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Preface

As is the case with any edited text, this book represents the culmination of exchanges
with authors past and present. We are fortunate to have persuaded so many well-
established data analysts to contribute chapters.Their investment of time and thought
is reflected in the quality of the discussions that fill these pages. We are most appre-
ciative of the support and assistance we received from Sage and would like to give
special thanks to Chris Rojek, Kay Bridger and Ian Antcliff. We would like to thank
Richard Leigh for his meticulous copyediting, which has greatly improved the book.
We would also like to thank the members of our Advisory Board and several collea-
gues who provided us with advice on chapters, Chardie Baird who helped manage the
multiple drafts and reviews, and our spouses for their support and encouragement.

Our intention was to put together a set of resource chapters that described major
techniques of data analysis and addressed noteworthy issues involved in their appli-
cation. The list of techniques included here is not exhaustive, but we did try to cover
a wide range of approaches while providing reference to an even broader set of meth-
ods. With that in mind, we decided to include techniques appropriate to data of
different sorts, including survey data, textual data, transcripts of conversations, and
longitudinal information. Regardless of the format of the original data, analysis
requires researchers to develop coding schemes, classification protocols, definitional
rules, and procedures for ensuring reliability in the application of all of these tools.
How researchers organize the information they will use in their analyses should be
informed by theoretical concerns. Even so, this process of organization is also one of
creation and, as such, it can be accomplished in a variety of ways and analyzed by
different approaches.

Data analysts must concern themselves with the criteria they use to sort between
the systematic component of their observations and the stochastic elements, or ran-
dom influences, that are also reflected in these observations. The randomness of
events is something we acknowledge, but we often behave as though we can exert
considerable control over the way our lives unfold.

That point is often driven home in unanticipated ways. During the time we dedi-
cated to the production of this book, we made frequent adjustments to modify a
once reasonable schedule that had become impossible to meet.These unanticipated
events reflect the fabric of people’s lives, and forecasting life’s events that would
occur a year or two into the future was sometimes tragically inaccurate. Prominent
among our initial list of authors were Lee Lillard and Aage Sørensen, both greatly
respected by the scientific community, admired by their peers, and loved by their
friends and families. Both men died unexpectedly while this volume was under way.
We make note here of the substantial contributions they made to this field of
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inquiry and to this volume through their published work, their teaching, and their
involvement in too many discussions of these issues to count.

Melissa Hardy and Alan Bryman
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to the more advanced topics of causality, models of change and network analysis.

No other book provides a better one-stop account of the field of data analysis.
Throughout, the editors encourage readers to develop an appreciation of the range
of analytic options available for a wide variety of data structures, so that they can
develop a suitable analytic approach to their research questions.

Scholars and students can turn to it for teaching and applied needs with confidence,
while specialists will find the provision of up to date expositions on a wide range of
techniques invaluable.
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each offers the practising researcher.’ Clive Seale, Department of Sociology,
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‘This is an excellent guide to current issues in the analysis of social science data. I
recommend it to anyone who is looking for authoritative introductions to the state
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phy and will be invaluable to researchers wanting to update themselves about mod-
ern developments.’ Professor Nigel Gilbert, Pro Vice-Chancellor and Professor of
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In deciding the mix of topics to include in
this Handbook, we wanted to provide a wide
range of analytic options suited to many
different research questions and different
data structures. An early decision was to
include both ‘quantitative’ and ‘qualitative’
techniques in a single volume. Within the
current research environment, practitioners
can hardly fail to notice the schism that exists
between camps of qualitative and quantita-
tive researchers. For some, this division is
fundamental, leading them to pay little atten-
tion to developments in the ‘other’ camp.
Certainly the assumption has been that prac-
titioners of these different approaches have
so little in common that any text on data
analysis must choose between the two
approaches rather than include both in a
single text.

We believe that reinforcing this division is
a mistake, especially for those of us who prac-
tice in the behavioral and social sciences.
Discipline boundaries too often act as intel-
lectual fences beyond which we rarely
venture, as if our own field of research is so
well defined and so much ours that we can
learn nothing from other disciplines that can
possibly be of use. Many of us may remember
our first forays into literature searches on a
given research topic, which we too often

defined in the narrowest of terms, only to
learn from our advisors that we had missed
mountains of useful publications arrayed
across a variety of fields, time periods, and
(perhaps) languages. One of the major costs
of dividing and subdividing fields into an
increasing number of specializations is that
we may inadvertently limit the kinds of intel-
lectual exchanges in which we engage. One
learns more from attempting to view a sub-
ject through a variety of different lenses than
from staring at the same page through the
same pair of glasses. And so it can be with
analytic techniques.

Researchers run the gamut from technical
experts who speak in equations and spin out
table after table of numerical results to those
who have tried to devise an alternative to
page enumeration, so averse to ‘numbers’
were they. Most of us are somewhere in the
middle, interested in a particular research
question and trying to formulate as system-
atic and as persuasive an answer as possible.

Both approaches attempt to ‘tell a story’
from the data. Quantitative researchers gen-
erally refer to this process as hypothesis
testing or ‘modeling’ the data to determine
whether and to what extent empirical obser-
vations can be represented by the motivating
theoretical model. Qualitative researchers
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may or may not invoke models. Whether the
method of analysis will be quantitative or
qualitative is not so much an issue of whether
the information/data at hand are organized
through classifications, rank-ordered relative
to some notion of magnitude, or assessed
at the interval or ratio level of measurement.
The choice can involve assumptions about
the nature of social reality, how it should be
studied, the kinds of research questions that
are of interest, and how errors of observation,
measurement, estimation, and conclusion
should be addressed.

Because this is a text in data analysis rather
than data collection, each author assumes a
certain structure of data and a certain range
of research questions. To be sure, many deci-
sions have been made before the researcher
begins analysis, although active researchers
seldom march through the stages of design,
data collection, and data analysis as if they
were moving through security checkpoints
that allowed mobility in only one direction.
Instead, researchers typically move back and
forth, as if from room to room, taking what
they learn in one room and revisiting what
was decided in the previous room, keeping
the doors open.

However, if the researcher is relying on
secondary data – data collected to serve a broad
range of interests, often involving large national
samples – key features such as the sampling
design and questionnaire must be taken as
given, and other types of information – how
long it took the respondent to settle on a
response, whether the respondent took some
care to frame the response within a particular
context even though what was recorded was
simply a level of agreement with a statement,
for example – are not retrievable. Researchers
who collect their own data use a variety of
sampling procedures and collection tools that
are designed to illuminate what they seek to
understand and to provide information best
suited to their research interests. But once the
data are in hand, the evidence that may be
required to address the research problem will
be limited to interpretations, reconfigurations,
or creative combinations of this already
collected information.

This distinction between measuring
amounts and distinguishing categories is
sometimes referred to as the distinction
between quantitative and qualitative variables,
and it is only one of the arenas in which ‘quan-
tity’ and ‘quality’ are counterposed. Another
contrast that is made between qualitative and

quantitative approaches involves the use of
statistical methods of analysis, where quanti-
tative implies using statistics and qualitative,
in some quarters, means eschewing statistical
approaches. But not all research that is classi-
fied as quantitative relies only on statistical
approaches. Certainly in coding interview
information, any researcher must make deci-
sions about the boundaries of classification,
must determine ‘like’ and ‘unlike’ things, and
these decisions are already shaping any analy-
sis that will follow. In similar fashion, not
all qualitative researchers reject statistics,
although reliance on inferential statistics is
not common. Does the fact that a researcher
calculates a correlation coefficient or bases a
conclusion on differences in the counts of
events suddenly toss the research into the
quantitative camp? Does it matter, so long
as the procedures are systematic and the
conclusions are sound?

THE BASICS

We begin the volume with some basic issues
that require a researcher’s attention. The
novice researcher is often dismayed when
first using a given data set, since the corres-
pondence between the concepts he or she has
in mind is seldom there simply to be plucked
from a list. Issues of reliability and validity
loom large in the enterprise of analysis, for
the conclusions that can be drawn on the
basis of an analysis, regardless of how simple
or complex, are contingent on the utility of
the information on which the analysis is
based. It is the instrumentality of measure-
ment – measure as organizing tool that relates
observation to concept to theory – that is a
common thread of all analysis. Having made
that most fundamental recognition, however,
we must also note that it is often through
debates over procedures of analysis that con-
cerns about the limitations of measurement
are played out. The value of a measure is its
utility for improving our understanding of
some social process, whether such a measure
emerges through the manual sifting of data,
or whether it serves as the framework for
data collection.

Defining variables is therefore an exercise
in establishing correspondence. Part of our
everyday activities involves organizing the
steady flow of information that our senses
feed to our brains. The manner in which we
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accomplish this organization is not a random
process. Rather, we categorize, we classify, we
monitor frequency and intensity, we note
repetition, stability, change, and amount of
change, along a variety of dimensions. We
fudge the boundaries of these categories with
phrases such as ‘kind of’ and ‘sort of’. And
whereas our classification schemes may be
quite functional for our own use, they may
not sit well with the schemes others use.

In our everyday conversations we either
gloss over disagreements, or we may pursue
the issue by defending how we make sense of
a situation. But in taking this next step, we
move closer to scientific practice, in that our
original statement must then be argued on
the basis of empirical evidence, rules of
assignment, what counts as ‘similar’ versus
‘different’, and which traits trump others in
making such assignments. In other words,
such statements – such classifications – have
to be reproducible on the basis of the rules
and the evidence alone.Then the issue is how
convincing others find our approach.

Once we have defined the terms of our
analysis, the temptation for statistical analysts
is to move quickly to the most complex pro-
cedures, but that step is premature. We can
learn much by studying the distributions of
the variables we observe. And once we have
good basic information on the univariate dis-
tributions, we should spend some time exam-
ining simple associations among variables,
two at a time. Although this stage can be
time-consuming, it is essential to gradually
build our understanding of the data struc-
tures on which more complex associations
will rely. These insights prove valuable when
one must translate the finding into some
reasoned argument that allows others to
grasp what has been learned.

THE UTILITY OF STATISTICS

In many of these early chapters, basic statisti-
cal procedures are explained and illustrated.
As Duncan (1975: 4) noted:

There are two broad kinds of problems that
demand statistical treatment in connection with
scientific use of [models] … One is the problem of
inference from samples … Statistical methods are
needed to contrive optimal estimators and proper
tests of hypotheses, and to indicate the degree of
precision in our results or the size of the risk we are
taking in drawing a particular conclusion from

them. The second, not unrelated, kind of problem
that raises statistical issues is the supposition that
some parts of the world (not excluding the behav-
ior of scientists themselves, when making fallible
measurements) may realistically be described as
behaving in a stochastic (chance, probabilistic,
random) manner. If we decide to build into our
models some assumption of this kind, then we shall
need the aid of statistics to formulate appropriate
descriptions of the probability distributions.

A major benefit of even ‘fallible’ measure-
ment as the method of organizing our obser-
vations within some comparative framework
is that it serves as a tool of standardization,
which provides some assurance that both we,
as well as others who attempt to replicate our
work, can reliably identify equivalences and
differences. ‘Better’ measurement is often
taken to mean ‘more precise’ measurement,
but the increase in precision must have util-
ity for the question at hand; otherwise, such
efforts simply increase the amount of ‘noise’
in the measure. For example, a public opinion
researcher may decide that she can better
capture variability in people’s view of a cer-
tain taxation policy by moving beyond a
Likert scale of agreement or disagreement to
a set of possible responses that range from 0
(I see no redeeming value in such a policy) to
100 (I see this policy as the perfect response
to the need). In testing this new measure-
ment strategy, however, the researcher may
discover that the set of actual responses is
far more limited than the options available
to respondents and, for the most part, these
responses cluster at the deciles (10, 20,
30, …, 90); the respondents effectively reduce
the choice set by focusing on multiples of
10 rather than increments of one. However,
the researcher may also observe the occa-
sional response of 54 or 32. What is she to
make of that additional variability? Can she
be confident that the difference between a
response of 32 and one of 30 represents a
reliable distinction with regard to tax policy?
Or is the 32 response perhaps more a reflec-
tion of ‘a tendency toward non-conformity’?

But this issue of precision/reliability/
variability is not in itself a function of a statis-
tical versus a non-statistical approach. The
issue of precision, as Duncan notes, is one of
assessing the likelihood of erroneous conclu-
sions and the role played by ‘chance’ in our
research activities. Error is inescapable. Error as
mistaken observation, error as blunder, error as
bias – how do we systematically manage error
within the range of techniques available to
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us? The question at hand is how we manage
error when using ‘quantitative’ or ‘qualita-
tive’ techniques of analysis.

In sum, any analysis of data, however it
proceeds, is a sorting process of information
that contains errors – however it was col-
lected. Further, this sorting process by which
we sift ‘good’ information from ‘error’ also
allows us to sort for logical patterns, for exam-
ple, Y only occurs when X is present, but
when X is present, Y does not always occur.
And by identifying certain patterns, noting
their frequency, determining the contexts
under which they occur always, sometimes, or
never, we make sense of the data. And that is
our goal – to make ‘sense’ of the data.

