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To the Student

This collection of thousands of solved problems covers almost every type of problem which may appear in
any course in linear algebra. Moreover, our collection includes both computational problems and-theoretical

pmblcms {which involve proofs).
Each section begins with very elementary problems and their difficulty usually increases as the section

progresses. Furthermore, the theoretical problems involving proofs normally appear after the computational’

problems, which can thus preview the theory. (Most students have more difficulty with proofs.)
" Normally, students will be assigned a textbook for their linear algebra-course. The sequence of our chapters
follows the customary order found in most textbooks (although there may be some discrepancies). However,

__whenever possible, our chapters and sections have bcen written so that their order can be changed without

difficulty and without loss of continuity. - -
The solution to each problem immediately follows the statement of the problem However, you may wish
to try to solve the problem yourself before madmg the given solution; In fact, even after reading the solution,
you should try to resolve the problem without consulting the text. Used thus, 3000 Solved Problems in Linear
Algebra can serve as a supplement to any course inlinear-algebra, or even as an independent refresher course.
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% CHAPTER 1
/ Vectors in R” and C”

1.1 VECTORS IN R"

. L2

13

L4

15

I The vectors u and v are eqisal if and only if the corresponding components are equal.

Let u,=(123), w.=(%3.1), u,=(13.2) u,=¢2.3,1) be veciorsin R Which of the vectors.
-if any, are equal? B - . ’ .

" A vector u in the vector space R” is an ordered set of n real numbers: u=<a,,a,,...,a,). The real

number a, is catled the kth component or coordinate of u. Compare this with the definition of a vector in
physics. - '

I Physics defines a vector u to be a quantity with magnitude and direction, represented by means of an
arrow or directed line segment emanating from a seference point 0. In Fig. 1-1 a planar vector u is

_identified with the coordinates of its endpoint, P(4,2}. T_hal i5, m=(4,2)—in accord with the above

definition of a vector in R%

. ’ . . Fig. 1-1

State the difference between a row vector and a column vector. |
I A column vector uis a vector whose components are asranged vertically:

a,\

A row vector is a vector whose components are arranged horizontally, as in Problem 1.1. [In this chapter,
vectors will normally be ‘written as row vectors.]

To which vector space R” does each vector belong?

(@) 3, —2,5_,5) () (3.6+2i}  (cF (m2.57)

I (a) R’ since there are four components. ¢b) None, since not all the components are real numbers.
(cJ R’ | and 57 are real numbers}:

For vectors u and v in R”, when is u=¢? -~

§ Only u, and «, are componentwise equal.




