	Version No.							ROLL NUMBER					WITERMEDIATE	AND SECO	
	3	0	8	1										The state of the s	
	0		0	0		0	0	0	0	0	0		THE BOARD BOARD	SUCCESTO STATE OF THE STATE OF	
	1	1	1			1	1	1	1	1	1		STAMA	3.00	
	2	2	2	2		2	2	2	2	2	2	A	@ L 4 0.1 -		
		3	3	3		3	3	3	3.	3	3	Ans	wer Sheet No		
	4	4	4	4		4	4	4	4	4	4				
	(5)	(5)	(5)	(5)		(5)	(5)	(5)	(5)	(5)	(5)	Sig	n. of Candidate		
	6	6	6	6		6	6	6	6	6	6				
	7	7	7	7		7	7	7	7	7	7				
	8	(8)		8		8	(8)	8	8	8	8	Sig	n. of Invigilator		
	9	9	9	9		9	9	9	9	9	9				
sec har Del	tion anded o	e to be ver to verwriti	e answ	rered or Centre	All parts of this page of Superintendored. Do not	and ent.	S	EC'	TION	4 - A	(Ma	SSC-I orks 17) Winutes	یرُ ښُل کااستامال ممنورگ ہے۔	حمتہ اذل لازی ہے۔ اس کے جوابات ای ص کریں۔ گاٹ کرددبارہ کھنے کی اجازت ٹیمیں ہے۔ ا ہر سوال کے سامنے دیے گئے درست دا	
Fill	the r	eleva	nt bu	ibble a	against ea	ch qu	uesti	on:					- ل ي كري كري م	ہر سوال نے سامنے دیے سے درست دا 	
1.	Which	h of ture?	he fol	lowing	is the bas	e unit	of C) kg	ms^{-1}		0	$kg m^{-1}s^{-2}$	$\bigcirc kg m^2 s^{-2}$	$\bigcirc kg m^{-2}s^{-1}$	
2.	Error in the measurement of radius of sphere is 1%. The error in the calculated value of its volume is:) 1%	6		0	2%	○ 3%	<u></u> 4%	
3.	-		, then		ngle betwee	en vec	tor	30)°		0	45°	○ 60°	○ 90°	
4.	If the magnitudes of scalar and vector products of two vectors \overline{A} and \overline{B} are \bigcirc 30° same, then angle between them will be:) 30	0	45°	○ 60°	○ 90°			
5.	Distance covered by a freely falling bo 2 seconds will be:					g body	y in _ 9.8 m				0	4.9 m	○ 29.4 m	○ 19.6 m	
5.	If a ball is thrown with a speed of $30 ms^{-1}$ in a direction 30° with X-axis, then time of flight is:						_	O -			0	4s	○ 5 <i>s</i>	○ 6s	
					1600 <i>km</i> a		_		• •	_1		1000 =	O 2000 -1	O 2262 -1	
7.	the surface of moon is $1.6ms^{-2}$, the escape velocity on moon is:				then t	en the \bigcirc 1600 ms^{-1}			•	1800ms ⁻¹		2000 <i>ms</i> ⁻¹	2263ms ⁻¹		
3.	The a	The angular velocity of the second ha clock, in radians per second, is:		nand o	of a $\bigcirc \frac{\pi}{2}$		87	0	$\frac{\pi}{3}$	$\bigcirc \frac{\pi}{4}$	$\bigcirc \frac{\pi}{30}$				
).	Which veloci		ne foll	owing	is TRUE fo	or orbi	tal C) v c	c r		0	$v \propto \frac{1}{\sqrt{r}}$	$\bigvee v \propto \frac{1}{r}$	$\bigcirc \ \nu \propto \sqrt{r}$	
LO.		ars at			of water. I then the s) 2.4	42 ms	-1	0	$3.42 ms^{-1}$	4.42 ms ⁻¹	\bigcirc 5.42 ms^{-1}	
L1.	For w	hat dis	splace maxir	ment th	ne P.E beco llue?	mes o	ne () x:	$= x_0$	47.	0	$x = \frac{x_0}{2}$	$\int x = \frac{x_0}{\sqrt{2}}$		

