V	ersi	on N	o.		R	OLI	NU	MBI	ER	T	WIFEMEDIATE AND OFF
											ON THE PORT OF THE
0	0	0	0	0	0	0	0	0	0	0	
1	1	1	1	1	1	1	1	1	1	1	7SLAMABA
2	2	2	2	2	2	2	2	2	2	2	Answer Sheet No
3	3	3	3	3	3	3	3	3	3	3	Allswei Slieet No
4	4	4	4	4	4	4	4	4	4	4	
(5)	(5)	5	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	Sign. of Candidate
6	6	6	6	6	6	6	6	6	6	6	
7	7	7	7	7	7	7	7	7	7	7	
8	8	8	8	8	8	8	8	8	8	8	Sign. of Invigilator
9	9	9	9	9	9	9	9	9	9	9	
						CHE SEC Time	TIO	N – <i>A</i>	A (M	arks	•
	o the	e Cer	ntre Su	perintend	lent.	Dele	ting/	overv	writir	ig is	be answered on this page and handed not allowed. Do not use lead pencil. carries one mark.
	1.		Plasm A. B. C. D.	a is the m Electron Electron Electron Neutron	ns an ns an ns an	d pro d pos d bet	otons sitive a two	ions par	.		
	2.		N A	Ag ———ootential (2e⁻ ► A emf)	g ⁺ ⊣	→ - 1e	Mg	med l	E^{o}	= - 2.71 v = - 0.8 v ese two will be: -3.51 v
			C.	+ 1.91 v	7				D		– 1.91 v
	3.			nstant Pre will becon 546°C 546 K						0°C'	e in temperature when the volume of 200°C 273 K
	4.			onstant fo	r this	s reac				prod	luct is Rate = $K[A]^2$. Unit of specific
			A. C.	mol ² dm moldm		l			B D		mol ⁻¹ dm ³ S ⁻¹ S ⁻¹
	5.		A sub		nich i	itself	is no	ot a c	ataly	st bu	t increases the activity of a catalyst is
			A. C.	Enzyme Promote					B D		inhibitor Poisoner

6.	Diamo	ond is a bad conductor of elect	ricity b	ecause:								
	A.	It has a tight structure	B.	It has a high density								
	C.	It has no free electrons	D.	It is transparent to light								
7.	Mixture containing 0.01 mole/300cm ³ of NH ₄ Cl and 0.1 mole/400cm ³ of NH ₄ OH having pKb = 5 has pH of:											
	A.	4.00	B.	4.12								
	C.	9.88	D.	10.00								
8.		urea (M.wt = 60) is dissolved and will be:	in 250 c	cm ³ of its solution. Concentration of								
	A.	5 % w/w	B.	5 % v/w								
	C.	0.34 M	D.	0.34m								
9.	The gaseous element X exists in diatomic form. One volume of the element X combines with two volume of hydrogen to form two volume of gaseous hydride. What is the formula of hydride of X.?											
	A.	HX_2	В.	HX_3								
	C.	H_2X	D.	HX								
10.	The n	umber of bonds in one molecu	le of Ni	itrogen is:								
	A.	one σ and one π	B.	one σ and two π								
	C.	three σ only	D.	two σ and one π								
11.	Splitti A. C.	Zeeman effect	the exc B. D.	cited atom in electric field is called: Stark effect Compton effect								
12.	In the	ground state of an atom, the e	lectron	is present:								
12.	A.	in the valence shell	B.	in the second shell								
	C.	nearest to the nucleus	D.	farthest from the nucleus								
13.	Which	one of the following exists in	tha gal	id state as a giant covalent lettice?								
13.	A.	ice	B.	lid state as a giant covalent lattice?								
	C.	silicon (IV) oxide	D.	dry ice								
1.4		, ,		•								
14.		1×10^{-4} M solution of Phosph										
	A. C.	1.10 3.52	B. D.	2.02 4.13								
15.		ich substance does nitrogen ex		_								
	A.	NO	В.	N_2O								
	C.	N_2O_4	D.	$NaNO_2$								
16.	NaOH What Fe(OH A.	is the heat of neutralization of H) ₂ + 2HCl → FeO -57.3kJ	the foll $Cl_2 + 2$ B.	H ₂ O lowing reaction? H ₂ O -114.6kJ								
	C.	-228kJ	D.	-28.6kJ								
17.	hydrog A.	gen molecule? (At. Mass C = 22 g of CO ₂	= 12, C B.	8 g of CH ₄								
	C.	20 g of Ne	D.	$8 g of O_3$								