SIMILARITIES BETWEEN QUANTITATIVE

AND QUALITATIVE DATA ANALYSIS

It is easy to assume that the different preoc-
cupations and inclinations of their respective
practitioners mean that as research strategies,
quantitative and qualitative research are
totally different. Indeed, they are different,
reflecting as they do distinctive intellectual
traditions. However, this does not signal that
they are so different they do not share any
common features. It is worth reflecting, there-
fore, on the ways in which quantitative and
qualitative data analysis may be said to have
common characteristics. In doing so, we begin
to raise issues about what data analysis is and
also what constitutes a good data analysis,
whether quantitative or qualitative.

Both are concerned with data reduction

Although data analysis is something more
than data reduction, it is also true to say that
paring down and condensing the vast
amounts of data that we frequently collect in
the course of fieldwork is a major preoccupa-
tion of all analysts. Indeed, it would be
surprising if this were not the case since dic-
tionary definitions of ‘analysis’, such as that
found in The Concise Oxford Dictionary, refer
to a process of resolving into simpler ele-
ments. Therefore, to analyze or to provide an
analysis will always involve a notion of reduc-
ing the amount of data we have collected so
that capsule statements about the data can be
provided.

In quantitative research, we are often con-
fronted with a large array of data in the form

of many cases and many variables.With small
amounts of quantitative data, whether in
terms of cases or variables, we may be able to
‘see’ what is happening. We can sense, for
example, the way in which a variable is dis-
tributed, such as whether there is bunching
at one end of the scale or whether a particu-
lar value tends to recur again and again in a
distribution. But with increasing numbers of
cases and variables our ability to ‘see’ tails off.
We begin to lose sight of what is happening.
The simplest techniques that we use to sum-
marize quantitative data, such as frequency
tables and measures of central tendency and
dispersion, are ways of reducing the amount
of data we are handling. They enable us to
‘see’ our data again, to gain a sense of what
the data show. We may want to reduce our
data even further. For example, we might
employ factor analysis to establish whether
we can reduce the number of variables that
we are handling.

Similarly with qualitative data, the
researcher accumulates a large amount of
information. This information can come in
several different forms. Ethnographers are
likely to amass a corpus of field notes based
on their reflections of what they heard or saw.
Researchers who use qualitative interviews
usually find that they compile a mountain of
transcripts of tape-recorded interviews. As
Lee and Fielding remark in Chapter 23, the
transcription of such interviews is frequently
the source of a major bottleneck in qualita-
tive research, because it is so time-consuming
to produce. However, transcripts frequently
constitute a kind of double bottleneck
because, in addition to being time-consuming
to generate, they are daunting to analyze.
Most approaches to analyzing ethnographic
fieldnotes, qualitative interview transcripts,
and other qualitative data (such as docu-
ments) comprise a coding approach that
segments the textual materials in question.
Not all approaches to qualitative data analy-
sis entail this approach; for example, narrative
analysis, which is discussed in Chapter 29
by Czarniawska, involves a preference for
emphasizing the flow in what people say in
interviews. But whatever strategy is adopted,
the qualitative researcher is keen to break his
or her data down so that it is more manage-
able and understandable. As Lee and Fielding
show, the growing use of computer-aided
qualitative data analysis software is a means
of making that process easier (in terms of the
coding, retrieval, and management of data) in
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much the same way as statistical software can
rapidly summarize large quantities of data.

Both are concerned with answering
research questions

While the precise nature of the relationship
between research questions and data analysis
may be different among quantitative and
qualitative researchers, both are concerned
with answering research questions. In quanti-
tative research, the stipulation of research
questions may be highly specific and is often
translated into hypotheses which are outlined
either at the beginning of an investigation or
as we begin to analyze our data. This process
is often depicted as indicative of the
hypothetico-deductive method with which
quantitative research is often associated.
Stipulating research questions helps to guide
the collection and analyses of data, but
having such organizing questions also serves
to ensure that the research is about something
and that the something will make a contribu-
tion to our understanding of an issue or topic.

Qualitative researchers are often somewhat
circumspect about devising research ques-
tions, or perhaps more precisely about the
timing of their formulation. In qualitative
research there is frequently a preference for
an open-ended strategy so that the meaning
systems with which participants operate are
not closed off by a potentially premature
confinement of what should be looked at. In
addition, qualitative researchers frequently
revel in the flexibility that the open-endedness
offers them. Consequently, it is not unusual
to find accounts of the qualitative research
process which suggest that the investigation
did not start with any concrete research ques-
tions. Not all qualitative research is like this;
many practitioners prefer to begin with the
relatively clear focus that research questions
provide. Nonetheless, there is a strong tradi-
tion among practitioners which enjoins them
not to restrict their field of vision too early in
the research process by orienting to research
questions. Some versions of grounded theory,
for example, specifically encourage the defer-
ment of research questions, as Pidgeon and
Henwood observe in Chapter 28. But all this
is not to say that research questions do not
get asked in some versions of qualitative
research. Instead, they tend to emerge in the
course of an investigation as the researcher
gradually narrows the area of interest. The

research questions may even be developed
into hypotheses, as in grounded theory.
Deferring the asking of research questions
has the advantage for qualitative researchers
of enabling them to develop an understand-
ing of what is important and significant from
the perspective of the people they are study-
ing, so that research questions that may be
irrelevant to participants are less likely to be
asked, if it is the perspective of relevance that
matters. It also offers greater flexibility in that
interesting insights gleaned while in the field
can be used as a springboard for new research
questions.

Thus, while the stage at which the formula-
tion of research questions occurs frequently
differs between quantitative and qualitative
research, and the nature of the research ques-
tions may also be somewhat different, data
analysis is typically oriented to answering
research questions regardless of whether the
research strategy is quantitative or qualitative.

Both are concerned with relating data
analysis to the research literature

This point is closely related to the previous
one but nonetheless deserves separate treat-
ment. An important aspect of any data analy-
sis is to relate the issues that drive and
emerge from it to the research literature.
With quantitative data analysis, the literature
tends to provide an impetus for data analysis,
in that it is invariably a key element in the
formulation of a set of research questions.
Quantitative research papers typically con-
clude by returning to the literature in order
to address such issues as whether a hypothe-
sis deriving from it is confirmed and how far
the findings are consistent with it.

With qualitative data analysis, the existing
literature may help to inform or at least act as
a background to the analysis. This means, for
example, that the coding of transcripts or
fieldnotes will be partly informed by the
literature. Existing categories may be
employed as codes. In addition, the qualita-
tive researcher will typically seek to demon-
strate the implications of an analysis for the
existing literature.

Thus, practitioners of both research strate-
gies are highly attuned to the literature when
conducting data analysis. This feature is
indicative of the fact that practitioners are
equally concerned with making a contribu-
tion to theory through their data analysis.
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Both are concerned with variation

Variability between cases is central to
quantitative data analysis. The goal of quanti-
tative data analysis is to capture the amount
of variation in a sample and to explain why
that variation exists as it does and/or how it
was produced. An attribute on which people
(or whatever the nature of the cases) do not
vary, and which is therefore a constant rather
than a variable, is typically not of great inter-
est to most analysts. Their toolkit of data
analysis methods is geared to variability
rather than to its absence. As noted above,
even the most basic tools of quantitative data
analysis – measures of central tendency and
dispersion – are concerned to capture the
variability that is observed.

But variation is equally important to quali-
tative researchers when they conduct their
analyses. Variation is understood somewhat
differently from quantitative research in that
it relates to differences one observes but to
which one does not necessarily assign a
numerical value, but it is nonetheless central
as an observation of relative magnitude (e.g.,
respondents differed more in their opinions
on this than on that). In the course of carry-
ing out an analysis of qualitative data, the
researcher is likely to be attending to assorted
issues that reflect an interest in variation:
Why does a particular activity or form of
behavior occur in some situations rather than
others? Why are some people excluded from
participation in certain activities? To what
extent do differences in certain kinds of
behavior vary because of the different mean-
ings associated with the behavior in certain
situations? How and why do people’s behav-
ior or meaning attributions vary over time?
These are common issues that are likely to
arise in the course of qualitative data analysis,
and all of them relate in some way to varia-
tion and variability. The idea that meaning
and behavior need to be understood contex-
tually (e.g., Mishler, 1979) implies that the
researcher is forced to consider the implica-
tions of contextual variation for his or her
findings.

Conversation analysis might be assumed to
belie this point about qualitative data analy-
sis in that its emphasis on the ordered nature
of talk in interaction could be taken to imply
that it is a lack of variation that is of concern.
However, the conversation analyst is also
concerned with such issues as preference orga-
nization, which presumes that certain kinds

of responses are preferred following an initial
utterance and is at least implicitly concerned
with the exploration of variation. Similarly,
an interest in the use of repair mechanisms in
conversations would seem to imply a concern
with variation and responses to it. Thus, once
again, while it is addressed in different ways
in quantitative and qualitative data analysis,
the exploration of variation is an important
component of both strategies.

Further, an initial understanding of patterns
of variability may inform the collection of
data. In the formal application of sampling
theory, populations may be viewed as com-
prised of different strata, and each stratum
may be assigned a different sampling ratio. In
this way, the researcher ensures that sufficient
variability of important minority characteris-
tics occurs in the sample. Similarly, in decid-
ing where and whom to observe, qualitative
researchers may choose sites and/or groups
they expect to differ, thereby building into
the research design variability of observed
behavior and/or observational context.

Both treat frequency as a
springboard for analysis

That issues of frequency are important in
quantitative data analysis is neither surprising
nor illuminating. In the course of quantitative
data analysis, the practitioner is bound to be
concerned with issues to do with the num-
bers and proportions of people holding cer-
tain views or engaging in different types of
behavior. The emphasis on frequency is very
much bound up with variation, since estab-
lishing frequencies is a common way of
expressing variation.

However, frequency is a component of
qualitative data analysis as well. There are
two ways in which this occurs. Firstly, as
some commentators remark when they write
up their analyses, qualitative researchers
often use quantitative terms, such as ‘most’,
‘many’, ‘often’, and ‘sometimes’ (Becker,
1958). In many ways, these are very impre-
cise ways of conveying frequency and, given
their ambiguity, it is usually difficult to know
what they mean. Qualitative researchers are
not alone in this regard, however. In spite of
the fact that they use apparently more pre-
cise yardsticks for gauging frequency, quanti-
tative researchers also resort to such terms as
embellishments of their quantitative findings,
although the actual values are generally
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reported as well. Moreover, when quantitative
researchers do employ such terms, they apply
to widely different indicators of frequency
(Ashmore et al., 1989). Silverman (1985) rec-
ommends that qualitative researchers use
limited quantification in their analyses rather
than rely excessively on vague adjectival terms.

Frequency can be discerned in relation to
qualitative data analysis in another way. As
Bryman and Burgess (1994) observe, when
they code their unstructured data, qualitative
researchers are likely to rely on implicit
notions of frequency. This can occur in at
least two ways. They may be impressed by
the frequency with which a theme appears in
their transcripts or fieldnotes and may use
this as a criterion for deciding whether to
apply a code. Themes that occur very infre-
quently may be less likely to receive a distinct
code. In addition, in developing codes into
concepts or categories, they may use fre-
quency as a method of deciding which ones
are worth cultivating in this way.

Both seek to ensure that deliberate
distortion does not occur

Although few social scientists nowadays
subscribe to the view that we are objective,
value-free observers of the social world, this
recognition makes it more important that we
proceed in ways that are explicitly defined
and therefore replicable. There is evidence
in certain quarters of the emergence of
avowedly partial research. For example,
Lincoln and Guba (1985) recommend that
one set of criteria by which research should
be judged involves the issue of authenticity.
This set of criteria relates to the political
dimension of research and includes such
principles as catalytic authenticity, which
enjoins researchers to ask whether their
research has motivated members to engage in
action to change their circumstances, and tac-
tical authenticity, which asks whether the
research has empowered members to engage
in action. In spite of the use of such criteria,
which are political in tone and which are a
feature of much writing from a feminist
standpoint, qualitative researchers have not
suggested that the distortion of findings
during data analysis should accompany polit-
ical ambitions.There are plenty of opportuni-
ties for researchers to twist findings
intentionally during data analysis – whether
quantitative or qualitative. However, by and

large, they are committed to presenting an
analysis that is faithful to the data. Of course,
there is a far greater recognition nowadays
that both quantitative and qualitative
researchers employ a variety of rhetorical
strategies for convincing readers of the
authenticity of their analyses (see Bryman,
1998, for a review of some of these writing
techniques). However, this is not to suggest
that data analysis entails distortion, but that
through their writings researchers have to
win over their readers to the credibility of
what they are trying to say. In essence, what
is guarded against in most quantitative and
qualitative data analysis is what Hammersley
and Gomm (2000) call willful bias, that is,
consciously motivated misrepresentation.

