
Eastern Michigan University
DigitalCommons@EMU

Senior Honors Theses Honors College

2018

The Software Development Life Cycle and Its
Application
Gillian Lemke

Follow this and additional works at: https://commons.emich.edu/honors

Part of the Computer Sciences Commons

This Open Access Senior Honors Thesis is brought to you for free and open access by the Honors College at DigitalCommons@EMU. It has been
accepted for inclusion in Senior Honors Theses by an authorized administrator of DigitalCommons@EMU. For more information, please contact lib-
ir@emich.edu.

Recommended Citation
Lemke, Gillian, "The Software Development Life Cycle and Its Application" (2018). Senior Honors Theses. 589.
https://commons.emich.edu/honors/589

https://commons.emich.edu?utm_source=commons.emich.edu%2Fhonors%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.emich.edu/honors?utm_source=commons.emich.edu%2Fhonors%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.emich.edu/honorscollege?utm_source=commons.emich.edu%2Fhonors%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.emich.edu/honors?utm_source=commons.emich.edu%2Fhonors%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=commons.emich.edu%2Fhonors%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.emich.edu/honors/589?utm_source=commons.emich.edu%2Fhonors%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-ir@emich.edu
mailto:lib-ir@emich.edu

The Software Development Life Cycle and Its Application

Abstract
The Software Development Life Cycle (SLDC) is a concept that is incredibly important to have a deep
understanding of as a software engineer. With this project, my goal was to learn the complexities of each step
conceptually and apply my skills to an actual application. The SDLC includes the following phases: planning
and requirement analysis, design and development, implementation, testing, integration, and maintenance. In
order to apply these concepts, I created a web application for users to schedule messages to be sent at a future
time and date. The API is written in Ruby on Rails and the front end is written in ReactJS. There is also a
PostgreSQL database that stores data such as saved messages and user information.

Degree Type
Open Access Senior Honors Thesis

Department
Computer Science

First Advisor
Dr. Krish Narayanan

Second Advisor
Dr. Augustine Ikeji

Keywords
Development, Sofware Engineering, Design, Agile, Extreme Programming, Computer Science

Subject Categories
Computer Sciences

This open access senior honors thesis is available at DigitalCommons@EMU: https://commons.emich.edu/honors/589

https://commons.emich.edu/honors/589?utm_source=commons.emich.edu%2Fhonors%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages

THE SOFTWARE DEVELOPMENT LIFE CYCLE AND ITS APPLICATION

By

Gillian Lemke

A Senior Thesis Submitted to the

Eastern Michigan University

Honors College

in Partial Fulfillment of the Requirements for Graduation

with Honors in Computer Science

Approved at Ypsilanti, Michigan, on this date

Table of Contents
Abstract
Keywords
1. Introduction
2. The Software Development Life Cycle

2.0 What is it?
2.1 The Phases

2.1.0 Initiation
2.1. l System Concept Development
2.1.2 Planning
2.1.3 Requirements Analysis
2.1.4 Design
2.1.5 Development
2.1.6 Integration and Testing
2.1. 7 Implementation
2.1.8 Operations and Maintenance
2.1.9 Disposition

2.2 Agile Development and Extreme Programming
2.2.0 Application of Agile and XP in this Application

3. My Application
3.0 Phases and their Results

3.0.0 Initiation
3.0.l System Concept Development
3.0.2 Planning and Requirements Analysis
3.0.3 Design
3.0.4 Development
3.0.5 Integration and Testing
3.0.6 Repetition of Phases
3.0.7 Implementation
3.0.8 Operations and Maintenance
3.0.9 Disposition

3.1 Technologies Used
4. Conclusion
5. Future Work
6. Link to Source Code
Appendix A - Client Contract
Appendix B - Software Requirement Specification Document
Citations

2
3
3
3
4
4
6
6
6
6
7
7
7
8
8
9
9
9

11
11
11
11
12
13
14
20
20
21
21
22
22
22
22
23
24
25
26
31

THE SOFTWARE DEVELOPMENT LIFE CYCLE 2

Abstract

The Software Development Life Cycle (SLDC) is a concept that is incredibly important

to have a deep understanding of as a software engineer. With this project, my goal was to

learn the complexities of each step conceptually and apply my skills to an actual

application. The SDLC includes the following phases: planning and requirement analysis,

design and development, implementation, testing, integration, and maintenance. In order

to apply these concepts, I created a web application for users to schedule messages to be

sent at a future time and date. The API is written in Ruby on Rails and the front end is

written in ReactJS. There is also a PostgreSQL database that stores data such as saved

messages and user information.

