Forschungszentrum Jülich

Jülich Supercomputing Centre (JSC)

Training Course $# 107/2017$

[Introduction to descriptive and](#page-7-0) parametric statistic with R

The Thursday 9th of March 2017 from 9:00 to 16:00 in Besprechungsraum 2 (room 315), Building 16.3

Antoine Tordeux — Forschungszentrum Jülich and Wuppertal University

Phone : 0049 2461 61 96553 — Email : a.tordeux@fz-juelich.de

Content

[Introduction to descriptive and parametric statistic with R](http://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/EN/courses/2017/r-2017.html;jsessionid=9C5449CA49CD08DC3C32CCBA63869D79?nn=944302)

The objectives are both to propose useful statistical methods allowing to analyze data, or to develop and calibrate models (Master level), as well as to learn how to use R.

The course is organized in three sessions of two hours :

- \triangleright Session 1 : [Introduction to statistic and R package](#page-8-0)
- \blacktriangleright Session 2 : [Statistic for multivariate dataset](#page-63-0)
- \triangleright Session 3: [Parametric statistic and statistical inference](#page-168-0)

Git: σ itlab.version.fz-juelich.de Download R: [cran.r-project.org](https://cran.r-project.org/mirrors.html)

History

The term 'Statistic' initially refers to the collection of information by states

- Etymology from the New Latin statisticum and the German words Statistik and Staatskunde (18th century)
- Counting of demographic and economic data

Statistic in the modern sense refers to the collection, analysis, modelling and interpretation of information of all types

- Statistical inference : Statistical activity associated with the probability theory
- Development of statistical models for understanding Physic, biology, social science, ... Parameter estimation and interpretation
- $-$ Development of statistical models for prediction \blacksquare Engineering, social science, ... Knowledge discovery, data mining and machine learning

Context

Data: n independent observations of characteristics (of individuals, systems...) or results of experiments

 \triangle Sample is **not a time series** (order of the observations has no importance)

 \rightsquigarrow Stochastic processes for dynamical systems

Statistic : Mathematical tools allowing to present, resume, explain or predict some data, and to develop and calibrate models

- Loose of information (data too big to individually analyze each observation)
- Focus on phenomena of interest, tendencies, global performances

Descriptive statistic : Tools describing data with no probabilist assumptions Parametric statistic : Probabilist assumptions on the distributions of the data

Illustrative example

Representations of PDF by

Histogram : Descriptive estimation Normal PDF: Parametric estimation

Statistical packages

And many others ... (see for instance [Wikipedia : Statistical packages](https://en.wikipedia.org/wiki/List_of_statistical_packages))

R software environment $¹$ </sup>

R is a open source programming language and environment for statistical computing and graphics

Implementation of S language — Functional programming Computation in R consists of sequentially evaluating statements separated by semi-colon or new line, and that can be grouped using braces

Windows: The terminal $-$ The script (eventual) $-$ The plots (eventual) Help with R : ?name_of_a_function or help(name_of_a_function)

¹1993, GNU General Public License, [r-project.org](http://www.r-project.org/)

verview

 $\mathsf{Part} \leftarrow \ \mid \ \mathsf{Descriptive} \ \mathsf{statistics} \ \mathsf{for} \ \mathsf{univariate} \ \mathsf{data}$

[Repartition of the data \(histogram,](#page-11-0) [kernel density,](#page-15-0) [empirical cumulative distribution function\),](#page-19-0)
[order statistic and quantile,](#page-27-0) [statistics for location](#page-29-0) [and variability,](#page-40-0) [boxplot,](#page-26-0) [scatter plot,](#page-46-0)
[covariance and correlation,](#page-47-0) QQp

[Part 2](#page-63-0) \parallel [Descriptive statistics for multivariate data](#page-63-0)

[Least squares and](#page-67-0) [linear](#page-73-0) [and non-linear regression models,](#page-76-0) [principal component analysis,](#page-81-0)
[principal component regression,](#page-130-0) [clustering methods](#page-133-0) [\(K-means,](#page-136-0) [hierarchical, density-based\),](#page-139-0)
[linear discriminant analysis,](#page-151-0) bootstrap te

[Part 3](#page-168-0) [Parametric statistic](#page-168-0)

[Likelihood,](#page-198-0) [estimator definition and main properties](#page-205-0) [\(bias,](#page-210-0) [convergence\),](#page-213-0) [punctual estimate](#page-230-0)
[\(maximum likelihood estimation,](#page-234-0) [Bayesian estimation\),](#page-244-0) [confidence and credible intervals,](#page-252-0)
[information criteria,](#page-290-0) [test of hypothesis,](#page-296-0)

[Appendix](#page-324-0) \vert ET_FX plots with R and Tikz

verview

[Part 1](#page-8-0) | [Descriptive statistics for univariate and bivariate data](#page-8-0)

[Repartition of the data \(histogram,](#page-11-0) [kernel density,](#page-15-0) [empirical cumulative distribution function\),](#page-19-0) [order statistic and quantile,](#page-27-0) [statistics for location](#page-29-0) [and variability,](#page-40-0) [boxplot,](#page-26-0) [scatter plot,](#page-46-0) [covariance and correlation,](#page-47-0) [QQplot](#page-57-0)

[Part 2](#page-63-0) | [Descriptive statistics for multivariate data](#page-63-0)

[Least squares and](#page-67-0) [linear](#page-73-0) [and non-linear regression models,](#page-76-0) [principal component analysis,](#page-81-0) [principal component regression,](#page-130-0) [clustering methods](#page-133-0) [\(K-means,](#page-136-0) [hierarchical, density-based\),](#page-139-0) [linear discriminant analysis,](#page-151-0) [bootstrap technique](#page-158-0)

[Part 3](#page-168-0) [Parametric statistic](#page-168-0)

[Likelihood,](#page-198-0) [estimator definition and main properties](#page-205-0) [\(bias,](#page-210-0) [convergence\),](#page-213-0) [punctual estimate](#page-230-0) [\(maximum likelihood estimation,](#page-234-0) [Bayesian estimation\),](#page-244-0) [confidence and credible intervals,](#page-252-0) [information criteria,](#page-290-0) [test of hypothesis,](#page-296-0) [parametric clustering](#page-306-0)

[Appendix](#page-324-0) **LATEX** plots with R and Tikz

Data used

Experiments with pedestrians on a ring

 \rightarrow 11 experiments done for different density levels

Measurement of :

Spacing (position difference with predecessor)

Speed (position time-difference)

Acceleration rate (speed time-difference)

[Part 1. Descriptive statistics for univariate and bivariate data](#page-10-0) $L_{\text{Univariate data}}$ $L_{\text{Univariate data}}$ $L_{\text{Univariate data}}$

[Descriptive statistics for univariate data](#page-7-0)

 $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$

Histogram $-$ R: hist (x)

Counting of the observations on a regular partition $(I_j)_j$ with window δ

$$
\forall j, x \in I_j, \quad \tilde{h}(x) = \sum_{i=1}^n 1\!\!1_{I_j}(x_i) \qquad \text{with} \quad 1\!\!1_I(x) = \left\{ \begin{array}{cl} 1 & \text{if } x \in I \\ 0 & \text{otherwise} \end{array} \right.
$$

 \rightarrow **Normalized histogram** $h(x) = \frac{1}{\delta n} \tilde{h}(x)$ is used for the estimation of the PDF

Histogram $-$ R: hist (x)

Counting of the observations on a regular partition $(I_j)_j$ with window δ

$$
\forall j, x \in I_j, \quad \tilde{h}(x) = \sum_{i=1}^n 1\!\!1_{I_j}(x_i) \qquad \text{with} \quad 1\!\!1_I(x) = \left\{ \begin{array}{cl} 1 & \text{if } x \in I \\ 0 & \text{otherwise} \end{array} \right.
$$

 \rightarrow **Normalized histogram** $h(x) = \frac{1}{\delta n} \tilde{h}(x)$ is used for the estimation of the PDF

Histogram $-$ R: hist (x)

Counting of the observations on a regular partition $(I_j)_j$ with window δ

$$
\forall j, x \in I_j, \quad \tilde{h}(x) = \sum_{i=1}^n 1\!\!1_{I_j}(x_i) \qquad \text{with} \quad 1\!\!1_I(x) = \left\{ \begin{array}{cl} 1 & \text{if } x \in I \\ 0 & \text{otherwise} \end{array} \right.
$$

 \rightarrow **Normalized histogram** $h(x) = \frac{1}{\delta n} \tilde{h}(x)$ is used for the estimation of the PDF

Histogram $-$ R: hist (x)

Counting of the observations on a regular partition $(I_j)_j$ with window δ

$$
\forall j, x \in I_j, \quad \tilde{h}(x) = \sum_{i=1}^n 1\!\!1_{I_j}(x_i) \qquad \text{with} \quad 1\!\!1_I(x) = \left\{ \begin{array}{cl} 1 & \text{if } x \in I \\ 0 & \text{otherwise} \end{array} \right.
$$

 \rightarrow **Normalized histogram** $h(x) = \frac{1}{\delta n} \tilde{h}(x)$ is used for the estimation of the PDF

Acceleration (m/s^2)

Kernel density $-$ R: density(x)

Kernel continuous estimation of the PDF

$$
d(x)=\frac{1}{nb}\sum_{i=1}^n k((x-x_i)/b)\qquad \text{with }b>0\text{ the bandwidth}
$$

 \rightarrow kernel $k(.)$ such that $\int k(x) dx = 1$ and $k(x) = k(-x)$

Kernel density $-$ R: density(x)

Kernel continuous estimation of the PDF
\n
$$
d(x) = \frac{1}{nb} \sum_{i=1}^{n} k((x - x_i)/b) \quad \text{with } b > 0 \text{ the bandwidth}
$$
\n
$$
\rightarrow \text{ kernel } k(.) \text{ such that } \int k(x) dx = 1 \text{ and } k(x) = k(-x)
$$

$$
\begin{array}{c}\n\begin{array}{c}\n\vdots \\
\hline\n\end{array} \\
\begin{array}{c}\n\hline\n\end{array} \\
\begin{array}{c}\n\h
$$

[Slide 13 / 164](#page-7-0)

Kernel density $-$ R: density(x)

Kernel continuous estimation of the PDF
\n
$$
d(x) = \frac{1}{nb} \sum_{i=1}^{n} k((x - x_i)/b) \quad \text{with } b > 0 \text{ the bandwidth}
$$
\n
$$
\rightarrow \text{ kernel } k(.) \text{ such that } \int k(x) dx = 1 \text{ and } k(x) = k(-x)
$$

$$
\begin{array}{c}\n\vdots \\
\downarrow \vdots \\
\downarrow \vdots
$$

Acceleration (m/s^2)

Kernel density $-$ R: density(x)

Kernel continuous estimation of the PDF
\n
$$
d(x) = \frac{1}{nb} \sum_{i=1}^{n} k((x - x_i)/b) \quad \text{with } b > 0 \text{ the bandwidth}
$$
\n
$$
\rightarrow \text{ kernel } k(.) \text{ such that } \int k(x) dx = 1 \text{ and } k(x) = k(-x)
$$

\n $\begin{array}{c}\n \begin{array}{c}\n \begin{array}{c}\n \end{array} \\ \begin{array}{c}\$
--

Acceleration (m/s^2)

Cumulative distribution function $-$ R : ecdf(x)

Empirical cumulative distribution function (ECDF)

$$
D(x)=\frac{1}{n}\sum_{i=1}^n 1\!\!1_{x_i\leq x},\qquad \text{with}\quad 1\!\!1_R=\left\{\begin{array}{ll} 1 & \text{if } R \\ 0 & \text{otherwise} \end{array}\right.
$$

Does not depend on a width to calibrate

Cumulative distribution function $-$ R : ecdf(x)

Does not depend on a width to calibrate

Acceleration (m/s^2)

Cumulative distribution function $-$ R : ecdf(x)

Does not depend on a width to calibrate

Cumulative distribution function $-$ R : ecdf(x)

Does not depend on a width to calibrate

Cumulative distribution function $-$ R : ecdf(x)

Cumulative distribution function $-$ R : ecdf(x)

Cumulative distribution function $-$ R : ecdf(x)

Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course # 107/2017

[Part 1. Descriptive statistics for univariate and bivariate data](#page-26-1) [Representation of the distribution](#page-26-1)

$Box — R: boxplot(x)$

 50% of the data into the box -50% right (resp. left) to the median Normal distribution : $\geq 95\%$ of the data into the whiskers Different definitions for the whiskers exit $(0.01/0.99$ -quantiles, minimum/maximum, ...) [Part 1. Descriptive statistics for univariate and bivariate data](#page-27-1) [Order statistic and quantile](#page-27-1)

Order statistic and quantile $-$ R: sort(x), quantile(x,.)

$$
\begin{array}{ll}\text{Univariate data:} & x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n\\(i_1, \dots, i_n) \text{ is a permutation of the ID } (1, \dots, n) \text{ such that} & x_{i_1} \leq x_{i_2} \leq \dots \leq x_{i_n}\end{array}
$$

- \blacktriangleright The k-th order statistic is $k^{(k)} = x_{i_k}, \qquad k = 1, \ldots, n$ \rightarrow k is the rank variable : $k - 1$ observations smaller, $n - k + 1$ bigger
- \blacktriangleright The α -quantile is $q_x(\alpha) = x^{([\alpha n])}, \qquad \alpha \in [0, 1]$
	- $\rightarrow \alpha$ % of the data smaller, 1α % bigger

[Part 1. Descriptive statistics for univariate and bivariate data](#page-28-0) [Order statistic and quantile](#page-28-0)

Order statistic and quantile $-$ R: sort(x), quantile(x,.)

Univariate data:

\n
$$
x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n
$$
\n
$$
(i_1, \ldots, i_n)
$$
\nis a permutation of the ID $(1, \ldots, n)$ such that

\n
$$
x_{i_1} \le x_{i_2} \le \ldots \le x_{i_n}
$$

- \blacktriangleright The k-th order statistic is $(k) = x_{i_k}, \qquad k = 1, \ldots, n$ \rightarrow k is the rank variable : $k - 1$ observations smaller, $n - k + 1$ bigger
- \blacktriangleright The α -quantile is $q_x(\alpha) = x^{([\alpha n])}, \qquad \alpha \in [0, 1]$
	- \rightarrow a % of the data smaller, 1α % bigger

Unique values if $x_{i_1} < x_{i_2} < \ldots < x_{i_n}$ Minimum and maximum values are: $\min_i x_i = q_x(0) = x^{(1)}$, $\max_i x_i = q_x(1) = x^{(n)}$ Statistics stable by monotone transformation f :

$$
\big(f(x)\big)^{(k)} = \left\{ \begin{array}{lll} f\big(x^{(k)}\big) & \text{and} & q_{f(x)}(\alpha) = \left\{ \begin{array}{lll} f\big(q_x(\alpha)\big) & \text{if} & f \nearrow \\ f\big(q_{f(x}(1-\alpha)\big) & \text{if} & f \nearrow \end{array} \right. \end{array} \right.
$$

[Part 1. Descriptive statistics for univariate and bivariate data](#page-29-1) [Statistics for the location](#page-29-1)

Statistic for the location $-$ R : mean(x), median(x)

Three main statistics for the **central position** of univariate data $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$

- Arithmetic mean value (or mean value) $\bar{x} = \frac{1}{n} \sum_i$ $R: mean(x)$
- \blacktriangleright **Median** (central observation) $med_x = x^{([n/2])} = q_x(0.5)$ median(x)
- ▶ Mode (most probable value) $mod_x = sup_z$ $PDF_x(z)$ x [pdf(x)==max(pdf(x))]

[Part 1. Descriptive statistics for univariate and bivariate data](#page-30-0) [Statistics for the location](#page-30-0)

Statistic for the location $-$ R : mean(x), median(x)

Three main statistics for the **central position** of univariate data $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$

- Arithmetic mean value (or mean value) $\bar{x} = \frac{1}{n} \sum_i$ $R: mean(x)$
- \blacktriangleright **Median** (central observation) $med_x = x^{(\lfloor n/2 \rfloor)} = q_x(0.5)$ median(x)
- **Mode** (most probable value) $mod_x = sup_z PDF_x(z)$ x [pdf(x)==max(pdf(x))]

 $\bar{x} = med_x = mod_x$ for uni-modal symmetric repartition of the data

Mean and median solution of : $\bar{x} = \argmin_a \sum_i (x_i - a)^2$ and $med_x = \argmin_a \sum_i |x_i - a|$

Mean sensible to extreme values, median or mode not (if $x_i \to \infty$ then $\bar{x} \to \infty$ but med_x , $mod_x \neq \infty$)

Median and mode stable by monotone transform $med_{f(x)} = f(med_x), mod_{f(x)} = f(mod_x)$ But the mean is not :

$$
\frac{1}{n} \sum_{i} f(x_{i}) = f(\bar{x}) \quad \text{if } f \text{ is concave} \\ \geq f(\bar{x}) \quad \text{if } f \text{ is affine} \\ \text{if } f \text{ is convex} \qquad \qquad \text{(Jensen inequality)}
$$

[Part 1. Descriptive statistics for univariate and bivariate data](#page-31-0) [Statistics for the location](#page-31-0)

Other statistics for the location

 2 We have more generally for $x_i>0$ and $\bar X_m={~}^{m-1}\hspace{-1.1mm}\sqrt{1\over N}\sum_i x_i^m~~\bar X_m\leq \bar X_{m'}$ for all $m\leq m'$

[Slide 18 / 164](#page-7-0)

[Part 1. Descriptive statistics for univariate and bivariate data](#page-40-0) \Box [Statistics for the variability](#page-40-0)

Scattering statistics $-$ R: var(x), sqrt(var(x)), ...

Main statistics used to **measure the variability** of $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

► Variance $var_x = \frac{1}{n} \sum_i (x_i - \bar{x})^2$ $R : var(x)$ Standard-deviation $s_x = \sqrt{var_x}$ $sort(var(x))$ • Mean absolute error $\qquad \qquad abs \, dev_x = \frac{1}{n} \sum_i$ $mean(abs(x - mean(x)))$ Inter-quartile range $IQR_x = q_x(0.75) - q_x(0.25)$ quantile(x,.75)-quantile(x,.25) **IMax–min difference** $max min_x = \max_i x_i - \min_i x_i$ max(x)-min(x)

[Part 1. Descriptive statistics for univariate and bivariate data](#page-41-0) [Statistics for the variability](#page-41-0)

Scattering statistics $-$ R: var(x), sqrt(var(x)), ...