Both argue the importance
of transparency

Regardless of the type of research being con-
ducted, the methodology that is used should
not eclipse the data, but should put the data
to optimal use. The techniques of analysis
should be sufficiently transparent that other
researchers familiar with the area can recog-
nize how the data are being collected and
tested, and can replicate the outcomes of the
analysis procedure. (Journals are now
requesting that authors provide copies of
their data files when a paper is published so
that other researchers can easily reproduce
the analysis and then build on or dispute the
conclusions of the paper.) Whether they also
agree about what those outcomes mean is a
different issue. Much of the disagreement
that occurs in the research literature is less
with analysis-as-process and more with the
specification or the context in which the
question is being addressed and the interpre-
tation of the findings. In arguing a certain
‘story line’, a quantitative researcher may try
to demonstrate the ‘robustness’ of findings by
showing that certain key results persist when
evaluated within a variety of contexts of
specifications.

If we take as an exemplar of quantitative
research the analysis of national survey data,
transparency in the data collection process is
generally high. Sampling procedures are well
documented; comparative analysis of how
the sample compares to the population on
known characteristics is reported; the
researcher is provided with a codebook and
questionnaire that provide details about the
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questions asked, the range of responses given,
and frequency distributions, so researchers
can be confident they are reading the data
correctly. Improvements in computer tech-
nology have made this process considerably
easier, faster, and more reliable. In addition,
the general availability of software packages
to perform a wide range of analyses removes
the mystery of what algorithm was used and
what calculations were made.

But one issue of ‘transparency’ in quantita-
tive research involves the use of statistical
tools that, from some perspectives, ‘distance’
the researcher from the data. For example,
missing values are imputed, cases are
weighted, parameter estimates have confi-
dence intervals that change with each specifi-
cation, sometimes achieving the status of
statistical ‘significance’ and sometimes falling
short. Estimates of effects to the first, second,
occasionally third decimal point – how can
anyone ‘see’ the original data behind this
screen of computational complexity? But to
say that the procedures are sufficiently com-
plex to require computer assistance in their
application is not to say that they are opaque.
The sampling framework that generates the
case weights is derived from sampling theory,
an ample literature that provides rules for
both selection and adjustment, as well as the
likely consequence of proceeding other than
‘by the rules’. The algorithms on which
sample estimates are based are derived from
estimation theory, their properties tested
through simulations and statistical experi-
ments so that researchers can understand the
conditions under which their use will yield
desirable and reliable results. The process is
neither convoluted nor impenetrable, but it is
complex, and it is reasonable to assume that
practitioners who use quantitative methods
are not always well acquainted with the
details of sampling, estimation, or statistical
theories that provide the rationale for the
practice. To acknowledge that building an
understanding of the theoretical foundations
for this practice is a challenging task is one
thing; to reject this literature because it is
challenging is quite another.

With qualitative research, an absence of
distance and, until rather recently, limited use
of technological innovation for organizing
and analyzing information can create a differ-
ent dilemma for replication. Observational
data may rely on one person’s recollections as
fieldnotes are written; transcriptions of taped
interviews or coded segments of videotape

that anyone can evaluate provide more the
type of exactitude that many quantitative
types find reassuring. And clear rules that
govern who, what, and when we observe;
justifications for the chosen procedure over
alternatives; rules of coding; logical relation-
ships; analytical frameworks; and systematic
treatments of data can combine to produce
consistent and reproducible findings.

Conversation analysis (Chapter 26) takes a
somewhat different line on this issue from
most forms of qualitative data analysis, in that
practitioners have always exhibited a concern
to demonstrate the transparency of their data
and of their analysis. Qualitative researchers
generally have few guidelines about how to
approach their data other than the need to
address their research questions through their
data. One of the great appeals of grounded
theory (Chapter 28) has been that it provides
a framework, albeit at a far more general level
than statistical techniques provide, for think-
ing about how to approach qualitative data
analysis. It is also worth bearing in mind that
one of the arguments frequently employed in
favor of computer-assisted qualitative data
analysis is that it forces researchers to be
more explicit about the way they approach
their data, so that, in the process, the trans-
parency of the analytic process may be
enhanced.

Indeed, we begin to see here some of the
ways in which quantitative and qualitative
data analysis differ. Not only is there a differ-
ence in most instances in the transparency of
the process, but also quantitative data ana-
lysts have readily available toolkits for the
examination of their data. Conversation
analysis comes closer to a toolkit approach
than many other forms of qualitative data
analysis, although semiotics (see Chapter 25)
and to a certain extent discourse analysis (see
Chapter 27) come close to providing this
kind of facility. A further difference is that
in analyzing secondary data, quantitative
researchers usually conduct their analyses at
the end of the research process, since data
collection occurred elsewhere. However, in
analyzing primary data, both quantitative and
qualitative researchers intersperse data col-
lection with data analysis. Quantitative
researchers need to pilot-test their measures
to ensure that the information collected
meets criteria of both validity and reliability.
And many writers on qualitative data analy-
sis, particularly those influenced by grounded
theory, advocate that data collection and
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analysis should be pursued more or less in
tandem. As Coffey and Atkinson (1996: 2)
suggest: ‘We should never collect data with-
out substantial analysis going on simultane-
ously. Letting data accumulate without
preliminary analysis along the way is a recipe
for unhappiness, if not total disaster.’ Coffey
and Atkinson (1996: 2) go on to say that
there ‘is no single right way to analyze data’.
While this comment is made in relation to
the analysis of qualitative data, it applies
equally well in relation to quantitative data
analysis. On the other hand, there are plenty
of ways in which data can be wrongly or inap-
propriately analyzed, and a book such as this
will help to steer people away from potential
mistakes.

Both must address the question of error

The manner in which quantitative and quali-
tative approaches manage the effects of error
may well be the most central point of differ-
ence. Quantitative research can be viewed as
an exercise in managing error, since variability-
as-observed-difference is both a function of
empirically distinct characteristics and error
in the empirical process of observing those
distinctions. One context in which the utility
of statistical information and the acknowl-
edgment of error come into conflict is
the courtroom. Statisticians asked to give
expert testimony are inevitably asked by
opposing counsel whether they are ‘certain’
of their findings. Regardless of whether they
acknowledge a 5% margin for error, a 1%
margin for error, or a 0.1% margin for error,
they can never say with absolute certainty
that ‘this’ occasion cannot possibly be an
error. In contrast, for many years eyewitness
testimony was the gold standard of evidence,
since a ‘good’ eyewitness would deny uncer-
tainty, testifying to no doubt, no possibility of
error – testifying with certainty. And so they
may have believed. But the frequency with
which recently utilized DNA evidence is
proving exculpatory has given everyone
pause. If we cannot trust our own eyes, how
can we be sure of anything? One answer is
that absolute certainty was always an illusion,
whether it was asserted in scientific enter-
prise or everyday life. Even so, we know many
things, and in so knowing, we can accomplish
many tasks. And in trying to accomplish, we
can learn much more. So if our choice is
between drowning in doubt or acting on best

information, we act. Neither judge nor jury
can ever be certain, in the sense that they
cannot claim that error is impossible; but
they can draw conclusions by weighing the
evidence. And so they do.

Within the framework of behavioral and
social science, both quantitative and qualita-
tive analysts acknowledge that error is an
unavoidable aspect of data collection, mea-
surement, coding, and analysis procedures.
And both agree that error cannot always be
assumed to be random, such that the sum-
mary influences of error on our conclusions
simply ‘cancel out’. Much of the develop-
ment in quantitative research that has
occurred over the past three decades has
been oriented toward better managing error.
In particular, attention has been focused on
developing procedures to address error as a
confounding source in the data while pre-
serving the substantive focus and the struc-
tural relations of interest. In fact, we can look
at the chapters in this text as representing
advancements in the analysis of error.

The early chapters on constructing vari-
ables, describing distributions, and dealing
with missing data involve the exposition of
techniques for using already collected bits of
information and combining them, reconfigur-
ing them, transforming them in ways that
create a better match between the measure
and the concept.The variance has been called
the ‘mean squared error’ because it provides
the average weighted distance of observations
from the midpoint of the distribution. This
measure of inequality, of observed difference,
provides the problematic for further analysis
designed to answer the question: what pro-
duced the differences?

Missing data can create problems of error,
since the missing information may occur at
higher frequency in one or another part of
the distribution (creating truncated distribu-
tions), or the pattern of missing data may be
correlated with other factors. Chapter 4, on
inference, underscores the complications
introduced by sampling error, or generally by
procedures designed to allow statements
about the whole using only partial informa-
tion. What this and other early chapters share
is an emphasis on process. Dealing with miss-
ing information through some kind of impu-
tation procedure requires that we theorize
about the process that created the data gaps
in the first place. Why do some people
answer this question, while other respon-
dents refuse? What is it about the question,
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the kind of information the question tries to
elicit, and the known characteristics of the
respondent that makes ‘refusal’ more likely?

For example, collecting income informa-
tion is notoriously difficult. People generally
consider their household income or the
amount they have saved or invested to be
private information. Although respondents
often like to offer their opinions, they are less
pleased – and sometimes angered – by ques-
tions of ‘fact’ that appear to invade their
privacy. But techniques for collecting infor-
mation in wide categories, coupled with
information about relationships among
observed characteristics of respondents and
the piece of missing information, have
allowed improvements in imputations. To ask
someone to report last year’s gross annual
income may elicit a refusal. But to follow up
with a question that asks the respondent to
report whether it was ‘above $50 000’ creates
a benchmark. Once the respondent supplies
that first benchmark, it is often possible to
channel them through a progressive series of
categories, so that the gross annual income is
eventually known to be between $25 000
and $35 000. The exact income is still ‘miss-
ing’, but imputation procedures can now
utilize the range of values in which it falls.

In similar fashion, Chapter 4 links the
adjustments we make for sampling error (e.g.,
the building of confidence intervals around
estimates by using information on the error
of those estimates) to the selection proce-
dures that generated the sample (the part)
from the population (the whole). Again, we
rely on the theory of probability to move
from the population to the sample, and then
again to move back from the sample estimate
to the population parameter. If the selection
process was not according to some known
probability process, then probability theory is
of no use to us, and we are left with a descrip-
tion of a set of observations that do not
generalize to any known population. Later
chapters on selection models take these issues
further by suggesting approaches that explic-
itly model mechanisms of sample selection as
part of the system of equations testing struc-
tural relationships.

The process of constructing variables
also introduces error. Are single indicators
sufficient? If we combine indicators, what
type of weighting scheme should we employ?
And even at our best, we realize that there is
some slippage between the concepts as
abstractions and the variables that we use as

the informational repositories of their meaning.
But errors in measurement attenuate mea-
sures of association, making it more difficult
to take that next step of describing underly-
ing processes that produce what we observe.
And in trying to represent that process, we
are limited to our success in finding informa-
tion that maps well the conceptual space we
have defined. Missing pieces
of information – missing for everyone rather
than missing selectively – create specification
error, which can introduce bias into our con-
clusions. The chapters on regression, struc-
tural equation models, models for categorical
data, etc. all address these issues of error that
complicate the task of the researcher, provid-
ing guidance on proper procedures when we
attempt to explain the variability in depen-
dent variables measured in different ways
(e.g., by interval scale, by dichotomy, by poly-
tomous classification) and within different
levels of complexity (e.g., single equation
versus multiple equation models motivated
by concerns of endogeneity).

And if we are really interested in the
underlying process, don’t we need to look at
process? In other words, shouldn’t we be ana-
lyzing longitudinal data, following individuals
over time so we know how changes in one
aspect of their lives may be linked to subse-
quent changes in other aspects of their lives?
But then we have the complication of corre-
lated errors, since multiple observations on
one respondent are likely to be characterized
by similar observational errors at each point
in time. Or perhaps our longitudinal frame
should be the comparison of same-aged
people over time to determine whether opin-
ions in the aggregate have changed over time,
for example? Further, as social scientists, we
know that context is important, that processes
may unfold one way under one set of cir-
cumstances, but unfold differently under
different organizational or institutional con-
straints. How do we analyze information that
describes the individual within the organiza-
tional context? Over time? These are the
issues that event-history models, hierarchical
linear models, panel models, latent curve
models, and other advanced techniques were
designed to address.

The more complicated the questions we
ask, the more complicated the error structure
with which we must deal, but we are not
without tools to tackle these tasks, although
the tools become more complicated as well.
Any carpenter who wants to saw a board into
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two pieces has a variety of tools at his or her
disposal, the simplest being a handsaw. But to
cut designs into the wood, or dovetail a joint,
or fit rafters on a double-hipped roof,
requires more sophisticated tools to produce
the desired outcome.

In qualitative research, error has not been a
notion that has great currency. Indeed, some
qualitative researchers argue that the very
idea of error implies a ‘realist’ position with
which some versions of qualitative research,
particularly those influenced by postmod-
ernism (see Chapter 30), are uncomfortable.
For these qualitative researchers, it is demon-
strating the credibility of findings that is
likely to be of roughly equivalent concern
(Lincoln and Guba, 1985), although it may
be implicit in some notions of validity in
qualitative research (e.g., Kirk and Miller,
1986). Demonstrating credibility takes many
forms, but a major feature is being able to
show a close correspondence between one’s
data and one’s conceptualization, a concern
which can be translated into quantitative
research as concerns with ‘goodness of fit’, or
how well the theoretical model fits the
empirical information.

