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1 Informal Introduction

This chapter gives a preliminary introduction to financial markets and its ingredients.

1.1 Financial securities
On financial markets so called financial securities are traded. These are for example

stocks ( VW, Telekom, Apple, Google, Tesla, etc. )

bonds ( government bonds, corporate bonds, etc. )

foreign currencies ( Dollar, Euro, British Pound, etc.)

- commodities ( oil, electricity, noble metals like gold, silver etc. , agricultural
commodities etc. )

Based on these assets further financial contracts can be derived. Examples of these
derivatives are

- Options
- Swaps, Floating Rate Note (FRN), Swaptions, Caps, Floors

- forwards, futures

Market places where these assets are traded are so called spot markets and futures
markets. Examples are

- Exchanges ( Stock Exchange, Currency Exchange, Commodities Exchange )
- futures exchange ( German Futures Exchange, Chicago Board of Trade, etc. )
- derivatives exchange ( German Futures and Derivatives Exchange )

The financial securities traded on these market places are

- normalised contracts. These are standardised securities that allow an efficient and
very cheap trading.

- OTC contracts. These are tailor-made and highly specific.



1.1.1 Options

The so called plain vanilla options are puts and calls. These are simple derivatives on
an underlying and can be explained in the following. Ingredients are

- the running time 7', also called maturity,
- the strike K,

- an underlying denoted by S,

1. The call gives its holder the right to buy the underlying at the initially predeter-
mined strike price K at maturity 7.

2. The put gives its holder the right to sell the underlying at the initially predeter-
mined strike K at maturity 7.

If the price S(T') at maturity of the underlying exceeds K, then the call holder can use
his option to buy the underling at K and sell it immediately at S(7"). He would achieve
a payoff

C(T) = (S(T) — K)*.

If S(T') < K then the holder of a put can buy the underlying at a price S(7") and uses
his put-option to sell it immediately at a price S(7"). Hence he receives at T' a payoff

P(T)= (K -S(T))*.
Mathematically speaking, put and call can be seen as derivatives that achieve a payoff

C(T) = (S(T) — K)* ,tesp. ,P(T)= (K — S(T))*.

1.1.2 long, short

A trader initially buys and sells financial assets and builds a portfolio. During trading
time he changes his positions and balances his portfolio. He takes a

- long position in an asset, if he owns the asset.
- short position in an asset, if he has sold the asset.
For example

- A long call position pays the call value at buying time and receives the payoff at
maturity.

- A short call position receives the value of the call contract when selling and has to
deliver the payoff at maturity.



- A long stock position pays the stock value at buying time, gets all benefits like
dividends during the holding time and receives the changed stock value at selling
time.

- A short stock position receives the stock value at selling time and has to pay the
changed stock value in order to neutralise his position at a future time point.

The different effects these positions cause can be visualised by payoff resp. profit dia-
grams. These are plots at a specific time point, usually maturity, in dependence of the
underlying value. Examples are

a) long call with strike K and maturity 7. Payoff (S(T") — K)*

Payoft

Costs: Initial call price: ¢ > 0
Profit: (S — K)* —¢
Profit

St

b) long put with strike K and maturity 7', payoff (K — S(T))"



Payoft

0 K St
Costs: Initial put price: p > 0
Profit: (Sp — K)* —p
Profit
K
0 :
-p + ST

c¢) short call with strike K and maturity T
Payoff: —(S7 — K)T
Profit: ¢ — (Sp — K)*

Payoff
0
K St
Profit
c
0 %
K St




d) short put with strike K and maturity 7
Payoff: —(K — Sr)*
Profit: p — (K — S7) "

Payoff
0
K St
Profit
p 4
0 i
K St

1.1.3 Zero Coupon Bond

A zero coupon bond denotes a financial security that delivers a payoff of 1 money unit
(Euro) at maturity 7. The holder of a zero coupon bond receives no coupons during the
running time. This contract can be seen as loan. The holder pays initially the bond price
B(0,T) < 1 to the seller and receives at maturity the loan sum 1 Euro. The difference
1 — B(0,T) can be seen as coupon resp. interest which is paid at maturity. Zero coupon
bonds do not have a great volume as traded bonds in bond markets. Its importance
relies in the fact that their prices can be computed from prices of traded bonds. They
are easier to understand and give easier information on the state of the bond market
resp. its evolution. A zero-coupon bond with maturity 7" is also called T-bond shortly.
Its price-process will be denoted by (B(t,T")):<r. The initial-state of the bond market
can be expressed by the so called term-structure of bond prices. This is the bond price
as function of maturity (B(0,7))7rs¢. The evolution of the bond-market with time can
be modelled by the change of the term-structure of bond prices with time.

1.2 Arbitrage

An arbitrage denotes an opportunity for a trader to achieve a risk-less profit. For
example, this means that he may receive a positive payoff without any initial capital.



Thus he is able to get a free lunch which stands as an alternative expression for an
arbitrage opportunity. The main assumption is:

Financial markets are free of arbitrage.

The whole pricing of financial securities rely on this basic assumption and this is justified
in efficient and transparent markets where no barriers on trading exist. If an arbitrage
occurs, for example due to miss-pricing of a financial security, the efficient price-building
in markets would cancel this miss-pricing in very short time.

Based on this no-arbitrage principle several conclusions can be drawn which are of great
importance for pricing derivatives.

Theorem 1.2.1 (Replication Principle). We consider a financial market with dividend-
free assets. If two self-financing trading strategies with value processes V. and W coincide
at a time point T they coincide at each time point t € [0,T] in between. Hence

V(T) = W(T) = V(t) = W(t) forall 0<t<T.

Note that the replication principle is no mathematical theorem, since we have not es-
tablished a mathematical model so far and cannot state mathematical claims. But we
can give arguments why the replication-principle can be deduced from the no-arbitrage
principle.

Proof. We would like to show that the initial prices V' (0) and W (0) of both strategies
coincide and assume first that V' (0) > W (0).
But then we can

- initially sell V' buy W,
- follow the trade of W and trade opposite to V in (0,7,

- take the payoff W(T') of W at the end to neutralise the obligation of V(T') at the
end.

This strategy would provide an arbitrage opportunity, the risk-less profit V' (0) — W (0)
from the beginning.
In the case W(0) > V(0) the same arguments work the other way round.

1.2.1 Put-Call Parity

As application of the replication principle we will show that there is a correspondence
between put and call price of an underlying with the same maturity and strike. This is
the so called put-call parity.

Theorem 1.2.2 (Put-Call Parity). We consider a put and a call with same strike K
and maturity T on a dividend-free underlying. Let Sy, ¢, p denote the inital price of the
underling, call and put. Then

p+So=c+KB(0,T). (1.1)
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Proof. To show the assertion we consider two trading strategies.
(i) long in put and long in the underlying,
(ii) long in call and K x long in a T-Bond.
Both strategies get a payoff max{S(7T"), K} at T" due to
(K —S(T))" + S(T) =max{S(T), K} = (S(T) — K)" + K.

The replication principle implies that their initial prices coincide. But this is the claimed

equation (|L.1)) above. O

The first strategy above underlines the importance of the put-option in risk management.
If you buy a stock you face the risk of a downside stock movement. To cover this risk
you can buy in addition a put with strike K. Then your payoff will exceed at least the
strike K. A put can be seen as an insurance contract protecting against downside stock
movements.

1.2.2 Chooser-Option

A further application of the replication principle can be given in order to express the
price of a so called chooser-option by a suitable call and put price.
We consider a financial market with

- deterministic, constant interest rate » > 0. This means that the price of a 7" bond
is given by B(t,T) = e "7,

- an underlying S,
- puts and calls of all maturities and strikes.

A chooser-option gives its holder the right to choose at T} < T a put or a call with
strike K and maturity 7. Let ch(T1,T,K) , ¢(So, T, K), p(So, T1, Ke "™=T1)) denote
the initial price of the chooser-option, the call with maturity 7', strike K and the put
with maturity 77 and strike Ke """~ Then

Proposition 1.2.3.

Ch‘(Tb T7 K) = C(S(]a T7 K) + p(507 Tla Keir(TiTl))
Proof. The holder of a chooser-option will take a call in 77 if its more valuable than the
corresponding put. If we denote by ¢(S(T1), T, K) and p(S(11),T, K) their prices in T7,

then the chooser-option can be seen as a derivative with payoff

C = (S(T) = K) " Lie(sery) r.x)2p(5(m) 1503 + (K = S(T) " Lip(s(r) 1.6y >e(s(10) 7.} -
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The question is how to replicate this payoff. The key observation is that we can refor-
mulate the choose condition by applying the put-call parity. It holds

c(S(Th),T,K) + Ke """ = p(S(Th), T, K) + S(T1)
and therefore
c(S(Th),T,K) > p(S(Th), T, K) <= S(T1) > Ke """,
This leads to the replicating strategy:

1. At the beginning:
- Take a long position in a call with strike K and maturity 7'

r(T-T

- Take a long position in a put with strike Ke™ ) and maturity T}

2. at Ty, if S(Ty) < Ke "T=T0),
- exercise the put and receive Ke "T=71) — §(Ty)
- sell the call and receive ¢(S(T1), K,T)

- use the received money to buy a put option with strike K and maturity 7.
3. at T, if S(T1) > Ke "T=T1: hold the call until 7.

This strategy is self-financing and provides the payoff of the chooser option at T'. The
replication principle implies the above assertion. ]
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2 The Black-Scholes Model

Black and Scholes developed in 1971 the approach of pricing derivatives by computing
replicating trading strategies. They were able to derive pricing formulas for plain-vanilla
options like call and put, in particular the famous Black-Scholes call-price formula. The
benefits of the model are the following;:

- simple model
- reasonable economic background
- analytically tractable

This will be explained in this chapter.

2.1 Wiener-Process

The Wiener-process, also called Brownian-motion, is one of the most important stochas-
tic processes in continuous time with continuous paths. It is the starting point for
the development of the stochastic integration theory and many sophisticated models in
physics and economics use this process as basic tool. A Wiener-process can be seen
as the continuous counterpart of a centered random-Walk and can be constructed as
limiting process of suitable normalised centered random-walks.

To be more precise let (Yi)ren be a sequence of identically distributed independent
random variables with

P(Yi=1) = 5 = P(¥i = 1)

PutiW®(t) := >, _, Vi
By linear interpolation we
obtain a continuous time
process with continuous
paths (W (#)) 0.
Enlarge the frequency at
factor n and compress the

height at v/n

—_
N}
w

o

Define W™ (£) = \/Lﬁ 25:1 Y;.

13
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Again linear interpolation leads to a continuous time stochastic process (W(") (t)) 0"

This sequence W™ converges to a limiting process (W (t)),~,, a Wiener-process.

A random-walk is a discrete time stochastic process with independent and stationary
increments. This property carries over to the limiting process W and can be used to
give a precise definition of a Wiener-process.

Definition 2.1.1. Let (Q, F,P) be a probability space and (Fi)i>0 a filtration. An
adapted stochastic-process W = (W (t))i>0 is called standard Wiener-process if it ful-
fills the following properties

1. W(0) =0 P-a.s.

2. W(t+s)—W(t) is independent of F; for all s,t >0

3. W(t+s)—W(t) has the same law as W (s) for all s,t >0
4. W(t) is N(0,t) distributed for allt >0

5. The paths of W are P-a.s. continuous.

Usually we omit the adjective standard and speak of a Wiener-process when a standard
Wiener-process is meant.

Martingales play an essential role in many fields of probability theory, in particular in
finance and stochastic analysis.

Definition 2.1.2. An adapted process M is called an (F;)i>o martingale if the following
holds

1. E|M(t)| < oo for allt > 0.
2. E(M(t+ s)|F:) = M(t) for all t,s > 0.

The independence of the increments can be used to easily identify basic martingales
which will play a role in the following.

Proposition 2.1.3. Let W be a Wiener-process w.r.t. a filtration (F;)i>0. Then the
following process are martingales.

1. W(t)e=o

14



2. (W(t)* = t)izo
3. (exp(W (t) — £6°t))i0 for each 0 € R.

The proof of this assertion is very easy and can be done by carefully exploiting the
independence of increments property. The last martingale is an example of a so called
exponential martingale and can be used to define further probability measures. The
therefore needed tool is a generalisation of Bayes-Theorem.

Theorem 2.1.4 (Change of measure). Let (Q, F,P) be a probability space with filtration

(Fi)i>0. Let L be a positive martingale w.r.t. P and P a further probability measure on
(Q, F,P) such that
dP
@m = L(t) forall t>0.

Then

(i) The conditional expectation w.r.t. P can be calculated by computing the conditional
expectation w.r.t. P. More precisely, if Y is measurable w.r.t. JF; and integrable
w.r.t. P, then for s <t

E(Y'L(#)|Fs)
L(s)

E(Y|F) =

(ii) M is a P-martingale if and only if ML is a P-martingale.

(i1i) Let R be a positive P-martingale with ER(t) = 1 for all t > 0. Then a probability
measure Qr can be defined on each Fr by

aQr

= <T.
P |7 = R(t) forall t<T

Proof.  (i): We use the definition of conditional expectation directly. For A € F, we
get

p— _ _ [ EXLOF) 5
/AYdIP_/AYL(t)dIP’_/AIE(YL(t)|J-"S)dIP>_/A 6 dP.

This yields the first assertion.

ad (ii): This follows from (i) due to

E(M;|F,) = M, for all s <t

1
E(MtLt\}"s)L— = M, for all s <t
E(M,L,|F,) = M,L,  forall s<¢

ML is a P-martingale

(M,) is a P-martingale

Tt ¢ 0

15



ad (iii) Due to ER(T") = 1 an equivalent probability measure on (€2, Fr) is defined by
Qr(A) = / R(T)dP for all A€ Fr.
A

Due to
dQr
dP

for all ¢t < T the assertion follows.

|7 = E(R(T)|F:) = R(1)

O
The preceding theorem can be used to state a first simple version of Girsanov’s theorem

Theorem 2.1.5 (Girsanov). Let (2, F,P) be a probability space with filtration(F;)i>o
and W a Wiener-process w.r.t. P. Let Py be a further probability measure on (£, F)

such that
dPy

L
v — - — = > 0.
TP |7, = exp(VWV () 20 t)=L(t) forall t>0
Then )
W(t)y=W(t)—9t, t>0
defines a Wiener-process w.r.t. Py.

Proof. One has to verify that W satisfies the defining properties of a Wiener-process
w.r.t. Py. Clearly W starts at 0 and has continuous paths. To show that the increments
are independent we consider g : R — R measurable and bounded. Then
1
L

1
with L; = exp(VW (t) — 519275)

Es(g(W(t) — W(s))|Fs) = E(g(W(t) — W(s))Le| Fo)

— B(g(W(t) ~ W(s) - (¢t — 5)) {17
= Blg(W (1) — W(s) — 0(t = ) exp(0(W (1) = W(s)) = 50°(t = )| )
— Bg(W (1) — W (s) — 0lt = 9) exp0(V (1) - W(s5)) = 50%(t - )

— Bg(W(t — ) — Ot — ) exp(IW (¢ — s) %192(75 _9)

= Eyg(W(t —s))

Hence, W (t) — W(s) is independent of F, and equally distributed as W (¢t — s) with a
N(0,t — s)-distribution due to

16



Eag (T (1)) = Eg(W (1) — 9) expld1W (1) — 15°1)
— Eg(W(t) — 08) exp(I(WW (£) — 91) + %19215)
= g2t / g(2)e” N (=9t, t)(dx)

192, 1 1
_ 50%t Jx o 2
=e2 \/Z_M/g(x)e exp( —Qt(x—i-z%) Ydx

= \/%m/g(x)e;txzdx
:/mmNmmww

]

The Wiener-process W fulfills a further property which is of interest in finance for pricing

barrier options. This is the so called reflection principle.

Let 7 be a stopping time with P(7 < oo) = 1 . Then the reflected process w.r.t. 7 is

defined by

. {W(t) fort <r (2.1)
W(r)— (W(t)—W(r)) fort>r

The reflection principle states that W is also a Wiener-process. This can be proven by

exploiting the strong Markov property of the Wiener-process. A useful application is
the computation of the joint distribution of W(T") and M(T') = sup,.p W (s).

Theorem 2.1.6. Let W denote a Wiener-process and M its running maximum. Then
for x € R and z > x it holds

T T — 2z
T T

with ® denoting the distribution function of the N(0, 1)-distribution.
For the process X defined by X (t) = W (t) + at it follows

B(W(T) < v, M(T) < 2) = & )

PX(T) < zsup X(1) < 2) = B(" \_/TQT) _ ewcp(#

Proof. For x € R and z > x we consider the first time that W reaches z, i.e.

).

T=1inf{t > 0: W(t) =z}

and denote by W the reflected process w.r.t. 7. Then Wis a Wiener-process and

A

P(W(T) <2, M(T)>z) = BW(T)>z+z2—x, M(T) > 2)

17



= P(W(T)>2z—a,supW(t) >z) =P(W(T) > 2z —x)
T —2z -
)

:(I)(

3

But this implies
PW(T)<ax,M(T)<z) = PW(T)<z)-PW(T) <z,M(T) > z)

which yields the first formula.
To prove the second formula we change the measure by applying Girsanov’s theorem
and introducing

d]P’a|
dp 7t
Then W has the same distribution w.r.t. P, as X w.r.t. IP. Hence

1
= exp(aW (t) — §a2t) for all ¢t <T.

