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Abstract

Effectively fighting deforestation requires monitoring of vast areas, which is possible thanks

to satellite imagery. However, satellite monitoring can only reduce deforestation if three condi-

tions are met: the monitoring alerts must be informative, the enforcement agency must use them

to target inspections, and farmers must respond to enforcement action by doing less deforesta-

tion. This paper quantifies the contribution of real-time monitoring in deforestation reduction

using detailed satellite and administrative data in the Brazilian Amazon forest. It studies the

whole chain of events from the production of a deforestation alert to its effect on deforestation.

It first documents an improvement in the monitoring system’s ability to detect infractions in

real-time. Then it estimates the impact that real-time alerts have on deforestation inspections.

Finally, it estimates the impact of inspections on deforestation using an instrumental variable

approach and an event study. Overall, the real-time alerts increase by three percentage points

the inspection probability for offenders, avoiding approximately 450 square kilometers of de-

forestation per year.
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1 Introduction

One of the challenges for law enforcement agencies is to target enforcement resources smartly

to maximize their deterrence effect. This problem is particularly challenging because offenders

are likely to hide their behavior and avoid enforcement if they can. Monitoring technologies help

enforcement agencies observe offenses, albeit often imperfectly, providing valuable information

to decide the deployment of resources. Despite its promising potential, monitoring technologies

may fail to deliver their promises because of technical and behavioral barriers within the enforce-

ment agency. For example, the information brought by a monitoring technology may be poor or

redundant to the knowledge already at the agency’s disposal, or agencies may resist to automat-

ing practices by machines and algorithms, thus reducing the impact of monitoring on deterrence.

Moreover, to the extent that monitoring changes enforcement behavior, the impact on compliance

hinges on offenders’ responses to enforcement action.

This paper aims to document how monitoring technologies shape (or do not shape) enforcement

action, and their resulting impact on regulatory compliance. It studies this problem by investigating

law enforcement against illegal deforestation in the Brazilian Amazon forest. This context is par-

ticularly suitable to study how monitoring affects enforcement action. The main reason is that it is

possible to observe separately, in the data, i) the extent of infractions, measured at high resolutions

with satellite data but only computed once a year, ii) the monitoring information at disposal of the

enforcement agency, also produced by satellites but at a lower resolution and higher frequency than

the measurement of infractions, and iii) and the location of enforcement action. The separation

of these three layers - almost-perfect observation of infractions, monitoring information, and en-

forcement action - is an almost unique feature in studies of crime and enforcement, which are often

plagued by the lack of observability of the infraction itself except when monitoring technologies or

enforcement agents detect it.

Besides its convenient features to study the law enforcement problem, the fighting tropical de-

forestation is itself a problem of paramount importance in environmental policy. More than 12%

of global greenhouse gas emissions stem from forest destruction (IPCC 2014). Deforestation liber-

ates the carbon stored in the trees’ biomass to the atmosphere through forest fires or decomposition,

aggravating climate change. In addition, deforestation destroys biodiversity (Fearnside 2021), dis-
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turbs regional rain patterns (Leite-Filho et al. 2021, Araujo 2023), and pollutes the local air via

deforestation-related fires (see Ferreira 2023 for a survey). While deforestation causes collective

and diffuse harms, individual farmers reap private benefits from agricultural or timber exploitation

of deforested areas. The tension between the individual benefits and the social costs of deforesta-

tion calls for governmental action, such as forest protection policies. Nevertheless, enforcing these

policies over vast forest areas can be daunting for enforcement agencies with limited resources and

scarce information about offenders’ actions.

One way to obtain systematic information about deforestation is by using satellite imagery.

Thanks to high-resolution satellite images, deforestation worldwide can be computed with a high

degree of certainty, usually yearly and using 30-m resolution data from Landsat satellites (see

Hansen et al. 2013). However, processing and interpreting high-resolution images is computation-

ally intensive and may take several months to be concluded (INPE 2019a), making it unsuited for

day-to-day decisions about enforcement deployment. For enforcement purposes, algorithms have

been developed, using lower resolution images than the Landsat images, to generate (almost) real-

time information about deforestation, which could be more actionable for enforcement agencies.

The availability of real-time deforestation alerts can transform the decision-making rule of enforce-

ment agencies, allowing them to react fast and effectively to detected offenses, thereby raising the

probability of penalty for potential offenders, and hopefully reducing the overall level of illegal

activity. But for all that to happen, the enforcement agency must incorporate the new information

into its decision-making, using it as a rule to target enforcement resources. This paper studies to

which extent the Brazilian enforcement agency does that, and how that affects deforestation.

Real-time monitoring information can be useful for enforcement action against illegal defor-

estation because enforcement agents may stop ongoing deforestation processes, preventing it from

spreading to larger areas. For example, in the case of the Brazilian Amazon forest, enforcement

agents can apprehend equipment used to deforest, and even arrest offenders. On the other hand, in

the case of deforestation, enforcement agents do not need to act immediately if the offender can be

contacted at any time, as could be the case if the property owner is known or the area is used for

economic development.

To understand how real-time monitoring affects enforcement action, . Monitoring technologies

can support enforcement agencies in targeting inspections to fight punishable offenses. In a best-
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case scenario, monitoring technologies provide new and accurate information, thereby changing

the behavior of enforcement agents. However, in the worst-case scenario, monitoring information

is redundant to other information sources already available to inspectors and does not affect in-

spection selection. Finally, the third factor is the impact of inspections on offenses. Offenders may

be undeterred by inspections and consequently not change their behavior even in the presence of

monitoring. In the end, monitoring technologies are only helpful if they affect appraisal selection

and reduce offenses. To assess the value of real-time monitoring, one must estimate how real-time

information causes enforcement action and how enforcement action affects illegal behavior. That

is, in a nutshell, the roadmap for this paper.

I study the effect of a real-time monitoring technology on environmental enforcement defor-

estation and deforestation in the context of the Brazilian Amazon forest. In this forest, almost

all deforestation is illegal (Valdiones et al. 2021), and a single federal enforcement agency does

most law enforcement action, inspecting and punishing offenders. In 2004 the Brazilian govern-

ment launched a monitoring program to produce real-time deforestation alerts based on satellite

images. The system is touted as a breakthrough in Brazilian environmental enforcement, and there

is evidence that real-time monitoring helped reduce deforestation (Assunção, Gandour, and Rocha

2022). This paper builds on the pioneering effort by Assunção, Gandour, and Rocha (2022), but

goes beyond by proposing a framework to compute the value of the real-time monitoring system in

terms of reduced deforestation.

I merge the yearly measurement of deforestation, the real-time monitoring alerts, and geo-

referenced fines, and other geographical data, creating a balanced panel over the decade 2011 to

2020. As alluded previously, the yearly measurement is an accurate measure of deforestation,

computed independently from the real-time monitoring technology or inspections. The ability to

observe the degree of offenses is not always the case in other applications in the crime literature,

where offenses are only observed if victims report them or if enforcement agents carry out inspec-

tions. The fact that deforestation is measured in an accurate way is a crucial asset to understand the

quality of monitoring and the behavior of the enforcement agency in this paper.

To assess the quality of the deforestation alerts produced by the monitoring system, I overlay

the maps of yearly deforestation with the monitoring alerts to the monitoring system’s detection

rate and its share of false-positive alerts. To my knowledge, this analysis is the first systematic
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and independent assessment of the quality of this monitoring system. The results show that the

production of deforestation alerts by the monitoring system improved substantially in quality over

the years 2011-2020. Furthermore, the comparison of real-time deforestation alerts with the yearly

deforestation maps revealed a substantial improvement in detection rates, with a relatively low level

of false positives. The increase in detection rate was due to improvements in the satellite image

resolution and the technical capacity to monitor the images in real-time by experts.

Next, I study how the real-time alerts impact the behavior of the enforcement agency. I use

a monthly-level event study to estimate the causal impact of a real-time deforestation alert on the

probability of a fine. The results show that the enforcement agency explicitly uses the deforestation

alerts to decide its inspections. Indeed, the inspection probability almost doubles when the agency

receives a deforestation alert, while the inspection probability barely changes for other types of

satellite alerts, such as fire alerts. Moreover, the share of alerts-driven fines in the enforcement

agency’s portfolio doubled in the period, reflecting a transformation in the inspection selection

strategy with a more significant role for the monitoring system.

Finally, I estimate the impact of inspections on farmers’ decisions to deforest. I decompose the

behavioral responses of farmers into two parts: the effect on deforestation of changes in the inspec-

tion probability (general deterrence) and the effect of punishment over time (specific deterrence).

The distinction between general and specific deterrence is well-known in the crime literature, but

studies usually estimate either one or another.

To identify the general and specific deterrence effects separately, I use two different identifica-

tion strategies. First, to identify the general deterrence effect, I exploit variation in the monitoring

system’s ability to detect deforestation in an instrumental variable approach. Cloud coverage blocks

the view from satellites, making it impossible to generate real-time alerts, and therefore less likely

to receive an inspection. The exclusion restriction is that cloud coverage only affects the incentives

of farmers through its impact on the probability of an inspection. The results show that areas with

more cloud coverage have less deforestation fines and show higher deforestation on the extensive

(i.e., are more likely to have any deforestation) and intensive margin (i.e., deforest larger areas on

average).

Furthermore, I used an event study design to estimate the specific deterrence effect, which

enabled me to compute the dynamic effects of punishment several years after it happened. The
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two effects combined provide a complete picture of the effect of enforcement on deforestation.

Inspected areas are 10% less likely to display any level of deforestation even three years after the

inspection occurred.

In summary, a one percent increase in inspection probability saves almost 150 square kilometers

of forest or 2% of average yearly deforestation levels. In a conservative computation, the satellite

increased the inspection probability by three percentage points every year for farmers, saving al-

most 450 square kilometers of forest per year and one thousand square kilometers in a decade. This

number is an estimate of the value of the real-time monitoring system in terms of avoided defor-

estation. Moreover, the monetary value of avoided carbon emissions from deforestation are about

20 times as large as the opportunity costs of agricultural output in the Amazon forest. The benefits

also far outweigh the budget of the monitoring and enforcement agencies.

1.1 Related literature

This paper contributes to four strands of literature: i) the effect of monitoring and enforce-

ment on compliance, ii) inspection selection, and iii) tropical forest deforestation. It also adds to

the growing literature in economics using geo-referenced satellite data to measure outcomes and

identify causal effects (see Donaldson and Storeygard 2016 for a review)1.

The literature on monitoring and enforcement has highlighted the importance of monitoring

information to induce regulatory compliance. Satellite-based monitoring programs had substantial

positive impacts on compliance with air pollution environmental regulation in China (Greenstone et

al. 2020) and US (Zou 2021).2. Nevertheless, the availability of information per se cannot explain

compliance: monitoring can only affect incentives if the information is used to sanction offenders3.

I contribute to this literature by studying the relationship between monitoring and enforcement, and

1Examples range from tax compliance (Casaburi and Troiano 2016) to environmental economics, in particular
tropical forest deforestation (Burgess, Costa, and Olken 2019, Assunção, Gandour, and Rocha 2022, Souza-Rodrigues
2019, among others) and forest fires (Balboni, Burgess, and Olken 2021).

2A parallel of monitoring can be also made with tax evasion, where the presence of third-party reporting also
bridges the information gap between enforcement agency and taxpayers. Several papers have provided evidence of the
role of third-party reporting in inducing tax compliance in Denmark (Kleven et al. 2011), Chile (Pomeranz 2015) and
Brazil (Naritomi 2019).

3For example, in the issue of CCTV cameras, an extensive review by Welsh and Farrington (2009) has shown
mixed evidence on their role in preventing crime. Ashby (2017) shows how the information produced by the cameras
is effectively used to solve different types of crime, which helps explain the variety of effects of CCTVs on deterring
crime.
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then its impact on compliance. I perform the analysis at a precise geographical level, where defor-

estation, alerts and inspections are observed. In the context of deforestation in Brazil, Assunção,

Gandour, and Rocha 2022 show that municipalities that receive additional fines caused by better

monitoring visibility reduce deforestation one year later, suggesting a strong specific deterrence

effect in areas that receive additional punishments. I expand on that paper’s approach to estimate

the effect of satellite visibility on the decision to deforest (general deterrence), and by proposing

a framework to integrate general and specific deterrence to assess the total deterrence value of the

Brazilian monitoring system.

The most invaluable aspect of the datasets used is that it allowed me to separately observe de-

forestation, monitoring alerts and inspections. In several settings, the outcome cannot be observed

independently of monitoring or audits, such as tax evasion. The independent measurement of de-

forestation allowed me to compute monitoring detection rates by overlaying the alerts maps with

deforestation maps. As a consequence, it is possible to study with precision what causes detection

rates to fail and how detection rates influence audit selection. Inspection selection is an important

topic in the enforcement literature, which has been largely studied in the game theoretical litera-

ture (see Andreoni, Erard, and Feinstein 1998 for a review in tax compliance) but less so in the

empirical literature. Duflo et al. (2018), Kang and Silveira (2021), and Bachas et al. (2021) have

shed light on the value of discretion in inspection selection. Blundell, Gowrisankaran, and Langer

(2020) estimate the value of an “escalation” strategy in terms of compliance with environmental

regulation.

