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GENERALIZED PRODUCT TOPOLOGY

Xinxing Wu and Peiyong Zhu

Abstract. Similarly to Tychonoff product, we introduce the concept of
generalized product topology which is different from the notion of prod-

uct of generalized topologies in [Á. Császár, Acta Math. Hungar. 123
(2009), 127–132] for generalized topology and obtain some properties
about it. Besides, we prove that connectedness, σ-connectedness and
α-connectedness are all preserved under this product.

1. Introduction and preliminaries

In the past years, several weak forms of open sets have been studied. Re-
cently, Á. Császár founded the theory of generalized topology in [1-8], studying
the extremely elementary character of these classes. It is well known that Ty-
chonoff product plays an important role in topological spaces. Motivated by
these, we shall investigate into ‘generalized product topology’ on generalized
topological spaces.

Let X be a set, and denote expX the power set of X . We call a class
λ ⊂ expX a generalized topology (briefly GT) [2] on X if Ø ∈ λ and any union
of elements of λ belongs to λ. A set with a GT is said to be a generalized

topological space (briefly GTS) [2]. For a GTS (X,λ), the elements of λ are
called λ-open sets and the complements of λ-open sets are called λ-closed sets.
For any x ∈ X , put N (x) = {A ∈ λ : x ∈ A}. For A ⊂ X , we denote by cA

the intersection of all λ-closed sets containing A and by iA the union of all
λ-open sets contained in A. A set A ⊂ X is said to be λ-semi-open (resp.
λ-preopen, λ-α-open, λ-β-open) [4] if A ⊂ ciA (resp. A ⊂ icA, A ⊂ iciA,
A ⊂ cicA). We denote by σ(λ) (resp. π(λ), α(λ), β(λ)) the class of all λ-
semi-open sets (resp. λ-preopen sets, λ-α-open sets, λ-β-open sets). Obviously
λ ⊂ α(λ) ⊂ σ(λ) ⊂ β(λ) and α(λ) ⊂ π(λ) ⊂ β(λ).
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A family λb ⊂ λ is called a base for a GTS (X,λ) if every non-empty λ-open
subset of X can be represented as the union of a subfamily of λb. We denote
by B(λ) of all bases of GTS (X,λ).

According to the definition of cA, similarly to the proof of [7, Proposition
1.1.1], it is not difficult to prove the following conclusion:

Lemma 1.1. For any A ⊂ X, the following conditions are equivalent:
1-1) x ∈ cA;
1-2) For any B ∈ N (x), we have B ∩ A 6= Ø;
1-3) There exists some λb ∈ B(λ) such that for any B ∈ N (x)∩λb, B∩A 6=

Ø.

Let (X,λ) and (Y, λ′) be two generalized topological spaces; a map f : X −→
Y is called continuous (called (λ, λ′)-continuous in [9]) if f−1(A) ∈ λ for any
A ∈ λ′.

A GTS (X,λ) is said to be connected (called γ-connected in [3]) if there are
no nonempty disjoint sets U, V ∈ λ such that U ∪ V = X .

A GTS (X,λ) is called α-connected (resp. σ-connected, π-connected, β-

connected) [11] if (X,α(λ)) (resp. (X, σ(λ)), (X, π(λ)), (X, β(λ))) is connected.
It is easy to see from the definition that

β-connected ⇒ σ-connected ⇒ α-connected ⇒ connected

and
β-connected ⇒ π-connected ⇒ α-connected.

In [11], the following result was proved:

Lemma 1.2 ([11]). For a GTS (X,λ), (X,λ) is α-connected if and only if

(X,λ) is connected.

Suppose we are given a set X , a family {(Ys, λs)}s∈Γ of GTS and a family
of maps {fs}s∈Γ, where fs is a map of X to Ys. It is easy to see that the GT

(1) λ =
{

∪A : A ⊂ {f−1

s (As) : As ∈ λs, s ∈ Γ}
}

is the coarsest GT that makes all the fs’s continuous. This GT is called the
GT generated by the family {fs}s∈Γ of maps.

