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Introduction

For Whom are these Notes?

These notes, together with the book The Heart of Mathematics [HM] by Burger
and Starbird, are the texts for the ANU College Mathematics Minor for Years
11 and 12 students. If you are doing this course you will have a strong interest
in mathematics, and probably be in the top 5% or so of students academically.

What is Mathematics?

Mathematics is the study of pattern and structure. Mathematics is funda-
mental to the physical and biological sciences, engineering and information
technology, to economics and increasingly to the social sciences.

The patterns and structures we study in mathematics are universal. It is
perhaps possible to imagine a universe in which the biology and physics are dif-
ferent, it is much more difficult to imagine a universe in which the mathematics
is different.

Philosophy of this Course

The goal is to introduce you to contemporary mainstream 20th and 21st century
mathematics.

This is not an easy task. Mathematics is like a giant scaffolding. You need
to build the superstructure before you can ascend for the view. The calculus
and algebra you will learn in college is an essential part of this scaffolding and
is fundamental for your further mathematics, but most of it was discovered in
the 18th century.

We will take a few short cuts and only use calculus later in this course. We
will investigate some very exciting and useful modern mathematics and get a
feeling for “what mathematics is all about”. The mathematics you will see in
this course is usually not seen until higher level courses in second or third year
at University.

Of course, you will not cover the mathematics in the same depth or general-
ity as you will if you pursue mathematics as a part of your University studies (as
I hope most of you will do). The way we will proceed is by studying carefully
chosen parts and representative examples from various areas of mathematics
which illustrate important and general key concepts. In the process you will
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iv Introduction

gain a real understanding and feeling for the beauty, utility and breadth of
mathematics.

These Notes and The Heart of

Mathematics

[HM] is an excellent book. It is one of a small number of texts intended to
give you, the reader, a feeling for the theory and applications of contemporary
mathematics at an early stage in your mathematical studies. However, [HM]
is directed at a different group of students — undergraduate students in the
United States with little mathematics background (e.g. no calculus) who might
take no other mathematics courses in their studies.

Despite its apparently informal style, [HM] develops a significant amount of
interesting contemporary mathematics. The arguments are usually complete
(and if not, this is indicated), correct and well motivated. They are often done
by means of studying particular but important examples which cover the main
ideas in the general case.

However, you might find that the language is a little verbose at times (and
you may or may not find the jokes tedious!). After first studying the arguments
in [HM] you may then find the more precisely written mathematical arguments
in these Notes more helpful in understanding “how it all hangs together”.

So here is a suggested procedure:
1. Look very briefly at these notes both to see what parts of [HM] you should

study and to gain an overview.
2. Study (= read, think about, cogitate over) the relevant section in [HM].
3. Then study the relevant section in these Notes.

You may want to change the order, do what is best for you.
In the Notes we:
• Follow the same chapter and section numbering as in [HM]
• Discuss and extend the material in [HM] and fill in some gaps
• Often write out more succinct and general arguments
• Indicate which parts of [HM] are to be studied and sometimes recommend

questions to attempt
• Include some more difficult and challenging questions

What is Covered in this Course?

There are four parts to the course. Each will take approximately 1.5 terms.
You will study the first 2 parts in terms 2,3,4 of year 11 and the second 2 parts
in terms 1,2,3 of year 12.
Part 1 An introduction to number theory and its application to cryptography.

Essentially Chapter 2 from [HM] and supplementary material from these
Notes. The RSA cryptography we discuss is essential to internet security
and the method was discovered in 1977. The 3 mathematicians involved
started a company which they sold for about $600,000,000(US).

Part 2 A Hierarchy of Infinities. Essentially Chapter 3 from [HM] and sup-
plementary material from these Notes. What is infinity? Can one infinite



Studying Mathematics v

set be larger than another (Yes). If you remove 23 objects from an infi-
nite set is the resulting set “smaller” (No). These ideas are interesting,
but are they important or useful? (Yes).

Part 3 Dynamical Processes, Chaos and Fractals. Modelling change by dy-
namical processes, how chaos can arise out of simple processes, how frac-
tal sets have fractional dimensions. Some of the ideas here on fractals
were first developed by the present writer (iterated function systems)
and other ideas (the chaos game) by another colleague now at the ANU,
Michael Barnsley. Barnsley applied these ideas to image compression and
was a founder of the company “Iterated Systems”, at one stage valued
at $200,000,000(US), later known as “Media Bin” and then acquired by
“Interwoven”.

Part 4 Geometry and Topology. Parts of Chapters 4 and 5 from [HM] and sup-
plementary material from these Notes. Platonic solids, visualising higher
dimensions, topology, classifying surfaces, and more. This is beautiful
mathematics and it is fundamental to our understanding of the universe
in which we live — some current theories model our universe by 10 di-
mensional curved geometry

I suggest you also
• read ix–xiv of [HM] in order to understand the philosophy of that book;
• read xv–xxi of [HM] to gain an idea of the material you will be investi-

gating over the next 2 years.

Studying Mathematics

This takes time and effort but it is very interesting material and intellectually
rewarding. Do lots of Questions from [HM] and from these Notes, answer the

questions here marked with a - and keep your solutions and comments in a
folder.

Material marked ? is not in [HM] and is more advanced. Some is a little
more advanced and some is a lot more advanced. It is included to give you an
idea of further connections. Don’t worry if it does not make complete sense or
you don’t fully understand. Just relax and realise it is not examinable, except
in those cases where your teacher specifically says so, in which case you will
also be told how and to what extent it is examinable.

Acknowledgements
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Quotations

Philosophy is written in this grand book—I mean the universe— which stands
continually open to our gaze, but it cannot be understood unless one first learns
to comprehend the language and interpret the characters in which it is written.
It is written in the language of mathematics, and its characters are triangles,
circles, and other mathematical figures, without which it is humanly impossible
to understand a single word of it; without these one is wandering about in a
dark labyrinth.

Galileo Galilei Il Saggiatore [1623]

Life is good for only two things, discovering mathematics and teaching
mathematics.1

Siméon Poisson [1781-1840]

Mathematics is the queen of the sciences.
Carl Friedrich Gauss [1856]

Mathematics takes us still further from what is human, into the region of
absolute necessity, to which not only the actual world, but every possible world,
must conform.

Bertrand Russell The Study of Mathematics [1902]

Mathematics, rightly viewed, possesses not only truth, but supreme beauty
— a beauty cold and austere, like that of a sculpture, without appeal to any
part of our weaker nature, without the gorgeous trappings of painting or music,
yet sublimely pure, and capable of perfection such as only the greatest art can
show.

Bertrand Russell The Study of Mathematics [1902]

The science of pure mathematics, in its modern developments, may claim
to be the most original creation of the human spirit.

Alfred North Whitehead Science and the Modern World [1925]

All the pictures which science now draws of nature and which alone seem
capable of according with observational facts are mathematical pictures . . . .
From the intrinsic evidence of his creation, the Great Architect of the Universe
now begins to appear as a pure mathematician.

Sir James Hopwood Jeans The Mysterious Universe [1930]

1Simeon Poisson was the thesis adviser of the thesis adviser of . . . of my thesis adviser,
back 9 generations. See www.genealogy.math.ndsu.nodak.edu . I do not agree with Pois-
son’s statement!
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Quotations vii

The language of mathematics reveals itself unreasonably effective in the
natural sciences. . . , a wonderful gift which we neither understand nor deserve.
We should be grateful for it and hope that it will remain valid in future research
and that it will extend, for better or for worse, to our pleasure even though
perhaps to our bafflement, to wide branches of learning.

Eugene Wigner [1960]

The same pathological structures that mathematicians invented to break
loose from 19th naturalism turn out to be inherent in familiar objects all around
us in nature.

Freeman Dyson Characterising Irregularity, Science 200 [1978]

Mathematics is like a flight of fancy, but one in which the fanciful turns out
to be real and to have been present all along. Doing mathematics has the feel
of fanciful invention, but it is really a process for sharpening our perception
so that we discover patterns that are everywhere around. . . . To share in the
delight and the intellectual experience of mathematics – to fly where before we
walked – that is the goal of mathematical education.

One feature of mathematics which requires special care . . . is its “height”,
that is, the extent to which concepts build on previous concepts. Reasoning in
mathematics can be very clear and certain, and, once a principle is established,
it can be relied upon. This means that it is possible to build conceptual struc-
tures at once very tall, very reliable, and extremely powerful. The structure is
not like a tree, but more like a scaffolding, with many interconnecting supports.
Once the scaffolding is solidly in place, it is not hard to build up higher, but it
is impossible to build a layer before the previous layers are in place.

William Thurston Notices Amer. Math. Soc. [1990]





Chapter 1

Fun and Games

In this Chapter in [HM, §1.1] there are 9 puzzles/questions — most are a “lead [HM, 2–28]
in” to topics in later chapters. The relevant ones for us are

Story 3 Part 1 of Course
Story 5 Part 2
Story 2 & 4 Part 3
Story 6 Part 4

In [HM, §1.2] there are some gentle hints. You will learn more if you do
not look at the hints until after you have expended some real thought on the
questions.

In [HM, §1.3] the solutions are given and discussed.

1



Chapter 2

Numbers and Cryptography

Important Note The material in the Notes corresponds to and often ex-
tends that in The Heart of Mathematics [HM]. See also the comments on
page iv. The corresponding page numbers in [HM] are noted here in the mar-
gin. First study the material in [HM], then study the more concentrated and
extended treatment here.

Additional material beyond that in [HM] is noted as such in the margin,
and is not necessarily a required part of the course. Your teacher will let you
know.

In any case I hope you look at this additional material. It is there to set
the course in a broader context, to indicate future directions, to introduce
important techniques and methods, and to provide some additional challenges!

Similar remarks apply to the other Chapters in these Notes.

Contents

2.1 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Overview . . . . . . . . . . . . . . . . . . . . . . . . . 6

Types of Numbers . . . . . . . . . . . . . . . . . . . . 6

Natural Numbers and Integers . . . . . . 6

Real Numbers and Their Properties . . . 6

Geometric Representation of Numbers . . 7

The Pigeon Hole Principle . . . . . . . . . . . . . . . 7

?The Principle of Mathematical Induction1 . . . . . . 8

Sum of First n Natural Numbers . . . . . 8

Sum of First n Squares, Cubes, etc. . . . 9

Statement & Proof of Induction . . . . . . 9

Application to Sums of Squares, Cubes, etc. 9

1Anything marked with ? is either not in [HM] or is only treated lightly there, and is
more advanced material. Some is a little more advanced and some is a lot more advanced.
It is included to give you an idea of further connections. Don’t worry if it does not make
complete sense or you don’t fully understand. Just relax and realise it is not examinable,
except in those cases where your teacher specifically says so, in which case you will also be
told how and to what extent it is examinable.
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6 Numbers and Cryptography

2.1 Counting2

Using estimation to move from
qualitative to quantitative
thinking and reasoning is a
powerful tool.

Overview

The Pigeon Hole Principle is used in [HM, §2.1] to show that there are at least
2 people on the earth with exactly the same number of hairs on their body.

A whimsical argument is also given to show that all natural numbers are
“interesting”, or perhaps more accurately to show that “interesting” is not a
well defined mathematical concept. This argument is essentially the Principle
of Mathematical Induction, which we will discuss later.

Types of Numbers
[HM, 39–41]

Natural Numbers and Integers For future reference we note:

Definition. The natural numbers are the numbers 1, 2, 3 . . . . The integers are
the numbers . . . ,−3,−2,−1, 0, 1, 2, 3, . . . .

Real Numbers and Their Properties Later we will discuss in some detail
the real numbers, often just called numbers.3 The real numbers include the
integers and in particular the natural numbers.

At this stage we will use the usual properties of addition, multiplication,
subtraction and division for the real numbers such as:
• x+ y = y + x and x(y + z) = xy + xz for any real numbers x, y, z;
• the properties of 0 and 1 such as x+ 0 = x and x×1 = x for any number
x, and that for any real number x there is another real numbers written
−x such that x+ (−x) = 0;

• the properties of inequalities such as x < y implies x+ z < y + z for any
numbers x, y, z.

The natural numbers are the real numbers 1, 1 + 1, 1 + 1 + 1, . . . , which we
write as 1, 2, 3, . . . . The integers are the real numbers . . . ,−(1 + 1 + 1),−(1 +
1),−1, 0, 1, 1 + 1, 1 + 1 + 1, . . . which we write as . . . ,−3,−2,−1, 0, 1, 2, 3, . . . .

We will also use all the standard properties of the natural numbers and
the integers such as the sum and product of two natural numbers is a natural
number.

It is common to use symbols like i, j, k,m, n,N to denote natural numbers
and symbols like x, y, z, u, v to denote real numbers in general.

2The epigrams in each Section are from [HM] and its supporting material.
3Even later we will also discuss complex numbers, which involve the square root of −1.



2.1. Counting 7

Geometric Representation of Numbers Sometimes it helps to think of
real numbers as being represented by points on an infinite straight line as
follows:

−4 −3 −2 −1 0 1 2 3 4
| | | | | | | | |. . . . . . . . .. . . .
−3.61

√
2 e π

Most numbers do not have simple names as do
√

2, e and π.
There is nothing special about −3.61.
The number

√
2 is 1.414213562373095048801688724209 . . . to 30 decimal

places, and is the number which when multiplied by itself gives 2.
The number π is the ratio of the circumference of a circle to its diameter

and is 3.141592653589793238462643383279 . . . to 30 decimal places.
The number e is one of the most important numbers in mathematics and

is 2.718281828459045235360287471352 . . . to 30 decimal places. You will come
across it later when you study calculus. It arises naturally in the study of
logarithms, in growth and decay models, even in understanding compound
interest4.

The Pigeon Hole Principle
[HM, 41–43]

The following simple result has interesting and often surprising conclusions.

Theorem 2.1.1. If N objects are put into n boxes and N > n, then at least
one box will contain more than one object.

Proof. 5 Assume no box has more than one object in it. Since the number of
boxes is n this implies there are at most n objects. But we know there are N
objects and N is greater than n.

This contradiction implies the assumption is false. Hence at least one box
has more than one object in it.

The idea is that if you have more pigeons than pigeon holes, then at least
one pigeon hole must contain more than one pigeon.

4If you take $1 and let it earn 100% interest you will have $2 after a year.
If you calculate the interest each 6 months you will have $(1 + 1

2
) after 6 months and then

$(1 + 1
2

)2 = $2.25 after a year.

- Why?
If you calculate the interest every month you will have $(1+ 1

12
), $(1+ 1

12
)2, and $(1+ 1

12
)3

after each of the first 3 months, and finally $(1 + 1
12

)12 ≈ $2.61 after a year.

- Why?
If you calculate the interest every week (supposing there are exactly 52 weeks in the year)

you will have $(1 + 1
52

)52 ≈ $2.69 after a year.
If you calculate the interest every day (supposing there are exactly 365 days in the year)

you will have $(1 + 1
365

)365 ≈ $2.7146.
And as you compound more and more frequently the number of dollars you have after a

year will not increase without bound, but will instead get closer and closer to the number e.
5Later we will discuss more carefully what is meant by a “proof”. In particular we

will discuss what one can assume and what methods of argument one can use. At this
stage by a “proof” we mean essentially an argument which uses only (i) basic properties of
numbers including those about addition, multiplication, and inequalities; (ii) facts we may
have previously proved; and (iii) logical reasoning.
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The Theorem was proved by assuming it to be false and from this deriving
a contradiction. This method of proof by contradiction is a very powerful one
in Mathematics.6

[HM] uses the Pigeon Hole principle to show that at least two people on
the earth are equally hairy!

In Questions 4 and 5 we give two tricky applications, with Hints.

?The Principle of Mathematical Induction7

[HM, 43–45]
This is only discussed in [HM] in a very light way, to show that “all numbers
are interesting”. Here we discuss and give some more serious examples.

Sum of First n Natural Numbers You may know the formula

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
. (2.1)

One way to prove this is to write

S = 1 + 2 + 3 + · · ·+ n− 1 + n,

∴ S = n+ (n− 1) + (n− 2) + · · ·+ 2 + 1,

by reversing the order of addition. Adding first terms together, second terms
together, etc.,

2S = (1 + n) + (2 + n− 1) + (3 + n− 2) + · · ·+ (n− 1 + 2) + (n+ 1)

= (1 + n) + (1 + n) + (1 + n) + · · ·+ (1 + n) + (1 + n) (n times)

= n(n+ 1).

It follows that S = n(n+ 1)/2.
For example,

1 + 2 + 3 + · · ·+ 100 = 100 · 101/2 = 5050.

6Sometimes students tend to overuse proof by contradiction. There is no logical reason
not to use it as often as you like, after all it is certainly a valid method of proof. However a
direct proof, if it is not too long, will usually give someone a better idea and more insight as
to “why” a Theorem is true.

7Anything marked with ? is either not in [HM] or is only treated lightly there, and is
more advanced material. Some is a little more advanced and some is a lot more advanced.
It is included to give you an idea of further connections. Don’t worry if it does not make
complete sense or you don’t fully understand. Just relax and realise it is not examinable,
except in those cases where your teacher specifically says so, in which case you will also be
told how and to what extent it is examinable.
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Sum of First n Squares, Cubes, etc. Here are some formulae.

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
=
n3

3
+
n2

2
+
n

6
, (2.2)

13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4
=
n4

4
+
n3

2
+
n2

4
, (2.3)

14 + 24 + 34 + · · ·+ n4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30

=
n5

5
+
n4

2
+
n3

3
− n

30
. (2.4)

Suppose we were able to guess one of these formulae by a bit of trial and
error, or perhaps someone told you that they saw one of the formulae some-
where. You can readily check that it is true for n = 1 and n = 2. But is there
a systematic way of proving it for every n?

The answer is YES, and it is by the method of Mathematical Induction,
which we now state and prove.

Statement & Proof of Induction

Theorem 2.1.2 (Principle of Mathematical Induction). Let P (n) be a state-
ment about n, for each natural number n. Suppose we know:

1. P (1) is true, (basic step)
2. Whenever P (k) is true for a natural number k, it follows that P (k + 1)

is also true. (inductive step)
Then the statement P (n) is true for every natural number n.

Proof.
• By the first assumption, P (1) is true.
• By the second assumption, since P (1) is true it follows that P (2) is true.
• By the second assumption, since P (2) is true it follows that P (3) is true.
• By the second assumption, since P (3) is true it follows that P (4) is true.
• By the second assumption, since P (4) is true it follows that P (5) is true.
• etc.

In this way we see that for every natural number n, P (n) is true.

Remark. This is more of an informal justification than a proof, essentially
because of the “etc.”. In fact, some form of the Principle of Mathematical
Induction is usually taken as one of the axioms of arithmetic.

Application to Sums of Squares, Cubes, etc. We now use mathematical
induction to prove (2.3).

Solution. Let P (n) be the statement

13 + 23 + 33 + · · ·+ n3 =
n4

4
+
n3

2
+
n2

4
. (2.5)

In order to show that P (n) is true for all natural numbers n, we need to show:
1. P (1) is true. (basic step)
2. Whenever P (k) is true then P (k + 1) is true. (inductive step)
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Clearly P (1) is true since both sides of (2.5) then equal 1. This means we
have shown the basic step.

Next assume P (k) is true for some natural number k, i.e.

13 + 23 + 33 + · · ·+ k3 =
k4

4
+
k3

2
+
k2

4
. (2.6)

We want to show it follows that P (k + 1) is true. In other words, we want to
show it follows that

13 + 23 + 33 + · · ·+ k3 + (k + 1)3 =
(k + 1)4

4
+

(k + 1)3

2
+

(k + 1)2

4
(2.7)

Here is the argument:

13 + 23 + 33 + · · ·+ k3 + (k + 1)3

=
k4

4
+
k3

2
+
k2

4
+ (k + 1)3 because we assumed P (k) is true

=
k4

4
+
k3

2
+
k2

4
+ (k3 + 3k2 + 3k + 1) check it!

=
k4

4
+

3k3

2
+

13k2

4
+ 3k + 1

=
(k + 1)4

4
+

(k + 1)3

2
+

(k + 1)2

4
check it!

which is what we wanted to show. This means we have shown the inductive
step, since we have shown P (k) implies P (k + 1) for every k.

It now follows from the Principle of Mathematical Induction that P (n) is
true for all natural numbers n.

?Finding the Sum of First n Squares, Cubes, etc.

We saw in the previous Section how to prove the formulae for the sum of the
first n squares, cubes etc. But is there a systematic way for finding these
formulae in the first case? Yes, and here is how to do it.

For the sum 12 + 22 + 32 + · · ·+ n2 we use the formula

k3 − (k − 1)3 = 3k2 − 3k + 1,

which you should check.
Setting k = 1, k = 2, k = 3, . . . , k = n we get

13 − 03 = 3× 12 − 3× 1 + 1

23 − 13 = 3× 22 − 3× 2 + 1

33 − 23 = 3× 32 − 3× 3 + 1

43 − 33 = 3× 42 − 3× 4 + 1

...

n3 − (n− 1)3 = 3× n2 − 3× n+ 1
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Add all this together and notice how on the left the terms 13 and −13

cancel, as do 23 and −23, 33 and −33, etc. This gives

n3 − 03 = 3(12 + 22 + 32 + · · ·+ n2)− 3(1 + 2 + 3 + · · ·+ n)

+ (1 + 1 + 1 + · · ·+ 1) (n terms)

∴ n3 = 3(12 + 22 + 32 + · · ·+ n2)− 3
n(n+ 1)

2
+ n

∴ 12 + 22 + 32 + · · ·+ n2 =
n3

3
+
n(n+ 1)

2
− n

3
=
n3

3
+
n2

2
+
n

6

This is formula (2.2).

See Questions 8, 9, 10 for finding the sum of the first n cubes, fourth powers
and fifth powers.

Questions

The following questions are to test your understanding of the method of induc-
tion.

1 Prove (2.1) by the method of mathematical induction. Use the Example
on page 9 as a template for your proof.

2 Similarly prove (2.2).
3 Similarly prove (2.4).

Here are two tricky applications of the Pigeon Hole Principle. If you really
want a challenge, try them before looking at the HINTS which follow. Before
you begin you may want to make up and try out a few test examples.

4 Prove that among any 10 natural numbers (not necessarily all distinct)
there are two numbers whose difference is divisible by 9. See8 for a Hint.

5 Prove that in any list a1, a2, . . . , a10 of 10 natural numbers (not necessar-
ily all distinct) there is always a string (of one or more numbers) of the
form ak, ak+1, . . . , an whose sum is divisible by 10. See9 for Hints.

Now try these generalisations.

6 Replace“10” by “N” and “9” by “N-1” in Question 4. State and prove a
general theorem.

7 Replace“10” by “N” in Question 5. State and prove a general theorem.

Next we find formulae for the sum of the first n cubes, fourth powers and even
fifth powers.

8HINT: Imagine there are 9 boxes marked 0, 1, 2, . . . , 8. Put each of the 10 given natural
numbers into the box corresponding to its remainder after dividing by 9.

What does the pigeon hole principle tell you and what can you deduce?
9Consider the sums a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + a3 + · · ·+ a10. Imagine there

are 10 boxes marked 0, 1, 2, . . . , 9. Put each of the sums into the box corresponding to its
remainder after dividing by 10.

What happens if one sum is in the box marked 0?
If all the sums are in the boxes marked 1, 2, . . . , 9 what does the pigeon hole principle tell

you?
If 2 sums are in the same box what do you know about their difference?
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8 Find 13 + 23 + 33 + · · ·+ n3 by using the formula

k4 − (k − 1)4 = 4k3 − 6k2 + 4k − 1,

and proceed in a similar way to that used on page 10. You will need to
use the formulae for the sum of the n natural numbers and the sum of
their squares, which we have already found. Check against (2.3).

9 Find 14 + 24 + 34 + · · ·+ n4. Check against (2.4).
10 Find 15 + 25 + 35 + · · ·+ n5. Here is the answer.10

10Answer to Question 10: 15 + 25 + 35 + · · ·+ n5 =
n6

6
+
n5

2
+

5n4

12
−
n2

12
.
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2.2 The Fibonacci Sequence

Looking at simple things deeply,
finding a pattern, and using the
pattern to gain new insights
provides great value.

Overview

In the remainder of this Chapter we will often say “number” when we mean
an integer rather than a general real number. We do this to be consistent with
[HM]. It should be clear from the context what we mean.

The Fibonacci sequence is

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,

6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229,

832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, . . . (2.8)

The first 2 numbers are 1 and subsequent numbers are obtained by adding the
previous two numbers.

This sequence arose originally as a model of rabbit population growth and
also arises in spiral counts in pinecones and various flowers. Have a look at
[HM, p57 Q6].

The methods we use to study the Fibonacci sequence include continued
fractions, characteristic equations and mathematical induction, all of which
will be explained later. They are very important and are used in many areas
of mathematics.

Sequences of Numbers
[HM, 49,50]

We usually write an (infinite) sequence of numbers in the form

a1, a2, a3, . . . , an, . . .

Thus for the Fibonacci sequence, a1 = 1, a2 = 1, a3 = 2, a4 = 3, a5 = 5,
a6 = 8, etc.

Occasionally it is convenient to write a sequence as

a0, a1, a2, . . . , an, . . .

One could even call the first term a3 or a7 or even a−23, but this is not very
common!

Definition of the Fibonacci Sequence
[HM, 51]

Definition 2.2.1. The Fibonacci sequence is defined by

a1 = 1, a2 = 1, an = an−1 + an−2 if n ≥ 3.
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Notice this Definition says that every term from the third term onwards is
the sum of the previous two.

It also implies

an+1 = an + an−1 if n+ 1 ≥ 3, i.e. if n ≥ 2

an+2 = an+1 + an if n+ 2 ≥ 3, i.e. if n ≥ 1,

an−1 = an−2 + an−3 if n− 1 ≥ 3, i.e. if n ≥ 4, etc.

Converging Quotients of Fibonacci Numbers
[HM, 51–55]

Calculating Successive Quotients It is interesting to investigate what
happens to the ratio (i.e. quotient) of successive terms an/an−1 when n becomes
large.

In [HM, pp 51,52] you will see by using a calculator that it looks like the
ratio might be getting closer and closer to a number around 1.6. Do a few
calculations!

In [HM, pp 53] you see, or just look at (2.8), that the ratio of the 13th and
12th terms is

233

144
=

144 + 89

144
= 1 +

89

144
= 1 +

1
144
89

,

where
144

89
is the ratio of the 12th and 11th terms.

Similarly, the ratio of the 14th and 13th terms is

377

233
=

233 + 144

233
= 1 +

144

233
= 1 +

1
233
144

,

where
233

144
is the ratio of the 13th and 12th terms.

Do a similar analysis for the ratio of the 15th and 14th terms.11-

The General Result

Theorem 2.2.2. If an is the nth term in the Fibonacci sequence and n ≥ 3
then

an
an−1

= 1 +
1

an−1

an−2

.

Proof. 12

11Recall the symbol - indicates an example you should do, a question you should answer,
etc. Write out your working neatly along the style of these notes and keep it. This is an
extremely helpful way to increase your understanding of the material.

12This satisfies the requirements for a proof as discussed in Footnote 5. We have used
only things we already know, namely the Definition of the Fibonacci sequence, a consequence
of the Definition discussed immediately after the Definition, and some simple properties of
addition and division. We have also briefly justified the important steps.

This is how you should try to write out your proofs.
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From Definition 2.2.1 and the comments following this Definition, if n ≥ 3
then

an
an−1

=
an−1 + an−2

an−1
= 1 +

an−2
an−1

= 1 +
1

an−1

an−2

.

The Limit of the Quotients If we assume13 that the ratio
an
an−1

“converges

to a limit” (which is true) and assume certain properties of limits (which are
true), then we can actually calculate the limit in this case.

Theorem 2.2.3. If an is the nth term in the Fibonacci sequence then
an
an−1

converges to
1 +
√

5

2
as n becomes arbitrarily large.

Proof. 14 From Theorem 2.2.2,
an
an−1

= 1 +
1

an−1

an−2

.

Assume that
an
an−1

converges to a limit φ as n becomes arbitrarily large.

Then
an−1
an−2

also converges to φ (this uses properties of limits, but it is not

surprising).
It follows that

φ = 1 +
1

φ
.

(Notice that φ cannot be zero since the Fibonacci sequence is increasing and

so
an
an+1

is always at least one, and so also φ is at least one.) Hence

φ2 = φ+ 1.

and so
φ2 − φ− 1 = 0.

The formula for solving a quadratic gives the two solutions

φ+ =
1 +
√

5

2
≈ 1.618033988, φ− =

1−
√

5

2
≈ −0.618033988. (2.9)

Since the terms in the Fibonacci sequence are all positive we must have

φ = φ+.

13We will discuss limits and their properties later in the course. The informal idea of a
limit was known to mathematicians in the 1600’s, but it caused much philosophical debate.
The precise definition was not obtained until the 1800s. It took over 100 years to clarify the
ideas.

14This is not really a “Proof” in the precise sense of Footnote 5. We have not given
a careful definition of “converges” or “becomes arbitrarily large”. We are assuming in the

proof that
an

an−1
does indeed converge to some limit and that limits have certain natural

properties. All this is OK in this particular, but needs to eventually be justified. We will
address these issues later in the course.
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The Golden Ratio The number φ = (1 +
√

5)/2 is called the Golden Ratio
and will arise a number of times in the course.

Both numbers φ+ and φ− arise later in the formula for the nth term of the
Fibonacci sequence. See Theorem 2.2.5.

Here is another way the Golden Ratio arises. Suppose we partition a line
segment into two parts of lengths a (the larger) and b (the smaller).

a b
| | |——————————————————————

If we require the ratio of the larger to the smaller to equal the ratio of the
whole to the larger, i.e.

a/b = (a+ b)/a,

then we get a2 = ab+ b2. This gives(a
b

)2
=
a

b
+ 1.

It follows that the ratio a/b is just the golden ratio φ.

Fibonacci Numbers and Continued Fractions
[HM, 52–54]

The Golden Ratio as a Continued Fraction In [HM, p 52] the formula in
Theorem 2.2.2 is used to show that the ratios of successive Fibonacci numbers
are

1, 1 +
1

1
, 1 +

1

1 +
1

1

, 1 +
1

1 +
1

1 +
1

1

, 1 +
1

1 +
1

1 +
1

1 +
1

1

, . . .

Explain how this follows from Theorem 2.2.2.-
Fractions written in this manner are called continued fractions. The limit

of these numbers is the Golden Ratio and it is written as the infinite continued
fraction

1 +
1

1 +
1

1 +
1

. . .

This material is not in [HM]
?Properties of Continued Fractions Continued fractions and infinite con-
tinued fractions are important in number theory, approximation theory and
chaos theory — all of which are subjects in mathematics.
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You probably know that every real number has a (possibly infinite) decimal
expansion, e.g.

π = 3.14159265358979323846264338327950288419716939937510 . . .

= 3 +
1

10
+

4

100
+

1

1, 000
+

5

10, 000
+

9

100, 000
+

2

1, 000, 000
+ · · ·

= 3 + 1 · 10−1 + 4 · 10−2 + 1 · 10−3 + 5 · 10−4 + 9 · 10−5 + 2 · 10−6 + · · · .

It is also true that every real number has a (possibly infinite) continued fraction
expansion and can be approximated by finite continued fractions. For example

π = 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

1 +
1

. . .

In some ways continued fractions are “better” and more “natural” than a
decimal expansion. For example, decimal expansions use the base number ten.
But why do we count in multiples of ten? The answer is in biology. Because
we have ten fingers and ten toes (usually).15

But continued fractions do not favour any particular base. They are more
“pure” in this respect. And finite continued fractions usually give “better”
approximations than finite decimal expansions of the same length.

Sums of Fibonacci numbers
[HM, 55,56]

Theorem 2.2.4. Every natural number is either a Fibonacci number, or is a
sum of Fibonacci numbers where none are adjacent Fibonacci numbers.

We won’t give the proof here since it is in [HM, pp 55,56]. A method of
actually finding the Fibonacci numbers in the sum is also given there.

?Formula for the nth Fibonacci Number
The remainder of the material here on the Fibonacci Sequence is not in [HM].
You may prefer to just look at it briefly and come back to it later.There is a formula for the nth Fibonacci number. This is tricky and is not

done in [HM].

15The Babylonians about 3000 BC counted in multiples of the base number sixty.
Binary systems with base two are used by computers. In this case two is written as 10 and

the natural numbers are 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101,
1110, 1111, 10000, 100001, etc.

Hexadecimal systems with base sixteen are also used. In this case the digits are 0, 1, 2,
. . . , 9, A, B, C, D, E, F. The next numbers after this are 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 1A, 1B, 1C, 1D, 1E, 1F, 20, . . . , FF, 100. In this system A is ten and 10 is sixteen, i.e.
16 in our usual way of counting.
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Theorem 2.2.5. If an is the nth Fibonacci number then

an =
(φ+)n + (φ−)n√

5
=

(
1+
√
5

2

)n
−
(

1−
√
5

2

)n
√

5
.

(See also (2.9) for the definition of φ+ and φ−.) This is a pretty amazing
formula. It is not even obvious that it gives a natural number.

There are many ways of proving this result, and we will give two methods.
One method is the method of mathematical induction, one version of which

we discuss earlier. The disadvantage of this method is that you need to guess
the answer ahead of time, but then the method of mathematical induction
allows you to prove your guess is correct. However, with Fibonacci numbers it
is very far from clear how you might guess the correct formula.

Another method is the method of characteristic equations (see (2.14)),
which we look at now.

Proof via the Characteristic Equation This method works in many sim-
ilar situations.

The following argument will be a bit tricky. But after you have worked
through it you should try Questions 1 and 2. These Questions involve other
examples, with Hints as you proceed, and will help reinforce the ideas.

First we will discuss the method in detail. Then we will write it out again
more briefly in the Proof of Theorem 2.2.5 on page 21.

We first break Definition 2.2.1 on page 13 of the Fibonacci sequence into 2
parts.

The first part consists of the initial conditions:

a1 = 1, a2 = 1. (2.10)

The second part is the recurrence relation (or recurrence equation) for later
terms:

an = an−1 + an−2 if n ≥ 3. (2.11)

We could change just the initial conditions. For example,

a1 = 2, a2 = 1.

Then the recurrence relation gives the sequence

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, . . . (2.12)

This is called the Lucas sequence in [HM, p59 Q10].

Dealing with the Recurrence Relation Let us first think about the
recurrence relation (2.11) by itself, without considering the initial conditions
(2.10). Because of the way powers of numbers behave, it is going to be a good
idea to fix a number r (which we will later find) and test if an = rn for each
natural number n satisfies the recurrence relation. It is not at all obvious that
this will work. The main reason it will is that equation (2.13) is equivalent to
the characteristic equation (2.14) which no longer involves n.
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Note that if an = rn for every n then an−1 = rn−1 and an−2 = rn−2 (to be
precise, in the first case for n − 1 ≥ 1 and so n ≥ 2, while in the second case
for n ≥ 3).

From (2.11) we see an = rn satisfies the recurrence relation if and only if

rn = rn−1 + rn−2 for n ≥ 3. (2.13)

This is true if and only if r = 0 or, dividing through by rn−2,

r2 = r + 1, i.e. r2 − r − 1 = 0. (2.14)

This is sometimes called the characteristic equation.
Notice that something very interesting has happened! There is no longer an

n in the last equation. This is because of the way powers of a number behave
when substituted into the recurrence relation.

This last equation is a quadratic and is satisfied by r if and only if

r = φ+ =
1 +
√

5

2
or r = φ− =

1−
√

5

2
.

(We saw the same equation in the proof of Theorem 2.2.3.)
Thus we have shown that both an = (φ+)n and an = (φ−)n (as well as

an = 0), are solutions of the recurrence relation. But you will easily see that
these an do not satisfy the initial conditions, just try n = 1 or n = 2.

Are we stuck? No!
Notice that if an = rn satisfies the recurrence relation then so does an = 2rn

or an = 7rn or even an = −23.57rn. The main point is that if (2.11) is true
then it remains true when we multiply through by 2 or 7 or even by −23.57.

In words: Any constant multiple of a solution of the recurrence relation is
itself a solution.

So now we have many solutions of the recurrence equation. Namely

an = A(φ+)n and an = B(φ−)n,

where A and B can be any two real numbers.
The next important observation is that if we have one sequence of numbers

satisfying the recurrence relation and a second sequence of numbers satisfying
the recurrence relation, then the sequence obtained by adding corresponding
terms also satisfies the recurrence relation. Why is this? -

In words: The sum of any two solutions of the recurrence relation is itself
a solution.

So putting all this together we have shown that

an = A(φ+)n +B(φ−)n

is a solution of the recurrence relation for any A and B. (Notice that the
uninteresting solution an = 0 is also included, just set A = B = 0.)

Dealing with the Initial Conditions Now we come back to the initial
conditions. Since there are 2 numbers A and B at our disposal, and 2 initial
conditions, it seems likely, and is true, that we can choose A and B so the
initial conditions are satisfied.
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In fact, we have an = A(φ+)n + B(φ−)n satisfies the initial conditions if
and only if

1 = A

(
1 +
√

5

2

)
+B

(
1−
√

5

2

)

1 = A

(
1 +
√

5

2

)2

+B

(
1−
√

5

2

)2

.

These are just 2 simultaneous equations in 2 unknowns. To minimise the
amount of calculation it is probably best to multiply the first equation by(

1 +
√

5

2

)
and subtract the second, and then multiply the first equation by(

1−
√

5

2

)
and subtract the second. This gives (Check it!):-

(
−1 +

√
5

2

)
= B

(
−5 +

√
5

2

)
(
−1−

√
5

2

)
= A

(
−5−

√
5

2

)
.

In order to solve, write this as(
−1 +

√
5

2

)
= −B

√
5

(√
5− 1

2

)
(
−1−

√
5

2

)
= A
√

5

(
−
√

5− 1

2

)
,

and so
A = 1/

√
5, B = −1/

√
5.

Putting it all together,

an =

(
1+
√
5

2

)n
−
(

1−
√
5

2

)n
√

5
. (2.15)

One Final Point We have seen that if an is defined by (2.15) for each
integer n ≥ 1 then this gives a solution of (2.10) and (2.11). Are there other
solutions? That is, are there other possible values for a1, a2, a3, . . . which
satisfy (2.10) and (2.11)?

The answer is NO for the following reason.
From (2.10) there is exactly one possible value for each of a1 and a2, namely

1 and 1 respectively. Then from (2.11) there is exactly one possible value for
a3 (namely 2), exactly one possible value for a4, exactly one possible value
for a5, etc. Moreover, all these values are natural numbers. (We could use
mathematical induction to justify all this, but I think that would be overkill).
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So, to summarise, we have found in (2.15) one sequence of numbers which
satisfies (2.10) and (2.11). But we have also shown that there is one and only
one sequence of numbers (and that they are in fact natural numbers) which
satisfies (2.10) and (2.11). It follows that since the sequence given by (2.15) is
one solution of (2.10) and (2.11), it is the one and only solution, and moreover
all members of the sequence given by (2.15) are natural numbers.

We will not normally repeat this type of argument each time, but you should
at least see it once! (Then perhaps stop worrying and forget about it.)

Setting out the Proof in a Compact Manner OK, that was pretty heavy
going. So I will now write it out again more briefly.

Proof of Theorem 2.2.5. an = rn is a solution of the recurrence relation

an = an−1 + an−2 for n ≥ 3

if and only if

rn = rn−1 + rn−2, i.e. r2 = r + 1 (or r = 0).

This gives

r = φ+ =
1 +
√

5

2
or r = φ− =

1−
√

5

2
.

A constant multiple of a solution of the recurrence relation is a solution,
and the sum of solutions is a solution, so

an = A(φ+)n +B(φ−)n, n ≥ 1,

is a solution of the recurrence relation for any numbers A and B (not necessarily
integers).

This satisfies the initial conditions a1 = 1 and a2 = 1 if and only if

1 = Aφ+ +Bφ−

1 = A(φ+)2 +B(φ−)2.

Solving these simultaneous equations as before gives

A = 1/
√

5, B = −1/
√

5.

Thus the required solution is

an =
(φ+)n − (φ−)n√

5

for all natural numbers n.

?Proof by Induction of the Formula

Discussion Recall that the Fibonacci sequence in (2.8) is defined by the
relations given in Definition 2.2.1, i.e.

a1 = 1, a2 = 1, an = an−1 + an−2 if n ≥ 3.
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We then proved in Theorem 2.2.5 that

an =
(φ+)n − (φ−)n√

5
.

If we were able to guess this formula (by some devious means) then we
could prove it rigorously by the Principle of Mathematical Induction.

To be more precise, we have to use an extension of this Principle. In the
previous applications we proved P (1) was true and also proved that whenever
P (k) is true then P (k + 1) is true. It then follows that P (n) is true for all n.

Strong Principle of Mathematical Induction

Theorem 2.2.6 (Strong Principle of Mathematical Induction). Suppose that
P (n) is a statement about n, for each natural number n. Assume we know:

1. P (1), . . . , P (a) are all true for some natural number a, (basic step)
2. Whenever P (1), . . . , P (k) are true for a natural number k ≥ a, it follows

that P (k + 1) is also true. (inductive step)
Then the statement P (n) is true for every natural number n.

Proof.

• By the first assumption, P (1), . . . , P (a) are true.
• By the second assumption, since P (1), . . . , P (a) are true it follows that
P (a+ 1) is true.

• By the second assumption, since P (1), . . . , P (a + 1) are true it follows
that P (a+ 2) is true.

• By the second assumption, since P (1), . . . , P (a + 2) are true it follows
that P (a+ 3) is true.

• By the second assumption, since P (1), . . . , P (a + 3) are true it follows
that P (a+ 4) is true.

• etc.

In this way we see that for any natural number n, P (n) is true.

Proof of the Formula

Theorem 2.2.7. Suppose

a1 = 1, a2 = 1, an = an−1 + an−2 if n ≥ 3. (2.16)

Then

an =
(φ+)n − (φ−)n√

5
. (2.17)

Proof. We use the strong principle of mathematical induction (with a = 2).
For the basic step, just check that (2.17) is true for n = 1 and n = 2, i.e.

1 =
φ+ − φ−√

5
and 1 =

(φ+)2 − (φ−)2√
5

.

For the inductive step take any k ≥ 2 and assume that (2.17) is true for all
n from 1 up to k. Now

ak+1 = ak−1 + ak
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(from (2.16) by setting n = k + 1)

=
(φ+)k−1 − (φ−)k−1√

5
+

(φ+)k − (φ−)k√
5

(because we are assuming that (2.17) is true for n = k − 1 and for n = k )

=
(φ+)k−1(1 + φ+)√

5
− (φ−)k−1(1 + φ−)√

5

=
(φ+)k−1(φ+)2√

5
− (φ−)k−1(φ−)2√

5

(since both φ+ and φ− are solutions of r2 = r + 1)

=
(φ+)k+1 − (φ−)k+1

√
5

.

Thus (2.17) is true for n = k + 1.

It follows from the Strong Principle of Mathematical Induction that (2.17)
is true for all natural numbers n.

Questions

Here are two examples of the method used in the proof of Theorem 2.2.5. If
you do them you will understand the method much better!

1 Find a formula for the nth Lucas number, see (2.12).
(The argument is similar to that in the proof of Theorem 2.2.5 on

page 21. You may save yourself some calculation effort if you look care-
fully at the way we did the calculations in the discussion before the proof.
Check that your answer really works for the cases n = 1, 2, 3.)

DON’T LOOK NOW but the answer is in footnote16 below.
2 Consider the sequence

1, 1, 3, 5, 11, 21, 43, 85, 171, . . .

The first 2 terms are a1 = 1 and a2 = 1. For n ≥ 2, an = an−1 + 2an−2.
Find a formula for the nth term.
Check your answer for n = 1, 2, 3.
HINT: The recurrence relation will be different from that for the Fi-

bonacci and Lucas sequences. However, it will have nicer solutions and
this will make the arithmetic easier.

DON’T LOOK NOW but the answer is in footnote17 below.

Next try the same 2 examples using induction.

3 Prove the formula in footnote 16 by the strong principle of induction.
Use the method on page 22 as a template for your argument.

4 Prove the formula in footnote 17 by the strong principle of induction.

16 The answer is
(

1+
√
5

2

)n−1
+

(
1−
√
5

2

)n−1
, i.e. (φ+)n−1 + (φ−)n−1.

17 The answer is − 1
3

(−1)n + 1
3

2n.
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2.3 Prime Numbers

Examining the building blocks of
a complex structure answers old
questions, invites new questions,
and leads to greater
understanding.

Overview

In [HM] it is shown that every natural number can be written as a product of
prime numbers and that there are infinitely many primes. The prime number
theorem is discussed (it estimates how “dense” the primes are in the set of all
natural numbers). Some famous theorems and conjectures in number theory
are discussed briefly (Fermat’s last Theorem, The Twin Prime Conjecture and
the Goldbach Conjecture).

In addition, in these Notes the greatest common divisor of two numbers
is discussed and the Euclidean algorithm is developed — this is important
material in general and in particular in Section 2.5 on RSA codes. We also
prove that the factorisation into primes is unique and show some consequences
that are important in understanding RSA encryption.

The Division Algorithm
[HM, 64–66]

Examples We know that 23 divided by 7 gives the quotient 3 and the re-
mainder 2. That is

23 = 3× 7 + 2.

Similarly

14 = 2× 7 + 0, 3 = 0× 7 + 3, 19 = 2× 7 + 5, 13 = 1× 7 + 6,

etc.
Sometimes it will be convenient to divide a negative integer by a natural

number (and of course we can also divide by a negative integer but not by 0).
For example

−3 = (−1)× 7 + 4, −16 = (−3)× 7 + 5, −28 = (−4)× 7.

In general if we divide an integer m by a natural number n then we get a
quotient q which may be positive or negative or 0, and a remainder r which is
in the range 0, 1, 2, . . . , n− 1. In symbols,

m = qn+ r.

Geometric Picture and Theorem Think of multiples of n being marked
off by points on the real line. The number m will either lie on one of these
points or between 2 consecutive points. See the diagram below.
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In the first case m = qn for some integer q. In the second case m will lie
between qn and (q + 1)n for some integer q.

In the picture below q = 2 and r = m− 2n.
The proof is motivated by the picture.

−3n −2n −n 0 n 2n 3n
| | | | | | |. . . . . . . . . . . . . . ..

m

Theorem 2.3.1 (The Division Algorithm). Suppose n is a natural number and
m is any integer. Then there exists a unique integer q, and a unique integer r
in the range 0, 1, 2, . . . , n− 1, such that

m = qn+ r.

Proof. 18 Consider the integers . . . ,−3n,−2n,−n, 0, n, 2n, 3n, 4n, . . . . The num-
ber m will either (see the previous diagram)
• equal some multiple of n, let’s call it qn, for a unique (“exactly one”)

integer q; or
• will lie strictly between some qn and (q+ 1)n, i.e. qn < m < (q+ 1)n for

a unique (“exactly one”) integer q.
In the first case, m = qn+ r where r = 0. In the second case m = qn+ r where
r = m− qn.

Dividing a Number We say 3 divides 21 (or equivalently, 3 is a factor of
21) because the remainder is 0 after dividing 21 by 3. We write 3 | 21. In
general, we have the following Definition.

Definition 2.3.2. Suppose n is a natural number and m is an integer.
We say n divides m if m = qn for some integer q, i.e. if the remainder in

the Division Algorithm is 0.
We write n | m and say “n divides m”. The integers q and n are called

factors of m.

For example, 3 | 27, 4 | 12, 7 | −21, but 4 - 6 (which we read as “4 does not
divide 6”).

Dividing Sums and Products It follows that if n divides m, then n also
divides the product mj where j is any natural number.

For example, 6 | 18. It follows that 6 | (18 × 5), 6 | (18 × 4), 6 | (18 × 23),
6 | 182, etc.

It also follows that if n divides k and n divides m then n divides the sum
k +m .

For example, 6 | 18 and 6 | 24 so 6 | (18 + 24).

The above are not surprising when you think about a few examples. It is
also possible to write out a short proof, and there are some Hints in Questions 1
and 2.

18In this proof we are using some simple properties about inequalities. See Footnote 5.
You may find this particular proof a little unsatisfactory. And in some ways it is. You

may think that the result we are “proving” here is just as obvious as the facts we are using
in the proof. I would not quite agree, but I think the difference is not great.

If you prefer, in this case you can just take the result as one of the basic facts we assume
about integers. Later we will prove results which are far less obvious.
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Prime Factorisation
[HM, 66,67]

Definition of Prime Numbers

Definition 2.3.3. A natural number p greater than one is called a prime
number if it is not the product of 2 smaller natural numbers.

In other words, p > 1 is prime if the only natural numbers which divide p
are 1 and p itself.

We do not include 1 as a prime number.

Examples of Prime Numbers The primes less than 500 are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,

97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179,

181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271,

277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379,

383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479,

487, 491, 499.

Natural Numbers are a Product of Primes The following Theorem is
also called the Fundamental Theorem of Arithmetic.

Theorem 2.3.4 (Prime Factorisation Theorem). Each natural number n greater
than 1 is either a prime or a product of primes.

Moreover, n can only be expressed as a product of primes in one way, except
for a reordering of factors.

Proof. Suppose n is a natural number greater than 1.
If n is a prime then we are done.
If n is not a prime this means n can be divided by some other natural

number larger than 1 but less than n and so n = a × b, say. If either a or b
is not prime it can be factored as a product of 2 smaller numbers. Continuing
in this way we get smaller and smaller factors and so after a finite number of
steps we get a factorisation of n where all the factors are prime.

The proof that n can only be expressed as a product of primes in one way,
except for a reordering of factors, is not done in [HM]. We discuss and prove it
here in the Section “Prime Factorisations are Unique” beginning on page 32,
see Theorem 2.3.13 on page 34.

For example: 9857934 = 2× 32 × 547663 and the numbers 2, 3, 547663 are
primes. Also 988788377878738398 = 2 × 32 × 13 × 541 × 7810704913967 and
all the factors are prime19.
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There are Infinitely Many Primes
[HM, 67–71]

This is discussed carefully in [HM]. Here I will briefly write out first the proof
in [HM] and then write a slightly different proof.

Theorem 2.3.5. There are infinitely many prime numbers.

First Proof. We will show that for every natural number n there is a prime
which is larger than n.

This is clearly true if n = 1, just take the prime 2.
So now we assume that n ≥ 2. Let

N = (1× 2× 3× · · · × n) + 1.

Then N > n.
If N is itself prime then we have a prime larger than n and we are done.
If N is not prime then it must have prime factors by the Prime Factorisation

Theorem. But none of these prime factors can be ≤ n, because any number
from 1 to n when divided into N gives the remainder 1. It follows that the
prime factors of N must be larger than n.

Thus whether or not N itself is prime, we have shown there is a prime larger
than n.

Second proof. Assume there are only finitely many primes and write them in
a list as

p1, p2, . . . , pk.

Let
M = (p1 · p2 · . . . · pk) + 1.

Since M is larger than any of p1, . . . , pk in the list of all primes, M itself is
not a prime.

This means that M has prime factors by the Prime Factorisation Theorem.
But each prime in the list of all primes p1, p2, . . . , pk when divided into M
give a remainder equal to 1. This means there are no primes which divide M ,
contradicting the fact that M must be a product of primes.

This contradiction means the assumption that there are only finitely many
primes is wrong.

How Dense are the Primes?
[HM, 71–73]

Numerical Experimentation It is conventional to let π(n)20 denote the
number of primes up to and including n.

In [HM] page 72 there is a table which shows n, π(n) and π(n)/n in its
first three columns for various values of n. You should think of π(n)/n as the
density of primes among the first n natural numbers.

19I did these factorisations by using the MAPLE program, which you will use in this
course.

20The “π” here is not the same as the usual “π” which is the ratio of the circumference
of a circle to its diameter.
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In column four page 72 of [HM] the corresponding values of 1/ ln(n) are
calculated. You may or may not have yet seen logarithms. By ln(n) is meant
something a little more complicated — it is the logarithm of n to the base
e instead of to the base 10. The number e ≈ 2.7182818284590452354 arises
naturally in many ways (calculus, compound interest, number theory, . . . ) and
was mentioned before on page 7. However, for our purposes, it is sufficient to
use the LN (or similar) key on your calculator to find ln(n).

It turns out that 1/ ln(n) is a very good approximation to the density (i.e.
proportion) of primes near n when n is very large.

An interesting example for us is when n has about 150 digits. This is
because in RSA cryptography in Section 2.5 we will be looking for primes of
this size. If we take n = 10150 and use Maple we find that 1/ ln(10150) ≈
0.0029 ≈ 1/345. Which means about one in every 345 natural numbers with
150 digits is prime. This means there are an awful lot of primes out there to
choose from — and in fact it is very easy to find them using Maple! See also
Question 4.

The Prime Number Theorem

Theorem 2.3.6. The number π(n) of primes less than or equal to n is asymp-
totic to n/ ln(n) as n gets larger and larger.

By “asymptotic” we mean that the ratio π(n)
/ n

ln(n)
gets as close as we

wish to 1 (i.e. converges to 1) as n gets larger and larger. We sometimes write

this as π(n) ∼ n/ ln(n). Even though π(n)
/ n

ln(n)
is getting closer and closer

to 1, it does so very slowly. You can see this in the right hand diagram, top
graph, of Fig. 2.1.

The fact π(n)
/ n

ln(n)
gets closer and closer to 1 is the same as saying the

ratio
π(n)

n

/ 1

ln(n)
gets closer and closer to 1 (i.e. converges to 1) as n gets

larger and larger. We write this as π(n)/n ∼ 1/ ln(n). Remember that π(n)/n
is the density of primes in the first n integers.

The fact π(n)
/ n

ln(n)
gets closer and closer to 1 does not mean that the

difference between π(n) and
n

ln(n)
gets closer and closer to 0 as n gets larger

and larger,21 and in fact this is not true. For example, n2 ∼ (n2 + n) (why? ),-
but the difference between n2 and (n2 +n) is n and this is certainly not getting
close to 0 as n gets larger and larger.

Another point worth noting is that it is also true that π(n) ∼ n/(ln(n)−1),
and this gives a better approximation to π(n) than n/ ln(n). See Fig 2.1.

The first proof of the Prime Number Theorem was given in 1896. There are
a number of different proofs, all complicated. The easiest way to do the proof

21For this reason the statement of the Prime Number Theorem on [HM, page 73] is too
vague and even misleading.
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Figure 2.1: From top to bottom on the left, graphs of n/(ln(n) − 1), π(n)

and n/ln(n). From top to bottom on the right, graphs of π(n)
/ n

ln(n)
and

π(n)
/ n

(ln(n)− 1)
. By 4E7 is meant 4× 107, etc.

involves some very deep properties of complex numbers.22 Unfortunately we
do not have nearly enough tools to prove this theorem at this stage.

Big Theorems and Big Conjectures

In [HM] there is a discussion of Fermat’s Last Theorem, which was finally [HM, 73–76]
proved after 350 years by Andrew Wiles (Princeton) in 1994. I think it fair to
assert that all experts in the field would agree that Fermat was mistaken in his
claim that he had a proof of the Theorem. (Andrew Wiles was a PhD student
of John Coates. John Coates was an honours student at ANU, later on the
ANU faculty, now at Cambridge.)

There is also mention in [HM] of the Twin Prime Question (are there in-
finitely many pairs of primes differing by 2 — such as 11 and 13, 17 and 19,
29 and 31, 41 and 43, . . . ) and the Goldbach Conjecture (every even num-
ber greater than 2 is a sum of 2 primes), which have been open questions for
centuries.

Finally, I would like to mention a famous problem that has been around
for over 200 years and was solved in 2004. Ben Green and Terry Tao showed
for every natural number k that there are arithmetic progressions23 of length k
which consist of prime numbers. For example, 199, 409, 619, 829, 1039, 1249,
1459, 1669, 1879, 2089 is an arithmetic progression of primes of length 10, with
difference 210 between any two successive primes in this sequence.

22I hope that by now you have some feeling for the fact that the different parts of math-
ematics have wonderful, deep and initially surprising connections with each other.

23An arithmetic progression is an increasing sequence of numbers such that the difference
between any 2 consecutive numbers in the sequence is the same.
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Terry Tao is an Australian mathematician from Adelaide, who recently
spent some time at ANU and is now at the University of California in Los
Angeles. In 2006 he received the Fields Medal in mathematics for the above
work and much else. He is one of the youngest, and the only Australian,
to receive this award. The Fields medal is considered to be the Nobel Prize
equivalent in mathematics.

?Greatest Common Divisor
The material in this Section is not in [HM]. You may prefer to look at it briefly
and come back to it later. It is very important in RSA cryptography.Definition 2.3.7. The greatest common divisor of two natural numbers a and

b is the largest natural number which divides both a and b.
If d is the greatest common divisor of a and b we write d = gcd(a, b).

Another terminology is highest common factor.
For example, gcd(3, 6) = 3, gcd(1, 6) = 1, gcd(4, 10) = 2. What about

gcd(2261, 1275)? See below.

Definition 2.3.8. If the greatest common divisor of two numbers is 1 then we
say the two numbers are relatively prime.

In other words, two natural numbers are relatively prime if there is no
natural number which is a common factor of both other than 1.

For example, 1 and 6, 14 and 15, 5 and 12, 6 and 25, are relatively prime.

The Euclidean Algorithm24 There is a mechanical procedure for finding
any gcd, called the Euclidean Algorithm25 which we now describe.

If we divide 1275 into 2261 we get 2261 = 1 · 1275 + 986.
It follows from this equation that if d divides both 2261 and 1275 then

d divides both 1275 (of course) and 986. Moreover, it also follows from the
equation that if d divides both both 1275 and 986 then d divides both 2261
and 1275.

This implies in particular that gcd(2261, 1275) = gcd(1275, 986). In this
way we will keep reducing the problem to finding the gcd of smaller and smaller
pairs of numbers.

Two Worked Examples This is how we set out the Euclidean Algorithm
to find gcd(2261, 1275) in the example we were looking at:

2261 = 1× 1275 + 986 so gcd(2261, 1275) = gcd(1275, 986),

1275 = 1× 986 + 289 so gcd(1275, 986) = gcd(986, 289),

986 = 3× 289 + 119 so gcd(986, 289) = gcd(289, 119),

289 = 2× 119 + 51 so gcd(289, 119) = gcd(119, 51),

119 = 2× 51 + 17 so gcd(119, 51) = gcd(51, 17),

51 = 3× 17 + 0 so gcd(51, 17) = 17.

(2.18)

24An algorithm is a “mechanical” routine which can be programmed into a computer and
which will eventually stop and give the required answer.

25Same Euclid as in geometry. His books, written about 300 BC, contain the algorithm.
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The idea is to continue until the remainder is 0. This will eventually occur
and the Euclidean Algorithm will stop as we explain below.

It follows that gcd(2261, 1275) = gcd(1275, 986) = · · · = gcd(51, 17) = 17.

Here is another example. Find gcd(245, 24).

245 = 10× 24 + 5 so gcd(245, 24) = gcd(24, 5),

24 = 4× 5 + 4 so gcd(24, 5) = gcd(5, 4),

5 = 1× 4 + 1 so gcd(5, 4) = gcd(4, 1)

4 = 1× 4 + 0 so gcd(4, 1) = 1.

(2.19)

It follows that gcd(245, 24) = gcd(24, 5) = gcd(5, 4) = gcd(4, 1) = 1.
Again we continued until the remainder was 0.

To make sure you understand the Euclidean Algorithm do Question 5. -

Programming the Euclidean Algorithm Because the method is quite
mechanical, one can program a computer to do the Euclidean Algorithm.

The Euclidean Algorithm Eventually Stops First arrange the pair of
natural numbers so that the larger number comes first. (In the very uninter-
esting case where the 2 numbers are the same then the algorithm stops after
one step since we get a quotient one and a remainder zero. The gcd is then the
same as the two numbers.)

