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Participants in (international) large-scale assessments (LSAs)1 do not always respond to 
every survey item resulting in missing data. The clustered nature of the data (e.g., stu-
dents within schools) adds an additional complication that the missing items can be at 
different levels in the dataset as well. Furthermore, the complex sampling designs used 
(e.g. stratified two-stage cluster sampling) necessitate the use of weights in order for 
results to generalize to the population of interest. Although articles have discussed miss-
ingness with regard to measurement and plausible values used in LSAs (Grund et  al., 
2021; Weirich et al., 2014), papers that discuss how to handle missing data in LSAs are 
not common.2

Given that missing data are ubiquitous in LSAs, a de facto (and seemingly accepted) 
approach to handling missing data is the use of listwise deletion (LD) and this can be 
seen in recent applied articles in Large-scale Assessments in Education published in 
2024. Articles will generally indicate the original sample size and then the reduced sam-
ple size. For example:

– Using data from the International Civic and Citizenship Education Study (ICCS) of 
the International Association for the Evaluation of Educational Achievement (IEA), 
missing data were reported for 18 countries that ranged from 2 to 26% (Beyer & 
Brese, 2024).
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– In a study of five countries using PISA 2018 data, the author reported that the ana-
lytic sample consisted of “82%, 78%, 83%, 90%, and 79%” of the original sample 
because they did not “possess the required data for estimating the statistical models” 
(Rodríguez De Luque, 2024, p. 6).

– Using TIMSS 2019 data, authors wanted to include a group-level socioeconomic 
status (SES) variable but 26% of study participants were missing student-level SES, 
and authors instead opted not to use the aggregated variable (Ye et al., 2024), despite 
being an important predictor (e.g., see Raudenbush & Bryk, 2002; Singer, 1998).

These are not isolated cases (and other studies do not even mention how they handled 
missing data) but these examples are only meant to show that even in 2024, LD (or com-
plete case analysis or excluding variables with missing data) is a common approach to 
handling missing data.

If data are missing completely at random (MCAR; i.e., the missingness is not related to 
any other observed or unobserved variable), LD would be an acceptable approach, pro-
viding unbiased estimates (though with less power to detect effects due to the reduced 
sample size). However, in reality, the MCAR assumption is not likely to be met and 
often, missingness may be related to some other observed variable otherwise referred 
to as missing at random (MAR; e.g., low performing students may be less likely to pro-
vide responses).3 Decades of research (Acock, 2005; Enders, 2010; King et al., 1998) have 
indicated that LD may not be an optimal strategy for handling missing data (e.g., results 
can be biased) though this continues to be routinely used when analyzing LSAs, despite 
being referred to (together with pairwise deletion) as “among the worst methods avail-
able for practical applications” (Wilkinson & Task Force on Statistical Inference, 1999, p. 
598).

However, a commonly accepted approach for handling missing data is the use of mul-
tiple imputation (MI) (Little & Rubin, 2019; Rubin, 1987; Schafer & Graham, 2002) and 
MI has been extended to work as well with multilevel data (such as LSA datasets). In 
2016, research on multilevel MI was described as being in its infancy (Enders et  al., 
2016). More recently, Grund et al. (2024) indicated that we “have seen the emergence of 
new and extremely flexible methods for handling missing data that are especially useful 
for multilevel data” (p. 289) and today, researchers can choose from a growing number 
of options for handling missing data.

The current manuscript is a software tutorial that provides applied researchers a 
means to account for missing data using freely available software. We first provide a 
high-level introduction to MI. Several articles (e.g., Acock, 2005; White et al., 2011) and 
books (Enders, 2010; Rubin, 1987) have provided detailed explanations of MI over the 
years and we describe the general workflow of working with imputed datasets. We then 
provide a tutorial on imputing and analyzing LSA data with missing values with free 
software using R (R Core Team, 2022) together with Blimp (Keller & Enders, 2023) soft-
ware. Note that an additional challenge with the use of LSAs is that if ability measures 

3 A third type of missingness is referred to as missing not at random (MNAR) and refers to the situation where the value 
of the missing variable is related to the variable itself. MNAR is also referred to as nonignorable missingness and in this 
situation, the missingness is due to the unobserved value.
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(e.g., math, reading scores) are to be used in models (as predictors or outcomes), these 
are usually found in LSA datasets as five to ten plausible values4 which are already a form 
of imputed data (Jewsbury et  al., 2024) and will then require a set of imputations per 
plausible value to handle accordingly. In addition, LSA developers routinely prescribe 
the use of weights in analytic models (Fishbein et al., 2021) which suggests that weights 
should also be used in some manner in the imputation process. To promote transpar-
ency and replicability, syntax and data are available from the first author’s Github reposi-
tory at https:// github. com/ flh3.