2. Generalized connectedness under product

Similarly to Tychonoff product which can be found in [10, Section 2.3],
now we introduce generalized product for GTS. Suppose we are given a fam-
ily of GTS {(Xs, λs)}s∈Γ; consider the Cartesian product X =

∏

s∈Γ
Xs and

the family of maps ps, where ps assigns to the point x = {xs} ∈
∏

s∈Γ
Xs

its sth coordinate xs ∈ Xs. The set X =
∏

s∈Γ
Xs with the GT

∏

s∈Γ
λs

generated by the family of {ps}s∈Γ is called the generalized product topology

space (briefly GPTS) and
∏

s∈Γ
λs is called the generalized product topology

on
∏

s∈Γ
Xs (briefly GPT); The map ps :

∏

s∈Γ
Xs −→ Xs is called the pro-

jection of
∏

s∈Γ
Xs onto Xs. Clearly, the GPTS is usually different from the
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product of generalized topologies in [8] for generalized topology. Put the set
B∗
(
∏

s∈Γ
λs

)

=
{

p−1
s (Bs) : Bs ∈ λs, s ∈ Γ

}

.

Proposition 2.1. For a GPTS
(
∏

s∈Γ
Xs,

∏

s∈Γ
λs

)

,

B
∗

(

∏

s∈Γ

λs

)

∈ B(
∏

s∈Γ

λs).

Proof. It is clear that B∗
(
∏

s∈Γ
λs

)

=
{

p−1
s (Bs) : Bs ∈ λs, s ∈ Γ

}

⊂
∏

s∈Γ
λs.

Combining this with (1), the proof is completed. �

Proposition 2.2. c
(
∏

s∈Γ
As

)

=
∏

s∈Γ
cAs;

i

(

∏

s∈Γ

As

)

=











Ø, |{s ∈ Γ : As 6= Xs}| ≥ 2,
∏

s∈{s∈Γ:As 6=Xs}

iAs ×
∏

s∈Γ−{s∈Γ:As 6=Xs}

Xs, |{s ∈ Γ : As 6= Xs}| = 1,

∏

s∈Γ
Xs, |{s ∈ Γ : As 6= Xs}| = 0.

Proof. Applying Lemma 1.1, we have

c

(

∏

s∈Γ

As

)

=

{

x = {xs} ∈
∏

s∈Γ

Xs : ∀B ∈ N (x) ∩ B
∗

(

∏

s∈Γ

λs

)

, B ∩

(

∏

s∈Γ

As

)

6= Ø

}

=

{

x = {xs} ∈
∏

s∈Γ

Xs : ∀s ∈ Γ, ∀Bs ∈ N (xs), Bs ∩ As 6= Ø

}

=
∏

s∈Γ

cAs.

The second equation is easy to verify. �

It can be verified that

α

(

∏

s∈Γ

λs

)

⊃
∏

s∈Γ

α(λs), σ

(

∏

s∈Γ

λs

)

⊃
∏

s∈Γ

σ(λs),

π

(

∏

s∈Γ

λs

)

⊃
∏

s∈Γ

π(λs), β

(

∏

s∈Γ

λs

)

⊃
∏

s∈Γ

β(λs).

(2)

At the end of this paper, we shall use an example to show that the inclusion of
(2) can hold strictly.
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Proposition 2.3. For a GPTS
(
∏

s∈Γ
Xs,

∏

s∈Γ
λs

)

,

c(∪s∈Γp
−1

s (As)) =
∏

s∈Γ

Xs,

where Ø 6= As ⊂ Xs for s ∈ Γ.

Proof. Choose arbitrarily x = {xs} ∈
∏

s∈Γ
Xs. For any B ∈ N (x), we have

that there exist s0 ∈ Γ and Ø 6= Bs0 ∈ λs0 such that x ∈ p−1
s0

(Bs0) ⊂ B.

