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RIEMANN INTEGRAL -1
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1.1INTRODUCTION

The Riemann integral dealt with in calculus courses, is well
suited for computations but less suited for dealing with limit
processes.

Bernhard Riemann in 1868 introduced Riemann integral. He
need to prove some new result about Fourier and trigonometric
series. Riemann integral is based on idea of dividing. The domain of
function into small units over each such unit or sub-interval we erect
an approximation rectangle. The sum of the area of these rectangles
approximates the area under the curve.

As the partition of the interval becomes thinner, the number
of sub-interval becomes greater. The approximating rectangles
become narrower and more precise. Hence area under the curve is
more accurate. As limits of sub-interval tends to zero, the values of
the sum of the areas of the rectangles tends to the value of an
integral. Hence the area under curve to be equal to the value of the
integral.

Before going for exact definition of Riemann explained the
following definitions.

1.2 PARTITION

A closed rectanglein R" isasubset A of R" of the forms.

A=[a,b]x[a, b]x...x[a,b,] where a <heR. Note that
(X %,y X, ) € Aiff @ <x <BVi.
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The points x;, x,,....,x, are called the partition points.

The closed interval 1, =%, %], 1, =[X, %] I, =[%1: %, ] are
called the component internal of [a,b].

Norm : The norm of a portion P is the length of the largest sub-
internal of P and is denoted by |P|.

For example : Suppose that B =t,,t,,...t,is apartition of [a,b ] and
P,=S,...S isapartition of [a,,b,]. Then the partition P=(R.R,) of
[a.b]x[a,,b,] divides the closed rectangle [a,,b ]x[a,,b,]into Kr-
gub rectangles.

In general if P divides [a,h] into k sub-interval then

P=(R,...R)[a.b]x...x[a,b] into K=kk,..k, sub-rectangle.
These sub-rectangles are called sub-rectangles of the partition p.

Refinement :
Definition : Let A be arectanglein R" and f: A— R be a bounded
function and P be partition of A for each sub-rectangles of the

partition.
ms( f)=inf {f(x):xeS}
=glb.of f On[xs—l’XS]
Ms( f)=sup{f(x):xeS|

=lub.of fon[x ,,x]
where S=1,2,....,n

The lower and upper sums of f for ‘p’ are defined by
L(f.p)=22m(f)v(s) and U(f,p)=> M(f)v(s)
Since m <M, wehave L(f,p)<U(f,p)

Refinement of a partition : Let P=(PR,P,,..,R)and P =(F’,..,P,)

be partition of a rectangle A in R". We say that a partition P isa
refinement of P if Pc P
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If p and P, are two partition of A then P=RUP, isdso a
partition of A is called the common refinement of B and B,.

A function f:A— R is caled integrable on the rectangle A

in R" if ' f'isbounded .. glb of the set of al upper sumof 'f' and
l.ub of the set of all lower sumof ' f ' exist.

Let U(f)=inf{U(f,p)}
L(f)=sup{L(f,p)}

IfU(f)=L(f )iscalled'f' isRintegrabIeoverA.
.if can bewritten as U ( If

Theorem :

Let Pand P’ be partitions of a rectangle A in R". If P’
refines P then show that L(f,p)<L(f,P)and U(f,P")<U(f,p).

Proof :

Let a function f:A> R isboundedon A P & P are two
partition of A and P’ isretinement to P.

Any subrectangle S of P’ is union of some subrectangles
S,S,.§ Of PPand V(S)=V(s)+V(s,)+...+V(s).

Now m(f)=inf{f(x);xes}<inf{f(x);xes}

m(f)<m (f) Vi=1...,k
=st(f)V(S)

~my(f) () ( )+ .tV ()

The sum of LHS for al subrectangle s of P’ will get

L(f,P).



U(tm=2;mﬁﬁ4$
Now, Ms (f)V(S)=Ms(f)(V(S)+V(S,)+..+V(S))
<MS(FIV(8)+ et M (FIV(8)) 4ot M (FIV(s,)

Taking the of L.H.S. for all subrectangle S of P will get
U(f,P).U(f,P)2U(f,P).

Theorem :
Let p & P, be partitions of rectangle A & f:A—>R be

bounded  function. Show that L(f,R)<U(f,R) &
L(f,R)<U(f.R).

Proof :
Let a function f: A— Rbe abounded find p & P, are any

two partition of A.

Let P=RUP,

.. P isarefinement of both p & P,
U(f,P)<U(f,R).ccreenen. ()
U(f,P)<SU(F,B).rennn. (1
L(f,P)>L(f,R).ereenn. (1
L(f,P)>L(f,R) e %

Similarly, U (f,,R,)>U(f,P)>L(f,P)>L(f,R).
Hence, U(f,R)>L(f,R)

Theorem :
Let a function f:A—R be bounded on A then for any

e>0,3a partition P on A such that U(f,P)<U(f)+e and
L(f,P)>L(f)-€



Proof :

Let a function f:A—>R be bounded on A
U(f)=inf{U(f,P)} and L(f)=sup{L(f,P)} for any e>0,3
partitions p, & P, of A such that U(f,R)<U(f)+e &
L(f,R)>L(f)-e.

1.3 RIEMANN CRITERION

Let A be arectanglein R" A bounded function f:A—R is

integrable iff for every >0, there is a partition P of A such that
U(f,P)-L(f,P)<e.

Proof :
Let afunction f: A— R isbounded.
U(f)=inf{U(f,P)}
L(f)=sup{L(f.P)}
Letf beintegrable of A
~U(f)=L(f)

for any >0, 3 a partition P on A such that U (f,p)<U(f)+e/2
and L(f,p)>L(f)-e/2.

c

(f.p)=U(f)+e/2 & —L(f,p)<-L(f)+e/2.
SU(F,p)-L(f,P)<U(f)+e/2-L(f)+ef2.

SU(f,p)-L(f)<e

Conversdly,

Let for any e>0,3 a partition P on A such that
U(f,p)-L(f,P)<e.

[U(P.f)-U(F)]+[U(f)-L(F)]+[L(f)-L(f,P)]<e



Since U(f,P)-U(f)>o,

U(f)-L(f)>
and L(f)-L(f,P)>
~.wehave, o<U (f)-L(f)<e

Since e isarbitrary, U (f)=L(f)
~.fisintegrable over A.

Example 1
Let A be a rectangle in R" and f:A—R be a constant

function. Show that f is integrable and j f =CV(A) forsome CeR.
A

Solution :
f(x)=C vxeA
-. f isbounded on A

Let P be apartition of A
m(f)=inf{f(x);xes}=C
M, (f)=sup{f(x);xes}=C

L(f,P)=Zslms(f)V(S)=CZS:V(S)=CV(A)
U(f,P)=DM(f)V(S)=CD> V(S)=CV(A)
~U(f)=L(f)=CV(A)
. f isintegrable over A.

.. by Reimann criterion, e<0 sit.
[f=CV(A) forsome CeR.
A

Example 2:
Let F :[0,1]X[0,1]—>]R
o if xisrational
fFxy)=y. .. . .
1 if xisirrational

Show that ‘f' is not integrable.

Solution :
Let P be apartition of [0,1]x[0,1] into S subport of P.
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Take any point 3(x,,y;)e S such that x isrational.

x,y)=o and 3(x,y,)eS such that x, is irrational

U (f)=L(f)
- f isnot integrable [0,1]x[0,1]

1.4 PROPERTIES OF RIEMANN INTEGRAL

1) Let f:A—>Rbe integrable and g=f except at finitely many
points show that g isintegrableand [ f =[g.
A A

Proof :

Sincef isintegrable over A.
.. by Riemann Criterion, 3 apartition P of A.
Suchthat U(f,P)-L(f,P)<e ......... ()

Let P' be arefinement of P, such that
1) vxe A with f(x)= g(x),itbelongsto 2" subrectangles of P’

(S

2) V(S)<m

Where d = numbers of pointsin A at which f =g
u=sup{g(x)}=inf { f (x)}

¢=inf {g(x)}-sup{ f (x)}
. P" isrefines P, we have
L(f,P)<L(f,P)<U(f,P)<U(f,P)
~U(F,P)-L(f,P)<U(f,P)-L(f,P)<e



Now
U(g,P)-U(f,P)

i(Z(MsJ )-Ms; (F))V(s))

i=1

- On other rectangle, f =gandso Ms;(g)=Ms;(f).
+ Ms; (g) <sup{g(x)} & Ms, ()=inf {f (x)j-Ms;(f)<inf {f (x)}
Ms; (g)-Ms; (f)<u
a1 (S
Let stup{V(S,j)}SU(g,Pl) u(f, Pl)giliuv<d2“uv .......
)]
Now similarly weget L(g,P')-L(f,P")>d2"Vv .........(lll)

by (I1) & (111) we get.
U(g,P')-L(g,P")<U(f,P")+d2"ug-L(f,P)-d2"9
s§+d2”(u—£)v

<€ d2”e(u—£)E+E:e

S—4+———~
2 d2™(u-¢)2 2
~U(g,P)-L(g,P")<e

By Reimann Criterion G isintegrable by equation (1)
U(g.P")-U(f,P")<d2'uv

~U(g,PY)<U(f,P')+d2"ud
Notethat [g<U(g,P*)<U(f,P')+d2'us
A
<L(f,P)+S+d2"ug
2

d2"ue
1
fP /2 d2n+1 u+/)
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<L(f,Pl)+€/2+€2
<L(f,P1)+e

<£f+e

Thisistruefor any >0

Jos[f o (V)
Now [g>L(g,P")=L(f,P)+5,
' >U (f,P)
>[f>[f-5,

[ f=inf{u(f,P))

A

.'.Ig>jf—€/2

A A

~. Thisistruefor any e>0

I N P (V)

A A

~.from (1V) & (V) we get

o

2) Let f:A—R be integrable, for any partition P of A and sub-
rectangle S, show that

i) m(f)+m(g)<m(f+g)and
i) M,(f)+M,(g)=M,(f+g)

Deduce that
L(f,P)+L(g,P)<L(f+g,P) and

U(f+g,P)<U(f,P)+U(g,P)

Solution :
Let P be apartition of A and S be a Subrectangle

~m(f)=inf{f(x);xeS}
=m(f)<f(x)vxeS
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Similarly m (g)<g(x)vxeS
~m(f)+m(g)< f(x)+g(x)vxeS
= m,(f)+m(g) islower bound of
{f(x)+9(x);xeS}={(f+g)(x);xeS}
= m,(f)+m(g) islower bound of
{f(x)+9(x);xeS}={(f+g)(x);xeS}
=m/(f)+m(g)<inf{(f+g)(x);xeS]
=m(f+g)
~m(f)+m(g)<m(f+9)

i) Ms(f)=sub{f(x);xes|
= Ms(f)>f(x) Vxes

Similarly Ms(g)>g(x)vxe S

S Ms(f)+Ms(g)>f(x)+g(x)VxeS
= Ms( f)+Ms(g) isupper bound of
{f(x)+9(x);xeS}={(f+g)(x);xeS}

= Ms( f)+Ms(g)>sup {(f +g)(x);xe S} =Ms(f +g)

- Ms(f)+Ms(g)>Ms(f+g)

Hence,

L(f,P)+L(g,P)=> (Ms(f)+Ms(g))V(S)

Sé(Ms(f +9))V(S)

<L(f+g,P)

2§(Ms(f +9))V(S)
>U(f+g,P)
U(f,P)+U(g,P)>U(f+g,P) Proved.
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3) Let f:A—Rbe integrable, & g:A— R integrable than show
that f +g isintegrableand [(f+g)=[f+[g.
A A A

Proof :
Let P be any partition of A then

U(f+g,P)-L(f+g,P)<U(f,P)+U(g,P)-[L(f,P)+L(g,P)]

<U(f,P)+U(g,P)=L(f,P)=L(Q,P).eereriiriiiirirarannnn, ()
- f isintegrable.

By Rieman interion for given > 0,3 apartition P, of A such

that U ( f, (f.R) /2 ........................................ ()

Similarly ~gis integrablefor e>0,3 a partition P, of A such that

U(g.R) /2 ............................................. (1)

Then P" =R UP, isarefinement of both B & P,.

( Pl)sL(fP) U(f, )>U(fP) & L(g.R)<L(f.P);
(9.R)=U (g ) T (A |

r.e/2>U(f,R)-L(f,R)=U(f,P)-L(f,P")

e/2>U(g.R)- L(gP U(9.P)=L(QP) e, (V)

The equation | istrue for any partition P of A.

In general, it istrue for partition P of A
~U(f+9,P)-L(f+0,P)
<U(f,P")-L(f,P")+U(g,P")-L(g.P)
<e/2+e/2=€
U(f+0,P")-L(f+g,P)<e
By Riemann Criterian f +g isintegrable.

Let /0 since [f=sup{f,P} so 3a partition P such that
A

./[f <(f,F})+%.
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Similarly 3a partition B,,R,...R, of A S
_[g<L(g,l32)+€/2
A

U(f,R)<[f+5
A

U(g,Fg)<Ig+€2
A

Let P=RURURUP,.
Then If <(f,F})+€/2£ L(f,P)+‘72
A

Similarly jg< L(9.P)+%,
A

U(1,P)<[f+55 andU(g,P)<[g+%)

[f+[g-e<L(f,P)+L(g,P)<L(f+g,P)<[f+g

Thisistruefor any >0
.-.jf+jgsjf+gsjf+jg:>jf+g:jf+Ig
A A A A A A A A

4) Let f:A—>Rbe integrable for any constant C, show that

f(cry=c|t.

A

Proof :
Let CeR
Casel
Let >0 and suppose C > 0.
Let P be apartition of A and S be a subrectangle of P.
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M, (Cf ) =sup{(Cf )(x);xe S}
=sup{Cf (x);xe S}
=Csup{f(x);xeS|
=CMs( f)
Similarly,
ms(Cf )=Cm,( f)
~U(Cf,P)=> Ms(Cf )v(S)=C> Ms(f)v(S)
=C U(f,P)
Similarly L(Cf,P)=CL(f,P)
- f is integrable for above €<0,3 a partition P of A such that
U(f,P)-L(f,P)<e/C
~U(Cf,P)-L(Cf,P)=CU(f,P)-CL(f,P)
=C[U(f,P)-L(f,P)]

:Cx%:C

By Riemann Criteria.
(Cf )isintegrable
for e>0,3a partition P of A such that

ij—e:C[If—%J<CL(f,P):L(Cf,P)

SJ;Cf <U(Cf,P)
<CU(f,P)<C(£f+%J
.-.[{f-%}{q <C(£f+%J:C£f+e

Thisistruefor any e<0
c[f<[(cf)<cC[f
A A A
~fcf=cff
A A
Casell
Now suppose C <0

Let P be apartition of A and S be any subrectanglein P.
~.Ms(Cf )=C Ms( f)and
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m,(Cf )=C Ms( f
~.L(Cf,P)=CU(f,P)and
U(Cf,P)=CL(f,P)

. f isintegrable for above > 0,3apartition P of A such that
u(f,P)—L(f,P)<%_C)
U (Cf,P)-L(Cf,P)=CL(f,P)-CU(f,P)
=—C[U(f,P)-L(f,P)]

<€ ¢

<e
By Riemann Criteria (Cf )isintegrable.

for e>0,3 apartition P of A such that Cj f—e<ICf <Cj f+e

Thisistruefor every e>0

cjf <jc:fs—cjf
A A A
.-.ij=cjf
A A

Example 3:
Let f,g:A— R be integrable & suppose f <g show that

Ifgig.

A

Solution :
By definition [ f =inf {U(f,P)} and [g=inf{U(g,P)}.
A A
Let P be any partition of A & Sbe any subrectanglein P
as f<g
m(f)<m(g)
U(f, P)gU( ,P)
P)j<int {U (g,P)]

Thisistrue for any partition

.'..[fs.[g

mf{
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Example 4:

If f:A—R is integrable show that if is integrable and
[f
A

§£|f|.

Solution :
= Suppose f isintegrable first we have to show that | f| isintegrable.

Let P be apartition of A & S be subrectangle of P then
Ms(|f|)=sup{‘f )|;xe s}

=su {|f XeS}
=‘ {f XES‘
=[Ms( 1)

Similarly
Ms(|f ) =[Ms( 1)

(111 P)=Zm.( )V (S)-X
L ].P)= Xm0V (S)
B MmOV ()= X(m,

<U(f,P)-L(f.P)

M, (f)IV(S)

(F)|=m())V(S)

- f is integrable, for e>0,3 a partition P such that
U(f,P)-L(f,P)<e.

U([f].P)-L(|f[.P)<U(f,P)-L(f,P)<e
.. By Riemann criteria
|f| isintegrable over R.

IF

Now

oo
= mfZM ‘

= inf ZMS(f)V(S)‘

=|inf ;Ms|f|V(S)|
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sinf;MS|f|v(s)
=inf {U (|f],P)}
=[I1]

A

£ f

Example 5:
Let f:A—>R and P be a partition of A show that f is

integrable iff for each sub-rectangle S the function %Whi ch consist
of f restricted to Sisintegrable and that in this case I f= Zj % :
A S s

= Suppose f: A— R isintegrable.
Let P be apartition of A & S be asub-rectanglein P.

Now to show that %;S—HR isintegrable.
Let e>0,3 apartition P’ of A such that U (f,P)-L(f,P)<e (.. f

isintegrable)
Let P=PUP’ then B isrefinement of bothP & P'.

~U(f,P)>U(f,R) & L(f,P)<L(f,R)
~U(F,B)-L(f,R)<U(f,P)-L(f,P)<e.ciiiciiinncnn (1)
- B isrefinement of P
-+ S isunion of some subrectangle of B say 5=!1Si-
~e>U(f,R)-L(f,R)=> (M(f)-m(f))V(S) foral rectangle.
SeR.
k
22 (Ms (F)-m, (1))v(8)
f f
o(e7)-Hs7)
. By Riemann Criterion
% isintegrable.

Conversely, Suppose %isintegrablefor each SeP.

