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SYMBOL DICTIONARY 
The following is a list of symbols and their definitions used in this review guide. One common trend used 

in this guide is that lower-case symbols typically refer to intensive quantities while their corresponding 

upper-case symbols refer to extensive quantities. Also, an overhead dot indicates a quantity that is a function 

of time. 

Symbol Definition 

𝐴 Area 

𝒶,𝒜 Helmholtz free energy 

�𝑝 Heat capacity at constant pressure 

�� Heat capacity at constant volume 

�𝑖 Molal concentration of species 𝑖 
�𝑖 Mass concentration of species 𝑖 
|𝑖| Molar concentration of species 𝑖 
�, 𝐸 Energy 

� Force 

ℱ Degrees of freedom 

�𝑖 Fugacity of pure species 𝑖 

�̂𝑖 Fugacity of species 𝑖 in a mixture 

� Fugacity of solution 

�, � Gibbs free energy 

ℎ,� Enthalpy 

ℋ𝑖 Henry’s law constant of solute 𝑖 
𝑘 Boltzmann’s constant 

𝑘�𝑃 Heat capacity ratio 

𝐾 Equilibrium constant 

𝑚 Mass 

� Number of moles 

𝑁𝐴 Avogadro’s number 

𝑃 Pressure 

𝑃𝑖 Partial pressure of species 𝑖 
𝑃𝑖

𝑠𝑎� Saturation pressure of species 𝑖 

𝑞, � Heat 

� Distance between two molecules 

� Ideal gas constant 

�, � Entropy 

� Time 

� Temperature 

�, � Internal energy 

�, � Volume 

�,� Work 

�𝑖 Weight fraction of species 𝑖 
�𝑖 Mole fraction of liquid species 𝑖 
�𝑖  Mole fraction of solid species 𝑖 
�𝑖  Mole fraction of vapor species 𝑖 
� Compressibility factor 

𝜑𝑖  Fugacity coefficient of pure species 𝑖 
�̂�𝑖  Fugacity coefficient of species 𝑖 in a mixture 

𝜑 Fugacity coefficient of solution 
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�𝑖  Activity coefficient of species 𝑖 
𝜂 Efficiency factor 

𝜇𝑖  Chemical potential of species 𝑖 
Π Osmotic pressure 

� Density 

�𝑖 Stoichiometric coefficient 

𝜔 Pitzer acentric factor 

� Extent of reaction 
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1. MEASURED THERMODYNAMIC PROPERTIES AND OTHER BASIC CONCEPTS 
1.1 PRELIMINARY CONCEPTS – THE LANGUAGE OF THERMODYNAMICS 
In order to accurately and precisely discuss various aspects of thermodynamics, it is essential to have a 

well-defined vernacular. As such, a list of some foundational concepts and their definitions are shown 

below: 

• Universe – all measured space 

• System – space of interest 

• Surroundings – the space outside the system 

• Boundary – the system is separated by the surroundings via a boundary 

• Open System – a system that can have both mass and energy flowing across the boundary 

• Isolated System – a system that can have neither mass nor energy flowing across the boundary 

• Closed System – a system that can have energy but not mass flowing across the boundary 

• Extensive Property – a property that depends on the size of the system 

• Intensive Property – a property that does not depend on the size of the system 

• State – the condition in which one finds a system at any given time (defined by its intensive 

properties) 

• Process – what brings the system from one state to another 

• Adiabatic Process – a process that has no heat transfer (� = 0) 

• Isothermal Process – a process that has a constant temperature (Δ� = 0) 

• Isobaric Process – a process that has a constant pressure (Δ𝑃 = 0) 

• Isochoric Process – a process that has a constant volume (Δ� = 0) 

• Isenthalpic Process – a process that has a constant enthalpy (Δ� = 0) 

• Isentropic Process – a process that has a constant entropy (Δ� = 0) 

• State Function – a quantity that depends only on the current state of a system 

• Path Function – a quantity that depends on the path taken  

1.2 MEASURED THERMODYNAMIC PROPERTIES 
With this set of clearly defined vocabulary, we can now discuss how thermodynamic properties are 

measured.   

1.2.1 VOLUME 
Even though volume, �, is an extensive property, we can define intensive forms. If we divide the volume 

by the number of moles, �, we get a molar volume 

� ≡
�

�
 

whereas dividing by mass, 𝑚, yields a specific volume 

�̂ ≡
�

𝑚
=

1

�
 

which is simply the inverse of density, �.  

1.2.2 TEMPERATURE 
Temperature, �, is an intensive property and is proportional to the average kinetic energy of the individual 

atoms or molecules in a system. Over time, the speed of all molecules in a given system becomes a well-



MEASURED THERMODYNAMIC PROPERTIES AND OTHER BASIC CONCEPTS | 6 
 

defined distribution; this is referred to as the Maxwell-Boltzmann distribution, an example of which is 

shown in Figure 1. 

 

Figure 1. A schematic showing a Maxwell-Boltzmann distribution. 

From the kinetic theory of gases, one can show that  

�𝑘
molecular̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

1

2
𝑚�⃗ ̅2 

and 

�𝑘
molecular̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

3

2
𝑘�� 

where 𝑚 is the mass of an individual molecule, �⃗ ̅ is the mean velocity, and 𝑘� is the Boltzmann constant. 