Main statistics used to **measure the variability** of $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

► Variance $var_x = \frac{1}{n} \sum_i (x_i - \bar{x})^2$ $R: var(x)$ Standard-deviation $s_x = \sqrt{var_x}$ $\sqrt{var_x}$ sqrt(var(x)) • Mean absolute error $\qquad \qquad abs \, dev_x = \frac{1}{n} \sum_i$ $mean(abs(x-mean(x)))$ **Inter-quartile range** $IQR_x = q_x(0.75) - q_x(0.25)$ quantile(x, .75)-quantile(x, .25) **IMax–min difference** $max min_x = max_i x_i - min_i x_i$ max(x)-min(x)

All these statistics are positive and all the units are the one of the (x_i) , excepted the variance

We have $s_x \geq abs \, dev_x$ and $\max_i x_i - \min_i x_i \geq IQR_x$

Statistics stable by affine transformation

 $s_{ax+b} = |a|s_x,$ abs $dev_{ax+b} = |a|$ abs dev_x , $IQR_{ax+b} = |a| IQR_x,$ $max min_{ax+b} = |a|max min_{x},$ $var_{ax+b} = a^2 var_x$ [Part 1. Descriptive statistics for univariate and bivariate data](#page-42-0) $\mathsf{L}\mathsf{-}$ [Skweness and Kurtosis](#page-42-0)

Other statistics for the shape of a distribution

The Skewness quantifies the symmetry of the distribution

$$
S_x = \frac{1}{n s_x^3} \sum_{i} (x_i - \bar{x})^3
$$

 $R:$ skewness (x)

[Part 1. Descriptive statistics for univariate and bivariate data](#page-43-0) $\mathsf{L}_{\mathsf{Skweness}}$ and Kurtosis

Other statistics for the shape of a distribution

The Skewness quantifies the symmetry of the distribution	R: skewness(x)
$S_x = \frac{1}{ns_x^3} \sum_i (x_i - \bar{x})^3$	R: skewness(x)
$S < 0$: Left asymmetry	Large left tail
$S = 0$: Symmetric distribution	Similar left and right tails
$S > 0$: Right asymmetry	Large right tail

The Kurtosis quantifies whether a distribution is straight or concentrated

 $R:$ kurtosis (x)

$$
K_x = \frac{1}{ns_x^4} \sum_i (x_i - \bar{x})^4
$$

 \blacktriangleright $K < 0$: Tailness distribution \blacktriangleright $K < 0$: Tailness distribution \blacktriangleright $K > 0$: Distribution with tails Concentrated distribution

Statistics for the shape of a distribution : Summary

[Part 1. Descriptive statistics for univariate and bivariate data](#page-45-0) $L_{\text{Bivariate data}}$ $L_{\text{Bivariate data}}$ $L_{\text{Bivariate data}}$

[Descriptive statistics for bivariate data](#page-7-0)

 $((x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)) \in \mathbb{R}^{2n}$

Scatter plot $-$ R: plot(x,y), plot(db)

[Part 1. Descriptive statistics for univariate and bivariate data](#page-47-0) [Covariance and correlation](#page-47-0)

Covariance and correlation $-$ R: cov (x,y) , cor (x,y)

One considers $(x, y) = ((x_1, y_1), \ldots, (x_n, y_n))$ some bivariate data

 \blacktriangleright The covariance $covar$ quantifies how two variables fluctuate together

$$
covar_{x,y} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \in \mathbb{R}
$$

The correlation cor (or linear or Pearson correlation coefficient) quantifies how two variables linearly fluctuate together

$$
cor_{x,y} = \frac{covar_{x,y}}{\sqrt{var_x var_y}} \in [-1,1]
$$

[Part 1. Descriptive statistics for univariate and bivariate data](#page-48-0) [Covariance and correlation](#page-48-0)

Covariance and correlation $-$ R: cov (x,y) , cor (x,y)

One considers $(x, y) = ((x_1, y_1), \ldots, (x_n, y_n))$ some bivariate data

 \blacktriangleright The covariance $covar$ quantifies how two variables fluctuate together

$$
covar_{x,y} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \in \mathbb{R}
$$

Fig. 1 The correlation cor (or linear or Pearson correlation coefficient) quantifies how two variables linearly fluctuate together

$$
cor_{x,y} = \frac{covar_{x,y}}{\sqrt{var_x var_y}} \in [-1,1]
$$

Covariance and correlation tend to zero as $n \to \infty$ if x and y are independent

The correlation $cor_{x,y} = |1|$ if and only if x and y are linked by an affine relation

Symmetric, $covar_{x,x} = var_x$, $covar_{ax+b,cy+d} = ac covar_{x,y}$, $cor_{ax+b,cy+d} = \pm cor_{x,y}$

Correlation : Illustrative example $\textit{cor}_{x,y} \rightarrow (1+\sigma^2)^{-1/2}$ as $n \rightarrow \infty$

$$
y_i = (x_i + \sigma z_i)(1 + \sigma^2)^{-1/2}
$$

[Covariance and correlation](#page-50-0)

Spearman correlation coefficient $-$ R: cor(x,y,method='spearman')

Pearson correlation coefficient allows to assess linear relationships

 \rightarrow The Spearman correlation coefficient extends the assessment to monotonic relationships

We denote by (rg_x) and (rg_y) the ranks of the variables $(x, y) = ((x_1, y_1), \ldots, (x_n, y_n))$

 \blacktriangleright The Spearman correlation coefficient is

$$
cor^{s}_{x,y}=cor_{r_x,r_y}=\frac{covar_{r_x,r_y}}{\sqrt{var_{r_x}var_{r_y}}}\in[-1,1]
$$

Spearman correlation coefficient $-$ R: cor(x,y,method='spearman')

Pearson correlation coefficient allows to assess linear relationships

 \rightarrow The Spearman correlation coefficient extends the assessment to monotonic relationships

We denote by (rg_x) and (rg_y) the ranks of the variables $(x, y) = ((x_1, y_1), \ldots, (x_n, y_n))$

 \blacktriangleright The Spearman correlation coefficient is

$$
cor_{x,y}^{s} = cor_{r_x,r_y} = \frac{covar_{r_x,r_y}}{\sqrt{var_{r_x}var_{r_y}}} \in [-1,1]
$$

Stable by any monotonic transformation of the data

Insensitive to extreme values

 $\textit{cor}^{\,s}_{\,x,y} = \frac{6\sum_i d_i^2}{n(n^2-1)}$ with $d_i = r_{x_i} - r_{y_i}$ if all n ranks are distinct integers

Correlation : Remark $1 -$ Low correlation $\frac{1}{r}$ independent variables !

Simple cause/consequence relationships have high correlation coefficients

 \hat{A} However, high correlation coefficient \hat{B} Cause/consequence relationship \rightarrow Both variables can be the consequence of the same cause without being linked, or can have just by chance similar trends

Correlation : Remark 2 — Correlation is not causality !

Simple cause/consequence relationships have high correlation coefficients

\hat{A} However, high correlation coefficient \hat{B} Cause/consequence relationship

Both variables can be the consequence of the same cause without being linked, or can have just by chance similar trends

Illustrative examples

1. Researchers initially believed that electrical towers impact the health because life expectation and living distance to electrical towers are significantly negatively correlated

 \rightarrow Further analysis shown that this due to the fact that people living around electrical towers are generally poor, with fewer access to healthcare

- 2. Shadoks scientist found significant correlations between the number of times someone eats his birthday cake and having a long life ...
	- \rightarrow He deduced that eating his birthday cake is very healthy !

Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course # 107/2017

[Part 1. Descriptive statistics for univariate and bivariate data](#page-55-0) [Covariance and correlation](#page-55-0)

Some useful properties

Mean value

$\overline{x + y} = \bar{x} + \bar{y}$

In Stable for the product if the variables are linearly independent $\overline{xy} = \overline{x}\overline{y}$, if x and y ind.

[Part 1. Descriptive statistics for univariate and bivariate data](#page-56-0) [Covariance and correlation](#page-56-0)

Some useful properties

Mean value

- **I** Mean of a sum is the sum of the means $\overline{x + y} = \overline{x} + \overline{y}$
- In Stable for the product if the variables are linearly independent $\overline{x\overline{y}} = \overline{x}\overline{y}$, if x and y ind.

Variance and covariance

 \triangleright Variance of a product is always bigger than the product of the variances

$$
var(xy) = var(x)var(y) + var(x)\overline{y} + var(y)\overline{x}
$$

In general $var(x) = \overline{x^2} - \bar{x}^2$ and $covar(x, y) = \overline{xy} - \bar{x}\bar{y}$

 $QQplot - R : qqplot(x,y)$

Correlations quantify existence of linear or monotonic relationship

 $QQplot - R: qqplot(x,y)$

Correlations quantify existence of linear or monotonic relationship

- \blacktriangleright Variables linked by an affine relationship if the curve is a straight line
- \blacktriangleright Distributions are the same if the curve is $x \mapsto x$
- \blacktriangleright Different distributions in the other cases

 $QQplot - R: qqplot(x,y)$

Correlations quantify existence of linear or monotonic relationship

- \blacktriangleright Variables linked by an affine relationship if the curve is a straight line
- \blacktriangleright Distributions are the same if the curve is $x \mapsto x$
- \blacktriangleright Different distributions in the other cases

 $QQplot - R: qqplot(x,y)$

Correlations quantify existence of linear or monotonic relationship

- \blacktriangleright Variables linked by an affine relationship if the curve is a straight line
- \blacktriangleright Distributions are the same if the curve is $x \mapsto x$
- \blacktriangleright Different distributions in the other cases

 $QQplot - R: qqplot(x,y)$

Correlations quantify existence of linear or monotonic relationship

- \blacktriangleright Variables linked by an affine relationship if the curve is a straight line
- \blacktriangleright Distributions are the same if the curve is $x \mapsto x$
- \blacktriangleright Different distributions in the other cases

Summary with R

Univariate data

 $#$ Histogram hist(x)

 $#$ Kernel density density(x)

```
# Cumulative distribution function
ecdf(x)
```

```
# Quantile, order statistic
quantile(x,0.5); sort(x)
```

```
# Mean value, Median
mean(x);median(x)
```

```
# Variance, standard deviation
var(x);sqrt(var(x))
```
 $#$ Boxplot boxplot(x)

Bivariate data

Scatter plot $plot(x,y)$

Covariance $cov(x,y)$

Correlation $cor(x,y)$

QQplot $qqplot(y,x)$

verview

[Part 1](#page-8-0) | [Descriptive statistics for univariate and bivariate data](#page-8-0) [Repartition of the data \(histogram,](#page-11-0) [kernel density,](#page-15-0) [empirical cumulative distribution function\),](#page-19-0)

[order statistic and quantile,](#page-27-0) [statistics for location](#page-29-0) [and variability,](#page-40-1) [boxplot,](#page-26-0) [scatter plot,](#page-46-0) [covariance and correlation,](#page-47-1) [QQplot](#page-57-1)

[Part 2](#page-63-0) \vert [Descriptive statistics for multivariate data](#page-63-0)

[Least squares and](#page-67-0) [linear](#page-73-0) [and non-linear regression models,](#page-76-0) [principal component analysis,](#page-81-0) [principal component regression,](#page-130-0) [clustering methods](#page-133-0) [\(K-means,](#page-136-0) [hierarchical, density-based\),](#page-139-0) [linear discriminant analysis,](#page-151-0) [bootstrap technique](#page-158-0)

[Part 3](#page-168-0) [Parametric statistic](#page-168-0)

[Likelihood,](#page-198-0) [estimator definition and main properties](#page-205-0) [\(bias,](#page-210-0) [convergence\),](#page-213-0) [punctual estimate](#page-230-0) [\(maximum likelihood estimation,](#page-234-0) [Bayesian estimation\),](#page-244-0) [confidence and credible intervals,](#page-252-0) [information criteria,](#page-290-0) [test of hypothesis,](#page-296-0) [parametric clustering](#page-306-0)

[Appendix](#page-324-0) **LATEX** plots with R and Tikz

Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course # 107/2017

 L [Part 2. Descriptive statistics for multivariate data](#page-64-0) $\mathrel{\mathop{\rule{0pt}{\text{\rule{0pt}{1.5}}}}\mathrel{\mathop{\rule{0pt}{1pt}}\nolimits}}$ [Regression models](#page-64-0)

[Regression models](#page-7-0)

Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course # 107/2017

[Part 2. Descriptive statistics for multivariate data](#page-65-0) [Regression models](#page-65-0)

Introduction

Multivariate data

$$
(y_i,x_i^1,\ldots,x_i^p), i=1,\ldots,n
$$

ightharpoonup n observations of $p + 1$ characteristics

 y is the **variable to explain** (output or regressant) $\qquad \qquad \qquad \qquad \qquad$ Continuous

 x^1,\ldots,x^p are the p $\bf{explanatory\ variables}$ (inputs or regressors) $\qquad \qquad$ Discrete or continuous

[Part 2. Descriptive statistics for multivariate data](#page-66-0) [Regression models](#page-66-0)

Introduction

.

Multivariate data

$$
(y_i, x_i^1, \ldots, x_i^p), i = 1, \ldots, n
$$

ightharpoonup n observations of $p + 1$ characteristics

 y is the **variable to explain** (output or regressant) $\hspace{1cm}$ $\hspace{$ x^1,\ldots,x^p are the p $\bf{explanatory\ variables}$ (inputs or regressors) $\qquad \qquad$ Discrete or continuous

Model $M_\alpha : \mathbb{R}^p \mapsto \mathbb{R}$ for y as a function of the (x^1, \ldots, x^p)

 $y = M_\alpha(x^1, \ldots, x^p) + \sigma \mathcal{E}$

 \triangleright α are the parameters and $\sigma \mathcal{E}$ is a noise (or an error) with amplitude σ (unexplained part)

Example : Multiple linear model $M_\alpha(x^1,\ldots,x^p)=\alpha_0+\alpha_1x^1+\ldots+\alpha_px^p$ \rightarrow $p + 2$ parameters: $(\alpha_0, \alpha_1, \ldots, \alpha_p)$ and σ \rightarrow Simple linear regression for $p = 1$

[Part 2. Descriptive statistics for multivariate data](#page-67-1) [Regression models](#page-67-1)

Estimation of the parameters by least squares

Non-parametric estimation of the parameters by least squares

(or ordinary least squares (OLS), or regression model)

$$
\tilde{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} \left(y_i - M_{\alpha} \left(x_i^1, \dots, x_i^j \right) \right)^2
$$

Estimation of the parameters by least squares

Non-parametric estimation of the parameters by least squares

(or ordinary least squares (OLS), or regression model)

$$
\tilde{\alpha} = \arg\min_{\alpha} \sum_{i=1}^{n} \left(y_i - M_{\alpha} \left(x_i^1, \dots, x_i^j \right) \right)^2
$$

The residuals are the quantities $, \ldots, x^p) = y - M_\alpha(x^1, \ldots, x^p)$

- \triangleright OLS : Minimisation of the variance of the residuals / Sensible to extreme values
- Estimation of the **amplitude** of the noise using the empirical residual variance

$$
\tilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n R_{\tilde{\alpha}}^2(y_i, x_i^1, \dots, x_i^p)
$$

Estimation of the parameters by least squares

x

Goodness of the fit

Evaluation of the goodness through the repartition of the variability

- \blacktriangleright SST = $\sum_{i=1}^{n} (y_i \bar{y})$ **Total Sum of Squares**
- \blacktriangleright $SSM = \sum_{i=1}^{n} (\bar{M} M_{\tilde{\alpha}}(x_i))^2$
- \blacktriangleright $SSR = \sum_{i=1}^{n} (y_i M_{\tilde{\alpha}}(x_i))^2$

Sum of Squares of the Model Sum of Squared Residuals

Residuals centred and linearly independent : $SST = SSM + SSR$

Minimizing the variance of residuals maximizes variance explained by the model

Goodness of the fit

Evaluation of the goodness through the repartition of the variability

- \blacktriangleright SST = $\sum_{i=1}^{n} (y_i \bar{y})$ **Total Sum of Squares**
- \blacktriangleright SSM = $\sum_{i=1}^{n} (\bar{M} M_{\tilde{\alpha}}(x_i))^2$
- \triangleright SSR = $\sum_{i=1}^{n} (y_i M_{\tilde{\alpha}}(x_i))^2$

Residuals centred and linearly independent : $SST = SSM + SSR$

Sum of Squares of the Model

Sum of Squared Residuals

Minimizing the variance of residuals maximizes variance explained by the model

Coefficient of determination Explained proportion of the variance

$$
R^2 = \frac{SSM}{SST} = 1 - \frac{SSR}{SST} \le 1
$$

 \rightarrow $\,$ Good fit if $R^2 \approx 1\,$ $\,$ $\,$ OLS estimation maximizes the $R^2\,$ $\,$ $\,$ If $p=1$ then $R^2=cor^2_{x,y}$
R^2 : Example

[Part 2. Descriptive statistics for multivariate data](#page-73-0) [Regression models](#page-73-0)

Linear regression — $R: \ln(y \sim x)$

Matrix notations of the multiple linear model :

$$
y = X\alpha, \qquad \begin{array}{c} y = (y_1, \dots, y_n)^t \\ X = (1_n, x^1, \dots, x^p) \\ \alpha = (\alpha_0, \dots, \alpha_p)^t \end{array}
$$

the variable to explain the matrix of the regressors the parameters

[Part 2. Descriptive statistics for multivariate data](#page-74-0) [Regression models](#page-74-0)

Linear regression $-$ R : $lm(y \nightharpoonup x)$

Matrix notations of the multiple linear model :

OLS estimation of the parameters α :

 $\tilde{\alpha} = (X^t X)^{-1} X^t u$

Formal proof:
$$
\forall j = 1, ..., p, \frac{\partial}{\partial \tilde{\alpha}_j} \sum_i (y_i - \tilde{\alpha}_0 - \tilde{\alpha}_1 x_i^1 - ... - \tilde{\alpha}_p x_i^p)^2 = 0
$$

\n $\Leftrightarrow \forall j = 1, ..., p, \sum_i x_i^j (y_i - \tilde{\alpha}_0 - \tilde{\alpha}_1 x_i^1 - ... - \tilde{\alpha}_p x_i^p) = 0$
\n $\Leftrightarrow X^t (y - X\tilde{\alpha}) = 0 \Leftrightarrow \tilde{\alpha} = (X^t X)^{-1} X^t y$

Generalized Least Squares (GLS) estimation

 $G = (X^t \Omega^{-1} X)^{-1} X^t \Omega^{-1} y$

 \rightarrow Variance/Covariance matrix Ω for the residuals

Simple linear regression

Bivariate data
$$
(x, y) = ((x_1, y_1), \dots, (x_n, y_n)) \in \mathbb{R}^2
$$

The linear regression of y on x is the straight line $y = a_{0}Sx + b_{0}S$

$$
(a_{\text{OLS}}, b_{\text{OLS}}) = \arg\min_{a,b} \sum_{i} (y_i - (ax_i + b))^2 \quad \Rightarrow \quad \begin{cases} a_{\text{OLS}} &= \frac{covar_{x,y}}{var_x} \\ b_{\text{OLS}} &= \overline{y} - a_{\text{OLS}}\overline{x} \end{cases}
$$

Formal proof: We denote as $F(a, b) = \sum_i (y_i - (ax_i + b))^2$ $\partial F/\partial a=0$ and $\partial F/\partial b=0$ is $\left\{\begin{array}{lll} \sum_i(-x_iy_i+x_ib+x_i^2a)&=&0\ \sum_i(y_i+x_ia+b)&=&0\end{array}\right.$ This gives $a = \frac{\frac{1}{n} \sum_i x_i y_i - \frac{1}{n} \sum_i x_i \frac{1}{n} \sum_i y_i}{\frac{1}{n} \sum_i x_i^2 - \left(\frac{1}{n} \sum_i x_i\right)^2} = \frac{cov_{x,y}}{var_x}$ and $b = \frac{1}{n} \sum_i y_i + ax_i = \bar{y} - a\bar{x}$

Regressions y/x and x/y are not the same as soon as $var_x \neq var_y$ but both cross (\bar{x}_n, \bar{y}_n)

[Part 2. Descriptive statistics for multivariate data](#page-76-0) [Regression models](#page-76-0)

Linear and non-linear regression

Non-linear regression by invertible (monotone) non-linear transformation of the data

Inear regression with the variables x and $f(y)$, $f(x)$ and y or $f(x)$ and $f(y)$

Example: Exponential model

a

$$
M_{\alpha} = e^{\alpha_0} \cdot (x^1)^{\alpha_1} \dots (x^p)^{\alpha_p}
$$

 \rightarrow Linear model with $\tilde{x} = \log(x)$ and $\tilde{y} = \log(y)$

a

Linear and non-linear regression

Non-linear regression by invertible (monotone) non-linear transformation of the data

- I Linear regression with the variables x and $f(y)$, $f(x)$ and y or $f(x)$ and $f(y)$
- Example: Exponential model $\int_0^{\alpha_0} \cdot (x^1)^{\alpha_1} \dots (x^p)^{\alpha_p}$ Linear model with $\tilde{x} = \log(x)$ and $\tilde{y} = \log(y)$

Linear and non-linear regression

Non-invertible model : Linearisation of the problem and numerical solution

- Iterative algorithms based on the partial derivatives of the model (Jacobian matrix)
-

R : nls(model,data) Gauss-Newton or Golub-Pereyra algorithms

 \blacktriangleright Local minima and divergence problems possible

Multiple linear and non-linear regression with R

y, x1, x2 and x3 are vectors with the same size

Linear least squares estimate

 $lm(y \sim x1 + x2 + x3)$

- \blacktriangleright Linear regression of y on x1, x2 and x3
- Inear model (with intercept nil): $\ln(y \le 0 + x1 + x2 + x3)$