12.	A simple pendulum suspended from the ceiling of a lift has time period T , when the lift is at rest. When the lift falls freely, the time period is:	$\bigcirc \frac{T}{g}$	$\bigcirc \frac{g}{T}$	O Infinite
13.	Increase in velocity of sound in air for $1^{\circ}C$ \bigcirc $1.61ms^{-1}$ rise in temperature is:	○ 61.0 ms ⁻¹	$\bigcirc 0.61 ms^{-1}$	$\bigcirc 0.16 ms^{-1}$
14.	The distance between two consecutive \bigcirc λ crests or troughs is equal to:		$\bigcirc \frac{\lambda}{2}$	$\bigcirc \frac{\lambda}{4}$
15.	It is possible to distinguish between transverse and longitudinal waves from the Refraction property of:	Reflection	OPolarization	Diffraction

16. For isothermal process, first law of $\triangle Q = \Delta U$ $\triangle Q = 0$ $\triangle Q = -\Delta U$ $\triangle Q = \Delta W$ thermodynamics can be written as:

Important formulae:

$$V_{sphere} = \frac{4}{3}\pi r^3 \qquad g = 9.8ms^{-2}$$

•
$$v_{esc} = \sqrt{2gR}$$
 • $|\overline{A} \times \overline{B}| = AB \sin \theta$

$$P.E_{inst} = \frac{1}{2}kx^2 \qquad P.E_{max} = \frac{1}{2}kx_o^2$$

$$v_o = 332 ms^{-1} \text{ at } 0^{\circ} C$$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$\circ \qquad C_p - C_v = R$$

----1HA-I 2208-3081 (L) -----

ROLL NUMBER

PHYSICS HSSC-I

20

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE: Answer any FOURTEEN parts from Section 'B' and attempts any TWO questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Q. 2 Answer any FOURTEEN parts. All parts carry equal marks.

 $(14 \times 3 = 42)$

- (i) From the Stokes' law, the drag force can be expressed as $F_D = 6\pi\eta rv$, then find the dimensions of coefficient of viscosity η ?
- (ii) \overline{A} and \overline{B} are two mutually pendicular vectors equal in magnitude. Show their sum and difference through Head to Tail Rule with neat diagram.
- (iii) Given $|\overline{A}| = 3.2$, $|\overline{B}| = 5.1$ and $\theta = 60^{\circ}$ between \overline{A} and \overline{B} . Find $|\overline{A} \cdot \overline{B}|$ and $|\overline{A} \times \overline{B}|$
- (iv) Briefly explain the circumstances in which velocity \vec{v} and acceleration \vec{a} of a car are:
 - (a) Parallel (b) Anti parallel
- (v) The horizontal range of a projectile is 4 times of its maximum height (R = 4H). What is its angle of projection?
- (vi) When a rocket re-enters the atmosphere, its nose cone becomes very hot. Where does this heat energy come from?
- (vii) Express power (P) as scalar product of force (\overline{F}) and velocity ($\overline{\nu}$).
- (viii) Derive a mathematical relation for orbital velocity and prove that $v_o \propto \frac{1}{\sqrt{r}}$
- (ix) A circular disc of 49kg and radius 50cm is rotating at a speed of 120 rev/min. Calculate its K.E?
- (x) Explain how swing is produced in a fast moving cricket ball? (Bernoulli effect)
- (xi) What is meant by banking of roads? Also show that $v = \sqrt{gr \tan \theta}$
- (xii) The deviation of second order diffracted image formed by an optical grating having 5000 lines / cm is 32° . Calculate the wavelength of light used.
- (xiii) A body of mass m suspended from a spring with force constant k, vibrates with f_1 . When its length is cut into half and same body is suspended from one of the halves, the frequency is f_2 . Find out $\frac{f_1}{f_2}$?
- (xiv) Why does sound travel faster in solids than in gases?
- (xv) What will be the wavelength of the note emitted by a closed organ pipe 32.4cm long at $0^{\circ}C$?
- (xvi) Prove that speed of sound through Hydrogen is 4 times as compared to its speed in Oxygen. Whereas $\rho_{Hydrogen}: \rho_{Oxygen}=1:16$
- (xvii) An oil film spreading over a wet footpath shows colours. Explain how does it happen?
- (xviii) If the Young's double slit experiment is performed in water, what will happen to the interference pattern?
- (xix) Briefly explain the working principle of Carnot engine.
- (xx) Discuss that increase in entropy means degradation of energy.

