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Abstract
Researchers by default tend to choose complex models when analyzing nonindependent response variable data, this may be particularly appli-
cable in the analysis of longitudinal trial data, possibly due to the ability of such models to easily address missing data by default. Both 
maximum-likelihood (ML) estimation and multiple imputation (MI) are well-known to be acceptable methods for handling missing data, but 
much of the recently published quantitative literature has addressed questions regarding the research designs and circumstances under which 
one should be chosen over the other. The purpose of this article is threefold. First, to clearly define the assumptions underlying three common 
longitudinal trial data analysis models for continuous dependent variable data: repeated measures analysis of covariance (RM-ANCOVA), gener-
alized estimating equation (GEE), and a longitudinal linear mixed model (LLMM). Second, to clarify when ML or MI should be chosen, and to 
introduce researchers to an easy-to-use, empirically well-validated, and freely available missing data multiple imputation program: BLIMP. Third, 
to show how missing longitudinal trial data can be handled in the three data analysis models using three popular statistical analysis software 
packages (SPSS, Stata, and R) while keeping the published quantitative research in mind.
Keywords: clinical trial, longitudinal research, statistical approach, randomized controlled trial. 

Options for handling missing responses and 
analyzing longitudinal trial data

For scientific discoveries to be valid—whether in theory or 
empirically—a phenomenon must be accurately described: 
The scientist must use appropriate counterfactuals and 
eliminate competing explanations. Empirical work must 
also use an appropriate design and method, and empirical 
claims made about the phenomenon must be correctly 
characterized. (Wulff et al., 2023, p. 1)

Researchers ready to analyze a sample of longitudinal trial 
data have a variety of options to choose from, but each 
option has different assumptions that must be met to avoid 
inefficient or inappropriate analyses, biased treatment effect 
results, and incorrect conclusions (Locascio & Atri, 2011). 
However, correctly choosing and correctly implementing the 
longitudinal analysis method needed to answer the research 
question can often present challenges. First, research has 
shown that investigators tend to use more complicated longi-
tudinal data analytic techniques than are necessary because 
such techniques are popular and widely taught, but often at 
the expense of less familiar, rarely taught, but potentially 
more parsimonious and effective alternatives (Bauer & 
Sterba, 2011; McNeish et al., 2017). Second, prior to analy-
sis, longitudinal trial researchers can expect to be confronted 
with missing data, which must be handled correctly to obtain 
unbiased treatment effect estimates (e.g., Gomer & Yuan, 
2021).

No missing data handling technique is completely fool-
proof, but maximum-likelihood (ML) estimation and multi-
ple imputation (MI) have been well-known for two or more 

decades to be acceptable missing data handling practices 
because both have been shown to best minimize parameter 
estimate bias due to missing data (e.g., Carpenter et al. 2013; 
Enders, 2010, 2022; Graham, 2012; Larsen, 2011; Little & 
Rubin, 2002). One possible reason for the popularity of more 
complex longitudinal data analytic techniques, as stated 
above, is that within some statistical analysis software pro-
grams (e.g., Mplus, Stata, R, but not all, e.g., SPSS, SAS), 
missing data can be handled by the default maximum- 
likelihood (ML) estimation algorithm. However, many recent 
quantitative research studies have addressed questions 
regarding whether both ML and MI are equally suited to 
handle missing data and minimize parameter estimate bias 
across all design and analysis scenarios, especially for com-
plex analysis models often used to answer longitudinal clini-
cal trial research questions (Enders, 2022, 2023a, 2023b; 
Enders et al., 2016, 2018, 2020; Goldstein et al., 2014; 
Grund et al., 2018, 2019; 2021a,b; Keller & Enders, 2023). 
Further complicating the issue is the fact that, for many pop-
ular statistical analysis software programs (e.g., SPSS, SAS), 
their MI algorithms are not able to correctly impute missing 
values from correlated responses collected longitudinally.

This article can be considered an updated extension of a 
previous Journal of Pediatric Psychology publication on the 
topic (Little et al. 2014), and the goals of this article are 
threefold: (1) to clearly describe the assumptions underlying 
three possible longitudinal trial data analysis models: a 
repeated measures analysis of covariance (RM-ANCOVA), a 
generalized estimating equation (GEE), and a longitudinal 
linear mixed model (LLMM), (2) to show how missing longi-
tudinal trial data can be handled in three popular statistical 
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analysis software packages (SPSS, Stata, and R) based on the 
relevant published quantitative literature (Garcia & Marder, 
2017), and (3) to introduce readers to an empirically well- 
validated standalone Bayesian multiple imputation internet 
freeware software package (BLIMP1; Enders et al. 2018, 
2020; Keller & Enders, 2022) if multiple imputation for miss-
ing data handling is needed. ML estimation as a missing data 
handling technique needs little, if any, explanation. 
Contingent on verifying that the ML estimation algorithm for 
a given statistical analysis software package is capable of pro-
ducing valid parameter estimates from incomplete data, han-
dling missing data with ML estimation simply involves fitting 
the analysis model to the sample data (e.g., Enders et al., 
2020; but see also auxiliary correlate variable identification 
in Enders, 2022). Much more attention is given in this article 
to MI missing data handling in general and the MI possibil-
ities offered in BLIMP specifically. For readers unfamiliar 
with BLIMP, Table 1 shows a list of basic commands along 
with options and specifications. This is not an exhaustive list; 
BLIMP is capable of much more functionality and interested 
readers can find additional information in the User’s Guide 
(Keller & Enders, 2023).

Before proceeding further, several qualifying caveats war-
rant mention: (1) This article proceeds from a missing at ran-
dom (MAR) assumption for all analyses presented. 
Additional missing data mechanisms (MCAR or MNAR) are 
not discussed here, but we refer the readers to extensive treat-
ments of these issues in longitudinal trial data published else-
where (e.g., Ben et al., 2023; Carpenter & Kenward, 2007; 
DeSouza et al., 2009; Fiero et al., 2017; Peugh et al., 2023), 
(2) This article proceeds from a longitudinal mixed linear, 
not longitudinal structural equation, modeling approach. 
Readers interested in either imputing missing values for (see 
Keller & Enders, 2022, pp. 171–173) or analyzing (e.g., 
Grimm et al., 2017; Little, 2013) longitudinal trial data with 
structural equation models can consult several published 
sources. (3) The example analyses shown here assume 
dependent variable data measured on a continuous scale. 
BLIMP can impute several types of missing data, including 
binary, nominal, ordinal, and count (but only if the count 
variable with missing data is the dependent variable cur-
rently) variable measurement scales. Censored continuous 
data is also common in pediatric research but is not 
addressed here. BLIMP is currently unable to impute missing 
censored data (but that ability may be available soon). (4) 
Assuming model-based (discussed below) multiple imputa-
tions, it is notable to mention that BLIMP is capable of 
imputing, analyzing, and outputting Bayesian parameter esti-
mates. (5) Although multiply imputed data was generated 
using BLIMP and output for analysis using SPSS, Stata, and 
R, it is also important to note that BLIMP can output 
imputed data for use in many other statistical analysis soft-
ware packages (e.g., SAS and Mplus; assuming those pack-
ages can perform the analyses shown here). Finally, it is 
important to also note that missing data in the examples 
shown here is addressed at the total score or scale score level, 
but published tutorials for addressing item-level missing data 
with multiple imputations are available (see Alacam et al., 
2023).

Handling missing data with multiple 
imputation
Researchers interested in more information regarding multi-
ple imputations can consult several published sources 
(Carpenter et al. 2023; Enders, 2022; Kleinke et al. 2020; van 
Buuren, 2021). To aid in the example analyses presented 
here, we offer a brief overview of the two general types of 
imputation models available and the key steps involved in 
conducting multiple imputations. The two types of multiple 
imputation models available are described first.

Alternative hypothesis model (HA:) and null 
hypothesis (H0:) imputation models
There are two types (e.g., see Muth�en & Muth�en, 1998– 
2017, p. 576) of multiple imputation models: an alternative 
hypothesis imputation model (HA:, or fully conditional speci-
fication [FCS], e.g., Enders et al., 2018; van Buuren et al., 
2006; van Buuren, 2021) and a null hypothesis imputation 
model (H0:, or model-based, e.g., Enders et al., 2020). To 
assist in describing both, let’s assume three hypothetical con-
tinuous variables (M1 � M3) that each show varying amounts 
of missing data (M).

Alternative hypothesis model (HA:) imputation: 
multivariate or univariate
Alternative hypothesis (HA:) model imputation can be per-
formed one of two ways: multivariate (or joint imputation; 
see Quartagno & Carpenter, 2019; Schafer, 1997, 1999, 
2003; Schafer & Olsen, 1998) or univariate (factored regres-
sion or sequential specification; L€udtke et al., 2020). 
Multivariate alternative hypothesis model imputation 
involves the use of all information available from all analysis 
variables to draw imputed values for missing data. For the 
hypothetical three variable (M1 � M3) example, all available 
information constitutes the means ( �M1– �M3), variances 
(σ2

M1
–σ2

M3
), and covariances (σM2;M1 , σM3;M1 , σM3;M2 ) (e.g., 

Enders, 2022, pp. 264–265) as shown: 

Means: �M1 �M2 �M3
� �

Covariance matrix:

σ2
M1

σM1;M2 σM1;M3

σM2;M1 σ2
M2

σM2;M3

σM3;M1 σM3;M2 σ2
M3

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

Multivariate alternative hypothesis model imputation is pre-
sented here only as an illustrative segue into univariate alter-
native hypothesis model imputation and is not considered 
further.2

1 Available at: Blimp (appliedmissingdata.com).

2 Multivariate or joint alternative model imputation is still available in 
many commercially available statistical analysis software packages 
(e.g., in R if the Jomo package used, or in Mplus, if the 
‘TYPE¼BASIC;’ analysis specification is used with the ‘DATA 
IMPUTATION:’ command, for example). Multivariate or joint alter-
native hypothesis model imputation has been shown in some instances 
to produce inaccurate results (Bartlett et al., 2015; Liu et al., 2016, as 
cited in Keller & Enders, 2022, pp. 14–15). Observing inappropriate 
imputed values (e.g., imputed values other than 0 or 1 for a binary 
variable, or unrealistic imputed values for a continuous variable; see 
Enders, 2022, p. 272) are a common indication of a multivariate dis-
tribution being inappropriate for a given imputation situation.
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Univariate alternative hypothesis model imputation (e.g., 
Bartlett et al., 2015) assumes the benefits of multivariate 
imputation can still be had in a series of more flexible uni-
variate models. An example of a univariate alternative 
hypothesis imputation model would be an “all-in-turn” 
sequence of prediction models in which each analysis variable 
predicts, and is predicted by, all other analysis variables “in 
turn” for missing data imputation purposes as shown below 
(e.g., Enders, 2022, pp. 272–273; Keller & Enders, 2022, pp. 
74–77): 

bM1 ¼ β1þ β11M2þ β12M3þ ε1i

bM2 ¼ β2þ β21M1þ β22M3þ ε2i

bM3 ¼ β3þ β31M1þ β32M2þ ε3i 

It is important to note that univariate alternative hypothesis 
imputation is the default in BLIMP, and both the multivari-
ate and univariate alternative hypothesis imputation models 
shown above are saturated models with zero degrees of 
freedom.

