
Software Design Basics

Software design is a process to transform user requirements into

some suitable form, which helps the programmer in software

coding and implementation.

For assessing user requirements, an SRS (Software Requirement

Specification) document is created whereas for coding and

implementation, there is a need of more specific and detailed

requirements in software terms. The output of this process can

directly be used into implementation in programming languages.

Software design is the first step in SDLC (Software Design Life

Cycle), which moves the concentration from problem domain to

solution domain. It tries to specify how to fulfill the requirements

mentioned in SRS.

Software Design Levels

Software design yields three levels of results:

 Architectural Design - The architectural design is the

highest abstract version of the system. It identifies the

software as a system with many components interacting

with each other. At this level, the designers get the idea of

proposed solution domain.

 High-level Design- The high-level design breaks the ‘single

entity-multiple component’ concept of architectural design

into less-abstracted view of sub-systems and modules and

depicts their interaction with each other. High-level design

focuses on how the system along with all of its components

can be implemented in forms of modules. It recognizes

modular structure of each sub-system and their relation and

interaction among each other.

 Detailed Design- Detailed design deals with the

implementation part of what is seen as a system and its sub-

systems in the previous two designs. It is more detailed

towards modules and their implementations. It defines

logical structure of each module and their interfaces to

communicate with other modules.

Modularization

Modularization is a technique to divide a software system into

multiple discrete and independent modules, which are expected

to be capable of carrying out task(s) independently. These

modules may work as basic constructs for the entire software.

Designers tend to design modules such that they can be executed

and/or compiled separately and independently.

Modular design unintentionally follows the rules of ‘divide and

conquer’ problem-solving strategy this is because there are many

other benefits attached with the modular design of a software.

Advantage of modularization:

 Smaller components are easier to maintain

 Program can be divided based on functional aspects

 Desired level of abstraction can be brought in the program

 Components with high cohesion can be re-used again

 Concurrent execution can be made possible

 Desired from security aspect

Concurrency

Back in time, all software are meant to be executed sequentially.

By sequential execution we mean that the coded instruction will

be executed one after another implying only one portion of

program being activated at any given time. Say, a software has

multiple modules, then only one of all the modules can be found

active at any time of execution.

In software design, concurrency is implemented by splitting the

software into multiple independent units of execution, like

modules and executing them in parallel. In other words,

concurrency provides capability to the software to execute more

than one part of code in parallel to each other.

It is necessary for the programmers and designers to recognize

those modules, which can be made parallel execution.

Example

The spell check feature in word processor is a module of software,

which runs alongside the word processor itself.

Coupling and Cohesion

When a software program is modularized, its tasks are divided

into several modules based on some characteristics. As we know,

modules are set of instructions put together in order to achieve

some tasks. They are though, considered as single entity but may

refer to each other to work together. There are measures by

which the quality of a design of modules and their interaction

among them can be measured. These measures are called

coupling and cohesion.

Cohesion

Cohesion is a measure that defines the degree of intra-

dependability within elements of a module. The greater the

cohesion, the better is the program design.

There are seven types of cohesion, namely –

 Co-incidental cohesion - It is unplanned and random

cohesion, which might be the result of breaking the program

into smaller modules for the sake of modularization.

Because it is unplanned, it may serve confusion to the

programmers and is generally not-accepted.

 Logical cohesion - When logically categorized elements are

put together into a module, it is called logical cohesion.

 Temporal Cohesion - When elements of module are

organized such that they are processed at a similar point in

time, it is called temporal cohesion.

 Procedural cohesion - When elements of module are

grouped together, which are executed sequentially in order

to perform a task, it is called procedural cohesion.

 Communicational cohesion - When elements of module

are grouped together, which are executed sequentially and

work on same data (information), it is called

communicational cohesion.

 Sequential cohesion - When elements of module are

grouped because the output of one element serves as input

to another and so on, it is called sequential cohesion.

 Functional cohesion - It is considered to be the highest

degree of cohesion, and it is highly expected. Elements of

module in functional cohesion are grouped because they all

contribute to a single well-defined function. It can also be

reused.

Coupling

Coupling is a measure that defines the level of inter-dependability

among modules of a program. It tells at what level the modules

interfere and interact with each other. The lower the coupling, the

better the program.

There are five levels of coupling, namely -

 Content coupling - When a module can directly access or

modify or refer to the content of another module, it is called

content level coupling.

 Common coupling- When multiple modules have read and

write access to some global data, it is called common or

global coupling.

 Control coupling- Two modules are called control-coupled

if one of them decides the function of the other module or

changes its flow of execution.

 Stamp coupling- When multiple modules share common

data structure and work on different part of it, it is called

stamp coupling.

 Data coupling- Data coupling is when two modules interact

with each other by means of passing data (as parameter). If a

module passes data structure as parameter, then the

receiving module should use all its components.

Ideally, no coupling is considered to be the best.

Design Verification

The output of software design process is design documentation,

pseudo codes, detailed logic diagrams, process diagrams, and

detailed description of all functional or non-functional

requirements.

The next phase, which is the implementation of software, depends

on all outputs mentioned above.

It is then becomes necessary to verify the output before

proceeding to the next phase. The early any mistake is detected,

the better it is or it might not be detected until testing of the

product. If the outputs of design phase are in formal notation

form, then their associated tools for verification should be used

otherwise a thorough design review can be used for verification

and validation.

By structured verification approach, reviewers can detect defects

that might be caused by overlooking some conditions. A good

design review is important for good software design, accuracy

and quality.