Furthermore, this paper is unique to estimate both general and specific deterrence effects, and

proposing a framework to integrate them in the evaluation of the monitoring system. The dis-

tinction between general deterrence and specific deterrence is well-known in the crime literature

(Chalfin and McCrary 2017). General deterrence effects have been in the analytical framework of

economists at least since Becker (1968), representing how agents internalize punishment probabil-

ity in their decision-making. Effects of punishment probability on behavior has been estimated in

urban crime (Levitt 1997, McCrary 2002), environmental (Chan and Zhou 2021) and tax compli-

ance settings (Almunia and Lopez-Rodriguez 2018, De Neve et al. 2021), to name a few examples.

Specific deterrence was first recognized as “incapacitation” effects of punishments such as impris-

onment (Kessler and Levitt 1999, Kuziemko and Levitt 2004), but the concept has been applied to
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understand the effect of punishment on behavior more generally, also in environmental (Dusek and

Traxler 2021) and in tax settings (Advani, Elming, and Shaw 2018).

The paper contributes to the deforestation literature by exploiting the satellite and administra-

tive data in a novel way, and by studying the incentives to use fire in deforestation. This paper

is the first to systematically use geo-referenced fines, logging alerts, and fire alerts in a single

framework to explain patterns of enforcement and deforestation at a detailed geographical level.

Assunção, Gandour, and Rocha (2022) has also studied the role of real-time monitoring on defor-

estation, using cloud coverage as an instrument for environmental fines at the municipality-year

level. Building on that insightful work, I compute the detection probability of the logging mon-

itoring system over time and show how this improvement has affected enforcement strategy and

then deforestation patterns. Assunção, Gandour, and Souza-Rodrigues (2019) use logging signals

directly as proxies of enforcement and show that they increase the probability of forest regenera-

tion. Other papers have studied the impact of enforcement on deforestation by studying the policy

of “priority municipalities” (Assunção and Rocha 2019 and Assunção et al. 2023), and incentive-

based approaches to fight deforestation (see Jayachandran et al. 2017 for a study of initiatives in

developing countries). Souza-Rodrigues (2019) discusses potential efficiency gains from moving

to a more incentive-based approach, using a structural model of deforestation.

2 Background: deforestation in the Amazon forest

The Brazilian Amazon is the world’s largest rainforest, with 4 million square kilometers.4. As

a rich repository for biodiversity, a regulator of local rain seasons, and the carbon concentration in

the atmosphere, the forest provides vital local and global environmental services. Starting in the

late 1980s, awareness about the environmental risks related to the destruction of the forest led to

protective legislative action, investments in enforcement activity, and monitoring programs based

on satellite data. The 2000s saw several policies centered on monitoring technologies, enforce-

ment capacity, and punishment of offenders (for a historical overview, see Souza-Rodrigues 2014,

Nepstad et al. 2014, Assunção, Gandour, Rocha, et al. 2015, Ferreira 2023). In 2004, the introduc-

tion of the satellite-monitoring system called “DETER” represented a breakthrough in the ability
4The total area of the forest is 6 million square kilometers. Besides Brazil, it spreads over Bolivia, Peru, Ecuador,

Colombia, Venezuela, Suriname, Guyana, and French Guyana.
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to inspect areas using real-time data on deforestation. DETER is the main source of deforesta-

tion alerts in this study, and I discuss it in more detail below. Other relevant initiatives that may

have collaborated in reducing deforestation were the Soy Moratorium (Nepstad et al. 2009) and the

policy of prioritizing municipalities for enforcement action (Assunção and Rocha 2019, Assunção

et al. 2023). By 2023, deforestation has destroyed approximately 23% of the primary forest in the

Brazilian Amazon, although approximately 20% of this area has been partly recovered as secondary

vegetation. The accumulated deforestation in the Brazilian Amazon is also much larger than de-

forestation in the other Amazon countries. For example, accumulated deforestation in Colombia,

Peru, Ecuador, and Bolivia, is around 10%, whereas deforestation in Venezuela, Guyana, Suriname,

and French Guyana is less than 5% (see Ferreira 2023 for a description of deforestation in other

Amazon countries).

2.1 The process of deforestation

Deforestation is the complete clearing of vegetation from an area. Farmers clear forests to

convert the land into agriculture or pasture, with timbering or mining as drivers of small-scale de-

forestation. While historically soybean culture has been the main driver of deforestation, since the

mid-2000s, around 80% of deforested areas were converted to pasture for cattle grazing (Nepstad

et al. 2009, Nepstad et al. 2014). Conversion of forest to agriculture or pasture is illegal in the

Brazilian Amazon forest for environmental protection reasons. Therefore, the economic rationale

for deforestation relies heavily on getting away with illegal deforestation, via lack of enforcement

action, unclear property rights, and amnesties.

Deforestation occurs in three steps: selective logging, clearing vegetation, and cleaning remain-

ing biomass (see INPE 2019a for a detailed description). In the first step, selective logging, farmers

selectively cut valuable types of timber.5 After extracting valuable timber, farmers clear trees and

other vegetation using mechanized logging and fire. Farmers set fires in forest borders, letting it

spread to the forest and damaging the vegetation. Damaged vegetation is easier to clear subse-

quently via logging activities. The third step usually consists in burning the remaining biomass,

which is a technique to fertilize the soil with nutrient-rich ashes (Nepstad et al. 1999).6

5In the Brazilian Amazon forest, some valuable types of wood are ipê, jacarandá, and mogno.
6The practice of destroying and then burning vegetation is known as slash-and-burn.
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In this highly humid area, fires do not emerge naturally. Instead, farmers set fires to clear veg-

etation as a preparation or sequel to logging. Fires aggravate the concerns involving deforestation

because they introduce additional environmental risks. First, forest fires inflict irreversible damage

on tropical vegetation, which lacks natural defenses against fires (Nepstad et al. 1999, Gillespie

2021). Second, fires severely impair local air quality, with damaging effects on human health (see

Reddington et al. 2015 for a study in Brazil and Sheldon and Sankaran 2017, Jayachandran 2009

for Indonesia). Thirdly, fires spread easily to neighboring areas, sometimes getting out of control

in catastrophic ways. Forest fires damage vegetation, pollute the air, and emit greenhouse gases

even when the areas are not ultimately logged. Official inventories of greenhouse gases often fail

to account for forest fires because their methodologies focus on deforestation (Alencar, Nepstad,

and Diaz 2006). Controlling fires is costly, consisting of building barriers and monitoring the fire.7

2.2 Enforcement by IBAMA and PPCDAm

Deforestation is banned in the Brazilian Amazon, except for some particular circumstances.

Regarding land tenure, 50% of the Amazonian area is indigenous territory (1.16 million square

kilometers) or conservation units (1.2 million square kilometers). At least 13% (roughly half a

million square kilometers, according to Azevedo-Ramos et al. (2020)) consists of public forests

(also called “undesignated” public forests). It is forbidden to deforest in any of these areas. The

remaining areas are privately owned rural properties and are mandated to preserve 80% of their area

as forest. Only 2% to 4% of deforestation was legal in 2020, according to estimates by Azevedo

et al. (2020) and Valdiones et al. (2021). The main legal instruments regulating deforestation in

Brazil are the Criminal Environmental Law of 1998, the Forest Code of 2012, and a Presidential

Decree of 2008. The use of fires is also tightly regulated in the region. Under authorization and

following safety procedures, the law authorizes fires for agricultural purposes, but all forest fires are

illegal. Penalties for farmers caught committing deforestation include high fines (about 1 thousand

euros per hectare), seizure of equipment and goods, an economic embargo on the deforested land,

and even imprisonment. The use of fire in deforestation is supposed to increase penalties. The law

is quite severe against offenders but is not always enforced.

7In the year 2020 in the Brazilian “Pantanal”, fires covered 3.9 million hectares during the months of July and
August, which represents 26% of the total area of the biome (Leal Filho et al. 2021).
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The federal enforcement agency, IBAMA, is the government body in charge of environmental

law enforcement in the Amazon forest. Municipal and state authorities may play a subsidiary role

in environmental law enforcement. Fighting deforestation is IBAMA’s main activity in the Amazon

region. In the decade from 2011 to 2020, IBAMA fined 23 thousand deforestation infractions, out of

a total of 75 thousand environmental fines imposed by IBAMA in the Amazon region. IBAMA has

access to real-time monitoring information on fires and logging and uses it to deploy enforcement

personnel on the ground. There are 30 IBAMA units in the Amazon forest, from where enforcement

agents leave to perform law enforcement field operations. Operations sometimes require the use of

helicopters, as well as support from state police.

An important landmark in the history of environmental enforcement in the Brazilian Amazon

was the “PPCDAm Plan”, which consisted in a task force in the federal government launched in

2004 to improve enforcement against illeal deforestation. One of the most noticeable features

of the PPCDAm was the creation of a monitoring system with the production of real-time alerts

based on satellite images, which I explain in more detail below. However, PPCDAm was a general

push to tighten enforcement and reduce deforestation, and included an increase in budget resources

for IBAMA, and myriad related policies. Primary deforestation abated in the years following the

launching of PPCDAm, and reached in 2012 its lowest levels in more than 20 years. For its ap-

parent success, PPCDAm also sparked an active research agenda to understand the impact of its

individual policies to fight deforestation, such as the tightening of rural credit to non-compliant

farmers (Assunção et al. 2020), the prioritization of “blacklisted municipalities” (Assunção et al.

2023), and the impact of fines on deforestation (Assunção, Gandour, and Rocha 2022).

2.3 Satellite systems

Satellite systems are used to measure and monitor deforestation in the Brazilian Amazon. The

measurement of deforestation takes place once a year (see INPE 2019b for a technical description).

Using images at a 30m x 30m resolution, the Brazilian National Institute for Spatial Research

(INPE) categorizes the land cover entire territory of the Amazon forest as native forest, defor-

estation, water bodies, or clouds. This system is the source of the official measurement of yearly

deforestation in Brazil. The measurement takes place once a year at the end of July, which is when

clouds are very dispersed, maximizing visibility. Processing the data takes six to eight months to
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be concluded (INPE 2008). The result is a complete map of the Amazon forest with the land cover

corresponding to late July. The yearly measurement is not a suited for real-time monitoring, since

it only measures deforestation once a year and takes several months to be published.

The main tool for monitoring deforestation in the Amazon is the system DETER. Launched in

2004, DETER sends daily deforestation alerts for the enforcement agency.8 The monitoring pro-

gram DETER produces deforestation alerts based on rapid degradation of forest ceilings. Degrada-

tion can be the result of fires, but the deforestation alerts do not capture active fires. In practice, it

captures situations of natural forest degradation, fire-induced degradation, and also active logging

the forest. DETER has been a major breakthrough in law enforcement in the Brazilian Amazonia,

but its ability to detect deforestation with deforestation alerts was relatively low in the early years,

with a large number of false positives. In the period used in this paper, the decade of 2011 to

2020, the program progressed substantially in its capacity to flag deforestation areas correctly in

real time, as documented later in this paper. DETER also started distinguishing alerts for different

types of events on the ground. Today, besides the deforestation alerts, DETER produces alerts for

forest degradation, mining, selective logging, and fire scars.

The monitoring system DETER uses essentially the same methodology as the yearly measure-

ment system PRODES (INPE 2019a), but uses higher-frequency, lower resolution images. The

production of alerts is made by technicians at the National Institute for Spatial Research, and is

not automatized. The technicians use computers to exclude areas covered by clouds and areas that

were already previously deforested, based on the measurement system PRODES. From this stage,

the technicians monitor the images of the whole Amazon, aided by estimates of land cover at each

pixel done via a Linear Spectral Mixing Model (Diniz et al. (2015)). The technicians in charge

of monitoring the forest and producing the alert are independent from the enforcement agency,

and there is no prioritization of monitoring areas in case of shortages of personnel or computing

capacity.

8DETER initially based on images from the satellite Terra, and since 2017 using images from the satellites CBERS-
4 and IRS. Terra is a NASA satellite, CBERS-4 is a Chinese-Brazilian satelliten and IRS stands for Indian Remote
Sensing Satellite. To distinguish from its first phase (2004-2017), the program is now named DETER-B
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2.4 Data

The three main datasets are from two satellite systems managed by the Brazilian Spatial Re-

search Institute (INPE) and the administrative data on fines, namely:

1. the maps from soil coverage system (PRODES), updated yearly

2. the maps of deforestation alerts from the monitoring system DETER, published monthly

3. the administrative dataset of fines from IBAMA

I restrict the dataset to fines related to deforestation of native forests in the Amazonian biome

using a string search on the free description of the fines typed by inspectors. More details on the

classifications of fines can be found in the Online Appendix. I use the geographical coordinates

of deforestation fines to locate the enforcement action at a precise area and link it to measured

outcomes. These four datasets can be visualized in the set of figures9 2a to 2d. Figure 2a shows the

categorization of the land coverage by PRODES as forest, old deforestation, and new (i.e., “last-

year”) deforestation. Figure 2b overlays this the soil coverage with the fire locations. Figure 2c

shows the areas of logging signals in yellow. Finally, Figure 2d shows the points where inspectors

produced a fine.

To overlay the maps of soil coverage, logging alerts, and fire alerts in the whole Amazon forest,

I rasterized the entire area into 300m level squares. I also added more information at this level,

such as the administrative divisions of the Amazon into municipalities and the legal status of the

land - private property (from the official rural registry CAR), indigenous land, conservation units,

or others. Therefore, at a 300m level of precision, there are several layers of merged information. I

then aggregate information at the 15km x 15km cell level.