Null hypothesis model (H0:) imputation: unfactored 
or factored predictors
Null hypothesis (H0:) or model-based multiple imputation is 
just that: the model used to impute missing data is an exact 

match to the data analysis model needed to answer the 
research question. If the previous hypothetical three variables 
are predictors of a continuous outcome (O) in a multiple 
regression, imputation would be based on the following anal-
ysis model: 

bOi ¼ β0þ β1M1iþ β2M2iþ β3M3iþ εi 

In BLIMP, additional specification considerations are given 
in model-based imputation scenarios involving predictor 
variable (or, “x-side”) missing data. By default, BLIMP will 
treat predictor variables with missing data as unfactored 
(Keller & Enders, 2022, pp. 14–21), meaning missing values 
for the three predictor variables will be imputed using both 
the outcome (O) prediction model above and the three “all- 
in-turn” univariate alternative hypothesis prediction impu-
tation models shown previously. A second factored regres-
sion or sequential specification for predictor variable 
missing data (Keller, 2021; Keller & Enders, 2023) is also 
available in BLIMP. To illustrate, assume the imputation 
model shown above still involves the prediction of a contin-
uous outcome (O), but is now predicted by: (1) B; a binary 
predictor with missing values, (2) Ct; a count predictor with 
missing values, and (3) X

!

; a significantly skewed continuous 
predictor with missing data (more on this in the last analysis 
example below). A factored regression or sequential specifi-
cation approach would impute missing values based both 
the analysis model 

Table 1. The basics of BLIMP syntax (from Keller & Enders, 2023)

Command Options Specifications

DATA: Requires: (1) file path and Accepts: .csv, .dat, or .txt files
(2) file type e.g., C : \data.csv;

VARIABLES: Listed in the order they appear in the data file
ORDINAL: Categorical variables Ideal if the binary variables listed here
NOMINAL: Categorical variables Ideal if ordered categorical variables listed here
COUNT: Count variables Count variables listed here
FIXED: Variables with no missing values are listed here
CLUSTERID: Clustering variable For nested cross-sectional or longitudinal 

imputation
CENTER: 'groupmean' or 'grandmean'; see Enders and 

Tofighi, 2007
If 'CLUSTERID:' is specified, both can be used

MISSING: One value allowed e.g., Missing: -99; or Missing ¼NA;
FCS: OR MODEL: (never both) Use FCS: for alternative hypothesis model (HA:) 

imputation
Use MODEL: for null hypothesis model (H0:) 

imputation
SEED: Must be less than 10 digits Starts the random number generator needed for 

imputation
NIMPS: e.g., see Graham et al. (2007) Request the number of imputed datasets
BURN: BURN: 5000 is recommended Number of iterations before the first imputed 

dataset is saved
ITERATIONS: ITERATIONS: 10 000 is recommended Number of iterations between successive imputed 

datasets
CHAINS: PROCESSORS, e.g., CHAINS 10 processors 4 Number of algorithms used to impute missing 

data
OPTIONS: estimates, latent, manifest, or PSR Potential scale reduction (PSR) requested here

For analysis in SPSS, SAS, or R e.g., SAVE: stacked ¼ C : \imps.dat.
SAVE: For analysis in Stata e.g., SAVE: stacked0 ¼ C : \imps.dat.

For analysis in Mplus e.g., SAVE: separate ¼ C : \imps�.dat.

Notes: (1) If variable names appear as column headers in the DATA: file, the VARIABLES: command has to be omitted.
(2) A DATA: command file path is not needed if the data file and BLIMP input file are in the same location.
(3) If the number of CHAINS: and the number of NIMPS: are equal, additional commands (THIN:) are not needed.
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bOi ¼ β0þ β1Biþ β2Ctiþ β3X
!

iþ ε1i;

as well as a factored regression or sequential specification as 
shown: 

bBi¼ γ20þ εXi:

cCti¼ γ10þ γ11Xiþ εCti

X
!

¼ γ00þ γ01Ctiþ γ02Xiþ εBi 

If factored regression or sequential specification is used to 
impute missing data in predictor variables, categorical varia-
bles with missing data are listed first, continuous variables 
with missing data are listed last (L€udtke et al., 2020). Both 
unfactored and factored regression or sequential specification 
are mathematically equal in most situations (Keller & 
Enders, 2022, pp. 44–48). Model-based imputation scenarios 
are not saturated models but have positive degrees of free-
dom, the significance of which is elaborated upon (see 
Graham’s [2012] “golden rule” of imputation) in the section 
below.

At this point, researchers could be asking two important 
clarification questions. First, how to know whether null 
hypothesis model (H0: or model-based) or alternative 
hypothesis model (HA: or FCS) imputation is needed? If the 
answer to a longitudinal trial research question involves a 
nonlinear estimate, such as a polynomial (X2 ! Y) effect, a 
moderation (X � Z ! Y) effect, or a random effect (random 
slope; e.g., the X ! Y effect shows non-zero variance across 
i individual participants, or c clustering units, such as 
schools or hospitals), null model (or model-based) imputa-
tion is needed to avoid biased conclusions (Enders et al., 
2018, 2020; Keller & Enders, 2022, pp. 44–46). Second, if 
null model (or model-based) imputation is needed, how to 
know if unfactored or factored regression/sequential specifi-
cation is needed? A factored regression or sequential specifi-
cation is needed if predictors with missing data are nonlinear 
(e.g., X2), count variables, or non-normally distributed con-
tinuous variables (Du et al., 2022; Keller & Enders, 2022, 
pp. 18, 44–47).

To summarize, multiple imputation should always be 
guided by the “golden rule” put forth by Graham (2012, 
p. 62, italics added): “The imputation model must be at least 
as complex as the analysis model.” As such, and before dis-
cussing the key steps involved in imputing missing data, three 
“take-home” tips for researchers can be offered:

1) When quantitative research supports its use as a missing 
data handling approach (described below and in 
Appendix A), ML should be used based on parsimony. 
However, if MI is needed: 

2) Researchers cannot go wrong using alternative hypoth-
esis (HA:) model imputation for item-level missing data 
(but see also Alacam et al., 2023). 

3) Researchers cannot go wrong using null (H0:) model 
imputation assuming the model used to impute missing 
values and data analysis model needed to answer the 
research question are an exact match (Enders, 2023b). 

Key steps in multiple imputation
Multiple imputation is a repetitive mathematical process by 
which possible missing data values are computed, parameter 
estimates updated, and possible missing data values re- 
computed until the precision of imputed data values cannot 
be improved. This repetitive or iterative process is conducted 
by multiple mathematical computational algorithms, or 
chains. Chains are said to have converged when the precision 
of imputed values cannot be improved. The potential scale 
reduction (PSR) factor indicates when multiple imputation 
convergence is achieved (shown below). Specifically, PSR val-
ues less than 1.05 for imputing continuous variables, or less 
than 1.10 for imputing binary or multinomial variables 
(Enders, 2022; Muth�en, 2010) indicate convergence. 
Importantly, some multiple imputation programs (e.g., 
Mplus) will not conduct analyses or output imputed datasets 
until convergence is achieved by default; other programs 
(e.g., BLIMP) require the researcher to examine the PSR val-
ues to confirm convergence. As such, a fourth “take-home” 
tip for researchers can be offered: 

4) If MI is needed for missing data handling, researchers 
should always first check PSR values and verify that 
convergence has been achieved before imputing missing 
values, especially as missing data rates increase for cate-
gorical variables.

The analysis and pooling phases of multiple imputations 
first involve conducting the needed data analysis on all 
imputed datasets, then pooling the parameter estimates from 
all imputations into a single result to answer the research 
question. Again, it is important to note that some statistical 
analysis software programs (e.g., Mplus; assuming 
“Type¼imputation;” is specified) analyze and pool by default 
in a single step. Other programs require additional syntax 
commands either prior to (e.g., SPSS) or following (e.g., SAS, 
R) the analysis phase to obtain pooled estimates.

Three examples of handling missing responses in longitudi-
nal trial data will be presented below via modified re- 
analyses of previously published datasets: (1) a repeated 
measures analysis of covariance (RM-ANCOVA), (2) a gen-
eralized estimating equation (GEE), and (3) a longitudinal 
linear mixed model (LLMM).3 Within each of the three anal-
ysis examples, a description of the example research study, 
the assumptions underlying the needed data analysis model, 
and data re-analysis results and discussion will all be offered. 
At the conclusion of each of the three analysis examples, a 
“Statistical considerations” section is also included that both 
summarizes the relevant missing data literature concerning 
the data analysis model and provides practical guidance for 
proper missing data handling. The needed missing data han-
dling syntax scripts for the three analysis examples are pro-
vided for SPSS, Stata, and R.