This means that 

�⃗ ̅ ≈ √
3𝑘��

𝑚
 

Thinking about temperature in terms of molecular motion, we can define an absolute temperature scale 

where 0 is equivalent to no molecular motion. One such absolute scale is the Kelvin scale, which is related 

to the temperature in Celsius via 

�[K] = �[°C] + 273.15 

Another absolute temperature scale – the Rankine scale – can be used to convert between SI and English 

systems: 

�[°R] =
9

5
�[K] 

�[°R] = �[°F] + 459.67 

Of course, one can then write that  

�[°F] =
9

5
�[°C] + 32 

1.2.3 PRESSURE 
Pressure, 𝑃, is also an intensive property. It is defined as the (normal) force, �, per unit area, 𝐴: 
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𝑃 ≡
�

𝐴
 

Equations of state relate the measured properties �, 𝑃, and �. The ideal gas model is a simplified equation 

to describe the measured properties of a perfect gas: 

𝑃 =
���

�
 

where � is the ideal gas constant. The ideal gas law is based on the assumption that molecules are 

infinitesimally small, round spheres that occupy negligible volume and do not experience intermolecular 

attraction or repulsion.  

1.3 EQUILIBRIUM 

1.3.1 FUNDAMENTAL DEFINITIONS 
Equilibrium refers to a condition in which the state of a system neither changes with time nor has a tendency 

to spontaneously change (i.e. there are no net driving forces for change). As such, equilibrium can only 

occur for closed (and isolated) systems. If an open system does not change with time as it undergoes a 

process, it is said to be in steady-state. With this, we will again define some important conditions: 

• Mechanical equilibrium – no pressure difference between system and surroundings 

• Thermal equilibrium – no temperature difference between system and surroundings 

• Chemical equilibrium – no tendency for a species to change phases or chemical react 

• Thermodynamic equilibrium – a system that is in mechanical, thermal, and chemical equilibrium 

• Phase equilibrium – a system with more than one phase present that is in thermal and mechanical 

equilibrium between the phases such that the phase has no tendency to change 

• Chemical reaction equilibrium – a system undergoing chemical reactions with no more tendency 

to react 

• Saturation pressure – the pressure when the rate of vaporization equals the rate of condensation 

(for a specific temperature), denoted 𝑃sat 

• Saturation temperature – the temperature when the rate of vaporization equals the rate of 

condensation (for a specific pressure), denoted �sat 

• Vapor pressure – a substance’s contribution to the total pressure in a mixture at a given 

temperature 

• State postulate – for a system containing a pure substance, all intensive thermodynamic properties 

can be determined from two independent intensive properties while all extensive thermodynamic 

properties can be determined from three independent intensive properties 

• Triple point – the value of 𝑃 and � for which a pure substance has the gas, liquid, and solid phases 

coexisting in thermodynamic equilibrium 

• Critical temperature – the temperature at and above which vapor of a substance cannot be 

liquefied 

• Critical pressure – the pressure at and above which vapor of a substance cannot be liquefied 

1.3.2 INDEPENDENT AND DEPENDENT THERMODYNAMIC PROPERTIES 
The Gibbs phase rule states that the degrees of freedom can be given by  

ℑ = 𝑚 − 𝜋 + 2 
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where 𝑚 is the number of chemical species in the system and 𝜋 is the number of phases. The value of ℑ is 

the number of independent, intensive properties needed to constrain the properties in a given phase. 

To constrain the state of a system with gas and liquid phases, the fraction that is vapor (called the quality) 

can be defined:  

� =
��

�� + ��
 

where �� and �� are the number of moles in the liquid and vapor phases, respectively. Any intensive 

property can be found by proportioning its value in each phase by the fraction of the system that the phase 

occupies.1  

1.3.3 PHASES 
An example phase diagram is shown in Figure 2, denoting the effects of pressure and temperature for a 

hypothetical substance.  

 

Figure 2. A sample phase diagram. The critical temperature and critical pressure are denoted by �� and 𝑃�, respectively. The triple 

point is the point (��𝑝, 𝑃�𝑝). 

2 THE FIRST LAW OF THERMODYNAMICS 
2.1 DEFINITION OF THE FIRST LAW 
The First Law of Thermodynamics states that the total quantity of energy in the universe is constant. Phrased 

another way,  

Δ𝐸univ = 0 

or “energy cannot be created or destroyed” although it can change forms. This can also be made to says  

Δ𝐸system + Δ𝐸surroundings = 0 

                                                      
1 For instance, the molar volume of a liquid-vapor system can be found by � = (1 − �)�� + ���. 
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2.2 FUNDAMENTAL DEFINITIONS 
• Kinetic energy –energy of motion, defined as 𝐸𝐾 =

1

2
𝑚�⃗ 2 

• Potential energy – energy associated with the bulk position of a system in a potential field, denoted 

𝐸𝑃 

• Internal energy – energy associated with the motion, position, and chemical-bonding 

configuration of the individual molecules of the substances within a system, denoted � 

• Sensible heat – a change in internal energy that leads to a change in temperature 

• Latent heat – a change in internal energy that leads to a phase transformation 

• Heat – the transfer of energy via a temperature gradient, denoted � 

• Work – all forms of energy transfer other than heat, denoted � 

2.3 WORK 
The work, �, can be described as  

� = ∫� �� 

where � is the external force and �� is the displacement. Work can also be related to the external pressure 

via  

� = −∫𝑃 �� 

which is typically referred to as 𝑃� work and can be computed by taking the area underneath a 𝑃 vs. � 

curve for a process (and then negating it). In this context, a positive value of � means that energy is 

transferred from the surroundings to the system whereas a negative value means that energy is transferred 

from the system to the surroundings. The same sign-convention is chosen for heat (see below).  