Non-linear least squares estimate

$$
\mathtt{nls}(y \backsim \mathtt{mod}(x, p1, p2, p3, \ldots))
$$

- \triangleright The model must be at least derivable \implies Default method : Gauss–Newton
- \blacktriangleright Partial derivative can be given as input or are estimated numerically

Regression models : Summary

 \triangleright Regression models allow to describe relationships between a variable to explain and explanatory factors

- $-$ Parameter estimations by least squares method (sensitivity to extreme values)
- Linear (explicit solution) and non-linear (invertible transformation or numerical approximation) models
- \blacktriangleright The variability of the variable to explain can be decomposed as
	- Variability explained by the model
	- Variability of the residuals (non-explained part)

 \rightarrow The $R^2 \in [0,1]$ is the proportion of variable explained by the model R^2 allows to compare models and to evaluate the quality of the fit

 \triangleright Linear and non-linear regression are very easy to implement in R

 \rightarrow lm(·) and nls(·) functions — coef(·) to get the estimations of the coefficients

[Part 2. Descriptive statistics for multivariate data](#page-81-0) [Principal Component Analysis](#page-81-0)

Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course $\# 107/2017$

[Principal Component Analysis](#page-7-0)

Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course # 107/2017

[Part 2. Descriptive statistics for multivariate data](#page-82-0) [Principal Component Analysis](#page-82-0)

Introduction

Multivariate data: observations of p characteristics of n individuals

$$
X = \begin{bmatrix} x_1^1 & x_1^2 & \dots & x_1^p \\ x_2^1 & x_2^2 & \dots & x_2^p \\ \vdots & \vdots & & \vdots \\ x_n^1 & x_n^2 & \dots & x_n^p \end{bmatrix} \in (\mathbb{R}^p)^n, \quad \begin{aligned} x_i &= (x_1^1, \dots, x_i^p), \quad i = 1, \dots, n \\ x^j &= (x_1^j, \dots, x_n^j)^t, \quad j = 1, \dots, p \\ x^j &= (x_1^j, \dots, x_n^j)^t, \quad j = 1, \dots, p \end{aligned}
$$

variables $,...,x^p)$ are correlated (inter-dependence of the characteristics) [Part 2. Descriptive statistics for multivariate data](#page-83-0) [Principal Component Analysis](#page-83-0)

Introduction

Multivariate data: observations of p characteristics of n individuals

$$
X = \begin{bmatrix} x_1^1 & x_1^2 & \dots & x_1^p \\ x_2^1 & x_2^2 & \dots & x_2^p \\ \vdots & \vdots & & \vdots \\ x_n^1 & x_n^2 & \dots & x_n^p \end{bmatrix} \in (\mathbb{R}^p)^n, \quad \begin{aligned} x_i &= (x_1^1, \dots, x_i^p), \quad i = 1, \dots, n \\ x^j &= (x_1^1, \dots, x_n^j)^t, \quad j = 1, \dots, p \\ x^j &= (x_1^1, \dots, x_n^j)^t, \quad j = 1, \dots, p \end{aligned}
$$

 \rightarrow Variables (x^1,\ldots,x^p) are correlated (inter-dependence of the characteristics)

Specific tools for the visualisation and description of multivariate data

- **Scatterplots** By coupling the variables $p(p-1)$ plots – Parallel plots, Andrews plot, radar charts Different geometrical representations
-
-

– Chernoff faces Human face representation

– **Principal component analysis Decomposition in principal components**

Example

Six measurements of Swiss banknotes ($n = 200$ observations, $p = 6$) \rightarrow Some are authentic, some are counterfeit

Boxplot — R: boxplot(database) Normed data

Correlation coefficients

- \blacktriangleright X^2 and X^3 are highly correlated
- \blacktriangleright X^4 and X^5 are highly correlated to X^3
- \blacktriangleright X^6 is highly correlated to all the variables excepted X^1

Scatterplot — R: plot(database)

Scatterplot — R: plot(database)

Parallel plots - R : parcoord(database) Package : MASS

Andrews plots — R : andrews (database) Package : andrews $X^1 \cos(t) + X^2 \sin(t) + X^3 \cos(2t) + X^4 \sin(2t) + X^5 \cos(3t) + X^6 \sin(3t)$

Andrews plots — R : andrews (database) Package : andrews $X^1 \cos(t) + X^2 \sin(t) + X^3 \cos(2t) + X^4 \sin(2t) + X^5 \cos(3t) + X^6 \sin(3t)$

Chernoff faces - R: faces (database) Package: aplpack $i = 1, \ldots, 24$

 (\mathbb{T}) $\left(\begin{smallmatrix} 0 & 1 \ 0 & 0 \end{smallmatrix}\right)$ $\begin{pmatrix} 1 \end{pmatrix}$ $\circ \circ$ ಿ∆್ $\begin{pmatrix} \mathbb{Q}_2 \end{pmatrix}$ \mathcal{L} (၅၂) $\begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}$ ່∆° Index Index Index \odot $(\widehat{\tau})$ $\left(\begin{matrix} 0 & 0 \\ 0 & 0 \end{matrix} \right)$ $\left(\tau\right)$ $\left(\frac{\Delta}{2}\right)$ °∆ (\widehat{v}) ∫®≬© ႞ၜႁၙၜႃ $\circledcirc_\mathtt{a} \circledcirc$ ಄ೢ ಄ೢ಄

Chernoff faces - R: faces (database) Package: aplpack $i = 1, \ldots, 24$

 $\left(\begin{matrix} \circ & \circ \\ \circ & \circ \end{matrix}\right)$ (\mathbb{C}) (\mathcal{V}) $\binom{1}{k}$ ್ತ್ರ
ಅ $\left(\begin{matrix} 0 \\ 0 \\ 0 \end{matrix}\right)$ ၜၟၜၟ \mathcal{L} $\begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}$ ່∆° Index Index Index \odot \bigodot $\widehat{(\mathcal{T})}$ $\left(\begin{matrix} 0 & 0 \\ 0 & 0 \end{matrix} \right)$ $\binom{1}{1}$ $\sqrt[\bullet]{\mathbf{v}}$ (\widehat{r}) ႞ၜၟ႞ၜႜ $\begin{pmatrix} \circ_{\Delta}\circ \\ \bullet \end{pmatrix}$ ಄ೣ಄ $\circledcirc_\mathtt{a} \circledcirc$ ಄ೢ಄

 $Chernoff faces$ \longrightarrow R : faces (database) Package : aplpack

 $i = 1, \ldots, 96$

Chernoff faces — R: faces (database) Package: aplpack

 $i = 1, \ldots, 96$

 $\begin{picture}(42,10) \put(0,0){\vector(0,1){10}} \put(15,0){\vector(0,1){10}} \put(15,0){\vector(0$ \odot \bigodot \bigcirc \circledast \bigoplus \odot $\sqrt{2}$ کھیے \odot (V Index In $\circled{\scriptstyle\circ}$ \bigodot $\widetilde{\mathbb{Q}}$ \circledS \odot $\left(\begin{matrix} \circ & \circ \\ \circ & \circ \end{matrix}\right)$ PA \odot \mathbb{Q} \odot \mathbb{Q} $\begin{picture}(45,17) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1$ \circledcirc $\bm{\widetilde{v}}$ \bigodot \odot $\left\langle \cdot ,\cdot \right\rangle$ $\left(\begin{matrix} \bullet & \bullet \\ \bullet & \bullet \end{matrix}\right)$ \mathscr{D} $\left(\begin{matrix} \circ & \circ \\ \circ & \circ \end{matrix}\right)$ $\left\langle \leftarrow \right\rangle$ $\left\langle \widehat{\mathbf{F}^{\prime\prime}_{\mathbf{a}}}\right\rangle$ Index $\widetilde{\mathbb{C}}$ **Rep** \circledast \odot $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ $\widetilde{\mathbb{C}}$ $\left(\begin{matrix} \circ & \circ \\ \circ & \circ \end{matrix}\right)$ \mathbb{C} \circledcirc $\left(\frac{1}{2}\right)$ Index Index Index Index Index Index $\widehat{\mathbb{C}}$ **PP** $\left(\begin{matrix} \bullet & \bullet \ \bullet & \bullet \end{matrix}\right)$ \odot \bigodot $\left($ \odot \bigcirc \widetilde{v} ١ \mathbb{C} \circledcirc $\begin{picture}(42,10) \put(0,0){\vector(0,1){10}} \put(15,0){\vector(0,1){10}} \put(15,0){\vector(0$ \bigodot \bigodot \bigoplus \odot $\widehat{(\mathcal{C})}$ $\left(\begin{matrix} \circ & \circ \\ \circ & \circ \end{matrix}\right)$ ١ $\left(\begin{matrix} 1 \\ 1\end{matrix}\right)$ \odot $\left(\begin{matrix} 0 \\ 0 \end{matrix}\right)$ $\binom{6}{6}$ \bigodot کی $\textcircled{\tiny\ensuremath{\mathbb{R}}}\ \textcircled{\tiny\ensuremath{\mathbb{R}}}$ \bigodot \bigodot \odot \bigcirc $\left(\begin{matrix} \n\bullet & \bullet \\
\bullet & \bullet\n\end{matrix}\right)$ $\left(\begin{matrix} 1 \\ 0 \end{matrix}\right)$ $\begin{pmatrix} \bullet_1 \bullet \\ \bullet_2 \bullet \end{pmatrix}$ $\left\langle \left\langle \cdot,\cdot\right\rangle \right\rangle$ مي
(ه $\begin{picture}(42,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line(1$ \odot \odot \bigodot \odot \mathbb{Q} \bigodot \odot $\left(\begin{matrix} \bullet & \bullet \\ \bullet & \bullet \end{matrix}\right)$ \bigcirc $\widehat{\mathbb{C}}$

[Part 2. Descriptive statistics for multivariate data](#page-99-0) [Principal Component Analysis](#page-99-0)

Principal component analysis (PCA)

PCA allows to explore large **multivariate data** $X = (x_i^1, \ldots, x_i^p), i = 1, \ldots, n$

- \blacktriangleright The variable (x^1,\ldots,x^p) are dependent (otherwise individual analyse!) and continuous (PCA for categorical data : Multiple correspondence analysis)
- In The dimension p is high and the visualisation of the global structure of the data is difficult
- \triangleright Correlated variable bring same information and could be resumed as linear combinations (i.e. principal factors) to reduce the dimension of the database

[Part 2. Descriptive statistics for multivariate data](#page-100-0) [Principal Component Analysis](#page-100-0)

Principal component analysis (PCA)

PCA allows to explore large **multivariate data** $X = (x_i^1, \ldots, x_i^p), i = 1, \ldots, n$

- \blacktriangleright The variable (x^1,\ldots,x^p) are dependent (otherwise individual analyse !) and continuous (PCA for categorical data : Multiple correspondence analysis)
- In The dimension p is high and the visualisation of the global structure of the data is difficult
- \triangleright Correlated variable bring same information and could be resumed as linear combinations (i.e. principal factors) to reduce the dimension of the database

Principle : Reduction of the dimension with uncorrelated linear combinations of (x^1, \ldots, x^p) maximising the variability

- \triangleright Geometric interpretation : Projection of the data in orthogonal basis maximising the variance (i.e. the information – other criteria may be used)
- \blacktriangleright The 1st component is an optimal representation of the data in one dimension, 1st and 2nd components optimal representation of the data in two dimensions, and so on

- \triangleright Orthogonal projection
- \blacktriangleright Maximisation of the variance $\sum_i s_i^2$
- ► $\forall i, d_i^2 = o_i^2 + s_i^2$
constant in any direction (distance to the center)

 $\Rightarrow \sum_i o_i^2 + \sum_i s_i^2 = C$

Maximising the variance ⇔ Minimising orthogonal squared distances

-
- \blacktriangleright Maximisation of the variance $\sum_i s_i^2$
- ► $\forall i, d_i^2 = o_i^2 + s_i^2$ $\sum_{i=1}^{n} a_i$ $\sum_{i=1}^{n} a_i$
constant in any direction (distance to the center)

 $\Rightarrow \sum_i o_i^2 + \sum_i s_i^2 = C$

Maximising the variance ⇔ Minimising orthogonal squared distances

 \blacktriangleright Principal component \neq linear regression

Example

$$
y_i = (x_i + \sigma z_i)(1 + \sigma^2)^{-1/2}
$$

 $a_{\text{PCA}} \rightarrow 1$ while $a_{\text{OLS}} \rightarrow (1 + \sigma^2)^{-1/2}$ as $n \rightarrow \infty$

[Part 2. Descriptive statistics for multivariate data](#page-107-0) [Principal Component Analysis](#page-107-0)

Construction of the components

Standard score transformations of the data

Construction of the components

Standard score transformations of the data

 $\tilde{x}_i^j \rightarrow \tilde{x}_i^j = \frac{x_i^j - \bar{x}^j}{s}$ s_{x} j

The total variance of the dataset is

$$
var_{\tilde{X}}=\frac{1}{n}\sum_{i=1}^n\sum_{j=1}^p\left(\tilde{x}_i^j\right)^2=\sum_{j=1}^p s_{\tilde{x}^j}^2 \qquad \qquad \text{(= p if std. score)}
$$

 $P_H\tilde{X}$ is the orthogonal projection of the data on subset H and $\tilde{X} - P_H\tilde{X}$ is the projection on a subset orthogonal to H , then (Pythagore)

$$
var_{\tilde{X}}=var_{P_H\tilde{X}}+var_{\tilde{X}-P_H\tilde{X}}
$$

PCA : Iterative calculation of orthogonal 1D subsets maximizing the variance

> . .

Construction of the components

Iterative construction of the components $(PC1, PC2, \ldots, PCp)$ as linear combinations of the centred data :

- \blacktriangleright $PC1 = \tilde{X}u_1, u_1$ such that var_{PC1} maximal
- \blacktriangleright $PC2 = \tilde{X}u_2, u_2 \perp u_1$ and var_{PC2} maximal
- \blacktriangleright $PC3 = \tilde{X}u_3, u_3 \perp (u_1, u_2)$ and var_{PC3} maximal .

▶ $PCp = \tilde{X}u_p, u_p \perp (u_1, \ldots, u_{p-1})$ (unique)

.

Construction of the components

Iterative construction of the components $(PC1, PC2, \ldots, PCp)$ as linear combinations of the centred data :

 \blacktriangleright $PC1 = \tilde{X}u_1, u_1$ such that var_{PC1} maximal

$$
\blacktriangleright \ PC2 = \tilde{X}u_2, u_2 \perp u_1 \text{ and } var_{PC2} \text{ maximal}
$$

$$
\blacktriangleright \text{ } PC3 = \tilde{X}u_3, u_3 \perp (u_1, u_2) \text{ and } var_{PC3} \text{ maximal}
$$

$$
\Rightarrow PCp = \tilde{X}u_p, u_p \perp (u_1, \ldots, u_{p-1}) \text{ (unique)}
$$

The unit vectors (u_1, u_2, \ldots, u_p) form an **orthonormal basis** $of R^p — The last component is fixed$ By construction $var_{PC1} \geq var_{PC2} \geq \ldots \geq var_{PCp}$ and $\sum_j var_{PCj} = var_{X}$ The first components contain most of the variability of the data when the initial variables are correlated

Construction with multivariate data

Variance/covariance matrix of the data Γ (diagonalizable $p \times p$ real and symmetric matrix)

$$
\Gamma = \frac{1}{n} X^t X \qquad \qquad \begin{array}{l} \Gamma_{j,j} = var_{\tilde{x}^j} = \frac{1}{n} \sum_i (\tilde{x}^j_i)^2, \\ \Gamma_{j,j'} = covar_{\tilde{x}^j, \tilde{x}^{j'}} = \frac{1}{n} \sum_i \tilde{x}^j_i \tilde{x}^{j'}_i, \qquad \forall j, j' \in \{1, \dots, p\} \end{array}
$$

Construction with multivariate data

Variance/covariance matrix of the data Γ (diagonalizable $p \times p$ real and symmetric matrix)

$$
\Gamma = \frac{1}{n} X^t X \qquad \qquad \begin{array}{l} \Gamma_{j,j} = var_{\tilde{x}^j} = \frac{1}{n} \sum_i (\tilde{x}^j_i)^2, \\ \Gamma_{j,j'} = covar_{\tilde{x}^j, \tilde{x}^{j'}} = \frac{1}{n} \sum_i \tilde{x}^j_i \tilde{x}^{j'}_i, \qquad \forall j, j' \in \{1, \dots, p\} \end{array}
$$

Principal components $PCj = \tilde{X} u_j$ described by eigenvectors and eigenvalues of Γ

Proof \tilde{X}_v is the projection of the data X on axis subset $v \in \mathbb{R}^p$ $var_{\tilde{X}_v} = \frac{1}{n} \sum_j \sum_{j'} v_j v_{j'} \sum_i \tilde{x}_i^j \tilde{x}_i^{j'} = v^t \Gamma v$ $=\sum_j \lambda_j \langle v, u_j \rangle^2 \leq \lambda_1 \sum_j \langle v, u_j \rangle^2 \leq \lambda_1 = var_{PC1}$ The axis v for which the variance is maximal is u_1 (and the variance is $var_{PC1})$

Then for all $v \perp u_1$ (i.e. $\langle v, u_1 \rangle = 0$), the axis maximizing the variance is u_2 etc. . .

Construction with bivariate data

The first component
$$
PC1 = u\tilde{x} + \sqrt{1 - u^2}\tilde{y}
$$
 is the straight line $y = a_{\text{PCA}}x$ with $a_{\text{PCA}} = \frac{\sqrt{1 - u^2}}{u}$ where u is such that\n\n
$$
var_{\text{PCA}} \propto \sum_i \left(u\tilde{x}_i + \sqrt{1 - u^2}\tilde{y}_i \right)^2
$$
\nis maximal\n\n
$$
\Rightarrow \text{ One finds } \qquad a_{\text{PCA}} = \frac{var_y - var_x + \sqrt{(var_y - var_x)^2 + 4covar_{x,y}^2}}{2covar_{x,y}}
$$

Construction with bivariate data

The first component $PC1 = u\tilde{x} + \sqrt{1 - u^2}\tilde{y}$ is the straight line $y = a_{\text{PCA}}x$ with $a_\mathsf{PCA} = \frac{\sqrt{1-u^2}}{u}$ where u is such that $var_{\mathsf{PC1}} \propto \sum$ i $\left(u\tilde{x}_i + \sqrt{1-u^2} \tilde{y}_i\right)^2$ is maximal → One finds $a_{\text{PCA}} = \frac{var_y - var_x + \sqrt{(var_y - var_x)^2 + 4covar_{x,y}^2}}{2covax}$ $2\text{cov}ar_x$

The slope for linear regression is $a_{OLS} = \frac{covar_{x,y}}{var_x}$ If $y_i = ax_i$ for all i , then $a_{\text{PCA}} = a_{\text{OLS}} = a$ (since $covar_{xy} = a\,var_x$ and $var_y = a^2var_x$) If $s_x = s_y$ then $a_{\text{PCA}} = \pm 1$, according to the sign of $covar_{x,y}$ (and $a_{\text{OLS}} = cor_{x,y}$) The second component has the slope $-1/a_\mathsf{PCA}$

Properties of the components

Maximization of the variability: PC1 best representation in 1D, $(PC1, PC2)$ best representation in 2D, . . .