3 A “long” or “stacked” database, rather than a “wide” or 
“multivariate” database, is required to conduct all three (RM- 
ANCOVA, GEE, and longitudinal mixed linear modeling) analyses 
using mixed linear modeling. Specifically, RM-ANCOVA must be 
conducted using mixed linear modeling following imputation because 
most (if not all) statistical analysis software packages cannot pool gen-
eral linear model analytic results obtained from imputed data analyses 
(see van Ginkel & Kroonenberg, 2014). Examples of how to create a 
“long” or “stacked” database can be found in Singer and Willett 
(2003, pp. 16–25) and Peugh & Enders  (2005, pp. 718–720).
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RM-ANCOVA example: Zeidan et al. (2015)4

A complete description of the Zeidan et al. trial (2015) is 
available from the source publication but is summarized 
briefly here. The authors applied an intense heat stimulus to 
(N¼80) participants in three distinct research sessions: base-
line, pretest, and posttest, then examined the effects of 
unpleasantness perceptions rated on a 15-cm 0–10 visual 
analog scale (VAS; Price et al., 1994). Between the baseline 
and pretest sessions, participants were randomly assigned to 
four independent variable (IV) conditions and asked to prac-
tice those conditions for 4 days: (1) mindful meditation (val-
ue¼1), (2) “sham” meditation (value¼2), (3) book listening 
(value¼3), or (4) placebo anesthetic (petroleum jelly) (val-
ue¼4; reference group). Between the pretest and posttest ses-
sions, participants were asked to again practice their IV 
condition during a 10-min break. The research question 
under investigation was: are there significant pretest/posttest 
VAS score differences across the IV groups after controlling 
for baseline VAS scores, biological sex, and age?

RM-ANCOVA is a well-known fixed effects model that 
can accommodate correlated repeated dependent variable 
measurements collected over time (Edwards, 2000; Girden, 
1992; Grady & Helms, 1995; Hedeker & Gibbons, 2006; 
Kleinbaum et al., 1998; Myers, 1979), but also has several 
strict assumptions that must be met to avoid inferential 
(Type-I or Type-II) errors (Muth et al., 2016). First, RM- 
ANCOVA assumes dependent variable data are normally dis-
tributed, which is often unlikely in practice (e.g., Micceri, 
1989). Second, RM-ANCOVA assumes a temporally struc-
tured and balanced data collection schedule (Edwards, 2000; 
Peugh & Heck, 2017), defined as all participants providing 
all necessary repeated dependent variable measurements 
exactly on the timetable dictated by the longitudinal design 
(Helms, 1992). Longitudinal data collection efforts often do 
not proceed on schedule, which creates an irregularly timed, 
unstructured, and unbalanced dataset that violates RM- 
ANCOVA assumptions (de Melo et al., 2022; Helms, 1992; 
Krueger & Tian, 2004).

Third, two of the most well-known RM-ANCOVA 
assumptions are homogeneity of all possible pairwise depend-
ent variable correlations (or covariances, regardless of sepa-
ration distance in time) and homogeneity of all dependent 
variable variances across independent variable (IV) condi-
tions (referred to as homoscedasticity or sphericity; Keselman 
et al., 2001). Homogeneous dependent variable correlations/ 
covariances and homogeneous dependent variable variances 
are together referred to as compound symmetry (de Melo 
et al., 2022; Everitt, 1998; Howell, 2007; Keselman et al., 
2001; Locascio & Atri, 2011). Compound symmetry is 
widely viewed as unrealistic (Howell, 2007; Locascio & Atri, 
2011) and correction factors aimed at reducing inferential 
errors when compound symmetry is violated (e.g., 
Greenhouse-Geisser, Hyun-Feldt, lower bound, etc.) are 
crude corrections at best (Rubin et al., 2007). Finally, RM- 
ANCOVA requires complete data and will assume missing 
completely at random (MCAR) for any missing data (de 
Melo et al., 2022; Garcia & Marder, 2017; Muth et al., 
2016). In the unlikely event that MCAR is plausible, listwise 
deletion cannot be considered an acceptable missing data 

handling practice in most cases due to the resulting bias in 
estimates due to loss of information and a decrease in statisti-
cal power (e.g., see Abraham & Russell, 2008; Enders, 
2022). However, if assumptions are met and missing data is 
handled via multiple imputation, RM-ANCOVA is an ideal 
analytic choice if pretest-posttest differences are of interest 
(Locascio & Atri, 2011; Omar et al., 1999).

Results from both ML and MI missing data handling 
showed a significant between subjects (IV group) by within- 
subjects (pretest-posttest) interaction (−0.67, p< 0.001). 
Post-hoc follow-up analyses, at posttest, showed both the 
meditation (�XDifference¼ −2.70, t76 ¼ −5.83; p < .001) and 
“sham” meditation ( �XDifference¼ −1.83, t76 ¼ −4.02; p <
.001) had significantly lower VAS scores compared to the 
book listening and placebo control conditions. Additional 
post-hoc pairwise comparisons showed, at posttest, the mind-
fulness meditation condition had significantly lower VAS 
unpleasantness scores than both the book listening 
(�XDifference¼ −1.44, t38 ¼ 2.35, p < .05, d ¼ .74) and placebo 
control (�XDifference¼ −2.34, t38 ¼ 3.23, p < .01, d¼1.02). 
However, post-hoc pairwise comparisons also showed, at 
posttest, the “sham” meditation condition also had signifi-
cantly lower VAS unpleasantness scores than both the book 
listening (�XDifference¼ −1.36, t38 ¼ 2.47, p < .05, d ¼ .78) 
and placebo control ( �XDifference¼ −2.25, t38 ¼ 3.37, p < .01, 
d¼1.06). There were no significant differences between the 
mindfulness meditation and “sham” meditation conditions at 
the posttest.5 A summary of RM-ANCOVA analysis results 
is shown in Figure 2. SPSS, Stata, and R data analysis syntax 
scripts are also shown in Appendix A.

Statistical considerations: RM-ANCOVA
In the Zeidan et al. (2015) example, and although not readily 
apparent, all the predictors of VAS response variable scores 
(the IV group indicator, the pretest/posttest indicator, and the 
baseline VAS, biological sex, and age control covariates) have 
complete data. Missing data is restricted to the pretest/postt-
est VAS response variable scores. Published research (Little, 
1992; Little & Rubin, 2002; von Hippel, 2007 as cited in 
Enders et al., 2020; Grund et al., 2018; van Buuren, 2021) 
has shown ML is an acceptable missing data handling techni-
que if missing data is restricted to the response variable only 
(see also White & Carlin, 2010). RM-ANCOVA analysis 
syntax scripts for handling missing data with ML estimation 
are offered for SPSS, Stata, and R in Appendix A. However, 
BLIMP imputation syntax and RM-ANCOVA analysis 
scripts for analyzing imputed data are also offered in 
Appendix A for SPSS, Stata, and R for researchers facing the 
more realistic RM-ANCOVA scenario of missing data on 
more variables than just the response.

GEE example: Epstein et al. (2022)6

A complete discussion of the Epstein et al. (2022) trial design 
specifics can be found in the original publication but is briefly 
summarized here. The authors tested whether Enhanced 
Focused Concentration and Attention Learning (FOCALþ; 
treatment) decreased long off-roadway glances and improved 
driving performance versus a modified version of driver 

4 This work was supported by the National Center for Complementary 
and Integrative Health (Grants R21-AT007247, F32-AT006949, 
K99-AT008238), the National Institutes of Health–National Institute 
of Neurological Disorders and Stroke (Grant NS239426).

5 Additional sensitivity analyses showed RM-ANCOVA results did not 
change whether a compound symmetry (highly restrictive) or unstruc-
tured (least restrictive) covariance matrix was specified.  

6 Funded by the National Institutes of Health; ClinicalTrials.gov num-
ber, NCT02848092.
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education and training (ADTSEA; control) in a driving simu-
lator task. Participants diagnosed with ADHD (N¼152) 
completed three, 30-min driving simulator tasks at baseline, 
1-month posttreatment, and 6-months posttreatment. During 
the driving simulation, participants were required to com-
plete a distraction task that forced them to look at a location 
on the screen other than the forward roadway. All partici-
pants wore special eye gaze tracking goggles to capture the 
number and duration of off-road glances; long glances were 
defined as looking away from the forward roadway for more 
than 2 s.

Between the baseline and 1-month simulated drives, all 
participants were randomly assigned to treatment or control 
and received five additional 90-min driver training sessions 
presented in two distinct stages. These training sessions dif-
fered in that participants randomly assigned to treatment 
were trained on simulated drives until they had no long off- 
road glances and provided 50% correct answers to the 

distraction task. Control participants viewed driver’s educa-
tion slides and videos that contained comprehension tests at 
the end of each. All participants performed additional driving 
simulator training drives wearing eye-tracking goggles, but 
only treatment participants heard an auditory alarm if any 
off-road glance exceeded 2 s, control participants did not 
hear an alarm.

At 1-month and 6-month intervals following the training 
sessions, participants returned to complete the same driving 
simulation assessments that they performed at baseline, 
except no alarms were sounded for excessive off-road gazes. 
The response variable (DV) of interest was the participants’ 
standard deviation of lane position (SDLP), defined as the 
average distance in feet of deviation from the center of the 
street assessed every 17 ms. The research questions of interest 
here for the Epstein et al. (2022) trial were: After controlling 
for baseline SDLP scores, participant age at licensure, and 
average speed during the simulation drives, were there 

Figure 1. Potential scale reduction (PSR) diagnostic output for the Zeidan et al. (2015) trial data if imputation was needed for an RM-ANCOVA model.

Figure 2. 95% CI error bar results at post-test for the Zeidan et al. (2015) trial data.
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significant SDLP differences between the FOCALþ (treat-
ment) and ADTSEA (control) groups at the 1-month (Is the 
treatment effective?) and 6-month (Are significant treatment 
gains maintained?) assessments? Participant attrition resulted 
in 10.5% missing SDLP scores.