P(X(T) <zsup X(t) <2) = P(W(T) <z, M(T) < 2)

t<T

/ exp(aW (T) — =aT)dP
{W(T)<w,M(T)<z}
= EgW(T)1inm(r)<=

with ¢g(y) = exp(ay — %aQT)l(,Oow} (y).
Due to the first formula the condition distribution function fulfills

POW(T) < 2| M(T) < 2) {1 o=z 22)
S S2) = ep)-eE) :
—Horm=n - fr <z

Taking derivative w.r.t. x yields the conditional density

hy) = ! (o) - o

for all y < z. This implies

Eg(W(T) uimesy = POM(T) < 2) / " g)h(y)dy

o1 Y y— 2z 1,
-/ V)~ et = T
- (I)( \/T )_e2azq)( \/T )7
/m %w(%) exp(ay — %cﬂT)dy

18



1
= El{W(T)gm} exp(aW(T) — 5(1,2T)
x —al
VT

= P,(W(T) <z)=P,(W(T)—aT <x—aTl) = d( )

and

1 y—2z 15
—p(——) explay — =a“T)d
mﬁs@(ﬁ) play — 5a°T)dy

1
Eljw(r)+2:<a) exp(a(W(T) +22) = 5a°T)
= exp(2az2)P, (W(T) + 2z < x)
— 2z —aT
= exp<2az)®<u>

VT

2.2 Pricing in the Black-Scholes Model

The Black-Scholes model is a continuous time model for a financial market that consists
of

- a money market account with price process (t) = e’ for all ¢ > 0 and

- a risky asset with price-process
S(t) = S(0)e" exp(cW (t) — =o°t).

The process W denotes a Wiener-process and p, o, 7 can be seen as parameters that fix
the distribution.

- The number p € R denotes the so called rate of return and affects the expected
evolution of the risky asset, since

ES(t) =e* for all t> 0.
- The value o > 0 affects the fluctuation of the risky asset due to

Var log(%) = VaroW (t) = ot

and is often called volatility.

- The interest rate r € R represents the evolution of a risk-free money market
account.
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To take into account the time-value of money the so called discounted price-process is
introduced by
S*(t) = 5() = S(0)e* M exp(aW (t) — 10215) for all ¢t > 0.
B(t) 2

We observe that only for © = r the discounted price-process is a martingale. In this case
the risky asset has the same expected return as the money market account and we say
that the market is risk-neutral. The question arises whether starting from p a change of
the stand-point, a change of measure, can be done such that the market is risk-neutral.
This consideration is incorporated in the term equivalent martingale measure.

Definition 2.2.1. We consider a Black-Scholes model along the running-time T. An
equivalent martingale measure P* is a probability measure on (2, Fr) with the following
properties

1. P and P* are equivalent probability measures on (2, Fr).

2. The discounted price process S*(t) = 30 7 0 <t < T is amartingale w.r.t. P*.

An application of Girsanov’s theorem provides the existence of an equivalent martingale
measure.

S(t)
t

Theorem 2.2.2. In a Black-Scholes model with running-time T > 0 an equivalent
martingale measure exists.

Proof. We know form that an equivalent probability measure P* can be defined by

dpP*

Lo
P |7, = L(t) = exp(IW (t) 219 t) forall t<T

The parameter ¢ has to be chosen such that the discounted price process becomes a
martingale. Since W*(t) = W (t) — ¥t is a Wiener-process w.r.t. P* we obtain

S*(t) = S(0)e" exp(aW (t) — =o?t)
— S(0)e I exp(a (W (2) + 9t) — %a%)

= S(0)en TN exp(a(W*(t) — =0*t)

Thus S* is a martingale if and only if

p—r+od=0 <<= vJ=-—

and the theorem is proven. ]
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The existence of an equivalent martingale measure is an important property of the Black-
Scholes model. It opens a probabilistic way to pricing derivatives. As we will see later
in the course all financial derivatives with an integrable payoff C' at T" can be replicated
and the initial value of each replicating strategy coincides with the expected discounted
payoff under the equivalent martingale measure. Therefore the following definition is
justified.

Definition 2.2.3. Let P* be the equivalent martingale measure in the Black-Scholes
model and C' be an Fr-measurable payoff at T with E*% < o00. Then the initial
arbitrage-free price of C' is defined by
C
po(C) = E'—— = E*C".
Later we will clarify why this definition is reasonable. Simply speaking, pricing of a
derivative with payoff C' at T" means

- determine a reasonable equivalent martingale measure P*
- compute E*C*

This pricing mechanism is reasonable in more or less all financial market models and
mainly used in practise.
Before we give some applications we note that S* is a positive martingale under P*. Thus
a further equivalent change of measure can be done by defining a probability measure
P2 via

ey S*(t)
P 5(0)
for all t < T. Girsanov provides that

= exp(oT0* (1) — 50°(1)

W*(t) = W*(t) — ot

is a Wiener-process w.r.t. [P.
To give a full picture we have the following evolution of the stock price process under
the different measure

- The subjective probability measure IP:

S(t) = S(0)eH exp(aTW (1) — %a%)

- The equivalent martingale measure P*:
1
S(t) = S(0)e" exp(eW*(t) — 50275)

- The further transformed measure P}:

2 1
S(t) = S(0)e* 7 exp(a W™ (t) - 50)
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This means that S is a geometric Wiener-process with
- trend p and volatility o w.r.t P,
- trend r and volatility o w.r.t. P*,
- trend r + % and volatility o w.r.t. P%.
This can be exploited by deriving the Black-Scholes formula.

Theorem 2.2.4. We consider a call with maturity T' and strike K in a Black-Scholes
model with volatility o and initial stock price S(0). Then the initial arbitrage-free price
of the call is given by

(S(0).T, 0, K) = S(0)B(hy(S(0), T) — Ke~Td(ha(S(0), T) (2.3)
with
log (%) + (r+30*)T

ovVT
log (%) + (r— 30T

VT

hl (So, T) =

ha(So, T) =

Proof. In the first step we compute
E'e”"(S(T) - K)t = Ee¢ ""Srlis;sry — B¢ " Kl{s,~x)
= S(O)E*WBE{ST>K} — €7TTKE*]1{ST>K}
= S(O)P:(Sp > K)—e "TKP*(Sp > K)
1) @)

To compute the probabilities we remind you on the representation of S under P* and
Px. It follows

P (Sr> K) = P (10g (%) > o (%))

1 K
= P (oW — =o°T T > log [ ——
U(o 750 +(r+o9)T > Og(S(O)S)

w18 (sly) + 30T (4 )T
VT T
~——~

= P
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and

P'(Sr>K) = P* (log (%) ~ o (%> )

Hence ([2.3)) follows.
0

Note that due to the put-call parity the price of a put can be easily calculated too. Put
and call are examples of so called path independent options since the payoff at maturity
is only a function of the terminal stock-price. More delicate is the problem of finding
pricing formulas for path dependent options. This can be done for so called one-sided
barrier options.

Theorem 2.2.5. A down and out call with maturity T, strike K and barrier B < S(0)
is an option with payoff (S(T) — K)T at maturity T if the barrier B is not hit during
the running-time. This corresponds to a derivative with payoff

C = (S(T) = K)"Liint,er 5(t)>B) -
The wnitial price of a down and out call is given by

S0\ 2 S_S

pO(C) = C(SO>Ta K) - (E) 7 C<SOaT>KBQ) (24)

withb:—g—%a.

This means that the price of a down and out call can be expressed by call prices w.r.t.
different strikes.

Proof. Nearly the same calculations as in the ordinary call can be done here.

po(C)

E*efrT(S(T) — K>+1{inft§T S(t)>B}
E*Q_TTS(T)1{S(T)>K,inft§T sw>py — Ke "TP*(S(T) > K, gggs(t) > B)

= SoP:(S(T) > K, inf S(t) > B) — Ke ™"P*(S(T) > K, inf S(t) > B),
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Further elementary calculations yield

. , - S(T) So . S(t) So
P*(S(T) > K,tlgifFS(t) >B) = P (—logTO < log ' —gél;logs—o < log E)
1 1
= P"(X(T) < —log&,supX(t) < —log &)
o K t<T g B
with . s(0) |
”
X(t) = —=log 2 — _pp+ Zo— Dy
() =~ og 2 () + (5o - Dy

The process X is a Wiener-process with drift a = %0 — = and therefore the probability
is given by

r—2z—al

P(X(T) < 2, sup X (1) < 2) = o(* L =

_ €2az(1>
t<T - VT ) (

).

due to 2.1.6
W.r.t. P the process X is a Wiener-process with drift b = —g—%a. Hence an application
of provides
— 0T — 2z =0T
P(X(T) < z,sup X (1) < 2) = B(L_0) — gl 22 70

t<T o VT

Due to %“ = %b + 2 and collecting all terms 1) follows.
[

Example 2.2.6. As application of our pricing framework in the Black-Scholes model we
consider an equity-linked bond and as a specific example an equity-linked bond on the
Tesla stock. Ingredients are

e Security Identification Number: ISIN DEOOOHVB50E1

e Underlying: Tesla A1CX3T stock traded at Nasdag in Dollar

e Nominal: 1000 Euro

e reference price: price of the underlying at 22.01.2021 = 846, 64 USD
e strike: 677.312 USD = 80% of the reference price

e interest rate: 16%

e running time: 1 year

e exchange-ratio: 1 Euro = 1.217 USD at 21.01.2021

e subscription ratio: Nominal * exchange-ratio/strike = 1000 * 1.217/677.312 =
1.7968
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Figure 2.1: payoff equity-linked bond Tesla at maturity 7'
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Pay-oft:

Denote by N the Nominal, R the interest-rate, K the strike, T" the maturity, w the
exchange-ratio Euro to USD and S the price-process of the Tesla stock in USD.

The holder of the equity-linked bond receives at maturity the coupon

C=N-R-T Euro = N-R-T-w Dollar

in any case.

If the Tesla stock price is at maturity above the strike, he receives the nominal. Other-
wise Tesla-stocks will be delivered corresponding to the subscription ratio 1.7968. This
corresponds to a pay-off in USD at maturity

) Nw+Cw S(T) > K
| eS(T) +Cw L S(T) <K

In the case S(T') < K there is a loss in comparison with the nominal

(Nw = Z8(T)) = —Z (K = S(T))
in comparison with the nominal. By buying of % put-options according to the strike
K one can eliminate the down-side risk and the portfolio of

e equity-linked bond
° % put-options on the Tesla stock with strike K and maturity T’

replicate the risk-free pay-off Nw + Cw Dollar at T'. The replication-principle implies
that the initial USD price of the equity-linked bond can be expressed by

po(d) = (N +C)wB(0.T) ~ “p(5(0). T, K).
By division with the exchange-ratio w one would receive an initial price in Euro. We
are able to calculate the put-price in a Black-Scholes Model with the Black-Scholes call
formula and applying the put-call parity. Therefore we are able to compute the today’s
model-price of the equity-linked bond, if the parameters in the BS-model are fixed. As
values of the volatility o for Tesla and the interest-rate r of a money-market account it
is reasonable to take

r=0,043% and o =60%.

Then we end up at a price
949,123 Euro.
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3 Preliminaries from Stochastic
Analysis

In this chapter we will give a short overview of results from stochastic analysis that are
used in mathematical finance. The following books can be recommended for a further
reading:

1. Rogers, Williams [1]
2. Karatzas, Shreve [2]
3. Revuz, Yor [3]

The presented contents can be found with more detailed proofs in the lecture notes (in
German) to the course Stochastic Analysis.

3.1 Martingales

We start by repeating some basic facts on martingales.

Setup

We consider a probability space (€2, F,P) and want to confirm some basic definitions.

a filtration F = (F}),5, is a family of increasing sub o-fields, i.e. F; C F; C F for
s <t Let Foo =0 (UtZO E) denote all the information gained from the whole
filtration.

- a stochastic process X is a family (X;),5, of random variables.
- the process X is adapted w.r.t. F, if each X(¢) is measurable w.r.t. F;.

- the canonical filtration of X is defined by F* := o (X, : s <t) for all t > 0. It is
the smallest filtration that covers the information obtained by observing X.

- We say that X has continuous paths if
t— Xt<(U)

is a.s. continuous. The process X is right continuous resp. left continuous if its
paths are a.s. right resp. left continuous.
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- We say that X is a cadlag process if its paths are a.s. right continuous with existing
limits from the left.

- A subset A C 2 is called negligible, if there is a nullset N such that A C N
- We say that a path-property FE is a.s. fulfilled if
{w € Q:w does not fulfill £ }
is negligible.
For processes in continuous time there exist two equivalence terms.

Definition 3.1.1. Two stochastic processes X and Y are called indistinguishable if

{w:3t20: Xy(w) # Yi(w)} = (Hw: Xi(w) # Yi(w)}

t>0
18 negligible.

If the paths of two processes coincide almost surely they are undistinguishable. A weaker
property is the following.

Definition 3.1.2. Two stochastic processes X and 'Y are modifications if
{w: Xi(w) # Yi(w)}
1s negligible for all t > 0.

It two process are modifications they coincide on countably infinite time values a.s.. If
they are indistinguishable they coincide for all time points a.s.
The following remark can be easily proven.

Remark 3.1.3. The following assertions hold:
(i) Are X and Y indistinguishable, they are modifications.

(i) Are X and Y modifications and do they have right-continuous paths they are in-
distinguishable.

Definition 3.1.4. Some (F,),~, adapted process X is called martingale w.r.t. (Fi),0,
if: - -

(i) E|X:| < oo forallt >0

(1i) BE(Xy|Fs) = X5 for all0 < s <t
respectively submartingale, if

(i) E|X;| < oo forallt >0

(11) E(X|Fs) > X for all0 < s <t

and supermartingal, if
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(i) E|X;| < oo forallt >0
(11) E(X|Fs) < X for all0 < s <t

Important examples for martingales are given by the Wiener-process W, the exponential
martingale (exp(9W (t)—359t) )0 and the compensated squared Wiener-process (W2 (t)—
t). Ome benefit of stochastic analysis is the fact that martingales can be easily defined
by stochastic integral processes.

At infinity three phenomena may occur.

Theorem 3.1.5 (Martingale convergence). Let (X;),5, be a right continuous sub-
martingale with

supEX;" < oo.
>0

Then there exists some F.-measurable random variable X, such that
X — X P-a.s.

and
E|Xow| < o0

A proof can be found in [3].
Some corollaries can be drawn from the martingale convergence theorem.

Corollary 3.1.6. The following assertions hold.
(i) Each positive right continuous martingale converges.

ii) For each ¥ € R the process exp(9W (1) — 192t) = 0.
(i1) P P 30%) -
— 00

(i1i) Each L, bounded martingale does converge
(iv) The Wiener-process W does not converge.

Proof. A positive martingale X is also a supermartingale and therefore —X a negative
submartingale which converges due to E(—X;)" < oo. The process exp(IW (t) — 20°)
converges since it is a positive martingale. The strong law of large numbers state for the
Wiener-process that

W) os, g,
t t—o0
Hence 1 - 1
expl@(0) ~ 3070 = ("D Ly 25 o
2 t 2 t—o0

The process X is called L,-bounded if sup,,,E|X ()|’ < oo. From this condition an
application of Holders inequality implies sup,~,E|X(¢)| < oo and we have convergence

due to B4l

29



The Wiener-process does not fulfill the assumptions on Since every a € R can be
reached by the Wiener-process a.s.

sup W (t) = co = —inf W (¢).

t>0 t>0
Hence a.s. every path of W does not converge. [

Besides a.s. convergence L, convergence is of interest, in particular in L;. The martingale
convergence theorem only establishes a.s. convergence, a slight stronger condition must
be satisfied to ensure Li-convergence. This leads to the term uniformly integrability.

Definition 3.1.7. Let I be an indez set and (X (t))ier be a family of real-valued random
variables. This family is called uniformly integrable if

sup E| X[ 1{jx,5a) > 0
tel

A random variable Y is integrable iff E[Y|L{y|>q} “Z8° 0. Uniformly integrability means
that his convergence takes place uniformly in ¢ € I.
To check the definition can be tedious. The following proposition can be helpful.

Proposition 3.1.8. Let (X (t))ies be a family of real-valued random variables. Then the
following statements are equivalent..

(i) (X (t))er is uniformly integrable,

(ii) The following conditions hold
a) sup,e; E|X¢| < oo,
b) Ve > 030 >0: VA€ F:P(A) < = sup,; E| X414 < e.

(iii) There ezists some non-negative, increasing, convex function G : [0,00) — [0, 00)

such that o
lim Glz) = 400 and sup EG(|Xy|) < oc.

T—00 X tel

(i) There exists some non-negative, increasing, function G : [0,00) — [0, 00) such that

lim Glr) = 400 and sup EG(|X¢|) < oc.

A proof can be found in the book of Klenke [4].
The proposition can be used to prove the following useful results.

Corollary 3.1.9. The following statements hold true

(i) Each finite family of integrable random variable is uniformly integrable.
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(ii) Let (X (t))ier and (X (t))ies uniformly integrable. Then (X (t))icrus is also uni-
formly integrable.

(iii) If there exists some integrable random variable Y such that | X;| <Y for allt € I,
then (X (t))ier is uniformly integrable.

(iv) From sup,c; E|X;| < oo the uniformly integrability can not be deduced in general.
(v) If sup,c; E| X P < oo for some p > 1, then (X (t))ier is uniformly integrable.

By applying the corollary we can deduce that each L, bounded martingale with p > 1
is uniformly integrable. The L; boundedness is not sufficient for L; convergence and
uniform integrability.

The next important example has applications in stochastic analysis.

Example 3.1.10. Let (€2, F,P) be a probability space and I be a set of sub-o-fields of
F. Then, the family (E(Y'|G))ger is uniformly integrable if Y is integrable.

This means that w.r.t. Y € L; a uniformly integrable martingale can be defined by
X(t)=E(Y|F) foral t>0.

Since a uniformly integrable process that converges in probability also converges in L; the
above defined martingale converges in L;. More precise we have the following theorem.

