Physical Chemistry I

Andrew Rosen

August 19, 2013

Contents

1 Thermodynamics 5
1.1 Thermodynamic Systems and Properties 5
1.1.1 Systems vs. Surroundings 5
1.1.2 Types of Walls 5
1.1.3 Equilibrium 5
1.1.4 Thermodynamic Properties 5
1.2 Temperature 6
1.3 The Mole 6
1.4 Ideal Gases 6
1.4.1 Boyle's and Charles' Laws 6
1.4.2 Ideal Gas Equation 7
1.5 Equations of State 7
2 The First Law of Thermodynamics 7
2.1 Classical Mechanics 7
2.2 P-V Work 8
2.3 Heat and The First Law of Thermodynamics 8
2.4 Enthalpy and Heat Capacity 9
2.5 The Joule and Joule-Thomson Experiments 9
2.6 The Perfect Gas 10
2.7 How to Find Pressure-Volume Work 10
2.7.1 Non-Ideal Gas (Van der Waals Gas) 10
2.7.2 Ideal Gas 10
2.7.3 Reversible Adiabatic Process in a Perfect Gas 11
2.8 Summary of Calculating First Law Quantities 11
2.8.1 Constant Pressure (Isobaric) Heating 11
2.8.2 Constant Volume (Isochoric) Heating 11
2.8.3 Reversible Isothermal Process in a Perfect Gas 12
2.8.4 Reversible Adiabatic Process in a Perfect Gas 12
2.8.5 Adiabatic Expansion of a Perfect Gas into a Vacuum 12
2.8.6 Reversible Phase Change at Constant T and P 12
2.9 Molecular Modes of Energy Storage 12
2.9.1 Degrees of Freedom 12
2.9.2 Classical Mechanics 12
2.9.3 Quantum Mechanics 13
2.9.4 Classical Equations 14
2.9.5 Determining Number of Atoms in a Molecule Given $C_{v, m, c l a s s}$ 14
3 Heat Engines 14
3.1 The Carnot Engine 14
3.2 Carnot Refrigerators, Freezers, Air Conditioners, and Heat Pumps 16
3.3 The Otto Engine 16
3.4 Historical Perspective 16
4 The Second Law of Thermodynamics 17
4.1 Definition of the Second Law of Thermodynamics 17
4.2 Entropy 17
4.3 Calculation of Entropy Changes 17
4.3.1 Cyclic Process 17
4.3.2 Reversible Adiabatic Process 17
4.3.3 Reversible Isothermal Process 17
4.3.4 Reversible Phase Change at Constant T and P 17
4.3.5 Cautionary Note on Units 18
4.3.6 Constant Pressure Heating with No Phase Change 18
4.3.7 Change of State of a Perfect Gas 18
4.3.8 General Change of State Process 18
4.3.9 Irreversible Phase Change 18
4.3.10 Mixing of Different Inert Perfect Gases at Constant P and T 19
4.3.11 Joule Expansion 19
4.4 Entropy, Reversibility, and Irreversibility 19
5 Material Equilibrium 20
5.1 Entropy and Equilibrium 20
5.2 The Gibbs and Helmholtz Energies 20
5.2.1 Derivation of A 20
5.2.2 Derivation of G 21
5.2.3 Connection with Entropy 21
5.3 Thermodynamic Relations for a System in Equilibrium 21
5.3.1 Basic Thermodynamic Quantities 21
5.3.2 The Gibbs Equations 22
5.3.3 The Maxwell Relations 22
5.3.4 Dependence of State Functions on T, P, and V 23
5.3.5 Remaining Quantities 23
5.4 Calculation of Changes in State Functions 24
5.4.1 Calculation of ΔS 24
5.4.2 Calculation of ΔH and ΔU 24
5.4.3 Calculation of ΔG and ΔA 25
5.5 Chemical Potentials and Material Equilibrium 25
5.6 Reaction Equilibrium 26
6 Standard Thermodynamic Functions of Reaction 26
6.1 Standard Enthalpy of Reaction 26
6.2 Hess' Law 27
6.3 The Six-Step Program for Finding ΔH_{f}° 27
6.4 Calorimetry 27
6.4.1 Cautionary Calorimetry Calculation 27
6.5 Calculation of $H_{\text {ideal }}-H_{\text {real }}$ 28
6.6 Temperature Dependence of Reaction Heats 29
6.7 Conventional Entropies and the Third Law 29
6.8 Standard Gibbs Energy of Reaction 30
7 Reaction Equilibrium in Ideal Gas Mixtures 30
7.1 Chemical Potentials in an Ideal Gas Mixture 30
7.2 Ideal-Gas Reaction Equilibrium 30
7.3 Qualitative Discussion of Chemical Equilibrium 31
7.4 Temperature Dependence of the Equilibrium Constant 32
7.5 Ideal-Gas Equilibrium Calculations 33
7.6 Equilibrium Shifts 33
8 One-Component Phase Equilibrium and Surfaces 34
8.1 Qualitative Pressure Dependence of G_{m} 34
8.2 The Phase Rule 34
8.3 One-Component Phase Equilibrium 34
8.4 The Clapeyron Equation 34
8.4.1 General Clapeyron Equation 34
8.4.2 Liquid-Vapor and Solid-Vapor Equilibrium 35
8.4.3 Effects of Pressure on Phase Transitions 36
8.4.4 Solid-Liquid Equilibrium 36
8.4.5 Effects of Pressure on Vapor Pressure 36
9 Solutions 36
9.1 Solution Composition 36
9.2 Partial Molar Quantities 37
9.3 Deviations 38
9.3.1 Positive Deviations 38
9.3.2 Negative Deviations 38
9.4 Finding Partial Molar Volumes 38
9.4.1 Experimental 38
9.4.2 Theoretical 38
9.5 Mixing Quantities 38
9.6 Ideal Solutions and Thermodynamic Properties 39
9.7 Ideally Dilute Solutions 39
9.8 Thermodynamic Properties of Ideally Dilute Solutions 40
10 Nonideal Solutions 41
10.1 Activities and Activity Coefficients 41
10.2 Determination of Activities and Activity Coefficients 42
10.2.1 Convention I 42
10.2.2 Convention II 42

1 Thermodynamics

1.1 Thermodynamic Systems and Properties

1.1.1 Systems vs. Surroundings

- System: The macroscopic part of the universe under study in thermodynamics
- Surroundings: The parts of the universe that can interact with the system
- Open System: One where transfer of matter between system and surroundings can occur
- Closed System: One where transfer of matter between system and surroundings cannot occur
- Isolated System: One in which no interaction in any way with the system can occur

1.1.2 Types of Walls

1. Rigid or nonrigid
2. Permeable or impermeable
3. Adiabatic (does not conduct heat) or nonadiabatic/thermally conductive (conducts heat)

1.1.3 Equilibrium

- An isolated system is in equilibrium when its macroscopic properties remain constant with time
- A nonisolated system is in equilibrium when the the system's macroscopic properties remain constant with time but also need to have no change with removal of the system from contact with its surroundings
- If removal of the system does change the macroscopic properties, it is in a steady state
- Mechanical Equilibrium: No unbalanced forces act on or within the system
- Material Equilibrium: No net chemical reactions are occurring in the system nor is there any net transfer of matter from one part of the system to another
- Thermal Equilibrium: No change in the properties of the system or surroundings when they are separated by a a thermally conductive wall
- Thermodynamic Equilibrium: Must be in mechanical, material, and thermal equilibrium

1.1.4 Thermodynamic Properties

- The definition of pressure, P, is as follows and relates to force, F, and area, A :

$$
P \equiv \frac{F}{A}
$$

- Pressure is uniform and equal to the surroundings in mechanical equilibrium
- An extensive property is equal to the sum of its values for the parts of the system (eg: mass)
- An intensive property does not depend on the size of the system (eg: density)
- If the intensive macroscopic properties are constant in the system, it is homogeneous; otherwise, it is heterogeneous
- A homogeneous part of a system is a phase
- The definition of density, ρ, is as follows and relates to mass, m, and volume, V :

$$
\rho \equiv \frac{m}{V}
$$

- State Functions: Values that are functions of the system's state that doesn't depends on the system's past history

1.2 Temperature

- Temperature is common for systems in thermal equilibrium and is symbolized by θ
- Zeroth Law of Thermodynamics: Two systems that are found to be in thermal equilibrium with a third system will be found to be in thermal equilibrium with each other
- A reference system (thermometer), r, is used to create a temperature scale

1.3 The Mole

- The molar mass, M_{i}, of a substance is as follows and relates to m_{i}, the mass of a substance i in a sample and where n_{i} is the number of moles of i in the sample:

$$
M_{i} \equiv \frac{m_{i}}{n_{i}}
$$

- The number of molecules in species i, N_{i}, is as follows and relates to Avogadro's Constant, N_{A}, and n_{i} :

$$
N_{i}=n_{i} N_{A}
$$

- The mole fraction, x_{i}, is defined as follows and relates to n_{i} and the total moles, n_{t} :

$$
x_{i} \equiv \frac{n_{i}}{n_{t o t}}
$$

1.4 Ideal Gases

1.4.1 Boyle's and Charles' Laws

- Boyle's Law is as follows when θ and m are constant:

$$
P V=k
$$

- Gasses are ideal in the zero-density limit
- The SI units for pressure can be expressed as either of the following

$$
1 P a \equiv 1 \frac{N}{m^{2}}
$$

- Some alternate rearrangements of the pressure equation are as follows:

$$
P=\frac{F}{A}=\frac{m g}{A}=\frac{\rho V g}{A}=\rho g h
$$

- Charles' Law is as follows when P and m are constant:

$$
V=a_{1}+a_{2} \theta
$$

- Alternatively, it can be written as

$$
\frac{V}{T}=k
$$

- The absolute ideal-gas temperature is represented as T

1.4.2 Ideal Gas Equation

- The ideal-gas law is

$$
P V=n R T
$$

- This can be rearranged to make the following two equations where M is molar mass:

$$
P V=\frac{m R T}{M} \rightarrow P=\frac{\rho R T}{M}
$$

- The partial pressure, P_{i}, of a gas i in a gas mixture is defined as:

$$
P_{i} \equiv x_{i} P
$$

- For an ideal gas mixture,

$$
P_{i}=\frac{n_{i} R T}{V}
$$

1.5 Equations of State

- The van der Waals equation accounts for intermolecular forces, with a and b as constants defined for each gas:

$$
\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

- An approximate equation of state for most liquids and solids is ${ }^{1}$:

$$
V_{m}=c_{1}+c_{2} T+c_{3} T^{2}-c_{4} P-c_{5} P T
$$

- The thermal expansivity, α, is defined as^{2}

$$
\alpha(T, P) \equiv \frac{1}{V_{m}}\left(\frac{\partial V_{m}}{\partial T}\right)_{P}
$$

- The isothermal compressibility, κ, is defined as

$$
\kappa(T, P) \equiv-\frac{1}{V_{m}}\left(\frac{\partial V_{m}}{\partial P}\right)_{T}
$$