So B ∩ (∪s∈Γp
−1
s (As)) = ∪s∈Γ(B ∩ p−1

s (As)) ⊃ ∪s∈Γ(p
−1
s0

(Bs0) ∩ p−1
s (As)) ⊃

∪s∈Γ−{s0}(p
−1
s0

(Bs0 ) ∩ p−1
s (As)) 6= Ø as each As 6= Ø. Combining this with

Lemma 1.1, it follows that x ∈ c(∪s∈Γp
−1
s (As)).

Hence c(∪s∈Γp
−1
s (As)) =

∏

s∈Γ
Xs. �

Theorem 2.4. The GPTS
(
∏

s∈Γ
Xs,

∏

s∈Γ
λs

)

is connected if and only if all

spaces (Xs, λs) are connected.

Proof. Necessity. Suppose that there exists some s0 ∈ Γ such that (Xs0 , λs0) is
not connected. Then there exist nonempty disjoint subsets As0 , Bs0 ∈ λs0 such
that As0 ∪Bs0 = Xs0 . This implies that nonempty

∏

s∈Γ
λs-open sets p−1

s0
(As0)

and p−1
s0

(Bs0) satisfy p−1
s0

(As0) ∩ p−1
s0

(Bs0) = Ø and p−1
s0

(As0 ) ∪ p−1
s0

(Bs0) =
∏

s∈Γ
Xs. So

(
∏

s∈Γ
Xs,

∏

s∈Γ
λs

)

is not connected.

Sufficiency. Suppose that
(
∏

s∈Γ
Xs,

∏

s∈Γ
λs

)

is not connected. Then there
exist nonempty disjoint subsets A,B ∈

∏

s∈Γ
λs such that A ∪ B =

∏

s∈Γ
Xs.

Without loss of generality, we may assume that A = ∪s∈Γ′⊂Γp
−1
s (As), where

Ø 6= As ∈ λs for s ∈ Γ′.
Now we assert that |Γ′| = 1.
Obviously, Γ′ 6= Ø as A 6= Ø. If |Γ′| > 1, we have that there exist s1 6= s2 ∈

Γ′ such that p−1
s1

(As1)∪p
−1
s2

(As2) ⊂ A. As A 6=
∏

s∈Γ
Xs and A∪B =

∏

s∈Γ
Xs,

then As1 6= Xs1 , As2 6= Xs2 and B =
∏

s∈Γ
Xs − A ⊂

∏

s∈Γ
Xs − (p−1

s1
(As1 ) ∪

p−1
s2

(As2)) = p−1
s1

(Xs1 − As1) ∩ p−1
s2

(Xs2 − As2). Applying Proposition 2.2, it

follows that B = iB ⊂ i(p−1
s1

(Xs1 − As1) ∩ p−1
s2

(Xs2 − As2)) = i(As1 × As2 ×
∏

s∈Γ−{s1,s2}
Xs) = Ø, which is a contradiction. Therefore |Γ′| = 1.

The set Γ′ = {s1}, then there exists Ø 6= As1 ∈ λs1 such that A = p−1
s1

(As1).

So B =
∏

s∈Γ
Xs − A = p−1

s1
(Xs1 − As1) ∈

∏

s∈Γ
λs. This leads with the

construction of
∏

s∈Γ
λs to that Ø 6= Xs1 −As1 ∈ λs1 . Hence (Xs1 , λs1) is not

connected. �

Theorem 2.5. The GPTS
(
∏

s∈Γ
Xs,

∏

s∈Γ
λs

)

is σ-connected if and only if

all spaces (Xs, λs) are σ-connected.