Theorem 3.1.11. Let (X;),5, be some stochastic process with E|X;| < oo for allt >0
and let X, be some further random wvariable. Let the following conditions be held true

a) (Xi);s is uniformly integrable,

b) Xy — X converges in probability, i.e.
P(| X, — Xoo| > €) =50

Then X; converges in Ly to X, t.€.
lim E|X; — X =0
t—o0

Proof. At first we have to clarify that X, € L;.
There exists a subsequence (t,,) such that (X (t,)) — X a.s. Hence,

E|Xo| = Eliminf | X, | < liminf E| X, |
n—oo n—00
<supE|X,, |
neN
< sup E| X/ <) 00

t>0

Prove next the L, convergence. Let ¢ > 0.
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Due to uniformly integrability there exists some d > 0 such that
P(A) < § = E|X,|14 < % for all ¢ > 0

and -
P(A) <d=E|X|1as < 3

Due to convergence in probability there exists some 7" > 0 such that

P(|X, — Xoo| > %) < & for allt > T.

Hence, for all t > T

E|X: — Xoo| = E[ Xy — Xoo|Tjix,—xeel<5 + E1Xe = Xoo|Lyix, - x> 53
€ g
< P& = Xoof < 2) + EIXelL g x> 53 + Bl X ool Lix,-xec)>5)
£
<3- =
<3z =¢

An L, version is the following

Theorem 3.1.12. Let p > 1 and (X;),5, be some stochastic process with E|X;|P < oo
for allt > 0. Let X, be some further random variable. If

a) (|Xi|P);so is uniformly integrable and
b) X; — X in probability,
then X, converges in L, to X, i.e.

lim E| X, — Xo|? = 0
t—o0

The main result of this section is that the set of uniformly integrable martingales can
be identified with an L;-space.

Theorem 3.1.13 (Isomorphism I). Let (F}),5, be some Filtration and O the set of
uniformly integrable (F),,-martingales.
Then,

J: M — L[1(Q, Feo, P)
X = Xy := lim X,
t—o00
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1s an isomorphism with inverse

I+ Li(Q,Fo,P) — M
Y = (E(Y|F)) 0

3.1.1 Optional Sampling

A martingale can be seen as as a fair game of luck. To specify this statement we have
to introduce stopping times.

Definition 3.1.14. Let (]:t)tzo be some Filtration. A stopping time T is a mapping
7:Q — [0,00) U {+00}

such that
{r<tte R forallt >0

The decision of stopping before t may only depend on the information up to time ¢.
Hence, a stopping time cannot look in the future, it is non-anticipative.
The o-field of those events that are observable by 7 is defined by

Fr={AecFo:An{r <t} € F for all t > 0}.
Note, that a definition of the form
Fr={AecF:An{r <t} e F forallet >0}

yields the same set of events.
Some basic facts on stopping times are the following.

Proposition 3.1.15. For stopping times o, T the following statements hold true:
(i) o AN 7(=min(o,7)),0 V 7(= max(o,7T)),0 + 7 are stopping times.
(ii) If o < 7, then F, C F;.
(iii) If X is a cadlag-process, then X1 ;<) s Fr—measurable.
(1v) Frpnoe = Fr N Fy.
(v) If (Tp)nen is a sequence of stopping times, then

sup 7,
n

is a (Ft)ysq stopping time and
inf 7,,

a (Fiy)i>o stopping time.
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(vi) A random variable X is F.-measurable, if and only if X1(.<4 is measurable w.r.1.
Fi for allt > 0.

A proof can be found in most text-books of stochastic processes.

One can see a stochastic-process as the evolution of a payoff from a game of luck. A
stopping time can be seen as that random time point 7 that a player finishes playing
the game and receiving the payoff X (7). If this time is bounded a player cannot make
a gain on average. This is the result of the first version of optional stopping.

Theorem 3.1.16 (Optional Sampling I). Let X be some (F),~-martingale with cadlag
paths and T be a bounded stopping time, i.e. there exists some T > 0 with 7 < T P-a.s.
Then:

(i) E(Xp|F;) = X, P-a.s.
(it) EX, = EX,

The benefit of this theorem is twofold. First it clarifies the origin of the name martingale
in the sense that the value of the process at a time-point 7 can be deduced from the
values at a future time-point by taking conditional expectation. This will be applied in
finance several time. Secondly a gambler cannot find a bounded stopping strategy that
improves on average his payoff. This fairness property is also sufficient for a stochastic
process to become a martingale. We can state the following theorem.

Theorem 3.1.17. Let X be some (}—t)tzo adapted process with cadlag paths and
E|X:| < oo forallt > 0.
Then the following statements are equivalent:
(i) X is a martingale
(ii) For each bounded stopping time T
EX, = EX,.

The disadvantage so far is that only bounded stopping times are treated. This is neces-
sary since counter examples exist. If we consider a Wiener-process and the first hitting
time of an @ > 0. Then EW (7) = a # 0. Thus further conditions have to be required to
ensure optional sampling for unbounded stopping times.

One version is the following.

Theorem 3.1.18 (Optional Sampling II). Let X be some (F;),5, adapted uniformly
integrable martingale with cadlag paths.
Then:
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(i) There exists some Foo-measurable mapping X, such that
E(XwlFr) = X, P-almost sure

for each stopping time T.

(i) EX, = EXy for each stopping time T.

And also a characterisation of a uniformly integrable martingale can be given.

Theorem 3.1.19. Let (X;),5, be some (Ft),>, adapted process with cadlag paths and
let Xo be some Foo-measurable random variable.
The process <Xt>t20 15 a uniformly integrable martingale with

lim X; = X,
t—o0
if and only if X is integrable for each stopping time T with
EX, = EX,.

The preceding theorems can often be useful in proving results in stochastic analysis.
Here we can give an easy application.

Corollary 3.1.20. Let X be some (ft)tzo—martingale with cadlag paths and T be a
stopping time.
Then, the stopped process X7, defined by

XtT = Xt/\T - Xt]l{tgf} + XT]]'{t>T}
is a (Ft)q-martingale.

Proof. The process X7 is adapted with cadlag paths and for each bounded stopping

time o it holds
EX"(0) =EX(1 Ao) =EX(0).

Hence [3.1.17| yields the assertion. O

At the end of this section we will give some applications on optional sampling.

Corollary 3.1.21. Let W be a Wiener-process and 1, denote the hitting time of a € R.
Then

(i) (7, < 00) = 1,

(ii) Et, = 0. ,
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(#i) if a,b > 0 then
P(m, < 7_4) =

s and E1, = ab

with Ta = T_q A T, denoting the exit time of the interval (—a,b).

Proof. To prove the first and second assertion one has to consider for each A > 0 the
martingale

1

My\(t) = exp(AW (t) — 5,\215).

Then M;* is a bounded martingale, hence uniformly integrable and converges to
Lo
exp(Aa — 5)\ Ta) L{ra<oo}-
Optional sampling gives
T T 1 2 Aa —1x27
1 =EM*(0) = EM{*(c0) = Eexp(Aa — 5)\ Ta)Lirocooy = € Ee 2V ™ 17, <oy

Hence )

2

Ee 2" ™l coy =€ forall A >0

and monotone convergence implies
Aa 1

P(r, < o0) = /l\li% ]Ee_%’\27“]l{7a<oo} = }gr(l) e

With the arguments above we have computed the Laplace-transform of 7,, since

L, (v)=Ee™"™ = ¢ V&
1/:%)\2
SV2u=X

The Laplace-transform determines the distribution of 7, and it follows that 7, has the

density
1 1a?

V2mt3 p( 2t

ga(t) = )L (0,00 (1)

due to

Ee Ve — /e”tga(t)dt — o Vva for all v > 0.
0

Amongst others
o

E7, = /tga(t)dt = 00
0

follows.
For the third assertion we can consider the Wiener-process itself as martingale. Then
optional sampling implies

0=EW,, = —aP(7_q < 7) + P(1, < 7_4)
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and together with
1=P(1_o <) + P15 < 7—4)

the first part of (iii) follows. For the second part we consider W (¢)> — ¢. Then, optional
sampling gives
b 5 @

B 7 = EW ()" = o* g + 00 =

ab.

3.1.2 Doob’s martingale inequalities

In stochastic analysis the so called H,-space is of importance. This is the content of this
section. First we apply Jensen’s inequality to obtain certain submartingales.

Proposition 3.1.22. Let E be a convex subset of R.

(i) If X is a martingale with values in E and if
f:E—R

is convez, such that E[f(X;)| < oo for allt >0, then (f(X;))q is a submartin-
gale.

(i) If X is a submartingale in E and
f:E—R

convezx and increasing with E|f(X;)| < oo for all t > 0, then (f(Xt)),5, is @
submartingale.

Typical situations where we can apply this are

Corollary 3.1.23. The following assertions are true.
(1) X martingale = | X| submartingale,
(i) X martingale and E|X;|P < oo for allt > 0 = (|X;|P),5, submartingale,
(111) X martingale = X* submartingale

For a process X we define the running maximum by

X*(T)= sup |X(t)] forall T">0.

0<t<T

Doob’s maximal inequality give bounds of the running maximum in terms of the termi-
nating random variable. The L,-space is a Banach-space with the norm defined by

I1X|l, = (B|X[))r forall X € L,.
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Theorem 3.1.24 (Doob’s Maximal Inequalities). Let (X;),», be some right continuous

martingale or some positive submartingal w.r.t. a filtration (-Ft)tzo- Then the following
holds for X7 := supgc;<r | Xy|:

(i) WP(XF > A) <E|X7[Plix;n < E[Xg|P forallp > 1,
(i) NPP(X% > A) < supso E[X¢|P for allp > 1,
(i) 11Xl < o5 supogeer I1Xelly for all p > 1,

(i) IX%lp < 55 supsso [ Xillp for all p > 1,

=
Remark 3.1.25. The assertions (iii) and (iv) are called Doob’s

L,—inequalities. These are equivalent with

p
E|XxP < (Ll) sup E[X,P forallp>1,0<T < oo
-

0<t<T

Usually the canonical filtration of a stochastic-process X is not sufficient to satisfy the
necessary technical purposes. It has to be slightly enlarged which leads to the so called
usual conditions.

Definition 3.1.26. A filtration F = (F) > fulfills the usual conditions if it fulfills
(i) right continuity, i.e. Fy = Fyy := (oug Fite for all t > 0.
(i1) completeness, i.e. Fy contains all negligible sets.
Technical advantages of a filtration that satisfies the usual conditions are.
1. modifications of adapted processes are again adapted,
2. entrance times into Borel sets are stopping times,
3. paths of martingales can be regulated.

More precise:
Each martingale w.r.t. a filtration that satisfies the usual conditions has a modification
with right continuous paths. This is the reason why one can always assume that a

martingale has right continuous paths.
(0)

In the following we will show how a filtration <]—"t ) can be enlarged such that the
>0
usual conditions are fulfilled. In a first step we add the negligible sets N by defining
FY =6(F,UN) Vit >0.

In the second step we ensure the right continuity by defining

Fi=F3 vt>o.
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Then F® is complete and F fulfills the usual conditions. We see that an assumption of
completeness is not very restrictive.

At the end of this section the H,-spaces are introduced. These enable a characterization
of L, bounded martingales.

Definition 3.1.27. For p > 1 the space H, is defined by
H, = {X : X is a cadlag martingale w.r.t. (F;);sq with supE|X;|P < oo}
= >0

The space H, consists of all those martingales that are bounded in L,. Due to this
boundedness a norm on H, can be defined by

1
1 p
X, = sup(ELX )} = sup 1], = (sup LX)
t>0 t>0 >0
Doob’s L,-inequalities ensure that the space H, is isometric isomorph to an L, space.

Theorem 3.1.28 (Isometry II). The mapping

J: H, — Ly(Q, Fx,P)
X X,:=limX,

t—o00

defines an isometry between Banach-spaces and its inverse is given by

I: L9 Fu,P)— H,
X = (E(Xool F1) iz

Isometry means that
Ty = [ Xeollp = [ XT3, for all X € H,

Proof. Note that H,, is a subspace of 9 and L, a subspace of L;. Due to the
mappings I and J are inverse isomorphisms of 9t and L;. It remains to show that the
subspaces are mapped together and that the isometry property holds. If we take X € H,
then Doob’s L, inequality implies

[ Xoollp < [IXEp <

p p
Xill, = ——||X |3, < oo.
1?}215” tllp p—lH ||, < o0

Since
X%, = (sup [ X¢)
>0

is an integrable upper bound the dominated convergence theorem yields

B[ Xoof? = lim B| X, = sup B[ X" = || X|[},
t—o0 t>0
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Hence
[ Xoollp = [1 X[,

Contrary let Xoo € L. Then I(X) = (E(Xoo|F2)) 5o and
E(IE(Xoo| F1)[") < EE(|Xoo|"| 1) = E[Xoof” < 00,
which implies = (X)) € H,. O
In stochastic analysis the Hilbert-space H, is of particular importance. We define
Ha. :={X € Hs : X has continuous paths}.

Then H, . is a closed subspace of Hs.

Proposition 3.1.29. The space Ha . is a closed subspace of Hs.

Proof. Clearly H,y . is a subspace of Hy. To prove closedness we consider a sequence
X™ e Hs . that converges to X € Hy and have to show that X has continuous paths.
Due to Doob’s inequality

E(sup [ X" — X;|)? < 4supE[X” — X,[2"ZF 0

>0 t>0

and therefore sup | X{™ — X,|> —» 0 in L;. Thus there exists a subsequence (ny) such
>0
that
sup | X" — X,[> — 0  P-almost sure.
>0
Hence also
sup | X{™ — X, — 0 P-almost sure.
£>0

Due to the continuity of X (™) the process X as uniform limit has continuous paths. [

3.2 Stochastic Integration

In this section the mathematical techniques will be developed that are needed to explain
trading in a continuous time market model. It turns out that the so far known analytical
tools of integration are not sufficient since the processes of interest have no paths of finite
variation.
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3.2.1 Motivation

Let S denote the price process of a risky asset, a stock for example. A trader takes at
each time point ¢ a position H(t) in the stock. If H(t) is positive he has a long position of
H(t) stocks. If negative he is short with |H(t)| stocks. The process (H(t))o<t<r defines
his trading strategy during the trading time [0, 7]. The gain of his strategy from 0 to 7'
can be seen as the integral

/ " Hasw)

0

The following question arises.
- How can we mathematically define such an integral?
- Which processes S can be used as integrators?
- Which processes H can be used as integrands?

In a first step we take the standpoint of a real trader. Of course he can’t trade contin-
uously in time. But he can choose dependent on the evolution of information a finite
number of stopping-times

O=mg<m<m<--<77w<T

such that he may change his position at these finite trading points. Let’s say that he
takes h(1) stocks in the first trading period (0, 7], then h(2) in the period (7, 7] etc..
This means he has to choose a process (h(k))k=1,..v} that indicates his stock position
in the trading periods. Since he cannot look in the future we have to assume that h(k)
is F;,_, measurable. Such a strategy we will call performable strategy. Note that NV can
be random and formally we can achieve this by taking an infinite sequence of stopping
times such that a.s. only a finite number terminates before 7.

Definition 3.2.1. Let (Fi)o<i<r be a filtration. Then a sequence of stopping times
(Tn)nen, together with a stochastic process (h(n))nen is called a performable strategy if
the following holds.

(Z) O:To<T1 < Tg---
(i1) Almost sure there are only a finite number of stopping times that stop before T .

(1i1) h(n) is F,,_, measurable.
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Note that
N =sup{n:7, <T}

is random but finite and N +1 can be seen as number of trading periods. In each trading
period (7,-1, 7, the trader receives a gain h(n)(S(7,) — S(7,—1)). Thus his total gain
which can be seen as stochastic integral is

S h(m)(S(1) = S(r1)) + h(N + 1)(S(T) — S(rx)) = /0 H(1)dS (1)
with H defined by
H<t) = Z h(n)l(m_l,m}(t) + h(N + 1>]]‘(TN,T] (t)

One can imagine that the set of performable strategies is very rich and that for a thor-
oughly mathematical treatment also limits of these strategies have to be taken into ac-
count. Hence, it has to be clarified from a mathematical standpoint when such limiting
procedures could be drawn. This is the objective of stochastic integration.

A path-wise approach is justified if the process S has paths of bounded variation. Then
all progressively-measurable processes H with paths that are Lebesgue-Stieltjes inte-
grable can be integrated. More precise:

Definition 3.2.2. Let Bjyy be the Borel-o-field on [0,t] for allt > 0. Let furthermore
(Ft)s0 e a Filtration. A stochastic process

X :[0,00] x 2 — R
is called progressively-measurable, if for each t > 0
X:[0,t]xQ2—R
is measurable w.r.t. Bl ® Fy. This means, that for all B € B
{(s,w) € 10,t] x Q: X (w) € B} € By @ F.

For processes in continuous time there are many technical difficulties concerning ques-
tions of measurability. The progressively-measurable assumption solves those problems
many times.

Remark 3.2.3. 1. Each process with right continuous paths is progressively measur-
able.

2. If X is progressiely-measurable and T a stopping time, then X (7)l{;<oc) i mea-
surable w.r.t. F;.
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3. Let Fy contain all negligible sets and let X be progressively-measurable with
t
/ | Xs(w)|lds <00 P— a.s. forall t>0.
0
Then an adapted process Y with P-a.s. paths is defined by

Y(t) = /OtX(s)ds for all t> 0.

3.2.2 The Doléans-measure

Processes S of interest in finance are the Wiener-process, geometric Wiener-process and
in general semi-martingales. These processes have no paths of finite variation. Therefore
a new approach has to be developed such that a stochastic integral can be reasonably
defined. We have seen that performable strategies are in some sense previsible since at a
trading point we have to hold our position for a short time into the future. This concept
will be transferred to continuous time.

Definition 3.2.4. Let (Ft),5, be a filtration that satisfies the usual conditions.
1. A previsible rectangle R is a set of the form
R=1ugxr, with 0<s<t,F,e€F,;.
We denote by R the set of all previsible rectangles.
2. The o-field P of previsible sets on (0,00) X € is defined by

P =0(R).

3. A stochastic process X is called previsible if it is measurable w.r.t. P.

There are some parallels between the definition of the previsible o-field and the definition
of the Borel sets of (0,00). And also nearly in the same way as the Lebesgue-measure
is defined the Doléans-measure can be constructed.