Brief background on multiple imputation
MI involves generating multiple (m) copies of a dataset with imputed values in place of 
the missing values. The imputed, “filled in” values are sampled (typically) from a condi-
tional distribution of the missing data given the observed data and values will differ in 
each of the m datasets. With each of the imputed datasets, the analytic model of interest 
is fit producing m sets of results with different regression coefficient estimates with their 
standard errors. When fitting a regression model, the multiple m results are then com-
bined into one set of results using Rubin’s (1987, p. 76) rules where the regression coeffi-
cients are averaged across imputations and the standard errors are combined to account 
for variability within and between imputations.

Any one of the m complete datasets will have filled in variables which will differ from 
imputed dataset to imputed dataset. Random (or stochastic) variability is added to each 
imputed value so “that the data will mimic the uncertainty in relations among vari-
ables present in the nonmissing values” (Widaman, 2006, p. 52). Using results from only 
one complete dataset will treat the specific imputed values as if they were completely 
observed (i.e., not missing) and will disregard the uncertainty in the fact that any one 
imputed dataset only contains possible (or plausible) values for the missing data. The 
pooling process accounts for this uncertainty (or error) in the imputed values and is 
reflected in the standard errors.5

Pooling estimates and standard errors

Combining or pooling results from m regression results use Rubin’s (2004) rules to 
account for imputation variability. The pooled point estimates (e.g., the regression coeffi-
cient b) is merely the average of the coefficients ( b ) from the m analyses. The uncertainty 
in the coefficients is represented in the standard errors and pooling the standard errors 
requires additional work to obtain.

Based on formulas from Schafer and Olsen (1998, p. 557), the pooled standard errors 
are composed of the within ( Ub ) and between imputation ( Bb ) variance for each b coef-
ficient. The average of the squared standard errors over the m sets of analyses, 

4 The National Assessment for Educational Progress (NAEP) uses 20 plausible values (National Center for Education 
Statistics, n.d.).
5 For single-level data, a commonly accepted approach to account for missing data is to use full information maximum 
likelihood (FIML) and has been referred to as implicit imputation as no imputation is actually performed (Widaman, 
2006). Readers can refer to Enders (2010) for a detailed discussion on its use. However, recent studies have warned also 
against the use of FIML with multilevel data (Grund et al., 2018, pp. 134–135) as is implemented in software such as 
Mplus. As indicated as well by Enders (2017, p. 5), “a regression analysis with mixtures of categorical and continuous 
variables is a very simple, yet common, scenario where maximum likelihood estimation is not optimal”.

https://github.com/flh3
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group variability is ignored, the standard errors will be underestimated (Schafer, 1999). 
The estimate ( b ) can then be divided by its corresponding standard error that results in 
the t-statistic used when evaluating statistical significance.

How many datasets to impute?

As to how many (m) datasets to impute, Grund et al. (2018) indicated that generating 
20 imputations may be sufficient for most applications in which the goal is to estimate 
model parameters but as many as 100 or more imputations can be useful for more elabo-
rate hypotheses. The quality of estimates can generally be improved by including var-
iables that can help predict the missing variables as well as increasing the number of 
imputations used (Grund et al., 2018). White et al. (2011, p. 387) offer a (rough and not 
universally accepted) rule of thumb that the number of imputations can be based on the 
percent of incomplete data. For example, if overall, 80% of the data are complete, then a 
minimum of 20 imputed datasets should be generated (i.e., [1 − 0.80] × 100). Although 
decades ago, the suggestion that 5–10 imputations (if the amount of missing data is 
modest) would suffice (e.g., Rubin, 1987; Schafer, 1999), newer studies emphasize that 
more imputations are better, especially if researchers are interested in the efficiency and 
replicability of standard errors (von Hippel, 2018).