The 15km x 15 km cell level is the observational unit used in this study. It roughly corresponds

to splitting the Amazon forest into 20 thousand equally-sized squares. I include information on

enforcement action at the cell level instead of matching the fines’ coordinates with the exact loca-

tions of the polygons of deforestation or alert. I also compute some other variables at the (15km

x 15km) cell level, such as i) the distance from each cell to each of the three main cities of the
9To produce these figures, I took an area of approximately 30 thousand square kilometers, corresponding to a

“scene” of the Landsat satellite, in the northern state of Pará in the year 2016.
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Amazon: Manaus, Cuiabá and Belém, ii) the presence of state roads in the cell (binary variable),

iii) the presence of federal roads in the cell (binary variable), and iv) the shortest distance from each

cell to a federal road, v) the accumulated share of deforested area in that cell-year, and vi) the size

of the forest frontier in the cell10.

3 Monitoring and inspection selection

How does the Brazilian environmental agency use satellite alerts to decide which areas to in-

spect? I answer this question using geo-referenced data on fines and deforestation alerts at the

monthly level. This section aims to quantify the importance of deforestation alerts in Brazilian

enforcement action against deforestation. It is unclear to which extent real-time monitoring alerts

have an effect on enforcement action since the enforcement agency can also carry out inspections

in the absence of satellite inspections, based on helicopter surveillance, denunciations by citizens,

regular patrolling, or other types of non-coded information. In Brazil, the real-time monitoring sys-

tem DETER is touted as a breakthrough in enforcement, and here I assess how much of IBAMA’s

enforcement action are caused by it.

In this section, I compute the probability of a fine in areas with deforestation, and decompose

this probability to how much of it is caused by real-time deforestation alerts. To do that, I use geo-

referenced information on fines, true measured deforestation, and the satellite-based deforestation

alerts at the 15km x 15km cell level. To estimate inspection selection, I restrict the sample to areas

with positive levels of deforestation, that is, non-compliant areas. Restricting the data is necessary

to interpret variation in the fines as variation in inspection efforts. Fines only reflect enforcement

in areas that are “eligible” for them, that is, areas with positive levels of offenses.11. Among non-

compliant cells, observed variation in fines can be interpreted as variation in enforcement action. I

describe how the overall yearly probability of inspection rises in non-compliant areas, when satel-

lites produce logging or fire alerts in the same areas. Next, I use monthly data to estimate the causal

impact of alerts on enforcement action probability, using an event study approach. I then discuss

10By forest frontier I meant the border between native forest and already deforested area.
11Formally, the probability of a fine in any given cell i and period t is P(fine) ≡ P(inspection & deforestation) =

P(inspection|deforestation)P(deforestation) Using data on fines to infer enforcement action, compliant areas (i.e., areas
with zero deforestation) become useless to understand the behavior of the enforcement agency, since fines are trivially
equal to zero in these areas.
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the value of following real-time alerts as opposed to random fines.

3.1 Computing the fine probability

The probability of inspections in the Amazon forest in the 2011-2020 was 13% in the decade

from 2011 to 2020. This means that conditional on having a positive level of deforestation in a

given year, a 15km x 15km cell had a 13% probability of receiving at least one deforestation fine

in the same year. In principle, deforestation can be punished at later dates, even years after the

offense has been committed. However, this seems to be rare: more than 80% of deforestation fines

by IBAMA happen in areas that have positive new levels of deforestation in the same year (see

Appendix figure A1), and yearly additional deforestation seems to be beyond what IBAMA is able

to inspect every year, given that only 13% of cells with positive deforestation received a fine.

This probability hides a lot of heterogeneity. Cells that are close to IBAMA’s offices, cells that

deforest larger areas, or cells that receive real-time deforestation alerts are more likely to be fined. I

estimate the following linear probability model to understand the factors which are correlated with

fine probability:

P(fineit) = β0 + β1deforestation alertimt + β2fire signalit

+ FEi + δt + γXit + εit

(1)

where εit is a cell-year idiosyncratic error term, assumed to have a conditional mean zero. FEi

are cell fixed effects and δt are month dummies. Xit is a matrix of controls such as distances

to three main cities (Manaus, Cuiabá and Belém), distances to the closest IBAMA office, prices

of commodities and IBAMA’s budget expenditure. Some specifications also include municipality

fixed effects and year fixed effects. The regression is estimated with different samples, including

a sample with only areas with positive deforestation. All variables are binary, including deforesta-

tion (1 if there was positive deforestation) and alerts, except for the controls and unless specified

otherwise. The coefficients of interest are β1 and β2, which reflect the additional probability of

enforcement given the occurrence of a logging or fire alert, relative to no alert. The main spec-

ifications are estimated only for the sample of cells with positive deforestation, that is the areas

“eligible” for fines.

The table can be analysed for descriptive purposes but is unlikely to yield causal estimates of the
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different factors on fine probability. The OLS results can be seen in Table ??. The probability of an

inspection increases by almost 8 percentage points in areas with positive deforestation (Column 1),

and 1.5 percentage point if there is fire. Columns 2 and 3 include a dummy for whether both fire and

deforestation alerts are observed in the same year, still conditional on “same year deforestation”.

Almost all cells with a deforestation alert also presented some degree of forest fires, even though

the exact overlap of areas is rare. The interaction coefficient therefore captures almost the full

effect of deforestation alerts, and makes the effect of forest fire alerts negative but not statistically

significant. The other Columns change the sample in which the model is estimated. In Column

4 only priority municipalities are selected. These are municipalities declared as high-priority by

the enforcement agency itself. The effect is strongest for this sample, with deforestation alerts

increasing by 14 percentage points the probability of a inspection, although the effect of forest fires

is still around 1.5 percentage point. Column 5 has all cells that presented some year of positive

deforestation in the 2011-2020 period. The effects if alerts are understandably weaker, since alerts

may lead the enforcement to areas where there is no deforestation, such that no inspection would be

observed. The same is the case in Columns 6 and 7, which include all data, including cells with no

deforestation whatsoever. It cannot be ruled out that “false positives” led to inspections, but these

would be unsuccessful and not appear in the dataset. This explains why the effects are attenuated

once we account for all alerts, including in areas where no deforestation took place.

Clearly there are several factors which influence fine probability, and the real-time monitoring

system that produces deforestation alerts. Below I propose a strategy to estimate the causal effect of

the real-time deforestation alerts on fine probability, which allows me to understand the contribution

of this technology to the enforcement action in the Amazon forest.

3.2 Effect of alerts on fine probability

Identification

As discussed in previous sections, satellites produce several types of alerts to the enforcement

agency, and especially fire and deforestation alerts. While deforestation alerts are observed at a

month-cell level, they are not an exogenous event, and it is not possible to infer causal effects

immediately from a regression of fines on alerts. The reason is that areas that receive alerts are more

easily observed by satellites, particularly because they have less cloud coverage and present larger
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areas of deforestation. Therefore, I propose a differences-in-differences identification strategy to

estimate the causal effect of alerts on fines. This strategy relies on the trends of fines in different

areas, and identifies as a causal effect any deviation from parallel trends which follows from an

alert.

Exploiting the panel dimension of the data, it is possible to recover the average treatment effect

on the treated (i.e., the cells which received alerts) by the evolution of the number of fines before

and after alerts with the evolution of fines in the same period for cells that did not receive any

alert. This is the differences-in-differences approach. This strategy identifies the average treatment

effect on the treated under two mains assumptions. The first one is “parallel trends”, meaning that

in the absence of alerts, the number of fines would evolve on average the same way for cells with

and without alerts. The second one is “non anticipation”, which means that the observed outcomes

previous to the alert can be interpreted as untreated outcomes.

Estimation

The analysis is done in the form of an event study at the month-cell level. I pool every cell at the

monthly level to create a balanced panel of cell i and month t. Furthermore, I only consider cells

which have displayed positive levels of deforestation at some point in the decade, because these are

areas where a fine could be produced. I then estimate the following regression:

P (inspection)it =
12∑

ℓ=−6,ℓ ̸=−1

βℓ1{t− ei = ℓ}+ δt + FEi + εit (2)

where εit is a conditional mean zero error term, and ei is the month of the an alert event within

cell i.12
1{t − ei = ℓ} is an indicator function that takes value 1 when the period t is ℓ months

distant from the event date ei. The set of all 1{t − ei = ℓ} is a matrix containing binary vectors

that refer to the lags and leads relative to the alert date.

As mentioned above, only observations which presented positive deforestation were included.

Therefore, this estimation captures the effect of an alert in spurring enforcement action in an area

which is “eligible” for fines, with or without monitoring alerts. Indeed, many cells had positive

levels of deforestation but did not have deforestation alerts, making them a group of comparable

12Deforestation usually spans over several months, and one single area may present several successive alerts. For
this reason, I only consider as an “alert event” only the alert that takes place after four months without alerts in the
same cell.
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“never treated” cells. Among treated cells, the treatment date varies from one place to the other,

partly because deforestation happens in different moments in time, or because cloud coverage de-

lays detection of deforestation by the monitoring systems.

Estimation of equation 2 by OLS can identify the average effect of alerts on the probability

of fines under some strict assumptions. Indeed, omitting the first lag (ℓ = −1) in the estimat-

ing equation means that each βℓ is a weighted average of all differences-in-differences parame-

ters. Normally, the differences-in-differences strategy identifies the average treatment effect on the

treated under the assumptions of parallel trends and no anticipation (see Wooldridge 2021 for a

detailed discussion). However, as highlighted by a recent literature (see Callaway and Sant’Anna

2020, De Chaisemartin and d’Haultfoeuille 2020, Goodman-Bacon 2021, Borusyak, Jaravel, and

Spiess 2021, Sun and Abraham 2021), OLS estimation of equation 2 makes potentially invalid

differences-in-differences comparisons, in the sense that they subtract values of outcomes that may

include treatment effects, even when the parallel trends and no anticipation assumptions are true.

This happens in particular when estimating treatment effects in settings in which the treatment date

varies across groups, as is the case here. In short, one should be careful not to compare treated

observations with other treated observations.

I first estimate the event study in equation 2 using OLS, and then I estimate the model using a

method robust to biases stemming from problems of staggered designs. To overcome these prob-

lems, I follow the approach suggested by Borusyak, Jaravel, and Spiess (2021), which the authors

name an “imputation method”. The method consists of three steps. In the first step, I estimate the

time and cell fixed effects (i.e., the two-way fixed effect model) only using non-treated observa-

tions (the union of “never-treated” and the “not yet treated” observations). This yields cell-month

specific estimates of the untreated value of the outcome. Then, I extrapolate these estimates to the

remaining part of the sample (the sample of observations after treatment has taken place), which

is essentially a prediction of individual counterfactuals. Finally, I compute the average treatment

effect as the average difference between the realized values of the outcome (fines in this example)

and the imputed counterfactual. This procedure avoids making invalid comparisons with cells that

have already been treated in the past, thus yielding a meaningful estimate of the ATT in the sense

that it is a convex combination of the individual treatment effects.13

13Additionally to the problem of negative weights, Borusyak, Jaravel, and Spiess (2021) warn that the absence of
groups which are “never treated” in the analysis created an identification problem, in which the time fixed effects
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Results

The OLS results are shown graphically in Figure 4b. The results for the estimation using the

method of Borusyak, Jaravel, and Spiess (2021) are in Figure 4c. In this case, they are qualitatively

and quantitatively very similar to the OLS results, suggesting that the problems related to staggered

designs are not severe in this particular application. They all show a strong and immediate effect

of alerts on the probability of a fine in the cell where the alert was produced. As soon as the alert

appears, the cells with the alert become immediately one percentage point more likely to receive an

inspection, and then two points more likely in the two months after the alert. The effect fades out

over time and disappears after nine months. The fact that the effect is never negative means that

the effect of the alerts is not merely an anticipation of fines which would take place anyways later

in time. Alerts produce additional fines which would not have taken place otherwise.

Placebo tests

Table 7 summarizes the OLS results and includes other specifications testing the effect of other

real-time satellite information as placebo tests. Column 1 shows the effect of the occurrence of a

deforestation alert on the probability of an inspection. Prior to the occurrence of the alert, there

is no difference between the enforcement probability of areas that received an alert and areas that

received no deforestation alert, despite having positive amounts of deforestation. Column 2 and

Figure 5a show the effect of real-time alerts of forest fires on the probability of fines. They suggest

a strong correlation between forest fires and inspection probabilities. However, there are clear

differences between areas with or without fires prior to the first alert that the forest is burning, such

that the differences between areas with an alert and without an alert cannot be causally attributed

to the alert. When one considers any fire alerts, including fires that started outside of forest, as

in Column 3 and Figure 5a, there is a more compelling case to suggest that fire alerts lead to

enforcement action, but again the differences arise prior to the first alert. These correlations are

driven by the fact that fires often happen in the process of deforestation, such that many of the

fire alerts are probably happening in the proximity of areas with deforestation alerts, which were

cannot be identified from an alternative model in with time trends. The treatment effect estimates with this method
happen to be simply the difference between observed outcomes and predicted counterfactuals. This means that there
is no “error” term estimated next to the treatment effect, raising the question of how to estimate the variance of the
estimator. As shown in Borusyak, Jaravel, and Spiess (2021), the variance of the estimator relied on the variance of
these individually computed treatment effects, as well as on the error term o the estimation of the two-way fixed effect
model (which is done with only the untreated part of the sample).
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shown to have a strong effect on enforcement. In fact, fire alerts bear really no weight in the

decision of the enforcement agency: when comparing areas with deforestation and fire versus areas

with deforestation with no fire, excluding all areas that also had a deforestation alert, a flat curve

appears (Figure 5b)

Other placebo tests can be done using other types of real-time alerts produced by satellites, but

which are unrelated to large scale deforestation, such as “selective logging” alerts (desmatamento

seletivo) and “mining alerts” (mineração). Though these activities also encompass destruction of

forest, they do so at a smaller scale than deforestation aimed at converting forest to pasture or

agriculture. As a consequence, these alerts should not have any effect in altering probability of

inspection for deforestation, and can be used as a placebo test to verify whether the effect observed

for deforestation alerts is really specific to that kind of information. Indeed, that is clearly what is

observed in Columns 4 and 5 of Table 7 and Figures 6a and 6b. In summary, only deforestation

alerts have a causal effect on enforcement action, with fire alerts being correlated but not causing

increases in inspection probability.