Software Design Strategies

Software design is a process to conceptualize the software

requirements into software implementation. Software design

takes the user requirements as challenges and tries to find

optimum solution. While the software is being conceptualized, a

plan is chalked out to find the best possible design for

implementing the intended solution.

There are multiple variants of software design. Let us study them

briefly:

Structured Design

Structured design is a conceptualization of problem into several

well-organized elements of solution. It is basically concerned with

the solution design. Benefit of structured design is, it gives better

understanding of how the problem is being solved. Structured

design also makes it simpler for designer to concentrate on the

problem more accurately.

Structured design is mostly based on ‘divide and conquer’

strategy where a problem is broken into several small problems

and each small problem is individually solved until the whole

problem is solved.

The small pieces of problem are solved by means of solution

modules. Structured design emphasis that these modules be well

organized in order to achieve precise solution.

These modules are arranged in hierarchy. They communicate

with each other. A good structured design always follows some

rules for communication among multiple modules, namely -

Cohesion - grouping of all functionally related elements.

Coupling - communication between different modules.

A good structured design has high cohesion and low coupling

arrangements.

Function Oriented Design

In function-oriented design, the system is comprised of many

smaller sub-systems known as functions. These functions are

capable of performing significant task in the system. The system is

considered as top view of all functions.

Function oriented design inherits some properties of structured

design where divide and conquer methodology is used.

This design mechanism divides the whole system into smaller

functions, which provides means of abstraction by concealing the

information and their operation.. These functional modules can

share information among themselves by means of information

passing and using information available globally.

Another characteristic of functions is that when a program calls a

function, the function changes the state of the program, which

sometimes is not acceptable by other modules. Function oriented

design works well where the system state does not matter and

program/functions work on input rather than on a state.

Design Process

 The whole system is seen as how data flows in the system by

means of data flow diagram.

 DFD depicts how functions changes data and state of entire

system.

 The entire system is logically broken down into smaller

units known as functions on the basis of their operation in

the system.

 Each function is then described at large.

Object Oriented Design

Object oriented design works around the entities and their

characteristics instead of functions involved in the software

system. This design strategy focuses on entities and its

characteristics. The whole concept of software solution revolves

around the engaged entities.

Let us see the important concepts of Object Oriented Design:

 Objects - All entities involved in the solution design are

known as objects. For example, person, banks, company and

customers are treated as objects. Every entity has some

attributes associated to it and has some methods to perform

on the attributes.

 Classes - A class is a generalized description of an object. An

object is an instance of a class. Class defines all the

attributes, which an object can have and methods, which

defines the functionality of the object.

In the solution design, attributes are stored as variables and

functionalities are defined by means of methods or procedures.

 Encapsulation - In OOD, the attributes (data variables) and

methods (operation on the data) are bundled together is

called encapsulation. Encapsulation not only bundles

important information of an object together, but also

restricts access of the data and methods from the outside

world. This is called information hiding.

 Inheritance - OOD allows similar classes to stack up in

hierarchical manner where the lower or sub-classes can

import, implement and re-use allowed variables and

methods from their immediate super classes. This property

of OOD is known as inheritance. This makes it easier to

define specific class and to create generalized classes from

specific ones.

 Polymorphism - OOD languages provide a mechanism

where methods performing similar tasks but vary in

arguments, can be assigned same name. This is called

polymorphism, which allows a single interface performing

tasks for different types. Depending upon how the function

is invoked, respective portion of the code gets executed.

Design Process

Software design process can be perceived as series of well-

defined steps. Though it varies according to design approach

(function oriented or object oriented, yet It may have the

following steps involved:

 A solution design is created from requirement or previous

used system and/or system sequence diagram.

 Objects are identified and grouped into classes on behalf of

similarity in attribute characteristics.

 Class hierarchy and relation among them is defined.

 Application framework is defined.

Software Design Approaches

Here are two generic approaches for software designing:

Top Down Design

We know that a system is composed of more than one sub-

systems and it contains a number of components. Further, these

sub-systems and components may have their on set of sub-system

and components and creates hierarchical structure in the system.

Top-down design takes the whole software system as one entity

and then decomposes it to achieve more than one sub-system or

component based on some characteristics. Each sub-system or

component is then treated as a system and decomposed further.

This process keeps on running until the lowest level of system in

the top-down hierarchy is achieved.

Top-down design starts with a generalized model of system and

keeps on defining the more specific part of it. When all

components are composed the whole system comes into

existence.

Top-down design is more suitable when the software solution

needs to be designed from scratch and specific details are

unknown.

Bottom-up Design

The bottom up design model starts with most specific and basic

components. It proceeds with composing higher level of

components by using basic or lower level components. It keeps

creating higher level components until the desired system is not

evolved as one single component. With each higher level, the

amount of abstraction is increased.

Bottom-up strategy is more suitable when a system needs to be

created from some existing system, where the basic primitives

can be used in the newer system.

Both, top-down and bottom-up approaches are not practical

individually. Instead, a good combination of both is used.

Software Implementation

Structured Programming

In the process of coding, the lines of code keep multiplying, thus,

size of the software increases. Gradually, it becomes next to

impossible to remember the flow of program. If one forgets how

software and its underlying programs, files, procedures are

constructed it then becomes very difficult to share, debug and

modify the program. The solution to this is structured

programming. It encourages the developer to use subroutines and

loops instead of using simple jumps in the code, thereby bringing

clarity in the code and improving its efficiency Structured

programming also helps programmer to reduce coding time and

organize code properly.