Keywords

Software, Life Cycle, Application, Design, Development

1. Introduction

The Software Development Life Cycle (SDLC) has been widely adapted through most, if

not all, technology based companies. With the advancement of technology, and the

increasing number of companies that rely on their own custom applications, learning and

understanding the complexities of the SDLC is increasingly important. Of course

knowing how to code is the basis for any software engineering career, but understanding

the SDLC brings a lot of new skill bases to the table, all of which are beneficial to the

engineering process. These skills include planning, designing, and testing. The SDLC

traditionally has ten phases which are initiation, system concept development, planning,

requirements analysis, design, development, integration and testing, implementation,

operations and maintenance, and disposition [2]. Despite being distinct phases, they are

THE SOFTWARE DEVELOPMENT LIFE CYCLE 3

not all required in every situation and often are either skipped or combined together [2].

These phases are all addressed in more detail later. Additionally, variations on the SDLC,

including increasingly important aspects devoted to security in software engineering, are

addressed as well [reference].

Created and illustrated here is a web application made with the intention of learning and

critiquing the phases demonstrated in the SDLC. The application serves the purpose to

allow users to schedule messages to be sent to any person. It is written in ReactJS and

Ruby on Rails, with a PostgreSQL database. Due to the importance of a client in the

SDLC, a fellow student, studying similar concepts, acted as the client for this project. The

intricacies of the application and important pieces of code are reviewed later.

2. The Software Development Life Cycle

2.0 What is it?

The Software Development Life Cycle is a basis or framework for structuring, planning,

and executing tasks involved with developing an information system [5]. Due to the

difference in requirements of systems along with numerous other differences, variations

on the SDLC have been developed. Before beginning a project, it is important to

determine which of these is the most suitable, especially with the recent advancement of

web-based technologies [5]. The SDLC includes distinct phases designed to give

software engineers a clearly defined goal for how to work [2]. It aims to aid developers

and other project staff to create a system that meets all technical and user requirements as

well as exceeds customer expectations [2]. These phases all revolve around a central

theme of quality assurance. The major priority of the project team is to provide quality

software to the users and client. A visual of this cycle is demonstrated below.

THE SOFTWARE DEVELOPMENT LIFE CYCLE 4

Disposition • Initiation
System

• Concept
If Development

Operations &

Maintenance

Quality

Assurance

Planning

Requirements
Analysis

Design

-

THE SOFTWARE DEVELOPMENT LIFE CYCLE

2.1 The Phases

Much of the information described here comes from resource [2].

2.1.0 Initiation

s

The Initiation phases identifies a problem to be solved through software engineering. A

project sponsor must be chosen; this is a person of authority over the project and is in

charge of mediating issues of scope and determining functional requirements. It is also

stressed that this process be documented and a concept proposal is expected to be a

deliverable. This document illustrates the needs defined in business terms and the overall

mission of the system. The Concept Proposal is made by the program manager or sponsor

and is presented to the executive board for approval.

2.1.1 System Concept Development

System Concept Development is used to define the scope of the system. This may include

a high-level schedule, cost summary, and other plans that may be required for the specific

type of system, usually determined by all members of the project team. Documents made

during this phase may include the System Boundary Document, Cost Benefit Analysis,

Feasibility Study, and Risk Management Plan. These documents are typically presented

to stakeholders for review and approval.

2.1.2 Planning

Most of the documents needed during the other phases of the SDLC are made here. These

may include an Acquisition Plan, Concept of Operations, and Project Management Plan,

but there are many more that may be relevant to different projects. A summary is usually

presented to stakeholders at this point, and a detailed plan is presented and reviewed.

THE SOFTWARE DEVELOPMENT LIFE CYCLE 6

2.1.3 Requirements Analysis

The Requirements Analysis phase starts after the documents prepared in the previous

phases are reviewed and approved. Any document stating user needs in the system will

serve as the basis for document created in this phase that illustrate user requirements and

system requirements. Details such as system inputs, interfaces, and processes are

described here. Typically, a Software Requirement Specification document or Functional

Requirements document is created during this phase which includes information about

how to meet user requirements. This may address issues with users with disabilities such

as color-blindness, hearing loss, or cognitive disabilities, or mobility impairments. A Test

Plan may also be created during this phase and may include details on unit test,

integration test, and/or system tests. The portion of documentation is often created by the

development team with the help of a Quality Assurance (QA) team whose purpose is to

make sure different types of users can easily use the system.