After each step we end up with a smaller pair of natural numbers. The
first (i.e. larger) number in the new pair is the same as the second (i.e. smaller)
number from the previous pair, and the second number in the new pair is the
remainder that was obtained.

So long as the remainder is larger than 0, each pair of natural numbers is
smaller than the previous pair. Eventually we will come to a situation where
the remainder is 0. Otherwise the pair of natural numbers will keep decreasing
until it is just (1,1), but then at the next step the remainder is also 0 in this
case.

Since the pair of natural numbers cannot go below (1,1) we eventually
obtain a remainder which is 0, and then the gcd is the smaller number in the
pair which gave this remainder.

The Extended Euclidean Algorithm By working backwards in (2.18)
from the second last line to line 1 we can use the calculations to express the
greatest common divisor 17 as a multiple of 119 + a (negative) multiple of 51,
and then as a multiple of 289 + a multiple of 119, and then as a multiple of
986 + a multiple of 289, and then as a multiple of 1275 + a multiple of 9986,
and finally as a multiple of 2261 + a multiple of 1275. The “multiple” in each
case may be a positive or a negative integer.



32 Numbers and Cryptography

Here we do the calculation.

17 = 119− 2× 51 from line 5 of (2.18)

= 119− 2× (289− 2× 119) from line 4 of (2.18)

= −2× 289 + 5× 119 by simplifying

= −2× 289 + 5× (986− 3× 289) from line 3 of (2.18)

= 5× 986− 17× 289 by simplifying

= 5× 986− 17× (1275− 1× 986) from line 2 of (2.18)

= −17× 1275 + 22× 986 by simplifying

= −17× 1275 + 22× (2261− 1× 1275) from line 1 of (2.18)

= 22× 2261− 39× 1275 by simplifying.

Thus we have found that 17 = 22×2261−39×1275 (check the answer! ) and
so expressed gcd(2261, 1275) (which is 17) as a multiple of 2261 + a multiple
of 1275.

In a similar way we can express gcd(245, 24) (which we saw was 1) as a
multiple of 245 + a multiple of 24.

1 = 5− 1× 4 from line 3 of (2.19)

= 5− 1× (24− 4× 5) from line 2 of (2.19)

= −1× 24 + 5× 5 by simplifying

= −1× 24 + 5× (245− 10× 24) from line 1 of (2.19)

= 5× 245− 51× 24 by simplifying.

Thus we have found that 1 = 5 × 245 − 51 × 24 (check the answer! ) and so
expressed gcd(245, 24) (which is 1) as a multiple of 245 + a multiple of 24.

The above argument gives a general result.

Theorem 2.3.9 (The Extended Euclidean Algorithm). Suppose a and b are
natural numbers and d = gcd(a, b). Then there exist integers s and t such that
d = sa+ tb.

Moreover, there is an algorithm for finding s and t.

Proof. The method used above first for a = 2261 and b = 1275, and then for
a = 245 and b = 24, gives an algorithm which works for any a and b.

To make sure you understand the Extended Euclidean Algorithm now do
Question 6.-

? Prime Factorisations are Unique
The material in this Section is not in [HM]. You may prefer to look at it briefly
and come back to it later. Discussion of The Result We will prove the second half of Theorem 2.3.4,

that if you write a number as a product of prime factors in 2 ways then after
perhaps changing the order of the factors the factorisations are the same. In
other words, each prime that occurs in one factorisation occurs exactly the
same number of times in the other factorisation. See Theorem 2.3.13.
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You possibly already knew this result. But it is not as obvious as might
first appear — see the following discussion.

However, don’t get concerned if the following is confusing. The main point
is just that you know the result.

Two Questions
Q1 We know that 3 × 5 6= 2 × 7 and 7 × 13 6= 3 × 31. Are there some

gargantuan primes which are all different, let’s call them p, q, r and s,
such that p× q = r × s?

The answer is NO, but it is not obvious why this is so.
Q2 Here is a related Question. If p is a prime and p | (a× b) where a and b

are natural numbers, does it follow that p divides at least one of a or b?
We will show that the answer is YES. But suppose we could actually

find different primes p, q, r and s as in the first question so that pq = rs.
Then we would have an example where p | r × s but p - r and p - s.

A Division Property of Primes We will first answer Q2.

Theorem 2.3.10. If p is prime and p | ab where a and b are natural numbers,
then p | a or p | b.26

Proof. Suppose p is prime and p | ab.
If p | a then we are done. So assume that p - a. It follows that gcd(p, a) = 1.
(Reason: Which natural numbers are divisors of both p and a? Because

such a number divides p and p is prime, any divisor must be p or 1. But we
have seen the divisor cannot be p since we are assuming that p - a. So the only
divisor of both p and a is 1.)

By the Extended Euclidean Algorithm there are integers s and t such that

1 = sa+ tp.

Multiplying through by b we get

b = sab+ tpb.

Because p | ab and certainly p | p it follows that p | (sab + tpb). (See the
discussion “Dividing Sums and Products” on page 25.) But this means p | b
and so we are done.

For example, if someone (who you trust not to make a mistake!) told you
that 7 divides 1,683,136 and that 1,683,136 = 952×1768, then you would know
immediately that 7 divides at least one of 952 and 1768 (in fact, 7 divides 952
but not 1768).

We now see that the answer to Q1 is NO.
For suppose p, q, r and s are primes and p× q = r× s. Then p | rs and so,

by Theorem 2.3.10, p | r or p | s. But because r is prime the only divisors of
r are 1 and r, and since any prime p is larger than one, it follows that if p | r
then p = r. Similarly if p | s then p = s.

26In mathematics, if P and Q are statements and “P or Q” is true, then we mean that at
least one of P or Q is true, but we also allow the possibility that both statements are true.
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Thus p must equal one of r or s. Similarly, q must equal one of r or s.

Theorem 2.3.10 can be extended to the product of more than two natural
numbers.

Corollary 2.3.11. 27 If p is prime and p | a1 · a2 · . . . · ak where a1, . . . , ak are
natural numbers, then p divides at least one of a1, . . . , ak.

Proof. If k = 1 then the result is of course immediate!
So suppose k ≥ 2 and suppose p is prime and p | a1a2 · . . . · ak.
From the previous Theorem p | a1 or p | a2 · . . . · ak. If p | a1 we are done.
If p | a2 · . . . · ak then from the previous Theorem p | a2 or p | a3 · . . . · ak. If

p | a2 we are done.
Continuing in this way the last thing that can happen is p | ak−1ak. Then

from the previous Theorem p | ak−1 or p | ak.
Thus p divides at least one of a1, a2, . . . , ak.

In Theorem 2.3.10 we really showed something more general.

Theorem 2.3.12. Suppose n, a, b are natural numbers, suppose n | ab and
suppose n and a are relatively prime. Then n | b.

Proof. In the proof of Theorem 2.3.10 we only used the fact that p and a were
relatively prime, but otherwise not the fact that p itself was prime. It then
followed that p | b. The only difference here is that we are using the letter n
instead of p.

For example, if someone (who once again you trust not to make a mistake)
told you that 12 divides 973,128,240 and that 973, 128, 240 = 35× 27, 803, 664,
then because 12 and 35 are relatively prime you would know immediately that
12 divides 27,803,664.

Uniqueness of Prime Factorisation We proved in Theorem 2.3.4 on page 26
that every natural number larger than 1 can be written as a product of primes.

For example 9857934 = 2 × 3 × 3 × 547663 and 988788377878738398 =
2× 3× 3× 13× 541× 7810704913967.

We will now complete the proof of Theorem 2.3.4 by showing that we can
write a natural number as a product of primes in essentially just one way.

Theorem 2.3.13. Let n be a natural number and suppose

n = p1p2 · . . . · pj = q1q2 · . . . · qk, (2.20)

where p1, . . . , pj , q1, . . . , qk are all primes. Then j = k and both factorisations
are the same except possibly for a reordering of the factors.

27A corollary is a theorem which is a relatively easy consequence or extension of a previous
theorem.
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Proof. Since p1 | n this means that p1 | q1q2 · . . . · qk. From Corollary 2.3.11 it
follows that p1 | qi for some i. But qi is prime and so p1 = qi.

If we cancel p1 and qi from the left and right respectively of the second
equality in (2.20) we get

p2 · . . . · pj = q′1q
′
2 · . . . · q′k−1,

where q′1, q
′
2, . . . , q

′
k−1 are the primes remaining after cancelling qi.

If we keep cancelling in this way we see that the number of factors on each
side are the same and each factor occurs the same number of times on each
side. This means that both factorisations are the same except possibly for a
reordering of the factors.

Questions

1 Prove that if n | m and n | k then n | (m+ k).
Here is a HINT.28

2 Prove that if n | m and j is an integer then n | mj.
Here is a HINT.29

3 Prove that if n | m and n | k then n | (m− k).
4 There are exactly 10150 natural numbers from 1 up to 10150. What

fraction of these natural numbers have exactly 150 digits?
Make life easier and first do the 102 case, the 103 case and the 104

case.
5 Use the Euclidean Algorithm to find by hand

a) gcd(1188, 385),
b) gcd(1177, 509).

DON’T LOOK NOW but the answer is in footnote30 below.
6 Use the Euclidean algorithm calculations from the previous Question to

a) Express gcd(1188, 385) as a sum of multiples of 1188 and 385. Check
your answer.

b) Express gcd(1177, 509) as a sum of multiples of 1177 and 509. Check
your answer.

28We know m = qn and k = sn for certain integers q and s. What can you say about m+k?
29We know m = qn for some integer q. What can you say about mj?
30The answers are 11 and 1 respectively.
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2.4 Modular Arithmetic

Generalising a simple idea like
telling time on a clock can lead to
important applications.

Overview

A new type of arithmetic, modular arithmetic, is discussed. For example, mod
6 arithmetic is done by just using the integers from 0, 1, 2, 3, 4, 5. The sum and
product of two integers mod 6 is the remainder after dividing the usual sum
and product by 6.

Applications to bar codes and bank accounts are discussed. In Section 2.5
we will see that modular arithmetic is basic for internet security.

We prove some important Theorems for mod arithmetic which are needed
for RSA cryptography and are basic in number theory. The most important of
these is Fermat’s Little Theorem

Examples of Modular Arithemetic
[HM, pp 82–87]

On Being Equivalent Mod 6 We say two integers are equivalent mod 6 if
they have the same remainder after division by 6. For example, 17 and 5 are
equivalent mod 6 since 17 = 6× 2 + 5. We write 17 ≡ 5 mod 6 and say “17 is
equivalent to 5 mod 6”.

Often we just write 17 ≡ 5 and say “17 is equivalent to 5”, provided it is
understood that (in this case) we mean “mod 6”.

We can also do this for negative integers. For example, −4 = 6× (−1) + 2,
and so −4 ≡ 2 mod 6.

The clock with the numbers 0, 1, 2, 3, 4, 5 is a good way to visualise what
is happening. As we move around the clock through 0, 1, 2, 3, 4, 5 the next
number is 0, and this corresponds to the fact 6 ≡ 0. Similarly 7 ≡ 1, 8 ≡ 2.
We can also move backwards (i.e. anticlockwise) from 0 and so we get −1 ≡ 5,
−2 ≡ 4, . . . , −5 ≡ 1, −6 ≡ 0, −7 ≡ −1 ≡ 5, etc.

More generally

−6 ≡ 0 ≡ 6 ≡ 12 ≡ 18 ≡ . . . mod 6

−5 ≡ 1 ≡ 7 ≡ 13 ≡ 19 ≡ . . . mod 6

−4 ≡ 2 ≡ 8 ≡ 14 ≡ 20 ≡ . . . mod 6

−3 ≡ 3 ≡ 9 ≡ 15 ≡ 21 ≡ . . . mod 6

−2 ≡ 4 ≡ 10 ≡ 16 ≡ 22 ≡ . . . mod 6

−1 ≡ 5 ≡ 11 ≡ 17 ≡ 23 ≡ . . . mod 6

Every integer, positive or negative, is equivalent mod 6 to one of the integers
0, 1, 2, 3, 4, 5.
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Adding and Multiplying Mod 6 What happens if we add 2 large integers
and we want the result mod 6? For example, what is 2137 + 512 mod 6? We
can work out the answer as follows:

2137 + 512 = (6× 356 + 1) + (6× 85 + 2) ≡ (0 + 1) + (0 + 2) = 3 mod 6.

In general, if we are adding two or more integers and want the result mod
6 we just replace each number by its remainder after dividing by 6, then add
the remainders, then take the remainder mod 6 once again if necessary.

For example, working mod 6

135 + 91 + 46 ≡ 3 + 1 + 4 = 8 ≡ 2 mod 6.

Likewise if we multiply 2137 and 512 and want the answer mod 6:

2137× 512 = (6× 356 + 1)× (6× 85 + 2) = (6× 356× 6× 85)

+ (6× 356× 2) + (1× 6× 85) + 1× 2 ≡ 1× 2 = 2 mod 6.

In general, if we are multiplying two integers and want the answer mod 6 we
can replace any multiple of 6 by 0. So we would usually shorten the previous
calculation to

2137× 512 = (6× 356 + 1)× (6× 85 + 2) ≡ 1× 2 = 2 mod 6.

Likewise, if we are multiplying more than two integers and want the answer
mod 6 we can replace any multiple of 6 by 0. Equivalently, we replace each
number by its remainder after dividing by 6, and then multiply.

Finally, a similar thing happens with subtraction. For example, working
mod 6,

182− 93 ≡ 2− 3 = −1 ≡ 5 mod 6.

Now try Question 1 on page 50 to test your understanding. -

?Exponentiating Mod Wise The method in Q2 here is not in [HM].
Q1. What is 21361035 mod 7? Now it would not be very smart to first

multiply 2136 by itself 1035 times (the result is 3447 digits long) and then
divide by 7. It would take quite a while and you would probably make a
mistake. Here is a better way:

21361035 = (7× 305 + 1)1035 ≡ 11035 = 1 mod 7

Next comes a trickier question. It is the type of calculation that needs to
be done for RSA cryptography, see Section 2.5. In practice the calculation will
be done by a computer, but you should try to understand the idea.

Q2. What is 507107 mod 14?

507107 = (14× 36 + 3)107 ≡ 3107 mod 14.

What next? We don’t really want to multiply 3 by itself 107 times.
In cases like this we write the exponent 107 as a sum of powers of 2.
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First note that

21 = 1, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128, 28 = 256,

29 = 512, 210 = 1024, 211 = 2048, 212 = 4096, . . .

By subtracting off the highest possible power of 2 at each step we get

107 = 26 + 43 = 26 + 25 + 11 = 26 + 25 + 23 + 3 = 26 + 25 + 23 + 21 + 1.

So we can write

3107 = 32
6+25+23+21+1 = 364+32+8+2+1 = 364 × 332 × 38 × 32 × 3.

Next successively compute 32, 34, 38, 316, 332, 332, 364 mod 14.

32 = 9

34 = (32)2 ≡ 92 (by previous step) ≡ 11

38 = (34)2 ≡ 112 (by previous step) = 121 ≡ 9

316 = (38)2 ≡ 92 (by previous step) = 81 ≡ 11

332 = (316)2 ≡ 112 (by previous step) = 121 ≡ 9

364 = (332)2 ≡ 92 (by previous step) = 81 ≡ 11.

(See how the calculation follows a pattern.)
Putting this all together we get mod 14 that

3107 = 364+32+8+2+1 = 364 × 332 × 38 × 32 × 3

≡ 11× 9× 9× 9× 3 = 99× 81× 3 (for example) ≡ 1× 11× 3 = 33 ≡ 5.

So the answer to our question is that

507107 ≡ 5 mod 14.

Now try Questions 2 and 3 to test your understanding.-

Tables for Mod Arithmetic Here are the tables for mod 1 up to mod 8
arithmetic. Make sure you check them.

When we write “⊕” (or “ ⊗”) we mean first do ordinary addition (or multi-
plication) and then take the remainder mod n. With this new type of addition
and multiplication we often just operate on numbers from 0 up to n−1, in any
case the result is a number in this range.

mod 1
⊕ 0
0 0

⊗ 0
0 0

mod 2
⊕ 0 1
0 0 1
1 1 0

⊗ 0 1
0 0 0
1 0 1

mod 3

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

⊗ 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1
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mod 4

⊕ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

⊗ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

mod 5

⊕ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

⊗ 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

mod 6

⊕ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

⊗ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

mod 7

⊕ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

⊗ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

mod 8

⊕ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0 1
3 3 4 5 6 7 0 1 2
4 4 5 6 7 0 1 2 3
5 5 6 7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6

⊗ 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

See also Table 2.1 on page 64 for the mod 20 multiplication table.

Patterns in the Mod Tables Looking at the tables we observe:
• If two numbers are added or multiplied, the order of addition and multi-

plication does not matter.
That is, a ⊕ b = b ⊕ a and a ⊗ b = b ⊗ a. This is not surprising,

since a+ b = b+ a (ordinary addition) and so a+ b and b+ a each have
the same remained when divided by n. This means that a⊕ b = b⊕ a.

Similarly, a× b = b× a (ordinary multiplication) and so a× b and
b× a each have the same remainder when divided by n. This means that
a⊗ b = b⊗ a.
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• In the addition tables each row is a cyclic rearrangement of the top row.
In each row of the mod n addition table, every number 0, 1, 2, . . . , n−

1 occurs exactly once.
• Next look at the multiplication tables mod n.

If we multiply by 0 then every entry in that row is 0.
What happens if we multiply by a number other than 0?

1. Multiplication by r where r and n have no common factor other
than 1. In other words gcd(r, n) = 1. This always happens if n
is prime and sometimes happens for other n; such as n = 8 and
r = 1, 3, 5; and such as n = 6 and r = 1, 5.

In this case the numbers in the row corresponding to r each
occur exactly once.

2. Multiplication by r where r and n have a common factor larger
than 1.

In this case some numbers do not occur in the corresponding
row while others occur more than once.

Check every row in every multiplication table.-
• Here is an important consequence of the preceding observation.

Suppose r is a natural number less than n, and r and n have no
common factor other than 1, or in other words gcd(r, n) = 1. Then there
is exactly one natural number s less than n such that rs ≡ 1 mod n.

We will prove this in Theorem 2.4.1.
We say that s is the multiplicative inverse of r mod n.
Have a look at the mod 5 and mod 6 multiplication tables and find-

the multiplicative inverse of r if r = 1, 2, 3, 4 in the mod 5 case and if
r = 1, 5 in the mod 6 case.

?Properties of Mod Arithmetic
This material is not in [HM].

Addition and Multiplication Properties Mod n arithmetic satisfies the
following properties which are also satisfied by ordinary arithmetic with in-
tegers. Notice that the analogue of 1(d) is true for integers but not for the
natural numbers.

Here we only work with integers a, b, c in the range 0, 1, 2, . . . , n− 1. When
we “add” or “multiply” them with ⊕ or ⊗ we again get integers in the range
0, 1, 2, . . . , n− 1.

1. Addition
a) a⊕ b = b⊕ a
b) a⊕ (b⊕ c) = (a⊕ b)⊕ c
c) a⊕ 0 = a
d) For each number a (from 0, 1, . . . , n−1) there is exactly one number

b (from 0, 1, . . . , n− 1) such that a⊕ b = 0
2. Multiplication

a) a⊗ b = b⊗ a
b) a⊗ (b⊗ c) = (a⊗ b)⊗ c
c) a⊗ 1 = a
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3. Connection between addition and multiplication
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

You can check that these properties are true for each table. But that is
very tedious and will not tell you what happens in general. However, we will
now explain why these properties are always true for mod arithmetic.

In the case of 1(a), 1(b), 1(c), 2(a), 2(b), 2(c), and 3, we know that these
properties are true for ordinary addition and multiplication. For example,
a× b = b× a for ordinary multiplication. It follows that a× b and b× a have
the same remainder after dividing by n. In other words a⊗ b = b⊗ a.

A similar argument works for the other properties mentioned.
Write out the similar argument for 3. -
In the case of 1(d) b = 0 if a = 0 and b = n− a if a = 1, 2, . . . , n− 1.
Convince yourself this is true. -

Modular Inverses Here is the Theorem mentioned in the last dot point on
page 40 concerning Patterns in the Mod Tables. Moreover, we will see how we
can calculate the multiplicative inverse.

In the following Theorem, s is called the multiplicative inverse of r mod n.
Usually r < n, but this is not actually needed.

Theorem 2.4.1. Suppose that r and n are natural numbers which are relatively
prime. Then there is exactly one natural number s < n such that rs ≡ 1 mod n.

Proof. There are two facts we need to prove:
1. There is at least one natural number s < n such that rs ≡ 1 mod n.
2. If s1 and s2 are two natural numbers both less than n such that rs1 ≡

1 mod n and rs2 ≡ 1 mod n, then s1 = s2.

Proof of 1. Because r and n are relatively prime, gcd(r, n) = 1.
We know from Theorem 2.3.9 that there are integers ŝ and t such that

1 = ŝr + tn.

Because n | tn,
1 ≡ ŝr mod n. (2.21)

We only know ŝ is an integer, it may be negative or ≥ n.31

However, if we add or subtract enough multiples of n to ŝ we will get a
number s = ŝ+ kn in the range 0, . . . , n− 1. The number k may be a positive
or negative integer. For example, in the following diagram k = 2:

31For example, in (2.19) we saw that gcd(24, 245) = 1, and in the discussion just before
Theorem 2.3.9 we obtained

1 = (−51)× 24 + 5× 245.

It follows that
1 ≡ (−51)× 24 mod 245.

The problem is that −51 is certainly not in the range 1, . . . , 244. However, if we add 245
to −51 we get 194. It follows that

1 ≡ (−51)× 24 ≡ (−51 + 245)× 24 = 194× 24 mod 245.

So the multiplicative inverse of 24 mod 245 is 194.
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−2n −n 0 n∣∣ |
∣∣ |

∣∣ |
∣∣. . . . . . . . . . . . . . .

ŝ ŝ+n s= ŝ+2n

It follows that working mod n

sr = (ŝ+ kn)r

≡ ŝr (since n | kn)

≡ 1 mod n (from (2.21)).

We know s is in the range 0, . . . , n − 1. But we cannot have s = 0 since
then sr ≡ 0 mod n. So s is actually in the range 1, . . . , n− 1.

This completes the proof of 1.

Proof of 2. Suppose s1 and s2 are two natural numbers, both less than n, such
that

rs1 ≡ 1 mod n, rs2 ≡ 1 mod n.

For convenience, if s1 and s2 are not equal we let s1 be the larger of the two
numbers. In any case, s1 ≥ s2.

By subtraction, rs1 − rs2 ≡ 0 mod n.
It follows that r(s1 − s2) ≡ 0 mod n.
This means n | r(s1 − s2). But r and n are relatively prime, and so from

Theorem 2.3.12 on page 34 it follows that n | (s1 − s2). That is, s1 − s2 is a
multiple of n.

But s1 ≥ s2 and both are less than n, and so 0 ≤ s1 − s2 < n.
These two facts together imply s1 − s2 = 0, i.e. s1 = s2.

Applications of Modular Arithmetic
[HM, 87–88]

Barcodes The barcodes used on goods in Australia appear to mostly follow
the European Article Numbering Code EAN-13, a different scheme from that
discussed in [HM].

In these barcodes there are 13 digits. A typical example is 9 315999 091207,
i.e. one digit then six digits and then another six digits. The first two digits
“93” are reserved for Australia. The next five (here 15999) identify the manu-
facturer. The next five (here 09120) identify the product. The last digit (here
7) is called the check digit.

If we write the digits as d1, d2, d3, . . . , d13 then the weighted sum S is defined
by

S = d1 + 3d2 + d3 + 3d4 + d5 + 3d6 + d7 + 3d8 + d9 + 3d10 + d11 + 3d12 + d13

= (sum of odd numbered digits) + 3× (sum of even numbered digits).
(2.22)

We say that the odd digits have weight 1 and the even digits have weight 3.
The check digit d13 is always selected so

S ≡ 0 mod 10. (2.23)
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With d13 chosen in this way we say the bar code is valid. A computer can
easily and automatically check the validity.

In the example 9 315999 091207, working mod 10 we get

S = (9 + 1 + 9 + 9 + 9 + 2 + 7) + 3× (3 + 5 + 9 + 0 + 1 + 0) ≡ 6 + 3× 8 ≡ 0.

(It is easy to do this in your head working mod 10: for example 9 + 1 = 0,
adding another 9 gives 9, another 9 gives 8, another 9 gives 7, adding 2 gives
9, adding 7 gives 6, etc.) So this is a valid barcode.

Detecting Barcode Errors We now examine some common errors that
can be picked up by checking if (2.23) is true.

Changing One Digit Suppose the second digit in 9 315999 091207 is
mistakenly increased by 4 from 3 to 7. The original weighted sum S satisfies

S ≡ 0 mod 10.

Since the digit which was changed was the second it is an even numbered digit.
From (2.22) the new weighted sum is S + 3× 4 = S + 12, and this satisfies

S + 12 ≡ 0 + 2 = 2 mod 10.

So we see the new bar code is not a valid bar code.

In general, suppose a single even numbered digit is mistakenly changed by
n, perhaps increased and perhaps decreased.

The original weighted sum was S and this must be equivalent to 0 mod
10. The new weighted sum will be S ± 3n. So the new weighted sum will be
equivalent to 0 mod 10 if and only if 3n ≡ 0 mod 10, which is the same as
requiring that the remainder after dividing 3n by 10 be 0.

We can draw up a table for the different possible values of n.

n 1 2 3 4 5 6 7 8 9
3n 3 6 9 12 15 18 21 24 27

remainder after dividing 3n by 10 3 6 9 2 5 8 1 4 7

This means the new weighted sum S± 3n is never equivalent to 0 mod 10 and
so the new bar code is not valid.

If a single odd numbered digit is changed by n then it is easier to see what
happens. The new weighted sum will be S ± n. This will be equivalent to 0
mod 10 if and only if n is a multiple of 10, which never happens as n will be
one of the numbers 1, 2, . . . , 9. This again means the new weighted sum S ± n
is never equivalent to 0 mod 10 and so the new bar code is not valid.

The final conclusion is that if any single digit in a barcode is inadvertently
changed then the bar code will no longer be a valid bar code.
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Transposing Two Digits Suppose the first digit d1 and the following
digit d2 in a valid barcode are different and they are accidently switched. (In
our example this would mean changing 9 315999 091207 to 3 915999 091207.)
Then the weighted sum will change from

S = (d1 + 3d2) + d3 + 3d4 + d5 + 3d6 + d7 + 3d8 + d9 + 3d10 + d11 + 3d12 + d13

to

S∗ = (d2 + 3d1) + d3 + 3d4 + d5 + 3d6 + d7 + 3d8 + d9 + 3d10 + d11 + 3d12 + d13.

The change in the weighted sum is S∗−S = 2d1−2d2, i.e. S∗ = S+2(d1−d2).
Remember that the original barcode is a valid one and so the weighted sum

S is divisible by 10. The new weighted sum S∗ will be divisible by 10 if and
only if 2(d1 − d2) is divisible by 10. The only way this can happen is if d1 and
d2 differ by 5 (remember that we are assuming d1 and d2 are different, since if
they are equal there is no problem with switching them).

Thus by doing a barcode check we can see there is an error if the first 2
digits are switched, unless these 2 digits differ by exactly 5.

Almost the same argument works if we switch any 2 different adjacent digits.
The new bar code will be not be valid unless the 2 switched digits differ by 5.

In the particular case of our example 9 315999 091207, every switch of
different adjacent digits would be picked up as an error. But in the example
9 315999 097207 if the 72 was switched to 27 then the fact that a mistake was
made will not be detected.

Other Error Checking Methods For cheques see [HM, page 88]. The last
9 digits are the ones to look at.

For ISBN numbers (on books) see [HM, pp 92,93, Q 32–34]. For airline
tickets [HM, pp 92, Q 29].

Now try Questions 5 and 6.-

?More Properties of Modular Arithmetic
Most of the remaining material on Modular Arithmetic is not in [HM]. But it
will help you understand why RSA cryptography works.We will need the ideas and Theorem in this Section when we explain the math-

ematics behind RSA cryptography in Section 2.5.

Tables of Powers Here are tables of powers for mod 2 up to mod 8.
For example, in the mod 5 table in the column under a = 3 we have com-

puted the powers 31, 32, 33, 34, 35, 36, 37 and taken the remainder after dividing
each by 5. This gives 3, 4, 2, 1, 3, 4, 2. Likewise, in the column under a = 4
we have computed the powers 41, 42, 43, 44, 45, 46, 47 and taken the remainder
after dividing each by 5. This gives 4, 1, 4, 1, 4, 1, 4.

Again in the mod 5 table, in the row corresponding to a4 we have the powers
04, 14, 24, 34, 44, 54, 64, 74 after dividing each by 5 and taking the remainder.
This gives 0, 1, 1, 1, 1, 0, 1, 1. Likewise in the row corresponding to a5 we have
the powers 05, 15, 25, 35, 45, 55, 65, 75 after dividing each by 5 and taking the
remainder. This gives 0, 1, 2, 3, 4, 0, 1, 2.
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powers
mod 3

a 0 1 2 3 4 5 6
a1 0 1 2 0 1 2 0
a2 0 1 1 0 1 1 0
a3 0 1 2 0 1 2 0
a4 0 1 1 0 1 1 0
a5 0 1 2 0 1 2 0

powers
mod 4

a 0 1 2 3 4 5 6
a1 0 1 2 3 0 1 2
a2 0 1 0 1 0 1 0
a3 0 1 0 3 0 1 0
a4 0 1 0 1 0 1 0
a5 0 1 0 3 0 1 0
a5 0 1 0 1 0 1 0

powers
mod 5

a 0 1 2 3 4 5 6 7
a1 0 1 2 3 4 0 1 2
a2 0 1 4 4 1 0 1 4
a3 0 1 3 2 4 0 1 3
a4 0 1 1 1 1 0 1 1
a5 0 1 2 3 4 0 1 2
a6 0 1 4 4 1 0 1 4
a7 0 1 3 2 4 0 1 3

powers
mod 6

a 0 1 2 3 4 5 6 7 8
a1 0 1 2 3 4 5 0 1 2
a2 0 1 4 3 4 1 0 1 4
a3 0 1 2 3 4 5 0 1 2
a4 0 1 4 3 4 1 0 1 4
a5 0 1 2 3 4 5 0 1 2
a6 0 1 4 3 4 1 0 1 4
a7 0 1 2 3 4 5 0 1 2
a8 0 1 4 3 4 1 0 1 4

powers
mod 7

a 0 1 2 3 4 5 6 7 8 9
a1 0 1 2 3 4 5 6 0 1 2
a2 0 1 4 2 2 4 1 0 1 4
a3 0 1 1 6 1 6 6 0 1 1
a4 0 1 2 4 4 2 1 0 1 2
a5 0 1 4 5 2 3 6 0 1 4
a6 0 1 1 1 1 1 1 0 1 1
a7 0 1 2 3 4 5 6 0 1 2
a8 0 1 4 2 2 4 1 0 1 4
a9 0 1 1 6 1 6 6 0 1 1
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powers
mod 8

a 0 1 2 3 4 5 6 7 8 9 10
a1 0 1 2 3 4 5 6 7 0 1 2
a2 0 1 4 1 0 1 4 1 0 1 4
a3 0 1 0 3 0 5 0 7 0 1 0
a4 0 1 0 1 0 1 0 1 0 1 0
a5 0 1 0 3 0 5 0 7 0 1 0
a6 0 1 0 1 0 1 0 1 0 1 0
a7 0 1 0 3 0 5 0 7 0 1 0
a8 0 1 0 1 0 1 0 1 0 1 0
a9 0 1 0 3 0 5 0 7 0 1 0
a10 0 1 0 1 0 1 0 1 0 1 0

See also Table 2.2 on page 65 for the mod 33 power table.

There are simpler ways to calculate the tables than by first finding every
power and then finding the remainder. For example in the mod 7 table with
the column corresponding to powers of 4 we have, working mod 7,

41 = 4 ≡ 4,

42 = 16 ≡ 2,

43 = 42 × 4 ≡ 2× 4 (from previous line) = 8 ≡ 1,

44 = 43 × 4 ≡ 1× 4 (from previous line) = 4 ≡ 4,

45 = 44 × 4 ≡ 4× 4 (from previous line) = 16 ≡ 2,

46 = 45 × 4 ≡ 2× 4 (from previous line) = 8 ≡ 1,

47 = 46 × 4 ≡ 1× 4 (from previous line) = 4 ≡ 4,

48 = 47 × 4 ≡ 4× 4 (from previous line) = 16 ≡ 2,

49 = 48 × 4 ≡ 2× 4 (from previous line) = 8 ≡ 1.

In effect we just go down the column under 4, beginning with 4 and at each
stage multiplying the previous entry by 4 and taking the remainder mod 7.
The entries are 4, 2, 1, 4, 2, 1, 4, 2, 1. As soon as you come to a number which
has already occurred, in this case 4, the next number under the second 4 will
be the same as the next number under the first 4 (namely 2). Look at the
column in the mod 7 table under 6 and under 5 and see how the same idea
occurs. Look at the column under 6 in the mod 8 table for another example.
Can you explain why this happens as you move down a column?-

There are further ways to simplify the calculations. Since 0 ≡ 7 mod 7, the
powers of 0 and the powers of 7 are equal mod 7. This means that in the mod
7 table the column under 7 is the same as the column under 0. Similarly the
column under 8 is the same as the column under 1, the column under 9 is the
same as the column under 2, the column under 10 (which we do not show) is
the same as the column under 3, etc. Similarly in the mod 8 table the columns
repeat themselves from the column under 8 onwards to the right.

In summary, in the mod n table we only need to compute the columns
0, 1, 2, 3, . . . , n− 1. After this the columns repeat themselves. We do not need
to go across the table any further to the right than n− 1. Notice also that the



2.4. Modular Arithmetic 47

column under 0 always consists just of 0’s, and the column under 1 consists
just of 1’s.

In each table there is a box around the “interesting” cases from which all
other cases can be computed easily. We could just as well have left out the
column corresponding to powers of 1, although it is more common to include it. -

Work out and write down the mod 9 table for a, a2, . . . , a9 where a =
0, 1, 2, . . . , 8. Explain what extra rows and columns would look like.

Patterns in the Power Tables If you look at the mod n tables where n is
a prime you will see two things:
• The last row in each box is the same as the first and consists of the

numbers 1, 2, . . . , n− 1.
• The second last row in each box consists entirely of 1’s.

Neither of these observations hold for the mod n tables in general, but they
do hold whenever n is a prime number. We will prove this in Fermat’s Little
Theorem, Theorem 2.4.2.

Fermat’s Little Theorem (Not to be confused with Fermat’s Last Theo-
rem, which we have already mentioned.)

Explain to another student what Fermat’s Little Theorem, Theorem 2.4.2,
says about the power mod tables for 3, 5 and 7. -

Notice that there are different but equivalent ways of stating the hypotheses
and the conclusions of the Theorem. For example, “a is not a multiple of p” is
equivalent to “p is not a factor of a”. Also, “ap−1 ≡ 1 mod p” is equivalent to
“p | (ap−1 − 1)”.

We will give two different proofs32 of the Theorem. We will also see that
(2.24) follows easily from (2.25) (end of first proof) and that (2.25) follows
easily from (2.24) (end of second proof). The two proofs of Fermat’s Little Theorem are difficult and you will probably

just take a brief look at this stage. But if you can understand one of them then
that is excellent.Theorem 2.4.2. Suppose p is a prime and a is a natural number. Then

ap ≡ a mod p (2.24)

ap−1 ≡

{
1 mod p, if a is not a multiple of p

0 mod p, if a is a multiple of p
(2.25)

First Proof. We will prove (2.25) first.
If a is a multiple of p then

ap−1 ≡ 0p−1 = 0 mod p.

So next we consider the case a is not a multiple of p.
We begin by looking at the remainders obtained by dividing each of the

numbers
a, 2a, 3a, . . . , (p− 1)a

32The proofs are challenging but are included for completeness.
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by p.
The first thing to notice is that the remainder in each case is not 0. The

reason is that if p divides sa then p must divide at least one of s or a (by
Theorem 2.3.10). But we are assuming p - a and we know p - s since s is a
natural number less than p. So p - sa.

The next thing to notice is that the remainders are different in each case.
The reason for this is that if sa and ta (let s be the larger of s and t) have
the same remainder after being divided by p then it follows that p | (sa − ta)
and so p | (s − t)a. But this implies that p divides at least one of s − t and a
(again by Theorem 2.3.10). However, we are assuming p - a. And since s− t is
a natural number less than p it follows that p - (s− t). Hence p - (s− t)a.

We now know that:
The remainders obtained after dividing the p−1 numbers a, 2a,

3a, . . . , (p − 1)a by p are all different. None equal 0 and so they
take each of the p− 1 values 1, 2, 3, . . . , p− 1 exactly once.

We don’t know actually know which remainder occurs in each case, but this
will not matter.33

From this we make the following very cunning observation. If we multiply
a, 2a, 3a, . . . , (p−1)a together and take the remainder after dividing by p, then
we get the same remainder as if we multiply 1, 2, 3, . . . , p− 1 together and take
the remainder after dividing by p.34

In symbols:

a× 2a× 3a× · · · × (p− 1)a ≡ 1× 2× 3× · · · × (p− 1) mod p, (2.26)

In (2.26) we are multiplying p− 1 terms together on each side and so

(p− 1)! ap−1 ≡ (p− 1)! mod p.

This means both sides have the same remainder after division by p. It follows
their difference has remainder 0, i.e. their difference is divisible by p:

(p− 1)! (ap−1 − 1) ≡ 0 mod p.

33Here are two examples.
In the case p = 7 and a = 4 the remainders after dividing 4, 8, 12, 16, 20 and 24 by 7 are

4, 1, 5, 2, 6 and 3 respectively. The remainders take the values 1, 2, 3, 4, 5, 6 each exactly
one, but in a very mixed up way.

In the case p = 5 and a = 3 the remainders after dividing 3, 6, 9 and 12 by 5 are 3, 1, 4
and 2 respectively. In the second case the remainders take the values 1, 2, 3, 4 each exactly
one, but again in a very mixed up way.

- Do a similar examination for the case p = 7 and a = 5.
34Let’s look at the previous examples.
In the first case, working mod 7,

4× 8× 12× 16× 20× 24 ≡ 4× 1× 5× 2× 6× 3

≡ 1× 2× 3× 4× 5× 6 mod 7.

In the second case, working mod 5,

3× 6× 9× 12 ≡ 3× 1× 4× 2 ≡ 1× 2× 3× 4 mod 5.

- Do a similar examination for the case p = 7 and a = 5.
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Since the prime p does not divide any of the numbers 1, 2, . . . , p− 1, it follows
that p divides (ap−1 − 1). In other words,

ap−1 ≡ 1 mod p.

This completes the proof of (2.25).

In order to prove (2.24) in case p does not divide a, multiply both sides of
the first equation in (2.25) by a. It follows that

ap ≡ a mod p

if p - a.
The only case remaining is to show (2.24) is true when a is a multiple of p.

But in this case both sides of (2.24) equal 0 mod p and so (2.24) is true.

Second Proof. We will use mathematical induction on a to first prove (2.24).35

Let p be a fixed prime number. Let P (a) be the statement “ap ≡ a mod p”.

The basic step is to prove that P (1) is true. But this is certainly the case
because if a = 1 both ap and a are equal to 1.

For the inductive step assume that P (a) is true for some natural number a.
Our goal is to deduce from this that P (a+ 1) is true.

By the binomial theorem36

(a+ 1)p =ap + pap−1 +
p(p− 1)

2!
ap−2 +

p(p− 1)(p− 2)

3!
ap−3 + · · ·

+
p(p− 1)(p− 2) · . . . · 2

(p− 1)!
a+ 1.

(2.27)

Apart from the first and last terms which are ap and 1, the other terms are all
of the form

p(p− 1)(p− 2) · · · (p− (k − 1))

k!
ap−k

35It does not make sense to use induction on p because if p is a prime it does not follow
that p+ 1 is a prime.

36By multiplying out terms, you can check that

(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4

(a+ b)5 = a5 + 5a4b+ 10a3b2 + 10a2b3 + 5ab4 + b5

(a+ b)6 = a6 + 6a5b+ 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6

...

The general formula is called the “binomial formula” or “binomial theorem” and is

(a+ b)n =an + nan−1b+
n(n− 1)

2!
an−2b2 +

n(n− 1)(n− 2)

3!
an−3b3 + · · ·

+
n(n− 1)(n− 2) · · · (2)

(n− 1)!
abn−1(= nabn−1) + bn.

You will see it later in your other maths courses.
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where k = 1, 2, . . . , p− 1.

Each coefficient
p(p− 1)(p− 2) · · · (p− (k − 1))

k!
is an integer. This means

that k! divides p(p − 1)(p − 2) · · · (p − (k − 1)). But the p in the numerator
cannot be cancelled by any term in the denominator k! since all terms in k!
are less than p. It follows that k! must divide (p − 1)(p − 2) · · · (p − (k − 1)).
This implies that every term in (2.27) apart from the first and the last can be
written in the form p× “natural number”.

It follows that

(a+ 1)p = ap + p× (some natural number) + 1.

Hence

(a+ 1)p ≡ ap + 1 mod p

≡ a+ 1 mod p, because we are assuming P (a) is true.

In other words, P (a+ 1) is true.
This means we have shown the inductive step.

It follows from the Principle of Mathematical Induction that P (a) is true
for every natural number a. That is, we have proved (2.24).

To prove (2.25) we first assume that p - a. From what we have just proved,
p | (ap − a) for every a, which means p | a(ap−1 − 1). Because p - a it follows
that p | (ap−1 − 1). In other words, ap−1 ≡ 1 mod p.

If p | a then p | ap−1 and so ap−1 ≡ 0 mod p.

This completes the second proof of the Theorem.

Questions

1 Find the number between 0 and 6 which is equivalent mod 7 to each of
the following. The method you should use is to replace each number by
its remainder after dividing by 7. And keep doing this.

1. 75× (37× 912 + 356)
2. 96× 95× 94× 93× 92

2 Use the method for Q2 on page 37 to find 142 mod 55, 144 mod 55,
148 mod 55 and 1416 mod 55.

Then use this information to find 1427 mod 55.
The answer is in footnote37below.

3 Use the method for Q2 on page 37 to find 675307 mod 713.
The answer is in footnote38below.

4 Work out the mod 9 addition and multiplication tables.
What patterns do you observe along the lines of the discussion on

page 40?
5 Use the method on page 43 to:

a) Find which errors on an airline ticket are not detected if a single
digit is changed.

37The answers are 142 = 31 mod 55, 144 = 26 mod 55, 148 = 16 mod 55, 1416 = 36 mod
55 and 1427 = 9 mod 55.

38The answer is 3.
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b) Find which errors on an airline ticket are not detected if 2 adjacent
digits are transposed.

The answer is in footnote39below.
6 Use the method on page 43 to:

a) Show that all errors are detected on an ISBN number if a single
digit is changed.

b) Show that all errors are detected on an ISBN number if any 2 (not
necessarily adjacent) digits are switched.

39If a single digit is changed then the error is not detected if the digit is changed by 7, i.e.
from 0 to 7 or 7 to 0, 1 to 8 or 8 to 1, 2 to 9 or 9 to 2. If two adjacent digits are transposed
then the error is not detected if the digits differ by 7, i.e. if the adjacent digits are 07, 70,
18, 81, 29, or 92.
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2.5 RSA Public Key Cryptography

Things that seem abstract and
devoid of application today may
be central in our daily lives
tomorrow.

Overview

The theory and practice of RSA cryptography is developed. RSA cryptography
was discovered in the 1970s. You use RSA cryptography whenever you encrypt
material on your hard disk, buy something from eBay or Amazon.com, do any
other secure or secret transaction over the internet, or use EFTPOS or an
ATM.

RSA cryptography is at first almost unbelievable. You publish certain in-
formation on your website (see page 61) explaining to anyone in the world
how they can take a secret message they want to send you, encode this secret
message as a “coded” public number, and publish this coded number on their
website.

Anyone in the world can see this coded number, but only you can decode
it and get back the original mesage. Everyone in the world can send you secret
messages, they all use exactly the same coding method, yet only you can decode
messages meant for you. Not the CIA, not the FBI, not Mossad, not the KGB,
not ASIO, not anyone.

Security agencies are not happy about this. For many years the U.S. gov-
ernment tried to prevent the export and distribution of RSA cryptographic
methods. However, there was a legal loophole that meant one could export
a hardcopy of the source code but not an electronic copy. This was used to
legally circumvent the ban. In any case, the mathematical result had already
been presented at conferences, and if it had not been then someone else would
soon have discovered the method. See also the Addendum at the end of this
Chapter.

• In the section “Simple Coding and Decoding” we first discuss some ele-
mentary things about codes.

• In “Working with BIG numbers” we get a feeling for how “big” are the
big numbers which we use.

• In “Background and Overview of RSA Cryptography” we discuss in out-
line the method of RSA cryptography.

• In “A Real Example of RSA encryption” we work through a real life
example using Maple.

• In “Summary of the Method” we go back and summarise the method
used in the previous Example.

• In “A Toy Example” we work through a very small example (which is
totally insecure and useless) in order to understand better how and why
the method works.

• In “Mathematical Theory of RSA Cryptography” we prove the Theorem
which shows why it all works.
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• In the “Addendum” I make a few remarks about matters such as history,
competitions and quantum computing.

The last six Sections are largely independent and the same ideas are re-
peated a number of times. If you get stuck, just move on. Don’t be discour-
aged if you find the mathematical explanation too confusing at this stage. It
definitely is not examinable material!

Simple Coding and Decoding
[HM, 95,96]

Simple Coding Methods One of the simplest ways to encode a message is
for the sender to replace every letter by another letter in an agreed manner. If
the receiver of the message knows how this is done then it is usually easy to
reverse the process and obtain the original message.

For example, the coding method might be to replace each letter by the one
below it according to the following table:

A B C D E F G H I J K L M N O
P U R Q N M G F H X Z K I C A

P Q R S T U V W X Y Z
J E B L O T S Y D V W

A highly secret message such as “the key is under the mat by the front
door” would be coded as“ofn znv hl tcqnb ofn ipo uv ofn mbaco qaab”.

But someone who intercepts the message might figure that “the” is a very
common word. So probably “ofn” means “the” and this means that “o, f, n”
are decoded as “t, h, e” respectively.

To make it a little harder to crack it would be good to arrange the original
message in blocks of 5 (say) letters, i.e. “theke yisun derth ematb ythef rontd
oor” and then encode it as “ofnzv vhltc qnbof nipou vofnm bacoq aab”

If the receiver knows how messages are encoded then he/she can reverse
the process and decode the message, obtaining “theke yisun derth ematb ythef
rontd oor” and reading it as “the key is under the mat by the front door”.

Frequency Analysis Any method of replacing one letter by another is not
very intelligent. Certain letters such as “e” occur more frequently than others.
By doing a frequency count of letters in a sufficiently long message, and a bit
of trial and error, it is fairly easy to work out the original message.

Improved Coding Methods An alternative would be to have a single code
number for each block of 5 letters.

To code and decode messages in this way would require a table of 26×26×
26 × 26 × 26 = 265 = 11, 881, 376 entries, consisting of blocks of 5 letters and
matching numbers from 1 to 265. But a computer program could crack such a
code with a built in dictionary and some trial and error without much trouble.
One might want to use blocks of 80 letters, but this requires a table with 2680

numbers, and that is more than the number of atoms in the universe (currently
estimated to be about 1080).

Problems with these Coding Methods There are two major problems
with the coding methods just discussed.
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1. Very soon someone will lose their copy of the code book, or sell it to some
unscrupulous third party, or have it stolen. If the coding method is sent
over the internet it is likely to be intercepted.

2. If a malicious person knows how to encode a message they can reverse
the process and so decode any messages they intercept.

But, and this is truly surprising and unexpected, the second problem is
avoidable by using RSA Coding. That is, you can tell anyone how to encode
messages they want to send you, but only you can decode these messages!

Moreover, with RSA cryptography, because there is no secret codebook that
people need in order to send you a secret message, the first problem does not
arise at all.

?Working with BIG numbers

Since we will work with incredibly big numbers, let’s get a feel for them.

Examples of Big Numbers
• A million is 106.
• A billion40 is one thousand million or 109.
• A trillion41 is one thousand billion or 1012.
• The world’s wealthiest individual is worth about 90 billion dollars. This

is more than the total financial worth of the 100 million people in the
worlds poorest countries.

• There are 1021 atoms in a pinhead.
• There are about 1022 grains of sand on the earth and at least this many

stars in the universe.
• There are about 1080 atoms in the universe.
• The number of ways I can arrange 60 books in a row on my bookshelf42

is 60!, which is approximately 8.32× 1081 and so more than the number
of atoms in the universe.

• A googol 43 is defined to be 10100. Notice that it has 101 digits.
A googol equals 1020×1080 = 100×109×109×1080 and so is about

100 billion billion times the number of atoms in the universe.
• A googolplex is 10 raised to the power of a googol, or 1 followed by a

googol of 0’s. A googolplex equals 10(10100) and we write it as 1010
100

.
A googolplex has far more digits than atoms in the universe. This

is a much stronger statement than merely saying it is larger than the
number of atoms in the universe — you only need about 80 digits for
that to be true.

40Unfortunately, we have to live with the American convention on this one. An older, and
scientifically more logical, British definition is that a billion is a million million, or 1012.

41The older definition of a trillion is a million million million, i.e. 1018.
42Think of 60 slots in a row that are to be filled by the 60 books. There are 60 possibilities

for the first slot and for each of these there are 59 possibilities for the second slot. Thus there
are 60 × 59 possibilities for the first 2 slots and for each of these possibilities there are 58
possibilities for the third slot. Thus there are 60 × 59 × 58 possibiliteis for the first 3 slots.
Etc., etc. So there are 60! possibilities altogether.

- By writing out the various possibilities in a systematic way, convince yourself there
are 3! ways of arranging 3 books and 4! ways of arranging 4 books.

43Said to have been coined in the 1940s by the 9 year old nephew of the American math-
ematician E. Kasner, at Kasner’s request.
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• A natural number with 2 digits is at least 10 and is less than 100, a
natural number with 3 digits is at least 100 and is less than 1000, a
natural number with 4 digits is at least 1000 and is less than 10,000, and
a natural number with 150 digits is at least 10149 and is less than 10150.

More generally:

A natural number x has M digits iff 10M−1 ≤ x < 10M . (2.28)

It follows that there are 10M−10M−1 = 9×10M−1 natural numbers
with exactly M digits.

• If you multiply two 150 digit numbers you will get a number with 299 or
300 digits.

The reason is that both numbers will be at least 10149 and both
will be less than 10150. So their product will be at least 10298 and will
be less than 10300.

If the product is at least 10298 but less than 10299 it will have 299
digits.

If the product is at least 10299 but less than 10300 it will have 300
digits.
• The previous idea holds in general, so we will call it a Theorem and write

out the proof.
Theorem 2.5.1. If a natural number x has M digits and another natural
number y has N digits then their product will have M +N − 1 or M +N
digits.

Proof. We know 10M−1 ≤ x < 10M and 10N−1 ≤ y < 10N .
Multiplying, we get 10M+N−2 ≤ xy < 10M+N .
We write this as

10M+N−2 ≤ xy < 10M+N−1 or 10M+N−1 ≤ xy < 10M+N .

From (2.28) it follows that in the first case xy has M +N − 1 digits and
that in the second case xy has M +N digits.

Big Numbers in Cryptography
• For cryptography we need to work with prime numbers of about 150 digits

(much much more than a trillion trillion trillion trillion trillion times the
number of atoms in the universe).

• To find primes of this size by some kind of random process will take a
few seconds using Maple. See the calculation of p and q on page 58.

Because there are so many such primes, the probability that we or
anyone else will ever again find the same 2 primes is much much much
less than the probability that 2 people would choose at random the same
2 atoms in the universe.

• We will also need the product of 2 such prime numbers, which as we saw
before has about 300 digits, and is almost incomprehensibly large. Maple
does the multiplication in a flash. See the calculation of n on page 59.

• If I give someone the product of 2 prime numbers each about 150 digits
long, but not the primes themselves, it would take this person much much
more than 100 years using all the world’s current computers in parallel
to find the 2 prime factors. No one will ever find the 2 factors!
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• If I raise one 300 digit number, or even a number as small as 2, to a power
given by another 300 digit number, the answer N will have far more digits
than atoms in the universe. In fact, because 210 = 1024 and a 300 digit
number is ≥ 10299,

N ≥ 2(10
299) = 210×10

298

= (210)10
298

> 100010
298

> 1010
298

.

Notice that the answer is much larger than a googolplex, which is 1010
100

.
It is even far far larger than a googolplex multiplied by itself a googol
times.44

And yet if I ask Maple for the remainder after dividing the answer
N by a third 300 digit number it will give me the answer in a fraction of a
second! (It uses the method on page 37.) See the calculation of D = Cd

on page 62, where C is on page 62 and d is on page 60.

Summary
• Finding large primes is very quick (there are special tests for being a

prime), i.e. takes seconds.
• Finding remainders after dividing one large number raised to another

large number by a third large number is very quick, i.e. takes seconds.
• Factorising large numbers except in special cases takes an impossibly long

time.

Background and Overview of RSA Cryptography
[HM, 97–99]

Representing Messages as Numbers We can easily represent a message
as a (natural) number. Just replace letters by 1 through 26 using the following
table:

A, B, C,D, E, F , G,H, I, J,K, L,M,N, O, P , Q, R, S, T , U, V ,W,X, Y , Z

01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26

Replace spaces by 27, commas by 28 and full stops by 29.
For example, the word “the” becomes the number “200805”. The secret

message “the key is under the mat by the front door” with 41 letters and spaces
is translated into the number 200805271105252709192721140405182720080527-
130120270225272008052706181514202704151518. This is a big number, it has
84 digits.

This is not the coding method. It is nothing more than a simple way of
representing messages as numbers. Conversely, given the number we can easily
use the previous table to go back to the message. There are more efficient ways
of translating messages into numbers, but that is not an essential feature and
so we won’t digress to discuss it.

In this way in future we think of messages as numbers and numbers as
messages.

We split messages with 150 or more letters and spaces, which give numbers
with 300 or more digits, into blocks, and treat each block separately.

44 1010
298

>> 1010
200

= 10(10100×10100) =
(

1010
100

)10100

, which is a googolplex multi-

plied by itself a googol times. By “>>” is meant “is far greater than”.
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To be on the super safe side any secret message with less than 100 letters
(and so less than 200 digits in the corresponding number) should have its
corresponding number padded out with garbage digits at the beginning to
bring it up to 200 digits, before encoding.

To repeat: in future a secret message is a secret number with less than 300
digits.

Coding Secret Numbers Instead of coding a secret message we will talk
about coding a secret number, which we have just seen is in effect the same
thing.

The Very Basic Idea of RSA Cryptography Making some inessential
simplifications, RSA cryptography works like this.

1. You (more precisely your computer) generate 2 very large prime numbers
p and q, each 150 digits or more. You (or your computer) then multiply
these 2 numbers to give a number n about 300 digits or more long.

2. You announce the product n = pq to the world (or to any other computer
that is interested) by posting it on your website, for example. See page 61.
But you do not tell anyone else what p and q are.

3. There are 3 important computational points.
a) There are many such large primes p and q, more than 10147 of them.

This is over a trillion trillion trillion trillion trillion times more than
all the atoms in the universe (there are about 1080 such atoms).

b) It is incredibly easy for your computer to find such primes and to
do it in such a way they will be different from primes ever found in
the future or the past by you or any other computer. Just randomly
churn out any 150 digit number and ask the computer to find the
next prime after that. If the computer uses the package Maple
(which you will yourself use) it will give you the next prime following
this random number in a few seconds.45

c) It is essentially impossible to factorise a large number n which is a
product of two primes p and q each about 150 digits long unless you
already know one of these primes.

4. Suppose someone has a secret number W (i.e. message) to send you. (It
needs to be less than 300 digits, otherwise it must be split into smaller
numbers.) They encode W in a certain way to give a coded number (i.e.
coded message) C which is made public. The encoding method uses just
the number n and a certain other publicly known number e called the
encoding exponent, but does not involve knowing p or q.

5. The number C cannot be decoded to give back W , even in the lifetime of
the universe,46 by just reversing the encoding process. You need to also
know p or q or some similar information.47

6. However, there is a fast way of decoding coded numbers if you know p or
some similar information. Since only you know p, and no one will have

45Strictly speaking Maple uses a probabilistic method. But the chance of an error is much
less than the probability that if two people each pick an atom somewhere in the universe at
random then they both end up picking the same atom!

46OK, to be safe, let’s say 100 years.
47More precisely, you need a secret number d calculated from p and q and which is called

the decoding exponent. This will all be explained.
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the resources to find p by factorising n, only you can decode messages
that were coded up by others using n.

Any message sent to you by RSA encoding is totally safe.48

It is far from clear how this scheme works, and in fact almost unbelievable
that it could work. But it does, and we will see it all in the following.

?A Real Example of RSA encryption
[HM, 99–101], but only small “toy” examples are discussed there. Here we give
a “real” example. At this point you might like to jump ahead to the Section “Summary of the

Method” beginning on page 63 in order to gain an overview.

Generating the Public and Private Keys By randomly running your
fingers over the keyboard enter a natural number pp with 150 digits. With the
command pp:= you are telling Maple to set pp equal to this number and to
store this number pp in its memory. Maple confirms the request and displays
the value of pp.

> pp:= 83653001832647173971845698124451006662936545466734998277

65589657671743657453917298368795488787958790983745609876

66398764099376398998764589702527386362;

pp :=83653001832647173971845698124451006662936545466734998277

65589657671743657453917298368795488787958790983745609876

66398764099376398998764589702527386362

Do this again to store another randomly generated natural number qq with
150 digits in Maple’s memory.

> qq:= 943987627897384756895479800200710098812730100111111110586

162605018856757411563456705614547510406538564747747846501

601040501476671045767176585018950214;

qq :=9439876278973847568954798002007100988127301001111111105861

6260501885675741156345670561454751040653856474774784650160

1040501476671045767176585018950214

Ask Maple to find the next prime after pp and store it in its memory as p.

> p:= nextprime(pp);

p :=836530018326471739718456981244510066629365454667349982776558

965767174365745391729836879548878795879098374560987666398764

099376398998764589702527386399

48Well, not quite! Maybe someone is secretly filming or logging your key strokes when
you are creating your public and private keys, or before you encode a secret message.
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Ask Maple to find the next prime after qq and store it in its memory as q.

> q:= nextprime(qq);

q :=943987627897384756895479800200710098812730100111111110586162

605018856757411563456705614547510406538564747747846501601040

501476671045767176585018950251

Ask Maple to multiply p and q and store the result in its memory as n.

> n:= p*q;

n :=789673987664961855991059957987616862212524804835927253312317

07000328412583200865081291547042010431512879185125984625531

87927258900664171743292196973884356836180150868084489142979

56501441003571997494034363955077785997244186969293793361609

41148782602255798417805912821812316634398078633517672163503

6149

Ask Maple to multiply p − 1 and q − 1 and store the result in its memory
as m.

> m:= (p-1)*(q-1);

m :=789673987664961855991059957987616862212524804835927253312317

07000328412583200865081291547042010431512879185125984625531

87927258900664171743292196973866551659717912303118349775165

11281275561476442715573270592356215211213063812338606819115

31509862360489486186922496021831856549091074180341043408869

9500

Ask Maple to find the remainder after dividing m by 3. Since the remainder
is 0, you see that 3 is a factor. Similarly 5 is a factor. But for 7 the remainder
is 6 and so 7 is not a factor. In this way you quickly find a prime which is not
a factor of m.

This will be the “encoding exponent” e which you set equal to 7 in Maple’s
memory.