- These can be combined as,

$$
\left(\frac{\partial P}{\partial T}\right)_{V_{m}}=\frac{\alpha}{\kappa}
$$

2 The First Law of Thermodynamics

2.1 Classical Mechanics

- Work is simply a force acting over a distance, which can be mathematically expressed as follows if considering the displacement in the x direction:

$$
d w \equiv F_{x} d x
$$

[^0]- If we integrate both sides, we get

$$
w=\int_{x_{1}}^{x_{2}} F(x) d x
$$

- Work is measured in joules, where a joule is equivalent to a $N \cdot m$
- Power is simply $\frac{d w}{d t}$ and is usually measured in watts
- The kinetic energy, or energy of motion, of a particle is

$$
K \equiv \frac{1}{2} m v^{2}
$$

- The work-energy theorem states that $w=\Delta K$ as well

2.2 P-V Work

- A reversible process is one where the system is always infinitesimally close to equilibrium, and an infinitesimal change in conditions can reverse the process to restore both system and surroundings to their initial states
- P-V Work is the work done in a volume change, and it can be expressed as

$$
d w_{\text {rev }}=-P d v
$$

2.3 Heat and The First Law of Thermodynamics

- $\frac{d q}{d t}=U A \Delta T$, where U is conductance and A is area
- Conductance be defined as $U=\frac{k}{r}$ as well, where k is thermal conductivity and r is thickness of the layer
- $|q| \equiv m_{1} c_{1}\left(T_{f}-T_{i}\right)=m_{2} c_{2}\left(T_{f}-T_{i}\right)$
- When $q>0$, heat flows from the surroundings to the system
- When $w>0$, work is done on a system by the surroundings
- The equation for heat at constant pressure is $d q_{p}=m c_{p} d T$, which is usually seen as

$$
q_{p}=m c_{p} \Delta T
$$

- Total energy, E, is defined as the following (V is potential energy)

$$
E=K+V+U
$$

The First Law for Closed Systems:

1. $\Delta E=q+w$
2. $\Delta E_{\text {sys }}+\Delta E_{\text {surr }}=0$
(a) When $K=V=0$, we have the equation $\Delta U=q+w$
i. For an infinitesimal change, $d U=d q+d w$
(b) For a cyclic process, $\Delta U=0$

2.4 Enthalpy and Heat Capacity

- The definition of enthalpy is

$$
H \equiv U+P V
$$

- Similarly, $\Delta H=\Delta U+P \Delta V$ at constant pressure and $\Delta H=\Delta U+\Delta(P V)$ for any process
- For a process with constant moles, $\Delta H=\Delta U+n R \Delta T$

Now for a little derivation:

$$
\begin{gathered}
\Delta U=U_{2}-U_{1}=q+w=q-\int_{v_{1}}^{v_{2}} P d v=q_{p}-P \int_{v_{1}}^{v_{2}} d V=q_{p}-P\left(V_{2}-V_{1}\right) \rightarrow \\
q_{p}=U_{2}+P V_{2}-U_{1}-P V_{1}=\left(U_{2}+P_{2} V_{2}\right)-\left(U_{1}+P_{1} V_{1}\right)=H_{2}-H_{1} \\
\therefore \Delta H=q_{p}
\end{gathered}
$$

Also,

$$
(d H)_{p}=d q_{p}
$$

- For a constant volume process, $d u=d q+d w$, but $d w=0$ because $d w=-P d V$. Therefore,

$$
(d U)_{v}=d q_{v}
$$

- Heat capacity is defined as

$$
C_{\text {process }} \equiv \frac{d q_{\text {process }}}{d T}
$$

- For constant pressure,

$$
C_{P} \equiv \frac{d q_{P}}{d T}=\frac{d H_{P}}{d T_{P}}=\left(\frac{\partial H}{\partial T}\right)_{P}
$$

- For constant volume,

$$
C_{V} \equiv \frac{d q_{V}}{d T}=\frac{d U_{V}}{d T_{V}}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

- The difference between C_{P} and C_{V} is equivalent to

$$
C_{P}-C_{V}=\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right]\left(\frac{\partial V}{\partial T}\right)_{P}
$$

- The term in the brackets has units of pressure and is called the "internal pressure." It has to do with interaction among the particles of a gas.

2.5 The Joule and Joule-Thomson Experiments

- The Joule expansion states that when a gas expands into a vacuum, the work done is zero
- Note that the Joule Thomson experiment does have work done
- The goal of the Joule experiment was to find departures from the ideal gas behavior in the $\left(\frac{\partial U}{\partial V}\right)_{T}$ term by measuring $\left(\frac{\partial T}{\partial V}\right)_{U}$
- The goal of the Joule-Thomson Experiment was to find $\left(\frac{\partial H}{\partial P}\right)_{T}$ by measuring $\left(\frac{\partial T}{\partial P}\right)_{H}$
- The Joule coefficient is defined as

$$
\mu_{J} \equiv\left(\frac{\partial T}{\partial V}\right)_{U}
$$

- The Joule-Thomson coefficient is defined as

$$
\mu_{J T} \equiv\left(\frac{\partial T}{\partial P}\right)_{H}
$$

- Resultantly, $\left(\frac{\partial H}{\partial P}\right)_{T}=-C_{P} \mu_{J T}$
- Also, $\left(\frac{\partial U}{\partial V}\right)_{T}=-C_{V} \mu_{J}$
- $\Delta T=0$ for a perfect gas in the Joule Experiment because $\mu_{J}=0$ for a perfect gas

2.6 The Perfect Gas

- A perfect gas is defined as one that follows $P V=n R T$ and $\left(\frac{\partial U}{\partial V}\right)_{T}=0$
- This is to assure that U is dependent only on temperature. Since H is also dependent only on temperature for a perfect gas, $\left(\frac{\partial H}{\partial P}\right)_{T}=0=\left(\frac{\partial U}{\partial V}\right)_{T}$
- For a perfect gas,

$$
C_{P}-C_{V}=n R \text { (perf. gas) }
$$

- Additionally ${ }^{3}$,

$$
C_{P, m}-C_{V, m}=R(\text { perf. gas })
$$

- For a perfect gas,

$$
d U=C_{V} d T \text { (perf. gas) }
$$

- For a perfect gas,

$$
d H=C_{P} d T \text { (perf. gas) }
$$

2.7 How to Find Pressure-Volume Work

2.7.1 Non-Ideal Gas (Van der Waals Gas)

- Rearrange the van der Waals equation to solve for $P=\frac{n R T}{V-n b}-a \frac{n^{2}}{V^{2}}$ and substitute this into $w=\int_{V_{1}}^{V_{2}} P d V$

2.7.2 Ideal Gas

- Rearrange the ideal-gas equation to solve for $P=\frac{n R T}{V}$ and substitute into the work equation to get

$$
w=-n R \int_{V_{1}}^{V_{2}} \frac{T}{V} d V \text { (perf. gas) }
$$

- If it's isothermal, temperature is constant, so

$$
w=-n R T \ln \left(\frac{V_{2}}{V_{1}}\right) \text { (isothermal) }
$$

[^1]
2.7.3 Reversible Adiabatic Process in a Perfect Gas

- Assuming that $C_{V, m}$ does not change much with temperature,

$$
\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{R / C_{V, m}} \quad(\text { adiabatic })
$$

- Alternatively,

$$
P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \text { (adiabatic) }
$$

- In the above equation, γ is the heat-capacity ratio and is defined

$$
\gamma \equiv \frac{C_{P}}{C_{V}}
$$

- If you're still not happy, you can use

$$
\left(\frac{P_{1}}{P_{2}}\right)^{R}=\left(\frac{T_{1}}{T_{2}}\right)^{C_{P, m}} \quad \text { (adiabatic) }
$$

- Since $d U=C_{V} d T$, it is safe to use $\Delta U=w=C_{V} \Delta T$

2.8 Summary of Calculating First Law Quantities

- Always start with writing these three equations down ${ }^{4}$:

1. $w=-\int_{V_{1}}^{V_{2}} p d V$
2. $\Delta U=q+w$
3. $\Delta H=\Delta U+\Delta(P V)$

- If it's a perfect gas, write these three down as well:

1. $d U=C_{V} d T$
2. $d H=C_{P} d T$
3. $C_{P}-C_{V}=n R$

- If the pressure is equal to zero, $w=0$
- If the volume change is equal to zero, $w=0$

2.8.1 Constant Pressure (Isobaric) Heating

1. P is constant, so $w=-P \Delta V$
2. $\Delta H=q_{P}=\int_{T_{1}}^{T_{2}} C_{P} d T$

2.8.2 Constant Volume (Isochoric) Heating

1. $w=0$
2. $\Delta U=\int_{T_{1}}^{T_{2}} C_{V} d T=q_{V}$
3. $\Delta H=\Delta U+V \Delta P$
(a) Alternatively, $\Delta H=q_{P}=\int_{T_{1}}^{T_{2}} C_{P} d T$
[^2]
2.8.3 Reversible Isothermal Process in a Perfect Gas

1. $\Delta U=\Delta H=0$
2. Rearrange the ideal-gas equation to solve for $P=\frac{n R T}{V}$ and substitute into the work equation to get $w=-n R T \ln \left(\frac{V_{2}}{V_{1}}\right)=n R T \ln \left(\frac{P_{2}}{P_{1}}\right)$
3. $q=-w$

2.8.4 Reversible Adiabatic Process in a Perfect Gas

1. $q=0$ and $\Delta U=w$
2. $\Delta U=\int_{T_{1}}^{T_{2}} C_{V} d T$
3. $\Delta H=\int_{T_{1}}^{T_{2}} C_{P} d T$
4. The final state of the gas can be found by $P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$

2.8.5 Adiabatic Expansion of a Perfect Gas into a Vacuum

1. $q=w=\Delta U=\Delta H=0$

2.8.6 Reversible Phase Change at Constant T and P

1. q is the measured latent heat of the phase change
2. $w=-P \Delta V$
(a) ΔV can be calculated from the densities of the two phases
(b) If one phase is a gas, $P V=n R T$ can be used
3. $\Delta H=q_{p}$
4. $\Delta U=q+w$

2.9 Molecular Modes of Energy Storage

2.9.1 Degrees of Freedom

- Every free particle has three degrees of freedom manifested in each dimension of space
- Bound particles have some changes with respect to degrees of freedom

2.9.2 Classical Mechanics

1. Translation
(a) $E=\frac{1}{2} m v^{2}$ in each dimension
2. Rotation
(a) $E=\frac{1}{2} I \omega^{2}$
3. Vibration
(a) $E=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}$

- The degrees of freedom of a molecule must be $3 N$, where N is the number of nuclei or atoms in the molecule
- For an N atom linear molecule, there are three translational degrees of freedom, 2 rotational, and $3 N-5$ vibrational
- For an N atom nonlinear molecule, there are 3 translational degrees of freedom, 3 rotational, and $3 N-6$ vibrational
- Equipartition Principle states that each degree of freedom gets $\frac{1}{2} R T$ of energy per quadratic term in its energy expression
- Translational energy gets $\frac{1}{2} R T$, rotational gets $\frac{1}{2} R T$, and vibrational gets $\frac{2}{2} R T$

2.9.3 Quantum Mechanics

- The classical result for $H 2$ would be $U_{m}=\frac{3}{2} R T+\frac{2}{2} R T+\frac{2}{2} R T=\frac{7}{2} R T$
- This would predict $C_{v, m}=\left(\frac{\partial u}{\partial T}\right)_{V}=\frac{7}{2} R$
* This does not agree with the experimental value of $\frac{5}{2} R$ with weak T dependence. This is because energy is not quantized in classical mechanics, and if spacings are large compared to $R T$, equipartition will not hold
* The translational and vibrational terms are fairly consistent between quantum and classical mechanics (small spacing); however, there is a big discrepancy for vibrational motion where there is large energy spacing
- Both classical and quantum mechanical systems must obey the Boltzmann Distribution Law that states $\frac{n_{i}}{n_{j}}=e^{-\left(E_{i}-E_{j}\right) / k T}$, where E_{i} and E_{j} are molecular energies and k is the Boltzmann constant
- An analogous equation is $\frac{n_{i}}{n_{j}}=e^{-\left(E_{i, m}-E_{j, m}\right) / R T}$ and uses molar energies and the ideal-gas constant
- Contributions to U and H come from two sources:
- Degrees of freedom of individual molecules (translational, rotational, vibrational, and electronic)
- Interactions between molecules, of which pairwise interactions are most important in gases, but at smaller spacings, higher-order interactions also become important (clusters of more than 2 molecules)
- $U_{\text {molecular }}=\Sigma_{i} U_{i}$, where i is all the degrees of freedom
- Therefore, $U_{\text {molecular }}=U_{\text {trans }}+U_{\text {rot }}+U_{\text {vib }}$
- Translation: $U_{q . m .} \approx U_{c l}$, Rotational: $U_{q . m .} \approx U_{c l}$, Vibrational: $U_{q . m .} \ll U_{c l}$, Electronic: $U_{q m} \approx 0$

