptions and g’(x) # 0 for all x # 0. Moreover,
lim,_,z f(x) = lim,_,z g(x) = co. We analyze the quotient of the derivatives. We have

2 VxS
lim z/xl —1im =31 = lim—3Vx2 =0
x—0 — 3 ﬁ x—0 X x—0
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It now follows from Theorem 4.4.2 that

. Inx?
lim — =
AR 7

Remark 4.4.3 The proofs of Theorem 4.4.1 and Theorem 4.4.2 show that the results in these
theorems can be applied for left-hand and right-hand limits. Moreover, the results can also be
modified to include the case when X is an endpoint of the domain of the functions f and g.

The following theorem can be proved following the method in the proof of Theorem 4.4.1.
Theorem 4.4.4 Let f and g be differentiable on (a, ). Suppose g'(x) # 0 for all x € (a,o) and

lim f(x) = lim g(x) = 0.

X—>00 X—00
If /e R and
/
im 28—y,
xe ¢'(x)
then
lim @ =/.
e g(v)

= Example 4.4.6 Consider the limit

lim ———.
x—e x( % — arctanx)

Writing the quotient in the form Eﬁ;r/;an we can apply Theorem 4.4.4. We now compute the limit
2 X

of the quotient of the derivatives

—1/x2 2.1
lim 7/ gim
X—roo — X—oo X

x*+1

In view of Theorem 4.4 .4 the desired limit is also 1.

The following theorem can be proved following the method in the proof of Theorem 4.4.2.
Theorem 4.4.5 Let f and g be differentiable on (a,c0). Suppose g’(x) # 0 for all x € (a,0) and

lim f(x) = lim g(x) = oo.

X—r00 X—o0
If /e R and
]
im L)y
x—e0 g/ ()
then
tim 78 _ g,

e g(x)
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= Example 4.4.7 Consider the limit

Clearly the functions f(x) = Inx and g(x) = x satisfy the conditions of Theorem 4.4.5. We have

fim £ &) i VX

X—roo g’(x) -]

It follows from Theorem 4.4.5 that lim,_ h’TX =0.

Exercises

4.4.1 Use ['Hospital’s Rule to find the following limits (you may assume known all the relevant
derivatives from calculus):

’%
x> —4x
1 P T—
@ Hm s —2

& —e
(b) lim -
x—0 sinxcosx’

(¢) Im — !

x—1 \/F \[

ef—e*

d) lim ————.
@ x50 In(14x)
(e) lim 'lnx .
x—1 sin(7x)

4.4.2 For the problems below use L’'Hospital’s rule as many times as appropriate to determine the
limits.

. 1—cos2x
(@) Im ———.
x—0  xsinx
T\2
x—Zz
(b) lim (x—3)
x—0 1 —sinx’
. Xx—arctanx
(¢) lim —
x—0 X
—sinx
(d) hm
x—0 x —tanx

4.4.3 Use the relevant version of L’Hospital’s rule to compute each of the following limits.

(@) lim 3x2+2x+7
x—eodx? —6x+1°

1
(b) lim —*
+—0t cotx
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© 1 T —arctanx

¢) lim=———.
v I

X— 111(1"‘;)

(d) lim v/xe ™. (Hint: first rewrite as a quotient.)
X—>00
4.4.4 Prove that the following functions are differentiable at 1 and -1.

26— if x| < 1

X
@ f)=141
e

, if [x] > 1.
arctanx, if x| < 1;
) fx)=<= -1
f®) Zsignx—i—xT, if x| > 1.

4.4.5 > Let P(x) be a polynomial. Prove that

lim P(x)e ™" =0.

X—yo0

4.4.6 » Consider the function

efx%, if x #£0;
0, if x=0.

Prove that f € C"(R) for every n € N.

TAYLOR’S THEOREM

In this section, we prove a result that lets us approximate differentiable functions by polynomials.

Theorem 4.5.1 — Taylor’'s Theorem. Let n be a positive integer. Suppose f: [a,b] — R is a
function such that f") is continuous on [a,b], and f"+1)(x) exists for all x € (a,b). Let % € [a,b].
Then for any x € [a,b] with x # X, there exists a number ¢ in between & and x such that

f(n+1)(c) (x _x)n-i-l

1) = B+ 4,

where

n (k) i
A=Y D e
k=0 :

Proof: Let X be as in the statement and let us fix x # X. Since x — X # 0, there exists a number A € R
such that

f(x) = Pa(x) +

(n+1)!(x_j)n+l'

We will now show that

A= (e,
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for some ¢ in between x and x.
Consider the function

= k! (n+1)!
Then
_ - @) A ot 2 S
60 = S0 = B I e = s 0 = 0= B — (g e =0

®) (x
f '( )(x_x)k_

g = -y (e ™ = 1) — () =0,
k=0 :

(n+1)
By Rolle’s theorem, there exists ¢ in between X and x such that g’(c) = 0. Taking the derivative of
g (keeping in mind that x is fixed and the independent variable is ¢) and using the product rule for
derivatives, we have

n (k+1) (o ®) (¢
¢ = —f’<c>+k§(—fk,”<x—c>k+(’;_(1)),<x—c>k—1>+j,<x—c>"
= S e

This implies A = f"*1)(¢). The proof is now complete. [J
The polynomial P, (x) given in the theorem is called the n-th Taylor polynomial of f at X.

Remark 4.5.2 The conclusion of Taylor’s theorem still holds true if x = x. In this case, ¢ = x = &.

= Example 4.5.1 We will use Taylor’s theorem to estimate the error in approximating the function
f(x) = sinx with it 3rd Taylor polynomial at ¥ = 0 on the interval [—7/2, /2]. Since f’(x) = cosx,

f"(x) = —sinx and f”'(x) = —cosx, a direct calculation shows that
3
X

More over, for any ¢ € R we have |f*)(c)| = |sinc| < 1. Therefore, for x € [—7/2, /2] we get (for
some ¢ between x and 0),

|sinx — P3(x)| =

4) 2
f 456)’x|§”4/' < 0.066.

Theorem 4.5.3 Let n be an even positive integer. Suppose /) exists and continuous on (a,b). Let
X € (a,b) satisfy

f®=...= V&) =0and f"(x) #£0.

The following hold:
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(a) f") (%) > 0if and only if f has a local minimum at .
(b) f" (%) < 0if and only if £ has a local maximum at .

Proof: We will prove (a). Suppose £ (%) > 0. Since ™ () > 0 and £ is continuous at %, there
exists § > 0 such that

() > 0forall € B(x;8) C (a,b).

Fix any x € B(x;8). By Taylor’s theorem and the given assumption, there exists ¢ in between X and x
such that

Since n is even and ¢ € B(X;8), we have f(x) > f(%). Thus, f has a local minimum at x.
Now, for the converse, suppose that f has a local minimum at . Then there exists d > 0 such
that

f(x) > f(x) for all x € B(x;0) C (a,b).

Fix a sequence {x} in (a,b) that converges to X with x; # X for every k. By Taylor’s theorem, there
exists a sequence {cy }, with ¢ between x; and X for each k, such that

") (¢
fla) = f(x)+ ! n(, 2 (e —%)".
Since x; € B(x; 8) for sufficiently large k, we have
fo) = f(%)

for such k. It follows that

)
1w 1@ =L Wy g0

This implies £ (c;) > 0 for such k. Since {c;} converges to %, £ (%) = limg_e0 £ (cx) > 0.
The proof of (b) is similar. []

= Example 4.5.2 Consider the function f(x) = x? cosx defined on R. Then f’(x) = 2xcosx —x*sinx
and f"(x) = 2cosx — 4xsinx — x*>cosx. Then f(0) = f'(0) = 0 and f”(0) = 2 > 0. It follows from
the previous theorem that f has a local minimum at 0. Notice, by the way, that since f(0) = 0 and
f(m) <0, 0 is not a global minimum.

= Example 4.5.3 Consider the function f(x) = —x® +2x> +x* —4x3 4+ x> +-2x — 3 defined on R. A
direct calculations shows /(1) = f(1) = (1) = f#(1) = 0 and ) (1) < 0. It follows from the
previous theorem that f has a local maximum at 1.
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Exercises

4.5.1 > Use Taylor’s theorem to prove that
m xk
X
e > Z E
k=0
forall x > 0and m € N.

4.5.2 Find the 5th Taylor polynomial, Ps(x), at ¥ = 0 for cosx. Determine an upper bound for the
error |Ps(x) —cosx| for x € [—m/2,7/2].

4.5.3 Use Theorem 4.5.3 to determine if the following functions have a local minimum or a local
maximum at the indicated points.