Structured programming states how the program shall be coded.

Structured programming uses three main concepts:

 Top-down analysis - A software is always made to perform

some rational work. This rational work is known as problem

in the software parlance. Thus it is very important that we

understand how to solve the problem. Under top-down

analysis, the problem is broken down into small pieces

where each one has some significance. Each problem is

individually solved and steps are clearly stated about how to

solve the problem.

 Modular Programming - While programming, the code is

broken down into smaller group of instructions. These

groups are known as modules, subprograms or subroutines.

Modular programming based on the understanding of top-

down analysis. It discourages jumps using ‘goto’ statements

in the program, which often makes the program flow non-

traceable. Jumps are prohibited and modular format is

encouraged in structured programming.

 Structured Coding - In reference with top-down analysis,

structured coding sub-divides the modules into further

smaller units of code in the order of their execution.

Structured programming uses control structure, which

controls the flow of the program, whereas structured coding

uses control structure to organize its instructions in

definable patterns.

Functional Programming

Functional programming is style of programming language, which

uses the concepts of mathematical functions. A function in

mathematics should always produce the same result on receiving

the same argument. In procedural languages, the flow of the

program runs through procedures, i.e. the control of program is

transferred to the called procedure. While control flow is

transferring from one procedure to another, the program changes

its state.

In procedural programming, it is possible for a procedure to

produce different results when it is called with the same

argument, as the program itself can be in different state while

calling it. This is a property as well as a drawback of procedural

programming, in which the sequence or timing of the procedure

execution becomes important.

Functional programming provides means of computation as

mathematical functions, which produces results irrespective of

program state. This makes it possible to predict the behavior of

the program.

Functional programming uses the following concepts:

 First class and High-order functions - These functions

have capability to accept another function as argument or

they return other functions as results.

 Pure functions - These functions do not include destructive

updates, that is, they do not affect any I/O or memory and if

they are not in use, they can easily be removed without

hampering the rest of the program.

 Recursion - Recursion is a programming technique where a

function calls itself and repeats the program code in it unless

some pre-defined condition matches. Recursion is the way of

creating loops in functional programming.

 Strict evaluation - It is a method of evaluating the

expression passed to a function as an argument. Functional

programming has two types of evaluation methods, strict

(eager) or non-strict (lazy). Strict evaluation always

evaluates the expression before invoking the function. Non-

strict evaluation does not evaluate the expression unless it is

needed.

 λ-calculus - Most functional programming languages use λ-

calculus as their type systems. λ-expressions are executed by

evaluating them as they occur.

Common Lisp, Scala, Haskell, Erlang and F# are some examples of

functional programming languages.

Programming style

Programming style is set of coding rules followed by all the

programmers to write the code. When multiple programmers

work on the same software project, they frequently need to work

with the program code written by some other developer. This

becomes tedious or at times impossible, if all developers do not

follow some standard programming style to code the program.

An appropriate programming style includes using function and

variable names relevant to the intended task, using well-placed

indentation, commenting code for the convenience of reader and

overall presentation of code. This makes the program code

readable and understandable by all, which in turn makes

debugging and error solving easier. Also, proper coding style

helps ease the documentation and updation.

Coding Guidelines

Practice of coding style varies with organizations, operating

systems and language of coding itself.

The following coding elements may be defined under coding

guidelines of an organization:

 Naming conventions - This section defines how to name

functions, variables, constants and global variables.

 Indenting - This is the space left at the beginning of line,

usually 2-8 whitespace or single tab.

 Whitespace - It is generally omitted at the end of line.

 Operators - Defines the rules of writing mathematical,

assignment and logical operators. For example, assignment

operator ‘=’ should have space before and after it, as in “x =

2”.

 Control Structures - The rules of writing if-then-else, case-

switch, while-until and for control flow statements solely

and in nested fashion.

 Line length and wrapping - Defines how many characters

should be there in one line, mostly a line is 80 characters

long. Wrapping defines how a line should be wrapped, if is

too long.

 Functions - This defines how functions should be declared

and invoked, with and without parameters.

 Variables - This mentions how variables of different data

types are declared and defined.

 Comments - This is one of the important coding

components, as the comments included in the code describe

what the code actually does and all other associated

descriptions. This section also helps creating help

documentations for other developers.

Software Documentation

Software documentation is an important part of software process.

A well written document provides a great tool and means of

information repository necessary to know about software

process. Software documentation also provides information about

how to use the product.

A well-maintained documentation should involve the following

documents:

 Requirement documentation - This documentation works

as key tool for software designer, developer and the test

team to carry out their respective tasks. This document

contains all the functional, non-functional and behavioral

description of the intended software.

Source of this document can be previously stored data about the

software, already running software at the client’s end, client’s

interview, questionnaires and research. Generally it is stored in

the form of spreadsheet or word processing document with the

high-end software management team.

This documentation works as foundation for the software to be

developed and is majorly used in verification and validation

phases. Most test-cases are built directly from requirement

documentation.

 Software Design documentation - These documentations

contain all the necessary information, which are needed to

build the software. It contains: (a) High-level software

architecture, (b) Software design details, (c) Data flow

diagrams, (d) Database design

These documents work as repository for developers to implement

the software. Though these documents do not give any details on

how to code the program, they give all necessary information that

is required for coding and implementation.

 Technical documentation - These documentations are

maintained by the developers and actual coders. These

documents, as a whole, represent information about the

code. While writing the code, the programmers also mention

objective of the code, who wrote it, where will it be required,

what it does and how it does, what other resources the code

uses, etc.