Specifying an imputation model with weights

In the imputation phase, the researcher must specify an imputation model that is 
referred to as congenial with the substantive (or analytic) model (Meng, 1994). In other 
words, the imputation model should match the analytic model such that all relevant 
associations among the variables are included. An example of this is that if the substan-
tive model is focused on testing interactions, nonlinear terms, and/or random slopes, 
these features should be included when imputing the data and not doing so may result 
in biased estimates (Enders et al., 2020). Imputation approaches that fill in values that do 
not require a model to be specified may be limited in the types of imputations that can 
be generated or models analyzed (i.e., only random intercept models).

A common feature when analyzing LSA data is the use of weights to avoid biased esti-
mates (Meinck, 2015; Rabe-Hesketh & Skrondal, 2006). As substantive models involv-
ing LSAs use weights, a congenial imputation model should account for this in some 
manner. One approach is to include the weight as a covariate in the imputation model 
(Carpenter et al., 2023, p. 279).6 Other approaches are also possible (e.g., using weights 
to form strata) though in their analysis of different approaches using an applied example, 
differences in results between approaches did not vary as much compared to their simu-
lation results (Quartagno et al., 2020). In practice though, when using MI with complex 

6 This may also necessitate the use of interactions with the weight and the observed variables but this may also cause 
model fitting problems due to the complexity introduced (Carpenter et al., 2023, p. 275).
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datasets, weights are often ignored in the imputation phase for simplicity (De Silva et al., 
2021). In the succeeding section, we provide a tutorial on how to carry out MI with both 
weights and plausible values (and the Online Appendix provides an imputation example 
if plausible values are not necessary).

Software tutorial
For the applied example, we used the Belgian PISA 2018 student and school datasets. 
The original datasets can be downloaded from https:// www. oecd. org/ en/ data/ datas ets/ 
pisa- 2018- datab ase. html and the merged, reduced dataset can be downloaded from 
https:// github. com/ flh3/ pubda ta/ raw/ refs/ heads/ main/ miscd ata/ belgi um. rds. The sam-
ple consists of 8,475 observations from 288 schools (or around 29.4 students per school). 
The main R packages used in this example were: the dplyr (Wickham et al., 2020) and 
tidyr (Wickham, 2021) packages for data management; rblimp (Keller, 2024) together 
with the Blimp (Keller & Enders, 2023) program for multiple imputation; the WeMix 
(Bailey et  al., 2023) and MLMusingR (Huang, 2025) packages for fitting models and 
combining results with plausible values, respectively. Other R functions from different 
packages were also used. Syntax for performing the current analysis are shown and can 
be modified by readers to suit their own analysis.

Blimp, which is a standalone program, must be downloaded and installed from https:// 
www. appli edmis singd ata. com/ blimp# blimp downl oad (available for Windows, Mac, and 
Linux systems) and rblimp must be installed afterwards which will allow R to access 
Blimp functions from within R.7 rblimp is not currently on CRAN and can be installed 
using:
> remotes::install_github(’blimp-stats/rblimp’)

We focused on investigating how level-1 (student) and level-2 (school; cntschid) 
variables were associated with student math abilities (see Table 1). We use a mix of con-
tinuous and categorical predictors and with PISA 2018, mathematics scores used 10 
plausible values (pvs).8 The reason that pvs are provided is that no one student who par-
ticipates in an LSA completes the entire battery of assessments, which would take too 
long, but only completes a portion (Huang, 2024). Math abilities were predicted by gen-
der, socio-economic status, student-immigration status, student behavior at the school 
that hinders learning, and lack of staff at the school hinders instruction. 