> irem(m,3);

0

> irem(m,5);

0

> irem(m,7);

6

> e:= 7;

e := 7
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In practice you will quickly find e in a few steps.49

Because e is a prime less than m and e does not divide m, it follows
gcd(e,m) = 1. This means by Theorem 2.4.1 that there is a natural num-
ber d less than m such that ed = 1 mod m. Ask Maple to find this d.

> d:= 1/e mod m;

d :=112810569666423122284437136855373837458932114976561036187473

86714332630369028695011613078148858633073268455017997803647

41132465557237738820470313853409507379959701757588335682166

44468753651639491816510467227479459315887580544619800974159

33072837480069926598131785145975979507013010597191577629838

5643

None of the previous calculations take Maple more than a second or so.

The Information You Put on Your Website In this way you now have
your public key (n, e) and your private key d. On your website you should
publish your public key and the other information in Figure 2.2 on page 61.

The reason for the padding in instruction 1 on your home page is that if the
secret number is too small then there are other ways of decoding it, although
they will still take a very long time.

The “99” and “00” are so that when you decode the secret number you will
know if there is junk padding and where the junk ends.

The Information You Keep Secret Keep the private key d to yourself.
No one other than you will know what d is, and they do not need to know d
in order to send you coded messages.

49One way to see this is as follows. There is one chance in 3 that 3 will divide m, since
there are exactly 3 possible remainders after dividing m by 3 and only a remainder of 0
means that 3 divides m. There is similarly one chance in 5 that 5 will divide m and so there
is only one chance in 15 that both 3 and 5 will divide m. There is one chance in 7 that 7 will
divide m, and so only one chance in 3 × 5 × 7 = 105 that 3, 5 and 7 will all divide m, etc.
In other words there is 104 chances in 105 that at least one of 3, 5 or 7 will not divide m.

As we test more and more primes the chance is miniscule that all of them will divide m.
Remember that we only require one prime that does not divide m.

Here is another way to see that you will eventually find a prime which does not divide m.
If for example 3, 5, 7, 11, 13 all divide m then m must be a multiple of 3× 5× 7× 11× 13 =
152,460 and so m must certainly be larger than 152,460. In the same way if all of the first
130 primes divide m then m must be larger than the product of these 130 primes. However,
this product contains 304 digits and so is larger than m.

So one of the first 130 primes must divide m. By the way, the 130th prime is 733.

Remark: The Maple code to use is

> prod:= 1:

for i from 1 to 130 do

prod:= prod * ithprime(i)

end do:

prod;
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My public key is:

n :789673987664961855991059957987616862212524804835927253312317

07000328412583200865081291547042010431512879185125984625531

87927258900664171743292196973884356836180150868084489142979

56501441003571997494034363955077785997244186969293793361609

41148782602255798417805912821812316634398078633517672163503

6149

e :7

If you have a secret message for me, do the following :
1. In your message replace A by 01, B by 02, . . . , Z by 26, blank

space by 27, comma by 28 and period by 29.
Let W be the number you get in this manner.
If W is 300 or more digits long (i.e. corresponds to 150 or

more characters) first break it into blocks of less than 300 digits
and treat each block separately.

To be super cautious, if the number for any block is less
than 200 digits (i.e. if the block corresponds to less than 100
characters), first pad it out with junk digits at the beginning
to make it 200 or more digits long. The junk should begin with
99 and end with 00, and contain no other 99 or 00.

2. Compute the remainder after dividingW e by n and call it C (for
coded message). (This is a quick computation for the computer
provided it does it the right way.)

3. Send me C or put it up on your own website and let me know
there is a coded secret message for me. No one other than me
will be able to decode it.

Figure 2.2: Your Webpage

At this stage it would also be a very smart idea to completely destroy pp,
p, qq, q and m. They are no longer needed. Put them in the computer trash
and secure erase your trash!

Coding a Message Only You Can Decode Following instructions your
friend translates his/her secret message “the key is under the mat by the front
door” into the following secret number. We did this on page 56 and obtained

20080527110525270919272114040518272008052713012027022527200

8052706181514202704151518

Since this is 84 digits long your friend pads it out with two lines of junk digits
at the beginning, as instructed on your homepage, and enters this number into
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his/her computer:

>W:= 9982186765724785613654121363541376549654827436517247663546

5682736654547662365482623548776562645675763997272541784700

20080527110525270919272114040518272008052713012027022527200

8052706181514202704151518;

W :=9982186765724785613654121363541376549654827436517247663546

5682736654547662365482623548776562645675763997272541784700

20080527110525270919272114040518272008052713012027022527200

8052706181514202704151518

Your friend next uses his/her computer to encode W into a public number
C by again following the instructions on your homepage and computing the
remainder after dividing W e by n.

It would be impossible to do this before the universe ends if the computer
tried to first calculate W e. Instead it has to proceed like we did on page 37
when we computed 21361035 and 507107 mod 14. This is the reason for the “&”
before “ ^e” in the instructions to Maple.

> C:= W&^e mod n;

C :=41280736582831444550534069876657656860395031486732825256024

48340877085019142394073414412674270253274008723871623867184

27867243400044687355743392075312560215812710738869957475814

89758421902980217410379932001486425576711524087860159754712

02582977816251303457227156921922376890567718983561399437055

73335

Your friend now sends you the number C or just publishes C on his/her
website. No one apart from you will ever be able to decode it! Of course your
friend does not publish W since anyone who reads your instructions will know
the original message if they know W .

How You Decode the Coded Message When you receive the coded mes-
sage C you ask your computer to decode C by computing D as follows. Note
that this requires your secret decoding exponent d as well as the public num-
ber n.

> D:= C&^d mod n;

D :=9982186765724785613654121363541376549654827436517247663546

5682736654547662365482623548776562645675763997272541784700

20080527110525270919272114040518272008052713012027022527200

8052706181514202704151518

Note that D is the same as the original secret number W !!
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Finally you strip off the junk padding which begins with 99 and ends with
the first 00. This gives the number

20080527110525270919272114040518272008052713012027022527200

8052706181514202704151518.

Translate this back into an English sentence by replacing 20 by T, 08 by H, 05
by E, etc. This gives me the message “the key is under the mat by the front
door”.

Summary of the Method
[HM, 101–103]

Generating the Public and Private Keys
1. Choose two different prime numbers p and q (in practice each about 150

digits long in a random way that no one else could ever emulate).
2. Multiply p and q together and call the result n, i.e. n = pq (in practice n

will have about 300 digits).
3. Multiply p − 1 and q − 1 together and call the result m, i.e. m = (p −

1)(q − 1) (in practice m will also have about 300 digits).
4. Choose a natural number e < m (“e” is for encoding) which has no

common factors with m (i.e. is relatively prime to m).50

5. Find the unique natural number d < m (“d” is for decoding) such that
ed ≡ 1 mod m. This is justified by Theorem 2.4.1. The Extended Eu-
clidean Algorithm is used (in practice used by Maple) to find d.

6. Publish your public key numbers n and e on your website.
Your private key is the number d. This is to be kept secret.

Coding a Message Only You Can Decode Suppose that someone has a
secret number W that they want you to know.

They simply compute the remainder C (for coded message) after dividing
W e by n. They then publish C on their website for anyone, including you, to
see. Of course, they do not put W on their website.

How You Decode the Coded Message Simply compute the remainder
after dividing Cd by n. This will equal W .

We prove this in Theorem 2.5.2

A Toy Example
[HM, 101–103]

Now we will go through the whole process again, following the description
under the previous “Summary of the Method”.

50 This is easy. Start with 3 and see if it divides m. If 3 does not divide m let e = 3.
Otherwise try the next prime 5, and then 7, etc. In practice you will quickly find a prime
that does not divide m and so has no common factor with m. See Footnote 49.

Notice by the way that the number 2 divides m. The reason is that p and q are primes
larger than 2 so they must be odd. This means p−1 and q−1 must be even. But this means
that their product m is also even.

Note: on page 59 we looked for an e which was a prime, but in fact all we really need is
that e is relatively prime to m.
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Generating the Public and Private Keys
1. Choose the primes p = 3 and q = 11. This is completely stupid for

security purposes. But it will allow us to get a good idea of why RSA
encryption works.

In order to increase your understanding you should simultaneously-
work the example p = 5 and q = 7.

2. Multiply p and q together and call the result n, i.e. n = pq = 3×11 = 33.
What is n in your example?-

3. Multiply p− 1 and q − 1 together and call the result m,
i.e. m = (p− 1)(q − 1) = 2× 10 = 20.

What is m in your example?-
4. Choose a natural number e (“e” is for encoding) which has no common

factors with m = 20. So e = 1, 3, 7, 9, 11, 13, 17, or 19. Don’t use e = 1.
We will choose e = 13

What are the possible values for e in your example?-
5. Find the natural number d such that ed ≡ 1 mod m, i.e. ed ≡ 1 mod 20.

The answer is d = 17.
Why does this follow from Table 2.1? What are the values of d for-

the other possible values of e? One allowable value of e in your example
is 5. What is the corresponding value of d?

⊗ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
3 0 3 6 9 12 15 18 1 4 7 10 13 16 19 2 5 8 11 14 17
4 0 4 8 12 16 0 4 8 12 16 0 4 8 12 16 0 4 8 12 16
5 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
6 0 6 12 18 4 10 16 2 8 14 0 6 12 18 4 10 16 2 8 14
7 0 7 14 1 8 15 2 9 16 3 10 17 4 11 18 5 12 19 6 13
8 0 8 16 4 12 0 8 16 4 12 0 8 16 4 12 0 8 16 4 12
9 0 9 18 7 16 5 14 3 12 1 10 19 8 17 6 15 4 13 2 11
10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10
11 0 11 2 13 4 15 6 17 8 19 10 1 12 3 14 5 16 7 18 9
12 0 12 4 16 8 0 12 4 16 8 0 12 4 16 8 0 12 4 16 8
13 0 13 6 19 12 5 18 11 4 17 10 3 16 9 2 15 8 1 14 7
14 0 14 8 2 16 10 4 18 12 6 0 14 8 2 16 10 4 18 12 6
15 0 15 10 5 0 15 10 5 0 15 10 5 0 15 10 5 0 15 10 5
16 0 16 12 8 4 0 16 12 8 4 0 16 12 8 4 0 16 12 8 4
17 0 17 14 11 8 5 2 19 16 13 10 7 4 1 18 15 12 9 6 3
18 0 18 16 14 12 10 8 6 4 2 0 18 16 14 12 10 8 6 4 2
19 0 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table 2.1: Multiplication mod 20
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Coding a Message Only You Can Decode The secret number is a
natural number W less than n = 33. For example suppose W = 15.

This is coded up by the natural number C less than n such that C ≡
W e mod n, i.e. C is the remainder after dividing W e by n.

In this case C is the natural number less than 33 such that C ≡ 1513 mod 33,
i.e. C is the remainder after dividing 1513 by 33. It follows from Table 2.2 that
C = 9.

Find C directly by the methods on page 37 without using Table 2.2. -
Find C from Table 2.2 if W = 21 and if W = 9.
Find C in your example if W = 15.

a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
a1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
a2 0 1 4 9 16 25 3 16 31 15 1 22 12 4 31 27 25 25 27 31 4 12 22 1 15 31 16 3 25 16 9 4 1
a3 0 1 8 27 31 26 18 13 17 3 10 11 12 19 5 9 4 29 24 28 14 21 22 23 30 16 20 15 7 2 6 25 32
a4 0 1 16 15 25 31 9 25 4 27 1 22 12 16 4 3 31 31 3 4 16 12 22 1 27 4 25 9 31 25 15 16 1
a5 0 1 32 12 1 23 21 10 32 12 10 11 12 10 23 12 1 32 21 10 23 21 22 23 21 1 23 12 10 32 21 1 32
a6 0 1 31 3 4 16 27 4 25 9 1 22 12 31 25 15 16 16 15 25 31 12 22 1 9 25 4 27 16 4 3 31 1
a7 0 1 29 9 16 14 30 28 2 15 10 11 12 7 20 27 25 8 6 13 26 21 22 23 18 31 5 3 19 17 24 4 32
a8 0 1 25 27 31 4 15 31 16 3 1 22 12 25 16 9 4 4 9 16 25 12 22 1 3 16 31 15 4 31 27 25 1
a9 0 1 17 15 25 20 24 19 29 27 10 11 12 28 26 3 31 2 30 7 5 21 22 23 6 4 14 9 13 8 18 16 32
a10 0 1 1 12 1 1 12 1 1 12 1 22 12 1 1 12 1 1 12 1 1 12 22 1 12 1 1 12 1 1 12 1 1
a11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
a12 0 1 4 9 16 25 3 16 31 15 1 22 12 4 31 27 25 25 27 31 4 12 22 1 15 31 16 3 25 16 9 4 1
a13 0 1 8 27 31 26 18 13 17 3 10 11 12 19 5 9 4 29 24 28 14 21 22 23 30 16 20 15 7 2 6 25 32
a14 0 1 16 15 25 31 9 25 4 27 1 22 12 16 4 3 31 31 3 4 16 12 22 1 27 4 25 9 31 25 15 16 1
a15 0 1 32 12 1 23 21 10 32 12 10 11 12 10 23 12 1 32 21 10 23 21 22 23 21 1 23 12 10 32 21 1 32
a16 0 1 31 3 4 16 27 4 25 9 1 22 12 31 25 15 16 16 15 25 31 12 22 1 9 25 4 27 16 4 3 31 1
a17 0 1 29 9 16 14 30 28 2 15 10 11 12 7 20 27 25 8 6 13 26 21 22 23 18 31 5 3 19 17 24 4 32
a18 0 1 25 27 31 4 15 31 16 3 1 22 12 25 16 9 4 4 9 16 25 12 22 1 3 16 31 15 4 31 27 25 1
a19 0 1 17 15 25 20 24 19 29 27 10 11 12 28 26 3 31 2 30 7 5 21 22 23 6 4 14 9 13 8 18 16 32
a20 0 1 1 12 1 1 12 1 1 12 1 22 12 1 1 12 1 1 12 1 1 12 22 1 12 1 1 12 1 1 12 1 1
a21 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
a22 0 1 4 9 16 25 3 16 31 15 1 22 12 4 31 27 25 25 27 31 4 12 22 1 15 31 16 3 25 16 9 4 1
a23 0 1 8 27 31 26 18 13 17 3 10 11 12 19 5 9 4 29 24 28 14 21 22 23 30 16 20 15 7 2 6 25 32
a24 0 1 16 15 25 31 9 25 4 27 1 22 12 16 4 3 31 31 3 4 16 12 22 1 27 4 25 9 31 25 15 16 1
a25 0 1 32 12 1 23 21 10 32 12 10 11 12 10 23 12 1 32 21 10 23 21 22 23 21 1 23 12 10 32 21 1 32
a26 0 1 31 3 4 16 27 4 25 9 1 22 12 31 25 15 16 16 15 25 31 12 22 1 9 25 4 27 16 4 3 31 1
a27 0 1 29 9 16 14 30 28 2 15 10 11 12 7 20 27 25 8 6 13 26 21 22 23 18 31 5 3 19 17 24 4 32
a28 0 1 25 27 31 4 15 31 16 3 1 22 12 25 16 9 4 4 9 16 25 12 22 1 3 16 31 15 4 31 27 25 1
a29 0 1 17 15 25 20 24 19 29 27 10 11 12 28 26 3 31 2 30 7 5 21 22 23 6 4 14 9 13 8 18 16 32
a30 0 1 1 12 1 1 12 1 1 12 1 22 12 1 1 12 1 1 12 1 1 12 22 1 12 1 1 12 1 1 12 1 1
a31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
a32 0 1 4 9 16 25 3 16 31 15 1 22 12 4 31 27 25 25 27 31 4 12 22 1 15 31 16 3 25 16 9 4 1

Table 2.2: Power Table Mod 33
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How You Decode the Coded Message Find the natural number D less
than n such that D ≡ Cd mod n.

In this case D is the natural number less than 33 such that D ≡ 917 mod 33.
It follows from Table 2.2 that D = 15. This is the same as W , as it should be.

Check that the two coded messages C which you obtained from W = 21 and-
W = 9 decode to D = 21 and D = 9 respectively, i.e. back to the original W ’s.

Find D in your example when W = 15 and confirm that the answer is
indeed 15.

Card Shuffling In [HM, 97,98] there is a discussion of card shuffling as an
analogy for coding messages.

If you look at the rows in black in Table 2.2 you will see that they correspond
to powers 3, 7, 9, 13, 17, 19. In each of these rows the numbers 2, 3, 4, . . . , 32
are shuffled around and each appears exactly once. These also are the rows
corresponding to the powers e we found and for which gcd(e,m) = 1, i.e.
gcd(e, 20) = 1.

In each of the other rows some numbers from 2, 3, 4, . . . , 32 do not appear
at all while other numbers appear more than once.

The idea is that raising secret numbers W = 2, 3, 4, 5, . . . , 32 to the power
e and taking the remainder mod 33 to give encoded numbers C, corresponds
to shuffling the pack of numbers 2, 3, 4, . . . , 32. (We will prove this in general
in Question 2.) Raising numbers C to the power d mod 33 to give decoded
numbers D corresponds to unshuffling the pack back to its original order.

In general your public key (n, e) allows anyone to shuffle the pack of numbers
2, 3, 4, . . . , n − 1. But with numbers n of about 300 digits, only you with the
private key d will ever be able to unshuffle the pack.

It is completely unclear at this stage why it works, but we prove it does
work in Theorem 2.5.2. We will show that if W is a natural number less than
n, if C is the remainder after dividing W e by n, and D is the remainder after
dividing Cd by n, then D = W .

The other way to get W back from C would be to raise each of the n
numbers 2, 3, 4, . . . , n−1 to the power e until we found the number which gives
C. This then is W .

But in real life n will have about 300 digits and this means we will have to
check incredibly more cases than there are atoms in the universe. No one can
do this. There may just possibly be a quick way to do it without knowing d, but
no one knows how and the experts in cryptography and number theory believe
it is not possible. However, no one has actually proved it is not possible!!

?Mathematical Theory of RSA Cryptography
In [HM, 103–106] a numerical example is examined. Here we give the complete
theory. We saw on page 63 that p and q are different prime numbers. We then let

n = pq and m = (p− 1)(q − 1).
The next step was to find a natural number e < m having no common

factor with m. This is the same as requiring gcd(e,m) = 1. It follows from
Theorem 2.4.1 there is a unique natural number d < m such that ed ≡ 1 mod
m.
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If someone has a “secret” (natural) number W < n they want to send
you they obtain the coded number C from W by finding the remainder after
dividing W e by n. So C ≡W e mod n.

From the coded number C you find the decoded number D by finding the
remainder after dividing Cd by n. So D ≡ Cd mod n.

The point to all this is that D = W . This is what we will now prove.

Theorem 2.5.2 (The Main RSA Theorem). Suppose p and q are distinct
prime numbers. Let n = pq and let m = (p− 1)(q − 1).

Suppose e and d satisfy ed ≡ 1 mod m.
Suppose W < n is a natural number, C is the remainder after dividing W e

by n, and D is the remainder after dividing Cd by n.
Then D = W .

Understanding this will require a lot of perserverance. It is definitely not ex-
aminable material.Proof. Because of the way we defined the numbers C and D we have

C ≡W e mod n, D ≡ Cd mod n, 1 ≤W,C,D < n.

Working mod n this means

D ≡ Cd ≡ (W e)d = W ed mod n. (2.29)

Suppose we can show
W ed ≡W mod n. (2.30)

Then it will follow from (2.29) and (2.30) that D ≡ W mod n. This implies
D = W since both D and W are natural numbers less than n.

So now our goal is to prove (2.30). This means we want to show that
n | W ed −W . But because n = pq is a product of 2 different prime numbers
this is equivalent51 to proving that p |W ed −W and q |W ed −W . So now we
have the new and equivalent goal of proving that

W ed ≡W mod p and W ed ≡W mod q. (2.31)

If we can do this we will have finished the proof of the Theorem!
First notice that since

ed ≡ 1 mod m,

the remainder after dividing ed by m is 1, and so for some integer k,

ed = km+ 1. (2.32)

If p | W then the first equivalence in (2.31) is true since both W and W ed

are equivalent to 0 mod p.
If p -W then

W ed = W km+1 (from (2.32))

= WW km = WW k(p−1)(q−1) = W (W p−1)k(q−1)

≡W1k(q−1) mod p (using Fermat’s Little Theorem, Theorem 2.4.2)

= W mod p.

51This is where we use in the proof the fact p and q are different. If p = q then n = p2,
but it does not follow that p2 |W ed −W if p |W ed −W .

In any case we would not allow p = q. Because if this were true then we could find p from
n by taking the square root of n, which is a trivial thing for Maple to do.
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This proves the first equivalence in (2.31).
(Prove the second equivalence in the same way.)-
This means we have proved (2.31) and so we have proved the Theorem.

Addendum

The True History of RSA The official discoverers of RSA cryptography
are three mathematicians Ron Rivest, Adi Shamir and Len Adleman, who
published the method in 1977. A couple of years earlier, W. Diffie and M.
Hellman first discovered the general concept but did not have a secure way to
use it.

However, another mathematician Clifford Cocks, working for the British
security agency, actually discovered the full method in 1973. For bureaucratic
security reasons it was classified and not published, even though the British
thought it did not have any use!

Factoring Competitions and Prizes The RSA company has a list of num-
bers of varying sizes. It pays out money to anyone who can factor these num-
bers, the larger the number the larger the prize. This competition is used to
decide how big the primes p and q in RSA encryption should be for security
reasons. See http://www.rsasecurity.com/rsalabs/node.asp?id=2094

Quantum Computing and Factorisation It was shown in 1995 by a math-
ematician Peter Shor that a computer using the principles of quantum mechan-
ics could factor large numbers so quickly that RSA cryptography would no
longer be viable. However, although there is an enormous amount of research
and investement in this field, no one has yet been able to build a quantum
computer.

Questions

1 • Suppose you know that the sum of two numbers p and q is a and
you also know that their product is b. What is a quadratic equation,
with coefficients expressed just in terms of a and b, whose roots are
p and q ?

Use this to find a formula for p and q in terms of a and b.
Check your answer.

• Suppose someone rummages through your trash and discovers the
number m (which equals (p − 1)(q − 1)) that you thought you had
destroyed and which you used in finding your private decoding num-
ber d.

– Do they have enough information to find your private decoding
number d?

– Use the first part of this question to show how they can use the
value of m together with your public number n to find p and q.

2 On page 66 we said that the numbers 2e, 3e, 4e, 5e, . . . , 32e after taking
the remainder mod 33 are a “shuffle” of the numbers 2, 3, 4, 5, . . . , 32.

More general the following is true:
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Theorem 2.5.3. Suppose p and q are distinct prime numbers. Let n =
pq and let m = (p− 1)(q − 1). Suppose e and m are relatively prime.

Then the numbers 2e, 3e, 4e, 5e, . . . , (n−1)e after taking the remain-
der mod n are a permutation (i.e. “shuffle”) of the numbers 2, 3, 4, 5, . . . , n−
1.

In order to prove this Theorem it is sufficient to show that if W1

and W2 are two natural numbers less than n then

W e
1 and W e

2 give the same remainder mod n =⇒ W1 = W2. (2.33)

1. Explain why the Theorem follows from (2.33).
2. Use the RSA Theorem to show (2.33). (It is just a few lines.)
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2.6 Irrational Numbers

Following assumptions to their
logical conclusions can yield
powerful results.

Overview

The assumption that all numbers are rational, i.e. can be written as fractions
m/n where m and n are integers and n 6= 0, at first seems to be a reasonable
one. But as we will see it leads to an impossibility. From this it follows some
numbers are in fact not rational — they are “irrational”.

A number of different methods will be given that can be used to show
certain numbers are irrational.

Finally, examples of numbers that everyone believes to be irrational, but
no one yet can prove this to be the case, will be given.

Rational and Irrational Numbers

In Section 2.1 we briefly discussed the natural numbers, the integers and the
real numbers. In the following we divide the real numbers into the rational
numbers (those numbers which can be written as fractions, which includes the
integers) and the irrational numbers (those numbers which cannot be written
as fractions).

Definition. A real number is rational if it can be written in the form m/n
where m and n are integers and n 6= 0. If a real number cannot be written this
way it is called irrational.

It is often convenient to assume that m and n have been cancelled down,
so that they have no common factors. For example,

450

165
=

90

33
=

20

11
.

However, we do not necessarily assume this is the case.

It is easy to construct rational numbers. They are just the fractions. But
are there any numbers which are not rational, i.e. which are irrational? We
will soon see that in fact many numbers are not rational.

There are Lots of Rational Numbers

Between any two rational numbers, no matter how close, there is always another
rational number. All we have to do is take the average of the two numbers.

In other words, suppose a and b are different rational numbers, and let’s

name them so that a < b. The number
a+ b

2
is also rational, why? And we-
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have that

a <
a+ b

2
< b.

We can repeat the argument and in this way get another rational number

midway between a and
a+ b

2
, namely

1

2

(
a+

a+ b

2

)
=

3a

4
+
b

4
. Next we get

7a

8
+
b

8
. In fact we can get an infinite decreasing sequence of rational numbers

a < · · · < 15a

16
+

b

16
<

7a

8
+
b

8
<

3a

4
+
b

4
<
a

2
+
b

2
.

which is eventually as close as we wish to a.
In a similar way we can also get an infinite increasing sequence of rational

numbers which is eventually as close as we wish to a.
This was one of the reasons that the ancient Greeks initially thought that

all numbers were rational.

The Ancient Greeks
[HM, 110–112]

Greece in the period 600–300 BC was home to a remarkable flowering of human
endeavour and was the foundational culture of Western Civilization. Philos-
ophy, Literature, Mathematics, Science, Music, Theatre, Architecture, Sculp-
ture, Pottery, Political Science and Democracy, were developed to an extent
which, at least in the West, was in most cases not surpassed until the Renais-
sance beginning around 1400 AD.

The Greeks initially thought of natural numbers and positive fractions as
the only types of positive numbers.52 This was not unreasonable for the fol-
lowing reasons:

• Certainly the natural numbers are “natural”. We use them to count.
• Fractions are natural as they correspond to ways of dividing quantities

into smaller equal parts. For example, 1/3 corresponds to the result of
dividing a given line segment into 3 segments of equal length. Likewise
2/5 corresponds to dividing the given line segment into 5 segments of
equal length and then placing 2 of the segments end to end.

• The Greeks thought of any two quantities as being commensurable one
with the other, i.e. “capable of being measured by a common standard”,
i.e. integer multiples of some small common quantity.

Suppose we take a line segment of length L and a reference ruler
which is one unit long. (The Greeks used the “pous” unit which is about
316mm.) Then the Greeks thought that if they divided their unit ruler
into a sufficiently large number n of small parts of equal length 1/n pous,
then the length L of the original line segment should be equal to some
integer multiple m of 1/n. This idea was reinforced by the fact that in
principle one could choose 1/n as small as one wished.

But the Greeks then discovered a major problem with their world view.
They knew that if you draw a right angled triangle for which the two shorter

sides are of length 1, then the length L of the hypotenuse is given by L =

52The Greeks did not have a useful concept of negative number, however.
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√
2. (After all, they knew Pythagoras’ Theorem, since Pythagoras lived in

Greece approximately 580–500 BC.) More precisely they thought of this fact
geometrically. Namely, in Fig. 2.3 where we construct a square on each of
the three sides of the right angled triangle, the area L2 of the square on the
hypotenuse equals the sum of the areas on the other two sides, i.e. L2 = 1+1 =
2, or as we would write it,

√
L = 2.

Figure 2.3: Larger square has area L2 = 12 + 12 = 2

From their assumption that L = m/n for positive integers m and n, the
Greeks were led to an impossible conclusion, as we will soon see.

Examples of Irrational Numbers
[HM, 123–124]

The Irrationality of
√

2. As we discussed previously, the ancient Greeks
initially thought that all numbers are rational. But we will now prove53 that√

2 is in fact irrational. Remember that
√

2 has a very simple geometric in-
terpretation — it is the length of the hypotenuse of the right angled triangle
whose two smaller sides are both one unit long.

The proof uses the Method of Contradiction. That is, we will assume that√
2 is rational and from this assumption we will obtain a conclusion which is

clearly false. It follows that the assumption was incorrect, in other words
√

2
is irrational.

Theorem 2.6.1.
√

2 is irrational.

Proof. We argue by contradiction. That is, we assume

√
2 = m/n

where m and n 6= 0 are integers.
Multiplying numerator and denominator by −1 if necessary, we can take m

and n to be positive. By cancelling if necessary, we can reduce to the situation
where m and n have no common factors.

53The proof is essentially that used in Euclid’s Elements, written about 290 BC. See
http://aleph0.clarku.edu/ djoyce/java/elements/toc.html. This website gives a com-
plete online version of Euclid’s elements. First click on “A quick trip through the Elements”.
Then go to Proposition 8 of Book 8, and then read the “Guide” at the bottom of the webpage
to see what this has got to do with

√
2! (Not that it is all that clear, to say the least.)
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Using these new m and n which do not have any common factor, and
squaring both sides, we get

2 = m2/n2

and so
m2 = 2n2.

It follows that m2 is even since 2 must be a factor. But this means 2 divides
m×m and so 2 must divide m alone (see Theorem 2.3.10 on page 33). In other
words, m is also even

Because m is even, we can write

m = 2k

for some integer k, and hence

m2 = 4k2.

Substituting this into m2 = 2n2 gives

4k2 = 2n2,

and hence
2k2 = n2.

But now we can argue as we did before for m, and deduce that n2 is even
and hence n is even.

Thus (the new) m and n both have the common factor 2, which contradicts
the fact they have no common factors.

This contradiction implies that our original assumption in the first two lines
was wrong, and so

√
2 is not rational. In other words,

√
2 is irrational

The Irrationality of
√

3

Theorem 2.6.2.
√

3 is irrational.

The proof is very similar to that for
√

2. Write out the proof for yourself -
by making the appropriate changes. The main point is just to replace 2 by 3 at
various places. Instead of certain numbers being even, i.e. divisible by 2, they
now will be divisible by 3.

You can check your proof against what is written in [HM, p 115].

More Irrational Numbers
• In [HM, p119, Q11] you are asked to use similar arguments to show that,

for example,
√

6 is irrational. Try this yourself. -
• In fact, the square root of any integer which is not itself a perfect square

is irrational. The proof is similar, but messier to write out neatly.
• In [HM, p116] it is shown that

√
2 +
√

3 is irrational. Look at the proof. -
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• If 2x = 32 then x = 5.
Is there a rational number m/n such that 2m/n = 33?
If there were, then raising both sides to the power n we would get

2m = 33n.
But this means that 2 is a factor of 33n and so 2 is a factor of 33.

But this is not true and so we have a contradiction.
It follows that if 2x = 33 then x is irrational. Later in your other

maths courses you will write this x as log2 33 and call it the log of 33 to
the base 2. It is not surprising that x is a little bigger than 5, and your
calculator will show x = 5.044394118 . . . .

Similarly, if 10x = 33 then we write x = log10 33, or sometimes just
x = log10 33

• Here is a trickier question. Show that if 2x = 30 then x is irrational.-
• The number π and the number e (see page 7) are both irrational, but

this is more difficult to prove.
• Mathematicians believe that numbers like 2π and πe are irrational, but

no one so far has been able to prove this.

Questions

There are lots of Questions in [HM, pp118–120].
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2.7 The Real Number System

Sometimes things that seem
commonplace and ordinary are
actually exotic, and things that at
first seem rare and exceptional
are in fact the norm.

Overview

The decimal expansion of a number x can be interpreted as an infinite series.
It can also be thought of as giving the “address” of x on the real number line.

Some numbers have more than one infinite decimal expansion. These num-
bers are precisely those which also have a finite decimal expansion. One exam-
ple is 1 = 1.0 = .9.

Instead of decimal expansions, one can consider binary expansions. These
correspond to continually subdividing intervals into 2, rather than 10, smaller
parts.

We will see that between any two numbers, no matter how close, there are
infinitely many rational and infinitely many irrational numbers. However, if a
number is chosen “at random”, then it is “certain” to be irrational.

Although these ideas are discussed in [HM], we discuss them here in more
depth.

The Real Number Line
[HM, 121–122]

On page 7 we briefly discussed how the real numbers correspond to the points
on a line.

−4 −3 −2 −1 0 1 2 3 4
| | | | | | | | |. . . . . . . . .. . . .
−3.61

√
2 e π

To do this we first need to decide which points corresponding to the numbers
0 and to 1. After this, every number then corresponds to a specific point on
the line, and every point on the line corresponds to a specific number.

For example, the number 2 corresponds to the point twice the distance from
0 as 1 is from 0, and on the same side of 0 as is 1. The distance from 0 to

√
2 is

the length of the hypotenuse of the right angled triangle whose two small sides
are each 1 unit long.

We will soon examine decimal expansions of real numbers by studying prop-
erties of the real number line.
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?Decimal Expansions as Infinite Series

Your calculator will tell you that

√
2 = 1.414213 . . . , i.e.

√
2 = 1+

4

10
+

1

102
+

4

103
+

2

104
+

1

105
+

3

106
+. . . (2.34)

On the right side we have an infinite series (or infinite sum). We can think of
this as an infinite sequence of numbers:

1, 1.4 = 1 +
4

10
, 1.41 = 1 +

4

10
+

1

102
, 1.414 = 1 +

4

10
+

1

102
+

4

103
,

1.4142 = 1 +
4

10
+

1

102
+

4

103
+

2

104
,

1.41421 = 1 +
4

10
+

1

102
+

4

103
+

2

104
+

1

105
,

1.414213 = 1 +
4

10
+

1

102
+

4

103
+

2

104
+

1

105
+

3

106
, . . . .

The idea is that this infinite sequence eventually gets as close as we wish to√
2. We say that the sequence converges to

√
2. One can make this idea quite

rigorous, although we will not do so here.

Geometric Interpretation of Decimal Expansions
[HM, 123–124]

Suppose that the real line is first partitioned into intervals of width one, be-
ginning at 0.

−4 −3 −2 −1 0 1 2 3 4
[ )[ )[ )[ )[ )[ )[ )[ )[. . . . . . . . ..√

2
Notation. We include the first endpoint in each interval but not the

second. For example, one interval consists of all real numbers x such that
0 ≤ x < 1. We read this as “0 ≤ x and x < 1”. We write the interval as [0, 1),
where “[” indicates we include 0 and “)” indicates we do not include 1.54

The interval to the right of [0, 1) consists of all real numbers x such that
1 ≤ x < 2, and we write this as [1, 2). The interval to the left of [0, 1) consists
of all x such that −1 ≤ x < 0, and we write this as [−1, 0). The next interval
to the right of these three intervals consists of all x such that 2 ≤ x < 3, and
we write this as [2, 3). Etc.

Dividing and Redividing the Real Number Line. Recall the decimal
expansion of

√
2 in (2.34).

The number
√

2 is in the interval [1, 2), see Figure 2.4. The 1 in [1, 2)
corresponds to the fact that the digit before the decimal point in the expansion
of
√

2 is also 1.

54More Notation: The interval (3, 7) consists of all numbers x such that 3 < x < 7, the
interval [3, 7] consists of all numbers x such that 3 ≤ x ≤ 7, and the interval (3, 7] consists
of all numbers x such that 3 < x ≤ 7.
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Figure 2.4: Decimal Expansion of
√

2

Next divide the interval [1, 2) into 10 intervals of equal width 1/10,

[1, 1.1), [1.1, 1.2), [1.2, 1.3), . . . , [1.9, 2),

and number these intervals 0, 1, 2, . . . , 9. Then the first digit after the point
in the decimal expansion for

√
2 tells us which of these intervals contains

√
2.

This digit is 4 and the corresponding interval is [1.4, 1.5).

Now divide the interval [1.4, 1.5) into 10 intervals of equal width 1/102,

[1.4, 1.41), [1.41, 1.42), [1.42, 1.43), . . . , [1.49, 1.5),

and number these intervals 0, 1, 2, . . . , 9. Then the second digit after the dec-
imal point in the decimal expansion for

√
2 tells us which of these intervals

contains
√

2. This digit is 1 and the corresponding interval is [1.41, 1.42).

Now divide the interval [1.41, 1.42) into 10 intervals of equal width 1/103,

[1.41, 1.411), [1.411, 1.412), [1.412, 1.413), . . . , [1.419, 1.42),

and number these intervals 0, 1, 2, . . . , 9. Then the third digit after the decimal
point in the decimal expansion for

√
2 tells us which of these intervals contains√

2. This digit is 4 and the corresponding interval is [1.414, 1.415).
Etc.

Addresses You can think of the decimal expansion
√

2 = 1.41421356 . . . as
giving an infinite address for

√
2. The 1 before the decimal point gives the

country, the first digit 4 after the decimal point gives the state, the second
digit 1 gives the city, the third digit 4 gives the suburb, the fourth digit 2 gives
the street, the fifth digit 1 gives the street number, the sixth digit 3 gives the
apartment number, the seventh digit 5 gives the room number, etc.

Finding Addresses Notice that we can find the intervals containing
√

2,
and hence the decimal expansion of

√
2, even if we did not know the decimal

expansion before we started.



78 Numbers and Cryptography

For example, 12 ≤ 2 < 22, and so taking square roots 1 ≤
√

2 < 2, and so
the integer part of

√
2 = 1.

Similarly 1.42 ≤ 2 < 1.52, and so 1.4 ≤
√

2 < 1.5, and so the decimal
expansion of

√
2 up to one decimal point is 1.4.

Similarly, 1.412 ≤ 2 < 1.422, and so 1.41 ≤
√

2 < 1.42, and so the decimal
expansion of

√
2 up to two decimal points is 1.41.

Similarly, 1.4142 ≤ 2 < 1.4152, and so 1.414 ≤
√

2 < 1.415, and so the
decimal expansion of

√
2 up to three decimal points is 1.414. Etc.

Now try Question 1.-

Types of Decimal Expansions
[HM, 124–129]

There are three types of decimal expansions.

Definition 2.7.1. A decimal expansion is called finite (or terminating) if it
stops after a finite number of places. Examples are

1.7, 2.37, 3.24658 .

An infinite decimal expansion is called periodic if beginning from some
position there is a finite pattern of digits which repeats itself forever. Examples
are

.3333 · · · = .3, 2.34687168716871 · · · = 2.346871 .

An infinite decimal expansion is called non periodic if it is not periodic.

In Theorem 2.7.3 we will see that the rational numbers correspond to finite
or periodic decimal expansions while the irrational numbers correspond to non
periodic decimal expansions.

Finite Decimal Expansions. A finite decimal expansion represents the
same number as the infinite periodic decimal expansion obtained by adding
an infinite string of 0’s at the end. For example,

1.7 = 1.70, 2.37 = 2.370, 3.24658 = 3.246580.

We use the infinite decimal expansion with 0’s when we want to think of the
decimal expansion as giving an “address” of the number.

The Decimal Expansion .9. A result which often seems surprising at first
is that 1 = 1.0 = .9. It is not the case that “.9 is just a little bit less than 1”.

One way to see this is as follows. First notice that multiplication by 10
moves the decimal point one digit to the right. For example, if

x =
3

10
+

1

102
+

5

103
+

7

104
+

6

105
+ · · · = .31576 . . . ,

then

10x = 3 +
1

10
+

5

102
+

7

103
+

6

104
+ · · · = 3.1576 . . . .
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So in particular, if x = .9 then 10x = 9.9. If we subtract, this gives 9x = 9 and
so x = 1.

Each of the approximations .9, .99, .999, , 999, . . . to 1 is less than 1. But
the difference from 1 can be made as small as we wish by taking an approxima-
tion with sufficiently many 9s. The number represented by the infinite decimal
expansion .9 is exactly 1.

More than One Infinite Decimal Expansion. Any number which has a
finite decimal expansions can also be written both as a periodic expansion with
an infinite string of 0’s at the end and as a periodic decimal expansions with
an infinite string of 9’s at the end. For example,

1.7 = 1.70 = 1.69, 2.37 = 2.370 = 2.369,

3.248 = 3.2480 = 3.2479, 6 = 6.0 = 5.9, 300 = 300.0 = 299.9
(2.35)

You can show these with a method similar to that used for .9. Write out
the proof for the above numbers. We will also write out the method in Step 1 -
in the proof of Theorem 2.7.3.

Here is an important Theorem. Look at the examples in (2.35) to under-
stand what it is saying. Unfortunately the proof tends to obscure the main
ideas, which are essentially contained in (2.35).

Theorem 2.7.2. If a real number x > 0 has a finite decimal expansion then it
also has exactly two infinite decimal expansions. One of these infinite decimal
expansions is the same as the finite decimal expansion followed by an infinite
string of 0’s. The second infinite decimal expansion is obtained by decreasing
the last non zero digit in the finite expansion by 1 and then following this by
an infinite string of 9’s.

Real numbers x which do not have a finite decimal expansion have exactly
one infinite decimal expansion.

Proof. First suppose x has two or more decimal expansions, two of which agree
up to the third place (say) and then disagree in the fourth place, such as
6.3274 . . . and 6.3275 . . . . Even though we will deal with a particular example
for simplicity, we will see that our argument is general.

The largest number with a decimal expansion of the form 6.3274 . . . is
6.32749. Any other number with a decimal expansion of the form 6.3274 . . .
is strictly smaller than 6.32749. For example, 6.327499989999 . . . is smaller by
.00000001.

The smallest number with a decimal expansion of the form 6.3275 . . . is
6.32750. Any other number with a decimal expansion of the form 6.3275 . . . is
strictly larger than 6.32750.

Thus the only way x can have decimal expansions of the form 6.3274 . . .
and 6.3275 . . . is if the first expansion is 6.32749, the second is 6.32750, and x
then has the finite decimal expansion 6.3275.

Similarly, for any x which has two infinite decimal expansions agreeing in
the first three places (say) and disagreeing in the fourth place, let us write
these two decimal expansions as .a1a2a3b . . . and .a1a2a3c . . . , where we take b
less than c. In order for the two decimal expansions to be equal we must have,
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by a similar argument to before, x = .a1a2a3b 9 = .a1a2a3c 0 = .a1a2a3, and
b+ 1 = c.

A similar argument also applies more generally to any x with two or more
infinite decimal expansions by looking at the first place where two of the decimal
expansions differ. It follows that such an x has a finite decimal expansion and
has exactly two infinite decimal expansions.

Summarising: A number x has two or more infinite decimal expansions if
and only if it has a finite decimal expansion, and it then has exactly two infinite
decimal expansions.

We have just seen that if a number has more than one infinite decimal
expansion then it has a finite decimal expansion. This means that if it does
not have a finite decimal expansion then it does not have more than one infinite
decimal expansion.55

This proves the statement in the second paragraph of the theorem.

Decimal Expansions of Rational and Irrationals. The following Theo-
rem tells us which infinite decimal expansions represent rational numbers and
which represent irrational numbers.

Note that finite decimal expansions always represent rational numbers. But
not all rational numbers have finite decimal expansions. Why?-
Theorem 2.7.3. An infinite decimal expansion is periodic if and only if it
represents a rational number. It is non periodic if and only if it represents an
irrational number.

Proof. 1. If a decimal expansion is periodic then we can write it as a fraction
by using the following method.

The basic idea is to move the decimal point to the right so that the repeating
parts again line up. This requires multiplication by a suitable power of 10. For
example, if the length of the repeating part is 4 then multiply by 104 = 10000
to move the decimal point along 4 digits. After subtracting the original decimal
expansion we then get a terminating expansion which can easily be written as
a fraction.

For example,

x = .333333333 . . . = .3 , y = .9 ,

10x = 3.333333333 . . . = 3.3 , 10y = 9.9 .

Subtracting gives 9x = 3 and so x =
1

3
. Similarly, 9y = 9 so y = 1.

Here is another example. Since the repeating part has length 5 we multiply
by 105 = 100, 000.

x = 2.3468715

100 000x = 234 687.1568715

55There is a logical principle involved here. Namely, if P =⇒ Q then not Q =⇒ not P .
Think about it!
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Subtraction gives 99 999x = 234 684.81 =
23 468 481

100
and so x =

23 468 481

9 999 900
.

We have shown that if an infinite decimal expansion is periodic then it gives
a rational number.

2. We will now show that if a number is rational then it either has a terminating
decimal expansion or otherwise its infinite decimal expansion is periodic.56

In order to find the decimal expansion of a rational number57 we need to
do a long division. For example, to find the decimal expansion of 491/165 we
do the following long division.

2.975 . . .

165)491.000 . . .

330 (multiplication of 165 by 2)

1610

14 8 5 (multiplication of 165 by 9)

1250

11 55 (multiplication of 165 by 7)

950

825 (multiplication of 165 by 5)

1250

The remainder at each stage is indicated in bold. It must be between 0 and
164. Here we see the remainders are 161, 125, 95 and then 125 again. From
here on the long division repeats itself and so we see that 491/165 = 2.975.

The number of possible remainders is always the same as the number we
are dividing by. So eventually we must come again to a remainder that has
already occurred. From then on the long division repeats itself, which means
that the decimal expansion is periodic.

3. We have now shown that a number is rational if and only if its decimal
expansion is terminating or is periodic. It follows that a number is irrational
if and only if its decimal expansion is non periodic.

Some Curious Irrational Numbers. The following numbers

a = .101001000100001000001000000100000001 ...

b = .010110111011110111110111111011111110 . . .
(2.36)

have nice patterns. But are they rational? NO.
(We are using base 10 here, not base 2. If you wish, you can for example

replace 1 everywhere by 7, and the same result will be true)

Theorem 2.7.4. The numbers a and b in (2.36) are irrational.

56This does not follow from what we have already shown. For example, cats are mammals,
but mammals are not always cats.

57We will see in the next Section that some rational numbers have two decimal expansions,
but then both expansions will be periodic.
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Proof. We saw in Theorem 2.7.3 that the number given by a decimal expansion
is rational if, and only if, the decimal expansion is periodic.

But the decimal expansion for a is not periodic. This looks pretty clear,
and here is a careful argument.

If the decimal expansion given for a is periodic then there is a repeating
pattern of length N (say) first starting at the kth digit (say) and then again at
k + N, k + 2N, k + 3N, . . . , k + pN, . . . . On the other hand, there are runs of
0 which are as long as we want, and certainly of length much greater than N .
For example there will be (infinitely many) sequences of 0s of length at least
googol×N .

Eventually there will be a first p such that k+pN is in one of these very long
sequences of 0’s, and in particular there will only be 0’s up to k+(p+1)N . This
means the repeating block consists only of 0’s, and so the decimal expansion
for a will consist only of 0’s beyond a certain point. But this contradicts the
fact that there are infinitely many 1’s in a.

So a is not rational, i.e. a is irrational.
In a similar way, b is irrational.

Notice by the way that a+ b = .1 = 1/9, which is rational.

In [HM] a similar proof is given that

0.12345678910111213141516171819202122232425...

is irrational.

Binary Expansions
[HM, 124]

In Footnote 15 we briefly discussed different bases other than the base 10
(decimal) system for natural numbers. In particular we mentioned the bases
2, 16 and 60.

In fact we can find the expansion of arbitrary real numbers, not just natural
numbers, to any base. For example, the base 2 (or binary) expansion of

√
2 is

√
2 = 1.0110101000001001111 · · · = 1 +

0

2
+

1

22
+

1

23
+

0

24
+

1

25
+ . . . .

To find this binary expansion divide the interval [1, 2) into two parts [1, 3/2)
and [3/2, 1). Then

√
2 is in the left interval (why? ), see Fig. 2.5, and so the-

first digit after the point is 0. Dividing this interval into two parts [1, 5/4) and
[5/4, 6/4) we can check that

√
2 is in the right interval and so the second digit

after the point is 1. If we divide again then
√

2 is again in the right interval
and so the third digit after the point is 1. Etc.

Now try Question 2.-
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Figure 2.5: Binary Expansion of
√

2.

?Density of the Rationals and the Irrationals

We saw on page 70 that there are lots of rational numbers. For any two rational
numbers, no matter how close, there is a rational number between them, just
take their average.

More generally, we have the following Theorem.

Theorem 2.7.5. Between any two distinct numbers a and b, no matter how
close, there is both a rational number and an irrational number.

In fact, there are infinitely many rational numbers, and infinitely many
irrational numbers, between a and b.

Proof. If a and b are distinct numbers, let a be the smaller. Choose n suffi-

ciently large that
1

n
< b − a. Notice that b − a is just the distance from a

to b.
Now consider the numbers

. . . ,− 4

n
,− 3

n
,− 2

n
,− 1

n
, 0,

1

n
,

2

n
,

3

n
,

4

n
, . . . .

If m is the largest integer such that
m

n
≤ a then we see from the following

diagram that a <
m

n
+

1

n
< b.58

Thus we have found a rational number
m+ 1

n
between a and b.

58The reason is that 1/n is too small to “bridge the gap” from a and b. The careful
argument is that (m + 1)/n > a by the definition of m as the largest integer such that
m/n ≤ a. But if (m+ 1)/n ≥ b then (m+ 1)/n−m/n ≥ b− a by properties of inequalities.
This implies 1/n ≥ b− a, which contradicts the fact we chose n so that 1/n < b− a.
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One way to find an irrational number between a and b is to choose n even

larger if necessary to ensure that

√
2

n
< b− a. Again choose the largest integer

m such thatm/n ≤ a. It follows as before that the irrational number
m

n
+

√
2

n
=

m+
√

2

n
is between a and b. Why?-

In order to obtain an infinite set of rational numbers between a and b, we
just reuse the result already proved.

More precisely, we first obtain a rational number r1 where a < r1 < b.
Then by what we have already shown, there is another rational number r2
where a < r2 < r1. And then there is another rational number r3 where
a < r3 < r2. Etc.

In a similar way we obtain an infinite number of irrational numbers between
a and b.

It follows from the Theorem that:
For any real number there is no next real number immediately before it or

immediately after it.

Because of the Theorem and the above comment we say that the set of
rational numbers, and the set of irrational numbers, are each dense in the set
of all real numbers.

No Holes, Nothing Missing
[HM, 127]

Even though the rational numbers are dense in the set of real numbers, we still
managed to further squeeze in the irrational numbers. Do you think there are
even more numbers we could squeeze in if we were suitably ingenious? The
answer is NO, but we first need to formulate the question more precisely.

We know that
√

2 can be approximated by an increasing sequence of rational
numbers obtained from its decimal expansion:

1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, . . . .

In other words, we have a sequence of rational numbers which is increasing and
which gets closer and closer to

√
2, which is not rational.

In fact, if we take any sequence of real (not necessarily rational) numbers
which is increasing, provided it is not getting arbitrarily large (such as the
sequence 1, 2, 3, 4, . . . ), it will always get closer and closer to one, and exactly
one, real number. This property of the real numbers is known as Sequential
Completeness. We can think of it as a very strong statement about there being
no holes in the set of real numbers!

Sequential completeness follows from the usual properties of decimal ex-
pansions. But we won’t go any further in trying to write this out carefully.
In most rigorous developments of the real number system sequential complete-
ness is taken to be one of the axioms, or part of one of the axioms, and the
properties of decimal expansions are then derived from the axioms.
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Random Reals
[HM, 129-130]

We saw in Theorem 2.7.5 that between any two distinct real numbers, no
matter how close, there are infinitely many rational numbers and infinitely
many irrational numbers. However, in a probabilistic sense, we will now see
that irrational numbers are far more common than rational numbers.

A Thought Experiment. We will pick a random number between 0 and 1
as follows.

Spin a roulette wheel divided into 10 equal sectors and marked {0, 1, 2, . . . , 9}.
Suppose the result is 3. Write down the number .3.

Now spin the wheel a second time and suppose the result is 7. Write down
the number .37.

Now spin the wheel a third time and suppose the result is 0. Write down
.370.

Keep going in this manner and we might, for example after 10 steps, have
.3708854216.

Now imagine that we do this infinitely often, thus generating a decimal
expansion and hence a number x where 0 ≤ x ≤ 1.

The idea is that the first digit is chosen from {0, 1, 2, . . . , 9} where each digit
has probability 1/10 of being chosen. The second digit is chosen randomly in
a similar manner, independently of the first digit. And so on.

You can ask Maple to do this with its inbuilt random number generator.

Is the number x rational or irrational?
If x were rational then after some point we would repeat the same pattern

again and again forever. How likely is this? It could happen in principle, but
the probability of it happening is a number less than any positive number, and
greater than or equal to 0. The only such number is 0 itself.

This may seem paradoxical. You will probably agree that it is extremely
unlikely that we would repeat the same pattern again and again forever, and
probably agree that the probability of this happening should be smaller than
any positive real number. Yet you may initially be unhappy about the idea of
assigning 0 to the probability of an event which could happen in principle even
though it is “certain” it will never happen.

This takes us into the area of modern probability theory, which we will not
have time to discuss in this course.

Questions

1 Find the first few digits in the decimal expansion of 3
√

3. Use your calcu-
lator but only to multiply numbers. Do not use the cube root function,
or anything fancy like that.

2 Find the first few digits to base 2 of
√

3 and 3
√

2 (note that here when we
write

√
3 and 3

√
2 we are using base 10).

DON’T LOOK YET but here59 are the answers.

See [HM, pp132–134] for other Questions.

59The answers are 1.1011101101100111101 . . . and 1.0100001010001010001 . . . .



Chapter 3

Infinity

Infinity has long been a source of philosophical speculation. With mathematics
we can make sense of it. We will replace vague ideas with precise notions with
which we can work.

For some history, see page 129.

Is infinity interesting? Yes. We will encounter some amazing and initially
counterintuitive ideas.

Is infinity useful for anything? The answer is a resounding yes. Almost all
mathematical analysis in science and technology, economics and engineering,
uses ideas involving infinity. The notion of an infinite limit is fundamental to
calculus, and to the extensions of calculus to more general notions.

We will later show that some infinities are larger than others. There is an
infinity of infinities. We will discover and discuss many other amazing and
profound results

We begin with an analysis of when two collections are the same size.
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3.1 Comparing Sets

A key to understanding the
complex unknown can be a deep
understanding of the simple and
familiar.

Overview

We discuss what it means for two collections (i.e. sets) to be the same size via
the idea of a one-to-one correspondence between collections.

We also introduce some notation about sets.

One-to-One Correspondences
[HM, 138–140]

Sets of the Same Size How can we show two collections have the same
size?

Suppose we have a collection of basket balls and another collection of large
boxes. We could count each collection, and if we get the same number in each
case we would agree that the two collections have the same size.

But suppose the number of basket balls and of boxes was very large and
we could not count that high, or that we did not trust ourselves to not make
a mistake.

In any case, another way would be to pair up balls and boxes by putting
each ball into a box so that every ball is in exactly one box and every box
contains exactly one ball. If we could do this, with no balls or boxes left over,
we would agree that the collection of balls and the collection of boxes were each
of the same size.

We say there is a one-to-one pairing or one-to-one correspondence between
the collection of balls and the collection of boxes.

Definition of One-to-One Correspondence We now make this idea more
precise. In the following definition you should first think of A as the collection
of basket balls and B as the collection of boxes in the previous discussion.

Definition 3.1.1. A one-to-one correspondence1 between two collections A
and B is a pairing of the members of A with the members of B so that under
this pairing
• every member of A is paired with exactly one member of B, and
• every member of B is paired with exactly one member of A.

1For those of you who have seen the idea of a function and related notions, here is an
equivalent approach:

A one-to-one correspondence between two sets A and B is given by a function f : A→ B
i.e. a function f from A to B) which is one-to-one and onto.

The actual one-to-one correspondence is given by a↔ f(a) for all x ∈ A.
Such a function f has an inverse f−1 : B → A, which is defined by f−1(b) = a if and only

if f(a) = b. The inverse function f−1 is one-to-one and onto. The one-to-one correspondence
is also given by f−1(b)↔ b for all b ∈ B.
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Examples

Figure 3.1: One-to-One Correspondence

1. Examples 1 and 2 in Figure 3.1 are one-to-one correspondences between
A and B.

2. Example 3 is not a one-to-one correspondence since the top two elements
in A are paired with the same element in B. It is also not a one-to-one
correspondence since one element in B is not paired with any element
in A.

However, it is possible to give a one-to-one correspondence, see Ex-
ample 1 or 2.

3. Examples 4 and 5 are not one-to-one correspondences since in the first
case there is an element in A which is not paired with any element in B,
and in the second case there is an element in B which is not paired with
any element in A.

4. Example 6 is not a one-to-one correspondence since there is an element in
A which is not paired with any element in B. It is also not a one-to-one
correspondence since there is an element in B which is not paired with
any element in A.

However, it is possible to give a one-to-one correspondence. Find one.
Now find a second.-

Definition of Same Cardinality The following Definition is fundamental
to the rest of our wok on infinity. It gives a precise description on when two
sets have the same size, or as we usually say, have the same cardinality.
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Definition 3.1.2. Two sets A and B have the same size (or same cardinality)
if2 there exists a one-to-one correspondence between A and B.

This material is not in [HM].
?Comparing Three Sets The following Theorem is not surprising.

Theorem 3.1.3. Suppose there is a one-to-one correspondence between A and
B, and another one-to-one correspondence between B and C.

Then there is a one-to-one correspondence between A and C.

Proof.

Consider any element a in A (see the above diagram). It will be paired with
exactly one element b in B. The element b is paired with exactly one element c
in C. The one-to-one correspondence between A and C is obtained by pairing
a with c.

It is fairly clear that this gives a one-to-one correspondence between A and
C according to Definition 3.1.1.

Here is a brief explanation of why the two dot point requirements in Defi-
nition 3.1.1 are satisfied for A and C.
• Every element a in A is paired with exactly one element c in C, namely

the element c we defined as above.
• On the other hand, consider any element c in C. By taking the unique b

in B which is paired with c and then the unique a in A which is paired
with this b , we certainly obtain some element a in A which is paired
with c by our method.

This c cannot be paired with any other a′ in A. The reason is that
a′ will be paired with some b′ different from b, and this b′ will in turn
be paired with some c′ different from c. But this means that a′ is paired
with c′ which is different from c. That is, if a is different from a′ then c
is different from c′.

Thus we have shown that our pairing is indeed a one-to-one correspondence
between A and C according to Definition 3.1.1.

Notation for Sets
This material is not in [HM].

1. A collection of objects is usually called a set in mathematics. Occasion-
ally we also use the word class.

2It is standard practice in Mathematics to use the word “if” in a definition to mean “if
and only if”. This is logical since it would not be a complete definition of a concept if we
did not mean “if and only if”.
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2. A member of a set is also called an element of the set. If a is an element
of the set A we write a ∈ A.

3. We say that two sets are equal (or are the same) if they have the same
elements.

4. If the elements of a set A are a, b and c then we write A = {a, b, c} (and
similarly for other examples). The sets {a, b, c}, {b, a, c}, {c, b, a} etc. are
all the same.

For example, the set of even integers between 0 and 10 inclusive is
the set {0, 2, 4, 6, 8, 10}.

5. If A and B are sets, then the union A ∪ B of A and B is the set of all
elements that are in A or B (or both).3 The intersection A∩B of A and
B is the set of all elements that are in both A and B.

For example, if A = {1, 2, 3} and B = {2, 3, 4, 5} then A ∪ B =
{1, 2, 3, 4, 5} and A ∩B = {2, 3}.

Notice that we do not normally write A ∪ B = {1, 2, 2, 3, 3, 4, 5}.
For example, 3 is either in, or is not in, a set. It cannot be in a set
“twice”.

6. If A, B and C are sets, then the union A∪B∪C is the set of all elements
that are in A or B or C. (Remember that “or” includes the possibility
that more than one of these alternatives is true.) The intersection A ∩
B ∩ C is the set of elements that are in A and B and C.

Draw a diagram analogous to that for A ∪B and A ∩B.-
7. It is convenient to have a set with no members, which we call the empty

set and denote by ∅. This is useful because then the intersection of two
sets is always a set. If the two sets have no elements in common then
their intersection is the empty set.