(a) f(x)=xsinxatx=0.
(b) f(x)=(1—x)Inxatx=1.

4.5.4 Suppose f is twice differentiable on (a,b). Show that for every x € (a,b),

)+ ) =21 ()
h—0 h?

= f"(x).
4.5.5 » (a) Suppose f is three times differentiable on (a,b) and ¥ € (a,b). Prove that

N o B e oY )

h—0 h3 3!

(b) State and prove a more general result for the case where f is n times differentiable on (a,b).

4.5.6 Suppose f is n times differentiable on (a,b) and X € (a,b). Define

n h}’l
_ (n) ()2
P,(h) = kgf)f (x)n! forheR
Prove that
h—0 h"

(Thus, we have
f(x+h) = Fi(h)+g(h),

wher g is a function that satisfies limy,_q g}(lf) = 0. This is called the Taylor expansion with Peano’s

remainder.)

CONVEX FUNCTIONS AND DERIVATIVES

We discuss in this section a class of functions that plays an important role in optimization
problems.
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) b flx)
Af(w) + (1= X) f(v) i
O+ (1= A)
i) pe-
a v 7 v b

Figure 4.6: A Convex Function.

Definition 4.6.1 Let / be an interval of R and let f: I — R. We say that f is convex on [ if
SRu+(1=2)v) <Af(u)+(1=A)f(v)

for all u,v € I and for all A € (0,1).

= Example 4.6.1 The following functions are convex.

(a) f: R— R, f(x) = x. This is straightforward.

(b) f: R — R, f(x) = x*>. Here note first that 2xy < x> +y? for all real numbers x,y. Then, if
0<A<landx,yé€R,we get

fOx+(1=24)y) = (Ax+(1-2)y)?
= A2 221 —L)xy+(1—2)%2
< AP HA1 =)y +(1-1)%
= AAX+ (1 =)+ (1—=2)(Ay* + (1 —-2)y?)
= A2+ (1-2)?
Afx)+(1=2)f ().

(¢) f: R—R, f(x) = |x|. This follows from the triangle inequality and other basic properties of
absolute value.

Theorem 4.6.1 Let [ be an interval of R. A function f: I — R is convex if and only if for every
Ai>0,i=1,...,n,withY? ;A;=1(m>2)and forevery x; € [,i=1,...,n,

f (Z Mw) < Zn‘,/lif(xi)- (4.13)
i=1 i=1

Proof: Since the converse holds trivially, we only need to prove the implication by induction. The
conclusion holds for n = 2 by the definition of convexity. Let k be such that the conclusion holds for
any n with 2 < n < k. We will show that it also holds forn =k+1. Fix 4, >0,i=1,...,k+ 1, with
YA =1and fixeveryx; € 1,i=1,...,k+1. Then

=~

i=1— Ayt
i=1
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If At.1 =1,then ;; =0foralli=1,...,k, and (4.13) holds. Suppose 0 < A4, < 1. Then, for each
i= 1,...,]{, )q‘/(l—ﬂ,kJrl) 20and

k )Li

=1.
i=1 l_lkJrl

It follows that

kil k
) . Zizllixi
f(l; Mﬂ) =f [(1 7Lk+1)71_7tk+1 +7Lk+1xk+1]

A
<(1—=Xg1)f <?l—_lkk+x1) + A 1f (Xr1)

k A
=(1—Xs1)f <Z . —7ltk+1Xi> + My 1 f (Xat1)

i=1

k A
<(1=2es1) Y, () + A1 f (1)
i=1 - )"k+1
k+1
= Z A’if(xi)7
i=1
where the first inequality follows from the definition of convexity (or is trivial if A;;; = 0) and the
last inequality follows from the inductive assumption. The proof is now complete. []

Theorem 4.6.2 Let I be an interval and let f: I — R be a convex function. Then f has a local
minimum at X if and only if f has an absolute minimum at .

Proof: Clearly if f has a global minimum at &, then it also has a local minimum at x.
Conversely, suppose that f has a local minimum at X. Then there exists 0 > 0 such that

f(u) > f(x) forall u € B(x;6)N1I.

For any x € I, we have x,, = (1 — 1)¥+ Lx — %. Thus, x, € B(¥6) NI when n is sufficiently large.
Thus, for such n,

£ < Fl) < (1= D F@)+ 7).

This implies that for a sufficient large n, we have

1 1
Zflx)< =
Sf0) < ()
and, hence, f(X) < f(x). Since x was arbitrary, this shows f has an absolute minimum at . [J

Theorem 4.6.3 Let I be an open interval and let f: I — R be a convex function. Suppose f is
differentiable at x. Then

f (X)) (x—%) < f(x)— f(%) forall x € I. (4.14)
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Proof: Forany x € Iandr € (0,1), we have

fE+1—%) = f(&) _ flx+ (1 -0)5) - f()

t t
tf(x)+ (1 -0)f(%) - f(&)
t

= f(x) = f(%).

<

Since f is differentiable at X,

(%) (x—%) = lim fE+1(x—%) — f(&)

t—0t t

<f(x) - f(),

which completes the proof. [J

Corollary 4.6.4 Let I be an open interval and let f: I — R be a convex function. Suppose f is
differentiable at x. Then f has an absolute minimum at ¥ if and only if f'(x) = 0.

Proof: Suppose f has an absolute minimum at . By Theorem 4.2.1, f'(x) = 0. Let us prove the
converse. Suppose f'(X) = 0. It follows from Theorem 4.6.3 that

0=f(X)(x—x%) < f(x) — f(x) forall x € .
This implies

f(x) > f(x) forall x € I.
Thus, f has an absolute minimum at x. [

Lemma 4.6.5 Let I be an open interval and suppose f: I — R is a convex function. Fix a,b,x € I
with a < x < b. Then

f) = fla) _ fb

)
xX—a - b—a b—x

N~—
|
~
—~
Q
N~—

Proof: Let

Thent € (0,1) and

X—a

b—a

fx)=fla+(x—a)) :f<a+ (b—a)) = fla+t(b—a))=f(tb+(1—1t)a).

By convexity of f, we obtain

fx) <if(b)+(1—1)f(a).

Thus,
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Equivalently,
fx) = fla) _ f(b)— f(a)
x—a ~  b—a
Similarly,
10— £B) < 16) + (1 ~1)f(a) — F(b) = (1~0) (@) ~ (B)] = s~ 1 (b) ~ f(a)].

It follows that

f(b) = fla) _ f(b) = f(x)
b—a ~— b—x

The proof is now complete. [

Theorem 4.6.6 Let I be an open interval and let f: I — R be a differentiable function. Then f is
convex if and only if f’ is increasing on /.

Proof: Suppose f is convex. Fix a < b with a,b € I. By Lemma 4.6.5, for any x € (a,b), we have

fx)—fla)  f(b)—fla)

xX—a - b—a

This implies, taking limits, that

P < fOS)
Similarly,

Therefore, f/(a) < f'(b), and f’ is an increasing function.
Let us prove the converse. Suppose [’ is increasing. Fix x| < x; and 7 € (0,1). Then

X1 < x < Xxp,

where x; = tx1 + (1 —t)x,. By the Mean Value Theorem (Theorem 4.2.3), there exist ¢ and ¢, such
that

X< <xy<c<x

with

This implies

tf () —tf(x1) = f'(cr)e(1 —1)(x2 —x1);
(I=1)f(x) = (1=1)f(x2) = f'(c2)t(1 =) (x1 — x2).
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Since f'(c1) < f'(c2), we have

tf () —tf(xr) = flet(l=1) (o —x1) < fle)t (1= 1) (2 —x1) = (1= 1) f(x2) = (1 =) f (x1).

Rearranging terms, we get

) Stf(x)+ (1 =1)f(x2).
Therefore, f is convex. The proof is now complete. []

Corollary 4.6.7 Let I be an open interval and let f: / — R be a function. Suppose f is twice
differentiable on I. Then f is convex if and only if f”(x) >0 for all x € I.

Proof: It follows from Proposition 4.3.2 that f”(x) > 0 for all x € I if and only if the derivative
function f” is increasing on I. The conclusion then follows directly from Theorem 4.6.6. [

= Example 4.6.2 Consider the function f: R — R given by f(x) = vx2+1. Now, f/(x) =
x/vVx24+1 and f"(x) = 1/(x*> 4 1)*>2. Since f"(x) > 0 for all x, it follows from the corollary
that f is convex.