For those who use statistics, the ‘fit’ can be
assessed as prediction successes versus
prediction errors. But interpreting whether a
given level of fit, a given value of the statistic,
is persuasive evidence of the correctness of
the theory is open to dispute. And the terms
of dispute on this point are likely to be simi-
lar for both qualitative and quantitative
researchers. Are your observations consistent
with the predictions of the theory? Has the
information been properly classified? Have
you ignored other things that could change
this picture? Do I believe your story? In both
types of research, the richer the data, the
more persuasive the conceptualization is
likely to be.

Moreover, for the qualitative researcher,
the emerging concepts must be demonstrably
located in the data.The quantitative researcher
refers to this as operationalization – whether
the empirical variables fit the theoretical con-
cepts. In the process of sorting through the
vast amounts of information, many qualita-
tive researchers must inevitably classify,
which means they determine categories and
group what they observed into ‘like’ and
‘unlike’ observations. Is there only one way
this can be accomplished? Most researchers
from either camp would answer ‘no’. So
both types of researchers may be accused of

category ‘errors’, in that someone else working
with these same observational data may
define groups differently. Disputes such as
these are not uncommon.

Has the researcher ignored something
‘important’ in his or her analysis? Not inten-
tionally, but someone with a different per-
spective may argue a different ‘story’ by
picking up a feature that the first researcher
failed to consider. Quantitative researchers
refer to this as specification ‘error’, which
simply means that in developing your story,
you have left out something relevant. This
error of omission is among the most serious
in quantitative research, since it means that
the evidence on which you are basing your
conclusions is incomplete, and it is difficult to
say how the story may change once you take
this new twist into account.

These sources of ‘error’ in qualitative and
quantitative research – observational error,
classification error, and specification error –
can be introduced through the choices made
by the researcher, who may fail to pick up
important cues from his or her research par-
ticipants or may misread in conceptual terms
what is happening. Thus, even though error is
a term that is unlikely to sit easily with the
way many, if not most, qualitative researchers
envision their work, it is not without merit. A
major difference is that the quantitative
researcher turns to sampling, measurement,
and estimation theory to mathematically
formalize how error is assessed and addressed;
the qualitative researcher generally relies on
rules of logic, but not on mathematics. Both
researchers, however, must rely on argument
and the strength of evidence they muster from
their data to convince others of their story.

The trick for the qualitative researcher is
one of balancing a fidelity to the data (in a
sense, a commitment to naturalism) with a
quest to say something meaningful to one’s
peers (in other words, to conceptualize and
theorize). The advantage of fidelity to the
data is that the researcher’s emerging con-
ceptual framework will be relatively free of
error, but the problem is that it may be diffi-
cult to appear to have done anything other
than act as a conduit for the world-view of
the people who have been studied.The corol-
lary of this position is that qualitative
researchers must be wary of conceptualizing
to such an extent that there is a loss of con-
tact with the data, so that the credibility of
their findings is threatened and therefore
error creeps in.
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ORGANIZATION OF THE BOOK

It is with the kinds of issues and considera-
tions outlined above that the authors of the
chapters in this volume have sought to come
to terms. The quantitative–qualitative
research distinction partly maps onto the
organization of the book, but only partly. On
the face of it, qualitative data analysis is
covered in Part V. However, content analysis
is essentially a quantitative approach to the
analysis of unstructured or qualitative data,
while the chapters in Part I on feminist issues
in data analysis (Chapter 6) and historical
analysis (Chapter 7) transcend the distinction
in having implications for and elements of
both quantitative and qualitative approaches
to data analysis. Part I provides some of the
foundations of data analysis – the nature of
distributions and their analysis; how to con-
struct variables; the nature of observational
and statistical inference; what missing data
are and their implications; and, as has just
been remarked upon, feminist issues and
historical analysis.

Part II teaches the reader about the single-
equation general linear model, its extensions,
and its applicability to particular sorts of
research questions.Although called the ‘linear’
model, it can accommodate a variety of func-
tional forms of relationships, which can be
used to test whether an association is monoto-
nic, curvilinear, or proportional, for example.

Part III addresses the issue of studying
change. Whereas in cross-sectional analysis
we can describe how the outcome is associ-
ated with certain characteristics, in longitudi-
nal analysis we introduce the timing of the
outcome relative to the timing of changes in
the characteristics. Introducing time into the
research design creates another layer of com-
plications, which must be addressed through
both theory and technique. It also requires a
different data structure, which factors time
into both the procedures and the content of
data collection.

Part IV introduces the reader to some
recently developed but well-established
approaches to data analysis. Many of these
approaches address the issue of endogeneity,
which is the complication that some of the
factors we view as predictors of a certain out-
come are also at least partly determined
within the same system of relationships. In
such circumstances, single-equation models
are not sufficient.

Part V, as previously noted, is devoted to the
analysis of qualitative data. In Chapter 23,
some of the main elements of qualitative data
analysis are outlined, along with the issues
involved in the use of computer software for
the management and analysis of qualitative
data. Chapter 24 deals with content analysis,
which, although an approach for the analysis
of qualitative data, employs an analytic strat-
egy that is very much in tune with quantita-
tive research. Chapters 25–27 deal with
approaches to qualitative data analyses that
emphasize language and its significance in
the construction of social reality. Chapter 28
discusses grounded theory, which has been
referred to several times in this introduction
and which has become one of the major
frameworks for organizing qualitative data
analysis. Chapter 29, in presenting narrative
analysis, provides a discussion of an approach
that is attracting a growing number of adher-
ents and which in many ways provides an
alternative to the coding approach to the ini-
tial analysis of qualitative data that is charac-
teristic of grounded theory and many other
approaches to the analysis of qualitative data.
Finally, Chapter 30 provides an outline of the
highly influential postmodernist approach,
particularly in relation to qualitative data.
In many ways, the postmodernist mind-set
entails an inversion of many of our cherished
beliefs about how social research should be
carried out and about how to understand its
written products.

SUMMARY

The approaches explicated in this Handbook
are not exhaustive of the range of approaches
available to the researcher. As we explained
earlier, we chose to build on basics, yet address
some of the most difficult and complicated
issues researchers face. Some of the most
recent innovations in approaches are, at best,
mentioned parenthetically, with reference to
other sources of information the interested
reader is encouraged to pursue. Our goal is to
help readers do ‘good research’.

Good research shares some common
features. It does not violate ethical guidelines.
It is not based on ‘fictionalized’ data, but
rather on information collected according to
rules of observation and recording. It
describes with fidelity and, at its best, explains
how what was observed came to be as it was
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rather than otherwise. In building this text,
we hope to allow interested researchers to
learn from one another about a wide range of
approaches to data analysis. New techniques
are in the process of development; techniques
already in use find new advocates and new
critics. Here is a place to take up the journey.
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2

Constructing Variables

ALAN BRYMAN AND DUNCAN CRAMER

The process of quantitative research is
frequently depicted as one in which theory
is employed in order to deduce hypotheses
which are then submitted to empirical
scrutiny.Within the hypothesis will be two or
more concepts that will require translation
into empirical indicators. These indicators are
frequently referred to as variables and repre-
sent the fundamental focus of all quantitative
research. While some writers might question
the degree to which quantitative research
necessarily follows such a linear progression
and indeed how far it is driven by hypotheses
(as against simply research questions), there
is no doubt that the variable represents a
major focus (Bryman, 2001). It constitutes a
crucial bridge between conceptualization and
findings.
Essentially, the quantitative researcher is

concerned to explore variation in observed
values among units of analysis and the corre-
lates and causes of variation. All techniques
of quantitative data analysis – from the most
basic methods to the most advanced – are
concerned with capturing variation and with
helping us to understand that variation. The
variable is crucial because it is the axis along
which variation is measured and thereby
expressed. Indeed, so central is the variable
to the discourse of quantitative research
that it has to all intents and purposes become
synonymous with the notion of a concept.
Variables are, after all, supposed to be mea-
sures or indicators that are designed to quan-
tify concepts, but frequently writers of
research papers and methodology texts refer

to the process of measuring variables. In the
process, concepts and variables become
almost indistinguishable. The variable is also
frequently the focus of attention for critics of
quantitative research (e.g., Blumer, 1956), in
large part because it is emblematic of the
research strategy.
The variable can be usefully contrasted

with the idea of a constant. The latter occurs
when there is no variation in observed values
among units of analysis, as when all members
of a survey sample reply to a questionnaire
item in the same way. Uncovering constants is
relatively unusual and is likely to require a
somewhat different strategy on the part of the
researcher, since techniques of quantitative
data analysis are typically concerned with
exploring variation rather than its absence.

LEVELS OF MEASUREMENT

One of the most fundamental issues in quan-
titative data analysis is knowing which types
of technique can be used in relation to par-
ticular levels of measurement. It is funda-
mental because each statistical technique
presumes that the levels of measurement to
which it is being applied are of a certain type
or at least meet certain basic preconditions.
This means that if a technique is applied to
variables which do not meet its underlying
assumptions, the resulting calculation will be
meaningless.Therefore, being able to distinguish
between the different levels of measurement
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is basic to the art and craft of quantitative
data analysis.
Writers often refer to different ‘types of

variables’ as a shorthand for different levels of
measurement. As such there is an array of dif-
ferent types of variables or levels of measure-
ment. This array reflects the fact that the four
levels of measurement to be discussed are on a
continuum of degrees of refinement.There are
four types of variables which are typically pre-
sented in terms of an ascending scale of refine-
ment: nominal; ordinal; interval; and ratio.

Nominal variable

The nominal variable, often also referred to as
the categorical variable, is the most basic level
of measurement. It entails the arbitrary
assignment of numbers (a process referred to
as coding) to the different categories that
make up a variable. The different categories
simply constitute a classification. We cannot
order them in any way – they are simply dif-
ferent. The numbers that are different have
no mathematical significance; instead, they
act as tags which facilitate the computer pro-
cessing of the data. Thus, if we asked a ques-
tion in a social survey on religious affiliation,
we would assign a number to each type
of affiliation and record each respondent’s
affiliation with the appropriate number.
Similarly, in an experiment on asking ques-
tions, Schuman and Presser (1981) asked:

The next question is on the subject
of work. People look for different
things in a job.Which of the following
five things would you most prefer in
a job?

The five options which could be chosen were:

1 Work that pays well
2 Work that gives a feeling of
accomplishment

3 Work where there is not too
much supervision and you make
most decisions yourself

4 Work that is pleasant and where
the other people are nice to work
with

5 Work that is steady with little
chance of being laid off

In assigning numbers to each of these five
possible answers, all we are doing is supplying

a label to each type of response.We can only
say that all those answering in terms of the
first response differ from those answering in
terms of the second, who differ from those
answering in terms of the third, and so on.
Sometimes, we have just two categories,

such as male/female or pass/fail. Strictly
speaking such variables – often referred to as
dichotomous variables or binary variables
(e.g., Bryman and Cramer, 2001) – are nominal
variables. However, sometimes such variables
require a different approach to analysis from
nominal variables with more than two cate-
gories and are therefore treated by some writ-
ers as a separate type of variable.

Ordinal variable

As we have seen, with a nominal variable we
can say no more than that people (or what-
ever the unit of analysis) differ in terms of its
constituent categories. If we are able to array
the categories in terms of rank order then we
have an ordinal variable. Thus, if we asked a
sample of people how satisfied they were
with their jobs and presented them with the
following possible responses, we would have
an ordinal variable:

1 Very satisfied
2 Fairly satisfied
3 Neither satisfied nor dissatisfied
4 Fairly dissatisfied
5 Very dissatisfied

In this case, although the numbers attached
to each category are merely used to allow the
answers to be processed, we can say that each
number has a significance that is relative to
the others, since they are on a scale from 1
(denoting very satisfied) to 5 (denoting very
dissatisfied). Each number therefore repre-
sents a level of job satisfaction or dissatisfac-
tion.What we cannot say is that, for example,
the difference between being very satisfied
and fairly satisfied is the same as the differ-
ence between being very dissatisfied and
fairly dissatisfied. All we can say is that the
respondents differ in terms of their levels of
job satisfaction, with some respondents being
more satisfied than others.

Interval variable

An interval variable is the next highest level
of refinement. It shares with an ordinal variable
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the quality of the rank ordering of the
categories (which should more properly be
called values) but differs in that with an inter-
val variable, the distances between the cate-
gories are equal across the range of categories.
Thus, we can say that the difference between
a temperature of 43°F and 44°F is the same as
the difference between 24°F and 25°F. As
such, the values that an interval variable can
take are genuine numbers rather than the
scoring or coding process associated with the
quantification of the categories of nominal
and ordinal variables, where the number
system is essentially arbitrary. However, inter-
val variables are relatively unusual in the
social sciences, in that most apparently inter-
val variables are in fact ratio variables.