There is only one empty set, since any two empty sets have the
same members, and so by item 3 are the same!

8. If A is a set then we say B is a subset of A, and we write B ⊂ A, if every
element in B is also in A. In particular, ∅ ⊂ A and A ⊂ A.4

9. If A and B are sets and A ⊂ B then the set B\A is the set of all elements
in B that are not in A. B \A is called “B minus A” or “B take A”.

3In Mathematics, when we say “a statement P is true or a statement Q is true” we
always allow the possibility that both are true. So when we say that x ∈ A ∪ B if and only
if x ∈ A or x ∈ B, we allow the possibility that both x ∈ A and x ∈ B are true.

4This may be slightly different from the notation you will see elsewhere. Some books
write B ⊆ A where we write B ⊂ A. Some books write B ⊂ A only if B is a subset and
there is at least one element in A that is not in B.
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Remark It follows from Theorem 3.1.3 that if A has the same cardinality
as B and B has the same cardinality as C then A has the same cardinality
as C.

Further discussion of the Examples
1. In Examples 1 and 2 on page 90 we saw that A and B have the same

cardinality.
2. Example 3 does not give a one-to-one correspondence. But A and B still

have the same cardinality as it is possible to give a one-to-one correspon-
dence between A and B in this case, as we have already noted.

3. In Examples 4 and 5 it is not possible to find any one-to-one correspon-
dence between A and B. In the first case, no matter how we try to pair
up the elements in A with those in B, there there will always be one
element in A left unpaired. A similar situation applies in Example 5.

4. Example 6 does not give a one-to-one correspondence between A and
B. But A and B still have the same cardinality as it is possible to give
a one-to-one correspondence between A and B in this case, as we have
noted previously.

Questions

See [HM, pp142–144] for Questions. Try Questions 8, 9, 21, 22.
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3.2 Countably Infinite Sets

Using a precise definition
carefully can lead to
counterintuitive discoveries that
liberate our thinking and our view
of the world.

Overview

We discuss what it means for two infinite sets to have the same cardinality
(size) and come up with some rather surprising results.

We will show that the set of natural numbers, the set of integers, and the
set of rational numbers all have the same cardinality in a certain precise sense.

Sets with Equal Cardinality

From now on we will take Definition 3.1.2 as fundamental! But we will use it
with infinite sets.

It follows (why? ) from Definition 3.1.2 that:-
(i) If we can find some one-to-one correspondence between two sets
then they have the same (or equal) cardinality (size).

(ii) If we can show there is no one-to-one correspondence be-
tween two sets then they do not have the same (or equal) cardinality
(size).

At this stage you will need to commit yourself to Definition 3.1.2. Perhaps
you could write down on a piece of paper:

I hereby declare that two sets have the same size if they can be
paired up via a one-to-one correspondence.

Moreover, if it can be established by some means that there is
no one-to-one correspondence between these two sets (by using an
argument by contradiction or otherwise) then the two sets do not
have the same size.

——————————————
Signature

Finding one-to-one correspondences in certain cases can be quite tricky, and
the results are often surprising.

Showing there is no one-to-one correspondence in certain cases (not just
that we ourselves cannot find one!) is even more tricky and subtle, and we will
do this in Section 3.3.
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Comparing Some Sets of Natural Numbers
[HM, 145–148]

Even and Odd Natural Numbers We will use N for the set of natural
numbers, E for the set of even natural numbers, and O for the set of odd
natural numbers. That is

N = {1, 2, 3, 4, 5, 6, . . . },
E = {2, 4, 6, 8, 10, 12, . . . },
O = {1, 3, 5, 7, 9, 11, . . . }.

It is clear that there is a one-to-one correspondence between E and O. For
example

2↔ 1, 4↔ 3, 6↔ 5, 8↔ 7, 10↔ 9, 12↔ 11, . . . .

We can even write down a formula:

2n↔ 2n− 1 for n ∈ N.

There are also many other one-to-one correspondences. For example we might
change just the first two pairings:

2↔ 3, 4↔ 1, 6↔ 5, 8↔ 7, 10↔ 9, 12↔ 11, . . . .

Even v. All Natural Numbers Somewhat more surprising is that there
is a one-to-one correspondence between N and E. The simplest one-to-one
correspondence between N and E is

1↔ 2, 2↔ 4, 3↔ 6, 4↔ 8, 5↔ 10, 6↔ 12, . . . , n↔ 2n, . . . .

(Here we have also written the general formula.) Every natural number corre-
sponds to exactly one even natural number, and under this pairing every even
natural number corresponds to exactly one natural number.

This is surprising because we have shown a one-to-one correspondence be-
tween the set N and another set E, where E is obtained by omitting certain
elements (the odd integers) in N. Thus we have an example where a set N is
the same size as a second set E obtained after discarding certain elements, in
fact infinitely many, from N.

Another Set of Natural Numbers Another example is a one-to-one corre-
spondence between N and the set N∗ = {2, 3, 4, 5, 6, 7, . . . } consisting of all the
natural numbers ≥ 2. So N∗ is obtained from N by discarding the number 1.

One example of a one-to-one correspondence between N and N∗ is:

1↔ 2, 2↔ 3, 3↔ 4, 4↔ 5, 5↔ 6, . . . , n↔ n+ 1, . . . .

Finite and Countably Infinite Sets
Most of this material is not in [HM].

At this stage it is convenient to make the following Definition.
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Definition 3.2.1.
• A set S is finite if it is the empty set ∅ or if it has the same cardinality

as {1, 2, . . . , k} for some natural number k. We say S has cardinality 0
in the first case and cardinality k in the second case.

• A set is infinite if it is not finite.5

• A set S is countably infinite if it has the same cardinality as N. We say
S has cardinality d or S has cardinality ℵ0.

• A set is countable if it is finite or countably infinite.
We say 0, 1, 2, . . . , n, . . . and d (or ℵ0) are cardinals or cardinal numbers.

The d in the previous definition stands for “denumerable”. The symbol ℵ is
the first letter “aleph” of the Hebrew alphabet, and we say “aleph zero” for ℵ0.

We saw E, O and N∗ have cardinality d by writing the elements in each
set as the elements of an infinite sequence (or “list”) s1, s2, s3, s4, . . . . The
elements in each set occurred exactly once in the corresponding sequence:

Sequence: s1 s2 s3 . . . sn . . .

All natural numbers: 1 2 3 . . . n . . .

Even natural numbers: 2 4 6 . . . 2n . . .

Odd natural numbers: 1 3 5 . . . 2n− 1 . . .

Integers ≥ 2: 2 3 4 . . . n+ 1 . . .

The above are examples of a general fact which we state as the following
Theorem, which is essentially a rewording of Definition 3.2.1. A little more
informally the Theorem says:

A set is finite iff it is empty or can be listed as a finite sequence.
A set is countably infinite iff it can be listed as an infinite se-

quence.

Theorem 3.2.2. A set S is finite iff it is the empty set or for some natural
number k there is a finite sequence6

s1, . . . , sk

such that each element of S occurs exactly once in the sequence.
A set S is countably infinite iff there is an infinite sequence

s1, s2, . . . , sn, . . .

such that each element of S occurs exactly once in the sequence.

Proof. From Definition 3.2.1:
• S is finite iff it is the empty set or there is a one-to-one correspondence

between it and the set {1, 2, . . . , k} for some natural number k.

5Another equivalent definition is that a set is infinite if it can be put in one-to-one
correspondence with a proper subset of itself. See Theorem 3.3.4.

6It is important to realise that the order matters when we list a sequence. Changing the
order changes the sequence. On the other hand the order does not matter when we describe
a set. Changing the order does not change the set.
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• S is countably infinite iff there is a one-to-one correspondence between it
and the set N = {1, 2, . . . , n, . . . }.

The proof now is just a matter of noticing that:
• There is a one-to-one correspondence between S and {1, 2, . . . , k} is just

another way of saying that S can be written as a “finite” sequence

s1, . . . , sk.

The one-to-one correspondence gives us the finite sequence and the finite
sequence gives us the one-to-one correspondence. Why? -

• There is a one-to-one correspondence between S and {1, 2, . . . , n, . . . } is
just another way of saying that S can be written in an infinite sequence

s1, . . . , sn, . . .

The one-to-one correspondence gives us the infinite sequence and the
infinite sequence gives us the one-to-one correspondence. Why? -

This completes the proof.

At this stage you might think that every infinite set can be arranged in a
sequence and so every infinite set has the same cardinality as N. In Section 3.3
we will show that in fact the set of all real numbers cannot be written in an
infinite sequence! In the rest of this section we will give some more sets which
can be written as an infinite sequence and so are countably infinite.

Countability of Z
[HM, 151,152]

The set of all integers is denoted by Z:

Z = {. . . ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . . }. (3.1)

Is Z countably infinite? In other words, does Z have the same cardinality as N?
Someone might answer that Z is countably infinite because it is already

arranged in an infinite sequence. But their logic would be wrong, since (3.1) is
not a sequence in our sense. A sequence as used in Theorem 3.2.2 is something
that has a first element, then a second element, then a third element, . . . , then
an nth element, . . . . (We do not require that the first element be the smallest
element, by the way.)7

This person might then answer that Z is not countably infinite because it is
not arranged in an infinite sequence in our sense. But again their logic would be
wrong — Theorem 3.2.2 only requires that the set in question can be arranged
in a sequence.

In fact it is possible to arrange Z in a sequence. Beginning with 0 move one
step right to 1, then 2 steps left to −1, then 3 steps right to 2, then 4 steps left
to −2, etc. This is perhaps best seen in the following diagram.

7Occasionally you might see the arrangement in (3.1) referred to as a bi-infinite sequence
or two-sided sequence.
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Theorem 3.2.3. The set Z of all integers is countably infinite.

Proof. The sequence

0, 1,−1, 2,−2, 3,−3, 4,−4, 5,−5, . . . (3.2)

includes every element in Z exactly once. It follows from Theorem 3.2.2 that
Z is countably infinite.

Although we do not really need a formula for the proof of Theorem 3.2.3,
you can check that the nth term in the sequence is −(n− 1)/2 if n is odd and
is n/2 if n is even.

Countability of Q
[HM, 152–155]

The set Q of rational numbers is also countably infinite. This is very surprising
at first.

In the case of Z we were able to rearrange the natural ordering (3.1) into the
sequence (3.2). But it is very far from clear how we might do this for Q. One
problem is that between any two numbers there are infinitely many rational
numbers. (We say Q is dense in the set R of all real numbers, see page 83.)

The solution lies in returning to the original definition of a rational number.
Recall that a number is rational if it can be written in the form m/n where m
and n are integers and n 6= 0.

The proof of the following theorem is not at all obvious, and indeed is quite
remarkable.

Theorem 3.2.4. The set Q of rational numbers is countably infinite.

Proof. We will first prove that the set Q+ of positive rational numbers, i.e.
those rational numbers of the form m/n where m and n are both > 0, is
countably infinite.

So that each element of Q+ will only occur once, we represent each rational
number by m/n where m and n have been cancelled down as much as possible.
That is, m and n have no common factors. Each element of Q+ has exactly
one representation of this form.

In a row list all positive rational numbers which are of the form m/1, i.e. list
all positive integers.
In the next row list all positive rational numbers which are of the form m/2
after cancelling down.
In the next row list all positive rational numbers which are of the form m/3
after cancelling down.
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In the next row list all positive rational numbers which are of the form m/4
after cancelling down.
Etc.

See the following diagram and at this stage ignore the arrows.

1/1 2/1 → 3/1 4/1 → 5/1 . . .
↓ ↑ ↓ ↑ ↓

1/2 → 3/2 5/2 7/2 9/2 . . .
↓ ↑ ↓

1/3 ← 2/3 ← 4/3 5/3 7/3 . . .
↓ ↑ ↓

1/4 → 3/4 → 5/4 → 7/4 9/4 . . .
↓

...
...

...
...

...
. . .

Each element of Q+ occurs exactly once in the above infinite array, but so
far Q+ is not listed in a single sequence. However, by following the arrows as
indicated we do obtain a sequence in which each number in Q+ occurs exactly
once. The first few terms are:

1,
1

2
,

3

2
, 2, 3,

5

2
,

4

3
,

2

3
,

1

3
,

1

4
,

3

4
,

5

4
,

7

4
,

5

3
,

7

2
, 4, 5,

9

2
,

7

3
,

9

4
, . . . .

So Q+ is countably infinite.
We abbreviate this sequence for Q+ to:8

r1, r2, r3, r4, . . . , rn, . . . .

The set of negative rational numbers can then be written as

−r1,−r2,−r3,−r4, . . . ,−rn, . . . .

Finally, the set Q of all rational numbers can be written as a sequence by
following the arrows in the following:

0

↓
r1 r2 r3 r4 · · ·
↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ · · ·

−r1 −r2 −r3 −r4 · · ·

This gives
0, r1,−r1, r2,−r2, r3,−r3, r4,−r4, . . . ,

8You may object that there is no obvious formula for rn. In fact one could write a
complicated formula, but this does not really matter. The point is that we have demonstrated
that there is a sequence that contains each positive rational number exactly once.

In this example it would not be too hard to write a computer program which would
actually generate as many terms of the above sequence as we wished.

In some even more complicated situations it may be possible to prove the existence of
a sequence which lists every member of a certain set exactly once. But the proof may be
an argument by contradiction, and we may not actually have a nice way of generating the
sequence.
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i.e.

0, 1,−1,
1

2
,−1

2
,

3

2
,−3

2
, 2,−2, 3,−3,

5

2
,−5

2
,

4

3
,−4

3
, . . . .

(One could even write a computer program to do this.)

New Infinite Sets from Old
This material is not in [HM].

?Subsets of Countably Infinite Sets Suppose we have a set which is
countably infinite. What can we say about the possible cardinalities of its
subsets?

For example, if

A = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, . . . }

then one subset is

B = {4, 22, 24, 36, 52, 54, 58, 102, . . . }

where the sequence listing B continues forever, and another is

C = {4, 16, 22, 484}

where the sequence listing C is finite.
The following theorem says that this is essentially all that can happen.

Theorem 3.2.5. Suppose a set is countably infinite. Then any subset is either
finite or countably infinite.

Suppose a set is finite with cardinality n. Then any subset is finite with
cardinality k ≤ n.

Proof. Let A be a countably infinite set. Suppose B is a subset of A.
We can write

A = {a1, a2, a3, . . . , an, . . . }. (3.3)

Use the enumeration in (3.3) to consider each element of A in turn. If the
element is in B then write it down in a new list (i.e. sequence). Three things
can happen. Either

1. the process will never start because B = ∅, or
2. the process will stop after a finite number of steps (say k), or
3. the process will never stop.
In the first case the set B is certainly finite.
In the second case we obtain a finite listing of the elements of B, which we

write as
B = {b1, b2, . . . , bk}.

This implies that B is finite with cardinality k.
In the third case we obtain an infinite sequence listing the elements of B,

which we can write as
B = {b1, b2, . . . , bn, . . . }.

This implies B is countably infinite.

If A is finite with cardinality n, then B is either the same as A or is obtained
by removing some elements from A. It follows that B will have cardinality k
where k ≤ n.
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?Unions of Two Countably Infinite Sets In the proofs that Z and Q are
countably infinite, one of the steps was to show that if certain sets A and B
are countably infinite then so is A ∪ B. The argument we used works more
generally.

Theorem 3.2.6. Suppose at least one of the sets A and B is countably infinite
and the other is either finite or countably infinite. Then A ∪ B is countably
infinite.

Proof. Because A is countably infinite we can write

A = {a1, a2, . . . , an, . . . }.

Because B is finite or countably infinite we can write

B = {b1, b2, . . . , bk}

for some k, or
B = {b1, b2, . . . , bn, . . . }.

A sequence which lists all members of A ∪ B exactly once is obtained by
first considering the path which alternates between elements of A to B as in
the following diagram.

a1 a2 ak ak+1 → ak+2 → ak+3 · · ·
↓ ↗ ↓ · · · ↓ ↗
b1 b2 bk

or

a1 a2 a3 a4

↓ ↗ ↓ ↗ ↓ ↗ ↓ · · ·
b1 b2 b3 b4

.

Thus in case B has k elements the path is

a1 → b1 → a2 → b2 → · · · → ak → bk → ak+1 → ak+2 → ak+3 . . . ,

and in case B is infinite the path is

a1 → b1 → a2 → b2 → a3 → b3 → a4 → b4 → . . . .

If we next strike out any elements that have already occurred, we obtain an
infinite sequence listing each element of A ∪B exactly once.

This shows A ∪B is countably infinite.

Suppose that the first few elements of A and B are given by

A = {2, 13, 3, 5, 8, 18, . . . }, B = {1, 5, 14, 3, 2, 6, . . . }.

What is the path and what are the first few elements in the enumeration of
A ∪B obtained in the previous proof? -

?Comments and Further Results

Union of More Than Two Countable Sets Suppose we have three
countable sets and at least one of them is infinite. Then it follows from applying
Theorem 3.2.6 twice that the union of these three sets is countably infinite. See -
Question 2.
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Subsets of Q From Theorem 3.2.4 the set Q of rational numbers is count-
ably infinite. We already knew that E, O and Z are countably infinite, but
this also follows from Theorem 3.2.5.

Questions

1 Questions 6–44 on pp 156–161 of [HM] are all relevant. Questions 16–18
are an interesting way to explore some of the paradoxes of infinity.

2 Suppose A, B and C are three countable sets and A is countably infinite.
Use the result of Theorem 3.2.6 twice to prove that A∪B∪C is countably
infinite.

Now prove that if fours sets are countable and at least one is countably
infinite, then their union is countably infinite.

What happens for more than four sets?
3 Suppose that for each natural number n we have a set An which is count-

ably infinite. It will be convenient to write

A1 = {a11, a12, a13, . . . , a1k, . . . }
A2 = {a21, a22, a23, . . . , a2k, . . . }

...

An = {an1 , an2 , an3 , . . . , ank , . . . }
...

By tracing out a path as in the proof that the set of rationals is countably
infinite, prove that the set A of all elements from A1, A2, . . . , An, . . . is
countably infinite.

To simplify matters, first do the case where no two of the An’s have
any element in common.

Then explain how to deal with the situation where some elements
may occur in more than one of the An.

We write

A = A1 ∪A2 ∪ · · · ∪An ∪ . . . , or A =
⋃
n≥1

An,

and say “A is the union of the An for n ≥ 1”. The result can be stated
as: the union of a countably infinite collection of countably infinite sets
is countably infinite.

4 Why can the previous result NOT be proved by induction on n? What
similar result can be proved by induction on n?

5 a Suppose one number is removed from N. What is the cardinality of
the remaining set? Explain briefly.

b Suppose a finite set of numbers is removed from N. What is the
cardinality of the remaining set? Explain briefly.

c Suppose an infinite set of numbers is removed from N. Give examples
where the remaining set has one element, has 23 elements, and has
infinitely many elements respectively.

d Explain why similar results apply to any set of cardinality d.
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3.3 Different Sizes of Infinity

Extending a new idea to its
logical conclusion can lead to
surprising and counterintuitive
outcomes as well as a more
accurate view of reality.

Overview

So far we have seen that the set N of natural numbers, the set Z of all integers,
the set E of even numbers, and the set Q of rational numbers, all have the
same cardinality d. We called these sets countably infinite.

We also saw that if two sets are countably infinite then so is their union. In
Question 3 in the previous section we even saw that the union of a countably
infinite collection of countably infinite sets is countably infinite.

It would be reasonable to suspect that “all infinite sets are the same size”.
In other words, it would be reasonable to suspect that all infinite sets have the
same cardinality as the set N of natural numbers. Another way of expressing
this would be to claim that every infinite set can be written as an infinite
sequence, see Theorem 3.2.2.

However, we will see this is not true! We will see that the set R of all real
numbers gives a larger infinity than the set N of natural numbers. Perhaps a
more surprising way of expressing this is that: the set R of all real numbers
gives a larger infinity than the set Q of rational numbers. More precisely, we
will prove in Theorem 3.3.1 that R is not countably infinite. We say that R
has cardinality c.

We will also show that the set I of irrational numbers is not countably
infinite, and in fact has the same cardinality c as R.

Reread the comments and commitment you made under Sets with Equal
Cardinality on page 94. In this Section we want to show there is no one-to-
one correspondence between N and R. In other words we want to show there
is no sequence which includes every real number.

The Dodge Ball Game

First look at [HM, Story 5, pp 8,16,21].

Diagonalising Out of a Sequence Suppose a friend writes down a list of
7 natural numbers, each 7 digits long. For example, the 7 numbers might be
5699785, 3407467, 4679068, 4235675, 3915609, 1377465, 8769689. We write
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these as follows (at this stage ignore the boxes):

5 6 9 9 7 8 5

3 4 0 7 4 6 7

4 6 7 9 0 6 8

4 2 3 5 6 7 5

3 9 1 5 6 0 9

1 3 7 7 4 6 5

8 7 6 9 6 8 9

It is very easy to find another 7 digit number not in the list. We will denote
this number by n. One systematic way to find such an n is to use the boxed
digits as follows:

1. Take the first digit in n to be different from the first digit in the first
number in the list. We can choose any digit other than 5. Let’s choose
4.

2. Take the second digit in n to be different from the second digit in the
second number in the list. We can choose any digit other than 4. Let’s
choose 3.

3. Take the third digit in n to be different from the third digit in the third
number in the list. We can choose any digit other than 7. Let’s choose
2.

4. Take the fourth digit in n to be different from the fourth digit in the
fourth number in the list. We can choose any digit other than 5. Let’s
choose 4.

5. Take the fifth digit in n to be different from the fifth digit in the fifth
number in the list. We can choose any digit other than 6. Let’s choose
0.

6. Etc.
Proceeding in this way, we might end with n = 4324012, for example.

To summarise, we start with the top left digit and proceeding down the
diagonal, construct an integer n as follows:

1. The first digit in n is selected so as to be different from the first digit in
the diagonal.

2. The second digit in n is selected so as to be different from the second
digit in the diagonal.

3. The third digit in n is selected so as to be different from the third digit
in the diagonal.

4. The fourth digit in n is selected so as to be different from the fourth digit
in the diagonal.

5. The fifth digit in n is selected so as to be different from the fifth digit in
the diagonal.

6. Etc.

We could do the above in many ways. We might do the following. First
decide that the only two digits we will use in constructing n are 4 and 6. Then
follow the rules:
• If a diagonal digit is not 4, the corresponding digit in n will be 4.
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• If a diagonal digit is 4, the corresponding digit in n will be 6.

Notice that:
1. After the first step we already know that n will be different from the first

number in the list. This is because n differs in the first digit place from
the first number in the list. It does not matter how we select the later
digits in n.

2. After the second step we know that n will be different from the second
number in the list, no matter how we select the other digits in n.

3. After the third step we know that n will be different from the third
number in the list, no matter how we select the other digits in n.

4. Etc.

Extensions We do not have to use a sequence of 7 numbers with 7 digits. For
example, the method would work on a sequence of one google natural numbers
each containing one googol digits. I do not suggest you verify this by means of
an example, but it is clear that by following the same method of working down
the diagonal, we could show that there is a natural number with one googol
digits which is not in the original sequence.

There are other ways of showing there is a natural number with one googol
digits which is not in the original sequence. In fact, as we saw in (2.28) on
page 55, there are 10googol−1 natural numbers with one googol digits. This
is far bigger than one googol, which is how many numbers there were in the
original sequence. So there will always be plenty of numbers with a googol
digits which are not in the original sequence.

However, the “Dodge Ball” idea is what we will need to use in the following.

R is not Countably Infinite
[HM, 162–168]

Cantor’s Diagonalisation Method We want to show there is no sequence
which lists every real number. We will do this by using a variation of the Dodge
Ball Game called Cantor’s Diagonalisation Method.

It is very easy to write down an infinite sequence of real numbers that does
not include every real number. For example,

0, .1, .2, . . . , 1,−.1,−.2, . . . ,−1, 1.1, 1.2, . . . , 2,−1.1,−1.2, . . . ,−2, . . . .

Any sequence of real numbers we think of will always miss some real num-
bers, but perhaps that just means we did not think about it hard enough. After
all, it was quite hard work to list all the rational numbers in a single sequence.
Maybe there is also an ingenious way of listing all the real numbers, not just
the rationals, in an infinite sequence.

In fact there is no such sequence. But how could we prove this? It is no
good just showing that certain sequences of real numbers do not contain all real
numbers. What we want is to show that for every sequence of real numbers,
no matter how such a sequence might have been produced, there will always
be some real number not in the sequence.

It is important to understand that, when we produce a real number not
in a given sequence, this real number will depend on the sequence. The real
number produced will vary from one sequence to another. Similarly, in the
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game of Dodge Ball we produced a 7 digit number not in the original finite
sequence. But if we had started with a different sequence then the Dodge Ball
method would have usually produced a different number which is not in the
finite sequence.

Theorem 3.3.1. The set R is not countably infinite.

Proof. We will show there is no sequence which includes all real numbers. By
Theorem 3.2.2 this will imply that R is not countably infinite.

More precisely, we will show:
If s1, s2, . . . , sn, . . . is a sequence of real numbers then there is an-
other real number r which is not in the sequence.9

Once we have done this, the Theorem is proved. Why?-
Using decimal expansions we first write the given sequence s1, s2, . . . , sn, . . .

in the form:
s1 = a1. a11 a12a13a14 . . . a1n . . .

s2 = a2.a21 a22 a23a24 . . . a2n . . .

s3 = a3.a31a32 a33 a34 . . . a3n . . .

s4 = a4.a41a42a43 a44 . . . a3n . . .

...

sn = an.an1 an2 an3an4 . . . ann . . .

...

(3.4)

For example, if s1 = 17.325168432 . . . and s2 = −0.298461705 . . . then10

a1 = 17, a11 = 3, a12 = 2, a13 = 5, a14 = 1, a15 = 6, . . . ,

a2 = −0, a21 = 2, a22 = 9, a23 = 8, a24 = 4, a25 = 6, . . . .

We now show there is a real number r not in this sequence by extending
the Dodge Ball method to infinite sequences. In fact the number r we obtain
will always be between 0 and 1.

To do this we will use the digits 4 and 6 as on page 104. (You can use your
own different choice of digits, but do not use 9 or 0 for a reason we will soon
discuss.) Then we define

r = .r1r2r3r4 . . . rn . . . , (3.5)

where:
1. If a11 6= 4 then r1 = 4 and if a11 = 4 then r1 = 6.
2. If a22 6= 4 then r2 = 4 and if a22 = 4 then r2 = 6.
3. If a33 6= 4 then r3 = 4 and if a33 = 4 then r3 = 6.
4. If a44 6= 4 then r4 = 4 and if a44 = 4 then r4 = 6.

9The method is discussed for a particular example in [HM, p165]. But the method there
is quite general and here we write out the same method using a more general notation.

10Taking a2 = −0 might look a bit odd. It probably helps to think of a2 as part of the
description of s2 rather than as a number.



3.3. Different Sizes of Infinity 107

...
n. If ann 6= 4 then rn = 4 and if an = 4 then rn = 6.

... .
Some numbers have two decimal expansions, but this only happens when

the decimal expansions end in an infinite sequence of 0s or an infinite sequence
of 9’s (see Theorem 2.7.2). This does not happen with the number r since its
decimal expansion uses only 4s and 6s. So the decimal expansion (3.5) is the
only decimal expansion for r.

It follows that:
1. Since the decimal expansion for r is different from the decimal expansion

for s1 in the first decimal place, r 6= s1.
2. Since the decimal expansion for r is different from the decimal expansion

for s2 in the second decimal place, r 6= s2.
3. Since the decimal expansion for r is different from the decimal expansion

for s3 in the third decimal place, r 6= s3.
4. Since the decimal expansion for r is different from the decimal expansion

for s4 in the fourth decimal place, r 6= s4.
...

n. Since the decimal expansion for r is different from the decimal expansion
for sn in the nth decimal place, r 6= sn.

...
We have now shown that the number r is different from every real number

in the sequence s1, s2, s3, . . . , sn, . . . .
This proves the statement in the second paragraph of the proof and so

completes the proof of the Theorem.

Comment on the Proof One student might say that the proof is flawed
because we can always include the number r in the sequence s1, s2, . . . , sn, . . .
by, for example, putting it at the beginning of the sequence and moving all
other terms one place to the right. A second student might reply that the
proof then applies to the new sequence and there will be another number r not
in the new sequence.

But the objection of the first student is not valid. And while the second
student has made a correct statement, the statement is not necessary in order
to justify the proof, and perhaps even slightly misses the point of the proof.

The point of the proof is that the proof really does show that for any
sequence of real numbers there is a real number r not in that sequence. It is
similar to the Dodge Ball Method in this respect.

The fact that we could make a new sequence which does include r, and
obtain from this new sequence yet another real number not in the new sequence,
is true. And it is also helpful to our understanding. But this information about
how we would deal with the new sequence is not necessary in order to justify
the validity of the proof! The objection of the first student is not valid because
we only need to show that r is not in the original sequence. Remember that
the original sequence was any sequence of real numbers, it was completely
arbitrary.
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Uncountable Sets
This material is not in [HM].

Definition 3.3.2. A set is uncountable if it is not finite or countably infinite.
If a set can be put in one-to-one correspondence with R we say it has

cardinality c.11

We say that c is a cardinal or a cardinal number.

So now we have the cardinalities n where n is 0 or any natural number, the
cardinality d and the cardinality c. We will see in Section 3.4 that this is just
the beginning of the story!

A Common Error Suppose A is an infinite set. Then it is not necessarily
correct to say “let A = {a1, a2, . . .}”. The reason is that this implicitly assumes
that A is countably infinite!

Countable Subsets of Uncountable Sets Suppose we have a set A which
is infinite. Think of A as being uncountable. One possible example of A is the
set R, but there are many others. Then A will always have a subset S (in fact
many) which is countably infinite, in other words which has cardinality d, as
we see in the next Theorem.

For this reason we say that d is the smallest infinite cardinal number.

Theorem 3.3.3. Suppose A is an infinite set. Then there is a subset S of A
which is countably infinite.

Proof. Because A is not the empty set there is certainly an element a1 ∈ A.
Because A \ {a1} is also not the empty set (why? ) there is an element-

a2 ∈ A \ {a1}.
Because A \ {a1, a2} is also not the empty set (why? ) there is an element-

a3 ∈ A \ {a1, a2}.
Etc.
In this way we choose12 a countably infinite set S = {a1, a2, a3, . . . , an, . . . }

which is a subset of A.

?Removing Part of an Infinite Set
This material is not in [HM].

If we remove one or more elements from a finite set then we decrease the
cardinality (size) of the set.

In Question 5 on page 102 we saw that if we remove a finite set from a
countably infinite set the new set is still countably infinite. If we remove a
countably infinite set from a countably infinite set the new set may be empty,
finite, or countably infinite.

11The letter c comes from continuum, an old way of referring to the set R.
12 Since in general there is no rule or “constructive” way to do this, we are using what is

called in mathematics the “Axiom of Choice”. In fact, we are using the “countable” Axiom
of Choice. Further discussion of this takes us deep into the Foundations of Mathematics. See
“Foundations of Set Theory” and “A Cardinal between d and c?” on page 120.
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The next Theorem gives particular examples, which are sufficient for our
purposes, of the following more general result: If from an infinite set B a
subset A of smaller cardinality is removed, then the remaining set has the same
cardinality as B.

We prove that if one removes a finite subset A from an infinite set B then
the remaining set B \ A is still infinite, and its cardinality is the same as the
cardinality of B. We also prove that if we remove a countably infinite subset A
from an uncountably infinite set B then the remaining set B \A is uncountably
infinite, and its cardinality is the same as the cardinality of B.

The reason the proof of the Theorem is tricky is that we cannot write the
set B in an infinite sequence

b1, b2, . . . , bn, . . . ,

unless B is countably infinite. See “A Common Error” on page 108.
For example, if B is R then we cannot write B as a sequence. So instead,

we choose an appropriate countably infinite subset r1, r2, . . . , rn, . . . from B
and work with this subset.

In the Theorem, think of B as the set R of real numbers. The set A might
be a finite set of numbers, or a countably infinite set such as N or Q.

Theorem 3.3.4.

1. Suppose B is an infinite set and A is a finite subset. Then the set B \A
has the same cardinality as B.

2. Suppose B is an uncountably infinite set and A is a countably infinite
subset. Then the set B \A has the same cardinality as B.

Proof. We begin with the proof of Part 1.
To understand the ideas, first suppose A contains just the single element

r1. We write A = {r1}.
The trick is to choose an infinite sequence r1, r2, . . . , rn, . . . of distinct ele-

ments from B which begins with r1.
We then write

B = {r1, r2, . . . , rn, . . . } ∪
(
B \ {r1, r2, . . . , rn, . . .}

)
. (3.6)

It follows

B \A = B \ {r1} = {r2, r3, . . . , rn+1, . . .} ∪
(
B \ {r1, r2, . . . , rn, . . .}

)
. (3.7)

We can now use (3.6) and (3.7) to define a one-to-one correspondence be-
tween B and B \A as follows:

r1 ↔ r2

r2 ↔ r3

...

rn ↔ rn+1

...

&
every element in B \{r1, r2, . . . , rn, . . . }
corresponds to itself.
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This proves that B and B \A have the same cardinality.

Let us next suppose we remove a set A = {r1, . . . , r23}, for example, from
B. The proof that B and B \A have the same cardinality is similar to before.

Beginning with r1, . . . , r23 choose an infinite sequence r1, . . . , r23, . . . , rn, . . .
of distinct elements from B.

We then write

B = {r1, . . . , rn, . . . } ∪
(
B \ {r1, r2, . . .}

)
. (3.8)

It follows

B \A = B \ {r1, . . . , r23} = {r24, . . . , rn+23, . . .} ∪
(
B \ {r1, r2, . . .}

)
. (3.9)

Using (3.8) and (3.9) the one-to-one correspondence between B and B \A
is

r1 ↔ r24

r2 ↔ r25

...

rn ↔ rn+23

...

&
every element in B \ {r1, r2, . . . }
corresponds to itself.

This proves that B and B \ A have the same cardinality. A similar argument
works if we remove any finite set of elements from B.

In order to prove part 2, suppose B is uncountable. Suppose a countable
set A = {r1, r2, . . . , rn, . . . } of distinct elements is removed from B.

So as to give ourselves room to manoeuvre we choose another sequence
s1, s2, . . . , sn, . . . of elements from B, distinct from each other and distinct
from the rn’s. (Notice that if we had to stop choosing at some stage because
there were no more elements left, then that would imply B is countably infinite,
which is not the case.)

Now combine these two sequences into the single sequence:

r1, s1, r2, s2, . . . , rn, sn, . . . .

We write

B = {r1, s1, r2, s2, . . . } ∪ (B \ {r1, s1, r2, s2, . . . }).

It follows

B \A = B \ {r1, r2, . . . } = {s1, s2, s3, s4, . . . } ∪ (B \ {r1, s1, r2, s2, . . . }).
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Now define a a one-to-one correspondence between B and B \A as follows:

r1 ↔ s1

s1 ↔ s2

r2 ↔ s3

s2 ↔ s4

...

rn ↔ s2n−1

sn ↔ s2n

...

&
every element in B \ {r1, s1, r2, s2, . . . }
corresponds to itself.

This shows B and B \A have the same cardinality.

?The Set I of Irrationals.
This material is not in [HM].

Theorem 3.3.5. The set I of irrational numbers is uncountable.

Proof. Assume I is countable. (We will obtain a contradiction.)
Because Q is also countably infinite and R = Q ∪ I, it then follows from

Theorem 3.2.6 that R is countably infinite.
But we know from Theorem 3.3.1 that R is not countably infinite.
Thus we have a contradiction and so our assumption is wrong. That is, I

is uncountable.

We can actually show something more than this. We will show that the set
I has the same cardinality c as R.

The trick is to apply Theorem 3.3.4. Since I is obtained by removing the
countably infinite set Q from R, it follows that I has cardinality c.

Theorem 3.3.6. The set I and the set R have the same cardinality c.

Proof. We know that I = R \Q. Since R is uncountable and Q is countable, it
follows from Theorem 3.3.4 that I and R have the same cardinality, namely c.

Questions

1 Questions 7, 8, 10, 13–24 on pp 169–172 of [HM] are good.
Notice that Questions 13, 14, 16 are variations on a similar idea.
How?

2 Show that if A is an infinite set and b is not in A then A ∪ {b}, the set
obtained by “adding” b to A, has the same cardinality as A.

HINT: This is easy by applying Theorem 3.3.4 to A ∪ {b}.
Note that we do not really need to assume b is not in A. Why?
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3 Show that if A is an infinite set and B is any countable set, then A ∪ B
has the same cardinality as A.

HINT: First assume that B has no elements in common with A and
apply Theorem 3.3.4.

How can you get the general result from this case?
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3.4 An Infinite Hierarchy of

Infinities

Use a powerful idea or technique
repeatedly to discover more and
more fascinating and surprising
results.

Overview
[HM, 173,174]

You should read [HM, §3.4]. Although the material in Section 3.4 here is self
contained and a little more advanced, [HM] has discussion and motivation for
the ideas.

We now have a precise notion of what it means for two sets to have the
same cardinality. We have used this to discover some very surprising results.
For example, the sets N, Z and Q all have the same cardinal d. The sets R and
I have the same cardinal c. The cardinal d is smaller than the cardinal c.

Here are more Questions, which we can now phrase in a precise manner.
1. We have seen that the cardinal d is smaller than the cardinal c.13

Is there an infinity (i.e. a cardinal) between d and c? The assumption
that there is no such cardinal is called the Continuum Hypothesis.

2. Is there an infinity greater than the cardinal c of the set R?
3. Are there infinitely many different cardinals, i.e. sizes of infinity?
4. Is there a largest infinity?
5. Is there a set containing all sets?

We begin with Question 2 and show the answer is YES by extending Can-
tor’s Diagonalisation Method used in the last Section.

These methods will allow us also to show that the answer to Question 3 is
YES.

This helps us show that the answers to Questions 4 and 5 are NO.

The most profound is Question 1. The astounding answer is neither YES
nor NO!

There is some further discussion and history concerning these Questions
and related matters beginning on page 129.

The Power Set
[HM, 175]

So far we have usually discussed sets whose elements are numbers. Examples
are E,N,Z,Q, I,R. But there is also the set of books in this room, the set of

13From Theorem 3.3.3 any set of cardinality c always contains a set of cardinality d. See
also Definition 3.4.3.
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people in this class with green hair (frequently, but perhaps not always, it is
the empty set), the set of infinite sequences of integers which start with 1 and
do not contain 7, etc., etc.

The point is that the elements of a set need not be numbers. The elements
might be books, people, infinite sequences, etc. The elements of a set may even
themselves be sets.

If A is a set, we will be particularly interested in the set whose elements are
all the subsets of A. We call this the power set of A and denote it by P(A).

Definition 3.4.1. The power set P(A) of a set A is the set consisting of all
the subsets of A.

Example Suppose A = {a, b, c, d}. (The elements of A might be 1, 2, 3, 4,
but they could be any four distinct objects.) Then the subsets of A are:

∅
{a}, {b}, {c}, {d},

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d},

{a, b, c, d}

(3.10)

Remarks
1. We include both the empty set ∅ and the original set A as elements

of P(A), i.e. as subsets of A.
2. Because the order of elements does not matter, we do not write {b, a} as

well as {a, b}. Both represent the same set. Similarly for other cases.
3. The set {a} is not the same as the element a. For example, the set {a}

has exactly one element, namely a, and the cardinality of {a} is one. But
if a is itself a set then a may have cardinality 23, say. However, {a} still
has cardinality one!

Describing the Power Set One way to think of subsets of A is to think of
the elements of A lined up in a row.

a b c d

A subset is determined by those elements in the row that we “push forward”
to the next row. For example

a c

b d

determines the set S = {b, d},

a

b c d

determines the set S = {b, c, d} and

a c d

b
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determines the set S = {b}.

In describing an element S ∈ P(A), i.e. in describing a set S ⊂ A, we need
to decide for each element of A whether or not to push it forward and so include
it in S.

The Power Set of a Finite Set
[HM, 176–178]

The Number of Subsets Suppose A is the finite set {a, b, c, d} as before.
In describing an element S ∈ P(A), i.e. in describing a set S ⊂ A, we have

2 choices (or possibilities) for a (a ∈ S or a /∈ S), 2 choices for b (b ∈ S or
b /∈ S), 2 choices for c (c ∈ S or c /∈ S) and 2 choices for d (d ∈ S or d /∈ S).

For each of the 2 choices for a we have 2 choices for b, making a total of
2×2 = 4 choices for a and b. For each of these 4 choices for dealing with a and
b, there are 2 choices for c, making 4× 2 = 8 choices for what to do with a, b
and c. Finally , for each of these 8 choices there are 2 choices for d, leading to
8× 2 = 16 choices as to what to do with a, b, c and d.

If you go back and count the number of subsets in (3.10) you will indeed
get 16.

This leads to a Theorem.

Theorem 3.4.2. If A is a finite set with n elements, then P(A) has 2n ele-
ments. In other words, there are 2n subsets of A.

Proof. We can write A in the form

A = {a1, a2, a3, . . . , an}.

A subset S of A can be described by assigning to each element of A either
Y (for YES, the element is in S) or N (for NO, the element is not in S).

There are 2 possibilities for a1, 2 possibilities for a2, 2 possibilities for a3,
. . . , 2 possibilities for an.

The total number of possibilities is obtained by multiplying (not by adding,
why? ), and this gives 2× 2× 2× · · · × 2 = 2n, since there are n factors. -

More Subsets than Elements Suppose A is a finite set with n elements.
Since 2n > n, the cardinality of the power set of A is certainly larger than the
cardinality of A.

But what we need later is a method which will extend to infinite sets for
showing the cardinality of the power set of A is larger than the cardinality of A.

For this, suppose we have two columns, each a list of the same length. The
first column is a listing of all the elements of A. In the second column there
are certain subsets of A, one corresponding to each element of A in the first
column. For example, we might have A = {a1, a2, . . . , a7} and the following
two lists:
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All elements of A Certain Subsets of A

a1 {a1, a4}
a2 {a3, a5, a6}
a3 {a2, a4, a6, a7}
a4 ∅
a5 {a1, a2, a3, a4, a5, a6, a7}
a6 {a6}
a7 {a4}

The goal is to obtain, in a systematic manner, a subset of A which is not
included in the list on the right side.

We will call this set M as in [HM]. (The M stands for “mysterious”.)
We want M to be different from the set corresponding to a1, different from

the set corresponding to a2, different from the set corresponding to a3, . . . ,
and finally different from the set corresponding to an.

The Dodge Ball Game Revisited We want M to be a subset of A which
is different from every set in the second column.

First, M should be different from the set paired with a1, which is the set
{a1, a4}. Moreover, it would be nice if we could do this just on the basis of
whether or not to put a1 in M . But this is easy. Since a1 is in {a1, a4} we
decide to not put a1 in M . So M is different from {a1, a4}, no matter what
we do with the other elements a2, a3, . . . , a7 from A.

Similarly, M should be different form the set paired with a2, which is the
set {a3, a5, a6}. Moreover, it would be nice if we could do this just on the basis
of whether or not to put a2 is in M . But this is again easy. Since a2 is not in
{a3, a5, a6} we decide to put a2 in M .

Similarly, since a3 is not in {a2, a4, a6, a7} we decide to put a3 in M .
Since a4 is not in ∅ we decide to put a4 in M .
Since a5 is in {a1, a2, a3, a4, a5, a6, a7} we decide to not put a5 in M .
Since a6 is in {a6} we decide to not put a6 in M .
Since a7 is not in {a4} we decide to put a7 in M .

So the final result is that we take M = {a2, a3, a4, a7}.

Observations on the Method
1. For the element a3 in A (and similarly for every other element in A), the

decision whether or not to put a3 in M is based solely on whether or not
a3 is in the set {a2, a4, a6, a7} with which it is paired.

Once we have made the decision to put or not put a3 in M , no matter
what else we decide for the other elements in A, the set M will be different
from the set in the list corresponding to a3.

2. The decision we make for a3 (and similarly for every other element in A)
is independent of the decision we make for the other elements in A.

3. We can make our decisions in any order. We could make all our decisions
simultaneously, at least in principle.

4. We have shown there is no one-to-one correspondence between A and
P(A). We have shown that for any way of pairing up every element in A
with a subset of A, there will always be some set M which is not paired
with any element in A.
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The method here will work also when A is infinite. In fact, it will
enable us to prove the cardinality of P(A) is larger than the cardinality
of A even when A is infinite.

The Power Set of an Infinite Set
[HM, 179–182]

What We Will Prove We know the cardinality of the power set of a finite
set A is larger than the cardinality of A. But if A is infinite, particularly if A has
a large infinite cardinality such as c, there is much more room to “manoeuvre”.
Maybe there is a one-to-one correspondence between A and P(A). But we will
see this is not so.

We will show there is no one-to-one correspondence between A and P(A).
An equivalent way of expressing this is that:

if every element of A is paired with some subset

of A, then another subset of A will be left unpaired.
(3.11)

Parallels with the Finite Case We will prove (3.11) by using the Dodge
Ball Method, or more precisely Cantor’s Diagonal Argument, as in the finite
case with the Table on page 115.

That is, we will show (3.11) by showing that for any pairing in which every
element of A is paired with some subset of A, there is a subset M of A which
is “left over” in the pairing process.

The only difference in the argument from the finite case is that the set A
cannot be listed in a column, not even an infinite column if A is uncountable
(see Theorem 3.3). But this does not make any essential difference to the
proof.

We will also need the following Definition.

Definition 3.4.3. The cardinality of a set B is larger than the cardinality of
a set A if:
• There is a way of pairing every element of A with a different element in B.

(This is the same as saying that there is a one-to-one correspondence
between A and a subset of B.)

• There is no way of pairing every element of A with a different element of
B so that there are no elements of B left unpaired. That is, there is no
one-to-one correspondence between A and B.

We also say that the cardinality of A is smaller than the cardinality of B.
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While reading the proof of the next Theorem you should refer back to the
Table on page 115 and also the discussion of the Dodge Ball Game on page 116.

In the Theorem we are particularly interested in the case A is infinite.

Theorem 3.4.4. Suppose A is set. If every element of A is paired up with
some subset of A, there will always be some subset M of A which is not paired
up with any element from A.

It follows that there is no one-to-one correspondence between A and P(A),
and that the cardinality of P(A) is larger than the cardinality of A.

Proof. First note that there are many ways of pairing every element of A with
a different element of P(A). For example, pair each element a with the sub-
set {a}.

Now consider any pairing in which every element of A is paired with some
subset of A. We will show there is always a “left over” subset of A (which we
call M) which is not paired with any element from A.

For each a in A denote the corresponding subset paired with a by Aa.14

We now construct the “mysterious” set M , which is a subset of A, as follows:
For each a in A, if a is in Aa then do not put a in M . If a is not in Aa then

do put a in M .
This ensures M is not the same as the set Aa for every a in A.
So we have proved the claim in the first paragraph of the Theorem.

It follows that there is no one-to-one correspondence between A and P(A).

It now follows from Definition 3.4.3 that the cardinality of P(A) is larger
than the cardinality of A.

An Infinity of Infinities
There is some discussion of this in [HM, 179].

?Aleph and All That Now things are going to get really weird.
Let’s begin with the set N. It has cardinality d = ℵ0.
From Theorem 3.4.4 the set P(N) has a larger cardinality than N. In fact

the cardinality of P(N) is c, as we will see in Question 2 on page 121.
The Continuum Hypothesis says that there is no cardinal between d and c.

So c is the next cardinal after ℵ0 and is referred to as ℵ1.
But now if we apply Theorem 3.4.4 to P(N) we get a set P(P(N)) with an

even larger cardinal number. The Generalised Continuum Hypothesis15 says
there is no cardinal between this cardinal and ℵ1. We then write this cardinal
as ℵ2.

If we then apply Theorem 3.4.4 to P(P(N)) we get a set P(P(P(N))) with
an even larger cardinality again. Again assuming the generalised Continuum
Hypothesis we write this cardinal as ℵ3.

Etc., etc.

14For example, in the case on page 115 where A is finite, Aa1 = {a1, a4}, Aa2 =
{a3, a5, a6}, Aa3 = {a2, a4, a6, a7}, etc.

15The basic idea here of an infinite hierarchy of cardinals still holds, even if we do not
assume the Continuum Hypothesis and the Generalised Continuum Hypothesis. But the
notation is a bit simpler if we do.
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In this way we get a sequence of sets

N, P(N), P(P(N)), P(P(P(N))), . . . , (3.12)

with larger and larger cardinals

ℵ0 < ℵ1 < ℵ2 < ℵ3 < · · · < ℵn < . . . .

But we can even go further than this. Imagine the set which contains all
the elements in N, all the elements in P(N), all the elements in P(P(N)), all
the elements in P(P(P(N))) etc.

What is the cardinality of this monster set? It is in fact larger than ℵn for
every natural number n. This is because if we take any n then ℵn < ℵn+1 and
the cardinality of the monster set is at least as large as ℵn+1! It is standard to
denote the cardinality of the monster set by ℵω. So now we have

ℵ0 < ℵ1 < ℵ2 < ℵ3 < · · · < ℵn < · · · < ℵω.

The letter ω is called “omega” and is the last letter of the Greek alphabet.
We are on a roll here, so let’s keep going. Taking the power set of the

monster set, and the power set of that, and so on, we get more and more
cardinals usually written as follows:

ℵ0 < ℵ1 < ℵ2 < ℵ3 < · · · < ℵn < . . .

< ℵω < ℵω+1 < ℵω+2 < ℵω+3 < · · · < ℵω+n < . . . .

Why stop here? Consider the double monster set which consists of all
elements in all sets obtained so far. It has a cardinality larger than all sets so
far, and its cardinal is usually written ℵω·2. And onwards and onwards. And
we have barely begun.

Do We Need This? From a philosophical and psychological point of view it
is amazing how the human mind can begin to grasp such extraordinary concepts
through a precise mathematical analysis.

From the practical and applications point of view it is important. Although
the sets we deal with in mathematics will usually belong to at most the fifth or
so level in (3.12), the fact that we can continue is essential to developing the
theory required for applications. To develop the theory we need to know we
can take the power set without any prior restriction on how often, and so we
need to know we can continue up through the monster and the double monster
and so on.

Set Theory Paradoxes
HM, 183–185]

A Set of All Sets? Is there a set which contains all sets? The answer is
NO.

One way to see this is to suppose there were such a set, which we will call
the universal set U . By Theorem 3.4.4 P(U) has a larger cardinality than U
and so must contain some sets not in U . This contradicts the fact U contains
all sets.

This is at first odd. It seems reasonable that we should at least be able to
talk about the collection of all sets. But if we do so, this collection cannot be
treated like an ordinary set.
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A Largest Infinity? Is there a largest cardinal, i.e. a largest infinity? Again
the answer is NO.

For suppose there were such a cardinal. Let us denote it by κ. (It is
traditional to denote large cardinals by κ, which is pronounced “kappa” and is
another letter of the Greek alphabet.) Then if A is a set whose cardinal is κ,
we get a larger cardinal by taking the cardinality of the set P(A).

?Russell’s Paradox Does every property define a set?
Suppose “P (x)” is an abbreviation for the statement “x has a certain prop-

erty P”. For example: “x is a real number”, “x is a pink elephant”, “x is a
set of sets of sets”, etc. It seems reasonable that there should always be a set
S consisting precisely of those objects x with the property P , even though S
might be the empty set.

In fact, we have seen that this is not the case. For example, if P (x) says
“x is a set” then we have seen there is no set of all sets and so there is no set
whose elements are precisely those objects x satisfying the property P (x).

The fact that for some properties there is not a corresponding set was first
realised and understood by Bertrand Russell in 1902. Russell’s example is quite
simple and does not use the idea of cardinality. He considered the property P
given by16 17

P (A) iff (A is a set and A /∈ A).

Assume there is a set S consisting precisely of those sets A such that P (A)
is true. In other words, assume that S is the set of all sets A which are not
members of themselves.

We ask ourselves if S ∈ S or S /∈ S? Either way we get a contradiction:
• If S ∈ S then P (S) is true, i.e. S /∈ S.
• If S /∈ S then P (S) is not true, and since S is a set this implies S ∈ S.

So the conclusion we are forced to draw is that the assumption there is such a
set S is in fact not correct!18

?Foundations of Set Theory In the years 1900–1930 there were many
attempts to put the foundations of set theory on a firm basis.

Russell and Whitehead wrote “Principia Mathematica” and developed what
is known as the Theory of Types. This work attempts to reduce the foundations
of mathematics to logic and was extremely influential. However, it is very
unwieldy. It took 500 pages to establish 1 + 1 = 2, but went considerably
further than this!

The approach now used most frequently is due to Zermelo and Fraenkel
and is called Zermelo-Fraenkel set theory. Another approach is due to Gödel,
Bernays and Von Neumann. It allows for both sets and “classes”. There is a
class of all sets but not a class of all classes.

16By “x /∈ S” we mean “x is not an element of S”, and we read it as “x is not in S”.
17It is in fact not easy to find an example of a set that is a member of itself. One example

is the set of strange ideas. The set of strange ideas is a strange idea, and so is a member of
itself!

For a more “mathematical” example of a set which is a member of itself one could try the
set S of all sets with more than two elements. In fact, S is not a set for reasons similar to
those which showed that there is no set of all sets.

18See the History concerning Russell’s Paradox and the impact on Frege’s work mentioned
on page 130.
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A Cardinal Between d and c? The statement that there is no cardinal
between d and c is called the “Continuum Hypothesis”. Gödel showed in 1940
that the Axiom of Choice19 and the Continuum Hypothesis cannot be proved
to be false using the other axioms of set theory. In 1963 Paul Cohen proved
that the Axiom of Choice and the Continuum Hypothesis cannot be proved
to be true using the other axioms of set theory, for which he received a Fields
medal. These results together show the Axiom of Choice and the Continuum
Hypothesis are independent of the other axioms of set theory.

There is no agreement on whether or not we should accept the Continuum
Hypothesis. Either way leads to counterintuitive conclusions. While most
mathematicians accept the Axiom of Choice, it also has some very surprising
consequences.

Gödel also showed in 1934 that there is no set of axioms which will capture
all mathematical truths.

This is all quite mind boggling. It means that we can prove that we cannot
prove certain things. It implies that in mathematics there is no absolute truth.
The consequences have been far reaching — in the philosophy and foundations
of mathematics. The ideas involved have major implications to fields such as
computational science, automata theory and artificial intelligence.

Questions

1 Questions 1, 3, 8, 9, 10, 13–22 on pp 185–189 of [HM] are good.
2 Prove that the cardinality of P(N) is c as follows:

1. Show there is a one-to-one correspondence between P(N) and the
set of all infinite sequences of 0’s and 1’s.

2. Show that every point in the interval [0, 1] has a binary expansion
·a1a2a3 . . . , where each an is either 0 or 1.

3. Explain why, in a manner analogous to that for decimal expansions,
every number in [0, 1] has either one or two binary expansions.

What are the numbers with two binary expansions?
Why is this set countable?

4. Deduce that the set of (different) binary expansions has cardinal-
ity c.

Deduce that P(N) has cardinality c.

19See Footnote 12 on page 108.
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3.5 Geometry and Infinity

Geometry can illuminate and
geometry can mislead.

Overview

We will use geometric arguments to show that all line segments, both bounded
and unbounded, have the same cardinality c.

We will also show that the plane R2 has the same cardinality as the set R,
despite the fact that it has an extra dimension. In fact the set R3 of points in
space also has cardinality c, see Question 8 page 131.

All Line Segments are the Same Size
[HM, 190–195]

A line segment is just an interval where the first endpoint is strictly less than
the second. So we do not allow the interval [2, 2], which is not very interesting
since it just contains the number 2, as a line segment. A line segment may or
may not contain endpoints. It may be unbounded in one or both directions.

See the Notation for intervals on page 76. The words “line segment” are
used here to emphasise the geometric aspect.

Closed Bounded Line Segments We will start with the two line segments
below. The first consists of all real numbers between 0 and 1, including both
0 and 1, and is written [0, 1]. The second interval is [0, 3].

Such intervals are said to be closed and bounded. They are“closed” because
they include their endpoints and they are “bounded” because they do not go
on forever in either direction.

Because the second interval is three times as long as the first we might think
it has a larger cardinality.

However, the following diagram shows that in fact there is a one-to-one
correspondence between [0, 1] and [0, 3].
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Align P and the two line segments as shown. Then each line through P
which intersects the top segment will also intersect the bottom segment. In
this way, each point t on the top line segment [0, 1] is paired with exactly one
point b on the bottom line segment [0, 3], there are no points left unpaired, and
so there is a one-to-one correspondence between [0, 1] and [0, 3].

In a similar way any two line segments of the form [a, b] and [c, d] will have
the same size, no matter how short the first and how long the second.

We can also give a formula for the one-to-one correspondence between [0, 1]
and [0, 3]. It is given by the correspondence x↔ 3x. -

What is the formula for a one-to-one correspondence between [a, b] and
[c, d]?

Theorem 3.5.1. Any two closed bounded line segments [a, b] and [c, d] have
the same size.

Proof. This is proved either by a geometric argument as discussed above, or
by giving a formula as discussed above.

?Other Bounded Line Segments Consider the line segment (0, 1]. It is
obtained by removing the single point (or number) 0 from [0, 1]. Since [0, 1] is
an infinite set (why? ), it follows from Theorem 3.3.4 that (0, 1] has the same -
cardinality as [0, 1].

However, the one-to-one correspondence between (0, 1] and [0, 1] we obtain
from the proof of Theorem 3.3.4 is not a nice geometric one.

Theorem 3.5.2. The line segments [a, b], (a, b], [a, b), (a, b) all have the same
cardinality.

Proof. The last three intervals are obtained by removing one or two points
from the interval [a, b]. It follows from Theorem 3.3.4 that they all have the
same cardinality as [a, b].

The next theorem includes Theorem 3.5.2

Theorem 3.5.3. Any two bounded line segments, whether or not they contain
one or both of their endpoints, have the same cardinality.

Proof. The line segments [a, b], (a, b], [a, b), (a, b) all have the same cardinality
by the previous Theorem. Similarly, the line segments [c, d], (c, d], [c, d), (c, d)
all have the same cardinality.

But the line segments [a, b] and the line segments [c, d] have the same car-
dinality by Theorem 3.5.1.

It follows from Theorem 3.1.3 that any bounded line segments have the
same cardinality. Why? -



124 Infinity

Unbounded Line Segments The most important of these is R itself.
There is a nice geometric way, stereographic projection, to get a one-to-one

correspondence between the line segment (−1, 1) (or any line segment of the
type (a, b)) and R. The idea is to wrap (−1, 1) up into a circle with one point
P missing. Then use P to stereographically project each point a on (−1, 1)
onto a point b on R. See the following diagram.

Another way to get a one-to-one correspondence between the line segment
(−1, 1) and R is as follows. The graph of tanx gives a one-to-one correspon-
dence between (−π/2, π/2) and R. So the graph of tanπx/2 gives a one-to-one
correspondence between (−1, 1) and R. Why?

Graphs of y = tanx and y = tan(πx/2).

The following Theorem generalises Theorems 3.5.2 and 3.5.3.

Theorem 3.5.4. The cardinality of any bounded line segment is c.

Proof. There is a one-to-one correspondence between (−1, 1) and R by using
sterographic projection as above, so (−1, 1) has cardinality c.

But all bounded line segments have the same cardinality as (−1, 1) by
Theorem 3.5.3.

So any bounded line segment has cardinality c.

We have not discussed unbounded line segments which go arbitrarily far in
just one direction. These are line segments of the form (a,∞), [a,∞), (−∞, b)
and (−∞, b].
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For example, (a,∞) is the set of all numbers greater than or equal to a.
What are the other three?-

Note that the symbols “−∞” and “∞” DO NOT denote numbers. They
are used here in the context “(a,∞)” etc. as a convenient shorthand way to
represent certain line segments.