To show that f isintegrable.
Let e>0,3 partition P, of Ssuch that



f/s isintegrable for each Se P where K is number of rectanglein
P.

Let P' be the partition of A obtained by taking all the
subrectangle defined in the partition ;.

There is a refinement P of P, containing subrectangles in

P.
SU (/s P)=L(f/s,Pl)<e/k i (1)
.'.U(f,Pl)—L(f,Pl):S;l(MSl(f)—msl(f))V(Sl)
5[ B s0-m()v(s)
=§P(U(f/s,P§)—L(f/s,Psl))
<;e/k
<k,e/k<e

.. By Riemann Criterian f isintegrable.

Let e>0
;(j f/S—e/kJ<§PL(f/S,PS)
<3| s

Let P' be a partition of A, obtained by taking allthe subrectangle
defined in P;.
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(jf/s e/k]<2( (F))v(s')

SeP SePt

<L(f,P <jf<u(f,P1)
A

:SélMé(f)V(Sl)

=§(Z Msl(f)V(Sl)}

P\ steP*

2 (U(T/S.R)) sep(If/S+%J

SeP

SRS ecjf<zjf/5+e

SeP SeP

Thisistruefor al >0

Ay ftrs<[ <> [t/

SeP SeP g

_[f_ [f/s

SeP s

Example 6:
Let f:A—> R be a continues function show that f is

integrableon A.
Solution :
Let f:A—> R be a continuous function to show that f is

integrable.

Let >0, since A is closed rectangle it is closed and bounded
in R".

. A iscompact.

- f is continuous function on compact set = fis uniformly

continuously on R .
~for the above e>0,36>0 such that VvxgeA

[x=vl<s=[f ()= f(y)<e/V(A).

Let P be a partition of A such that side length of each
subrectangle islessthan 5/+/n.

If x,ye Sfor some subrectangles S then

%= Y[ = (%= ) ot (%, Y, )
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(%) =2
[F()=T () <eV(A)

.+ S is compact
- f iscontinuous
- f attainsitsboundin S.

Let S,S,.....S. be the subrectangle in A. Then for
1<i<k,3x,y, €S suchthat Ms(f)="f(x)m(f)="f(y).

SU(F.P)-L(F,P)= (M (f)-m (f))V(S)

k
i=1

Y (F(x)-F(%)V(S)

i=1

.. By Riemann Criterion f is integrable.

1.5REVIEW

After reading this chapter you would be knowing.
Defining R-integral over arectanglein R"
Properties of R-integrals
R-integrabal functions
Continuity of functionsusing R -intervals.

o
X3
o
o

1.6 UNIT END EXERCISE

1) Let f;[0,1]x[0,1] > R bedefined by
f(x y)=0if 0< yﬁ%

=3if Y<y<1
show that f isintegrable.

) Let Q be rectangle in R"& f;Q—>R be any bounded
function.



1)

V)

V)

Vi)

i)

i)

1X)

X)

20

a) Show that for any partition Pof Q L(f,P)<U(f,P)
b) Show that upper integral of function f exit.

Let f be a continuous non-negative function on [0,1] and
suppose there exist x,e[a,b]such that f(x,)>0 show that
jf(x) dx>a.

0

Let f Dbe integrable on [ab] and F:[ab]>R and
F*(x) = f (x) then provethat [ f(x)dx=F (b)-F(a)

Which of the following functions are Riemann integrable
over [0,1]. Justify your answer.

a) The characteristic function of the set of rational number in
[0,1].

b) f(x)=xsiny, for 0<x<1
f(0)=3

Prove that if fis R -integrable then |f| is also R-integrable is
the converse true? Justify your answer.

Show that a monotone function defined on an interval [a,b] is
R-inegrable.

A function f;[0,1] > Risdefined as f(x):3n11v3—1n<x33nll
where neN
f(0)=0

1
show that f is R-integrable on [0,1] & calculate —[  (x) dx.
0

f(x)=x| x| vxe[L3]where | x| denotes the greatest integer
not greater than x show that f is R-integrable on [1,3].

A function f;[a,b] >R is continuous on [a,b] f(x)>0

b
vxe[a,b] and If(x)dx=0 show that f(x)=0 vxe[a,b].
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MEASURE ZERO SET

Unit Structure:

2.1 Introduction

2.2  Measure zero set

2.3  Déefinition

2.4  Lebesgue Theorem (only statement)
2.5 Characteristic function

2.6 FUBIN’s Theorem

2.7 Reviews

2.8  Unit End Exercises

2.1INTRODUCTION

As we have seen, we cannot tell if a function is Riemann
integrable or not merely by counting its discontinuities one possible
alternative is to look at how much space the discontinuities take up.
Our guestion then becomes: (i) How can one tell rigorously, how
much space a set takes up. Is there a useful definition that will
concide with our intuitive understanding of volume or area?

At the same time we will develop a general measure theory
which serves as the basis of contemporary analysis.

In this introductory chapter we set for the some basic
concepts of measure theory.

2.2MEASURE ZERO SET

Definition :
A subset ‘A’ of R" said to have measure ‘O’ if for every
e>0 thereisacover {U,U,...} of A by closed rectangles such that

the total volume iv(Ui) <e.

i=1

Theorem :
A function ‘f’ is Riemann integrable iff ‘f’ is discontinuous
on a set of Measure zero.
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A function is said to have a property of Continuous almost
everywhere if the set on which the property does not hold has
measure zero. Thus, the statement of the theorem is that ‘f’ is
Riemann integrable if and only if it is continuous atmost
everywhere.

Recall positive measure : A measure function u:M —[0,«] such

thatV(Oui]:gV(u)

i=1

Example 1:
1) “Counting Measure” : Let X be any set and M = P(X)the set of

al subsets : If Ec X is finite, then u(E)=n(E) if Ec X is
infinite, then u(E)=c
2) “Unit massto x, - Dirac delta function” : Let X be any set and
M =P(X) choose x, € X set.
u(E)=1if x,€E
=0if x,¢E

Example 2:
Show that A has measure zero if and only if there is countable
collection of open rectangle V,,V,,... such that AcUV, and

ZV(V)<E

Solution :
Suppose A has measure zero.
For e>0,3 countable collection of closed rectangle V,,V,,....

E

such that Ac UV and ZV

i=1

For each i, choose a rectangle usuch that u ov. and
V()< (v).

Then

<23 v(u

i=1

velu  and  SV(u)<SV(u)<S v (y)

i=1 i=1 i=1 i=1

N ECS

Notethat : u areopenrectanglesin [ " conversely,
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Suppose for e>0,3 countable collection of open rectangles

U, U,,.... suchthat Ac Cjui and iv(ui)<e.
i=1 i=1

For each i, consider V, =u, then V, is a closed rectangle and
V(v)=V(u).

Then AQOUi gOVi and iv(vi)=ZV(ui)<e.

i=1 i=1 i=1 i=1
A has measure zero.

Note : Therefore we can replace closed rectangle with open
rectangles in definition of measure zero sets.
Example 3:

Show that a set with finitely many points has measure zero.

Solution :
Let A={a,...,a,} befinite subset of R".

Let e>0,a =(a,,a,,......a,) and

. 1( € % 1( € %
Vllall—E(FJ ,ail+§(2i+lj ]X
" _Eiij% +£( 3 )%
" ain 2 2i+1 ’am 2 2i+l

1
) (e \n €
Then V(VI) = I I £2i+lj = 2i+l

i=1

Clearly a eVi for 1<i<m

- Ac LmJVi and iV (Vi)= i il <e-i% <E-1 <e
i-1 i-1 2 = 2 2

i=1

. By definition of measure of zero
.. A has measure of zero.

Example 4:
If A=AUAUAU... and each Ai has measure zero, then

show that A has measure zero.

Solution :
Let e>0and A= AUA U.... witheach Ai has measure zero.
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Each A has measure zero for i=12,.... 3 a cover

By closed rectangle such that iv(uii ) <§,i =12,...

i=1 I
Then the collection of U, iscover A

.'.Z::V(Vi)<i§<e

i=1
Thus A= AUA,UA,.... has measure zero.

Example 5:
Let AcR" be a Rectangle show that A does not have
measure zero. But 6A has measure zero.

Proof :
Suppose A has measure zero.
-~ Alisarectanglein R"
~V(A)>0
Choose >0 suchthat e<V(A) ......ccoooeeiniiiiinnnn ()

-+ A has measure zero

3 countable collection of open rectangle {u} such that Ac|Ju
i=1

and >V (u)<e.

-+ A iscompact

This open cover has a finite subcover after renaming. We may
assumethat {u,,u,,...u,} issubcover of the cover {u}.

S AcC Oui .
i=1

Let P be partition of A that contains all the verticesall u's i=1 to
k.Let §,S,,...., S, denote the subrectangle of partitions.
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which isacontradiction to (1)
. A does not have measure zero.

Note that O0A is a finite union of set of the form
B=[a.b]x[a,b]x....x[a,,b,], V. B can be covered by are closed

Then V(B;) dependon § and V(B;) —»0as 6 »0.
- B; has measure zero
~.Boundary of A (6A) isfinite union of measure zero.
.. 0A has measurSe zero.

Example 6:
Let AcR" with A°= @ . Show that A does not measure zero.

Solution :
Let AcR", with A°= &
Let xe A°
-3 r>0,suchthat B(x,r)<A But

B(xr)={ye Aly-x<r]

={ye A;Z|yi—>g|<r}
i=1

If f A has measure zero

then B (x,) has measure zero
which is not possible as
B(x,r)is Rectangle

. A does not have measure zero.

Example 7:
Show that the closed interval [a,b] does not have measure

ZEro.

Solution :
Suppose {u;}_, beacover of [a,b] by openintervals.

- [a,b] is compact this open cover has afinite subcover.

After renaming, we may assume {u,,u,,....,u, } is the subcover of {u}
of [ab].
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We may assume each u intersect [a,b] (otherwise replace u with
u N[a,b])

Let u=Ju

i=1
If u is not connected then [a,b] is contained in one of connected
component of u.

=[a,b]cu for some i
~[ab]Nu, =@ for i = |
Which is not possible

~.u isconnected
= u isanopeninterval say u=(c,d) Thenas [a,b)cu=(c,d)

=>V(y)=d-c>b-a

In particular we cannot find an open cover of [a,b]with total length

of the cover < b;za )

~.[a,b] does not have measure zero.

Example 8:
If Ac[0,1] isthe union of al open intervals (g, ) such that

each rational number in (0,1) is contained in some (a,bh). If
T =i(bi —ai)<1 then show that the boundary of A does not have
i=1

measure Zero.

Solution :
Wefirst show that 0A=[0,1]\ A

Note that A= A\ A°

-~ Alsopen = A°= A
Also Qﬂ[O,l]gA
.'.Qﬂ@g A
~[01<c A

But Ac[0,1]= Ac[0,]]
- A=[0/1]

- 0A=[01]\ A
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Let e=1-T>0

If 0A has measure zero then since e>0,3 a cover of A with open

intervals such that sum of length of intervals <1-T
- 0A s closed and bounded
= OA is compact

= 3 finite subcover {u}’' for oA

s 0(u)<1-T

Note that {ui;lgi < n;(q,q);’;} cover [0,1] and sum of lengths
of these open intervals is less than 1-T +T =1 which is not possible
as[01]c U{ui; 1<i<nm; (a,.,q)iil} .. A does not have measure zero.

2.3 DEFINITION

A subset ‘A’ of R" has content ‘O’ if for every e> 0, thereis
a finite cover {u,u,,....,u,} of A by closed rectangles such that

2v(ui)<e

Remark :

1) If A has content O, then A clearly has measure O.

2) Open rectangles can be used instead of closed rectangles in the
definition.

Example 9:
If A is compact and has measure zero then show that A has
content zero.

Solution :
Let A beacompact setin R"
Suppose that A has measure zero

gV(ui)<2V(ui)<e

. A has content zero.
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Example 10 :
Give one example that a set A has measure zero but A does
not have content zero.

Solution :
Let A=[0,1]NQ

Then A is countable
= A has measure zero
Now to show that A does not have content zero.

Let {[a.h);1<i<n}| becover of A
~Acla,h]U...U[a,b,]

~Acla,b]U...U[a,b,]
But A=[0,1]

.-.gz([a,q))n

In particular, we cannot find a finite cover for A such that

> (ab)<¥

. A does not have content zero.

Example 11:
Show that an unbounded set cannot have content zero.

Solution :
Let Ac R" be an unbounded set.
To show that A does not have content zero
Suppose A has content zero for e>0,3 finite cover of closed

k Kk
rectangles {u}" of A suchthat Ac| Ju and D'V (u)<e.
i=1 i=1

Let u =[a,,b,]x...x[a,.b,]
Let 3 =min{a,,a,,....a, |

then Uu c[a,.b]x...x[a,,b,]

- Ac|a,b]x..x[a,b,]

. A is bounded

Which is contradiction

.. A does not have content zero.
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Example 12:
f :A—0 is non-negative and jf =0 where A is rectangle,

A
then show that {xe A; f (x)= 0} has measure zero.

Solution :

For nell, A Z{XEA; f (x)<%}
Notethat {xe A, f (x)=0}={xe AF(x)>0}
{~~ f isnon-negative}

o0

U{XEA,f %} UA1

n=1

éhave to show that A1 has measure zero
2+ f=0and jf =inf {U(f,P)} =0for e>0,3 apartition P such that
A

U(f,P)<e/n

Let S be asubrectanglein P
if SNA =@=M, ()<l
clearly {Se P;SNA, ¢®} covers A, and

Z )< M (f ( Ms(f)>%]

sep N Sep

<U(f,P)<e/n

SV (S)<e
SNA =
sep

By definition A has content zero
= A, has measure zero
~.{xe A f(x)=0}iscountable union of measure zero set.

~.{xe A f(x)=0} hasmeasure zero.

* Ogcillation o( f,a) of ‘f’ at a

o for 5>0,Let M(a,f,8)=sup{f(x);xe A&|x—a/ <5}

m(a, f,5)=inf{f(x);xe A& |x-a| <5}

The oxillation o(f,a) of f a a defined by
o(f,a)=lim(M(a f,5)-m(a, f,5))

50
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This limit always exist since M (a, f,5)-m(a, f,5) decreases as §
decreases.

Theorem :
Let A be aclosed rectangle and let f: A— 0 be a bounded

function such that O( f,x)<e for al xe A show that there is a
partition Pof A with U (f,P)-L(f,P)<eV(A).

Proof :
Let xe A= U (f,x)<e=> LIJ)TC\)(I\/I (x, f,8)-m(x, f,5))<e
-.3 a closed rectangle u, containing x in its interior such that
My, —My, <e by definition of oscillation.
~{u,;xe A} isacover of A
. A iscompact
= This cover has afinite subcover say {u,,u,,,...., Uy}

k
~Ac| Ju, .
giL:Jlxl

Let P be a partition for A such that there each subrectangle ‘S of P

is contained in some u. then M,(f)-m/(f)<e for each

subrectangle‘S inf

U (F,P)-L(f,P)=> (M (f)-m(f))V(S)

SeP

<e ZV(S)

SeP

<e-V(A)

2.4 LEBESGUE THEOREM (ONLY STATEMENT)

Let A be a closed rectangle and f:A— R is bounded
function. Let B={x; f is not continuous at x}. Then f is integrable
iff B isaset of measure zero

2.5 CHARACTERISTIC FUNCTION

Let CcR". The characteristics function y of C is defined by
2. (x)=1 if xeC
=0 if xgC
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If Cc Awhere A is a closed rectangle and f:A— R is bounded
then jf is defined as J'fxc provided jf-;(cisintegrable [i.e if f
C C

and y, areintegrable]

Theorem :
Let A be a closed rectangle and Cc A. Show that the
function y.: A—0 isintegrableif and only if 6C has measure zero.

Proof :
To show that y.:A—R is integrable iff 6C has measure

ZEro.

By Lebesgue theorem, it is enough to show that oC={xe A: y is
discontinuous}

Let ae C°= 3 an open rectangle ‘U’ containing asuch that ucC
S 2.(n)=1vneU
= y. Iscontinuous at a.

Let ae Ext(c)= Exterior of C

[By definition union of al open sets digointsfrom C]

Ext (C) isan open set

3 an open rectangle u containing such that U < Ext(c)

S 2:(n)=0Vneu

= . Iscontinuous at a

If agoc then y, iscontinousata...........c.ccvvennnee. ()

Let acdoc= for any open rectangle U with aiin its interior contains
apoint yeC° & apoint zeR"|c

.‘.;(C(y)zl& )(C(Z)zo

.. . 1snot continuous at a

~.oc={xe A: y, isdiscontinuous at x}

.. By Lebesgue Theorem.
x. Isinterrableif and only if oc has measure zero.

Theorem :
Let A beaclosed rectangleand Cc A
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If C is bounded set of measure zero and j 2. exist then show that
A

j%czo'
A

Proof :
C < Abe abounded set with measure zero.

Suppose | , exist = y, isintegral
A

To show that [z, =0
A

Let P be apartition of A and S be a subrectanglein P.

~» Sdoes not have measure zero
= SZC

= 3JxeShut xgC

S 2:(x)=0

=>m(x.)=0

Thisistrue for any subrectangle Sin P

L()(C,P):zms(;(C)V(C)zo

Thisistrue for any partition P

jxc =sup{L (%, P);P ispartition of}
A

Jﬂcc=0

A

2.6 FUBINI’'STHEOREM

Fubini’s Theorem reduces the computation of integrals over
closed rectangles in R",n>1to the computation of integrals over

closed intervalsin R . Fubini’s Theorem is critically important as it
gives us a method to evaluate double integrals over rectangles
without having to use the definition of adouble integral directly.