GEEs are an extension of fixed effect general linear model 
analyses, such as RM-ANCOVA, to not only allow for the 
analysis of correlated repeated measures count, multinomial, 
or binary dependent variable data (Liang & Zeger, 1986; 
Zeger & Liang, 1986; Zeger et al., 1988; cited in Hedeker & 
Gibbons, 2006) but to also allow the analysis of correlated 
repeated measures on a continuous scale that are not distrib-
uted normally (Locascio & Atri, 2011; Wang et al., 2016). 
Specifically, unlike fixed effect linear model analyses that 
assume multivariate normality of repeated dependent meas-
ures, GEEs: (1) assume marginal univariate normally distrib-
uted repeated responses (Hedeker & Gibbons, 2006), (2) fit a 
fixed effect model like an RM-ANCOVA to the repeated 
dependent variable data’s marginal distribution (Liang & 
Zeger, 1986; Park, 1993), and (3) estimate the effect of the 
IV on the population response variable means (Albert, 1999; 
Edwards, 2000).

A key GEE assumption is that the fixed effect estimates 
that quantify IV influences on the repeated measures 
responses are of interest, but neither the structure of the cor-
related repeated dependent variables nor the residual var-
iance/covariance estimates are needed (e.g., Burton et al., 
1998; Diggle et al., 1994; Hardin & Hilbe, 2003; Ziegler, 
2011). Specifically, although considered a nuisance in GEEs, 
the repeated measures correlation matrix must be specified in 
the service of fixed effect and fixed effect standard error esti-
mation precision (Edwards, 2000; Locascio & Atri, 2011; 
Zeger & Liang, 1986). Correlation matrix specification 
options include: (1) an independence matrix that assumes 
uncorrelated responses, (2) an exchangeable matrix that 
assumes all possible pairwise dependent variable correlations 
are equivalent, (3) an autoregressive (or band-diagonal) 
matrix that assumes repeated dependent variables collected 
more closely in time are more highly correlated than depend-
ent variables separated further in time, and (4) an unstruc-
tured matrix that estimates unique correlations for all 
possible pairwise repeated dependent variable measures 
(Garcia & Marder, 2017; Hedeker & Gibbons, 2006; 
Schluchter, 1988; Schober & Vetter, 2018)7.

Just like RM-ANCOVA, GEEs also assume a temporally 
structured and balanced database with all dependent variable 
assessments collected consistently over time (Locascio & 
Atri, 2011). Although research has shown that fixed effect 
standard errors can be negatively biased under conditions of 

both a small sample size (Wang et al., 2016) and a misspeci-
fied repeated measures correlation matrix (Garcia & Marder, 
2017), GEEs also have several well-known and often cited 
advantages. GEEs are very easy to estimate (Garcia & 
Marder, 2017) and have statistical power advantages under 
small sample size conditions (Ma et al., 2012; McNeish et al., 
2017; Muth et al., 2016). Most importantly, GEEs produce 
unbiased fixed effect estimates that are robust to an incor-
rectly specified repeated measures correlation matrix 
(Ballinger, 2004; Diggle et al., 1994; Edwards, 2000; Garcia 
& Marder, 2017; Ghisletta & Spini, 2004; Hedeker & 
Gibbons, 2006; Wang et al., 2016; Zeger et al., 1988) under 
most conditions. Further, if assumptions are met and missing 
data is handled with multiple imputations (de Melo et al., 
2022; Muth et al., 2016), GEEs are ideal under circumstances 
(e.g., research questions involving both treatment efficacy 
and maintenance) where fixed effect estimates alone are suffi-
cient to answer the research question.

Returning to the Epstein et al. (2022) trial example, an 
explanatory paragraph linking Epstein et al. (2022) data spe-
cifics is offered before the diagnostic phase BLIMP syntax is 
shown in Appendix B. Diagnostic multiple imputation results 
showed an acceptable and stable PSR < 1.05 convergence 
value was observed conservatively after 500 burn-in itera-
tions (i.e., consistent and stable PSR decreases were observed 
only after 500 iterations), as shown in Figure 3. BLIMP 
imputation syntax for a GEE is also shown in Appendix B. 
Pooled GEE results from analyzing the 100 imputed datasets 
showed, after controlling for age at licensure and average 
driving simulation speed, the FOCALþ group had signifi-
cantly lower SDLP versus the control group at both the 1- 
month ( �XDifference¼ −.165, p ¼ .001; d ¼ .80) and 6-month 
(�XDifference¼ −.188, p < .001; d ¼ .83) assessments, indicating 
both treatment efficacy and maintenance8. A summary of the 
GEE analysis results is shown in Figure 4. SPSS, Stata, and R 
data analysis syntax scripts are also shown in Appendix B.

Statistical considerations: GEE
Handling missing data with ML is not available in GEE 
because the estimation algorithm used to obtain parameter 
estimates is not ML in nature and requires complete data (see 
Footnote 7). Listwise deletion is the default in any statistical 
analysis software program capable of performing GEE analy-
ses. Missing data in GEE analyses must be handled with MI. 
Syntax scripts in BLIMP to impute missing data, and in 
SPSS, Stata, and R to analyze and pool GEE analysis results 
from imputed data in are given in Appendix B.

LLMM example: Kashikar-Zuck et al. (2012)9

Specific design information for the Kashikar-Zuck et al. 
(2012) trial can be found in the original publication but is 
briefly summarized here. Functional Disability Inventory 
(FDI; Walker & Greene, 1991) data were collected from a 
sample of (N¼114) pediatric patients diagnosed with juve-
nile fibromyalgia syndrome (FMS) at three data collection 
sites. FDI scores were obtained at a baseline assessment, after 
which all participants were randomly assigned to receive 
either cognitive-behavioral therapy (CBT; treatment) or FMS 

7 As an aside, it is worth noting for researchers familiar with maximum- 
likelihood estimation that GEE estimation does not involve maximum 
likelihood, but instead proceeds in five iterative steps: (1) fixed effects 
quantifying the influence of the IV on response variable means are esti-
mated first assuming the response variables are uncorrelated, (2) 
response variable residuals, defined as the difference between the 
observed and model-predicted values and based on both the prelimi-
nary fixed effect estimates and the user-specified correlation matrix, 
are computed, (3) the residuals matrix is used to modify and update 
both the fixed effect and fixed effect standard error estimates, (4) 
residuals are re-calculated, a new response variable correlation matrix 
is estimated, and fixed effect and fixed effect standard error estimates 
are again modified, and (5) the process repeats until a criterion for 
model convergence is met (i.e., fixed effect estimates and fixed effect 
standard error estimates can no longer be improved upon) (McNeish 
et al., 2017; Muth et al., 2016; Liang & Zeger, 1986). This estimation 
algorithm is not maximum likelihood in nature, requires complete 
data, and will listwise delete any missing data by default.

8 Additional sensitivity analyses showed results did not change whether 
an independence, first-order autoregressive, or unstructured correla-
tion matrix was specified.  

9 Funded by National Institutes of Health grant # R01-AR-050028 (PI: 
Kashikar-Zuck), ClinicalTrials.gov number NCT00086047.
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education (FM education; control). All participants received 
eight, 45-min intervention sessions, one per week. Control 
(FM education) participants engaged with the therapist in 
discussions of healthy lifestyle habits. Treatment condition 
(CBT) participants received muscle relaxation training, cogni-
tive distraction and problem-solving skills, and behavioral 
activity pacing and relapse prevention techniques. 
Participants provided FDI scores at the end of the 8-week 
active treatment phase, and again at a 6-month follow-up. 
The research questions for the Kashikar-Zuck et al. (2012)
trial are: (1) Does CBT result in greater FDI score reductions 
over time versus FM education after controlling for data col-
lection site and tender point sensitivity average scores (based 
on an 18-point dolorimetry examination at each time point; 
see Kashikar-Zuck et al., 2012, p. 4)? If so, (2) Are significant 
CBT treatment effects over time moderated by depression (as 
measured by Child Depression Inventory T-scores [CDI_T]; 
Kovacs, 1992)?

Longitudinal linear mixed models (LLMM) further expand 
upon both RM-ANCOVA and GEE analyses under the 
assumption that both dependent variable average change 
over time (fixed effects), and variation in response change 
over time (random effects) across participants, are of interest 
(Bauer & Sterba, 2011; de Melo et al., 2022; Diggle et al., 

2002; Edwards, 2000; Fitzmaurice et al., 2004; Harville, 
1977; Laird & Ware, 1982; Lininger et al., 2015; Longford, 
1993; Muth et al., 2016; Omar et al., 1999; Schober & 
Vetter, 2018; Snijders & Bosker, 2012; Ziegler, 2011). 
Unlike GEEs, LLMMs model both the joint relationship 
between predictors and repeated measures as well as the cor-
relation between both the repeated dependent variables and 
dependent variable residual variances (Garcia & Marder, 
2017; Muth et al., 2016). If the sample size is large (recall 
GEEs have an advantage at smaller sample sizes; see also Bell 
et al., 2008), explaining variation in response variable change 
over time is of interest, a repeated measures fixed effect is sus-
pected to vary across participants, and the number of 
repeated measures contributed by each participant varies, 
LLMM (not GEE) is needed (Burton et al., 1998; Ma et al., 
2012). However, compared to GEEs, LLMMs require more 
assumptions to be met (McNeish et al., 2017), small sample 
sizes are problematic for standard error estimation (Bell 
et al., 2008; Verbeke & Lesaffre, 1997), and model misspeci-
fications can result in Type-1 inferential errors (Agresti et al., 
2004; McNeish et al., 2017; Schober & Vetter, 2018). 
However, LLMMs afford greater flexibility in research 
design (unlike RM-ANCOVA and GEE, LLMM data need 
not be structured or balanced), types of predictors (time- 

Figure 3. Potential scale reduction (PSR) diagnostic output for the Epstein et al. (2022) trial data assuming a GEE imputation model.

Figure 4. 95% CI error bar results post-baseline for the Epstein et al. (2022) trial data.
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invariant or time-varying; Edwards, 2000; Raudenbush & 
Bryk, 2002), and missing data handling options (Garcia & 
Marder, 2017; but see below). LLMMs are ideal for research 
questions involving the explanation of variance in dependent 
variable changes over time (McNeish et al., 2017).