The technical documentation increases the understanding

between various programmers working on the same code. It

enhances re-use capability of the code. It makes debugging easy

and traceable.

There are various automated tools available and some comes with

the programming language itself. For example java comes JavaDoc

tool to generate technical documentation of code.

 User documentation - This documentation is different from

all the above explained. All previous documentations are

maintained to provide information about the software and

its development process. But user documentation explains

how the software product should work and how it should be

used to get the desired results.

These documentations may include, software installation

procedures, how-to guides, user-guides, uninstallation method

and special references to get more information like license

updation etc.

Software Implementation Challenges

There are some challenges faced by the development team while

implementing the software. Some of them are mentioned below:

 Code-reuse - Programming interfaces of present-day

languages are very sophisticated and are equipped huge

library functions. Still, to bring the cost down of end product,

the organization management prefers to re-use the code,

which was created earlier for some other software. There

are huge issues faced by programmers for compatibility

checks and deciding how much code to re-use.

 Version Management - Every time a new software is issued

to the customer, developers have to maintain version and

configuration related documentation. This documentation

needs to be highly accurate and available on time.

 Target-Host - The software program, which is being

developed in the organization, needs to be designed for host

machines at the customers end. But at times, it is impossible

to design a software that works on the target machines.

Design-notations

Software Design Strategies

Software analysis and design includes all activities, which help the

transformation of requirement specification into implementation.

Requirement specifications specify all functional and non-

functional expectations from the software. These requirement

specifications come in the shape of human readable and

understandable documents, to which a computer has nothing to

do.

Software analysis and design is the intermediate stage, which

helps human-readable requirements to be transformed into

actual code.

Let us see few analysis and design tools used by software

designers:

Data Flow Diagram

Data flow diagram is graphical representation of flow of data in an

information system. It is capable of depicting incoming data flow,

outgoing data flow and stored data. The DFD does not mention

anything about how data flows through the system.

There is a prominent difference between DFD and Flowchart. The

flowchart depicts flow of control in program modules. DFDs

depict flow of data in the system at various levels. DFD does not

contain any control or branch elements.

Types of DFD

Data Flow Diagrams are either Logical or Physical.

 Logical DFD - This type of DFD concentrates on the system

process, and flow of data in the system.For example in a

Banking software system, how data is moved between

different entities.

 Physical DFD - This type of DFD shows how the data flow is

actually implemented in the system. It is more specific and

close to the implementation.

DFD Components

DFD can represent Source, destination, storage and flow of data

using the following set of components -

 Entities - Entities are source and destination of information

data. Entities are represented by a rectangles with their

respective names.

 Process - Activities and action taken on the data are

represented by Circle or Round-edged rectangles.

 Data Storage - There are two variants of data storage - it

can either be represented as a rectangle with absence of

both smaller sides or as an open-sided rectangle with only

one side missing.

 Data Flow - Movement of data is shown by pointed arrows.

Data movement is shown from the base of arrow as its

source towards head of the arrow as destination.

Levels of DFD

 Level 0 - Highest abstraction level DFD is known as Level 0

DFD, which depicts the entire information system as one

diagram concealing all the underlying details. Level 0 DFDs

are also known as context level DFDs.

 Level 1 - The Level 0 DFD is broken down into more specific,

Level 1 DFD. Level 1 DFD depicts basic modules in the

system and flow of data among various modules. Level 1

DFD also mentions basic processes and sources of

information.

 Level 2 - At this level, DFD shows how data flows inside the

modules mentioned in Level 1.

Higher level DFDs can be transformed into more specific lower

level DFDs with deeper level of understanding unless the desired

level of specification is achieved.

Structure Charts

Structure chart is a chart derived from Data Flow Diagram. It

represents the system in more detail than DFD. It breaks down

the entire system into lowest functional modules, describes

functions and sub-functions of each module of the system to a

greater detail than DFD.

Structure chart represents hierarchical structure of modules. At

each layer a specific task is performed.

Here are the symbols used in construction of structure charts -

 Module - It represents process or subroutine or task. A

control module branches to more than one sub-module.

Library Modules are re-usable and inviolable from any

module.

 Condition - It is represented by small diamond at the base

of module. It depicts that control module can select any of

sub-routine based on some condition.

 Jump - An arrow is shown pointing inside the module to

depict that the control will jump in the middle of the sub-

module.

 Loop - A curved arrow represents loop in the module. All

sub-modules covered by loop repeat execution of module.

 Data flow - A directed arrow with empty circle at the end

represents data flow.

Control flow - A directed arrow with filled circle at the end

represents control flow.

HIPO Diagram

HIPO (Hierarchical Input Process Output) diagram is a

combination of two organized method to analyze the system and

provide the means of documentation. HIPO model was developed

by IBM in year 1970.

HIPO diagram represents the hierarchy of modules in the

software system. Analyst uses HIPO diagram in order to obtain

high-level view of system functions. It decomposes functions into

sub-functions in a hierarchical manner. It depicts the functions

performed by system.

HIPO diagrams are good for documentation purpose. Their

graphical representation makes it easier for designers and

managers to get the pictorial idea of the system structure.

In contrast to IPO (Input Process Output) diagram, which depicts

the flow of control and data in a module, HIPO does not provide

any information about data flow or control flow.

Example

Both parts of HIPO diagram, Hierarchical presentation and IPO

Chart are used for structure design of software program as well as

documentation of the same.