2.4 HYPOTHETICAL PATHS 
It is important to note that hypothetical paths can be used to find the value of a state function. Consider the 

processes in Figure 3. The actual path is not easy to use for calculations, as both � and � are changing. 

However, one can proposed alternative hypothetical paths to get from State 1 to State 2 that take advantage 

of the fact that the path does not matter when computing a state function. All three paths (the real one as 

well as the two hypothetical ones) will produce the same answer for Δ�. 
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Figure 3. Plot of a process that takes a system from State 1 to State 2. Three alternative paths are shown: the real path as well as 

two convenient hypothetical paths. 

2.5 REVERSIBLE AND IRREVERSIBLE PROCESSES 
A process is reversible if, after the process occurs, the system can be returned to its original state without 

any net effect on the surroundings. This result occurs only when the driving force is infinitesimally small. 

Otherwise, the process is said to be irreversible. All real processes are irreversible; however, reversible 

processes are essential for approximating reality. 

The efficiency of expansion is typically given by  

𝜂exp= =
�irrev

�rev
 

and the efficiency of compressions is typically given by  

𝜂comp =
�rev

�irrev
 

2.6 CLOSED SYSTEMS 

2.6.1 INTEGRAL BALANCE 
The first law of thermodynamics can be written as  

Δ� + Δ𝐸𝐾 + Δ𝐸𝑃 = � + � 

However, the kinetic and potential macroscopic energies can often be neglected such that 

Δ� = � + � 

Since the mass of a closed system stays constant, one can divide by the total number of moles if no chemical 

reactions take place to yield the intensive form: 

Δ� = 𝑞 + � 
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2.6.2 DIFFERENTIAL BALANCE 
Oftentimes in chemical engineering thermodynamics we must consider how various properties change as a 

function of time. In this case, differential balances are necessary. The first law can be written similarly as 

�� + �𝐸𝐾 + �𝐸𝑃 = �� + �� 

or  

�� = �� + �� 

if we ignore kinetic and potential energy contributions.2 Of course, for a closed system we can write the 

equivalent intensive form of the equation as well. 

With this differential balance, we can differentiate with respect to time to yield: 

��

��
= �̇ + �̇ 

2.7 ISOLATED SYSTEMS 
Since isolated systems do not allow for energy transfer, Δ� = 0 for this case. As such, � + � = 0. 

2.8 OPEN SYSTEMS 
In open systems, mass can flow into and out of the system. This can be expressed via a mole balance as  

��

��
= ∑�̇in

in

− ∑�̇out

out

 

assuming no chemical reactions. For a stream flowing through a cross-sectional area 𝐴 with a velocity �⃗ , 
the molar flow rate can be written as  

�̇ =
𝐴�⃗ 

�
 

A system at steady-state has all differentials with respect to time being zero, so for steady-state: 

∑�̇in

in

= ∑�̇out

out

 

In addition to this balance, we also must write an energy balance. The energy balance is 

��

��
+

�𝐸𝐾

��
+

�𝐸𝑃

��

= ∑�̇in

in

(� + �𝐾 + �𝑃)in − ∑�̇out

out

(� + �𝐾 + �𝑃)out + �̇

+ [�̇𝑠 + ∑�̇in

in

(𝑃�)in + ∑�̇out

out

(−𝑃�)out] 

In steady-state, this reads 

                                                      
2 The � differential operator is used for state functions whereas the � differential operator is used for path functions. 
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0 = ∑�̇in

in

(� + �𝐾 + �𝑃)in − ∑�̇out

out

(� + �𝐾 + �𝑃)out + �̇

+ [�̇𝑠 + ∑�̇in

in

(𝑃�)in + ∑�̇out

out

(−𝑃�)out] 

The left two terms refer to the energy flowing into and out of the system whereas the last two terms refer 

to the flow work from the inlet and outlet streams. The �̇𝑠 term refers to the shaft work, or the useful work 

that is obtained from the system.  