If f:A— R isabounded function on a closed rectangle then

the least upper bound of all lower sum and the greatest lower bound
of all upper sums exist. They are called the lower integral and upper

integral of f and is denoted by Lj F and Uj F respectively.
A A
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Fubini’s Theorem

Statement : Let AcR" and B R" be closed rectangles and let
f:AxB— R be integrable for xe A, Let g, :B— R be defined by
0,(y)=F(xy) and let

((x) = LJ'gX = LI f(xy)dy

u(x):UJ'gx:U_[f(x,y)dy

Then ¢ and 4 areintegableon Aand | f=[L=]
A

AxB A

| f=ju(x)dx=£[u£f(x,y)ddex

AxB A

Proof :
Let P, be a partition of A and P, be a partition of B. Then

P=(P,,R,)isapartition of AxB

Let S, beasubrectanglein P, and S, be a subrectanglein P,
Then by definition,

S=S5,xS; isasubrectanglein P

L(fP)=2 m(f)V(S)

SeP

- Z mSAXSB(f)V(SAXSB)

Ssehs

-y ( 5 mSAXSB(f)V(SB)]V(SA)......................(I)

SpePa \ Sehs

For xes,,m . (f)cM, (g,)
~.For xe S,

LY MV (S)V(S)<Xm (9)V(Ss)

Ssehs
=L(g.R)<Lfg,=L(x)
B

Thisistruefor any xe A

LL(EP) =Y ( > rrgAst(f)V(SB)JV(SA)

SpePp \ SzePs

< 2 m (LOYV(S,)

SpePa

=L(£(X),Py) oo (1)
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S From (1) & (1)
L(f,P)<(L(X),Pa) covvveeeemriie oo, (1)

:u<gx’PB)Zufgx :,UJ(X)

Thisistruefor any xe A.
| X Mas (V(S)V(S)
> Mg (U(X)V(S,)

<:,I (X),Pa) covere e, (V)

v

from (1V) & (V)

U(f,P)>U (U(X),Py) cvereeeiiieiiiiie e, )
- By (1) & (VI)
L(f.P)<L(¢(x),P) <u(L(x),R.)

<U(L(X),P) SU(f,P) coviiiiiiiii i, (vir)
Also
L(f,P)<L(£(x),P) < L(1(X),Py) SU(L(X),Py) eeeennnine, (VIII)

. f isintegrable

sgp{L(f,P)}:ir;f{U(f,P)}:ff

#s;ip{L(ﬁ(x),PA)}:igf {u(ﬁ(x),PA)}:ff
~.£(x) isintegrable
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[f :fg(x):f[LjB‘ux,y)]dx ............................ (IX)

AxB A A

Also by (VI11) & (IX)

sgp{L(L(x),PA)}:igf{U (u(x),P)}= [ f

AxB

~.u(x) isintegrable.

:ff:fu(x)dx:f

Hence Proved

uff(x,y)]dx

B

Remark :

The Fubini’ s theorem is a result which gives conditions under
which it is possible to compute a double integral using interated
integrals, As a consequence if alows the under integration to be
changed in iterated integrals.

ff:f Lff(x,y)dx]dy
|

B

Uff(x,y)dx]dy

These integrals are called iterated integrals.

Example 13:
Using Fubini’ s theorem show that D,,f =D, f if D,(f) and

D,,(f) are continuous.

Solution :
= Let ACR and f : A— R continuous

T.P.T D,f =D,f
Suppose D,, f = D,, f

.3 %, Y, indomain of f such that
(D, f(a)—D,f(a))=0

without loss of generality, (D,,f (a)— D, f (a))>0 or
(Dpf—Dyuf)(a)>0 v ()
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"‘f(DIZf —DZlf)(X,g)>0

A

Let A=[a,b]x[c,d]
.. By Fubini’s Theorem

fD21f (X, y):]]D21f (%, y)dxdy

:j‘(ozf (b.y)-D,f(g.y))dy

= f (t;,d)— f(b,c)—f(ad)+ f(ac)
Similarly,
fDlzf(x,y): f (b,d)— f (b,c)— f (a,d)+ f (ac)

fDZIf X Y)= fD12f (%)
:>f o f DlZf Xy>:0

Which is contradiction to (1)

proved

Example 14:
Use Fubini’s Theorem to compute the following integrals.

]«ﬁf dy.dx
1) | = =
/ 1+X2+y2

0

Solution :

1
1 1Y
= [ dx tan™*
“Of 1+ % V14,
r 1
:fdx. .Z
0 1+x* 4
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37

‘fm

1
=—|log(x+4/1 xz}
4[ g( T 0

:%|Og[\/§+1}

Solution :

C={(xy);y<x<10<y<1}

By Fubini’s Theorem

X=y

11 2 YA
:ffsjn 2| dxdy
0y
1 x Xz
:ffsjn 2| dxdy
0 0
r X
= [ sin|==|[y]'d
[sm 5 [y]0 X
1 X2
:fxsin 7r—]dx
5 2
2 x|lo |1
Put X ¢
! t |O
2 iz
27X iy — it
2
xdx:E
T
7 7
fsntﬂzlfsintdtl(—cost)g/z
0 ™ ™ 0 ™

:1[—0+1]:1
s ™
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2.1 REVIEWS

After reading this chapter you would be knowing.
Definition of Measure zero set and content zero set.
Oscillation O( f,a)

Find set contain measure zero on content zero
Statement of Lebesgue Theorem

Definition of characteristic function & its properties.
Fubini’s Theorem & its examples.

2.8UNIT END EXERCISES

w N

0.

If BC A and A has measure zero then show that & has measure
zero.

Show that countable set has measure zero.

If A is non-empty open set, then show that A is not of measure
zero.

Give an example of abounded set C if measure zero but 9C does
not have measure zero.

Show by an example that a set A has measure zero but A does
not have content zero.

Provethat [a,,b|x....x[a,,b,] does not have content zero if g <h

foreachi.

If Cis aset of content zero show that the boundary of C has
content zero.

Give an example of aset A and a bounded subset C of A measure

zero such that f X, does not exist.
A

If f & g areintegrable, then show that f, isintegrable.

10.Let U =[0,1be the union of all open intervals (a,b)such that

each rational number in (0,1) is contained in some (a,h ). Show
that if f =y except on a set of measure zero, then f is not
integrable on [0,1].

11.1f  f:[ab]x[a,b] >R is continuous, then show that

12. Use Fubini’ s theorem, to compute f dy f

Lbbef f <X’ y)dXdyszbef f (X, y)dydx
T 7

sinX dx
X+y

0 0
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13.Let A=[-11]x[0,7/2] and f:A-R
f(x,y)=xsiny— ye" Computeff
A

defined

by

14.Let  f(x,y,z)=zsin(x+y) and A:[O,ﬂx[—%,%}x[o,l]

computer | f.
J
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LEBESGUE OUTER MEASURE

Unit Structure:

3.0 Objective

3.1 Introduction

3.2 o—Algebra

3.3 Extension Measure

34  Lebesgue outer measure
3.5 Properties of outer measure
3.6 Summary

3.7  Unit End Exercise

3.00BJECTIVE

After going through this chapter you can able to know that
Concept of o — Algebra, Measurable set.
Extension measurein R"
L ebesgue measureabl e set
L ebesgue outer measure & its properties.

3.1 INTRODUCTION

In this chapter we shall fist study such a verified theory
function d-dimensional value based on the notation of a measure,
and then we shall use this theory to build a stronger and more
flexible theory.

Now if we want to partition the range of a function, we need
same way of measuring how much of the domain is sent to a
particular region of the partition, To set a feeling function what we
are aiming function let us assume that we want to measure the
volume of subsets A CR*and that are denote the volume of A by

,u(A).

Then function we have
i) u(A)should be non-negative number as cc.
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i) w(2)=0 it will be convenient to assign a volume to the empty

Set.
i) It AA, ... A, are non overlapping disjoint sets then

M[Qﬂ]ziu(ﬂ)

This means that the volume the whole is equal to the sum of
the volume of the parts. This problems leads us to the theory of
measures where we try to give a notation of measure to subsets of an
Euclidean space.

Defenition :
The Euclidean norm on R" is |x/ = (% +...+ xﬁ)}/2
The distance between x,y = R" is [x— |

3.2 o—ALGEBRA

Definition :
Let X be a set. A collection A of subsets of X is called a
o — algebra of the following hold.

i) oA
i) AcA= X/AcA

i) AA..c A= JA A

Note:
The pair (X, A) is called measurable space and elements of A

are called measurable sets.
Example1:

Lt x={123 ad  b={{1}.{L23},X,9},
b, ={1,2,3{3},X,2}. Check whether b and b, are both algebras or
not.
Solution :
1) Let X ={1,2,3}and bisnot o — Algebra.

Since it does not contain {1}°.

I1) b, is o —Algebrasinceit satisfiesall condition of o — Algebra
i.e. X=b
o=,
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{12} eb, & {1,2}° €,
-.b, is o — Algebra
Example 2:

A measure on a topological space X whose domain is the
Borel algebrais called a Borel measure.

Example : For every xec X, the Dirac measure is given by
lif xe A

6X<A):{Oif xg A

Definition :
Let ube a set function whose domain in a class A of subsets
of aset X and whose values are non-negative extended reals, we say

Qﬂ]zéu(ﬂ) whenever, (A) is

a sequence of painoise digjoint setin A whose unionisasoinA.

that 1 is contably additiveif u

Theorem :
Let 1 be a finitely additive set function, defined on the

o—AlgebraA. Then ;. is countably additive iff it has the following
property : if A e A and A C A,,, Anti for each positive integer n,

andif | A, € A then M[LD_CJ/% = limu(A,).

Proof :
Suppose 1 is countable additive Let {A, } be a sequence of

st. #[QA]zlijpcu(M

Define B = A
B.=A /A, for K>2

Examples 3:
Let {A:iel} becollection of o— Algebra. Show tha (A is
iel
a o —Algebra, but | JA isnotin general.
i€l
Solution :
Let A=A

i€l
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To show that A isa o — Algebra

a If gecA
- Aiso—Algebra Viel
SOEA Yiel

=oec[)JA=2€cA
i€l
b) Let AcA
= A=A

icl
- A is oc—Algebra Vie |
- For AeA=ACecAVviel
A eNA

iel

= AcA

C) Let A eAVk=12..
then A e(NA  Viel

~UJAean v
~Uac NA
:Gﬂe A

AziﬂA isa o —Algebra

iel

Now, we have to show that | A isnot a o — Algebra.

Let X:{LZ,B}

Let A ={¢ X,{1}.{2.3}}

A ={o, X.{3}.{1.2}}

then A & A ae o—Algebra but AUA, is not o—Algebra
[} e AUAbU {13}¢ AUA,

Clearly Bie A Vi and Bi's are pairwise digoint we first show that
k

A =[JBi
i=1

By induction on ‘K’
Theresult istrivial when k=1
Assumetheresult istrue for k—1
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i.e ﬂlzthi

Now LkJBi:UBi B,
=A, U<A</A<—1>
= A

.. Theresult istruefor k.
.-.by introduction is true for all k

k
A=JBi Vk>1
i=1

-~ iscountably additive, we have
pu(A)=p D&]Ii#(&)
— im> "4 (B,)
(U
= lim (A,

n—oo

=1lim

n—oo

Conversdly,
Suppose whenever if ACA CA,..,AleBA| JAicA

Then M[CJAi =limp(A,)

T.S.T. p iscountably additive

Let (A) beapairwisedisoint setsin A.

k
Define B, =| JAithen B.c A and B CB, C......
i=1

..By hypothesis, we have

G i



Theorem :
Let A be a o—Algebra, If (u,v) are measures on A,

teR,t>0 and Ac A hen thefollowing are measureson A.

a) p+o definedby (p+9)(E)=p(E)+9(E)EcA
b) tu,defined by (tu)(e)=tu(E),Ec A

Proof :
a) p+v defined by (u+9)(E)=p(E)+9(E),E€A is a measure
onA.

o & 9 aremeasure on A.
.. They are countably additive non-negative set function.

~(n+9)(E) is aso countably additive non-negative set function
whose domainis A.

s.pu+19 isameasure on A.

b) (ty1)(E) =tu(E)
. iIsameasure on A
-.p 1S countable additive non negative set function whose
domainin A.

~for E€cA
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(tu)(E)=tu(E) and ty is aso countably additive non-negative
set of function whose domain is A

~.tu ismeasureon A.

3.3 EXTENSION MEASURE

Definition :
Let X be aset, A, Exterior measure or outer measure on X is

a non-negative, extended real valued function ;. whose domain
consist of all subsets of X and which satisfies:

a u(¢)=0
b) (Monotonicity) if Ac B then n”(A)C ' (B)
¢) (Countable sub-additivity)

For any sequence (A,) of subsets of X, we have

M*[Gﬁh <y w(A)

Theorem :
Let C be acollection of closed rectangle of R", For Rc C, let
¥(R) denote the volume of R. If ;" is defined by

i (A)=inf {kimk);ck ec,Q<k)3 A}

For ACR", A= ¢then ;. isexterior measureon R".

Proof :
TST. ;i defined by 4 (A)=inf {iﬂ(ck);ck}is closed
k=1
rectangle where Ac R" ison exterior Measureon R".

We first shows that
{SV(C,)iC isclosed set ACC, } = ¢

Where AC R"

Let R = rectangle with side length ‘k’ and centre origin.
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Then O R =R"
k=1

~forany ACR" :LOOJRk
k=1
= {R } covers A
.-,{iﬂ(ck);ck closed rectangle AC Gck}ng
k=1 k=1

We now show 4 (¢)=0
Let >0
Let R=[0€"|x...x[0,"| be a rectangle in R" with

I(R)=€& ¢ CR
-.{R} covers ¢

. By definition of °, 1" (¢)<e

Thisistrueforany €>0
(@) =0 i (1)

Let ACBCR"
T.ST.. (A) < (B)
If {C,}CoversB, then {C,} coversA

ol AV (B) oo ?)

Let €> 0 by the definition of 4’
J acover {R, |~ of A suchthat

iﬂ(&)<u*(ﬁ)+e/2”

i=1
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1 isan exterior measure on R"

Note:

By above lemma, the exterior measure lemma attempts to
describe the volume of a set ECR" by approximating it from
outside. The set E covered by rectangle and if the covering gets
finer, with fewer rectangles overlapping the volume of E should be
close to the sum of the volumes of the rectangles.

3.4 LEBESGUE OUTER MEASURE

Definition :
1 is caled the Lebesgue exterior (or outer) measure on R"
and isdenoted by m .

Now the consequences of the definition of exterior measure
on R".

1) If {R} are countably many rectangles and Ec|JR then
m ()< V(R

2) For agiven >0 there exist countable many rectangle {R, } with
EC|JR suchthat m' (E)<> " 9(R)<m (E)+E.

Example 4:
Show that exterior (or outer) measure of a closed rectangle is
itsvolumei.e. m (R)=V(R) where Risarectangle or a b, xinR".
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Solution :
Let R be aclosed rectanglein R"
tstm (R)=V(R)
Notethat {R} coversR
. by definition of m'(R), we get

Let >0
By definition m' (R),3a countable cover {R} of closed

rectangles of R.

So0(R)<mi (R)+5

i=1

For each i choose an open rectangle S suchthat R € S and
V(S)<V(R)+ 5

Then RgCJR g_{js

~Ash, i;\n optlerl1 cover of R

-~ R is compact this open cover has afinite sub cover say
RC U S (after renaming)

We have
V(R) gzm:v f:v
S
SiV( )+€/2
<m (R)+¢€/2+¢€/2
<m (R)+¢€

Thisistrueforany €>0
V(R)<m (R)
From (1) & (2)
V(R)=m (R)
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Example 5:

Show that exterior (or outer) measure of an open rectangle in
R" isvolume.
Solution :

Let S be an open rectangle them R C S where S is closed

rectangle = {S} isacover of R.
by definition m (R)<V(S)=V(R)........cceennn. 1)

Let >0 be {R} be acountable cover of closed rectangle of R such
that 2V(R)< m*(R)+€/2 for each i choose an open rectangle S

suchtﬁat RCS & V(R)+ 5
Then RQCJR COS

-.{§}", isan open cover of R

*» R iscompact. This open cover has a sub cover say
RC Lr_nj S (after renaming)

i=1

We have
V(R)

n
Ma

=N

2i +l)

\ HM8

V(R

[\
INGE

=N

> V(R)+¢€/2

' (R)+€/2+¢/2
' (R)+ €

VAN
3, 3, '[Mg

N A

Thisistrueforany €>0
SV(R)SMI(R) (2
From (1) & (2)
V(R)=m (R)

Example 6:
Show that exterior measure of apointin R" iszero.



Solution :
Let a=(a,a,......a,) ER"
To show that m' {0} =0

Let > 0 then the closed rectangle.

X %
€ €
R=|a ——,

a 5 a + 2 X
* 7
€ €

32—7,32—1- > X vrrereseesirreeneens

Covers {a}

. By definition of m' ({a}), we have m' ({a}) <V (R)=¢

Thisistrueforany €>0

~.m ({0})=0

3.5PROPERTIES OF OUTER MEASURE

Exterior measure has the following properties.
i) (Empty set) The empty set ¢ has exterior measure m (¢)=0.
i) (Positivity) we have 0<m (A) < +oo for every subset A of R".
iii) (Monotonicity) If Ac B<R", then m (A)<m (B).
iv) (Finite sub-additivity) If {A‘.}jeJ are a finite collection of subset

<> m(A)

jed

of R" then m’ [UAJ.

jed

V) (Countable sub-additivity) if {A } areacountable collection of

je

<> m(A)

jed

subsets of R"then m’*[UAj

jed

vi) (Trandation invariance) If E is a subset of R" and xcR" then
m (xt-€) =i (€).

Let xeR",ECR"

tst m(x+e)=m (¢

Let €> 0, by definition of m (€)

3 acountable cover (R) of closed rectanglesin R" for sit.