3.3 Decomposing the effect of monitoring in the fine probability

The probability of inspections for offending cells can be decomposed as follows, using the Law

of Total Probability:14

P(fine) = P(fine|no alert)P(no alert)︸ ︷︷ ︸
probability without alerts

+P(fine|alert)P(alert)︸ ︷︷ ︸
probability with alerts

The objects in this expression are easily computed from the data, and as already mentioned, the

probability of fine in the Amazon forest in the studied period was 13%. The probability of a fine

(i.e., a positive number of fines in the year) in areas that receive an alert was 22%, but this value

is not the causal effect of alerts. Indeed, this probability is decomposed in a baseline level of fines

in areas that receive alerts, which I denote P(fine(0)|alert) borrowing from the potential outcomes

literature, and the average causal effect of alerts, denoted ATT :

14All expressions below are conditional on the cells having positive deforestation, that is, the cell is an “offending
cell”.
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P(fine|alert) = P(fine(0)|alert)︸ ︷︷ ︸
baseline/counterfactual probability

+ ATT︸ ︷︷ ︸
causal effect of alerts

This decomposition allows us to understand how much of the overall enforcement action can

be attributed to the alerts. These fines are “additional” to the baseline inspections, which would

have occurred regardless of the alerts. To understand the role of real-time monitoring in the overall

enforcement risk, I aggregate the monthly causal effects estimated in the event study in the previous

section up to the nine-th month after the event date, which is when the average effect seems to

disappear. This allows me to understand what is the share of fines in areas with alerts which were

effectively caused by the alerts, which is easily computed by dividing the alerts-caused fines by the

total fines in areas that had alerts. The share of fines caused by alerts is s ≡
∑8

ℓ=0 βℓ×#alerts
#fines in areas with alerts ≈

1/3. This share is computed using the monthly data estimation, and is a useful tool to translate the

results into yearly data.

Using yearly information (the level at which deforestation is measured), we know that areas

with deforestation and alerts had a 22% probability of receiving at least one fine. A fraction s ≈ 1/3

of the fines is due to real-time monitoring, and I use this fraction to apportion the part of the 22%

yearly fine probability to real-time monitoring. This is an approximation, but it seems to be the

most natural way to apportion the probability that an areas gets fined in a given year using monthly

level estimated ATTs. The consequence is that out of the 22% yearly probability of fine for areas

with deforestation and alerts, 7 percentage points are due to the real-time monitoring system, and

15 percentage points are the baseline probability, captured by cell and month fixed effects.

P(fine)︸ ︷︷ ︸
13%

= P(fine|no alert)︸ ︷︷ ︸
6%

P(no alert)︸ ︷︷ ︸
60%

+
(
P(fine(0)|alert)︸ ︷︷ ︸

15%

+ATT︸ ︷︷ ︸
7%

)
P(alert)︸ ︷︷ ︸

40%

The contribution of the real-time monitoring system to the probability of fine is captured by the

last term, which multiplies the ATT by the probability of having deforestation and alert. Notice

that not all fines happening in areas with alerts are deemed additional. To a great extent (15%),

IBAMA would be able to impose fines on farmers in those areas, even in the absence of alerts.
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The decomposition of the probability reveals the following: in the decade 2011 to 2020, a cell

with positive deforestation had a 13% probability of receiving at least one fine in the same year

of deforestation, and the part that is due to the monitoring system is approximately 3 percentage

points (ATT × P(alert) = 7% × 40%). This represents a substantial amount of the overall fine

probability, especially given that it is the part that is due to a single source of information: the

real-time monitoring system DETER.

The results of this decomposition exercise can be seen in Figure 8a. In the next section I

estimate the impact that this 3 percentage point increase in fine probability has on deforestation

reduction.

3.4 Mechanism: why following real-time alerts matters for enforcement

Should IBAMA be concerned with real-time monitoring and quick reactions to alerts, as it

seems to be? Deforestation is an offense that endures: once it has taken place, it stays. In any

case, the offenses are observed by satellite once a year (via the yearly satellite measurement of

PRODES) and become known to the enforcement agency. So why not wait and punish the farmers

later? IBAMA can go to the place where deforestation took place and punish agents for exploiting

an area economically that was illegally deforested. But in practice such late interventions tend to

be less likely to succeed, and in particular less likely to inflict costs on offenders. IBAMA agents

must find the offender and establish the link between the offense and its author.

The analysis of the timing of fines allows for a comparison between fines that followed alerts

and those that did not. Fines that follow alerts up to three months after the occurrence of an alert, or

“timely fines”, differ from “random fines” in two important dimensions: timely fines tend to punish

much larger areas, and are more likely to seize equipment from offenders. These two differences

can be seen by estimating the following simple regression model:

fine characteristicimt = β + α0deforestation alertimt + α1deforestation alertimt−1

+ α2deforestation alertimt−2 + α3deforestation alertimt−3 + FEm + δt + εit
(3)

where i is the single fine, m is the municipality and t the month. εit is a conditional mean
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zero error term, and FEi is a fixed effect at the municipality level (a level above the cell level) and

δt stands for month effects. The model is estimated using two outcomes: the share of fines that

ended seizing equipment from the offenders, and the size of the deforestation offense, in hectares.

Information from seized equipment is obtained from a separate administrative dataset of IBAMA,

and merged with the individual fines. Information about the size of deforestation is extracted from

a string description of the fines, and in some cases filled explicitly by inspectors in a separate field.

Table 8 shows the α coefficients for these two outcomes. Relative to fines that followed no alert or

a alert more than four months old, “timely fines” are different across the two characteristics.

Columns 1 to 3 of Table 8 show that the probability of seizing equipment is increased by 1.5-2

percentage points if the fine takes place in the same month of the alert. The older the alert, the

lower this probability, and the effect is even negative if the alert is three months old. Adding month

fixed effect (column 2) or restricting the sample to priority municipalities (column 3) do not change

the effects. The effect is positive and significant as long as the fine occurs in the same month as

the alert. Although the effect may seem small, it represents a 20% increase relative to the baseline

probability of 8% of a fine seizing the equipment of the offenders.

Regarding the size of the offense, the fines that follow alerts are larger than other fines by around

40 hectares on average, as can be seen in columns 4-6 of Table 8. If the alert happened more than

three months before the fine, the difference is much smaller, 16 to 24 hectares larger than fines that

did not follow a deforestation alert. The explanation for this large and persistent effect is that alerts

are more likely to be produced for larger infractions. As a result, fines that follow alerts tend to

go for the larger offenses as well, which is another potential benefit of using monitoring alerts as a

rule for deciding where to deploy enforcement.

In this section I showed that the presence of real-time monitoring alerts for logging leads to

increased probability of an inspection in an area. Moreover, the increased quality of these alerts

has been followed by an increased reliance by IBAMA on these alerts. Fire alerts, on the other

hand, play no substantial role in determining enforcement action. In the next sections I estimate

the impact of enforcement on overall compliance (the decision to deforest or not) and then on the

choice to use fire in deforestation.
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4 Farmers’ responses to inspections

Inspections are valuable to the extent that they affect farmers’ decisions to deforest. The classi-

cal model of crime in economics, first proposed by Becker (1968), posits that agents decide whether

to commit a crime based on the probability of punishment. In this model, the credible risk of pun-

ishment is enough to deter agents from engaging in unlawful activities. This effect came to be

known in the crime literature as “general deterrence” effect. In the context of deforestation, this

effect would translate to farmers refraining from deforestation when the probability of being caught

is high enough.

Besides the general deterrence effect, another way enforcement can deter crime is by affecting

the future behavior of punished agents. One classic example is imprisonment, which incapacitates

agents from committing a crime, reducing the future crime incidence. The effect of punishment

itself on agents’ future behavior is known as “specific deterrence effect”. In the context of defor-

estation, this would be captured by agents’ behavior after punishment.

The general and specific deterrence effects are theoretically different and can be thought of as

“ex ante” and “ex post” effects of punishment. Understanding the full impact of enforcement on

agents’ behavior requires accounting for both behavioral responses. To do that, I propose a simple

framework to understand how they interact.

Formally, call pt the probability of inspection in year t, N(pt) the resulting number of offending

farmers, dt(pt, f) the average deforestation areas by offending farmers, which is a function of the

probability of inspections pt and the history of inspections f . The variable f codes whether the

farmer was inspected in period 0. The share pt of farmers who have been inspected deforest less up

to three years later,15 whereas those who have not been inspected continue deforesting as before.

The four year accumulated deforestation is:

D =
3∑

t=0

N(pt)dt(pt, f)

Suppose there is a marginal increase in p0 (the inspection probability at period 0), lasting only

one period. Then the impact of this marginal increase on a four-year period of deforestation D is:

15Three years is an arbitrary time horizon.
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dD

dp0
=

3∑
t=0

dN

dp0
dt(pt) +N(pt)

(∂dt
∂p0

+
∂dt
∂f

df

dp0

)
=

∂N

∂p0
d0(p0) +N(p0)

∂d0
∂p0

+
3∑

t=1

N(pt)
∂dt
∂f

df

dp0

=
∂N

∂p0
d0(p0) +N(p0)

∂d0
∂p0︸ ︷︷ ︸

general deterrence effect

+
(
dp0N(p0) + p0

∂N

∂p0
d0(p0)

) 3∑
t=1

∂dt
∂f︸ ︷︷ ︸

specific deterrence effect

(4)

The second equality comes from the fact that the probability of inspection only changes in period 0,

and therefore does not affect p1, p2, p3. The third equality comes from the fact that only f = 1 only

for those that are inspected. Since only p0N(p0) are inspected in period 0, then dp0N(p0)− p0
∂N
∂p0

are inspected in that period as a result of a marginal increase in p0.

The first part of the decomposition refers to the general deterrence effect, the ex ante reduction

in deforestation resulting from an increase in inspection probability. There is an extensive margin

response (the change in the number of cells having any level of deforestation) and an intensive

margin response (the change in the deforested area within these cells). To understand the magnitude

of deforestation reduction in the Amazon forest as a result of an increase in fine probability, we need

to estimate the behavioral responses, which are the derivatives in the equation 4.

4.1 General deterrence: effect of inspection probability

Identification and estimation

The general deterrence effect is the effect of changes in fine probability on deforestation. I use

data on fines to estimate the fine probability at a cell-year level, using only cells with positive defor-

estation.16 It is possible to estimate the probability of a fine (conditional on positive deforestation)

using observable variables in a first stage, and then use the fitted probabilities to estimate the effect

of fine probability increases on deforestation in a second stage.

However, it is likely that the probability of fines is correlated with unobserved characteristics

of areas where deforestation takes place. As is typically the case in the crime literature (see, for

16As explained previously, fines are trivially equal to zero in areas with no deforestation. For that reason, these areas
should be excluded, since they convey no meaningful information about the inspection efforts by the enforcement
agency.
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example, Levitt 1997) enforcement efforts tend to be more intense in areas with higher crime in-

cidence because the enforcement agency has knowledge about what are the hotspots of crime and

deploys enforcement efforts accordingly. This means that there is a potential endogeneity problem

in the fine probability. To overcome this problem, it is necessary to estimate the probability in the

first stage using an instrumental variable (or “excluded variable”), that is, a variable that shifts fine

probability but does not affect directly the decisions of farmers to deforest areas. A valid instrument

then captures exogenous variation in the probability of fines, which can then be used to estimate

the impact of fine probability on deforestation in the second stage.

I estimate the following two-equations model:

yit = β0 + β1πit + βxXit + ϵit

πit = α0 + α1Zit + αxXit + εit

(5)

where the first equation is the structural equation relating the outcome to the probability πit of

fines, and the second equation is a linear probability model of fine probability πit as a function of

observables Xit and Zit, where Zit is an instrumental variable.

The instrumental variable that provides the exogenous variation on fine probability is cloud

coverage at the cell level. This instrumental variable was first proposed by Assunção, Gandour,

and Rocha (2022), who also used it to estimate the causal impact of fines on deforestation. Cloud

coverage blocks temporarily the visibility of a cell, making it impossible for optimal sensors in

satellites to produce images of the forest. This feature is a major limitation of the real-time moni-

toring system DETER, and provide therefore variation in the timing of the deforestation alerts, and

consequently on the enforcement agency’s ability to inspect and punish offenders on time.