Ratio variable

A ratio variable represents the highest level of
measurement. It is similar to an interval vari-
able, but in addition there is a true zero
point. In measurement theory, a true zero
point implies an absence of the quality being
measured, that is, you cannot have less than
none of it. This feature means that not only
can we say that the difference between an
income of $30 000 a year and an income of
$60 000 a year is the same as the difference
between an income of $40 000 and an
income of $70 000 a year (that is, a difference
of $30 000), but also we can say that the
income of $60 000 a year is double that of
$30 000 a year. This means that we can con-
duct all four forms of arithmetic on ratio vari-
ables. Similar qualities can be discerned in
such common variables as age, years in full-
time education, size of firm, and so on.
In the social sciences, because most appar-

ently interval variables are ratio variables, it is
common for writers to prefer to refer to them
as interval/ratio variables (e.g., Bryman and
Cramer, 2001). Moreover, the vast majority
of statistical techniques which require that
the variable in question is at the interval level
of measurement can also be used in relation

to ratio variables. Therefore, the crucial
distinctions for most purposes are between
nominal, ordinal and interval/ratio variables.
Table 2.1 seeks to bring together the key

decision-making principles that are involved
in deciding how to distinguish between
different kinds of variables.

MEASURES AND INDICATORS

A distinction is often drawn between mea-
sures and indicators. Measures constitute
direct quantitative assessments of variables.
For example, we could say that a question on
respondents’ incomes in a survey would pro-
vide us with a measure of the variable
income. As such, reported income is a very
direct estimate of income. This can be con-
trasted with a situation in which the quanti-
tative assessment of a variable is or has to be
indirect. An example is the previously cited
question on job satisfaction. While the ques-
tion asks directly about job satisfaction, we
do not know whether it does in fact tap that
underlying variable. In this case, we are using
the question as an indicator of job satisfac-
tion. Whether it does in fact reflect respon-
dents’ levels of job satisfaction is an issue to
do with whether it is a valid indicator, about
which more will be said below. The issue of
whether something is an indicator or a mea-
sure is not to do with an inherent quality: if
respondents’ answers to a question on their
incomes are employed as a proxy for social
class, it becomes an indicator rather than a
measure as in the previous illustration.

CODING

A key step in the preparation of data for pro-
cessing by computer is coding. As has already
been suggested in relation to nominal and
ordinal variables, precisely because these vari-
ables are not inherently numerical, they must
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Is there a true Are the distances Can the categories
zero point? between categories equal? be rank-ordered?

Ratio variable Yes Yes Yes
Interval variable No Yes Yes
Ordinal variable No No Yes
Nominal variable No No No
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be transformed into quantities. Illustrations of
the coding process have already been pro-
vided in relation to Schuman and Presser’s
(1981) question on work motivation and an
imaginary example of a question on job satis-
faction. In each case, the numbers chosen are
arbitrary. They could just as easily start with
zero, or the direction of the coding could be
the other way around.
Coding in relation to social surveys arises

mainly in relation to two kinds of situations.
Firstly, in the course of designing a structured
interview or self-administered questionnaire,
researchers frequently employ pre-coded ques-
tions. Such questions include on the instru-
ment itself both the categories from which
respondents must choose and the code
attached to each answer. Coding then
becomes a process of designating on the com-
pleted questionnaires which code an answer
denotes. The second kind of context arises in
relation to the post-coding of open questions.
Coding in this context requires that the
researcher derives a comprehensive and
mutually exclusive set of categories which
can denote certain kinds of answer.
What is crucial is that the coding should be

such that:

• the list of categories is mutually exclusive
so that a code can only apply to one
category;

• the list of categories is comprehensive, so
that no category or categories have been
obviously omitted; and

• whoever is responsible for coding has
clear guidelines about how to attach
codes so that their coding is consistent
(often called intra-coder reliability) and so
that where more than one person is
involved in coding the people concerned
are consistent with each other (inter-coder
reliability).

The first two considerations are concerned
with the design of pre-coded questions and
with the derivation of categories from open
questions. The third consideration points to
the need to devise a coding frame which pin-
points the allocation of numbers to cate-
gories. In a sense, with pre-coded questions,
the coding frame is incorporated into the
research instrument. With open questions,
the coding frame is crucial in ensuring that a
complete list of categories is available and
that the relevant codes are designated. In
addition, it is likely to be necessary to include

a detailed set of instructions for dealing with
the uncertainties associated with the catego-
rization of answers to open questions when
the appropriate category is not immediately
obvious. With techniques like structured
observation and content analysis, the design
of such instructions – which is often in a form
known as a coding manual – is a crucial step
in the coding of the unstructured data which
are invariably the focus of these methods.
A further consideration is that researchers

quite often recode portions of their data. This
means that their analyses suggest that it
is likely to be expedient or significant to
aggregate some of the codes and hence the
categories that the codes stand for. For exam-
ple, in the coding of unstructured data, the
researcher might categorize respondents into,
for example, nine or ten categories. For the
purposes of presenting a frequency table for
that variable, this categorization may be
revealing, but if the sample is not large, when
a contingency table analysis is carried out
(e.g. cross-tabulating the variable by age), the
cell frequencies may be too small to provide
a meaningful set of findings. In response to
this situation, the researcher may group some
of the categories of response so that there are
just five categories. Such recoding of the data
can only be carried out if the recoded cate-
gories can be meaningfully combined. There
is the risk that the process of recoding in this
way might result in combinations that cannot
be theoretically justified, but recoding of data
is quite common in the analysis of survey and
other kinds of data.

SCALE CONSTRUCTION

One of the crucial issues faced in the mea-
surement process in social research is
whether to employ just one or more than one
(and in fact usually several) indicators of a
variable. Employing more than one indicator
has the obvious disadvantage of being more
costly and time-consuming than relying
on one indicator. However, there are certain
problems with a dependence on single
indicators:

1. A single indicator may fail to capture the
full breadth of the concept that it is
standing in for. This means that impor-
tant aspects of the concept are being
overlooked. The use of more than one
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indicator increases the breadth of the
concept that is being measured.

2. In surveys, a single indicator may fail to
capture a respondent’s attitude to an
issue or behaviour. This may be due to a
variety of factors, such as lack of under-
standing or misinterpretation of a ques-
tion. By using several indicators, the
effect of such error may be at least partly
offset by answers to other questions
which serve as indicators and which are
not subject to the same problem.

3. When more than one indicator is
employed and the score on each indica-
tor is then combined to form a total score
for each respondent (as occurs with the
use of summated scales – see below),
much greater differentiation between
respondents is feasible than when a single
indicator is employed. For example, with
the imaginary job satisfaction indicator
used above, respondents could only be
arrayed along a scale from 1 to 5. If more
than one indicator is used and scores are
aggregated, much finer quantitative
distinctions become possible.

In other words, for any single respondent,
reliance on a single indicator increases the
likelihood of measurement error.
The recognition of the importance of

multiple-indicator measures has resulted in a
growing emphasis on the construction of
scales. There are different approaches to scale
construction, but most researchers employ
summated scales, which entail the use of sev-
eral items which are aggregated to form a
score for each respondent. This allows much
finer distinctions between respondents to be
made (see point 3 above). One of the most
common formats for this type of scale is the
Likert scale, whereby respondents are pre-
sented with a series of statements to which
they indicate their levels of agreement or
disagreement.
To illustrate this approach to scale con-

struction, consider an attempt by a researcher
interested in consumerism to explore (among
other issues) the notion of the ‘shopaholic’.
The following items might be used to form a
Likert scale to measure shopaholicism:

1 I enjoy shopping.
Strongly Agree Neither Disagree Strongly
agree agree disagree

nor
disagree

2 I look forward to going shopping.
Strongly Agree Neither Disagree Strongly
agree agree disagree

nor
disagree

3 I shop whenever I have the opportunity.
Strongly Agree Neither Disagree Strongly
agree agree disagree

nor
disagree

4 I avoid going shopping if I can.
Strongly Agree Neither Disagree Strongly
agree agree disagree

nor
disagree

5 When I visit a town or city I don’t know
well, I always want to see the shops.
Strongly Agree Neither Disagree Strongly
agree agree disagree

nor
disagree

6 Shopping is a chore that I have to put up
with.
Strongly Agree Neither Disagree Strongly
agree agree disagree

nor
disagree

Each reply will be scored. Various scoring
mechanisms might be envisaged, but let us
say that we want 5 to represent the highest
level of shopaholicism represented by each
answer and 1 the lowest, with 3 representing
the neutral position. Notice that two of the
items (4 and 6) are ‘reverse items’. With the
four others agreement implies a penchant for
shopping. However, with items 4 and 6,
agreement suggests a dislike of shopping.
Thus, with items 1, 2, 3 and 5, the scoring
from strongly agree to strongly disagree will
go from 5 to 1, but with items 4 and 6 it will
go from 1 to 5. This reversal of the direction
of questioning is carried out because of the
need to identify respondents who exhibit
response sets, which have been defined as
‘irrelevant but lawful sources of variance’
(Webb et al., 1966: 19). An example of a
response set to which Likert and similar
scales are particularly prone is yeasaying or
naysaying, whereby respondents consistently
answer in the affirmative or negative to a bat-
tery of items apparently regardless of their
content. Consequently, if a respondent
answered strongly agree to all six items, we
would probably take the view that he or she
is not paying much attention to the content
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of the items, since the answers are highly
inconsistent in their implications.
The scale would have a minimum score for

any individual of 6 (presumably indicating a
‘shopaphobe’) and a maximum of 30 (a total
‘shopaholic’). Most will be arrayed on the 23
points in between. A respondent scoring 5, 4,
4, 5, 3, 5, producing a score of 26, would be
towards the shopaholic end of the con-
tinuum. A further feature of such scales is
that essentially they produce ordinal vari-
ables.We cannot really say that the difference
between a score of 12 and a score of 13 is
equal to the difference between a score of 15
and a score of 16. However, most writers are
prepared to treat such scales as interval/ratio
variables on the grounds that the large num-
ber of categories (25 in this case) means that
they approximate to a ‘true’ interval/ratio
variable. Certainly, summated scales are rou-
tinely treated as though they are
interval/ratio variables in journal papers
reporting the results of research.
With a Likert scale, respondents indicate

their degrees of agreement. While a five-
point scale of agreement is employed in the
above example, some researchers prefer to
use seven-point scales (very strongly agree,
strongly agree, agree, etc.) or even longer
ones. Other types of response format for
summated scales include the binary response
format:

I enjoy shopping Agree Disagree

the numerical response format:

I enjoy shopping 5 4 3 2 1

(where 5 means Strongly agree and 1
means Strongly disagree)

and the bipolar numerical response format:

I enjoy shopping 7 6 5 4 3 2 1 I hate shopping

Once a scale has been devised and adminis-
tered, the researcher needs to ask whether
the resulting scale measures a single dimen-
sion. There are three highly related aspects to
this question.

1. Is there an item (or are there items)
showing a different pattern of response
from those associated with the other con-
stituent items? If there are, the offending
item or items need to be eliminated from
the scale. One way of checking for this

possibility is to search out information on
the item–total correlations. An inter-item
correlation relates scores on each item to
scores on the scale overall. If an inter-
item correlation is much lower or higher
than other inter-item correlations, it
becomes a candidate for exclusion from
the scale.

2. Is the scale internally reliable? This issue,
which will be elaborated upon below, is
concerned with the overall internal
coherence of the items. Eliminating
items which show a different pattern of
response from the rest will enhance
internal reliability.

3. Does the scale contain more than one
dimension? If there are items which
show a different pattern of response, it
may be that there is a systematic quality
to this variation such that the scale is not
measuring a single dimension but possi-
bly two or more. When this occurs, the
nature of the underlying dimensions
needs to be identified and named. Factor
analysis is the most appropriate means of
exploring this issue and will be given
greater attention below.

The second of these aspects is concerned
with the more general issue of the reliability
of variables, which, along with validity, is a
crucial issue in the evaluation of the adequacy
of a variable.

RELIABILITY AND VALIDITY OF VARIABLES

Reliability and validity are crucial criteria in
the evaluation of variables. In spite of the fact
that these two terms are often used inter-
changeably in everyday speech, they refer to
different aspects of the qualities of variables.

Reliability

Reliability is concerned with the consistency
of a variable. There are two identifiable
aspects of this issue: external and internal reli-
ability. If a variable is externally reliable it
does not fluctuate greatly over time; in other
words, it is stable. This means that when we
administer our scale of shopaholicism, we can
take the view that the findings we obtain are
likely to be the same as those we would find
the following week. The most obvious exam-
ination of external reliability is to test for
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test–retest reliability.This means that sometime
after we administer our scale, we readminis-
ter it and examine the degree to which
respondents’ replies are the same for the two
sets of data. The chief difficulty with this
method is that there are no guidelines about
the passage of time that should elapse
between the two waves of administration. If
the passage of time is too great, test–retest
reliability may simply be reflecting change
due to intervening events or respondents’
maturation. Furthermore, testing for test–retest
reliability can become a major data collection
exercise in its own right, especially when
large samples are involved and when there
are several variables to be tested.