When comparing model results using secondary datasets (with and without missing 
data), it is unclear what the results should be since the true values are unknown (unlike 
with simulated data). Instead, in this example, we selected a variable with minimal miss-
ing data, the index of socio, economic, and cultural (escs; 2% missing) and removed 
an additional 10% of the values in such a manner that missingness was related to the 
first pv in mathematics (missing at random; the dataset can be downloaded from https:// 
github. com/ flh3/ pubda ta/ raw/ refs/ heads/ main/ miscd ata/ belgi umwmi ss. rds). In the 
original combined dataset, 90% of cases were complete and, in the instance where addi-
tional escs values were removed, 82% of cases were complete. We then imputed and 

7 More information about Blimp can be found at: https:// github. com/ blimp- stats.
8 To see an example of syntax when pvs are not used, see the online Appendix. The reason the code is slightly different 
is that imputations per pv are not needed.

https://www.oecd.org/en/data/datasets/pisa-2018-database.html
https://www.oecd.org/en/data/datasets/pisa-2018-database.html
https://github.com/flh3/pubdata/raw/refs/heads/main/miscdata/belgium.rds
https://www.appliedmissingdata.com/blimp#blimpdownload
https://www.appliedmissingdata.com/blimp#blimpdownload
https://github.com/flh3/pubdata/raw/refs/heads/main/miscdata/belgiumwmiss.rds
https://github.com/flh3/pubdata/raw/refs/heads/main/miscdata/belgiumwmiss.rds
https://github.com/blimp-stats
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fit multiple models using the dataset with 82% complete data. We compared results of 
the original dataset, the dataset with additional data removed, and finally, the combined 
results using multiple imputed datasets (which we refer to as results A, B, and C, respec-
tively). We hypothesized that results from A and C would be most similar and B most 
dissimilar. 

Two-level random intercept multilevel models were fit with maximum likelihood 
using both student (w_fstuwt) and school-level (w_schgrnrabwt) weights using 
robust standard errors. Categorical variables are factors which in R are dummy coded 
automatically using the first reference group specified. 

Fitting multilevel models with the data
The original combined dataset is saved in the comb object and the data with the addi-
tional missing data is saved in the wmiss object. We use the  :: notation to specifically 
call functions in a particular package (e.g., rio [Chan et al., 2018]) without having to load 
the library first; the necessary package must still be first installed using the install.
packages function:

# load in the datasets 
> comb <- rio::import("https://github.com/flh3/pubdata/raw/refs/heads/main/miscdata/belgium.rds", 
  trust = TRUE) #combined original dataset 
> wmiss <- 
rio::import("https://github.com/flh3/pubdata/raw/refs/heads/main/miscdata/belgiumwmiss.rds", 
  trust = TRUE) #dataset with additional missing data

The models were fit using the mixPV function in the MLMusingR package (Huang, 
2025) that can be loaded by running:
> library(MLMusingR)

The mixPV function makes use of the mix function in WeMix but simplifies fitting 
several models with plausible values and can automatically pool results appropriately. 
The mixPV and mix functions assume that data are nested and follow multilevel 

Table 1 Descriptive Statistics for the PISA Belgium 2018 Dataset

Unweighted statistics shown. *Additional cases removed

Variable Description M (SD) n (%) % missing

Student-level (n = 8,457)

pv1math to pv10math Ten plausible variables for 
mathematics

 ~ 510 (~ 95) 0

gender (st004d01t) Male = 4204 (49.6)
Female = 4271 (50.4)

0

escs Index of economic, social, and 
cultural status

0.10 (0.92) 2% / 12%*

immig2 (immig) Immigration status Native = 6782 (80)
2nd gen = 812 (10)
1st gen = 661 (8)

3%

School level (n = 288)

lackstaff (sc017q01na) School’s instruction hindered 
by a lack of: teaching staff

Not at all = 42 (15)
Very little = 112 (39)
To some extent = 95 (33)
A lot = 22 (8)

6%

stubeha Student behavior hindering 
learning

0.29 (0.71) 3%
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model syntax commonly used in lme4 (Bates et al., 2015). Weighted multilevel models 
were fit using both datasets:

> library(WeMix) 
> l1a <- mixPV(pv1math + pv2math + pv3math + pv4math + 
  pv5math + pv6math + pv7math + pv7math + 
  pv9math + pv10math ~ gender + escs + immig2 + 
  stubeha + lackstaff + (1|cntschid), 
  weights = c('w_fstuwt', 'w_schgrnrabwt'), 
  data = comb, mc = TRUE) 
> l1b <- mixPV(pv1math + pv2math + pv3math + pv4math + 
  pv5math + pv6math + pv7math + pv7math + 
  pv9math + pv10math ~ gender + escs + immig2 + 
  stubeha + lackstaff + (1|cntschid), 
  weights = c('w_fstuwt', 'w_schgrnrabwt'), 
  data = wmiss, mc = TRUE) 
 