Structured English

Most programmers are unaware of the large picture of software

so they only rely on what their managers tell them to do. It is the

responsibility of higher software management to provide

accurate information to the programmers to develop accurate yet

fast code.

Other forms of methods, which use graphs or diagrams, may are

sometimes interpreted differently by different people.

Hence, analysts and designers of the software come up with tools

such as Structured English. It is nothing but the description of

what is required to code and how to code it. Structured English

helps the programmer to write error-free code.

Other form of methods, which use graphs or diagrams, may are

sometimes interpreted differently by different people. Here, both

Structured English and Pseudo-Code tries to mitigate that

understanding gap.

Structured English is the It uses plain English words in structured

programming paradigm. It is not the ultimate code but a kind of

description what is required to code and how to code it. The

following are some tokens of structured programming.

IF-THEN-ELSE,

DO-WHILE-UNTIL

Analyst uses the same variable and data name, which are stored

in Data Dictionary, making it much simpler to write and

understand the code.

Example

We take the same example of Customer Authentication in the

online shopping environment. This procedure to authenticate

customer can be written in Structured English as:

Enter Customer_Name

SEEK Customer_Name in Customer_Name_DB file

IF Customer_Name found THEN

 Call procedure USER_PASSWORD_AUTHENTICATE()

ELSE

 PRINT error message

 Call procedure NEW_CUSTOMER_REQUEST()

ENDIF

The code written in Structured English is more like day-to-day

spoken English. It can not be implemented directly as a code of

software. Structured English is independent of programming

language.

Pseudo-Code

Pseudo code is written more close to programming language. It

may be considered as augmented programming language, full of

comments and descriptions.

Pseudo code avoids variable declaration but they are written

using some actual programming language’s constructs, like C,

Fortran, Pascal etc.

Pseudo code contains more programming details than Structured

English. It provides a method to perform the task, as if a computer

is executing the code.

Example

Program to print Fibonacci up to n numbers.

void function Fibonacci

Get value of n;

Set value of a to 1;

Set value of b to 1;

Initialize I to 0

for (i=0; i< n; i++)

{

 if a greater than b

 {

 Increase b by a;

 Print b;

 }

 else if b greater than a

 {

 increase a by b;

 print a;

 }

}

Decision Tables

A Decision table represents conditions and the respective actions

to be taken to address them, in a structured tabular format.

It is a powerful tool to debug and prevent errors. It helps group

similar information into a single table and then by combining

tables it delivers easy and convenient decision-making.

Creating Decision Table

To create the decision table, the developer must follow basic four

steps:

 Identify all possible conditions to be addressed

 Determine actions for all identified conditions

 Create Maximum possible rules

 Define action for each rule

Decision Tables should be verified by end-users and can lately be

simplified by eliminating duplicate rules and actions.

Example

Let us take a simple example of day-to-day problem with our

Internet connectivity. We begin by identifying all problems that

can arise while starting the internet and their respective possible

solutions.

We list all possible problems under column conditions and the

prospective actions under column Actions.

Conditions/Actions Rules

Conditions

Shows Connected N N N N Y Y Y Y

Ping is Working N N Y Y N N Y Y

Opens Website Y N Y N Y N Y N

Actions

Check network cable X

Check internet router X

X X X

Restart Web Browser

X

Contact Service provider

X X X X X X

Do no action

Table : Decision Table – In-house Internet Troubleshooting

Entity-Relationship Model

Entity-Relationship model is a type of database model based on

the notion of real world entities and relationship among them. We

can map real world scenario onto ER database model. ER Model

creates a set of entities with their attributes, a set of constraints

and relation among them.

ER Model is best used for the conceptual design of database. ER

Model can be represented as follows :

 Entity - An entity in ER Model is a real world being, which

has some properties called attributes. Every attribute is

defined by its corresponding set of values, called domain.

For example, consider a school database. Here, a student is an

entity. Student has various attributes like name, id, age and class

etc.

 Relationship - The logical association among entities is

called relationship. Relationships are mapped with entities

in various ways. Mapping cardinalities define the number of

associations between two entities.

Mapping cardinalities:

o one to one

o one to many

o many to one

o many to many

Data Dictionary

Data dictionary is the centralized collection of information about

data. It stores meaning and origin of data, its relationship with

other data, data format for usage etc. Data dictionary has rigorous

definitions of all names in order to facilitate user and software

designers.

Data dictionary is often referenced as meta-data (data about data)

repository. It is created along with DFD (Data Flow Diagram)

model of software program and is expected to be updated

whenever DFD is changed or updated.

Requirement of Data Dictionary

The data is referenced via data dictionary while designing and

implementing software. Data dictionary removes any chances of

ambiguity. It helps keeping work of programmers and designers

synchronized while using same object reference everywhere in

the program.

Data dictionary provides a way of documentation for the

complete database system in one place. Validation of DFD is

carried out using data dictionary.

Contents

Data dictionary should contain information about the following

 Data Flow

 Data Structure

 Data Elements

 Data Stores

 Data Processing

Data Flow is described by means of DFDs as studied earlier and

represented in algebraic form as described.

= Composed of

{} Repetition

() Optional

+ And

[/] Or

Example

Address = House No + (Street / Area) + City + State

Course ID = Course Number + Course Name + Course Level +

Course Grades

Data Elements

Data elements consist of Name and descriptions of Data and

Control Items, Internal or External data stores etc. with the

following details:

 Primary Name

 Secondary Name (Alias)

 Use-case (How and where to use)

 Content Description (Notation etc.)