The above expression can be algebraically rearranged to read 

0 = ∑�̇in

in

[(� + 𝑃�) + �𝐾 + �𝑃]in − ∑�̇out

out

[(� + 𝑃�) + �𝐾 + �𝑃]out + �̇ + �̇𝑠 

This form is especially enlightening, as there is a frequent � + 𝑃� term. This is enthalpy: 

� ≡ � + 𝑃� 

or 

ℎ ≡ � + 𝑃� 

This then means the energy balance can be written as  

0 = ∑�̇in

in

[ℎ + �𝐾 + �𝑃]in − ∑�̇out

out

[ℎ + �𝐾 + �𝑃]out + �̇ + �̇𝑠 

Neglecting kinetic and potential energy contributions yields 

0 = ∑�̇in

in

ℎin − ∑�̇out

out

ℎout + �̇ + �̇𝑠 

2.9 OPEN-SYSTEM ENERGY BALANCE ON PROCESS EQUIPMENT 

2.9.1 INTRODUCTION 
For these problems, it is best to start with a general energy balance, such as the one shown in the previous 

section:  

��

��
+

�𝐸𝐾

��
+

�𝐸𝑃

��

= ∑�̇in

in

(� + �𝐾 + �𝑃)in − ∑�̇out

out

(� + �𝐾 + �𝑃)out + �̇

+ [�̇𝑠 + ∑�̇in

in

(𝑃�)in + ∑�̇out

out

(−𝑃�)out] 

From here, approximations and assumptions can be made to simplify the problem further. Generally 

speaking, it is best to write out the general mass and energy balances at the start of any chemical engineering 

problem. The mass balances for open-system process equipment is typically just 

�̇�in = �̇�out 
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2.9.2 NOZZLES AND DIFFUSERS 
These devices convert between internal energy and kinetic energy by changing the cross-sectional area 

through which a fluid flows to change the bulk flow velocity. A nozzle constricts the cross-sectional area 

to increase the flow whereas a diffuser increases the cross-sectional area to decrease the flow. Note that the 

cross-sectional area and velocity can be related by  

𝐴in�⃗ in = 𝐴out�⃗ out 

Assuming steady-state (i.e. Δ�̇ = 0 if no chemical reactions are occurring, all time-derivative terms are 

zero), no shaft-work (i.e. �̇𝑠 = 0), no heat flow (i.e. �̇ = 0), the general energy balance becomes 

(ℎ + �𝐾)in = (ℎ + �𝐾)out 

2.9.3 TURBINES AND PUMPS 
These processes involve the transfer of energy via shaft work. Turbines put out useful work whereas pumps 

put useful work into the system. Assuming steady-state and that the heat flow is zero (i.e. �̇ = 0) then 

�̇𝑠

�̇
= Δ(ℎ + �𝐾 + �𝑃) 

2.9.4 HEAT EXCHANGERS 
Heat exchangers heat up or cool down a fluid through thermal contact with another fluid at a different 

temperature, so it is converting between enthalpy and heat. Assuming steady-state, no shaft-work (i.e. �̇𝑠 =

0), and no change in kinetic or potential energies (i.e. Δ�𝐾 = Δ�𝑃 = 0) then 

�̇

�̇
= Δℎ 

2.9.5 THROTTLING DEVICES 
Throttling devices reduce the pressure of flowing streams, typically via a partially opened valve or porous 

plug. This is most often done to liquefy a gas. These devices have negligible heat loss (i.e. �̇ = 0) due to 

the small amount of time the fluid is in the device. Assuming steady-state and no shaft-work then 

Δℎ = 0 

2.10 THERMODYNAMIC DATA FOR � AND � 

2.10.1 HEAT CAPACITY 
The heat capacity at constant volume, ��, can be defined as  

�� ≡ (
��

��
)
�
 

From this, it is clear that  

Δ� = ∫�� �� 

The heat capacity at constant pressure, �𝑃, can be defined as  

�𝑃 ≡ (
�ℎ

��
)
𝑃
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From this, it is clear that 

Δℎ = ∫�𝑝 �� 

For liquids and solids,  

�𝑃 ≈ ��  [liquids and solids] 

For ideal gases, 

�𝑃 − �� = � [ideal gas] 

2.10.2 LATENT HEAT 
When a substance changes phases, there is a substantial change in internal energy due to the latent heat of 

transformation. These are typically reported as enthalpies (e.g. enthalpy of vaporization) at 1 bar, which is 

the normal boiling point, ��. Therefore, the enthalpy of heating water originally at �1 to steam at a 

temperature �2 where �1 < �� < �2, for example, would be 

Δℎ = ∫ �𝑝
�

𝑇𝑏

𝑇1

�� + Δℎvap,𝑇𝑏
+ ∫ �𝑃

�

𝑇2

𝑇𝑏

�� 

If it is desired to know the enthalpy of a phase transformation at a pressure other than 1 bar, one can 

construct a hypothetical path like that shown in Figure 4. The sum of the enthalpy changes from Step 1, 

Step 2, and Step 3 is equal to that of the actual path.  

 

Figure 4. Hypothetical path to calculate Δℎvap at a temperature � from data available at �� and heat capacity data. 

2.10.3 ENTHALPY OF REACTION 
Typically, the standard3 enthalpies of formation, Δℎ𝑓

∘ , of individual species are tabulated. The enthalpy of 

formation is defined as the enthalpy difference between a given molecule and its reference state, which is 

typically chosen as the pure elemental constituents as found in nature. As a result, the enthalpy of formation 

of a pure element is always zero.  