Properties of the components

- \blacktriangleright Maximization of the variability : PC1 best representation in 1D, $(PC1, PC2)$ best representation in 2D, . . .
- \blacktriangleright The principal components $(PC1, \ldots, PCp)$ are centred :

$$
\forall j = 1, ..., p,
$$
 $\overline{PC}j = \frac{1}{n} \sum_{i=1}^{n} PCj_i = 0$

Properties of the components

- **Maximization of the variability**: PC1 best representation in 1D, $(PC1, PC2)$ best representation in 2D, . . .
- \blacktriangleright The principal components $(PC1, \ldots, PCp)$ are centred :

$$
\forall j = 1, ..., p,
$$
 $\overline{P}\overline{C}j = \frac{1}{n}\sum_{i=1}^{n} PCj_i = 0$

IF The principal components are not correlated, and with variance $(\lambda_1, \ldots, \lambda_n)$:

$$
\forall j \neq j', \qquad cov_{PCj, PCj'} = \frac{1}{n} \sum_{i=1}^{n} PCj_i PCj'_i = \lambda_j u_j^t u_{j'} = \begin{cases} \lambda_j & \text{if } j = j' \\ 0 & \text{if } j \neq j' \end{cases}
$$

 \rightarrow This does not imply that the principal components are independent Only the linear relations are resumed : Observation of non-linear phenomena

Properties of the components

- **Maximization of the variability**: PC1 best representation in 1D, $(PC1, PC2)$ best representation in 2D, . . .
- \blacktriangleright The principal components $(PC1, \ldots, PCp)$ are centred :

$$
\forall j = 1, ..., p,
$$
 $\overline{PC}j = \frac{1}{n} \sum_{i=1}^{n} PCj_i = 0$

IF The principal components are not correlated, and with variance $(\lambda_1, \ldots, \lambda_n)$:

$$
\forall j \neq j', \qquad cov_{PCj, PCj'} = \frac{1}{n} \sum_{i=1}^{n} PCj_i PCj'_i = \lambda_j u_j^t u_{j'} = \begin{cases} \lambda_j & \text{if } j = j' \\ 0 & \text{if } j \neq j' \end{cases}
$$

 \rightarrow This does not imply that the principal components are independent Only the linear relations are resumed : Observation of non-linear phenomena

Interpretation of the components with the correlations to the initial variables

$$
\forall j,j' \in \{1,\ldots,p\}, \quad cor_{x^j, PCj'} = u^j_{j'}\sqrt{\lambda_{j'}}/s_{x^j}
$$

Practical use of PCA

In practice, the PCA consists in :

- 1. Calculus of the variances of the principal components (eigenvalues) to select the number of new variables to take in consideration
	- \rightarrow [Plot of the proportions of variance per component](#page-124-0) $\qquad \tau_j = \lambda_j / \sum_i \lambda_i$

Practical use of PCA

In practice, the PCA consists in :

- 1. Calculus of the variances of the principal components (eigenvalues) to select the number of new variables to take in consideration
	- \rightarrow [Plot of the proportions of variance per component](#page-124-0) $\qquad \tau_j = \lambda_j / \sum_i \lambda_i$
- 2. Analysis of the correlations of the selected components with the initial variables to interpret the new variables
	- \rightarrow [Circle of the correlations plot](#page-126-0)

Practical use of PCA

In practice, the PCA consists in :

- 1. Calculus of the variances of the principal components (eigenvalues) to select the number of new variables to take in consideration
	- \rightarrow [Plot of the proportions of variance per component](#page-124-0) $\qquad \tau_j = \lambda_j / \sum_i \lambda_i$
- 2. Analysis of the correlations of the selected components with the initial variables to interpret the new variables
	- \rightarrow [Circle of the correlations plot](#page-126-0)
- 3. Analysis of the components (linear and non-linear phenomena)
	- \rightarrow [Boxplot, scatter plots or clustering analysis of the new variables](#page-127-0)

Example of the notes

Six measurements for the notes

Principal components — R : prcomp(database)

Rotations (eigenvectors u_j)

Plot of the proportions of variance per component

Selection of the component number

Variance proportion per component

Principal Components

Plot of the proportions of variance per component

Selection of the component number

Variance proportion per variable

Initial variables

Plot of the circle of the correlations

Interpretation of the components

Circle of the correlations

PC1 Large flag / Short border — Long / not large note

• PC2 Large flag and down border / Short up border

Scatter plot of the components

Analysis of the results

Scatter plot of the two first components

1st component

Scatter plot of the components

Analysis of the results

Scatter plot of the two first components

1st component

PCA with R

Read of the data data data=read.table(' $C/(...')$)

\triangleright Principal component analysis with R promp (M)

No standard score transformation of the data by default prcomp(M,scale=T) for PCA on standard scores

\blacktriangleright Basic example :

pca=prcomp(data) pca\$rotations pca\$stddev summary(pca)

Principal component regression

OLS estimation has interesting properties if regressors are linearly independent

- Regression on the principal components
- **Principal components**: $p \times n$ matrix $PC = \hat{X}SU$ \hat{X} is the **centred data** $(\hat{x}_i^j \rightarrow x_i^j - \bar{x}^j$ for all $i,j)$ $S = Diag(1/s_{x^1}, \ldots, 1/s_{x^p})$ is the diagonal $p \times p$ normalization matrix $U = (u_1, \ldots, u_p)$ is the $p \times p$ matrix of **unit and orthogonal** eigenvectors
- Regression on the components : ${}_{1}^{PC}PC1 + \ldots + \alpha_{p}^{PC}PCp$ $\tilde{\alpha}^{PC} = (PC^tPC)PC^t y = (SU)^{-1}(X^t X)X^t y = (SU)^{-1} \tilde{\alpha}$

Principal component regression

OLS estimation has interesting properties if regressors are linearly independent

- Regression on the principal components
- **Principal components**: $p \times n$ matrix $PC = \hat{X}SU$ \hat{X} is the **centred data** $(\hat{x}_i^j \rightarrow x_i^j - \bar{x}^j$ for all $i,j)$ $S = Diag(1/s_{x^1}, \ldots, 1/s_{x^p})$ is the diagonal $p \times p$ normalization matrix $U = (u_1, \ldots, u_p)$ is the $p \times p$ matrix of **unit and orthogonal** eigenvectors
	- Regression on the components : ${}_{1}^{PC}PC1 + \ldots + \alpha_{p}^{PC}PCp$ $\tilde{\alpha}^{PC} = (PC^tPC)PC^t y = (SU)^{-1}(X^t X)X^t y = (SU)^{-1} \tilde{\alpha}$

The estimation using initial parameters is $\tilde{\alpha} = SU\tilde{\alpha}^{PC}$ and $\tilde{\alpha}_0 = \bar{y} - \frac{1}{n}\hat{X}\tilde{\alpha}$ By shorting the regressors to the first principal components the model still depends on all the initial variables

Principal component analysis : Summary

PCA is a descriptive tool allowing to reduce the dimension of multivariate data

 \rightarrow Then use of tools for low dimension data (uni- or bivariate)

The principal components are

- Linear combinations of the initial variables
- Linearly independent
- Ordered by maximizing the variability

Practical use of PCA :

- Number of components used Proportion of variance per component
	-
	-

– Interpretation of the new variables Circle of the correlations – Analysis of the components Scatter plot of the components Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course # 107/2017

 L [Part 2. Descriptive statistics for multivariate data](#page-133-0) $\mathrel{\sqsubseteq}_{\mathsf{Clustering}}$ methods

[Clustering methods](#page-7-0)

Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course # 107/2017

[Part 2. Descriptive statistics for multivariate data](#page-134-0) $\mathrel{\sqsubseteq}$ [Clustering methods](#page-134-0)

Introduction

Clustering : Division of heterogeneous data in subsets (clusters)

 \rightarrow Observations in the same cluster are more similar (in some sense) to each other than to those in other subsets

Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course # 107/2017

[Part 2. Descriptive statistics for multivariate data](#page-135-0) [Clustering methods](#page-135-0)

Introduction

Clustering : Division of heterogeneous data in subsets (clusters)

Observations in the same cluster are more similar (in some sense) to each other than to those in other subsets

Possible distinctions

Supervised / unsupervised : Clusters and cluster number are known / unknown Strict clustering : Each observation belongs to exactly one cluster Strict clustering with outliers : Observations can also belong to no cluster (outliers) Overlapping clustering : Observations may belong to more than one cluster Fuzzy clustering : Each observation belongs to each cluster according to a certain degree Hierarchical clustering : Observations of a child cluster also belong to the parent cluster Centroid clustering : Cluster represented by a centroid (mean value) Density-based clustering : Clustering based on empirical PDF estimation

K-means clustering $-$ R : kmeans (database, K)

Observation (x_1, \ldots, x_n) , partition $S = \{S_1, \ldots, S_K\}$, mean by cluster (u_1, \ldots, u_K)

Unsupervised clustering method based on mean by cluster (k-medoid based on median) \rightarrow Number of clusters K to be given

Minimization of the intra-cluster variability

$$
S = \arg\min_{S} \sum_{j=1}^K \sum_{i \in S_j} \|x_i - u_j\|^2
$$

K-means clustering $-$ R : kmeans (database, K)

Observation (x_1, \ldots, x_n) , partition $S = \{S_1, \ldots, S_K\}$, mean by cluster (u_1, \ldots, u_K)

Unsupervised clustering method based on mean by cluster (k-medoid based on median) \rightarrow Number of clusters K to be given

Minimization of the intra-cluster variability

$$
S = \arg\min_{S} \sum_{j=1}^K \sum_{i \in S_j} \|x_i - u_j\|^2
$$

Minimizing the intra-variability \Leftrightarrow Maximizing the inter-variability (Pythagore)

Partition based on the Voronoi diagram for the means

Calculation of the global minimum is a NP-complex problem

 \rightarrow Iterative numerical algorithms (Hartigan-Wong, Lloyd-Forgy, ...) with convergence to local minima

K-means : Illustrative example with 3 clusters

Convergence to steady state in 3 steps (the step's number depends on the initial partition / mean values) In this example the reached local optimum is the global one

[Part 2. Descriptive statistics for multivariate data](#page-139-0) $\mathrel{\sqsubseteq}$ [Clustering methods](#page-139-0)

Agglomerative hierarchical method (AHM) - R: hclust(dist(data))

Hierarchical method: Unsupervised clustering based on tree representations

- \blacktriangleright Top of the tree : One cluster with all the observations
- \triangleright Bottom of the tree : each observation is a cluster

Agglomerative hierarchical method (AHM) – R: hclust(dist(data))

Hierarchical method : Unsupervised clustering based on tree representations

- \triangleright Top of the tree : One cluster with all the observations
- \triangleright Bottom of the tree : each observation is a cluster

Agglomerative iterative method (bottom up approach, by opposition to divisive methods)

- 1. Initialization : Each observation is a cluster
- 2. Definition of the metric (Euclidean, Manhattan, Mahalanobis, maximum, ...)
- 3. Definition of a distance between two clusters Linkage (max, min, mean, centroid, ...)
- 4. Repeat while Cluster_number > 1 {Merge_two_closest_clusters}

Dendrogram : Tree with observation in x-coordinate and distances in y -coordinate

Cut of the dendrogram determinates the number of clusters

AHM : Illustrative example

The dendrogram allows to summarize/represent the hierarchical clustering

Cut of the dendrogram when the branches are long (cut at height h give groups having distance higher than h)

AHM : Illustrative example

The dendrogram allows to summarize/represent the hierarchical clustering

Cut of the dendrogram when the branches are long (cut at height h give groups having distance higher than h)

AHM : Illustrative example

The dendrogram allows to summarize/represent the hierarchical clustering

Cut of the dendrogram when the branches are long (cut at height h give groups having distance higher than h)
AHM : Illustrative example

The dendrogram allows to summarize/represent the hierarchical clustering

Cut of the dendrogram when the branches are long (cut at height h give groups having distance higher than h)

Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course # 107/2017 [Part 2. Descriptive statistics for multivariate data](#page-145-0) [Clustering methods](#page-145-0)

Mean-shift clustering — ms(database) Package LPMC

K-means and AHM based on distances to quantify the similarities

Mean-shift clustering : Gradient-method based on kernel density estimate

- Iterative method allowing to detect local maximum of the kernel density
- \blacktriangleright Method calibrated by a **bandwidth** (to be given)
- \triangleright Clustering : threshold for local maxima (cluster number), kernel density gradient (cluster belonging)
- \rightarrow See also DBSCAN or OPTICS algorithms

Mean-shift clustering — ms(database) Package LPMC

K-means and AHM based on distances to quantify the similarities

Mean-shift clustering : Gradient-method based on kernel density estimate

- \blacktriangleright Iterative method allowing to detect local maximum of the kernel density
- \blacktriangleright Method calibrated by a **bandwidth** (to be given)
- \triangleright Clustering : threshold for local maxima (cluster number), kernel density gradient (cluster belonging)
- \rightarrow See also DBSCAN or OPTICS algorithms

More flexible method than K-means or AHM, suitable for any type of clusters Bandwidth not easy to calibrate, adaptive bandwidth often required

Illustrative examples

Circular clusters : K-means, AHM and mean-shift methods give satisfying results \rightarrow Distance between observations in each clusters smaller than distance between cluster's means

Illustrative examples

Non-circular clusters : K-means not adapted / AHM and mean-shift more robust

 \rightarrow Distance between observations in each clusters bigger than distance between cluster's means

Illustrative examples

 \triangle Clustering methods find clusters even if there is no significant dissimilarities \rightarrow Criteria for significance of inter/intra-variability, dendrogram branch size, bandwidth size, ...

Example of the notes

AHM

2nd component

2nd component

Banknotes

1st component

Linear discriminant analysis — lda(data,cluster) Package MASS

Linear discriminant analysis

I I I I

 \blacktriangleright Data:

Discriminant variable D as linear combination of the regressors minimizing the variance by cluster $Y = 1, \ldots, K$:

$$
D(\alpha_0, ..., \alpha_p) = \alpha_0 + \alpha_1 X^1 + ... + \alpha_p X^p
$$

with $(\alpha_0, ..., \alpha_p) = \arg \min_{\alpha} \sum_{j=1}^K \sum_{Y_i=j} (D_i - \bar{D}_j)^2$

Linear discriminant analysis — lda(data,cluster) Package MASS

Linear discriminant analysis

I I I I

 \blacktriangleright Data: Continuous explanatory variables (regressors) X^1, \ldots, X^p Discrete variable to explain (clusters) $Y = 1, ..., K$

Discriminant variable D as linear combination of the regressors minimizing the variance by cluster $Y = 1, \ldots, K$:

$$
D(\alpha_0, ..., \alpha_p) = \alpha_0 + \alpha_1 X^1 + ... + \alpha_p X^p
$$

with $(\alpha_0, ..., \alpha_p) = \arg \min_{\alpha} \sum_{j=1}^K \sum_{Y_i=j} (D_i - \bar{D}_j)^2$

The discriminant D in the linear combination of the (X^j) minimizing the intra-variability Best linear combination of the regressors (X^j) for the clustering given by Y

LDA : Example of the notes

LDA : Example of the notes

 \rightarrow The linear discriminant and the K-means only match when the given clustering in LDA is the one minimizing the intra-variability for $\alpha_0 = 0$ and $\alpha_j = 1$ for all $j = 1, \ldots, p$

Clustering and LDA with R

Clustering methods

 \triangleright K-means kmean(database,k)

with database the data (vector or matrix) and k the number of clusters

 \blacktriangleright AHM hclust(dist(X))

- Specification of the metric dist() (see option methods)
- $-$ Specification of the linkage with option methods in hclust() function
- $-$ Cutting of the dendrogram with cutree (H, k) , with H a hclust ()-object and k the number of clusters

If Mean-shift ms(X,h)

with h the bandwidth — Package LPMC to install

Linear discriminant analysis $1 da(X)$ or $f da(X)$

. Packages MASS or MDA to install

Clustering : Summary

Clustering methods allow to partition heterogeneous data in homogeneous clusters

Clustering : Summary

Clustering methods allow to partition heterogeneous data in homogeneous clusters

- ▶ Optimisation of intra/inter-variability K-means
	- \rightarrow Fixed number of clusters
- In Hierarchy between the observations https://www.mateurarchical method
	- \rightarrow Representation with dendrogram
- $\triangleright \rightarrow$ Cluster based on empirical PDF Mean-shift Specification of the bandwidth

 \triangle Significance of a clustering has to be tested: Intra/inter-variability difference, branch size of dendrogram, bandwidth size over observation number, ...

Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course # 107/2017

 L [Part 2. Descriptive statistics for multivariate data](#page-158-0) $\label{eq:footstrap} \begin{array}{c} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \end{array}$

[Bootstrap technique](#page-7-0)

[Part 2. Descriptive statistics for multivariate data](#page-159-0) [Bootstrap technique](#page-159-0)

Introduction

Regression, PCA and clustering allow to define and calibrate models

 \rightarrow Single (punctual) estimates of the parameters

Would the estimations be the same for another sample of observations?

In other worlds : How does the estimation depend on the specific values of the sample

Introduction

Regression, PCA and clustering allow to define and calibrate models

Single (punctual) estimates of the parameters

Would the estimations be the same for another sample of observations?

In other worlds : How does the estimation depend on the specific values of the sample

Bootstrap technique allows to answer these questions by

- 1. Resampling the observations (independent urn sampling)
- 2. Analysing the distribution of the estimates on the (bootstrap) subsamples

Numerical technique allowing to evaluate the precision of estimation of model parameters Approaching initially used in end of the 1970's when computer capacity became important

[Part 2. Descriptive statistics for multivariate data](#page-161-0)

 $\label{eq:footstrap} \begin{array}{c} \rule{2mm}{2mm} \rule[1mm]{2mm}{2mm} \rule[$

Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course $\# 107/2017$

An illustrative example

A machine produces some components

- \rightarrow Some of them are operational, some others are defective
- \rightarrow Estimation the probability p that a component is defective

[Bootstrap technique](#page-162-0)

An illustrative example

A machine produces some components

- \rightarrow Some of them are **operational**, some others are **defective**
- \rightarrow Estimation the probability p that a component is defective

Two sets of observations

- 1. Sample 1: Among 10 observed components, two are defective
- 2. Sample 2: Among 100 observed components twenty two are defective
- \rightarrow Respective estimates : $\tilde{p}_1 = 0.2$ and $\tilde{p}_2 = 0.22$

Are these estimations precise?