Federal Board HSSC-I Examination Chemistry Model Question Paper (Curriculum 2006)

Total Marks: 68 Time allowed: 2.35 hours

Note: Answer all parts from Section 'B' and all questions from Section 'C' on the E-sheet. Write your answers on the allotted/given spaces.

SECTION – B (Marks 42)

Q.2 Attempt all parts from the following. All parts carry equal marks. $(14 \times 3 = 42)$

i. The bond angles of H₂O and NH₃ are not 109.5° like that of CH₄. Although O and N atoms are SP³ hybridized like C. Mention the angles of both and give reason.

(1+2)

Justify that Bohr's equation for the wave number can explain the spectral lines of Lyman, Balmer and Paschen series. (1+1+1)

How to find standard electrode potential? Explain briefly. ii. (1.5+1.5)

Calculate molality of aqueous solution of sulfuric acid from the following data. iii.

(1+2)

(1+1+1)

Molar mass	Molarity	Density in g/Cm ³
98	18	1.84

OR

Calculate the molecular mass of the solute by using $\Delta P/P^0 = X_2$? (1+2)

Interpret why water and ethanol can mix easily in all proportions. (1+2)iv.

Justify that the distance gaps between different orbits of an atom go on increasing v. from the lower to the higher orbits. (1+2)

OR

The melting and boiling points of hydrazine (N₂H₄) are much higher than those of ethane (C₂H₄). Suggest one reason for each compound in terms of the intermolecular forces each compound possesses. (1.5+1.5)

- Describe hybridization in acetylene (C₂H₂) molecule. Also draw diagram of hybridized orbitals of the molecule. (1.5+1.5)
- vii. Derive the units for general gas constant 'R' in general gas equation. (1.5+1.5)
 - When the pressure is in Nm⁻² and volume in m³. a.
 - When energy is expressed in ergs. b.

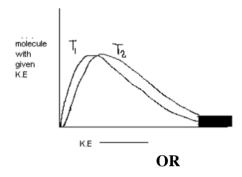
Consider the Standard electrode potentials

 $Fe^{3+} / Fe = 0.771V$ $Ag^{+}/Ag = 0.7994V,$

Write the half-cell reactions at each electrode. Also write overall reaction.

viii. As both NF₃ and BF₃ are tetra atomic molecules but have different geometry. Explain each according to VSEPR theory. (1.5+1.5) ix. Benzene (C_6H_6) is an aromatic hydrocarbon which exists as a liquid at room temperature. Using the following standard enthalpy changes: (1.5+1.5)

Heat of formation of $CO_2 = -393 \text{ KJ} / \text{mol}$


Heat of formation of $H_2O = -286 \text{ KJ} / \text{mol}$

Heat of combustion of $C_6H_6 = -3268 \text{ KJ} / \text{mol}$

Calculate the enthalpy change of formation of C₆H₆.

- x. What is reverse osmosis? Give any one daily life application. (1+2)
- xi. Consider this graph and explain on the basis of Maxwell Boltzmann curve of kinetic energy. Why does rate of reaction increase with the increase in temperature?

(1+2)

State Dalton's law. Also write its two applications.

(1+2)

xii. An aqueous solution of ammonium Chloride is acidic and that of sodium acetate is basic in nature. Give reason with the help of equation. (1+2)

OR

Distinguish between heat capacity and specific heat capacity. (1.5+1.5)

- xiii. Ionic Crystals are brittle in nature but metals are malleable in nature. Give one reason of each. (1.5+1.5)
- xiv. Lattice energies of LiCl and KCl are 833 kJ/mol and 690 kJ/mol, respectively.