The standard enthalpy of a reaction can be computed as  

                                                      
3 “Standard” refers to a particular reference state, usually 298.15 K and 1 bar. It is indicated by the ∘ symbol. 
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Δℎrxn
∘ = ∑�𝑖Δℎ𝑓

∘  

Here, �𝑖 is the stoichiometric coefficient. For a balanced reaction 𝑎A → bB, the stoichiometric coefficient 

of 𝐴 would be �𝐴 = −𝑎 and the stoichiometric coefficient of � would be �� = �. A reaction that releases 

heat is called exothermic and has a negative enthalpy of reaction, whereas a reaction that absorbs heat is 

called endothermic and has a positive enthalpy of reaction. An example of using hypothetical paths to 

calculate the enthalpy of reaction at a temperature other than the reference temperature is shown in Figure 

5.  

 

Figure 5. Hypothetical path to calculate Δℎrxn at an arbitrary temperature �. 

2.11 CALCULATING FIRST-LAW QUANTITIES IN CLOSED SYSTEMS 

2.11.1 STARTING POINT 
When calculating first-law quantities in closed systems for reversible processes, it is best to always start 

with the following three equations, which are always true: 

� = −∫𝑃 �� 

Δ� = � + � 

Δ� = Δ� + Δ(𝑃�) 

Δ� = ∫�V �� 

Δ� = ∫�P  �� 

If ideal gas conditions can be assumed then,  

�𝑃 − �𝑉 = �� 

Δ� = Δ�(�) 

Δ� = Δ�(�) 
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2.11.2 REVERSIBLE, ISOBARIC PROCESS 
Since pressure is constant:4 

� = −𝑃Δ� 

We then have the following relationships for enthalpy: 

�𝑃 = Δ� 

Δ� = ∫�𝑃 �� 

Δ� = Δ� + 𝑃Δ� 

2.11.3 REVERSIBLE, ISOCHORIC PROCESS 
Since volume is constant:  

� = 0 

We then have the following relationships for the internal energy: 

�𝑉 = Δ� 

Δ� = ∫�𝑉 �� 

Δ� = Δ� + �Δ𝑃 

2.11.4 REVERSIBLE, ISOTHERMAL PROCESS 
If one is dealing with an ideal gas, Δ� and Δ� are only functions of temperature, so 

Δ� = Δ� = 0 

Due to the fact that Δ� = � + �, 

� = −� 

For an ideal gas, integrate the ideal gas law with respect to � to get 

� = −��� ln (
�2

�1
) = ��� ln (

𝑃2

𝑃1
) 

2.11.5 REVERSIBLE, ADIABATIC PROCESS 
By definition the heat exchange is zero, so: 

� = 0 

Due to the fact that Δ� = � + �, 

� = Δ� 

                                                      
4 When dealing with thermodynamic quantities, it is important to keep track of units. For instance, computing � =
−𝑃Δ� will get units of [Pressure][Volume]. To convert this to a unit of [Energy], one must use a conversion factor, 

such as (8.3145 J/mol K)/(0.08206 L atm/mol K) = 101.32 J/L*atm. 
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The following relationships can also be derived for a system with constant heat capacity: 

�2

�1
= (

�1

�2
)

𝑅
�𝑉

 

(
𝑃1

𝑃2
)
𝑅

= (
�1

�2
)
�𝑃

 

𝑃1�1
�𝑃/�𝑉 = 𝑃2�2

�𝑃/�𝑉  

This means that5 

� = Δ� =
Δ(𝑃�)

�𝑃/�𝑉 − 1
=

��Δ�

�𝑃/�𝑉 − 1
 

2.11.6 IRREVERSIBLE, ADIABATIC EXPANSION INTO A VACUUM 
For this case, 

� = � = Δ� = Δ� = 0 

2.12 THERMODYNAMIC CYCLES AND THE CARNOT CYCLE 
A thermodynamic cycle always returns to the same state it was in initially, meaning all state functions are 

zero for the net cycle. For a Carnot cycle, there are four stages, as outlined in Figure 6. Since all state 

functions are zero for the net cycle, we know that  

Δ�cycle = Δ�cycle = 0 

Due to the First Law of Thermodynamics,  

−�net = �net 

The net work and the neat heat can be computed by summing up the individual work and heat from each of 

the four processes. For a Carnot cycle, there is a negative net work. 

The following relationships apply to the Carnot cycle: 

𝑃2

𝑃1
=

𝑃3

𝑃4
 

and 

��

��
= −

��

��
 

The efficiency of the Carnot cycle is defined as  

𝜂 ≡
net work

wasted heat
=

|�net|

��
= 1 −

��

��
 

The efficiency of the Carnot cycle run in reverse (i.e. a Carnot refrigerator) is characterized by the 

coefficient of performance, given by  

                                                      
5 The term Δ(𝑃�) ≡ 𝑃2�2 − 𝑃1�1. 
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COP =
��

|�net|
=

TC

�� − ��
 

 

Figure 6. An ideal gas undergoing a Carnot cycle. 