Using the mixPV function, the pvs are specified separately and weights are speci-
fied for each level. Weights are specified in ascending order from the lowest to highest 
level (e.g., student weights and then school weights). The mc = TRUE option allows for 
faster processing which turns on the multiple core processing option. The results of 
both models can be seen in Table 2. 

Table 2 Comparison of fixed effect model results with differing levels of missing data and using 200 
multiply imputed datasets

1 Immigration status. Native is the reference group. 2School instruction hindered by lack of staff. Reference group is not at 
all. Robust standard errors in parenthesis. + p <  0.10.  *p <  0.05.  *** p <  0.001

90% complete 82% complete Imputed

(Intercept) 500.191*** 521.194*** 493.822***

(10.178) (9.072) (11.541)

Student level

Female  − 20.727***  − 18.631***  − 17.183***

(2.401) (2.415) (2.906)

escs 17.780*** 17.114*** 16.008***

(1.509) (1.603) (2.184)

Second-Generation1  − 22.277***  − 20.868***  − 26.045***

(3.697) (3.719) (4.605)

First-Generation1  − 26.651***  − 24.650***  − 26.376***

(4.894) (4.928) (7.242)

School level

Student behavior  − 36.187***  − 32.480***  − 36.610***

(5.458) (4.909) (5.863)

Very  little2 27.253* 11.987 27.341 + 

(13.077) (12.014) (14.846)

To some  extent2 8.999  − 2.408 8.791

(13.492) (11.362) (15.158)

A  lot2 22.648 8.357 21.990

(15.232) (13.701) (18.353)

n 7,676 6,911 8,475

No of plausible values/imputed 
datasets

10 10 200
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Imputing datasets with plausible values
We inspect the dataset to get a better understanding of what variables have missing 
data. We can use the mice::md.pattern (van Buuren & Groothuis-Oudshoom, 
2011) or the MLMusingR::nmiss (Huang, 2025) functions to identify the variables.

> MLMusingR::nmiss(wmiss) #inspect missing data
Percent missing per variable:

pv1math       pv2math       pv3math       pv4math       pv5math       pv6math 
0.00000000    0.00000000    0.00000000    0.00000000    0.00000000    0.00000000 

pv7math       pv8math       pv9math      pv10math       stubeha     teachbeha 
0.00000000    0.00000000    0.00000000    0.00000000    0.03445428    0.03445428 

gender          escs        immig2     lackstaff      w_fstuwt w_schgrnrabwt 
0.00000000    0.12235988    0.02595870    0.05699115    0.00000000    0.00000000 
cntschid 

0.00000000 

Percent complete cases: 0.8154572 
(Minimum) number to impute: 18

Of the predictors, only gender had complete data and the range of missingness 
was from 2.6% for immig2 to 12.2% for escs. Of the variables, immig2, gender, 
and lackstaff are factor variables. There is no missing data for the outcomes of 
pv1math to pv10math. As pvs are themselves a form of imputed data (Jewsbury 
et  al., 2024), m datasets can be imputed per pv. The total number of imputed data-
sets and models fit would then be m x number of pvs. For this tutorial, we impute 20 
datasets per pv for a total of 200 datasets. Note: for users starting out, users may want 
to complete a test case first where a few datasets are imputed (e.g., m = 2) as both 
imputation and pooling take time and allow users to debug and isolate issues if any 
are found. 