2.1.4 Design

In the Design phase, detailed requirements are to be turned into detailed specifications

that engineers will use during the Development phase. These specifications should

address how functional, physical, interface, and data requirements are to be met in the

system. This is usually done iteratively through the entire life cycle process. Designs may

include database designs and user interface designs.

2.1.5 Development

The purpose of the Development phase is to convert designs from the Design phase into a

functional system. This not only includes the software that should be written, but also the

infrastructure that should be set in place. These infrastructures may include hardware,

THE SOFTWARE DEVELOPMENT LIFE CYCLE 7

software, and communication systems that are required for the functionality of the overall

system. Besides the code that is written, some deliverables expected as a result of this

phase include a Contingency Plan that directs the client what to do in case of emergency;

a Software Development document which illustrates test cases and results, how the

components work, and approvals; the test files and data; and an Integration Document

which illustrates how the software and hardware components work together.

2.1.6 Integration and Testing

The Integration and Testing phase aims to determine if the requirements specified in the

specifications document are met. Three different types of testing are ideal to include in

this phase: integration testing of subsystems, security testing, user testing or acceptance

testing, and unit testing. Each of these types of tests setve a different purpose and help all

stakeholders determine flaws in the system prior to deployment. Unit testing, which tests

small portions of code and is traditionally done during the development phase. Several

analysis reports may be produced from these tests and should presented to stakeholders

before moving on to the implementation phase. During this meeting, details on how

implementation should take place are imperative to address.

2.1. 7 Implementation

During this phase, the system is deployed to the production environment. It is important

to inform users of the potential system changes prior to deployment and to train any

professionals on the new system if required. A post-implementation review is commonly

completed to make sure all requirements are met and the system is functioning in

production as expected. If everything is in order, a contract between the development

THE SOFTWARE DEVELOPMENT LIFE CYCLE 8

team and the client project manager is signed, stating that the system has been completed

and delivered [2].

2.1.8 Operations and Maintenance

More than half the cost of the development life cycle is due to the Operations and

Maintenance phase. This phase may include identifying system operations, maintaining

data, identifying problems, and revising documentation that received additional analysis

(e.g. security audit/analysis). A User-Satisfaction report may be developed during this

phase to identify and potential user end problems to address in future development

iterations.

2.1.9 Disposition

This phase is done only when a system has become obsolete or been replaced by another.

Prior to shutting down the system, it is necessary to make sure all documentation and

resources are in order. A plan for shutdown should be written and followed strictly,

making sure to backup all resources and data from the system. It is also recommended

that a security and contingency plan be made and stored with the system in case it has to

be setup again.

2.2 Agile Development and Extreme Programming

Agile development is an iterative process that aims to increase the speed of development

by working incrementally. Agile development techniques include customer involvement,

incremental delivery, flexibility for developers to make their own development plan,

being open to constant change, and keeping code and overall system simple for future

expansion [6], [7]. A comparison of agile and the more traditional plan-driven

development is illustrated below [6].

THE SOFTWARE DEVELOPMENT LIFE CYCLE 9

(�) ►1�=1 0

Extreme Programming (XP) is an extreme approach to iterative development and stresses

the importance of delivering small increments of the system (sometimes multiple

increments each day) and testing for each build of the system increments. Some of the

techniques used in extreme programming include incremental planning, small releases,

simple design, test driven development, refactoring, pair programming, collective

ownership, continuous integration, sustainable pace, and having an on-site customer. XP

techniques are commonly used in agile development life cycles.

Below is a diagram illustrating a simple example of extreme programming [6].

(�}-{::=.}-{�rte-)
I

I

c = >-<= > c��,
Agile development and extreme programming both focus on decreasing delivery time and

therefore, often lack the amount of documentation seen in other types of development

such as waterfall or plan-based development [6].

THE SOFTWARE DEVELOPMENT LIFE CYCLE

2.2.0 Application of Agile and XP in this Application

Working in small increments, test driven development, and refactoring were all used

during the construction of the application in this case.

3. REO: A Message Scheduling Application

3.0 Phases and their Results

3.0.0 Initiation

The purpose of the application, REO (short for reoccur), is illustrated below.

With the constant distractions of today's society, reminders are important.