Returning to the Kashikar-Zuck et al. (2012) trial, descrip-
tive statistics showed 6.43% of FDI, 7.02% of CDI, and 
7.89% of tender point examination data was missing. 
Further, a priori unconditional analyses showed a model with 
intercept and linear slope fixed and random effects (quadratic 
and higher fixed effect and random effect terms were all non- 
significant; Snijders & Bosker, 2012) best modeled FDI score 
changes during and after active treatment. Again, a para-
graph linking the specifics of the Kashikar-Zuck et al. trial 
data to BLIMP syntax specifications is provided before the 
BLIMP diagnostic syntax is shown in Appendix C. Multiple 
imputation diagnostics showed an acceptable PSR (<1.05) 
convergence value was obtained after 2000 iterations as 
shown in Figure 5. The BLIMP imputation syntax is also 
shown in Appendix C. Pooled imputation longitudinal 
LLMM analysis results showed CBT participants had signifi-
cantly lower FDI scores over time (IV_GROUP �

TIME¼−1.79, t¼−2.13, p < .05), but this effect was not 
moderated by depression (IV_GROUP � TIME �

CDI_T¼−0.05, t¼−.31, p > .05). Effect size computations 
showed that treatment group, time in assessment months, 
and the group by time interaction explained (R2

PSEUDO ¼ :039; 
Rights & Sterba, 2021) roughly 4% of FDI variance. Model- 
predicted LLMM analysis results are shown in Figure 6. 
SPSS, Stata, and R data analysis syntax scripts are also shown 
in Appendix C.

Statistical considerations: LLMM
MI is needed to handle missing data under several different 
data analysis scenarios when using LLMM analyses. Monte 
Carlo simulation research has shown that notable parameter 
estimate bias occurs in LLMM estimation scenarios involving 
either a random effect (i.e., if missing data is limited to the 
repeated response variable measures only) or a cross-level 
interaction (i.e., if one or more predictor, moderator, or con-
trol covariate variables also show missing data) if missing 
data is handled with ML (see Enders et al., 2018, 2020; see 
also Grund et al., 2021a; Keller & Enders, 2023). The 
Kashikar-Zuck et al. (2012) example has both a random 
effect (random slope; the effect of TIME as a predictor of 
changes in FDI scores over time is estimated as varying ran-
domly across participants) and a cross-level interaction (the 

random linear slope variance is predicted by a binary indica-
tor of treatment random assignment, but also by a moderator 
[CDI] and a control covariate [tender-point exam scores] that 
both show missing data). Said differently, and unlike RM- 
ANCOVA, even if the variable used as the metric of time and 
the variable indicating treatment random assignment both 
have complete data and missing is limited to the response var-
iable only, notable bias will occur in both the random slope 
estimate and the cross-level interaction estimate likely needed 
to answer the longitudinal trial research question if ML is 
used to handle missing data. Additional research has also 
shown that the use of the Yeo–Johnson transform procedure, 
together with model-based imputation with factored regres-
sion, produced unbiased LLMM moderation effect estimates 
that involved nonnormal time-invariant (level 2) predictors 
(e.g., CDI scores; Keller & Enders, 2023). Syntax scripts in 
BLIMP to impute missing data, and syntax scripts for SPSS, 
Stata, and R to analyze and pool LLMM analysis results 
from multiple imputations in are given in Appendix C.

Summary
Methodologists have known for decades that, although no 
missing data handling technique can eliminate parameter esti-
mate bias due to missing data, ML and MI are the preferred 
missing data handling techniques because they have been 
shown empirically to optimally minimize parameter estimate 
bias. However, recent methodological research has posed 
questions as to whether both equally minimize bias under all 
data analysis scenarios or are there analysis models for which 
one better minimizes bias versus the other. Further, McNeish 
et al. (2017) stated that researchers tended to use complicated 
data analysis models when simpler ones would more effi-
ciently answer the research question because such methods 
were likely the only ones taught. These two facts beg an 
obvious question: Why? A reasonable answer might involve 
the default maximum likelihood of missing data handling 
that is unavailable for simpler models (GEE; leaving MI as 
the only option), but commonly available for more complex 
models (LLMM) even if more recent research shows its use 
results in biased parameter estimates under specific data anal-
ysis conditions (Enders et al., 2018, 2020). As shown in the 
example analyses, ML is not always the appropriate or even 
available option for handling missing data in longitudinal 
clinical trials. Few researchers have experience with multiple 
imputations, and fewer still have access to multiple imputa-
tion software packages capable of properly imputing missing 

Figure 5. Potential scale reduction (PSR) diagnostic output for the Kashikar-Zuck et al. (2012) trial data assuming a LLMM imputation model.
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data in a longitudinal trial. Although multiple imputation 
missing data handling is available in several commercially 
available software packages, BLIMP is featured here for 
three reasons: (1) it is internet freeware, making it completely 
accessible, (2) it can handle missing data on any measurement 
scale, and (3) it has numerous publications documenting both 
its development and efficacy. Further, the example analyses 
shown here provide only a very small sample of the imputa-
tion and Bayesian analysis capabilities possible in BLIMP.

Table 2 offers a summary of the advantages and disadvan-
tages of all three options to assist trialists in determining the 
optimal data analysis model for their longitudinal research 
design circumstances. A RM-ANCOVA was used to analyze 
data from the Zeidan et al. (2015) trial because: (1) the VAS 
scores were normally distributed; testing the null hypothesis 
of normally distributed data showed a nonsignificant result, 
(2) as a tightly controlled laboratory experiment, the assump-
tion of structured and balanced data collection was met, and 
(3) analysis results were identical whether a compound 

symmetric or unstructured covariance matrix was specified. 
As such, an RM-ANCOVA was the most efficient method for 
answering the research question. A GEE was needed for the 
Epstein et al. (2022) trial data because variances, such as 
standard deviation of lane position, are well-known to be 
non-normally distributed (e.g., McNeish & Hamaker, 2020). 
Recall a GEE does not require continuous dependent varia-
bles to be normally distributed. Further, GEE rather than an 
LLMM was needed for the Epstein et al. (2022) trial data 
because evidence of treatment efficacy at the 1-month assess-
ment and evidence of treatment maintenance at the 6-month 
assessment were needed to answer the research questions. 
Finally, GEE results for the Epstein et al. (2022) trial data 
were identical regardless of the correlation matrix structure 
specified. In the Kashikar-Zuck et al. (2012) trial data, trajec-
tory differences between the independent variable groups 
assessed in an LLMM answered questions regarding CBT 
better-changing disability over time compared to an educa-
tional control. It is worth noting that RM-ANOVA could 

Figure 6. 95% CI error bar trajectory results for the Kashikar-Zuck et al. (2012) trial data.

Table 2. A longitudinal trial data analysis decision tree (from McNeish et al., 2017)

RM-ANCOVA GEE LLMM

Advantages Powerful if assumptions are met 
(normality, compound symme-
try) and no missing data (if so, 
can be analyzed as a general lin-
ear model [GLM])

Very flexible:  Can analyze lon-
gitudinal DV data on any meas-
urement scale  Continuous 
DVs need not be normally 
distributed Greater statistical 
power at smaller N vs. LLMM

Explicitly models the correlated 
nature of clustered/repeated 
measures data via level-1 and 
level-2 Missing data are often 
handled via the default maxi-
mum likelihood (ML) estima-
tion algorithm

Disadvantages Assumptions are rarely met   
Listwise deletion is often the 
default

The likelihood of a Type-1 error 
increases as N decreases and the 
discrepancy between the user- 
specified and population corre-
lation matrix increases   
Listwise deletion is often the 
default

Both large Ns and properly speci-
fied residual covariance matri-
ces at level 1 and level 2 are 
needed for unbiased 
estimates ML is not appropri-
ate for missing data handling 
for random slopes or cross-level 
interactions

Ideal If only T ¼ 2 timepoints (pretest/ 
posttest) of data are available 
for analysis

If time-point-specific fixed effect 
estimates are sufficient to 
answer the research question 
(random effects are discarded 
post-estimation)

If overall DV trajectory differences 
by random assignment are 
needed to answer the research 
question
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have been used if analysis assumptions had been met, and 
GEE could have been used if research questions involved 
short-term treatment efficacy and longer-term treatment 
maintenance. In summary, McNeish et al.’s (2017) implicit 
recommendation is a prudent one: estimate only the parame-
ters needed to answer the specific research question(s).

Finally, from a practical perspective, all analyses shown 
here were performed using SPSS and Stata due to their popu-
larity and widespread use. Both statistical analysis software 
packages are commercially available but at a notable cost. 
Although not obvious from the examples shown here, 
BLIMP will provide Bayesian model parameter estimates by 
default if model-based (H0:) imputation is used as was shown 
here. Researchers satisfied with Bayesian parameter estimates 
can handle missing data and answer their research questions 
in a single step using BLIMP. For researchers more comfort-
able with frequentist (e.g., ML) estimation, as shown in the 
examples here, SPSS, Stata, and R can analyze and pool 
imputed data from BLIMP using frequentist analyses. 
Perhaps most importantly, BLIMP and R both are empiri-
cally well-validated internet freeware programs. Assuming 
access to a stable internet connection, researchers at all levels 
of training anywhere in the world can handle missing values, 
analyze longitudinal trial data, and answer research questions 
completely free of cost.
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Appendix A
ML for Missing Data: SPSS, Stata, and R scripts for analyzing the Zeidan et al. (2015) data
The Zeidan et al. (2015) data only contains VAS pretest/posttest (or, “y-side”) missing data. In this case, handling missing data 
with ML estimation is an acceptable approach and simply involves fitting the analysis model to the sample data (Little, 1992; 
Little & Rubin, 2002; van Buuren, 2021; von Hippel, 2007). Shown below are the data analytic syntax scripts needed to ana-
lyze the Zeidan et al. (2015) data using ML estimation in SPSS, Stata, and R. However, multiple imputation scripts in BLIMP, 
and syntax scripts needed to analyze imputed data in SPSS, Stata, and R are also offered below for researchers wanting to 
use an RM-ANCOVA data analysis model but facing the more likely scenario of having both response variables (“y-side”) and 
control covariate (“x-side”) missing data. 