Theorem 4.6.8 Let [ be an open interval and let /: I — R be a convex function. Then it is locally
Lipschitz continuous in the sense that for any ¥ € I, there exist £ > 0 and 8 > 0 such that

|f(u) — f(v)] < llu—v| for all u,v € B(%;5). (4.15)

In particular, f is continuous.

Proof: Fix any x € I. Choose four numbers a, b, c,d satisfying
a<b<i<c<dwitha,del.

Choose 6 > 0 such that B(x;0) C (b,c). Let u,v € B(x;8) with v < u. Then by Lemma 4.6.5, we
see that

f) = fla) _ fw) = f(a) _ flu)=f(v) _ f(d)=f(V)

b a - u—v - d—v d—c

a u

Using a similar approach for the case u < v, we get

f(b)—f(a)

S —f) _ fld)—fle)
b - - d

for all u,v € B(X;0).
a u—v —c

Choose ¢ > 0 sufficiently large so that

< fO) = fla) < fw)—fv) . f(d) - f(c)

- b—a u—v —c

</ forallu,v € B(x;9).

Then (4.15) holds. The proof is now complete. [
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Exercises

4.6.1 (a) Let I be an interval and let f,g: I — R be convex functions. Prove that cf, f + g, and
max{ f,g} are convex functions on I, where ¢ > 0 is a constant.
(b) Find two convex functions f and g on an interval / such that f - g is not convex.

4.6.2 Let f: R — R be a convex function. Given a,b € R, prove that the function defined by
g(x) = f(ax+D), forxe R

is also a convex function on R.

4.6.3 » Let [ be an interval and let f: I — R be a convex function. Suppose that ¢ is a convex,
increasing function on an interval J that contains f(7). Prove that ¢ o f is convex on /.

4.6.4 > Prove that each of the following functions is convex on the given domain:

(a) f(x) =€, x € R, where b is a constant.
(b) flx)= € [0,00) and k > 1 is a constant.
© flx)= —1ﬂ(1—X) x € (—eo,1).
e)C
@ f(x) = (1+ )orer
(e) f(x)=xsinx,xe (—%,%).

4.6.5 > Prove the following:

(a) If a,b are nonnegative real numbers, then

b
a—; > +Vab.

(b) Ifay,an,...,a,, where n > 2, are nonnegative real numbers, then

ay+axy+---+ap
n

2 (al .az...an)l/n.

4.7 NONDIFFERENTIABLE CONVEX FUNCTIONS AND SUBDIFFERENTIALS

In this section, we introduce a new concept that is helpful in the study of optimization problems
in which the objective function may fail to be differentiable.

Definition 4.7.1 Let f: R — R be a convex function. A number u € R is called a subderivative of
the function f at ¥ if

u-(x—x) < f(x)— f(x) forallx € R. (4.16)

The set of all subderivatives of f at ¥ is called the subdifferential of f at x and is denoted by d f ().
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Figure 4.7: A nondifferential convex function.

» Example 4.7.1 Let f(x) = |x|. Then
2£(0) = [-1,1].
Indeed, for any u € df(0), we have
u-x=u(x—0) < f(x)— f(0) = |x| for all x € R.
In particular, u-1 < |l|=landu-(—1) = —u <|—1] = 1. Thus, u € [—1, 1]. It follows that
af(0) C [-1,1].
For any u € [—1, 1], we have |u| < 1. Then
u-x < |u-x| =lu|lx| <|x| forall x e R.

This implies u € d f(0). Therefore, d f(0) = [—1,1].

Lemma4.7.1 Let f: R — R be a convex function. Fix a € R. Define the slope function ¢, by

_f0) - @

a

$a(x) (4.17)

for x € (—eo,a) U (a,o0). Then, for x;,x; € (—o0,a) U (a,eo) with x; < x2, we have

q)a(xl) < q)a XZ)'

Proof: This lemma follows directly from Lemma 4.6.5. [J

Theorem 4.7.2 Let f: R — R be a convex function and let ¥ € R. Then f has left derivative and
right derivative at X. Moreover,

sup ¢x(x) = f' (%) < fL(%) = igg%(x),

x<Xx

where ¢5 is defined in (4.17).
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Figure 4.8: Definition of subderivative.

Proof: By Lemma 4.7.1, the slope function ¢; defined by (4.17) is increasing on the interval (¥,)
and bounded below by ¢z(X — 1). By Theorem 3.2.4, the limit

lim ¢(x) = lim £ =/
x—xt x—xt X—X

exists and is finite. Moreover,

lim g (x) = inf gz(x).

x—xt x>X

Thus, f} (X) exists and
/o=y e B
f1(%) = inf ge(x).
Similarly, f” (%) exists and

fL(%) = sup g (x).

x<Xx

Applying Lemma 4.7.1 again, we see that

¢z(x) < ¢=(y) whenever x < X < y.
This implies f’ (X) < f’.(%). The proof is complete. [J
Theorem 4.7.3 Let f: R — R be a convex function and let X € R. Then

df (%) = [fL (%), f1(D)]- (4.18)
Proof: Suppose u € d f(¥). By the definition (4.16), we have

u-(x—x) < f(x) — f(x) for all x > x.
This implies
fx) - f(%)

X

u< for all x > x.

=i
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Thus,

u< limL

Xkt X
Similarly, we have
u-(x—x) < f(x)— f(x) forall x < %.
Thus,
0@

X—X

for all x < x.
This implies u > f’ (%). So

If(®) CLfL(R), f1(®)].

To prove the opposite inclusion, take u € [f” (%), f/ (X)]. By Theorem 4.7.2

sup 9s(x) = /() < u < £1(5) = inf ().

x<x

Using the upper estimate by f’ (x) for u, one has

u<@z(x) = W for all x > X.

It follows that
u-(x—x) < f(x) — f(x) forall x > x.
Similarly, one also has

u-(x—x) < f(x)— f(x) for all x < .

Thus, (4.16) holds and, hence, u € d f(x). Therefore, (4.18) holds. [J

Corollary 4.7.4 Let f: R — R be a convex function and X € R. Then f is differentiable at x if and

only if d (%) is a singleton. In this case,

If(®) ={f (D)}

Proof: Suppose f is differentiable at X. Then

fLX) = £L(0) = f'(%).

By Theorem 4.7.3,
If(®) = [fL(X). £ @] = {f' D)}
Thus, d f(%) is a singleton.

Conversely, if d f(¥) is a singleton, we must have f’ (X) = f (X). Thus, f is differentiable at .

O
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» Example 4.7.2 Let f(x) = a|x — b| + ¢, where a > 0. Then f is a convex function and
fL(b)=—a, fi(b)=a.

Thus,
df(b) = [~a,d].

Since f is differentiable on (—oo,b) and (b, ), we have

{—a}, if x<b;
df(x) = [~a,a], if x=b;
{a}, if x>b.

Definition 4.7.2 Let A and B be two nonempty subsets of R and let @ € R. Define

A+B={a+b:acAbcB}and A ={oa:a€A}.

A 17 A+ B

Figure 4.9: Set addition.

Theorem 4.7.5 Let f,g: R — R be convex functions and let @ > 0. Then f + g and « f are convex
functions and

I(f +¢) (%) = 9f(X) + dg(%)
d(af)(¥) = ad f(%).

Proof: It is not hard to see that f 4 g is a convex function and

(f+8) (®) = fi(®) +¢\ (%)
(f+8) (X)) =f.(%)+g (%)

By Theorem 4.7.3,

The proof for the second formula is similar. [
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m Example 4.7.3 Leta; <ap; <---<apandlet y; >0fori=1,...,n. Define
n
) = Y plx—ail.
i=1
Then f is a convex function. By Theorem 4.7.5, we get

If (%) = {Za,-<i.ui — Yoz Mi lf% ¢{ai,...,an}
Yo<a i — Yoz i+ [ Mig, i), if X = gy,
Theorem 4.7.6 Let f;: R —R,i=1,...,n, be convex functions. Define
fx)=max{fi(x):i=1,...;n}and I(u) ={i=1,...,n: fi(u) = f(u)}.
Then f is a convex function. Moreover,
df (%) = [m,M],
where

— min f (¥)and M = ! (%).
m ig;g)ﬁf(X) an, E?%ﬁ+(x)

Proof: Fix u,v € Rand A € (0,1). Forany i = 1,...,n, we have
Jiu+ (1 =2)v) SAfi(u) + (1 =2)fi(v) SAf(u) + (1= 1) f(v).
This implies

fAu+(1=2A)y) = lrgla%f,-(luqt(l —AW) <Af(u)+(1—=2A)f(v).