These reminders may be for tasks that need to be completed, to laugh, or to

wish someone a happy holiday. With the application "REO", short for

reoccur, this is all possible. Users of the web-based application are able to

schedule messages to be sent to themselves, a family member, or a project

group. Either emails or text messages, users of REO can get helpful

reminders to complete tasks, send their significant other funny images every

day, or use for business purposes to make sure meeting attendees are

present. The uses for REO are endless and there is a significant amount of

potential for expansion.

10

The Concept Proposal in my case was created by myself and presented to the client for

approval. The agreement is slightly different from the one illustrated by the DOJ [2] but

includes relevant information and signatures confirming the initiation of this project.

Appendix A shows a copy of the agreement. A physical copy with signatures was also

signed on the same date. Below is the agreement text.

THE SOFTWARE DEVELOPMENT LIFE CYCLE

••Tue client agrees to sponsor this system development and work with the

developer to determine user requirements and technological restrictions and

requirements.

The project manager agrees to oversee this project and work with the client

project manager/sponsor to determine user requirements and technological

restrictions and requirements.

Both project manager and client agree to meet every other week after project

initiation to discuss details and progress on development."

3.0.1 System Concept Development

II

Since this project had no cost (besides my own time), no Cost-Benefit Analysis was done.

However, much of the other scope planning was done through the proposal submitted for

a scholarship to do this project. This was done prior to the beginning of the semester. A

high-level schedule was created to mark intended milestones. The milestones indicated

below, are the components to be completed during each week and (in bold) each sprint.

Schedule

Jan 8 - Start of project

Jan 15 - planning

Jan 22 - project setup and login page

Feb 5 - home page

Feb 19 - new message page

March 5 - scheduled messages page/component

THE SOFTWARE DEVELOPMENT LIFE CYCLE 12

Not every week has a deliverable because some components may take longer than others,

or additional phases needed be done during that time. This schedule was made in

consultation with the client.

3.0.2 Planning and Requirements Analysis

The Planning and Requirements Analysis phases, in this case, were combined into one

phase. Traditionally, there are many planning documents that need to be made and

reviewed, especially for large systems with large teams. However, in this case, with the

size of the development team and having only one person represent the client, these

documents were not required. Instead, the planning took place as more of a conversation

and the results were compiled into the Software Requirements Specifications document,

traditionally created during the Requirements Analysis phase. This document specifies

the purpose of the application, descriptions of user actions and components, interface

requirements, and nontechnical requirements.

The document illustrates the high-level components to be included in the application, also

specifying which components are of lower priority and are to be addressed in subsequent

installments of development. Below is a list of the high-level components.

• Login page

• Sign-Up Page

• Dashboard/Homepage

• New Message Page

The full document, which shows the subcomponents of the pages listed above, can be

referenced in Appendix B.

THE SOFTWARE DEVELOPMENT LIFE CYCLE 13

3.0.3 Design

The Design phase is often repeated through the development process when new designs

are needed that were not originally anticipated or need to be edited to accommodate new

or unforeseen circumstances. Most of the sprints of this project involved some edits or

additions to designs.

Below are the user interface designs followed by the database designs for the system

including the logo, signup and login page, home page and new message page. Links

included in the designs including 'Settings', 'Friends', and 'REO Gold' are features to be

implemented in future iterations of the project.

Logo

THE SOFTWARE DEVELOPMENT LIFE CYCLE 14

Login Page

Sign-Up Page

THE SOFTWARE DEVELOPMENT LIFE CYCLE IS

Dashboard/Homepage

R lc,qr.ut

welcome back! Dashboard

Dashboard Message to Harry Potter Message to Harry Potter

New Message
• Friends

REOGold
Settings

scheduled for eveiyday@ 12:00pm scheduled for everyday@ 12:00pm

·Lore m Ipsum dolo, sit amet. .ore, ips1 dolo, it Imt't.

c onse ctetur adipiscing elit, sect do corsec1e1ur actipisci"lg elu. sect do

elusmod tempor ,n cldidunt ut laborc. , usnodt oor incididunt ut labore ...

New Message Page

- -
- -

-
- -- - -- -- -- --- - - - --- -- -- - - - - -- --- -- -

REO LC,co.

Welcome backr New Message

Dashboard
New Message
Friends
REOGold
settings

• Emall 30 X

Choose file from folder

THE SOFTWARE DEVELOPMENT LIFE CYCLE 16

Database Design

Below is the Entity Relation (ER) diagram for the database system of the application.