Internal reliability is an issue that arises in
connection with multiple-indicator variables.
If a variable is internally reliable it is coher-
ent. This means that all the constituent indi-
cators are measuring the same thing. There
are several methods for assessing internal reli-
ability, one of which – item–total correlations –
was briefly mentioned above. A further
method is split-half reliability.This entails ran-
domly dividing the items making up a scale
into two halves and establishing how well the
two halves correlate. A correlation below 0.8
would raise doubts about the internal coher-
ence of the scale and perhaps prompt a
search for low item–total correlations. In the
case of the shopaholicism scale, the scale
would be divided into two groups of three
items, and respondents’ scores on the two
groups of items would be assessed. Nowadays,
the most common method of estimating inter-
nal reliability is Cronbach’s alpha (α), which is
roughly equivalent to the average of all possi-
ble split-half reliability coefficients for a scale
(Zeller and Carmines, 1980: 56). The usual
formula is

where k is the number of items;
∑

σ i
2 is the

sum of the total variances of the items; and σx
2

is the variance of the total score (Pedhazur
and Schmelkin, 1991: 93). If alpha comes out
below 0.8, the reliability of the scale may
need to be investigated further. Computer
software programs such as SPSS include a
facility whereby it is possible to request that
the alpha for the scale be computed with a
particular item deleted. If there is a sharp rise
in the level of alpha when any item is deleted,

that item will then become a candidate for
exclusion from the scale.
An important consideration in the mea-

surement process is that resulting variables
will contain measurement error – variation
that is separate from true variation in the
sample concerned. Such measurement error
is an artefact of the measurement instru-
ments employed and their administration.
For many researchers, assessing internal relia-
bility is one way in which they can check on
the degree of measurement error that exists
in summated scales, although it cannot
exhaust the range of possible manifestations
of such error.

Validity

Validity is concerned with the issue of
whether a variable really measures what it is
supposed to measure. Can we be sure that
our scale of shopaholicism is really to do with
shopaholicism and not something else? At
the very least, we should ensure that our scale
exhibits face validity. This will entail a rigor-
ous examination of the wording of the items
and an examination of their correspondence
with the theoretical literature on consump-
tion. We might also submit our items to
judges and invite them to comment on the
wording of the items and on the goodness of
fit between the items and what we might take
shopaholicism to entail. However, face valid-
ity is only a first step in validity assessment.

Criterion-related validity assesses a scale in
terms of a criterion in terms of which people
are known to differ. This form of validity
assessment can be viewed in terms of two
forms. Firstly, testing for concurrent validity
relates a variable to a contemporaneous crite-
rion. Thus, we might ask respondents who are
completing our shopaholicism scale how fre-
quently they go shopping. If we found that
there was no difference between shopaholics
and shopaphobes in terms of the frequency
with which they go shopping, we might ques-
tion how well the scale is measuring the
underlying concept. Equally, if the two types
of shoppers clearly differ, our confidence is
enhanced that the scale is measuring what it
is supposed to be measuring. Secondly, test-
ing for predictive validity relates a variable to
a future criterion. Some months after we
administer the shopaholicism scale we might
recontact our respondents and ask them
about the frequency with which they have
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been shopping in the previous month. Again,
we would expect the shopaholicism scale to
be able to discriminate between the frequent
and occasional shoppers. Alternatively, we
might ask our respondents to complete a
structured diary in which they report the fre-
quency with which they go shopping and the
amounts of time spent on their expeditions.
Testing for construct validity entails an

examination of the theoretical inferences that
might be made about the underlying con-
struct. It means that we would have to stipu-
late hypotheses concerning the construct
(shopaholicism) and then test them. Drawing
on theories about the consumer society and
consumerism, we might anticipate that
shopaholics will be more concerned about
the sign value of goods than their use value.
Consequently, we might expect they will
be more concerned with the purchase of
goods with designer labels. We could there-
fore design some questions concerned with
respondents’ predilection for designer brands
and relate these to findings from our shopa-
holicism scale. Of course, the problem here is
that if the theoretical reasoning is flawed, the
association will not be forged and this is
clearly not a product of any deficiencies with
our scale.
These are the major forms of validity

assessment. Other methods, such as conver-
gent validity, whereby a different method is
employed to measure the same concept, are
employed relatively rarely because they con-
stitute major projects in their own right.
One final point on this issue is that validity

presupposes reliability. If you have an unreliable
variable, it cannot be valid. If a variable is
externally unreliable, it fluctuates over time
and therefore cannot be providing a true indi-
cation of what it is supposed to be measuring.
If it is internally unreliable, it is tapping more
than one underlying concept and therefore is
not a genuine measure of the concept in
question.

DUMMY VARIABLES

One way of examining the association
between a nominal or categorical variable
(such as religious affiliation or nationality)
and a non-nominal variable (such as income
or life satisfaction) is to code the different
categories of the categorical variable in a par-
ticular way called dummy coding (Cohen
and Cohen, 1983). This procedure will be

explained in terms of the following example.
Suppose we wanted to determine the associa-
tion between nationality and life satisfaction.
To enable the relevant statistics to be com-
puted, a small sample of fictitious data has
been created and is presented in Table 2.2.
The categorical variable consists of three

nationalities,American, British and Canadian.
Each group consists of three people. The
non-categorical variable comprises a 10-point
measure of life satisfaction varying from 1 to
10, with higher scores representing greater
life satisfaction. From the mean score for each
nationality, we can see that the Americans
have the greatest life satisfaction, followed
by the Canadians and then the British. What
we are interested in is not the association
between particular nationalities and life satis-
faction (e.g., being American and life satisfac-
tion) but the association between the general
variable reflecting these nationalities and
life satisfaction (i.e., the association between
nationality and life satisfaction).
The simplest way of expressing the associ-

ation between the general variable of nation-
ality and life satisfaction is in terms of the
statistical coefficient called eta squared. Eta
squared is the variance in life satisfaction
attributed to the variable of nationality as a
proportion of the total variance in life satis-
faction. It can be worked out from an unre-
lated one-way analysis of variance. In this case
eta squared is 0.194. This method does not
involve dummy coding.
The dummy coding of a categorical vari-

able may be used when we want to compare
the proportion of variance attributed to
that variable with the proportion of variance
attributed to non-categorical variables (such
as age) together with any other categorical
variables (such as marital status).The method
usually used to determine these proportions
is multiple regression.Multiple regression can
be represented by the following regression
equation:

y = a + b1x1 + b2x2 + … + bkxk.
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Table 2.2 Life satisfaction in three nationalities
American British Canadian

9 8 7
7 5 7
6 4 4

Mean 7.33 5.67 6.00
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The dependent or criterion variable is often
designated y and in our example is life satis-
faction. The independent or predictor vari-
ables are usually signified by x1 to xk. One of
the predictor variables in our example is
nationality. Another predictor might be age.
The contribution or weight of each predictor
is normally the partial regression coefficient,
which is generally symbolized as b1 to bk. The
a is the intercept and may be referred to as
the constant.
Multiple regression assumes that the pre-

dictor variables are dichotomous or non-
categorical. Dichotomous variables (such as
gender) have two categories (female and
male) and may be treated as if they are non-
categorical in that one category is arbitrarily
assumed to be higher than another. For exam-
ple, females may be coded 1 and males 2.This
cannot be done with categorical variables
having more than two categories because the
numbers will be seen as reflecting an ordinal
scale at the very least. For instance, if we coded
Americans 1, Britons 2 and Canadians 3, mul-
tiple regression will assume that Americans
have the highest value and Canadians the low-
est, which might not be the case. We cannot
order nationalities in terms of their mean score
on life satisfaction (with Americans coded 1,
Canadians 2 and Britons 3) because this order
might not be the same for the other predictor
variables (such as age). Consequently, we have
to treat the categorical variable as if it were a
series of dichotomous variables.
The simplest form of coding is dummy cod-

ing, where we assign a 1 to the units of analy-
sis belonging to that category and 0 to units
not belonging to that category. So, for exam-
ple, we could code the three nationalities as
shown in Table 2.3. Here we use one dummy
variable to code all Americans as 1 and all
non-Americans as 0.We use another dummy
variable to code all Britons as 1 and non-
Britons as 0. In this scheme Americans are
represented by a 1 on the first dummy
variable and a 0 on the second dummy vari-
able. Britons are denoted by a 0 on the first
dummy variable and a 1 on the second dummy
variable.We do not need a third dummy vari-
able to code Canadians because Canadians
are represented by a 0 on both dummy vari-
ables. The category denoted by all 0s is some-
times known as the reference category. Thus,
only two dummy variables are needed to
represent these three categories.
The number of dummy variables required

to code a categorical variable is always one

less than the number of categories. So, if
there are four categories, three dummy vari-
ables are necessary. It does not matter which
category is denoted by 1s and 0s. In our
example, Americans could have been coded
0 0, Britons 1 0 and Canadians 0 1.The results
for the dummy variables taken together will
be exactly the same. If the reference category
is also coded in 1s and 0s, then one less than
the total number of dummy variables will be
entered into the multiple regression because
one of them is redundant. The reference cat-
egory is represented by the intercept a in the
regression equation. So, the multiple regres-
sion equation for regressing the criterion of
life satisfaction on the dummy coded cate-
gorical variable of nationality is:

Life satisfaction = Canadian

(y) (a)

+ b1 × American + b2 × British

(b1x1) (b2x2)

The multiple correlation squared is 0.194,
which is the same value as that for eta
squared. Dummy coded variables represent-
ing a particular categorical variable need to
be entered together in a single step in a hier-
archical multiple regression analysis.

EFFECTS AND CONTRAST CODING

Two other ways of coding categorical vari-
ables are effects and contrast coding. Both
these methods will explain exactly the same
proportion of variance by the categorical vari-
able as dummy coding. However, the partial
regression coefficients may differ insofar as
they represent different comparisons. If infor-
mation on particular comparisons is also
needed, the required comparisons have to be
specified with the appropriate coding. With
dummy coding, the constant is the reference
category. In our example on nationality,
the unstandardized partial regression coeffi-
cient for the first dummy variable essentially
compares the mean life satisfaction of
Americans with that of Canadians. Similarly,
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Table 2.3 Dummy variable coding
of three nationalities
Nationalities d1 d2
American 1 0
British 0 1
Canadian 0 0
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the unstandardized partial regression
coefficient for the second dummy variable
compares the mean life satisfaction of Britons
with that of Canadians. See Cohen and
Cohen (1983) for further details.
With effects coding, the constant is the

mean of all equally weighted group means,
which is produced by coding one of the
categories as −1 instead of 0, such as the
Canadians as shown in Table 2.4. In this case,
the unstandardized partial regression coeffi-
cient for the first effects-coded variable com-
pares the mean life satisfaction of Americans
with that of all three groups. The unstandar-
dized partial regression coefficient for the
second effects-coded variable contrasts the
mean life satisfaction of Britons with that of
the three nationalities.
Contrast coding enables other kinds of

comparisons to be made provided that the
comparisons are independent or orthogonal.
As with dummy and effects coding, the num-
ber of comparisons is always one less than the
number of groups. For example, if we wanted
to compare Americans with Britons and
Americans and Britons combined with
Canadians, we would code the groups as indi-
cated in Table 2.5. For the comparisons to be
independent, the products of the codes for
the new contrast-coded variables have to sum
to zero, which they do in this case:

1 × (− ½) + (−1) × (− ½) + 0 × 1

= − ½ + ½ + 0 = 0.

FACTOR ANALYSIS

Factor analysis is commonly used to deter-
mine the factorial validity of a measure

assessed by several different indices. Factorial
validity refers to the extent to which separate
indices may be seen as assessing one or more
constructs. Indices that measure the same
construct are grouped together to form a
factor. Suppose, for example, we were inter-
ested in determining whether people who
said they were anxious were also more likely
to report being depressed.We made up three
questions for assessing anxiety (A1–A3)
and three questions for measuring depression
(D1–D3):

A1 I get tense easily
A2 I am often anxious
A3 I am generally relaxed

D1 I often feel depressed
D2 I am usually happy
D3 Life is generally dull

Each question is answered on a five-point
Likert scale ranging from ‘Strongly agree’
(coded 1) through ‘Neither agree nor disagree’
(coded 3) to ‘Strongly disagree’ (coded 5).
The anxiety questions appear to ask about

anxiety and the depression questions seem to
be concerned with depression. If people can
distinguish anxiety from depression and if
people who are anxious tend not to be
depressed as well, then answers to the anxiety
questions should be more strongly related to
each other than to the answers to the depres-
sion questions. Similarly, the answers to the
depression questions should be more highly
associatedwith each other thanwith the answers
to the anxiety questions. If this turns out to
be the case, the three items measuring anxi-
ety may be combined together to form a
single index of anxiety, while the three items
assessing depression may be aggregated
to create a single measure of depression. In
other words, the anxiety items should form
one factor and the depression items should
form another factor.
However, the way the answers to these six

questions are actually grouped together may
differ from this pattern. At one extreme, each
answer may be unrelated to any other answer
so that the answers are not grouped together
in any way. At the other extreme, all the
answers may be related and grouped together,
perhaps representing a measure of general dis-
tress. In between these two extremes the
range of other possible patterns is large. For
example, the two positively worded items
(A3 and D2) may form one group of related
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Table 2.4 Effects coding of three nationalities
Nationality e1 e2
American 1 0
British 0 1
Canadian −1 −1

Table 2.5 Contrast coding of three
nationalities
Nationality c1 c2
American 1 −½
British −1 −½
Canadian 0 1
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items and the remaining four negatively
worded items may comprise another group of
related items. We use factor analysis to see
how the items group together.