.'.iV(R)<m*(E)+e ....................................... 1)
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We now show that x+ E C

—

(x+R)

i=1

Let acx+E=a=x+y

=a-x=yecEC(JR
i=1

=a—xecR for somei
= ae—x+R for somei

:>aEO(X+R>

i=1

"X+ EC

s

Il
5N

(x+R)

.-.By definition of m', we have

m (x+ E)giv(erR) ....................................... (2)

We now show that V (x+R )=V (R)V
Let R =[a,.b,|x.....x[a,.h,] then
X+ R =[x +a;,% +h;x...x[8, XX, b, + %]

n

.V (x+R) =] (b, +%) (3 +x)

j=1

=

=TI —a)=V(R) e, ©)

j=1

.. By 1,2,3we get

m (+ E)< YV (x+R) =3V (R) < (E)+

m (x+E)<m (E)+¢
Thisistrueforany €>0

M (X+E) <M (E)4€ ovviiiiiiiiiiiiieec e (4)
Let E'=x+E& y=—x
Then by (4)
m (y+E')<m (E)
=m (—x+x+E)<m (x+E)

=m (E)<m (x+E)
By (4) & (5)
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-.m (x+E)=m (E)
Theorem :

Show that there are uncountable subset of R whose exterior
measure is zero.

Pr oof :
Define canter set as follows
Let C,=[0,1]

trisect C, and remove the middle open interval to get C, .
e Clz[O,%]U[Z/&l]

=[0,1\[/3,2/3|
repeat this procedure for each interval in C, we get C,

C, =[0,1\(1/3,2/3)\(1/9,2/9)\(7/9,8/9)
-[0.41u]23)V125- 71

repeating this procedure at each stage we get a sequence of subsets
C of [0,1fori=0,12

Note that each C, isacompact subset of R and C,2C,2C,
The Cantor set ‘C’ isdefined as C = ﬁci
i=0

C=¢ because all end points of each C is inc and also C is
uncountable

We now compute



=m (C)<m (C,)Vk

=m (Cl)g[g]Vk

letting k — oo, we get
0Cm (C)<0
=m(C)=0

Theorem :
Show that exterior measure of R" isinfinite.

Proof :
Let M >0 and R bearectanglest. V(R)=M

notethat R CR"

.-.By monotonicity of m
m (R)<m (]R”)

But m (R)=V(R)=M

- (R")>M
Thisistrueforany M >0
s.m <Rn): 00

Theorem :
If E and FCR" such that d(E,F)>0 then show that

m (EUF)=mi (E)+m (F).
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Proof :
Let E,FCR" best. d(E,F)>0tst m (EUF)=m (E)+m (F).
By countable subodditivity property m (EUF)<m (E)+m (F)..
(1)

Let €>0
By the definition of m',3 countable {Ri} of closed rectanglesin R"
for EUF suchthat » "V(Ri)<m (EUF)+€. .ccoccvrnnnnnnnn (2)

We categorize the collection {Ri} into 3 types:

1) Thoseintersecting only E
2) Thoseinterescting only F
3) Thoseintersecting both E & F

Note that if a rectangle R intersect both E & F, then
d(R)>d(E,F)>0 subdivide such the rectangles into rectangles

whose diameter islessthan d(E,F).

This subrectanlges intersect either E or F not both.
. We can have a contable collection {R,} of rectangles which

intersects either E or F but not both.

Let I,={;RNE=¢}

L, ={i;RNF =¢}
=1LNl,=¢
~{R}.., . coversE, we have

m (E)<>_V(R)

icly

Similarly, m (F)< 3"V (R)

icl,

m (E)+m (F)<> V(R)+)_V(R)

il i€l,

i;vm)

<m (EUF)+e (by (2)

VAN

Thisistrueforany €>0



=m (E)+m (F)<m (EUF) ........... (3)
From (1) & (3)
m (E)+m (F)=m (EUF)

Theorem :
If a subset ECR" is a countable unit of amost digoint
closed rectangle .

e E=(JR thenshow that m (E)=> V(R).

i=1

Proof :
Let E:DR where R’sare almost digoint closed rectangles.

i=1

tpt m (E)=>_0(R)

i=1
By countably subadditivity proposition of
i (&)= | UR| = $om (R) = v (R)

(-.Risrectangle = m (R)=V (R))

Lete>0, by definition of m',3 a countable cover {R} of closed
rectangle R" for E sit.

ifl:v(R)<m’*(E)+e

For each i, choose open rectange S st SCR &

V(R)<V(S)+5

Notethat d(S,S;)>0 for i= |
S (SUS)=m (§)+m (S)) foris=j .oooooriiiiiiii, (1)

Using (1) finite no. of times, we get m [OS]: m (S)

k
i=1

.*SCRCE Vi

:OSQE

..By monotonicity



i=1
Thisistrueforany €>0

=m <€)2:V<R) ..................................................
From (1) & (2)

m (€)= _V(R)

Theorem :

Show that

1) If m (A)=0 then m (AUB)=m (B)

2) If m (AAB)=0 then show that m (A)=m(B)
3) m(A\B)>=m (A)—m (B)

Proof :
1) AsBC AUB
By monotonicity
M (B)<m (AUB) ...ooiiiiiiiicc e, (1)

Also by countable subadditive of m
m (AUB)<m (A)+m (B)
<M (B) oo (2)

From (1) & (2)
m (AUB)=m (B)

2) If m(AAB)=0tst m (A)=m (B)
wk > AAB = (A\B)U(B\A)
=m (AAB)<m (A\B)+m (B\A)

giventhat m (AAB)=0
=m (A/B)+m (B/A)=0
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but 0<m (A/B)<m (AAB)=0
=m (A/B)=0
..M (AAB)<0+m (B/A)
WKT m (A)>m (ANB)
m (A)=m (ANB)

similarly we show that
m (B)=m (ANB)
-.m (A)=m (B)

3) m(A\B)=m (B)—m (A)

Proof :

Since A and B are measurable sets
. A® is also measurable and we have
B=AU(B/A) --ACB

B/ A= BN A" ismeasurable.

-.B& A®ismeasurable
-.B=AU(B\A) union of disoint measurable sets

-.m (AUB\A)=m (A)+m (B\A)=m (B)
o.M (BVA)=m (B)—m (A)

Theorem :

Let ECR" show that mi (E)=inf {m (Q);Q2 E& Qopen}
Proof :

Let ECR"

tst m' (E)=inf {m (7);7 > Eand 7 openinR"}

Let Q beopenin R" st. ECQ

Then by monotonicity of m', m' (E)<m ()
. (E) islower bound of {m (2);22>¢€,Qopen}
,-,m*(E)ginf{m* (Q);00 E,wopen}

Let €> 0, then by definition of m
3 an countable cover {R} of closed rectangle of E sit.

> V(R)<m (E)+5,
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For eachim let S be open rectangles containing R s.t.

V(R)<V(S)+%i+1

o0

Let 7=[JS then Q isopen & EQOR QLOOJS =0
1 1

Thisistrue for any €> 0.
-m(Q)<m (€)

~inf {m (Q);Q €, Qisopen}
<m (Q)<m (E)

Theorem :
For every subset E of R",3 a G,

Subset G of R"st. G>E & m (G)=m (E)

Proof :

Let ECR"

we first show that

m' (E)=inf {m(2)i 2> E and Qis open subset of R"}

Let >0,
Thenfor each ke N,3Q, openin R" & 7, > E st.

i () < (E)+
let 6=,
k=1

=G isG,-setand G>E
..By monotonicity



Notethat G<Q, Vv,
=m (G)<m (2,)<m (E)+€

Thisistrueforany €>0
=M (G)<M (E) oo 2

By (1) & (2)
m (G)=m (E)

Thoerem :
There exist a countable collection {A}  of digoint subset of

je

R such that m*[UAj]::Zm*(Aj)

jed jed

Solution :
Consider rational ¢ andrealy R

R/ ={x=06;xeR}
We known that any two cosets are either identified or digoint.

We now show that if AcR/¢ then AN[0,1]= ¢

Let A=x+0
Let q berational number in [—x,—x+1]

then x+q€[0,1]

Also, x+gex+6=A

- x+q€ AN[0,1]= AA[01]= ¢
For each Ac R\6 choose

X, € AN[0,1]

Let E={x,;AcR/6}

By construction E C[0,1]
Let X= [J q+E

geon—11]

We now show that
ogcxcl-12

Let ge[-1,1N6¢ Notethat EC[0,]
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o forany xeE, gq+xe[-12]
Thisistruefor any qe[-11N6

Theorem :
There exist afinite collection {A,.}jEJ of digoint subset of R

UA|=>m (A)

jed jed

such that m

Proof :
Consider 9 & R

R/0={x+0/xeR}
We known that any two cosets are either identical or digoint.

We now show that if AcR/¢ then AN[0,1]= ¢

Let A=x+0
Let g bearational number in [-x,—x+1] then x+q<[0,]]

Also, x+gex+6=A

- x+gqeAN[0,1= AN[0,1]= ¢

For each Ae R\# choose x, € AN[0,]]
Let E={x,/AcR/¢}

By construction EC[0,1]
Let X= [J q+E

geon—1]]

We now show that [0,1]C X C[-1,2]

Let ge[-1,1N4

Note that E C[0,1]

o forany xeE, gq+xe[-12]
Thisistruefor any qe[-11N6

There exist a finite collection {AJ.}j , of digoint subset of [ such

that m*[UAj}ch*(Aj)

jed jed

Consider Q{[1
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'lo={x+Q|xel}
We know that any two cosets one either identical or digoint.

We know show that if Ae"|, then AN[0,1]=Q

Let A=x+Q

Let g be arational number in [-x,—x+1] then x+qe[0,1].
Also x+gex+Q=A

- x+ge AN[0,1]= AN[0,1]=Q

For each Ae"|, choose x, € AN[0,1].
Let E={x,|Ac|,}

By construction E <[0,1]

Let X = U g+e
qeQN[-11]

We show that [0,1] c xc[-12]

Let ge[-11]NQ

Note that E <[0,1]

~.xeE,q+xe[-1,2]

=q+Ec[-12]

Thisistruefor any qe[-1,1]NQ

Let ye[0,]]

Then yey+0ey+6=A (say) but x, € A

SYy—X,=yel

VX, €[01])= y—x, €[-11]
=qe[-L1A0

yeq+x,eq+E

SYEX

-0 X =[01]C X C[-12]

.. By monotonicity of m
m [0, <M (X)<m [-12]
(I (1)
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UX= U g+E by countable subadditive and trandslation

qe[-1n0

invariance of m , we get.

m(X)< 3 m(a+E)= Y. mi(E)
ae[-1,1N0 ae[-11n0
By ()=m (X)=0
=m (E)=0

.. By Aritimedian property
dneN sit. m*(E)>1
n

Let | beafinite subset of [—1,1N6 with cardinality 3n.

Then Zm*(E)>3n1:3

qel n

- by (1) m'(x)=>"m (q+E)

gel

Theorem :
Let ECR"& A€ R(A>0) show that m (AE)=A"m (E)

Proof :
To show that m' (AE)=\"m (E),A>0

Let >0,
. by definition of m (E),3 a countable cover of {R} of closed

rectanglein R", for Est. > V(R)<m (E)+¢€
-EC|JR = EC| AR

Let R =[a,,by]x...x[a,.b,]
AR ={A (% %) X; €3]}



= AR isaclosed rectangle

~V(AR)=AV(R)
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S AEC OAR by monotoricity & countable additive property we get
i=1

m (AE)< 3 (AR) =3V (3R)

1

<A V(AR)<A™m (E)+€

Thisistrueforany €>0
S (AE)SA™M (E) v,

let El:)\E&u=§
- by (2)
i (1) < i )
=m [EAE]gim’* (AE)
A A"
=A"m (E)<m (AE) .............
From (1) & (2)
m (AE)=X"m (E)

=3 AV(R)

3.6 SUMMARY

In this chapter we have learned aboui.
e definition of o -Algebra, bored algebra

e Mmeasure on a set.
e The extenson Measure

o Lebesgue outer Measure (1) on R"

e Properties of lebesgue outer measgure.

3.7UNIT END EXERCISE

1) Let X={abcd} and A

={x..{d}} and A ={x,${d}},

{a,b,c} check whether A & A, are both algebra or not. Also
check wheter A UA, isan algebraor not.

2) Show that exterior measure at any countable subset of R" is

zero. Justify the converse?



3)
4)

5)

6)

7)

8)

9)
10)

11)

12)
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Show that the outer mesuration interval isits length.
Show that if (F,)ac! isacollection of o-Algebraon X then

o3

n,F, isasoa o -Algebraon X.
If a subset ECR" is a countable union of amost digoint

closed rectangle then show that m' (E) = iU(R).
i=1

If A and A, are measurable subsets of the closed interval [a,b]
then A-A is measurable and if A CAthen

M(A —A)=mA —mA,.
Show that for any set A, mA=m(A+x) where
A+x={y+x;yeA}

Show that for any set A and any > 0, there exist an open set
Osuchthat ACO and mO<m A+c.

Compute the L ebesgue outer measure of B =[1—2|U{3}

Prove that if the boundary of = cR* has outer measure zero
than = is measureable.

Let O be an arbitary collection of subsets of a set. Show that for
agiven Aco(C) there exists a countable sub-collection C, of

C depdending on A such that Ac o(C,).

Check that ;" isan outer measure on R. Not

i) LetX beany seetand x : P(X)— [0,00|be given by
i) © (A)=0if Aliscountable

=1 otherwise

.« i (A)=0if A finit

i) A O_I |n|§ then X be on infinite set
1if otherwise

i) @ (A)=0if A=¢

= 1 otherwise
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LEBESGUE MEASURE

Unit Structure:

41  Objective
4.2  Introduction
4.3 Lebesgue Measure

4.3.1 Properties of measurable sets
4.4  Outer Approximation by open sets
4.5  Inner approximation by closed sets
4.6  Continuity from above
4.7 Borel Cantelli Lemma
48 Summary
4.9  Unit End Exerises

4.1 OBJECTIVE

After going through this chapter you can able to know that
Construction of Lebesgue measurein R".
Lebesgue Measurable set in R".
Properties of measurable sets.
Existance of non-measurable sets.

4.2 INTRODUCTION

In the previous chapter we have studied about L ebesgue outer
measure m s not countability additive and it cannot be measure. So
that we have to cover with subset of R"for which m'is countably
additive this subclass a collection at Measurable sets. Now we shall
define lebesgue measure of a set using the lebsgue outer measure
and discuss properties of |ebesgue measure set.

4.3 LEBESGUE MEASURE

Definition - (Lebesgue measurability)
Let E be a subset of R" we say that E is Lebesgue
measurable, or measurable if we have the identity

m (A)=m (ANE)+m (AE)
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4.3.1 Properties of measurable sets:
Following are the properties of measurable sets :
a) If Eismeasurable, then E¢ =R"/E isalso measurable.

b) Any set E of exterior (or outer) measure zero is measurable. In
particular, any countable set is measurable.

c) If E&E, are measurable, then ENE, and EUE, are
measurable.

d) (Boolean algebra property) If E,E,,..E, are measurable then

OEj & ﬁEj are measurable.
1 1

e) (Trandation in variance) If E is measurable & xcR" then x+ E
isalso measurable, and m(x+E)=m(E).

Lemma: (Finite additivity)
If (Ei)ikzlz(Ej)jEJ are a finite collection of digoint
measurable sets and any set A, we have

AﬂUEJ]ZZm’*(AﬂEj)

jed jed

m

Further more we have

e gt

Proof :

We prove by induction on K
Theresult istrivial when K=1
Assume result istrue for k-1
We prove result for K

Let E=| JE
i=1

tpt m' (AN E):im*(AﬂEi)

Now E, is measurable we havefor ANECR".
m (ANE)=m ((ANE)NE,)+m ((ANE)NES)
But (ANE)NE,=ANE,
(VE.CE)
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(ANE)NES = AN(ENEY)
-0l
m (ANE)=m (ANE)+m (AN(JE))
—m (AN Ek)+§m*(AﬂE)

-3 (ANE)

. Theresult istruefor K
By introduction, it istruefor ‘n’.

i) Put A—R"

Theorem :
If ACB are two measurable sets then B/A is aso

measurable & m(B/A)=m(B)—m(A)

Proof :
tst B/A ismeasurable.

Suppose A & B are measurable

-~ intersection of two measurable set is measurable & complement
of ameasurable set is measurable.

= B/A= B A“ismeasurable

Note that B= AU(B/A)

which isadigoint union.

- misfinitely additive

m(B)=m(A)+m(B—A)

= m(B/A)=m(B)—m(A)

Example1:
Let A be a measurable set of finite outer measure that is

contained in B show that m' (B/A)=m (B)—m (A)
= --Aismeasurable
By definition for this B

m (B)=m (BN A)+m (B/A)
i (B)=m'(A)+m (B/A)
m (A)<oco we get

m (B/A)=m'(B)-m(A)
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Example 2:
Suppose ACECB where A & B are measurable sets of

finite measure show that if m(A)=m(B) then E is measurable.
= - A & B are measurable = B/A= BN A® is measurable.

Notethat B=AU(B/A) (.- ACB).
which isadigoint union.

- m isfinitely additive, we get
m(B)=m(A)+m(B/A)

m(B/A)=0 (~-m(B)=m(A))
"ACECB=E/ACBI|A

m (E/A)Cm (B/A)=m(B/A)=0
=m (E/A)=0

= E/A ismeasurable

= E= AU(E/A) ismeasurable

Example 3:
Show that if E, & E, are measurable then

m(E,UE,)+ m(E,NE,)—m(E,)+ m(E,

Solution :
Suppose E, & E, are measurable not that

E,UE, =E U(E,/E,) whichisadigoint union.

By finite additie property of ‘m’
MEUE,)=m(E)+M(E,/E) «.ooovviiiiiiiiiiii (1)
aso E, = (E,NE,)U(E,/E)

which isadigoint union.

By finite additivity of ‘m’

ME)=mENE)+M(E,/E) ...ooovvviiiiiiiieen, (1)
m(EZ/El): m<E2)_m<ElﬂEz>

subsin 1

m(E,UE,) = m(E,)+m(E,)-m(E,NE,)
m(E,UE,)+m(E,NE,)=m(E,) + m(E,)
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Theorem :

Let {E }, , be a countable disoint collection of measurable
sets prove that for any set A, m [Aﬂo E |= im* (ANE,).