Xit are control variables common to both stages. Some of them are time-invariant and at the

cell level: dummy variables for deciles of distances to the three main cities in the Amazon forest

(Manaus, Belém, and Cuiabá), and dummies for the presence of indigenous territory, conservation

units, and roads (federal or state). I also control have cell-year deciles of the share of deforested

area. I choose to include the controls as dummies of deciles to allow for potential non-linear

relationships between the outcome and these variables. Controlling for the share of deforested area

is particularly important because yearly deforestation rates may depend on how much forest is still

standing in an area. Finally, in some specifications, I control for commodity prices of soy and ox
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(aggregate and year-specific) and prices of vegetal coal and wood (state-year specific).

The model is estimated with Two-Stage-Least-Squares using only areas with positive deforesta-

tion in the period 2011-2020. The standard errors are clustered at the cell level, thus allowing for

autocorrelation of the unobserved error between different years.

Results

Table 9 summarize the results for the regressions of the intensive (dit) and extensive margin

(P(dit > 0)). Overall, enforcement probability displays a substantial effect in reducing deforesta-

tion along both margins. The table shows, for each outcome, the OLS regression, the 2SLS results,

the first stage (using fines as outcome), and the reduced form (the direct effect of the instrument on

the outcomes). The samples are different for the two outcomes because I only considered cells with

positive deforestation levels for the intensive margin effect. In contrast, for the extensive margin, I

considered all cells that had deforestation at some point in the decade from 2011 to 2020.

Columns 1 and 5 show the OLS regressions of deforestation on fines, showing a strong positive

correlation both for the intensive and extensive margin, as expected. Columns 2 and 6 show the

responses to exogenous increases in the probability of fines. A percentage increase in the proba-

bility of fines reduces deforestation areas by 1.9%, and reduces the probability of an area having

deforestation by 0.9%. The first stage is strong, as shown in columns 3 and 7, suggesting that in-

tensively cloudy cells-years were less likely to receive fines. Finally, to corroborate the robustness

of the results, the direct effect of the instrument on the outcome, on Columns 4 and 8, is positive.

This means that cloudier areas have more deforestation than non cloudy areas.

All the results are conditional on a rich set of controls, such as distances from the three main

Amazonian cities, distances from the closest IBAMA office, presence of roads, presence of in-

digenous land, presence of conservation parks, and the percentage of accumulated destroyed forest

within the cell-year.17

4.2 Specific deterrence: dynamic effects of fines

Identification and estimation

17The continuous controls (distances and percentage of destroyed forest) were included as dummies of the deciles of
the underlying variable. This choice is intended to allow for non-linearities in the relationship between these controls
and other variables.
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The specific deterrence effect is the effect of punishment on the behavior of farmers. It affects

a smaller number of farmers than the general deterrence effect, which is the effect of punishment

probability. In deforestation, the specific deterrence effect is the change in farmers’ behavior after

an inspection, and caused by the inspection. To identify the causal effect of inspections over time,

and in particular distinguish it from time-specific shocks, I use an event study approach like in

section 3.

To estimate the specific deterrence effect, I restrict the sample only to those areas that received

enforcement action at least once in 2011-2020. Thus subsampling the data, I circumvent the en-

dogeneity issue regarding the inspection decisions since there is no comparison between inspected

with non-inspected areas. I estimate the average effect of inspections on inspected (average treat-

ment effect on the treated) using an event study design, where I exploit variation in the timing of

the inspections. The assumption that allows this strategy to identify the effect of inspections is a

parallel trends assumption. The assumption means that inspected areas would have evolved like

non-inspected areas in the absence of an inspection.

I rely on an event study approach, where the “event” is an inspection in a cell. The event occurs

in different years for each cell, and the objective is to understand the causal effect of an inspection

in several periods relative to the event date, similar to what was done in the analysis of signals and

inspections in the previous section. It is possible to see how deforestation evolves relative to the

event date. To estimate the specific deterrence effects of inspections, the challenge is, as usual, to

find the correct comparison group for the treated cells. The differential timing of inspections gives

an opportunity to compare similar areas. Using only the areas that were treated at some point, it

is always possible to have some observations that were not yet treated and use them as controls

for those that were already treated. Standard practice would lead to an estimation via OLS of an

equation like the following:

yit =
5∑

ℓ=−3

βℓ1{t− ei = ℓ}+ δt + FEi + εit (6)

Where the inspection date is denoted by ei, and which symbolizes the date t in which cell i

receives the inspection. As explained in Section 3, estimating this equation via OLS, using only

the cells that received an inspection at some point, implies making before and after comparisons
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between groups. This makes no distinction if the cell used as control has already been treated in the

past. As highlighted by recent research, this may be a big problem of the so called two-way fixed

effects model for estimating treatment effects: if the control cell has already been treated in the past,

its values may be carrying a treatment effect, which is given a negative weight in the estimation

of the treatment effect. Therefore I estimate the effects using the imputation method proposed by

Borusyak, Jaravel, and Spiess (2021), which avoids invalid comparison between treated groups

with other treated groups.

Results

The treatment effects of the deforestation areas is depicted in figure 9b. The treatment effect

is negative and increasing in size in periods after the treatment. The reason is that the outcome

stabilizes after the inspection, whereas it was accelerating in the years before. The counterfactual

scenario is therefore that the outcome would continue accelerating, which yields a growing treat-

ment effect. It is probable that the linear trend is only a good approximation for the counterfactual

in the first few years after the inspection occurs, but it does allow for an estimation of the treatment

effects in these years. The results show that the treatment effect can only be distinguished from

zero from the second year on-wards, when treated cells show 0.3 square kilometer less deforesta-

tion than the counterfactual. In the accumulated three years, the treatment effect is approximately

0.7 square kilometer of forest saved on average.

Spatial spillovers

It easy to estimate the event study explained above to capture potential spatial spillovers of

fines. Spillovers could be a threat to the estimation of the treatment effects in the preceding sec-

tions, since it is assumed that non-treated cells are unaffected by treatment. Two types of spatial

spillovers could occur: contagion and leakage.18 If there is contagion, neighboring farmers may

realize that neighboring areas were fined and become more compliant, and this implies that the

impact of fines is even greater than the estimated above. On the other hand, if there is leakage,

offenders could disperse from areas that suffered enforcement intervention and commit crimes in

other areas.19 In the context of deforestation in the Amazon forest, Assunção, Gandour, and Rocha

(2022) and Assunção et al. (2023) have found small contagion effects of enforcement in neighbor-

18The terminology is borrowed from Assunção, Gandour, and Rocha (2022)
19This effect is also known as “displacement effect” and has been documented recently in the urban crime literature

(Blattman et al. 2021)
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ing municipalities.

I estimate the same event study to look for any effect of a fine on all the neighboring cells, and

to second-order neighbors. Figure 10a shows the evolution of deforestation in every year relative

to the date of the fine. The blue line shows the evolution for the cells that received the interven-

tion, and the discontinuity in the increasing trend reflects the treatment effects that were discussed

above. The neighboring cells (both direct and second-order neighbors) have a lower level of de-

forestation overall, which is not surprising, since the enforcement agency acts more intensively in

areas with large deforestation. Moreover, these neighboring areas show a weak upward trend in

deforestation, but no noticeable change in this trend after their neighbor received a fine. Estima-

tion of the treatment effects using the imputation method shows that there is indeed no treatment

effect distinguishable from zero, though there the period preceding the fine shows a slight accel-

eration. Therefore, the results qualitatively confirm previous findings (Assunção, Gandour, and

Rocha (2022) and Assunção et al. (2023)) suggesting that enforcement leads to small reductions in

deforestation in neighboring areas.

4.3 Overall effect of inspections on deforestation

After these steps, it is finally possible to compute the impact of increases in fine probability

on deforestation by using equation 4. I use the instrumental variable model to obtain estimates of

the derivatives of deforestation with respect to the probability of a fine, and then the event study

responses for the derivative of deforestation to the realization fine. To complete the computation,

it is necessary to use some baseline values of average deforestation and the number of cells with

deforestation, which I compute as the averages in the data during the whole period of 2011 to 2020.

I thus obtain the following areas of avoided deforestation:
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dD

dp0
=

∂N

∂p0
d0(p0) +N(p0)

∂d0
∂p0︸ ︷︷ ︸

general deterrence effect

+
(
dp0N(p0) + p0

∂N

∂p0
d0(p0)

) 3∑
t=1

∂dt
∂f︸ ︷︷ ︸

specific deterrence effect

=

∂N
∂p0︷ ︸︸ ︷

5000× (−0.009)×
d(p0)︷︸︸︷
1 +

N︷︸︸︷
5000×

∂d
∂p0︷ ︸︸ ︷

1× (−0.019)

+
(
0.01× 5000︸ ︷︷ ︸

dp0N(p0)

+0.13× 5000× (−0.009)︸ ︷︷ ︸
p0

∂N
∂p0

d0(p0)

)
× 3× (−0.08)︸ ︷︷ ︸∑3

t=1
∂dt
∂f

= −140︸ ︷︷ ︸
gen. deterrence

−10︸︷︷︸
sp. deterrence

= −150

A one percent increase in inspection probability would reduce yearly deforestation by approxi-

mately 150 square kilometers a year. This area represents approximately 1.2% of the deforestation

level in 2020 (12 thousand square kilometers) and 2% of the average deforestation in 2011-2020 (7

thousand square kilometers).

As computed in section 3, the treatment effects of the monitoring system represent approx-

imately three percentage points in the overall yearly probability of fines in the Amazon forest.

Therefore, the value of this system in terms of reduced deforestation probably lies in the ballpark

of 450 square kilometers of saved forest by year, or 6% of the average yearly deforestation in the

decade.

5 Cost benefit analysis

This paper has so far shown that the enforcement agency has extensively used the monitoring

alerts to direct its inspections, which in turn reduced deforestation and forest fires. The use of

monitoring alerts has meant a change in the way the enforcement agency targets its inspections.

What was the value of this shift in terms of inspection resources saved and welfare gains?
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5.1 Inspection costs

I used administrative data on operational expenditures (not including wages) in the Amazon for-

est to estimate the average cost of a deforestation inspection from 2011-2020. The data is available

separately for each of the nine states of the Amazon forest, but it does not distinguish expenditure

with deforestation inspections from other operations. I distinguish the deforestation inspections be-

tween those that followed a deforestation alert, and those that did not follow an alert, and estimate

their costs using a linear regression model, as follows:

expenditureit = β0 + β1alerts inspectionsit + β2no alerts inspectionsit + δt + FEi + εit (7)

Where β1 is an estimate of the average marginal cost of an inspection following an alert and

β2 the average marginal cost of an inspection not following any alert, while δt are year fixed ef-

fects, and FEi are state fixed effects. These fixed effects capture other year-specific enforcement

activities or state-specific expenditure levels.

The results in table 11 show that the inspections following alerts seem to be considerably less

costly than inspections not following alerts. The first column, without any year of state fixed ef-

fects, shows that the marginal inspection following alert cost around 7 thousand BRL (1.7 thousand

USD), whereas the marginal inspection not following an alert cost 16 thousand BRL (4 thousand

USD), more than twice as much. Including year fixed effects, in the second column, does not

change much the results and keeps the proportion of the two costs. The third column includes also

state fixed effects, which reduces the marginal costs of both inspections by half, but again keeps

the proportion between them.

In short, an inspection strategy that follows monitoring alerts seems to be more cost efficient

than using other methods to select inspections. The reason is likely to be that inspections without

alerts depend on more investigation and attempts before finding an offender to punish. The mon-

itoring system provides the information in real-time, which is almost always correct as shown in

section ??. It is therefore cheaper to base inspection selection on them, which is what IBAMA

increasingly did. Indeed, since 2014, the operational expenditures of IBAMA in the Amazon for-

est dropped by 40% (43 million BRL to 25 million BRL), whereas the number of deforestation
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inspections dropped by 20% (from 935 in 2014 to 730 in 2020).

5.2 Welfare costs and benefits of reducing deforestation

To compute the value of saved forest, I focus solely on the its carbon content, abstracting from

the impact of deforestation on biodiversity loss, rain seasons and air quality. On average, deforesta-

tion of one hectare in the Amazon forest leads to approximately 560 tonnes of CO2 emissions.20

The harm caused by these emissions in terms of climate change are estimated from 30 to 100

USD.21 This substantial benefit accrues globally, whereas some costs and benefits are born locally

by Brazilians. In particular, the non-deforested areas have an opportunity cost of economic activi-

ties that could be carried out. Using data from the Brazilian Agricultural Survey, I compute that in

the Amazon forest, the average value of agricultural output per square kilometer is approximately

100 thousand USD per year, which is approximately 5% of the welfare benefits using 30 USD as

the social cost of carbon.

6 Summary and conclusion

This paper has exploited an important improvement in the monitoring of logging in the Amazon

forest, and studied its effects on the fights against deforestation. The monitoring system DETER,

produces deforestation alerts based on its ability to detect vegetation loss in native forest in the

Brazilian Amazonia. DETER is not a system designed to measure deforestation, but to give real-

time alerts about where and when deforestation seems to be taking place. By overlaying the maps

of yearly deforestation (measured by the system PRODES) with the deforestation alerts issued by

DETER, I document an expressive increase in the probability that an area of deforestation produces

an alert over the 2011-2020 decade. Overall this means that farmers doing deforestation in the

Amazon forest today is three times more likely to be observed in real time than they were ten years

ago. Moreover, the number of false positives by DETER also declined sharply, such that almost all

deforestation alerts are correct in the sense that they are later verified as deforested areas.