In this case, there are only two tables, Users and Messages. Users have a unique

usemarne, password, first_narne, last_narne, email, and phone number. Messages have

unique combination of to_ whom [the message is sent], from_whom [the message is sent],

and time. Messages also have a reminder_time, type (email or text), reminder (true or

false), repeat, attachment, and text. The only relationship is that Users send Messages.

This information is all represented in the ER diagram below.

�

�-
�e ----u-s"'"e'-R-

-� --------
em a 11

A design of the database showing similar information to the above ER diagram is below.

It indicates the types for each attribute of the entities.

USER

usemame password first_name last_name email phone

varchar(20) password varchar(20) varchar(20) varchar(50) char(IO)

MESSAGE

reminder_time text

varchar(50) varchar(20) DateTime DateTime varchar(500)

THE SOFTWARE DEVELOPMENT LIFE CYCLE

foreign key �> USER.usemame
j

--, -

attachment repeat reminder type

file enum(daily, weekly, monthly, yearly) DateTime enum(email, text)I

Some additional UML diagrams developed during the design phase are included below.

UML Use Case Diagram

Actor
User

Gmall

API

17

THE SOFTWARE DEVELOPMENT LIFE CYCLE 18

UML Class Diagram

! User

+ usemame unique SUing

+ name· siring
M

Message

+ phone: stnng
+ to: siring

+ email siring
+ lrcm. User

+ password: passwd
+ type enum(TEXT, EMAIL)

+ messages Messa98{0 :1
N + reminder boot

+ createMessage()
+ reminder tlme DateTme

+ deleteMessage0
+ attachment string

+ viewMessagesU
+ repeat: enumlDAILY.

+login()
WEEKl.Y, MONTHLY,
YEARLY)

+ logout() + text: su,ng -- . .

UML Interaction Diagram

I nltlallzatlon User Message J

creates
createMessage{) -

THE SOFTWARE DEVELOPMENT LIFE CYCLE 19

3.0.4 Development

During this phase, the database design is turned into a database system. The database

system in this case used PostgreSQL. Additionally, the user interface designs were

converted into ReactJS components. Components in ReactJS are small parts of pages. For

example, the header for each page is a component that can be used repeatedly on each

page. This is convenient because there is a lot less repeat code than other frameworks or

basic HTML. API endpoints, from where data can be collected, were created in the Rails

portion of the application. The server listens for endpoint strings that match the API

endpoints from Redux which calls the APL On a successful match, the API sends back

the specified data. An example of this might be 'api/${user}/messages· where user

represents a variable (i.e. the user that is requesting the data). This API endpoint would

return all the scheduled messages that the specified user has scheduled. Some of the

development phase usually involves testing, primarily unit testing. In this case, test

driven development was used throughout the development phase. Test driven

development (TDD) is where the test is written before the functionality and the functions

are written to make the tests pass. This is an Extreme Programming technique used

frequently in Agile development. TDD is beneficial for many reasons including easier

refactoring.

3.0.5 Integration and Testing

Much of the testing of the system was done during the development phase due to TDD.

Since the developer team was only made up of one person and the client understands the

easy-to-read tests, creating documentation of these tests and their results did not seem

THE SOFTWARE DEVELOPMENT LIFE CYCLE

necessary. Especially considering much of this life cycle was similar to agile methods,

lack of documentation was not a problem.

3.0.6 Repetition of Phases

20

Similar to how Agile development functions, several phases during this life cycle process

were repeated. Design, Development, and Testing phases were repeated for most of the

sprints. Also common to Agile, is the use of sprints which is the name of short periods of

time in which developers are to "sprint" to complete features. Much of the life cycle

process was perfonned iteratively. Agile development stresses the importance of client

communication and feedback which constitutes sprint review meetings: meetings held

after each sprint with the client to discuss what has been done and what is to be

completed next. I met with my client after every two-week sprint. Since the majority of

the project was completed in accordance with the previously planned schedule, there was

never much concern from the client. He did provide some design critiques however,

which were implemented into the system.

3.0. 7 Implementation

This application was not far enough along in the process to be deployed to a production

server but was set up using Heroku in a development environment which could be used in

the future to test production setup. Heroku is an easy-to-use deployment service based on

Amazon Web Services and supports a wide variety of languages including ruby which

was used here.

THE SOFTWARE DEVELOPMENT LIFE CYCLE 21

3.0.8 Operations and Maintenance

Due to the short time span dedicated to doing this project, this phase was not possible. As

the project continues to be developed, maintenance will become increasingly important

especially as exposure and the number of users increases.