1 k=1

Proof :

Let {E}, _, be countable collection of disjoint measurable
Sets.
Let ACR"
tpt m’ AﬂUEk]ZZm*(Aﬂ E,).

1 k=1

By countable subadditivity property of m we get,

m [AH[Q Ek]] =m [G(Aﬂ Ek)]

1

Also by finite additive property of m, we get

m*[Am[[]Ek Amijk]
k=1 k=1

>m

Thisistruefor al ‘'m’
m Aﬂ[o E,
from (1)k&l (2
m Aﬂ[@ E, ]:im* (ANE,)

Theorem :
Show that the union of a countable collection of measurable
set is measurable.
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Proof :
Let {A}, , be a countable collection of measurable sets and

E:Dﬂ.

tst E is measurable.
Define B, = A, & for k>2
k-1
B.=A|UA
1

Since finite union of complement m-set are measurable
= B, is measurable.

Clearly B,’sare pairwise digoint

A

k-1

o0

Us=U

k=1 k=1

1

I
(@
>

/i
-
>

T
[N

Il
(@
>

D
(-
>

T
X
-

= AU(AN(NA)U[ANA N AS]U...
:DAZE
Example 4 :

Show that the intersections of a countable collection of
measurable set is measurable.

= Let A beasubset of R" andfor neN.
Define Fn:LO_OJBkgE
k=1

-.B/S are measurable

= F, ismeasurable

.. By definition

m (A)=m (ANF,)+m (ANF)
F.CE=F DE“= ANFS 2 ANE®
=m (ANE®)Cm (ANFY)
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S (A) >m (ANF,)+m (ANES) o, (1)

Now

3

>
>
—

o]

*

m

(A&

X
'l

s

*

m

(An8)

~
Il

N
* ‘ =}

[
3

>

>

S0

=

x

S
iR

m (ANB,)
- By (1)
m (A)> n m (ANB,)+m (ANE®)

k=1

—~

- LHSisindependent of n, we have
m (A)>3 m (ANB,)+m (ANE®)
1

But
m (AN E):m*[Aﬂ[QBk]]
—m [(j(m Bk)]

Sim* (ANB,)
1
m (A)>m (ANE)+m (ANE®)
As A=(ANE)U(ANE®) by countable subadditivity proposition of

m.
m (A)<m (ANE)+m (ANES) cooiiii e 3

By (2) & (3)

m (A)=m (ANE)+m (ANE®)
.-.By definition E is measurable.
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Example5: Countable additive
If {Ej}jeJ are a countable collection of disjoint measurable

UE [=>_m(E))

jed jed

setsthen UEj is measurable and m

jed

= Without loss of generality we may assume J=N suppose
{E },_, be a countable collection of digoint measurable set we first
show that E =UE, measurablelet F =UE, .

then by previous exercise we get E is measurable.

We now show that

By subadditivity proposition of m

e

m(E)=m (E)=m’

By finite additivity property and monotonicity of m
wehaveas F, D E

m(E)Zm(Fn):m[LnJEk]

k=1

k=1

..LHSisindependent of n, we get
ME)>> M(E) oo, (**)
k=1

..By countable additivity
m(E)>> m(E,)
k=1

Example 6:
Show that every closed and open rectangles in R" are
measurable.

= Let R be aclosed rectangle
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tst R is measurable
Let e>0,Let ACR"
by definition of m (A)

3 acountable collection of closed rectangle {R }", such that
AQOR and iV(R)<m*(A)+e .................................. (1)
i=1 i=1

we decompose each R into finite union of amost digoint rectangle

R'=RNRCR and S, CR°

.-.By finite additive property of M.

Note That {R}", lover AAR
UR]HR UlFmR [jﬂ

{aj }i, j covers ANR°

[ ANRC

00

;V(R):m*[QRl >m (ANR)" and m*[iuaj gm*<AﬂR°)
m (A1R) < U
<Zm( )=2_v(s)

i

=By (D)
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m*(A)+e>iz°°lv(R)
VIR

Il

I
5N

v(s)

>m (ANR)+m (ANR®)

k
j=1

Thisistrueforany €>0

m (A)>m (ANR)+m (ANRC)
.-.By definition R is measurable.
Example 7 :

Show that every open and closed subsets of R" are
measurable.

=  Let K=max{K}

Let G be an open subset of R" consider the grid of rectangle
in R" of side length one and whose vertices have integer co-
ordinates.

TST G is measurable.

.. Number of rectangle in grid is countable and one almost digoint
we ignore all these rectangle contained in G°.

Now we have two types of rectangle (1) Those rectangle
contained in G (2) Those rectangle intersect with G & G°.

Let C = set of all rectangle contained in G.

We bisect type (2) rectangle into two rectangle each of its
side length is %%.

Repeat the process iterating this process for arbitrarily many
times we get a constable collections ¢ of almost digoint rectangle
contained in G.

By construction | JRCG

ReC

Let xeG
.G isopen

We can choose sufficiently small rectangle in the bisection
procedure that contains x is entirely contained in G.
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.'.erR

ReC

~GCR

ReC

~G=JR

ReC

.G is countable union of closed rectangle and hence G is
measurable.

4.4 OUTER APPROXIMATION BY OPEN SETS

Let ECR" such that E is measurable iff for €> 0, thereisan
open set (2 containing E for which m' (Q/E) <e.

= Suppose E ismeasurable
Let e>0
Suppose m (E) < oo
By the definition of m' (E)
3 acountable collection of open rectangles {R} suchthat EC| JR

and S V(R)<mi (E)+e.

i=1

Let @= JR whichis countable union of opensets.
i=1

s isopenin R" and ECQ
-.Q isopen, it ismeasurable
..Q/E ismeasurable

Q=EU(Q/E) whichisa countably disjoint union
m (Q)=m (E)+m (</E)

~m (QYE)=m (Q)—m (E)

But

0={JR =i ()< m (R)<)_V(R)

i=1

#M@VQSE?NR%“W5<E

Suppose m (E)
For each k
E. = ENR where

(0¢)
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R, =rectangle with centre origin and side length K
For each k

Then m (E,)<m (R)=V(R)=K* <0

. by first casefor each K, 3 Q, openin R" such that
E, COm (2 /E,) < 2E

Let = JQ, whichis countable union of open set.
k=1

~.Qisopenand ECQ
m (Q/E)=m (QNE°)

m

|
iU /e)

m' (€, /E)

QkﬂEC]

C8 &

T
X

IN

m (2, /E,)

IA
e 10 10

IA
N|m

=c

I
I

1

Conversely suppose for agiven €>0 3 open set Q> E such
that m (Q/E) <e.
Tst E is measurable
Let ACR"
-.Q isopen
= ismeasurable
m* (A)=m (ANQ)+m (AQ)
Notethat A/E=(A/Q)U((ANQ/E)) whichisadisioint union.

mi (A/E)=m (A/2)+m ((ANK)/E)
m (Aﬂ E)+m (AVE)=m (ANE)+m (A/Q)+m ((ANQ)/E)
m (ANE)+m (A/Q)+m (ANQ)

m (A)+ €
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Thisistrueforany €>0
m (ANE)+m (A/E)<m (A)
.. E ismeasurable.

Exercise8:
Let ECR"ST., E ismeasurable iff for each €>0 thereis G, set G

conlaining E for which m (G/E) =

Proof : suppose E is measurable
..By outer approximation by an open set.
Foreach ne N, 3 anopenset O, DE st.

m(Qk/E)<%(
Let G=(), , then Gisa G, setant ECG
=1

()

QO K/E

-]

m

e
|
B

e

1

DS ?DS

1

Qnec]

Q ﬂEC)
0 /E)

<%

Thisistruefor all k

m (G/E)=

Conversely, suppose 3 G, set GO E
st. m (G/E) =

tst E is measurable

Let ACR"

.G iscountable int of measurable
Set = G ismeasurable.

..By déefinition

m (A)=m (ANG)+m (ANG®)
Note that
AE=(AG)U((AUG)/E)
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Which isadigoint union

- (AVE)=m (A/G)+m ((ANG)/E)

-.m (ANE)+m (A/E)=+m (ANE)+(A/G)+m (ANG/E)
<m (ANG)+m (A/G)+m (G/E)
<m (A)+0
<mi (A)

4.5 INNER APPROXIMATION BY CLOSED SETS

Theorem :
Let ECR" S.T. E ismeasurable iff for each >0, thereisa
closed set F C E for which m' (E/F)<E.

Proof :
Suppose E is measurable
= E“ismeasurable
Lete>0
.-.By outer approximative by open seet 3 an open set O E© st.
m (Q/E®) <€
Let E=Q°=Fisclosed& F CE.

Now mi (E/F)=m'(ENF°)=m (ENQ)
—mi (QNE)=m (Qﬂ(EC)C)
=m (Q/E®)<e

Conversely suppose for €>0,3 closed set FCE such that
m (E/F)<E
Tst E ismeasurable

Let ACR"

--Fismeasurable

By definition

m (A)=m (ANF)+m (A/F)

Note that

ANE=((ANF)/F)+U(ANF) whichisdisjcint union.
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m (ANE)=m (ANF)+m ((ANE)/F)
L (ANE) 4+ (A/E)

= mi (ANF) i ((ANE)/F)+m (AE)
<m (ANF)+m (E/F)+m (A/F)

<m (A)+€

Example9:

Let E be a set of finite outer measure show that there is an
FosetF&aG,setGst. FCECG & m*(F):m*(E):m*(G).

[Ang] .. E is measurable for given each k 3 open set G, and closed
set F suchthat F CECG, and mi (G /R)< .

Let G=()G, & F=|JF.
k=1 k=1

ThenGis G setandFis Fo setand FCECG.

We now show that m' (G)=m (E)=m (F) G=EU(G/E) which is
digoint union.

m (G)=m (E)+m (G/E)
Now G/E=GNE°

e

fane

k/Fk

x

| ﬂ

m (G/E)<m (G/R)< Y

Thisistrue for all k
m (G/E) =
S (G)=mM (E) coieieiii D
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E=FU(E/F)
m (E)=m (F)+m (E/F)

]

:Em[k[]leC]:m(Eme)

E/F=ENF®=EN

- (E/Fk>

m (E/F)<m (G/R)< Y
Thisistruefor all k
-.m (E/F)=0

Example 10 :

Let E be a set of finite outer measure show that if E is not
measure, then there is an open set O containing E that has finite
outer measure and for which m (Q/E)>m (Q)—m (E).

Solution :
= Since E is not measurable
= J¢&,> 0 for any open set ) containing E.

m (Q/ E) D (1)
. E hasfinite outer measure.

By definition Ja countable collection of open rectangles {R}"

such that EgOR and iV(R)<m*(E)+eo.

Let 0, = JR
i=1
= ECQ, & Q, open.
SBY (1) M(QYE)>E i 2

By countable subadditivity of m
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m (Qo)gi;m*(R):i:V(Rkm*(E)Jreo
-.m (Qy)—m (E) <g,<m (Q,/E)
- (2,/E) > (9,)—mi (E)

4.6 CONTINUITY FROM ABOVE

Theorem :
If {B},, is a descending collection of measurable set and

ﬁBk]zlimm@)

kel k—o0

m(B,) < oo then m

Proof :
= B, > B, >.... Becollection of measurable setsand m(B,) < oo

(8. |=limm(s,)
Let A =B/B vk>1then ACAC...... and A s are measurable
(.. B,'sare measurable)

.'.Oa{l(Bl/Bk): (BNEY)

o0
k=1 k=1

tst m

Let B=| JB,
k=1

~|JA=BNB°=B/B
k=1
.. By continuity from below

m(B,/B)=limm(A) ....coooonn ()

-.B and B, are measurable

m(8,/B)=m(8,)~m(8) and

m(A)=m(B,/B,)
=m(B,)-m(B,)
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~.By (*)
m(B,)—m(B)lim(m(B,)—m(B,))

k—o0

—m(B,)~ limm(g,)

k—o0

~.m(B)=limm(B,)ie

k—o0

DL

8|~ imm(e,

k—o0

=
1

1

Example 11 :
Show by an example that for continuity from aboe the

assumption m(E,) < oo isnecessary.
= Let B, =(k,00) then B, DB, D... and m(B, )= ooV, we now show

that (1B, = ¢.

Let xeﬁBk:xeBk:(k,oo)VK

= x>k,Vk

= N isbounded by x, which is not possible.
SBe=0
k=1

.0=m(¢)=m(NB, )= cc = limm(B,)

Example 12 :
Show that the continuity of measure together with finite
additivity of measure implies countable additivity of measure.

= Let {E } beacountable collection of digoint measure sets.

Let A ={JE

Then A ’'saremeasurableand A CA C......

ws (Ja -UUe|-Ue

k=1\i=1

k—o00

.~.By continvity from below, m[fjﬂ] = limm(A,).
k=1
But by the finite additive property
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Definition :

For a measurable set E, we say that a property holds atmost
everywhere on E, or it holds for almost all x< E, provided thereisa
subset E, of E for which m(E,)=0 and the property holds for all

xe E/E,.

4.7 BOREL CANTELLI LEMMA

Let {E .}, , be a countable collection of measurable sets for
which im(Ek)<oo. Then amost all xeR" belong to Atmost
k=1
finitely many of the E,_ 's.

Proof :
Let E, be the subset of R" such that E, ={xcR":xeE, for
infinitely many}
e ~(UE
k=1\i=k

We sow that m(E,)=0

Let F, =| JE,
k=i

Note that i m(E )< oo
i=1
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Let L=> m(E)
:>m(Fl):m[jEi <m DEk]
<timn{Ue|
< fim3 miE)

<fim|> m(E)—fm(E.)]
< fim|L—>"m(E)
<L-> m(E)
<L-L
=0
m(E,)=0
Example 13 :

Show that there is a non-measurable subset in R .

Solution : R|Q={x+Q|xeR}

WKT any two cosets are either identical or digoint.
We now show that

If AcR|Q then AN[0,]=¢

Let A=x+Q

Let g bearational number in [—x,—x+1] thenx+q<[0,1]
Also x+gexeQ=A

s x+g€ AN[0]]

= AN[0,1=¢

For each Ac R/Q choose x, € AN[0,]]

Let E={x,/AcR/Q}

By construction E C|[0,1]
Let X= |J a+E

ae[-11Ne0

- Forany xe E,q+xe[-12)]
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=gq+EC[-12]

Thisistruefor any qe[-11NQ

Let ye[-11] then ye y+0€ y+Q= A (say)

but x, € A

S Y—X =0€Q(. X, € A= X, € y+Q for some g€ Q}
Y%, €[0]]

= y—x,€[-1]]

=0qe[-11NQ

ye=q+x,€q+E

SYyeX=[0]C X=[01]C XC[-12

.-.By monotonicity of m
m ([0.4) <m (x) < m (-1.2)
1<m (x)C3

If E is measurable then q+ E is measurable and m(E)=m(q+E)

E|l= > m(q+E)

ae[-11NQ a<e[-11NQ

m(x)= 3> m(E)

agl-11NQ

m

~1<m(X)<3

If m(E)=0then >  m(E)=0
ae[-11NQ
~1<0<3andif m(E)=0then >  m(E)=oc
ae[-11NQ

Which is contradictin to (1)
. E 1snot measurable.

4.8 SUMMARY

In this chapter we have learned about.
L ebesgue measureable sets.
Construction of Lebesgue measurable setsin R"
Properties of Lebesgue measurable sets
Non-measurable sets
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4.9 UNIT END EXERISES

1. Show that the intersection of a countable collection of
measurable sets is measurabl e.

2. Show tht every open and closed subset of R" are measurable.

3. Show that a set E is measurable if and only if for each >0,
there is a closed set F and open set 2 for which FCECQ and

m (Q/F)<e

4. Let E beamessurable setin R" and m(E) < ooshow that for any
€> 0 there exist a compact set k C E such that m (E/K)<E.

5. If {A}._, is an ascending collection of measurable sets then
M|UA| - imm(a)
k=1
6. Theouter measure of «, the set of al rational number is‘0’.

7. Provethat the outer measure of countable set is zero.
8. Show that the outer Measure of an interval isits length.
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MEASURABLE FUNCTION

Unit Structure:

5.0 Objective

5.1 Introduction

5.2  Measurable Function

5.3  Properties of Measurable Function
54  Egoroff’s Theorem

55 Lusin’s Theorem

56 Summary

5.7  Unit End Exercise

5.00BJECTIVE

After going through this chaper youcan able to know that
e Measurable function
e Properties of measurable function.
e Concept of ssimple function

5.1 INTRODUCTION

In the previous chapter we have studied about Lebesgue
measure of sets of finite and infinite measures. Now we can discuss
L ebesgue M easurability of functions. The definition of measurability
of function applies to both bounded and unbounded functions. We
also discuss ssmple function and its Approximation.

5.2 MEASURABLE FUNCTIONS

Definition : We say afunction ‘f’ on R" is extended real valued if it
take valueon R.

Definition : A property is said to hold amost everywhere on a
measurable set E provided it holds on E/E,, where E, is a subset of

E for which m(E,)=0

Example 1 : Let f be afunction defined on a measurable subset E of
R". Then the following are equivalent.
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1. For each real number C, theset {xc E: f (x)>C} ismeasurable.
2. For each real number C, the set {xc E; f (x)>C} is measurable.
3. For each real number C, the set {x< E; f (x) <C} is measurable.
4. For each real number C, the set {x€ E; f (x) <C} is measurable.
Solution :

=([1)=(2)

Supposeforany CcR

{x€R, f(x)>C}ismeasurable.......... (*)

Let CeR

tst {xeR; f(x)>C} ismeasurable

oo
Note that {er: f(x)zc}: ﬂ ixe E;f(x)>C—%} which is a
n=1

measurable as countabl e intersection of measurable set is measurable

(by (*))

~{xeE: f(x)>C} ismeasurable

(2)=(3)

Suppose {x€ E: f (x)>C} ismeasurable

[xeE; f(n)j<Cl={neE f(x)>C}" which is measurable as
complement of measurable set is measurable.