We will see in Question 6 that all unbounded line segments have cardinal-
ity c.

This together with Theorem 3.5.4 gives the following important result.

All line segments have cardinality c. (3.13)

Sets in the Plane
[HM, 196–200]

The set of points in the plane is denoted by R2 and consists of all pairs of
real numbers (x, y). It would seem reasonable to think that R2 has a larger
cardinality than R. After all, R2 has two dimensions, one more than R. And
we know there are certainly sets of larger cardinality than R, such as the set
P(R) of all subsets of R.

However, it turns out that R, R2 and even R3 (the set of points in space) all
have cardinality c. In fact for any natural number n, the set Rn of all n-tuples
(x1, . . . , xn) of real numbers, has cardinality c.

The Unit Square We will first see that the set of points in the “unit square”
S, i.e. the set of points with coordinates (x, y) where 0 < x < 1 and 0 < y < 1,
has cardinality c.

Theorem 3.5.5. The cardinality of the unit square S, i.e. of the set of points
(x, y) such that 0 < x < 1 and 0 < y < 1, has cardinality c.

“Proof”. 20

For each point (x, y) in S consider the infinite decimal expansions:

x = ·x1x2x3x4x5x6 . . . , y = ·y1y2y3y4y5y6 . . . .
20Caveat : We will cheat a little (hence the inverted commas around “Proof”) and use the

Cantor-Schroeder-Bernstein theorem on page 128), which we do not actually prove! This
theorem is not surprising, although the proof is subtle. You do not need to read ahead —
we will discuss it in the following.
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Recall that some numbers have two decimal expansions. This happens if the
number can be expressed with an infinite tail of 0’s, in which case it can also be
expressed with an infinite tail of 9’s. For example, .3700000 · · · = .3699999 . . . .
We will always use the expansion with an infinite tail of 9’s in such cases.

Next combine the decimal expansions of these two numbers x and y to
obtain a third number

z = .x1y1x2y2x3y3x4y4 . . . .

Because x and y lie strictly between 0 and 1 it follows that z also lies strictly
between 0 and 1. Try a few examples.-

Different points (x, y) and (x′, y′) will give different decimal expansions for
z and z′. Moreover, the decimal expansions for z and z′ will never end in an
infinite string of 0’s because none of the decimal expansion for x, y, x′, y′ end in
an infinite string of 0’s. It follows that the numbers z and z′ are also different.21

In other words, every point (x, y) in S corresponds to exactly one point z in
the line segment (0, 1), and different points in S correspond to different points
in (0, 1). For this reason we say that the cardinality of S is less than or equal
to the cardinality of (0, 1).

On the other hand, we can put a copy of the line segment (0, 1) inside S,
by letting z ∈ (0, 1) correspond to (z, 1/2) ∈ S for example. In this way, every
point z in (0, 1) corresponds to exactly one point in S, and different points
in (0, 1) correspond to different points in S. For this reason we say that the
cardinality of (0, 1) is less than or equal to the cardinality of S.

It follows from the two previous italicized facts that the cardinality of (0, 1)
is equal to the cardinality of S. But to prove this rigorously and actually con-
struct a one-to-one correspondence between S and (0, 1) requires the Cantor-
Schroeder-Bernstein Theorem (see page 128.)

We know that the cardinality of (0, 1) is c from Theorem 3.5.4, and so this
completes the “proof”.

21Aside: Certain points z in the line segment (0, 1) do not correspond to any point
(x, y). These are the points z which have an infinite expansion ending in an in-
finite sequence of 0’s in every even place or ending in an infinite sequence of 0’s
in every odd place. For example, we do not get any z with a decimal expansion
z = ·1684030706060504080003030509000002010408 . . . , because this would require x =
·180000000000000000 . . . and y = ·64376654803359002148 . . . and we have ruled out deci-
mal expansions for x or y ending in an infinite string of 0’s.
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Remark The map we constructed in the proof is very “ungeometric”. For
example

(x, y) = (·39999 . . . , ·39999 . . . )↔ z = ·3399999999 . . . ,

(x′, y′) = (·40001 . . . , ·40001 . . . )↔ z′ = ·4000140001 . . . .

The difference between x and x′ is only ·00002 . . . , and similarly for y and
y′. But the difference between z and z′ is ·06 . . . , which is much larger. In fact
we can get x and x′ as close as we like, and similarly for y and y′, while z and
z′ will still be about ·06 . . . apart. How? -

To summarise: Points that are close in S did not always go to points that
are close in (0, 1).

?The Plane R2 The plane is often denoted by R2. It can be represented as
the set of pairs of numbers (x, y) where x and y are any real numbers.

Theorem 3.5.6. The cardinality of the plane R2 is c.

Proof. In Theorem 3.5.4 we used stereographic projection to obtain a one-to-
one correspondence x↔ x′ between points x in (−1, 1) and points x′ in R.

Instead of the unit square S consider the square S∗ consisting of all points
(x, y) such that x is in the line segment (−1, 1) and y is also in the line segment
(−1, 1). Then (x, y)↔ (x′, y′) is a one-to-one correspondence between S∗ and
R2. Why? See the following Diagram. -

There is also a one-to-one correspondence between S and S∗ which is ob-
tained by stretching S by a factor 2 in both the x and y directions and then
translating the result. The formula is

(x∗, y∗) = (2x− 1, 2y − 1).
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Because there is a one-to-one correspondence between S and S∗ and another
between S∗ and R2, it follows from Theorem 3.1.3 that there is a one-to-one
correspondence between S and R2. Since S has cardinality c it follows that R2

has cardinality c.

?More Advanced Topics
This material is not in [HM].

Notation It is convenient to denote the cardinality of a set A by |A|. So
|N| = |Q| = d and |R| = |R2| = |I| = c.

If the cardinality of a set A is less than the cardinality of B as in Defini-
tion 3.4.3 we write |A| < |B|. If the cardinality of A is equal to the cardinality
of B we write |A| = |B|.

In particular,
1 < 2 < 3 < · · · < n < · · · < d < c.

If there is a one-to-one correspondence between a set A and some subset of
a set B (which may be all of B) we say that the cardinality of A is less than
or equal to the cardinality of B and we write |A| ≤ |B|.

It follows from Definition 3.4.3 that

|A| ≤ |B| iff
(
|A| < |B| or |A| = |B|

)
.

In terms of cardinal numbers α and β 22 we can write this as

α ≤ β iff
(
α < β or α = β

)
.

There are two major results that we did not prove.

Cantor-Schroeder-Bernstein Theorem This says that for any two sets
A and B, (

|A| ≤ |B| & |B| ≤ |A|
)

implies |A| = |B|.
This may seem obvious when we write it this way. But what it is saying is
that if there is a one-to-one correspondence between A and some subset of B,
and another one-to-one correspondence between B and some subset of A, then
there is a third one-to-one correspondence between A and B.

Another way of writing the Cantor-Schroeder-Bernstein Theorem is that
for any two cardinal numbers α and β,(

α ≤ β & β ≤ α
)

implies α = β.

Comparing Cardinals Theorem This says that for any two sets A and B,

|A| ≤ |B| or |B| ≤ |A|.

(As always in mathematics, “or” allows for both statements to be true.) Al-
though this theorem may seem unsurprising, it is far from obvious. It is equiv-
alent to saying that given any two sets there is always a one-to-one correspon-
dence from one of them into a subset of the other. The proof of this requires
the Axiom of Choice.

Another way of expressing this is that for any two cardinals α and β,

α ≤ β or β ≤ α.
22These are the first two letters alpha and beta of the Greek alphabet.
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Ordering Cardinals It follows from the previous results that for any two
cardinals α and β, exactly one of the following is true:

α < β or α = β or β < α.

A Brief History of Set Theory
This material is not in [HM].

Abbreviated and slightly modified from http://www-groups.dcs.st-and.ac.uk/

~history/HistTopics/Beginnings of set theory.html.

The idea of infinity has been the subject of deep thought from the time of
the ancient Greeks. By the Middle Ages discussion of the infinite had led to
comparison of infinite sets.

In 1847 Bolzano defended the concept of an infinite set at a time when
many believed that infinite sets could not exist. He gave examples to show
that, unlike the case for finite sets, the elements of an infinite set could be put
in one-to-one correspondence with elements of one of its proper subsets.

In 1874 Cantor published an article in Crelle’s Journal which marks the
birth of set theory. In his paper Cantor considered at least two different kinds
of infinity. Before this, orders of infinity did not exist and all infinite collections
were considered “the same size”. However Cantor showed that the rational
numbers are in one-to-one correspondence with the natural numbers. In the
same paper he shows that the real numbers cannot be put into one-to-one
correspondence with the natural numbers using an argument which is more
complex than that used today (which is also due to Cantor in a later paper of
1891).

However, set theory was now becoming the centre of controversy. Kro-
necker, who was on the editorial staff of Crelle’s Journal, was unhappy about
the revolutionary new ideas contained in Cantor’s paper.

In his next paper in 1878 Cantor introduced the idea of equivalence of sets
and said two sets are equivalent or have the same power (cardinality) if they can
be put in one-to-one correspondence. He proved that the natural numbers have
the smallest infinite cardinality and showed that the set of points in the plane
or in space has the same cardinality as R. He showed further that countably
many copies of R still have the same cardinality as R.

Cantor published a six part treatise on set theory from the years 1879 to
1884. But there was growing opposition to his ideas. The leading figure in
the opposition was Kronecker, whose criticism was built on the fact that he
only accepted mathematical objects that could be constructed finitely from the
intuitively given set of natural numbers. Cantor’s array of different infinities
were impossible under this way of thinking.

The year 1884 was one of mental crisis for Cantor. He seemed to lose
confidence in his own work and applied to lecture on philosophy rather than
on mathematics. The crisis did not last long, by early 1885 he recovered and
his faith in his own work had returned. In 1897 the first International Congress
of Mathematicians was held in Zurich and at that conference Cantor’s work
was held in the highest esteem.

In 1899 Cantor discovered the paradox which arises from the set of all sets.
Clearly it must have the greatest possible cardinal, yet the cardinal of the set
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of all subsets of a set always has a greater cardinal than the set itself. It began
to look as if the criticism of Kronecker might be at least partially right since
extension of the set concept too far seemed to be producing the paradoxes.

Bertrand Russell (mathematician, philosopher and peace activist) discov-
ered Russell’s paradox in 1902. Russell wrote to Frege telling him about the
paradox as Frege had nearly completed his major treatise on the foundations
of arithmetic. Frege added an acknowledgement to his book: “A scientist can
hardly meet with anything more undesirable than to have the foundation give
way just as the work is finished. In this position I was put by a letter from Mr
Bertrand Russell as the work was nearly through the press.”

By this stage, however, set theory was beginning to have a major impact
on other areas of mathematics. Rather than dismiss set theory because of the
paradoxes, ways were sought to keep the main features of set theory while
eliminating the paradoxes.

Gödel showed in 1939 that the Axiom of Choice and the Continuum Hy-
pothesis cannot be disproved using the other axioms of set theory. This, and
other work earlier work of Gödel, is some of the most influential and profound
work in mathematics in the 20th century. In 1963 Paul Cohen proved that the
Axiom of Choice and the Continuum Hypothesis cannot be proved from the
other axioms of set theory, for which he received a Fields medal.

Russell’s paradox had undermined the whole of mathematics according to
Frege. Russell, trying to repair the damage, made an attempt to put math-
ematics back onto a logical basis in his major work “Principia Mathematica”
written with Whitehead. However their methods did not seem a very satisfac-
tory way around the problems and others sought different ways.

Zermelo in 1908 was the first to attempt an axiomatisation of set theory.
Many other mathematicians attempted to axiomatise set theory. Fraenkel, von
Neumann, Bernays and Gödel are all important figures in this development.
Gödel showed the limitations of any axiomatic theory and that the aims of
many mathematicians such as Frege and Hilbert could never be achieved.

Questions

1 Questions 6–22 on pp 202–205 of [HM].
2 Show that (0,∞) has the same cardinality c as R.

HINT: Think of the graph of the function y = log x.
3 Show that (0,∞) and (a,∞) have the same cardinality for any a.

HINT: What is a nice geometric correspondence between these two
intervals.

4 Show that (a,∞) and [a,∞) have the same cardinality.
HINT: Use Theorem 3.3.4.

5 Show that [a,∞) and (−∞,−a] have the same cardinality. Similarly for
(a,∞) and (−∞,−a).

6 Use the previous Questions to show that (a,∞), [a,∞), (−∞, b) and
(−∞, b] all have the same cardinality c.

7 (We saw in Theorem 3.2.6 that the union of two sets of cardinality d has
cardinality d. It follows from Question 3 on page 112 that the union of
a set of cardinality c and a set of cardinality d has cardinality c. In this
Question you will see that the union of two sets of cardinality c is again
of cardinality c.)



3.5. Geometry and Infinity 131

Suppose A and B have no elements in common and each have car-
dinality c. Prove that A ∪B has cardinality c.

HINT: There is a one-to-one correspondence between A and the
interval (−∞, 0), and a one-to-one correspondence between B and the
interval [0,∞).

(If A and B have some elements in common then the result is still
true and not surprising. But this is trickier to prove, unless we use the
Cantor-Schroder-Bernstein Theorem, see page 128.)

8 Using two coordinate axes we represented each point in the plane by a
pair (x, y) of real numbers. In a similar way by using three coordinate
axes we can represent each point in space by a triple (x, y, z) of real
numbers. For this reason we often write R3 for the set of points in space.

Prove R3 has cardinality c.
HINT: Use Theorem 3.5.6 to show there is a one-to-one correspon-

dence between R3 and R2.



Chapter 4

Chaos and Fractals

This Chapter corresponds to Chapter 6 in [HM].
“Chaos” and “Fractals” are now almost household words. They represent areas
of mathematics that have been investigated and applied extensively in the last
30 years or so. Their theoretical investigation and their applications are closely
connected with computer simulations, and as we will see many “user friendly”
software packages are now freely available.

There is no precise definition of “chaos” or “fractal”. But informally, chaos
or chaotic behaviour corresponds to a process which eventually behaves in an
erratic and essentially non-predictable manner.1 This in fact happens very
frequently in nature and even in economics. Examples are long term growth
of various animal and other populations, fluctuations in the money markets,
weather patterns, and many more.

Fractal sets or images have the property that if we look at them under a
microscope, using larger and larger magnifications, we always continue to see
more and more structure. (On the other hand if you look at a smooth curve or
surface under a microscope with increasing magnification, the result is rather
boring — either a straight line or a flat surface.) In the following Section and
in Section 6.1 there are many examples of fractals — have a look.

Many objects in nature can best be modelled by fractals. Examples include
• Biology : breast tissue patterns, structure and development of plants,

blood vessel patterns, morphology of fern leaves;
• Chemistry : pattern-forming alloy solidification, diffusion processes;
• Physics: transport in porous media, statistical mechanics, dynamical

systems, turbulence, wave propagation;
• Geology : particle-size distributions in soil, landscape habitat diversity;
• Computer Science: image compression, adding machines and wild at-

tractors, compression of audio signals, compression for multimedia, evo-
lutionary algorithms, neural networks, cellular automata;

• Engineering : rough surfaces, image encoding, antennae, stochastic opti-
mal control, signal processing, fragmentation analysis of thin plates.

Some aspects of fractal sets have been studied by mathematicians since at
least 1872, when Wierstrass discovered a function which is continuous but not

1But chaotic processes do usually behave in a manner about which we can have good
statistical information. For example, even though a fair dice and an unfair dice will both
be unpredictable, their statistical behaviour is different but may well be predictable in each
case.

132
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differentiable at any point.2 But such examples were then considered to be
only of interest to pure mathematicians.

Benoit Mandelbrot was the real founder of the subject of fractals. In the
1960’s he realised that fractal behaviour occurred in many natural phenomena
including turbulence, noise and errors in electronic transmissions, geographi-
cal features such as coastlines. In 1982, he published his seminal book “The
Fractal Geometry of Nature”. This created an enormous amount of interest:
mathematical, applied, and in the public imagination.

Mandelbrot also coined the word “fractal”. He took it from the Latin
“fractus” (“broken”), which is the past participle of the Latin “frangere” (“to
break” or create irregular fragments).

Chaotic behaviour has been observed in mathematical and physical systems
at least as far back as the 1850’s. It was discussed by Maxwell in 1860 that
arbitrarily small changes in the initial position of atoms in a gas would lead
to wildly different positions at later times and that this could be used to pre-
dict the properties of gases. In 1890 Poincare explained how arbitrarily small
changes in the initial position of three interacting gravitational bodies (e.g.
planets or stars) could lead to completely different later behaviour.

In 1962 the meteorologist Lorenz discovered that miniscule changes in the
equations used to predict the weather would soon lead to completely different
weather predictions for a few days later, known as the butterfly effect. Lorenz
also discovered “order” in this chaos, and showed that even a very much simpli-
fied version of his equations led to similar effects. More precisely, the solution
to these simplified equations is a point moving around in three dimensional
space and following a path that becomes arbitrarily close to the lines on what
is called the Lorenz Attractor, see Figures 4.1 and 4.2.

In 1976 the Australian Robert May, a theoretical physicist and later an
ecologist, wrote a famous paper3 in the journal Nature explaining how sim-
ple mathematical models exhibiting chaotic behaviour arise in the biological,
economic and social sciences.

The underlying theme in this Chapter is that of a repeated or iterative pro-
cess. An example is repeatedly applying a simple process such as the quadratic
function f(x) = x2 + c where c is a fixed number. This will lead us both to
chaotic behaviour and to incredibly complicated and beautiful fractals (Julia
sets and the Mandelbrot set).

Contents

4.1 A Gallery of Fractals . . . . . . . . . . . . . . . . . . . 138

Overview . . . . . . . . . . . . . . . . . . . . . . . . . 138

Sierpinski Triangle . . . . . . . . . . . . . . . . . . . . 138

Dendrites . . . . . . . . . . . . . . . . . . . . . . . . . 139

2See Figure 4.7 for an example of the graph of such a function, although pixellation effects
might make the function there appear differentiable at some points. Wierstrass’s example
itself was not generated by a random process, as is the case in Figure 4.7.

3Simple Mathematical Models with very complicated dynamics, Nature 1976, 261, 459–
467.
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Figure 4.1: The Lorenz Attractor
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Figure 11.9 A dual-image stereogram of the Lorenz attrator: To view, stare at theenter of the two images and ross your eyes until the two images merge. Allow your eyesto relax so that they an refous.Figure from The Computational Beauty of Nature: Computer Explorations of Fratals, Chaos, Complex Systems, and Adaptation. Copyright  1998{2000 byGary William Flake. All rights reserved. Permission granted for eduational, sholarly, and personal use provided that this notie remains intat and unaltered. Nopart of this work may be reprodued for ommerial purposes without prior written permission from the MIT Press.Figure 4.2: The Lorenz Attractor in Stereo. To view, stare at the centre of the
two images and cross your eyes until the two images merge. Allow your eyes to
relax so they can refocus.

From The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos,
Complex Systems and Adaptation. Copyright c©1998-2000 Gary William Flake. All rights
preserved. Permission granted for educational, scholarly, and personal use provided this
notice remains intact and unaltered.
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4.1 A Gallery of Fractals

Great fleas have little fleas,
Upon their backs to bite ’em,
And little fleas have lesser fleas,
And so ad infinitum.

Augustus De Morgan,
A Budget of Paradoxes, 1872

Overview

Look closely at the images shown here. I will make a few comments but we
will discuss these examples in more detail in the following sections.[HM, 404–411]

Sierpinski Triangle

Figure 4.3: Sierpinski Triangle

The large “triangle” on the left of Figure 4.3 is composed of (i.e. is the union
of) three smaller “triangles”, each of which is a scaled model of the original.
The right side shows what you see under a microscope, with magnification ×2,
applied to the small triangle on the bottom right side of the large triangle on
the left.

Each of the three small triangles on the left of Figure 4.3 is in turn the
union of three even smaller triangles, and so on. But of course, we can only
draw the “real” Sierpinski triangle up to a certain resolution.

We say the Sierpinski Triangle is self-similar.
The Sierpinski triangle here is right-angled, more often it is equilateral.

The Sierpinski triangle is an important example of a fractal set. We will see a
number of ways to construct it, and analyse its properties, in Section 4.3.
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Dendrites

Figure 4.4: Some Dendrites

The mathematical dendrite on the left of Figure 4.4 is composed of three
small dendrites. Each small dendrite is obtained by scaling the original by 1/2,
translating, and in one case by also performing a reflection. Which one? What -
is the reflection? The small dendrites are composed of smaller dendrites, and
so on.

On the right of Figure 4.4 are three naturally occurring dendrites. Each is
a realisation of a random self-similar fractal since in a certain statistical sense
smaller parts of the dendrite look like the original. It is possible to make these
ideas mathematically precise, although we will not do that here.

In naturally occurring phenomena self-similarity only occurs over a range
of scales. For example, when we go down to the atomic level and in fact well
before, the self-similarity will certainly break down. Nonetheless, mathematical
fractals where self-similarity occurs over arbitrarily small scales are extremely
useful models in analysing natural fractals.

More Fractals

Figure 4.5: More Fractals
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Figure 4.6: And More Fractals

Each of the fractals in Figures 4.5 and 4.6 is the union of three copies of
itself scaled by 1/2. Some cases are a bit tricky to see. Can you see the three-
copies in each case and how they are obtained?

Random Fractals

Figure 4.7: A Random Graph

The first graph in Figure 4.7 is the type of graph obtained from plotting
short term fluctuations in the money markets. The second is a rescaling of
a portion of the first; it is “statistically self-similar” to the full (first) graph.
They are examples of random fractals.

Figure 4.8: Random Koch Curves

The three curves in Figure 4.8 are examples of a “random Koch curve”.
Each is the union of two pieces which when suitably rescaled are themselves
further examples of a random Koch curve. All are examples of random fractals.

We will not be treating random fractals in any detail in this course.
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Julia Sets and the Mandelbrot Set

We will discuss these incredibly bizarre yet beautiful fractal sets in Section 4.6.
They arise from repeatedly applying (iterating) the simple quadratic function
f(z) = z2 +c, where c is a fixed complex number and z is any complex number.
They have spawned an enormous amount of computer graphics. They are
typical of the behaviour obtained by iterating functions in two dimensions and
are studied mathematically for this reason.

There is just one Mandelbrot set, it is the centre set (cardioid with discs
and filaments) in Figure 4.9.

The other 7 sets in Figure 4.9 are particular examples of Julia sets, trans-
lated in the diagram so they do not overlap one another. There is one Julia
set for every point c in the plane. The point c is indicated in each of these 7
examples by the dot at the other end of the line pointing to the corresponding
Julia set.

The Mandelbrot set is the set of values of c for which the corresponding Julia
set is connected. Otherwise the corresponding Julia set is a totally disconnected
“dust” of points, as in the bottom example in Figure 4.9.
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Figure 4.9: The Mandelbrot Set and some Julia Sets

Also look at the Mandelbrot set and Julia sets and other fractals in [HM,
pp 404–411]. (The colouring used for the Mandelbrot and Julia set has a
mathematical explanation, which we will discuss in Section 4.6.)

Questions

1 Questions 2–10 on pp 410, 411 of [HM].
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4.2 Iterative Dynamical Systems

Using simple models for
complicated systems can help
understand important features.

Overview

An iterative dynamical system is a process where the output from each time
step is used as the input for the next time step.

• Many natural processes can be understood and analysed this way.
• Iterative dynamical systems are the key to understanding chaos and frac-

tals.

In this section we will look at a number of interesting examples of dynamical
systems. We will study the connections with chaos and fractals in the following
sections.

Bank Interest
[HM, 413]

Suppose we have $100 invested in the bank, and the interest is fixed at 5% per
annum
• After 1 year, we will $100× 1.05.
• After 2 years we will have $100× 1.05× 1.05 = $100× 1.052.
• After 3 years we will have $100× 1.053.
...
• After n years we will have $100× 1.05n.
...
The key point is that if we know the amount in the bank (or “output”) for

any particular year, then to find the amount in the bank (“output”) one year
later we just the known amount by 1.05.

In this case we can write down a simple formula for what the amount is
after n years, namely $100× 1.05n. Another way of expressing this is that the
number of dollars in the bank in successive years is given by the terms of the
geometric progression

100, 100× 1.05, 100× 1.052, 100× 1.053, . . . , 100× 1.05n, . . . .

In the more complicated systems we study in connection with chaos and
fractals the situation will be much more complicated. There will not be any
simple or useful formula for the situation after n time steps. None-the-less, we
will still be able to say a good deal about what happens. And it will often be
very surprising.
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Simple Population Growth Model
[HM, 414]. But here the material is developed further.

Description of the Model The simplest way to model population growth
of an animal, plant or bacterial population is to assume that the population
grows (increases) after one time step by a certain fixed proportion of the current
population. This proportion is called the growth rate. The time steps might
be a year, or a month, or a minute, or perhaps a generation. This is called the
Simple Population Growth Model.

The previous model for bank interest is one example of simple population
growth. The population is the number of dollars in the bank, each time step
is one year, and the growth rate is s/100 if the interest rate is s% per annum.

Definition 4.2.1. Let Pn be the population at time n. The change in popula-
tion from time n to time n+ 1 is Pn+1 − Pn. It is positive if the population is
increasing and negative if it is decreasing.

The growth rate from time n to time n+ 1 is

Pn+1 − Pn
Pn

. (4.1)

Fish Example If there are 1000 fish at time n and 1200 at time n+ 1 then
the change in population from time n to time n+1 is 200 and the corresponding
growth rate is

1200− 1000

1000
=

1

5
.

Theorem 4.2.2. Suppose r is the growth rate for the Simple Population Growth
Model. Then the population Pn+1 at time n + 1 is determined from the popu-
lation Pn at time n by

Pn+1 = (1 + r)Pn. (4.2)

The population at any time n is determined from the initial population P0 by

Pn = (1 + r)nP0. (4.3)

Proof. From (4.1),
Pn+1 − Pn

Pn
= r

for all n. From this equation we see that (4.2) follows. Why?-
In particular, we see the population after one time step is

P1 = (1 + r)P0.

After two time steps it is

P2 = (1 + r)P1 = (1 + r)2P0.

After three time steps it is

P3 = (1 + r)P2 × r = (1 + r)3P0.
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And so after n time steps the population using the Simple Growth model is

Pn = (1 + r)nP0.

(We could use induction to prove this carefully, but we would not usually bother
to do so.)

Another way of expressing this is that the population at successive time
steps is given by the terms of the geometric progression

P0, (1 + r)P0, (1 + r)2P0, . . . , (1 + r)nP0, . . . .

Fish Example Again In the case of the fish, if the growth rate r is 1/5 then
we get

Pn+1 =
6

5
Pn.

Suppose the initial population P0 = 100. Then after n time steps we see
from (4.3) that the population is

Pn =

(
6

5

)n
× 100.

Figure 4.10: Initial population 100 fish. Growth rates 2/5, 1/5, 0,−1/5,−2/5
respectively from top to bottom. Populations after 1, . . . , 5 timesteps. Points
connected by straight line segments.

In Figure 4.10 we show what happens to an initial population of 100 fish
under different growth rates.

Problems with the Model The Simple Population Growth Model is not
a very good model if there is a large number of time steps. If r > 0 then the
population grows without bound. But this cannot happen due, for example,
to lack of resources. We will later see that the Logistic model (also called the
Verhulst model) is much better in this respect.

Notice also that the population should normally be given by an integer.
But this may not happen in this model even for P1 = (1 + r)P0. However, this
is not usually a serious problem, as we are only looking at approximate models.



146 Chaos and Fractals

Iterative Processes The simple population growth model is an example of
an iterative process or an iterative dynamical system.

The key point is that if we know the population Pn at some time n, then
we can use this as input to find the population Pn+1 at time n+ 1. In (4.2) we
just multiplied the input Pn by 1 + r. That is,

Pn+1 = (1 + r)Pn.

From this, we showed in (4.3) that Pn = (1 + r)nP0 for any n.
In the more complicated models we study later we will have a method as

in (4.2) which allows us to go from knowing Pn to finding Pn+1. But there will
not usually be a simple formula as in (4.3) which enables us to go directly from
knowing the initial data P0 to finding Pn.

The Verhulst Model
[HM, 417–420]. Here the material is developed further.

The Simple Growth Model is not very realistic if there is a large number of time
steps, as we discussed before. A more realistic model is the Verhulst Model5,
also called the Logistic Model6.

Population Density We assume that there is a maximum sustainable pop-
ulation which we denote by S. The actual value of S will be determined by
the amount of resources available, the number of predators, and various other
things. For simplicity we will assume that S is fixed and does not change with
time.

Let Pn be the population after n time steps. It is convenient to let pn be
the population density after n time steps, given by the fraction

pn =
Pn
S
. (4.4)

So if Pn < S then pn < 1, if Pn = S then pn = 1 and if Pn > S then pn > 1.
(It is traditional, and a little easier, to work with pn rather than Pn. We will
usually do this.)

If Pn < S then we expect the growth rate (defined in (4.1)) from time n
to time n + 1 to be positive. If Pn > S then we expect the growth rate to be
negative. Why?-

The Main Assumption In the Verhulst Model we make the assumption
that the growth rate is proportional to 1− pn. From (4.1) this implies

Pn+1 − Pn
Pn

= a(1− pn) (4.5)

for some fixed number a > 0. By dividing numerator and denominator on the
left side by S we get

pn+1 − pn
pn

= a(1− pn). (4.6)

5Pierre Verhulst was a Belgian mathematician who published his work in Mémoires de
l’Académie Royale de Belgique in 1844 and 1847.

6Logistics [noun, plural or singular]: the detailed consideration of a complex operation
involving many people, facilities or supplies.
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We call a the parameter of the Verhulst Model.

Theorem 4.2.3. Suppose the Verhulst Model has growth rate as in (4.5). Then
the population density pn+1 at time n + 1 is given in terms of the population
density pn at time n by

pn+1 = pn + apn(1− pn) = (1 + a)pn − ap2n. (4.7)

Proof. Simplify (4.6).

Unlike the situation for the Simple Growth Model there is no simple or
useful formula which gives pn (or Pn) in terms of p0 (or P0).

Use (4.7) to write p1 in terms of p0, then use it again to write p2 in terms
of p1 and hence in terms of p0. Now find p3 in terms of p0. As you will see, it
rapidly becomes a mess.

But in this case messy things can be important, and the analysis can be
very interesting and deep. See the following Examples and Section 4.5.

Examples Suppose the initial population density p0 = 0.1. If we take a = 1
then you can check on your calculator that

p0 = 0.9, p1 = 0.19, p2 = 0.3439, p3 = 0.56953279, p4 = 0.8146979811,

p5 = 0.9656631616, p6 = 0.9988209813, p7 = 0..9999986103, . . .

At least numerically it appears that the population density converges to 1,
and this is indeed the case. See the first graph in Figure 4.11. This is not
particularly surprising.

Figure 4.11: Logistic Model for initial population density 0.1 and a = 1, 1.5.

As a takes the values a = 1.5, 1.9, 2.1, 2.5, 3 we get widely differing be-
haviour. See Figures 4.11–4.13. For a = 1.5, 1.9 the population density con-
verges to 1, for a = 2.1 it oscillates between two values (although pixelation
effects obscure this), for a = 2.1 it oscillates between four values, and for a = 3
the behaviour appears to be chaotic with no discernible pattern.
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The “problem” is that the population density p1 significantly overshoots
the maximum sustainable density which is 1. As a increases towards 3 this
overshooting and undershooting becomes quite wild.

The initial population density usually makes little difference to the overall
features. We will discuss the chaotic properties for a problem essentially the
same as the Logistic Model in Section 4.5.

If a > 3 the model is no longer physically reasonable. See Question 3.

Figure 4.12: Logistic Model for initial population density 0.1 and a = 1.9, 2.1
respectively.

Figure 4.13: Logistic Model for initial population density 0.1 and a = 2.5, 3
respectively.

Game of Life
[414–416]

History The Game of Life was invented by the Cambridge mathematician
John Conway and discussed in Martin Gardner’s column in Scientific American
1970, 223, 120–123.

It has analogies with the life cycles and patterns of societies and various
living organisms. It developed out of ideas involving automata theory and self-
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replicating machines. It shows how complex patterns can evolve from very sim-
ple rules. For these reasons it is of interest to physicists, biologists, economists,
computer scientists and mathematicians.

Rules The Game of Life is played on an infinite square grid. Notice that each
square S in such a grid has exactly 8 neighbours: 4 squares that each have a
side in common with S and 4 squares that each have a corner in common with
S. See Figure 4.14, where of course the grids however are finite.

At each time interval (or generation) a square is either alive or dead. We
begin with a finite number of live squares and then proceed as follows:
• If a square is alive at one generation and it has exactly 2 or 3 live neigh-

bours, then it remains alive in the next generation. Otherwise it dies at
the next generation.

• If a square is dead at one generation and it has exactly 3 live neighbours,
then it comes to life at the next generation. Otherwise it remains dead.

You might think of the rules as follows:
• If a square is alive and it has less than 2 live neighbours then it dies

from loneliness. It it has more than 3 live neighbours then it dies from
overcrowding. If it has exactly 2 or 3 live neighbours then conditions are
optimal and it survives to the next generation.

• If a square is dead and it has exactly 3 live neighbours then conditions are
just right for the square to come to life at the next generation. (Perhaps
2 squares are required for reproduction and a third to assist in child
rearing!) If a dead square has less than 3 live neighbours it remains dead
from a lack of genetic material and assistance. If it has more than 3 live
neighbours then it remains dead because of overcrowding and a lack of
resources.

Examples 7 A single live square will die at the next generation. Why? -
If there are exactly two live squares, no matter where placed, they will die

at the next generation. Why? -
With three live squares the situation is more interesting.
Examples a, b and c in Figure 4.14 will die after 2 generations. Check! -
Example d forms a block after one generation and this does not change in

succeeding generations.
Example e forms a vertical line of 3 live squares after one generation, then

again a horizontal line, etc. It is called a blinker

You should now run all the examples from “Conway’s Game of Life” under
“Chaos and Fractals” from the CD in the book [HM]. (The program on the
CD may be confusing, since if a pattern moves off one side of the screen it will
reappear at the diagonally opposite position on the opposite side.)

You might also look at the java applet at bitstorm.org/gameoflife/. (It
also has a small bug when patterns move off the screen.)

7These are taken from the original Scientific American article noted in the previous
historical comments.
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Figure 4.14: Game of Life

In general, some patterns die out, some evolve into a static pattern, some
evolve into oscillating patterns, some translate across the board, some “os-
cillate” except that every cycle creates additional material which then moves
away from the main group. See the “glider guns” on the CD or java applet for
the last type of bevaviour.

Questions
1 Suppose a population of 1000 is slowly becoming extinct and that the

growth rate is −0.1 per annum. We sometimes say the decay rate is 0.1
per annum.

Write down a formula using the Simple Growth Model which gives
the population after n years.

How many years until the population is 500, 400, 300, 200, 100?
2 Suppose an initial population is given by the number P0 and the growth

rate for each time step is r.
If r > 0 find a formula for the minimum number of time steps until

the population is at least double. If r < 0 find a formula for the number
of time steps until the population is at least halved.

3 Take an initial population density p0 = 2/3 in the Logistic Model. SDhow
that

p1 =
2

3
+

2

9
a, p2 =

2

81
(3− a)(3 + a)(2a+ 3).

For which a is P2 < 0? (For such a the Logistic Model is not physically
reasonable.)

4 Questions 10–11, 21–23 from p423 of [HM].

Remark You could also do Questions 24–40 on pp 423–428 of [HM] at this
stage. They are a “lead in” to later Sections in this Chapter. We will return
to these Questions at the appropriate time.
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4.3 Fractals By Repeated

Replacement

Multiple repetitions of simple
processes can lead to complex
structures.

Overview
This Section corresponds to the first half of Section 6.3 of [HM], pp 430–436].
The material is developed here in much more detail.We discuss how to generate fractals by a process of repeated replacement.

We also look at some of the surprising properties of fractals. For example,
fractal sets have the following self-similarity property: arbitrarily small parts
of a fractal set will, after scaling, look similar to the original set. We saw
examples of this in Section 4.1 and we will see more examples here.

We proceed by studying four typical examples: the Koch Curve, the Sier-
pinski Triangle, the Menger Sponge, and the Cantor Set.

Koch Curve

Construction Begin with a line segment of length one, and replace it by
a polygonal line consisting of 4 straight segments each of length 1/3 as in
Figure 4.15. (The middle segment “removed” from the initial segment has
length 1/3. It and the two oblique segments form an equilateral triangle.)

————————————–

Figure 4.15: Approximations to the Koch Curve

Replace each of these 4 new segments by another four segments each 1/3
the length of the segment being replaced. This leads to the third polygonal
line consisting of 16 (= 4× 4 = 42) segments.

Next replace each of these new segments by another four segments each 1/3
the length of the segment being replaced. This leads to the fourth polygonal
line consisting of 64 (= 43) segments.

Next replace each of these new segments by another four segments each 1/3
the length of the segment being replaced. This leads to the fifth polygonal line
consisting of 256 (= 44) segments.
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Etc.

The limiting set is the Koch Curve. It is a continuous curve but it does not
have a tangent at any point.8

To make the construction mathematically precise we need to take the limit
in a certain sense. Computationally or in nature the iterative process is only
done finitely often. But you should think of it as being done a few billion times!
Or at least 100 times.

The Koch curve, or even the approximation after a large number of iter-
ations, is very complicated. The protruberances become spirals, and in the
Koch curve itself become infinite spirals.

Self Similarity The Koch curve is the union of 4 copies of itself, where each
copy is scaled by 1/3. What are the 4 copies? We say the Koch Curve is-
self-similar.

Each of these 4 copies is in turn the union of 4 smaller scaled copies of
itself, where each copy is scaled by 1/3. So it follows that the Koch curve is
the union of 16 copies of itself, each scaled by (1/3)2. What are the 16 copies-
in Figure 4.15?.

Repeating this argument, we see the Koch curve is the union of 64=43

copies of itself, where each copy is scaled by (1/3)3.
In fact for any natural number n, the Koch curve is the union of 4n copies

of itself, where each copy is scaled by (1/3)n.
In fact if we zoom in on the Koch curve to any scale of magnification, we

keep seeing more and more copies of itself.

In fact, the Koch curve is also the union of 2 copies of itself, each obtained
by scaling, rotating and then reflecting in a certain line. What are the 2 copies?-
What is the scaling factor? What is the line of reflection in each case?

Length The length of the first approximation to the Koch curve is 4/3, of
the second is (4/3)2, of the third is (4/3)3, and of the nth is (4/3)n. So we
expect that the length of the Koch curve is infinite.

It is possible to give a precise definition of the length of the Koch curve,
and then its length is indeed infinite. See Question 1.

It is important to realise however, that just because the length of the ap-
proximations approaches infinity, it does not automatically follow that the
length of the Koch curve is infinite. See Question 2.

Sierpinski Triangle

Construction Begin with a solid equilateral triangle.

8To make these statements precise we would need to give a precise definition of a con-
tinuous curve and of a tangent line. This can be done, although we will not be doing it in
this course.
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Figure 4.16: Approximations to the Sierpinski Triangle

Replace it by three equilateral triangles each 1/2 the side length of the
original triangle, as in Figure 4.16.

Replace each of these triangles by three equilateral triangles each 1/2 the
side length of the triangle being replaced. There are now 32 = 9 triangles.

Replace each of these new triangles by three equilateral triangles each 1/2
the side length of the triangle being replaced. There are now 33 = 27 triangles.

Replace each of these new triangles by three equilateral triangles each 1/2
the side length of the triangle being replaced. There are now 34 = 81 triangles.

Etc.
The Sierpinski Triangle is the limit, in a sense that can be made precise,

of this process. In practice, the process can only be done a large finite number
of times.

Self-similarity The Sierpinski triangle is the union of 3 copies of itself, where
each copy is scaled by 1/2. What are the 3 copies? We say the Sierpinski -
triangle is self-similar.

Each of these 3 copies is in turn the union of 3 smaller scaled copies of itself,
where each copy is scaled by 1/2. So it follows that the Sierpinski triangle is
the union of 9 copies of itself, each scaled by (1/2)2. What are the 9 copies in -
Figure 4.16?.

Repeating this argument, we see the Sierpinski triangle is the union of
27=33 copies of itself, where each copy is scaled by (1/2)3.

In fact for any natural number n, the Sierpinski triangle is the union of 3n

copies of itself, where each copy is scaled by (1/2)n.
If we zoom in on the Sierpinski triangle to any scale of magnification, we

keep seeing more and more copies of itself.

Length and Area Suppose that the length of each of the sides of the original
triangle in Figure 4.16 is 1. Then the length of the boundary, i.e. perimeter, is
3. The area of the triangle is

√
3/4. Why? -

We saw above that the nth approximation consists of 3n triangles each of
which is obtained by scaling the original triangle by (1/2)n in all directions.

A very important general fact is the following:

When we scale in all directions by r, lengths are multiplied by r, areas
by r2 and volumes by r3.

We say the scaling factor for length is r, for area is r2, and for volume
is r3.
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Explain why this is true for rectangles, triangles, circles and cubes. -
It follows that for the nth approximation to the Sierpinski triangle:

boundary length Ln

= no. of triangles× boundary length of initial triangle× length scaling factor

= 3n × 3×
(

1

2

)n
= 3

(
3

2

)n
area An = no. of triangles× area of initial triangle× area scaling factor

= 3n ×
√

3

4
×
((

1

2

)n)2

= 3n ×
√

3

4
×
(

1

4

)n
=

√
3

4

(
3

4

)n
.

Notice that Ln gets arbitrarily large as n increases. We say Ln approaches
infinity as n approaches infinity. On the other hand, the area An approaches
zero. We write9

Ln →∞, An → 0 as n→∞.

It is possible to give a precise definition of length and area, and of boundary.
Then it turns out that the area of the Sierpinski triangle is zero but the length
of its boundary is infinite. Moreover, the boundary of the Sierpinski triangle
is in fact the entire Sierpinski triangle.

However, all this does not follow automatically, just as we noted before in
the case of the Koch curve.

Menger Sponge

Construction Begin with a cube as in Figure 4.17.

Figure 4.17: Approximations to the Menger Sponge

Replace this cube by 20 cubes each of 1/3 the side length. (The 7 “missing”
cubes are the one from the top middle, the one from the bottom middle, one
from the middle of each of the four sides, and the one from the centre.)

Replace each of these 20 cubes by another 20 each of 1/3 their side length.
There are now 202 = 400 cubes.

Replace each of these new cubes by another 20 each of 1/3 their side length.
There are now 203 = 8000 cubes.

9Of course, ∞ is not a number. It is just a convenient way to help express the fact that
Ln and n can be arbitrarily large.
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Etc.
The Menger Sponge is the limit, again in a sense that can be made precise,

of this process.

Properties The Menger sponge is the union of 20 copies of itself, each scaled
by 1/3. So we say that the Menger sponge is self-similar. Remember that we
can only draw approximations to the actual Menger sponge, as in Figure 4.17.

The nth approximation to the Menger Sponge consists of 20n cubes each
of which is obtained by scaling the original cube by (1/3)n.

Suppose the initial cube has side length equal to one. It follows that for
the nth approximation to the Menger Sponge:

surface area An

= no. of cubes× surface area of initial cube× area scaling factor

= 20n × 6×
((

1

3

)n)2

= 20n × 6×
(

1

9

)n
= 6

(
20

9

)n
volume Vn

= no. of cubes× volume of initial cube× volume scaling factor

= 20n × 1×
((

1

3

)n)3

= 20n × 1×
(

1

27

)n
=

(
20

27

)n
.

Notice that the surface area An approaches infinity as n approaches infinity.
On the other hand, the volume Vn approaches zero. We write

An →∞, Vn → 0 as n→∞.

It is possible to give a precise definition of volume and surface area. Then it
turns out that the surface area of the Menger Sponge is infinite but the volume
is zero. Moreover, the surface of the Menger Sponge is in fact the same as the
Menger Sponge.

Once again, none of this follows automatically, but requires careful defini-
tion and proof.

Cantor Set

The Cantor set is the simplest fractal set. For this reason it is useful to study
it in more detail.

Figure 4.18: Seven approximations to the Cantor Set
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Construction Begin with a closed line segment of length one, and replace
it by 2 line segments each of length 1/3 as in Figure 4.15.10 (The middle open
segment “removed” from the initial segment has length 1/3.)

Replace each of these 2 new segments by another 2 segments each 1/3 the
length of the segment being replaced (i.e. remove the middle open third of each
segment). This gives 4 = 22 line segments.

Next replace each of these new segments by another 2 segments each 1/3
the length of the segment being replaced (i.e. remove the middle open third of
each segment). This gives 8 = 23 line segments.

Etc.

Let C0, C1, C2, C3, . . . denote the sets in Figure 4.15. That is:

C0 = [0, 1]

C1 =

[
0,

1

3

]
∪
[

2

3
, 1

]
(4.8)

C2 =

[
0,

1

9

]
∪
[

2

9
,

3

9

]
∪
[

6

9
,

7

9

]
∪
[

8

9
, 1

]
(4.9)

C3 =

[
0,

1

27

]
∪
[

2

27
,

3

27

]
∪
[

6

27
,

7

27

]
∪
[

8

27
,

9

27

]
∪
[

18

27
,

19

27

]
∪
[

20

27
,

21

27

]
∪
[

24

27
,

25

27

]
∪
[

26

27
, 1

]
etc.

The Cantor Set C is the set of points which are in every Cn. We write

C =
⋂
n≥0

Cn. (4.10)

Notice that Cn consists of 2n intervals each of length (1/3)n and that

C0 ⊃ C1 ⊃ C2 ⊃ C3 ⊃ · · · ⊃ Cn ⊃ · · · ⊃ C.

The Cantor set is the union of 2 copies of itself, each obtained by scaling
by 1/3. For this reason the cantor set is self-similar.

Describing the Points in the Cantor Set

Endpoints of Intervals Every endpoint of every interval used in the
construction, is itself in the Cantor Set. For example, 0 ∈ C since it is clear
that 0 ∈ Cn for every n.

Similarly, 1/3 ∈ C since 1/3 ∈ Cn for every n. Likewise for 8/27 and so on.
One way to see this is to notice that at each stage in the construction we

are throwing away the middle open third of each interval. So we always keep
any endpoints.

It might seem that the only points in the Cantor set are the endpoints of
such intervals. This is wrong!

10We have drawn a very “fat” line for visual purposes. Of course, a line really has not
“thickness”.
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Addresses of Points To better understand what points are in the Cantor
set, let us go back and look again at the construction.

Every point x in the Cantor set C is either in the left interval [0, 1/3] or
the right interval [2/3, 1].

For example, suppose x ∈ C is in the right interval [2/3, 1]. Then either x
is in the left interval [6/7, 7/9] or the right interval [8/9, 1].

Suppose x ∈ C is in the left interval [6/7, 7/9]. Then either x is in the left
interval [18/27, 19/27] or the right interval [20/27, 21/27].

Suppose x ∈ C is in the left interval [18/27, 19/27]. Etc.
If we write L for left and R for right, then such a point x will be described

by an infinite sequence of the form

RLL . . . .

Every point in the Cantor set C can be described by an infinite sequence of L’s
and R’s in this way. Moreover, every such infinite sequence describes a point
in C.

For example, the infinite sequence

LRRLRLLRLRRLLLRLRLRLLLLRRRLLRLLRLLLRLRRRRRL . . .

describes a point x which is in the interval [0, 1], also in [0, 1/3] (go Left), also
in [2/9, 3/9] (go Right), also in [8/27, 9/27] (go Right), also in [24/81, 25/81]
(go Left), also in [74/243, 75/243] (go Right), also in [222/729, 223/729] (go
Left), etc.

With this notation, left endpoints of intervals obtained in the construction
of the Cn correspond to an infinite sequence ending in L’s. Right endpoints
of intervals obtained in the construction of the Cn correspond to an infinite
sequence ending in R’s.

For example, the point 8/9 corresponds to RRLLLLL . . . , since we went
right twice and then forever stay left. In a similar way, 2/27 corresponds to
LLRLLLLL . . . , since we went left twice and then right and then forever stay
left. Mark 8/9 and 2/27 in Figure 4.18. -

Tree Representation A convenient way to represent infinite sequences
consisting of the terms L and R is by means of an infinite tree which branches
twice at each node. See Figure 4.19, where the first few sub branches are shown.

Each infinite branch corresponds to a point in the Cantor set and each
point in the Cantor set corresponds to exactly one infinite branch.

Base 3 Representation of Points in C We know that every point in
the interval [0, 1] has a decimal expansion. We saw on page 82 that it also has
a binary expansion.

Because of the following Theorem, we will be interested here in the base 3,
or ternary, expansion of numbers x ∈ [0, 1]. For this we need just the numerals
0, 1 and 2. We then have the following result.

Theorem 4.3.1. A number x in the interval [0, 1] is in the Cantor set C if
and only if it has a ternary expansion consisting just of 0s and 2s. Moreover,
x will have exactly one ternary expansion which consists only of 0s and 2s.
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Figure 4.19: First few branches of a two branching tree

Proof. Step A. Suppose for example the ternary expansion of some x ∈ [0, 1]
is

x = .0220202 . . . .

We will show that x ∈ C.

If we consider the intervals [0, 1/3], [1/3, 2/3] and [2/3, 1], because the first
digit in the ternary expansion of x is 0, it follows that x is in the first of these
three intervals, i.e. [0, 1/3]. Draw a diagram. In particular, x ∈ C1, see (4.8).-

Subdividing [0, 1/3], consider the intervals [0, 1/9], [1/9, 2/9] and [2/9, 3/9].
It follows from the ternary expansion for x, because the second digit is 2, that
x is in the third of these, i.e. [2/9, 3/9]. In particular, x ∈ C2, see (4.9).

Subdividing [2/9, 3/9] we consider the intervals [6/27, 7/27], [7/27, 8/27]
and [8/27, 9/27]. It follows from the ternary expansion for x, because the third
digit is 2, that x is in the third of these, i.e. [8/27, 9/27]. In particular, x ∈ C3.

Etc.

In this way we see that x ∈ Cn for every n, and so x ∈ C. See (4.10)

The same argument shows for any x ∈ [0, 1], that if x has a ternary expan-
sion using just the numerals 0 and 2 but not 1, then x ∈ C.

Step B. On the other hand, suppose x ∈ C. We will now show that x has
some ternary expansion which uses the numerals 0 and 2 but not 1.

Since x ∈ C it follows in particular that x ∈ C1. This implies x is in either
the interval [0, 1/3] or the interval [2/3, 1]. (It might also be in the interval
[1/3, 2/3], but then it must be one of the two endpoints of [1/3, 2/3] , and so
also is in either [0, 1/3] or [2/3, 1].) So the first digit in the ternary expansion
of x can be taken to be 0 or 2.

We subdivide the corresponding interval [0, 1/3] or [2/3, 1] into three subin-
tervals. Because x ∈ C, x is in either the first or third of these subintervals.
This means the second digit of its ternary expansion can be taken to be 0 or 2.

We subdivide the relevant subinterval into three subsubintervals. Because
x ∈ C, x is in either the first or third of these subsubintervals. This means the
third digit of its ternary expansion can also be taken to be 0 or 2.

Etc.
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In this way we see that if x ∈ C then x has a ternary expansion with only
0s and 2s. I

Because we have just one choice, namely left or right interval, at each stage,
there is moreover exactly one ternary expansion for x ∈ C which consists just
of the numerals 0 or 2.

How Large is the Cantor Set?

Length Since the approximation Cn consists of 2n intervals of length
(1/3)n, its total length is (2/3)n.

We will not give a precise definition of the length of complicated sets like
the Cantor set. But it is possible to do this. All we need here is the property
that if A ⊂ B then the length of A is ≤ the length of B.

Since C ⊂ Cn (why? ) it follows that the length of C is ≤ (2/3)n for every -
n. So in the sense of “length”, C is small.

Cardinality The Cantor set is certainly infinite. This is clear because we
have an infinite number of choices to make using the L,R tree representation.

But is the Cantor set countable or uncountable? (The proof of the following
Theorem is incomplete, in that it uses a theorem we have not actually proved.
See the discussion within the proof itself.)

Theorem 4.3.2. The Cantor set has cardinality c.

“Proof”. Let C denote the Cantor set. We will prove:
1. There is a one-to-one correspondence between C and some subset of [0, 1].
2. There is a one-to-one correspondence between [0, 1] and some subset of C.

It seems reasonable that from these two facts there should be a one-to-one
correspondence between (all of) C and (all of) [0, 1]. This is indeed the case,
but to show it one needs the Cantor-Schroeder-Bernstein Theorem on page 128,
which we have not proved. For this reason I have written “Proof ”.

From Theorem 3.5.4 on page 124, the cardinality of [0, 1] is c. So once we
know there is a one-to-one correspondence between C and [0, 1] it follows that
C also has cardinality c.

The first fact (1.) is easy to prove, since C is a subset of [0, 1]. The one-to-
one correspondence just sends each x ∈ C to the same x ∈ [0, 1] .

For (2.) we use the fact from page 82 that every x ∈ [0, 1] has at least one
binary expansions of the form .a1a2a3 . . . an . . . , where each ai is either 0 or 1.
For each x ∈ [0, 1] choose one such binary expansion, replace each 0 by L and
each 1 by R, and so get an infinite sequence of L’s and R’s which we call s(x).
(Notice that if x 6= y then s(x) 6= s(y), why? ) -

Using addresses of points in the Cantor set as on page 157 we can identify
each s(x) with a member of the Cantor set C, and in this way we get a one-to-
one correspondence between [0, 1] and a subset of C. Why is it only a subset -
of C?

This completes the “Proof” because of the comments above.
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Questions

1 In Figure 4.3 we begin with the line segment from x = 0 to x = 1 on the
x-axis. We then sketch the first four approximations to the Koch curve
(each “begins” at the point x = 0 on the x-axis and “ends” at the point
x = 1).

What is the length of the first approximation to the Koch curve? How
about the second, third, fourth, nth approximations?

2 For n a positive integer consider the “n-tooth” curve whose graph is a
straight line from (0, 0) to ( 1

2n ,
1√
n

), a straight line from ( 1
2n ,

1√
n

) to

( 2
2n , 0), a straight line from ( 2

2n , 0) to ( 3
2n ,

1√
n

), a straight line from

( 3
2n ,

1√
n

) to ( 4
2n , 0), a straight line from ( 4

2n , 0) to ( 5
2n ,

1√
n

), a straight

line from ( 5
2n ,

1√
n

) to ( 6
2n , 0), . . . , finally ending up at ( 2n

2n , 0) = (1, 0).

There are thus n teeth. Why?
Draw a diagram for n = 3.
What is the length of the n-tooth curve? What happens to the length

of the n-tooth curve as n approaches infinity?
What curve does the the n-tooth curve approach as n approaches

infinity?
What is the length of this limit curve?

3 For the Koch curve constructed as in Question 1, what is the area be-
tween the x-axis and the first, second, third and fourth approximations?
What about the nth approximation? What do you expect the area to be
between the x-axis and the Koch curve?
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4.4 Iterated Function Systems

New ways of looking at something
can have surprising and useful
applications.

Overview
This Section corresponds to the second half of Section 6.3 of [HM], pp 437–450].
The material is developed here in much more detail.We discuss the idea of an Iterated Function System or IFS, a very useful way

of examining a large class of fractals.
In particular, the idea of an IFS leads to two different ways of generating

fractals, the Deterministic Algorithm and the Random Algorithm or Chaos
Game.

We discuss the IFS corresponding to the Sierpinski Triangle and the IFS
corresponding to the Koch curve. But the ideas in these two cases can be
generalised in a more or less straightforward way to any IFS.

A Little History The idea that many fractals can be characterised by an
IFS and that such fractals can be generated by the deterministic algorithm was
introduced and developed in a 1981 paper11 of the author.

The idea of the chaos game to generate fractals was first developed by
Barnsley and Demko12 in 1985. A few years later Barnsley applied these ideas
to image compression and was a founder of the company “Iterated Systems”,
at one stage valued at $200,000,000(US), later known as “Media Bin” and then
acquired by “Interwoven”.

What is an IFS?
[HM, 437–446]

Three Maps and the Sierpinski Triangle S If you look at the Sierpinski
Triangle S in Figure 4.20 you can see that S is made up of three copies of
itself each scaled by 1/2.13 We will denote these three copies by S1, S2 and
S3, where the vertex P1 = (0, 0) ∈ S1, the vertex P2 = (1, 0) ∈ S2 and the top
vertex P3 = (1/2,

√
3/2) ∈ S3. Indicate all this on Figure 4.20. -

Suppose that each point (x, y) in the plane R2 is moved closer to the point
P1 by the factor 1/2. For example, (3, 0) is mapped to (3/2, 0), (1, 1) is mapped
to (1/2, 1/2), (0, 3) is mapped to (0, 3/2).

In this way, points in S are mapped to points in S. For example, (1, 0) is
mapped to (0, 0.5), (3/4,

√
3/4) which is the midpoint of the “right edge” of

S is mapped to (3/8,
√

3/8) (where is this on S? ) and P3 = (1/2,
√

3/2) is -
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Figure 4.20: Sierpinski Triangle S

mapped to (1/4,
√

3/4). (where is this on S? ). -

Figure 4.21: The maps f1, f2 and f3.

The map (or function) we just described is the function f1 : R2 → R2

defined by

f1(x, y) =
(x

2
,
y

2

)
, (4.11)

11Hutchinson, John E., Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981),
713–747.

12Barnsley, M. F.; Demko, S. Iterated function systems and the global construction of

fractals. Proc. Roy. Soc. London Ser. A 399 (1985), 243–275.
13Of course, as usual, we can only sketch an approximation to S.
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see Figure 4.21.
Notice from Figure 4.20 that

S1 = f1[S],

where by the right side of the equality we mean the set of all points of the form
f1(x, y) for (x, y) ∈ S. That is

f1[S] = {f1(x, y) : (x, y) ∈ S}.

We read this as “f1[S] is the set of points of the form f1(x, y) for some
(x, y) ∈ S”.

In a similar way,

S2 = f2[S] and S3 = f3[S],

where f2 maps every point (x, y) ∈ R2 to the midpoint between (x, y) and P2,
and f3 maps every point (x, y) ∈ R2 to the midpoint between (x, y) and P3.

Why are the following formulae true? -
f1(x, y) =

(x
2
,
y

2

)
f2(x, y) = (1, 0) +

1

2

(
(x, y)− (1, 0)

)
=
(x

2
+

1

2
,
y

2

)
f3(x, y) =

(1

2
,

√
3

2

)
+

1

2

(
(x, y)−

(1

2
,

√
3

2

))
=

(
x

2
+

1

4
,
y

2
+

√
3

4

)
.

(4.12)

If you know about matrices and column vectors, then f1, f2 and f3 can also
be conveniently described that way.14

The IFS for S We have seen that for the Sierpinski triangle S,

S = S1 ∪ S2 ∪ S3

where
S1 = f1[S], S2 = f2[S], S3 = f3[S].

So we have the important relation

S = f1[S] ∪ f2[S] ∪ f3[S] (4.13)

Definition 4.4.1. The set of maps F = {f1, f2, f3} with f1, f2 and f3 are as
in (4.12) is called the Iterated Function System or IFS corresponding to the
Sierpinski Triangle S.

Because of (4.13) we say that S is invariant under the IFS F = {f1, f2, f3}.



164 Chaos and Fractals

Figure 4.22: f1 is contractive

Contractive Maps Take two initial points x = (x, y) and y = (u, v) and
apply the map f1 to each. The image points are f1(x, y) = (x/2, y/2) and
f1(u, v) = (u/2, v/2) respectively, see (4.11).

The distance15 between the two image points is exactly 1/2 the distance
between the two initial points. This is essentially because of the factor 1/2 in
the definition of f1, see (4.11).