2.9.4 Classical Equations

$U_{\text {trans }}=n_{\text {trans }} \cdot 1 \cdot \frac{k T}{2}=\frac{3}{2} k T$
$U_{\text {rot }}=n_{\text {rot }} \cdot 1 \cdot \frac{k T}{2}=\frac{2}{2} K T=k T$ (linear)
$U_{\text {rot }}=\frac{3}{2} k T$ (nonlinear)
$U_{v i b}=n_{v i b} \cdot 2 \cdot \frac{k T}{2}=(3 N-5) \frac{2}{2} k T=(3 N-5) k T$ (linear)
$U_{v i b}=(3 N-6) k T$ (nonlinear)

If scaled up to a mole so that $K \rightarrow R$:
$U_{m, \text { class. }}=\frac{R T}{2}(6 N-5)+U_{\text {int }}($ linear $)$
$U_{m, \text { class. }}=\frac{R T}{2}(6 N-6)+U_{\text {int }}$ (nonlinear)
$C_{V, m, \text { class. }}=\left(\frac{\partial U_{m}}{\partial T}\right)_{V}$

2.9.5 Determining Number of Atoms in a Molecule Given $C_{v, m, c l a s s}$.

For a linear molecule with N atoms,

$$
C_{V, m, \text { class. }}=\frac{R}{2}(6 N-5)
$$

For a nonlinear molecule with N atoms,

$$
C_{V, m, \text { class. }}=\frac{R}{2}(6 N-6)
$$

However, all of these theoretical values do not match experimental results due to the necessary quantum mechanical effects. In reality,
$U_{\text {q.m. }}=\frac{5}{2} R T+$ small terms (linear molecules)
$U_{q . m .}=3 R T+$ small terms (nonlinear molecules)

3 Heat Engines

3.1 The Carnot Engine

- A heat engine converts some of the random molecular energy of heat flow into macroscopic mechanical energy known as work
- The essentials of a heat engine cycle is the absorption of heat, q_{H}, by the working substance from a hot body, the performance of work, $-w$, by the working substance on the surroundings, and the emission of heat, $-q_{C}$, by the working substance to a cold body, with the working substance returning to its original state at the end of the cycle
- The efficiency of a heat engine is defined as:

$$
e=\frac{\text { work output per cycle }}{\text { energy input per cycle }}=\frac{-w}{q_{H}}=\frac{|w|}{q_{H}}
$$

- Alternatively,

$$
e=1-\frac{T_{C}}{T_{H}}
$$

- For a cycle, $\Delta U=0$, so $-w=q_{H}+q_{C}$
- Therefore, efficiency is also defined as:

$$
e=\frac{-w}{q_{H}}=1+\frac{q_{C}}{q_{H}}
$$

- Because q_{C} is negative and q_{H} is positive, efficiency is always less than 1
- Combining the last two definitions of efficiency, we get

$$
\frac{-T_{C}}{T_{H}}=\frac{q_{C}}{q_{H}}
$$

- All reversible heat engines have the same efficiencies if the temperatures are the same
- If two Carnot cycle heat engines operating reversible between the same two temperature can have different efficiencies, then they can be linked together in such a way as to transfer heat from a cold object to a hot object without any work being done from the outside to make the flow occur. This is goes against Clausius' version of the Second Law
- A Carnot cycle can be graphed as follows:

Step 1 to 2:

- This is an isothermal process, so $\Delta U=0, q=n R T_{H} \ln \left(\frac{V_{2}}{V_{1}}\right)$, and $w=-n R T_{H} \ln \left(\frac{V_{2}}{V_{1}}\right)$

Step 2 to 3:

- This is an adiabatic process, so $\Delta U=C_{V}\left(T_{C}-T_{H}\right), q=0$, and $w=C_{V}\left(T_{C}-T_{H}\right)$
- Note: Since T_{C} is the second temperature state, ΔT is equal to $T_{C}-T_{H}$

Step 3 to 4:

- This is an isothermal process, so $\Delta U=0, q=n R T_{C} \ln \left(\frac{V_{4}}{V_{3}}\right)$, and $w=-n R T_{C} \ln \left(\frac{V_{4}}{V_{3}}\right)$
- Alternatively, $q=-n R T_{C} \ln \left(\frac{V_{2}}{V_{1}}\right)$ and $w=n R T_{C} \ln \left(\frac{V_{2}}{V_{1}}\right)$

Step 4 to 1:

- This is an adiabatic process, so $\Delta U=C_{V}\left(T_{H}-T_{C}\right), q=0$, and $w=C_{V}\left(T_{H}-T_{C}\right)$

Overall Cycle:

- This is a cycle, so $\Delta U=0, q=n R\left(T_{H}-T_{C}\right) \ln \left(\frac{V_{2}}{V_{1}}\right)$ and $w=-n R\left(T_{H}-T_{C}\right) \ln \left(\frac{V_{2}}{V_{1}}\right)$
- For a closed system undergoing a Carnot cycle,

$$
\oint \frac{d q_{r e v}}{T}=\frac{q_{C}}{T_{C}}+\frac{q_{H}}{T_{H}}=0
$$

3.2 Carnot Refrigerators, Freezers, Air Conditioners, and Heat Pumps

The following equation holds true, where U is conductance and A is area,

$$
\begin{aligned}
\frac{d q}{d t} & =U A \Delta T \\
\eta_{r e f, A C} \equiv \text { Coeff. of Performance } & =\frac{d q / d t}{d w / d t}=\frac{q_{c}}{w}=\frac{q_{c}}{-\left(q_{H}+q_{c}\right)}=\frac{T_{c}}{T_{H}-T_{c}} \\
\eta_{\text {Heat Pump }} & =\frac{-q_{H}}{w}=\frac{T_{H}}{T_{H}-T_{C}}
\end{aligned}
$$

3.3 The Otto Engine

1. Step $1 \rightarrow 2$ is adiabatic compression
2. Step $2 \rightarrow 3$ is isochoric heating
3. Step $3 \rightarrow 4$ is adiabatic expansion
4. Step $4 \rightarrow 1$ is isochoric cooling

- There are no isotherms

For an Otto engine,

$$
\begin{aligned}
e= & \frac{-w}{Q_{i n}}=1-\frac{T_{1}}{T_{3}}=1-\left(\frac{V_{2}}{V_{1}}\right)^{R / C_{V, m}} \\
& \text { Compression Ratio } \equiv c r \equiv \frac{V_{1}}{V_{2}}
\end{aligned}
$$

Efficiency is maximized with an infinite compression ratio, but of course there are practical volume limits

3.4 Historical Perspective

- Knocking or pinging is detonation of a fuel charge that occurs too early
- Straight-chain hydrocarbons knock at low compression ratios and vice versa
- To prevent knocking, antiknock components are added
- From the 1930s to 1970 s, $P b(E t) 4$ was used, but it caused mental disorders and death due to the lead
- From the 1970s to the 1990s, MTBE was used, but it was carcinogenic
- Currently, $E t O H$ is used, which was ironically used before $P b(E t) 4$

4 The Second Law of Thermodynamics

4.1 Definition of the Second Law of Thermodynamics

- According to the Kelvin-Planck statement of the second law, it is impossible for a system to undergo a cyclic process whose sole effects are the flow of heat into the system from a heat reservoir and the performance of an equivalent amount of work by the system on the surroundings
- According to the Clausius statement, it is impossible for a system to undergo a cyclic process whose sole effects are the flow of heat into the system from a cold reservoir and the flow of an equal amount of heat out of the system into a hot reservoir

4.2 Entropy

- The definition of entropy, S, is the following for a closed system going through a reversible process

$$
d s \equiv \frac{d q_{r e v}}{T}
$$

- According to the fundamental theorem of calculus,

$$
\Delta S=S_{2}-S_{1}=\int_{q_{1}}^{q_{2}} \frac{d q_{r e v}}{T}
$$

- The molar entropy of a substance is

$$
S_{m}=\frac{S}{n}
$$

4.3 Calculation of Entropy Changes

4.3.1 Cyclic Process

- $\Delta S=0$ since it is a state function

4.3.2 Reversible Adiabatic Process

- Since $d q_{\text {rev }}=0, \Delta S=0$

4.3.3 Reversible Isothermal Process

$$
\Delta S=\frac{q_{\text {rev }}}{T}(\text { isothermal })
$$

4.3.4 Reversible Phase Change at Constant T and P

- At constant temperature, $\Delta S=\frac{q_{r e v}}{T}$
- $q_{\text {rev }}$ is the latent heat of the transition in this case
- Since P is constant, $q_{\text {rev }}=q_{P}=\Delta H$. Therefore,

$$
\Delta S=\frac{\Delta H}{T}(\text { rev. phase change at const. } T \text { and } P)
$$

4.3.5 Cautionary Note on Units

Question: The melting point of water is $0^{\circ} C$ at the interested state. What is ΔS for the melting of two moles of water if heat of fusion is $6 \mathrm{~kJ} / \mathrm{mol}$

Answer: ${ }^{5}$
$\Delta S=\frac{(6 \mathrm{~kJ} / \mathrm{mol})(2 \mathrm{~mol})}{0^{\circ} \mathrm{C}+273.15}=0.044 \mathrm{~kJ} / \mathrm{K}$

4.3.6 Constant Pressure Heating with No Phase Change

$$
\left.\Delta S=\int_{T_{1}}^{T_{2}} \frac{C_{P}(T)}{T} d T \text { (Const. } P, \text { no phase change }\right)
$$

If C_{P} is not temperature dependent,

$$
\Delta S=C_{P} \ln \left(\frac{T_{2}}{T_{1}}\right)\left(\text { Const. } P \text { and } C_{P}, \text { no phase change }\right)
$$

4.3.7 Change of State of a Perfect Gas

$$
\Delta S=\int_{T_{1}}^{T_{2}} \frac{C_{V}(T)}{T} d T+n R \ln \left(\frac{V_{2}}{V_{1}}\right) \text { (perf. gas) }
$$

If C_{V} is not temperature dependent,

$$
\Delta S=C_{V} \ln \left(\frac{T_{2}}{T_{1}}\right)+n R \ln \left(\frac{V_{2}}{V_{1}}\right)(\text { perf. gas })
$$

Alternatively,

$$
\Delta S=C_{V} \ln \left(\frac{T_{2}}{T_{1}}\right)+n R \ln \left(\frac{P_{1} T_{2}}{P_{2} T_{1}}\right) \text { (perf. gas) }
$$

4.3.8 General Change of State Process

Take the example of converting a mole of ice at $0^{\circ} \mathrm{C}$ and 1 atm to water vapor at $100^{\circ} \mathrm{C}$ and 0.5 atm

- Change the phase at constant pressure and temperature
- Heat the water at constant pressure
- Vaporize the liquid at constant pressure and temperature
- Isothermally expand the vapor (assume it's a perfect gas change of state) to drop the pressure

4.3.9 Irreversible Phase Change

Consider the transformation of 1 mole of supercooled liquid water at $-10^{\circ} \mathrm{C}$ and 1 atm to 1 mole of ice at the same P and T

- We first reversibly warm the supercooled liquid to $0^{\circ} \mathrm{C}$ and 1 atm
- We then reversibly freeze it at this T and P
- Finally, we cool it reversibly back down to the ice at the original conditions

[^3]
4.3.10 Mixing of Different Inert Perfect Gases at Constant P and T

The general equation can be written as,

$$
\Delta S=n_{1} R \ln \left(\frac{V_{f}}{V_{1}}\right)+n_{2} R \ln \left(\frac{V_{f}}{V_{2}}\right)+\ldots
$$