Thus, f is a convex function. Similarly we verify that f (¥) = M and f’ (X) = m. By Theorem 4.7.3,
If (%) = [m, M].
The proof is now complete. []

Remark 4.7.7 The product of two convex functions is not a convex function in general. For instance,
f(x) = x and g(x) = x* are convex functions, but 4(x) = x> is not a convex function.

The following result may be considered as a version of the first derivative test for extrema in the
case of non differentiable functions.

Theorem 4.7.8 Let f: R — R be a convex function. Then f has an absolute minimum at X if and
only if

0€df(x)=[f (X), [ (D).
Proof: Suppose f has an absolute minimum at X. Then

f(x) < f(x) for all x € R.
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This implies
0-(x—X)=0< f(x)— f(x) forall x € R.
It follows from (4.16) that 0 € 9 f(X).
Conversely, if 0 € d f(X), again, by (4.106),
0-(x—%)=0< f(x)— f(x) forall x € R.
Thus, f has an absolute minimum at x. [J

m Example 4.7.4 Let k be a positive integer and a; < ap < --- < ay,_1. Define
2%k—1

fx) =Y lx—ail,

i=1
for x € R. It follows from the subdifferential formula in Example 4.7.3 that 0 € d f(%) if and only if
X = ag. Thus, f has a unique absolute minimum at ay.

Figure 4.10: Subdifferential of f(x) = Y27 |x — aj].

dg(x)

Figure 4.11: Subdifferential of g(x) = Y2, |x — a;].

Similarly, if a; < ay < --- < ay; and
2k

glx) =) lx—ail.

i=1
Then 0 € dg(x) if and only if X € [a,ax,1]. Thus, g has an absolute minimum at any point of
[ak7ak+1]'
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The following theorem is a version of the Mean Value Theorem (Theorem 4.2.3) for nondifferen-
tiable functions.

Figure 4.12: Subdifferential mean value theorem.

Theorem 4.7.9 Let f: R — R be a convex function and let a < b. Then there exists ¢ € (a,b) such
that

f(b) = f(a)

e of(e). (4.19)

Proof: Define
f(b)—f(a)
b—a

s =1~ | T =L 04 100

Then g is a convex function and g(a) = g(b). Thus, g has a local minimum at some ¢ € (a,b) and,
hence, g also has an absolute minimum at c. Observe that the function

o) = - £ =110

V=1 4100

is differentiable at ¢ and, hence,

10)=sta)),

on(e) = (e = { -1 =1
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By Theorem 4.7.8 and the subdifferential sum rule,

0.€ dg(c) = af(c) - {f(”,i:i:(“) } |

This implies (4.19). The proof is now complete. [J

Corollary 4.7.10 Let f: R — R be a convex function. Then f is Lipschitz continuous if and only
if there exists £ > 0 such that

df(x) C [—¢,¢ forall x e R.
Proof: Suppose f is Lipschitz continuous on R. Then there exists ¢ > 0 such that

|f(u)— f(v)| < Lllu—v| forall u,v € R.

Then for any x € R,
) _ flxth) —flx) _ . LA
p— —< 726.
Fil) = Jim S22 < lim

Similarly, f’ (x) > —¢. Thus,
Af(x) = [fL(x), fr(x)] C [-£,4].

Conversely, fix any u,v € R with u # v. Applying Theorem 4.7.9, we get
fO) = f(u)

vV—u

€df(c) C[-4,4],
for some c in between u and v. This implies
[f () = fO)] < Llu—v].
This inequality obviously holds for u = v. Therefore, f is Lipschitz continuous. [J

Exercises

4.7.1 > Find subdifferentials of the following functions:

(@) f(x)=alx|,a>0.
(b) f(x)=|x—1]+|x+1].

4.7.2 Find the subdifferential of the function
f(x) =max{—2x+ 1,x,2x—1}.

4.7.3 » Let f(x) =Y}_, |x—k|. Find all absolute minimizers of the function.
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4.7.4 Let f: R — R be a convex function. Fix a,b € R and define the function g by
g(x) = f(ax+b), forxe R

Prove that dg(X) = ad f(ax+b).

4.7.5 > Let f: R — R be a convex function. Suppose that d f(x) C [0,00) for all x € R. Prove that
f is monotone increasing on R.






5. Solutions and Hints for Selected Exercises

SECTION 1.1

Exercise 1.1.2. Applying basic rules of operations on sets yields
(X\Y)NZ=Y‘NZ=2Z\Y.

and
Z\(YNZ)=(Z\Y)U(Z\Z)=(Z\Y)Uub=2Z\Y.

Therefore, (X \Y)NZ=Z\(YNZ).

SECTION 1.2

Exercise 1.2.1. (a) For any a € A, we have f(a) € f(A) and, so, a € f~1(f(A)). This implies A C
f~Y(f(A)). Note that this inclusion does not require the injectivity of f. Now fix any a € f~'(f(A)).
Then f(a) € f(A), so there exists ' € A such that f(a) = f(a’). Since f is one-to-one, a = d’ € A.
Therefore, f~!(f(A)) C A and the equality holds.

(b) Fix any b € f(f~'(B)). Then b = f(x) for some x € f~!(B). Thus, b = f(x) € B and, hence,
f(f~Y(B)) C B. This inclusion does not require the surjectivity of f. Now fix b € B. Since f is onto,
there exists x € X such that f(x) = b € B. Thus, x € f~!(B) and, hence, b € f(f~'(B)). We have
shown that B C f(f~'(B)) and the equality holds.

Without the injectivity of f, the equality in part (a) is no longer valid. Consider f(x) = x?, x € R,
and A = [—1,2]. Then f(A) = [0,4] and, hence, f~'(f(A)) = [~2,2], which strictly contains A. It is
also not hard to find an example of a function f and a set B for which the equality in part (b) does
not hold true.
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SECTION 1.3

Exercise 1.3.6. Forn =1,

1[1+\5 l—ﬁ] _ 125

NG 2 2 V5 2

Thus, the conclusion holds for n = 1. It is also easy to verify that the conclusion holds for n = 2.
Suppose that

w5 (55

for all £ < n, where n > 2. Let us show that

1 14++/5\n+1 1 —+/5\n+1
o= [ (50 ()
V5 2 2
By the definition of the sequence and the induction hypothesis,
Apy1 =ap+ap—1
50 (50 T B - (5]
V5 2 2 NG 2 2
1 {<1+\5>"1(1+\@+1) (1—\5>"1<1—\5 1>]
V5 2 2 2 2 '
Observe that
1++/5 34V5 145\ 145 3-V5 _ (1-45\2
1= = ( ) and 1= = ( )
2 2 2 2 2 2
Therefore, (5.1) follows easily.
1 5 1—+v/5
In this exercise, observe that the two numbers +2\f and 2\[ are the roots of the quadratic
equation
¥ =x+1.

A more general result can be formulated as follows. Consider the sequence {a,} defined by

ay =a,
a = b;
ani2 = Oay1 1+ Ba, forn e N.

Suppose that the equation x> = ctx + 8 has two solutions x; and x,. Let ¢ and ¢, be two constants
such that

C1X1+Coxp = a;
c1(x1)? 4+ c2(x2)? = b.

Then we can prove by induction that

Xp=c1(x1)"+ca(xp)" forallm € N.
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This is a very useful method to find a general formula for a sequence defined recursively as above.
For example, consider the sequence

ap=1;
a=1;
Ayi2 = apa 1 +2a, forn € N.

2—x42 yields two solutions x; = 2 and x, = (—1). Thus,

Solving the equation x
Xp=c12"+ca(—1)",

where ¢; and ¢, are constants such as

01(2)+62(—1) =1;
C1(2)2+C2(—1)2 =1.

It is not hard to see that ¢; = 1/3 and ¢; = —1/3. Therefore,

1 1
a, = 52"—5(—1)” foralln € N.

Exercise 1.3.8. Hint: Prove first that, for k = 1,2,...,n, we have

n n n _ n+1
k k—1) k '
SECTION 1.4

Exercise 1.4.5. In general, to prove that |a| < m, where m > 0, we only need to show that a < m and
—a<m.
For any x,y € R,

x| = Jx =y +y| < [x—=y[+ 1y,
This implies

x| =y < =yl
Similarly,

vl =ly—x+x| < |x—y|+[x],
This implies

—(Ix[ =) < fx=yl.

Therefore,

[l =yl < Je=l.
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SECTION 1.5

Exercise 1.5.4.

Let us first show that A 4 B is bounded above. Since A and B are nonempty and bounded above,
by the completeness axiom, supA and sup B exist and are real numbers. In particular, a < supA for
alla€ Aand b < supBforall b € B.