SPSS—ML                                                                                                    

MIXED PRE_POST BY W_FACTOR B_FACTOR WITH Age Gender BASELINE
/FIXED¼W_FACTOR B_FACTOR W_FACTOR�B_FACTOR j SSTYPE(3)
/METHOD¼REML
/PRINT¼SOLUTION TESTCOV
/EMMEANS ¼ TABLES (B_FACTOR�W_FACTOR) compare(B_FACTOR)
/REPEATED¼W_FACTOR j SUBJECT(ID) COVTYPE(CS). 

(Note: The ‘WITHIN’ and ‘BETWEEN’ variable names had to be changed to ‘W_FACTOR’ and ‘B_FACTOR’ because 
“within” is an SPSS syntax keyword.) 

Stata-ML                                                                                                     

/�Overall Model�/
mixed PRE_POST c. WITHIN##c.BETWEEN BASELINE Age Gender k ID 

/�Post-hoc follow-up, reference group ¼ group 3�/
mixed PRE_POST WITHIN##ib3.BETWEEN BASELINE Age Gender k ID 

R—ML                                                                                                      

install.packages(“lavaan”)
library(lavaan) 

Zeidan <- read.csv(“C:/Users/peuu3c/OneDrive—cchmc/Desktop/Zeidan_ML.csv”) 

Zeidan$int <- Zeidan$WITHIN�Zeidan$BETWEEN 

Zeidan_model <- “
PRE_POST � Age þ Gender þ BASELINE þ WITHIN þ BETWEEN þ int 

#These 7 lines must be included, otherwise, means/intercepts are #set to 0 and parameter estimates 
are severely biased
PRE_POST � 1
Age � 1
Gender � 1
BASELINE � 1
WITHIN � 1
BETWEEN � 1
int � 1” 

Zeidan_ML <- lavaan(model ¼ Zeidan_model,
missing ¼ “ML”,
data ¼ Zeidan,
cluster ¼ “ID”,
auto.var ¼ TRUE,
estimator ¼ “ML”) 
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summary(Zeidan_ML, fit.measures ¼ TRUE) 

#POST-HOC FOLLOW-UP 

library(lavaan)
library(haven)
library(fastDummies) 

Zeidan <- read_sav(“D:/Zeidan.sav”) 

data <- subset(Zeidan, WITHIN =¼ 2) 

require(fastDummies)
data2 <- dummy_cols(data, select_columns¼“BETWEEN”) 

Zeidan_model2 <- “
PRE_POST � 1þBETWEEN_1þBETWEEN_2þBETWEEN_4” 

Zeidan_ML2 <- lavaan(model ¼ Zeidan_model2,
missing ¼ “ML”,
data ¼ data2,
auto.var ¼ TRUE,
estimator ¼ “ML”) 

summary(Zeidan_ML2, fit.measures ¼ TRUE)

MI for Missing Data: Zeidan et al. (2015) data specifics to BLIMP diagnostic and imputation 
syntax
The Zeidan et al. (2015) dataset variables are listed in the order in which they appear in the data file after the (VARIABLES:) 
command. Binary variables specifying participant biological sex (Gender: 0¼male, 1¼ female), the repeated measures effect 
(WITHIN: 0¼ pretest, 1¼ posttest), and the multinomial randomization variable (BETWEEN, see values listed in text) are all 
listed on the ORDINAL: command line. The participant ID variable (level2id) is listed on the (CLUSTERID:) line to indicate 
that both pretest and posttest VAS scores are correlated within each participant. Age, Gender, Baseline, WITHIN, and 
BETWEEN variables are listed on the (FIXED:) command line because those variables have no missing data. The (MISSING: 
-99;) command specifies the required single value missing data indicator. The imputation model shown after the (MODEL:) 
command indicates pretest and posttest VAS scores (PRE_POST) are predicted by (�) the repeated measures (WITHIN) and ran-
dom assignment (BETWEEN) main effects and their interaction (WITHIN�BETWEEN) after controlling for covariate effects (Age, 
Gender, Baseline). The (j 1@0) specification at the end of the (MODEL:) command line specifies no random slopes (e.g., the 
repeated measures [WITHIN] effect is not specified to vary randomly across participants. BLIMP estimates a random intercept 
by default if the CLUSTERID: command is used). Both the total number of iterations (ITERATIONS:) as well as the number of 
burn-in (BURN:) iterations are set to high values to achieve potential scale reduction (PSR) stability (Keller & Enders, 2022, p. 
86). The (OUTPUT:) command line requests potential scale reduction (PSR) values to be listed in the output window for diag-
nostic purposes. As shown in Figure 1, multiple imputation diagnostic results showed admissible PSR < 1.05 convergence was 
obtained after a maximum of 200 burn-in iterations. Despite needing only 200 iterations to achieve PSR convergence, 5000 
burn-in (BURN:) iterations and 10 000 total iterations (ITERATIONS:) are recommended as a minimum for the imputation 
phase (which should be increased if needed to obtain PSR < 1.05; Keller & Enders, 2023, pp. 85–90), both of which will be 
used from this point forward.

BLIMP imputation phase syntax is also shown below. The imputation syntax differs from the diagnostic syntax in two ways. 
First, the (OUTPUT: PSR;) command line is replaced with (NIMPS:, CHAINS:, & SAVE:) command lines. Second, the number 
of imputed datasets is specified on the (NIMPS: 100;) command line, and the number of chains listed on the (CHAINS: 100;) 
line both were set to a value of 100. This specifies that each imputed dataset be computed by a separate chain to avoid potential 
autocorrelation across imputed datasets (e.g., the THIN: command in BLIMP is not needed; see Enders, 2022, p. 267).

BLIMP Diagnostic and Imputation Syntax Scripts for Missing Data
SPSS, Stata, and R syntax for RM-ANCOVA Estimation

BLIMP—Diagnostic                                                                                              

DATA: RM_ANCOVA.dat;
VARIABLES: level2id Age Gender Baseline WITHIN BETWEEN PRE_POST;
ORDINAL: Gender WITHIN BETWEEN;
CLUSTERID: level2id;
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MISSING: -99;
FIXED: Age Gender Baseline WITHIN BETWEEN;
MODEL:
PRE_POST � Age Gender Baseline WITHIN BETWEEN WITHIN�BETWEEN j 1@0;
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;
OUTPUT: PSR;

BLIMP—Imputation                                                                                             

DATA: RM_ANCOVA.dat;
VARIABLES: level2id Age Gender Baseline WITHIN BETWEEN PRE_POST;
ORDINAL: Gender WITHIN BETWEEN;
CLUSTERID: level2id;
MISSING: -99;
FIXED: Age Gender Baseline WITHIN BETWEEN;
MODEL:
PRE_POST � Age Gender Baseline WITHIN BETWEEN WITHIN�BETWEEN j 1@0;
SEED: 90291;
BURN: 5000;
ITERATIONS: 10000;
NIMPS: 100;
CHAINS: 100;
SAVE: stacked ¼ RM_ANCOVA_imps.dat;

SPSS Syntax: RM-ANCOVA Estimation                                                                            

data list free file ¼ 'C : \RM_ANCOVA_imps.dat'
/imputation_ level2id Age Gender Baseline WFACTOR BFACTOR PRE_POST.

EXECUTE. 

�activate pooling algorithm.
sort cases by imputation_.
split file layered by imputation_. 

�This code makes 1¼ post and 2¼pre.
compute WFACTOR¼3 - WFACTOR.
EXECUTE. 

�This code makes
�BFACTOR: 1¼LISTEN, 2¼MEDITATION, 3¼SHAM, 4¼CONTROL
DATASET ACTIVATE DataSet1.
RECODE BFACTOR (2¼1) (3¼2) (4¼3) (1¼4).
EXECUTE. 

MIXED PRE_POST BY WFACTOR BFACTOR WITH Baseline Age Gender
/FIXED¼WFACTOR BFACTOR WFACTOR�BFACTOR
/METHOD¼REML
/PRINT¼DESCRIPTIVES SOLUTION TESTCOV
/REPEATED¼WFACTOR j SUBJECT(level2id) COVTYPE(CS)
/EMMEANS¼TABLES(WFACTOR�BFACTOR) compare(BFACTOR). 

�Syntax for post-hoc follow-up.
data list free file ¼ 'C : \RM_ANCOVA_imps.dat'
/imputation_ level2id Age Gender Baseline WFACTOR BFACTOR PRE_POST.

EXECUTE. 

�creates IV group dummy codes; '(Mindful) Meditate' is the reference class.
compute Placebo¼0.
if (BFACTOR¼1) Placebo¼1.
compute Listen¼0.
if (BFACTOR¼2) Listen¼1.
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compute Sham¼0.
if (BFACTOR¼4) Sham¼1.
EXECUTE. 

�select posttest only.
USE ALL.
COMPUTE filter_$=(WFACTOR¼2).
VARIABLE LABELS filter_$'WFACTOR¼2 (FILTER)'.
VALUE LABELS filter_$0 'Not Selected' 1 'Selected'.
FORMATS filter_$(f1.0).
FILTER BY filter_$.
EXECUTE. 

�activate pooling algorithm.
sort cases by imputation_.
split file layered by imputation_.
�Post-hoc.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS
/CRITERIA¼PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT PRE_POST
/METHOD¼ENTER Placebo Listen Sham. 

Stata Syntax: RM-ANCOVA Estimation                                                                            

/�import data and recode missing data�/
use “C : \RM_ANCOVA_Stata_imps.dta”
recode _all (-99 ¼ .) 