20This number was computed based on data by the Brazilian Institute for Spatial Research (INPE) over the period
2010-2019. See http://inpe-em.ccst.inpe.br/en/download en/

21The value of 30 USD per ton of CO2 is typically used by authorities such as the US Department of Energy.
However, studies may vary regarding the value. Stern (2007) estimates the social cost of carbon at around 85 USD.
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The consequence of this improvement was that the enforcement risk for farmers went up. I

show that IBAMA relies on the deforestation alerts to shape its enforcement strategy, but to a great

extent the monitoring technology produces redundant information. The average yearly probability

of a fine in areas with positive deforestation in the period was 13%, of which three percentage

points can be causally attributed to the monitoring system. I then evaluate how farmers respond to

increases in fine probability in order to put a value to the monitoring system in terms of avoided

deforestation. I estimate the impact of fines on farmers in two parts. First I estimate the impact

of enforcement risk on deforestation, and show that a one percentage point in the probability of

inspection reduce the probability of farmers engaging in deforestation by 0.9 percentage point, and

reduce the deforested area by 1.9 percentage point. Moreover, the experience of enforcement has a

lasting impact on the areas that are subject to a crackdown. I document lower levels of deforestation

in these areas up to three years after the crackdown.

I compute the benefit of these improvements by computing the costs of targeting inspections

based on the deforestation alerts. This exercise shows that IBAMA is twice more effective with tar-

geted inspections than with non-targeted ones. This means that it is possible to increase inspection

probability for farmers simply by using more extensively the deforestation alerts to guide inspec-

tions. Moreover, a one percentage point increase in inspection probability reduces deforestation

by 150 square kilometer, or about 2% of average yearly deforestation in the last decade. A three

percentage point increase thus represents approximately 450 square kilometers of saved forst (or

6% of average deforestation). The welfare benefits of this reduction are likely to outweigh the

opportunity costs by more than twenty times.
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FIGURES

F1. Datasets

(a) January (b) April

(c) July (d) October

Figure 1: Real time information on the Amazon forest

The following figures provide examples of maps used in the analysis. The square represented is

an area of approximately 30 thousand square kilometers in the Brazilian Amazon forest, in the state

of Pará. The picture corresponds to the year 2016, defined according to the PRODES methodology,

that is, from August 2015 to July 2016. The PRODES image represents the state of the soil coverage

on August 1st 2016. The logging alers, fire alerts and fines maps represent all the events that took

place in the twelve month period from August 2015 to July 2016. The data from PRODES, logging

alerts (DETER) and fires were obtained from the Brazilian National Institute for Space Research

(INPE). The fines stem from the administrative dataset on environmental infractions of IBAMA,

and refer exclusively to “deforestation” fines.
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(a) Measurement satellite (PRODES) (b) Fires (Queimadas) (c) Logging alerts (DETER)

(d) Deforestation fines (IBAMA)

Figure 2: Main datasets
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F2. Alert probabilities

(a) Share of detected deforestation by deforestation alerts P(alert|deforestation)

(b) Share of deforestation alerts that were declared deforestation P(deforestation|alert)

(c) Share of detected deforestation by size decile of deforestation areas and year

Figure 3: Monitoring quality
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F3. Results - inspection probability and alerts - Event study

(a) Mean outcome (probability of fine) by months relative to deforestation alert

(b) Treatment effects on probability of fine by OLS

(c) Treatment effects on probability of fine using imputation method (Borusyak, Jaravel, and Spiess 2021)

Figure 4: Effects of deforestation alerts on probability of fine
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(a) Treatment effects of forest fires alerts on probability of fine

(b) Treatment effects of forest alerts on probability of fine (excluding areas with deforestation alerts)

Figure 5: Fire alerts
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(a) Treatment effects of mining alerts on probability of fine

(b) Treatment effects of forest fires alerts on probability of fine

Figure 6: Placebo tests
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F4. Share of fines following a real-time satellite alert

(a) Fines following logging signal

(b) Fines following fire signal

Figure 7: Targeting using monitoring alerts
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(a) Inspection probability

Figure 8: Fines caused by alerts
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F5. Event Study of Deforestation and Fines

(a) Mean outcome (log deforestation) by year relative to inspection year

(b) Treatment effects using imputation method (Borusyak, Jaravel, and Spiess 2021)

Figure 9: Deforestation and inspections
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(a) Average log deforestation in neighboring areas

(b) Treatment effect estimation (BJS 2021) for direct neighbors

(c) Treatment effect estimation (BJS 2021) for second neighbors

Figure 10: Spatial spillovers
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TABLES

T1. Data sources

Table 1: Main datasets used and sources

NAME OF

DATASET

DESCRIPTION TIME GEOGRAPHICAL

LEVEL

SOURCE

Fire signals

(Queimadas)

Fire events in the

Amazon forest de-

tected by satellites.

Daily (2011-

2020)

Geo-

referenced

points

Satellites Terra,

Aqua and NPP

(from 2013), com-

piled by INPE

(Queimadas)

Logging sig-

nals (DETER)

Areas with poten-

tial deforestation ac-

tivity, detected by

satellite.

Monthly

(2011-2020)

Geo-

referenced

polygons

Satellites Terra

(DETER-A, until

2017) and CBERS

(DETER-B, from

2017) and compiled

and interpreted by

INPE

Cloud cover-

age (DETER)

Areas with cloud

coverage, which

inhibit satellite

monitoring.

Monthly

(2011-2017)

Geo-

referenced

polygons

Satellites Terra

(DETER-A, until

2017) compiled by

INPE

Soil cover of

Amazon forest

(PRODES)

Information about

soil cover in every

area of the Amazon

forest, covering

in particular the

categories: forest,

new deforestation

and previous defor-

estation. PRODES

is the official pro-

gram to measure

deforestation in

Brazil.

Yearly (mea-

sured in July

of each year)

Geo-

referenced

polygons

Data from satellite

Landsat, interpreted

and compiled by

INPE.

Environmental

fines

Fines issued by the

Brazilian federal en-

vironmental author-

ity (IBAMA), and

specifically the fines

for deforestation.

Daily (2011-

2020)

Geo-

referenced

points

Administrative

database of IBAMA
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Table 2: Auxiliar datasets and sources

NAME OF

DATASET

DESCRIPTION TIME GEOGRAPHICAL

LEVEL

SOURCE

Prices of wood

and coal

Prices in Brazilian

Real (BRL) of 2020

of wood (“madeira

em tora”) and veg-

etal coal (“carvão

vegetal”).

Yearly (2011-

2019)

State-level av-

erages

IBGE, Vegetal Ex-

traction Surveys

Prices of soy

and cattle

Prices in Brazilian

Real (BRL) of 2020

of 60kg of soy

(“soja industrial”)

and cattle (“boi em

pé arroba”).

Monthly

(2011-2018)

National aver-

ages

Agricultural Secre-

tariat of the State of

Paraná

Indigenous

reserves and

Conservation

Units

Areas of indigenous

reserves (or inhab-

ited traditionally

but not officially

delimited) and con-

servation units in the

Brazilian Amazon.

Fixed over

time.

Geo-

referenced

polygon.

INPE (TerraBrasilis)

Road infras-

tructure

State and fed-

eral roads in the

Brazilian Amazonia.

Fixed over

time.

Geo-

referenced

lines.

MapBiomas

Private rural

properties

Areas of private

properties in the

official public reg-

istry (Cadastro

Ambiental Rural).

Fixed over

time.

Geo-

referenced

polygons.

CAR, Ministry of

Agriculture of Brazil

Budget ex-

ecution of

environmental

agency

Expenditures in

BRL 2020 by the

Amazonian units

of the federal envi-

ronmental agency

IBAMA.

Yearly (2015-

2020)

By state. Federal Gov-

ernment of Brazil,

(http://transparencia.gov.br)

Consumer

Price Index

Consumer Price In-

dex used to con-

vert monetary values

to values of 2020.

The index used was

IPCA-IBGE.

Monthly

(2011-2020)

National level. IBGE
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T2. Regression tables - Behavior of the enforcement agency

Table 3: Outcome: detection probability

(1) (2) (3) (4)

DETER B dummy 0.382***

(0.0225)

% year cloud coverage -0.109

(0.0954)

up to 20% fire 0.00727 0.0387*** 0.0387*** 0.0144

(0.0152) (0.0102) (0.0102) (0.00997)

20% to 50% fire 0.0148 0.0358*** 0.0358*** 0.0144

(0.0143) (0.00949) (0.00949) (0.00932)

50% to 80% fire 0.0472*** 0.0564*** 0.0564*** 0.0439***

(0.0130) (0.00955) (0.00955) (0.00947)

80% to 100% fire 0.0698*** 0.0673*** 0.0673*** 0.0669***

(0.0131) (0.0105) (0.0105) (0.0104)

Size of polygon 0.105*** 0.0351*** 0.0351***

(0.00970) (0.00467) (0.00467)

Size squared -0.00599*** -0.000855*** -0.000855***

(0.00107) (0.000249) (0.000249)

2012.year -0.104*** -0.0793*** -0.0793*** -0.0818***

(0.0350) (0.0268) (0.0268) (0.0263)

2013.year -0.00737 0.0253 0.0253 0.0226

(0.0375) (0.0250) (0.0250) (0.0246)

2014.year 0.173*** 0.191*** 0.191*** 0.187***

(0.0284) (0.0246) (0.0246) (0.0242)

2015.year 0.262*** 0.288*** 0.288*** 0.284***

(0.0288) (0.0232) (0.0232) (0.0229)

2016.year 0.304*** 0.349*** 0.349*** 0.346***

(0.0379) (0.0223) (0.0223) (0.0220)

2017.year 0.363*** 0.0136 0.395*** 0.390***

(0.0295) (0.0117) (0.0225) (0.0222)

2018.year -0.107*** 0.274*** 0.271***

(0.0130) (0.0227) (0.0223)

2019.year -0.0886*** 0.293*** 0.261***

(0.00925) (0.0225) (0.0222)

2020.year 0 0.382*** 0.347***

(.) (0.0225) (0.0222)

Log size 0.120***

(0.00451)

Intercept 0.444*** 0.420*** 0.420*** 0.480***

(0.0543) (0.0204) (0.0204) (0.0199)

N 9881 18639 18639 18639

r2 0.423 0.389 0.389 0.404

Obs: ***1% **5% *10% significance levels. Linear probability model of detection probability by monitoring

satellite (DETER), done at the polygon level of true deforestation (PRODES). and 2SLS regressions of the size

of deforestation (in square kilometers) on the event of a crackdown. Standard errors are clustered at the cell level

(15km x 15km).
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Table 4: Outcome: probability of inspection

(1) (2) (3) (4) (5) (6)

Positive deforestation 5.715*** 6.235*** 5.393***

(7.18) (7.62) (5.07)

Positive deforestation X 2012 -4.833*** 0 1.475 -3.129*** -3.850***

(-5.24) (.) (0.92) (-3.52) (-4.32)

Positive deforestation X 2013 2.055 0 14.04*** 2.428* 2.690**

(1.52) (.) (5.67) (1.96) (2.09)

Positive deforestation X 2014 -1.357 1.656 10.69*** -0.722 -0.950 0

(-1.12) (0.95) (4.02) (-0.64) (-0.82) (.)

Positive deforestation X 2015 2.835* 6.400*** 18.13*** 3.619*** 3.824*** 4.811***

(1.87) (3.66) (5.53) (2.71) (2.67) (4.08)

Positive deforestation X 2016 -2.602** 0.665 7.323*** -1.671 -1.399 -0.445

(-2.24) (0.42) (3.00) (-1.59) (-1.25) (-0.43)

Positive deforestation X 2017 -0.727 2.979** 9.909*** 0.543 0.388 1.432

(-0.70) (2.04) (5.40) (0.55) (0.38) (1.21)

Positive deforestation X 2018 -3.000*** 0.839 6.550*** -2.060* -1.717 -0.797

(-2.73) (0.56) (2.99) (-1.90) (-1.56) (-0.61)

Positive deforestation X 2019 -3.767*** 1.261 5.432*** -2.165** -2.675*** -1.757

(-3.64) (1.21) (3.07) (-2.10) (-2.60) (-1.57)

Positive deforestation X 2020 -6.202*** 0 3.794*** -4.660*** -4.896*** -4.014***

(-7.26) (.) (3.25) (-5.55) (-6.06) (-3.74)

State road 1.356 1.357 -0.682 1.040 0.959 0.994

(1.61) (1.55) (-0.60) (1.56) (1.62) (1.51)

Size of forest border 0.349*** 0.338*** 0.520*** 0.321*** 0.337*** 0.323***

(9.11) (8.26) (7.89) (9.26) (9.74) (8.81)

Indigenous territory -1.304 -0.690 0.616 -1.322** -0.961** -0.884**

(-1.30) (-0.66) (0.47) (-1.99) (-2.48) (-2.12)

Conservation unit -2.047** -1.929* -1.760 -1.768** -0.671* -0.714*

(-2.09) (-1.82) (-1.61) (-2.39) (-1.74) (-1.79)

prioritylist 3.357 0.475 0 3.446* 2.237* 1.148

(1.17) (0.14) (.) (1.69) (1.85) (0.81)

expenditureindex 7.730** 1.718

(2.29) (1.49)

Sample Same year

deforesta-

tion

Same year

deforesta-

tion

Priority

municipali-

ties

Some year

deforesta-

tion

All data All data

Mun. Fixed effects Yes Yes Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes Yes Yes

N 51657 37139 40263 93624 198819 139310

R2 0.173 0.184 0.207 0.160 0.175 0.181

Obs: ***1% **5% *10% significance levels. Linear regression of punishment (binary) on positive deforestation

(binary), with year interactions and controlling for several fixed and varying characteristics of the observations, as

well as municipality and year fixed effects. Observational level is a 15km x 15km cell-year in the Amazon forest.