3 ENTROPY AND THE SECOND LAW OF THERMODYNAMICS 
3.1 DEFINITION OF ENTROPY AND THE SECOND LAW 
Irreversible processes are distinct and show directionality whereas reversible processes do not show 

directionality and are simply an idealization. Entropy  

Entropy is defined in terms of the heat absorbed during a hypothetical reversible process: 

�� ≡
�𝑞rev

�
 

which means that  

Δ� = ∫
1

�
�𝑞rev  

Entropy quantitatively describes the directionality of a process. The Second Law of Thermodynamics 

says that the entropy of the universe increases for all real, irreversible processes (and does not change for 

reversible processes). By stating 

Δ�univ = Δ�sys + Δ�surr 

the Second Law would read 

Δ�univ ≥ 0 
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3.2 THE SECOND LAW OF THERMODYNAMICS FOR CLOSED SYSTEMS 

3.2.1 REVERSIBLE, ADIABATIC PROCESSES 
Since the process is reversible and there is no heat transfer6,  

Δ� = 0,   Δ�surr = 0,   Δ�univ = 0 

3.2.2 REVERSIBLE, ISOTHERMAL PROCESSES 
Since temperature is constant,  

Δ� =
𝑞rev

�
 

If the ideal gas assumption can be made, then Δ� = 0 such that 𝑞rev = �rev = −∫𝑃  ��. Plug in the ideal 

gas law to get 

Δ� = −� ln (
𝑃2

𝑃1
) 

Since all reversible processes have no change in the entropy of the universe (i.e. Δ�univ = 0), we can say 

that Δ�surr = −Δ�. 

3.2.3 REVERSIBLE, ISOBARIC PROCESSES 
Since �𝑞𝑃 = �ℎ = �𝑃 �� for isobaric processes,  

Δ� = ∫
�𝑃

�
�� 

Since all reversible processes have no change in the entropy of the universe (i.e. Δ�univ = 0), we can say 

that Δ�surr = −Δ�. 

3.2.4 REVERSIBLE, ISOCHORIC PROCESSES 
Since �𝑞𝑉 = �� = �𝑉  �� for isochoric processes, 

Δ� = ∫
�𝑉

�
�� 

Since all reversible processes have no change in the entropy of the universe (i.e. Δ�univ = 0), we can say 

that Δ�surr = −Δ�. 

3.2.5 REVERSIBLE PHASE CHANGE AT CONSTANT � AND 𝑃 
In this case, 𝑞rev is the latent heat of the phase transition. As such, 

Δ� =
𝑞𝑃

�
=

Δℎtransition

�
 

Since all reversible processes have no change in the entropy of the universe (i.e. Δ�univ = 0), we can say 

that Δ�surr = −Δ�. 

                                                      
6 It will be tacitly assumed any quantity without a subscript refers to that the system. 
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3.2.6 IRREVERSIBLE PROCESSES FOR IDEAL GASES 
A general expression can be written to describe the entropy change of an ideal gas. Two equivalent 

expressions are: 

Δ� = ∫
�𝑉

�
�� + � ln (

�2

�1
)  

and 

Δ� = ∫
�𝑃

�
�� − � ln (

𝑃2

𝑃1
) 

In order to find the entropy change of the universe, one must think about the conditions of the problem 

statement. If the real process is adiabatic, then 𝑞surr = 0 and then Δ�surr = 0 such that Δ�univ = Δ�. If the 

real process is isothermal, note that 𝑞 = � from the First Law of Thermodynamics (i.e. Δ� = 0) amd that 

due to conservation of energy 𝑞surr = −𝑞. Once 𝑞surr is known, simply use Δ�surr =
�surr

𝑇
. The entropy 

change in the universe is then Δ�univ = Δ� + Δ�surr. 

If the ideal gas approximation cannot be made, try splitting up the irreversible process into hypothetical, 

reversible pathways that may be easier to calculate.  

3.2.7 ENTROPY CHANGE OF MIXING 
If we assume that we are mixing different inert, ideal gases then the entropy of mixing is 

Δ�mix = � ∑�𝑖 ln (
�𝑓

�𝑖
) 

For an ideal gas at constant � and 𝑃 then 

Δ�mix = −� ∑�𝑖 ln (
𝑃𝑖

𝑃tot
) = −� ∑�𝑖 ln(�𝑖) 

where 𝑃𝑖 is the partial pressure of species 𝑖 and �𝑖 is the mole fraction of species 𝑖. 

3.3 THE SECOND LAW OF THERMODYNAMICS FOR OPEN SYSTEMS 
Since mass can flow into and out of an open system, the Second Law must be written with respect to time: 

(
��

��
)
univ

= (
��

��
)
sys

+ (
��

��
)
surr

≥ 0 

At steady-state, 

(
��

��
)
sys

= 0 

If there is a constant surrounding temperature, then 

(
��

��
)
surr

= ∑�̇out�out − ∑�̇in�in −
�̇

�surr
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3.4 THE MECHANICAL ENERGY BALANCE 
For steady-state, reversible processes with one stream in and one stream out, the mechanical energy balance 

is  

�𝑠
̇

�̇
= ∫� �𝑃 + Δ�𝐾 + Δ�𝑃 

which can frequently be written as  

�̇𝑠

�̇
= ∫� �𝑃 + MW[

Δ(�⃗ 2)

2
] + MW�Δ� 

Where MW refers to the molecular weight of the fluid. The latter equation is referred to as the Bernoulli 

Equation. 