/�define imported data as multiply imputed�/
mi import flong, m(imputation) id(level2id wfactor) imputed(age gender baseline pre_post) clear 

/�estimate the model�/
mi estimate: mixed pre_post c.wfactor##c.bfactor c.baseline c.age gender k level2id:, reml var 

/�post-hoc follow-up, reference group ¼ group 3 �/
mi estimate: mixed pre_post wfactor##ib3.bfactor c.baseline c.age gender k level2id:, reml var 

R Syntax: RM-ANCOVA Estimation                                                                               

install.packages(“lme4”)
install.packages(“mitml”)
library(“lme4”)
library(“mitml”) 

imps<-read.table(file ¼ “C:/RM_ANCOVA_imps.dat”) 

names(imps) <-
c(“imputation”,”level2id”,”Age”,”Gender”,”Baseline”,”WFACTOR”,”BFACTOR”,”PRE_POST”) 

implist <- mitml::as.mitml.list(split(imps, imps$imputation)) 

fit<-with(implist, lm(PRE_POST � WFACTOR þ BFACTOR þ WFACTOR�BFACTOR þ Baseline þ Age þ Gender)) 

(Note: The above model can be analyzed in R using either “lmer” with “LevelID” as a clustering variable “þ [1 j Level2ID]” or 
as specified above with” lm” and no clustering variable. The two sets of results are an exact match.)
mitml::testEstimates(fit, extra.pars ¼ TRUE, df.com¼73)

�Syntax for post-hoc follow-up.
install.packages(“fastDummies”)
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library(“fastDummies”) 

data<-imps
data<-dummy_cols(data, select_columns¼“BFACTOR”) 

data <- subset(data, WFACTOR =¼ 2) 

datalist <- mitml::as.mitml.list(split(data, data$imputation))
fit <- with(datalist,

lm(PRE_POST � 1þBFACTOR_1þBFACTOR_2þBFACTOR_4)
) 

testEstimates(fit) 

Alternate R Syntax: RM-ANCOVA Estimation                                                                       

(This syntax uses the newly developed ‘rblimp’ package. The most current versions of R and BLIMP must be installed prior to 
using the syntax below. More information can be found in Keller & Enders, 2023, p. 12.)
install.packages('remotes')
remotes::install_github('blimp-stats/rblimp')
library(rblimp) 

data1 <- as.data.frame(read.table('E:/RM_ANCOVA.dat', na.strings ¼ '-99.00'))
colnames(data1) <-

c('level2id','Age','Gender','Baseline','WITHIN','BETWEEN','PRE_POST')
RMANCOVA <- rblimp(

data ¼ data1,
clusterid ¼ 'level2id',
ordinal ¼ 'Gender WITHIN BETWEEN',
fixed ¼ 'Age Gender Baseline WITHIN BETWEEN',
model ¼ 'PRE_POST � Age Gender Baseline WITHIN BETWEEN WITHIN�BETWEEN j 1@0',
seed¼90291,
burn¼5000,
iter¼10000) 

output(RMANCOVA) 

�Syntax for post-hoc follow-up. 

library(“fastDummies”)
data1 <- dummy_cols(data1, select_columns¼“BETWEEN”)
data1 <- subset(data1, WITHIN =¼ 2) 

POSTHOC <- rblimp(
data ¼ data1,
ordinal ¼ 'BETWEEN_1 BETWEEN_2 BETWEEN_4',
fixed ¼ 'BETWEEN_1 BETWEEN_2 BETWEEN_4',
model ¼ 'PRE_POST � 1 BETWEEN_1 BETWEEN_2 BETWEEN_4',
seed¼75061,
burn¼5000,
iter¼10000) 

output(POSTHOC)

Appendix B

Linking Epstein et al. (2022) data specifics to BLIMP diagnostic syntax
Many of the command specifications remain the same as in the previous example, but additional attention is needed for the 
GEE (NOMINAL: & MODEL:) specifications. In the previous RM-ANCOVA example, the WITHIN (pretest/posttest indicator) 
and BETWEEN (IV group indicator) variables were included on the ORDINAL: line because the main effects for BETWEEN and 
WITHIN, as well as the BETWEEN � WITHIN interaction effect, needed to be specified consistent with RM-ANCOVA logic. In 
this GEE example, the IV group indicator (TX_group) is also listed on the ORDINAL: line, but the drive variable (coded 0 for 
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the baseline assessment, 1 for the 1-month assessment, and 2 for the 6-month assessment) is treated as a multinomial variable 
and listed on the NOMINAL: line for two reasons. First, adding a (0) to the end of the nominal command specifies that the 
baseline assessment is the reference, and BLIMP will automatically create two dummy codes for the 1-month (drive.1) and 
6-month (drive.2) assessments. Second, these dummy codes can then be included on the MODEL: line to specify both main 
effects (drive.1 & drive.2) and interactions (drive.1�TX_group & drive.2�TX_group) included in the imputation 
model. This both satisfies Graham’s (2012) golden rule of imputation and ensures that research questions regarding FOCALþ
treatment efficacy (drive.1�TX_group) and maintenance of treatment gains (drive.2�TX_group) after controlling for 
covariates (MeanSped, age_lic) can both be answered in the GEE analysis.

BLIMP Diagnostic and Imputation Syntax Scripts for Missing Data
SPSS, Stata, and R syntax for GEE Estimation

BLIMP—Diagnostic                                                                                              

DATA: SDLP.dat;
VARIABLES: level2id drive TX_group SDLaneP MeanSped age_lic;
CLUSTERID: level2id;
MISSING: -99;
FIXED: drive TX_group age_lic;
ORDINAL: TX_group;
NOMINAL: drive(0);
MODEL:
SDLaneP � drive.1 drive.2 TX_group drive.1�TX_group drive.2�TX_group MeanSped age_lic j 1@0;
SEED: 75061;
BURN: 10000;
ITERATIONS: 10000;
OUTPUT: PSR;

BLIMP—Imputation                                                                                             

DATA: SDLP.dat;
VARIABLES: level2id drive TX_group SDLaneP MeanSped age_lic;
CLUSTERID: level2id;
MISSING: -99;
FIXED: drive TX_group age_lic;
ORDINAL: TX_group;
NOMINAL: drive(0);
MODEL:
SDLaneP � drive.1 drive.2 TX_group drive.1�TX_group drive.2�TX_group MeanSped age_lic j 1@0;
SEED: 75061;
BURN: 5000;
ITERATIONS: 10000;
CHAINS: 100;
NIMPS: 100;
SAVE: stacked ¼ SDLP_imps.dat;

SPSS Syntax: GEE Estimation                                                                                      

data list free file ¼ 'C : \SDLP_imps.dat'
/imputation_ level2id drive drive_0 drive_1 drive_6 TX_group SDLaneP MeanSped age_lic.

EXECUTE. 

�Grand-mean centering.
aggregate
/outfile ¼ � mode ¼ addvariables
/break ¼ imputation_
/m_MeanSped ¼ mean(MeanSped)
/m_age_lic ¼ mean(age_lic). 

compute c_MeanSped ¼ MeanSped—m_MeanSped.
compute c_age_lic ¼ age_lic—m_age_lic.
EXECUTE. 

sort cases by imputation_.
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split file layered by imputation_. 

GENLIN SDLaneP BY TX_group drive (order ¼ descending) WITH c_MeanSped c_age_lic
/MODEL drive TX_group drive�TX_group INTERCEPT¼YES
DISTRIBUTION¼NORMAL LINK¼IDENTITY
/CRITERIA SCALE¼MLE PCONVERGE¼1E-006(ABSOLUTE) SINGULAR¼1E-012 ANALYSISTYPE¼3(WALD) 
CILEVEL¼95 LIKELIHOOD¼FULL
/REPEATED SUBJECT¼level2id WITHINSUBJECT¼drive SORT¼YES CORRTYPE¼ AR(1) ADJUSTCORR¼YES 
COVB¼ROBUST
MAXITERATIONS¼100 PCONVERGE¼1e-006(ABSOLUTE) UPDATECORR¼1
/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION.

Stata Syntax: GEE Estimation                                                                                     

/�import data and recode missing data�/
use “C : \GEE_Stata_imps.dta”
recode _all (-99 ¼ .) 

/�define imported data as multiply imputed�/
mi import flong, m(imputation) id(level2id drive) imputed(sdlanep meansped age_lic) clear 

/�define the hierarchical structure of the data�/
mi xtset level2id drive 

/�estimate the model�/
mi estimate: xtgee sdlanep c.tx_group##drive meansped age_lic, family(gaussian) corr(ar1)

R Syntax: GEE Estimation                                                                                        

install.packages(“geepack”)
library(“geepack”)
install.packages(“mitml”)
library(“mitml”) 

imps2<-read.table(file ¼ “C:/SDLP_imps.dat”)
names(imps2) <- c(“imputation”,”level2id”,”drive”,”drive_0”,”drive_1”,”drive_6”,”TX_group”,” 
SDLaneP”, “MeanSped”, “age_lic”) 

imps2<-imps2[order(imps2$imputation, imps2$level2id, imps2$drive),] 

imps2 <- mitml::as.mitml.list(split(imps2, imps2$imputation)) 

gee.sdlp<-with(imps2, geeglm(SDLaneP � TX_group�factor(drive) þ MeanSped þ age_lic, id ¼ lev-
el2id, family ¼ gaussian, corstr ¼ “ar1”)) 

vcov.geeglm<-function(x) summary(x)$cov.scaled 

testEstimates(gee.sdlp)

Appendix C

Linking Kashikar-Zuck et al. (2012) data specifics to BLIMP diagnostic syntax
The syntax needed to impute missing data from the Kashikar-Zuck et al. (2012) trial differs from previous syntax specifications 
in several ways. First, and because depression is needed to answer the second research question, CDI_T scores are group mean 
centered (GROUPMEAN) using the (CENTERING:) command (see Enders & Tofighi, 2007) (tender point examination scores 
[TENDERPT] are not centered because they are included only as a control covariate and are not of theoretical interest). Second, 
and more importantly, the MODEL: command now contains Focal.model: and Predictor.model: sections. The Focal. 
model: contains the data analysis model needed to answer both research questions. As shown, and after including dummy 
coded sites (SITE2 & SITE3) and tender point examination scores (TENDERPT) as control covariates, main effects, all two- 
way interaction effects, and a three-way interaction are all included for random assignment (IV_GROUP), assessment time point 
(TIME, coded in months as 0, 2, and 6), and depression (CDI_T) scores.
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A Predictor.model: section is also needed because a priori testing results from both Kolmogorov–Smirnov (KS: 
statistic¼0.08; p < .001) and Shapiro-Wilk (SW: statistic ¼ .971; p < .001) tests showed CDI_T scores were significantly non- 
normally distributed (KS and SW tests for tender point examination scores [TENDERPT] were not significant). Shown in the sec-
ond line below the Predictor.model: is the use of the Yeo and Johnson (2000) transform (yjt) procedure. Readers inter-
ested in additional details can consult several sources (Enders, 2022; Keller & Enders, 2023, pp. 47, 65, 120–125; L€udtke et al., 
2020; Yeo & Johnson, 2000), but the Yeo-Johnson transform procedure can be described briefly here. As implemented in 
BLIMP, the (yjt) procedure proceeds from the assumption that plausible imputed values for missing data should not be drawn 
from a normal posterior distribution if the original variable with missing values is nonnormally distributed.