- {x€E; f(x)<C} ismeasurable.

(3)=(4)

Suppose {x € E; f (x) < C}is measurable.
Let CeR

tst{x€ E; f (x) <C}is measurable.

Note that

0

{xeE f(x)<C}= {xe E; f (x)<C+%} which is measurable as
n=1

countable intersection of measurable set is measurable set.

= {x€E; f(x)<C} ismeasurable.

(4)=(5)

Suppose {x € E; f (x) <C}is measurable.
tst{xe E; f (x)> C}is measurable.
Note that
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[xeE; f(x)>C}l={xeE f(x)<C}" which is measurable as
complement of measurable set is measurable.

={x€E; f(x)>C} ismeasurable.

Definition : An extended real-valued function ‘f' defined ECR" is
said to be Lebesgue measurable or measurable, if its domain E is
measurable and it satisfies one of the above four statement i.e. For
each real number C, the set {x< E; f (x) <C} ismeasurable.

Example 2 : Show that a real vaued function that is continuous on
its measurable domain is measurable.

Solution :

Let‘f" beacontinuous function

tst ‘f’ ismeasurable

Let CeR

Note that, {xcE;f(x)>C}=f*(C,00) but (C,00) is open subset
of R and f:E — R iscontinuous.

- f7(C,00) isopeninE

- f71(C,00)=GNE for some G is open subset of R" but any open-
subset of R" ismeasurable and E is given as measurable.

. f7(C,00)=GNE ismeasurable

~{X€E; f(x)>C}=f *(C,o00)is measurable

.. By definition

f ismeasurable.

Example 3: Let f be an extended real valued function on E. Sho that
1) Fismeasurableon E and f =g ae. on E then g is measurable

on E.
2) For a measurable subset D of E, f is measurable on E iff the

restriction of F to D and % are measurable.

Solution : Supposefismeasurableand f =g ae.
Let A={xcE:f(x)=g(x)}

Thenas f =gae wehave m(A)=0

tst g is measurable.

Let CeR,{x€E;g(x)>C}

:{XGA;Q(X)>C}U{XE E/A:g(x)>C}
- {xe Ao ClufucBy >l -
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(.f=g)
={xe Ag(x)>C}U{x€eE; f (x)>C}N(E/A)}

But {xe Ag(x)>C}C Aand m(A)=0

.. any subset of measure zero set is measurable

= {xe A,g(x)>C} is measurable

- f ismeasurable = {x< E; f (x)> C} is measurable

- E & A aremeasurable (- m(A)=0)

= E/A ismeasurable

~{xe Ag(x)>C}U[{xeE; f (x)>C}N(E/A)] is measurable
= {x€ E;g(x)>C}is measurable

= g ismeasurable.

2) {er;f|D(x)>C}:{xeD;f(x)>C}
={xeE f(x)>C}ND
D

fl
For DlE[xe E (x)>C]
e

= {x€®: f(x)>C}

={x€E; f(x)>C}N";
Converse
={xee;f(x)>C}:{xeD;f(x)>C}U{xe%;f(x)>C}
={xeD;f(x)>C} is measurable and {xe%;f(x)>C} is
measurable.

As union of measurable set is measurable
= f ismeasurable.

5.3 PROPERTIES OF MEASURABLE FUNCTION

Let f and g be measurable function on E that are finite a.e. on E
show that

1) (Linearity) for any '«' and '3', aF + 3g ismeasurable on F.

2) (Product) fg is measurableon E.
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Solution :

Let E,={xcE:f(x)=+00} and g(x)==+o0 then as f and g are
finite ae. on Ewe have m(E;)=0

. therestriction (9| is measurable.

. any extension of ' f +g' as an extended real valued function to all

of E isalso measurable.
Without loss by generality, we may assumethat ‘f" and ‘g’ are finite
al over E.

Now we first show that '« f ' is measurable for some a € R.

If a =0 then af isazero function then for any CcR.
{x€E:(aF)(x)>C}={xeE:af(x)>C}
¢ if C>0
:{Eif C<0
-.¢ and E are measurable = (x € E;(aF )(x) > C) is measurable
= oF ismeasurable.

Suppose a =0
{x€E:(aF)(x)>C}={x€E:af(x)>C}

- {xe E;f(x)>%}a>0
- {xe E;f(x)<%}a<0

-~ f ismeasurable and C & o arered numbers.
.(*) ismeasurable

= {xeE(af)(x)>C} ismeasurable

= (af)(x) ismeasurable

=af ismeasurable ............................ D

We now show that (f +g) is measurable.

Let CeR

If (f+9)(x)<C

= f(x)+9g(x)<C

= f(x)<C—-g(x)

- Q isdensein R, thenisan r € Q suchthat f (x)<r <C—g(x)

~AxeE(f +g)(x)<C}=Lg{xe E; f(x)<r}N{xeE:g(x)<C—r}
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*Q is countable and {xcE:f(x)<r}is measurable &
{x€E:g(x)<C—r} ismeasurable

.. countable union of measurable set is measurable

= {xeE:(f +g)(x)<C} ismeasurable

= f4+gismeasurable ..............ooii (2
From (1) & (2)

(af 4+ 39) is measurable.

2) tpt ( fg) is measurable
Note that fg:%[<f+g)2_fz_gz}

- f,g are measurable = f +g,af is measurable it is enough tst
square of measurable function is measurable.

LetC>0
Then

{xeE t2(x)>Cl={xecE f (x)>ClU{xeE f (x) <C-/C}

Which is union of two measurable set.

..by definition, f? ismeasurable,

If C<0

{x€ E; £?(x)>C} = E whichismeasurable.

= |n both the case f? ismeasurable
= (fg)is measurable.

* Composition function ( fog)
Example 3:

Let g be measurable real valued function defined on E and f a
continuous real valued function defined on all of R show that the
composition fog is a measurable function on E.

Solution :

Given; Let ‘g’ be measurable function and ‘f’ be continuous function
onR.

Let g;E — R bemeasurableand f :R — R be acontinuous

Let CeR

tst :fog is measurable

Note that {x € E;( fog)(x)>C}
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~(fog) *((C,00)=g*(f *)(C,0))
" (C,00) is open subset and f is continuous = f *(C,c0) is openin

R.
. f7*(C,00)=0 for some open subset O of R.

-0 isopenin R, we can write
o=U(a.n)

g (fH(Co0))= 1[6 ]

i=1

>

Il
N

(g7"(a.h))

:O({er 9(x)>a}N{xcE:g(x)>b}
i=1
={xc€E:g(x)>a}is measurable and {xcE:g(x)>b} is
measurable.
= countable union of measurable set is measurable set.
{x:(fog)(x)>C}is measurable
.. fog is measurable function on E.

Check your Progress:
If f is measurable, then show that
1) f*ismeasurablefor al integer K >1
2) f + )\ ismeasurablefor agiven constant A € R
3) Af ismeasurablefor agiven constant A € R
4) |f| ismeasurable
5) sup f,(n),inf fn(n),lLrI\prA fn(n)llrpcinf f,(n) are measurable.

Definition :
For a sequence {f,} of functions with common domain E,a
function f on E and a subset A of E, we say that

1) The sequence {f,}converges to ‘f’ point wise E, on A provided
]]LTO{fn}(m: f(x) forall xe A

2) The sequence {f,} convergesto ‘f’ point wise a.e. on A provided
it converges to F pointwise on A/Bwhere m(B)=0

3) The sequence {f,} convergesto ‘f’ uniformly on A provided for
each €>0,3N €N suchthat |f — f |<conaforal n>N.
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Theorem :
Let {f,} be a sequence of measurable function on E that

converges point-wise a.e. on E to the function f, show that f is
measurable.

Proof :
Let E, beasubset of Ewith m(E,)=0 and f, — f on E/E,.

-.m(E)=0 & we have ‘f" is measurable on E iff '|.. is
measurable.

By replacing E by E—E, we may assume that the { f,} converges
tofonE

tst f is measurable

Let CeR

tst {xe E; f (x)<C} ismeasurable

{x€E;f (x)<C}:{xe E;lim f (x)<C} but

n—oo

lim f (x)<C iff there are naturd nos. n and k for which

n—oo

f(x)<C-T vj>k
n

J

~{xeEf(x)<C}=U :

ﬂixe E; f, (x)<C—1H
1<k,n<oo
note that ﬁ{xe E; f,(x)< C—%} is measurable.
=k

Countable union of measurable set is measurable
={x€E; f(x)<C} ismeasurable.

Simple Functions:
Definitions:
A rea-valued functions ¢ defined on a measurable set E is

said to be simpleif it is measurable and takes only a finite number of
values.

If ¢is simple, has domain E and takes the distinct values

C....,C, then ¢ = Zn:CkxEk on E, where E, ={x€E;¢(x)=C,}.
k=1

This particular expression of ¢is a linear combination of

characteristic functions is called the canonical representation of the
simple function ¢ .



95

Theorem : The simple Approximation Lemma
Let ‘f" be a measurable real valued function on E. Assume ‘f’
is bound on E. Then for each >0, there are simple function ¢.

and Vv_. defined on E which have the following approximation
properties :
¢ < f<¥_.and 0<V_.—¢. <E ONE.

Proof :
Suppose f : E — R isbounded measurable f,

. f ishounded, 3M > Osuch that | f (x)| <M vxecE
Let (c,d) beanopeninterval st. f(E)<(c,d) (... f isbounded)

Let >0
Consider the partition
C=Y,<VY,<...< Vo4 Of [cd]with y, —y,, <€1<k<n

Define ¢, = 2 YeaXe, Ve = ; Y Xe, where E, = f_1<[yk_1’ ykD
Note that E, _ F (Vi o Vi) 7

={x€E T (X)€Y 1 Vi)

= {xe By < F ()< ¥}

={xeE; f(x)>y,,}N{x€E: f(x)<vy,}
which is measurable. (... f is measurable)

. Xg, are measurable, 1<k <n
= ¢. & ¥_are measurable and takes only finite number of values
- ¢. & U aresimple functions.

Let xeE= f(x)e(c,d)

~3k st oy, < f(x) <y,

e (X) =Y S F ()<Y =T (X) e (1)
= ¢ (X)< f(X)< T (X)

Also by (1) 0< W (X)— ¢ (X) =Y, — Vs <€

Theorem : The Smple Approximation Theorem

An extended real valued function ‘f’ on a measurable set E is
measurable if and only if there is a sequence {¢,} of simple
functions on E which converges point-wise on E to f and has the
property that |¢,| <|f| on Efor al ‘n’.
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If ‘" is non negative, we way choose {¢, } to be increasing.

Proof :
Suppose f is measurable
Case (1) Assume f >0

Let neN, Define E, ={x€E; f (x)<n}
Then '|. isabounded function.

..By simple Approximation Lemma for 621,3 simple functions
n

¢. & W suchthat ¢ <'|o <¥, and 0< W, —¢, < 1.

We extend ¢, on E defining ¢,(x)=n if f(x)>n construct the
sequences {¢, }.

We now show that ¢, — f pointwiseon E

(1) If *f isfinite

~.3NeN suchthat f(x)<N

= X€ Ey

2o (X) < F(X) < ()
()0 () < W ()6 (X<
f(X)—¢N(X)<%V”ZN

= ¢, (X)— f(x) 8 n— o0

Q) If f=cc
f(x)>N forany NeN
=&, (X)=n

= limg,(X)=oco= f

n—oo

Case (2) ‘f’ isany measurablefunction
Define f*l—max{f ),0}

f*(x)=min{ f (x),0}

= f(x)= £ (x)+(f(x)

- f" and —f~ are non-negative measurable function.

. By Case (1), 3 a sequence of simple functions {¢,}& {¢,} st.
¢, — 7 pointwiseand ¥ — f~ pointwise.
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o9, —V, — f pointwise
-.¢, and W _aresimplefunction vV n
= ¢, — ¥, asasoasimplefunction Vn.

5.4 EGOROFF' STHEOREM

Theorem Statement (Assume E has finite measure)
Let {f,} be asequence of measurable functions one that converges

pointwise on E to the real valued function f. Then for each €>0
there is a closed set F contained in E for which {f } — f uniformly

onFand m(E/F)<ec.

Proof :
Since f, — f pointwise on E, for €>0, and xe E,23KeN

such that | f; (x)— f (X)|<€ ¥V [ 2K oo, (1)

Since we want to get a region of uniform convergence, we
accumulate all x e Efor which the same N holds for afixed E.

For any pair k & n define

EQ:{XG E:|f (x)—f (x)|<%, V] ZK}

Not al E' are empty otherwise it will contradict pointwise
convergesof {f } VxeE.
- f, and f are measurable = E; is measurable.
Note that from fixed n

ECE, and | JE =E

k=1
.. By the confinuity of measure.
m(E)= lim m( E;)

K—o00

~m(E) is finite, i.e. m(E)<oo, for the above, >0, such that

S
2n+1

m(E)-M (E}) <
= m(E/E]) < % by countable additivity).
By construction for each xc E!

I, (x)—f(n)|<% V2K i (2)
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Let |A=E}

We show that f, — f uniformly on A
Let >0 choose noeN%<e

By (2)

I, (x)—f(n)|<% ¥, >k, on EP

" ACED,

:>|fj (x)—f(n)|<%<e v, >k, OnA

o f — f uniformly on A.

Now m(E/A)=m(ENA°)

" E, are measurable and countable intersection of measurable set is

measurable.
= A ismeasurable.

.3 aclosed subset F of A stt. m(A/F)<€/2

~.m(E/F)=m((E/A)U(A/F))
=m(E/A)+m(A/F)
<ShH+5, =€

- f — f uniformlyonA & FCA

= f, — f uniformly on F.

Examples 4 : Let f be asimple function defined on E. Then for each
€>0, there is a continuous function g on R and a closed set F
contained in E for which f =g onF& m(E/F)<ec.

Solution:
Let f be asimple function defined on EC R
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Let f takesthevalues a,,.....,a, bethe distance values taken by ‘f’.
o f :zn:axa
WhereTEli ={xeE:F(x)=a}
Note that E:OEi

i=1
ra,'s aredistinct = E, 's aredigoint
- f ismeasurable = F.' are measurable

Let >0
For each k,1<k<n, E, is measurable = 3 closed subset F, of E,

such that m(Ek/Fk)<%
Let F=( JF,
j=1

= Fisclosed
m(E/F)=m(ENF®

)
:m“jEﬂFﬂ

-n L”J[,r"w<Eme>]

Define g:F — R by g(x)=4a if xeF,
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- E's are digoint = F,'sare digoint gis well defined and f =g
on F we now show that ‘g is continuous on f then
Fi'=JF.F'NF =¢ and xeF,.

i=k
-3 anopeninterval | CF, containing 'x' INF'=¢
~g(y)=a/Vvyel
~la(y)-g(x)|=|a—a|=0<e v, el
.. g iscontinuous at X.

Thisistruefor any xe F
.. g iscontinuouson F.

We can extend this continuous function ‘g’ on the closed set F to a
continuous functionon R.

Let the new function be ‘g’ then ‘g’ is continuouson R and g=F
onfand m(E/F)<ec.

5.5LUSIN'STHEOREM

Statement :
Let f be areal valued measurable function defined on E then
for each >0, there is a continuous function g on R and a closed

set F contained in E for which f =g onfand m(E| f)<e.

Proof :
Let f beareal valued measurable function defined on E.
1) m(E) isfinite
. by simple Approximation theorem 3 a sequence {¢,} of simple
function on E such that ¢, — f and |¢,|<|f| on E V.
-.for eech neN there is a continous function 'g," on R and a
closed set ff, conained in E for which ¢,=g, on f, &
m(E/Fn)<%.
¢, — f pointwiseon E
By Egoroff’s theorem
3 aclosed set f, contained in E such that {¢,} — F uniformly on

F, and m(E/F,) <55 .
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Let F=[F,
h=0
F is closed as countable intersection of closed sets.
Each ¢, isuniformly on F(-.-F CF,))
" ¢, 1S continuous
= f iscontinuouson F

i.e. % IS continous.

We can extend % to a continuous function ‘g’ on R .

Then f =gonF
and m(E/F)=m(ENFS)

=m LOOJE/FH]
U

5.6 SUMMARY

In this chapter we have learned about
e Concept of measurable functions.
e Properties of measurable functions
e Simplefunctions & ith Approximation Theorem
e Egoroffs Theorem and LUSIN Theorem of Measurable function.

5.7 UNIT END EXERCISE

1. Purethat “every continuous function is measurable’.

2. Show that the sum and Product of two simple function are ssmple
function

3. Show that if f,[0,00]—R is differentidble, than f* is

measurable.
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4. Prove that if f is a measurable function X, than the set
f*(00) = {xe X|f (x)= oo} is measurable.

5. Provethat if f:[0,1]— R is continous atmost everywhere than f

is measurable.

State and prove Egoroff’s Theorem of measurable function.

State and Prove Lusin’s Theorem of real valued measurable

function.

8. If ‘" ismeasurable then show that f*(C)ismeasurable, C<R.

9. If f is measurable then show that (A—];) is measurable.
10.Show that x, is Measurable if and only if the set A is
measurable.
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LEBESGUE INTEGRAL

Unit Structure:

6.0 Objectives
6.1 Introduction
6.2 Lebesgue Integral of Simple function

6.3  Definition
6.4 The Genera Lebesgue Integral
6.5 Summary

6.6 Unit End Exercise

6.0 OBJECTIVES

After going through this chapter you can able to know that
Lebesgue integra
Lebesgue integral of asimple function
Lebesgue integral of a bounded measurable function
The general Lebesgue integral

6.1 INTRODUCTION

We have dready learned simple functions, measurable
functions. Now here we are going to discuss. Lebesgue integral on
this function. Lebesgue integral over come on the class of all
Riemannintegrable functions & the limitation of operations. So now
we defined the genera notation of the Lebesgue integral on R" step

by step.