3.5 VAPOR-COMPRESSION POWER AND REFRIGERATION CYCLES 

3.5.1 RANKINE CYCLE 
The ideal Rankine cycle can be used to convert fuel into electrical power and is shown in Figure 7. The 

efficiency of a Rankine cycle can be given by  

𝜂Rankine =
|�̇𝑠| − �̇�

�̇�

=
|ℎ̂2 − ℎ̂1| − (ℎ̂4 − ℎ̂3)

ℎ̂1 − ℎ̂4

 

 

Figure 7. The ideal Rankine cycle and its corresponding �� diagram. 

3.5.2 THE VAPOR-COMPRESSION REFRIGERATION CYCLE 
The ideal vapor-compression refrigeration cycle is shown in Figure 8. The efficiency can be described by 

the coefficient of performance as 

COP =
�̇�

�̇�

=
ℎ2 − ℎ1

ℎ3 − ℎ2
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Figure 8. The ideal vapor-compression refrigeration cycle and its corresponding �� diagram. 

3.6 MOLECULAR VIEW OF ENTROPY 
From a molecular viewpoint, entropy can be written as 

� ≡ 𝑘 lnΩ 

where 𝑘 is Boltzmann’s constant and Ω is the number of microstates (roughly the number of configurations 

of a given system). This is typically why entropy is associated with molecular-scale “disorder”. 

4 EQUATIONS OF STATE AND INTERMOLECULAR FORCES 
4.1 REVIEW OF THE IDEAL GAS LAW 
Recall that the ideal gas equation states 

𝑃� = �� 

and assumes that the gas consists of molecules that are infinitesimally small, hard round spheres that occupy 

negligible volume and do not have intermolecular forces (i.e. only exert forces through collisions). As 

pressure decreases and temperature increases, all real gases approach the ideal gas limit. 

4.2 EQUATIONS OF STATE 

4.2.1 CHOOSING AN EQUATION OF STATE 
Choosing a proper thermodynamic model and equation of state is not clear-cut. Figure 9 is a good roadmap 

for figuring out what model might be a good starting point. There are too many equations of state to include 

here, so only the most fundamental are shown.  
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Figure 9. A flowchart for choosing an equation of state/thermodynamic model for process simulations. 

4.2.2 COMPRESSIBILITY EQUATION 
The ideal gas equation can be improved by using a dimensionless compressibility factor, �: 

� =
𝑃�

��
 

4.2.3 VAN DER WAALS EQUATION 
The van der Waals equation of state is  

𝑃 =
��

� − �
−

𝑎

�2
 

This is the most accurate equation of state for a gas that one can get from theory alone. It assumes that gases 

have a finite volume (in the � term) and intermolecular forces (in the 𝑎 term). The 𝑎 and � parameters are 

empirical and found from data. They are most typically approximated as  

𝑎 =
27

64

(���)
2

𝑃�
     � =

���

8𝑃�
 

where �� and 𝑃� are the critical temperature and pressure, respectively.  

5 THE THERMODYNAMIC WEB 
5.1 MATHEMATICAL RELATIONS 
The change in any intensive thermodynamic property of interest, �, can be written in terms of partial 

derivatives of the two independent intensive properties, � and �:7 

�� = (
��

��
)
�
�� + (

��

��
)
𝑥

�� 

                                                      
7 For instance, consider �(�, �). This can be expressed as �� = (

𝜕�

𝜕𝑇
)
�
�� + (

𝜕�

𝜕�
)

𝑇
��. 
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The following relationship is also true: 

(
��

��
)
�
(
��

��
)
�
(
��

��
)
𝑥

= −1 

5.2 DERIVED THERMODYNAMIC QUANTITIES 
The measured properties of a system are 𝑃, �, � and composition. The fundamental thermodynamic 

properties are � and �, as previously discussed. There are also derived thermodynamic properties. One of 

which is ℎ. There are also two other convenient derived properties: 𝑎, which is Helmholtz free energy, and 

�, which is Gibbs free energy. The derived thermodynamic properties have the following relationships: 

ℎ ≡ � + 𝑃�     𝑎 ≡ � − ��    � ≡ ℎ − �� 

Also recall the heat capacity definitions discussed earlier: 

�� = (
��

��
)
�
     �𝑝 = (

�ℎ

��
)
𝑃

 

5.3 FUNDAMENTAL PROPERTY RELATIONS 
The First Law of Thermodynamics states  

�� = �𝑞rev + ��rev 

Now consider enthalpy: 

�ℎ = �� + �(𝑃�) 

Similarly, consider Helmholtz free energy: 

�𝑎 = �� − �(��) 

Finally, consider Gibbs free energy: 

�� = �ℎ − �(��) 

Recall that �𝑞rev = � �� from the Second Law and ��rev = −𝑃��. With this, we can write a new 

expression for �� and therefore new expressions for �ℎ, �𝑎, and �� as well. These are called the 

fundamental property relations: 

�� = � �� − 𝑃 �� 

�ℎ = � �� + � �𝑃 

�𝑎 = −𝑃 �� − � �� 

�� = � �𝑃 − � �� 

With these expressions, one can write a number of unique relationships by holding certain values constant. 