For a perfect gas at constant temperature and pressure,

$$
\Delta S_{m i x}=-n_{1} R \ln \left(x_{1}\right)-n_{2} R \ln \left(x_{2}\right)-\ldots
$$

- The entropy of a perfect gas mixture is equal to the sum of the entropies each pure gas would have if it alone occupied the volume of the mixture at the temperature of the mixture

4.3.11 Joule Expansion

$\Delta S \neq 0$ for a Joule Expansion. Instead, the following is true, where V is the amount of expansion

$$
\Delta S=n \int \frac{d q_{\text {rev }}}{T}=\frac{n}{T} \int P d V=n R \int \frac{d V}{V}=n R \ln \left(\frac{V_{2}}{V_{1}}\right) \text { (Joule Expansion) }
$$

Bringing the system back to its original state will cause $n R \ln \left(\frac{V_{2}}{V_{1}}\right)$ to be $\Delta S_{\text {surr }}$

4.4 Entropy, Reversibility, and Irreversibility

For a reversible process,

$$
d S_{u n i v}=d S_{\text {syst }}+d S_{\text {surr }}=0 \therefore \Delta S_{\text {univ }}=0 \text { (Rev. Process) }
$$

For an irreversible adiabatic process in a closed system, $\Delta S_{\text {syst }}>0$. this is also true for an irreversible process in an isolated system

$$
\Delta S_{u n i v}>0 \text { (Irrev. Process) }
$$

Removing the constraint of an irreversible process has,

$$
\Delta S_{u n i v} \geq 0
$$

- As a result, entropy can be created but not destroyed (there is no conservation of entropy)
- $\Delta S \neq 0$ for a Joule expansion. $\Delta S=n R \ln \left(\frac{V_{2}}{V_{1}}\right)$ for a Joule Expansion
- $S=k \ln \Omega$, where Ω is the number of microstates
- For an isolated system, thermodynamic equilibrium is reached when the system's entropy is maximized

5 Material Equilibrium

5.1 Entropy and Equilibrium

- Material equilibrium means that in each phase of a closed system the number of moles of each substance present remains constant
- Thermodynamic equilibrium in an isolated system is reached when the system's entropy is maximized
- The condition for material equilibrium in a system is the maximization of the total entropy of the system plus its surroundings
- For the surroundings, $d S_{\text {surr }}=\frac{d q_{\text {surr }}}{T}$. Also, $d q_{\text {surr }}=-d q_{s y s t}$
- For the system, $d S_{\text {syst }}>\frac{d q_{\text {syst }}}{T}$
- At material equilibrium, $d S=\frac{d q_{r e v}}{T}$
- For a material change in a closed system in mechanical and thermal equilibrium, $d S \geq \frac{d q}{T}$, where the equality only holds when the system is in material equilibrium
- For an irreversible chemical reaction in thermal and mechanical equilibrium, $d S>d q_{\text {irrev }} / T$
- For a closed system of material change in mechanical and thermal equilibrium, $d U \leq T d S+d w$, where the equality only holds at material equilibrium

5.2 The Gibbs and Helmholtz Energies

5.2.1 Derivation of A

1. If we rearrange $d U$, we can get $d U \leq T d S+S d T-S d T+d w$, where the first summed terms are $d(T S)$
2. $d(U-T S) \leq-S d T+d w$
(a) This is a new state function, where A is Helmholtz Free Energy

$$
A \equiv U-T S
$$

3. Substituting yields, $d A \leq-S d T+d w$
4. If only $P V$ work is done at constant temperature and volume,

$$
d A=0(\text { eq. }, \text { const. } T, V)
$$

A is a kind of potential where the system is in equilibrium when A is a minimum

For a reversible process at constant temperature, $d A=d w$. For an irreversible process, $\Delta A<w_{\text {irrev }}$

5.2.2 Derivation of G

1. If we consider material equilibrium for constant T and P, we can substitute $d w=-P d V$
(a) $d U \leq T d S+S d T-S d T-P d V+V d P-V d P$
2. Grouping gets $d U \leq d(T S)-S d T-d(P V)+V d P$
3. Algebra yields $d(U+P V-T S) \leq-S d T+V d P$
(a) This is a new state function, where G is Gibbs' Free Energy

$$
G \equiv P V-T S=H-T S
$$

4. Substituting yields, $d G \leq-S d T+V d P$
5. If temperature and pressure are constant, $d G=0$
G is a kind of potential where the system is in equilibrium when G is a minimum
For a reversible process at constant temperature and pressure, $d G=d W_{n o n-P V}$. For an irreversible process, $\Delta G<w_{n o n-P V}$

5.2.3 Connection with Entropy

In a closed system capable of doing only $P V$ work, the constant T and V material equilibrium condition is the minimization of A, and the constant T and P material equilibrium condition is the minimization of G Since $-\frac{\Delta H_{\text {sys }}}{T}=\Delta S_{\text {surr }}$ at constant T and P,

$$
\Delta S_{u n i v}=\frac{-\Delta G_{\text {syst }}}{T}
$$

Due to the Second Law, entropy of the universe must increase for an irreversible process, so $\Delta G_{\text {syst }}$ must decrease

5.3 Thermodynamic Relations for a System in Equilibrium

5.3.1 Basic Thermodynamic Quantities

The basic thermodynamic relationships are:

$$
\begin{aligned}
H & \equiv U+P V \\
A & \equiv U-T S \\
G & =H-T S \\
C_{V} & =\left(\frac{\partial U}{\partial T}\right)_{V} \\
C_{P} & =\left(\frac{\partial H}{\partial T}\right)_{P}
\end{aligned}
$$

Additionally, for a closed system in equilibrium,

$$
\begin{aligned}
C_{V} & =T\left(\frac{\partial S}{\partial T}\right)_{V} \quad \text { (Closed, Eq.) } \\
C_{P} & =T\left(\frac{\partial S}{\partial T}\right)_{P} \quad \text { (Closed, Eq.) }
\end{aligned}
$$

5.3.2 The Gibbs Equations

$$
\begin{gathered}
d U=T d S-P d V \\
d H=T d S+V d P \\
d A=-P d V-S d T \\
d G \\
=V d P-S d T \\
\left(\frac{\partial U}{\partial S}\right)_{V}=T \text { and }\left(\frac{\partial U}{\partial V}\right)_{S}=-P \\
\left(\frac{\partial G}{\partial T}\right)_{P}=-S \text { and }\left(\frac{\partial G}{\partial P}\right)_{T}=V
\end{gathered}
$$

Furthermore,

$$
\alpha(T, P) \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \text { and } \kappa(T, P) \equiv-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}
$$

Procedure:

1. Write out the corresponding Gibbs Equation
2. Set the designated variable as constant
3. Solving for the desired relation

5.3.3 The Maxwell Relations

The Maxwell Relations can be derived by applying the basic Euler's Reciprocity to the derivative forms of the equations of state. The Euler Reciprocity is ${ }^{6}$,

$$
\frac{d^{2} z}{d x d y}=\frac{d^{2} z}{d x d y}
$$

For instance,

$$
\frac{\partial^{2} G}{\partial T \partial P}=\left(\frac{\partial}{\partial T}\left(\frac{\partial G}{\partial P}\right)_{T}\right)_{P}=\left(\frac{\partial}{\partial T} V\right)_{P}=\left(\frac{\partial V}{\partial T}\right)_{P}
$$

This must equal $\frac{\partial^{2} G}{\partial P \partial T}=-\left(\frac{\partial S}{\partial P}\right)_{T}$ via the Euler Reciprocity

[^4]Some relationships are shown below:

$$
\begin{aligned}
& \frac{\partial^{2} U}{\partial S \partial V}:\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V} \text { and } \frac{\partial^{2} H}{\partial S \partial P}:\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P} \\
& \frac{\partial^{2} A}{\partial T \partial V}:\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} \text { and } \frac{\partial^{2} G}{\partial T \partial P}:\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}
\end{aligned}
$$

5.3.4 Dependence of State Functions on T, P, and V

1. Start with the Gibbs equation for $d U, d H, d A$, or $d G$
2. Impose the conditions of constant T, V, or P
3. Divide by $d P_{T}, d V_{T}, d T_{V}$, or $d T_{P}$
4. Use a Maxwell relation or heat-capacity equation to eliminate any terms with entropy change in the numerator

Here are a few examples:

$$
\begin{aligned}
& \left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial S}{\partial V}\right)_{T}-P=\frac{\alpha T}{\kappa}-P \\
& \left(\frac{\partial H}{\partial P}\right)_{T}=-T\left(\frac{\partial V}{\partial T}\right)_{P}+V=-T V \alpha+V \\
& \left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}=-\alpha V
\end{aligned}
$$

5.3.5 Remaining Quantities

$$
\begin{aligned}
\mu_{J T} & =\left(\frac{V}{C_{P}}\right)(\alpha T-1) \\
\mu_{J} & =\frac{\left(P-\alpha T \kappa^{-1}\right)}{C_{V}} \\
C_{P} & -C_{V}=\frac{T V \alpha^{2}}{\kappa}
\end{aligned}
$$

Be careful with molar quantities and these equations. To use molar quantities for the second equation, for instance, it'd be $C_{P, m}-C_{V, m}=\frac{T V_{m} \alpha^{2}}{\kappa}$
Using the following relationship may also be useful,

$$
V_{M}=\frac{M}{\rho}
$$

5.4 Calculation of Changes in State Functions

5.4.1 Calculation of ΔS

The differential equation for entropy is given as,

$$
d S=\left(\frac{\partial S}{\partial T}\right)_{P} d T+\left(\frac{\partial S}{\partial P}\right)_{T} d P=\frac{C_{P}}{T} d T-\alpha V d P
$$

This equation is equivalent to the following when integrated,

$$
\Delta S=\int_{T_{1}}^{T_{2}} \frac{C_{P}}{T} d T-\int_{P_{1}}^{P_{2}} \alpha V d P
$$

Since it's easy to break a process into individual paths:

1. We can analyze a change from T_{1} to T_{2} at constant P

$$
\Delta S_{a}=\int_{T_{1}}^{T_{2}} \frac{C_{P}}{T} d T(\text { Const. } P)
$$

2. Next, P_{1} goes to P_{2} at constant T

$$
\Delta S_{b}=-\int_{P_{1}}^{P_{2}} \alpha V d P=-\int_{P_{1}}^{P_{2}} \alpha V_{m} n d P(\text { Const. } T)
$$

3. The total entropy change for a P and T change is $\Delta S=\Delta S_{a}+\Delta S_{b}$

5.4.2 Calculation of ΔH and ΔU

$$
\Delta H=\int_{T_{1}}^{T_{2}} C_{P} d T+\int_{P_{1}}^{P_{2}}(V-T V \alpha) d P
$$

Since it's easy to break a process into individual paths:

1. We can analyze a change from T_{1} to T_{2} at constant P

$$
\Delta H_{a}=\int_{T_{1}}^{T_{2}} C_{P} d T(\text { Const. } P)
$$

2. Next, P_{1} goes to P_{2} at constant T

$$
\Delta H_{b}=\int_{P_{1}}^{P_{2}}(V-T V \alpha) d P(\text { Const. } T)
$$

3. The total enthalpy change for a P and T change is $\Delta H=\Delta H_{a}+\Delta H_{b}$
(a) ΔH values for phase changes must be added if a phase change occurs
4. ΔU can be calculated from ΔH using $\Delta U=\Delta H-\Delta(P V)$
5. Important Note: If you're looking for ΔH_{m}, for instance, you should make it $C_{P, m}$ and V_{m}