For any x € A+ B, there exista € A and b € B such that x =a+b. Thus, x =a-+b < supA+supB,
which shows that A 4 B is bounded above.

We will now show that supA + sup B is the supremum of the set A 4+ B by showing that supA +
sup B satisfies conditions (1) and (2°) of Proposition 1.5.1.

We have just shown that supA -+ sup B is an upper bound of A 4+ B and, hence, supA + supB
satisfies condition (1°).

Now let £ > 0. Using 5 in part (2°) of Proposition 1.5.1 applied to the sets A and B, there exits
a € A and b € B such that

€ €
supA — - < aand supB— = < b.
2 2
It follows that
supA+supB—¢€ <a+b.

This proves condition (27). It follows from Proposition 1.5.1 applied to the set A + B that supA +
sup B = sup(A + B) as desired.

SECTION 1.6

1
Exercise 1.6.2. Let x = —. By Theorem 1.6.2(d), there exists m € Z such that
r

m—1<-—-<m.
r
Since 1/r > 1, we get m > 1 and, so, m > 2. It follows that m — 1 € N. Set n = m — 1 and then we

get
1 1

<r<-.
n+1 n
SECTION 2.1
Exercise 2.1.12. (a) Suppose that lim,,_,.. @,, = £. Then by Theorem 2.1.9,
lim ap, = £ and lim az,11 = 4. (5.2)
n—soo n—soo

Now suppose that (5.2) is satisfied. Fix any € > 0. Choose N; € N such that
|ax, — €| < € whenever n > Nj,
and choose N, € N such that

|a2nt+1 — €| < € whenever n > N;.
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Let N = max{2N;,2N, + 1}. Then
|a, — ¢| < € whenever n > N.

Therefore, lim,,_coa, = .

This problem is sometimes very helpful to show that a limit exists. For example, consider the
sequence defined by

x1=1/2,

forn € N.

Xn4+1 =
24x,

We will see later that {x2,,} and {x,} both converge to v/2 — 1, so we can conclude that {x,}
converges to v/2 — 1.

(b) Use a similar method to the solution of part (a).

Exercise 2.1.8. Consider the case where £ > 0. By the definition of limit, we can find n; € N such
that

|an| > £/2 for all n > n;.

Given any € > 0, we can find n, € N such that
le
la, — 0] < T for all n > ny.

Choose ny = max{ny,n, }. For any n > ng, one has

la
< <

ant1 1‘ _ |an_an+l|

n_€|+‘an+1—€| Z+T
a |ay| %

Therefore, lim,,_e a;—:' = 1. If ¢ < 0, consider the sequence {—a,}.

The conclusion is no longer true if £ = 0. A counterexample is a, = A" where A € (0,1).

SECTION 2.2

Exercise 2.2.3. (a) The limit is calculated as follows:

(VaFn—n) (ViZsn-+n)

lim (\/n2+n—n) — lim

n—oo n—oo \/;m +n
n
= lim —
n—=w\/n2 4+ n+n
— lim "

n—=e/n2(1+1/n)+n

1
n—e /14+1/n+1 /
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(b) The limit is calculated as follows:

(m—n) ({/(n3 +3n2)2 +nv/n3 +3n2 —|—n2>

lim (\3/ W3+ 3n2 — n) = lim

novee noyee Y/ (n3+3n2)2 +nv/n3 +3n2 +n?)
= lim 3
n—ee 3/ (n3 +3n2)2 + nv/n3 + 3n% +n?
= lim 3
n—=e 3/b(1+3/n)2 +ny/n3(1+3/n) +n?
= lim 3
ne 2 (\3/(1 ¥3/n)2+ /(1 +3/n) + 1)
= lim 3 =1.

nree ({/(1+3/n)2+€/(1+3/n)+1>
(c) We use the result in par (a) and part (b) to obtain
lim (/73 + 302 = /2 1) = lim (m—n—l—n— n2+1)
ﬂgg(m—n) +3§§o<n—m) —1-1/2=1/2.

Using a similar technique, we can find the following limit:

lim (f/an3+bn2+cn+d— \/Omz—i-ﬁn—l-}/),

n—soo

where a > 0 and o > 0.

SECTION 2.3
Exercise 2.3.1. (a) Clearly, a; < 2. Suppose that a; < 2 for k € N. Then

iyl = \/2—i-ak < \/2+2:2.

By induction, a,, < 2 for all n € N.
(b) Clearly, a; = V2<V24V2=as. Suppose that a; < ag41 for k € N. Then

ar+2 < apy1+2,

which implies

\/ak+2< \/ak+1+2.

Thus, a1 < ag42. By induction, a,, < a,; for all n € N. Therefore, {a,} is an increasing sequence.

(c) By the monotone convergence theorem, lim, . a, exists. Let £ = lim,_,.a,. Since a,1| =
v2+a, and lim,, . a,11 = £, we have

(=vV2+0or > =2+1.
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Solving this quadratic equation yields £ = —1 or £ = 2. Therefore, lim, . a, = 2.

Define a more general sequence as follows:

a;=c>0,
ap+1 =+c+a, forneN.

I++v1+4c

We can prove that {a, } is monotone increasing and bounded above by — In fact, {a,}

14++14+4c
2

converges to this limit. The number is obtained by solving the equation ¢ = v/c + ¥,

where ¢ > 0.

Exercise 2.3.2. (a) The limit is 3.
(b) The limit is 3.
(c) We use the well-known inequality

b
atore > vabc for a,b,c > 0.

By induction, we see that a,, > O for all n € N. Moreover,

1 1 1 1
ap41 = *(zan"i‘*z) = *(an“‘an"i'*z) >

3 2 3 2 a,-a, - — = 1.

1
3 az
We also have, forn > 2,

a2
an

apyl —ap = 3
3aZ 3aZ

; <2an+ 1 >_a,,: —ap+1 _ —(ap—1)(az+a,+1) o

Thus, {a,} is monotone deceasing (for n > 2) and bounded below. We can show that lim,,_,ec @, = 1.
(d) Use the inequality # >+ ab for a,b > 0 to show that a,, | > V/b for all n € N. Then follow
part 3 to show that {a, } is monotone decreasing. The limit is /5.

Exercise 2.3.3. (a) Let {a,} be the given sequence. Observe that a, ;| = v/2a,. Then show that
{a,} is monotone increasing and bounded above. The limit is 2.
(b) Let {a, } be the given sequence. Then

1
2+a,

apy1 =

Show that {a,+1} is monotone decreasing and bounded below; {ay, } is monotone increasing and
bounded above. Thus, {a,} converges by Exercise 2.1.12. The limit is v/2 — 1.

Exercise 2.3.5. Observe that
a, + b,

by = > ayb, =a, foralln € N.

Thus,
api1 =\ apb, > \Jaya, = a, for alln € N,
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an + by < b, + by
2 - 2

It follows that {a,} is monotone increasing and bounded above by b;, and {b, } is decreasing and

bounded below by a;. Let x = lim, ;. a, and y = lim,_,. b,. Then

=b,foralln e N.

bpy1 =

x=/xyandy = %
Therefore, x = y.
SECTION 2.4
Exercise 2.4.1. Here we use the fact that in R a sequence is a Cauchy sequence if and only if it is
convergent.

(a) Not a Cauchy sequence. See Example 2.1.7.
(b) A Cauchy sequence. This sequence converges to 0.
(c) A Cauchy sequence. This sequence converges to 1.

(d) A Cauchy sequence. This sequence converges to O (see Exercise 2.1.5).

SECTION 2.5
Exercise 2.5.4. (a) Define

o, = sup(a, +by), B, = supay, ¥, = supby.

k>n k>n k>n

By the definition,

limsup(a, + b,) = lim @, limsupa, = lim f,, limsupb, = lim ¥,.
n—so0 n—=reo n—o0 n—reo n—yoo n—reo
By Exercise 2.5.3,
o, < B+ 7y, forallneN.

This implies

lim oy, < lim B, + lim ¥, for all n € N.

n—soo n—oo n—soo
Therefore,

limsup(a, + b,) < limsupa, + limsupb,.

n—soo n—soo n—soo

This conclusion remains valid for unbounded sequences provided that the right-hand side is well-
defined. Note that the right-hand side is not well-defined, for example, when limsup, _. ., a, = o and
limsup,,_,,, b, = —co.
(b) Define

a, = g(an +bn), Bu= ]ggak, Yo = gbk-

Proceed as in part (a), but use part (b) of Exercise 2.5.3.
(c) Consider a,, = (—1)" and b, = (—1)"*1,
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SECTION 2.6

Exercise 2.6.3. Suppose A and B are compact subsets of R. Then, by Theorem 2.6.5, A and
B are closed and bounded. From Theorem 2.6.2(c) we get that AU B is closed. Moreover, let
My, ms, Mg, mp be upper and lower bounds for A and B, respectively. Then M = max{M4,Mp}
and m = min{my4,mp} are upper and lower bounds for AUB. In particular, AU B is bounded. We
have shown that A U B is both closed and bounded. It now follows from Theorem 2.6.5 that AUB is
compact.