SECTION - C (Marks 26)

Note: Attempt any TWO questions. All questions carry equal marks.

 $(2 \times 13 = 26)$

- Q. 3 a. Explain vector and scalar products of two vectors with neat diagrams.
- (05)
- Describe time of flight and range of projectile using diagram. Derive mathematical formulae for both

(04)

c. Show that $S = v_i t + \frac{1}{2} a t^2$ is dimensionally correct.

- (05)
- Q. 4 a. State and explain Bernoulli's Equation giving all details of it with diagram.
- (05)

b. Show that earth's gravitational field is a conservative field.

(04)

(04)

- c. The earth rotates on its axis once a day so that its original time $T_1 = 24$ hours. Suppose, by some process the earth expands so that the radius becomes double as large as at present. Determine T_2 (new time
- required for one revolution) after expansion using law of conservation of angular momentum.

 a. Show that motion of a simple pendulum is SHM. Derive formulae for its time period.
 - (05)

b. Prove that $v_t = v_0 + (0.61)t$

(04) (04)

(04)

c. Derive $C_p - C_v = R$

Q. 5

PAGE TO SERVICE AND ADDRESS OF THE PAGE TO SERVICE

•
$$v_{orbital} = \sqrt{\frac{GMe}{r}}$$

- $\omega = \frac{2\pi}{T}$
- $\sin(2\theta) = 2\sin\theta\cos\theta$

- $\bullet \qquad R = \frac{vi^2 \sin(2\theta)}{g}$
- $\bullet \qquad H = \frac{vi^2 \sin^2 \theta}{2g}$

Important formulae:

• $K.E_{rot} = \frac{1}{2}I\omega^2$

- $I_{disc} = \frac{1}{2} mr^2$
- $I_{sphere} = \frac{2}{5} mr^2$

---- 1HA-I 2208 (L) ----

olved.PK							2
Novien No.	Ю	OLL NUN	ARED			STANDIATE AN	
7 0 8 1	18	OLL NON	IDER				
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0 0	0	0 0	0		NA BOAR	Suc Attal
① ① ① ●	1 1	1 (0	1		SLAMADA	o
2 2 2 2	2 2	2 2	2	2	Amenu	er Sheet No	
3 3 3 3	3 3	3 3	3	3	Answ	er sheel no.	Benedick (CAMBER - CAT OF CAMBER - CAT OF CAMB
4 4 4	4 4	4	4	4			
§ § §	5 5	(5) (5)		(5)	Sign.	of Candidate	ant-phases we want recover, to see a substrate which defined evens 1.70
6 6 6	6 6	6		6			
	9 9	7 (7	Sign	of Invigilator	
8 8 8	8 8	8 (8		8	olgin	Of thi ordinates	carry from the Brook of the Visit attentions connected the control attention (vi
9 9 9	9 9	9 (9		9			
Section — A is compulsory. All part section are to be answered on this handed over to the Centre Superi Deleting/overwriting is not allowed. Deleting pencil.	page and ntendent.		N-A	(Ma	SC-I rks 17) Ainutes		 ان الذي ب- اس كے جوابات ای گریں- کاٹ کردوبارہ <u>گھنے</u> کی اجازت تیمی ب
Fill the relevant bubble again	st each quest	tion:				وائره کویر کریں۔	ہر سوال کے سامنے دیے گئے درست
Which of the following paid dimension?		Press Densi			Impulse, Momentum	Stress, Strain	O Momentum,
The number of significan 0.000125010 are:	t figures in	○ 3		0	4	<u> </u>	<u> </u>
Two forces of magnitudes F_1 at right angle to each oth resultant of the magnitude:	and F_2 acting her have the $^{()}$	$\bigcirc \frac{F_1 + I}{2}$	F_{2}	0	$F_1^2 + F_2^2$	$\int \sqrt{F_1^2 + F_2^2}$	$\bigcirc \frac{F_1^2 + F_2^2}{2}$
The distance covered by a bostarting from rest is:	ody in time t , (at ²		0	2at ²	○ a²t	$\bigcirc \frac{1}{2}at^2$
The horizontal range of project the angles:		○ 30° a	and 40°	0	40° and 50°	○ 60° and 70°	80° and 90°
A ball of mass 100g is thr upward at a speed of 25ms ⁻¹ is lost, determine the height if (Loss in K.E=Gain in P.E)	. If no energy () 31.9 <i>n</i>	n	0	1.28 <i>m</i>	63.78m	321.5m
The mass of a body is m , its s K.E is E. When mass is do speed is reduced to half, then	ubled and its (○ 2E		0	$\frac{E}{2}$	○ 4 <i>E</i>	$\bigcirc \frac{E}{4}$
3. The angular displacement of c	one radian is: (→ 47.3°		0	57.3°	○ 67.3°	○ 77.3°
The ratio of the linear velocitie	s of the points					· · · · · · · · · · · · · · · · · · ·	
o. at distances r and $\frac{r}{4}$ from	n the axis of (0.25		\bigcirc	0.5	O 2	O 4
rotation of a rigid body is:							
Two rain drops have radii in tag. The ratio between their term will be:		2:3		0	3:2	<u>4:9</u>	9:4
		Р	age 1 of	f 2			