3.0.9 Disposition

Since the system has not become obsolete, the Disposition phase was not required.

However, if the system is replaced or shutdown in the future, following the guidelines for

the Disposition phase will become pertinent.

3.1 Technologies Used

This application is made using ReactJS, a Javascript framework, on the front-end (user

interface), Redux to manage the state of the application, and Ruby on Rails which acts as

the Application Programming Interface (API) and directly communicates with the

PostgreSQL database system.

4. Conclusion

The Software Development Life Cycle (SDLC) is widely used in technology based

companies and variations such as agile development with extreme programming have

become increasingly popular as the importance of clean code and fast delivery rises. I

have researched the ten phases of the SDLC and applied the techniques to creating my

own web-based application. The application created is a message scheduler that aims to

help people remember tasks, send reminders to others, or send encouraging messages to

friends. The application uses ReactJS to create the user interface which communicates

THE SOFTWARE DEVELOPMENT LIFE CYCLE

through Redux, the state manager, to Ruby on Rails which is the application

programming interface (API) and directly queries the PostgreSQL database.

5. Future Work

Security is also a topic that is becoming increasingly important when discussing

development especially with the advancement of web technologies [3], [8]. Due to this

innovation, including security in the phases of the SDLC is essential.

22

The Secure SDLC is a variation of the SDLC that stresses the importance of security [8].

Most security defects are due to known software defects [8]. Multiple frameworks have

been made for detecting and fixing these issues before a product makes it to production.

However, these are difficult to adapt into already functioning software development life

cycles. Some tools used to address security throughout the software development life

cycle include threat models, penetration testing, and ratings.

Difficulties in security are most commonly seen or are developed during the design phase

[4] [I]. Creating security models including threat models, risk estimation, and

identification of security goals [4] can be done during this phase to ensure more secure

software.

The difficulties with using these new methods, especially in an agile based life cycle, is

that it often consumes large costs, both time and money. Additionally, if developers are

unfamiliar with security or the concepts recommended to make their code more secure,

they are unlikely to implement the changes to the life cycle. One research study

recommends training individuals on these techniques [4] which may solve the problem of

knowledge but would increase costs.

THE SOFTWARE DEVELOPMENT LIFE CYCLE 23

Despite these cost issues, implementing security into the software life cycle is incredibly

important. With the advancement of technology and the reliability users expect systems

to have, any vulnerability puts the company at risk. With some initial training, developers

would be able to have a better basis for how to fix problems they already know exist in

their code base(s). Though there is a great time and financial cost for this training, it will

outweigh the consequential risks of not putting security as a top priority during the

development life cycle.

For this project, implementing these techniques in future iterations is a high priority,

especially as deploying to production draws nearer.

6. Link to Source Code

https://github.com/GillianLemke/MessageScheduler

THE SOFTWARE DEVELOPMENT LIFE CYCLE

Appendix A - Client Contract

Concept Proposal and System Development Agreement for REO

Stakeholders
Project Manager: Gillian Lemke
Client Project Manager/Sponsor: Jacob Rickerd

Description of System

24

With the constant distractions of today's society, reminders are important. These reminders
may be for tasks the need to be completed, to laugh, or to wish someone a happy holiday.
With the application "REO", short for reoccur, this is all possible. Users of the web-based
application are able to schedule messages to be sent to themselves, a family member, or a
project group. Either emails or text messages, users of REO can get helpful reminders to
complete tasks, send their significant other funny images everyday, or use for business
purposes to make sure meeting attendees are present. The uses for REO are endless and
there is a significant amount of potential for expansion.

Agreement to Complete System and Collectively Determine Requirements
The client agrees to sponsor this system development and work with the developer
to detennine user requirements and technological restrictions and requirements.

The project manager agrees to oversee this project and work with the client project
manager/sponsor to detennine user requirements and technological restrictions and
requirements.