Proof. Necessity. Suppose that there exists some s0 ∈ Γ such that (Xs0 , λs0) is
not σ-connected. Then there exist nonempty disjoint subsets As0 , Bs0 ∈ σ(λs0 )
such that As0 ∪ Bs0 = Xs0 . This implies that nonempty sets p−1

s0
(As0) and

p−1
s0

(Bs0) satisfy p−1
s0

(As0 )∩p
−1
s0

(Bs0 ) = Ø and p−1
s0

(As0 )∪p
−1
s0

(Bs0) =
∏

s∈Γ
Xs.
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Applying Proposition 2.2, noting the fact that As0 , Bs0 ∈ σ(λs0 ), we have

ci(p−1

s0
(As0)) = c(p−1

s0
(iAs0)) = p−1

s0
(ciAs0) ⊃ p−1

s0
(As0),

and

ci(p−1

s0
(Bs0)) = c(p−1

s0
(iBs0)) = p−1

s0
(ciBs0) ⊃ p−1

s0
(Bs0 ).

So
(
∏

s∈Γ
Xs,

∏

s∈Γ
λs

)

is not σ-connected.

Sufficiency. Suppose that
(
∏

s∈Γ
Xs,

∏

s∈Γ
λs

)

is not σ-connected. Then

there exist nonempty disjoint subsets A,B ∈ σ
(
∏

s∈Γ
λs

)

such that A ∪ B =
∏

s∈Γ
Xs. As each (Xs, λs) is σ-connected, we know from [8, Theorem 2.3]

that Xs = ∪λs ∈ λs. This implies that
∏

s∈Γ
Xs ∈

∏

s∈Γ
λs, i.e., cØ = Ø.

So we have ciA ⊃ A ⊃ iA 6= Ø and ciB ⊃ B ⊃ iB 6= Ø. Thus there
exist s1 ∈ Γ and Ø 6= As1 ∈ λs1 such that A ⊃ iA ⊃ p−1

s1
(As1). Therefore

B =
∏

s∈Γ
Xs − A ⊂

∏

s∈Γ
Xs − p−1

s1
(As1 ) = p−1

s1
(Xs1 − As1). Similarly, we

have that there exists Ø 6= Bs1 ∈ λs1 such that

p−1

s1
(As1 ) ⊂ iA ⊂ A ⊂ ciA ⊂ p−1

s1
(Xs1 −Bs1),

and

p−1

s1
(Bs1) ⊂ iB ⊂ B ⊂ ciB ⊂ p−1

s1
(Xs1 −As1).

Now we assert that for any x = {xs} ∈ iA, there exists some A(x) ∈ N (xs1)
such that x ∈ p−1

s1
(A(x)) ⊂ A.

Indeed, if there exists some x = {xs} ∈ iA such that p−1
s1

(D) * A holds

for any D ∈ N (xs1). Noting that fact that
{

p−1
s (Bs) : Bs ∈ λs, s ∈ Γ

}

∈

B
(
∏

s∈Γ
λs

)

, we have that there exists s1 6= s2 ∈ Γ and As2 ∈ λs2 such that

x ∈ p−1
s2

(As2) ⊂ A ⊂ p−1
s1

(Xs1 −Bs1). So p−1
s2

(As2) ⊂ p−1
s1

(Xs1 −Bs1), which is
a contradiction as s1 6= s2.

Thus iA = ∪x∈iAp
−1
s1

(A(x)) = p−1
s1

(∪x∈iAA(x)).
Similarly, we know that there exist nonempty subsets As1 ,Bs1 ∈ λs1 such

that iA = p−1
s1

(As1 ) and iB = p−1
s1

(Bs1). As Ø = A∩B ⊃ iA∩ iB = p−1
s1

(As1 ∩
Bs1), we have As1 ⊂ Xs1 − Bs1 , then Xs1 − cAs1 ⊃ Bs1 6= Ø. It follows from
A ∪ B =

∏

s∈Γ
Xs and Proposition 2.2 that ciB = cp−1

s1
(Bs1) = p−1

s1
(cBs1) ⊃

B ⊃
∏

s∈Γ
Xs−A ⊃

∏

s∈Γ
Xs− ciA = p−1

s1
(Xs1 − cAs1), so cBs1 ⊃ Xs1 − cAs1 .