Bootstraping — R : sample(data,n,replace=T)

Bootstraping

Histogram of the estimations of probability p for 1e5 bootstrap subsamples

Example of the notes

1e3 bootstrap subsamples

K-means on the two first principal components

1st component

Example of the notes

1e4 bootstrap subsamples

K-means on the two first principal components

1st component

Bootstrap : Summary

- \triangleright The Bootstrap method is strictly descriptive, with no assumption on the data and their distribution
- \blacktriangleright The method is purely numerical and can be computationally costly
- \triangleright Bootstrap does not improve punctual estimate but give information on its variability (i.e. the precision of estimation)
- \triangleright The approach can be used for any type of estimates (mean, quantil, etc...)
- **Smooth bootstrap** by adding noise onto each resampled observation (equivalent to sampling from a kernel density estimate of the data).
- \blacktriangleright Time series : Moving block bootstrap
- \triangleright Bootstrap with random variable generator : Monte Carlo simulation

verview

[Part 1](#page-8-0) | [Descriptive statistics for univariate and bivariate data](#page-8-0)

[Repartition of the data \(histogram,](#page-11-0) [kernel density,](#page-15-0) [empirical cumulative distribution function\),](#page-19-0) [order statistic and quantile,](#page-27-0) [statistics for location](#page-29-0) [and variability,](#page-40-0) [boxplot,](#page-26-0) [scatter plot,](#page-46-0) [covariance and correlation,](#page-47-0) [QQplot](#page-57-0)

[Part 2](#page-63-0) | [Descriptive statistics for multivariate data](#page-63-0) [Least squares and](#page-67-0) [linear](#page-73-0) [and non-linear regression models,](#page-76-0) [principal component analysis,](#page-81-0) [principal component regression,](#page-130-0) [clustering methods](#page-133-0) [\(K-means,](#page-136-0) [hierarchical, density-based\),](#page-139-0) [linear discriminant analysis,](#page-151-1) [bootstrap technique](#page-158-1)

[Part 3](#page-168-0) | [Parametric statistic](#page-168-0)

[Likelihood,](#page-198-0) [estimator definition and main properties](#page-205-0) [\(bias,](#page-210-0) [convergence\),](#page-213-0) [punctual estimate](#page-230-0) [\(maximum likelihood estimation,](#page-234-0) [Bayesian estimation\),](#page-244-0) [confidence and credible intervals,](#page-252-0) [information criteria,](#page-290-0) [test of hypothesis,](#page-296-0) [parametric clustering](#page-306-0)

[Appendix](#page-324-0) **LATEX** plots with R and Tikz

The example of the dice

The example of the dice

The example of the machine

A machine produces some components that can be operational or defective

Estimation of the probability p that a component is defective by mean value

$$
\tilde{p}_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad \text{with} \quad X_i = \left\{ \begin{array}{cl} 0 & \text{if the component i is operational} \\ 1 & \text{if the component i is defective} \end{array} \right.
$$

The estimation from a sample with 100 observations is more precise than the estimation with 10 observations (cf. bootstrap)

 Why ? Because the variability of the mean decreases as the observation number increases

- Implicitly this reasoning supposes **probabilist assumptions** on the convergence of the mean, its distribution or again existence of expected values
- \rightarrow Parametric statistic

[Part 3. Parametric statistic](#page-172-0) $L_{\text{Introduction}}$ $L_{\text{Introduction}}$ $L_{\text{Introduction}}$

Introduction

Fundamental assumption in parametric (or inference or mathematical) statistic :

The observations $i = 1, \ldots, n$ are independent random variables with probability distribution function P_θ , $\theta \in \mathbb{R}^k$

- \rightarrow Independent and identically distributed (iid) model
- \blacktriangleright P_{θ} is general (but can have to satisfy properties) θ are the parameters of the models
- **IF** The data are supposed to be a sample of observations of the distribution P_θ

Introduction

Fundamental assumption in parametric (or inference or mathematical) statistic :

The observations $i = 1, \ldots, n$ are independent random
variables with probability distribution function P_{θ} , $\theta \in \mathbb{R}^k$

- \rightarrow Independent and identically distributed (iid) model
- \blacktriangleright P_{θ} is general (but can have to satisfy properties) θ are the parameters of the models
- **IF** The data are supposed to be a sample of observations of the distribution P_{θ}

The parametric statistic allows to:

- **Fit the parameters** θ of a model and evaluate the **precision of estimation**
- \triangleright Obtain properties on usual estimators or posterior distribution (Bayesian approach)
- \blacktriangleright Testing modelling assumptions and compare models

Assumption : Normal distribution) $f(x) = e^{-\frac{(x-\mu)^2}{2\sigma^2}} \sqrt{2\pi\sigma^2}^{-1}$ \rightarrow Estimation of μ and σ by $\tilde{\mu}_n = \bar{x}$ and $\tilde{\sigma}_n = s_x$

Assumption : Normal distribution) $f(x) = e^{-\frac{(x-\mu)^2}{2\sigma^2}} \sqrt{2\pi\sigma^2}^{-1}$ \rightarrow Estimation of μ and σ by $\tilde{\mu}_n = \bar{x}$ and $\tilde{\sigma}_n = s_x$

Assumption : Normal distribution) $f(x) = e^{-\frac{(x-\mu)^2}{2\sigma^2}} \sqrt{2\pi\sigma^2}^{-1}$ \rightarrow Estimation of μ and σ by $\tilde{\mu}_n = \bar{x}$ and $\tilde{\sigma}_n = s_x$

Assumption : Gamma distribution $\frac{k-1e^{-x/\alpha}}{\Gamma(k)\alpha^k}$ \rightarrow $\;$ Estimation of k and α by $\tilde{k}_n = {\bar x}^2 / var_x$ and $\tilde{\alpha}_n = var_x / {\bar x}$

Convergence of random variables

Convergence in distribution and the convergence in distribution denoted D

A sequence X_1, X_2, \ldots of real-valued random variables is said to **converge in distribution**, or converge weakly, or converge in law to a random variable X if

 $D_n(x) \to D(x)$ as $n \to \infty$ for all $x \in \mathbb{R}$ at which F is continuous

Here D_n and D are the **cumulative distribution functions** of X_n and X, respectively.
Convergence of random variables

Convergence in distribution and the convergence in distribution denoted D

A sequence X_1, X_2, \ldots of real-valued random variables is said to **converge in distribution**, or converge weakly, or converge in law to a random variable X if

 $D_n(x) \to D(x)$ as $n \to \infty$ for all $x \in \mathbb{R}$ at which F is continuous

Here D_n and D are the **cumulative distribution functions** of X_n and X, respectively.

Convergence in probability and **Properties** \blacksquare denoted P

 X_1, X_2, \ldots converges in probability towards the random variable X if for all $\varepsilon > 0$

 $P(|X_n - X| > \varepsilon) \to 0$ as $n \to \infty$

Convergence of random variables

Convergence in distribution and the convergence in distribution denoted D

A sequence X_1, X_2, \ldots of real-valued random variables is said to **converge in distribution**, or converge weakly, or converge in law to a random variable X if

 $D_n(x) \to D(x)$ as $n \to \infty$ for all $x \in \mathbb{R}$ at which F is continuous

Here D_n and D are the **cumulative distribution functions** of X_n and X , respectively.

Example 2 Convergence in probability and the convergence of P

 X_1, X_2, \ldots converges in probability towards the random variable X if for all $\varepsilon > 0$

$$
P(|X_n - X| \ge \varepsilon) \to 0 \quad \text{as} \quad n \to \infty
$$

Almost sure convergence and the convergence denoted a.s.

 X_1, X_2, \ldots converges almost surely, or almost everywhere, or with probability 1, or strongly towards X if

$$
P(X_n \to X \text{ as } n \to \infty) = 1
$$

[Part 3. Parametric statistic](#page-182-0) $\mathrel{\Box}_{\mathsf{Introduction}}$ $\mathrel{\Box}_{\mathsf{Introduction}}$ $\mathrel{\Box}_{\mathsf{Introduction}}$

Main theorems

Law of large number (LLN)

 (X_1, \ldots, X_n) is a iid sample with expected value $E(X_i) = \mu < \infty$. Then

$$
\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \; \overset{\text{a.s.}}{\to} \; E(X_i) = \mu \quad \text{as} \quad n \to \infty
$$

 \rightarrow Mean value converges to expected value

Main theorems

[Introduction](#page-183-0)

Law of large number (LLN) (X_1, \ldots, X_n) is a iid sample with expected value $E(X_i) = \mu < \infty$. Then $\bar{X}_n = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n X_i \stackrel{\text{a.s.}}{\rightarrow} E(X_i) = \mu \text{ as } n \rightarrow \infty$ $i=1$

Mean value converges to expected value

Central limit theorem (CLT)

 (X_1,\ldots,X_n) is a iid sample with $E(X_i)=\mu<\infty$ and $var_{X_i}=\sigma^2<\infty.$ Then

 $\sqrt{n} \frac{\bar{X}_n - \mu}{\sqrt{n}}$ $\frac{-\mu}{\sigma} \stackrel{\text{D}}{\rightarrow} Z$ as $n \to \infty$, with Z a normal random variable

Mean value has a normal asymptotic distribution

In the example machine, the state of a component has a Bernoulli distribution with expected value $\mu=p<\infty$ and variance $\sigma^2=p(1-p)<\infty$

\rightarrow Assumptions of LLN and CLT hold

The estimation \tilde{p} of the probability p that a component is defective is the mean value estimate

$$
\tilde{p}_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad \text{with} \quad X_i = \begin{cases} 0 & \text{if the component } i \text{ is operational} \\ 1 & \text{if the component } i \text{ is defective} \end{cases}
$$

In the example machine, the state of a component has a Bernoulli distribution with expected value $\mu=p<\infty$ and variance $\sigma^2=p(1-p)<\infty$

\rightarrow Assumptions of LLN and CLT hold

The estimation \tilde{p} of the probability p that a component is defective is the mean value estimate

$$
\tilde{p}_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad \text{with} \quad X_i = \left\{ \begin{array}{ll} 0 & \text{if the component } i \text{ is operational} \\ 1 & \text{if the component } i \text{ is defective} \end{array} \right.
$$

► LLN allows to show that the mean \tilde{p} converges to p as $n \to \infty$

In the example machine, the state of a component has a Bernoulli distribution with expected value $\mu=p<\infty$ and variance $\sigma^2=p(1-p)<\infty$

\rightarrow Assumptions of LLN and CLT hold

The estimation \tilde{p} of the probability p that a component is defective is the mean value estimate

$$
\tilde{p}_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad \text{with} \quad X_i = \left\{ \begin{array}{ll} 0 & \text{if the component } i \text{ is operational} \\ 1 & \text{if the component } i \text{ is defective} \end{array} \right.
$$

- ► LLN allows to show that the mean \tilde{p} converges to p as $n \to \infty$
- \triangleright CLT allows to describe the distribution of this estimator and to quantify the precision of estimation of p by \tilde{p} for fixed n

Number of observations *n*

Number of observations *n*

Distribution of the mean value — 1e4 samples

Normal PDF4 $0 \t 1 \t 2 \t 3 \t 4$ ∞ Density \sim \rightarrow \circ 0 0.1 *p* 0.3 0.4 0.5 $\tilde{p}_n = \frac{1}{n} \sum_i X_i$

 $n = 20$

Distribution of the mean value — 1e4 samples

Distribution of the mean value — 1e4 samples

Distribution of the mean value — 1e4 samples

[Part 3. Parametric statistic](#page-193-0) L [Introduction](#page-193-0)

Example of the Cauchy distribution

Cauchy distribution C has PDF $f(x) = (\pi(1+x^2))^{-1}$ with no expected value

 \hat{A} Conditions for LLN and CLT are not satisfied Mean value does not converge !

Number of observations *n*

Number of observations *n*

Number of observations *n*

The likelihood function $L_{\theta}(x)$ of a set of parameter θ and given data x is

$$
L_{\theta}(x) = P(x | \theta) = P(x_1, \ldots, x_n | \theta)
$$

The likelihood function $L_{\theta}(x)$ of a set of parameter θ and given data x is

$$
L_{\theta}(x) = P(x | \theta) = P(x_1, \dots, x_n | \theta)
$$

Fig. 1 The likelihood is a function of θ for a given sample

The likelihood function $L_{\theta}(x)$ of a set of parameter θ and given data x is

$$
L_{\theta}(x) = P(x | \theta) = P(x_1, \dots, x_n | \theta)
$$

- **Fig.** The likelihood is a function of θ for a given sample
- \triangleright Since the observations are iid, the likelihood is the product with P_{θ} the family of PDF for the (X_i)

$$
L_{\theta}(x) = \prod_{i=1}^{n} P_{\theta}(x_i)
$$

The likelihood function $L_{\theta}(x)$ of a set of parameter θ and given data x is

$$
L_{\theta}(x) = P(x | \theta) = P(x_1, \dots, x_n | \theta)
$$

- **Fig.** The likelihood is a function of θ for a given sample
- \triangleright Since the observations are iid, the likelihood is the product with P_{θ} the family of PDF for the (X_i)
- **IDE-Log-likelihood** to manipulate sum instead of product \mathcal{L}_{θ}

$$
L_{\theta}(x) = \prod_{i=1}^{n} P_{\theta}(x_i)
$$

$$
L(\theta(x)) = \sum_{i=1}^{n} \log (P_{\theta}(x_i))
$$

The likelihood function $L_{\theta}(x)$ of a set of parameter θ and given data x is

$$
L_{\theta}(x) = P(x | \theta) = P(x_1, \dots, x_n | \theta)
$$

- **Fig.** The likelihood is a function of θ for a given sample
- \triangleright Since the observations are iid, the likelihood is the product with P_{θ} the family of PDF for the (X_i)
- \blacktriangleright Log-likelihood to manipulate sum instead of product

I ļ

$$
L_{\theta}(x) = \prod_{i=1}^{n} P_{\theta}(x_i)
$$

$$
\mathcal{L}_{\theta}(x) = \sum_{i=1}^{n} \log (P_{\theta}(x_i))
$$

Normal model :

$$
L_{\theta}(x) = \exp\left(-\frac{\sum_{i}(x_{i}-\mu)^{2}}{2\sigma^{2}}\right)(2\pi\sigma^{2})^{-\frac{n}{2}}
$$

$$
\mathcal{L}_{\theta}(x) = -\frac{1}{2\sigma^{2}}\sum_{i}(x_{i}-\mu)^{2} - \frac{n}{2}\log(2\pi\sigma^{2})
$$

Normalised likelihood and log-likelihood for the normal distribution

PDF and random number generation with R

More than 20 distributions available with R

Examples

...

Normal distribution Uniform distribution Poisson distribution

 $\mathrel{\sqsubseteq}$ [Part 3. Parametric statistic](#page-205-0) [Estimator](#page-205-0)

[Estimator](#page-7-0)

 $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$ $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$ $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$

The parameters θ are calibrated using estimators

 \rightarrow An estimator $\tilde{\theta}_n$ is a statistic i.e. a function of the data

with \vert I ł I

$$
\begin{array}{lcl} \tilde{\theta} & : & \mathbb{R}^n & \mapsto & \mathbb{R}^k \\ & & x & \mapsto & \tilde{\theta}_n(x) \end{array}
$$

 n the number of observations k the number of parameters $x = (x_1, \ldots, x_n)$ the observations

 $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$ $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$ $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$

 \rightarrow An estimator $\tilde{\theta}_n$ is a statistic i.e. a function of the data

$$
\begin{array}{ccc}\n\tilde{\theta} & \colon & \mathbb{R}^n & \mapsto & \mathbb{R}^k \\
x & \mapsto & \tilde{\theta}_n(x) & \text{with} & k \text{ the number of observations} \\
x & \mapsto & \tilde{\theta}_n(x)\n\end{array}
$$

An estimator $\tilde{\theta}_n$ is a random variable (with mean value, variance, etc...)

 $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$ $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$ $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$

The parameters θ are calibrated using estimators

An estimator $\tilde{\theta}_n$ is a statistic i.e. a function of the data

 $\tilde{\theta}$: Rⁿ \mapsto R^k $x \quad \mapsto \quad \tilde{\theta}_n(x)$ with $\Bigg|$ I n the number of observations k the number of parameters $x=(x_1,\ldots,x_n)$ the observations

An estimator $\tilde{\theta}_n$ is a random variable (with mean value, variance, etc...)

IDED The distribution of $\tilde{\theta}_n$ depends on the distribution of the data (and so on θ and on n)

 $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$ $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$ $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$

The parameters θ are calibrated using estimators

An estimator $\tilde{\theta}_n$ is a statistic i.e. a function of the data

 $\tilde{\theta}$: Rⁿ \mapsto R^k $x \quad \mapsto \quad \tilde{\theta}_n(x)$ with $\Bigg|$ I n the number of observations k the number of parameters $x=(x_1,\ldots,x_n)$ the observations

- An estimator $\tilde{\theta}_n$ is a random variable (with mean value, variance, etc...)
- **IDED** The distribution of $\tilde{\theta}_n$ depends on the distribution of the data (and so on θ and on n)
- An estimator $\tilde{\theta}_n$ must have specific properties to estimate the parameters θ

Bias of an estimator

 $E_\theta\tilde\theta_n=\int_{\mathbb{R}^n}\tilde\theta_n(x)\prod_i\mathsf{d} P_\theta(x_i)$ is the expected value of the estimator $\tilde\theta_n$

The bias B of an estimator $\tilde{\theta}_n$ of θ is the quantity

$$
B_{\theta}(\tilde{\theta}_n) = \theta - E_{\theta}(\tilde{\theta}_n)
$$

 \blacktriangleright An estimator is called unbiased if

$$
E_{\theta}(\tilde{\theta}_n) = \theta \qquad \forall \theta \in \mathbb{R}^k
$$

 \blacktriangleright An estimator is asymptotically unbiased if

$$
E_{\theta}(\tilde{\theta}_n) \! \to \! \theta \quad \text{as} \quad n \! \to \! \infty \qquad \forall \theta \in \mathbb{R}^k
$$

Bias : Examples

 $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$ $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$ $\mathrel{\sqsubseteq}_{\mathrel{\mathsf{Estimator}}}$

Bias for the mean value

▶ The mean \bar{X} is a unbiased estimate of the expected value $E_{\mu}X_i = \mu$

$$
E_{\mu}(\bar{X}) = E_{\mu} \left(\frac{1}{n} \sum_{i} X_{i} \right) = \frac{1}{n} \sum_{i} E_{\mu} X_{i} = \mu \qquad \forall \mu
$$

Bias : Examples

Bias for the mean value

 \blacktriangleright The mean \bar{X} is a unbiased estimate of the expected value $E_{\mu}X_i = \mu$

$$
E_{\mu}(\bar{X}) = E_{\mu} \left(\frac{1}{n} \sum_{i} X_{i} \right) = \frac{1}{n} \sum_{i} E_{\mu} X_{i} = \mu \quad \forall \mu
$$

Bias for the variance

 \blacktriangleright The empirical variance s_X^2 is asymptotically an unbiased estimate of the variance $var_{\sigma}(X_i) = \sigma^2$

$$
E_{\sigma}(s_X^2) = E_{\sigma} \left(\frac{1}{n} \sum_i (X_i - \bar{X})^2 \right) = \frac{1}{n} \sum_i E_{\sigma}(X_i^2) - E_{\sigma}(\bar{X}^2) = \frac{n-1}{n} \sigma^2 \qquad \forall \sigma
$$

\n
$$
\rightarrow \quad \tilde{s}_X^2 = \frac{n}{n-1} s_X^2 = \frac{1}{n-1} \sum_i (X_i - \bar{X})^2 \text{ is an unbiased estimate of the variance}
$$

Error and mean squared error

The error e of an estimator $\tilde{\theta}_n$ of θ is the quantity

$$
e_{\theta}(\tilde{\theta}_n) = \tilde{\theta}_n - \theta
$$

- \blacktriangleright The error is a random variable for which the variability is the one of the estimator
- \blacktriangleright The error is centred if the estimator is unbiased

Error and mean squared error

The error e of an estimator $\tilde{\theta}_n$ of θ is the quantity

$$
e_{\theta}(\tilde{\theta}_n) = \tilde{\theta}_n - \theta
$$

- \blacktriangleright The error is a random variable for which the variability is the one of the estimator
- \blacktriangleright The error is centred if the estimator is unbiased

The mean squared error MSE of an estimator $\tilde{\theta}_n$ of θ is the quantity

$$
MSE_{\theta}(\tilde{\theta}_n) = E_{\theta}((\tilde{\theta}_n - \theta)^2) = var_{\theta}(\tilde{\theta}_n) + B_{\theta}^2(\tilde{\theta}_n)
$$

- \blacktriangleright The mean squared error is a deterministic quantity (variance of the error)
- \triangleright Compromise between bias and variance of the estimator

Convergence properties

An estimator $\tilde{\theta}_n$ of θ is called **consistent** if

$$
\tilde{\theta}_n \to \theta \quad \text{as} \quad n \to \infty \qquad \forall \theta \in \mathbb{R}^k
$$

- ▶ Necessary $MSE_{\theta}(\tilde{\theta}_n) \rightarrow 0$ for a consistent estimator, i.e. at least asymptotic unbiased and with asymptotic variance nil
- \blacktriangleright Property generally obtained from the law of large numbers
Convergence properties

An estimator $\tilde{\theta}_n$ of θ is called **consistent** if

$$
\tilde{\theta}_n \to \theta \quad \text{as} \quad n \to \infty \qquad \forall \theta \in \mathbb{R}^k
$$

- ► Necessary $MSE_{\theta}(\tilde{\theta}_n) \rightarrow 0$ for a consistent estimator, i.e. at least asymptotic unbiased and with asymptotic variance nil
- \blacktriangleright Property generally obtained from the law of large numbers

The speed of convergence of a consistent estimator $\tilde{\theta}_n$ of θ is $\gamma > 0$ such that

$$
n^\gamma(\tilde\theta_n-\theta)\!\to\!Z\quad\text{as}\quad n\!\to\!\infty\qquad\forall\theta\in\mathbb{R}^k
$$