5.4.3 Calculation of ΔG and ΔA

To calculate ΔG directly, we can use the following formula for isothermal conditions

$$
\Delta G=\Delta H-T \Delta S(\text { Const. } T)
$$

Alternatively, here are three ways to calculate ΔG :

$$
\Delta G=\int_{P_{1}}^{P_{2}} V d P=\int_{P_{1}}^{P_{2}} \frac{m}{\rho} d P=\int_{P_{1}}^{P_{2}} n V_{m} d P(\text { Const. } T, V)
$$

At constant T and P,

$$
\Delta G=0(\text { rev. proc. at const. } T \text { and } P)
$$

To calculate ΔA directly, we can use the following formula for isothermal conditions

$$
\Delta A=\Delta U-T \Delta S(\text { Const. } T)
$$

Alternatively,

$$
\Delta A=-\int_{V_{1}}^{V_{2}} P d V(\text { Const. } T, P)
$$

If the phase change goes from solid to liquid, ΔA can be calculated by using densities to find ΔV. If the phase change goes from liquid to gas, one can assume $\Delta V \approx V_{g a s}$

5.5 Chemical Potentials and Material Equilibrium

The Gibbs Equations previously defined are not useful for a system with interchanging of matter with the surroundings or an irreversible chemical reaction

The chemical potential (an intensive state function) of a substance is defined as

$$
\mu_{i} \equiv\left(\frac{\partial G}{\partial n_{i}}\right)_{T, P, n_{j \neq i}} \text { (one-phase) }
$$

Alternatively,

$$
\mu_{i}=\left(\frac{\partial A}{\partial n_{i}}\right)_{T, V, n_{j \neq i}} \quad(\text { one-phase })
$$

Gibbs' Free Energy can now be defined as,

$$
d G=-S d T+V d P+\sum_{i} \mu d n_{i}(\text { one-phase, Thermal/Mech. Eq.) }
$$

Substituting this equation for $d G$ into $d U$ yields,

$$
d U=T d S-P d V+\sum_{i} \mu_{i} d n_{i}
$$

We can now write two more extensions to the Gibbs Equations:

$$
\begin{aligned}
& d H=T d S+V d P+\sum_{i} \mu_{i} d n_{i} \\
& d A=-S d T-P d V+\sum_{i} \mu_{i} d n_{i}
\end{aligned}
$$

For a multiple-phase system, let α denote one of the phase of the system. Therefore,

$$
\begin{gathered}
\mu_{i}^{\alpha} \equiv\left(\frac{\partial G^{\alpha}}{\partial n_{i}^{\alpha}}\right)_{T, P, n_{j \neq i}^{\alpha}} \\
d G=-S d T+V d P+\sum_{\alpha} \sum_{i} \mu_{i}^{\alpha} d n_{i}^{\alpha}
\end{gathered}
$$

At material equilibrium,

$$
\begin{aligned}
& d G=\sum_{\alpha} \sum_{i} \mu_{i}^{\alpha} d n_{i}^{\alpha}=0(\text { mat. eq., const. } T / P) \\
& \left.d A=\sum_{\alpha} \sum_{i} \mu_{i}^{\alpha} d n_{i}^{\alpha}=0 \text { (mat. eq., const. } T / \mathrm{V}\right)
\end{aligned}
$$

For a pure substance, μ_{i} is the molar Gibbs free energy

$$
\mu=G_{m} \equiv \frac{G}{n}(\text { One-phase pure substance })
$$

5.6 Reaction Equilibrium

- An equilibrium will shift to go from a location of higher chemical potential to a lower one
- Let ν_{i} be the unitless stoichiometric number, which are negative for reactants and positive for products
- The extent of reaction is given by the symbol ξ

$$
\xi=\frac{\Delta n_{i}}{\nu_{i}}
$$

- For a chemical-reaction in equilibrium in a closed system,

$$
\sum_{i} \nu_{i} \mu_{i}=0
$$

- Gibbs' Free Energy can be expressed as the following, which is zero at equilibrium,

$$
\frac{d G}{d \xi}=\sum_{i} \nu_{i} \mu_{i}(\text { const. } T / P)
$$

6 Standard Thermodynamic Functions of Reaction

6.1 Standard Enthalpy of Reaction

- The standard state of a pure substance is defined at pressure of 1 bar $\left(P^{\circ} \equiv 1\right.$ bar $)$
- Gases are assumed to have ideal behavior and partial pressures of 1 bar
- The standard enthalpy of formation, $\Delta_{f} H_{T}^{\circ}$, is the change of enthalpy for the process in which one mole of the substance in its standard state is formed from the corresponding separated elements, each element being in its reference form
- For an element in its reference form, the enthalpy of formation is zero

6.2 Hess' Law

- One can oxidize the reactants completely to CO 2 and H 2 O and then make products by the reverse of oxidation
- One can also convert all reactants to elements in their standard states and then make products from elements in these standard states
- However, the most efficient and accepted method is to use the previously defined heat of formation
- The standard enthalpy change is given as the following for the reaction $a A+b B \rightarrow c C+d D$

$$
\Delta H^{\circ}=\sum_{i} \nu_{i} \Delta_{f} H_{T, i}^{\circ}
$$

6.3 The Six-Step Program for Finding ΔH_{f}°

1. If any of the elements involved are gases at T and 1 bar, we calculate ΔH for the hypothetical transformation of each gaseous element from an ideal gas to a real gas under the same conditions
2. We measure ΔH for mixing the pure elements at these conditions
3. We utilize $\Delta H=\int_{T_{1}}^{T_{2}} C_{P} d T+\int_{P_{1}}^{P_{2}}(V-T V \alpha) d P$ to find ΔH for bringing the mixture from the original T and 1 bar to the conditions used to carry out the experiment
4. A calorimeter is used to measure ΔH of the reaction
5. ΔH is found for bringing the compound from the step in which it is formed back to T and 1 bar
6. If there is a compound that is a gas, we calculate ΔH for the hypothetical transformation from a real gas back to an ideal gas

6.4 Calorimetry

- If there are conditions of constant volume, ΔU can be measured. If there are conditions of constant pressure, ΔH can be measured

$$
\Delta_{r} U_{298}=-C_{a v g} \Delta T
$$

- We know $\Delta H=\Delta U+\Delta(P V)$, and the following assumption can be used by ignoring volume changes of liquids and solids

$$
\Delta(P V) \approx \Delta n_{\text {gas }} \cdot R T
$$

- Therefore,

$$
\Delta H_{T}^{\circ}=\Delta U_{T}^{\circ}+\Delta n_{g} R T
$$

- For the above equation, be careful of what you're solving for. Look at the example below as cautionary measure

6.4.1 Cautionary Calorimetry Calculation

Question: If the standard enthalpy of combustion at $25^{\circ} \mathrm{C}$ of liquid (CH 3) 2 CO to CO 2 gas and H 2 O liquid is $-1790 \mathrm{~kJ} / \mathrm{mol}$, find $\Delta_{f} H_{298}^{\circ}$ and $\Delta_{f} U_{298}^{\circ}$ of (CH3)2CO liquid

Solution:

1. Write out the reaction with correct stoichiometry: $(\mathrm{CH} 3) 2 \mathrm{CO}(\mathrm{l})+4 \mathrm{O} 2(\mathrm{~g}) \rightarrow 3 \mathrm{CO} 2(\mathrm{~g})+3 \mathrm{H} 2 \mathrm{O}(\mathrm{l})$
2. Use tabulated values to solve $-1790 \mathrm{~kJ} / \mathrm{mol}=3 \Delta_{f} H_{298, \mathrm{CO2(g)}}^{\circ}+3 \Delta_{f} H_{298, \mathrm{H} 2 \mathrm{O}(\mathrm{l})}^{\circ}-\Delta_{f} H_{298,(\mathrm{CH} 3) 2 \mathrm{CO}(\mathrm{l})}^{\circ}-$ $4 \Delta_{f} H_{298, O 2(g)}^{\circ}$ for for the desired heat of formation
(a) $\Delta_{f} H_{298,(C H 3) 2 C O(l)}^{\circ}=-248 \mathrm{~kJ} / \mathrm{mol}$ via this calculation
3. Since we want $\Delta_{f} U_{298}^{\circ}$, we must write out the formation reaction. We cannot use the stoichiometry of the combustion reaction
(a) This is 3 C (graphite) $+3 \mathrm{H} 2(g)+\frac{1}{2} \mathrm{O} 2(g) \rightarrow(\mathrm{CH} 3) 2 \mathrm{CO}(l)$
4. Find $\Delta n_{g} / \mathrm{mol}$. Here it is -3.5
5. Use $\Delta_{f} H_{298,(C H 3) 2 C O(l)}^{\circ}=\Delta_{f} U_{298,(C H 3) 2 C O(l)}^{\circ}+\Delta n_{g} R T$ and solve for ΔU_{f}°
(a) $\Delta_{f} U_{298,(C H 3) 2 C O(l)}^{\circ}=-239 \mathrm{~kJ} / \mathrm{mol}$ via this calculation

6.5 Calculation of $H_{\text {ideal }}-H_{\text {real }}$

1. First, convert the real gas at P° to a real gas at 0 bar
2. Then convert this gas to an ideal gas at 0 bar
3. Then convert this ideal gas to one at P°

- To perform Step 1 and 3, there is a pressure change under isothermal conditions
- For the overall process, the equation is,

$$
\Delta H=H_{i d}\left(T, P^{\circ}\right)-H_{r e}\left(T, P^{\circ}\right)=\Delta H_{1}+\Delta H_{2}+\Delta H_{3}
$$

- The enthalpy change for Step 1 is calculated as follows,

$$
\Delta H_{1}=\int_{P^{\circ}}^{0}(V-T V \alpha) d P
$$

- The enthalpy change for Step 2 is $\Delta H_{2}=0$
- The reason for this is because $\Delta(P V)$ is zero and ΔU is just $U_{\text {intermolec }}$, which is zero as pressure goes to zero
- The enthalpy change for Step 3 is $\Delta H_{3}=0$
- The reason for this is because H of an ideal gas is independent of pressure
- The enthalpy change for the entire process is calculated as follows,

$$
\Delta H=H_{i d}-H_{r e}=\int_{0}^{P^{\circ}}\left[T\left(\frac{\partial V}{\partial T}\right)_{P}-V\right] d P(\text { Const. } T)
$$

- As previously mentioned, $\alpha \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}$

6.6 Temperature Dependence of Reaction Heats

- The standard heat-capacity change is defined as,

$$
\Delta C_{P}^{\circ} \equiv \sum_{i} \nu_{i} C_{P, m, i}^{\circ}=\frac{d \Delta H^{\circ}}{d T}
$$

- Alternatively,

$$
\Delta H_{T_{2}}^{\circ}-\Delta H_{T_{1}}^{\circ}=\int_{T_{1}}^{T_{2}} \Delta C_{P}^{\circ} d T
$$

- The standard-state molar heat capacity is typically expressed as,

$$
C_{P, m}^{\circ}=a+b T+c T^{2}+d T^{3}
$$

- The Debye approximation states $C_{P, m}^{\circ} \approx C_{V, m}^{\circ}=a T^{3}$ since a solid has only vibrational motion and contributes very little until $k T$ gets larger

6.7 Conventional Entropies and the Third Law

- The entropy for all pure, perfectly crystalline (ordered) substances is zero at absolute zero temperature
- This does not hold for substances that are not in internal equilibrium
- For instance, in a crystal of $C \equiv O$, there can be random interactions of the individual molecular dipoles
* This is called residual entropy due to the slight amount of disorder
- The following equation can be used to find the standard entropy change of a reaction

$$
\Delta S_{T}^{\circ}=\sum_{i} \nu_{i} S_{m, T, i}^{\circ}
$$

- Alternatively,

$$
\Delta S_{T_{2}}^{\circ}-\Delta S_{T_{1}}^{\circ}=\int_{T_{1}}^{T_{2}} \frac{\Delta C_{P}^{\circ}}{T} d T
$$