SECTION 3.1

Exercise 3.1.6. (a) Observe that when x is near 1/2, f(x) is near 1/2 no matter whether x is rational
or irrational. We have

k172,  ifxeQ;
I1—x—1/2|, ifx&Q.

Thus, |f(x) —1/2| = |x—1/2| forall x € R.
Given any € > 0, choose & = €. Then

!f(X)—1/2\={

| f(x) —1/2| < € whenever |x—1/2| < §.

Therefore, lim,_,; » f(x) = 1/2.

(b) Observe that when x is near 0 and x is rational, f(x) is near 0. However, when f is near 0 and x
is irrational, f(x) is near 1. Thus, the given limit does not exists. We justify this using the sequential
criterion for limits (Theorem 3.1.2). By contradiction, assume that

lim f(x) = ¢,
x—0
where / is a real number. Choose a sequence {r, } of rational numbers that converges to 0, and choose

also a sequence {s,} of irrational numbers that converges to 0. Then f(r,) = r, and f(s,) =1—3s,
and, hence,

(= Tim f(r,) =0

and
= 1lim f(s,) = lim (1 —s,) = 1.
n—oo 0

n—
This is a contradiction.
(c) By a similar method to part (b), we can show that lim,_,; f(x) does not exists.

Solving this problem suggests a more general problem as follows. Given two polynomials P and
0, define the function

P, ifxeQ
U )_{Q(x), if x¢Q.

If a is a solution of the equation P(x) = Q(x), i.e., P(a) = Q(a), then the limit lim,_,, f(x) exists
and the limit is this common value. For all other points the limit does not exist.
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Similar problems:

1. Determine all a € R at which lim,_,, f(x) exists, where
2 .
X, if xeQ;
flx)= .
x+2, ifxexgQ.
2. Consider the function
2 . .
x+1, if xeQ;
flx) = .
—X, if x¢ Q.

Prove that f does not have a limit at any a € R.

SECTION 3.2

Exercise 3.2.5. The given condition implies that if both x; and x; are close to &, then they are close
to each other and, hence, f(x;) and f(x») are close to each other. This suggests the use of the Cauchy

fxg,xp € D\ {f}

€
criterion for limit to solve the problem. Given any € > 0, choose § = 2k+ 1)

with [x; —X| < 8 and |x; —%| < 8, then

(1) — Fu)| < klxr —xa| < k(Jxy — 7| + |x2 — 7]) < k(S +8) = 2k2(k8+1) <e.

Therefore, lim,_,z f(x) exists.

SECTION 3.3
Exercise 3.3.8. (a) Observe that f(a) = g(a) = h(a) and, hence,

x) — f(a)| = lg(x) —g(a)|, if xeQnI0,1];
|f(x) = f(a)] {|h(x)—h(a), if x € Q°No,1].

It follows that

[f () = fa)] < [g(x) —g(a)| + |h(x) — h(a)| for all x € [0, 1].

Therefore, lim,_,, f(x) = f(a) and, so, f is continuous at a.
(b) Apply part (a).

Exercise 3.3.9. At any irrational number a € (0, 1], we have f(a) = 0. If x is near a and x is irrational,
it is obvious that f(x) = 0 is near f(a). In the case when x is near a and x is rational, f(x) = 1/g
where p,q € N. We will see in part (a) that for any € > 0, there is only a finite number of x € (0, 1]
such that f(x) > €. So f(x) is close to f(a) for all x € (0,1] except for a finite number of x € Q.
Since a is irrational, we can choose a sufficiently small neighborhood of a to void such x.

ze}:{x:pet@:qgl}.
q £

(a) For any € > 0,

Agz{xe(O,l]:f(x)ze}:{x:Ze@:f(x):

Q=



153

Clearly, the number of ¢ € N such that g < % is finite. Since 0 < s <1, we have p < g. Therefore,
Ag 1s finite.

(b) Fix any irrational number a € (0, 1]. Then f(a) = 0. Given any € > 0, by part (a), the set A¢ is
finite, so we can write

Ae ={x € (0,1]: f(x) > €} = {x1,x2,..,Xn},

for some n € N, where x; € Q forall i = 1,...,n. Since a is irrational, we can choose 6 > 0 such that
xi ¢ (a—0,a+98) foralli=1,...,n (more precisely, we can choose 8 = min{|a—x;|:i=1,...,n}).
Then

|f(x) = f(a)| = f(x) < € whenever |x —a| < 6.

Therefore, f is continuous at a.

Now fix any rational number b = § € (0,1]. Then f(b) = é Choose a sequence of irrational
numbers {s,} that converges to b. Since f(s,) = 0 for all n € N, the sequence {f(s,)} does not
converge to f(b). Therefore, f is not continuous at b.

In this problem, we consider the domain of f to be the interval (0, 1], but the conclusion remain valid
for other intervals. In particular, we can show that the function defined on R by

1
-, ifx= B, P,q € N,where p and ¢ have no common factors;
q q
, if x=0;

1
0, if xisirrational,

f(x) =

is continuous at every irrational point, and discontinuous at every rational point.

Exercise 3.3.10. Consider

J—a)(x—az) - (x—a), if x€Q;
flx)= {o, if x€ Q.
SECTION 3.4
Exercise 3.4.6. Let @ = min{f(x) : x € [a,b]} and B = max {f(x) : x € [a,b]}. Then

JOen) +f(2) + -+ foxa) S@Zﬁ.

n n

Similarly,

)+ f () +- -+ fxn)

a< .
n

Then the conclusion follows from the Intermediate Value Theorem.

Exercise 3.4.7. (a) Observe that

|f(1/n)| < 1/nforalln e N.
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(b) Apply the Extreme Value Theorem for the function g(x) = ‘@‘ on the interval [a, b].

X

Exercise 3.4.8. First consider the case where f is monotone decreasing on [0, 1]. By Exercise 3.4.5,
f has a fixed point in [0, 1], which means that there exists xp € [0, 1] such that

f(x0) = xo.

Since f is monotone decreasing, f has a unique fixed point. Indeed, suppose that there exists

x1 € [0,1] such that f(x;) =x;. If x; < xp, then x; = f(x1) > f(x0) = xo, which yields a contradiction.

It is similar for the case where x; > xo. Therefore, xo is the unique point in [0, 1] such that f(xo) = xo.
Since f(g(x)) = g(f(x)) for all x € [0, 1], we have

f(g(x0)) = g(f (x0)) = g(x0)-

Thus, g(xo) is also a fixed point of f and, hence, g(xo) = xo = f(x0). The proof is complete in this
case.

Consider the case where f is monotone increasing. In this case, f could have several fixed points on
[0, 1], so the previous argument does not work. However, by Exercise 3.4.5, there exists ¢ € [0, 1]
such that g(¢) = c. Define the sequence {x,} as follows:

x| =c,
Xnt1 = f(xy) foralln > 1.

Since f is monotone increasing, {x,} is a monotone sequence. In fact, if x; < x5, then {x,} is
monotone increasing; if x; > x,, then {x,} is monotone decreasing. Since f is bounded, by the
monotone convergence theorem (Theorem 2.3.1), there exists xp € [0, 1] such that

lim x,, = xp.
n—oo
Since f is continuous and x,,+1 = f(x,) for all n € N, taking limits we have f(xo) = xo.
We can prove by induction that g(x,) = x, for all n € N. Then
g(x0) = lim g(x,) = limx, = xo.
n—oo

Therefore, f(xo) = g(x0) = xo.

SECTION 3.5

Exercise 3.5.2. (a) Let f: D — R. From Theorem 3.5.3 we see that if there exist two sequences {x, }
and {y,} in D such that |x, — y,| — 0 as n — oo, but {|f(x,) — f(v4)|} does not converge to 0, then
f is not uniformly continuous on D. Roughly speaking, in order for f to be uniformly continuous on
D, if x and y are close to each other, then f(x) and f(y) must be close to each other. The behavior
of the graph of the squaring function suggests the argument below to show that f(x) = x? is not
uniformly continuous on R.