- \blacktriangleright Higher the convergence speed, better is the estimator
- Asymptotic convergence speed of $1/2$ given by the central limit theorem

 $L_{Estimator}$ $L_{Estimator}$ $L_{Estimator}$

Example of the uniform distribution

Estimator $\tilde{u}_1 = 2\bar{X}_n = \frac{2}{n} \sum_i X_i$

- Expected value: $E(\tilde{u}_1) = \frac{2}{n} \sum_i E(X_i) = u$ since $E(X_i) = u/2$ Unbiased estimator
- **Convergence speed** $\gamma = 1/2$ $^{1/2}(\tilde{u}_1-u)\rightarrow Z$ as $n\rightarrow\infty$

Estimator $\tilde{u}_1 = 2\bar{X}_n = \frac{2}{n} \sum_i X_i$

- Expected value: $E(\tilde{u}_1) = \frac{2}{n} \sum_i E(X_i) = u$ since $E(X_i) = u/2$ Unbiased estimator
- **Convergence speed** $\gamma = 1/2$ $^{1/2}(\tilde{u}_{1}-u)\!\rightarrow\! Z$ as $n\rightarrow\infty$

Estimator $\tilde{u}_2 = \max_i X_i$

▶ $P(\tilde{u}_2 \leq x) = P(\cap_i \{X_i \leq x\}) = (x/u)^n$ therefore a PDF for \tilde{u}_2 is $f_2(x) = nx^{n-1}u^{-n}$ Expected value: $E(\tilde{u}_2) = \int x f_2 dx = \frac{n}{n+1}$ Asymptotically unbiased estimator

 $\blacktriangleright P(n^{\gamma}(\tilde{u}_2 - u) \geq \varepsilon) = 1 - (1 + \varepsilon n^{-\gamma}/u)^n \sim 1 - e^{\varepsilon n^{1-\gamma}/u} \to 0$ as $n \to \infty$ if $\gamma > 1$ Convergence speed $\gamma = 1$

Estimator $\tilde{u}_1 = 2\bar{X}_n = \frac{2}{n} \sum_i X_i$ Expected value: $E(\tilde{u}_1) = \frac{2}{n} \sum_i E(X_i) = u$ since $E(X_i) = u/2$ Unbiased estimator **Convergence speed** $\gamma = 1/2$ $^{1/2}(\tilde{u}_{1}-u)\!\rightarrow\! Z$ as $n\rightarrow\infty$ **Estimator** $\tilde{u}_2 = \max_i X_i$ ▶ $P(\tilde{u}_2 \leq x) = P(\cap_i \{X_i \leq x\}) = (x/u)^n$ therefore a PDF for \tilde{u}_2 is $f_2(x) = nx^{n-1}u^{-n}$ Expected value: $E(\tilde{u}_2) = \int x f_2 dx = \frac{n}{n+1}$ Asymptotically unbiased estimator $\blacktriangleright \; P\big(n^\gamma(\tilde{u}_2-u)\geq \varepsilon\big)=1-(1+\varepsilon n^{-\gamma}/u)^n\sim 1-e^{\varepsilon n^{1-\gamma}/u}\to 0$ as $n\to\infty$ if $\gamma>1$ Convergence speed $\gamma = 1$ \tilde{u}_2 better than \tilde{u}_1

Number of observations *n*

Number of observations *n*

Distribution of the estimators — 1e4 samples

 $n = 1000$

 \tilde{u}_1

Distribution of the estimators — 1e4 samples

 \tilde{u}_2

Sufficient statistic, Fisher Information and efficient estimate

A statistic $\tilde{\theta}_n^s(x)$ is $\textbf{sufficient}$ (or exhaustive) with respect to an unknown parameter θ if

No other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter (Ronald Fisher)

Fisher–Neyman factorization criterion : $\tilde{\theta}_n$ sufficient for θ iff $\exists g, h, L_\theta(x) = h(x) g_\theta(\tilde{\theta}_n(x))$

Sufficient statistic, Fisher Information and efficient estimate

A statistic $\tilde{\theta}_n^s(x)$ is $\textbf{sufficient}$ (or exhaustive) with respect to an unknown parameter θ if

No other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter (Ronald Fisher)

Fisher–Neyman factorization criterion : $\tilde{\theta}_n$ sufficient for θ iff $\exists g, h$, $L_{\theta}(x) = h(x) g_{\theta}(\tilde{\theta}_n(x))$

Example of the uniform distribution on $[0,u]$: $L_u(x) = u^{-n} 1_{\min_i x_i \geq 0} 1_{\max_i x_i \leq u}$ $\rightarrow \tilde{u}_2 = \max_i x_i$ is a sufficient statistic for u but $\tilde{u}_1 = 2\bar{x}_n$ is not

Sufficient statistic, Fisher Information and efficient estimate

A statistic $\tilde{\theta}_n^s(x)$ is $\textbf{sufficient}$ (or exhaustive) with respect to an unknown parameter θ if

No other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter (Ronald Fisher)

Fisher–Neyman factorization criterion : $\tilde{\theta}_n$ sufficient for θ iff $\exists g, h$, $L_{\theta}(x) = h(x) g_{\theta}(\tilde{\theta}_n(x))$

Example of the uniform distribution on $[0,u]$: $L_u(x) = u^{-n} 1_{\min_i x_i \geq 0} 1_{\max_i x_i \leq u}$ \rightarrow $\tilde{u}_2 = \max_i x_i$ is a sufficient statistic for u but $\tilde{u}_1 = 2\bar{x}_n$ is not

Blackwell–Rao theorem: For any estimate $\tilde{\theta}_n$ of θ , $var_{\theta}(E(\tilde{\theta}_n|\tilde{\theta}_n^s)) \leq var_{\theta}(\tilde{\theta}_n)$

Sufficient statistic, Fisher Information and efficient estimate

A statistic $\tilde{\theta}_n^s(x)$ is $\textbf{sufficient}$ (or exhaustive) with respect to an unknown parameter θ if

No other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter (Ronald Fisher)

Fisher–Neyman factorization criterion : $\tilde{\theta}_n$ sufficient for θ iff $\exists g, h$, $L_{\theta}(x) = h(x) g_{\theta}(\tilde{\theta}_n(x))$

Example of the uniform distribution on $[0,u]$: $L_u(x) = u^{-n} 1_{\min_i x_i \geq 0} 1_{\max_i x_i \leq u}$ \rightarrow $\tilde{u}_2 = \max_i x_i$ is a sufficient statistic for u but $\tilde{u}_1 = 2\bar{x}_n$ is not

- **Blackwell–Rao theorem**: For any estimate $\tilde{\theta}_n$ of θ , $var_{\theta}(E(\tilde{\theta}_n|\tilde{\theta}_n^s)) \leq var_{\theta}(\tilde{\theta}_n)$
- ► Fisher information $I_x(\theta) = E[(\partial ln(L_\theta(x))/\partial \theta)^2]$ quantifies information on θ given by x \to We have in general $I_{\tilde{\theta}(x)}(\theta)\leq I_x(\theta)$ and $I_{\tilde{\theta}^S(x)}(\theta)=I_x(\theta)$ for a sufficient statistic

Sufficient statistic, Fisher Information and efficient estimate

A statistic $\tilde{\theta}_n^s(x)$ is $\textbf{sufficient}$ (or exhaustive) with respect to an unknown parameter θ if

No other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter (Ronald Fisher)

Fisher–Neyman factorization criterion : $\tilde{\theta}_n$ sufficient for θ iff $\exists g, h$, $L_{\theta}(x) = h(x) g_{\theta}(\tilde{\theta}_n(x))$

Example of the uniform distribution on $[0,u]$: $L_u(x) = u^{-n} 1_{\min_i x_i \geq 0} 1_{\max_i x_i \leq u}$ \rightarrow $\tilde{u}_2 = \max_i x_i$ is a sufficient statistic for u but $\tilde{u}_1 = 2\bar{x}_n$ is not

- **Blackwell–Rao theorem**: For any estimate $\tilde{\theta}_n$ of θ , $var_{\theta}(E(\tilde{\theta}_n|\tilde{\theta}_n^s)) \leq var_{\theta}(\tilde{\theta}_n)$
- ► Fisher information $I_x(\theta) = E[(\partial ln(L_\theta(x))/\partial \theta)^2]$ quantifies information on θ given by x \to We have in general $I_{\tilde{\theta}(x)}(\theta)\leq I_x(\theta)$ and $I_{\tilde{\theta}^S(x)}(\theta)=I_x(\theta)$ for a sufficient statistic

► Cramer–Rao bound : Under regularity assumptions $1/I_x(\theta) \leq var_{\theta}(\tilde{\theta}_n)$, $\forall \tilde{\theta}_n$ unbiased \rightarrow An estimate is called efficient iff $var_\theta(\tilde{\theta}_n) = 1/I_r(\theta)$

 \rightarrow An efficient statistic is necessary sufficient

[Part 3. Parametric statistic](#page-230-0) $\mathrel{\mathop{\rule{0pt}{.15pt}\textstyle \rule{0pt}{0.5pt}}\mathrel{...}}$ [Punctual estimation](#page-230-0)

[Punctual estimation](#page-7-0)

[Part 3. Parametric statistic](#page-231-0) [Punctual estimation](#page-231-0)

Introduction

aa

Punctual estimations of parameters are non-linear optimisation problems for an

```
objective function f_x(\theta)
```
- x are the data (given)
- θ are the parameters (to optimize over \mathbb{R}^k)
- \rightarrow Hard problem when f is not regular (discontinuous, multi-modal, noisy, ...) Convergence to local minima

Introduction

[Punctual estimation](#page-232-0)

```
Punctual estimations of parameters are non-linear optimisation problems for an
                               objective function f_x(\theta)aa
   x are the data (given)
   \theta are the parameters (to optimize over \mathbb{R}^k)
\rightarrow Hard problem when f is not regular (discontinuous, multi-modal, noisy, ...)
    Convergence to local minima
```
Formulation of the objective function f by

-
-
- ▶ Bayesian approach **Prior on the parameters**

Least squares Non-parametric approach I Likelihood Maximum likelihood estimate

Optimisation with R

MLE and posterior PDF are optimisation problems for functions $f: \mathbb{R}^k \mapsto \mathbb{R}$

Optimisation with R (general case) $\qquad \qquad \text{optim}(\text{par},f)$

with par the initial values for the parameters and f the function to optimize

Exist different optimisation methods (Nelder-Mead, quasi-Newton, ...) Quasi-Netwon method ''L-BFGS-B'' allows box constraints for the parameter

Least-squares optimisation with R

- \blacktriangleright Multilinear models lm(f,X)
	- \triangleright Non-linear models number of \blacksquare nls(f,X,par)

Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course $\# 107/2017$

[Part 3. Parametric statistic](#page-234-0) [Punctual estimation](#page-234-0)

Maximum likelihood estimation

Maximum Likelihood Estimation (MLE)

$$
\tilde{\theta}^{\text{MLE}}(x) = \arg\max_{\theta \in \mathbb{R}^k} L_{\theta}(x)
$$

- **IDED** Most probable estimation knowing the data of parameter θ for the distribution family
- \blacktriangleright MLE can be determined by maximizing the log-likelihood

[Punctual estimation](#page-235-0)

Maximum likelihood estimation

Maximum Likelihood Estimation (MLE)

$$
\tilde{\theta}^{\mathsf{MLE}}(x) = \arg\max_{\theta \in \mathbb{R}^k} L_{\theta}(x)
$$

- **IDED** Most probable estimation knowing the data of parameter θ for the distribution family
- \blacktriangleright MLE can be determined by maximizing the log-likelihood

MLE have many interesting properties justifying its large use

- \triangleright MLE not necessary unbiased but is in general asymptotically unbiased
- \blacktriangleright If it exits a sufficient statistic then MLE depends on it (but MLE not necessary sufficient)
- If it exits a efficient statistic then it is the MLE (regularity assumptions of Cramer-Rao th.)
- \rightarrow MLE generally better than least squares or moment methods (cf. uniform distribution)

MLE for the normal distribution

MLE for the normal distribution

Introduction to descriptive and parametric statistic with R Forschungszentrum Jülich – Training Course # 107/2017

[Part 3. Parametric statistic](#page-238-0) [Punctual estimation](#page-238-0)

MLE for different distributions

• Normal distribution

The likelihood of the Gaussian model is $L_{\theta}(x) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\big(-\frac{\sum_i (x_i - \mu)^2}{2\sigma^2}\big)$ MLE of μ and σ solution of $\frac{\partial L_{\theta}}{\partial \mu} = \frac{\partial L_{\theta}}{\partial \sigma} = 0$ are $\tilde{\mu}_n^{\text{MLE}}$ $\frac{MLE}{n} = \bar{x}$ and $\tilde{\sigma}_n^{\text{MLE}} = s_x$

 \rightarrow Arithmetic mean and empirical variance are the MLE for parameters μ and σ^2 of the normal distribution

[Part 3. Parametric statistic](#page-239-0) [Punctual estimation](#page-239-0)

MLE for different distributions

• Normal distribution

The likelihood of the Gaussian model is $L_{\theta}(x)=\frac{1}{(\sqrt{2\pi}\sigma)^n}\exp\big(-\frac{\sum_i(x_i-\mu)^2}{2\sigma^2}\big)$ MLE of μ and σ solution of $\frac{\partial L_{\theta}}{\partial \mu} = \frac{\partial L_{\theta}}{\partial \sigma}$ $\tilde{\rho}_{n}^{MLE} = \bar{x}$ and $\tilde{\sigma}_{n}^{MLE} = s_x$

 \rightarrow Arithmetic mean and empirical variance are the MLE for parameters μ and σ^2 of the normal distribution

Exponential distribution

The likelihood of the exponential model is $L_\lambda(x) = \lambda^n \exp\big(-\lambda \sum_i x_i\big)$ MLE of λ solution of $\frac{\partial L_{\lambda}}{\partial \lambda} = 0$ is $\tilde{\lambda}_n^{\text{MLE}}$ $\tilde{\lambda}_n^{\text{MLE}} = (\bar{x})^{-1}$

Inverse of arithmetic mean is the MLE for the exponential distribution parameter λ

[Part 3. Parametric statistic](#page-240-0) [Punctual estimation](#page-240-0)

MLE for different distributions

• Normal distribution

The likelihood of the Gaussian model is $L_{\theta}(x)=\frac{1}{(\sqrt{2\pi}\sigma)^n}\exp\big(-\frac{\sum_i(x_i-\mu)^2}{2\sigma^2}\big)$ MLE of μ and σ solution of $\frac{\partial L_{\theta}}{\partial \mu} = \frac{\partial L_{\theta}}{\partial \sigma} = 0$ are $\tilde{\mu}_n^{\text{MLE}}$ $n^{\text{MLE}} = \bar{x}$ and $\tilde{\sigma}_n^{\text{MLE}} = s_x$

 \rightarrow Arithmetic mean and empirical variance are the MLE for parameters μ and σ^2 of the normal distribution

Exponential distribution

The likelihood of the exponential model is
$$
L_{\lambda}(x) = \lambda^n \exp\big(-\lambda \sum_i x_i\big)
$$

\n $\text{MLE of } \lambda$ solution of $\frac{\partial L_{\lambda}}{\partial \lambda} = 0$ is $\tilde{\lambda}_n^{\text{MLE}} = (\bar{x})^{-1}$

Inverse of arithmetic mean is the MLE for the exponential distribution parameter λ

• Uniform distribution

The likelihood of the uniform model on $[0, u]$ is $L_u(x) = \begin{cases} \frac{1}{u^{7t}} & \text{if } \min_i x_i \geq 0 \text{ and } \max_i x_i \leq u \ 0 & \text{otherwise} \end{cases}$ MLE of u is $\tilde{u}_n^{\text{MLE}} = \max_i x_i$ (but $\frac{\partial L_u}{\partial u}$ not defined for $u = \max_i x_i$)

The maximum is the MLE of u for the uniform distribution on $[0, u]$

[Part 3. Parametric statistic](#page-241-0) $\mathrel{\mathop{\rule{0pt}{.15pt}\textstyle \rule{0pt}{1.5pt}}\mathrel{\mathop{\rule{0pt}{.15pt}}\textstyle \rule{0pt}{1.5pt}}$ [Punctual estimation](#page-241-0)

MLE and the linear regression

Linear model with Gaussian noise

$$
y_i = (ax_i + b) + \sigma \mathcal{E}_i, \qquad \text{with } (\mathcal{E}_i) \text{ iid } \mathcal{N}(0, 1)
$$

 \rightarrow Residuals $R_i(a, b) = y_i - (ax_i + b)$ are supposed normally distributed

[Part 3. Parametric statistic](#page-242-0) [Punctual estimation](#page-242-0)

MLE and the linear regression

Linear model with Gaussian noise

$$
y_i = (ax_i + b) + \sigma \mathcal{E}_i, \qquad \text{with } (\mathcal{E}_i) \text{ iid } \mathcal{N}(0, 1)
$$

 \rightarrow Residuals $R_i(a, b) = y_i - (ax_i + b)$ are supposed normally distributed

The likelihood of the Gaussian linear model is

$$
L_{\theta}(x) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left(-\frac{\sum_i (y_i - (ax_i + b))^2}{2\sigma^2}\right)
$$

▶ Likelihood maximal if $\sum_i (y_i - (ax_i + b))^2$ is minimal

MLE and the linear regression

Linear model with Gaussian noise

 $y_i = (ax_i + b) + \sigma \mathcal{E}_i$, with (\mathcal{E}_i) iid $\mathcal{N}(0, 1)$

 \rightarrow Residuals $R_i(a, b) = y_i - (ax_i + b)$ are supposed normally distributed

The likelihood of the Gaussian linear model is

$$
L_{\theta}(x) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left(-\frac{\sum_i (y_i - (ax_i + b))^2}{2\sigma^2}\right)
$$

▶ Likelihood maximal if $\sum_i (y_i - (ax_i + b))^2$ is minimal

 \rightarrow OLS estimates is MLE when the residuals are Gaussian (and the empirical standard deviation is the MLE of noise amplitude σ) [Part 3. Parametric statistic](#page-244-0) [Punctual estimation](#page-244-0)

The Bayesian approach

Bayesian approach consists in using prior distributions for the parameters and to analyse posterior distributions conditionally to the data

- **Data** x are observable random variables with distribution (likelihood) $P(x | \theta)$
- **Parameters** θ are latent (unknown) random variables with prior distribution $P(\theta)$

The Bayesian approach

Bayesian approach consists in using prior distributions for the parameters and to analyse posterior distributions conditionally to the data

- **Data** x are observable random variables with distribution (likelihood) $P(x | \theta)$
- **Parameters** θ are latent (unknown) random variables with prior distribution $P(\theta)$

Bayes Theorem

assuming
$$
P(x)
$$
, $P(\theta) > 0$

$$
P_x(\theta) = P(\theta | x) = \frac{P(x, \theta)}{P(x)} = \frac{P(\theta)P(x | \theta)}{P(x)}
$$

posterior ∝ prior ∗ likelihood

- **Punctual estimations of** θ **by mode, median or mean of posterior distribution** $P_x(\theta)$
- **Posterior distribution** $=$ **(normalized) likelihood** when prior is uniform
	- \rightarrow MLE is the mode of posterior with non-informative prior

[Part 3. Parametric statistic](#page-246-0) [Punctual estimation](#page-246-0)

Algorithms to calculate MLE and posterior PDF

MLE or posterior PDF are complex problems having in general no explicit solutions

 \rightarrow – Approximation by **iterative algorithms** (starting from initial value $\tilde{\theta}_n^{(0)}$ for the parameters)

Algorithms to calculate MLE and posterior PDF

MLE or posterior PDF are complex problems having in general no explicit solutions

- \rightarrow Approximation by **iterative algorithms** (starting from initial value $\tilde{\theta}_n^{(0)}$ for the parameters)
- **Gibbs sampling Community** Community Randomized algorithm MCMC Simulation of $\tilde{\theta}_n^{(i)}$ as random variables with distribution $P\Big(\tilde{\theta}_n^{(i-1)}\Big)P\Big(x\,|\,\tilde{\theta}_n^{(i-1)}\Big)$ (convergence to posterior distribution)