6.2 LEBESGUE INTEGRAL OF SIMPLE FUNCTION

Definition :
For a simple function ¢ with canonical representation

n

¢(x)=> aX. defined on a set of finite measure E, we define the

i=1

integral of ¢ over E by fqbzzn:qm(Ei).
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Examplel: Let {E}  beafinite disoint collection of measurable
subset of a set of finite measure E. For 1<i <n,Let g €R.

If ¢:iqxa on E, than f(b:zn:a,.m(Ei).

Solution :
Let ¢:Za,.xE st. E's are pairwise digoint which may not
i=1

be in canonical form.

Let {b }Tzlbe distinct elements of {a,,....a,} .

Define F, = JE where |, ={i:a =a}.
i€l

Notethat F,'s aredigoint.

,',m(Fj):Zm(Ei)

i€l

k
~.¢=1 b, isacanonical representation of ¢.

=1

.. By definition fgb:ibj.m(Fj)
E j=1

b.

J

=2_b (2 m(E)

k
=1 i€l

6.2.1 Theorem (Properties of integral ssmple function)
Let ¢ and ¥ be smple functions defined on a set of finite

measure.

Then
1) Linearity : For any 'a'and '3’

[(ao+pw)=afo+5[w

Proof :
Let g=> ax, and ¥ = ijXBj be canonival representation
i=1 j=1

of ¢ and ¥ respectively.
C,=ANB;,1<i<nl<j<m



then 6= .m axC, and U= By, oo ()
. By definition fqb ZZam( ;) and f\IJ: n Zm:bjm(c”)
By (1)
oqu—kﬁ\l/:ZZ(aaj +ﬂbj)xC
.. By definition
fongJrﬁ\I’: Z(aner) m(C;)
— 'n iaa,. m(C; )+ n iﬂb] m(C,)
:a[n iqm(cll) N iQm(C”)]

2) Monotonicity
If < ¥ onEthen fgb
E

IN

[m

Proof :
Suppose ¢ <¥onE

taf¢§fm

Let f=0—¢>0
- By linearity property

fw<f¢ f [fzo
ez o

3) Additivity :
For any two digoint subset A .BCE with finite measure,

A{jzﬁﬁ

Solution :

f¢:f¢XAUB
AUB E
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d(XatXe)

OXat [ e

o+ [

Il
> m— m—

4) Triangleinequality : If ¢ isasimple |¢| and f¢

E

< [l4l.

Solution : Let ¢ be asimple function and ¢:zn:axN be canonical
i=1

representation of ¢ .
Then |¢|= Zn:|q Iy Whichisasimple function.
i=1

By Definition

fcb:iZn;am(Ai)
[o

;;WMA%

gi;|qm(Ai)| (by triangle inequality)
<3 Jajm(a)

<3l jm(4)

g[lal

5) If =T ae. onkE, then f¢=f\1/

Solution : Suppose o =¥ ae onF
Let E,={x€E;¢(a)=¥(x)}
Then m(E,)=0 andon E/E,;¢ =T

Let ¢=> ax, and ¥=> by, be canonical representation of ¢
i=1 j=1
and ¥ representation.

.-.By definition



107

=> am(ANE)U(AUE|E,)

i=1

:iam(AmEOHiam(A N(E)E)

i=1

—0+> am(AN(E/E,)

[¢:f¢w

ElEo

Similarly
Jo=Jv

¢="on E/E,

;[¢=[¢

* Lebesgue integral of a bounded measurable function on a set of
finite measure.

We now extend the notion of integra of simple function to a
bounded measurabl e function on a set of finite measure.

Let ‘f’ be a bounded rea -valued function defined on a set of
finite measure E. We define the lower and upper Lebesgue integral

respectively, of ‘f’ over E to be wp|f¢:¢simpleand¢§ fonE
E

and inf f\IJ:\IfsimpIeand f gklfonE’.
E

Since ‘f’ is bounded by the monotonicity property of the
integral for simple functions, the lower and upper integral are finite
and the lower integral <the upper integral.

6.3 DEFINITION

A bounded function ‘f’ on a domain E of finite measure is
said to be Lebesgue integrable over E if its upper and lower
L ebesgue integrals over E are equal. The common value of the upper



108

and lower integrals is called the Lebesgue integrals or smply the
integral, of ‘f’ over E and is denoted by ff :
E

Example 2 : Show that a non negative bounded measurable function
on a set E of finite measure is integrable E of finite measure is
integrable over E.

Solution : Let ‘f’ be a bounded measurable function defined on E.
where m(E) < oco.

..By simple Approximation Lemma
For ne N,3simple function ¢, and ¥ such that ¢, < f <V,  and

Og\lln—¢n<%.
.'.L[\Ifn—jE}bn:[qzn—gbn<[%:%m(5)

But, sup{fqﬁ;qﬁsimple,qﬁg f}zfqﬁn and
inf {f\lf;\lfsimple, f gtlf}gtlfn

o<inf {f\lf;\lfsimple,\llz f

—smL[¢¢smma¢§f}
g[%—[@<%m$)

Thisistruefor any ne N and m(E) < oo
c.inf lf\lf;\lfsimple,\lfz f}

E
Zﬂm{f¢¢§mm&¢§f}

E
= f isLebesgue integrable over E.
Example:

Let ‘f’ be a bounded measurable function on a set E of finite
measure. Show that if ff —0then f =0 ae
E

Solution : Suppose ff =0and f >0
E

tst f =0ae.
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Let En:{xe E; f (x)>%} then %XEn(X)< f(x).

By monotonicity,

J3xe (x)< [f=0

:>%m(En)<0

=m(E,)=0
But E,={xcE;f (x)>0}:L:jEn
~m(E,)

= f =0 ae. over E.

6.3.1 Propertiesof integral of bounded function :
Theorem : Let ‘f" and ‘g’ be bounded measurable functions defined
on a set of finite measure E then

1) Linearity : forany 'o' and 8

[(at+Bg)=a[f+53[g

Proof : Let f,g bebounded functions, «,3cR
tStfaf+6g:osz+ﬁfg
E E E

Itisenoughtstfaf:aff andff+g:ff+fg
If a=0 then afE:O ) ) E E

:>fozf:O:osz
E E

Suppose a =0
. f isbounded = « f isbounded = «f islebesgue integrable.

Let >0
.'.faf = upper lebesgue integrable of 'af "
E
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:inf{f\ll:\l/issimple&\llza—f}

:mrF!X3gymgnue&$ézf}
:amrjX£éy$égmma$ézf]

E

:omﬁlf¢¢§mMQ¢2f]

Let «<O
Similarly for lower Lebesgue integral of o f

,,[ozf a[f
Wenowshowthatferg:ferfg
E E E
Let v, and ¥, be simple functions on E such that, f <¥, and
g<V, then ¥, + ¥, isasimplefunctionand f +g<¥,+ ¥,
. f andgarebounded = f + g is bounded.
= f + g isLebesgue integrable
..By definition
f f+g=inf {f\ll f +g§\11,\11issimple}

E
<[w,+v,=[v+]v,
E E E

Thisistrueforany v,, ¥,simplewith f <¥,and g< Vv,
:>ff+gislower bound of

|f%+fwﬂaz@%zgwmnwmq
E E

:>ff+g§inf |f\lfl+f\112;\1112 f,\Ifzzg,\Ifl,\Ifzsimple}
E E E
gmﬂj@$Wgzt%smm%+mqu5Wﬁxm%§mm%
<[t+[g
E E
e [f+]g
E E E
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For the reverse inequality
Let ¢ and ¢, be simple function for which ¢, < f & ¢, < g on E then

o+é, < f+gand ¢ +¢, issmple
.'.ff+g:sup f¢;f+92¢,¢simple
E E
> [é+ ¢,
E

> o+ [ 4,

Thisistruefor any ¢,, ¢, smplewith f >¢ & g> ¢,
:>ff+g is upper bound of
E

lf@+f%m§ﬂ%§9%%9mm}
=>ff+928up{f¢1+f¢2,¢1§ f1¢2§gi¢1’¢2 Slmple}

zwﬂjﬁmméLﬂdmm%+wdj#g@§g@ﬁmm%
<[t+[g E
;jf+;2ff+fg

;jf+g:zf+29

2) Monotonicity : If f <g onE, then ff gfg
E E

Pr oof
Suppose f and g are bounded mesurable function on a set E of
finite measurable functionand f <g

tqffgfg
E E

Let h=f—-g>0
= h is non-negative bounded function.
..By linearity

Jor]r=Jemr=]n

- hisbounded & h>0
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= h> ¥ where ¥ =0 simple function

But fh:sup{f\lf;simple,\lfgh}
E E
:[hz[@: *m(E)=0
;[g—[lehzo
B EEN R
E E

3) Additivity : For any two digoint subsets, A BCE with finite
measure.

ff:{f+[f

AUB

Proof :
Let ‘f* be bounded measurable function on a set E of finite
measure and A,B digoint subsets of E.

tst | f=f+[f
L]
-+ f is bounded measure.
= fxae T XarXs @€ bounded measurable functions.

f f :fXAUB:ff(XA+XB)

:ffXA+fXB
E
:ffXA+ffXB
E E
ff:ff+ff
A B

AUB

4) Triangleinequality : Let f be a bounded measurable function on a

set of finite measure E, Then || f|< |f|‘
[

Proof :

Let f be bounded measurable function on a set E of finite
measurable
=| f| is measurable and bounded on E.

Note that
Sl < f <A
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.. By monotonicity and linearity

—[Mé[fS[m
e

Example:
Let {f,} be asequence of bounded measurable functions on a set of

finite measure E. Show that if f, — funiformly on E, then
lim [ f,= [
E

E

=

Solution : Let {f,} be a sequence of bounded measurable function
onaset E of finiteand f, — f uniformly on E

tst lim [ f,= [

n—oo

E E
i.e.[fn:[f

. f,— f uniformly on E
= foragiven €>0, 3,,€N

Vxe E,|f, (x)— f (x)| <%<E>Vn2 n,

<

m(E)

ie [f,—f|< vn>n, onE

For n>n,

Now Ufn—ff‘:ffn—f
S'f|fn_f|
S
g
S

<ﬁ-m(E):e

By definition
clim [ = [ 1.
E
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Example5:
Show by an example that the pointwise convergence alone is
not sufficient to the passage of the limit under the integral sign.

Solution : Example
Let f =0, functionon E=[0,1]

Let ¢k:Kx[O,%]—>OaSk—>oo

.9, — f pointwise
[gf)k =K.m KO%”
=K.—=1
[i=0
oA

Example 6:
Let f be a bounded measurable function on a set of finite
measure E. Assume g isbounded and f —g a.e. onE,

Showthatff:fg
E E

x|k

6.4 THE GENERAL LEBESGUE INTEGRAL

For an extended real-valued function ‘f’ on E, the positive
part f* andthe negative part f~ of f defined by

f*(x)=max{f(x),0}and
f(x)=max{-f(x),0}vxCE

Then f* and f~ are non-negative functions on f
f=f"—f onEand|f|=f"+f onE
Thusfismeasurableiff f* and f~ are measurable.
Example 7 :

Let f be a measurable function on E, show that f* and f~
areintegrable over Eiff |f| isintegrable over E.

Ans. Suppose f* and f~ areintegrable
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:>[f+<oo&[f‘<oo

But [f|=f"+f"

:>f|f|:ff++f:ff++ff<oo
E E E E

-.|f| isintegrable

Conversely, suppose | f| isintegrable
:>f|f|<oo
E

But f*<|f| & f~ <|f]
= | f7 <[ |f|<oco= f* isintegrable
[

Similarly f~ isintegrable.

Definition :
A measurable function f on E is said to be integrable over E if
|f| is integrable over E i.e. f|f|<oo. If ‘f" is integrable over E,
E

then we define theintegral of ‘f’ over E by ff :ff+—ff‘
E E E

Example:
Let ‘f’ beintegrable over E. Show that f isfinite a.e. on E and

ff:ff where E,CE and m(E,)=0

E Eg

Solution :
‘f’ isintegrableon E
=|f| isintegrable

:>f|f|<oo
E

Note that | f| is non negative integrable function.
We now show that |f| isfinitea.e. on E.

Notethat {x e E;|f (x)| = oo}
=N{x€E f(x)>x}
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= {xe E|f (x)| =00} C{x€E; f (x)>n}vn
But by chebychev’'sLemma......................... *)

m({xe E;|f(x)>n|})<%f|f|vn
~.|f] isintegrable, f|f| isfinite
ie [|f|<oo E

:>m({xe E;|f(n)|<n}):0
:>m({xe E;|f(n)|:oo}):0
=|f(x) isfiniteae. on E

- <|f], weget
f isfiniteae.onE

0

Let E,CE st. m(E,)

..By definition
[f :[f —[f

:f f*—f f~ (. f"& f-are non-negative integrable
ElE, ElE,
functions)

= [(fr=f)=[f

E/E E/E
Example 9:

. 1

Define f(x):W

=0 x=0

O<x«l1

1
Show that f is Lebesgue integrable on [0,1] and f%dx:s. Find
0

aso f(x,2)

Solution :

1

So f isunbounded in [0,1] its Lebesgue integrability define

1 .. 1
=nif O<x<yn*?
=0if x=0

f(x,n)=



1 n 1
Now[f(x,n)dx:[ f(x,n)dx+uf f (x,n)dx
32
Y52 1 1
:fndx+f o5 OX
0 1 32
7
1 1 2
=—+3[1-|—| |[=3——=Vn
R

by definition of the Lebesgue integral of on bounded functions
1

n—oo

0

]f(x) dx=lim | f(x,n)dx

3

=3

Lebesgue integrable definefor n=2

1 ., 1
f(X,Z):W”?SXSl
=2 if0<x<%
=0 if x=0
6.5 SUMMARY

In this chapter we have learned about
Introduction concept of Lebesgue integral.
Lebesgue integral of complex valued Measurable functions
Lebesgue integral at a simple function.
Lebesgue integral on bounded M easurable function general
L ebesgue integral

6.6 UNIT END EXERCISE

1. Show that for a finite family {f, }  of measurable functions
with common domain E, the functions Max{f....f,} and
Min{f,....f,} also are measurable.

2. Show that the sum and product of two simple functions are
simple.
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3. For every non-negative and measurable function f on [0,1] then
show that | f dm=inf [ ¢ dm.
e

4. Prove that a measurable function f(x)L'[0,1] if and only if

22”m{xe 0.1];]f (x)>2"} < o0

[0

1
e
5. 1f fel}[0,1find lLTO[Klog L o |

6. Let f be aLebesgue integrable function on X use the positive and

[ fax< []f]ox.

7. Let f be a non-negative measurable function on X and suppose
that f <M for some constant M prove that f fdx< f || dx for
E X

negative part of f to prove that

8. Calculate L ebesgue integral for the function
f( )_11wherexisrationa|

2wherexisirrational
5

9. Evaluate [ f(x)dx if
0

00<x<«1
f(x)=1{1 {1<x<2}U{3<x< 4}
2 {2<x<3}U{4<x<5}

by using Riemann and L ebesgue definition of the integral.
10.Show that if f is a non-negative measurable function then

f —0ae onaset A iff ff dx=0
A

11.1f f(x)=x if 0<x<1
=9
then f is not Lebesgue integrable in [0,1]
12. Let F be a non-negative measurable function on y and suppose

that f <M for some constant M. Prove that ff du <mu(E)for any
E

measurable EC .
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CONVERGENCE THEOREMS
Unit Structure:

7.1  Introduction

7.2  Measurable Functions

7.3  Lebesgue Theorem on Bounded Convergence
7.4  Limits of Measurable Functions

6.5 Fatou'sLemma

7.6  Lebesgueintegral of non-negative measurable function
7.7  The Monotone convergence Theorem

7.8  Dominated Convergence Theorem

7.9 Lebesgueintegral of complex valued functions
7.10 Review

7.11 Unit End Exercise

7.1INTRODUCTION

In this section we analyze the dynamics of integrability in the
case when sequences of measurable functions are considered.
Roughly speaking a “convergence theorem” states that integrability
is preserved under taking limits. In other words, if one has a

sequence (f,) " of integrable functions, and if ‘f" is some kind of a
limit of the f,'s then we would like to conclude that ‘f' itself is

integrable, as well as the equality ff =lim | f such results are

n—oo

employed in two instances.

i) When we want to prove that some function ‘f’ is integrable. In
this case we would look for a sequence (f,)” ., of integrable
approximation for f.

n=1'

i) When we want to construct and integrable function in this case,
we will produce first the approximates and then we will examine
the existence of the limit.

The first convergence result, which is some how primote, but
very useful in the following.
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7. 2MEASURABLE FUNCTIONS

Theorem :
Let (X,A 1) be afinite measure space, let G(C—(0,00)) and

let f :X—[09,n>1 be a sequence of measurable functions
satisfying.

1) f>f,>..>0
2) Jim f,(x)=,¥xe€ X Then one has the equality Iim[fn dx=0.

n—oo

Proof :
Let for each >0 and each integer n>1, the set

A; ={xe X f,(x) >€} obviously, we have ASeAYe>0n>1we
are going to use the following case.

Claml :
For every > 0, one has the equality r!imu(ﬁf):o.