 Supplementary Information (preset values, constraints etc.)

Data Store

It stores the information from where the data enters into the

system and exists out of the system. The Data Store may include -

 Files

o Internal to software.

o External to software but on the same machine.

o External to software and system, located on different

machine.

 Tables

o Naming convention

o Indexing property

Data Processing

There are two types of Data Processing:

 Logical: As user sees it

 Physical: As software sees it

Principles of Software Design & Concepts in Software

Engineering

Once the requirements document for the software to be

developed is available, the software design phase begins. While

the requirement specification activity deals entirely with the

problem domain, design is the first phase of transforming the

problem into a solution. In the design phase, the customer and

business requirements and technical considerations all come

together to formulate a product or a system.

The design process comprises a set of principles, concepts and

practices, which allow a software engineer to model the system or

product that is to be built. This model, known as design model, is

assessed for quality and reviewed before a code is generated and

tests are conducted. The design model provides details about

software data structures, architecture, interfaces and components

which are required to implement the system. This chapter

discusses the design elements that are required to develop a

software design model. It also discusses the design patterns and

various software design notations used to represent a software

design.

Basic of Software Design

Software design is a phase in software engineering, in which a

blueprint is developed to serve as a base for constructing the

software system. IEEE defines software design as 'both a process

of defining, the architecture, components, interfaces, and other

characteristics of a system or component and the result of that

process.'

In the design phase, many critical and strategic decisions are

made to achieve the desired functionality and quality of the

system. These decisions are taken into account to successfully

develop the software and carry out its maintenance in a way that

the quality of the end product is improved.

Principles of Software Design

Developing design is a cumbersome process as most expansive

errors are often introduced in this phase. Moreover, if these

errors get unnoticed till later phases, it becomes more difficult to

correct them. Therefore, a number of principles are followed

while designing the software. These principles act as a framework

for the designers to follow a good design practice.

Some of the commonly followed design principles are as

following.

1. Software design should correspond to the analysis

model: Often a design element corresponds to many

requirements, therefore, we must know how the design

model satisfies all the requirements represented by the

analysis model.

2. Choose the right programming paradigm: A

programming paradigm describes the structure of the

software system. Depending on the nature and type of

http://ecomputernotes.com/images/Principles-of-Software-Design.jpg

application, different programming paradigms such as

procedure oriented, object-oriented, and prototyping

paradigms can be used. The paradigm should be chosen

keeping constraints in mind such as time, availability of

resources and nature of user's requirements.

3. Software design should be uniform and

integrated: Software design is considered uniform and

integrated, if the interfaces are properly defined among the

design components. For this, rules, format, and styles are

established before the design team starts designing the

software.

4. Software design should be flexible: Software design

should be flexible enough to adapt changes easily. To

achieve the flexibility, the basic design concepts such as

abstraction, refinement, and modularity should be applied

effectively.

5. Software design should ensure minimal conceptual

(semantic) errors: The design team must ensure that major

conceptual errors of design such as ambiguousness and

inconsistency are addressed in advance before dealing with

the syntactical errors present in the design model.

6. Software design should be structured to degrade

gently: Software should be designed to handle unusual

changes and circumstances, and if the need arises for

termination, it must do so in a proper manner so that

functionality of the software is not affected.

7. Software design should represent correspondence

between the software and real-world problem: The

software design should be structured in such away that it

always relates with the real-world problem.

8. Software reuse: Software engineers believe on the phrase:

'do not reinvent the wheel'. Therefore, software components

should be designed in such a way that they can be effectively

reused to increase the productivity.

9. Designing for testability: A common practice that has been

followed is to keep the testing phase separate from the

design and implementation phases. That is, first the software

is developed (designed and implemented) and then handed

over to the testers who subsequently determine whether the

software is fit for distribution and subsequent use by the

customer. However, it has become apparent that the process

of separating testing is seriously flawed, as if any type of

design or implementation errors are found after

implementation, then the entire or a substantial part of the

software requires to be redone. Thus, the test engineers

should be involved from the initial stages. For example, they

should be involved with analysts to prepare tests for

determining whether the user requirements are being met.

10. Prototyping: Prototyping should be used when the

requirements are not completely defined in the beginning.

The user interacts with the developer to expand and refine

the requirements as the development proceeds. Using

prototyping, a quick 'mock-up' of the system can be

developed. This mock-up can be used as a effective means to

give the users a feel of what the system will look like and

demonstrate functions that will be included in the developed

system. Prototyping also helps in reducing risks of designing

software that is not in accordance with the customer's

requirements.

Note that design principles are often constrained by the existing

hardware configuration, the implementation language, the

existing file and data structures, and the existing organizational

practices. Also, the evolution of each software design should be

meticulously designed for future evaluations, references and

maintenance.

Software Design Concepts

Every software process is characterized by basic concepts along

with certain practices or methods. Methods represent the manner

through which the concepts are applied. As new technology

replaces older technology, many changes occur in the methods

that are used to apply the concepts for the development of

software. However, the fundamental concepts underlining the

software design process remain the same, some of which are

described here.

Abstraction

Abstraction refers to a powerful design tool, which allows

software designers to consider components at an abstract level,

while neglecting the implementation details of the

components. IEEE defines abstraction as 'a view of a problem that

extracts the essential information relevant to a particular purpose

and ignores the remainder of the information.' The concept of

abstraction can be used in two ways: as a process and as an entity.

As a process, it refers to a mechanism of hiding irrelevant details

and representing only the essential features of an item so that one

can focus on important things at a time. As an entity, it refers to a

model or view of an item.