- A general equation for molar entropy can be written as,

$$
S_{m, T}^{\circ}=\int_{0}^{T_{f u s}} \frac{C_{p, m}^{\circ}(s)}{T} d T+\frac{\Delta_{\text {fus }} H_{m}^{\circ}}{T_{\text {fus }}^{\circ}}+\int_{T_{\text {fus }}}^{T_{V}} \frac{C_{P, m}^{\circ}(l)}{T} d T+\frac{\Delta_{\text {vap }} H_{m}^{\circ}}{T_{\text {vap }}}+\int_{T_{\text {vap }}}^{T} \frac{C_{P, m}^{\circ}(g)}{T} d T+\left(S_{m, \text { ideal }}-S_{m, \text { real }}\right)
$$

- Using the Debye approximation will solve the issue of the previous equation being divided by zero for the first term. The result is,

$$
\int_{0}^{T_{\text {fus }}} \frac{C_{P, m}^{\circ}}{T} d T=\frac{C_{P, m}^{\circ}(\mathrm{at} T)}{3}+\int_{T_{\text {lowest }}}^{T_{\text {fus }}} \frac{a+b T+c T^{2}+d T^{3}}{T} d T
$$

- The correction for nonideality of entropy is,

$$
S_{m, i d}-S_{m, r e}=\int_{0}^{1 b a r}\left[\left(\frac{\partial V_{m}}{\partial T}\right)_{P}-\frac{R}{P}\right] d P
$$

6.8 Standard Gibbs Energy of Reaction

- The standard Gibbs energy change can be found as,

$$
\Delta G_{T}^{\circ}=\sum_{i} \nu_{i} G_{m, T, i}^{\circ}
$$

- An easier way to calculate this is,

$$
\Delta G_{T}^{\circ}=\sum_{i} \nu_{i} \Delta_{f} G_{T, i}^{\circ}
$$

- $\Delta_{f} G^{\circ}$ values can be obtained from $\Delta G=\Delta H-T \Delta S$ for an isothermal process
- Using the Gibbs equations, one can state that

$$
\left(\frac{d \Delta G_{r x n}}{d T}\right)_{P}=-\Delta S_{r x n}
$$

7 Reaction Equilibrium in Ideal Gas Mixtures

7.1 Chemical Potentials in an Ideal Gas Mixture

$$
\Delta \mu=\mu\left(T, P_{2}\right)-\mu\left(T, P_{1}\right)=R T \ln \left(\frac{P_{2}}{P_{1}}\right)(\text { Pure Ideal Gas, Const. } T)
$$

- We know that $\left(\frac{\partial G}{\partial P}\right)_{T}=V$, so $\left(\frac{\partial \mu}{\partial P}\right)_{T}=V_{m}=\frac{R T}{P}$ for an ideal gas
- At constant T, we can say that $\int_{P^{\circ}}^{P} d \mu=\int_{P^{\circ}}^{P} V_{m} d P$. This yields,

$$
\mu=\mu^{\circ}+R T \ln \left(\frac{P}{P^{\circ}}\right)
$$

- The chemical potential of component i of an ideal gas mixture at T and P equals the chemical potential of pure gas i at T and P_{i}
- This is true for U, H, S, G, and C_{P} for an ideal gas mixture

7.2 Ideal-Gas Reaction Equilibrium

- Assume the following definition of the standard equilibrium constant for the reaction $a A+b B \rightleftharpoons$ $c C+d D$,

$$
K_{P}^{\circ} \equiv \frac{\left(\frac{P_{C, e q}}{P^{\circ}}\right)^{c}\left(\frac{P_{D, e q}}{P^{\circ}}\right)^{d}}{\left(\frac{P_{A, e q}}{P^{\circ}}\right)^{a}\left(\frac{P_{B, e q}}{P^{\circ}}\right)^{b}}
$$

- Standard change in Gibbs Free Energy can then be expressed as,

$$
\Delta G^{\circ}=-R T \ln \left(K_{P}^{\circ}\right)
$$

- Assume the following mathematical definition,

$$
\prod_{i=1}^{n} a_{i} \equiv a_{1} a_{2} \ldots a_{n}
$$

- With this, K_{P}° can be defined as,

$$
K_{P}^{\circ} \equiv \prod_{i}\left(\frac{P_{i, e q}}{P^{\circ}}\right)^{\nu_{i}}
$$

- Using the rules of logarithms,

$$
K_{P}^{\circ}=e^{\frac{-\Delta G^{\circ}}{R T}}
$$

- K_{P}° is only a function of temperature and is independent of all other states
- If $\Delta G^{\circ} \gg 0$, then K_{P} is very small. Conversely, if $\Delta G^{\circ} \ll 0$, then K_{P} is very large
- It is typically easier to write this without the standard restriction as,

$$
K_{P} \equiv \prod_{i}\left(P_{i, e q}\right)^{\nu_{i}}
$$

- The molar concentration, c_{i}, of a species is,

$$
c_{i} \equiv \frac{n_{i}}{V}
$$

- Therefore,

$$
P_{i}=c_{i} R T
$$

- Assuming $c_{i}^{\circ}=1 \mathrm{~mol} / L=1 M$,

$$
K_{c}^{\circ}=\prod_{i}\left(\frac{c_{i, e q}}{c^{\circ}}\right)^{\nu_{i}}
$$

- Therefore,

$$
K_{c}^{\circ}=K_{P}^{\circ}\left(\frac{P^{\circ}}{R T c^{\circ}}\right)^{\Delta n / m o l}
$$

- A mole fraction equilibrium constant, K_{x}, is defined as,

$$
K_{x} \equiv \prod_{i}\left(x_{i, e q}\right)^{\nu_{i}}
$$

- A helpful relationship is simply,

$$
K_{P}^{\circ}=K_{x}\left(\frac{P}{P^{\circ}}\right)^{\Delta n / m o l}
$$

- K_{x} depends on P and on T unless $\Delta n=0$, so it is not as useful

7.3 Qualitative Discussion of Chemical Equilibrium

- While K_{P}° is always dimensionless, K_{P} is only dimensionless when $\Delta n_{g a s}=0$ and typically has units of Pressure ${ }^{\Delta n_{\text {gas }}}$
- For a reaction not necessarily at equilibrium,

$$
Q_{P} \equiv \prod_{i}\left(P_{i}\right)^{\nu_{i}}
$$

- If $Q_{P}<K_{p}$, the reaction will proceed to the right: $\xi>0$
- If $Q_{P}=K_{P}$, the reaction is already at equilibrium: $\xi=0$
- If $Q_{P}>K_{P}$, the reaction must go in the reverse: $\xi<0$
- If ΔG° is large and negative, K_{P}° is very large and little reactant is left at equilibrium
- If ΔG° is large and positive, K_{P}° is very small and there is little product present at equilibrium
- Typically, values of e^{-12} are considered very small and e^{12} are considered very large. With this approximation, reactions at 298 K with $\Delta G^{\circ}<-30 \mathrm{~kJ} / \mathrm{mol}$ go to completion, and reactions at 298 K with $\Delta G^{\circ}>30 \mathrm{~kJ} / \mathrm{mol}$ don't proceed at all
- Remember, at the molecular level $k T$ is used for energy comparison, and $R T$ is used at the molecular level
- At low temperature $\Delta G^{\circ} \approx \Delta H^{\circ}$, and at high temperature, $\Delta G^{\circ} \approx-T \Delta S^{\circ}$

7.4 Temperature Dependence of the Equilibrium Constant

- Differentiation of the equation for K_{P}° will yield,

$$
\frac{d \ln \left(K_{P}^{\circ}\right)}{d T}=\frac{\Delta G^{\circ}}{R T^{2}}-\frac{1}{R T} \frac{d\left(\Delta G^{\circ}\right)}{d T}
$$

- Using various mathematical equalities that I will not write out, one yields the van't Hoff equation

$$
\frac{d \ln \left(K_{P}^{\circ}\right)}{d T}=\frac{\Delta H^{\circ}}{R T^{2}}
$$

- This can be rearranged to

$$
\frac{d \ln \left(K_{P}^{\circ}\right)}{d(1 / T)}=-\frac{\Delta H^{\circ}}{R}
$$

- Therefore, for a plot of $\ln \left(K_{P}^{\circ}\right)$ against $1 / T$, the slope is $\frac{-\Delta H^{\circ}}{R}$, and if ΔH° is approximately temperature independent, the plot produces a straight line
- Using the equation for C_{P} in $\mathbf{6 . 6}$ yields,

$$
\Delta H_{T}^{\circ}=A+B T+C T^{2}+D T^{3}+E T^{4}
$$

- Consequently, if $\Delta H^{\circ} \neq$ constant, then

$$
\Delta H^{\circ}=\Delta H^{\circ}\left(T_{1}\right)+\Delta a\left(T-T_{1}\right)+\frac{\Delta b}{2}\left(T^{2}-T_{1}^{2}\right)+\frac{\Delta c}{3}\left(T^{3}-T_{1}^{3}\right)
$$

- Integrating the van't Hoff equation yields,

$$
\ln \left(\frac{K_{P}^{\circ}\left(T_{2}\right)}{K_{P}^{\circ}\left(T_{1}\right)}\right)=\int_{T_{1}}^{T_{2}} \frac{\Delta H_{T}^{\circ}}{R T^{2}} d T
$$

- An easier to calculate quantity is the following where ΔH° is assumed to be independent of temperature,

$$
\ln \left(\frac{K_{P}^{\circ}\left(T_{2}\right)}{K_{P}^{\circ}\left(T_{1}\right)}\right) \approx \frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

- If the K_{P}° at some arbitrary temperature is needed, one can easily find $K_{P, 298}^{\circ}$ with corresponding $T=298.15 \mathrm{~K}$ and ΔH° from tabulated values with Hess' Law
- If ΔH° cannot be assumed to be independent of temperature but C_{P}° can, one can use the equation in 6.6 to find ΔH_{T}° by finding ΔH_{298}° and ΔC_{P}° from tabulated values with Hess' Law

7.5 Ideal-Gas Equilibrium Calculations

1. Calculate $\Delta_{r} G^{\circ}$ from tabulated data
2. Calculate K_{P}° using $\Delta_{r} G^{\circ}=-R T \ln \left(K_{P}^{\circ}\right)$
3. Use the stoichiometry of the reaction to express mole numbers in terms of initial mole number and equilibrium extent of reaction
(a) This is simply the creation of an I.C.E. table
4. Analyze reaction conditions
(a) If the reaction is at fixed temperature and pressure, use $P_{i}=x_{i} P=\frac{n_{i}}{n_{t o t}} P$
i. A simplified equation under constant temperature and pressure for an ideal system is the following, where all moles and mole fractions are amounts at equilibrium:

$$
K_{P}^{\circ}=\frac{\left(x_{C}\right)^{c}\left(x_{D}\right)^{d}}{\left(x_{A}\right)^{a}\left(x_{B}\right)^{b}} \cdot\left(\frac{P}{P^{\circ}}\right)^{\nu_{i}}=\frac{\left(n_{C}\right)^{c}\left(n_{D}\right)^{d}}{\left(n_{A}\right)^{a}\left(n_{B}\right)^{b}} \cdot\left(\frac{P}{n_{\text {Total }} \cdot P^{\circ}}\right)^{\nu_{i}} \quad(\text { Derived by me })
$$

A. Note: If $\nu_{i}=0$, you don't even need the pressure!
(b) If the reaction is at fixed temperature and volume, use $P_{i}=\frac{n_{i} R T}{V}$
i. A simplified equation under constant temperature and volume for an ideal system is, where all moles are amounts at equilibrium:

$$
K_{P}^{\circ}=\frac{\left(n_{C}\right)^{c}\left(n_{D}\right)^{d}}{\left(n_{A}\right)^{a}\left(n_{B}\right)^{b}} \cdot\left(\frac{R T}{P^{\circ} V}\right)^{\nu_{i}}(\text { Derived by me })
$$