Imputing the datasets
In order to impute the datasets when pvs are to be used (either as a predictor or an 
outcome), the wmiss dataset, which is currently in a wide format (i.e., the pvs are 
listed as unique variables), needs to be converted into a tall (long) format where there 
is one variable that has the pvs. In order to do that, the pivot_longer function in 
the tidyr package can be used:
> tall <- pivot_longer(wmiss, pv1math:pv10math, values_to 

= ’math’)
As the pvs are contiguous variables in the dataset, we can specify 

pv1math:pv10math which indicates that the pv1math to the pv10math vari-
able can be transposed from wide to tall. A new variable called name (the default 
variable name if the option is unspecified) is created which has values of pv1math to 
pv10math. The variable name for the outcome will be named math since values_
to = ’math’ was specified. The tall dataset now consists of 84,750 observations (i.e., 
10 pvs × 8,475 observations). We also run the following syntax which creates several 
new variables used in the imputation, data management, and model fitting processes:



Page 9 of 15Huang and Keller  Large-scale Assessments in Education           (2025) 13:13  

> m <- 20 #number of datasets to impute
> ns <- nrow(wmiss) #count how many observations there are
> tall$.pv <- as.numeric(gsub("[^0-9]", "", tall$name)) #extract the numeric value 
> nopv <- length(table(as.character(tall$.pv))) #the number of plausible values

The tall$.pv variable contains the extracted numeric value from the pv1math to 
pv10math values stored in the name variable. A limitation currently of Blimp is that 
all variables included must be in numeric format. As there are three factor variables 
(and name is a character variable), we need to first run some syntax (using dplyr) to 
recode all nonnumeric factors into numeric variables. 

> tall_numeric <- mutate(tall,
across(everything(), as.numeric)

) 

In the process, the text values in the name variable are converted into NA (or miss-
ing). The output can be saved into a new dataset (here, a data.frame named tall_
numeric). Plain numeric variables end up losing the descriptive factor labels (which 
are useful when reading the output); in a later step, we restore the original factor 
labels to the numeric variables. 

Prior to imputation, we need to know which variables are going to be entered 
into the model as dummy-coded variables, which variables are the weight and clus-
tering variables, and which variable(s) have complete data (if any). In addition, the 
analytic model must also be known as we need to impute the data using this sub-
stantive model. A weight variable will also be included as a predictor. The function 
that performs the imputation is the Blimp program which is called using the rblimp 
function:

> mymodel <- rblimp(
data = tall_numeric,
nominal = 'gender immig2 lackstaff',
# ordinal = '',
clusterid = 'cntschid',
fixed = 'gender w_fstuwt', 
model = 'math ~ gender escs immig2 

stubeha lackstaff w_fstuwt',
options = 'labels',
seed = 1234,
nimps = m

) |> by_group('.pv')

Several arguments are specified: 

– data: the name of the dataset with missing data.
– nominal: the variables in the model which will be entered as dummy codes.
– ordinal: the variables in the model which have values which represent ordered cat-

egories (e.g., such as Likert scales that may have values ranging from 1 = strongly 
disagree to 4 = strongly agree). This is not used in the current example. Although 
the lackstaff variable may be considered ordinal, in the analytic model, this is 
entered as a dummy coded variable with the first variable label representing the 
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reference group so this is included in the nominal argument instead. Ordinal vari-
ables also take longer to impute compared to nominal variables. 

– clusterid: represents the name of the clustering or grouping variable. For three-
level models, the second-level id comes before the third-level id (i.e., clust-
erid = ’level2id level3id’). Currently, Blimp cannot model cross-classi-
fied data structures. 

– fixed: indicates the predictor variables with no missing data.
– model: represents the substantive model used in the imputation process. Note that 

the model statement represents how the analytic model will be fit with the addi-
tion that the weight variable is included as a predictor (here we use the student-
level weight). The model formula is entered except that a space is used to separate 
variables (instead of the + used in models in R). If interactions are to be tested in 
the analytic model, they should be included and simply entered as variable1 * 
variable2. If a random slope model is to be fit, a pipe operator can be added 
at the end of the model statement followed by the variables which are expected 
to randomly vary by group. For example, if escs is expected to randomly vary, 
add “| escs” at the end of the model statement. As the current model does not 
include that,  a random intercept model was fit. 

– The option = ’labels’ argument is included which can help assess if there 
are variables which may require some consideration in the imputation process 
(explained later).

– seed: a specified seed number is included to be able to reproduce results. As every 
imputation uses some random noise to vary imputation results from imputation 
to imputation, a seed is required to obtain identical results in the future (or if the 
imputation is done by another researcher, the same imputed datasets will be cre-
ated). The seed can be any numeric value with less than 10 digits and is required.