If you know about vectors, then you will see that the vector from (x, y) to
(u, v) can be written as (u−x, v− y). The vector from (x/2, y/2) to (u/2, v/2)
is (u/2− x/2, v/2− y/2) = 1

2 (u− x, v − y), which is exactly half the length of
the vector (u− x, v − y) from (x, y) to (u, v).

You could also use the formula for computing the distance d between points.
For example,

d
(
f1(x, y), f1(u, v)

)
= d
(
(x/2, y/2), (u/2, v/2)

)
=
√

(x/2− u/2)2 + (y/2− v/2)2

=
1

2

√
(x− u)2 + (y − v)2

=
1

2
d
(
(x, y), (u, v)

)
(4.14)

In the same way we see that the maps f2 and f3 also reduce the distance
between points by the factor 1/2.

14If we represent points in the plane by column vectors then it follows from (4.12) that

f1

[
x
y

]

=

[ 1
2

0

0 1
2

] [
x
y

]

, f2

[
x
y

]

=

[ 1
2

0

0 1
2

] [
x
y

]

+

[
1
2
0

]

, f3

[
x
y

]

=

[ 1
2

0

0 1
2

] [
x
y

]

+

[
1
4√
3

4

]

.

15The distance between x, y ∈ R is d(x, y) = |x− y|.
The distance between x = (x1, x2), y = (y1, y2) ∈ R2 is d(x,y) =√
(x1 − y1)2 + (x2 − y2)2.
The distance between x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3 is d(x,y) =√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.
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Definition 4.4.2. A function f : R → R, f : R2 → R2 or f : R3 → R3, is
contractive if there is a number r with 0 ≤ r < 1 such that

d
(
f(x), f(u)

)
≤ rd(x,u)

for all points x and u in R , R2 or R3 respectively.
The number r is called a contractivity factor16 for f .

For example, it follows from (4.14) that f1 is contractive with contractiv-
ity factor 1/2. Similarly, f2 and f3 are also contractive with contractivity
factor 1/2.

It will generally be the case, at least in this course, that the maps in an IFS
are all contractive.

The Deterministic Algorithm
[HM, 437–446]

The IFS Determines S A surprising and very important fact is that from
just knowing the IFS F = {f1, f2, f3} in Definition 4.4.1 we can find S.

To see this, begin with any set (picture) E, such as the face in Figure 4.23,
and apply the IFS F to get a new set (picture)

E1 = F(E) = f1[E] ∪ f2[E] ∪ f3[E].

So E1 consists of 3 little faces.
Next apply F to E1 to get a new set (picture) E2 consisting of 9 smaller

faces.
E2 = F(E1) = f1[E1] ∪ f2[E1] ∪ f3[E1].

Next apply F to E2 to get a new set (picture) E3 consisting of 27 smaller
faces.

E3 = F(E2) = f1[E2] ∪ f2[E2] ∪ f3[E2].

And so on.

In the limit we obtain the Sierpinski Triangle S, no matter what set E we
start from. See Theorem 4.4.3.

For any set E we defined the set

F(E) = f1[E] ∪ f2[E] ∪ f3[E]. (4.15)

We have the following result.

Theorem 4.4.3. Consider the IFS F = {f1, f2, f3} in Definition 4.4.1. Sup-
pose E is any closed17 and bounded18 set.

16Notice that if r is a contractivity factor then so is any number larger than r. One
can show there is always a smallest contractivity factor, and then this is usually called the
contractivity factor for f .

17A set E is closed if it contains all its boundary points. This is discussed in more detail
on page 171.

18 A set E ⊂ R,R2,R3 is bounded if there is some number M such that the distance from
every point in E to the origin is at most M . For example, the Sierpinski triangle and the
Koch curve and the set of points inside any disc, are all bounded. But the entire plane R2 is
not bounded, nor is the set of all points (x, y) in the plane for which x ≥ 0 and y ≥ 0.
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Figure 4.23: A sequence of sets E,E1, E2, E3, E4, . . . , beginning with a face
and obtained by repeatedly applying the IFS F = {f1, f2, f3}, converging to
the Sierpinski Triangle S.

Then the sequence of sets

E, E1 = F(E), E2 = F(E1), E3 = F(E2), . . . , En = F(En−1), . . . (4.16)

converges to S, independent of the starting set E.

Note: If we take E = R2 in the statement of the Theorem, then every set in
the sequence (4.16) is R2. Why? So the sequence of sets in this case will not-
converge to S. Why does the theorem not apply in this case?-
“Proof”. We cannot give a complete and rigorous proof, as we have not defined
what we mean by the limit of a sequence of sets.

Also, to make the following rigorous requires the filling in of quite a few
details about converging sequences of sets.

But I will describe the essential parts of the argument.

Somewhat informally, by saying the set S is the limit of the sequence of
sets (4.16), i.e. the sequence of sets converges to S, we mean that for every
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positive number ε,19 which we can think of as a very small “tolerance”, the
following is true:

There is an integer N depending on ε such that if n ≥ N then
1. for every x ∈ En there is some y ∈ S within distance ε of x,20 and
2. for every y ∈ S there some x ∈ En within distance ε of y.21

From the way we originally defined the Sierpinski Triangle S beginning on
page 152, we know S is the limit of the sequence

T, T1 = F(T ), T2 = F(T1), T3 = F(T2), . . . , Tn = F(Tn−1), . . . , (4.17)

where T is the black equilateral triangle as in Figure 4.24.

0.2

0.2

0

0 0.4

0.4

10.80.6

0.8

0.6

0.2

0.2

0

0 0.4

0.4

10.80.6

0.8

0.6

0.2

0.2

0

0 0.4

0.4

10.80.6

0.8

0.6

0.2

0

0 1

0.8

0.80.4

0.4

0.2 0.6

0.6

0

0 0.8

0.4

0.40.2

0.6

10.6

0.2

0.8

Figure 4.24: A sequence of sets T, T1, T2, T3, T4, . . . , beginning with a triangle
and obtained by repeatedly applying the IFS F = {f1, f2, f3}, converging to
the Sierpinski Triangle S.

There is certainly some positive real number, let us call it α, such that

19In Mathematics we commonly use the Greek letter ε, called “epsilon”, to represent a
number which is small and positive.

20The point y depends on x, on ε and on n.
21The point x depends on y, on ε and on n.
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1. every point in the triangle T is within distance α of some point in the set
E, and

2. every point in the set E is within distance α of some point in the trian-
gle T .

For example, α = 1 would do if E is the face in Figure 4.23. In fact smaller-
α will also work, but that does not make a difference to the following proof.
What is a smaller α that works?

Because the functions f1, f2 and f3 contract distances by 1/2,
1. every point in T1 is within distance α/2 of some point in E1, and
2. every point in E1 is within distance α/2 of some point in T1.

Again because the functions f1, f2 and f3 contract distances by 1/2,
1. every point in T2 is within distance α/4 of some point in E2, and
2. every point in E2 is within distance α/4 of some point in T2.

Again because the functions f1, f2 and f3 contract distances by 1/2,
1. every point in T3 is within distance α/8 of some point in E3, and
2. every point in E3 is within distance α/8 of some point in T3.
Etc.

Beginning on page 152 we essentially saw that the sequence (4.17) converges
to S, in fact this was essentially how we defined S. We also have just seen that
the sets in the sequence (4.16) are getting closer and closer to the sets in the
sequence (4.17). It follows that the sets in the sequence (4.16) also converge
to S.

This argument did not depend on the initial set E. For different E we will
get a different α, but nothing else changes.

-
Where in the proof did we use the fact that E was bounded?

Deterministic Algorithm for Generating S This is what we have just
discussed. Begin with any set E and take the sequence (4.16). This will give
better and better approximations to S.

The terminology “deterministic algorithm” is used to distinguish this algo-
rithm from the “random algorithm” or “chaos game” discussed on page 178.

There is a nice java applet at
www.geom.uiuc.edu/java/IFSoft/IFSs/welcome.html#findingattractors

Scroll down to the blue window, draw your own face, and use the Iterate button
to step through successive iterations. Note that the Sierpinski Triangle there,
and hence the three functions used, are a little different from the example we
have just been discussing.

The Koch Curve K and its IFS The Koch Curve K and its first approx-
imation is shown in Figure 4.25. See also page 151.

The four line segments in the first approximation each have length 1/3.
The second and third line segments form an equilateral triangle with the x-
axis. From this is is easy to check that the vertices of the five corners are
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Figure 4.25: Koch Curve and its first approximation

P1 = (0, 0), P2 = (1/3, 0), Q = (1/2,
√

3/6), P3 = (2/3, 0) and P4 = (1, 0).
Check it!-

The Koch Curve K can be written as the union of 4 scaled copies of itself
each scaled by 1/3.

K = K1 ∪K2 ∪K3 ∪K4 = f1[K] ∪ f2[K] ∪ f3[K] ∪ f4[K]. (4.18)

Here K1 is the left “quarter” joining the points (0, 0) and (0, 1/3), K2 joins
(0, 1/3) and (1/2,

√
3/6), K3 joins (1/2,

√
3/6) and (2/3, 0), K4 joins (2/3, 0)

and (1, 0).
Geometrically:

1. f1 contracts points towards (0, 0) with contraction ratio 1/3;
2. f2 contracts points towards (0, 0) with contraction ratio 1/3, then rotates

anti clockwise, i.e. in the “positive” direction, by 60◦ or equivalently π/3
radians, and finally translates in the x-direction by 1/3;

3. f3 contracts points towards (0, 0) with contraction ratio 1/3, then rotates
by −60◦ or equivalently −π/3 radians, and finally translates the origin
(0, 0) to Q = (1/2,

√
3/6);

4. f4 contracts points towards (0, 0) with contraction ratio 1/3 and then
translates in the x-direction by 2/3.

The formulae for f1, . . . f4 are:

f1(x, y) = (x/3, y/3),

f2(x, y) = (x/6−
√

3y/6 + 1/3,
√

3x/6 + y/6),

f3(x, y) = (x/6 +
√

3y/6 + 1/2,−
√

3x/6 + y/6 +
√

3/6),

f4(x, y) = (x/3 + 2/3, y/3).

(4.19)

If you know a little about matrices and how to represent rotations by
matrices, the geometric descriptions will allow you to compute the functions
f1, . . . , f4.22

22For example, from the description of f2, the point (x, y) is first sent to (x/3, y/3). Since a

rotation by θ radians is represented by the matrix

[
cos θ − sin θ
sin θ cos θ

]

, it follows that (x/3, y/3)

is then sent to [
1/2 −

√
3/2√

3/2 1/2

] [
x/3
y/3

]

=

[
x/6−

√
3y/6√

3x/6 + y/6

]

.

Finally, translation by 1/3 in the x-direction adds 1/3 to the first coordinate. This gives the
formula for f2(x, y).

- Use a similar argument to find the formulae for f4(x, y) and f3(x, y).
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The IFS corresponding to K is

F = {f1, f2, f3, f4}, (4.20)

where f1, . . . , f4 are as in (4.19).
The contractivity factor for the maps f1, . . . , f4 is 1/3. Why?-
If E is any set then we define

F(E) = f1[E] ∪ f2[E] ∪ f3[E] ∪ f4[E].
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Figure 4.26: A sequence of sets which began with a line segment, obtained by
repeatedly applying the IFS F = {f1, f2, f3, f4} in (4.20), converging to the
Koch Curve K.
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Figure 4.27: A sequence of sets which began with a face, obtained by repeatedly
applying the IFS F = {f1, f2, f3, f4}, converging to the Koch Curve K.

Just as in Theorem 4.4.3 for the Sierpinski Triangle, there is a similar
theorem for the Koch Curve.

Theorem 4.4.4. Consider the IFS F = {f1, f2, f3, f4} in (4.20). Then the
sequence of sets

E, E1 = F(E), E2 = F(E1), E3 = F(E2), . . . , En = F(En−1), . . . (4.21)



4.4. Iterated Function Systems 171

converges to K, independent of the starting set E, provided E is bounded.

“Proof”. The proof is very similar to that for the Sierpinski Triangle. The only
significant difference is that the contractivity factor here for the maps f1, . . . , f4
is 1/3 instead of 1/2, as was the case for the Sierpinski Triangle IFS.

The General IFS Theorem We have the following very general result,
Theorem 4.4.5. It extends Theorems 4.4.3 and 4.4.4.

In order to give a precise statement we need the idea of a closed and bounded
set. We have already seen in Footnote 18 what it means for a set to be bounded.

A set E is said to be closed if it contains all its boundary points.
For example, the interval (2, 3) ⊂ R is not closed because it does not contain

its boundary points 2 and 3. However, the interval [2, 3] is closed because it
contains its boundary points. The interval [2, 3) is not closed. Why? -

The set A of points (x, y) ∈ R2 such that x2 + y2 < 1, is not closed. It does
not contain its boundary points, which are the points (x, y) on the circle given
by x2 + y2 = 1. On the other hand, the set B of points (x, y) ∈ R2 such that
x2 +y2 ≤ 1 is closed, because it does contain its boundary points, which as for
A are the points (x, y) on the circle x2 + y2 = 1.

Here23 is a precise definition of “boundary point”.

All the fractal sets we discuss are closed and bounded.

Theorem 4.4.5. Suppose F is any IFS consisting of maps f1, . . . , fn such that
each fi : R2 → R2 has a contractivity factor less than 1.

Then there is exactly one closed bounded set A, depending on F , such that

A = F(A), i.e. A = f1[A] ∪ · · · ∪ fn[A].

Moreover, beginning from any closed bounded set E, the sequence of sets

E, E1 = F(E), E2 = F(E1), E3 = F(E2), . . . , En = F(En−1), . . .

converges to the set A.

“Proof”. In Theorems 4.4.3 and 4.4.4 we knew the set A to which the sequence
converged, namely the Sierpinski Triangle or the Koch Curve respectively.

Here the problem is that we may not know beforehand what A is. However,
this problem can be overcome. Just as in the previous two Theorems, essentially
because all the maps fi are contractions, if we start from different sets E and
F and repeatedly apply F to get

E, E1 = F(E), E2 = F(E1), E3 = F(E2), . . . , En = F(En−1), . . .

F, F1 = F(F ), F2 = F(F1), F3 = F(F2), . . . , Fn = F(Fn−1), . . .

23Suppose A ⊂ R2 (or R or R3). A point x ∈ R2 is a boundary point of A if for every
ε > 0 there is at least one point in A within distance ε of x, and at least one point not in A
within distance ε of x. A sketch will help you understand this definition.

- Why does this give the same boundary points for the sets (2, 3), [2, 3], [2, 3) ⊂ R and
for the sets A,B ⊂ R2 as discussed in the previous few paragraphs?
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then the sets En and Fn will get closer and closer together as n→∞.
Using this information, one can show the two sequences of sets converge to

some set A and that A does not depend of whether we begin with E or F or
any indeed other closed bounded set.

We saw in the second paragraph of Footnote 18 why we work with bounded
sets. One reason we also want A to be closed is in order to have a unique limit
for the previous sequences of sets. Here24 is an example of the sort of thing
that can happen otherwise.

Filling in the details of the proof requires some more background than we
have developed in this course. But hopefully the above discussion makes the
result plausible.

The Collage Method In [HM, 437–439] there is a discussion of a “collage
process” for generating fractals.25 This is, as here, what is normally called the
“deterministic algorithm”.

There is something else usually called the “collage method”. It is the basis
for a method of compressing images based on iterated function systems. The
key idea is that an image or picture is split my means of a fixed grid into
perhaps thousands of small squares. For each small square S in the picture,
the square of twice the size which most looks like a scaled up copy of S (perhaps
after rotations or reflections) is found. Then the functions that actually do the
scaling are stored in the computer as a type of very large IFS. When needed,
the image is rapidly reconstructed from this IFS. For many years in the 1990’s
the images on Microsoft’s online encyclopedia Encarta where stored in this
manner.

More Examples The site www.math.utah.edu/^korevaar/fractals/ has
many examples of fractals given by IFS’s. Figures (4.28), (4.29) and (4.30) are
from this site.

In each case the functions f1, f2, f3, . . . in the corresponding IFS F are the
unique affine26 functions of the form

fi(x, y) = (aix+ biy + ci, dix+ eiy + fi) (4.22)

which map the standard unit square with vertices (0, 1), (0, 0), (1, 0), (1, 1) into
the various parallelograms shown. The L in each parallelogram indicates the

24Consider the sequence of sets

[1/3, 2/3], [1/4, 3/4], [1/5, 4/5], [1/6, 5/6], . . . .

According to the Definition of limit of of a sequence of sets used in the “Proof” of Theo-
rem 4.4.3, this sequence converges to the set (0, 1) as well as to the set [0, 1]. But it is possible
to prove that there is only one limit which is closed.

25On p438 of [HM] the image next to the one captioned “3rd stage” should be captioned
“first stage”, and the image at the bottom right of p439 should be captioned “2nd stage”.

26An affine function is the same as a linear transformation followed by a translation.
In (4.22) we can write

fi

([
x
y

])

=

[
ai bi
di ei

] [
x
y

]

+

[
ci
fi

]

.

So fi is the same as first applying

[
ai bi
di ei

]

and then translating by

[
ci
fi

]

.
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manner in which an L in the standard unit square would need to be transformed
in order to move that square into the given parallelogram.

For each function fi there are 6 numbers ai, bi, ci, di, ei, fi to be found.
But a parallelogram is determined by any three of its vertices, and because
of the L we know which of the 3 square vertices (0, 1), (0, 0), (1, 0) from the
standard unit square map to which of the parallelogram vertices. There are two
equations to be satisfied for each vertex, and so there are a total of 6 equations
to solve.27 Since there are 6 unknowns ai, bi, ci, di, ei, fi we expect there is a
unique solution for ai, bi, ci, di, ei, fi, and in this setting that is indeed the case.

Another site with material you might like to look at is
http://classes.yale.edu/fractals/index.html .

In [HM, 440–441] see the Barnsley fern, which is an aesthetically pleasing
and somewhat realistic example of a fractal set in nature.

Chaos Game

Sierpinski Addresses We saw on page 157 that every point on the Cantor
set has a unique address given by an infinite sequence of L’s and R’s, such as

RLL . . . .

Instead of R and L we might use the symbols 0 and 2 (see Theorem 4.3.1), or
1 and 2, etc., depending upon the application.

In a similar way, every point on the Sierpinski Triangle S has an address
given by an infinite sequence of numbers from the set {1, 2, 3}. But the address
is not always unique as we will soon see.

Look at Figure 4.31. Suppose a point x ∈ S has an address of the form
3132122311 . . . . At each level, 1 corresponds to the bottom left third, 2 to the
bottom right third and 3 to the top third. You might think of the first digit as
giving the continent to which x belongs, the second digit as giving the country,
the third digit giving the state, the fourth giving the city, the fifth giving the

27For examples, suppose that the L in the standard unit square and the image of L in
some parallelogram tell us that the vertices (0, 1), (0, 0), (1, 0) are mapped by f1 in (4.22) to
(1, 3), (2, 5), (4, 6) respectively.

- Draw a diagram.
Then the 6 equations are

1 = b1 + c1, 3 = e1 + f1,

2 = c1, 5 = f1,

4 = a1 + c1, 6 = d1 + f1.

This gives a1 = 2, b1 = −1, c1 = 2, d1 = 1, e1 = −2 and f1 = 5. So

fi(x, y) = (2x− y + 2, x− 2y + 5).
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Figure 4.28: IFS Fractals from www.math.utah.edu/ korevaar/fractals/.
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Figure 4.29: More IFS Fractals.
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Figure 4.30: And More.
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Figure 4.31: Addresses on the Sierpinski triangle S

suburb, the sixth giving the street, the seventh giving the house, the eighth
giving the room, etc.

Since x has address 3132122311 . . . it is in the top continent, then within
that continent it is in the bottom left country, then within that country it is
in the top state, then within that state it is in the bottom right city, etc.

The point (1/2, 0) ∈ S has the address 1222 . . . , which we write as 12 and
read as “1 then 2 repeating”. It also has the address 21. Where is the point -
with address 313 and what is its other address? 28

Addresses and Maps Suppose we have a point x ∈ S with an address
213131221 . . . , for example. What is the address of f1(x)?

Since f1 sends every point in S into the bottom left third of S, the address
of f1(x) will start with 1. Moreover, since x was previously in the bottom right
third of S, it will move to the bottom right third of the bottom left third of
S. So the address of f(x) will start with 12. Similarly, the address of f(x) will
start with 121. Etc.

In fact, a similar argument shows that the address of f1(x) is precisely the
address as for x but with 1 placed in front and every digit of x moved one place
to the right.

Similarly for applying f2 and f3.

28In fact points with two addresses are those of the form “blah blah”ab where a 6= b. The
other address is then “same blah blah”ba.
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For example, in terms of addresses

f1(332113 . . . ) = 1332113 . . . ,

f2(332113 . . . ) = 2332113 . . . ,

f3(332113 . . . ) = 3332113 . . . .

The Chaos Game Method This is a very useful, and initially surprising,
way to generate S.

Begin with any point x0 ∈ R2, sometimes called the seed.
1. With probability 1/3 in each case, apply either f1, f2 or f3 to x0 and

denote the result by x1.
2. Independently of what has already happened and with probability 1/3 in

each case, apply either f1, f2 or f3 to x1 and denote the result by x2.
3. Independently of what has already happened and with probability 1/3 in

each case, apply either f1, f2 or f3 to x2 and denote the result by x3.
4. Independently of what has already happened and with probability 1/3 in

each case, apply either f1, f2 or f3 to x3 and denote the result by x4.
5. Etc.

In this way we obtain a potentially infinite sequence of points

x0, x1, x2, x3, x4, . . . , xn, . . . . (4.23)

We could do this by throwing a standard dice at each stage and agree that
if 1 or 4 is thrown then one applies the function f1, if 2 or 5 is thrown then one
applies the function f2, and if 3 or 6 is thrown then one applies the function f3.

Geometrically: f1(x) is exactly half way from the point x to the point
P1 = (0, 0), f2(x) is exactly half way from the point x to the point P2 = (1, 0),
f3(x) is exactly half way from the point x to the point P3 = (1/2,

√
3/2).

Each time we run a sequence of trials we will get a new sequence of points
in (4.23).

For each n let An be the first n points in the sequence (4.23). For example,

A1057 = {x0, x2, x2, . . . , xn, . . . , x1056}

The amazing result is that if n is large, such as n = 1057, then An is always
an extremely good approximation to the Sierpinski Triangle.

We will make this more precise in Theorem 4.4.6. But meanwhile, here are
some computer experiment results.

Now check out “Barnsley Fern and Fractal Gardens” under “6. Chaos and
Fractals” from the CD in The Heart of Mathematics.

There is a nice java applet at
http://math.bu.edu/DYSYS/applets/fractalina.html.
Initially I suggest you try the 6 preset IFS’s. Just select one and press the
“Start” button. An explanation “More about Fractalina” is at the top of the
web page.
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Figure 4.32: Three examples of 100 points obtained from the Chaos Game and
three examples of 1000 points.

Figure 4.33: The Chaos Game with 5000 points, 10 000 points and 20 000
points.

The following Theorem is (at first) rather amazing. In Figures 4.32 and 4.33
there are examples of A100, A1000, A5000, A10 000, A20 000 from different runs of
the Chaos Game.

We do not have the tools to really state the Theorem precisely, but the
main ideas are hopefully reasonably clear. So do not worry too much if it is a
bit vague/confusing!

Theorem 4.4.6. Let x0 be the initial point in the Chaos Game for the Sier-
pinski Triangle S. Consider any run of the Chaos Game and for each n let An
be the set consisting of the first n points obtained.

If x0 ∈ S then with probability one the sequence of sets

A0, A1, A2, . . . , An, . . . ,

converges to S.
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Even if x0 6∈ S, for any given “tolerance”, with probability one and by
ignoring sufficiently many initial points (in practice, say 100), the sets An will
all eventually be closer to S than the given tolerance.

“Proof”. First suppose that x0 ∈ S. Then x0 will have some address

a1a2a3 . . . ak . . . .

Suppose we run the Chaos Game and the first functions chosen were, for
example,

f3, f1, f2, f3, f2, f2, f1, f3, . . . ,

in that order.
By the discussion “Addresses and Maps” on page 177, the points obtained

from the Chaos Game will have addresses as follows:

x0 = a1a2a3a4a5a6a7a8a9 . . .

x1 = f3(x0) = 3a1a2a3a4a5a6a7a8 . . .

x2 = f1(x1) = 13a1a2a3a4a5a6a7 . . .

x3 = f2(x2) = 213a1a2a3a4a5a6 . . .

x4 = f3(x3) = 3213a1a2a3a4a5 . . .

x5 = f2(x2) = 23213a1a2a3a4 . . .

x6 = f2(x2) = 223213a1a2a3 . . .

x7 = f1(x2) = 1223213a1a2 . . .

x8 = f3(x2) = 31223213a1 . . .

...

For the set of points An = {x0, x1, x2, . . . , xn−1} with n large, approxi-
mately 1/3 of the addresses will begin with 1, approximately 1/3 will begin
with 2, and approximately 1/3 will begin with 2. Equivalently, approximately
1/3 of the points in An will be in each of the three Sierpinski “subtriangles”
S1, S2, S3, see Figure 4.20.

The larger n is, the closer we will get to 1/3.

The 9 “level 2” Sierpinski subtriangles for S correspond to addresses be-
ginning with 11, 12, 13, 21, 22, 23, 31, 32 and 33 respectively. So for large n,
approximately 1/9 of the points in An will be in each of these 9 subtriangles.
The larger is n, the closer we get to 1/9.

Similarly, for n large, approximately 1/27 of the points in An will be in
each of the 27 “level 3” Sierpinski subtriangles for S.

Etc.

The main point is that for large n the points in An will be “evenly spread”
over the small subtriangles of S. The larger is n the smaller the subtriangles
over which An is “evenly spread”. In this way, one can show that the sets An
converge to the Sierpinski Triangle S.

To make all this more precise requires the theory of probability.
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Next suppose the seed x0 is not in S and the distance from x0 to the closest
point in S is α. Let us call the closest point y. We know that for i = 1, 2, 3,

d(fi(x0), fi(y)) =
1

2
d(x0, y) =

α

2
,

since each of f1, f2, f3 has contraction ratio 1/2.
Because x1 = fi(x0) for some i and because fi(y) ∈ S, the distance from

x1 to the closest point in S is at most α/2.

Similarly, the distance from x2 to the closest point in S is at most α/4, the
distance from x3 to the closest point in S is at most α/8, etc.

Eventually xn will be within any given tolerance of some point in S, say x∗.
Take x∗ as the seed and apply the same functions as those applied to xn to get
xn+1, xn+2, xn+3, . . . . Then the iterates of x∗ and the corresponding iterates
of xn will be even closer to each other than xn is to x∗. Why? -

Since x∗ ∈ S we already know that the first part of the Theorem applies to
the seed x∗. So a large number of iterates of x∗ is a good approximation to S,
and it follows that a similarly large number of iterates of xn is also a a good
approximation to S.

This gives the main ideas, but to make it more precise would take us too
far afield.

Generalisation to any IFS For any IFS consisting of contractive maps, the
Chaos Game using those maps will generate the unique fractal given by the
IFS in Theorem 4.4.5. In applications, this is in fact the most efficient and
effective way to generate the fractal.

The proof is essentially the same as for the Sierpinski triangle case.

Questions

1 Can you think of an IFS with two maps which gives the Koch Curve K?
HINT: Look at the two “halves” of K.

How about an IFS with 3 maps? And one with 8 maps?
2 Define f(x) = x+ 1/x for x ∈ [0,∞). Draw the graph.

Prove that |f(x1)− f(x2)| < |x1 − x2| whenever x1 6= x2.
Explain why the smallest contractivity factor for f is 1.
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4.5 Simple Processes Can Lead to

Chaos

Overview

The diagrams here were done using java applets developed by Bob Devaney
and others, available at
http://math.bu.edu/DYSYS/applets/,
or by using the Maple “Chaos” package from Ken Monks, available at
http://math.scranton.edu/monks/software/chaos/ChaosDemo.html.

Review

The Logistic Model In Section 4.2 we discussed the Verhulst model, also
called the logistic model. The population density after n time steps is written
as pn. We saw in Theorem 4.2.3 that if we make the “Main Assumption”
on page 146 then the population density pn+1 after n + 1 time steps can be
calculated from the population density pn after n time steps by the formula

pn+1 = pn + apn(1− pn) = (1 + a)pn − ap2n. (4.24)

The number a is a parameter29 which depends on the natural reproductive
rate, the food supply, the prevalence of predators, etc. The parameter a is
in the range 0 ≤ a ≤ 3 if the model is to be physically reasonable. See the
Examples on page 147.

We also saw for a = 3, and in fact also for values of a less than 3 but near
3, that the population density fluctuates wildly and is chaotic and essentially
unpredictable.

Initial Seeds and Orbits Because of (4.24) we are interested in the function
f given by

f(x) = (1 + a)x− ax2, (4.25)

where a is a number in the range 0 ≤ a ≤ 3.
We want to analyse the long term behaviour of the sequence x0, x1, x2, . . .

which begins with some initial seed x0 in the range 0 ≤ x0 ≤ 1 and is obtained
as follows:

x0, x1 = f(x0), x2 = f(x1), . . . , xn = f(xn−1), . . . . (4.26)

The sequence (4.26) is called the orbit or trajectory of x0. It will turn out that
the initial seed x0 is usually irrelevant to the important aspects of the long
term behaviour of the orbit.

Other Functions Instead of working with the function (4.25) it is a little
easier to work with the function

f(x) = cx(1− x), (4.27)

29The word “parameter” is used to indicate a number a on which the particular model
depends. We will usually be interested in studying how important features of the model
change as a changes.
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where 0 ≤ x ≤ 1 and c is a parameter such that 0 < c ≤ 4. See “Staying in the
Box” on page 185. (The case c = 0 is not very interesting and so we omit it
since we often want to divide by c.) This equation is also called the “logistic
equation”, and in future we will use the words “logistic equation” in this sense.

All the important features we study are the same whether we use (4.25) or
(4.27). In fact, all the features are the same with essentially any one parameter
family of quadratic maps. An example we will find convenient to use later when
we discuss the Mandelbrot set is given by f(x) = x2 + c where −2 ≤ c ≤ 0.25.

Cobweb Diagrams

Figure 4.34: One, two three and four iterations of f(x) = 2x(1 − x). Always
start with a vertical line from the diagonal.

Finding Orbits In Figure 4.34 we begin with a seed x0 ≈ 0.9 and find the
orbit points

x1 = f(x0), x2 = f(f(x0)), x3 = f(f(f(x0))) and x4 = f(f(f(f(x0))))

respectively. We usually write

x0, x1 = f(x0), x2 = f2(x0), x3 = f3(x0), x4 = f4(x0), . . . .
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You can tell in the diagrams at which end we start because the first line is
vertical, not horizontal. I will explain what is happening in the section “the
Cobweb Process” below. But you should see if you can first figure it out
yourself.

Composition of Functions Notice that by f2 we mean the composition
f ◦ f of f with itself, and not the square of f .

For example, if f(x) = sinx then

f2(x) = (f ◦ f)(x) = sin(sinx), not (sinx)2

If f(x) = 3x(1− x) then

f2(x) = (f ◦ f)(x) = f
(
3x(1− x)

)
= 3
(
3x(1− x)

)(
1− 3x(1− x)

)
= 9x(1− x)(1− 3x+ 3x2).

On the other hand (
f(x)

)2
= 9x2(1− x)2.

Notice that in the example f2(x) is a quadric, f3(x) is a sixth order poly-
nomial, and so on.

The Cobweb Process Here is how it works. See Figure 4.34.
Think of numbers as being represented by points on the main diagonal, i.e.

on the line described by y = x. For example, the number 0.9 is represented by
the point on the diagonal with coordinates (0.9, 0.9). In general, the number a
is represented by the point on the diagonal with coordinates (a, a).

Start with the number a represented by the point (a, a). You can find
the point representing the number f(a), i.e. find the point (f(a), f(a)), by the
following geometric procedure:

Move vertically from (a, a) until you meet the graph. Then move
horizontally until you meet the diagonal. This will give the point
(f(a), f(a)) representing f(a).

When you start at (a, a) and move vertically to the graph, the point you meet on
the graph is (a, f(a)), and the subsequent point on the diagonal is (f(a), f(a)).
Why?.-

To find the point representing f(f(a)) just repeat the process, starting at
(f(a), f(a)). And so on.

By the way, it is easy to remember that one first goes vertical and then goes
horizontal. If one tries to first go horizontal there might not be a corresponding
point on the graph, or there may be more than one point. Look at what happens
with the first diagram in Figure 4.34.

Examples of Cobwebs Diagrams show why we use the terminology “cob-
web”.

In Figure 4.35, Examples 1, 2, 3 and 5 show iterations from some initial
seed. In Examples 4 and 6 we show the approximately “steady state” situation
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Figure 4.35: Cobwebs for f(x) = cx(1−x) with c = 0.85, 2.57, 3.20, 3.20, 3.50,
3.50, 3.55, 3.60, 3.70, respectively. To get the correct direction, remember to
move vertically from points on the diagonal.

obtained from Examples 3 and 5 by omitting the first 15 iterates. In Example 7
and onwards, and for all examples in Figure 4.36, we omit the first 15 iterates.

We will explain what happens in these diagrams in the remainder of this
section.

Staying in the Box Notice that the parabola y = cx(1 − x) crosses the
x-axis at x = 0 and x = 1, no matter what is the value of c.

Also, the maximum of the function f given by f(x) = cx(1 − x) is taken
at x = 1/2. This is clear geometrically by symmetry. It also follows by setting
the derivative f ′(x) = 0, which implies c− 2cx = 0 and so x = 1/2.

At the maximum point x = 1/2 we have f(1/2) = c/4. So it follows that
the graph of f lies in the box bounded by the points (0, 0), (1, 0), (1, 1) and
(0, 1), provided 0 ≤ c ≤ 4. So for this range of c, the cobweb process remains
in the box. For other c there will always be initial seeds for which the cobweb
process moves outside the box. Draw a few diagrams showing why this is so. -

We always only consider c such that 0 < c ≤ 4.
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Figure 4.36: Cobwebs for f(x) = cx(1−x) with c = 3.75, 3.80, 3.85, 3.87, 3.92,
3.95, 4.00, respectively.

Fixed Points

Finding Fixed Points We want to find fixed points of the function f . These
are numbers x such that f(x) = x. They occur exactly where the diagonals
in Figures 4.34, 4.35 and 4.36 cross the parabolas. Algebraically, we want to
solve

cx(1− x) = x.

The solutions are

a = 0, a = 1− 1

c
.

Why? Since we are only interested in fixed points 0 ≤ x ≤ 1 we will only-
consider the second solution if c ≥ 1. And remember that we always want
c ≤ 4, see “Staying in the Box” on page 185.

Cobwebs near Fixed Points If we start the cobweb diagram at a fixed
point a, it stays there. Why?-
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A more interesting question is “what happens if we start the cobweb dia-
gram sufficiently near a fixed point a?” In this case there are four major cases
to consider. They depend on the derivative f ′(a) at a.

Figure 4.37: Cobwebs for f(x) = cx(1−x) with c = 0.6, 1.6, 1.6, 1.6 respectively.
In the first example 0 < f ′(0) < 1 and the cobweb steps down to the stable
fixed point 0. In the next 3 examples the cobwebs eventually step up or down
to the stable fixed point a = 1− 1/1.6 = 3/8. Note −1 < f ′(a) < 1.

Figure 4.38: Cobwebs for f(x) = cx(1 − x) with c = 2.5, 2.8 respectively.
The cobwebs spiral towards the stable fixed points a = 1 − 1/2.5 = 3/5 and
a = 1− 1/2.8 = 9/14, respectively. Note −1 < f ′(a) < 0 in both cases.
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Figure 4.39: Cobwebs for f(x) = cx(1− x) with c = 2.8, 3.8 respectively. The
first cobweb spirals away from the unstable fixed point 0. To see what happens
to it, look at the similar example 2 in Figure 4.35. The second cobweb spirals
away from the unstable fixed point a = 1−1/3.8 = 14/19. To see what happens
to it, look at example 2 in Figure 4.36.

1. (0 < f ′(a) < 1.) In this case the cobweb converges to the fixed point a
on the diagonal by eventually “stepping up” or “stepping down” towards
a. See Figure 4.37.

2. (−1 < f ′(a) < 0.) In this case the cobweb converges to the fixed point a
by eventually “spiralling in” towards a. See Figure 4.38.

3. (f ′(a) > 1.) In this case the cobweb diverges from the fixed point by
“stepping away” from a. See the first diagram in Figure 4.39.

4. (f ′(a) < −1.) In this case the cobweb diverges from the fixed point by
“spiralling away” from a. See the second diagram in Figure 4.39.

Stable Fixed Points

Definition 4.5.1. A fixed point a is stable for f if there is some open inter-
val I containing a 30 such that whenever the seed x0 belongs to I, the orbit
x0, f(x0), f2(x0), f3(x0), f4(x0), . . . converges to a.

A fixed point is unstable if it is not stable.

Sometimes we call a stable fixed point an attractor or attractive fixed point.
An unstable fixed point is then called a repellor or a repelling fixed point.
However, terminology differs a little from some books to others.

When is a Fixed Point Stable?

Theorem 4.5.2. A fixed point a for the function f is stable if |f ′(a)| < 1.
The fixed point is unstable if |f ′(a)| > 1

Comments. We will not give a rigorous proof. But in the discussion and dia-
grams in the previous section we saw what is happening.

We discussed the cases −1 < f ′(a) < 0 and 0 < f ′(a) < 1 on page 188 and
saw by means of a geometric analysis that a is then stable.

30This means that I = (b, c) where b < a < c.
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In the case f ′(a) = 0, if we start from a seed x0 sufficiently close to a then
the iterates of x0 will in fact converge very fast to a, and so a is stable. Look
at Figure 4.34 and take a = 1/2, corresponding to the point where the diagonal
crosses the parabola. Whether the iterates step or spiral will depend on the
second and perhaps higher derivatives. Draw a couple of diagrams in this case -
to see what is happening.

For |f ′(a)| > 1 we noted on page 188 that the iterates of x0 for x0 near a
will move away from a. So a is unstable.

If f ′(a) = ±1 then the iterates from x0 near a may slowly move towards
a or may slowly move away from a. It depends on the second and perhaps
higher derivatives at a. Draw a couple of diagrams in this case to see what is -
happening.

Note. In the cases we will consider, if |f ′(a)| = 1 then a will be stable.

Stability Analysis for Different c We consider the cases 0 < c ≤ 4, as
discussed previously. We have

f(x) = cx(1− x) = cx− cx2, f ′(x) = c− 2cx.

The fixed points a are given by f(a) = a, which gives a = 0 and a = 1 − 1/c.
Moreover

1. For 0 < c ≤ 1, the fixed point 0 is stable and all orbits are attracted
to it. There is no other fixed point. See Diagram 1 in Figures 4.35 and
4.37. Find f ′(0) in these cases and use the previous Theorem and the -
subsequent “Note”.

2. For 1 < c ≤ 3 the fixed point 0 is unstable and the fixed point 1− 1/c is
stable. All orbits with initial seed different from 0 or 1 converge to 1−1/c.
See Diagram 2 in Figure 4.35 and Diagrams 2, 3, 4 in Figure 4.37. Find -
f ′(0) and f ′(1 − 1/c) in these cases and use the previous Theorem and
the subsequent “Note”.

3. For 3 < c ≤ 4 both of the fixed points 0 and 1 − 1/c are unstable.
Things really get interesting in this range, as we will discuss. Look at
Figures 4.35 and 4.36. Find f ′(0) and f ′(1− 1/c) in these cases and use -
the previous Theorem and the subsequent “Note”.

Periodic Cycles

If 3 < c ≤ 4 then the two fixed points 0 and 1 − 1/c are both unstable. So
orbits are going to “bounce around” quite a lot.

Numerical Experiments If we look at Example 3 and particularly Exam-
ple 4 in Figure 4.35 it appears that there are 2 points a and b such that f(a) = b
and f(b) = a. They are the two points on the diagonal which are also corners
of the square in Example 4.
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If we look at Example 5 and particularly Example 6 in Figure 4.35 it appears
that there are 4 points p, q, r and s such that f(p) = q, f(q) = r, f(r) = s and
f(s) = p. Describe these 4 points in Example 6.-

Our observations are indeed correct.

Definition 4.5.3. We say that two distinct points a and b form a period two
cycle for f if f(a) = b and f(b) = a.

We say that three distinct points p, q and r form a period three cycle for f
if f(p) = q, f(q) = r and f(r) = p.

Etc.

Finding Period Two Cycles If f(a) = b and f(b) = a then f2(a) = a.
Why? (By f2 we mean f ◦ f , not the square of f .)-

On the other hand, if f2(a) = a and a 6= f(a), then a and f(a) form a
period two cycle. Why?-

So a very nice fact is that instead of looking for period two cycles for f we
can look for fixed points of the function f2. In other words, we want to solve

f(f(x)) = x. (4.28)

Using this idea we can prove the following Theorem.

Theorem 4.5.4. Let f(x) = cx(1 − x) where 0 < c ≤ 4 is fixed. Suppose
0 ≤ x ≤ 4.

If 0 < c ≤ 3 then f has no period two cycle.
If 3 < c ≤ 4 then there is exactly one periodic two cycle. For c in this

range, the quadratic equation c2x2 − (c2 + c)x + (c + 1) = 0 has two distinct
real solutions for x,

x =
(c+ 1)±

√
(c+ 1)(c− 3)

2c
,

and these two solutions give a period two cycle for f .

Proof. Since f(x) = cx(1− x) we can write (4.28) as

0 = x− f(f(x))

= x− c f(x) (1− f(x))

= x− c
(
cx(1− x)

) (
1− cx(1− x)

)
= x− c2x(1− x)(1− cx+ cx2)

= x+ c2x(x− 1)(cx2 − cx+ 1)

= x
(
1 + c2(x− 1)(cx2 − cx+ 1)

)
= x

(
c3x3 − 2c3x2 + c2(1 + c)x+ (1− c2)

)
(4.29)

After division by x we are left with a cubic equation. Cubics are usually
messy to solve.31 However, in this case there is a way around the problem.

31MAPLE can solve cubics exactly and also quadrics. But there is no formula for solving
quintics exactly in terms radicals (square roots, cube roots, fourth roots, etc.). The theorem
that there is no formula was proved by Galois. Unfortunately he was killed in 1832 in a duel
at the age of 20.
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Remember that a = 1− 1/c is a fixed point of f . This implies a is also a fixed
point of f ◦ f since

f(f(a)) = f(a) = a.

And this implies that x = 1 − 1/c is a solution of (4.28) and so x − (1 − 1/c)
is a factor of (4.29). Nice!

If you are now brave enough to divide through by x− (1−1/c) (do it! ) you -
will see that the expression in (4.29) factorises to

x
(
x− (1− 1/c)

)
c
(
c2x2 − (c2 + c)x+ (c+ 1)

)
.

Doing the b2 − 4ac thing it follows the quadratic part equals zero, i.e.

c2x2 − (c2 + c)x+ (c+ 1) = 0, (4.30)

if

x =
(c2 + c)±

√
(c2 + c)2 − 4c2(c+ 1)

2c2
=

(c+ 1)±
√

(c+ 1)(c− 3)

2c
. (4.31)

This gives two distinct real roots if and only if

(c+ 1)(c− 3) > 0.

For c in the range we are considering, namely 0 < c ≤ 4, this is true precisely
when 3 < c ≤ 4.

We should check for these c that the solutions for x of (4.30) do lie in the
range 0 ≤ x ≤ 1 and that they are different from the other solutions x = 0 and
x = 1− 1/c. Check it, but it is also clear from Figure 4.41. -

To summarise, we have seen that there are two distinct real solutions of
(4.29) if 0 < c ≤ 3 and there are 4 solutions if 3 < c ≤ 4. In the second case,
the two solutions other than x = 0 and x = 1− 1/c form a two cycle.

To see this let the 4 solutions of (4.29) be

0, 1− 1/c, a and b,

where a and b are given by (4.31).
Since a is a fixed point of f2 it follows that f(a) is also a fixed point. Why? -
So f(a) must be one of 0, 1−1/c, a or b. For c > 3, none of these are equal,

see Figure (4.41).
If f(a) = 0 then f2(a) = f(0) = 0, and so a = 0. Why? -
If f(a) = 1− 1/c then a = 1− 1/c by a similar argument. Do it! -
If f(a) = a then a must be one of the two fixed points of f and so a = 0 or

a = 1− 1/c.
So the only possibility is that f(a) = b. In a similar way, f(b) = a, and so

{a, b}
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Examples We now go back to Examples 3 and Example 4 in Figure 4.35.
The equation was

f(x) = 3.2x(1− x).

Putting c = 3.2 in the quadratic equation (4.30) and solving gives

x = 0.79945 . . . , x = 0.51304 . . .

according to MAPLE.32 Setting a = 0.79945 . . . and b = 0.51304 . . . , MAPLE
will also confirm that f(a) = b and f(b) = a up to the order of accuracy you
choose.

Figure 4.40: Graphs of f (heavy) and f2 (i.e. f ◦ f) for c = .5, 1, 1.5, 2, 2.5, 3.
The equation f2(x) = x has the same real solutions as f(x) = x, for such c.

In Figure 4.40 we show graphs of f and f2 for c in the range 0 < c ≤ 3.
Notice that the real solutions of f(x) = x and f2(x) = x are the same. In
Figure 4.40 we show graphs of f and f2 for c in the range 3 < c ≤ 4. Notice
that the real solutions of f2(x) = x are the two solutions of f(x) = x plus two
more solutions.

Stable Two Cycles

When is a Two Cycle Stable? I will be somewhat informal in this discus-
sion.

32I used the commands:
> c := 3.2 ;,
> eq := c^3*x^2 -(c3̂+c^2)*x + (c^2+c) = 0 ;

> solve(eq,x) ;
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Figure 4.41: Graphs of f (heavy) and f2 (i.e. f ◦ f) for c = 3.1 (including
a zoom), 3.2 (including a zoom), 3.4 (including a zoom), 3.5 and 4.0. In the
first three cases the two cycle is “stable” and is shown. In the last two cases
it is “unstable” and is not shown. But you should be able to draw it. We will
discuss stability for two cycles beginning on page 192.

We have seen that for 3 < c ≤ 4 there is a two cycle {a, b}, with f(a) = b
and f(b) = a.

In the case of a fixed point a, i.e. f(a) = a, it was important to look at
what happens to points near a. Are they attracted to a or are they repelled
from a? Similarly, if {a, b} is a two cycle we can ask if a point x0 near a has
the property that the orbit

x0, f(x0), f2(x0), f3(x0), f4(x0), f5(x0), f6(x0), . . .

moves closer and closer, i.e. is “attracted to” the orbit

a, b, a, b, a, b, . . . ,

or not. This is equivalent to asking if the sequence

x0, f
2(x0), f4(x0), f6(x0), . . .
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converges to a for x0 near a, and the sequence

y0, f
2(y0), f4(y0), f6(y0), . . .

converges to b for y0 near b. (Think of y0 as f(x0)).

Why is Stability Important? When we run a numerical experiment we
will observe stable fixed points because lots of orbits will converge to them. In
fact in our case there will be at most one stable fixed point, and if this is the
case then essentially all orbits will converge to it. We will not observe unstable
fixed points except in incredibly rare circumstances. In practice, if there is a
little bit of “noise”, an orbit will eventually be driven away from any unstable
fixed point even if it happens to land on it.

Similarly, we will observe stable periodic cycles, but we will not observe
unstable periodic cycles.

Definition 4.5.5. A two cycle {a, b} for f is attractive or stable if there is an
open interval I containing a, and an open interval J containing b, such that for
any x0 ∈ I the orbit starting from x0 converges to the orbit a, b, a, b, . . . , and for
any x0 ∈ J the orbit starting from x0 converges to the orbit b, a, b, a, b, a, . . . .

If this does not happen we say the two cycle {a, b} is repelling or unstable.

Theorem 4.5.6. If {a, b} is a two cycle for f then

(f2)′(a) = (f2)′(b) = f ′(a) f ′(b).

The cycle {a, b} is stable if |(f2)′(a)| = |(f2)′(b)| < 1. It is unstable if
|(f2)′(a)| = |(f2)′(b)| > 1.

Comments and Proof. Notice that the Theorem does not give any information
in the case |(f2)′(a)| = |(f2)′(b)| = 1. But for the problems we consider, the
two cycle will be stable in this case.

The equality follows from the chain rule in calculus:

(f2)′(a) =
d

dx
f(f(x))

∣∣∣
x=a

just a change in terminology

= f ′(f(x)) f ′(x)
∣∣∣
x=a

the chain rule

= f ′(f(a)) f ′(a) setting x = a

= f ′(b) f ′(a) since f(a) = b

The result for the derivative at b is obtained by switching a and b.
Suppose |(f2)′(a)| = |(f2)′(b)| < 1. It follows from Theorem 4.5.2 that a

and b are stable fixed points for f2. In the discussion before this Theorem we
indicated why it then follows that the cycle {a, b} for f is stable (we are not
being very rigorous here!).

If |(f2)′(a)| = |(f2)′(b)| > 1 then from Theorem 4.5.2 it follows that a
and b are unstable stable fixed points for f2. From the discussion before this
Theorem it follows that the cycle {a, b} for f is unstable.
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Stable Two Cycles for Different c

Theorem 4.5.7. The two cycle corresponding to f(x) = cx(1−x) for 3 < c ≤ 4
is stable if 3 < c < 1 +

√
6 = 3.449499 . . . . It is unstable if c > 1 +

√
6.

Proof. We want to use Theorem 4.5.6. So we calculate

(f2)′(a) = (f2)′(b) = f ′(a) f ′(b)

= c2(1− 2a)(1− 2b)

= c2
(
1− 2(a+ b) + 4ab

)
.

Since a and b are the solutions of (4.30) ,

a+ b =
c2 + c

c2
, ab =

c+ 1

c
.

Why? It follows that -

f ′(a) f ′(b) = c2
(

1− 2
c2 + c

c2
+ 4

c+ 1

c

)
= c2 − 2c2 − 2c+ 4c+ 4

= 4 + 2c− c2.

But for c in the range we are considering,

1 > 4 + 2c− c2 > −1 if 3 < c < 1 +
√

6,

4 + 2c− c2 < −1 if 1 +
√

6 < c ≤ 4,

Why? -
The Theorem now follows from Theorem 4.5.6.

Note: Even though we do not prove it, the two cycle is also stable if c =
1 +
√

6.

Don’t Panic! The Story so Far

OK, this is important. You may well be a bit lost by the previous details. Do
not worry! Here are the key points, presented three slightly different ways.

In computer experiments we will observe the following. In a few cases we
might need to have a miniscule amount of noise to bump us off any unstable
fixed points or cycles.

1. If 0 < c ≤ 1 then every orbit will converge to 0.
2. If 1 < c ≤ 3 then every orbit will converge to 1− 1/c.
3. If 3 < c ≤ 1 +

√
6 = 3.449499 . . . then every orbit will converge to a cycle

bouncing back and forth between two points which depend on c.

In more precise language:
1. If 0 < c ≤ 1 then f has exactly one stable fixed point at 0. It has no

stable cycles (and in fact no cycles at all).
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2. If 1 < c ≤ 3 then f has exactly stable fixed point at 1 − 1/c. It has no
stable cycles (and in fact no cycles at all).

3. If 3 < c ≤ 1 +
√

6 = 3.449499 . . . then f has exactly one stable 2 cycle.
It has no other stable fixed points or stable cycles. The stable 2 cycle
contains the points

x =
(c+ 1)±

√
(c+ 1)(c− 3)

2c
.

Figure 4.42: Bifurcation diagram for f(x) = cx(1− x).

And there is a third way of expressing this information by the bifurcation
diagram in Figure 4.42, also called the Feigenbaum diagram.

The horizontal axis shows c in the range [0, 4]. (Unfortunately the axis is
divided in a silly way, and goes a little past 0. Read no significance into this.)
The vertical axis shows x in the range [0, 1]. (It goes a little past this, but
nothing happens for x outside [0, 1].)

(The only point to the green vertical rectangle is that we will blow it up
later, see Figure 4.44.)

1. The horizontal part of the diagram above 0 < c ≤ 1 shows the stable
fixed point x = 0 for c in this range.

2. The arc above 1 < c ≤ 3 shows the stable fixed point x = 1− 1/c for c in
this range.

3. The two arcs above 3 < c ≤ 1 +
√

6 = 3.449499 . . . show the two points
x =

(
(c+ 1)±

√
(c+ 1)(c− 3)

)
/2c forming the stable two cycle, for c in

this range.
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The Rest of the Story

The Stable Four Cycle From Figures 4.40 and 4.41, with c = .5, 1, 1.5, 2, 2.5, 3, 3.1, 3.2, 3.4, 3.5, 4
you can see the following:

1. For 0 < c < 1;
a) f crosses the diagonal at 0,
b) 0 < f ′(0) < 1 and so 0 is stable.

2. As c passes through 1;
a) a second crossing point 1− 1/c is introduced,
b) f ′(0) increases above 1 and so 0 becomes unstable,
c) f ′(1− 1/c) decreases down from 1 and so 1− 1/c is stable.

3. For 1 < c < 3;
a) f ′(1− 1/c) decreases from 1 to −1 and so 1− 1/c remains stable.

4. As c passes through 3;
a) f ′(1− 1/c) decreases below −1 and so 1− 1/c becomes unstable,
b) the crossing point 1− 1/c for f2 splits into the three crossing points

1− 1/c and a, b =
(
(c+ 1)±

√
(c+ 1)(c− 3)

)
/2c,

c) f2(a) = a, f2(b) = b, f(a) = b and f(b) = a.
d) (f2)′(a) = (f2)′(b) decrease down from 1 and so the two cycle {a, b}

is stable for f (see Theorem 4.5.6).
5. For 3 < c ≤ 1 +

√
6 = 3.449499 . . . ;

a) (f2)′(a) = (f2)′(b) decreases down from 1 to −1 and so the two
cycle {a, b} is stable.

Figure 4.43: Graphs of f (heavy), f2 and f4 (heavy), for c = 1+
√

6 = 3.34 . . .
and 3.5. In the first case the 2 cycle is stable, but for c > 1 +

√
6 the 2 cycle

becomes unstable and bifurcates into a stable 4 cycle.

I will now try to explain informally what next happens as c passes through
1 +
√

6. You should look at Figure 4.43.

1. (f2)′(a) = (f2)′(b) both simultaneously decrease below −1 and the 2
cycle {a, b} becomes unstable,

2. (f4)′(a) = (f4)′(b) both simultaneously increase above 1,
3. the crossing point a for f4 splits into 3 crossing points a, a1 and a2,
4. the crossing point b for f4 splits into 3 crossing points b, b1 and b2,
5. f4(a1) = a1, f4(a2) = a2, f4(b1) = b1 and f4(b2) = b2,
6. f(a1) = b2, f(b2) = a2, f(a2) = b1 and f(b1) = a1,
7. {a1, b2, a2, b1} is a stable 4 cycle for c up to approximately 3.544090.
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Period Doubling With c > 1 +
√

6 = 3.449499 . . . we are in the region
where the so-called period doubling takes place. Look again at Figure 4.42.
Now look at Figures 4.44–4.48 and relate them to steps 1–6 below.

1. After 3.544090. . . the 4 cycle becomes unstable and splits into a stable 8
cycle for c up to approximately 3.564407,

2. After 3.564407. . . the 8 cycle becomes unstable and splits into a stable 16
cycle for c up to approximately 3.568759,

3. After 3.568759. . . the 16 cycle becomes unstable and splits into a stable
32 cycle for c up to approximately 3.569692,

4. After 3.569692. . . the 32 cycle becomes unstable and splits into a stable
64 cycle for c up to approximately 3.569891,

5. After 3.569891. . . the 64 cycle becomes unstable and splits into a stable
128 cycle for c up to approximately 3.569934,

6. After 3.569934. . . the 64 cycle becomes unstable and splits into a stable
128 cycle for c up to approximately 3.569946,

7. etc.

The numbers above approach a limit value α = 3.569945671205296863 . . . .

Figure 4.44: Blow up of part of Figure 4.42.

The Chaotic Regime For c > α there is a sea of chaos interrupted by
regions of tranquil waters. See Figures 4.49–4.52.

But within the waters of tranquility there are seas of chaos. See Figure 4.51.
Yet within even the darkest seas there are still regions of light. See Fig-

ures 4.53 and 4.54.
And there are copies of the Feigenbaum diagram within copies of the Feigen-

baum diagram within copies of the Feigenbaum diagram within copies of the
Feigenbaum diagram . . . .
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Figure 4.45: Blow up of part of Figure 4.44.

Figure 4.46: Blow up of part of Figure 4.45.

Figure 4.47: Blow up of part of Figure 4.46.
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Figure 4.48: Blow up of part of Figure 4.47.

If you look carefully at the largest white band to the right of Figure 4.44
you will see a stable period 3 cycle. In fact, there are cycles of every period in
this band, but they are unstable and so you do not see them!

Figure 4.49: The Feigenbaum diagram again.

Questions

1 Find the fixed points of the function f given by f(x) = x2. Which is
stable and which is unstable? Why?

2 Consider the function given by f(x) = sinx. What is its fixed point?
What is f ′ at the fixed point? Is the fixed point stable? Why?
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Figure 4.50: Blow up of part of Figure 4.49

Figure 4.51: Blow up of part of Figure 4.50

Figure 4.52: Blow up of part of Figure 4.51
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Figure 4.53: The Feigenbaum diagram again.

Figure 4.54: Blow up of part of Figure 4.53

Explain why the orbit starting at any point x0 satisfies −1 ≤ x1 ≤ 1.
What happens after this?

3 In (4.25) we considered a function of the form f(x) = (1 +a)x−ax2. We
will take 0 < a ≤ 3. Notice that its graph crosses the x-axis at x = 0 and
x = (1 + a)/a, and it meets the diagonal at (1, 1). Draw a diagram.

It will be convenient to change notation a little. We use u and v to
denote coordinates. The function will be denoted by g, so that

g(u) = (1 + a)u− au2 with graph given by v = (1 + a)u− au2.

In order for the orbits of g to look the same as those of the function

f(x) = cx(1− x) with graph given by y = cx(1− x),

it looks like we should scale the horizontal and vertical units by the same
amount λ, say. This will leave both the origin and diagonal unchanged.

What value of λ, in terms of a, transforms the first graph into the
second? What is the corresponding value of c in terms of a? As a varies
over the interval (0, 3], what happens to c.
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4 Use the java applet at
http://math.bu.edu/DYSYS/applets/Iteration.html to view the lo-
gistic map as a time series for different values of c (λ in the applet).
Look also at the histogram. Watch what happens as you pass through
the values of bn.

5 Compute the ratio
bn − bn−1
bn+1 − bn

for n = 2, . . . , 7. It appears to be converging

to 4.699 . . . . This is a special constant called δ, and it is the same in
essentially all bifurcation situations.

6 Period 3 cycle.
1. Use the Devaney/Enchev java applet “Nonlinear web” to find to 2

decimal places the first value of c such that f3(x) = x has 3 real
roots.

2. Find this value of c on Figure 4.51. Note that a stable period 3 cycle
suddenly emerges out of a sea of chaos at this value of c. Let us call
this value µ.

3. Use the Nonlinear Web applet to explain why a stable period 3 cycle,
and an unstable period 3 cycle, occur as c passes above µ.

4. Prove that if {α, β, γ} is a 3 cycle then

(f3)′(α) = (f3)′(β) = (f3)′(γ) = f ′(α) f ′(β) f ′(γ).