Note that R is a semi-ring:

(i) Per Ry fﬁ“éaljRQ

(11) Rl, RoeR=R NRyeR (ﬂ—stable) ( ( =

]
S1 52 tl t2

(iii) To Ry, Ry € R there exists disjoint sets
Hy,...,H,, € R such that

Ri\Ry = J H,
i=1
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The semi-ring R can be extended to a field of sets A by adding all finite unions of
elements of R. Thus, we define

A={AC (0,00) x Q: there exists Ry, -+, R,with A= URZ}
i=1

This field of sets satisfies the following properties:
(i) 0 € A,
(ii) A Be A= B\ Ac A,

(ii) A, Be A— AUB e A.

Note, that each A € A is a union of disjoint sets of R, i.e. there exists disjoint sets
n
Ry, -+, R, such that A = |J R;.

i=1
The most important examples of previsible processes are listed below.

1. For each F; measurable random variable Y the process
H - Y]]-(S,t}
is previsible for all 0 < s < ¢.

2. Let ((Sn,tn])nen be a sequence of pairwise disjoint intervals and let (Y,)nen be a
sequence of random variables such that Y, is F; -measurable for all n. Then

H=> Yl
n=1

is a previsible process.
3. Each adapted process with left-continuous paths is previsible.

4. Let (1) be an increasing sequence of stopping times and let (Y},),en be a sequence
of random variables such that Y,, is F, -measurable for all n. Then

H=> Yl
n=1

is a previsible process.

Next we will give some alternative definitions of the previsible o-field. Note, that for
stopping times o < 7 the stochastic interval (o, 7] is defined by

(o,7] ={(t,w) : o(w) <t < T(w)}.
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Proposition 3.2.5. The following statements are true.

1. The previsible o-field is the smallest o-field that makes all adapted, left continuous
processes measurable.

2. The previsible o-field is generated by all stochastic intervals (o, T].

Next we want to construct the Doléans-measure on the previsible o-field. Let M be
some Ly martingale with right continuous paths, i.e. EM(t)? < oo for all ¢ > 0. Then
we may define an additive set function p on R by

par((s,1] x Fo) = ELp, (M(t) — M(s))* = Elp, (M(t)* — M(s)*).
This set function uy, : R — [0, 00) has the following properties

(i) par(0) =0,

(ii) If Ry,..., R, € R are pairwise disjoint such that |J R; € R, then
i=1

v (U Ri) = ZMM(Ri)-

Such an additive set function py; can always be extended to an additive set function on

A by

n

i=1
In the last step one can show that due to the martingale property the set function g,
is a pre-measure on A, hence o-additive.
But then the extension theorem of Carathéodory applies and there exists a unique ex-

tension of ;s to a measure on the previsible o-field which is generated from A.

Definition 3.2.6. The Doléans-measure of an Lo martingale M 1is defined by this
unique extension and will be denoted by puyy.

As example we will determine the Doléans-measure of a Wiener-process.

Proposition 3.2.7. The Doléan-measure pyw of a Wiener-process W is given by
Hw = AXP

with A denoting the Lebesque-measure.
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Proof. 1t suffices to show the assertion for R = (s,t] x Fs € R since R generates
the previsible o-field and is closed w.r.t. intersection. Since the Wiener-process has
independent increments it follows

pw ((s,1] X Fy) = Elp, (W (t) — W(s)* = P(F,)(t — s).

3.2.3 The Stochastic Integral

We now introduce the stochastic integral stepwise.
For H = 1 with R = (s,t] x F' € R we set

I(H) = 1p(M(t) — M(s)).
This can be linearly extended to the so called space of elementary processes £.

Definition 3.2.8. The vector-space £ is defined as the span of the indicator function of
sets from R. This means that each H € € has a representation of the form

H= i OéiﬂRi
i=1

with oy -+ -, € R and Ry x R, € R. Such an H 1is called elementary process.

For H =3""  a;1p, € £ the stochastic integral is defined by
I(H) =Y oI(H).
i=1

The space of elementary processes € is a subspace of Ly(1) and the so far defined integral
I is a norm-preserving map between £ and Ly(PP).

Theorem 3.2.9. The mapping
I:&— Ly(P)

1S NOTM-Preserving, i.e.
[ H || Lour) = IHH)|| L. @)

respectively

/ H?dpy = EI(H)?

forall H € €.
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Proof. For H € £ there exists a representation of the form

H = i aillRi
i=1

with aq,..,a, € R and pairwise disjoint sets Ry,..., R, € R. These have the form
R; = (s4,t;] x Fy, fori=1,...,n.
Hence

](H)2 = (i Oéi]lFSi (Mtz - M81)>

= Z Oéz'Q]lFsi(Mti - MSi)2 + Z aiak]lFsi]lFsk (Mtz - Msz)(Mtk - MSk)
i=1 ik

The mixed terms vanish by taking expectations. Since
it follows
F, NF,, =0 or (s;,t;] N (sk,tx] =10
If Fsi N Fsk = (Z) then ]lESi]lESk = ]lFsiﬂFsk = 0.
If (s;,t;] N (81, tx] = O we may assume w.l.o.g. t; < sg. Then
E]lFsi]lFsk (Mtz - M51)<Mtk - MSk) =EE []lFsi]lFsk (Mtz - Msz)(Mtk - Msk)}]-—sk]
= E]lFsi]lFsk (Mti - Msi) E [(Mtk - Msk)|f3k:|

=0 =0, since A},martingale
Hence
1 (H)||1ae) = BI(H)?
=EK Z Oé?]lFsi (Mti - Msz-)2
i=1
- Z a?MM(]]-(Si,ti]XFsi)
=1
= Z i pr (R;)
i=1
= [[H]| L2

]

Since £ is a dense subspace in La(ppr) we may extend the norm-preserving linear mapping
I on Lo(pn).
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Theorem 3.2.10. There exists a unique linear extension of I on La(upy) that is norm-
preserving, i.e.

L) Lo@) = 1 ] 2agaan)
for all H € Lo(ppr)-

Proof. For each H € Lo(pys) there exists a sequence (H™),cy in € such that
||H(n) - H||L2(,U«M) — 0.

Then (H™), ey is a Cauchy-sequence in €. Since I is norm-preserving, (I(H™),cy is a
Cauchy-sequence in Ls(IP) due to

,Mm—00

I(H™) = IH™)|| 1y = [[TH™ = H)||pye) = [H™ = H™| 160 0.

Since Ly(P) is complete, there exists some unique U € Ly(P) such that
||U - I(H(n))”Lz(P) — Oa

hence I(H) is defined by U.
That I is norm-preserving, follows from the fact that ||H™||r,¢0n — IH||Ls(un)-

Then
NT(H )| o) — I (H)|| o)

and due to |[T(H™)| @) = [[H™|| 1,040 it follows

||H| |L2(MM) = ||](H) | |L2(]P’)'

m
As notation for the integral the integral sign is common and can be used. We define for
H € Ly(pnr)

/ HAM = I(H).

The advantage of this here presented approach relies in the fact that the well-known
properties of integration from analysis can be taken over and therefore this procedure
is quite simple. But this leads to the disadvantage that so far explicit formulas for a
stochastic integral are only given for elementary processes H. It is rather tedious to
compute the integral for other processes of interest, for example performable strategies.

In general one has to compute the integral for an H € Ly(uy) by finding a suitable
approximating sequence H™ and calculating the limit of 7(H™) in Ly(PP).

Proposition 3.2.11. The following formulas hold true:

(i) Let o, be bounded stopping times with o < 7 and Y be a bounded F,-measurable
random variable. Then

/m(w}dM = Y/(M(7) — M(c)).
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(i1) If M € Hy then
[ ¥ 1ndnt =y (1(r) - M1(0))

for all stopping times 0 < 1 and Y square-integrable F,-measurable.

(i1i) Let M be some Lo-martingale with M(0) = 0, then for each bounded stopping time
T
par((0,7]) = EM(7)*.

(iv) Let M be some Lo-martingale with M(0) = 0, then for each stopping time T with
wa ((0,7]) < oo the stopped process M™ is an Ho-martingale and it holds

par((0,7]) = EM(7)%.

(v) For the Wiener-process W, bounded stopping times o < 7 and square integrable
Fo-measurable random variables Y it holds

/ Y1 dW = Y(W(r) — W(0)).

(vi) For the Wiener-process W it holds

1
/ﬂ(O,T]WdW = §(W(T)2 —-T).

Proof. A proof of these assertion is not really exciting. The last statement is of interest
and can be shown in the following way. Note, that W1 7 is previsible as left continuous
process and is contained in Ly(uyy) due to

/ Hdpy = / LonW?d(A ®P)

_ / Loz (W2 (W) (A ® P)(dt, dw)

[0,00) X2

" [ () [ WEP()A)
Q

[0,00)
T

= / EW?dt
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Approximate H in Lo(uw) by

l(n)

H™ = Z Wt“” ]l<t(" 4 }

=1 J—=17j
with
0=t <t{” <. <ti) =T
and
(n) (n)
mjax t] tj_l
l — Wt§n>1 |
Then

l(n)

_Z/ W,)2dt

J= 1<n>

l(n)

(n)
= Z / — tdt

(")

< (maxtg. ) _ t;@l)T 20
j

Hence the continuity of the integral yields

/ H™dW — / HdW in Ly(P).

Furthermore )
l(n

/ H"dW = ZWW — Wy )

20



and therefore

Wi = Z(Ww W<n> ) = [(Wm) - W@l)Q + QWt;rgl(W(n) - W@l)]

tj t] tJ tJ

<
I
-
~ o,
=
s |
Z

l(n)
(Wtw t<" +22Wt<n> Wi = th_g)l)

<.
Il
-

—T in L2(P) — [ HdW in Ly (P)

Thus

1
Wi :T+2/HdW :T+2/11(0,T}WdW<:> /ll(oj]WdW = 5(WI%—T)

3.2.4 The Integral-process

So far the stochastic integral as Lo(IP) random variable is constructed and can be seen
as the gain a trader would obtain by trading the martingale M w.r.t. a strategy H.
Now we clarify how the evolution of its gain-process can be described. We exploit the
fact that Lo(PP) is isometric isomorph to Mo, see[3.1.13] Hence the integral I(H) can be
transformed in a uniquely manner to an Hy-martingale by taking conditional expectation
w.r.t. F; for all £ > 0. More precisely we use the isometry

J: LQ(Q7‘FOO7]P)) — HQ
Xoo 7 (E(Xoo|F2)) 50 -

Note that
[ Xooll Loy = [T (X)] |

Definition 3.2.12. For an Lo-martingale M with cadlag-paths and H € Lo(ppr) we
define the stochastic integral-process H - M by the mapping

H-M: L2<ILLM) — LQ(P) — Hg
H s J(I(H))

Hence fort >0
(H - M), =E(I(H)|F)

By construction we obtain the martingale property of the integral-process. A disadvan-
tage relies in the fact that basic properties of the integral-process have to be shown.
By using the definition explicitly one can calculate the integral-process for elementary-
processes.
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Theorem 3.2.13. Let H € £ be of the form

H = i ozj]lR].
j=1

with ag, ...,an € R and R; = (s;,t;] X Fy; € R.
Then

H-M=Y ajlg (M% - M%).

J=1

This means that H - M s indistinguishable from
(Z aj]lst (MtjAt - MsjAt)) .
s=1 >0

In particular
(H-M)o=0 P— a.s.

This means that the integral-process starts from zero.

Proof. Tt suffices to prove the claim for H = 1, with R; = (s;,t;] x F; € R. Then
I(]le) = ]lst (Mtj - MSj)

and an elementary calculation yields the assertion. O

By exploiting the explicit form for H € £ and the continuity of the integral operator
further properties can easily be deduced.

Theorem 3.2.14. Let M be an Ls-martingale with cadlag paths and H € Lo(par).
Then

(i) (H-M)y=0 P-a.s.

(i) E(H - M); =0 for allt >0,

(i5i) B(H - M), =0 for all stopping times T,

(iv) If M is continuous, then H - M has continuous paths and H - M € Hs.

Proof. One can easily show that the above properties hold true for # € £. By using
continuity they carry over to H € €& = Lo(pupr). O]

The integral operator is a mapping of two variables, the martingale M and the previsible
process H. In the following we will give further properties.

Proposition 3.2.15. Let M, N be Lo-martingales with cadlag paths. Then
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(i) pven < 2(pnr + pv)
(it) Lo(pnr + pin) = Lo(par) N La(pn) C Lo(par+n)
(iti) H- (M +N)=(H-M)+ (H-N) for all H € Lo(par) N La(pin)

We would like to extend the set of integrable processes H and the set of integrators M.
The main technique which has to be applied is the localisation by stopping and cutting.
These operators will be defined next and their properties investigated.

Definition 3.2.16. For each stochastic-process (X,;)t20 and each stopping time T we
define the stopped process X by

X7 o= Xt t<T
X, t>T

Short we write X7 (t) = X (7 At) for allt > 0. The cutted process X1 o is defined by

Xt 0<t§7—
Xl = {0 t>7T

The following properties are useful for a later localisation.

Theorem 3.2.17. Let 7 be a stopping time. Then
(1) If X € M, then X7 € M.
(it) If X € Ha, then X7 € Hs.
(11i) If X has continuous paths, then X7 either.
() If M is an Lo-martingale with cadlag paths and H € Lo(uyr), then

H]l(oﬂ—] € LQ(/,I/M) N Lg(/JJM-r)

and

(H-M)"=Hlg;-M=Hloy - M =H-M"
The last property is of main importance since it justifies the notation
t
/ H(S)dM(S) = /H]l(o’t]dM.
0

This means that the integral-process evaluated at ¢ coincides with H integrated over the
interval (0,t]. More precisely we have the following corollary
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Corollary 3.2.18. Let M be an Ls-martingale with cadlag-paths and H € Lo(ups).
Then for each stopping time T

(H-M), =(Hlg M) =I1(Hlp,) = /HIL(OJ}dM P-almost sure

Proof. This follows from

(H - M), = (H- ML

- (H:[L(Oﬂ-] . M)oo

- I(H]l(()ﬂ—])

- / H]]. (077-]dM

Therefore it is shown
E(I(H)|F:) = (H M), = I(HLn)
in particular
t
(H-M), = /H]l(o,ﬂdM :/ H. dM,
0

for all £ > 0.
Next we will list some further properties of the integral-process

Remark 3.2.19. Let M be an Ly— martingale and T an arbitrary stopping time. Then
(i) pnr < pg
(i1) La(pnr) C La(par-)
(i5i) If H is previsible, then H™ either.
(w) If H € Lo(par), then (H - M) = H™ - M7
(v) If H is bounded and previsible and M € Ha, then

H M =Hlg, - M+ H (M — M)

A further useful formula is the following

Proposition 3.2.20. Let M be an Ly-martingale with cadlag paths and H € Lo(ppr).
Let 7 be a stopping time and Y a bounded F,-measurable random variable. Then

/ Yooy HAM =Y / 1 (o) HAM
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respectively

respectively
((Y]l(ﬂoo)H) . M)t = Y((]l(ﬂoo)H) . M)t fO’I" allt Z 0

respectively

t t

0 0

Very important is the so called associativity of the integral operator.

Theorem 3.2.21. Let M be an Ly-martingale with cadlag-paths and H, K previsible
processes such that K € La(pun) and H € La(jig.pr)-
Then

HK € Ly(pny)

and
(HK)-M =H - (K - M)

Proof. The main observation is that the Doléans measure of the martingale K - M is
absolutely continuous w.r.t. py, with density K2, i.e.

pr.ar(A) = / K?dpy, for all A€ P.
A

Therefore
H e LQ(LLKM) <— KH ¢ LQ(/LM)

To prove the associativity one has to show this directly for H € £ and carry this over
by continuity to H € Lo(pr.ar)-
O

3.3 Quadratic Variation Process

The objectives of this section are the following
- specification of the path fluctuation of a continuous martingale,
- alternative specifikation of the Doléans-measure,

- Doob-Meyer decomposition of the submartingale M? in a martingale N and an
increasing, previsible process A:

M} = M7+ N, + Ay
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3.3.1 Finite Variation

In real analysis the fluctuation of a function is measured by its variation.

Definition 3.3.1. Let f : [0,7] — R be a Borel-measurable function and ® some
decomposition
T:0=ty<...<t,=T

of the interval [0,T).
The variation FVy(f,7) of f according to 7 is defined by

FVp(f,m) = Z | f(ti) — f(tica)]

The function f is called of bounded variation on [0,T], if

FVvr(f) := ) sup . FVp(f,m) < oo
T aecomposiiion
of [0,T]

Then FVp(f) gives a measure for the fluctuation of f over [0,T].

Some well known facts are the following
Proposition 3.3.2. The following statements hold true.
1. Each increasing function is of bounded variation.
2. The set of bounded variation functions is a vector-space.
3. Fach Lipschitz-continuous function is of bounded variation.
4. Continuous functions need not to be of bounded variation.

5. Absolutely-continuous functions functions are of bounded variation.

If f is continuous and of bounded variation, then we get the variation by taking lim-
its of variation along decompositions whose mesh-size tends to zero. According to a
decomposition 7

T:0=ty<...<t, =T

of the interval [0, 7] we define its mesh-size |r| by

’7T| = max |t2 — ti_1|.
i=1,---.n

Remark 3.3.3. Let f be a continuous function of bounded variation. Then

FVr(f) = lim FVr(f. )

Important is the fact that each function of bounded variation can be written as difference
of increasing functions.
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Theorem 3.3.4. Let f : [0,T] — R be a right continuous function. Then it is of
bounded variation on [0, T| if and only if there exist increasing functions g1 and ga such
that

f=0g1— g

Proof. “ = “ we define for all t € [0, 7

FH(8) o= S (FV(P) + 7(1)
F(8) 2= S(FVIC) — (1)
Then

f=r-rf
FVi(fy=ftt)+ f (¥ for all ¢t € [0, T]

and f*, f~ are increasing functions.
]

Functions of bounded variation can be seen as distribution function of signed measures
and this gives a measure theoretic view on functions of bounded variation. To be more
precise let f be a right continuous function of bounded variation. Then so f* and f~
are right-continuous and the decomposition in f* and f~ is uniquely defined by

f=r-=r
FVi(f)=fr@t)+ f (1) for all ¢ € [0, 7.
The increasing functions f™ und f~ are distribution functions of measures pu* resp. u~
on [0,7]:
,uf((a, b)) == f=(b) — f*(a) forall0<a<b<T

By

pp(A) = p(A) — = (4)
for all Borel sets A C [0, 7] a signed measure ps on [0, 7] is defined. This is a o-additive
set-function, that can take negative values. We have the follwing relation:

pr((a, b)) = f(b) — f(a) forall 0 <a<b<T.