Correlation matrix

The first step in looking at the way the
answers are related to each other is to corre-
late each answer with every other answer. To
illustrate our explanation we will use the
small sample of fictitious data in Table 2.6.
This table shows the coded answers of six
people to the six questions on anxiety and
depression. So, case number 1 answers ‘strongly
disagree’ to the first question (A1) and ‘nei-
ther agree nor disagree’ to the second ques-
tion (A2). Correlating the answers of the six
cases to the six questions results in the trian-
gular correlation matrix shown in Table 2.7.
Correlations can vary from –1 through 0

to 1. The sign of the correlation indicates the
direction of the relationship between two
variables. A negative correlation represents
high scores on one variable (e.g., 5) being
associated with low scores on the other

variable (e.g., 1). For instance, from Table 2.7
we can see that the correlation between the
answers to the questions about being anxious
(A2) and being relaxed (A3) is −0.94. In
other words, people who agree they are anx-
ious have a strong tendency to disagree that
they are relaxed (and vice versa). A positive
correlation indicates high scores on one vari-
able being associated with high scores on the
other variable and low scores on one variable
going together with low scores on the other
variable. For example, in Table 2.7 we can see
that the correlation between the answers to
the questions about being tense (A1) and
being anxious (A2) is 0.51. In other words,
individuals who agree that they are tense have
a moderate tendency to agree that they are
anxious.
The strength of the association between

two variables is indicated by its absolute
value (i.e., disregarding the sign of the corre-
lation). The correlation between being
anxious and being relaxed (−0.94) is stronger
than that between being tense and being anx-
ious (0.51) because it is bigger. Conven-
tionally, correlations in the range of 0.1 to 0.3
are usually described verbally as being weak,
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Table 2.6 Coded answers on a 5-point scale to six questions
Cases A1(Tense) A2 (Anxious) A3 (Relaxed) D1 (Depressed) D2 (Happy) D3 (Dull)

1 5 3 2 3 4 2
2 2 1 4 3 2 4
3 4 3 2 4 1 4
4 3 5 1 2 3 2
5 2 1 5 4 2 4
6 3 2 4 3 4 1

Table 2.7 Triangular correlation matrix for six variables
Variables A1 (Tense) A2 (Anxious) A3 (Relaxed) D1 (Depressed) D2 (Happy) D3 (Dull)

A1
(Tense) 1.00
A2
(Anxious) 0.51 1.00
A3
(Relaxed) −0.66 −0.94 1.00
D1
(Depressed) −0.04 −0.61 0.51 1.00
D2
(Happy) 0.33 0.22 −0.11 −0.59 1.00
D3
(Dull) −0.36 −0.45 0.29 0.63 −0.91 1.00
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small or low; correlations in the range of
0.4 to 0.6 as being moderate or modest; and
correlations in the range of 0.7 to 0.9 as being
strong, large or high. The correlations in the
diagonal of the matrix can be ignored or
omitted as they represent the correlation of
the variable with itself. This will always be
1.0 as there is a perfect positive relationship
between two sets of the same scores.
From Table 2.7 it can be seen that the

absolute size of the correlations among the
three anxiety answers ranges from 0.51 to
0.94, suggesting that these answers go
together. The absolute size of the correlations
among the three depression answers ranges
from 0.59 to 0.91, indicating that these
answers go together. The data were deliber-
ately generated to be associated in this way. In
data that have not been so made up, the
pattern may be less obvious. Even in these
data, the pattern of results is not clear-cut.
The absolute size of the correlation between
being anxious (A2) and being depressed (D1)
is 0.61, larger than the 0.51 between being
tense (A1) and being anxious (A2). Further-
more, the correlation between being relaxed
(A3) and being depressed (D1) is 0.51, the
same as that between being tense (A1) and
being anxious (A2). Consequently, it is possi-
ble that the answers to D1 may be more
closely associated with the three anxiety
items than with the other two depression
items. Thus, the way the items are grouped
may not be sufficiently apparent from simply
looking at the correlations among the items.
This is more likely to be the case the larger
the number of variables. Factor analysis is
used to make the way variables are grouped
together more obvious.
Factor analysis is a set of statistical pro-

cedures that summarize the relationships
between the original variables in terms of a
smaller set of derived variables called factors.
The relationship between the original vari-
able and the factors is expressed in terms of a
correlation or loading. The larger the absolute
size of the correlation, the stronger the asso-
ciation between that variable and that factor.
The meaning of a factor is inferred from the
variables that correlate most highly with it.
Originally, factor analysis was used to explore
the way in which variables were grouped
together. More recently, statistical techniques
have been designed to determine whether
the factors that have been obtained are
similar to or confirm those that were either

hypothesized as existing or actually found in
another group. Consequently, when develop-
ing a series of indices to measure a variable,
it may be more appropriate to use an
exploratory rather than a confirmatory factor
analytic technique. If we want to compare our
results with those already obtained, then con-
firmatory factor analysis may be preferable.

Exploratory factor analysis

There are a number of different procedures
for exploratory factor analysis. The two most
commonly used are principal components and
principal factors or axes. Factor analysis is the
term used to describe all methods of analysis
but may also refer to the particular technique
called principal factors. In principal compo-
nents all the variance in a variable is analysed.
Variance is a measure of the extent to which
the values of a variable differ from the mean.
In principal components, this variance is set
at 1.0 to indicate that all the variance in a
variable is to be analysed. This will include
any variance that may be due to error rather
than to the variable being measured. In prin-
cipal axes only the variance that the variable
shares with all other variables in the analysis
is analysed. This shared variance or covari-
ance is known as communality and will be less
than 1.0. Communality is also sometimes
used to refer to the variance in principal
components.
Often both procedures will give similar

results so that it does not matter which pro-
cedure is selected. Tabachnick and Fidell
(2001) have suggested that principal compo-
nents should be used when an empirical
summary of the data is required, whereas
principal axes should be applied when testing
a theoretical model. One problem with prin-
cipal axes is that the communalities may not
always be estimable or may be invalid (e.g.,
having values greater than 1 or less than 0),
thereby requiring one or more variables to be
dropped from the analysis. Consequently, we
will use principal components to illustrate
the explanation of factor analysis.

Initial factors The number of factors ini-
tially extracted in an analysis is always the
same as the number of variables, as shown in
Table 2.8. For each variable, the entries in the
table represent its loading or correlation
with each factor; the square of each entry is a
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measure of variance. So, the variance of A1 is
−0.62 squared, which is about 0.38. The
amount of variance accounted for by a factor
is called the eigenvalue or latent root, and is
the sum of the squares of each entry in a
column, that is, the sum of the variances for
each variable. The first factor has the highest
loadings and extracts or reflects the greatest
amount of variance in the variables. It has an
eigenvalue of 3.42. Subsequent factors repre-
sent decreasing amounts of variance. The
second factor has an eigenvalue of 1.53, while
the sixth factor has an eigenvalue of 0. The
eigenvalues should sum to the number of
factors, which in this case is 6 (allowing
for rounding error). The variance that each
factor accounts for can also be expressed as a
proportion of the total variance. Thus, the
first factor explains 3.42/6.00 = 0.57 of the
total variance, and the second factor
1.53/6.00 = 0.26.

Number of factors to be retained Because
the number of factors extracted is always the
same as the number of variables that are
analysed, we need some criterion for deter-
mining which of the smaller factors should be
ignored as the bigger ones account for most
of the variance. One of the main criteria used
is the Kaiser or Kaiser–Guttman criterion,
which was suggested by Guttman and
adapted by Kaiser. This criterion ignores
factors that have eigenvalues of 1 or less. The
maximum variance that each variable
explains is set at 1, so that factors having
eigenvalues of 1 or less explain less variance
than that of one variable on average. In other
words, according to this criterion, only factors
that account for the variance of more than
one variable are retained for further analysis.

In our example, only the first two factors
have eigenvalues of more than 1, while the
other four factors have eigenvalues of 1 or
less. Thus, according to this criterion, we
would keep the first two factors for further
analysis. It should be noted that a cut-off at 1
may be somewhat arbitrary when there are
factors which fall close to either side of this
value. According to this criterion, a factor
with an eigenvalue of 1.01 will be retained
while one with an eigenvalue of 0.99 will be
dropped, although the difference in the
eigenvalues of these two factors is very small.
In such cases it may be worthwhile extracting
both more and fewer to see whether these
factors, when rotated, are more meaningful
than those retained according to Kaiser’s
criterion.
A second criterion is the graphical scree

test proposed by Cattell (1966), who sug-
gested that the Kaiser criterion may retain
too many factors when there are many vari-
ables and too few factors when there are few
variables. Child (1990) has specified ‘many
variables’ as more than 50 and ‘few’ as less
than 20. In the scree test the eigenvalue
of each factor is represented by the vertical
axis of the graph while the factors are
arranged in order of decreasing size of eigen-
value along the horizontal axis, as shown in
Figure 2.1.
Scree is a geological term for the rubble

and boulders lying at the base of a steep slope
and obscuring the real base of the slope itself.
The number of factors to be extracted is indi-
cated by the number of factors that appear to
represent the line of the steep slope itself
where the scree starts. The factors forming
the slope are seen as being the substantial
factors, while those comprising the scree are
thought to be small error factors.The number
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Table 2.8 Initial principal components
1 2 3 4 5 6

A1 (Tense) −0.62 0.39 0.67 −0.13 −0.02 0.00
A2 (Anxious) −0.84 0.44 −0.23 0.20 0.09 0.00
A3 (Relaxed) 0.79 −0.61 0.10 0.05 0.03 0.00
D1 (Depressed) 0.77 0.26 0.54 0.21 0.04 0.00
D2 (Happy) −0.69 −0.68 0.24 −0.08 0.11 0.00
D3 (Dull) 0.80 0.53 −0.15 −0.22 0.10 0.00
Eigenvalues 3.42 1.53 0.88 0.16 0.03 0.00
Eigenvalues as 0.57 0.26 0.15 0.03 0.01 0.00
proportion of
total variance
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of the factor identifying the start of the scree
indicates the number of factors to be kept.
The scree factors are usually identified by

being able to draw a straight line through or
very close to their points on the graph.This is
not always easy to do, as shown in Figure 2.1.
In this case it is unclear whether the scree
begins at factors 2, 3 or 4, and so whether the
number of factors to be retained for further
analysis should be 2, 3 or 4. Thus, one
problem with the scree test is that determin-
ing where the scree begins may be subjective,
as in this example. When this occurs, it may
be useful to extract both fewer and more
factors around the number suggested by the
scree test and to compare their meaningful-
ness when rotated. If more than one scree can
be identified using straight lines, the number
of factors to be retained is minimized by
selecting the uppermost scree.

Factor rotation As already explained, the
first factor in a factor analysis is designed to
represent the largest amount of variance in
the variables. In other words, most of the vari-
ables will load or correlate most highly with
the first factor. If we look at the absolute
loadings of the variables on the first factor in
Table 2.8, we see that they vary from 0.62 to
0.84. The second factor will reflect the next

largest amount of variance.As a consequence,
the loadings of the variables on the second
factor will generally be lower.We see in Table
2.8 that they range in absolute value from
0.26 to 0.68. The loading of variables on two
factors can be plotted on two axes represent-
ing those factors, as shown in Figure 2.2.
These axes are called reference axes. In Figure
2.2 the horizontal axis represents the first
factor and the vertical axis the second factor.
The scale on the axes indicates the factor
loadings and varies in steps of 0.2 from –1.0
to +1.0. The item on anxiousness (A2),
for example, has a loading of −0.84 on the
first factor and of 0.44 on the second (see
Table 2.8).
It may be apparent that the two axes do

not run as close as they could to the points
representing the variables. If we were to
rotate the axes around their origin, then these
two axes could be made to pass nearer to
these points, as shown in Figures 2.3 and 2.4.
The effect of rotating the axes is generally

to increase the loading of a variable on one of
the factors and to decrease it on the others,
thereby making the factors easier to inter-
pret. For example, in Table 2.9 we can see
that the effect of rotating the two axes is to
increase the loading of the item on anxious-
ness from −0.84 to –0.91 on the first rotated
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Figure 2.1 Cattell’s scree test
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factor and to decrease it from 0.44 to 0.27 on
the second rotated factor.
Axes may be rotated in one of two ways.