Each step in the software process is accomplished through

various levels of abstraction. At the highest level, an outline of the

solution to the problem is presented whereas at the lower levels,

the solution to the problem is presented in detail. For example, in

the requirements analysis phase, a solution to the problem is

presented using the language of problem environment and as we

proceed through the software process, the abstraction level

reduces and at the lowest level, source code of the software is

produced.

There are three commonly used abstraction mechanisms in

software design, namely, functional abstraction, data abstraction

and control abstraction. All these mechanisms allow us to control

the complexity of the design process by proceeding from the

abstract design model to concrete design model in a systematic

manner.

1. Functional abstraction: This involves the use of

parameterized subprograms. Functional abstraction can be

generalized as collections of subprograms referred to as

'groups'. Within these groups there exist routines which may

be visible or hidden. Visible routines can be used within the

containing groups as well as within other groups, whereas

hidden routines are hidden from other groups and can be

used within the containing group only.

2. Data abstraction: This involves specifying data that

describes a data object. For example, the data

object window encompasses a set of attributes (window

type, window dimension) that describe the window object

clearly. In this abstraction mechanism, representation and

manipulation details are ignored.

3. Control abstraction: This states the desired effect, without

stating the exact mechanism of control. For example, if and

while statements in programming languages (like C and

C++) are abstractions of machine code implementations,

which involve conditional instructions. In the architectural

design level, this abstraction mechanism permits

specifications of sequential subprogram and exception

handlers without the concern for exact details of

implementation.

Architecture

Software architecture refers to the structure of the system, which

is composed of various components of a program/ system, the

attributes (properties) of those components and the relationship

amongst them. The software architecture enables the software

engineers to analyze the software design efficiently. In addition, it

also helps them in decision-making and handling risks. The

software architecture does the following.

 Provides an insight to all the interested stakeholders that

enable them to communicate with each other

 Highlights early design decisions, which have great impact

on the software engineering activities (like coding and

testing) that follow the design phase

 Creates intellectual models of how the system is organized

into components and how these components interact with

each other.

Currently, software architecture is represented in an informal and

unplanned manner. Though the architectural concepts are often

represented in the infrastructure (for supporting particular

architectural styles) and the initial stages of a system

configuration, the lack of an explicit independent characterization

of architecture restricts the advantages of this design concept in

the present scenario.

Note that software architecture comprises two elements of design

model, namely, data design and architectural design.

Patterns

A pattern provides a description of the solution to a recurring

design problem of some specific domain in such a way that the

solution can be used again and again. The objective of each

pattern is to provide an insight to a designer who can determine

the following.

1. Whether the pattern can be reused

2. Whether the pattern is applicable to the current project

3. Whether the pattern can be used to develop a similar but

functionally or structurally different design pattern.

Types of Design Patterns

Software engineer can use the design pattern during the entire

software design process. When the analysis model is developed,

the designer can examine the problem description at different

levels of abstraction to determine whether it complies with one or

more of the following types of design patterns.

1. Architectural patterns: These patterns are high-level

strategies that refer to the overall structure and organization

of a software system. That is, they define the elements of a

software system such as subsystems, components, classes,

etc. In addition, they also indicate the relationship between

the elements along with the rules and guidelines for

specifying these relationships. Note that architectural

patterns are often considered equivalent to software

architecture.

2. Design patterns: These patterns are medium-level

strategies that are used to solve design problems. They

provide a means for the refinement of the elements (as

defined by architectural pattern) of a software system or the

relationship among them. Specific design elements such as

relationship among components or mechanisms that affect

component-to-component interaction are addressed by

design patterns. Note that design patterns are often

considered equivalent to software components.

3. Idioms: These patterns are low-level patterns, which are

programming-language specific. They describe the

implementation of a software component, the method used

for interaction among software components, etc., in a

specific programming language. Note that idioms are often

termed as coding patterns.

Modularity

Modularity is achieved by dividing the software into uniquely

named and addressable components,which are also known

as modules. A complex system (large program) is partitioned into

a set of discrete modules in such a way that each module can be

developed independent of other modules. After developing the

modules, they are integrated together to meet the software

requirements. Note that larger the number of modules a system is

divided into, greater will be the effort required to integrate the

modules.

Modularizing a design helps to plan the development in a more

effective manner, accommodate changes easily, conduct testing

and debugging effectively and efficiently, and conduct

maintenance work without adversely affecting the functioning of

the software.

Information Hiding

Modules should be specified and designed in such a way that the

data structures and processing details of one module are not

accessible to other modules. They pass only that much

information to each other, which is required to accomplish the

software functions. The way of hiding unnecessary details is

referred to as information hiding. IEEE defines information

hiding as 'the technique of encapsulating software design

decisions in modules in such a way that the module's interfaces

reveal as little as possible about the module's inner workings;

thus each module is a 'black box' to the other modules in the

system.

http://ecomputernotes.com/images/Modules-in-Software-Programs.jpg

Information hiding is of immense use when modifications are

required during the testing and maintenance phase. Some of the

advantages associated with information hiding are listed below.

1. Leads to low coupling

2. Emphasizes communication through controlled interfaces

3. Decreases the probability of adverse effects

4. Restricts the effects of changes in one component on others

5. Results in higher quality software.

Stepwise Refinement

Stepwise refinement is a top-down design strategy used for

decomposing a system from a high level of abstraction into a

more detailed level (lower level) of abstraction. At the highest

level of abstraction, function or information is defined

conceptually without providing any information about the

internal workings of the function or internal structure of the data.