Expectation-Maximization (EM) Deterministic algorithm

Iterations of maximisation of the parameters $\tilde{\theta}_n^{(i)}$ of the expected log-likelihood conditionally to the data and values $\tilde{\theta}_n^{(i-1)}$ of the parameters at previous step

Variational Bayesian (VB) Deterministic algorithm

Estimation of posterior distribution by minimizing the Kullback-Leibler divergence measure with parameter previous values $\tilde{\theta}_n^{(i-1)}$ over a partition of their domain

[Punctual estimation](#page-248-0)

Comparing Bayesian, MLE and OLS approaches

OLS and MLE are close when residuals have compact (normal) distributions

Bayesian estimate and MLE are close when :

Pior bring few information (straight distribution) or data is large (concentrated likelihood)

Bayesian estimate and MLE are different when :

Prior are strong (concentrated distribution) or **data is few** (straight likelihood)

Comparing Bayesian, MLE and OLS approaches

OLS and MLE are close when residuals have compact (normal) distributions

Bayesian estimate and MLE are close when :

Pior bring few information (straight distribution) or data is large (concentrated likelihood)

Bayesian estimate and MLE are different when :

Prior are strong (concentrated distribution) or **data is few** (straight likelihood)

MLE or OLS should be substituted by Bayesian estimates when :

- The dataset is small
- Models are complex (many parameters)
- We have a priori on the parameter values
- Dynamical integration of new data

[Part 3. Parametric statistic](#page-250-0) $\mathrel{\mathop{\rule{0pt}{.15pt}}\mathrel{\mathop{\rule{0pt}{.15pt}}\mathrel{\mathop{\rule{0pt}{.15pt}}\mathrel{\mathop{\rule{0pt}{.15pt}}\nolimits}}}}$ [Punctual estimation](#page-250-0)

[Part 3. Parametric statistic](#page-251-0) $\mathrel{\mathop{\rule{0pt}{.15pt}\textstyle \rule{0pt}{1.5pt}}\mathrel{\mathop{\rule{0pt}{.15pt}}\textstyle \rule{0pt}{1.5pt}}$ [Punctual estimation](#page-251-0)

Summary

[Part 3. Parametric statistic](#page-252-0) $\label{eq:recision} \begin{array}{c} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \end{array}$

[Precision of estimation](#page-7-0)

[Part 3. Parametric statistic](#page-253-0) [Precision of estimation](#page-253-0)

Introduction

Punctual estimates give no indication on the precision of estimation

A fitting can be insignificant when it changes from a sample to another (cf. bootstrap) Significance of the differences between different populations to statute

Evaluation of the precision of estimation with confidence intervals

Introduction

Punctual estimates give no indication on the precision of estimation

A fitting can be insignificant when it changes from a sample to another (cf. bootstrap) Significance of the differences between different populations to statute

Evaluation of the **precision of estimation** with **confidence intervals**

 $Cl = [i_-, i_+]$ is a confidence interval for θ at the confidence level $1 - \alpha$ if

$$
P_{\theta}(\theta \in \mathsf{CI}) \ge 1 - \alpha, \qquad \forall \theta \in \mathbb{R}^k
$$

Parameter θ belongs to CI in more than $1 - \alpha$ % of the cases

- Interval of values with a confidence level instead of punctual estimation
- **►** Precision of estimation of deterministic quantities : Size of the CI reduces as $n \to \infty$
- \triangleright Distinct from prediction intervals taking into account the noise to predict new observations

Introduction to descriptive and parametric statistic with R Forschungszentrum Julich – Training Course $\# 107/2017$

[Part 3. Parametric statistic](#page-255-0) $L_{\text{Precision of estimation}}$ $L_{\text{Precision of estimation}}$ $L_{\text{Precision of estimation}}$

a

Construction of a confidence interval

The construction of a confidence interval is based on knowledge on the distribution (variability), or on the asymptotic distribution, of an estimator

If $q_{\theta}(u)$ is the quantile of the estimator $\tilde{\theta}_n$, then by construction $P_{\theta}(\tilde{\theta}_n(x) \in [q_{\theta}(\alpha/2), q_{\theta}(1-\alpha/2)]) \geq 1-\alpha, \qquad \forall \theta \in \mathbb{R}^k, \quad \alpha \in (0,1)$

Construction of a CI by extracting θ in the inequalities $\tilde{\theta}_n(x) \in [q_\theta(\alpha/2), q_\theta(1-\alpha/2)]$

[Part 3. Parametric statistic](#page-256-0) $L_{\text{Precision of estimation}}$ $L_{\text{Precision of estimation}}$ $L_{\text{Precision of estimation}}$

a

Construction of a confidence interval

The construction of a confidence interval is based on knowledge on the distribution (variability), or on the asymptotic distribution, of an estimator

If $q_{\theta}(u)$ is the quantile of the estimator $\tilde{\theta}_n$, then by construction

 $P_{\theta}(\tilde{\theta}_n(x) \in [q_{\theta}(\alpha/2), q_{\theta}(1-\alpha/2)]) \geq 1-\alpha, \qquad \forall \theta \in \mathbb{R}^k, \quad \alpha \in (0,1)$

Construction of a CI by extracting θ in the inequalities $\tilde{\theta}_n(x) \in [q_\theta(\alpha/2), q_\theta(1-\alpha/2)]$

\triangle Situation generally not accessible since estimator distribution is unknown

- ▶ Use of sufficient conditions Tchebychev inequality
- **Asymptotic distribution** Central limit theorem
- **In Posterior distribution** Bayes approach **Bayes approach**

Assumption : $x = (X_1, \ldots, X_n)$ is a iid P_θ -sample, $\theta = E(X_i)$, for which exists unbiased estimator $\tilde{\theta}_n$ of θ such that $var_{\theta}(\tilde{\theta}_n) \leq K_n < \infty$

Assumption: $x = (X_1, \ldots, X_n)$ is a iid P_θ -sample, $\theta = E(X_i)$, for which exists unbiased estimator $\tilde{\theta}_n$ of θ such that $var_\theta(\tilde{\theta}_n) \leq K_n < \infty$

The Tchebychev inequality gives: $P_\theta(|\theta - \tilde{\theta}_n| > \epsilon) \leq \frac{K_n}{\epsilon^2}, \quad \forall \epsilon > 0, \quad \theta \in \mathbb{R}$ $\;\rightarrow\;$ For $\epsilon=\sqrt{K_n/\alpha},\,\alpha\in(0,1),$ we get the symmetric CI for θ : $P_{\theta}(\theta \in \left\lceil \tilde{\theta}_n \pm \sqrt{K_n/\alpha} \right\rceil) \geq 1 - \alpha$ ${C}$ I level α

Assumption: $x = (X_1, \ldots, X_n)$ is a iid P_θ -sample, $\theta = E(X_i)$, for which exists unbiased estimator $\tilde{\theta}_n$ of θ such that $var_{\theta}(\tilde{\theta}_n) \leq K_n < \infty$

The Tchebychev inequality gives: $P_\theta(|\theta - \tilde{\theta}_n| > \epsilon) \leq \frac{K_n}{\epsilon^2}, \quad \forall \epsilon > 0, \quad \theta \in \mathbb{R}$ $\;\rightarrow\;$ For $\epsilon=\sqrt{K_n/\alpha},\,\alpha\in(0,1),$ we get the symmetric CI for θ : $P_{\theta}(\theta \in \left\lceil \tilde{\theta}_n \pm \sqrt{K_n/\alpha} \right\rceil) \geq 1 - \alpha$ ${C}$ I level α

In CI tends to punctual estimator if variability bound K_n tends to zero

Assumption: $x = (X_1, \ldots, X_n)$ is a iid P_θ -sample, $\theta = E(X_i)$, for which exists unbiased estimator $\tilde{\theta}_n$ of θ such that $var_{\theta}(\tilde{\theta}_n) \leq K_n < \infty$

The Tchebychev inequality gives: $P_\theta(|\theta - \tilde{\theta}_n| > \epsilon) \leq \frac{K_n}{\epsilon^2}, \quad \forall \epsilon > 0, \quad \theta \in \mathbb{R}$ $\;\rightarrow\;$ For $\epsilon=\sqrt{K_n/\alpha},\,\alpha\in(0,1),$ we get the symmetric CI for θ : $P_{\theta}(\theta \in \left\lceil \tilde{\theta}_n \pm \sqrt{K_n/\alpha} \right\rceil) \geq 1 - \alpha$ ${C}$ I level α

- In CI tends to punctual estimator if variability bound K_n tends to zero
- ► CI tends to $\mathbb R$ if $\alpha \to 0$ (θ trivially always belong to CI)

Assumption: $x = (X_1, \ldots, X_n)$ is a iid P_θ -sample, $\theta = E(X_i)$, for which exists unbiased estimator $\tilde{\theta}_n$ of θ such that $var_{\theta}(\tilde{\theta}_n) \leq K_n < \infty$

The Tchebychev inequality gives: $P_\theta(|\theta - \tilde{\theta}_n| > \epsilon) \leq \frac{K_n}{\epsilon^2}, \quad \forall \epsilon > 0, \quad \theta \in \mathbb{R}$ $\;\rightarrow\;$ For $\epsilon=\sqrt{K_n/\alpha},\,\alpha\in(0,1),$ we get the symmetric CI for θ : $P_{\theta}(\theta \in \left\lceil \tilde{\theta}_n \pm \sqrt{K_n/\alpha} \right\rceil) \geq 1 - \alpha$ ${C}$ I level α

- In CI tends to punctual estimator if variability bound K_n tends to zero
- ► CI tends to $\mathbb R$ if $\alpha \to 0$ (θ trivially always belong to CI)
- **► Tchebychev inequality very large**: parameter belongs to the CI in more than 1α % of the cases — Confidence interval for excess

[Precision of estimation](#page-262-0)

Asymptotic confidence intervals

 ${\sf Assumption:}\;\; x=(X_1,\ldots,X_n)$ is a iid P_θ -sample, $\theta=E(X_i)$ and $\sigma^2=var(X_i)<\infty$ Central limit theorem $\left(\sqrt{n}\frac{1/n\sum_{i}X_{i}-\theta}{\sigma}\in\left[q_{\mathcal{N}}(\alpha/2),q_{\mathcal{N}}(1-\alpha/2)\right]\right)\underset{n\rightarrow\infty}{\overset{D}{\rightarrow}}1-\alpha$

 ${\sf Assumption:}\;\; x=(X_1,\ldots,X_n)$ is a iid P_θ -sample, $\theta=E(X_i)$ and $\sigma^2=var(X_i)<\infty$ Central limit theorem $\left(\sqrt{n}\frac{1/n\sum_{i}X_{i}-\theta}{\sigma}\in\left[q_{\mathcal{N}}(\alpha/2),q_{\mathcal{N}}(1-\alpha/2)\right]\right)\underset{n\rightarrow\infty}{\overset{D}{\rightarrow}}1-\alpha$

Asymptotic symmetric confidence interval for θ :

$$
P_{\theta}\left(\theta \in \underbrace{\left[\frac{1}{n}\sum_{i} X_{i} \pm q_{\mathcal{N}}(\alpha/2)\frac{\sigma}{\sqrt{n}}\right]}_{\text{asymptotic CI level }\alpha}\right) \to 1 - \alpha \quad \text{as} \quad n \to \infty
$$

 ${\sf Assumption:}\;\; x=(X_1,\ldots,X_n)$ is a iid P_θ -sample, $\theta=E(X_i)$ and $\sigma^2=var(X_i)<\infty$ Central limit theorem $\left(\sqrt{n}\frac{1/n\sum_{i}X_{i}-\theta}{\sigma}\in\left[q_{\mathcal{N}}(\alpha/2),q_{\mathcal{N}}(1-\alpha/2)\right]\right)\underset{n\rightarrow\infty}{\overset{D}{\rightarrow}}1-\alpha$

Asymptotic symmetric confidence interval for θ :

$$
P_{\theta}\left(\theta \in \underbrace{\left[\frac{1}{n}\sum_{i} X_{i} \pm q_{\mathcal{N}}(\alpha/2)\frac{\sigma}{\sqrt{n}}\right]}_{\text{asymptotic CI level }\alpha}\right) \to 1 - \alpha \quad \text{as} \quad n \to \infty
$$

► CI tends to mean value if $\sigma^2 = var(X_i) \to 0$ or if $n \to \infty$

 ${\sf Assumption:}\;\; x=(X_1,\ldots,X_n)$ is a iid P_θ -sample, $\theta=E(X_i)$ and $\sigma^2=var(X_i)<\infty$ Central limit theorem $\left(\sqrt{n}\frac{1/n\sum_{i}X_{i}-\theta}{\sigma}\in\left[q_{\mathcal{N}}(\alpha/2),q_{\mathcal{N}}(1-\alpha/2)\right]\right)\underset{n\rightarrow\infty}{\overset{D}{\rightarrow}}1-\alpha$

Asymptotic symmetric confidence interval for θ :

$$
P_{\theta}\left(\theta \in \underbrace{\left[\frac{1}{n}\sum_{i} X_{i} \pm q_{\mathcal{N}}(\alpha/2)\frac{\sigma}{\sqrt{n}}\right]}_{\text{asymptotic CI level }\alpha}\right) \to 1 - \alpha \quad \text{as} \quad n \to \infty
$$

► CI tends to mean value if $\sigma^2 = var(X_i) \to 0$ or if $n \to \infty$

► CI tends to \mathbb{R} if $\alpha \to 0$

 ${\sf Assumption:}\;\; x=(X_1,\ldots,X_n)$ is a iid P_θ -sample, $\theta=E(X_i)$ and $\sigma^2=var(X_i)<\infty$ Central limit theorem $\left(\sqrt{n}\frac{1/n\sum_{i}X_{i}-\theta}{\sigma}\in\left[q_{\mathcal{N}}(\alpha/2),q_{\mathcal{N}}(1-\alpha/2)\right]\right)\underset{n\rightarrow\infty}{\overset{D}{\rightarrow}}1-\alpha$

Asymptotic symmetric confidence interval for θ :

$$
P_{\theta}\left(\theta \in \underbrace{\left[\frac{1}{n}\sum_{i} X_{i} \pm q_{\mathcal{N}}(\alpha/2)\frac{\sigma}{\sqrt{n}}\right]}_{\text{asymptotic CI level }\alpha}\right) \to 1 - \alpha \quad \text{as} \quad n \to \infty
$$

- ► CI tends to mean value if $\sigma^2 = var(X_i) \to 0$ or if $n \to \infty$
- **► CI tends to R** if $\alpha \to 0$
- **Asymptotic CI still valid substituting** σ **by empirical estimator** σ_x **(exact CI: Student)**

 $\alpha = 0.05$

Number of observations *n*

[Part 3. Parametric statistic](#page-268-0) $\label{eq:precision} \begin{array}{c} \rule{2mm}{2mm} \rule[1mm]{2mm}{2mm} \rule[1mm]{2mm}{2mm} \rule[1mm]{2mm}{2mm} \rule[1mm]{2mm}{2mm} \rule[1mm]{2mm}{2mm} \rule[1mm]{2mm}{2mm} \end{array}$

Bayesian credible interval using posterior PDF

Assumption: $x = (X_1, \ldots, X_n)$ is a iid P_θ -sample and $P(\theta)$ is a prior distribution on the parameters such that $P(\theta) > 0$

[Precision of estimation](#page-269-0)

Bayesian credible interval using posterior PDF

Assumption: $x = (X_1, \ldots, X_n)$ is a iid P_θ -sample and $P(\theta)$ is a prior distribution on the parameters such that $P(\theta) > 0$

Bayesian credible interval Cl B of θ given by the **quantiles** q_x^B of posterior PDF

$$
P_{\theta} \left(\theta \in \underbrace{\left[q_x^B(\alpha/2), q_x^B(1-\alpha/2) \right]}_{\text{Bayesian } \textsf{CI}^B \text{ level } \alpha} \right) \ge 1-\alpha
$$

 $L_{\text{Precision of estimation}}$ $L_{\text{Precision of estimation}}$ $L_{\text{Precision of estimation}}$

Bayesian credible interval using posterior PDF

Assumption: $x = (X_1, \ldots, X_n)$ is a iid P_θ -sample and $P(\theta)$ is a prior distribution on the parameters such that $P(\theta) > 0$

Bayesian credible interval Cl B of θ given by the **quantiles** q_x^B of posterior PDF

$$
P_{\theta}\left(\theta\in\underbrace{\left[q_{x}^{B}(\alpha/2),q_{x}^{B}(1-\alpha/2)\right]}_{\text{Bayesian Cl}^{B}\text{ level }\alpha}\right)\geq1-\alpha
$$

 \blacktriangleright The size and symmetry of CI^B depends on the posterior distribution that depends on the prior and likelihood

 $L_{\text{Precision of estimation}}$ $L_{\text{Precision of estimation}}$ $L_{\text{Precision of estimation}}$

Bayesian credible interval using posterior PDF

Assumption: $x = (X_1, \ldots, X_n)$ is a iid P_θ -sample and $P(\theta)$ is a prior distribution on the parameters such that $P(\theta) > 0$

Bayesian credible interval Cl B of θ given by the **quantiles** q_x^B of posterior PDF

$$
P_{\theta}\left(\theta\in\underbrace{\left[q_{x}^{B}(\alpha/2),q_{x}^{B}(1-\alpha/2)\right]}_{\text{Bayesian Cl}^{B}\text{ level }\alpha}\right)\geq1-\alpha
$$

- \blacktriangleright The size and symmetry of CI^B depends on the posterior distribution that depends on the prior and likelihood
- Asymptotic CI converges to the uninformed Bayes CI^B with uniform prior

Number of observations *n*

Number of observations *n*

Number of observations *n*

Asymptotic confidence interval for the variance

Calculation of a asymptotic confidence interval for the variance parameter σ^2

$$
\frac{1}{\sigma} \frac{n-1}{n} \sum_{i} (x_i - \bar{x}_n)^2 = \frac{(n-1)s}{\sigma} \underset{n \to \infty}{\overset{\mathcal{D}}{\to}} \chi^2(n-1)
$$
 (CLT)

with $\chi^2(n-1)$ the Chi-square distribution with $n-1$ degrees of freedom

Then

$$
P\left(\sigma \in \underbrace{\left[\frac{(n-1)s}{q_{\chi^2}(\alpha/2)}, \frac{(n-1)s}{q_{\chi^2}(1-\alpha/2)}\right]}_{\text{asymptotic CI level } \alpha}\right)_{n \to \infty} 1 - \alpha
$$

Asymptotic confidence interval for the variance

Calculation of a asymptotic confidence interval for the variance parameter σ^2

$$
\frac{1}{\sigma} \frac{n-1}{n} \sum_{i} (x_i - \bar{x}_n)^2 = \frac{(n-1)s}{\sigma} \underset{n \to \infty}{\overset{\mathcal{D}}{\to}} \chi^2(n-1)
$$
 (CLT)

with $\chi^2(n-1)$ the Chi-square distribution with $n-1$ degrees of freedom

Then

$$
P\left(\sigma \in \underbrace{\left[\frac{(n-1)s}{q_{\chi^2}(\alpha/2)}, \frac{(n-1)s}{q_{\chi^2}(1-\alpha/2)}\right]}_{\text{asymptotic CI level } \alpha}\right)_{n \to \infty} 1 - \alpha
$$

 \blacktriangleright Do not required to know the expected value

Asymptotic confidence interval for the variance

Calculation of a asymptotic confidence interval for the variance parameter σ^2

$$
\frac{1}{\sigma} \frac{n-1}{n} \sum_{i} (x_i - \bar{x}_n)^2 = \frac{(n-1)s}{\sigma} \underset{n \to \infty}{\overset{\mathcal{D}}{\to}} \chi^2(n-1)
$$
 (CLT)

with $\chi^2(n-1)$ the Chi-square distribution with $n-1$ degrees of freedom

Then

$$
P\left(\sigma \in \underbrace{\left[\frac{(n-1)s}{q_{\chi^2}(\alpha/2)}, \frac{(n-1)s}{q_{\chi^2}(1-\alpha/2)}\right]}_{\text{asymptotic CI level } \alpha}\right)_{n \to \infty} 1 - \alpha
$$