Standard errors are clustered at the municipality level.54



Table 5: Outcome: inspection probability with real-time alerts

(1) (2) (3) (4) (5) (6)

Positive deforestation 0 0 4.616*** 0 2.277*** 1.887***

(.) (.) (5.32) (.) (6.89) (5.38)

Deforestation alert 12.62*** 18.42*** 17.56*** 12.62*** 15.35*** 21.63***

(7.20) (8.17) (8.08) (7.20) (9.52) (9.67)

Deforestation alert X 2012 -5.066** -8.412*** -5.066** -7.689***

(-2.39) (-3.28) (-2.39) (-4.19)

Deforestation alert X 2013 18.45*** 17.15*** 18.45*** 17.47***

(6.23) (4.44) (6.23) (6.18)

Deforestation alert X 2014 6.473** 0 7.546* 6.473** 6.415** 0

(2.20) (.) (1.83) (2.20) (2.44) (.)

Deforestation alert X 2015 5.370* -0.960 10.42** 5.370* 6.121** -0.136

(1.94) (-0.36) (2.58) (1.94) (2.42) (-0.06)

Deforestation alert X 2016 -2.909 -9.000*** -0.711 -2.909 -3.198 -9.254***

(-1.14) (-3.50) (-0.18) (-1.14) (-1.38) (-4.03)

Deforestation alert X 2017 -3.672* -9.419*** -4.817 -3.672* -5.217*** -11.18***

(-1.71) (-3.88) (-1.39) (-1.71) (-2.81) (-4.99)

Deforestation alert X 2018 -5.631*** -11.72*** -5.114* -5.631*** -7.450*** -13.58***

(-3.03) (-4.70) (-1.78) (-3.03) (-4.38) (-5.66)

Deforestation alert X 2019 -7.492*** -13.11*** -6.179** -7.492*** -8.794*** -14.73***

(-3.81) (-5.47) (-2.18) (-3.81) (-4.97) (-6.66)

Deforestation alert X 2020 -10.98*** -16.86*** -10.79*** -10.98*** -12.27*** -18.32***

(-5.54) (-7.70) (-3.96) (-5.54) (-7.19) (-8.78)

Fire alert 2.346** 2.679** 3.710*** 2.346** 1.963*** 0.591

(2.03) (2.37) (2.90) (2.03) (3.93) (1.36)

Fire alert X 2012 -3.436** -4.643*** -3.436** -2.250***

(-2.47) (-3.12) (-2.47) (-3.89)

Fire alert X 2013 -0.103 0.320 -0.103 -0.771

(-0.06) (0.21) (-0.06) (-1.25)

Fire alert X 2014 0.0585 0 -1.381 0.0585 -1.719*** 0

(0.04) (.) (-0.74) (0.04) (-2.65) (.)

Fire alert X 2015 -0.0569 -0.133 -0.745 -0.0569 -0.904 0.790

(-0.03) (-0.08) (-0.35) (-0.03) (-1.20) (1.51)

Fire alert X 2016 0.0114 0.0175 -4.274*** 0.0114 -2.157*** -0.527

(0.01) (0.01) (-2.76) (0.01) (-3.61) (-1.08)

Fire alert X 2017 -1.311 -1.533 -1.403 -1.311 -1.645*** -0.0164

(-0.89) (-1.00) (-0.86) (-0.89) (-2.62) (-0.03)

Fire alert X 2018 -3.295** -3.622** -4.511*** -3.295** -2.300*** -0.656

(-1.97) (-2.03) (-2.91) (-1.97) (-3.75) (-1.13)

Fire alert X 2019 -2.381* -2.853** -3.992** -2.381* -2.425*** -0.903*

(-1.83) (-2.20) (-2.53) (-1.83) (-4.22) (-1.72)

Fire alert X 2020 -1.205 -1.445 -2.964* -1.205 -2.536*** -0.975*

(-0.98) (-1.19) (-1.84) (-0.98) (-4.40) (-1.87)

Indigenous territory -0.601 0.0193 0.933 -0.601 -0.643* -0.540

(-0.63) (0.02) (0.81) (-0.63) (-1.84) (-1.43)

Conservation unit -1.768* -1.639 -1.442 -1.768* -0.557 -0.572

(-1.96) (-1.62) (-1.43) (-1.96) (-1.59) (-1.56)

Expenditure index 5.114 1.046

(1.46) (0.89)

Sample Same year

deforesta-

tion

Same year

deforesta-

tion

Priority

municipali-

ties

Some year

deforesta-

tion

All data All data

Mun. Fixed effects Yes Yes Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes Yes Yes

Unit cell Controls Yes Yes Yes Yes Yes Yes

N 51657 37139 40263 51657 198819 139310

R2 0.200 0.201 0.245 0.200 0.206 0.205

Obs: ***1% **5% *10% significance levels. Linear regression of inspection (binary) on positive deforestation

(binary), deforestation alerts and fire signals, with year interactions and controlling for several fixed and varying

characteristics of the observations, as well as municipality and year fixed effects. Observational level is a 15km x

15km cell-year in the Amazon forest. Standard errors are clustered at the municipality level.
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Table 6: Outcome: probability of inspection

(1) (2) (3) (4) (5)

Logging Forest fire Fire Sel. logging Mining

Lag 6 -0.371*** -0.381*** -0.306*** -0.636** 0.103

(-4.39) (-5.14) (-4.20) (-1.97) (0.29)

Lag 5 -0.0293 -0.567*** -0.484*** -0.249 -0.190

(-0.24) (-5.64) (-5.65) (-0.57) (-0.84)

Lag 4 -0.133 -0.337*** -0.308*** -0.424 0.0676

(-1.23) (-3.49) (-4.35) (-0.78) (0.22)

Lag 3 -0.152 -0.215** -0.297*** -0.523 0.210

(-1.51) (-2.15) (-3.74) (-1.15) (0.66)

Lag 2 -0.00385 -0.0757 -0.120 0.236 -0.0495

(-0.04) (-0.81) (-1.63) (0.36) (-0.20)

Lag1

Alert 1.001*** 0.447*** 0.220*** -0.650 0.0652

(6.15) (4.28) (2.84) (-1.30) (0.13)

Lead 1 2.313*** 0.844*** 0.477*** -0.208 0.700

(8.50) (7.13) (5.04) (-0.44) (1.31)

Lead 2 2.381*** 0.595*** 0.409*** -0.929** -0.251

(10.51) (4.96) (3.73) (-2.02) (-1.42)

Lead 3 1.860*** 0.591*** 0.501*** 0.472 -0.200

(8.39) (4.30) (4.52) (0.81) (-0.83)

Lead 4 1.570*** 0.191* 0.322*** -1.503*** 0.108

(8.23) (1.82) (3.45) (-4.69) (0.19)

Lead 5 1.251*** -0.168 0.0152 -0.717 -0.197

(7.65) (-1.62) (0.18) (-1.21) (-0.71)

Lead 6 0.906*** -0.163* 0.00515 -0.700* -0.334

(5.78) (-1.84) (0.06) (-1.65) (-1.32)

Month and year dummies Yes Yes Yes Yes Yes

Cell fixed effects Yes Yes Yes Yes Yes

N 695517 687449 680306 722911 723946

R2 0.0587 0.0567 0.0562 0.0551 0.0548

Share with signal .03 .06 .07 0 0

Obs: ***1% **5% *10% significance levels. Linear regression of crackdown (binary) periods relative to the

earliest signal in a cell-year. Only cells with positive deforestation were used for estimation, since only they can

suffer enforcement action. Some cells did not have any signal, and are therefore the reference for all the period

dummies. The regression is estimated by OLS, including fixed effects for month, year and cell (15km x 15km).

Standard errors are clustered at the municipality level.
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Table 7: Outcome: probability of inspection

(1) (2) (3) (4) (5)

Logging Forest fire Fire Sel. logging Mining

Lag 6 -0.371*** -0.381*** -0.306*** -0.636** 0.103

(-4.39) (-5.14) (-4.20) (-1.97) (0.29)

Lag 5 -0.0293 -0.567*** -0.484*** -0.249 -0.190

(-0.24) (-5.64) (-5.65) (-0.57) (-0.84)

Lag 4 -0.133 -0.337*** -0.308*** -0.424 0.0676

(-1.23) (-3.49) (-4.35) (-0.78) (0.22)

Lag 3 -0.152 -0.215** -0.297*** -0.523 0.210

(-1.51) (-2.15) (-3.74) (-1.15) (0.66)

Lag 2 -0.00385 -0.0757 -0.120 0.236 -0.0495

(-0.04) (-0.81) (-1.63) (0.36) (-0.20)

Lag1

Alert 1.001*** 0.447*** 0.220*** -0.650 0.0652

(6.15) (4.28) (2.84) (-1.30) (0.13)

Lead 1 2.313*** 0.844*** 0.477*** -0.208 0.700

(8.50) (7.13) (5.04) (-0.44) (1.31)

Lead 2 2.381*** 0.595*** 0.409*** -0.929** -0.251

(10.51) (4.96) (3.73) (-2.02) (-1.42)

Lead 3 1.860*** 0.591*** 0.501*** 0.472 -0.200

(8.39) (4.30) (4.52) (0.81) (-0.83)

Lead 4 1.570*** 0.191* 0.322*** -1.503*** 0.108

(8.23) (1.82) (3.45) (-4.69) (0.19)

Lead 5 1.251*** -0.168 0.0152 -0.717 -0.197

(7.65) (-1.62) (0.18) (-1.21) (-0.71)

Lead 6 0.906*** -0.163* 0.00515 -0.700* -0.334

(5.78) (-1.84) (0.06) (-1.65) (-1.32)

Month and year dummies Yes Yes Yes Yes Yes

Cell fixed effects Yes Yes Yes Yes Yes

N 695517 687449 680306 722911 723946

R2 0.0587 0.0567 0.0562 0.0551 0.0548

Share with signal .03 .06 .07 0 0

Obs: ***1% **5% *10% significance levels. Linear regression of crackdown (binary) periods relative to the

earliest signal in a cell-year. Only cells with positive deforestation were used for estimation, since only they can

suffer enforcement action. Some cells did not have any signal, and are therefore the reference for all the period

dummies. The regression is estimated by OLS, including fixed effects for month, year and cell (15km x 15km).

Standard errors are clustered at the municipality level.
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T3. Importance of acting quickly

Table 8: Characteristics of fines

(1) (2) (3) (4) (5) (6)

Seized Seized Seized Area Area Area

Logging signal same month 0.0185*** 0.0133** 0.0135* 38.96*** 36.73*** 39.89***

(0.00599) (0.00614) (0.00686) (7.541) (7.585) (9.729)

L. signal 1 month before 0.00397 0.00149 0.0125 40.69*** 42.30*** 43.44***

(0.00687) (0.00682) (0.00987) (7.260) (7.439) (9.526)

L. signal 2 months before -0.00210 0.00153 -0.0125 43.20*** 48.39*** 46.82***

(0.00649) (0.00654) (0.00854) (8.274) (8.784) (12.10)

L. signal 3 months before -0.00910 -0.00100 -0.0109 16.90*** 24.07*** 20.44**

(0.00592) (0.00581) (0.00740) (6.400) (7.639) (8.377)

Sample All All Priority mun. All All Priority mun.