The (yjt) procedure can be summarized in six steps: (1) BLIMP estimates parameters consistent with the MODEL: command 
from a posterior distribution conditional on FDI and non-normal CDI_T scores, (2) plausible imputed values for missing FDI 
scores are obtained conditional on the parameters estimated in step 1 and CDI_T scores, (3) BLIMP estimates a “shape” param-
eter that essentially quantifies the extent to which CDI_T scores deviate from a normal distribution conditional on current 
CDI_T scores and parameter estimates, (4) CDI_T scores are transformed based on the “shape” parameter estimated in step 3 
resulting in normally distributed CDI_T scores, (5) BLIMP draws plausible imputed values from a posterior distribution assum-
ing normally distributed CDI_T scores conditional on steps 1–4, and (6) CDI_T observed and imputed scores are then back 
transformed using the “shape” parameter estimated in step 3 and the inverse of the (yjt) procedure to place values back on 
their original non-normal distribution (B. Keller, personal communication, October 16, 2023).

Recall that having a nonnormally distributed continuous predictor variable with missing values is a condition that calls for 
factored regression or sequential specification rather than the default “all-in-turn” specification for predictor variables with 
missing values. As shown in the first line below the Predictor.model: line, tender point examination scores are predicted 
by the four variables with complete data (IV_GROUP, SITE2, SITE3, & TIME). On the second line below the Predictor. 
model: line, and consistent with factored regression/sequential specification, Yeo-Johnson CDI_T scores are predicted by the 
four variables with complete data plus tender point examination scores. To clarify what might at first glance appear to be 
redundant centering command lines, the centering specified with the (yjt) procedure (CDI_T - 50) is needed to assist in impu-
tation model convergence (Keller & Enders, 2023, pp. 120–125). The CENTERING: GROUPMEAN ¼ command is needed for 
accurate Bayesian parameter estimates (described further in the Summary section of the article).

BLIMP Diagnostic and Imputation Syntax Scripts for Missing Data
SPSS, Stata, and R syntax for LLMM Estimation

BLIMP—Diagnostic                                                                                              

DATA: LLMM.dat;
VARIABLES: ID TIME FDI IV_GROUP SITE2 SITE3
CDI_T TENDERPT;
CLUSTERID: ID;
ORDINAL: TIME IV_GROUP SITE2 SITE3;
MISSING: -999;
FIXED: TIME IV_GROUP SITE2 SITE3;
CENTERING: GROUPMEAN ¼ CDI_T;
MODEL:
Focal.model:
FDI � TIME IV_GROUP SITE2 SITE3 TENDERPT CDI_T
TIME�IV_GROUP TIME�CDI_T IV_GROUP�CDI_T
TIME�IV_GROUP�CDI_T j TIME;
Predictor.model:
TENDERPT � IV_GROUP SITE2 SITE3 TIME;
yjt(CDI_T - 50) � TENDERPT IV_GROUP SITE2 SITE3 TIME;
SEED: 45103;
BURN: 10000;
ITERATIONS: 10000;
OUTPUT: PSR;

BLIMP-Imputation                                                                                              

DATA: LLMM.dat;
VARIABLES: ID TIME FDI IV_GROUP SITE2 SITE3
CDI_T TENDERPT;
CLUSTERID: ID;
ORDINAL: TIME IV_GROUP SITE2 SITE3;
MISSING: -999;
FIXED: TIME IV_GROUP SITE2 SITE3;
CENTERING: GROUPMEAN ¼ CDI_T;
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MODEL:
Focal.model:
FDI � TIME IV_GROUP SITE2 SITE3 TENDERPT CDI_T
TIME�IV_GROUP TIME�CDI_T IV_GROUP�CDI_T
TIME�IV_GROUP�CDI_T j TIME;
Predictor.model:
TENDERPT � IV_GROUP SITE2 SITE3 TIME;
yjt(CDI_T - 50) � TENDERPT IV_GROUP SITE2 SITE3 TIME;
SEED: 45103;
BURN: 5000;
ITERATIONS: 10000;
CHAINS: 100;
NIMPS: 100;
SAVE: stacked ¼ LLMM_imputed.dat;

SPSS Syntax: LLMM Estimation                                                                                   

data list free file ¼ 'C : \LLMM_Imputed.dat'
/imputation_ ID TIME AGE FDI IV_GROUP SITE2 SITE3 MIGRAINE CDI_T EXTERNAL TENDERPT.

EXECUTE.
�Group-mean centering.
aggregate
/outfile ¼ � mode ¼ addvariables
/break ¼ imputation_ ID
/m_CDI_T ¼ mean(CDI_T). 

compute CWC_CDI_T ¼ CDI_T—m_CDI_T.
EXECUTE. 

sort cases by imputation_.
split file layered by imputation_. 

MIXED FDI WITH IV_GROUP SITE2 SITE3 TIME TENDERPT CWC_CDI_T
/PRINT ¼ SOLUTION TESTCOV
/METHOD ¼ ML
/FIXED ¼ INTERCEPT TIME IV_GROUP SITE2 SITE3 TENDERPT CWC_CDI_T
TIME�IV_GROUP TIME�CWC_CDI_T IV_GROUP�CWC_CDI_T
TIME�IV_GROUP�CWC_CDI_T
/RANDOM INTERCEPT TIME j SUBJECT(ID) COVTYPE(VC).

Stata Syntax: LLMM Estimation                                                                                   

/�import the data and recode missing data�/
use “C : \LLMM_Imputed_Stata.dta”
recode _all (-999 ¼ .) 

/�define imported data as imputed �/
mi import flong, m(imputation) id(id time) imputed(age fdi migraine cdi_t external tenderpt) clear 

/�define longitudinal data structure�/
mi xtset id time 

/�group mean centering�/
mi passive: egen means_cdit ¼ mean(cdi_t), by(id)
mi passive: gen cwc_cdit ¼ cdi_t—means_cdit 

/�estimate model with a random linear slope for time �/
mi estimate: mixed fdi time iv_group site2 site3 tenderpt cwc_cdit c.time#iv_group c.time#c. 
cwc_cdit iv_grou#c.cwc_cdit c.time#iv_group#c.cwc_cdit k id: time

R Syntax: LLMM Estimation                                                                                      
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oo <- options(repos ¼ “https://cran.r-project.org/”)
install.packages(“Matrix”)
install.packages(“lme4”)
options(oo) 

install.packages(“lme4”, type ¼ “source”)
install.packages(“mitml”)
library(“lme4”)
library(“mitml”) 

LLMM <- read.table(“C:/Users/peuu3c/Desktop/LLMM_Imputed.dat”)
names(LLMM) <-

c(“Imputation”,”ID”,”TIME”,”AGE”,”FDI”,”IV_GROUP”,”SITE2”,”SITE3”, “MIGRAINE”, “CDI_T”, 
“EXTERNAL”, “TENDERPT”) 

implist <- mitml::as.mitml.list(split(LLMM, LLMM$Imputation)) 

new.implist <- within(implist, Means.CDI_T <- clusterMeans(CDI_T, ID)) 

new.implist2 <- within(new.implist, fcwc.CDI_T <- CDI_T—Means.CDI_Tg) 

llmmod <- “FDI � TIME þ IV_GROUP þ SITE2þSITE3þTENDERPT þ cwc. CDI_T þ TIME�IV_GROUP þ TIME�cwc. 
CDI_T þ IV_GROUP�cwc.CDI_T þ TIME�IV_GROUP�cwc.CDI_T þ (1þTIME j ID)” 

#Clusters (N) ¼ 114 - (Predictors) 10—1
ddf <- 103 

result <- with(new.implist2, lme4::lmer(llmmod, REML ¼ T)) 

mitml::testEstimates(result, extra.pars ¼ T, df.com ¼ ddf)

Alternate R Syntax: LLMM Estimation                                                                             

(This syntax uses the newly developed ‘rblimp’ package. The most current versions of R and BLIMP must be installed prior to 
using the syntax below. More information can be found in Keller & Enders, 2023, p. 12.) 

library(rblimp)
data3 <- as.data.frame(read.table('E:/LLMM_Test1.dat', na.strings ¼ '-999.00')) 

colnames(data3) <-
c('ID','TIME','AGE','FDI','IV_GROUP','SITE2','SITE3','MIGRAINE','CDI_T','EXTERNAL', 
'TENDERPT') 

LLMM <- rblimp(
data ¼ data3,
clusterid ¼ 'ID',
ordinal ¼ 'TIME IV_GROUP SITE2 SITE3 MIGRAINE',
fixed ¼ 'TIME IV_GROUP SITE2 SITE3',
center ¼ 'GROUPMEAN ¼ CDI_T',
model ¼ 'Focal.model:
FDI � TIME IV_GROUP SITE2 SITE3 TENDERPT CDI_T
TIME�IV_GROUP TIME�CDI_T IV_GROUP�CDI_T
TIME�IV_GROUP�CDI_T j TIME;
Predictor.model:
TENDERPT � IV_GROUP SITE2 SITE3 TIME;
yjt(CDI_T - 50) � TENDERPT IV_GROUP SITE2 SITE3 TIME',
seed¼45103,
burn¼5000,
iter¼10000) 

output(LLMM)
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