The set C = cAs1 and D = Xs1−cAs1 . Clearly C∪D = Xs1 and C∩D = Ø.
Meanwhile, we have ciC ⊃ ciAs1 = cAs1 = C and ciD ⊃ ciBs1 = cBs1 ⊃ D.
Hence (Xs1 , λs1) is not σ-connected as both C and D are nonempty. �

Theorem 2.6. Given a family of GTS {(Xs, λs)}s∈Γ, the following are equiva-

lent:
6-1)

(
∏

s∈Γ
Xs,

∏

s∈Γ
λs

)

is α-connected;

6-2)
(
∏

s∈Γ
Xs,

∏

s∈Γ
λs

)

is connected;
6-3) All spaces (Xs, λs) are α-connected;
6-4) All spaces (Xs, λs) are connected.

Proof. Applying Lemma 1.2 and Theorem 2.4, it holds trivially. �
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Applying Proposition 2.2, it follows that for any s0 ∈ Γ and any As0 ⊂ Xs0 ,

ic(p−1

s0
(As0)) = i(p−1

s0
(cAs0 )) = p−1

s0
(icAs0),

and

cic(p−1

s0
(As0 )) = ci(p−1

s0
(cAs0)) = c(p−1

s0
(icAs0)) = p−1

s0
(cicAs0).

Similarly to the proof of Theorem 2.5, the following theorem holds trivially:

Theorem 2.7. All spaces (Xs, λs) are π-connected (resp. β-connected) pro-

vided that the GPTS
(
∏

s∈Γ
Xs,

∏

s∈Γ
λs

)

is π-connected (resp. β-connected).

Being the end of this paper, we shall use an example which is similar to the
construction of Example 2.5 in [12] to show that

(1) The inverse of Theorem 2.7 is not correct;
(2) The inclusion of (2) can hold strictly.

Example 2.8. Let X1 = X2 = {a, b} and λ1 = λ2 = {Ø, {a}, {a, b}}. Clearly
the GTP (X1, λ1) and (X2, λ2) are connected and

λ1 × λ2 = {Ø, {(a, a), (a, b)}, {(a, a), (b, a)}, {(a, a), (a, b), (b, a)}, X1 ×X2} .

As cic{b} = ci{b} = cØ = Ø, we have β(λi) = λi. So (X1, λ1) and (X2, λ2) are
β-connected (thus π-connected) and

σ(λ1)× σ(λ2) = π(λ1)× π(λ2) = α(λ1)× α(λ2) = β(λ1)× β(λ2) = λ1 × λ2.

Take A = {(a, a)} and B = X1 ×X2 − A = {(a, b), (b, a), (b, b)}. Applying
Lemma 1.1 and Proposition 2.3, it is easy to see that icA = icB = X1 ×X2,
i.e., A,B ∈ π(λ1 × λ2). So the GPTS (X1 ×X2, λ1 × λ2) is not π-connected
(thus not β-connected).

Choose D = {(a, a), (a, b), (b, a)}. We know from Proposition 2.3 that
iciD = X1 × X2 ⊃ D. This implies that D ∈ α(λ1 × λ2) − α(λ1) × α(λ2).
Thus D ∈ σ(λ1 × λ2) − σ(λ1) × σ(λ2), D ∈ π(λ1 × λ2) − π(λ1) × π(λ2),
D ∈ β(λ1 × λ2)− β(λ1)× β(λ2).

Hence α(λ1×λ2) % α(λ1)×α(λ2), σ(λ1×λ2) % σ(λ1)×σ(λ2), π(λ1×λ2) %
π(λ1)× π(λ2), β(λ1 × λ2) % β(λ1)× β(λ2).
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