The right continuous function
t = FVi(f)

is increasing and defines the so called variation measure ||u¢|| on [0, 7] by
lpgll((a,0]) := FVy(f) = FVa(f)  forall0<a<b<T

It holds:
sl = uf + py
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and p* and g~ are uniquely determined by

fif =y —
sl = pp + py -

An integration according to functions of bounded variation can be seen as integration
according to signed measures.

Definition 3.3.5. Let f : [0,7] — R be a right continuous function of bounded
variation with unique decomposition:

f=r=r
FV(f)=f"@)+f(t)  foralltel0,T]
A Borel measurable function g : [0,T] — R is Lebesque-Stieltjes integrable w.r.t. f, if

g 1s integrable w.r.t. f* and f~.
Then we define

T T T
/ i — / gdf* / gdf~
0 0 0
at which
T T
/gdf+ = /gdu}
0 0
and
T T
/gdf‘ = /gdu}
0 0
with

15 ((a,b]) = f5(b) — f*(a) forall0<a<b<T
To examine integrability one can take the variation measure.

Theorem 3.3.6. The function g is integrable w.r.t. f if and only if g is integrable
w.r.t. the variation measure ||ps|| and then

T

T
/ gdf| < / lgldl s
0

0

- / 9O dFVi()
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Proof. “ = “Let g be integrable w.r.t. f. Then g is integrable w.r.t. f* and f~.

Hence
T T
Jiolr <so. [lgiar <o
0 0
Then
T T T
/|g|d||,uf|| :/|g|alf+ —|—/|g|df_ (< oo, hence g is integrable w.r.t. f)
0 0 0

AV IV
o\ﬂ o\ﬂ
Q K
& &

+ +

LT
E‘ o\ﬂ

Net

1 &

|

T
“ =V If [ gld]|ps|| < oo then
0

T T T
[1stars+ [1g1ar = [1glalluli < o<
0 0 0

T T
= [gldft < =, [lgldf~ < >

0 0
= ¢ is integrable w.r.t. f. ]

A function f :[0,00) — R is locally of bounded variation, if it is of bounded variation
on each bounded interval.

Definition 3.3.7. A function f : [0,00) — R is called locally of bounded variation, if
FVr(f) < o0 for allT >0

holds.

Remark 3.3.8. Is f locally of bounded variation and right continuous, then their exist
unique right continuous increasing functions f* and f~ with

f=r—=1f
FVi(f)=ft@t)+ f (1) for all ¢t € [0, 00).
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The functions f* and f~ define measures on ([0, c0), B) by
wy ((a,b]) = f(b) — f*(a) forall 0 < a < b < oco.

Then
[if = iy —

denotes the signed measure corresponding to f.

3.3.2 The Quadratic Variation

Martingales with continuous paths have no paths of bounded variation. Their fluctu-
ations are too large. Therefore the quadratic variation instead of the variation will be
used to describe the amount of fluctuation.

Definition 3.3.9. Let f : [0,7] — Randm: 0=ty <t; < ... <t,=T.
The quadratic variation w.r.t. 7 is defined by

Va2(f, ) Z|f )

and

if the limit exists.

Remark 3.3.10. Let f:[0,7] — R be continuous and of bounded variation on [0, 7.
Then
2
vi(f) =0,

The fluctuation is too small. It can’t be detected by the quadratic variation.

Proof. The continuous f is uniformly continuous on [0, 7. Hence,

T) = Z |f(t:) — f(tima)?

g i=1
|| —0 —
— ~~
f unif. cont. 0
= O ‘ﬂ-l—_; FVT(f)<OO

]

To introduce the quadratic variation process of a continuous martingale we proceed in
the following way.

- First we give an abstract definition by exploiting stochastic integration ,
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- Then, we give an extension by localisation,

- At last we show that the defined quadratic variation process coincides with the
quadratic variation of paths.

First a continuous bounded martingale M is considered. This means that there exists a
constant C' > 0 such that a.s.

sup M;(w) < C.

t,w

Then
M € La(pn)

for each N € Hy . due to
/M?dw < C2un((0,00) x Q) = CTE(Noy — Ny)? < 0.

In particular
M e LQ(ILLM)

Let us denote by b901. the space of bounded martingales with continuous paths.

Definition 3.3.11. For M € b9, with My = 0 we define the quadratic variation proess

by
(M) := M2 —2(M - M), forallt >0

resp.

t
(M); = M? -2 / M,dM, for all t > 0.
0

We have the following properties

Theorem 3.3.12. Let M € bIN,. with My = 0. Then
(1) (M)o =0
(ii) t — (M), is adapted with P-a.s. continuous paths.
(iti) (M; = (M)t);5o € Mo
(iv) t — (M), is P-a.s. increasing

Proof. The first three properties follow immediately by definition. The last property
cannot be shown easily. It needs a careful approximation by suitable discrete integral
processes. We dispense with the details. O
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As an application we can give the Doob-Meyer decomposition of M? for M € b,

M? = M2+M2 (M) + (M),
A/—/ ~——

start martingale part  previsible,
increasing
part

for all t > 0.

Definition 3.3.13. For M € b9, with My # 0 we define the quadratic variation
process by

(M) := (M = My).

It holds

(M), = (M — M)y = (M; — My)* — 2 | (My — My)d(M, — M)

L OSY—

t
= (M, 2/M MOdM—Q/(MS—Mo)dMo
0 0

. i

~
=0, due to Mg constant

= M? — 2MyM; + M3 — 2 / M,dM, + 2 /ModMs

t 0
= Mt2 - M(? - Q/Mdes =Mo(M;—My), due to

Mo Fo-measurable

and therefore

Mf:Mg—i—Z/MSdMS—I—(M)t forallt >0

This corresponds to the Doob-Meyer decomposition of the submartingale (Mf)tzo.

By localisation this definition of (M) should be extended to Lo-martingales. A necessary

property is the compatibility with stopping.

Theorem 3.3.14. Let M € bIN. with My = 0 P-a.s.. Then for each stopping time T
(M)" = (M")

Proof. This follows from the definition of (M) and the compatibility of integration with
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stopping, see [3.2.17]

(MT) = (M")* = 2(M" - M")
= (M?)7 = 2(M g - M7)
= (M?)" = 2(M1, - M)
= (M*"™ —2(M - M)T
= (M?*—-2M - M)"
= (M)"

]

The significance relies in the fact that stopping can be interchanged with taking the
quadratic variation and this allows to extend its definition.

Theorem 3.3.15. Let M be a continuous Ly-martingale with My = 0 P-almost sure.
Then there exists a unique stochastic process (M) with the following properties:

(i) (M)o =0 P-almost sure,
(i) ((M)1)y>o is adapted and has P-almost sure continuous and increasing paths,

(i) (M7 — (M)1),s, s a martingale.

Definition 3.3.16. The process (M) from |Theorem 3.3.15 will be called quadratic
variation process of M.

Proof. We will give the main idea. For each n € N a stopping time 7, is defined by
T, = inf{t > 0:|M(t)| > n}.

Then, the sequence
M<To<: Ty
is increasing with
supt, =00 , M™ € bIM,.

n

Thus, for each n the quadratic variation (M™) is well-defined and putting all of these
together the quadratic variation of (M) can be uniquely defined using the compatibility

property [3.3.14] Note that
<M> ]1(0,7-”] = <MT”> ﬂ(o’fn] .

The properties of (M™), n € N see [3.3.12| carry over to (M).
The uniqueness of the quadratic variation-process follows from the following proposition.
]
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Proposition 3.3.17. Let M be an Lo-martingale with continuous paths, that are locally
of bounded variation. Then M is P — a.s. constant, i.e.

M, = M, forallt>0 P— a.s.

For general Lo-martingales we can define the quadratic variation in the following way.

Definition 3.3.18. For a continuous Lo-martingale M with My # 0 we define the
quadratic variation process by

(M) := (M — My).

Then (M) is the unique process with the following properties:

(i)

(M)o=0
(ii) (M ) )t>0 is adapted and has P-a.s. increasing and continuous paths.
(M,

— (M)t) > 1s a martingale.

Note
(M; — My)* = M? — 2Mo M, + M¢
= M} — M — 2My(M; — My)
Hence
M — Mg — (M), = (M, ;:\140)2 — (M), +8M0(A§—1Moz
martingale . martingale

martingale

is a martingale.
Therefore we obtain the Doob-Meyer decomposition:

M{ = Mg + (M — My)? — (M), + 2Mo(M; — My) +(M),
mar?i;gale

The compatibility property carries over to Lo-martingales.

Theorem 3.3.19. For a continuous Lo-Martingal M and each stopping time T
(M7) = (M)"

Proof. We may assume M, = 0 and verify the defining properties of a quadratic variation
process.
The process (M)7 is adapted, increasing, adapted and starts from zero.

It remains to show that
(M7)2 = (M)
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is a martingale.
For each bounded stopping time o it follows

E(M7); = EM;,, = E(M)-n, = E(M);
This implies the martingale-property, see |3.1.17 O

The Doléans-measure can be expressed by the quadratic variation process.

Theorem 3.3.20. Let M ba a continuous Lo-martingale. Then the Doléans-measure

W satisfies

AWVD=E/1MWWMMMM

for each previsible set A € P. In particular for H € Lo(par)

/H%W:Efmwmem (3.1)

Proof. Tt suffices to prove the claim for previsible rectangles A = (s,t] x Fy € R .

par(A) = Bl g (M? — M?)
=Elp, (M} — (M) — (M7 — (M),)) + ELp, (M), — (M),)

=0, due to (M —(M)¢ ) Omartmgale

O

This is an alternative way to define the stochastic integral for previsible H that fulfills
the right side of (3.1)).

In the next step we compute the quadratic variation of a stochastic integral process.
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Theorem 3.3.21. Let M be an Ly-martingale with continuous paths and H € La(finr).
Then

(i) (H-M), = ijd(M)s forallt>0P a.s.

(i) (H-M)" = (H1. - M) for all stopping times .
t
Proof. ( [ H2d(M >S> is adapted, increasing and has continuous paths.
>0

0
It remains to prove

t
N, = (H-M)f—/H§d<M>S t>0
0

is a martingale. Then the assertion follows with [3.1] For each stopping time 7 it holds

true
(H-M), =(H M), = (Hlgs M)

Hence

E(H - M)2=E(HLq. - M)%
=E(I(H1)?)

fsometry / H 2]1(0,7] dpn

—E [ H10.(s)d00),
—E / H2d(M),

and EN, = 0 for each stopping time 7.
The claim (77) follows immediately from

(H-M)"=((H-M)") = (Hlgz M)

3.3.3 The quadratic covariation

The quadratic variation process can be seen as a quadratic mapping on the set of Lo-
martingales. This means that it satisfies the following properties.

Proposition 3.3.22. The quadratic variation is a quadratic operator.
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(i) {cM) = (M) for all c € R and each continuous Ly—martingale M,

(1)) (M+ N)+ (M — N)=2((M)+(N)) for all continuous Ly—martingales M, N
Proof. The assertion can be easily shown by exploiting [3.1] O

According to a quadratic mapping a bilinear mapping can be constructed by the so
called polarisation technique.

Definition 3.3.23. The covariation process (M, N) can be defined by
1
(M,N) = 2({(M +N) — (M - N))

for all continuous Lo—martingales M, N .

From the properties of the quadratic variation the following properties of the quadratic
covariation can be deduced

Theorem 3.3.24. The quadratic covariation process fulfills:

(i) {-,-) is a bilinear mapping, i.e.

(My + My, N) = (My,N) + (M, N)
(¢M,N) = ¢(M, N)

(M, Ny + No) = (M, Ny) + (M, N,)
(M,cN) = c¢(M,N)

(i) (-,-) is symmetric, i.e.
(M,N) = (N, M)

(iii) (M, N) is uniquely determined by the following properties:

a) <M, N>0 =0
b) ((M,N)t),5¢ is adapted and has continuous paths of locally bounded varia-
tion,

¢) MN — (M, N) is a martingale.
Due to

</ Hdes> = /Hs2d<M>s
0 0
one may expect

</mwg/mm@:/m&wmmy
0 0 0

To prove this conjecture the Kunita Watanabe inequality has to be shown. This is
well-known in the Lebesgue-Stieltjes integration theory.
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Theorem 3.3.25. Let f,g,h:[0,00) — R be right continuous functions with

f is supposed to be of locally bounded variation and g, h are assumed to be increasing.
If
[F(t) = ()] < (9(t) — g(s))(A(t) = h(s))  forall0<s<t,

then for all mearurable functions z,y : [0,00) — R

/|¢L‘(U)I ly(u)] dl|f]lu < /Iw(U)Ing(w /Iy(U)Fdh(U)

Here ||f|| denotes the variation measure w.r.t. piy, hence

N|=

A= Herll = peevip)

Proof. see Revuz, Yor [3]. O

By a pathwise application the Kunita Watanabe inequality can be shown.

Theorem 3.3.26 (Kunita Watanabe Inequality). Let M, N be continuous Lo-martingales

and H, K progressively measurable processes.
Then

N

/|H K@) dI(M, Nl < /H wpda.) jK<u>2d<N>

Proof. Due to [Theorem 3.3.25|it remains to prove

(M, N)e — (M, N)|* < ((M); = (M))((N)e = (N);)  forall0<s<t

for P almost all w € €.
Since the quadratic variation is increasing, it follows:

(M + AN); — (M +AN), >0 for all A € R,
hence also
(M), +2XMM, N)y + XN (N); — ((M)s +2XM, N), + N*(N),) >0 for all A € R,
and

(%) (M), — (M) + 20((M, NY, — (M, N),) + N2((N), — (N);) > 0 for all A € R.
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This will be minimised in A by

A P . T P
Hence
((M,N); = (M, N))* < ((M); = (M)s)((N): — (N)s)
and the claim follows. ]

This can be used to compute the quadratic covariation of stochastic integral-processes.
Theorem 3.3.27. Let M, N € Hy. and H € Ly(ppr). Then

a) Eof | H|d[[ (M, N)||s < o0

b) E(H - M)ooNo = E [ H,d(M, N),

~

¢) (H-M,N), = [ Hd(M,N), forallt >0 P a.s.
0

d) Let M and N be continuous Lo-martingales and H € Lo(pipr), then
t
<H-M,N>t:/H5d(M,N)S forallt>0P a.s.
0
In particular for K € La(uy)

¢
(H-M,K-N)t:/HSKSd<M,N>S forallt > 0P a.s.
0

Proof. a) Kunita Watanabe inequality implies with K = 1:

8
[

7 (L Jd|[ (M, N, < 7 el [ 1a).
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Due to Cauchy-Schwarz inequality we get

N|=

N

/ HJd|(M, V), < | E / m2A(M), | (E(N).)

A

< N [ 2ua [N [ < 00

=

since
E(N)o = E(NZ, — N§) <ENZ = ||N||3,

b) For N € Hs is the mapping

A LQ(,MM) — R

H E((H + M)ooNoo — /Hsd<M, N>s>
0
continuos and linear, since

|A(H)| = |E (H-M)OONOO—/HSd<M, N),

[e.o]

<E|(H - M)w| [Nu| +E [ 1HLIdIOL ML

0

a) 1 1
S (B(H - M)%)* (ENZ)® + [|H] 1 | V] s

= [|H - M{l34,||N 3 + 1 H L2 uan) [ N34,
Isometrie
= HHHL2(#M)||N||H2 + ||H||L2(MM)||NHH2
= 2{[H|| 1 (uan) [N 322

For H € £ it holds A(H) = 0.
Hence A(H) =0 for all H € & = La(pps)-

t
) ( [ Hyd(M,N >s) is an adapted process with continuous paths of locally bounded
0 t>0

variation.

That

(H - M),N, - / H,d(M, N,
>0

is a martingale can be shown by applying |3.1.17]
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d) as in ¢) one has to verify, that

t
(H : M)tNt - /Hsd<M7 N>s
0 t>0

is a martingale and this can be done due to[3.1.17]
O

At the end of this section we conclude that the quadratic variation process gives exactly
the quadratic variation of the paths. This results will be provided in two steps.

Theorem 3.3.28. Let M be a bounded continuous martingale with My = 0, such that
the quadratic variation process 1s bounded too.
Let 7™ a sequence of lattices of the form

0=t <t <t < . sup i = 400
with
7] = sup(t™ — ) =3 0

According to a given t > 0 this results into a finite lattice until t.

I ] ] ] ] ]
T T T

The quadratic variation along such a lattice until t is defined by

(2) L . 2
Vn (t) 0= Z<Mt§")/\t Mtgfl)l/\t) fOT all t 2 0.
ieN
Then
E Sup(Vn(z) () — (M>t)2 X0

t>0

In the second step the claim will be extended to Ls-martingales by localisation.