 Discuss why is lattice energy of LiCl greater than KCl? (1.5+1.5)

OF

Chemical kinetics is concerned with rates of chemical reactions and factors that affects the rates of chemical reactions. Consider the following steps of reactions:

$$FeCl_3 (aq) + 2Kl (aq) \longrightarrow FeI_2 (aq) + 2KCl (aq) + Cl - (aq) (slow)$$

$$2KCl(aq) + 2Cl - (aq) \longrightarrow 2KCl(aq) + I_2(S) (fast)$$

- a. Write the rate expression for the above reaction.
- b. Give the order of reaction for the above reaction. (2+1)

SECTION – C (Marks 26)

Note: Attempt all questions. Marks of each question are given within brackets.

Q.3 Derive the equation for the radius of nth orbit of hydrogen atom using Bohr's model. (2+5)

OR

Draw the hybridization and VSEPR geometries along with lone pair, bond pair and total electron pair of the following: [As=33, Cl=17, O=8, B=5, H=1, F=9]

(3+2+2)

(4+2)

- i. AsCl₃
- ii. H₂O
- iii. BF₃
- Q.4 Ammonia Solvay process is used to manufacture sodium carbonate. During this process ammonia is recovered by the following reaction.

 2NH₄Cl + Ca(OH)₂ CaCl₂ + 2H₂O +2NH₃ (3+3)

When 100 g of ammonium chloride and 150 g calcium hydroxide are used then (At. Mass N=14 H=1 Cl=35.5 Ca=40)

- i. Calculate the mass in kg of ammonia produce during chemical reaction.
- ii. Calculate the excess mass in gram of one of the reactants left unreacted.

OR

Phosgene (COCl₂) is a toxic gas. This gas is prepared by the reaction of carbon monoxide with chlorine.

 $CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$

The following data were obtained for kinetic study of this reaction.

_			<u> </u>
Experiment	Initial [CO]	Initial [Cl ₂]	Initial rate (moles dm ⁻³ s ⁻¹)
1	1.000	0.100	1.29×10^{-29}
2	0.100	0.100	1.30×10^{-30}
3	0.100	1.000	1.30×10^{-30}

- i. Use the above data of the table and deduce the order of the reaction with respect to CO and Cl₂ by showing all calcuations.
- ii. Write a rate law/equation for this reaction.
- **Q.5** Consider the following reaction:

$$N_2 + 3 H_2 = 2NH_3$$

- i. Derive expression of Kc for the above reaction
- ii. Calculate equilibrium concentration of N_2 . The equilibrium concentration of H_2 and NH_3 are 1.0 moldm³ and 0.5 moldm⁻³ respectively. Kc of above reaction at 25°C is 1.85×10^{-3} . (3+3)

OR

Balance the following chemical equation in an acidic medium by showing all steps.

$$Cr^{3+} + BiO_3^{1-} \longrightarrow Cr_2O_7^{2-} + Bi^{3+}$$

(1x6=6)

Q.6 Explain Born Haber's cycle to calculate lattice energy and draw its cycle. (4+3)

* * * * *

SUPLEMENTARY TABLE														
Atomic No	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Symbol	Н	He	Li	Ве	В	С	N	0	F	Ne	Na	Mg	Al	Si
Mass no	1	4	7	9	11	12	14	16	19	20	23	24	27	28
Atomic No	15	2	16	17	18	19	20	31	32	33	34	35	36	37
Symbol	Р	He	S	CI	Ar	K	Ca	Ga	Ge	As	Se	Br	Kr	Rb
Mass no	31	4	32	35	40	39	40	70	73	74	79	80	84	85
Atomic No	38	49	50	51	52	53	54	55	56	81	82	83	84	85
Symbol	Sr	In	Sn	Sb	Te	ı	Xe	Cs	Ва	TI	Pb	Bi	Ро	At
Mass no	88	115	119	122	128	127	131	133	137	204	207	208	209	210