7 The decimal shift map is defined

f(x) = 10x mod 1

for x ∈ [0, 1]. In other words, multiply by 10 and take the decimal part.
For example:

f(0.3275 . . . ) = 0.275 . . . , f(0.6918 . . . ) = 0.918 . . . , f(1/2) = 0,

f(0.020202 . . . ) = 0.20202 . . . , f(0) = 0, f(1) = 0, f(1/3) = 1/3.

1. Sketch the graph.
2. Find all fixed points. HINT: Write x in decimal form.
3. Find some period 2 cycles. Describe all period 2 cycles.
4. Find a period 3 cycle. Describe all period 3 cycles.
5. Explain why for every positive integer n there is a cycle of period n.
6. For which initial starting points is the corresponding orbit a cycle?
7. For which initial starting points is the corresponding orbit not a

cycle?
8. Take one of the 2 cycles you described. Explain why it is not stable.
9. Take one of the 3 cycles you described. Explain why it is not stable.

10. Explain why there are no stable cycles.
11. Find an initial starting point whose orbit comes arbitrarily close to

every number x ∈ [0, 1]. HINT: It is sufficient that the orbit includes
every number x with a finite decimal expansion.
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4.6 Julia Sets and Mandelbrot Sets

The following are preliminary notes for this section. Use the book [HoM] as
the main source and these notes as a supplement.

Overview

Our goal here is to understand some of the properties of Julia sets and the
Mandelbrot set. First look again at the discussion and the diagram beginning
on page 141.

The Julia sets Jc (there is one of them for every complex number c) and the
Mandelbrot set M are subsets of the plane R2. But the only way we can really
understand these sets is by using complex numbers. Each point (a, b) in R2

corresponds to a complex a + ib. We will discuss complex numbers beginning
on page 209.

We will be guided in our study by first looking at a much simpler situation.
The baby Julia sets bJc (there is one of them for every real number c) and the
baby Mandelbrot set bM are subsets of the line R. Although these sets are
not particularly interesting themselves, they do provide some motivation for
the standard Julia sets Jc and Mandelbrot set M .

In Section 4.5 we discussed in detail the behaviour of iterations of the logistic
map f(x) = ax(1−x), for different values of the parameter a. There is nothing
particularly special about this map. Similar behaviour occurs for iterates of
essentially any function f provided it is not a affine map, i.e. is not of the form
f(x) = ax+ b. What are the first two iterates in this case?-

Instead of the logistic map, here we will look at what happens if we iterate
the quadratic map f(x) = x2 + c. This will lead to the sets bJc and bM . Then
we will look at what happens if we replace x by a complex number z and the
parameter c also by a complex number and iterate the map f(z) = z2 +c. This
will lead to the sets Jc and M .

Baby Julia Sets and Baby Mandelbrot Set

The Real Quadratic Map In the case of the logistic map f(x) = ax(1−x),
we saw on page 185 that if 0 ≤ a ≤ 4 and if we begin an orbit at any x0 ∈ [0, 1]
then the orbit is bounded and in fact stays in the range [0, 1]. Geometrically, the
orbit “stays in the box”. If we begin an orbit at any x0 not in the interval [0, 1]
then the orbit is unbounded and in fact diverges to +∞.33 Explain graphically.-

We will now see that a similar graphical analysis works for the (real)
quadratic map f(x) = x2 + c. In Figure 4.55 you can see the graphs of these
functions for c = 0.5,−1.5,−2.3.
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Figure 4.55: The maps f(x) = x2 + c for c = 0.5,−1.5,−2.3.

The Case c > 0.25 In this case there are no real solutions of the equation
f(x) = x. Check this. See the first diagram in Figure 4.55.-

If an orbit starts at any value of x0 then it will eventually diverge to +∞.34

Explain graphically. -

The Case −2 ≤ c ≤ 0.25 For c ≤ 0.25 there are two real solutions of the
equation f(x) = x.

See the second diagram in Figure 4.55. The square box analogous to the
one for the logistic map is obtained here by starting from the top right point
where the graph crosses the diagonal. The top of the box is the horizontal
line beginning at this point and ending at the other point on the graph with
the same y-coordinate. The left vertical side is obtained by starting from this
point and ending at the point on the line y = x with the same x-coordinate.
Now complete the box in the only possible way. Why is it a square box? -

The main difference from the logistic map case is that now the box depends
on c.

A calculation shows that if c ≤ 0.25 then the vertical sides of the box
cross the x-axis at ±(1 +

√
1− 4c)/2. A further calculation shows that if

−2 ≤ c ≤ 1/4 then the vertex of the graph is in the box (we always include the
edges of the box as part of the box). Do the calculations. -

Suppose −2 ≤ c ≤ 0.25 and an orbit starts at some x0 in the box, i.e. x0 is
in the interval [−(1 +

√
1− 4c)/2, (1 +

√
1− 4c)/2]. Then the orbit is bounded

and in fact stays in the same interval. If an orbit begins at some point x0 not
in the interval [−(1+

√
1− 4c)/2, (1+

√
1− 4c)/2] then the orbit is unbounded.

Explain graphically. -
For example:
1. if c = .25 then the orbit starting from x0 is bounded if and only if
x0 ∈ [−1/2, 1/2];

33There is no point +∞. What is meant is that for any positive real number K, after a
certain “time” all points on the orbit are eventually greater than K.

34Of course, +∞ is not a number or a point. What is meant more precisely is that for
any positive real number M , no matter how large, all points in the orbit will eventually be
greater than M .
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2. if c = 0 then the orbit starting from x0 is bounded if and only if x0 ∈
[−1, 1];

3. if c = −2 then the orbit starting from x0 is bounded if and only if
x0 ∈ [−2, 2].

The case c < −2 (the Big Brother Syndrome35) If c < −2 then part of
the graph of f is below the box.

If an orbit starts at some point x0 on the diagonal outside the box then it
stays outside the box and eventually diverge to infinity. See Figure 4.56 and
explain graphically.-

Figure 4.56: Being ejected from the box.

If an orbit starts at x0 inside the blanked out portion of the diagonal in the
first diagram in Figure 4.56, then after one step it is ejected outside the box,
and then stays outside forever more. Why?-

If an orbit starts at x0 inside the two smaller blanked out portions of the
diagonal in the second diagram in Figure 4.56, then after one step it is in the
larger blanked out portion, after two steps it is ejected outside the box, and
then it stays outside forever more. Why?-

If an orbit starts at x0 inside the four smallest blanked out portions of the
diagonal in the third diagram in Figure 4.56, then after one step it is in the
two smaller blanked out portions of the diagonal, after two steps it is in the
larger blanked out portion, after three steps it is ejected outside the box, and
then it stays outside forever more. Why?-

Etc.

In this way we see there is a totally disconnected Cantor style36 set of points
S with the property that if we start an orbit from any point x0 ∈ S then the
orbit is bounded and in particular stays in the box. The 8 black segments

35Once you are out you never get back in. Even if you stay in, the situation is very
unstable. There are points arbitrarily close by which will eventually be thrown out.

36A Cantor style set S is a set with the property that if we join any two distinct points
in S by an arc, then there will always be at least one point on the arc which is not in S.
In fact there will be infinitely many such points on the arc. A more common terminology is
that S is totally disconnected.
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in the third diagram in Figure 4.56 are just the third approximation to this
Cantor type set.

Baby Julia Sets Much of the previous discussion is summarised in Fig-
ure 4.57 .

Definition 4.6.1. For each real number c the baby Julia set bJc is the set of
all real numbers x0 such the orbit for f(x) = x2 + c starting from x0 remains
bounded.

Figure 4.57: The baby Julia set bJc corresponding to various values of c is
indicated by the “fibre” above c. If c < −2 then bJc is totally disconnected
and is a Cantor style set — of course we can only draw an approximation. If
−2 ≤ c ≤ .25 then bJc is connected and is an interval. If c > .25 then bJc is
the empty set ∅. The baby Mandelbrot set bM = [−2, 1/4] is the set of c such
that bJc is connected and nonempty.

• For c > 1/4,
bJc = ∅.

• For −2 ≤ c ≤ 1/4, bJc is the closed interval

bJc =

[
−1 +

√
1− 4c

2
,

1 +
√

1− 4c

2

]
.

For example,

bJ−2 = [−2, 2], bJ0 = [−1, 1], bJ 1
4

= [−1

2
,

1

2
].
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• For c < −2, bJc is a totally disconnected Cantor type subset of[
−1 +

√
1− 4c

2
,

1 +
√

1− 4c

2

]
.

Theorem 4.6.2. A baby Julia set is
• either a connected subset of R, in fact a closed bounded interval, or
• it is a totally disconnected set (Cantor type set) or the empty set.

Proof. We have proved this in so far as we have discussed the various cases in
terms of the values of c.

There is an equivalent way of describing those real numbers c such that the
baby Julia set bJc is totally disconnected or empty. We only need to examine
the orbit starting at 0.

The significance of the point 0 is that f ′(0) = 0. We say that 0 is a critical
point for f . Notice that for a quadratic function there is exactly one critical
point. Why? What is the critical point for the logistic map?-
Theorem 4.6.3. The baby Julia set bJc is totally disconnected or empty if and
only if the orbit for f(x) = x2 + c starting at 0 is unbounded. It is connected
and non empty if and only if the orbit starting at 0 is bounded.

“Proof” and Discussion. Look at Figure 4.57. Remember that if x0 ∈ bJc then
the orbit starting at x0 is bounded, and if x0 6∈ bJc then the orbit starting at
x0 is unbounded.

For c < −2 the baby Julia set bJc is totally disconnected.
In this case the orbit starting from 0 is unbounded because 0 6∈ bJc. You

can also see from the third diagram in Figure 4.56 that the orbit starting from
0 moves outside the box at the next step, and then diverges to +∞.

For −2 ≤ c ≤ .25 the baby Julia set bJc is an interval. In this case 0 ∈ bJc
and so the orbit starting at 0 is bounded. You can also see from the second
diagram in Figure 4.55 that the orbit starting from 0 is bounded.

For c > .25 the baby Julia set bJc is empty. So certainly 0 6∈ bJc and this
means the orbit starting at 0 is unbounded. You can also see from the first
diagram in Figure 4.56 that the orbit starting from 0 (in fact starting from
anywhere) is unbounded.

The Baby Mandelbrot Set We are now in position to define the baby
Mandelbrot set.

Definition 4.6.4. The Baby Mandelbrot set bM is:

bM = {c : bJc is connected (and not empty)}
= {c : Orbit starting from the seed 0 is bounded}

From Theorem 4.6.3 we see that these two definitions are equivalent. From
Figure 4.57 we see that

bM = [−2, 1/4].

This is not a very interesting set. But the analogous definitions of the Julia
sets Jc and the Mandelbrot set M in the complex plane will lead to some very
interesting sets!
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Complex Numbers

I will assume you have looked already at the information on complex numbers
in [HoM, pp 462–469].

Complex numbers as points in the plane You can think of complex
numbers as a way of representing points in the plane. The complex number
z = x + iy corresponds to the point (x, y). So there is nothing “imaginary”
about them.

Complex addition Addition of two complex numbers corresponds to vector
addition, see the diagram [HoM, p464].

Polar coordinates Another representation of complex numbers is as follows.

Figure 4.58: Polar coordinates and complex multiplication

Let z = x+ iy = (x, y). Suppose the distance of z from the origin is r and
the angle in the counterclockwise direction measured from the positive x -axis
is θ. See Figure 4.58.

Then by basic trigonometry

x = r cos θ, y = r sin θ, and so z = r cos θ + ir sin θ.

We say that z is represented in polar coordinates by r and θ.

Complex multiplication Suppose the two complex numbers z1 and z2 are

z1 = x1 + iy1 = r1 cos θ1 + ir1 sin θ1,

z2 = x2 + iy2 = r2 cos θ2 + ir2 sin θ2.

See Figure 4.58.
Then by using basic properties of complex multiplication including i2 = −1,

and some basic trigonometric formulae,

z1z2 = (r1 cos θ1 + ir1 sin θ1) (r2 cos θ2 + ir2 sin θ2)

= r1r2
(

cos θ1 cos θ2 + i cos θ1 sin θ2 + i sin θ1 cos θ2 + i2 sin θ1 sin θ2
)

= r1r2
(
(cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2)

)
= r1r2

(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
.



210 Chaos and Fractals

In other words, multiplying two complex numbers is the same as multiplying
their distances from the origin and adding their angles from the positive x-axis.

As an exercise, if z1 = z2 = i, what are r1, r2, θ1, θ2, x1, x2, y1, y2?-
In fact, we could even think of representing points (x, y) in the plane by the

“complex” number x + iy and then making the rule i2 = −1, as just being a
very convenient way of allowing us to “multiply” points in the plane according
to the previous rule of multiplying distances and adding angles!

Julia Sets

The notes here are quite brief. You should look at [HoM, pp 469–471].

For each complex number c we will be interested in iterates of the map
f(z) = z2 + c. Just as in Definition 4.6.1 for the baby Julia set we now define
the Julia set Jc.

Important Note: What we defined before would more accurately be called the
filled in baby Julia set. We now define the usual filled in Julia set and the Julia
set.

Definition 4.6.5. For each complex number c the filled in Julia set fJc is the
set of all initial seeds z0 such the orbit for f(z) = z2 + c starting from z0 is
bounded.

The Julia set Jc is the boundary of the filled in Julia set fJc.

The Julia sets are very beautiful.
There are some pictures of filled in Julia sets fJc for various values of c in

[HoM, pp470, 471]. The filled in Julia sets are shown in black. The Julia sets
Jc are the boundary of the filled in Julia set. They can also be thought of as
the interface between the filled in Julia set and the complement of the filled in
Julia set.

The different colours on page 470 in the complement of fJc correspond to
how long it takes the orbit of a point to move a certain fixed distance from the
origin. Remember that the orbit from any point in the complement of fJc is
unbounded and in fact keeps moving further and further from the origin.

The colours are those of the rainbow: red, orange, yellow, green, blue,
indigo and violet (Roy G. Biv). Points marked red are the fastest to move
away, those marked violet take much longer and are closer to fJc. (Except for
the two pictures at the top of p470 where the colouring scheme is reversed.)

For the examples shown the sets fJc and Jc are connected except for c =
−0.194 + 0.6557i, c = −0.74543 + 0.11301 and c = −0.15652 − 1.03225i. In
these three cases the sets fJc and Jc are the same and are totally disconnected.
This is not completely clear due to pixelation effects.

You should use the excellent applet at
http://math.bu.edu/DYSYS/applets/Quadr.html

to further examine these and other examples. Notice how changing the number
of iterations affects the diagrams. Why is this? Also, follow the link there to-
the Mandelbrot Set Explorer.-
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Properties of the Julia sets Similarly to Theorem 4.6.2 for the (filled in)
baby Julia set we have

Theorem 4.6.6. A filled in Julia set fJc is
• either connected, or
• is a totally disconnected Cantor (dust) style of set.

Proof. The proof is too long to give here.

Here are some more properties:
1. The sets fJc and Jc are never empty. This is different from the “baby”

case.
In fact, the two solutions of f(z) = z must belong to fJc. Why?

Remember that a quadratic equation always has solutions if we allow -
complex numbers.

Moreover, the solutions of f2(z) = z must also belong to fJc. And
in fact the solutions of fn(z) = z must belong to fJc for every n. Why?
. -

2. If fJc is connected then so is its boundary Jc. If fJc is totally discon-
nected then fJc and Jc are the same. (This is a general fact about totally
disconnected Cantor style sets.)

Just as in Theorem 4.6.3 for the baby case, there is another way of describ-
ing those complex numbers c such that fJc is totally disconnected and those
complex numbers c such that fJc is connected.

Theorem 4.6.7. The filled in Julia set fJc is totally disconnected if and only
if the orbit for f(x) = x2 + c starting at 0 is unbounded. It is connected if and
only if the orbit starting at 0 is bounded.

Proof. Again, it is too long to give here.

The Mandelbrot Set

Once again, by analogy with Definition 4.6.4 for the baby Mandelbrot set, the
Mandelbrot set is defined as follows. The two definitions are equivalent from
Theorem 4.6.7.

Definition 4.6.8. The Mandelbrot set M consists of certain values of the
parameter c and is defined by:

M = {c : Jc is connected }
= {c : The orbit for z2 + c starting from the seed 0 is bounded}

The Mandelbrot set has an incredibly rich structure. If you blow it up then
you get more and more amazing patterns. Look at37

http://math.bu.edu/DYSYS/applets/Quadr.html

37This applet will easily allow you to blow up by a factor of 1014 for example, which is
better than blowing up a postage stamp to a sheet of paper whose width and height are each
the distance to the sun and back. And better than blowing up something the size of an atom
to a ball with a 10km diameter.
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For Julia sets Jc corresponding to points c on or near the boundary of the
Mandelbrot set M , it is possible to read off a lot of information about Jc by
looking at the Mandelbrot set near c. You will find a lot of information at
http://math.bu.edu/DYSYS/explorer/page1.html

There are some great movies at
http://math.bu.edu/DYSYS/movies.html . The one called
A Little Trip Through the Mandelbulbs is a tour of the Julia sets as you move
around the Mandelbrot set. You can also make your own movies at the previ-
ous site
http://math.bu.edu/DYSYS/applets/Quadr.html



4.7. Dimensions Which Are Not Integers 213

4.7 Dimensions Which Are Not

Integers

The following are preliminary notes only for this section. You should use the
book [HoM] as the main source and these notes as a supplement.

Overview

Dimension is a convenient way of measuring the “size” of a set. On the other
hand it is also a rather “crude” measure. Every “nice” line has dimension one
and every “nice” surface has dimension two.

On the other hand, fractal sets will usually have a dimension, called the
similarity dimension, which is not an integer. The similarity dimension is only
defined for sets which are self-similar in the sense we discussed in Section 4.1 for
the Sierpinski triangle, page 152 for the Koch curve, page 153 for the Sierpinski
triangle, page 155 for the Menger sponge and page 156 for the Cantor set.

There are also other notions of dimension. The Hausdorff dimension is
defined for all sets and agrees with the similarity dimension if a set is self-
similar. But this is rather technical and we will not have time to explore it.

The box counting dimension is very useful for experimentally computing
dimensions. If you do a Google you will find lots of information. Box counting
dimension is often, but not always, agrees with the Hausforff dimension.

And finally there is the standard topological dimension, which is always a
integer, and agrees with our usual idea of dimension. But even this is very
difficult to define rigorously.

Similarity Dimension

Motivation See the diagram on page 506 of [HoM].
Let

N = no. of copies, S = scaling factor

Then we get:

Line: S = 3, N = 3 (= 31)

Square: S = 3, N = 9 (= 32)

Cube: S = 3, N = 27 (= 33)

In all cases,
N = Sd,

where d is the dimension in the common every day sense of “dimension”.

Definition of Similarity Dimension Motivated by the previous examples
we now make the following Definition:

Definition 4.7.1. Suppose the set E is the union of N copies of itself, and E
is obtained from each copy by scaling it up by the factor S. Then the similarity
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dimension of E is

d =
logN

logS
. (4.32)

We also need to assume that the copies do not intersect each other as is
the case for the Cantor set, or have “minimal overlap” as in the cases of the
Sierpinski triangle, Koch curve and Menger sponge. However, we will not make
the notion of “minimal overlap” precise here.

In this way we get:

Koch Curve: S = 3, N = 4, d = log 4/ log 3 = 1.261859507 . . .

Sierpinski Triangle: S = 2, N = 3, d = log 3/ log 2 = 1.584962501 . . .

Menger Sponge: S = 3, N = 20, d = log 20/ log 3 = 2.726833027 . . .

Cantor Set: S = 3, N = 2, d = log 2/ log 3 = .6309297534 . . .

Explain why this is so in each case.-

Applications

The dimension of a set is an important way of analysing it, as I mentioned
previously.

Dimension of the Universe Experimental observations indicates that over
a very large range of scales, the amount of matter in the universe scales some-
thing like (distance)

1.5
. This is somewhat paradoxical, but it indicates that in

a sense the universe has “dimension” around 1.5.
Computer simulations of 10,000 or more point masses moving under New-

tonian gravity and certain other assumptions also gives a similar value.
This is not to be confused with “string theory” models in physics which in-

dicate that our universe is, in the sense of topological dimension, 10 or perhaps
more. See www.columbia.edu/cu/record/23/18/14.html.

Dimension of Attractors The Lorenz attractor in Figures 4.1 and 4.2 has
been estimated to have Hausdorff dimension 2.06± .01.

Dimensions of Physical Objects In the 1999 paper, Fractal analysis of
surface roughness by using spatial data38 Peter Hall and S. Davies at the ANU
and CSIRO respectively, wrote in their abstract:

We develop fractal methodology for data taking the form of sur-
faces. . . . Our results and techniques are applied to analyse data on
the surfaces of soil and plastic food wrapping. For the soil data,
interest centres on the effect of surface roughness on retention of
rain-water, and data are recorded as a series of digital images over
time. Our analysis captures the way in which both the fractal di-
mension and the scale change with rainfall, or equivalently with

38Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61 (1), 337.
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time. The food wrapping data are on a much finer scale than the
soil data and are particularly anisotropic. The analysis allows us to
determine the manufacturing process which produces the smoothest
wrapping, with least tendency for micro-organisms to adhere.

Questions

1 Give an example of a Sierpinski type triangle T with a different scaling
factor such that the similarity dimension of T is exactly one.

Show how to find a Sierpinski type triangle Tα such that the simi-
larity dimension of Tα is α, for any number 0 < α ≤ log 3/ log 2.

What do you speculate happens for log 3/ log 2 < α ≤ 2? I don’t
think anyone knows a complete answer.



Chapter 5

Geometry and Topology

This chapter corresponds to some of the sections in Chapters 4 and 5 of [HM].
Although we do not cover all the sections there, those we do are done here in
more depth.

Geometry originated from the study of shape and size, such as occurred
in measuring farm land or building the pyramids. Geometry now also deals
with curved spaces and spaces of any number of dimensions. These profound
extensions of geometry arose first in mathematics but are now the basis of the
theory of relativity and contemporary theories of the universe, where space has
10 or 11 dimensions. This is yet another example of the fact that the general
patterns and structures which arise naturally in mathematics are also the pat-
terns and structures which are essential to model and analyse the universe in
which we live.

Topology is the study of the classification of geometric objects, where two
objects are considered to be the same if they can be deformed continuously one
into the other (actually, this is a simplification of what really happens, but will
do for now). In this way, a coffee cup and a doughnut are the same, but there
are many more profound applications, some of which we will discuss.
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5.1 Euclidean Geometry and

Pythagoras’s Theorem

Abstract ideas can be made
tangible, and manipulating simple
shapes can lead to profound
results.

Euclidean Geometry
Not in [HM]

Euclid’s Elements The subject of Euclidean Geometry was first written
down by Euclid in about 300 B.C. The 13 volumes can be seen in the original
Greek and in translation at
http://aleph0.clarku.edu/ djoyce/java/elements/elements.html

and
http://farside.ph.utexas.edu/euclid.html .

Euclid’s Elements has appeared in over 1000 editions and is second only
to the Bible in this respect. It is the most used textbook of all times and was
used regularly in schools up to early last century. It is largely a collection of
theorems due to earlier mathematicians, but Euclid was the first to organise
the material in a systematic manner.

The work is profound in a number of ways. It attempted to derive all of
plane and three dimensional geometry, and the basic number theory known at
that time, including the infinite number of primes, geometric series, irrational
numbers, the irrationality of

√
2, and the computation of areas under various

curves by an approach related to integration. The method in Euclid’s Elements
was to begin from a small number (five) of “indisputable” facts or postulates,
or what we now call axioms, and proceed by the rules of logic to deduce in-
creasingly complicated, and far from obvious, results. It is the first example of
the axiomatic approach to mathematics.

Actually, as we now know, the work is flawed. There are quite a few “hid-
den assumptions” besides the 5 axioms. But these other assumptions are so
“obvious” when we think of their geometric interpretation that it is not sur-
prising that it took a long time to appreciate the problem. In fact, it was really
only after the discovery of other “curved” or non Euclidean geometries, that
the flaws were realised.

Hilbert’s Axioms There have been a number of approaches which give a
complete set of axioms for Euclidean geometry, and perhaps the best approach
is due to Hilbert in the early part of the 20th century. You can download a
translation of Hilbert’s book at
http://www.gutenberg.org/etext/17384 .

The significance of Hilbert’s axioms is not that Euclidean geometry is best
done in this manner (it is not) but that his work considered fundamental mat-
ters like the independence, consistency and completeness of the axioms. Math-
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ematics now relies on the axiomatic approach, and Hilbert’s axiomatisation of
geometry was a very important early example of this approach. The contem-
porary approach to Euclidean geometry is a mixture of using Cartesian coor-
dinates and defining Euclidean geometry to be the study of those properties
(such as angle, perpendicularity, length, area, parallelism) which are invariant
under rotations and translations.

Euclid’s Method Euclid begins with 23 definitions such as point, line, sur-
face, angle, right angle, triangle, circle, parallel.

He then states five postulates (or “axioms”)
1. A straight line segment can be drawn by joining any two points.
2. A straight line segment can be extended indefinitely in a straight line.
3. Given a straight line segment, a circle can be drawn using the segment

as radius and one endpoint as center.
4. All right angles are congruent. (can be translated and rotated one into

another)
5. If two lines are drawn which intersect a third in such a way that the sum

of the inner angles on one side is less than two right angles, then the
two lines inevitably must intersect each other on that side if extended far
enough.

Finally there are five “common notions” (which are today called logical and
arithmetical axioms).

1. Things which equal the same thing are equal to one another. (Transitivity
of equality)

2. If equals are added to equals, then the sums are equal. (Addition property
of equality)

3. If equals are subtracted from equals, then the remainders are equal. (Sub-
traction Property of Equality)

4. Things which coincide with one another are equal to one another. (Re-
flexive property of equality)

5. The whole is greater than the part.
We will not develop the subject of Euclidean geometry, with the following

exceptions. In Figure 5.1 we show the translation of the First Proposition and
its proof. In fact there are already some “problems” with this proof, in that
we use more than is in the axioms. For example, it does not follow from the
axioms that the two circles meet. There are also other things that do not
follow just from Euclid’s axioms, but the remarkable fact is that all the results
in Euclidean geometry do follow from Hilbert’s axioms.

Beginning on page 222 we state and prove Pythagoras’s theorem. In Sec-
tion 5.2 we prove the main results on Platonic solids from the final volume of
Euclid’s Elements.

Remarks on “Proofs” . In this chapter our “geometric ‘proofs”, like Eu-
clid’s, will rely on various facts which are geometrically clear but which we will
not establish rigorously from a set of axioms. It is possible to derive everything
from either Hilbert’s axioms or by using Cartesian coordinates, but this is not
very interesting and life is too short anyway.
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Figure 5.1: The first Proposition in Euclid’s Elements. The marginal comments
refer to the relevant Postulate, Definition or Common Notion used to justify
the adjacent step.

Pythagoras’s Theorem
[HM, 208–211]

See Figure 5.2. This theorem and its proof was known to Pythagoras about
600B.C. But in fact the result, if not the proof, was known to the Babylonians
about 1900B.C. The proof we give is due to the Hindi mathematician Bhaskara
in the second century A.D. You are asked to find other proofs in the Questions
at the end of this section.

Theorem 5.1.1. The area of a square whose side is the hypotenuse (the longest
side) of a right angled triangle is the some of the areas of the two squares whose
sides are given by the other two sides of the triangle.

Proof. Consider any right angled triangle T as in Figure 5.3 where c is the
length of the hypotenuse and a and b are the lengths of the other two sides.
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Figure 5.2: Pythagoras’s Theorem. The area of Sc is the sum of the areas of
Sa and Sb. Algebraically, c2 = a2 + b2.

Figure 5.3: Proof of Pythagoras’s Theorem by “rearrangement”.
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The four copies of T and the small square in Figure 5.3 are first rearranged
to form a square of side c; see the large square in Figure 5.3.

By translating and rotating triangles 2 and 3 we next obtain an L shaped
figure which can be decomposed into the shaded square of side a and the
remaining unshaded square of side b.

It follows that the area of a square of side c is the sum of the areas of a
square of side a and a square of side b.

If we really wanted to make the previous proof a rigorous one from some
axioms, we would have to prove or have an axiom which says that areas are
not changed by translations and rotations. We would also need to prove that
the sum of the angles of a triangle is 180◦ and in particular that the two acute
angles of a right angled triangle add to give a right angle.

Questions

1 Using only the first rearrangement in Figure 5.3, prove Pythagoras’s The-
orem by computing the area of the four triangles and the area of the small
square.

2 Use Figure 5.4 to give another proof of Pythagoras’s Theorem.

Figure 5.4: Another proof of Pythagoras’s Theorem.

3 Do [HM, p216, Q20].
4 Do [HM, p216, Q21].
5 Do [HM, p216, Q21].



5.2. Platonic Solids and Euler’s Formula 225

5.2 Platonic Solids and Euler’s

Formula

Overview
This section corresponds to Sections 4.5 and 5.3 of [HM]

What are They? The Platonic solids are the most symmetric, regular (and
aesthetic) solid objects, apart from the solid ball. There are exactly 5 Platonic
solids — the tetrahedron, cube or hexahedron, octahedron, dodecahedron and
icosahedron,1 see Figure 5.5.

Figure 5.5: The five Platonic solids: Tetrahedron, Hexahedron (Cube), Octa-
hedron, Dodecahedron, Icosahedron.

History The Platonic solids were constructed in the thirteenth and final vol-
ume of Euclid’s Elements, and the fact that these are the only possible Platonic
solids was also proved there. These results were probably due to Theaetetus
(ca. 417 – 369 B.C.) although Pythagoras (ca. 575–495 B.C.) probably knew
of the existence of the first four.

The philosopher Plato in about 360 B.C. associated four of the Platonic
solids with the elements earth, air, fire and water. Fire is the tetrahedron as
it is sharp and jagged, earth is the cube as it is not very stable and crumbles
easily, air is the octahedron since it slides easily (O.K., that does not seem so
well justified), and water is the icosahedron since it is almost spherical as are

1The names indicate the number of faces. Here are some Greek numerical prefixes: mono
(1), di (2), tri (3), tetra (4), penta (5), hexa (6), hepta (7), octa (8), ennea (9), deca (10),
hendeca (11), dodeca (12), icosa (20).
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beads of water. The dodecahedron is left out so Plato suggested the gods used
it to arrange the constellations in the heavens!

In the sixteenth century Kepler postulated that if the 5 Platonic solids were
arranged with the octahedron inside the icosahedron inside the dodecahedron
inside the tetrahedron inside the cube, so that the circumscribed sphere of one
is the inscribed sphere of the next, then the orbits of the 6 planets Mercury,
Venus, Earth, Mars, Jupiter, and Saturn lay on the 6 spheres so obtained.
This was not a highly successful theory, particularly since Uranus was later
discovered but there were no more Platonic solids. Kepler’s laws of planetary
motion have been somewhat more enduring.

Examples in Nature and Applications Three platonic solids occur nat-
urally as crystals — the cube (e.g. halite), the octahedron (e.g. spinels) and
the dodecahedron (e.g. garnet). Certain species of Radiolaria which occur
in plankton produce skeletons corresponding to the Platonic solids and are
named accordingly; for example Ircoporus octahedrus, Circogonia icosahedra,
Lithocubus geometricus and Circorrhegma dodecahedra. Numerical models of
the earth used in meteorological simulations are sometimes based on an icosa-
hedron instead of using latitude and longitude coordinates, as this gives a more
uniform grid near the poles.

The Mathematics We will construct the 5 Platonic solids and give the proof
from Euclid that there are no other Platonic solids.

We will also give a proof due to Cauchy in 1809 of the formula of Euler
(1707–1783), which leads to another proof that there are only 5 Platonic solids.
Euler’s formula and its generalisations are very important in the subject of
topology, and we will discuss this here and in a later section.

Polygons

Properties of Polygons A polygon is a planar figure bound by straight line
segments.

A convex polygon is a polygon with the property that if a straight line
segment connects any two points in the polygon (including its boundary) then
the segment lies entirely within the polygon.

Draw a couple of examples of polygons that are not convex.-
The external angle at a vertex of a polygon is the angle through which,

when traversing the perimeter of the polygon in a counterclockwise direction,
the edge leading into the vertex would rotate if it were to point in the same
direction as the edge leading out of the vertex. See Figure 5.6.

The internal angle at a vertex of a polygon is 180◦ minus the external angle.
For any polygon, the sum of the external angles is 360◦. Why?-
The external angle could be negative for a polygon, but not for a convex

polygon. Draw an example. In this case the internal angle is larger than 180◦.-
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Figure 5.6: A polygon with external angle θ, and internal angle 180◦ − θ, at
the vertex P .

Regular Polygons

Definition 5.2.1. A regular polygon is a polygon for which all sides are equal
and all internal angles are equal.

Figure 5.7: Regular Polygons: Equilateral Triangle, Square, Regular Pentagon,
Regular Hexagon, Regular Heptagon, etc.

There is one regular polygon with n sides for each integer n ≥ 3. So there
are infinitely many regular polygons. See Figure 5.7.

Notice that the regular polygons are all convex. I am not asking for a
rigorous proof, but can you give an explanation of why this is so? -
Theorem 5.2.2. If a regular polygon has n sides then the internal angle at

each vertex is 180◦ − 360◦

n
.

Proof. Let φ be the internal angle at each vertex. Then the external angles are
180◦ − φ.

Since the sum of the n external angles is 360◦,

n(180◦ − φ) = 360◦,

and so

φ = 180◦ − 360◦

n
.

What is the internal angle at each vertex of an equilateral triangle, square,
regular pentagon, regular hexagon, regular heptagon? -
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Platonic Solids and Their Construction

Polyhedra Just as there is a notion of a polygon in two dimensions, so there
is an analogous notion of a polyhedron in three dimensions.

A polyhedron is a solid figure bounded by polygonal faces and straight edges.
A convex polyhedron is a polyhedron with the property that if a straight line

segment connects any two points in the polyhedron (including its boundary)
then the segment lies entirely within the polyhedron.

What are Platonic Solids? Platonic solids are the analogue in three di-
mensions of regular polygons in two dimensions.

Definition 5.2.3. A Platonic solid is a convex2 polyhedron such that all the
faces are congruent3 and the solid internal angles at each vertex are all equal.4

Are there any Platonic Solids? What are they?
It turns out that there are exactly 5 Platonic solids, see Figure 5.5.5 This

contrasts with we saw before that there are infinitely many regular polygons.
We will give two different proofs of this important fact.

Coordinates The 4 vertices of the tetrahedron can be taken to be

(1, 1, 1), (−1,−1, 1), (−1, 1,−1), (1,−1,−1).

The 8 vertices of the cube can be taken to be6

(±1,±1,±1).

The 6 vertices of the tetrahedron can be taken to be

(±1, 0, 0), (0,±1, 0), (0, 0,±1).

The 20 vertices of the dodecahedron can be taken to be

(±1,±1,±1), (0,±1/φ,±φ), (±1/φ,±φ, 0), (±φ, 0,±1/φ),

where φ =
1 +
√

5

2
is the golden ratio.

The 12 vertices of the icosahedron can be taken to be

(0,±1,±φ), (±1,±φ, 0), (±φ, 0,±1).

Foldouts It is fairly clear that we could construct the tetrahedron, cube and
octahedron from the “foldouts” in Figure 5.8, and that the faces would indeed
fit together exactly. Think about this.-
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Figure 5.8: Foldouts for the tetrahedron, cube, octahedron, dodecahedron and
icosahedron.

However, it is less clear that the other two foldouts in Figure 5.8 will fit
together exactly to give the dodecahedron and the icosahedron. One needs to
do some calculations to show this. But we will not stop to do it.

There are cutouts with tabs which you can download and assemble at
http://www.worksheetworks.com/math/geometry/polyhedra.html .

Duality If you connect the centres of the six faces of the cube as in the second
diagram of Figure 5.9,7 you will obtain an octahedron such that each vertex of
the octahedron is a face of the cube. Conversely, if you connect the centres of
the faces of an octahedron you obtain a cube. We say that the cube and the
octahedron are dual.

2In fact convexity follows from the fact that the solid internal angles at each vertex are
all equal. To see this imagine a plane from a long way out which is moved parallel to itself
until it first touches the Platonic solid at some vertex. The internal angle at this vertex must
“point outwards”, and since all internal angles are the same they must all point outwards.
It can be shown from this that the Platonic solid is convex.

3Two figures are conguent if they are essentially identical copies of each other. More pre-
cisely, if each can be obtained from the other by a composition of translations and rotations.

4Two solid angles are equal if each can be obtained from the other by a composition of
translations and rotations.

5This and many of the other diagrams in this section are taken from Wikipedia.
6By (±1,±1,±1) is meant the 8 possibilities (1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1),

etc. Similar comments apply in other cases.
7See www.math.uiowa.edu .
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Figure 5.9: The tetrahedron is self dual, the octahedron and the cube are dual,
the dodecahedron and the icosahedron are dual.

Similarly, the tetrahedron is self dual. The dodecahedron and icosahedron
are dual.

Note that on passing from one Platonic solid to its dual, the number of
vertices and the number of faces are switched. See Table 5.2. Explain why this
is so without referring to the Table.-

Counting Vertices, Edges and Faces

Doing the Count If you count the number of vertices, edges and faces of
the Platonic solids you should obtain the first 4 columns in Table 5.2. The q
and p columns should be clear.

It is easy to count the number of faces by using the cutouts in Figure 5.8.
You will probably go a little cross-eyed trying to count the number of vertices or
edges in the case of the dodecahedron or icosahedron. However, the following
formulae (5.2) allow us to compute the number of edges and the number of
vertices from the number of faces and some other simple information.

A Combinatorial Relation

Theorem 5.2.4. For any Platonic solid let q denote the number of edges (and
of faces) at each vertex and let p denote the number of edges (and of vertices)
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Name V E F q p V − E + F
Tetrahedron 4 6 4 3 3 2

Cube 8 12 6 3 4 2
Octahedron 6 12 8 4 3 2

Dodecahedron 20 30 12 3 5 2
Icosahedron 12 30 20 5 3 2

Table 5.1: Vertices (V ), edges (E), faces (F ), edges or faces at a vertex (q),
edges or vertices of a face (p) and Euler Characteristic (V − E + F ), for the
Platonic solids.

of each face. Then

E =
pF

2
, V =

pF

q
, (5.1)

where V is the number of vertices, E is the number of edges and F is the
number of faces.

Proof. (Follow this proof through in the case of one of the three simplest Pla-
tonic solids to help your understanding.)

If we multiply the number F of faces by the number p of edges per face,
then the number pF which we obtain is not the number of edges. Each edge is
counted twice, since each edge occurs in exactly two faces. So the total number
of edges is pF/2. This proves the first formula in (5.1).

If we multiply the number F of faces by the number p of vertices per face,
then the number pF which we obtain is not the number of vertices. Each
vertex is counted q times since each vertex occurs in exactly q faces. So the
total number of vertices is pF/q. This proves the second formula in (5.1).

In (5.1) we saw that if we know p and q, then we can compute V and E
from F . From this it follows by a little algebra that if we know p and q then
we can also compute E and F from V , and also F and V from E. Namely

V =
pF

q
, E =

pF

2
,

E =
qV

2
, F =

qV

p
,

F =
2E

p
, V =

2E

q
.

(5.2)

Check this. It is just a line or two. -

Exactly Five Platonic Solids; Euclid’s Proof

We have already seen that there are at least 5 Platonic solids and have described
them. We want to show there are no more.

As usual we will give a “geometric proof” relying on some (hopefully) geo-
metrically clear facts. This is essentially the proof in Euclid’s Elements.
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Theorem 5.2.5. There are exactly 5 Platonic Solids.

Proof. Suppose P is any Platonic solid.
Let q be the number of faces or edges of P which meet at each vertex.
Let the internal angle made by the two edges at each vertex of each face

be φ. For example, if the faces are all equilateral triangles then φ = 60◦,
φ = 90◦ for squares, φ = 108◦ for pentagons, φ = 120◦ for hexagons, etc. See
Theorem 5.2.2.

The first important fact is that

qφ < 360◦. (5.3)

Check that this is true for the 5 Platonic solids we already know by writing
down the value of qφ in each case.-

To see this would be true for any Platonic solid P let X be a vertex of
P and let S be a plane through X such that P lies on one side of S. See
Figure 5.10 where q = 5. (Such an S exists since P is convex.) If we cut along

Figure 5.10: Each angle at P equals φ. Cut out the angles along the curved
line and the edges meeting at P . Lay the angles down flat to see their sum is
< 360◦.

the edges meeting at X and lay them flat on S, we see they do not cover a
full 360◦ around X, and so the sum of the q angles φ is less than 360◦. This
proves (5.3).

We now use (5.3) to investigate the various possible values for q and φ.
First note that q ≥ 3. Why?-
If the faces are equilateral triangles then φ = 60◦ and so the only possible

values of q in (5.3) are 3, 4 or 5. Why? These cases occur for the tetrahedron,-
octahedron and icosahedron respectively. See Table 5.2.

If the faces are squares then φ = 90◦ and the only possible value of q in
(5.3) is 3. Why? This case occurs for the cube.-

If the faces are pentagons then φ = 108◦ and the only possible value of q in
(5.3) is 3. Why? This case occurs for the dodecahedron.-

To summarise: we have shown that there are exactly 5 possibilities for the
pair (q, φ) and that each of these possibilities actually occurs.
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But could two different Platonic solids P1 and P2 have the same values
of q and φ? The answer is NO because of the following informal geometric
argument.

First note that since the angle φ is the same for both P1 and P2, the
polygonal faces of P1 and P2 must be the same shape — either all are equilateral
triangles, all are squares or all are pentagons. After rescaling, the faces of P1

and P2 will also have the same edge length. Since both q and φ are the same
in each case, if X1 and X2 are vertices of P1 and P2 it follows that P1 and P2

will be congruent near X1 and X2. Since the distance from X1 and X2 to the
neighbouring vertices is the same in both cases, we can extend the congruence
out past these neighbouring vertices. Repeating the argument a few times we
eventually see that P1 and P2 are congruent.

So to summarise: there are exactly 5 possibilities for q and φ and each of
these 5 possibilities leads to exactly one Platonic solid. Thus there are exactly
5 Platonic solids.

Exactly Five Platonic Solids; Euler’s Proof

The following theorem is very important. It has many extensions and applica-
tions as we will discuss later. Just by counting as in Table 5.2 we can confirm
directly that the theorem is true for the 5 Platonic solids.

Theorem 5.2.6 (Euler’s Formula). Let P be any convex polyhedron (not nec-
essarily a Platonic solid) and let V be the number of vertices, E the number of
edges and F the number of faces. Then8

V − E + F = 2. (5.4)

Proof. First Step: Remove one of the faces of P and deform the result to obtain
a “planar network” N of vertices, edges and faces. The edges of the planar
network N may be curved. In Figure 5.11 this is shown for the tetrahedron,
cube and octahedron.

Figure 5.11: Remove one face from the tetrahedron, hexahedron and octa-
hedron respectively, and deform the result to make a planar network. The
resulting edges may be curved.

8To remember the order in Euler’s Formula, note that the vertices are 0-dimensional and
come first, the edges are 1-dimensional and come next, while the faces are 2-dimensional and
come last.
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In the first diagram in Figure 5.12 there is another example of a planar
network that could arise in this manner.

We will often use the word “region” instead of “face” when we are discussing
a planar network. When we speak of the number of regions (or faces) of the
planar network we will include the unbounded region which lies outside all the
edges.

We will again use the symbols V , E and F for the number of vertices, edges
and regions of the planar network.

It is clear that the number of vertices and edges is unchanged when we pass
from P to N . Moreover the number of faces for P is the same as the number of
regions for N . The face removed from P corresponds to the unbounded region
for N .

So the quantity V − E + F is unchanged in passing from the convex poly-
hedron to the planar network.

We will show that
V − E + F = 2 (5.5)

for any planar network obtained in this manner. From this it follows that
V − E + F = 2 for any convex polyhedron P .

Second Step: Connect vertices of the planar network by new edges so that
all regions, except the unbounded region, are triangular, possibly with curved
edges. This is done in passing from the first diagram in Figure 5.12 to the
second. Each time a new edge is introduced in this manner the number V

Figure 5.12: The planar network is first changed into a planar network of
triangular faces. Triangles with one or two consecutive outside edges are then
progressively removed. The quantity V −E + F is unchanged by this process.

is unchanged, the number E is increased by one, and the number F is also
increased by one. Why? So the number V − E + F is unchanged.-
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Third Step: Repeatedly remove triangles in the planar network with one or
two consecutive “outside” edges. In Figure 5.12 this is done by starting at the
second diagram, moving from left to right and then down the rows.

1. Suppose the removed outer triangle has one outside edge, as is the case
in moving from the second to the third diagram, the fourth to the fifth
and the seventh to the eighth. Then V is unchanged while E and F are
each reduced by one, so V − E + F is unchanged.

2. Suppose the removed outer triangle has two consecutive outside edges,
as is the case in moving from the third to the fourth diagram, the fifth
to the sixth and the sixth to the seventh. Then V is reduced by one, E
is reduced by two, and F is reduced by one, so V −E + F is unchanged.

We keep doing this until finally one triangle is left, in which case

V − E + F = 3− 3 + 2 = 2.

Since V −E + F was unchanged at each step in changing the planar network,
and since after the last step V −E+F = 2, this proves (5.5) and so proves the
Theorem.

Remark: In [HM: Section 5.3] the Euler Formula (5.5) is proved for slightly
more general planar networks than we do in Steps 2 and 3 of the previous
Theorem. In fact all that is required of the network is that it be “connected”.
This means that any two vertices can be connected by a sequence of edges. We
will return to this in a later section.

Theorem 5.2.7. There are exactly 5 Platonic Solids.

Proof. From Euler’s Formula (5.4) we have

V − E + F = 2.

From the third line in (5.2),

V =
2E

q
and F =

2E

p
, (5.6)

and so

E

(
2

q
− 1 +

2

p

)
= 2. (5.7)

For this to happen we must have

2

p
+

2

q
− 1 > 0,

why? That is, -
2

p
+

2

q
> 1. (5.8)

Because p is the number of edges of each face and q is the number of edges
at each vertex, both p ≥ 3 and q ≥ 3.

It follows from this that there are not many possible values for p and q such
that (5.8) is true.

In fact:
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1. if p = 3 then q = 3, 4 or 5;
2. if p = 4 then q = 5;
3. if p = 5 then q = 3;
4. finally, it is not possible that p ≥ 6.

Explain why 1–4 are true.-
There are thus only 5 possible cases:
1. if p = 3 and q = 3 then E = 6 from (5.7) and then V = F = 4 from (5.6)

— this gives the tetrahedron;
2. if p = 3 and q = 4 then E = 12 from (5.7) and then V = 6 and F = 8

from (5.6) — this gives the octahedron;
3. if p = 3 and q = 5 then E = 30 from (5.7) and then V = 12 and F = 20

from (5.6) — this gives the icosahedron;
4. if p = 4 and q = 3 then E = 12 from (5.7) and then V = 8 and F = 6

from (5.6) — this gives the cube;
5. if p = 5 and q = 3 then E = 30 from (5.7) and then V = 20 and F = 12

from (5.6) — this gives the dodecahedron.

The fact none of these 5 cases can give more than one Platonic solid is
even more direct than in the proof of Theorem 5.2.5. In each of the 5 cases we
know the exact number of faces, we know their shape and the angles at each
vertex (it is given by p), and we know the number of edges and vertices. This
is enough to completely determine the polyhedron up to scaling.

?Groups of Rotations

(This will not make much sense unless you have done a course on Groups! And
even then, the following comments are briefly explained and intended just to
give you the flavour of what is happening.)

There are often important connections between geometry and algebra. In
the case of the Platonic solids one connection is via the Rotation Group of
transformations of each Platonic solid. The rotation group is the set of rotations
which send the solid into itself. The reason that the rotations form a group is
that the composition of two rotations is a rotation and the inverse of a rotation
is also a rotation.

Slightly more general is the Symmetry Group of transformations of each
Platonic solid. This group consists of transformations obtained from composing
rotations from the rotation group with reflections in any plane which divides
the Platonic solid into two symmetric halves. It can be shown that every such
transformation is the same as a rotation or a rotation followed by reflection in a
single fixed plane. For this reason the order of (i.e. number of elements in) the
symmetry group for any Platonic solid is twice the order of the corresponding
rotation group.

One important fact is that the rotation group and the symmetry group
will be the same for each Platonic solid as for its dual. Rotating or reflecting
the cube into itself gives a way of rotating or reflecting the octahedron into
itself and conversely, as is probably clear from looking at Figure 5.9. A similar
comment applies to the other dual pair consisting of the dodecahedron and the
icosahedron.
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The Tetrahedron. What are the different ways of rotating the tetrahedron
into itself?

Label the vertices of the tetrahedron by A, B, C and D. The vertex A can
be rotated into 4 vertices, including itself. After this there are three choices
for vertex B. But the locations of vertices C and D are then determined.

So the rotation group for the tetrahedron has order 4× 3 = 12.
The symmetry group for the tetrahedron has order 2× 12 = 24.

The Cube and the Octahedron. What are the different ways of rotating
the cube into itself?

There is the identity transformation which leaves everything fixed, giving 1
possibility.

There are 3 pairs of opposite faces and it is possible to rotate about the
axis through the centres of each pair by 90◦, 180◦ or 270◦, giving 3 × 3 = 9
possibilities.

There are 6 pairs of opposite edges and it is possible to rotate by 180◦ about
the axis through the centres of each pair, giving 6 possibilities.

There are 4 pairs of opposite vertices (corresponding to the 4 diagonals) and
it is possible to rotate by 120◦ or 240◦ about these diagonals, giving 4× 2 = 8
possibilities.

Adding all this gives 24 rotations. This gives all rotations of the cube, and
hence also of the octahedron. So the rotation group of the cube and also of the
octahedron has order 24.

The symmetry group for the cube or the octahedron has order 2× 24 = 48.

The Dodecahedron and the Icosahedron. What are the different ways
of rotating the dodecahedron into itself?

There is the identity transformation which leaves everything fixed, giving 1
possibility.

There are 6 pairs of opposite faces and for each pair there are 4 rotations
about the axis through their centres by multiples of 360◦/5 = 72◦, giving
6× 4 = 24 possibilities.

There are 15 pairs of opposite edges and for each pair there is one rotation
of 180◦ about the axis through their centres, giving 15 possibilities.

There are 10 pairs of opposite vertices and for each there are two rotations
of 120◦ and 240◦ about the diagonal connecting them, giving 10 × 2 = 20
possibilities.

Adding all this gives 60 different rotations. So the rotation group for the
dodecahedron and the icosahedron has order 60.

The symmetry group for the dodecahedron or the icosahedron has order
2× 60 = 120.

Questions

1 A regular n-gon is a regular polygon with n sides, where n ≥ 3.
Find formulae for the following quantities for a regular n-gon if the

distance from the centre to any vertex is r:
1. The angle subtended at the centre by each edge;
2. Each interval and external angle;
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3. The length of each edge and the circumference;
4. The area.

2 Let p and q be as usual, the number of edges (and of vertices) of each face
and the number of edges (and of faces) at each vertex respectively. Prove
from Euler’s formula (5.4) and Theorem 5.2.4 that, for any Platonic solid,
the number of vertices, edges and faces are given by the formulae

V =
4p

4− (p− 2)(q − 2)
, E =

2pq

4− (p− 2)(q − 2)
, F =

4q

4− (p− 2)(q − 2)
.

3 Question 17 p286 of [HM].
4 Question 18 p286 of [HM].
5 Question 19 p286 of [HM].
6 Question 20 p287 of [HM].
7 Prove that it is not possible to have a convex polyhedron built out of

60 triangles with the property that all vertices have the same number of
triangles coming out of them.

HINT: Let n be the number of edges coming out of each vertex. How
many edges and how many vertices are there? Now apply Euler’s formula.

8 Question 35 p372 of [HM]. This is tricky! Notice that from the soccer
ball, by joining the vertices by straight lines, we can construct a convex
polyhedron made up of pentagons and hexagons. (These pentagons and
hexagons need not be regular.) Moreover each pentagon is surrounded
by 5 hexagons.

Let P be the number of pentagons and H be the number of hexagons.
What information can you get by carefully applying Euler’s formula?
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5.3 Visualising the Fourth Dimension
[HM, pp307–320]

What is Dimension?

There are a number of different but related notions of “dimension” within
mathematics.

Informally, a line should be one dimensional, a surface two dimensional and
a solid object three dimensional.

In Section 4.7 we discussed the idea of “similarity dimension” and we saw
that it need not be an integer.

In this section we will be discussing a notion of dimension which is much
closer to our usual informal idea of dimension.

Dimension One Think of a straight line which continues indefinitely in both
directions. See Figure 5.13. Fix a base point 0 on the line and another point

Figure 5.13: A line is one dimensional. The point P has coordinate 2.3.

1 to give a “unit of length”. We can think of the line as a “numbered axis”.
Every point P on the line will then have a unique real number a associated
with it and every real number will correspond to a unique point. We can think
of the real number a as the address or coordinate of the point P . We often just
write P = a as in Figure 5.13.

Since any point P on the line is given by one piece of information, namely
the real number a, we say the line is one dimensional.

Dimension Two Next think of a plane which continues indefinitely in all
directions. See Figure 5.14. Fix a base point in the plane and two perpendicular
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Figure 5.14: A plane is two dimensional. The point P has coordinates (2, 1.7).

numbered axes passing through this point. We often call these axes the x and
y axes respectively. The unit of length should be the same on both axes.

Each point P on the plane will have a unique pair of real numbers (a, b)
associated with it and every pair of real numbers will correspond to a unique
point. We can think of the numbers (a, b) as the address or coordinates for P
— go distance a along the x-axis (right if a > 0 and left if a < 0) and then
distance b vertically (up if b > 0 and down if b < 0).

Since a point P on the plane is given by two pieces of information, namely
the pair of real numbers (a, b), we say the line is two dimensional.

Dimension Three Finally think of the “3-dimensional space” in which we
live. See Figure 5.15. Fix a base point and three perpendicular numbered

Figure 5.15: Space is three dimensional. The point P has coordinates (2, 1.7).

axes passing through this point. We often call these axes the x, y and z axes
respectively. The unit of length should be the same on all axes.

Each point P in space will have a unique triple of real numbers (a, b, c)
associated with it and every triple of real numbers will correspond to a unique
point. We can think of the numbers (a, b, c) as the address or coordinates for P
— go distance a along the x-axis (direction of the arrow if a > 0 and opposite
direction if a < 0), then distance b parallel to the y-axis (direction of the arrow
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if b > 0 and opposite direction if b < 0) and finally distance c parallel to the
z-axis (direction of the arrow if c > 0 and opposite direction if c < 0).

Since a point P in space is given by three pieces of information, namely the
triple of real numbers (a, b, c), we say space is three dimensional.

Geometric and Analytic Representations

What are Lines, Planes and Space? We can think of a straight line, a
plane, or 3D space itself as representations of idealised physical entities9 from
the world in which we live.

From a mathematical perspective we can think of a straight line, a plane,
or 3D space as geometric objects given by Euclid’s axioms, or more precisely
by Hilbert’s axioms, see page 220. Alternatively we can think of them as the
set of real numbers, the set of pairs of real numbers, or the set of triples of real
numbers.10

Coordinate Formulation The identification between a line and the set R,
between a plane and the set R2 of pairs of real numbers, and between space and
the set R3 of triples of real numbers, allows us to discuss geometric concepts
and ideas in terms of real numbers. This is what we do when we are doing
coordinate geometry, also called analytic geometry or Cartesian geometry.

For example, the line through the points (0, 0) and (1, 2) in a plane can be
described as the set of points with coordinates (x, y) for which y = 2x.

The square in Figure 5.16 can be described as the set of points (x, y) such
that 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. That is, it is the set given by {(x, y) : 0 ≤ x ≤
1, 0 ≤ y ≤ 1}.

Figure 5.16: The shaded square is {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. The cube
is {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤, 0 ≤ z ≤ 1}

The cube can be described as the set of points with coordinates (x, y, z)
such that 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1. That is, the cube is
{(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤, 0 ≤ z ≤ 1}.

9They are idealisations because a line or a plane for us has no thickness. Another ide-
alisation is that we are using classical ideas of space — not the more sophisticated ideas
involved in the theory of relativity.

10To be more precise, we need to fix a base point, various axes, units of lengths, etc
before we can make the correspondence between points on a plane and pairs of real numbers.
Similar comments apply to points in space and triples of real numbers.
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It now makes sense to define four dimensional space as R4, where

R4 = {(x, y, z, u) : x, y, z, u ∈ R},

i.e. the set of 4-tuples of real numbers.
The 4D hypercube in four dimensional space is then defined to be the fol-

lowing set:
{(x, y, z, u) : 0 ≤ x, y, z, u ≤ 1.} (5.9)

We want to gain a “geometric” understanding of what this means!

Flatland

Let us now do the following thought experiment.11 Imagine that there are
certain beings which live in a two dimensional world. What would be the
consequences of this for them? How could we explain our three dimensional
world to them?

Living in a 2-Dimensional World There is a classical book Flatland writ-
ten by Edwin Abbott over a century ago, available online at
http://www.geom.uiuc.edu/ banchoff/Flatland/ .
There is some background history and commentary at
http://www.geom.uiuc.edu/ banchoff/ISR/ISR.html .
In Flatland the consequences of living in a 2D world are explored in depth. The
book is both a satire on Victorian English social mores and an introduction to
the understanding of higher dimensions.

In a 2D world, everyone is either a right facing individual when standing
up, like Blah and Blip in Figure 5.17, or a leftie like Blog. Blip needs to stand
on his head if he wants to look at Blog’s back.

We, from our 3D world, can see inside the head of Blah, Blip and Blog.
But they cannot see inside each other’s head.

Describing a Cube to Someone in a 2D Universe When we draw a
cube, we are really projecting it down into two dimensional space. See the top
right diagram in Figure 5.18. This diagram is how we might start to explain a
3D cube to someone (e.g. Blog) living in a two dimensional world.

It would be better to explain the 3D cube as an infinite stack of 2D squares,
as in the top left diagram in Figure 5.18, although I have only drawn 5 squares.
But notice that the squares do not really look like squares, so you would need
to explain that the right angles are changed because of the projection. You
would also need to explain that there really are five “squares” in the picture
although four of them are only partially to be seen.

You could use the bottom left diagram in Figure 5.18 and explain that the
original layered squares do not overlap; they only appear to do so because of
the fact they have been projected down to two dimensions. (You should also

11In a thought experiment we work through in our mind the consequences of a hypothetical
scenario.
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Figure 5.17: Blah and Blip are right facing individuals, Blog is a leftie. We
can see inside their heads but they cannot see inside each others head.

Figure 5.18: Projecting a cube, or square slices of a cube, onto a plane.
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draw the lines in a translucent way so the 2D creatures can see all the lines
you have drawn.)

An alternative would be to draw the frame in the bottom right diagram.
(The lines should again be translucent.) You would have to explain:

1. The 12 lines only meet at common vertices and otherwise they do not
intersect up in 3D space.

2. The 6 squares only meet at common edges and otherwise do not intersect
up in 3D space.

3. The 4 edges of a square bound the square, as Blog ought to know. In
an analogous manner it is true that the 6 squares in the bottom right
diagram of Figure 5.18 bound a 3D cube up in 3D space. This is very
difficult for Blog to understand, or indeed anyone else living in 2D space!

You could also draw a number of copies of the plane with x and y coordinate
axes, make them translucent, and stack them up, as in Figure 5.19. Then

Figure 5.19: Projecting a cube as many copies of a square.

describe a point P in a 3D cube to Blog as follows:
1. Ask Blog to imagine an infinite collection of squares: although they over-

lap in his/her world the corresponding squares in the 3D world do not
overlap.

2. Tell Blog to think of each square as having a number z associated with it,
that number z lies in the range [0, 1], it corresponds to the z coordinate
of the square, and it represents how far that square lies above the x− y
plane in 3D space.