1
Define two sequences {x,} and {y,} as follows: x, =n and y, = n+ — for n € N. Then
n

1
|Xn — yn| = - — 0 as n — . However,

1\? 1
|f(xn)_f(yn)|:<n+) —n2:2+—222f0ralln€N.
n n
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Therefore, {|f(x,) — f(yx)|} does not converge to 0 and, hence, f is not uniformly continuous on R.

. . 1 .
In this solution, we can use x,, = {/n+ — and y, = y/n for n € N instead.
n

(b) Use x,, = ndy, = ,neN.

1 1
/24 2nm : 2nm

(c) Usex, =1/nandy, =1/(2n).

3

It is natural to ask whether the function f(x) = x° is uniformly continuous on R. Following the

. 1 . .
solution for part (a), we can use x,, = {/n+ — and y, = /n for n € N to prove that f is not uniformly
n

continuous on R. By a similar method, we can show that the function f(x) =x",n € N, n > 2, is not
uniformly continuous on R. A more challenging question is to determine whether a polynomial of
degree greater than or equal to two is uniformly continuous on R.

Exercise 3.5.7. Hint: For part (a) use Theorem 3.5.5. For part (b) prove that the function can be
extended to a continuous function on [a,b] and then use Theorem 3.5.5.

Exercise 3.5.8. (a) Applying the definition of limit, we find b > a such that
c—1< f(x) < c+1 whenever x > b.

Since f is continuous on [a,b], it is bounded on this interval. Therefore, f is bounded on [a, o).
(b) Fix any € > 0, by the definition of limit, we find & > a such that

E
lf(x)—c| < > whenever x > b.

Since f is continuous on [a,b + 1], it is uniformly continuous on this interval. Thus, there exists
0 < & < 1 such that

|f(u)— fv)| < g whenever |u —v| < 8,u,v € [a,c+1].

Then we can show that | f(u) — f(v)| < € whenever [u—v| < 8, u,v € [a,o0).
(c) Since lim,_,o f(x) = ¢ > f(a), there exists b > a such that

f(x) > f(a) whenever x > b.

Thus,
inf{f(x) : x € [a,00)} = inf{f(x) : x € [a,]]}.

The conclusion follows from the Extreme Value Theorem for the function f on [a, b].

SECTION 3.6

Exercise 3.7.4. Since limy_. f(x) = lim,_,_ f(x) = oo, there exists a > 0 such that

f(x) > f(0) whenever |x| > a.
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Since f is lower semicontinuous, by Theorem 3.7.3, it has an absolute minimum on [—a,a| at some
point X € [—a,a]. Obviously,
f(x) > f(x) for all x € [—a,a].

In particular, f(0) > f(%). If |x| > a, then

f(x) = £(0) = f(%).

Therefore, f has an absolute minimum at .

Observe that in this solution, we can use any number ¥ in the range of f instead of f(0). Since
any continuous function is also lower semicontinuous, the result from this problem is applicable for
continuous functions. For example, we can use this theorem to prove that any polynomial with even
degree has an absolute minimum on R. Since R is a not a compact set, we cannot use the extreme
value theorem directly.

SECTION 4.1
Exercise 4.1.10. Use the identity

e\ " fla)

Exercise 4.1.11. (a) Using the differentiability of sinx and Theorem 4.1.3, we conclude the function
is differentiable at any a # 0. So, we only need to show the differentiability of the function at a = 0.
By the definition of the derivative, consider the limit

fx) = f(a)

2 .
_ 1
lim LW =A@ s/ Fex L Gin(1 /) + .
x—a X—a x—0 X x—0

a 1 "
um<f(+”> — tim exp(nlin(f(a-+ 1)) ~ In( (@)

For any x # 0, we have
fesin(1/x)] =[x sin(1 /)| < ],
which implies
—|x|] < xsin(1/x) < |x|.
Since lim,_,o(—|x|) = lim,_,¢ |x| = 0, applying the squeeze theorem yields

limxsin(1/x) = 0.

x—0
It now follows that
"0) = 1i M =i in(1 —c.
£1(0) = lim ———— limlxsin(1/x) +¢] = ¢

Using Theorem 4.1.3 and the fact that cosx is the derivative of sinx, the derivative of f can be written
explicitly as

1
Flx) = 2xsin; —cos(l/x)+¢, ifx#0;

c, if x=0.
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From the solution, it is important to see that the conclusion remains valid if we replace the
function f by

1
x'sin—, ifx#0;
X

0, if x=0,

g(x) =

where n > 2, n € N. Note that the function A(x) = cx does not play any role in the differentiability
of f.

We can generalize this problem as follows. Let ¢ be a bounded function on R, i.e., there is
M > 0 such that

lp(x)| <M forallx e R.
Define the function
x"o(1/x), ifx#0;
(e,
0, if x=0,

where n > 2, n € N. Then f is differentiable at a = 0.
Similar problems:

1. Show that the functions below are differentiable on R:

/2 cos(1 x), ifx>0;
flg =g xS =
0, if x<O

and

flx) =

xze_l/xz, if x #£0;
0, if x=0.

2. Suppose that ¢ is bounded and differentiable on R. Define the function
X"o(1/x), ifx#£0;
Flay = {¥O
0, if x=0.

Show that if n > 2, the function is differentiable on R and find its derivative. Show that if » = 1 and
lim,_,. @ (x) does not exists, then f is not differentiable at 0.

(b) Hint: Observe that
f L =—1+c<O0and f # =1+c¢>0
2nw) 2n+1)m) '

SECTION 4.2

Exercise 4.2.1. Define the function
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Then 4/ has an absolute maximum at xq. Thus,
H (x0) = f'(x0) — &' (x0) =0,
which implies f’(x0) = g'(x0).

Exercise 4.2.3. The inequality holds obviously if @ = b. In the case where a # b, the equality can be
rewritten as

sin(b) — sin(a)
b—a

sin(b) — sin(a)
b—a

to show that the absolute value of the slope is always bounded by 1, which can also be seen from

the figure. The quotient also reminds us of applying the Mean Value Theorem for the function

f(x) = sin(x).

The quotient is the slope of the line connecting (a, f(a)) and (b, f(b)). We need

fa) f(z) = sin(z)
f(b)

Figure 5.1: The function f(x) = sin(x).

Consider the case where a < b and define the function f: [a,b] — R by f(x) = sin(x). Clearly,
the function satisfies all assumptions of the Mean Value Theorem on this interval with f(x) = cos(x)
forall x € (a,b).

By the Mean Value Theorem, there exists ¢ € (a,b) such that

f(b)—f(a)

DL (o) = cos(e),

which implies

‘f(blz:i:(a) =|cos(c)| < 1.

It follows that |f(a) — f(b)| < |a— b|. The solution is similar for the case where a > b.
It is essential to realize that the most important property required in solving this problem is the
boundedness of the derivative of the function. Thus, it is possible to solve the following problems
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with a similar strategy.
1. Prove that |cos(a) —cos(b)| < |a—b| for all a,b € R.

2. Prove that |In(1+€**) —In(1+€%*)| < 2|a — b| for all a,b € R.
Exercise 4.2.4. Let us define f: [-7, 7] — R by
n
+ Z (a sinkx + by coskx).
k=

We want to find ¢ € (—m, ) such that f(c) = 0.

Now, consider the function
cos( kx sin(kx
( ! b I(c )>

x

2

|M=

Observe that g(—7) = g(7) and g’ = f . The conclusion follows from Rolle’s Theorem.

Exercise 4.2.5. Use the identity

fla) _ f(b)
1 fla) f(b) ’ _ fla)g(b) — f(b)g(a) _ sla) ~ s(b)
g(b)—gla) | gla) g(b) g(b)—g(a) o
Then apply the Cauchy mean value theorem for two functions ¢ (x) = % and y(x) = ﬁ on the

interval [a, D).

Exercise 4.2.6. 1. Apply Rolle’s theorem to the function
2 n
X X
flx)= alx—i-azj —|—-~+an;

on the interval [0, 1].
2. Apply Rolle’s theorem to the function

" sin(2k 4 1)x

fo=Y

&2kt
on the interval [0, 7/2].

Exercise 4.2.8. (a) Given € > 0, first find x large enough so that a — /2 < f'(x) < a+¢€/2 for
x > xg. Then use the identity

FO) )= flro)+ flry) | TR 4 [

X X — X0+ X0 1+xx(;c0

?

and the mean value theorem to show that, for x large,

fx)

a—€&E< ——<a+e.
X

(b) Use the method in part (a).
(c) Consider f(x) = sin(x).
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SECTION 4.3

Exercise 4.3.2. (a) We can prove that f is uniformly continuous on R by definition. Given any € > 0,

choose 6 = <£+81> ’ and get

€
_ T a_p <
|f(u)—fv)| < Llu—v|* < £ €£+1 <e€

whenever |u —v| < 8. Note that we use £+ 1 here instead of £ to avoid the case where ¢ = 0.