As we proceed towards the lower levels of abstraction, more and

more details are available.

http://ecomputernotes.com/images/Information-Hiding.jpg

Software designers start the stepwise refinement process by

creating a sequence of compositions for the system being

designed. Each composition is more detailed than the previous

one and contains more components and interactions. The earlier

compositions represent the significant interactions within the

system, while the later compositions show in detail how these

interactions are achieved.

To have a clear understanding of the concept, let us consider an

example of stepwise refinement. Every computer program

comprises input, process, and output.

1. INPUT

 Get user's name (string) through a prompt.

 Get user's grade (integer from 0 to 100) through a prompt

and validate.

2. PROCESS

3. OUTPUT

This is the first step in refinement. The input phase can be refined

further as given here.

1. INPUT

o Get user's name through a prompt.

o Get user's grade through a prompt.

o While (invalid grade)

Ask again:

2. PROCESS

3. OUTPUT

Note: Stepwise refinement can also be performed for PROCESS

and OUTPUT phase.

Refactoring

Refactoring is an important design activity that reduces the

complexity of module design keeping its behaviour or function

unchanged. Refactoring can be defined as a process of modifying a

software system to improve the internal structure of design

without changing its external behavior. During the refactoring

process, the existing design is checked for any type of flaws like

redundancy, poorly constructed algorithms and data structures,

etc., in order to improve the design. For example, a design model

might yield a component which exhibits low cohesion (like a

component performs four functions that have a limited

relationship with one another). Software designers may decide to

refactor the component into four different components, each

exhibiting high cohesion. This leads to easier integration, testing,

and maintenance of the software components.

Structural Partitioning

When the architectural style of a design follows a hierarchical

nature, the structure of the program can be partitioned either

horizontally or vertically. In horizontal partitioning, the control

modules are used to communicate between functions and execute

the functions. Structural partitioning provides the following

benefits.

 The testing and maintenance of software becomes easier.

 The negative impacts spread slowly.

 The software can be extended easily.

Besides these advantages, horizontal partitioning has some

disadvantage also. It requires to pass more data across the

module interface, which makes the control flow of the problem

more complex. This usually happens in cases where data moves

rapidly from one function to another.

In vertical partitioning, the functionality is distributed among

the modules--in a top-down manner. The modules at the top level

called control modules perform the decision-making and do

little processing whereas the modules at the low level

called worker modules perform all input, computation and

output tasks.

Concurrency

Computer has limited resources and they must be utilized

efficiently as much as possible. To utilize these resources

efficiently, multiple tasks must be executed concurrently. This

requirement makes concurrency one of the major concepts of

software design. Every system must be designed to allow multiple

processes to execute concurrently, whenever possible. For

example, if the current process is waiting for some event to occur,

the system must execute some other process in the mean time.

However, concurrent execution of multiple processes sometimes

may result in undesirable situations such as an inconsistent state,

http://ecomputernotes.com/images/Horizontal-and-Vertical-Partitioning.jpg

deadlock, etc. For example, consider two processes A and B and a

data item Q1 with the value '200'. Further, suppose A and B are

being executed concurrently and firstly A reads the value of Q1

(which is '200') to add '100' to it. However, before A updates es

the value of Q1, B reads the value ofQ1 (which is still '200') to add

'50' to it. In this situation, whether A or B first updates the value

of Q1, the value of would definitely be wrong resulting in an

inconsistent state of the system. This is because the actions of A

and B are not synchronized with each other. Thus, the system

must control the concurrent execution and synchronize the

actions of concurrent processes.

One way to achieve synchronization is mutual exclusion, which

ensures that two concurrent processes do not interfere with the

actions of each other. To ensure this, mutual exclusion may use

locking technique. In this technique, the processes need to lock

the data item to be read or updated. The data item locked by some

process cannot be accessed by other processes until it is

unlocked. It implies that the process, that needs to access the data

item locked by some other process, has to wait.

Developing a Design Model

To develop a complete specification of design (design model),

four design models are needed. These models are listed below.

1. Data design: This specifies the data structures for

implementing the software by converting data objects and

their relationships identified during the analysis phase.

Various studies suggest that design engineering should

begin with data design, since this design lays the foundation

for all other design models.

2. Architectural design: This specifies the relationship

between the structural elements of the software, design

patterns, architectural styles, and the factors affecting the

ways in which architecture can be implemented.

3. Component-level design: This provides the detailed

description of how structural elements of software will

actually be implemented.

4. Interface design: This depicts how the software

communicates with the system that interoperates with it

and with the end-users.

Differentiate Between Top Down and Bottom UP Approaches

In top down strategy we start by testing the top of the hierarchy

and we incrementally add modules that it calls and then test the

new combined system. This approach of testing requires stubs to

be written. A stub is a dummy routine that simulates a module.

http://ecomputernotes.com/images/Design-Model-and-its-Elements.jpg

In the top-down approach, a module cannot be tested in isolation

because they invoke some other modules. To allow the modules

to be tested before their subordinates have been coded, stubs

simulate the behavior of the subordinates.

The bottom-up approach starts from the bottom of the hierarchy.

First the modules at the very bottom, which have no subordinates,

are tested. Then these modules are combined with higher-level

modules for testing. At any stage of testing all the subordinate

modules exist and have been tested earlier.

To perform bottom-up testing, drivers are needed to set up the

appropriate environment and invoke the module. It is the job of

the driver to invoke the module under testing with the different

set of test cases.