– nimp: specifies the number of datasets to impute. This can be hardcoded (i.e., 
nimp = 20) but in this case, we created an m variable (i.e., m <—20) earlier which 
will be used in succeeding code as well.

After all the options are specified in the rblimp function, we add |> by_
group(’.pv’) which indicates that the m imputations are performed for each pv 
separately. The |> operator is known as the pipe operator which was introduced in 
R 4.1.0. Without the by_group option specified, only m imputations are performed 
(regardless of the number of pvs). The output for the rblimp function is saved in the 
mymodel object. This process can take a while depending on how many imputations 
are requested. Using a Windows PC with an AMD Ryzen 9 processor with 16 gb of 
RAM required 35 min to complete. As indicated, for a trial run, users can set m = 2 
first to test if everything works properly.

Post imputation, we can check the quality of imputations. As the imputation process 
uses what is referred to as Bayesian sampling, the Potential Scale Reduction (PSR) fac-
tor, also known as the r-hat ( ̂R) value (Gelman & Rubin, 1992), can be inspected. PSR 
values close to 1 are desirable and high PSR values may signal that more imputations 
or iterations are needed. For each parameter estimated, a maximum PSR of < 1.1 
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suggests that the sampler has “converged satisfactorily” (Carpenter et  al., 2023, p. 
229). To check the maximum PSR per imputation, we enter:

> mymodel |> sapply(\(x) tail(x@psr, 1) |> max(na.rm = TRUE))

1      2      3      4      5      6      7      8      9     10 
1.0462 1.0307 1.0361 1.0392 1.0603 1.0540 1.0407 1.0645 1.0301 1.0451

Results suggest that imputations are fine as the maximum PSR out of all the estimates 
per plausible value are < 1.1. If, however, there are PSRs > 1.1, figuring out the variables 
with high PSRs can be inspected by using:
> lapply(mymodel, psr)

The output is long and scrolling through the results (not shown) can indicate which var-
iables are responsible for contributing to the highest PSRs. The options = ’labels’ 
statement allows the researcher to view the variables related to the PSR values. 

Fitting the analytic model of interest
The final steps in the process involve getting the imputed data in a format amenable for 
the analysis of interest, fitting the models, pooling the results, and summarizing the out-
put. All the 200 imputed datasets are saved in the mymodel object and to extract them 
all in one large dataset, we use:

> impdat <- lapply(mymodel, as.mitml) |>
unlist(recursive = FALSE) |>
do.call(rbind, args = _)

The object impdat contains 1.7 million observations and consists of the datasets 
stacked on top of each other in a single data frame. This will not be used yet in the analy-
sis but allows users to perform some more basic data management prior to the analysis 
(e.g., combining certain variables to form a scale, recoding certain variables). We also 
need to number the imputations in the data frame using:
> impdat$.implist <- rep(1:(m * nopv), each = ns)
Using table(impdat$.implist) will show that there are 8,475 observations in 

each of the 200 iterations (output not shown). At this point, we can also convert the 
numeric variables back to factors with the factor labels. As it currently is, we only see a 
list of numeric values for our original factors—for example, using the lackstaff vari-
able, we see only categories of 1 through 4:

> table(impdat$lackstaff) 
 
     1      2      3      4  
250958 720793 576658 146591  

 

To copy the factor attributes from the original comb dataset, we can use:
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> attributes(impdat$lackstaff) <- attributes(comb$lackstaff)
> table(impdat$lackstaff)

Not at all    Very little To some extent          A lot 
251676         720205         578231         144888

We convert the other two numeric variables to factors as they were originally:

> attributes(impdat$gender) <- attributes(comb$gender)
> attributes(impdat$immig2) <- attributes(comb$immig2)

Converting the variables back to factors is necessary (in order for R to enter them as 
dummy codes in the model) and helps when viewing regression results. As a final step 
before performing the analysis, we need to convert the data frame back into a list which 
R can use. A list in R can be a container of different types of data and can consist of mul-
tiple datasets which can be analyzed one at a time. To create a list called alldat, we 
split the impdat data by the imputation number which is comprised of both the pv and 
the imputation number.
> alldat <- split(impdat, impdat$.implist)