11. The length of a second pendulum is:

() 70cm

○ 80cm

○ 90cm

O 100cm

When amplitude of a wave becomes double, 2 times its energy becomes:

 $\bigcirc \frac{1}{2}$ times

4 times

 $\bigcirc \frac{1}{4}$ times

According to Laplace correction, sound O Isothermal travels in air under the condition of:

O Adiabatic process

O Isochoric process

O Isobaric process

The velocity of sound in air would become double to its velocity at 0°C at temperature: 313°C ○ 586°C

○ 819°C

○ 1172°C

15. Fringe spacing =

 $\bigcirc L^{\frac{\lambda}{D}} \qquad \bigcirc D^{\frac{\lambda}{L}} \qquad \bigcirc \frac{\lambda}{DL}$

 $\bigcirc \frac{L}{\lambda D}$

According to first law of thermodynamics, $C_p + C_v = R$ $C_p = 1 + \frac{R}{C_v}$ $C_p = 1 + \frac{R}{C_p}$ $C_p = R + C_v$ Which one is **correct?**

A Carnot engine works between ice point 26.81% and steam point. Its efficiency will be:

O 53.36%

O 62.46%

71.23%

Important formulae:

$$\circ \qquad P = \frac{F}{A}$$

•
$$g = 9.8 ms^{-2}$$

$$\circ \quad Density = \frac{M}{V}$$

$$R = \frac{vi^2 \sin(2\theta)}{g}$$

$$\circ \qquad \overrightarrow{P} = \overrightarrow{mv}$$

% Efficiency =
$$\left(\frac{T_1 - T_2}{T_1}\right) 100\%$$

$$\circ \qquad \delta = \frac{F}{A}$$

$$S=rc$$

$$\circ \qquad \varepsilon = \frac{\Delta L}{L}$$

$$\omega = \frac{6}{t}$$

$$\circ \qquad \vec{J} = \vec{F} \times \Delta t$$

$$K.E = \frac{1}{2}mv^2$$

$$v_t = v_o + (0.61)t$$

•
$$v_o = 332 ms^{-1}$$
 at $0^{\circ}C$

$$\circ \qquad T = 2\pi \sqrt{\frac{l}{g}}$$

$$S = v_i t + \frac{1}{2} a t^2$$

$$\circ$$
 $P.E = mgh$

$$\circ$$
 $2\pi \ radians = 360^{\circ}$

$$\circ \qquad \frac{v_t}{v_o} = \sqrt{\frac{T}{T_o}}$$

$$V_{terminal} = \frac{2\rho gr^2}{9\eta}$$

-1HA-I 2208-3081 (HA) ----

ROLL NUMBER

PHYSICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE: Answer any FOURTEEN parts from Section 'B' and attempts any TWO questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Answer any FOURTEEN parts. All parts carry equal marks. Q. 2