Year fixed effect Yes Yes Yes Yes Yes Yes

Month fixed effect Yes Yes Yes Yes Yes Yes

Municipality fixed effects No Yes No No Yes No

N 11893 11893 6327 11893 11893 6327

R2 0.0720 0.0752 0.0507 0.104 0.106 0.0889

Mean outcome .08 .08 .08 124.45 124.45 124.45

Note: * 0.10 ** 0.05 *** 0.01 levels of significance. OLS regression of fine characteristics depending on whether

they followed a recent logging signal. The two outcomes are the probability that the fine ended with seized

equipment from the offenders, and the area (in hectares) of the inspected deforested area. The unit of observation

is a 15km x 15km cell at the monthly level. Standard errors are clustered at the municipality level.
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T4. General deterrence

Table 9: General deterrence effect

log(dit) P(dit > 0)

(1) (2) (3) (4) (5) (6) (7) (8)

OLS 2SLS First Reduced OLS 2SLS First Reduced

Fine 0.722*** -1.915** 0.207*** -0.944*

(0.0223) (0.925) (0.00607) (0.485)

Cloudy -0.0363*** 0.0436** -0.0125*** 0.0238***

(0.00527) (0.0172) (0.00326) (0.00584)

Controls Yes Yes Yes Yes Yes Yes Yes Yes

State F.E. Yes Yes Yes Yes Yes Yes Yes Yes

Semester F.E. Yes Yes Yes Yes Yes Yes Yes Yes

Mean outcome 1.16 1.16 0.16 1.16 0.53 0.53 0.10 0.53

N 34623 34623 34623 34623 65495 65495 65495 65495

R2 0.248 -0.315 0.0979 0.210 0.212 -0.350 0.100 0.199

F-statistic 20.78 15.06

Obs: ***1% **5% *10% significance levels. The table shows regression results for two outcomes: log of size of

deforestation (restricted to areas with positive deforestation) and probability of positive deforestation (restricted

to areas that had some deforestation in 2011-2020). For each group there are four regressions. The first one is an

OLS regression of the outcome on the occurrence of a fine. The second one is the 2SLS regression using clouds

as an instrument. The third one is the first stage, showing the impact of clouds on the probability of a fine. The

fourth one is the reduced form, showing the direct impact of cloudson the outcome. The observational level is a

15km x 15km cell-month in the Amazon forest, and only cells with a some positive level of deforestation in the

period 2011-2020 were included. The outcome is measured at a yearly level, and divided by 12 to give a monthly

interpretation to the regression coefficients. Standard errors are clustered at the 15km x 15km cell level. The

regressions include the following controls at the cell level: federal road, state road, indigenous land, conservation

unit, distances from Manaus, Cuiaba, Belem, and the closest IBAMA office, and yearly level of accumulated

deforestation. The Cragg-Donaldson F-statistic for a test of instrument weakness is shown in the columns of the

first stage.
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T5. Share fire signal quality

Table 10

(1) (2) (3) (4)

Logging signal quality 0.158*** 0.158*** 0.192*** 0.148***

(11.09) (10.21) (12.44) (7.96)

Indigenous land 0.0675 0.0111 -0.233 0.518

(0.12) (0.02) (-0.36) (0.61)

Conservation unit -1.492** -1.939*** -2.920*** -1.988*

(-2.50) (-3.18) (-3.40) (-1.82)

Priority municipality 4.376*** 3.621** 2.531***

(2.65) (2.06) (3.00)

Price ox 0.328*** 0.255***

(12.33) (9.53)

Price soy -0.120*** -0.107***

(-2.73) (-2.59)

Price coal -2.355 -0.358

(-1.31) (-0.69)

Price wood 15.04*** 15.84***

(2.65) (3.53)

Sample All All All Priority

mun.

Mun. Fixed effects Yes Yes No No

Year dummies Yes No No No

Unit cell Controls Yes Yes Yes Yes

Clouds Yes Yes Yes Yes

N 34462 31036 31108 10264

R2 0.114 0.106 0.0495 0.135

Obs: ***1% **5% *10% significance levels. Linear regression of crackdown (binary) on positive deforestation

(binary), logging signals and fire signals, with year interactions and controlling for several fixed and varying

characteristics of the observations, as well as municipality and year fixed effects. Observational level is a 15km x

15km cell-year in the Amazon forest. Standard errors are clustered at the municipality-year level.
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T6. Costs estimates

Table 11: Outcome: operational expenditure

(1) (2) (3)

Inspection with alerts 7049.3** 6240.6* 3230.5

(2983.7) (3139.1) (3185.6)

Inspection without alerts 15896.1*** 16401.0*** 6260.9**

(2932.8) (3082.2) (2433.6)

Year dummies No Yes Yes

State fixed effects No No Yes

N 63 63 63

R2 0.654 0.683 0.935

Obs: ***1% **5% *10% significance levels. Linear regression of operational expenditures of IBAMA on the

number of deforestation inspections. The data sources are budget expenditure data for years 2014-2020, in values

of Brazilian Real of January 2020 (1 BRL = 4 USD). The deforestation inspections are taken from the administra-

tive dataset on environmental fines, and compared at the month level with the locations of deforestation alerts at a

15km x 15km cell. Inspections are considered to follow an alert if they happen within the same cell at the latest

three months after the alert. Standard errors are robust (White) qnd shown in parentheses.
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Appendices

A Summary statistics

Table A1: Outcomes

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

1 Deforestation (km2) .2654262 .2106781 .259974 .2467688 .2988944 .353212 .3383303 .3541823 .5350777 .5193492

(1.02382) (.8769656) (1.102042) (1.004691) (1.226216) (1.392089) (1.277492) (1.33321) (1.92843) (1.968994)

2 % cells with positive deforestation 26.45886 21.84961 23.22584 23.95471 23.37662 25.67018 25.73879 25.58687 29.11051 29.09091

(44.11247) (41.3236) (42.22833) (42.68175) (42.32356) (43.68241) (43.72056) (43.6359) (45.4283) (45.41928)

3 Deforestation as % of forest .3290978 .2383326 .308867 .2878339 .3425139 .4060133 .3835201 .3762334 .6863465 .694053

(1.603958) (1.081387) (1.513847) (1.054278) (1.320044) (1.439758) (1.449726) (1.360148) (2.696546) (2.897824)

4 % of fire in deforestation 22.93893 13.25001 20.85406 12.65349 19.0664 24.42741 19.68144 24.28621 16.53636 17.55187

(30.83754) (24.12336) (29.05567) (22.97266) (27.84682) (29.68453) (27.69978) (29.5878) (24.52846) (25.23803)

5 Forest fires (km2) 2.413779 .8827375 1.421161 .8892843 1.357776 2.374192 1.555167 2.053755 1.290429 1.594017

(7.103305) (2.474242) (4.278485) (2.376738) (3.741547) (6.362968) (4.276577) (5.42448) (3.792157) (4.588439)

N 20307 20307 20404 20401 20405 20405 20405 20405 20405 20405

Obs: Mean and standard deviations of the outcome variables used in the study. The unit of observation is a 15km x 15km cell in a given year.
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Table A2: Enforcement variables

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Deforestation crackdown .0519525 .033683 .053715 .0458311 .058319 .0462142 .0508209 .0447929 .0418525 .0357755

(.2219367) (.1804163) (.2254599) (.2091237) (.2343515) (.2099537) (.2196372) (.2068541) (.2002569) (.1857346)

Total environmental fines* 42.97717 26.36494 49.14207 37.4781 50.90279 42.97597 38.56233 40.96942 35.23814 25.78182

(64.99281) (47.37189) (91.19592) (71.79812) (95.46092) (99.86462) (69.03695) (63.65941) (49.19647) (40.55786)

Total flora fines* 29.30239 16.41761 37.63325 29.44408 44.49323 35.18388 31.55098 28.66641 26.40553 20.21024

(48.63064) (30.18107) (78.95736) (60.75993) (90.26377) (88.17945) (62.20887) (50.82563) (41.71788) (35.25489)

Total deforestation fines* 15.24778 8.477295 29.15738 19.39327 27.19063 18.87518 17.18919 15.58405 14.9108 13.77553

(26.44976) (16.67455) (65.55131) (44.0056) (52.62172) (38.36518) (33.15072) (29.77979) (26.36632) (24.79145)

Deforestation fines .1180874 .0651007 .1509508 .116759 .1693212 .1297721 .1321245 .1050723 .1020338 .0706199

(.7757791) (.5036035) (1.283648) (.9478014) (1.288702) (1.000499) (.8513223) (.7258064) (.7548953) (.5010886)

Inspected area - deforestation fines 535.8382 319.1243 545.0786 461.7437 527.1588 591.9043 677.8204 543.893 549.5421 570.0727

(6286.231) (4545.979) (5681.434) (5527.99) (5605.993) (7661.623) (7966.827) (6177.925) (6042.145) (6683.198)

Share inspected deforestation 1217.815 607.6077 609.9425 770.8841 624.7853 941.0154 997.3306 760.7041 540.3836 587.7106

(11465.49) (7718.209) (5795.383) (8565.699) (5377.092) (10248.96) (9308.042) (8947.663) (6911.589) (7715.848)

N 20307 20307 20404 20401 20405 20405 20405 20405 20405 20405

Obs: Mean and standard deviations of the enforcement variables used in the study. The unit of observation is a 15km x 15km cell in a given year.
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Table A3: Characteristics (controls)

Fixed 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Distance to Belém (km) 1405.12

(680.693)

Distance to Manaus (km) 876.8191

(369.504)

Distance to Cuiabá (km) 1384.899

(535.18)

Shortest distance to IBAMA (km) 212.9281

(129.2514)

Distance to closest federal road 99.74416

(95.41381)

% with state road .2870412

(.452382)

% with federal road .0667437

(.2495782)

% indigenous land 25.23563

(40.88788)

% conservation park 26.71074

(41.25416)

% deforested .1788433 .1801693 .1831963 .1845236 .1902239 .1917603 .193361 .1950535 .1967795 .1994097

(.288144) (.289156) (.2908991) (.2918908) (.2975602) (.2986323) (.2997637) (.3009289) (.3020107) (.303517)

% area as forest frontier .1406703 .1420399 .1473837 .1463392 .1495253 .1517501 .1524734 .1551945 .156986 .1592723

(.2355864) (.2373793) (.2416018) (.2406238) (.2437877) (.2461842) (.2465821) (.2492588) (.250589) (.2523324)

N 224156 19833 19833 19930 19927 19931 19931 19931 19931 19931 19931

Obs: Mean and standard deviations of the control variables used in the study. The unit of observation is a 15km x 15km cell in a given year.
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Table A4: Instruments

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

% area covered with cloud 60.57544 39.00893 33.38096 47.95049 45.95313 36.37062 44.94082 . . .

(16.76757) (17.78106) (15.89355) (21.66128) (19.6307) (22.13561) (18.89225) (.) (.) (.)

% cloud January 92.59623 89.24037 75.15724 56.87693 65.22546 63.80798 78.73978 . . .

(19.03889) (18.76067) (32.88083) (35.27754) (37.33796) (38.54224) (31.05746) (.) (.) (.)

% cloud February 97.57204 64.7845 72.61333 79.3718 66.79065 55.36854 88.79403 . . .

(12.24092) (35.22684) (33.88139) (31.64051) (37.61581) (40.6135) (24.2531) (.) (.) (.)

% cloud March 83.00162 60.85564 61.73267 73.49115 72.75709 74.72589 69.96938 . . .

(20.71694) (35.43112) (34.88645) (30.69811) (31.50097) (34.60888) (33.45851) (.) (.) (.)

% cloud April 69.93829 53.37892 47.26916 66.03577 68.80991 56.64101 66.31811 . . .

(37.05235) (36.4093) (36.85641) (35.50767) (33.89184) (41.96188) (36.08657) (.) (.) (.)

% cloud May 37.95744 36.84292 47.87116 57.77042 59.1328 39.27594 43.97832 . . .

(42.06426) (35.85012) (38.14238) (36.92024) (40.9706) (38.97552) (35.59687) (.) (.) (.)

% cloud June 24.86741 18.61005 23.55973 30.85842 23.68315 21.12761 24.02633 . . .

(34.87022) (28.84492) (30.04794) (39.66283) (33.8683) (32.24403) (34.31461) (.) (.) (.)

% cloud July 8.934099 15.79768 14.78544 17.56279 17.44345 14.05419 13.6497 . . .

(19.21792) (27.12877) (26.11981) (28.2397) (30.44963) (25.9672) (28.79048) (.) (.) (.)

% cloud August 40.23689 3.993289 8.517482 15.54531 6.5673 10.09653 4.804969 . . .

(37.19542) (13.31091) (18.78924) (28.16072) (19.09563) (21.81281) (14.29583) (.) (.) (.)

% cloud September 40.16916 6.050032 4.039638 16.48229 9.423742 6.05813 17.66808 . . .

(29.75331) (15.12971) (11.67646) (26.95425) (20.96731) (16.55576) (26.93725) (.) (.) (.)

% cloud October 68.20777 19.41458 11.78465 31.85862 27.55719 10.94551 16.30834 . . .

(25.56567) (25.89088) (19.28267) (33.88339) (33.36062) (24.14709) (27.69273) (.) (.) (.)

% cloud November 80.48111 49.65245 33.26879 65.66872 52.14124 35.36487 43.76608 . . .

(27.86975) (30.81676) (27.99752) (33.72635) (32.99355) (35.6319) (33.53274) (.) (.) (.)

% cloud December 83.28384 49.5625 0 64.18643 82.27178 49.16998 71.43728 . . .

(29.54058) (32.49636) (0) (28.38874) (26.2782) (39.17429) (29.66008) (.) (.) (.)

Alert quality 3.924026 3.759378 4.78773 6.393847 11.61997 12.94871 18.56592 16.43549 16.90809 20.88673

(13.85829) (13.66127) (15.27722) (17.60343) (22.49673) (22.83537) (26.65604) (24.67622) (24.5471) (25.74542)

N 20303 20300 20392 20392 20401 20398 20401 5221 5940 5936

Obs: Mean and standard deviations of the control variables used in the study. The unit of observation is a 15km x 15km cell in a given year.
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A Appendix figures

By restricting the sample to areas that received a deforestation fine, it is possible to compute the

share of these areas which had deforestation in the same year as the inspection, some year in the

sample, or no deforestation detected by satellites. This analysis shows that over 80% of IBAMA

inspections occur in the same year of deforestation, with a tiny minority occurring in areas where

no deforestation has been detected by satellites. These may be areas in which deforestation was not

completed, and there was still some forest left, such that the area was not declared as “deforested”

by satellite systems. This finding provides strong evidence that IBAMA’s activity is focused on

deterring current crime, as opposed to punishing past offenses.

Figure A1: Deforestation in areas with fines
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