Fix >0, Let usfirst observe that (a) we have the inclusion

AT D AT D e (1)

Second using (b) we clearly have the equality ﬁAf:d).
k=1

Since pisfinite using continuity property we have

lim pu(A7)=p ﬁ“ﬁ]zu(aﬁ)zo
Clam I :

For every >0, and every integer n>1, one has the
inequality ngfndugau(Af)Jreu(x).
X

Fix € and n and let us consider the elementary functions.

hﬁzaxA%Jrefo where B = X/A® obviously, since

1(X) < oo the function h; is elementary integrable. By construction
we clearly have 0< f <h-, so using the properties of integration,
we get
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O§ffndnghde:au<Af>+€u(Be)

Sau(Ae)—i-Gu(X)

Usingclaim | & 111 it followsimmediately that
Ogliminfffnd,uglimsupf f.du<ep(X)
X X

nN—oo

Since the last inequality hold for arbitary >0, we get
lim [ fdu=0

n—oo

7.3 LEBESGUE THEOREM ON BOUNDED
CONVERGENCE

Statement :
Let {f }be a sequence of functions measurable on a

measurable subset AC|[a,bjsuch that lim f (x)= f (x)then if there

exists a constant M such that

have lim [ f,(x)dx= [ f (x)dx.
A A

f.(x)|<M forall ‘n" andfor al ‘x’, we

Proof :
colim fn(x): f(x) and

nN—oo

f (x] <M
=|f(x)|<M
The function ‘f’ is bounded and measurable

Hence L ebesgue integrable.
Now we shall show that

lim [{£,(x)— f (x)|dx=0

For a given >0, we define a partition A into digoint measurable
sets A 's asfollows:

A ={x:|f_— f|>e|f,— fl<eV, >k}K=123,...
In particular,
A={x|f, —fl<en=123..}

A ={x:|f,— f|>g|f,— fln<en=234,...}

Clearly,
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-On-{AH A

K=1 =] K=n+1
=PRUQ,
mA:m<PnUQn):mPn+rnQn
Now [[f, — flax= [[f, fldx+ []f,— ok o @)
A R @

For each ‘n’, we haven
|f,— f|<€ on P, and |f,— f|<|f |+|f|<2mon Q,

Thus, f|fn— fdx <€ mP, +2M mQ,

A
Asn— oo, limmP,=mA and limmQ, =0

n—oo n—oo

Thus, | |f —f|dx<emA
{I |

€ being an arbitrary value
lim [ £, (x) dx= ff

Example1:
Verify Bounded Convergence.
Theorem for the sequence of functions
1

f =

n

- 0<x<LneN.
15

[+ %)

_| <1vn and vx

fo (x) =

Each f, being bounded and measurable, the [imit function.

limf,(x)=lim—* =1

R A

It is also bounded and measurable. Now
[
ofexy e

N 1+ %
R T




123

n
:1_%
el
e
Similarly,
1 1 1
lim dx= | —dx= | e *dx
On_>OO 1+§” LOfex [
n
. 1 -1
=[] =35

Hence Bounded convergence theorem is verified.

7A4LIMITSOF MEASURABLE FUNCTIONS

If f:R—[-o00,00](M12,..) is an finite sequence of
functions then we say that f : R — [—oc0,00] is the pointwise limit of
the sequence (f,) if wehave f(x)=lim f (x) for each xeR.

n—oo

For any sequence f,:R —[—o0,00] we can define limsup f,

n—oo

asthe function with value at ‘x’ given by

limsup f, (x)=lim [sup fi (x)]
N=oo{ k>n

N—oo

Something that always makes sense because sup f, (x) decreases n
k>n

increases or atleast does not get any bigger as n increase. Suppose
that {f,} isasequence of real number. Let A be the set of numbers

suchthat f, — f for some subsequence f, of f .
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. f iscaled alimit point of f , so A isthe set of al limit points of
{f,}. Then supremum and infimum of A are denoted by the
following liminf f, =inf Allmsupf =supA.

n—oo

7S5FATOUSLEMMA

Statement :
If {f,} is a sequence of non-negative measurable functions,

then for any measurable set E.
!]Lrlloinfff dx>f(lLrpo|nf f)

Proof : We write f (x)=liminf f (x)

We recall that for any x, liminf f (x)=infinf f where Ex isthe set

of all limit pointsof f (x).

. f, — f pointwise convergence on E

= f,— f pointwiseon EZ,m(E)=0

- 1,41 pointwiseon E

B, CE and m(E,)=0

We may assume f, — f pointwise on E

f,'s are non-negative measurableand f, — f

= f is non-negative and measurable.

Now to show that | f <liminf | f,
E

n—oo

E

Let h be a bounded measurable function of finite support such that
O<h<f

= m(E,) < co where E, ={x¢€ E;h(x)= 0}
*~h is bounded choose M such that h(x)<M on E for ne N Define

h,=min {h, f }.

Clearly h, >0 is measurable bounded function and h, <M . We can
now show that h, — a pointwiseon E,.
For xe E,h(x)< f (x)

Casel :
h(x) < f (x)
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= f(x)—h(x)>0

- f, — f pointwise on E for 0<e< f (x)—h(x)
In, €N suchthat [f, (x)— f (x| <€ ¥, >n,

= f(x)—e< f,(x)< f(x)+¢€

~h(x) < f(x)—e< f (X)V, >n,

s h(x)=min(h, f)=h(x)Vn>n,

= h, — h pointwise on E,

Casell :
h(x)= f (x)
Then h, (x)= f,(x) on f(x)Vn
-+ f, — f pointwise on E,
=h, — f =h pointwise E,
By bounded convergence Theorem
For the bounded sequence {h, } restricted to E,

Wehave lim [h,— [h
Eo Eo

fim [h=lim [ = Jh=[h
[’.'m:O,onE/EOE;Oh:OcEJOnE/EO]
[n=tim [h, =liminf [h, <liminf [ f,

Thisistrue for any bounded measurable function with finite support
suchthat 0<h< f

. By definition of ff
E
o[£ <liminf [,
E E

7.6 LEBESGUE INTEGRAL OF NON-NEGATIVE
MEASURABLE FUNCTION

Definition :
Let f be a measurable function defined on E. The support of
‘" isdefined as sup(f)={x€E; f (x)=0}.

Definition :
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A measurable function f on E is said to vanish outside a set of
finite measure if 3 asubset E, of E for which m(E;)<oc & f =0

on E/E,. It isconvenient to say that a function that vanishes outside

aset of finite measure has finite support.
..We have defined the integral of a bounded measurable function ‘f’
over a set of finite measure E. But m(E)=ocoand f is bounded and

measurable on E with finite. Support we can define its integral over
Eby [ f= [ f where m(E;)<ooand f =0on E/E,.
E E

Definition :
For a non-negative measurable function f on E we define

integral of ‘f' over E by f —sup f h:h bounded; measurable of
E E

finite support and 0<h< f onE}.

Chebychev’sInequality :
Statement :
Let f be a non-negative measurable function on ECR then
forany A>0.
] 1
m{xe E; f (X)ZA}SXI‘C

E

Proof :

LetE, ={x€E: f(x)>A}
Casel :

m(\,)=oco for each neN define E!=E, N[-n,n]. Then
\Ijn:AXE;'

Then ¥ isbounded measurable function
(B = [, and v, < f
E

Notethat E <E!" and | JE] = E,
n=1

..By continuity of measure.
o=\, (E,)=lim\, (E)

=lim | ¥,
nN—oo

E

U isboundedonEand ¥ < f
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.-.by definition ff , we get
E

[o<)

E E
co=A,(E )< | f
=]

Both side = >

EA)S%[]C

Casell : m(E,)<oo
Define h=X\xg then h is bounded measurable function h< f
. by definition of ff we get Am(E fh<ff

7.7 THE MONOTONE CONVERGENCE THEOREM

Statement : Let {f } be an increasing sequence on non-negative
measurable functionson A. If lim f_ (x)= f (x) then Iimf fn:ff :
A A

Proof :

Let {f,} be an increasing sequence of non-negative
measurable functions and lim f = f(x) i.e. it is convergent at

pointwiseto f on A.
Now to show that lim [ f, _ff

n—oo

cf — f pointwiseonAand f,<f.. VneN

= f <fV onA

#{fngff on A
:>sup{fn§{f
ALTOSUIO£ fnng‘f .................................. )]

By the Fatou’'slemma

n+1



F<lminf [ e ()

n—oo

Froml & 1l weget
ff—nmmf f =limsup [ f.

n—oo nN—o00
- lim f<_ff
n—oo

7.8 DOMINATED CONVERGENCE THEOREM

A

(Generdlisation of Bounded Convergence Theorem)
Statement : Let {f,} be a sequence of measurable function on E.

Suppose there is a function ‘g’ that is integrable over E and
dominates {f } on E in the sense that |f|<g on E for al n. If
f — f pointwise amost everywhere on E,then f is integrable over
Eand lim f._ff

n—oo

Proof :
~|f,|[<gV,onEand f,— f pointwiseon E.

=|f[<g<]g|

= [1f]< [flol <o
= f ismeasurable
|f)|<gand|f[<g=g-f, >0and g— f,— g—f pointwise
.-.By Fatou’ slemma

j@—fgmmmfg—n
gnmm]h—fn
<f6—||msupff
Ilmsupff <ff PP ()

Similarly g+ f, >0 & g+ f, — g+ f pointwiseon E.
-, By Fatou’slemma,

fg+f<nmm{[g+f

fg+ff<fg+llm|nfff



E
From| & Il we get

Iiminfffnzlimsupffn—ff
E E
i =)

Example 2:

Check the convergence of
=¥ <n
=0 ;[x>n

Solution : Let f,(x)= ¥ ;[ <n

=0 ;[X>n

Then f (x)— Ouniformly on R but ffndx:z; n=123,....

lim f,(x)= lim = =0 where [x|<n

n—oo n—oo N

=0 when [{>n

. lim £, (x)=0 uniformly on the whole real time.

n—oo

Now, |f,, (x)— f,(x)|= ﬁ_ﬁ ‘— <€

Whenever M > 2—

Now ff dx_deerf%derdex 2.

This emplles that unlform converges of {f.(x)} is not enough for

lim [ f, = [limf,

This equality is Lebesgue integration.

In general, is only due to dominated convergence of the sequence
{f.(x)}.

..However on the set of finite measure uniformly convergent
sequence of bounded function are bounded convergent.
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7.9 LEBESGUE INTEGRAL OF COMPLEX VALUED
FUNCTIONS

If f is a complex valued function on E C R"we may write as
f (x)=u(x)+iv(x) where u& vare rea functions called the real and

imaginary part of f.

A complex valued measurable function, f :u+iv on Eissaid

to be integrable if [{f (x)|= [ Ju(x*)+v(x*) <o and the integral
E E

of ‘" isgiven by ff :fu+ifv
E E

E

Theorem :

Show that a complex valued function is integrable if and only
if both of itsreal and imaginary parts are integrable.
Proof :

Suppose f :u+iv isintegrable

:>f|f|<oo

S [T <o
u<lu/=Vu? <JuF v
:>f|u|§f\/m<oo
= uisintegrable
Similarly visintegrable

Conversely
Suppose u & v areintegrable

= [Ju/<o0 and [V|<oo

By Minkowski’s inequality

£ = VU2 +v2 <JU? + W2 =|u|+ M
:>f|f|§f|U|+f|V|<oo

. f isintegrable.

Definition :
A measurable function f:E— C,ECR" is said to be an L*
functionif [|f|<oo.
/
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Note: L'(R")= {set of all complex valued function on R"}

Definition : A family G of integrable function is dense in L'(R") if
forany f €U and €>03geG sothat f|f —g|<e
E

Example 3:
Show that the continuous function of compact support is

densein Ll(]R“).

Solution :
To show that : The continuous function of compact support is

densein L*(R").
i.etstforany f el and €> 0.
3 a continuous function ‘g’ on R" with compact support such that

If—g|.<cie f|f —g|<e.

Let fel*(R")
We may assume ‘f’ is rea valued becaue we may approximate its
real and imaginary part independently.

Inthiscan wewrite f = f"—f .
Where f*>0and f~ >0

.. Itisenough to show theresult f >0.
.. f >0 can be approximated by integrable simple functions.

It is enough to show that the result for an integrable smple
functions.
- A, integrable ssmple functions is a Linear combination of

characteristic function.

It is enough to show for f = x. where E isameasurable set of finite

measurable.

Let >0

..E ismeasurable 3 a compact set k and an open set  of R" such
that K CECQ and m(Q|k)<e

By Urysohn’s Lemma
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3 a continuous function g:Q— k such that g=00on Q|k & g=1
onK

.".g is continuous function with compact support
~.|g9—f|=|g—xe|=1 E|kand |g— x| =0 onoutside E|k

f|g—f|_f1 m(E |k)<m(Q|k) <€

E/k
.3 continuous function of compact support such that |g— f|<e.

. Continuous function of compact support isdensein L*(R").

Example4:
Let fel!(R")showthat | [ f|< [1f]

Solution: Let f e L' toshow that | [ f| < [|f]

Letz:ff

If z=0 thenclearly [|f|=0—z=|7=|[ f]
| f]= f1e
If z=0

Define a:z

E
~Jo]=1and az=|7

.'.‘ff‘:|z|:aZ:aff:fozf
Let of =u+iv

By definition

faf ~Jufs

By Monotonicity property

fu§f|f| .................................................. (I
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By (1) and (I1)

Uf‘gf|f| proved

Example5:
Show that L'(R") iscompletein its metric.

Solution :
Let {f,} bea Cauchy sequencein L'(R") for €>0,3n,€N

suchthat |f —f || <evnn>n,

- foreach keN

We can choose n, suchthat for mn>n |f —f | < 2—1k and n <n,,

1
fo, — To, <§.

Mgt

then the sequence f, has the property that

Construct the series
f(n)= . (x)+ fo, (x)— o (x)+ o, (x)— ., (X)+ ...

=, (x)Jrg:l(fnk+1 (x)— f, (X>)

fnkﬂ (X) - fnk <X>|

NgE

and g(x):|fnl(x)|+

=
I

1
Let S (g) denote the k" partial sum of the series g then.
k+1

S.(9)=f, (] + 22

i=1

fo, (X) =y (%)

Then {SK(g)} is a sequence of non-negative function converges
pointwiseto g.

S(9)<Sui(g)Vn

. By Monotone Convergence Theorem g is integrable and
lim ['s.(9)=J 0

Note that |f|<g

:>f(f)§fg<oo (- gisintegrable)
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= f isintegrable
= f is '(R")

Let S (f) denotethe k™ partial sum of the series of f, then
K-1
S)= £ (931, (9~ 1, (%)
= f, <X>
S (f)— f pointwise
= f, — f pointwise
Now we show that = f, — f in L'(R")

Notethat |f — f, |<gVk

By Dominated convergence Theorem
lim [|f—f,|=0

dim fff =1,

o f, = fin(R")

=0
1

.+ f, is Cauchy and has convergent subsequence f, converges of f.
Weget f, — f

.. Every Cauchy sequencein L' is convergent.

. ' iscomplete in its metric. Proved

7.10 REVIEW

In this chapter we have learnt following points.
Limits of Measurable function
Bounded convergence theorem of measurable function
Monotone convergence theorem of measurable function.
Fatou’ s lemma of measurable function
Dominated convergence Theorem
Complex valued measurable function
Compactnessof  L'(R")

7.12 UNIT END EXERCISE

1. show by an example that the inequality in Fatou’slemma may be
astrict inequality.
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Example : Consider a sequence of function (f,) . defined on [0,1]
nx
by fn(x)_mxe[o,l].

i) Show that (f,) is uniformly bounded on [0,1 and evaluate

i) Show that ( f,) doesnot converge uniformly on [0,1]

Solution :
1) For al neN for all x€[0,1] we have 1+n*x*>2nx>0 and

1+n*°x*>0

Hence 0< f (x)= w L

L = 2

Thus f (x) isuniformly bounded on [0,1]

Since each f, iscontinuouson [0,1]

. f isRiemann integrable on [0,1]

In this case Lebesgue integral and Riemann integral on [0,1].
Consider

nx 1 nx
f 7z X= 2,2
1+ n°x 014+ n°X

0]

Put 1+n’x* =t
1 pun?
—fo 1t ot
log(1+n®)
—Iog(1+ )
[01]1+n 2n
Using L' Hospitalrule we get
log(1+n?
Iog—0g< >:
Hence lim %dx:o
n—ood 14 N°X
(01
nx
i) Foreach x€[0,1]=lim | ———=0

e 1 B

Hence f, — f pointwiseon [0,1]
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Now to show that f, does not convergesto f =0 uniformly on
[0,1.

We find a sequence (x,) in [0,1].

Such that x,—0 and f,(x,)4f(0)=0 a n—oo, taking

1
== then f = .
X == (=%

Thus Iimfn(xn):%:: £(0)=0

n—oo

Example 2 :

n—oo n

Solution : We know that

n n n+1
|im[1+5] — ¢ and [1+5] §[1+L] .
n—o0 n n n+1

Evaluate lim [ﬂJ e Zdx

Also we have

.-.[1+5
n

X n
1+—] <g

e—2x < e—x

.. by Dominated convergence then to the function

1+5] e with
n
the dominating function e~

n—oo n

o lim [1+ 5] e Zdx
0

n

e Zdx

T X
=lim [ me[1+ o
0

liml,, x

n—oo

1+ 5] e Zdx
n

e "dx

I
= 0%8 O%H

2) Show by an example that monotone convergence theorem does
not hold for a decreasing sequence of functions.

3) Let fn(x)::lz;0< x<n
n



4)

5)

6)

7)
8)

9)

10)

11)
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=0 ;otherwise

Evaluate lim | f (x)dx and | lim f (x)dx are these equal?

n—oo n—oo

0 0

g(x)=0 ngg%

%<x§1

fo(X)= 9(x),0< x<1
faa(X)=0(1—x),0<x<1

To show that liminf | f (x)dx> [ liminf f (x)dx

n—oo n—oo

0 0
If fn;X—>[Ooo] is measurable for n=12.. and

Ef )(xe X) thenshowthatffdr S [ t,dr.

n=1
Use the dominated convergence theorem to find

e Jx
| f dx where f = .
lim | f,(x)dx (X =

If a, <b, for al n, then show that liminf a, <liminf b,.

n—oo n—oo

State and prove bounded convergence theorem of measurable
function.
Use convergence theorem to show that
= f e *cos(nt)d u(x) iscontinuous.
[0.00]
Use the dominated, convergence theorem to prove that

lim nfolx/;e“szdx: 0

Use the dominated convergence theorem to show that
n+1
2 *[T] X
lim 1+X—2] dx= ['e 2dx
n R

n—oo