Both project manager and client agree to meet every other week after project initiation to
discuss details and progress on development

Client Signature

Developer Signature

January 2. 201 8
Date

January 2. 201 8
Date

THE SOFTWARE DEVELOPMENT LIFE CYCLE

Appendix B - Software Requirement Specification Document* **
*Page numbers changed here for consistency with rest of document
** Original document contains database designs

Table of Contents

25

Table of Contents .. 25
1. Introduction ... 26

1 . 1 Purpose .. 26
1 .2 Document Conventions 26
1 .3 Intended Audience and Reading Suggestions ... 26
1 .4 Product Scope ... 26
1 .5 References ... 27

2. Overall Description ... 27
2. 1 Product Perspective ... 27
2.2 Product Functions ... 27
2.3 User Classes and Characteristics .. 27
2.4 Operating Environment. .. 28
2.5 User Documentation ... 28
2.6 Assumptions and Dependencies ... 28

3. External Interface Requirements .. 28
3.1 User Interfaces 28
3.2 Hardware lnterfaces .. 28
3.3 Software Interfaces 29
3.4 Communications Interfaces .. 29

4. Other Nonfunctional Requirements .. 29
4.1 Performance Requirements ... 29
4.2 Security Requirements .. 29
4.3 Software Quality Attributes 29

THE SOFTWARE DEVELOPMENT LIFE CYCLE 16

1. Introduction

1.1 Purpose

This web application is a service for scheduling messages, either email or text messages. Many
audiences will be able to use this product. For example, teachers can use it to send reminders to
students, students can send themselves reminders, parents can send their children chore lists or
daily to dos.friends can send each other funny messages or pictures, significant others can send
anniversary messages.family can wish each other happy holidays or birlhdays, and many olher
situations. The service this application provides is relevant to all people of different professions,
ages, and purposes. This is the first installment of the application and when it is released, will be
version 1.0. The scope of this installment will cover basic login and authentication, a
homepage/dashboard where users can view scheduled messages and can create new ones, a
settings page. Version 1.0 will only allow for emails to be sent. Other features may be added as
we come across their need, however, for the first release, we will try to keep it simple so we can
deploy quickly.

1.2 Document Conventions

The basic requirements are illustrated in section I.I. Those requirements are for the first
installment of development and the application 's first release. After that release, we will illustrate
additional requirements. These additional requirements that could be developed during this
installment but have a lower priority include adding Single Sign-On (SSO) through Google,
uploading contacts to the application to more easily send messages, sending text messages,
invitingfriends to join the platform, and others. Sending text messages will be available 011/y
through a "gold" account. This upgrade will cost a set amount per month for unlimited text
messages and a "silver" account will cost a small fee for each text message sent. The feature
allowing users to invite friends, will give the user a week of .free "gold" membership. Users will
be able to sync their account with Face book to invite friends that way. They can also invite
friends through email. "Gold" and "silver" membership will be pushed to the next installment of
the project, while SSO and other small features will be of low priority for the current installmell/.

1.3 Intended Audience and Reading Suggestions

This document is for the client project leader, software engineers, designers, security engineers,
and testers. The rest of this document includes project scope, general descriptions, and interface
requirements. It is recommended that project manager(s) read only the general descriptions
while all engineers should read through the entirety of the document, especially the requirements
sections.

1.4 Product Scope

The goal of this service is to simplify lives through use of reminders, make a fun environment for
friends, and serve as a calendar for groups or one 's self.

THE SOFTWARE DEVELOPMENT LIFE CYCLE 27

1.5 References

The Pivotal Tracker chart will serve as the developer 's tool for keeping track of completed
features. This will be the basis for sprint reviews and weekly updates on progress. This is also the
place where any relevant development materials will be linked. For specifics on
stories/chores/bugs, review the project on Pivotal Tracker.
Pivotal Tracker project: created and maintained by Gillian Lemke - tech lead

2. Overall Description

2.1 Product Perspective

This is a self-contained product. This specific release is the beginning of a large system with
additional features partially illustrated in section 1.2.

2.2 Product Functions

High level components include (items with • indicate low priority):
• Login page

• Signup page
• Dashboard/homepage
• New message page
• Settings page
• Signupl/ogin with Google*

2.3 User Classes and Characteristics

Components with characteristics include (items with • indicate low priority):
• Loginpage

o Username
o Password
o Authentication
o Login with Google*

• Sign-up page
o Username (unique)
o Name
o Password
o Phone number
o Signup with Google•

• Dashboard/homepage
o Preview of scheduled messages
o Friends onli11e (available if linked with Facebook) •
o Preview of received messages (email only) •
o Signup for membership*

• New message page
o Email option
o Message to send

THE SOFTWARE DEVELOPMENT LIFE CYCLE

o Contact email to send to
o Attach document/image*
o Search Google images/gift*
o Text option•
o Select contact from contact book*
o Send to Facebookfriend*

• Settings page
o Change password
o Change email
o Add/change avatar
o Ability to he searched*
o Setup Mo-factor authentication*
o Block user*
o Change language*

2.4 Operating Environment

28

This is a web application that will be responsive for use on a mobile or tablet view but will
primarily be used for desktop. It must be compatible with all web browsers including Google
Chrome, Safari, Internet Explorer, and Mozilla Firefox. A low priority for this installment is that
it will function with Google SSO. It must function on all operating systems and will be developed
using MacOS X and will be tested on Ubuntu through continuous integration.