5. Substitute the P_{i} values into the equilbrium-constant expression and solve for $\xi_{e q}$
6. Calculate the equilibrium mole numbers from $\xi_{e q}$ and the expressions for n_{i}

7.6 Equilibrium Shifts

1. Increasing pressure at constant volume by adding inert gas will not change the equilibrium composition since partial pressures are the same
2. Adding an inert gas while holding temperature and pressure constant will shift the reaction to the side of greater moles
(a) This is analogous to decreasing pressure at constant temperature
3. Adding a reactant or product gas at constant temperature and volume will shift the equilibrium to the side opposite of the addition since other partial pressures don't change
4. Adding a reactant or product gas at constant temperature and pressure changes other partial pressures, so there is no simple rule
(a) For example, if we have $N 2(g)+3 H 2(g) \rightleftharpoons 2 N H 3(g)$, we can establish equilibrium at constant temperature and pressure. Then, we can add some $N 2$ at constant total pressure. The partial pressure of $N 2$ will go up while the other partial pressures go down. Under certain conditions, equilibrium will shift to the left to produce more of the added gas even though this goes against intuition
5. Decreasing volume at constant temperature will be the same as increasing the pressure at constant temperature. It will shift the reaction to the side of lower moles of gas
6. An increase in temperature at constant pressure will shift the equilibrium to the direction in which the system absorbs heat from the surroundings via the van't Hoff equation

8 One-Component Phase Equilibrium and Surfaces

8.1 Qualitative Pressure Dependence of G_{m}

- Typical values for V_{m} are $19.65 \mathrm{~cm}^{3}$ for solids, $18 \mathrm{~cm}^{3}$ for liquids, and $22400 \mathrm{~cm}^{3}$ for gases. Also,

$$
\left(\frac{\partial G_{m}}{\partial P}\right)_{T}=V_{m}>0
$$

- The gas phase G_{m} is most sensitive to pressure. Next is liquid and then solid (except for water)

8.2 The Phase Rule

- The number of independent intensive variables (degrees of freedom) is the following, where c is the number of different chemical species, p is the number of phases present, and r is the number of independent chemical reactions,

$$
f=c-p+2-r
$$

- For a additional restrictions on the mole fractions,

$$
f=c-p+2-r-a
$$

- Additionally,

$$
c_{i n d} \equiv c-r-a \therefore f=c_{i n d}-p+2
$$

- There are no degrees of freedom at the triple point; therefore, it has a definite T and P

8.3 One-Component Phase Equilibrium

- The stable phase at any point in a one-component P-T phase diagram is where G_{m}, also μ, is lowest
- At any temperature above the critical point temperature, liquid and vapor phases cannot coexist in equilibrium
- The Trouton's Rule approximation states that

$$
\Delta_{v a p} S_{m,, n b p}=\frac{\Delta_{v a p} H_{m, n b p}}{T_{n b p}} \approx 10.5 R
$$

- Trouton's Rule fails for highly polar liquids and temperatures below 150 K or above 1000 K . The following is a better approximation,

$$
\Delta_{v a p} S_{m,, n b p} \approx 4.5 R+R \ln \left(T_{n b p}\right)
$$

8.4 The Clapeyron Equation

8.4.1 General Clapeyron Equation

- For a pure phase, the Gibbs Equation derived earlier is,

$$
d G_{m}=V_{m} d P-S_{m} d T
$$

- Using the fact that $d G_{m}^{1}=d G_{m}^{2}(\Delta G=0)$ at equilibrium,

$$
\Delta V_{m} d P=\Delta S_{m} d T
$$

- Rearranging this equation yields,

$$
\frac{d P}{d T}=\frac{\Delta S_{m}}{\Delta V_{m}}=\frac{\Delta S}{\Delta V}
$$

- The Clapeyron Equation states that for one component two-phase equilibrium system,

$$
\frac{d P}{d T}=\frac{\Delta H_{m}}{T \Delta V_{m}}=\frac{\Delta H}{T \Delta V}
$$

- For phase transitions from solid to liquid, solid to gas, and liquid to gas, $\Delta V_{m}>0, \Delta H_{m}>0$, and $\left(\frac{d P}{d T}\right)>0$
- An exception to this is substances that have $\Delta V_{m}<0$, such as water, when going from solid to liquid. This changes it to $\left(\frac{d P}{d T}\right)<0$
- Also, if $\Delta V_{s \rightarrow l}=0$, then $\frac{d P}{d T}=\infty$. This implies that ΔT is very small for large changes in P

8.4.2 Liquid-Vapor and Solid-Vapor Equilibrium

- If the assumption is made that $\Delta V \approx V_{\text {gas }}$,

$$
\left(\frac{d P}{d T}\right)_{\text {vap or sub }}=\frac{\Delta H_{m}}{T V_{m, g a s}}
$$

- Using $V_{\text {gas }} \approx \frac{R T}{P}$, the Clausius-Clapeyron Equation is obtained

$$
\left(\frac{d P}{d T}\right)_{\text {vap or sub }}=\frac{P \Delta H_{m}}{R T^{2}}
$$

- Integration the above separable differential equation yields

$$
\frac{d \ln P}{d T} \approx \frac{\Delta H_{m}}{R T^{2}}
$$

- An approximation, albeit a very crude one ${ }^{7}$, is that $\frac{\Delta P}{\Delta T} \approx \frac{d P}{d T} \therefore \Delta T=\frac{\Delta P R T^{2}}{P \Delta H_{m}}$
- To obtain a better approximation, begin by substituting $d(1 / T)=-\left(1 / T^{2}\right)$,

$$
\frac{d \ln P}{d(1 / T)} \approx \frac{-H_{m}}{R}
$$

- If ΔH_{m} is independent of temperature, the above equation can be integrated to yield

$$
\ln \left(\frac{P_{2}}{P_{1}}\right)=-\frac{\Delta H}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

- In handbooks, A and B constants can be found ${ }^{8}$ to make,

$$
\ln P \approx \frac{A}{T}+B
$$

[^5]
8.4.3 Effects of Pressure on Phase Transitions

- Higher altitudes cause boiling point decreases since the pressure is lower
- For small variations in pressure,

$$
\Delta T_{b p}=T_{b o i l} \frac{\Delta V_{v a p}}{\Delta H_{v a p}} \Delta P
$$

- For larger variations in P, the following is true where $n b p$ stands for normal boiling point,

$$
\ln \left(\frac{P}{1 a t m}\right)=\frac{\Delta H}{R}\left(\frac{1}{T_{n b p}}-\frac{1}{T}\right)
$$

8.4.4 Solid-Liquid Equilibrium

- Since the solid-liquid transitions doesn't involve a gas phase, $\Delta V \approx V_{g a s}$ is unreasonable.
- The applicable equation for solid-liquid equilibrium is ${ }^{9}$,

$$
\int_{P_{1}}^{P_{2}} d P=\int_{T_{1}}^{T_{2}} \frac{\Delta_{f u s} S}{\Delta_{f u s} V} d T=\int_{T_{1}}^{T_{2}} \frac{\Delta_{f u s} H}{T \Delta_{f u s} V} d T
$$

- Using the approximation $\frac{\Delta P}{\Delta T} \approx \frac{d P}{d T}$ for small pressure changes or assuming $\frac{\Delta_{\text {fus }} S}{\Delta_{f u s} V}$ is constant yields,

$$
\Delta P=\frac{\Delta T \Delta_{f u s} S}{\Delta_{f u s} V}=\frac{\Delta T \Delta_{f u s} H}{T_{1} \Delta_{f u s} V}
$$

- For larger changes in P for solid-liquid transitions, assume $\Delta_{f u s} H$ and $\Delta_{f u s} V$ are constant to make,

$$
\Delta P \approx \frac{\Delta_{f u s} H}{\Delta_{f u s} V} \ln \left(\frac{T_{2}}{T_{1}}\right)
$$

8.4.5 Effects of Pressure on Vapor Pressure

- For phase equilibrium, $\mu_{g}=\mu_{\text {cond }}$
- At constant temperature, the system will go to a new vapor pressure where the gas has a higher μ and vapor pressure with applied external pressure
- At constant volume and vapor pressure, T would fall with an applied external pressure

9 Solutions

9.1 Solution Composition

- The definition of molarity is,

$$
c_{i} \equiv \frac{n_{i}}{V}
$$

- The definition of mass concentration is,

$$
\rho_{i} \equiv \frac{m_{i}}{V}
$$

- The definition of molality of solute B is the following where solvent mass is w_{A} and M_{A} is the solvent molar mass,

$$
m_{B} \equiv \frac{n_{B}}{w_{A}}=\frac{n_{B}}{n_{A} M_{A}}
$$

[^6]
9.2 Partial Molar Quantities

- From now on, V^{*} is the total volume of unmixed components, where $*$ denotes a property of pure, unmixed substances. As such,

$$
V^{*}=\sum_{i} n_{i} V_{m, i}^{*}
$$

- $\Delta_{m i x} V=V-V^{*}=0$ for ideal solutions and $\Delta_{m i x} V \neq 0$ for real solutions
- Ideality also implies that, for a solution of B and C, the B-B interactions, B-C interactions, and C-C interactions are all the same
- The total differential can be applied knowing that $V\left(T, P, n_{i}, \ldots, n_{r}\right)$

$$
d V=\left(\frac{\partial V}{\partial T}\right)_{P, n_{i}} d T+\left(\frac{\partial V}{\partial P}\right)_{T, n_{i}} d P+\sum_{i} \bar{V}_{i} d n_{i}
$$

- The partial molar volume is

$$
\bar{V}_{j} \equiv\left(\frac{\partial V}{\partial n_{j}}\right)_{T, P, n_{i \neq j}}
$$

- Additionally,

$$
\bar{V}_{i}=\frac{R T}{P}(\text { Ideal Gas Mixture })
$$

- The partial molar volume of a pure substance is equal to its molar volume,

$$
\bar{V}_{j}^{*}=V_{m, j}^{*}
$$

- As a result,

$$
V=\sum_{i} \bar{V}_{i} n_{i}=\sum_{i} x_{i} \bar{V}_{i} n_{t o t}
$$

- Also,

$$
\Delta_{m i x} V=\sum_{i} n_{i}\left(\bar{V}_{i}-V_{m, i}^{*}\right)
$$

- For a multi-component system,

$$
n_{1} d \bar{V}_{1}+n_{2} d \bar{V}_{2}+\ldots=0=x_{1} d \bar{V}_{1}+x_{2} d \bar{V}_{2}+\ldots
$$

- Therefore, for a two component system,

$$
\begin{gathered}
x_{1} d \bar{V}_{1}=-x_{2} d \bar{V}_{2} \quad \text { and } \quad d \bar{V}_{1}=\frac{-x_{2}}{x_{1}} d \bar{V}_{2} \\
n_{1} d \bar{V}_{1}=-n_{2} d \bar{V}_{2} \quad \text { and } \quad d \bar{V}_{1}=\frac{-n_{2}}{n_{1}} d \bar{V}_{2}
\end{gathered}
$$

- Moreover ${ }^{10}$,

$$
\left(\frac{\partial \bar{V}_{1}}{\partial n_{1}}\right)_{n_{2}}=-\frac{n_{2}}{n_{1}}\left(\frac{\partial \bar{V}_{2}}{\partial n_{2}}\right)_{n_{2}}
$$

[^7]- The other thermodynamic functions can be defined similarly to \bar{V}_{i}, for instance \bar{H}_{i}, by taking the partial derivative of the thermodynamic function and dividing it by ∂n_{i} while holding $T, P, n_{j \neq i}$ constant. The arbitrary variable Y can then be used to state,

$$
\bar{Y}_{i} \equiv\left(\frac{\partial Y}{\partial n_{i}}\right)_{T, P, n_{j \neq i}} \quad \text { and } \quad Y=\sum_{i} n_{i} \bar{Y}_{i}
$$