3. Point out that each point P in the cube will be on a certain level, and
the particular level will be given by a number z such that 0 ≤ z ≤ 1.

4. Once we have the level z for P , the x and y coordinates of P are found
in the usual manner by using the x and y axes for that particular level.
You will find that 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

You could also ask Blog to imagine a single square whose colour changes
continuously from red to orange to green to yellow to blue to indigo to violet,
which corresponds to the z coordinate of the corresponding square slice in the
cube changing from 0 to 1.
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Finally, you could ask Blog to think of just 2 squares, as in the “top” and
“bottom” squares in the bottom right diagram from Figure 5.18. Then ask
Blog to imagine joining the 4 corresponding pairs of vertices by (vertical) lines,
one vertex of each pair from the top square and one from the bottom square.

Then point out that corresponding edges from the top square and the bot-
tom square have been “joined” and in this way 4 new squares have been formed.
There are now 6 squares, and tell Blog that because of all your previous expla-
nations, it should be possible to imagine how in a 3D world the corresponding
squares actually bound a cube!

Describing a 4D Universe

4D Universe as R4 We saw that standard space can be described by R3,
the set of triples of real numbers.

We defined four dimensional space to be R4, the set of 4-tuples (x, y, x, u)
fo real numbers. We then defined the 4D cube, the hypercube, by

4D cube = {(x, y, z, u) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, 0 ≤ u ≤ 1}. (5.10)

This is probably the best way to do things mathematically, but it is not very
helpful for our intuition. So we will try and gain some geometric insight by
thinking of a 4D universe from our 3D perspective in a manner analogous to
they way we saw how to explain 3D matters to Blog living in a 2D world.

Understanding the Hypercube Geometrically In a manner parallel to
our previous discussions, imagine two unit cubes in our 3D space. They may
overlap, but we think of them as being the projections of two non overlapping
cubes in 4D space, corresponding to u = 0 and u = 1 respectively in (5.10).
See Figure 5.20. Now join corresponding vertices of the top and bottom cubes.

Figure 5.20: A 4D hypercube projected onto three dimensional space.

In Figures (5.18) and (5.19) we joined the vertices of the top square to the
corresponding vertices of the bottom square. The result was that the 4 edges
of the top square were connected to the corresponding 4 edges of the bottom
square to give 4 new squares and hence a total of 6 squares. Up in 3D space
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these 6 squares only meet along any common edges and were the boundary of
a 3D cube.

In Figure 5.20 the result of joining vertices is that in each case the 6 faces
of the bottom cube are connected to the corresponding face in the upper cube
to give 6 new cubes and hence a total of 8 cubes. Up in 4D space these 8
cubes only meet along any common faces and they form the boundary of the
4D hypercube. This latter is difficult to understand!

In Figure 5.20 you can also think of the bottom cube at time u = 0 being
translated slowly into the top cube at time u = 1. Any two cubes in 4D space
corresponding to two cubes in 3D space at different times do not overlap. As
u passes from 0 to 1, the entire 4D hypercube is traced out.

Alternatively, you might think of a single cube coloured red (think of
“colour” u = 0) which slowly changes its colour through the colours of the
rainbow to colour violet (think of “colour” u = 1). Every point in the hyper-
cube is described by coordinates x, y and z in the range [0, 1] and a “colour”
coordinate u also in the range [0, 1].

In Figure 5.21 there is a stereo version of a 4D cube projected into 3D space.

Figure 5.21: A 4D hypercube projected onto three dimensional space, in stereo.
To view, stare at the centre of the two images and cross your eyes until the
two images merge. Allow your eyes to relax so they can refocus.

An excellent site on the 4D cube is
http://dogfeathers.com/java/hyprcube.html .

Use the red-blue glasses from the back of [HM]. Put the red lens on the left
(important). Click through the stereo button on the above site until the red
blue version appears (red green is not bad either). Click on the detach button
and enlarge to full screen size. The projection of the 4D cube will sit in front
of the screen out over the keyboard. (I found slowing speed to about 5 and
giving a projection of about .3 was useful.)

Be warned that some people have difficulty seeing the stereo effect.
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By way of comparison, in
http://mathforum.org/alejandre/applet.polyhedra.html

you can see how a 3D cube projects into 2 dimensions. Each of the six 2D
squares (i.e. faces) bounding the 3D cube projects onto a distorted square (i.e.
quadrilateral) in 2D space. Although these six distorted squares intersect one
another in the 2 dimensional projection, the original six squares only intersect
along any common edges.

In the first site the 4D cube projects in an analogous manner into 3 dimen-
sions. There are now eight 3D cubes bounding the 4D cube and each 3D cube
projects onto a distorted cube in 3D space. Although these eight distorted
cubes intersect one another in the 3 dimensional projection, the original eight
cubes in 4D space only intersect long any common faces.

Does the Fourth Dimension “Really” Exist?

It is often important to represent information by four or more real numbers.
For example, we might represent the weather by the temperature, barometric
pressure, wind speed and precipitation rate. This would give the weather as a
point in R4, altough using only 4 numbers is a gross simplification. An economy
or a physical system might be represented by n parameters, where n is very
large, and so be represented by a point in Rn.

In the theory of relativity it is natural to take time as the fourth dimension.
This is different from what we are doing here because “time” is not a “spatial”
direction, the notion of distance needs to be modified, and it is not possible
to go “backwards” in time. None the less, there are also important analogues
between the two notions of four dimensions.

In contemporary theories in physics, the universe is modelled by a 10 or
11 dimensional curved space. The additional dimensions are sort of analogous
to incredibly small 7 or 8 dimensional spheres, of the order of 10−35 metres in
size, and much to small to observe. See
http://en.wikipedia.org/wiki/Why 10 dimensions%3F

Four dimensional geometries are particularly complicated, particularly when
we allow “curved geometries”! But in the last year or two an amazing break-
through was achieved. See
http://www.insidescience.org/reports/2006/021.html

for the story.
We will look briefly at two dimensional curved geometries in a later section.
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5.4 Topology, Isotopy and

Homeomorphisms
[HM, pp328–338]

Changing, modifying or tweaking
some aspects of reality can reveal
hidden structure in the world.

Overview

This section is a commentary and in some cases an extension of the material
in [HM]. You will definitely need to read the relevant material from there.

Topology can, very loosely, be thought of as “rubber sheet” geometry. That
is, topology studies those aspects of shape and structure which are preserved
when we stretch, twist or bend an object, but are not necessarily preserved
when we glue or cut an object. We will see many examples in the following.
But in topology one does not necessarily restrict to objects sitting in three
dimensional space, as mostly we do here.

Topology is a major unifying concept in almost all areas of contemporary
mathematics. General topology is the study of properties like continuity and
connectedness. Algebraic topology uses ideas from algebra, and particularly
from group theory, to classify geometric objects. Differential topology studies
geometric objects where there is a notion of smoothness via what is called a
differentiable structure. Low dimensional topology is the study of topology of
three and four dimensional objects. But as with all of mathematics there are
no clear boundaries between these subjects, and each draws on the others.

Topology has applications to network theory, image modelling, relativity
theory, mathematical economics, optimisation theory, study of vision, DNA
and protein structures, . . . .

The Main Definitions

Isotopy The first six curves in Figure 5.22 have the property that each can be
continuously distorted into the other without any cutting (breaking, tearing)
or gluing. We say that they are isotopic12 to each other.13

12isotopic is derived from the greek words iso meaning ‘equal’ and topos meaning ‘place’.
13Here are the main definitions in a slightly more, but still not completely, precise manner.
If A and B are subsets of R3 then a function f : A → B is continuous if f sends nearby

points in A to nearby points in B. More precisely, f : A → B is continuous if whenever
an → a where the an and a are points in A, then f(an)→ f(a).

Two subsets A and B of R3 are homeomorphic if there exists a one-to-one and onto
function f : A→ B such that f is continuous and its inverse f−1 : B → A is also continuous.
We call f a homeomorphism.

We need to require that the inverse is continuous since there are one-to-one, onto and
continuous functions f : A → B whose inverse f−1 is not continuous. For example, if A is
the half open interval and B is the circle in the following diagram
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Figure 5.22: The first six curves are isotopic. All seven curves are homeomor-
phic. The last curve is a “knotted loop” in R3.

More generally, two subsets A and B of R3 are isotopic if they can be
distorted one into the other within R3 without any cutting (breaking, tearing)
or gluing. We call the distortion an isotopy.

In Figure 5.23 we cannot distort A into B if we are only allowed to do our
distortions in R2. This is clear informally, since we would have to pass one

Figure 5.23: The sets A and B each consist of two closed curves. They are not
isotopic in R2 but they are isotopic in R3.

of the loops in A through the other. (However, it is not easy to prove this
rigorously.)

On the other hand, if we work in R3 it is easy to distort A into B. Simply
lift the inner circle a little out of the plane, slide it across, and move it back
down into the plane. Then deform it a little if necessary so it ends up as the
second circle in B. Next move and distort the outer ellipse in A until it ends
up as the first circle in B.

then there is a continuous f : A→ B, but its inverse f−1 is not continuous. Explain.
We say that two subsets A and B of R3 are isotopic if there is a continuous one parameter

family of functions ft : A → R3 such that ft is a homeomorphism for every t ∈ [0, 1], f0 :
A→ A is the identity function given by f0(a) = a, and the range of f1 is B. More precisely,
subsets A and B of R3 are isotopic if there is a continuous function F (t, a) defined for all
t ∈ [0, 1] and all a ∈ A, such that for each fixed t the function F (t, a) is a homeomorphism
onto some subset of R3, for t = 0 the function F (0, a) is the identity function and for t = 1
the range of F (t, a) is B. We call F an isotopy. We say that A and B are isotopic in R3.

Similarly, we can define what it means to be isotopic in R2, or in Rk for any positive
integer k.
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If we think of the seven curves in Figure 5.22 as sitting in R4 rather than
in R3, then in fact they are isotopic. This is because we can unknot the knot
in R4 by the same sort of trick as is done in the diagram in [HM p314], and
by an idea analogous to what we just did with the sets A and B in R2. See
Question 2.

It is usually clear from the context that we are only allowing isotopies in
R2 or in R3 (or perhaps in some higher dimensional space). But if there is any
ambiguity, we will clarify the situation.

Homeomorphism The first six curves in Figure 5.22 are not isotopic to the
knot, since the knot cannot be unravelled without cutting through itself.

There is a however a one-to-one way of matching up points on the circle
(say) and points on the knot.

To see this fix a point on the circle and fix another point on the knot. Move
continuously around the circle and at the same time move continuously around
the knot, until after one unit of time we return to the initial point in each
case. Match up the two points which corresponding at each time and define
the function f from the circle to the knot in this manner. The function f is
continuous in that nearby points are mapped to nearby points, and the same
is true for the inverse function f−1. For this reason we say that the circle and
the knot are homeomorphic and say that f is a homeomorphism.

In a similar manner, we can define a homeomorphism from any of the first
six curves to the knot.

Summary
• Two sets are isotopic if they can be distorted into each other without any

cutting or tearing.
• Two sets are homeomorphic if there is a one-to-one continuous corre-

spondence from one to the other which is continuous and its inverse is
continuous.

• If two sets are isotopic then they are homeomorphic. If two sets are
homeomorphic they are not necessarily isotopic.

Topology This is the study of those properties of sets which are preserved
under homeomorphiisms.

In this chapter we will mainly be looking at isotopies. Because two iso-
topic sets are also homeomorphic, isotopic sets will have the same topological
properties.

Three Surprising Isotopies

It is important to realise that we are discussing distortations that can actually
be done with real rubber objects provided these objects are sufficiently flexible.

[HM, 329–331]
Removing Your Vest The problem is to remove your vest (or jumper) from
under your buttoned jacket without tearing it. You have to imagine that your
vest is made of very stretchy material!
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[HM, 329–332]
Turning a Punctured Tyre Inside Out It is important to realise here,
and elsewhere that it is allowable to do things like
• make the puncture as large as you like,
• slide the puncture around the tube,
• compress parts of the tyre down to small strips

[HM, 330–332]
The Ring Challenge The problem is to distort the blue stretchable rubber
with two holes, and a ring through both holes, in such a way that the ring
passes through just one holes. See the figure half way down page 330. That
this can be done is at first truly surprising.

Showing Some Sets are Not Isotopic
[HM, 332–333]

An Example of Non Isotopic Sets A rubber band, and a rubber band
that has been cut, are not isotopic. The ends of the second would need to be
glued together to get the first, and the first would need to be cut to get the
second.

Show that these two examples are not isotopic by using some of the following -
ideas.

[HM, 333]
Removing Points See the diagram at the bottom of [HM, P333]. The circle
has the property that when we remove any point we still have one piece left.
This property is preserved if we distort the circle. From this fact we can show
that a circle cannot be distorted into a circle with a line segment attached to
the circle at one end.

If we remove two points from a circle then the circle breaks into two pieces.
This property is preserved if we distort the circle. From this fact we can show
that a circle cannot be distorted into a θ shaped curve.

[HM, 334]
Local Properties The immediate neighbourhood of any point on a circle
looks like a small line segment. This property is preserved if we distort the
circle, although the line segment may become very wiggly or bent.

However, there are two points on a theta curve which have different neigh-
bourhoods. At these two points there are three directions one can move, not
two.

So this is another reason that the circle is not isotopic to a theta curve.

The immediate neighbourhood of any point on a sphere looks like the im-
mediate neighbourhood of a point on the plane. The same is also true for
any point on the torus. So we cannot distinguish a sphere and a torus in this
manner.

Any object with the property that around every point there is a small
neighbourhood equivalent to a small neighbourhood of a point in the plane is
called a surface. We will look more closely at surfaces in a later section.
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[HM, 334–336]
Removing Circles If we remove any circle from a sphere we get two pieces.
This property is preserved under distortion.

If we remove certain circles from a torus then it is not cut into two pieces.
So a torus is not isotopic to to a sphere.

More Surprising Isotopies
[HM, 336,337]

Two Holed Tori Half way down page 336 of [HM] there are 5 figures which
are isotopic to a two holed torus. Remember that a two holed torus is the
surface of a two holed donut!

The fourth (box like) figure might be a bit surprising. It is meant to be a
shoe box with two holes cut out the top and two out the bottom, and toilet
rolls then glued in.

(To see the isotopy it is often psychologically convenient to think of the
objects in question as being big, not small!)

Much more surprising is that a standard two holed torus can be distorted
into the linked two holed torus shown in the margin of p336. This is shown in
the green diagram on p337.

An important key to understanding this diagram is the idea that the “holes”
where the four green tubes fit into the green balloon blob in the fifth green
diagram, can slide around the green balloon blob.

[HM, 336,337]
Jello Blobs Through the first jello cube at the top of p337, there are drilled
out two vertical tubes. This leaves us with a three dimensional lump of jello.

In the second jello cube the first tube is drilled out in a knotted manner
and the second tube is drilled out as before.

In the third jello cube the first tube is drilled out vertically and the second
is drilled out in a way which intertwines it with the first tube.

The first two cubes are not isotopic. This is perhaps not surprising, although
we will not prove it here.

The first and the third cubes are isotopic, and this is quite surprising at
first.

The key point is that we can slide the holes around the outside of the tube.
We can then slide the hole of one tube down the side of the second tube,
beginning from one end of the second tube and ending at its other end.

Questions

1 Do a selection of Questions 4, 6, 7, 9–40 on pp 339–344.
2 The point to this Question is to see more carefully how to unknot a knot

in four dimensions, as is shown informally on pp314,315 of [HM].

In Figure 5.24 we begin with the stringAPB. The (x, y, z) coordinates
are A = (−1, 0, 0), P = (0, 0, 1) and B = (1, 0, 0).

The goal is to distort the string APB into the position AQB where
Q = (0, 0,−1), by keeping A and B fixed, by not cutting the string and
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Figure 5.24: Distort APB to AQB without passing through the y axis.

by not passing through the y axis (the y axis stretches arbitrarily far in
both directions, so we cannot just stretch the string over the end of the
y axis).

It is not surprising that this is not possible in R3, although we will
not prove this fact. But we will show it is possible to do this in four
dimensional space.

The idea is to first lift the string APB up into 4D space, except for
A and B which remain fixed. Second, without changing the fourth coor-
dinate of any point on the string, press the string down in the z direction
until it agrees with the curve AQB except in the fourth coordinate. Fi-
nally, drop the curve back down into 3D space so it lines up with AQB.
See the discussion on pp 313–314 of [HM] of a similar situation.

We now make this precise.
Suppose that in R3 the stringAPB is given by (x, y, z) = (s, 0,

√
1− s2)

where −1 ≤ s ≤ 1. Notice that A corresponds to s = −1, P corresponds
to s = 0 and B corresponds to s = 1. Similarly, the curve AQB is given
by (x, y, z) = (s, 0,−

√
1− s2) where −1 ≤ s ≤ 1.

One way to distort the string APB into AQB within R3 is to send
each point (s, 0,

√
1− s2) vertically “down” to the point (s, 0,−

√
1− s2).

If we imagine doing this uniformly over the time interval 0 ≤ t ≤ 1 then
at time t the point (s, 0,

√
1− s2) will move to (s, 0, (1− 2t)

√
1− s2).

The problem is that at t = 1/2 the curve has moved to (s, 0, 0)
where −1 ≤ s ≤ 1, which for s = 0 corresponds to the origin. But the
origin lies on the y axis and so the string cuts through the y-axis.

Suppose next we are in R4 and the coordinates of points are given
by (x, y, z, w). We assign w = 0 to all the points in R3. That is, let
A = (−1, 0, 0, 0), P = (0, 0, 1, 0), B = (1, 0, 0, 0) and the string APB is
given by (s, 0,

√
1− s2, 0) where −1 ≤ s ≤ 1.

The y-axis is given by the set of points of the form (0, y, 0, 0) where
y is any real number.

We now do the “unknotting”.
1. Write down a formula which, over the time interval 0 ≤ t ≤ 1,

sends each point (s, 0,
√

1− s2, 0) on the string at time t = 0, in
a continuous manner to the point (s, 0,

√
1− s2,

√
1− s2) at time

t = 1. All points on the string, except A and B, should “lift” into
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R4. The maximum lift will occur for the point P . The x, y and z
coordinates of each point on the string should be unchanged in this
step. HINT : We just did something similar in R3.

2. Write down a formula which over the time interval 1 ≤ t ≤ 2 sends
each point (s, 0,

√
1− s2,

√
1− s2) on the string (now in R4) in a con-

tinuous manner down to the point (s, 0,−
√

1− s2,
√

1− s2). The x,
y and w coordinates of each point on the string should be unchanged
in this step.

3. Write down a formula which over the time interval 2 ≤ t ≤ 3 sends
each point (s, 0,−

√
1− s2,

√
1− s2) in its new position in R4 in a

continuous manner to the point (s, 0,−
√

1− s2, 0) on AQB. The x,
y and z coordinates of each point on the string should be unchanged
in this step.

Show that at no time 0 ≤ t ≤ 3 did any point on the string lie on
the y axis. That is, show that at no time 0 ≤ t ≤ 3 did any point on the
string have coordinates of the form (0, y, 0, 0) for any number y.

Putting all this together, over the time interval 0 ≤ t ≤ 3 we have
continuously moved the string APB into the position AQB, keeping A
and B fixed throughout and not at any point passing through the y axis.

Remark Here is a way of thinking about the three steps without doing
any calculations. Imagine that the string APB and the y axis are at
temperature 0◦, which you may think of as colour blue.

1. Heat the string so that the temperature at A and B remains 0◦

but the temperature along the rest of the string slowly rises until
at time 1 the temperature is 100◦ or colour red at P , and otherwise
changes continuously from 0◦ to 100◦ along the string. Think of the
temperature, or the colours across the rainbow from blue to red, as
giving the w coordinate.

2. Keep the temperature fixed but move the string down to posi-
tion AQB.

3. Lower the temperature back to 0◦ along the string.
The string does not really pass through the y axis since the 4th coordi-
nate, i.e. the colour or the temperature of the string, is different at the
point on the string where the “crossing” would otherwise takes place.
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5.5 One Sided Surfaces and Non

Orientable Surfaces
[HM, pp346–353]

Looking at concepts or objects in
new ways can often lead to
surprising discoveries.

Overview

In this section we discuss surfaces, and in particular what it means for a surface
to be one sided, and what it means for a surface to be non orientable. In [HM]
the emphasis is on the first of these ideas and there is little discussion of the
second idea.

The important distinction is that the notion of the “side” of a surface
depends on the fact the surface under consideration it sitting in 3D space. For
this reason we say that the notion of side of a surface is an extrinsic notion.

On the other hand, the notion of “orientability” of a surface is not defined
in terms of how the surface sits in 3D space, and is defined by reference just
to the surface itself.14 For this reason the notion of orientability of a surface is
called an intrinsic notion.

The difference between the two ideas is confusing because for surfaces in 3D
space a surface is one sided if and only if it is non orientable! See Question 3.

Another major idea we discuss is the idea of an “identification diagram”
used to describe and analyse a surface. This will play a very important role
when we discuss the classification of surfaces in the following chapter.

What is a Surface?

We can loosely define a surface S to be a geometric object such that every
point in S has a neighbourhood which is “equivalent” to a disc in the plane.
More precisely, by “equivalent” we mean “homeomorphic”.

A sphere is a surface, and so is a torus.
In many cases we talk about the surface of a solid object which is in R3.

For example, the surface of a ball is a sphere and the surface of a donut is a
torus!

We will also want to look at surfaces with one or more edges, as in Fig-
ure 5.25. Another example is the Mobius band in Figure 5.26. We won’t give
a precise definition, however.

14In fact, in the next section we will discuss surfaces without having them necessarily
sitting in 3D space or in any other space.
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What is a Side, Locally?

Definition Imagine a point P on a surface S in 3D space, see Figure 5.25.
We have a good intuitive idea of what we mean by the two sides of the surface

Figure 5.25: A surface S in 3D space. A point P on S, and normal vectors at
P pointing in the two possible directions.

near P . A bug at P must be on one side or the other. The two (local) sides of
a surface near P correspond to the two essentially different directions in which
a bug can look into space from P .15

More precisely, the two (local) sides of a surface S in 3D space, near a point
P on S, correspond to the two possible directions of a vector normal to S with
base at P .

Every surface in 3D space is locally two sided.

Examples Recall from Section 5.4 the sphere, the torus (surface of a dough-
nut), the torus with two holes, the torus with three holes, and so on. These
surfaces have no edges, i.e. no boundary.16

Surfaces with boundary also locally have two sides near any point P which
is on the surface but is not on the boundary. Simple examples are a spherical
cap or the surface in Figure 5.25.

Later we will discuss the Mobius band and the Klein Bottle. These also are
locally two sided.

Sides of a Curve Imagine a curve in 2D space. Near any point P on the
curve other than at endpoints, there are locally two different sides.

But if we draw a curve in 3D space then the notion of a side does not make
sense any more! Draw diagrams of a curve in 2D space and a curve in 3D-
space.

The moral is that the idea of “side of a curve” or “side of a surface” depends
on the space in which the curve or surface is sitting.

15There is both a local and a global notion of side for a surface sitting in 3D space. It
will usually be clear from the context which we mean, but we often use the words “local”
and “global ” for emphasis.

16We are using the word “edge” here in a different sense from the way we used it in
the discussion of edges for a Platonic solid on page 230, or in the discussion around Euler’s
formula on page 233. We can here instead use the word “boundary”.
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Sides of 3D space Our 3D space does not have “sides”. But if it were
sitting in 4D space then it would locally have two sides at every point, although
we could not see them from our 3D point of view. If you think of the fourth
dimension as time then near any point in 3D space one “side” would correspond
to looking into the future and the other would correspond to looking into the
past!

What is a Side, Globally?
[HM, top of p347], [HM, 351]

Definition Suppose a bug starts out on one of the two sides at a point P on
the surface S in 3D space, goes for a long walk, never crosses the boundary of
S if there is any, and finally returns to P .

If the bug always ends up at P on the same side from which it started then
we say S is (globally) two sided. If it is possible for the bug to finish on the
opposite side at P from which it started then we say that S is (globally) one
sided.

More precisely, suppose S is a surface sitting in 3D space. Begin with a
vector whose base point is at some point P on S and which is normal to S.
The base of the vector is moved around the surface so that the vector changes
its direction in a continuous way and is always normal to S. The path of the
base is not allowed to cross the boundary of S if there is any.

** If the direction of the vector after it returns to P is always the
same as when it began, then we say that S is (globally) two sided.
If for some path the direction of the vector after it returns to P is
the opposite from when it began, then we say that S is (globally)
one sided. **

We usually write “one sided” for “globally one sided”, and “two sided” for
“globally two sided”.

Examples The sphere and a torus with one or more holes are (globally) two
sided surfaces, as is the example in Figure 5.25.

The Mobius Band and the Klein Bottle, which we soon discuss in detail,
are (globally) one sided surfaces.

Sides are Extrinsic It is important to realise that the definition of a “side”
of a surface (or a curve) depends not just on the surface (or curve) but also on
the larger space in which the surface (or curve) is sitting. See Question 2.

The Mobius Band
[HM, 347–350]

Construction Twist and tape a strip of paper as in Figure 5.26. The two
edges marked “a” are glued together and the arrows indicate how the edges
are “matched up”. We usually say that the two edges are identified.

Applications in “Real Life” Recycling Logo. One sided conveyor belt (it
wears uniformly on both “sides’). See “Mobius Bands Abound” in [HM, 350].
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Figure 5.26: The Mobius Band.

The Identification Diagram This provides a very powerful way of under-
standing the properties of the Mobius band.

When constructing the Mobius band we glued, i.e. identified, the two ends of
the strip of paper after doing a half twist. We represent this by the identification
diagram in Figure 5.27, see also Figure 5.26. The direction of the arrows show

Figure 5.27: Mobius band identification diagram.

in what direction the edges of the original strip should be lined up and glued
together, i.e. identified.

Notice that the two points marked P are identified and so are the two points
marked Q.

What is the surface you get if the arrows in Figure 5.27 are in the same-
direction at each end?

Number of Edges and Sides Begin by marking an edge of the Mobius band
with a red pen, and continue until you return to the starting point. There is
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just one edge!
Begin by marking a line along the centre of one side and continue until you

return to the starting point. There is just one side (globally).
See Experiments 1 and 2 in [HM, 347,348].

Cutting Down the Centre Use a pair of scissors to cut down the middle.
How many pieces? Just one!

How many edges and sides for this new band? Two edges, two sides. And
one full twist.

We can best understand the centre cut from the identification diagram.
See Experiment 3 in [HM, 348,349].

Cutting One Third In From the Edge Use a pair of scissors to cut one
third in from one side. Continue until you return to the start. How many
pieces? Two!

We can also best understand this from the identification diagram.
See Experiment 4 in [HM, 348,350].

One Sided Suppose a bug starts at some point P on the Mobius band and
travels once around the band back to P . The bug will then be on the opposite
side at P from which it started. For this reason the Mobious band is (globally)
one sided.

Explain why the Mobius band is one sided by discussing of a vector whose -
base moves around the Mobius band and which is always normal to the band.
Use the definition of one sided marked with ** on page 257.

Non Orientability
This is not in [HM]

Mobius Band Imagine the Mobius band to be transparent and consider a
small circle drawn on the Mobius band with an arrow to indicate orientation.
You might like to think of a watch. See Figure 5.28. Move the circle once
around the band until it comes back to the starting place. The orientation of
the circle will be reversed.17 We say the Mobius band is non orientable.

Notice in Figure 5.28 what happens as the oriented circle crosses the line
“a”. The leading arc points from Q to P and the trailing arc points from P
back to Q. You should observe this first in the 3D diagram and then in the 2D
identification diagram.

Terminology Why use the terminology “orientable”?
If we draw any circle in 2D space then we can orient it, i.e. put an arrow

on it, in two different directions. See the first two circles in Figure 5.29. The
first orientation is the mirror image of the second orientation, and conversely.
If we are only allowed to isotope the first circle together with its arrow (i.e. to

17Remember that we are not on one “side” of the Mobius band. Think of being “in” the
Mobius band, analogous to the way a point might be “in” 2D space.
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Figure 5.28: An oriented circle moved once around the Mobius Band returns
with the opposite orientation.

Figure 5.29: On the left are two circles with opposite orientations. In the
centre is the Universal Standard orientation. On the right are three crcles with
“good” orientations according to the Universal Standard.

translate, rotate and distort, but not reflect or pass it through itself), then we
will never be able to obtain the second circle together with its arrow.

In order to have consistency in these matters, we will select some circle
with an orientating arrow, keep it safe under presidential type bodyguards,
and call it the Universal Standard. By translating, rotating and distorting the
Universal Standard we can assign a “good” rotation to any circle. The “bad”
orientation of a circle will be the other of the two possible orientations which
does not agree with the Universal Standard.

This method works in 2D space and on a torus, but it does not work on the
Mobius band. The problem is that if we move the Universal Standard around
the Mobius band to a circle in order to determine which orientation of the
circle is the good one and which is the bad one, we will get a different answer
depending on which transportation route we use!

For this reason we say 2D space and the torus are orientable, but the Mobius
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band is non orientable.

One Sidedness and Non Orientability There is a subtle difference be-
tween being the notion of being one sided and the notion of being non ori-
entable. The first notion requires placing the Mobius band in a larger space.
In this sense the notion of being one sided is an extrinsic notion — to describe
it we need to have a larger space containing the Mobius band. The second no-
tion is an intrinsic notion. We can describe it without referring to any larger
space containing the Mobius band.

However a surface in 3D space is one sided if and only if it is non orientable.
See Question 3.

The Klein Bottle
[HM, 351,352]

Construction and Identification Diagram See the diagram at the top of
p352 of [HM] and see Figure 5.30.

Figure 5.30: The Klein bttle.

The identification diagram is the first rectangle in Figure 5.30. It tells us
which sides are identified and in which way. Notice that there are no unmatched
edges in this case.

The Klein bottle can be constructed in 3D space only if we allow it to
self-intersect. However, it can be put in 4D space without self intersection.
Explain, using the idea of the Remark on page 254. -

One Sided Suppose a bug were to start at some point P on the outside
of the thin neck in Figure 5.30, walk down the neck and (mysteriously) pass
through the surface of the bottle but stay on the same side of the neck, keep
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going down to the bottom of the bottle, then up the bottle (it would now be
inside the bottle) to the top, and then back down to its starting point P . The
bug would have returned to P but now be on the inside of the thin neck, the
opposite side of P from which it started.

For this reason we say that the Klein bottle in 3D space is one sided — the
inside and the outside are the same. See the crystal Klein bottle at the bottom
of p352 of [HM].

Non Orientable In Figure 5.31 we begin with a small oriented circle on
the Klein bottle as shown and move it along the curve in the direction shown.
What does this curve look like when drawn on the Klein bottle at the bottom of-
Figure 5.30?

Figure 5.31: Moving an oriented circle around the Klein bottle.

We see that if the oriented circle crosses b just once then its orientation is
reversed when it comes back to its starting position.

For this reason the Klein bottle is non orientable.

In fact, the circle’s orientation is reversed when it comes back to its start-
ing position after crossing b an odd number of times, but its orientation is
unchanged after crossing b an even number of times.18 Crossing a does not
affect the orientation of the small circle when it comes back to its starting
position.

Questions

1 Do a selection of Questions 8–40 on pp 354–358 of [HM].
2 Supose C is the curve we used on page 259 to cut down the centre of the

Mobius band. Notice that it is just a circle.
Suppose P is a point on C. How many sides does C have locally

near P (where C is sitting in — i.e. C is regarded as a subset of — the
Mobius band)? Explain.

18A possible misconception: The orientation of the small circle does not suddenly “re-
verse” when the circle crossed b. Nothing dramatic happens when the small oriented circle
crosses either b or a! After all, b is just a simple closed loop on the Klein bottle, as is a.
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How many sides does C have globally? Explain.
Without changing C, explain how C can be taken as sitting in

another surface D in such a way that C now has a different number of
sides globally.

3 Explain why a surface S in 3D space is one sided if and only if it is non
orientable.

HINT: The two sides near a point P on S correspond to the two
possible directions of an arrow at P which is normal to S. A bg travelling
around S corresponds to the base of a normal arrow moving around S.

Next notice that by the “right hand screw rule” in 3D space, each
orientation of any small circle in S centred at P , gives a unique direction
normal to S at P . Conversely, each direction normal to S at P , gives a
unique orientation of any small circle in S centred at P .
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5.6 Classifying Surfaces
This material is not in [HM]

Overview

In this chapter we discuss the classification of surfaces.
You will not be required to know all this material. It will probably be

sufficient to understand the material up to the “Classification Theorem” on
page 278, to understand the statement but not the proof of this theorem, and
to be able to do some “cut and paste” type arguments. Ask your teachers.

The following summary will not make complete sense until you have looked
more carefully at the rest of the material in this chapter.

The surfaces we classify are called closed surfaces.19 It is possible to classify
surfaces which are not closed, but essentially no new ideas are involved.

Closed surfaces are surfaces which are connected (have only one component
or “piece”), compact (i.e. can be built up from a finite number of polygons
— this excludes the plane and other surfaces of “infinite extent”) and have no
boundary edge in the usual informal sense of the words “boundary edge” (this
rules out the Mobius band but includes the torus and the Klein bottle).

The main theorem is that every closed surface is equivalent to a sphere, a
sphere with p handles sewn in for some integer p ≥ 1 (i.e. a p-holed torus),
or a sphere with q cross caps (Bishops hats) sewn in for some integer q ≥ 1.
See (5.11).

Spheres, and spheres with handles, arise as the boundaries of solid objects
in 3D space. But spheres with cross caps and Klein bottles do not arise in this
way.

We first review how every surface can be built up from an identification
diagram, i.e. a set of polygon patches with rules for sewing pairs of edges
together. We will see that for each compact connected surface only one polygon
is needed, sometimes called a fundamental polygon for the surface. See the
section beginning on page 268.

The edges of a fundamental polygon can be given a symbolic representation.
For example, aba−1b−1 gives the torus in Figure 5.38 and aba−1b gives the
Klein bottle in Figure 5.30. For a surface without edges, every edge in the
fundamental polygon appears exactly twice. Can you see why, for the examples-
in these two Figures, we might use these particular symbolic representations?
What others might we use?

We show that a surface is orientable if and only if in its fundamental polygon
every edge appears once in the form x and once in the form x−1. A surface is
non orientable if and only if at least one pair of edges appears both times as x
or both times as x−1. Using this, we see from (5.11) that the sphere and the
tori are orientable but a sphere with cross caps is non orientable.

19The word “closed” here has quite a different and only very loosely related meaning to
that which we used previously for closed intervals or closed subsets of the plane, etc.



5.6. Classifying Surfaces 265

From the main theorem, by collapsing, cutting and pasting, we can change a
fundamental polygon of any closed surface to be in exactly one of the following
forms:

sphere: aa−1,

sphere with one handle (torus): aba−1b−1,

sphere with 2 handles (2-torus): aba−1b−1cdc−1d−1,

sphere with 3 handles (3-torus): aba−1b−1cdc−1d−1efe−1f−1,

...

sphere with cross cap (projective plane): aa,

sphere with 2 cross caps (Klein bottle): aabb,

sphere with 3 cross caps: aabbcc,

...
(5.11)

Every closed surface is equivalent (more precisely “homeomorphic”) to exactly
one of the surfaces in (5.11). For example, we mentioned before that as in
Figure 5.30 the Klein bottle can be represented by a fundamental polygon of
the form aba−1b. But it can also be represented by a fundamental polygon of
the form aabb, as in (5.11).

Finally, we will see that the Euler number E − V + F is 2 for a sphere
(we essentially already know this from Theorem 5.2.6), 2 − 2p for a sphere
with p handles, and 2 − q for a sphere with q cross caps. It will follow that
the surfaces we classify are completely determined by their Euler number and
their orientability.

Surfaces via Identification Diagrams

Identification Diagram for Two Holed Torus Imagine any of the ex-
amples we have so far of a closed surface. Cover it by a a “quilt” of patches
consisting of triangles, rectangles, pentagons, etc. with curved sides. See Fig-
ure 5.32.

Figure 5.32: The two holed torus as a “quilt” of triangles, rectangles, pen-
tagons, etc.

We can also describe the surface in Figure 5.32 by:
1. providing a copy of each polygonal patch;
2. listing all pairs of matching edges and indicating by arrows how each pair

is matched
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We call this way of describing a surface an identification diagram.20

By further subdividing each polygon if necessary, we can make sure all the
polygons are triangles. Sometimes this is convenient. We say in this case that
we have a triangulation of the surface.

Simple Example of an Identification Diagram In Figure 5.33 we have
two patches with matching edges a, b, c and d and an unmatched edge e.

Figure 5.33: Two patches with instructions to form a “quilt”.

The arrows show how the two edges marked a are matched, and similarly
for b, c and d. Here e is not matched and represents the boundary of the corre-
sponding surface. The patches are considered to be stretchable or compressible
as much as is required.21 The first step in “sewing” this quilt together might
be to match up the edges c as in Figure 5.34.

Figure 5.34: Sewing patches together.

We still have to sew together the edges marked a, b and d. The quilt need
not actually be constructible in 3D space, unless we are allowed to pass one
patch through another!

Since there is one unmatched edge e, the resulting surface is not closed in
this example.

20To do this precisely requires that certain natural “compatibility conditions” be specified.
In particular, vertices match vertices, not some other point elsewhere on an edge. Edges
match in pairs, but many vertices may be matched together. Why?

21But a patch cannot be compressed to an edge nor an edge to a vertex.
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Describing Surfaces to Citizens in 2D Space The identification dia-
grams in Figures 5.33 and 5.34 are, in principle, understandable to someone
living in 2D space, although the actual patching can only be done in 3D or 4D
space.22

In Figure 5.33 if a citizen from 2D space starts in the first patch and crosses
the left edge a then he/she will reappear through the right edge a back into
the first patch. If one starts in the first patch and crosses the edge c then one
will reappear through the edge c into the second patch.

Paired edges such as a, b, c and d in Figure 5.35 are not observable to a
2D citizen “living” in the surface corresponding to the identification diagram.
Similarly the edges in the identification diagram for a torus in Figure 5.38 are
not observable to a 2D citizen living in the torus.

Identification Diagrams in General In future we will usually describe
a surface by means of an identification diagram. This is a finite collection
of triangles, rectangles, pentagons, etc., together with letters and arrows to
provide instructions for matching certain edges in pairs. See Figures 5.30,
5.33, 5.34,

This approach via identification diagrams is very natural because we man-
age to avoid using a higher dimensional space in order to describe the surface.

Types of Surfaces

Connected Surfaces A surface S is connected if any two points in S can be
connected by a line which lies in S.

Informally, a connected surface is a surface consisting of just one part or
component. The surface consisting of both a torus and a sphere is not a
connected surface.

The surface given by the identification diagram in Figure 5.35, consisting
of three polygons, is not connected. The first two polygons are joined along c
but the third polygon is not joined to either of the first two. The surface given
by the identification diagram in Figure 5.34 is connected.

Figure 5.35: The first two patches are connected but the third patch is not
connected to the first two.

22We could do the patching in 2D space if we were allowed to superimpose patches one
on another. But this might not be very enlightening.
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Compact Surfaces A surface is compact if it can be built out of a finite
number of polygons by matching edges. This excludes the plane and other
“unbounded” surfaces.

Closed Surfaces A closed surface is a connected compact surface without
boundary edges. Examples are the sphere, torus with one or more holes and
the Klein bottle, see Figures 5.30 and 5.32. Mobius bands and spherical caps
have a boundary and so they are not closed surfaces.

If a closed surface is described by an identification diagram then each edge
is matched with exactly one other edge. See Figures 5.30, 5.37, 5.38, 5.39 and
5.40.

Usually, but not always, we will deal with closed surfaces.

Fundamental Polygons

Connected Surfaces Suppose a connected compact surface S (e.g. a torus or
a Mobius band) is given by an identification diagram. Then as in Figure 5.34 we
can continue sewing patches together until just one polygon remains. We can
then deform the polygon into a convex polygon. This is called a fundamental
polygon for the surface.

Each fundamental polygon for a closed surface has an even number of edges
occurring in matching pairs. Edges in each pair will be indicated by the same
letter, with arrows to indicate in which of the two possible ways the two edges
are matched.23 See the identification diagrams in Figures 5.37, 5.38, 5.39
and 5.40.

Symbolic Representation When a surface is given by a fundamental poly-
gon we can describe the way edges are matched up as follows.

Begin at any vertex and travel in a clockwise direction. Write each side as
x or x−1 according as it points in the direction of travel (i.e. clockwise) or not
(i.e. anticlockwise).

Thus in Figure 5.37 we can represent the sphere by aa−1 or by a−1a, de-
pending on the starting vertex. Either will do.

From Figure 5.38 one representation of the torus is aba−1b−1.
From Figure 5.3924 one representation of the double torus is aba−1b−1cdc−1d−1.
From Figure 5.40 one representation of the 3-torus is aba−1b−1cdc−1d−1efe−1f−1.

There are many others representations in each case, obtained by starting at
the other vertices. We can also reverse the arrows on both edges corresponding
to any matching pair, and still obtain the same surface. Why?-

Testing Orientability There is a simple way to see from a fundamental
polygon for a connected surface if the surface is orientable or not.

23When two edges are matched we only need to know which end corresponds to which end.
Other than this, different matchings will give essentially the same surface. More precisely,
they will give homeomorphic surfaces. Why?

24The P ’s are to indicate that all vertices are identified. Why is that true for this example?
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First look at the example of a Klein bottle in Figure 5.31. One of the
possible symbolic representations is aba−1b. The two edges marked b both point
in the same direction, namely clockwise. If an oriented circle is transported
around the Klein bottle and back to its starting position, in such a manner
that it crosses the edge b exactly one, then its orientation will be reversed.25

The Klein bottle is non orientable.

Next look at the example of the torus in Figure 5.38. One of the possible
symbolic representations is aba−1b−1. The two edges marked a point in oppo-
site directions, as do the two edges marked b. An oriented circle transported
around the torus and back to its starting position will not have its orientation
changed by crossing either a or b. The torus is orientable.

To summarise:
• If the two members of every pair of edges point in opposite directions

then the surface is orientable;
• If the two members of one or more pairs of edges points in the same

direction then the surface is non orientable.

Representations of the Sphere and Tori

Spheres with Handles Later on it will be useful to think of a torus as a
sphere with two discs removed and a handle handle sewn in. See Figure 5.36.

Figure 5.36: A sphere with a handle is a torus.

Similarly, a 2-holed torus is a sphere with two handles sewn in (after re-
moving 4 disks), and more generally a p-holed torus is a sphere with p handles
sewn in after removing 2p disks. Why? -

Fundamental Polygons The sphere, torus, double torus and triple torus
can be represented by fundamental polygons as shown in Figures 5.37, 5.38,
5.39 and 5.40 respectively.

I will not try to draw a p-holed torus, but by an analogous argument it can
be similarly represented.

25The orientation is not changed suddenly as the edge b is crossed. If a two dimensional
explorer walks around the Klein bottle and crosses edge b exactly once, then when she returns
to her starting place she will be “reversed” — she will be the mirror image of her original
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Figure 5.37: Identification Diagram aa−1 for the Sphere and how it is sewn
together.

Figure 5.38: Identification Diagram aba−1b−1 for the Torus and how it is sewn
together.

Vertices The four vertices of the fundamental polygon in Figure 5.38 each
map to the same point on the torus. You can see this by following the con-
struction.

But an easier way to proceed, particularly in more complicated cases, is as
follows.

1. Mark the top left vertex of the fundamental polygon at the left of Fig-
ure 5.38 by P .

2. Since P is at the “end” of a it is identified with the vertex at the end of
the other edge marked a. This is the top right corner of the fundamental
polygon. Mark this vertex also as P .

3. Since the original P is at the “beginning” of b it is identified with the
vertex at the beginning of the other edge marked b. This is the bottom
left vertex. Mark this vertex also as P .

4. Finally, the bottom left vertex is identified with the bottom right vertex,
as both are at the “beginning” of a. Mark the latter vertex also as P .

In this way we see all four vertices are identified on the actual torus.

A similar procedure for the 2-torus and the 3-torus in Figures 5.39 and 5.40
respectively shows that in each case all vertices of the fundamental polygon
map to the same vertex on the corresponding surface. Explain.-
self. Her left hand will now be on the right side, together with any ring originally on the left

hand. Any book taken along for the journey will have its writing reversed. But the book

will not look any different to the explorer, only to those who remained behind. On the other

hand, all books in the local library will be reversed from the explorer’s perspective.
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Figure 5.39: Identification Diagram aba−1b−1cdc−1d−1 for the Double Torus
and how it is sewn together.

A similar procedure also shows that all vertices in the fundamental polygon
for the p-torus will map to the same point on the p-torus. Explain. -

On the other hand, the two vertices in the fundamental polygon in Fig-
ure 5.37 are mapped to distinct points on the sphere. Explain. -

Summary A sphere, and a sphere with handles, are usually represented by
the following fundamental polygons. For the sphere there are two distinct
vertices. For a sphere with one or more handles, all vertices of each of the

The way for the explorer to undo this undesirable situation is to repeat the journey and
double reverse back to the original orientation!
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Figure 5.40: Identification Diagram aba−1b−1cdc−1d−1efe−1f−1 for the 3-
Torus and how it is sewn together.
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following fundamental polygons are identified.

sphere: aa−1,

sphere with handle = torus: aba−1b−1,

sphere with 2 handles = 2-torus: aba−1b−1cdc−1d−1,

sphere with 3 handles = 3-torus: aba−1b−1cdc−1d−1efe−1f−1,

...

sphere with p handles = p-torus: a1b1a1
−1b1

−1a2b2a2
−1b2

−1 . . . apbpap
−1bp

−1,

... .
(5.12)

Representations of some Non Orientable Surfaces

Klein Bottle In Figure 5.30 we gave the fundamental polygon aba−1b for
the Klein bottle.

Projective Plane A very important example of a non orientable surface is
the projective plane. It is represented by the simple fundamental “polygon” cc.
In order to have some feeling for what this surface looks like it is convenient to
replace each c by ab−1. See Figure 5.41. When we match up edges we obtain
the surface shown.

Figure 5.41: Identification diagrams for the projective plane and the projective
plane in 3D space. The line PQ in the last diagram, with the arrow pointing
away from it, is a line of self-intersection and is counted twice.
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Cross Cap We can think of the projective plane as a cross cap (sometimes
called a Bishops hat) sewn onto a sphere after removing a disc, see Figures 5.41
and 5.42.

Figure 5.42: The projective plane is a cross cap sewn onto a sphere.

The cross cap is the same as the Mobius band. To see this study Figure 5.43.
Renaming edges in the last diagram in Figure 5.43 it follows that they can both
be represented as abac. Why?-

Another representation of the Mobius band is given by Figure 5.44. Renaming
edges in the last diagram in Figure 5.44 it follows that the Mobius band and
the cross cap can be represented by aab. Why?-

The Klein Bottle Again The Klein bottle is the same as two cross caps
sewn together along their boundaries (i.e. is the same as two Mobius bands
sewn together along their boundaries). This is shown in Figure 5.45. Renaming
edges in the last diagram in Figure 5.45 it follows that the Klein bottle can be
represented by aabb. Why?-

Since the Klein bottle is the same as two cross caps sewn along their bound-
aries, it follows from Figure 5.46 that the Klein bottle is also the same as two
cross caps sewn to a sphere after two discs have been removed from the sphere.
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Figure 5.43: The cross cap is the Mobius band.

Figure 5.44: Another representation of the Mobius band, i.e. the cross cap.
Note that b is the boundary and since all vertices in the final triangle are
identified, b is the same as a circle.
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Figure 5.45: The Klein bottle is the same as two Mobius bands, i.e. cross caps,
sewn together along their boundaries.

Figure 5.46: The Klein bottle is the same as two cross caps bands sewn to the
sphere after removing two disks.

Summary We have seen the following fundamental polygon representations
and topological equivalences (i.e. homeomorphisms):

projective plane : aa

∼ one cross cap sewn to sphere (after removing a disc from sphere),

Klein bottle : aba−1b−1 or aabb

∼ 2 cross caps sewn to sphere (after removing 2 discs from sphere)

∼ 2 cross caps sewn together along their boundaries,

Mobius band : abac or aab

∼ cross cap.
(5.13)

The projective plane and the Klein bottle are closed surfaces, while the
Mobius band (i.e. cross cap) has a boundary.

All vertices in each fundamental polygon representation given for the pro-
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jective plane and for the Klein bottle are identified. Check this. -
In the second representation above for the Mobius band all three vertices

are identified. In the first representation the four vertices of the fundamental
polygon correspond to two distinct vertices on the Mobius band. Check these -
facts.

Representations of Other Non Orientable Surfaces

We saw in Figures 5.41 and 5.42 that the projective plane, represented by aa,
is the same as a sphere with a cross cap. In Figures 5.44, 5.45 and 5.46 we saw
that the Klein bottle, usually represented by aba−1b, can also be represented
by aabb, and is the same as the sphere with two cross caps.

What do the surfaces represented by aabbcc, aabbccdd and more generally
by a1a1a2a2 . . . aqaq look like? Not surprisingly they are spheres with 3, 4 and
q cross caps sewn in after removing the same number of disks.

Figure 5.47: The fundamental polygon aabbccdd is first disassembled into 4
cross caps and an inner rectangle. The inner rectangle (with all vertices iden-
tified) is equivalent to a sphere with 4 vertices removed as indicated in the
second row. Sewing back in the 4 cross caps and moving them apart gives a
sphere with 4 cross caps.
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For the fundamental polygon aabbccdd see Figure 5.47. This polygon is
equivalent to a rectangle efgh plus four cross caps aae, bbf , ccg and ddh.
Because all vertices are identified, efgh is equivalent to a sphere with 4 discs
removed and one point in common to all 4 boundaries. Sew in the cross caps.
By first flattening the cross caps near P to be tangential to the sphere one
can then slide the holes around the sphere to obtain 4 cross caps as in the last
diagram in Figure 5.47.

The Classification Theorem

It turns out that we have now described all possible closed surfaces. More
precisely we have the following theorem. (We will discuss Euler numbers in the
section “Euler Numbers” on page 284.)

Theorem 5.6.1.

• Every orientable closed surface is either
– a sphere and has fundamental polygon aa−1, or
– is a sphere with 2p disks removed and p handles sewn in, and has

fundamental polygon a1b1a
−1
1 b−11 a2b2a

−1
2 b−12 . . . apbpa

−1
p b−1p , for some

p ≥ 1.
• Every non orientable closed surface is a sphere with q disks removed and
q cross caps sewn in, and has fundamental polygon a1a1a2a2 . . . aqaq, for
some q ≥ 1.

None of these surfaces are homeomorphic to any other. The Euler number for
a sphere is 2, for a sphere with p handles is 2 − 2p, and for a sphere with q
cross caps is 2− q.

A closed surface is completely determined by its orientability and its Euler
number.

?Proof. (We will leave the part concerning Euler numbers for the section be-
ginning on page 284.)

We first deal with the case that the surface is orientable.

1. Represent the surface by a single fundamental polygon.
See the discussion under “Connected Surfaces” on page 268 for this

part.
Since the surface has no boundary and is orientable, each edge will

occur twice in the fundamental polygon and with opposite directions.
If there are two sides we have the sphere as in Figure 5.37. So we

now assume 4 or more edges in the fundamental polygon.

2. Remove any adjacent edges of the type aa−1. See Figure 5.48.
3. Make all vertices equivalent.

For example, if there are two types of vertices P and Q then the
number of Q vertices can be reduced to 0 by systematically cutting and
pasting, and cancelling any new adjacent edges, as in Figure 5.49.
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Figure 5.48: Removing two adjacent edges identified in opposite directions.

Figure 5.49: Reducing the number of Q vertices from two to one by cutting
along a line e from a P vertex which is attached to a Q vertex. (The e line
should have a Q vertex on both sides.) Then reduce the number of Q vertices
from one to zero by collapsing two adjacent edges cc−1.

4. Put edges in the xyx−1y−1 form.
Suppose not every edge of the fundamental polygon is part of ex-

pressions of the form xyx−1y−1, even after renaming and switching both
arrows of some pairs. See Figure 5.50. Choose one of these “bad” edges
and call it a.

Join the base points of the two a’s by a line x, cut along x, and
rejoin the two pieces along another common edge. (This can be shown
to be always possible using the fact that all vertices are identified.) See
Figure 5.50.

The two a’s will be separated by just an x, but the two x’s need
not be separated by just an a. In this case join the base of the two x’s by
a line y, cut along y and rejoin along a. See Figure 5.50. The original a’s
will now cancel out but, perhaps after changing arrow directions in pairs,
we will have the x and y edges in the form xyx−1y−1 form and similarly
for the c and d edges.

This completes the main ideas involved when the surface is orientable.

In case the surface is non orientable we proceed as follows.
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Figure 5.50: The a edges are not in the desired form as part of some uvu−1v−1

so cut along a line x joining their bases and repatch. Put in convex form. The
x edges are not in the desired form so cut along a line y joining their bases and
repatch along the a. After reversing arrows in pairs this gives two sequences of
the form uvu−1v−1.

1. Represent the surface by a single fundamental polygon. As in Step 1 for
the orientable case.

2. Cancel any adjacent edges of the type xx−1. As in Step 2 for the orientable
case.

3. Make all vertices equivalent. As in Step 3 for the orientable case.

4. Replace all pairs in the a ∗ a form by bb. To do this cut from the base of
the first a to the base of the second a and paste along a. See Figure 5.51.

Figure 5.51: Replacing a ∗ a by bb.

5. Remove pairs a∗a−1 and obtain something in the xyx−1y−1 form. Similar
to Step 4 in the orientable case.

We will now have a polygon with all edges occurring as something
of the form aa or cdc−1d−1. There is at least one of the former since the
surface is non orientable.
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6. Remove sequences of the type xyx−1y−1. We first replace any aa and
cdc−1d−1 by 3 pairs pointing in the same direction, but they will not
necessarily adjacent pairs. See Figure 5.52.

Figure 5.52: Replacing aa and cdc−1d−1 by 3 pairs of not necessarily adjacent
edges, each pointing in the same direction.

Then we use the method of Step 4 to replace non adjacent pairs in the
same direction by adjacent pairs in the same direction. See Figure 5.53.

Figure 5.53: Begin with the last diagram in Figure 5.52. First replace d ∗ d by
an adjacent pair ff . The f ’s are adjacent and in the same direction, the e’s
are in opposite directions and the c’s are in the same direction. So in the next
row we work on the c’s and replace them by an adjacent pair aa. Finally in the
last row we replace e ∗ e, now pointing in the same direction, by an adjacent
pair bb.
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In this way, assuming the surface is non orientable and so has at least one pair
initially pointing in the same direction, we end up with only adjacent pairs and
the edges of each pair point in the same direction. By renaming edges such as
e−1e−1 to ee, we finally get the for aabbccddee . . . . This gives the required
form.

Cut and Paste Examples

Example 1 We want to find the standard form for the surface corresponding
to the first diagram in Figure 5.54. The surface is non orientable because of

Figure 5.54: Beginning with the fundamental polygon on the left, work on the
non adjacent pair of a’s.

the a’s. We can check that all vertices are identified. Do it.-
Proceeding to Step 4 for non orientable surfaces we work on the pair of non

adjacent a’s. This gives adjacent d’s and c’s.
Next work on the non adjacent b’s as in Figure 5.55.

Figure 5.55: Work on the non adjacent pair of b’s.

Finally we work on the c’s and get after renaming aabbccdd, a sphere with
4 crosscaps. Do it.-

Example 2 We want to find the standard form for the surface corresponding
to the first diagram in Figure 5.56. The surface is non orientable because of
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Figure 5.56: Remove the non adjacent pair of c’s pointing in opposite directions.

the a’s (also because if the d’s).
Because pairs pointing in the same direction are already adjacent we go

to Step 5 for non orientable surfaces and work on the two c edges pointing in
opposite directions.

By Step 6 for non orientable surfaces we know we can replace e−1f−1ef in
the last diagram in Figure 5.56. We do it for practice in Figure 5.57. After

Figure 5.57: Replace e−1f−1ef by pairs of edges in the same directions.



284 Geometry and Topology

renaming we get aabbccdd, a sphere with 4 crosscaps.

Euler Numbers

I will be fairly brief in this section.26

Properties Suppose S is a closed surface covered by a finite set of polygons,
having common edges in pairs, as in Figure 5.32. The Euler Number or Euler
Characteristic of S is given by

V − E + F

where V is the number of vertices, E is the number of edges and F is the
number of faces.

We have the following important facts:
1. the Euler number of a surface S depends only on S and not on the cov-

ering used;
2. if two surfaces are homeomorphic then they will have the same Euler

number, so if they have different Euler numbers then they are not home-
omorphic;

3. the Euler number can be computed from any identification diagram for S,
and in particular from the fundamental polygon of S put in standard form
as in Theorem 5.6.1. (For counting purposes we need to take account of
the fact that each pair of edges in the identification diagram corresponds
to one edge in S, and that many vertices in the identification diagram
will correspond to one vertex in S.)

The reason for 1. is that we can change from one covering to another by
adding or subtracting vertices from the middle of edges and by adding or sub-
tracting edges joining a pair of vertices. None of these operations changes the
Euler number, by an argument similar to that in the Third Step on page 235
or in [HM: Section 5.3].

The reason for 2. is that we can use the homeomorphism to pass from a
covering by polygons of the first surface to a covering of the second surface,
and this does not change the number of vertices, edges or faces. Why?-

The reason for 3. is that the Euler number for a surface is clearly the
same as the Euler number for the identification diagram corresponding to the
covering of the surface, provided we take account of the fact that each edge in
the surface covering is represented twice in the identification diagram and that
each vertex in the surface covering will also be represented a number of times in
the identification diagram. Moreover, when we do cut and paste operations on
identification diagrams the Euler number is unchanged. This also follows by an
argument similar to that in the Third Step on page 235 or in [HM: Section 5.3].

Computing the Euler Number The Euler number of the fundamental
polygon for the sphere, see Figure 5.37, is

V − E + F = 2− 1 + 1 = 2.

26The details will be filled out in a later version.
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Notice that the two vertices are not identified, there is only one edge after
identification, and there is one face.

The Euler number for the sphere with p handles, i.e. the torus with p holes,
is

V − E + F = 1− 2p+ 1 = 2− 2p.

This comes from considering the fundamental polygon

a1b1a1
−1b1

−1a2b2a2
−1b2

−1 . . . apbpap
−1bp

−1.

All vertices are identified so there is really only one vertex, there are 2p distinct
edges and there is one face. See Figures 5.38, 5.39 and 5.40 for the cases
p = 1, 2, 3 respectively.

The Euler number for the sphere with q crosscaps is

V − E + F = 1− q + 1 = 2− q.

This comes from considering the fundamental polygon

a1a1a2a2 . . . apap.

All vertices are identified, there are q distinct edges and there is one face. See
Figures 5.41, 5.45 (last diagram) and 5.47 for the cases q = 1, 2, 4 respectively.

The Classification Theorem Again The previous discussion completes
the proof of the assertions in the last two paragraphs of Theorem 5.6.1. The
sphere or a sphere with handles is orientable, and so cannot be homeomorphic
to a sphere with crosscaps which is nonorientable.27 Moreover, the sphere, and
spheres with different numbers of handles, have different Euler numbers and
so cannot be homeomorphic to one another by fact 2. on page 284. Similarly,
spheres with different numbers of crosscaps have different Euler numbers and
so cannot be homeomorphic to one another, again by fact 2. on page 284.

Questions

1 Use Theorem 5.6.1 to describe the surfaces with Euler number 2, 1, 0, -1,
-2, -3, -4, -5, -6, -7, -8.

27An orientable surface cannot be homeomorphic to a non orientable surface. Why?