- \triangleright Do not required to know the expected value
- \triangleright Asymmetric CI since Chi-square distribution is asymmetric

Asymptotic confidence interval for linear regressions

Data $(x, y) = ((x_1, y_1), \ldots, (x_n, y_n))$	Linear model $y_i = ax_i + b + \varepsilon_i$
OLS estimates:	$\tilde{a} = a + \frac{\sum_i x_i \varepsilon_i}{\sum (x_i - \bar{x}_n)^2}$ and $\tilde{b} = b + \bar{x}_n \frac{\frac{1}{n} \sum_i x_i \varepsilon_i}{\sum (x_i - \bar{x}_n)^2}$
The statistics	$\frac{\tilde{a} - a}{s_{\tilde{a}}}$ and $\frac{\tilde{b} - b}{s_{\tilde{b}}}$
with	$s_{\tilde{a}} = \sqrt{\frac{1}{n} \sum_i \varepsilon_i^2 / \sum_i (x_i - \bar{x}_n)^2}$ and $s_{\tilde{b}} = \sqrt{\frac{1}{n} \sum_i \varepsilon_i^2 \left(\frac{1}{n} + \frac{\bar{x}_n^2}{\sum_i (x_i - \bar{x}_n)^2}\right)}$
have asymptotically a Student distribution t_{n-2} with $n-2$ degrees of freedom (CLT)	

Asymptotic confidence interval for linear regressions

Data $(x, y) = ((x_1, y_1), \ldots, (x_n, y_n))$	Linear model $y_i = ax_i + b + \varepsilon_i$		
OLS estimates:	$\tilde{a} = a + \frac{\sum_i x_i \varepsilon_i}{\sum (x_i - \bar{x}_n)^2}$ and $\tilde{b} = b + \bar{x}_n \frac{\frac{1}{n} \sum_i x_i \varepsilon_i}{\sum (x_i - \bar{x}_n)^2}$		
The statistics	$\tilde{a} - a$	and	$\tilde{b} - b$
with	$s_{\tilde{a}} = \sqrt{\frac{1}{n} \sum_i \varepsilon_i^2 / \sum_i (x_i - \bar{x}_n)^2}$	and	$s_{\tilde{b}} = \sqrt{\frac{1}{n} \sum_i \varepsilon_i^2 \left(\frac{1}{n} + \frac{\bar{x}_n^2}{\sum_i (x_i - \bar{x}_n)^2}\right)}$
have asymptotically a Student distribution t_{n-2} with $n-2$ degrees of freedom (CLT)			

Therefore

$$
\tilde{a} \pm q_{t_{n-2}}(\alpha/2)s_{\tilde{a}} \qquad \text{and} \qquad \tilde{b} \pm q_{t_{n-2}}(\alpha/2)s_{\tilde{b}}
$$

are asymptotic confidence interval with confidence level $1 - \alpha$ for respectively coefficients a and b of the linear regression

Confidence and prediction bands for linear regressions

Confidence band R: predict(object,x,'confidence',level)

Interval of estimation with confidence level $1-\alpha$ for the mean at a given abscissa x^\star

$$
\tilde{a}x^* + \tilde{b} \pm q_{t_{n-2}}(\alpha/2)\tilde{\sigma}\sqrt{\frac{1}{n} + \frac{(x^* - \bar{x}_n)^2}{\sum_i (x_i - \bar{x}_n)^2}}
$$

Confidence and prediction bands for linear regressions

Confidence band R: predict(object,x,'confidence',level)

Interval of estimation with confidence level $1-\alpha$ for the mean at a given abscissa x^\star

$$
\tilde{a}x^{\star} + \tilde{b} \pm q_{t_{n-2}}(\alpha/2)\tilde{\sigma}\sqrt{\frac{1}{n} + \frac{(x^{\star} - \bar{x}_n)^2}{\sum_i (x_i - \bar{x}_n)^2}}
$$

Prediction band R: predict(object,x,'predict',level)

Interval of prediction of a new observation at x^\star with confidence level $1-\alpha$

$$
\tilde{a}x^* + \tilde{b} \pm q_{t_{n-2}}(\alpha/2)\tilde{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x}_n)^2}{\sum_i (x_i - \bar{x}_n)^2}}
$$

Confidence and prediction bands for a linear regression

Confidence and prediction bands for a linear regression

 $\alpha = 0.05$

X

Confidence and prediction bands for a linear regression

Confidence interval with R

Generic function for any fitted model object level is the confidence level Default method assume asymptotic normal distribution for the residuals (asymptotic CI)

Example

aa

```
object=lm(y∼x)
confint(object,0.95)
predict(object,data.frame(1:100),interval='confidence',0.95)
```
[Part 3. Parametric statistic](#page-287-0)

 L [Information criteria and test of hypothesis](#page-287-0)

[Information criteria and test of hypothesis](#page-7-0)
Fit of the spacing with exponential distribution

Pedestrian spacing (m)

Fit of the spacing with gamma distribution

Pedestrian spacing (m)

[Information criteria and test of hypothesis](#page-290-0)

Comparison of models

MLE and posterior PDF allow to find an optimal fit of the parameters CI allows to evaluate the precision of this fit

\rightarrow No indication on the quality of description of the data using the optimal fit

Cf example : Better fit of pedestrian spacing using gamma distribution than exponential

[Information criteria and test of hypothesis](#page-291-0)

Comparison of models

MLE and posterior PDF allow to find an optimal fit of the parameters CI allows to evaluate the precision of this fit

No indication on the quality of description of the data using the optimal fit

Cf example : Better fit of pedestrian spacing using gamma distribution than exponential

Quality of a model evaluated by information criteria

- **Compromise between goodness of the fit through maximum likelihood L and the** complexity of the model through the parameter number k
- \blacktriangleright Better model minimizes criteria

Information criteria for the fit of the spacing

Information criteria

Number of observations

 L [Information criteria and test of hypothesis](#page-293-0)

Likelihood ratio and Bayes factor

The maximum likelihood ratio D is

$$
D = \frac{\max_{\theta_1} L_1(\theta_1)}{\max_{\theta_2} L_2(\theta_2)}
$$

 \rightarrow Better fit of the model 1 compared to model 2 if $D > 1$ or $\log D > 0$

[Information criteria and test of hypothesis](#page-294-0)

Likelihood ratio and Bayes factor

The maximum likelihood ratio D is

$$
D = \frac{\max_{\theta_1} L_1(\theta_1)}{\max_{\theta_2} L_2(\theta_2)}
$$

 \rightarrow Better fit of the model 1 compared to model 2 if $D > 1$ or $\log D > 0$

The Bayes factor is the ratio of the mean likelihood over given prior f_1 and f_2

$$
\mathsf{BF} = \frac{\int L_1(\theta) f_1(\theta) \,\mathrm{d}\theta}{\int L_2(\theta) f_2(\theta) \,\mathrm{d}\theta}
$$

 \rightarrow Better fit of the model 1 when $BF > c$ or $\log BF > \log c$ (cf. Jeffreys interpretation)

Likelihood ratio and Bayes factor for the fit of the spacing

Gamma vs Exponential

Number of observations

[Information criteria and test of hypothesis](#page-296-0)

Neyman Pearson statistical test

Test of a null hypothesis H_0 against an alternative hypothesis on a sample of iid data

- \rightarrow The goal is to test the validity of H_0 (and not H_1 asymmetric approach)
- \rightarrow $\;$ In general, hypothesis are $\;\;\;\;\;\;\;\;\;H_0:\,\{\theta\in\Theta_0\}\;\;\;\text{vs}\;\;\;H_1:\,\{\theta\not\in\Theta_0\},\;\;\;\Theta_0\in\mathbb{R}^k$

[Information criteria and test of hypothesis](#page-297-0)

Neyman Pearson statistical test

Test of a null hypothesis H_0 against an alternative hypothesis on a sample of iid data

- \rightarrow The goal is to test the validity of H_0 (and not H_1 asymmetric approach)
- \rightarrow $\;$ In general, hypothesis are $\;\;\;\;\;\;\;\;\;H_0:\,\{\theta\in\Theta_0\}\;\;\;\text{vs}\;\;\;H_1:\,\{\theta\not\in\Theta_0\},\;\;\;\Theta_0\in\mathbb{R}^k$

Four possible configurations :

- **F** The **probability of occurrence of Error1 is** $\alpha \in (0, 1)$ Valid for any number of observations
- **IDED** The probability of occurrence of Error2 tends to zero as $n \to \infty$ Power of the test

[Information criteria and test of hypothesis](#page-298-0)

Construction and usage of a test

 \Box [Information criteria and test of hypothesis](#page-299-0)

Construction and usage of a test

The **p-value** is the critical level α^\star such that

 $\alpha > \alpha^*$: Reject of H_0 $\alpha < \alpha^*$: No Reject of H_0

 α^\star is the probability to observe the value for S under H_0 $\;\longrightarrow$ $\;$ It is not the probability of H_0

 \Box [Information criteria and test of hypothesis](#page-300-0)

Construction and usage of a test

 $\alpha > \alpha^*$: Reject of H_0 $\alpha < \alpha^*$: No Reject of H_0

 α^\star is the probability to observe the value for S under H_0 $\;\longrightarrow$ $\;$ It is not the probability of H_0

Reject of H_0 if α^\star small (e.g. $\alpha^\star < 0.01$) – No conclusion otherwise

[Information criteria and test of hypothesis](#page-301-0)

Example of the machine

 (X_1, \ldots, X_n) is a iid sample of Bernoulli distribution with distribution $p = 0.2$ $\rightarrow P(X_i = 1) = p, P(X_i = 0) = 1 - p, E(X_i) = p \text{ and } var(X_i) = p(1 - p)$ **Test** of assumptions $H_0: \{p = 0.2\}$ VS $H_1: \{p \neq 0.2\}$

Example of the machine

 (X_1, \ldots, X_n) is a iid sample of Bernoulli distribution with distribution $p = 0.2$ $\rightarrow P(X_i = 1) = p, P(X_i = 0) = 1 - p, E(X_i) = p \text{ and } var(X_i) = p(1 - p)$ **Test** of assumptions $H_0: \{p = 0.2\}$ VS $H_1: \{p \neq 0.2\}$

LLN and TCL gives

$$
S_n = \sqrt{n} \frac{\bar{X}_n - p}{\bar{X}_n (1 - \bar{X}_n)} \quad \to \quad \left\{ \begin{array}{lcl} \mathcal{N}(0,1) \ \text{ under } H_0 & \quad \text{as} \quad n \to \infty \\ \pm \infty & \text{ under } H_1 & \quad \text{as} \quad n \to \infty \end{array} \right.
$$

Rejection region $R_{\alpha}(S_n) = |S_n| > \xi_{\alpha}$ such that $P_{H_0}(|S_n| > \xi_{\alpha}) \leq \alpha$

 $\blacktriangleright \xi_{\alpha} = -q_{\alpha/2}$ i.e. $R_{\alpha}(S_n) = |S_n| > -q_{\alpha/2}$ with q quantile of normal distribution

$$
\blacktriangleright \text{ P-value}: \qquad \alpha^* = P(|S_n| > s_n) = \begin{cases} 0.5 & \text{(in average) if } H_0 \text{ is true} \\ 0 & \text{as } n \to \infty \text{ if } H_1 \text{ is true} \end{cases}
$$

Example of the machine $H_0: \{p=0.2\}$ VS $H_1: \{p \neq 0.2\}$ at level $\alpha = 0.05$

Example of the machine $H_0: \{p = 0.2\}$ VS $H_1: \{p \neq 0.2\}$ at level $\alpha = 0.05$

Some tests with R

 $\label{eq:1} \begin{array}{c} \rule{2mm}{2mm} \rule{2mm}{2mm$

[Parametric clustering](#page-7-0)

Parametric clustering (density- or distribution-based clustering)

Assumption : Observations as mixture of identical models with different parameter values

Gaussian mixture model : Multivariate normal distribution

- **Deservables**: Data x supposed to be iid observations of a multivariate normal distribution f
- **Parameters**: $\theta_k = (\mu_k, \sigma_k)$ of the Gaussian mixture and the proportions of observations per cluster π_k , $k = 1, \ldots, K$
- \rightarrow Log-likelihood :

$$
\mathcal{L}_{\theta}(x) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_{k} f(x_{i}, \theta_{k}) \right)
$$

Parametric clustering (density- or distribution-based clustering)

Assumption : Observations as mixture of identical models with different parameter values

Gaussian mixture model : Multivariate normal distribution

- **Observables**: Data x supposed to be iid observations of a multivariate normal distribution f
- **Parameters**: $\theta_k = (\mu_k, \sigma_k)$ of the Gaussian mixture and the proportions of observations per cluster π_k , $k = 1, \ldots, K$
- \rightarrow Log-likelihood:

$$
\mathcal{L}_{\theta}(x) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_{k} f(x_{i}, \theta_{k}) \right)
$$

Likelihood maximisation according to parameters $(\mu_k, \sigma_k, \pi_k), k = 1, ..., K$

-
- 1. Local optimum for fixed K through iterative algorithms EM, Gipps sampling, VB, ...
- 2. Selection of the cluster number K with information criteria \blacksquare AIC, BIC, likelihood ratio, ...

[Part 3. Parametric statistic](#page-309-0) $\label{eq:1} \begin{array}{c} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \rule{2mm}{2mm} \end{array}$

Gaussian mixture model with R : $Mclust(data)$ Package: mclust

Mclust(data,modelNames) : Gaussian mixture for multivariate dataset fitted via EM algorithm and BIC criterion

[Parametric clustering](#page-310-0)

Gaussian mixture model with R : Mclust(data) Package: mclust

Mclust(data,modelNames) : Gaussian mixture for multivariate dataset fitted via EM algorithm and BIC criterion

Several shapes for the cluster can be used **Option**: modelNames

- EEV : Ellipsoidal, equal volume $&$ shape
- \blacktriangleright EII : Spherical, equal volume
- \triangleright VII : Spherical, varying volume
- \triangleright VEV : Ellipsoidal, equal shape
- \blacktriangleright EVV : Ellipsoidal, equal volume
- \triangleright VVV : Ellipsoidal, varying volume & shape

Mclust : Example 1 Spherical clusters

Observations

Mclust : Example 1 Spherical clusters EII : Spherical, equal volume

Classification

BIC criterion

Number of clusters

Uncertainty

Classification

BIC criterion

Number of clusters

Uncertainty

Observations

Mclust : Example 2 Linear clusters EVV : Ellipsoidal, equal volume

Classification

BIC criterion

Number of clusters

Uncertainty

Mclust : Example 2 Linear clusters VEV : Ellipsoidal, equal shape

Classification

BIC criterion

Number of clusters

Uncertainty

VVV : Ellipsoidal, varying volume & shape

Mclust : Example 2 [See also mixture of linear models here](http://www.di.fc.ul.pt/~jpn/r/EM/EM.html)

Classification

BIC criterion

Number of clusters

Uncertainty

Observations

VVV : Ellipsoidal, varying volume & shape

Mclust : Example 3 Irregular clusters : Non-parametric clustering

Classification

BIC criterion

Number of clusters

Uncertainty

Summary

Descriptive statistic allows to describe data without modelling assumptions

- \rightarrow Exploration of the data Knowledge database discovery, data mining, big data
- \rightarrow Elaboration of data-based models \rightarrow Senseless parameters

Parametric statistic allows to obtain precise assessments on statistical models

- \rightarrow Level of information, confidence interval, test of hypothesis or significance
- Assumptions on the distribution of the data Meaningful parameters

Summary

Descriptive statistic allows to describe data without modelling assumptions

- \rightarrow Exploration of the data Knowledge database discovery, data mining, big data
- Elaboration of data-based models Senseless parameters Senseless parameters

Parametric statistic allows to obtain precise assessments on statistical models

- Level of information, confidence interval, test of hypothesis or significance
- Assumptions on the distribution of the data Meaningful parameters

R and its numerous packages and help forums is a useful software for both descriptive and parametric data analysis

References and links

Books

- ▶ T.W. Anderson & J.D. Finn The statistical analysis of data Springer 1996
- \triangleright D. Montgomery & G. Runger Applied Statistics and Probability for Engineers Wiley 2010
- \blacktriangleright P. Congdon *Bayesian statistical modelling* (2nd edition) Wiley 2006

Websites

Videos

-
-

■ R vs Python [blog.dominodatalab.com](https://blog.dominodatalab.com/video-huge-debate-r-vs-python-data-science/) ■ [R statistics tutorials](https://www.youtube.com/watch?v=qEJHYIa-EhI) youtube.com → R statistics tutorials youtube.com

Integrated development environments for R

▶ [RStudio,](https://www.rstudio.com/products/rstudio/) [Jupyter,](http://jupyter.org/) [Rattle,](http://rattle.togaware.com/) [Red-R,](http://www.linuxlinks.com/article/20110311191631521/Red-R.html) [R Commander,](http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/) [JGR,](http://rforge.net/JGR/) [RKWard,](https://rkward.kde.org/) [Deducer,](http://www.deducer.org/pmwiki/index.php?n=Main.DeducerManual?from=Main.HomePage) ...

Abbreviations

renview

[Part 1](#page-8-0) | [Descriptive statistics for univariate and bivariate data](#page-8-0)

[Repartition of the data \(histogram,](#page-11-0) [kernel density,](#page-15-0) [empirical cumulative distribution function\),](#page-19-0) [order statistic and quantile,](#page-27-0) [statistics for location](#page-29-0) [and variability,](#page-40-0) [boxplot,](#page-26-0) [scatter plot,](#page-46-0) [covariance and correlation,](#page-47-0) [QQplot](#page-57-0)

[Part 2](#page-63-0) [Descriptive statistics for multivariate data](#page-63-0)

[Least squares and](#page-67-0) [linear](#page-73-0) [and non-linear regression models,](#page-76-0) [principal component analysis,](#page-81-0) [principal component regression,](#page-130-0) [clustering methods](#page-133-0) [\(K-means,](#page-136-0) [hierarchical, density-based\),](#page-139-0) [linear discriminant analysis,](#page-151-0) [bootstrap technique](#page-158-0)

[Part 3](#page-168-0) [Parametric statistic](#page-168-0)

[Likelihood,](#page-198-0) [estimator definition and main properties](#page-205-0) [\(bias,](#page-210-0) [convergence\),](#page-213-0) [punctual estimate](#page-230-0) [\(maximum likelihood estimation,](#page-234-0) [Bayesian estimation\),](#page-244-0) [confidence and credible intervals,](#page-252-0) [information criteria,](#page-290-0) [test of hypothesis,](#page-296-0) [parametric clustering](#page-306-0)

[Appendix](#page-324-0) **LATEX** plots with R and Tikz

Appendix 1 : Plotting with R

R is not only a software for data analysis and mathematical modelling, it is also a software to get graphics³

- \rightarrow Basically R allows to produce figures in Metafile, Postscript, PDF, Png, Bmg, TIFF, jpg
- \rightarrow tikzDevice package allows to get LATEX file (.tex)

Multiplot

³See demo(graphics), package 'ggplot2', [CRAN Task View,](https://cran.r-project.org/web/views/Graphics.html) [Google image : R graphics](https://www.google.de/search?q=R+graphics&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjpyPvam_PLAhWHESwKHZTjAqkQ_AUIBygB&biw=1708&bih=793&dpr=0.8)

$\text{AT} \neq \text{X}$ plot with R

Script

aa

```
require(tikzDevice)
tikz('exemple.tex',width=5,height=3,standAlone=T)
curve(sin(x)/x, xlim = c(0, 20), xlabel*; ylabel*; ylabel*; ylabel*; ylabel*; 1wd = 7, col = rgb(.5, .5, .5))legend('topright',c('f(x)=\frac{1x}{\sin(x)}'),lwd=7,col=rgb(.5,.5,.5))
dev.off()
```