2.5 User Documentation

The.first installment of the application will not include a user manual or online help option.

2.6 Assumptions and Dependencies

We assume that the technologies selected by the developers are reliable. If the feature involving
Google SSO is reached during this installment, we assume the dependence is reliable.

3. External Interface Requirements

3.1 User Interfaces

Designs for UI components are not yet completed. The components will be built using ReactJS
and will communicate with the AP/ through Redux. The use of Material UI is still under
consideration.

3.2 Hardware Interfaces

The application should be supported on all web platforms.

THE SOFTWARE DEVELOPMENT LIFE CYCLE 29

3.3 Software Interfaces

The system will function starting.from the lowest level on a PostgreSQL database. The AP/ will
be built using Ruby on Rails and will communicate with the user interface, which is built using
React.JS, through Redux, a state management framework Webpack will package the project
before deploying to the server and will serve a single JavaScript file to users. The application will
be deployed on Heroku or Amazon Web Services and will use TravisCI for continuous integration
with a connection through GitHub.

3.4 Communications Interfaces

Emails will be sent.from users using Google 's SMTP Server. This will ensure proper encryption
of messages, something that may be more difficult to guarantee if company server were to be
used. The application itself will be served through HTFPS and will use TLS for proper security.

4. Other Nonfunctional Requirements

4.1 Performance Requirements

Since Jhe project has not yet been deployed, performa11ce requireme11ts are not yet know11. As the
iteralions are released, requirements may be added to this section and may include speed of
queries for many users, speed of the application 's server(s), and speed of the SMTP server.

4.2 Security Requirements

Security upon sign-in is incredibly important. The developers are in charge of delermining the
best lech110/ogies to use for user authentication and database encryption. Additionally, messages
being sent and created must be kept secure. Since Google 's SMTP server will be used for this,
those security concerns are low. The application, as previously mentioned, must be run over
HTFPS and use TLS. See Section 3.4 for more on secure communications.

4.3 Software Quality Attributes

The application must be available to users.from across the globe. Since the application is being
developed iteratively, adaptability and flexibility are important. There are many additional
features that will be added in other versions so keeping adaptability in mind while developing is
imperative for the application 's success. In order to ensure usability, QA testing is advised before
the deployment of the.final iteration. This QA testing will make sure the application is easy to use
by persons of any technical background. Additional unit, integration, and system testing is
expected to be done during development to ensure clean and reliable code.

THE SOFTWARE DEVELOPMENT LIFE CYCLE JO

Citations

1 . Dasanayake, Sandun, Jouni Markkula, and Markku Oivo. "Concerns in software

development: a systematic mapping study." Proceedings of the 1 8th International

Conference on Evaluation and Assessment in Software Engineering. ACM, 2014.

2. The Department of Justice Systems Development Life Cycle Guidance

Document. (2003) US Department of Justice.

3. Pistoia, Marco, and Omer Tripp. "Integrating Security, Analytics and Application

Management into the Mobile Development Lifecycle." Proceedings of the 2nd

International Workshop on Mobile Development Lifecycle. ACM, 2014.

4. Rindell, Kalle, Sarni Hyrynsalmi, and Ville Leppanen. "Busting a myth: Review

of agile security engineering methods!' Proceedings of Jhe I 2th International

Conference on Availability, Reliability and Security. ACM, 201 7.

5. Selecting a development approach. (February 2005). Center for Medicare and

Medicaid Services.

6. Sommerville, I. (2016). Software engineering.

7. What is Agile Software Development Life Cycle? (March, 2016). QuickScrum.

8. Yuan, Xiaohong, et al. "Retrieving relevant CAPEC attack patterns for secure

software development." Proceedings of the 9th Annual Cyber and Information

Security Research Conference. ACM, 2014.

	Eastern Michigan University
	DigitalCommons@EMU
	2018

	The Software Development Life Cycle and Its Application
	Gillian Lemke
	Recommended Citation

	The Software Development Life Cycle and Its Application
	Abstract
	Degree Type
	Department
	First Advisor
	Second Advisor
	Keywords
	Subject Categories

	tmp.1537454686.pdf.60IxK