(b) We will prove that f is a constant function by showing that it is differentiable on R and f’(a) =0
for all @ € R. Fix any a € R. Then, for x # a,

‘f(X)_f(a)

lx—al*

x—al

<

= lx—a|*".
a

Since a > 1, by the squeeze theorem,

i 01

X—a X a

This implies that f is differentiable at a and f'(a) = 0.
(c) We can verify that the function f(x) = |x| satisfies the requirement.

From this problem, we see that it is only interesting to consider the class of functions that satisfy
(4.8) when a < 1. It is an exercise to show that the function f(x) = |x|'/? satisfies this condition
with / =1and ¢ = 1/2.

Exercise 4.3.3. Define the function

Then /' (x) = g’ (x) — f'(x) > 0 for all x € [xg, o). Thus, & is monotone increasing on this interval. It
follows that
h(x) > h(xo) = g(x0) — f(x0) = O for all x > xo.

Therefore, g(x) > f(x) for all x > xo.
Exercise 4.3.5. Apply the mean value theorem twice.

Exercise 4.3.6. Use proof by contradiction.

SECTION 4.4

Exercise 4.4.5. Suppose that
P(x)=ap+aix+---+apx".

Then apply L’Hospital’s rule repeatedly.
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Exercise 4.4.6. We first consider the case where n = 1 to get ideas for solving this problem in the
general case. From the standard derivative theorems we get that the function is differentiable at any
x # 0 with

1 2 1
"(X) =2x 3¢ 2 = ¢ 2.
f(x)=2x""e 3¢

)

Consider the limit

1
— T2
lim L& = SO) e
x—0 x—0 x—0 X

Letting t = 1 /x and applying L’Hospital rule yields

tol—

. e« .t ) 1
lim =lim — = lim —5 =0.
x=0t X o0 pl” 10 Dtel
Similarly,
L
. e ¥
lim =0.
x—=0" X

It follows that f is differentiable on R with

2 1
Fly=d e T A
0, if x=0.

In a similar way, we can show that f is twice differentiable on R with

6 2\ 1.
0, if x=0.

Based on these calculations, we predict that f is n times differentiable for every n € N with
Iy o £
o= \)e T A
0, if x=0,

where P is a polynomial. Now we proceed to prove this conclusion by induction. The conclusion is
true for n = 1 as shown above. Given that the conclusion is true for some n € N, for x # 0 we have

1 2 1y 1 1y _
f(”H)(x):—del <x> +;P <x>€ x2 :Q<x>€ X

where Q is also a polynomial. It is an easy exercise to write the explicit formula of Q based on P.
Moreover, successive applications of I’Hopital’s rule give

(n) _ £(n) 1
fim L= 1p <1> e —im P

x—0+ x—0 x—0t X X

o~

In a similar way, we can show that
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Therefore, f+1) (0) = 0. We have proved that for every n € N, f is n times differentiable and, so,
f € C"(R). Here we do not need to prove the continuity of f (") because the differentiability of £
implies its continuity.

In a similar way, we can also show that the function

e_)]’c, if x> 0;
0, if x<0

is n times differentiable for every n € N.

SECTION 4.5
Exercise 4.5.1. Let f(x) = ¢*. By Taylor’s theorem, for any x > 0, there exists ¢ € (0,x) such that

X L f(k)(o) f(m+1)(c) m—+1
flx)=e 7;;6 st (m+1)!c+
)Lk &€ m .k

7Cm+1 > Zi
K (m+1)! = k!

Exercise 4.5.5. (a) Observe that a simpler version of this problem can be stated as follows: If f is
differentiable on (a,b) and X € (a,b), then
fEHR)—f(X) _ f'(®)

li _
i h 1!

This conclusion follows directly from the definition of derivative.
Similarly, if f is twice differentiable on (a,b) and X € (a,b), then
fE+R) —f® @ [

li -
) 2 21

We can prove this by applying the L'Hospital rule to get
fE+h) — f@) - (®) fE+h) — ) _ ()

li — i .
0 2 o 2h 21

It is now clear that we can solve part (a) by using the L’Hospital rule as follows:

f SEED (@) SO @ SEER - @ - O @)
h—0 h? h—0 3h? 3!

Note that the last equality follows from the previous proof applied to the function f”.

(b) With the analysis from part (a), we see that if f is n times differentiable on (a,b) and X € (a,b),
then
(k) () hk
— n—1 f ('x)h
FE+h) X, X g (%)

lim : =
h—0 hrtl n!

This conclusion can be proved by induction. This general result can be applied to obtain the Taylor
expansion with Peano’s remainder in Exercise 4.5.6.
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SECTION 4.6

Exercise 4.6.3. We apply the definition to solve this problem. Given any u,v € I and A € (0,1), we
have

fAu+(1=2A)v) <Af(u)+(1-2)f(v)

by the convexity of f.
Since f(u),f(v) € J and J is an interval, A f(u) + (1 —A4)f(v) € J. By the nondecreasing
property and the convexity of ¢,

(S (Aut(1=2)v)) <@(Af () + (1 =A)f(v)) <AP(f(u)) + (1 =2A)9(f(v)).

Therefore, ¢ o f is convex on 1.

The result from this problem allows us to generate convex functions. For example, consider
f(x) = |x| and ¢(x) = x”, p > 1. We have seen that f is convex on R. The function ¢ is convex
and increasing on [0,e0) which contains the range of the function f. Therefore, the composition
g(x) = |x|?, p > 1, is convex on R. Similarly, i(x) = ¢ is also a convex function on R.

Observe that in this problem, we require the nondecreasing property of ¢. A natural question is
whether the composition of two convex functions is convex. The answer is negative. Observe that
f(x) =x%and ¢ (x) = |x — 1| are convex, but (¢ o f)(x) = |x> — 1| is nonconvex.

Exercise 4.6.4. Use Theorem 4.6.6 or Corollary 4.6.7.

Exercise 4.6.5. (a) Use the obvious inequality
(Va—vb)* > 0.

Alternatively, consider the function f(x) = —In(x), x € (0,0). We can show that f is convex on
(0,0). For a,b € (0,0), one has

(a5 < Ll 1)

) <
This implies
1 (a—;—b) < —ln(a)z—ln(b) — _In(v/ab).
Therefore,
“ b > Vab,
This inequality holds obviously when a = 0 or b

=0.
(b) Use Theorem 4.6.3 for the function f(x) = —In(x) on (0,).

SECTION 4.7
Exercise 4.7.1. (a) By Theorem 4.7.5,
{=a}, if x<O0;
df(x)={ [~a,a], if x=0;
{a}, if x>0.
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(b) By Theorem 4.7.5,

({-2}, ifx<—1;
[-2,0], if x=—1;
df(x) =< {0}, if xe (—1,1);
0,2, if x=1;
{2}, if x> 1.

Exercise 4.7.3. To better understand the problem, we consider some special cases. If n = 1, then
f(x) = |x—1]|. Obviously, f has an absolute minimum atx = 1. If n =2, then f(x) = |x— 1|+ |x—2|.
The graphing of the function suggests that f has an absolute minimum at any x € [1,2]. In the case
where n = 3, we can see that f has an absolute minimum at x = 2. We then conjecture that if 7 is
odd with n = 2m — 1, then f has an absolute minimum at x = m. If n is even with n = 2m, then f
has an absolute minimum at any point x € [m,m+ 1].

Let us prove the first conclusion. In this case,

2m—1 2m—1

fx) = ; e—if = ; (%),

where f;(x) = |x — i|. Consider X = m. Then
dfm(X) =[-1,1], dfi(x) = {1} ifi<m, df;(X) ={—1}ifi >m.

The subdifferential sum rule yields d f(X) = [—1, 1] which contains 0. Thus, f has an absolute
minimum at . If ¥ > m, we can see that d f(¥) C (0, ), which does not contain 0. Similarly, if
X < m, then d f(X) C (—e0,0). Therefore, f has an absolute minimum at the only point ¥ = m.

The case where 7 is even can be treated similarly.

Exercise 4.7.5. Fix a,b € R with a < b. By Theorem 4.7.9, there exists ¢ € (a,b) such that

f(b)—f(a)

Py € df(c) C[0,00).

This implies f(b) — f(a) > 0 and, hence, f(b) > f(a). Therefore, f is monotone increasing on R,
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