 $(14 \times 3 = 42)$

- Briefly describe necessary conditions for SHM. (i)
- What is torque? Define torque as vector product of \overline{r} and \overline{F} . (ii)
- For \overline{A} show that $|\overline{A}| = \sqrt{A_x^2 + A_y^2}$ (iii)
- Find the change in momentum for an object subjected to a given force for a given time and state law of (iv) motion in terms of momentum.
- Two balls are projected in directions at 15° and 45° with the horizontal. If both attained the same range (v) then find the ratio of their initial speeds.
- Calculate the work done in kilojoules in lifting a mass of 10kg at a steady velocity through a vertical (vi)
- If radius of moon is $\frac{1}{6}$ times radius of earth and gravity on moon is $\frac{1}{5}$ times gravity on earth, then find (vii) the escape velocity at the surface of moon?
- Show that angular momentum L = mvr(viii)
- Find the relation between linear velocity and angular velocity. (ix)
- Discuss working principle of aerofoil. (x)
- Show that in SHM, the acceleration is zero when the velocity is greatest and the velocity is zero when (xi) the acceleration is greatest.
- Discuss the interchanging between K.E. and P.E during SHM. (xii)
- As a result of distant explosion, an observer senses a ground tremor and then hears the explosion. (xiii) Explain the time difference in it.
- The speed of sound in air at $0^{\circ}C$ is $332ms^{-1}$. What will be its speed at $25^{\circ}C$? (xiv)
- Under what conditions two or more sources of light behave as coherent sources? (xv)
- In Young's double slit experiment, if the distance between the slits is halved and distance between slit (xvi) and screen is doubled, then find the change in fringe width?
- A garden hose of inner radius 1.25cm carries water at 2.60ms⁻¹. The nozzle at the end has radius (xvii) 0.30cm. How fast does the water emerge out through the nozzle?
- Show that $\frac{n_2}{n_1} = \tan i_p$ (polarization of transverse waves) (xviii)
- Is it possible to convert internal energy (ΔU) into mechanical energy? Explain with an example. (xix)
- Describe the terms 'specific heat' and 'molar specific heat' of gases. (xx)

SECTION - C (Marks 26)

Attempt any TWO questions. All questions carry equal marks. Note:

 $(2 \times 13 = 26)$

Explain vector and scalar products of two vectors with neat diagrams. Q. 3 a.

(05)(04)

Describe two conditions of equilibrium. b.

- What are the dimensions and units of gravitational constant G in the formula $F = \frac{Gm_1m_2}{r^2}$? (04)C.
- Explain and derive a mathematical relation for Absolute Potential Energy. Q. 4 a.

(05)(04)

What is meant by moment of inertia of a body? Derive a formula for it. b.

- What is the aero foils lift (in newtons) on a wing of area $88m^2$ if the air passes at speed over its top C. (04)surface at 280ms⁻¹ and bottom surface at 150ms⁻¹ ?
- Explain Doppler's effect in detail with its special cases. Q. 5 a.

(05)

- The radius of sphere r' is measured with a Vernier Callipers as $(r \pm \Delta r) = (2.25 \pm 0.01)cm$. Calculate b. (04)the volume of sphere.
- A Carnot engine utilizes an ideal gas. The source temperature is 227°C and sink temperature is C. $127^{\circ}C$. Find the efficiency of the engine. Also find heat input from the source and heat rejected to (04)the sink when 10000J of work is done?

Important formulae:

• Fringe Spacing =
$$L\frac{\lambda}{D}$$
 • $R = \frac{v_i^2 \sin(2\theta)}{g}$

$$Work = \overline{F} \cdot \overline{d} \quad \bullet \quad v_i = v_i$$

•
$$v = r\omega$$

•
$$v_{esc} = \sqrt{2gR}$$

$$v_o = x_o \sqrt{\frac{k}{m}}$$

• Weight =
$$mg$$
 • $v_o = x_o \sqrt{\frac{k}{m}}$ • %Efficiency = $\left(\frac{T_1 - T_2}{T_1}\right) \times 100\% = \left(\frac{Q_1 - Q_2}{Q_1}\right) \times 100\%$

- 1HA-I 2208 (HA) ----