Once the data are in a list format, we can apply a function to all the elements of a list 
and save the results of each model fit. We use the lapply function (“list apply”) in R 
which requires the list to use (alldat) and the function (FUN =) to perform. We name 
the function modfit (model fit). Output is saved in the allres object. When research-
ers are using their own data, the modfit function should be modified as necessary.9 

> modfit <- function(x) {
mix(math ~ gender + escs + immig2 + stubeha +

lackstaff + (1|cntschid),
weights = c('w_fstuwt', 'w_schgrnrabwt'),
data = x)

}
> allres <- lapply(alldat, FUN = modfit)

The function(x) signifies that the following lines are part of a function and the x 
acts as a placeholder for the 200 elements (in this case the 200 datasets) in the impdat 
list. Although the model will be fit as specified, this procedure is not generally recom-
mended as models are fit to each element of the list in a serial fashion, one at a time 
which can take a large amount of time. Using a Windows PC with an AMD Ryzen 9 
processor with 16 gb of RAM required 48 min to complete. However, with the availabil-
ity of multiple processing cores in modern computers, the models can be fit in parallel 
where several models are fit at the same time. Using parallel computing, only 4.2 min 

9 For more information on using the mix function, see https:// cran.r- proje ct. org/ web/ packa ges/ WeMix/ vigne ttes/ Intro 
ducti on_ to_ Mixed_ Effec ts_ Models_ With_ WeMix. pdf.

https://cran.r-project.org/web/packages/WeMix/vignettes/Introduction_to_Mixed_Effects_Models_With_WeMix.pdf
https://cran.r-project.org/web/packages/WeMix/vignettes/Introduction_to_Mixed_Effects_Models_With_WeMix.pdf
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were required using the following syntax (the parallel package is already installed with R 
by default).

> library(parallel)
> cl <- makeCluster(detectCores() - 1)
> registerDoParallel(cl)
> clusterExport(cl, list('modfit', 'mix'))
> allres <- parLapply(cl, alld2, fun = modfit)
> stopCluster(cl)

After the 200 models are fit, results need to be combined using Rubin’s (1987) rules. 
The mixPV summary function can pool the results from the 200 models. The saved out-
put though must first be classified as a mixPV object for the summary function to work.

> class(allres) <- 'mixPV' 
> summary(allres) 

Comparing fixed effect model results for models fit using the dataset with 90% com-
plete, 82% complete, and the imputed datasets (or models A, B, and C, respectively) 
show that the imputed (A) and 90% complete results (C) are closest to each other (see 
Table 2). However, with the 82% complete dataset (B), larger differences were seen espe-
cially with the level-2 coefficients (even though the only additional missing data was 
added to a level-1 variable). In addition, the intercept also differed to a larger extent 
when 82% of the data were complete. In terms of the random effects, ICCs were lower 
for the dataset with 82% complete data (see Table 3).

Conclusions
Although missing data are commonly found in LSAs, a common approach to handling 
missing data is through the use of listwise deletion which has been shown, over several 
decades of research, to be a suboptimal strategy. Using freely available software, we pro-
vide a step-by-step tutorial for researchers using R and the Blimp program that can be 
used to impute missing data in a multilevel setting. Particular attention should be paid 
to clustered, weighted data that use plausible values, such as the data structures found 
in LSAs (a slightly simpler approach when pvs are not used is shown in the Appendix). 
Interested readers can use the provided syntax and modify the code as necessary to suit 
their analytic models and there should be fewer reasons to resort to listwise deletion.

Table 3 Comparison of Random Effects Estimates with Differing Levels of Missing Data and Using 
Multiply Imputed Datasets

***p < .001. ICC = intraclass correlation coefficient. Robust standard errors in parenthesis

90% complete 82% complete Imputed

School intercept - τ00 2675.176*** 2099.088*** 3282.989***

(368.453) (368.062) (424.464)

Residual - σ 2 4397.184*** 3895.583*** 4150.606***

(180.682) (168.531) (220.188)

ICC .38 .35 .44
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