By doings so, one yields: 

(
��

��
)
�

= �     (
��

��
)
𝑠
= −𝑃 

(
�ℎ

��
)
𝑃

= �     (
�ℎ

�𝑃
)
𝑠
= � 
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(
�𝑎

��
)
�

= −�     (
�𝑎

��
)
𝑇

= −𝑃 

(
��

��
)
𝑃

= −�     (
��

�𝑃
)
𝑇

= � 

5.4 MAXWELL RELATIONS 
The Maxwell Relations can be derived by applying Euler’s Reciprocity to the derivative of the equation of 

state. The Euler Reciprocity is 

�2�

�� ��
=

�2�

�� ��
 

Another useful identity to keep in mind is 

�2�

�� ��
= (

�

��
(
��

��
)
𝑥

)
�

 

These mathematical relationships allow one to derive what are called the Maxwell Relations.8 These are 

shown below: 

�2�

�� ��
: (

��

��
)
𝑠
= −(

�𝑃

��
)
�
         

�2ℎ

�� �𝑃
: (

��

�𝑃
)
𝑠
= (

��

��
)
𝑃

 

�2𝑎

����
: (

��

��
)
𝑇

= (
�𝑃

��
)
�
         

�2�

�� �𝑃
: (

��

�𝑃
)
𝑇

= −(
��

��
)
𝑃

 

By using the thermodynamic property relations in conjunction with the Maxwell Relations, one can also 

write heat capacities in terms of � and �: 

�� = � (
��

��
)
�
          �𝑝 = � (

��

��
)
𝑃

 

5.5 DEPENDENT OF STATE FUNCTIONS ON �, 𝑃, AND � 
With the previous information, one can find the dependence of any state function on �, 𝑃, or � quite easily. 

The procedure to do so can be broken down as follows:9 

1) Start with the fundamental property relation for ��, �ℎ, �𝑎, or �� 

2) Impose the conditions of constant �, 𝑃, or � 

3) Divide by �𝑃𝑇 , ��𝑇 , ���, or ��𝑃 as necessary 

                                                      
8 For instance, consider 

𝜕2𝐺

𝜕𝑇 𝜕𝑃
. This can be rewritten as 

𝜕2𝐺

𝜕𝑇 𝜕𝑃
= (

𝜕

𝜕𝑇
(
𝜕𝐺

𝜕𝑃
)

𝑇
)
𝑃
 using Euler’s Reciprocity. Using the 

appropriate fundamental property relation, 
𝜕2𝐺

𝜕𝑇 𝜕𝑃
= (

𝜕

𝜕𝑇
(
𝜕𝐺

𝜕𝑃
)

𝑇
)
𝑃

= (
𝜕𝑉

𝜕𝑇
)
𝑃

. 

9 For instance, consider trying to find what (
𝜕�

𝜕�
)

𝑇
 can also be written as. Write out the fundamental property relation: 

�� = � �� − 𝑃 ��. Then impose constant � and divide by ��𝑇: (
𝜕�

𝜕�
)

𝑇
= � (

𝜕𝑠

𝜕�
)

𝑇
− 𝑃. Recognize that (

𝜕𝑠

𝜕�
)

𝑇
=

𝛽𝑇

𝜅
 

from the Maxwell Relations such that (
𝜕�

𝜕�
)

𝑇
=

𝛽𝑇

𝜅
− 𝑃. 
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4) Use a Maxwell relation or other identity to eliminate any terms with entropy change in the 

numerator (if desired) 

It is useful to know the following identities: 

𝛽 ≡
1

�
(
��

��
)
𝑃
          𝜅 ≡ −

1

�
(
��

�𝑃
)
𝑇

 

where 𝛽 and 𝜅 are the thermal expansion coefficient and isothermal compressibility, respectively. 

5.6 THERMODYNAMIC WEB 
A roadmap that outlines the previously discussed relations is shown in Figure 10. 

 

Figure 10. Thermodynamic web relating partial derivatives of �, 𝑃, �, and �. 

5.7 REFORMULATED THERMODYNAMIC STATE FUNCTIONS 
One can write �(�, �) as  

�� = (
��

��
)
�
�� + (

��

��
)
𝑇
�� 

By using the thermodynamic relations and Maxwell relations and integrating, this yields 

Δ� = ∫
��

�
�� + ∫(

�𝑃

��
)
�
�� 

Similarly, one can write �(�, 𝑃) as  



THE THERMODYNAMIC WEB | 27 
 

�� = (
��

��
)
𝑃
�� + (

��

�𝑃
)
𝑇
�𝑃 

By using the thermodynamic relations and Maxwell relations and integrating, this yields 

Δ� = ∫
�𝑃

�
�� − (

��

��
)
𝑃
�𝑃 

One can do the same with �. If one writes �(�, �) then 

�� = (
��

��
)
�
�� + (

��

��
)
𝑇
�� 

After much substitution one can come to find that 

Δ� = ∫���� + ∫[� (
�𝑃

��
)
�
− 𝑃]�� 

If one write ℎ(�, 𝑃) as  

�ℎ = (
�ℎ

��
)
𝑃
�� + (

�ℎ

�𝑃
)
𝑇
�𝑃 

then after much substitution  

Δℎ = ∫�𝑃�� + ∫[−� (
��

��
)
𝑃

+ �] �𝑃 

 