Theorem 3.3.29. Let M ba a continuous martingale with My = 0. Then for all T > 0:

n—oo

sup |[V@(t) — (M)] =3 0 in probability

0<t<T

Proof. Let
T =1inf{t > 0:|M;| > k or (M), > k}

Then M™ satisfies the assumptions [I'heorem 3.3.28|




Define

(2) T T
Vi (t) = Z(Mt(,I:L)At B Mt(.lf“‘) /\t)2
ieN ‘ ot
2
- Z(Mtﬁ”)/\mrk - Mtl(ﬁ)l/\t/\'rk>
ieEN
It follows
Esup(V. 2 (t) — (M™),)? "=
t>0 ’

and therefore
n—oo

() Pup V(1) = (M| > ) =50

for each € > 0. Due to

<. supT, =+
neN

there exists to n > 0 some ky € N with

P(r, <T)<n for all & > ky

On {Tk 2 T}
Vn(Qk) (t)=VP(@) forallt < T
and
(M), = (M)[* for all ¢ < T.
Hence
P(sup [V (1) — (M)| > ¢) < Psup [V (1) — VP 1) > &)
t<T i<T , 3
+ P(sup [V, (8) — (M™),] > ©)
t<T ’ 3
€
+ P(sup [(M™); — (M)¢| > §)
t<T
< 2B(r, < T) + Blsup [V,5)(t) — (M7)] > 3)
>0

Due to (%) there exists some ng € N with

P(sup [V2) () = (M™),| > %) <n for all n > ny

n,k
>0 0

Hence for all n > ng
B(sup [V, (1) = {M)e] > €) < 2P(my, < T) + B(sup |V, 5 (1) = (M™0),| > 2)
t<T t>0

< 3n for all n > ng

This implies the assertion, due to n > 0 arbitrary.
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3.4 Localisation

The main disadvantage so far is that it is quite tedious to examine whether

/HdM

T
/ H%dpy = E / H2d(M),
0

has to be calculated resp. estimated. Two main steps can be done to extend the
definition of a stochastic integral process.

exists, since the integral

- localizing the integrand H by cutting at suitable stopping times,
- localizing the integrator M by considering the stopped process M7™ .
Localising means that one finds a stopping time 7 such that
- M7 is a continuous Ls-martingale,
- Hl(oﬂ-] € LZ(/,[/MT)
Then the integral
HdM™ (3.2)
(0,7]

is well defined and the integral-process H - M can be put by on the stochastic interval
(0, 7]. Repeating this procedure with a sequence of stopping times

7'1§7'2< ..

sup 7, = +00
neN

results in a definition of an integral-process H - M on [0, 00) x €. This is the main idea
which will be presented in the following section.

3.4.1 Local Spaces

First, we explain in general what localization means.

Definition 3.4.1. Let G be a set of processes, which all start from zero and have
continuous paths. Then X is called local G-process, if there exists a sequence of stopping
times (Tp)nen Such that

(Z) 7'1§7'2§7'3§...

(ii) sup 7, = +00
neN

(iii) X™ € G
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With G, we define the set of local G— processes.
Main examples:
-M={M e M: My =0}

— MY _ as local variant.

MY = {M € M° : M has continuous paths}
— MO = (gﬁg)loc

¢,loc

HY = {M € M° : supEM? < oo}

>0
= Mo = (H2)1oc

- 7—[8,6 = {M € H) : M has continuous paths}
= HY 10 = (19 o

2,¢,loc

VN ={M € M?:3C > 0:sup |M,| < C}
>0

— bmg,loc = (bm(c))IOC
We clarify, when Gy, is a vector-space.
Proposition 3.4.2. (i) If G is closed w.r.t. stopping, then G, either.

(i1) If G is a vector-space and closed w.r.t. stopping, then G, is a vector-space
either.

The proof is rather elementary and omitted here.

Note, that a set A of processes is called closed w.r.t. stopping, if for each X € A and
each stopping time 7 the process X7 belongs to A.

This leads to the following

Corollary 3.4.3. The sets

0 0 0 0
i)jtlom S):nqloc? H2,c,loc7 bmtqloc

are vector—spaces.

From main importance is the fact that the continuous local martingales can be localised
into the space of bounded continuous martingales.

Theorem 3.4.4. The following spaces coincide.

O 1o = H3 ¢ 10 = e

¢,loc 2,¢,loc ¢,loc
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Proof. Due to

b S MY, S MY

it follows

e, cHY . O

c,loc 2,¢,loc c,loc*

it remains to prove:

0 S B [

¢,loc ¢,loc

Let M € 9° Then My = 0 and M has continuous paths.

c,loc*
Furthermore there exists a sequence of stopping times (7, )nen such that

Mm<1m<.. supT, =400
neN
and
M™ € M2
Put
op :=1nf{t > 0: |M;| > n}
Then
o1 <0y < ... supo, = +o0.
neN

Consider(7,,Ac,,)nen- This sequence localises M into b9M°, since M™ € 9 and therefore
(M™)on € b for all n € N. O

3.4.2 Quadratic Variation for Local Martingales

We may apply to extend the definition of the quadratic variation process to local

continuous martingales. According to M € MY, . we define

T, = inf{t > 0: |M;| > n}.

Then M™ € b9V and therefore the quadratic variation process of M™ well defined.

Definition 3.4.5. Let M € Y Then the quadratic variation process of M is

c,loc*
uniquely defined by
<M> = Z<M7n>]]'(7_n—177-n}
n=1

with
Tp = 1inf{t > 0: |My| > n}

Note that this definition is reasonable due to and the quadratic variation of
the local martingale M coincide on (0, 7,,] with the quadratic variation of the bounded
martingale M™.

The properties carry over from the Lo-martingales to local martingales.
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Theorem 3.4.6. According to M € 9. there exists a unique stochastic process A
with the following properties:

(ii) (Ai);s 18 adapted with increasing and continuous paths.

(i) (M2~ A/)ysp €

¢,loc

Proof. A := (M) satisfies the conditions (i) — (i7i) and is unique due to[3.3.17| O

Remark 3.4.7. The following Doob-Meyer decomposition holds:

M= M}— (M), + (M)
———— ~——

local martingale part  increasing,
previsible
part

So far we have only considered processes that start from the origin. Ba adding an
Fo-measurable starting variable we can give the definition for general local martingales.

Definition 3.4.8. A stochastic process M is called continuous local martingale, if M
is Fo—measurable and M — My € MY,  holds, i.e.

c,loc

M= My +M — M,.
~ ——

start emo

c,loc

According to continuous local martingales the quadratic variation process is defined by
(M) := (M — M)

As before we can carry over the quadratic variation process to the quadratic covariation
process by polarisation.

We denote by FV? the set of all adapted processes with continuous paths that are of
locally bounded variation and start from the origin.

Further we denote by 9., the space of all local martingales.

Then

<> : Qﬁc,loc — F‘/CO
M — (M)

is a quadratic mapping, i.e.
(i) (cM)=c*(M) forallceR
(i) M+ N)+ (M —N)=2((M)+(N)) forall M, N € Mo
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Definition 3.4.9. We define according to M, N € M., the quadratic covariation
process by

(M, N) = 3((M + N) — (M — N))

Theorem 3.4.10. The mapping
<'7 > : 9)/tc,loc X mtc,loc — F‘/CO

15 bilinear and symmetric.
According to M, N € M. the quadratic covariation process (M, N) is the unique

process in F'V? such that
MN — (M,N) € M 1o

This theorem gives another opportunity to compute the quadratic covariation process
by verifying the above characterisation.

The quadratic variation can be used to deduce the martingale property of a local mar-
tingale. This is important in many applications.

Clearly true is:

(i) If M is a continuous Ly—martingale with My = 0, then M? — (M) is a martingale.
(i) If M € 9, then M? — (M) € I

This can be applied to examine the martingale property of a local martingale.

Theorem 3.4.11. For M € 9. it holds true:

(i) If E(M)o < oo, then M € 13 .

(i) If E(M), < oo for allt > 0, then M is a continuous Lo—martingale.

Proof. ad (i): First we show the martingale property of M by verifying
EM, (=EM,) =0

for all bounded stopping times 7.
Therefore consider a localising sequence of stopping times

7'1§7'2< ..

sup 7, = +00
neN

with M™ € bINY.
Then EM]" = 0, due to M™ € bIM? C HY, and
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EM2,, — E(M™):
= E(M™),
= E(M)7
— B{M);,rr 1 E(M), < E(M).o

Hence (M, ar)nen is uniformly integrable.

n

Together with

n—oo

M. ., — M, P as.

n

it follows
0=EM, r =5 EM,

hence
EM. =0

M is therefore a martingale and due to

supEM; = supsup EM? .~ < E(M),

t>0 t>0 neN

it follows
M e Hj,

ad (ii): For each T > 0 the stopped process MT belongs to”Hg’c, since
E(MT) o = E(M)r < 0
Hence for all s < ¢ < T

E(Mi|F.) = E(M/|F,)
=MT
= MS

Since T' is arbitrary, the martingale property follows.
M is an Lo—Martingal, since for t < T

EM? = E(M")} = E(M™), = E(M); < 0o

The assertion of the preceding theorem can be improved.

Theorem 3.4.12. For M € 9, it holds true:

(i) If EN/(M) < 00, then M is a uniformly martingale

(i1) If EA/(M); < oo for allt > 0, then M is a continuous martingale.
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Proof. This follows from the following two facts

1. for a continuous local martingale M with M, = 0 the following inequality is true

Esup | M ()| < B/ (M)

>0
with a constant ¢ that doesn’t depend on M.

2. If
Esup |[M(t)| < oo

t>0

then M is a uniformly integrable martingale.

3.4.3 Stochastic Integral for Local Martingales

The objective is to define the stochastic integral process H - M for local martingales and
suitable localised H.

Definition 3.4.13. According to M € IO, we define the space L2 (M) by the set of

¢,loc loc

all those processes H, that fulfill the following conditions:
(1) H is previsible and
t
(i) [HX(M); <oo P a.s. for allt >0 .
0
With IbP we denote the set of all locally bounded previsible processes, i.e.:
H € IbP if and only if
(1) H is previsible
(1) There exists a sequence of stopping times (T, )nen Such that

<1< .. supTt, =+
neN

and H1 g, € bP for alln € N.

Note, that the preceding definition allows two opportunities to localise a previsible pro-
cess. The space of locally bounded previsible processes is in applications mostly suffi-
cient. But the definition does not depend on a chosen local martingale and is therefore

not so comprehensive as the space L2 (M) which allows the extension of the stochastic
integral as far as possible.
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Theorem 3.4.14. The following holds true

(i) L2 (M) is a vector-space for each M € IO

loc c,loc*

(1i) Lo(ppr) C L2 (M) for each continuous Lo—martingale.

loc

(iii) IbP C L3 (M) for all M € IN°

c,loc*

(i) If H is adapted with left continuous paths and existing limits from the right,
then H € [bP.

Proof. (i) is obvious, since

t

/<H3+Ks>2d<M>s <2 /tHfd<M>s+/tK§d<M>s < 00

(17) For H € Lo(u)

E/H§d<M>S = /sz,uM < 00,
0

hence

/ H2d(M), < oo
0

P-almost sure and this implies H € L2 (M).

loc

(i17) Let (7,)nen localise H in bP, i.e. Hl (., € bP.

Due to 7, T o0
Tn/\t

t
/ H?d(M), = lim [ HZ2d(M),
0 0

Since 7, T 00, there exists some n € N such that 7,,(w) > t. Hence

t t
/ H2d({M), = / H?1 (o5, d(M)s
N——
0 0 bounded

< Cp{M)(w) < o0

(1v) Define for n € N:
T, = 1inf{t > 0: |H{| > n}

Then (7,,)nen ia a localising sequence, since

H(0+) = ltif(r)l H,

is a finite random variable. O
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We are now able to define the stochastic integral process H - M for M € 9, . and
H € L} (M) by localisation.

loc

Therefore define stopping times (7, )nen by
t
T, :=inf{t >0: (M), >nor /H§d<M>S > n}
0

Then due to H € L2 (M)

loc

7'1§7'2< ..

sup 7, = +00
neN

According to the stopped process M™ we have
E(M™)o =E(M)» = E(M),, <n < oc.

Hence, M™ € H3 .
Furthermore H1 (o ,) € La(pasm ), due to

/HZ]I(O’Tn]dlU/MTn :E/H31(0,7n1<8)d<MT">S
0

:E/Hf]l(077n](s)d<M>?

Definition 3.4.15. According to M € MY, and H € L, (M) we define the stochastic
integral process H - M by

o0

H-M:=Y (Hlgz)  M™),_ r)
n=1
Remark 3.4.16. - The stochastic intervals ((7,—1, 7n])nen build a disjoint decom-

position of (0,00) x Q).
- The integral process starts from the origin.

- On (0, 7, the integral process H - M coincides with H1 ;- M™, since for m < n
due to compatibility w.r.t stopping, see |3.3.14

(Hl(oz, - M™)™ = Hl (07, L0,) - (M™)™
== H]I(O,Tm] . MTm
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- (H . M)T" = H]l(gﬂ.n} - M™ for all n € N.

To compute the integral process in practise one has to find a localising sequence of
stopping times (7, )nen. Each sequence that fulfills

- Hl(07,) € Lo(ptasma ),
- M™ is an Lo-martingale,
- sup T, = 00,

can be chosen.
To verify properties of a stochastic properties, in particular for a stochastic integral
process, a localisation technique can be useful.

Proposition 3.4.17. Let M, N be two stochastic processes and (T,)nen @ sequence of
increasing stopping times with sup,cy 7, = 00. If for each n € N the stopped process
M™ 1is indistinguishable from N™ , then M 1is indistinguishable from N.

This means that one has only to ensure that M and N coincide on each stochastic
interval (0, 7,,).

An application of this techniques leads to the following properties of the generally defined
stochastic integral process.

Theorem 3.4.18. Let M € M?, . H € L2 (M). Then

¢,loc? loc

(i) H-M €M

¢,loc

(ii) (H-M); = ftHSQd(M)S for allt > 0.
0

(iii) (H-M)" = Hl,- M™ = Hlg,- M = H-M"

(iv) If K previsible and K € L2 (H - M), then
- KHe L2 (M)

loc

CK-(H-M)=KH-M
(v) (H+K) - M=H-M+K-M foral H K € L2 (M)

loc

(vi) For N € M°, and H € L2 (M)N L2 _(N) it holds true

¢,loc loc loc

- HelI2(M+N)

loc

-H- (M+N)=H-M+H-N
(vii) For all M, N € Mo and H € L} (M)

loc

WJWM:/ﬁMMW%
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In particular for K € L2 (N)

loc

(H-M,K-N)= / H,K.d{M, N),.
0

Proof. All these properties were verified for stochastic integral process that could be
defined by the Doléans-measure. By localisation these properties carry over to the
generally defined integral-process. O

Finally we consider the behaviour of the integral process when the time goes to infinity.
For integral processes in ‘Hs . this is clear, since a convergence takes place in Ly as well
as point-wise a.s.. If one integrates w.r.t. a local martingale, the situation is more
delicate. The behaviour of the quadratic variation process helps to ensure an almost
sure convergence.

Theorem 3.4.19. Let M be a continuous local martingale. Then M converges on
{{M) < 00} point-wise P-a.s..

Proof. We may assume My = 0. It holds true

{{M)o < 00} = [J (M) < C}.

Cc>0
Define according to C' > 0 the stopping time o by
oc=inf{t >0: (M), > C}.

Then
{oc = +oo} ={(M) < C}

and for the stopped process M7¢ we have
E(M7)o = E(M)Z = E(M),. < C.

It follows, that M?¢ is a Hs . martingale, that P-almost sure converges. On the event
{oc = 400} = {{M)s < C} the processes M and M?¢ coincide Hence M converges on
each {(M) < C} and therefore also on {(M)., < co}. O

One may apply this to integral-processes and obtain

Theorem 3.4.20. Let M € My, and H € L2, (M). On the event

loc

{/Ooo H2d(M), < oo}

the stochastic integral process H - M converges point-wise P-almost sure.
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3.5 Ito Calculus

In calculus the chain rule, product rule and factor rule gives applicants tools at hand in
order to be able to calculate derivatives of more complex functions. Even without any
knowledge how a derivative is defined people can use calculus efficiently. Integration
can be seen as inverse mapping of taking derivatives. And therefore the rules for taking
derivatives find its counterpart in rules of integration, like substitution rule, integration
by parts etc. Stochastic calculus, also called Ito-calculus, can be seen as calculus for
stochastic processes.

3.5.1 lto-Formula

The Ito-formula is a generalisation of the chain-rule.
Let z : [0,00) — R be continuously differentiable and f : R — R a C'—function.
Chain Rule: Then

(fox)(t)= fl(x(t)a'(¢) for all t > 0

Alternative in integral-form:

t t t

F(x(t)) — f(2(0)) = / (f o ) (s)ds = / f(a(s) @'(s)ds = / £ (s))dz(s)

0 0 Radon-Niko- 0
dym deri-
vative

This means, the chain rule can be expressed alternatively by

f(@(t) — F(2(0) = / F((s))da(s

df (x(t)) = f'(x(t))dx(t).

This differential notation is justified resp. motivated by the observation

or shortly

F(() — F(2(0)) = / 1 df(a / fa

0

The first generalisation of the chain rule is therefore
Let z : [0,00) — R be continuous and locally of bounded variation and f : R — R be
a Cl'—function, then

F@t) — F(2(0)) = / F(a(s)dz(s)  forall £ >0,
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But: Continuous martingales have no paths of locally bounded variations. This means
that the above formula must be modified. This leads to the second generalisation, the
Ito-formula.

Let X be a continuous semi-martingale and f : R — R some C?—function. Then:

Fe0) = 1000 = [ recaax.+ 5 [ e,

In differential notation:
1
df (Xy) = f/(X3)d X, + §f”(Xt)d<X>t

Objective: Rigorous derivation of the Ito-formula.

First we have to define the term semi-martingale.

We consider in this section a filtered probability space (€2, (F;),sq,F,P), that satisfies
the usual conditions -

Definition 3.5.1. A stochastic-process X is called continuous semi-martingale, if there
exists a decomposition of the form

X=Xo+ M+ A

such that
M e m° Ae FVCO and Xo is Fy — measurable.

¢,locy

This decomposition is unique, since continuous local martingales with paths that are
locally of bounded variation are constant, |3.5.17.
We call

(1) Xo the starting variable,

(i) M the local martingale part,

(i1i) A the locally bounded variation part
of X.