- The relationship for Gibbs' Free Energy is notable,

$$
\bar{G}_{i} \equiv\left(\frac{\partial G}{\partial n_{i}}\right)_{T, P, n_{j \neq i}} \equiv \mu_{i}
$$

9.3 Deviations

9.3.1 Positive Deviations

- This occurs when the dissolution process is not energetically favorable

$$
\Delta V_{m i x}>0, \quad \Delta H_{m i x}>0
$$

9.3.2 Negative Deviations

- This occurs when the dissolution process is very energetically favorable (A-B interactions is stronger than $\mathrm{A}-\mathrm{A}$ or $\mathrm{B}-\mathrm{B}$)

$$
\begin{gathered}
\Delta_{m i x} V<0, \quad \Delta_{m i x} H<0 \\
P_{i}<P_{i, \text { ideal }}
\end{gathered}
$$

9.4 Finding Partial Molar Volumes

9.4.1 Experimental

- Fix n_{A}, vary n_{B}, and measure $V_{t o t}$ as n_{B} increases
- Plotting $V_{t o t}$ against n_{B} will yield a plot with slope of \bar{V}_{B} at $x_{B}=\frac{n_{B}}{n_{A}+n_{B}}$

9.4.2 Theoretical

- As already derived,

$$
\left(\frac{\partial \mu_{i}}{\partial T}\right)_{P, n_{j}} \equiv\left(\frac{\partial \bar{G}_{i}}{\partial T}\right)_{P, n_{j}}=-\bar{S}_{i} \quad \text { and } \quad\left(\frac{\partial \mu_{i}}{\partial P}\right)_{T, n_{j}} \equiv\left(\frac{\partial \bar{G}_{i}}{\partial P}\right)_{T, n_{j}}=\bar{V}_{i}
$$

9.5 Mixing Quantities

- Here is a moderately useless derivation for you to enjoy,

$$
\begin{gathered}
\left(\frac{\partial \Delta_{m i x} G}{\partial P}\right)_{T, n_{j}}=\frac{\partial}{\partial P} \sum_{i} n_{i}\left(\bar{G}_{i}-G_{m, i}^{*}\right)=\sum_{i} n_{i}\left[\left(\frac{\partial \bar{G}_{i}}{\partial P}\right)_{T, n_{j}}-\left(\frac{\partial G_{m, i}^{*}}{\partial P}\right)_{T}\right]=\sum_{i} n_{i}\left(\bar{V}_{i}-V_{m, i}^{*}\right) \\
\therefore\left(\frac{\partial \Delta_{m i x} G}{\partial P}\right)_{T, n_{j}}=\Delta_{m i x} V
\end{gathered}
$$

- Similarly,

$$
\left(\frac{\partial \Delta_{m i x} G}{\partial T}\right)_{P, n_{j}}=-\Delta_{m i x} S
$$

9.6 Ideal Solutions and Thermodynamic Properties

- An ideal solution is one where the molecules of the various species are so similar to one another that replacing molecules of one species with molecules of another species will not change the spatial structure or the intermolecular interaction energy in the solution
- When substances are mixed,

$$
\begin{gathered}
\Delta_{m i x} G=R T \sum_{i} n_{i} \ln x_{i}=-T \Delta_{m i x} S \\
\Delta_{m i x} S=-R \sum_{i} n_{i} \ln x_{i}
\end{gathered}
$$

- With respect to chemical potential,

$$
\begin{array}{r}
\sum_{i} n_{i} \mu_{i}=\sum_{i} n_{i}\left(\mu_{i}^{*}+R T \ln x_{i}\right) \\
\mu_{i}=\mu_{i}^{*}+R T \ln x_{i} \quad \text { and } \quad \mu_{i}^{\circ} \equiv \mu_{i}^{*}
\end{array}
$$

- Therefore, a solution is ideal if the chemical potential of every component in solution obeys the above equation for all solution compositions and for a range of temperature and pressure
- As x_{i} approaches zero, μ_{i}^{*} approaches $-\infty$
- Also,

$$
\Delta_{m i x} V=\Delta_{m i x} H=\Delta_{m i x} U=0 \text { (Ideal soln, Const. T/P) }
$$

- In equilibrium,

$$
\mu_{i}^{l}=\mu_{i}^{v}
$$

- Raoult's Law states,

$$
P_{i}=x_{i}^{l} P_{i}^{*}
$$

- Alternatively,

$$
x_{i}^{v} P_{t o t}=x_{i}^{l} P_{i}^{*}
$$

9.7 Ideally Dilute Solutions

- In an ideally dilute solution, solute molecules (i) interact essentially only with solvent molecules (A)

$$
\mu_{i}=R T \ln x_{i}+f_{i}(T, P)
$$

- $f_{i}(T, P)$ is some function of T and P
- Also,

$$
\mu_{A}=\mu_{A}^{*}+R T \ln x_{A}
$$

9.8 Thermodynamic Properties of Ideally Dilute Solutions

- Since $\mu_{i}^{\circ} \equiv f_{i}(T, P)$,

$$
\mu_{i}=R T \ln x_{i}+\mu_{i}^{\circ}
$$

- Additionally,

$$
\begin{gathered}
\mu_{A}=\mu_{A}^{\circ}+R T \ln x_{A} \\
\mu_{A}^{\circ} \equiv \mu_{A}^{*} \\
\frac{P_{i}}{x_{i}^{l} P^{\circ}}=\exp \left(\frac{\mu_{i}^{\circ l}-\mu_{i}^{\circ v}}{R T}\right)
\end{gathered}
$$

- A new (Henry's) constant can be defined as,

$$
K_{i} \equiv P^{\circ} \exp \left(\frac{\mu_{i}^{\circ l}-\mu_{i}^{\circ v}}{R T}\right)
$$

- Finally, Henry's Law can be expressed as,

$$
P_{i}=K_{i} x_{i}^{l}
$$

- Furthermore, Raoult's Law applies as,

$$
P_{A}=x_{A}^{l} P_{A}^{*}
$$

- For an ideal solution, the solute obeys Henry's Law, and the solvent obeys Raoult's Law
- For an application of external pressure,

$$
P^{\prime}=P_{0} e^{\frac{\bar{V}}{R T}}
$$

- For a gas dissolved in liquid,

$$
x_{i}^{l}=\frac{P_{i}}{K_{i}}
$$

- Therefore, solids dissolve in liquids better at higher temperatures while gases dissolved in liquids better at lower temperatures
- Classic example is the dissolution of carbon dioxide in soda - it goes flat at higher temperatures (less CO 2 dissolved)
- Since this is an ideally dilute solution,

$$
P_{i}=K_{i, m} m_{i}=K_{i, c} c_{i}
$$

- Henry's Law does not apply to strong electrolytes
- If $K_{H e n r y}>P^{*}$, then $P_{\text {ideal }}>P^{*}$ and $\mu^{\circ}=\mu_{\text {ideal }}>\mu^{*}$
- If $K_{\text {Henry }}<P^{*}$, then $\mu^{\circ}=\mu_{\text {ideal }}<\mu^{*}$

10 Nonideal Solutions

10.1 Activities and Activity Coefficients

- The activity of a substance is defined as,

$$
a_{i} \equiv \exp \left(\frac{\mu_{i}-\mu_{i}^{\circ}}{R T}\right)
$$

- Rearranging this to a familiar form yields,

$$
\mu_{i}=\mu_{i}^{\circ}+R T \ln a_{i}
$$

- Then, for an ideal or ideally dilute solution, $a_{i}=x_{i}$
- The difference between the real and ideal μ_{i} is,

$$
\mu_{i}-\mu_{i}^{i d}=R T \ln \left(\frac{a_{i}}{x_{i}}\right)
$$

- The activity coefficient, γ_{i}, is defined so that,

$$
a_{i}=\gamma_{i} x_{i}
$$

- The new μ_{i} equation is now,

$$
\mu_{i}=\mu_{i}^{\circ}+R T \ln \left(\gamma_{i} x_{i}\right)
$$

- Substitution of $\mu_{i}^{\text {ideal }}=\mu_{i}^{\circ}+R T \ln x_{i}$ yields,

$$
\mu_{i}^{i d}+R T \ln \gamma_{i}
$$

- There are two conventions for the standard state

Convention I The standard state of each solution component i is taken as pure liquid i at the temperature and pressure of the solution such that,

$$
\mu_{\mathrm{I}, i}^{\circ} \equiv \mu_{i}^{*}(T, P)
$$

- Additionally, $\gamma_{\mathrm{I}, i} \rightarrow 1$ as $x_{i} \rightarrow 1$ for each chemical species i
- Use this convention if the mole fractions vary widely and both components are liquids

Convention II This convention treats the solvent differently from the other components. The standard state of the solvent A is pure liquid A at the temperature and pressure of the solution such that,

$$
\mu_{\mathrm{II}, A}^{\circ}=\mu_{A}^{*}(T, P)
$$

- Additionally, $\gamma_{\mathrm{II}, i} \rightarrow 1$ as $x_{A} \rightarrow 1$ for each $i \neq A$
- Note that this means $x_{i} \rightarrow 0$
- Choose this convention if solids or gases are in dilute concentrations in a liquid

10.2 Determination of Activities and Activity Coefficients

10.2.1 Convention I

- Raoult's Law is now,

$$
P_{i}=a_{\mathrm{I}, i} P_{i}^{*}
$$

- The following then can be stated,

$$
P_{i}=x_{i}^{v} P_{t o t}=\gamma_{\mathrm{I}, i} x_{i}^{l} P_{i}^{*}
$$

- If component i has $P_{i}>P_{i}^{i d}$, then $\gamma_{\mathrm{I}, i}>1$ and vice versa
- If γ_{I} is less than 1 , it means that the chemical potentials are less than the ideal chemical potentials. This means that G is lower than $G^{i d}$, and, thus, the solution is more stable

10.2.2 Convention II

- Raoult's Law is now,

$$
P_{A}=a_{\mathrm{II}, A} P_{A}^{*}=\gamma_{\mathrm{II}, A} x_{A}^{l} P_{A}^{*}
$$

- Henry's Law is now,

$$
P_{i}=K_{i} a_{\mathrm{II}, \mathrm{i}}=K_{i} \gamma_{\mathrm{II}, i} x_{i}^{l}
$$

- γ_{I} measures deviations from ideal-solution behavior while γ_{II} measures deviations from ideally dilute solution behavior

[^0]: ${ }^{1}$ All variables that are not listed can be found in Ira N. Levine's Physical Chemistry, 6th edition
 ${ }^{2}$ Calculus Note: The total differential, $d z$, for $z(x, y)$ is defined as $d z=\left(\frac{\partial z}{\partial x}\right)_{y} d x+\left(\frac{\partial z}{\partial y}\right)_{x} d y$

[^1]: ${ }^{3} C \equiv n C_{m}$

[^2]: ${ }^{4}$ Whenever you compute work, make sure the units work out. For instance, at constant pressure and using $w=-P \Delta V$, one might obtain units of $L \cdot a t m$. However, this is not a Joule, so a conversion factor needs to be set up.

[^3]: ${ }^{5}$ Note: Be careful of units! To get ΔS, which is not on a mole basis, one must multiply the heat of fusion by how many moles are melting

[^4]: ${ }^{6}$ It is important to note that the operator in the denominator of the derivative is performed right to left

[^5]: ${ }^{7}$ It is not recommended to use this approximation
 ${ }^{8}$ Crude form of the Antoine Equation

[^6]: ${ }^{9}$ Fusion is defined as going from solid to liquid

[^7]: ${ }^{10}$ I do not get this. How can you hold n_{2} constant and have it be changing by an infinitesimal amount, ∂n_{2} ?