The integration w.r.t. a semi-martingale can be explained by separate integration ac-
cording to the martingale and bounded variation part.
We define the set Lj,.(A) by

t
Lioe(A) := {H : H ist progressively measureable and / |H|d||Al|s < oo for all £ > 0}.
0

Then for
He L. (A)N L?

loc

(M) =: LIOC(X>
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the stochastic integral process
H-X

can be defined by
H- X=H-M+H-A

whereat

t
(H-X); = /HSdAS
0

is path-wise defined.
Notation:

t t t
(H-X), = / HydX, = / H,dM, + / H,dA,
0 0 0

The stochastic integral process H - X is again a semi-martingale with H - M as local
martingale part and H - A as bounded variation part.
Note:

IbP C Lioe(X)

This means that processes from a large vector-space can be integrated. In particular
each caglad process, left continuous with right-hand limits, can be integrated. Hence no
integrability condition has to be verified.

Definition 3.5.2. Let X be a continuous semi-martingale of the form
X=Xo+M+A.

The quadratic variation process of X is defined by

Polarisation leads to the quadratic covariation by
1
(X,Y) = J(X +Y) = (X =Y))

for all semi-martingales X,Y .

Remark 3.5.3. Let X = Xqg+ M+ AY =Yy + N + B be two semi-martingales. Then
(i) (X,Y) =(M,N)

(i) (H-X)=(H M)= [ H2d(M), = [ H2d(X), for all H € Lioc(X)

(i) (B X,K-Y) = (H- MK N) = [HKdMN), = [HEKd(X,Y), for all
0 0
H € L (X),K € Lin.(Y)
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Remark 3.5.4. The quadratic covariation process of two semi-martingales can also be
seen as the covariation of their paths.
More precise: Let X,Y be semi-martingales. Let 7, be a lattice

T 0=t <t < . sup " = 400
Then for all T > 0
sup |KV,(t) — (X,Y)| =30
0<t<T

converges in probability.
Here

KVo(t) = Z(thn)/\t - Xti’j)l/\t)(YtE,”’At - th.’j)l/\t>
denotes the quadratic covariation of X and Y along the lattice 7.

The way to the Ito-formula can be gone by first establishing the general integration by
parts formula and then approximating C?-functions by polynomials in a suitable way.
First we consider the case of real function that are locally of bounded variation.

Theorem 3.5.5. Let f,g:[0,00) — R be right continuous functions, that are locally
of bounded variation.
Then

t t

F(H)gH)—F(0)g(0) = / F(s—)dg(s)+ / g5 (5)+ Y Af(s)Dg(s)  forallt>0

0 0 0<s<t

f(s=) = lim f(u)

uls
and

Af(s) = f(s) = f(s—)

A f(s) measures the jump-size at s. This is relevant at points where f is discontinuous.

Proof. The proof mainly follows from an application of Fubini’s theorem.
The functions f and g can be seen as distribution functions of signed measures py, fi4.
The function fg corresponds to the product measure iy ® fi4, since

fuy @ pg((0, 2] x (0, 2]) = g ((0,8]) g (0, ]) = f(#)g(2).

D,:={(s,7):0<s<t,s<r<t}
D, D
D, :={(s,7):0<s<t,r<s}
D,
D :={(s,s):0<s<t}

With Fubini the measure of the rectangle can be calculated which leads to the claimed
formula. [
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Remark 3.5.6. If f, g are continuous, then the sum cancels out and it remains.

F()g(t) — F(0)g(0) = / £(s)dg(s) + / 9(s)df (s).

If f, g are absolutely-continuos w.r.t. Lebesgue-measure then

df(t) = f'(t)dt

and

Therefore
f(t)g(t) — / f(s)d' (s)ds + / g(s)f'(s)ds.

This coincides with the usual integration by parts formula

Since by definition for a local martingale M
¢

M} = MZ + 2/ MdM; + (M),
0

again a polarisation argument leads to the integration by parts formula for local mar-
tingales.

Theorem 3.5.7 (Integration by parts for local martingales). Let M, N € M, .. Then
MN; — MyNy = /Msts + /Ndes +{(M,N);, forallt>0P a.s.

A bit more difficult to prove is the mixed integration by parts formula

Theorem 3.5.8 (mixed integration by parts). Let M € M. e, A € FV.. Then

t

M. A, — MyAy = /MsalAS —i—/ASdMS (+(A, M),) forallt > 0P a.s.
~————

0 P 9 =0, due to A
~~ bounded variation
Lebesgue- stochastic
Stieltjes- integral
Integral

All together we obtain the integration by parts formula for semi-martingales.
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Theorem 3.5.9. Let X, Y be continuous semi-martingales. Then

t t
XY, — XoYy = /Xde; + /stXS +(X,Y) forallt>0P a.s.
0

0

Theorem 3.5.10. Let X be a continuous semi-martingale. Then
¢
X2 - X2 = Q/Xsts + (X)) forallt>0P a.s.
0

This integration by parts formula can be exploited to derive the Ito-formula.

Theorem 3.5.11 (Ito-Formel). Let X be a continuous semi-martingale and f : R —
R some C*-function. Then

f(Xy) = f(Xo) = /f/(Xs)dXs + % / f(X)d(X)s forallt >0 a.s.
0 0

If X has the representation
X=Xo+ M+ A

then f o X is a semi-martingale with decomposition

FoX = f(Xo)+ fX)M +F(X)- A+ (X)) (X)
— N y

local martingale- e
part I bounded
variation-

part

In differential notation the Ito-formula is
1
df (X¢) = f(Xp)d X, + §f”(Xt)d<X>t

= Q)M + (XA + 5 (X)X,

Proof. Let X = Xo+ M + A be a semi-martingale. The integration by parts formula is
used to prove that the set

A:={f € C*(R) : Ito-formula is valid for (f(Xt))tzo}

is not only a vector-space but also aan algebra, hence closed under products. From
this it follows that all polynomials belong to A. Finally by localising and uniformly
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approximating C?-functions by polynomials on compact sets the validity of Ito’s formula
carries over to C%-functions.

]

A multidimensional counterpart is the following

Theorem 3.5.12 (Multidimensional Ito-formula). Let X be some d-dimensional pro-
cess.

X = (XD, .., XD) is called continuous semi-martingale, if each component is a con-
tinuous semi-martingale.

Let f be a C*(RY)-function, then

t

£00) = 10%0) = [ 9100)aX+ 5 [ H (X)),

0

o f(x)
Thereby <7 f(x) = : denotes the gradient of f in x € R?
daf(z)
onf(z) -+ Ouf(z)
and H¢(x) = : o the Hessian-matriz of f in x € RY,

Oaf(x) -+ Ouaf(w)
We define further

and

/Hf Z/auf X(Z ')>s

0 7,0=1
The smootheness assumption can be weakened when the local martingale part vanishes.

Theorem 3.5.13. Let X be a continuous real-valued semi-martingale and B some
FV,-process. Let f be a CY2—function. Then

F(BuX) = £(Bo, Xo) + [ 0f(Bo X)dB.+ [ uf(Bo X)X+ 5 [ dar(Xatx),
0 0 0

Often in applications a local version of Ito’s formula is needed.
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Theorem 3.5.14. Let D be an open subset of R? and X a continuous d— dimensional
semi-martingale with paths in D. Then for a C?-function f : D — R

106) = 5000 = [ wicaxo+ 5 [ Heaa),

3.5.2 First Applications

We will give some applications of Ito’s formula.

Example 3.5.15. Let W be a Wiener-process. Then
t t t
Wf’ =tW; + 3/W3dWS - /deS + Z/WSds
0 0 0

Proof. We apply the Ito-formula to f(z) = z3. Then

1
dW? = 3W2dW, + §6Wtdt

= 3W2dW, + 3W,dt
- 3Wt2th + QWtdt + Wtdt

We obtain by using integration by parts
dtW, = tdW, + Wydt <& Widt = dtW, — tdW,
Hence after plugging in
dW? = 3W2AW, + 2W,dt + Wydt = dtW, + 3W2dW, — tdW, + 2W,dt

]

Example 3.5.16. Let W be a Wiener-process. We are searching for a semi-martingale
representation of (W7"),., in order to compute jigy(t) := EW?".
We apply the Ito-formula to f(x) := 2?". Then

1
AWE" = W2~ AW, + S2n(2n — W dt
= 2nW2 1AW, + n(2n — D)W 2dt

Vv Vv
=: M} locally of bounded variation

The process M, is as stochastic integral process a local martingale. We show that M is
indeed a martingale by using |3.4.11
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and

t
/ 2nW2"2d(W), = / 4n*Win—2ds
0

0

even

¢ power ' W
E<M>t :/4n2EWS4n—2dS:/4n2E(\/_)4n 2 §" 1d8 < o0
S
0 0

Hence implies that M is a martingale. Thus

Therefore

EM, = EM, = 0.

t

t
EW? =K / WAL dW, + n(2n — 1)E / W=D s
0

S

0
t

=n(2n—1) /]EWf(”_l)ds
0

By induction we obtain

EW =(2n—1)(2n —3) - ...- 1 - "

Example 3.5.17 (Brownian bridge). Let W be some Wiener-process. According to
a terminal time-point 7" > 0 and a terminal point in space b € R a stochastic-process
(X+t)o<t<r has to be constructed that behaves on [0,7") as a Wiener-process - conditioned
on Wy = b. This process is called Brownian bridge with terminal point b at 7.

We define therefore

Then M, :=

But

t

¢ 1
X, =b—+ (T —t
! T+( )/T—s

0

forall 0 <t<T

t
i TL_SdWS, 0 <t < T isan Ly—martingale but no Ho-martingale and
0

, [t 1\ 1 1
EM; = ds=—————-<oo foral0<t<T.
0

T —s T —t t
EM 1 1 +
su = su =400
oy r T —t ¢t
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With integration by parts we obtain the semi-martingale representation of X by

t

(T—t)Mt:/T—des+/Msd(T—s)

—/;_ AW, — /Mds

0

= (W, — W) — /Msds

t
=W —/Msds
0

Hence X can be written as

—b——/Mds+ W forall0<t<T

martlngale
_,_/

bounded var.

It is valid ;
]EXt - b?

1y 1 1
VarX; = (T — t)z/ (E) ligds = (T —t)? (ﬁ — ;)
0

and for s < t:

and

Cov(Xy, X;) = E((X; — EX,) (X — EX))
= E((T" = t) My(T — s) M)
= (T — t)(T — s)EM, M,
= (T = t)(T = $)EM; + (T — t)(T — s) E(M, — M,) M,

v~

=0

:(T—t)(T—s)ﬂ%_S)
- t
—S—ST

The process M has independent and normally distributed increments, i.e. M; — M, is
independent of F, and normally distributed for all 0 < s <t < T.
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t
1
M; — M, = dW,
¢ /T—u

Since f(u) := 72— € Ly([s,t)) there exists a sequence

I(n)
(n) _ (n)
S = Z_l YR, o

with
1F™ = Fllzzse) — 0

whereat

is a decomposition of the interval [s,¢). Hence

t l(n) f
. Lo(P
/f(”)(u)qu — E y! )(thn) — W) 6 )/f(u)qu
i=1 s

with W =W independent of F, and normally distributed. Since the independence
i i—1

and distribution remains unchanged in the Lo-limit, W, — W is independent of F, and
normally distributed
According to k time-points

O<thi<ts<..<tp<T

the distribution of (X, ..., X;,) is a k—dimensional normal distribution.
The random variable X; is normally distributed as proven above with the parameters

t t
EXt = b? and VarXt = (T — t)f

For t; < ty < ... < t the random vector (M, ..., M;,) has a k—dimensional normal
distribution , since

M, My, — My, ..., My, — M, |

are stochastic independent and normally distributed. Then
t;

is a linear transformation of M, which leads to a k—dimensional normal distribution for
( Xy ey X3,
With help of the Ito-formula we show, that X is a solution of the following stochastic
differential equation.

b— X

T—t
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with initial condition X, = 0.
Exploit the semi-martingale representation of X:

1

dX; = dW, + b?dt — M,dt
b

=dW, + (T — Mt) dt

b X, — bk
—th+(f— T )"
N——

Xt expressed by M

3.5.3 Doléans Exponential

In this part we introduce a class of positive martingales that can be used to change
measures. This is of importance in finance to compute an equivalent martingale measure.
Let’s start with the easiest ordinary differential equation for real functions

2(t) = 2(t)

with some initial condition zy. This differential equation can be written as integral
equation in the form

2(t) = 2 —I—/Otz(s)ds

resp. short
dz(t) = z(t)dt.

Surely the unique solution is given by
2(t) = ze'  forall t > 0.
In stochastic analysis the easiest stochastic differential equation is of the form
dZ(t) = Z(t)dX(t) with initial condition Z, (3.3)

with a given semi-martingale X that starts from the origin. We say that a stochastic
process Z is a solution to the above stochastic differential equation, if the following
integral equation is valid

2(8) = Zo + / ' Z(5)dX(s) forall £ >0, (3.4)

This means that we give a stochastic differential equation sense by considering its cor-
respondent integral equation. With Ito’s formula we can solve the equation (3.3) by
considering the approach
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for a suitable function f.
Ito’s formula implies

dZ; = 01 f (X, (X)) dX; + O f( Xy, (X)) d(X); + %(911f(Xt, (X))d(X),
We have to find a function f such that
df (X, (X)e) = [(Xe, (X)) d X,
Hence we guess:
Lof=f
II: Oof = =300 f

The first equation provides

the second equation

Thus 1
flwy) = et = expa — <)

satisfies the equations I and I1.
This is the reason for the following definition

Definition 3.5.18.

E(X) == exp(X; — %(X)t) forallt >0

is called exponential semi-martingale of X.

The Ito-formula implies that £(X) solves the integral equation
t
E(X), =1+ /S(X)SdXS
0

resp.

with initial condition £(X )y = 1. By multiplying with the initial random variable Z, we
obtain a solution to (3.3))
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Theorem 3.5.19. Let X be a continuous semi-martingale with X (0) = 0. The process

1
Zy = ZOS(X>t = Zy exp(Xt - §<X>t)

solves uniquely the integral equation

t
Zt:ZO—I—/ZSdXS forallt >0
0

resp. the stochastic differential equation
dz, = Z;dX, forallt >0
with tnatial random variable Z.

Proof. For all t > 0

Zt - Z()g(X)t
t
— Zo(1 + /S(X)sts)
0
t
= Zo+ Z /5(X)stS
0
t
Zo fé—mb Z0+/ZOS(X)sts
0
t
= Z +/stXs

0

The uniqueness can be shown in the following way.
For a solution Y we consider

N, = (E(X),) ™ = exp(—X; + 1<X>t>

2
Then
AN, = Ned(~ X, + 5 (X)) + 5 Nud (=X, + 5){X).)
—

- —Ntht + Ntd<X>t
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Integration by parts implies

d}/tNt - }/;dNt + Ntd}/t —|— d<Y’ N>t
= Y, NdX; + VN d(X)e + N YidX, — NY,d(X),
— ——

_ =dYt, since Y; *
=0 solution (0

Hence
t

YilNy — YoNo = /d(Yst) =0
0

which implies
Y, = ZoN; ' = ZpE(X);

To prove (x): we use the theorem

</ HstS,/KSdXS> = /HSKSd<X>s
0 0 0

resp. in differential notation:

d / H.dX., / K.dX,) — HEKd(X).
0 0

Due to
dY; = Y, dX,
and
dNt - _Ntht —|— Ntd<X>t
it follows

d(Y,N); = —N,Yid(X);

3.5.4 Linear Stochastic Differential Equations
The stochastic differential equation
dZt - thXs

with initial value Z, has applications in finance, since it provides a suitable model for
the price evolution of a stock.

Let (S¢),5, denote the price process of a stock. The evolution depends mainly on two
ingredients

- 1y denoting the random rate of return
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- o; denoting the volatility.

For small h we obtain
Sten — S = Sypuh + Sio (Wi — W)

with Wiener-process W'.
This means

AS,: ~ StﬂtAt + StO-tAWt

This leads in the limit to the stochastic differential equation
dSt = St(/,Ltdt + Utth>

with initial value Sy.
The solution of this equation is a reasonable approach for modelling the stock price
behaviour. More formally we assume

- p is some progressively measurable process with
t
/|us|ds <oo forallt>0
0

and

- o is somee previsible process with

t

/Ugds < oo forallt>D0.

0

Then o € L2 (W) and

loc

t t

X = /,usds + /O‘SdWS forallt > 0

0 0

is a continuous semi-martingale that can be written as
dXt = ,utdt + O'tth

in differential form.
Hence using

t t

t
1
S = SeE(X) = So exp(/ fsds) exp(/ o, dWs — i/agds)
0

0 0

We obtain the classical Black-Scholes model when we assume that the coefficients p and
o are non-random constants don’t depending on time.
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Orenstein-Uhlenbeck Process

A further process of interest in finance is the Orenstein-Uhlenbeck process. It is defined
as a solution to the following linear stochastic differential equation.

dXt == —OéXtdt + Uth (35)

with initial value Xy = (, an Fy—measurable random variable. The coefficients of this
equation are constants o, o > 0.

A solution of the above equation can be computed by a variation of constants technique
which is well known for ordinary differential equations. The above Orenstein-Uhlenbeck
equation decomposes into

- a homogeneous equation dY; = —aY;dt and

- a random inhomogeneity odW (t)

The homogeneous equation

dY; = —aYdt
is an ordinary differential equation and its solution is given by
Y; — efat
Then Yy =1 and
1 1
d— = a—dt
v, ‘.
If X is a solution of B.5] then
X 1 1 1
d— = Xyd— + —dX d(X, —
y, = Ny et A5
——

—0. si 1 _
=0, since v deter

ministic, hence
of bounded var.

X 1
1 =dX¢, due ;no X¢ solution
= —odW, °
I
= e odW,

Hence

t
X X X
_t:_0+/d_s
Y, Y Y,
0
t

X
Ry
0
t

—(+ / e adWV,

0
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Thus we obtain

t
Xi=C1+Y, / e odW;

0
t

= (e ™ e / e odW,

0
t

=t [ e taaw,
0

From this explicit representation we can deduce some properties of the Orenstein-
Uhlenbeck process.

Expectation
EX; = e “E( =: m(t)
Variance

t
2

VarX; = e 2*Var(¢ + /eQO‘(S_t)Uds = e Var¢ + ;—(1 —e ) = (1)
a

0

Marginal distributions:

t
Note, that ¢ and [ e DgdW, are independent. If ¢ is normally distributed or
0
constant then
Xo ~ N(m(t),v(t))
Limiting distribution:
Due to tlim m(t) = 0 and tlim v(t) = % the process X; converges in distribution
—00 —00

to a N (0, %)—distributed random variable.

Mean reversion:

The Ornstein-Uhlenbeck-process is a mean-reverting diffusion with return-level 0
and return-rate o. This means that the process X has the tendency to return to
0 wherever it is located. This tendency is perturbed by the noise odW (t).

Stationary distribution:

If ¢ is a (0, %)—distributed random variable, then the distribution of X; doesn’t

change. This means that the Orenstein-Uhlenbeck process is a Markov-process
. 2 . . . .

with N (0, §-) as stationary distribution.
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Vasicek-Prozess
A slight modification of the Orenstein-Uhlenbeck equation leads to the Vasicek-process
which is of interest in modelling bond markets.
Definition 3.5.20. The solution of the stochastic differential equation
dX; =9I (u — Xy)dt + odW, (3.6)

with initial value ¢, return-level p € R and return-rate v > 0 is called Vasicek-process.

A solution can be calculated with the help of the Orenstein-Uhlenbeck equation.
Let X be a solution of B.6l Then

Zy =Xy —p
solves the equation
dZt = d(Xt — /J/) = dXt = 79(,& — Xt)dt + O'th = —ﬂtht + O'th

and is therefore an Orenstein-Uhlenbeck process. Hence

t

X, —p=e"C¢—p)+ /eﬁ(St)adWS

0
t

& X, =e "4 p(l — e + / e’ Dad,
0

For the expectation and variance we obtain
EX, = e "EC + p(l — ™) = m(t) — p

and
2 2

ot 07 (1 _ =20ty _. o
VarX, =e Var(%—mg(l e ") .v(t)—>219

If ¢ is normally distributed, then X; ~ N (m(t),v(t)) and X, converges in distribution
to a N (u, %)— distributed random variable.

General One-dimensional Linear Stochastic Differential Equation
Definition 3.5.21. The general linear stochastic differential equation reads as follows

dX; = (Xepu + ap)dt + (Xyo0 + 1) dW; (3.7)

with initial value ¢, some Fy-measurable random variable.
Requirements:

- b 18 progressively measurable with fot |ps|ds < oo for all t > 0,
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- a 18 progressively measurable with f(f lag|ds < oo for allt >0,
-0€ Lloc(W) and ne Lloc(W)

The solution can be calculated with a variation of constants technique.

dXt = Xt( tdt + O'thVt) + atdt + ntth (38)

Black- Scholeb Equation Inhomogenlty

We first consider the homogeneous equation
dSt = St(,utdt + Utth)

with Sy = 1 which is solved by

t t t
1
S; = exp /,usds exp /anWS — E/aids
0 0 0

Then, according to a solution X of 1.) the stochastic differential of ( ) has to be
determined. Ito’s formula provide

1 1
d— = dS —d(S
5, T Ta 53 (S
1
= _S_gSt(Mtdt+gth/t) 5352 dt
L (pedt + oy dWy) + L 2t
=—— o —0
St Mt t t St t
Then, we continue with integration by parts
X 1
d— = Xyd— dX; +d{X,
s, tS+St o+ X g
1 X
= — X, —(dt + o dW,) + SLodt
St Sy
1
S ((Xt,ut + (It)dt + (Xtat + Tlt)th)
t
X 1
- ?ZO'tht — Egtntdt
1

1
= E(at — oyne)dt + Entth

The right-hand side does not depend on X. Hence we can determine the left-hand side
by integration.

t

t t
X: X / X / 1 / 1
s, So+ (S>s ¢+ Su(a ) du + Sun
0 0

0
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and therefore a solution is given by

t t

1 1
X =(S;+ 5 / S—(au — ounu)du + Sy / S—nuqu

Why is the integral
/
S
0

well-defined? Due to our assumptions 7, € L?

loc

(W). We have to examine if I+ €

loc

t t 2t
/ (&) o= (&) .2, (s 5) [
— w= — u < sup — LU < 00
] Su , Su stetig \ ue[0,t] Su ; 7

3.6 Three Main Theorems

In the following we will introduce three main theorems that are of high importance in
applications of stochastic analysis, in particular in finance.

3.6.1 Theorem of Lévy

The first gives a characterisation of the Wiener-process by its martingale properties. It
is the so called Lévy’s theorem.

Theorem 3.6.1. Let W = (WM . WD) be some d—dimensional continuous local
martingale with

1 1=y

0 i#j5

Then, W is a d—dimensional Wiener-process. This means, that the coordinates of W
are one-dimensional independent Wiener-processes.

Wo(z) -0 fOT’ all i = 1’ 7d and <V[/'(’)7 W(])>t = 5z]t with (Sij =

Proof. The main ideas of the proof will be given without going into detail.
We have to show that W is a stochastic process with independent and stationary incre-
ments, i.e. for all s <t

- Wy — Wy is independent of F, and
- Wy — W ~ N(0, (t — s)1y)

——

covariation-
matrix
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For each ¥ € R? ]
Xo(t) = (0, W) = > 0, W,
k=1

is a local martingale with

d d
(Xo)r =D O (W®), + > " 9 (WH WO, = |9t

k=1 k=1

- =0

Hence 1
My(t) == exp(iXy(t) + 5\z9|215) t>0

is as solution to
dZ(t) =1Z(t)dXy(t)

a complex-valued, exponential local martingale. Indeed, it is a true martingale since

E«Rdeﬁ+(MﬁM@ﬁy:E/kUmM@@D?+RdMng)wp@

Ot :d<Xz9>s
_E / My (s)P[9]2ds
0

t

:E/ewzﬂﬁ‘]?ds

0
t

= /e|ﬁ|28|19|2ds < 0

0

Due to the martingale property of (Mpy(t)),5, we obtain for s <t

B My(t)
1_E(MM@

]-"s> — Eexp(i(d, W, — W,)|F.) expéw(t _8)

Hence !
Eexp(i(d, W, — W) |7,) = exp(—5 [0 (t - 5))

for all ¥ € RY. But this means that the Fourier-transform of the conditional distribution
of the increment W (¢)—W (s) given F; coincides with the Fourier-transform of a N(0, (t—
s)14) distribution. This implies the independence and distribution properties (i) and (ii).

[l
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Application of Lévy’'s Theorem

We give an application that can be used in finance.

Let W be some 1-dimensional Wiener-process and o € L (W). Thus we may define

t
M, 2:/0'SdWS t>0
0

and

t
N, ::/\as\dWs 1>0
0

We will apply Lévy’s theorem in order to show that the processes M and N have the
same distribution.

Note, that
sgn(oi)oy = |oy|.
Hence
t
N, = /sgn(as)adeS.
0
Define

Then A is a previsible set and

t t

N, = /]lA(s)|05|dWs—i—/]lAc(s)sgn(as)adeS

9 L, 0
-0
¢
:/]lAc(s)sgn(as)adeS

0

We put
t

t
B, := /]lA(s)dWS—i—/]lAc(s)sgn(as)dWs
0 0
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Then (B;),5, is a local martingale with

(BY, = ( / 1a(5) + 14 (s)5gn(s)dW.)s

0
t

= /(]1,4(8) + ]lAC(S) sgn(as) )2d<W>8
0 sgn(os)?=1

:/]lA(s)+]lAc(s)ds

1ds

I
=+ o\ =
o~

Lévy’s theorem implies, that B is a Wiener-process. Hence

t t
N, = / 1a(s) [on] AW, + / 1ae()5gn(0) sV,
] = d

t

— /o's (T 4(s) + ]lAc(s)sgn(as))alVVi

-~~~

0 =dBs
t

= /O’SdBS

0

Hence, M and N are integral-processes of o according to two different Wiener-processes.
This implies that their distribution coincide. The impact in finance relies in the fact
that volatility can be assumed to be positive. The distribution of a stock-price process
remains unchanged.

3.6.2 Martingale Representation Theorem

The next step is the so called martingale representation theorem. This will be used in
finance to compute replicating trading strategies. The main statement is that each local
martingale on a Wiener-filtration can be represented as stochastic integral-process.
First we introduce the Wiener-filtration.

Definition 3.6.2. Let (W;),5, be some Wiener-Prozess on a filtered probability space
(Q, (Ft)i=0, F, P). We define a filtration (Gt),, that satisfies the usual conditions and
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i1s generated by W. Denote by
N={ACQ:3dB€ F,:AC B und P(B) =0}
the set of negligible sets and define for t > 0:
o (generated by W) F :=a(W,:s <t) with FO := a(W, : s > 0)
o (all null-sets in fél)) FY = o(FO UN)

e (right continuous) G := ft(i) =N .7-"&)6 with G := 0 (Gy : t > 0)
e>0

Then, (gt)tzo 15 called Wiener-filtration and W is a Wiener-process according to G.

The filtration (G;),», can be seen as the smallest filtration with the following properties:
- the filtration satisfies the usual conditions and
- the process W is a Wiener-process according to this filtration

We start by giving an Lo-version of the martingale-representation theorem.

Theorem 3.6.3. Let W be some d-dimensional Wiener-process with Wiener-filtration
(Gt)i=o- Then there exists according to Y € Ly(Goo) some (Gi),sq-previsible process
H=(HWY,.. ., HY) such that

k=1

d o
Y E / (H*)2ds < 0o
0
and

Y :EY—i—/Hdes
0

d (o.)
=EY + ) / H®qw®

k=1 0

This means, that the corresponding Ho-martingale has an integral-process representa-
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tion of the form

E(Y[G) =EY + (H - W),

Proof. Again we give the main idea of the proof. We restrict ourselves to the case
d = 1. First we note, that Blumenthal’s 0 — 1 law states, that Gy is a trivial o-field, i.e.
P(A) € {0,1} for all A € Gy.

Then Y is independent of Gy and

E(Y|Gy) =EY P as.

Without loss of generality we put EY = 0 and consider the integral operator

I: LQ(ILLw) — LQ,O(gOO);H — /HdW
with
L270(goo) = {X S LQ(Q, QOO,IP) EX = 0}

It remains to show that [ is a surjective mapping. The space V' = I(Lo(pw)) is a closed
subspace of Ly (G) and we can consider the orthogonal complement

Vi i={Z € Ly0(Gs) :EZX =0VX € V}.

This means that Z is perpendicular to all X € V.
Note, that each My, € Lo o(Goo) corresponds to some unique Ho-martingale defined by

M, =E(My|G;) t>0
and
My =E(My|Go) = E(My) = 0.

Furthermore for each M, € V and Z, € V* the process (MtZt)tZO is a uniformly
integrable martingale, since for each stopping time 7

E(M,Z,) = E(M,E(Z+|G,))
= E(E(M;Zx|G:))
=EM, Zs
=E M7, Z,,

~~

=0 €V
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We have to prove
v = {0}

and consider Z,, € V+. We show Z, =0 P aus.
As in the proof of Lévy’s theorem we may consider the complex-valued martingale

1
My(t) = exp(i(9, W) + §|19|2t) t>0.

Stopping at T provides that M] € Hs and therefore as an integral-process in V. Thus
(Z:M7 (1))

t>0

is a uniformly integrable martingale. Hence
1
E(Z; exp(i(9, Wy — Wi))|Gs) = Zs exp(—§|19|2(t —s)) forall0<s<t<T,J€R

By iterated conditioning w.r.t. j =1,...,nand 0 <t; < ... <t, <T we obtain

n n

EZr eXp(i(Z(ﬁj7 Wtj - Wtjfl)) =EZ, eXp(_% Z(tj - tj—1>’19‘2)

j=1 k=1

=0 forall 9q,..,0, € R?
A further approximation argument shows that
EZrfWy, — Wi, ooy, W) =0

forall 0 <t <..<t, <Tandall f:(R%)" — C bounded and continuous.
This implies Zr = 0, due to
EZrfWy, = Wiy, Wiy ) =0 for all f € Cy((RY)",C)
= EZr14=0 foral A€ o(Wy,...,Ws,)
=EZ:;1,=0 forall AeGr
= Zr =10

Since T' > 0 is arbitrary, Z,, := 7lim Zr =10 O
—00

Remark 3.6.4. The integrand in the integral representation is unique:
For H, K € Lo 4(puw) with

I(H) = I(K)
we have
0=I(H)—-I(K)=I(H—-K)
and
[H = K1, 4(uw) = [ (H = K)||12,0(6) = 10/ £20(600) = 0
Hence H = K

By localising we obtain a local version of the preceding martingale representation theo-
rem.
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Theorem 3.6.5. Let (Mt>t20 be a local martingale according to a Wiener-process fil-
tration (Gy) >0 generated by some Wiener-process W. Then, M has continuous paths

and there exists a previsible d-dimensional process H = (HWY ..., HD) such that
PR
Z/H(k Yds <oo forallt>0P a.s.
k=1

and

Mt:MO—I—/HSdWS forallt >0

_%+Z/HdW

k=17

Remark 3.6.6. We don’t assume continuity of paths for M. This shows that this
theorem is more than only a local version of [3.6.3]

Proof.  a) Continuity of paths M:

We may assume that My, = 0 and can localise M into a uniformly integrable
martingale which has limiting variable M, € L;(Goo). The point is that M
needs not to be Lo-integrable such that [3.6.3] is not applicable. But M., can be
approximated in L; by a sequence of bounded random-variables M that have all
integral-representations with continuous paths. By taking a suitable subsequence
and using Borel-Cantelli one can show that the paths of M are approxmlated
uniformly by the paths of the continuous martingale that belong to M. As
uniform limit the paths of M are therefore continuous themselves.
b) How to show the integral representation:

Due to a) M has continuous paths and can therefore be localised in 690, by
T, = inf{t > 0: |M;| > n}.
Each M™ has an integral representation due to |3.6.3
M™=H® . W

with a previsible process H™ € L 4(uw).
Note that My = 0 is assumed.

The sequence of previsible processes (H (”))neN is consistent in some way, i.e.

H(n)]l(oﬁk] = H(k)]l(oﬂ.k] for all 1 < k <n
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The sought-after process H can be built by the sequence H™ by
H = Z H(n)]l(Tn—lvT’ﬂ]
n=1

Then H € L% (W) due to

loc

E/;Hs\Qn(o,Tn]ds:E/\H<">\211(0,Tn]ds
0 0

:]E/|H§")|2ds < 00
0

which implies

t
/]HS|2ds <oo forallt>0P as.
0

Hence we can integrate H w.r.t. W and it follows

M™ — H(")]l(o,rn] W
— H]]-(O,Tn] . W
=(H-W)™ foralneN

This implies that M is indistinguishable from H - M.

3.6.3 Theorem of Girsanov

As last main theorem we would give a very general version of Girsanov’s theorem. As
seen in the Black-Scholes model this is of great importance in finance since it allows to
compute equivalent martingale measures with the help of suitable exponential martin-
gales. The first version clarifies the structure of density processes of equivalent measures.

Theorem 3.6.7. Let P, Q) be equivalent probability measures on (£, Foo) with density
Process
dQ

= >
pic L, t>0

Fi

that has continuous paths P—almost sure.

(1) if we define the local martingale X by

t
1
Xt:/L—SdLS
0
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for allt > 0, then

1
Lt = LO eXp(Xt — §<X>t) fOT' all t > 0

and L s a solution to
dL(t) = L(t)dX (t).
(11) If M is a continuous local martingale w.r.t. P, then

Ny=M;— (M, X), forallt>0

defines a local QQ—martingale, whose quadratic variation w.r.t. @ coincide with
that w.r.t. M.

Note:

t
Nt:Mt—<M,X>t:Mt—/ d<M,L>S
0

1
Ly
Proof.  (i): Due to @ equivalent to P the density-process is strictly positive P— almost

1

sure. (7 is assumed to have continuous paths and can therefore be integrated
>0

according to L, Hence, the local martingale

t
1
Xt:/L—dLS forallt >0
0 S

is well defined and we can apply Ito’s formula to

Yt:hlLt.
It follows
1 11
dY, = —dL; — —=—d(L
P 2L§<t>
1
Thus
mi vy, v, x - x 1<X>
HLO— t 0= At 0 5 t

=0
and therefore .
Lt = L[) eXp(Xt — §<X>t)

(ii): we have to show: (NyL;),, is a local P—martingale.
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By integration by parts we get
thLt - Mtst "‘ Ltht + d<L7 M>t
and

L
d<]\4'7 X)tLt == <J\4'7 X>tst + Ltd<M, X>t == <M, X>tst + fd(M, L>t
t

Hence the stochastic differential of N;L; is given by
dNtLt - thLt - d<M, X>tLt - Ntst + Ltht.

This implies that N L is a local P—martingale and therefore N a local Q—martingale.

M = N — (M, X) is a semi-martingale w.r.t. @ with local martingale part N.
Hence

(M)" = (N)¢
S~ =
w.r.t. Q w.r.t. P

This means, that by the transition from P to @) only a term of locally bounded
variation is added and this doesn’t change the quadratic variation.
O

The question that occurs is the following:
Which properties must a positive martingale L fulfil such that an equivalent martingale
measure can be defined with L as density process.

Theorem 3.6.8. There exists according to P an equivalent probability measure () on
(Q, Foo) with density process

d
%J_}:Lt forallt >0

if and only if (Lt)tZO is a uniformly integrable martingale