First, they may be made to remain at right
angles to each other, as is the case in Figure
2.3. This is known as orthogonal rotation. The
factors are independent of or uncorrelated
with one another. The advantage of this
approach is that the information provided by
the factors is not redundant. Knowing the
values on one factor (e.g., anxiety) does not

enable one to predict the values of another
factor (e.g., depression) as the factors are
unrelated. The disadvantage is that the
factors may be related to one another in real-
ity and so the factor structure does not accu-
rately represent what occurs.
Second, the factors may be allowed to be

related and to vary from being at right angles
to one another, as illustrated in Figure 2.4.
This is known as oblique rotation. The advan-
tage of this method is that the factors may
more accurately reflect what occurs in real
life. The disadvantage is that if the factors are
related, knowledge about the values of one
factor may allow one to predict the values of
other factors. The results of the two methods
may be similar, as in this example.
The most widely used form of orthogonal

rotation is varimax, which maximizes the
variance within a factor by increasing high
loadings and decreasing low loadings. The
loadings shown in Table 2.9 were derived
using this method. Comparing the results of
Tables 2.8 and 2.9, we can see that orthogo-
nal rotation has increased the loadings of
three variables for the first (A1, A2 and A3)
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Table 2.9 First two orthogonally rotated
principal components

1 2

A1 (Tense) −0.72 −0.15
A2 (Anxious) −0.91 −0.27
A3 (Relaxed) 0.99 0.11
D1 (Depressed) 0.37 0.72
D2 (Happy) 0.03 −0.96
D3 (Dull) 0.22 0.94
Eigenvalues 2.51 2.43
Eigenvalues as 0.42 0.41
proportion of
total variance
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and second factor (D1, D2 and D3). It has
decreased the loadings of three variables for
the first (D1, D2 and D3) and second factor
(A1, A2 and A3). The variables loading
highest on the first factor are being relaxed
(0.99), not anxious (−0.91) and not tense
(−0.72) respectively, indicating that this
factor represents anxiety. The variables load-
ing highest on the second factor are not being
happy (−0.96), finding life dull (0.94) and
being depressed (0.72) respectively, showing
that this factor reflects depression. These
results suggest that the three items on anxiety
(A1,A2 andA3) can be aggregated to measure
anxiety and the three items on depression
(D1, D2 and D3) can be grouped together
to assess depression. Orthogonal rotation
also has the effect of spreading the variance
across the factors more equally. The variance
accounted for by the first factor is 0.57
when unrotated and 0.42 (2.51/6.00) when
rotated. For the second factor it is 0.26
when unrotated and 0.41 (2.43/6.00) when
rotated.
The results of an oblique rotation using a

method called direct oblimin are presented in
Table 2.10. The findings are similar to those
for varimax. The variables loading highest on
the first factor are being relaxed (0.99), not
anxious (–0.94) and not tense (–0.73), respec-
tively. The variables loading highest on the
second factor are finding life dull (0.96), not
being happy (–0.95) and being depressed
(0.78), respectively. The results indicate that
the three anxiety items (A1, A2 and A3) can
be combined together, as can the three
depression items (D1, D2 and D3). The two
factors were found to have a correlation of
0.36 with one another. As negative values on
the first factor indicate anxiety and positive
values on the second factor depression, the
positive correlation between the two factors
means that depression is associated with low
anxiety. Because the factors are correlated,
the proportion of variance explained by each
factor cannot be estimated as it is shared
between the factors.

Combining items to form indices The
results of the factor analysis are used to deter-
mine which items should be combined to
form the scale for measuring a particular con-
struct. Items loading highly on the relevant
factor (e.g., anxiety) and not on the other
factors (e.g., depression) should be used to
form the scale. The direction of scoring for

the scale needs to be established. Generally
higher scores on the scale should indicate
greater quantities of the variable being mea-
sured. For example, if the scale is assessing
anxiety, it is less confusing if high scores are
used to denote high anxiety rather than low
anxiety. The numerical codes for the
responses may have to be reversed to reflect
this. For instance, the numerical codes for the
anxiety items A1 and A2 need to be reversed
so that strong agreement with these items is
recoded as 5. The scale should have adequate
alpha reliability. Items not contributing to
this should be omitted.

CONCLUSION

In this chapter, we have moved fairly rapidly
from some very basic ideas concerning vari-
ables to some fairly complex approaches to
their creation and assessment. However, in
another sense, the entire chapter deals with
issues that are fundamental to the analysis
of quantitative data, since the variable is
the basic reference point. We have explored
several ways in which variables are created,
both in terms of such strategies as summated
scales, which are common in the measure-
ment of attitudes, and in terms of the ways in
which analysts seek to refine and improve the
quality of variables. Since the variable is fun-
damental to all quantitative data analysis, the
material covered in this chapter constitutes
an important starting point for many of the
chapters in this book that deal with various
aspects of quantitative data analysis.
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Statistical analysis is similar to any number
of summarizing activities we perform each
day. We describe a book as ‘fascinating’, a
meal as ‘delicious’, a co-worker as ‘kind’. In
each case this single word communicates a
central feature of the object which it
describes, while ignoring much else. But we
can expand our descriptions. For example,
we can say that the book captured our atten-
tion in the first paragraph and held it to the
last word, or perhaps that it took a few
chapters to get into the story but thereafter
was difficult to put down. We can recount
the main story line, characterize the protag-
onist, discuss the use of language, liken it to
other novels, and at some point, as a listener
who had not read the book, you could gain
an understanding of this text. So it is with
statistical analysis.
When we work with a data set, our goal is

to tell its story – or one of its stories. We use
the data to formulate an answer to a ques-
tion, to illustrate a point, to test a theory.And
we need tools by which to accomplish these
tasks. Staring at pages and pages of numbers,
even numbers already organized into the nec-
essary data matrices, will accomplish little.
What we require are shorthand ways to rep-
resent the data arrays, a practice that helps us
visualize what each variable ‘looks like’. In

general, we need methods of summarizing
the information, and we need techniques of
assessing how well and how consistently the
summary suits the data. But any summary
measure is designed to succinctly portray a
specific feature of the data, not to provide a
detailed description. Therefore, it is impor-
tant to choose measures suited to the ques-
tion at hand and to the nature of the data.

CLASSIFYING, COUNTING, AND MEASURING

The tools that we use must be suited to the
type of information we wish to analyze. In
the same way that a carpenter learns that
different types of saws with different types
of blades are best suited to cutting different
sorts of materials, so the analyst learns that
the first task is to identify the nature of the
information at hand. Initially, we can cate-
gorize variables into two types: discrete and
continuous. Discrete variables can take a
finite number of values, whereas continu-
ously measured variables can take on any
value within a much more detailed range of
possible values. In other words, the possible
values for discrete variables are countable;
the possible values for continuous measures

3

Summarizing
Distributions
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are not. Because of this difference, the sta-
tistical approaches to describing distribu-
tions of discrete and continuous measures
utilize different branches of mathematics.
Among discrete variables, we also have dif-

ferent possible types. These types include
nominal classifications, ordinal classifica-
tions, and counts. Continuous variables may
be measured on either interval or ratio scales,
the difference being that ratio scales have an
absolute zero point. To facilitate our discus-
sion of distribution statistics, we will rely on
an exemplary data set extracted from the
National Longitudinal Survey of Youth
(NLSY) that was initiated in 1979. Table 3.1
lists the variables we will use in examples.
Most of the variables are from the 1994
wave; a few are taken from the initial wave in
1979. The sample consists of men and
women who were initially interviewed when
they were aged 14–22. By 1994, the sample
members were aged 29–37. In our data
extract, respondents are classified by gender
and by race/ethnicity. We know their
employment status, marital status, and region
of residence in 1994. We have one measure
of gender attitudes taken in 1979, which
records the level of the respondent’s

agreement/disagreement with the statement:
‘A woman’s place is in the home, not the
office or the shop.’ In 1994, we also know
the highest grade of schooling they had com-
pleted, the number of jobs they had had,
their age at first marriage (if ever married),
the number of pregnancies (for the women),
and number of weeks of tenure on their pri-
mary job (if employed). Finally, we know age
at interview, weight, and total net family
income. An example of a complete case is a
30-year-old African-American man who
completed a bachelor’s degree and was mar-
ried at the age of 24 to a woman from whom
he was divorced in 1993; the year 1994 saw
him living in Massachusetts and employed in
his second job, which he has held for 6 years;
he disagreed with the statement that ‘A
woman’s place is in the home’, weighed 180
pounds, and had a total net income of
$65 350.
Gender, employment, race/ethnicity, region,

and marital status are all nominal classifica-
tions containing information that allows us
to sort cases into categories. Gender and
employment are binary items; the remaining
variables in this list have several categories.
Our attitude measure is ordinal.The remaining
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Table 3.1 Descriptive statistics for variables in the NLSY79 data extract
Variable name Valid N Mode Median Mean Range Variance St. Dev. Skew Kurtosis

Gender 8889 1 1 0.5 1 0.25 0.5 –a –a

Employment status 8889 1 1 0.84 1 0.134 0.366 –a –a

Race/ethnicity 8889 3 –a –a 3 –a –a –a –a

Marital status 8884 1 –a –a 6 –a –a –a –a

Gender role attitude 8831 2 2 2.03 3 0.7 0.84 0.6 −0.11
Region of residence 8679 3 –a –a 3 –a –a –a –a

Age at interview 8889 31 33 32.98 8 5.01 2.24 0.135 0.052
Age at first marriage 6455 21 22 22.92 24 17.335 4.164 0.501 −0.231
Number of 4411 2 2 2.34 14 3.09 1.76 0.834 1.234

pregnancies
Number of jobs 8882 6 8 8.8 44 27.78 5.27 1.05 1.784
Tenure at current job 7469 1 158 231.56 1045 49704.23 222.94 1.073 0.306
Highest grade 8884 12 12 12.98 20 5.98 2.44 0.172 1.319

completed
Weight 8684 180 166 170.47 400 1548.71 39.35 0.823 1.393
Total net family 7004 –b 33200 40883.12 189918 1.329E+09 36452.78 2.455 7.506

income
ln(family income) 7004 –b 10.41 10.12 12.15 2.6 1.61 −4.337 24.3
aStatistic is inappropriate for nominal variables.
bMeasure is uninformative.
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variables are treated as interval or ratio
measures.

SINGLE-VARIABLE DISTRIBUTIONS

The most common way to display the pattern
of observations for a given variable is to produce
a frequency distribution, which displays the
values of the observations, relative to the
number of times each specific value is
observed. In generating this distribution, we
often use the standard geometry of the upper
right quadrant of a two-dimensional space,
which displays all positive values and is
bounded below by the x-axis and to the left by
the y-axis.1 Here, the x-axis reports the case-
by-case values of the variable, the y-axis the
frequency of its observation. If the variable is
measured continuously, then the frequency
distribution is represented as a smooth curve.
If the variable is a classification, then the fre-
quency distribution is often a histogram,
which displays vertical columns labeled by
the category, rising to the number (frequency)
of times it is observed.
Perusal of this simple type of distribution

communicates much useful information. We
view each value and each frequency relation-
ally, within the full range of observed values
(highest to lowest, if quantitative) and rela-
tive to how common or uncommon an obser-
vation is. In that way, we see the most likely
observed value, and the range of possible
values. We see the distributional form of
each variable.Whereas a variable with a more
limited number of possible category
responses allows an observer to accurately
assess this information through simple visual-
ization, the more precisely a variable is mea-
sured, the less easily this is accomplished.
With variables quantitatively measured, then,
we require mathematics beyond simple
counts to provide us with the summary infor-
mation we desire.

Descriptive statistics

The statistics used to describe a distribution
were developed to provide information about
four features: a typical or most likely value in
the distribution (a value at the midpoint of
the distribution or one that is most often

observed); the heterogeneity of the distribu-
tion (or the extent to which observations have
different, perhaps widely different values);
the symmetry of the distribution (whether
observations are more heavily concentrated at
values lower than the most likely value, higher
than the most likely value, or equally divided
between higher and lower values); and the
peakedness of the distribution (or the extent
to which observations are heavily concen-
trated around the most likely observation).
The combination of these four types of mea-
sures provides a good picture of the entire
distribution, which the researcher uses to
decide how to proceed with further analysis.
Therefore, regardless of the modeling tech-
nique or analysis approach that will ulti-
mately be used to address research questions,
the first step in analysis must always be to
learn about the distributional properties of
one’s data.

Central tendency In summarizing an
observed distribution, the most useful pieces
of information tell us the most likely
observed value and something about the
differences among observed values, referred
to as central tendency and dispersion. With
classifications, the typical observation belongs
to the category most frequently observed.We
call this category the mode or modal category.
It may happen that we have two or three cat-
egories observed equally frequently and more
than any other, in which case we speak of the
distribution as being bimodal or trimodal.
Figure 3.1 shows the distributions of a subset
of our variables.
Consider the bar chart for gender.

Although the modal category is ‘women’, the
sample is almost equally divided between
men and women. Is it then correct to
describe the ‘typical’ respondent as a
woman? If the sample is (all but) equally
divided between these two groups, such a
description is misleading. If, on the other
hand, we drew a simple random sample from
a population with 70% women (as is the case
at the oldest age ranges), our sample would
be primarily older women. Turning to
employment, again we have two categories,
but in this case more than four of five
respondents were employed at the time of
interview; only 1422 (or 16%) were not.
To describe the ‘typical’ respondent as
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‘employed’ is therefore appropriate. As
for marital status, which is reported in five
categories, the modal response is currently
married at the time of the interview, a
status which captures more than half the
respondents.
The measure of gender attitudes allows for

four responses, ranging from strongly disagree
to strongly agree. Here the modal response is
‘disagree’, which captures almost half the
respondents, so the ‘typical’ respondent
disagrees with the statement: ‘A woman’s place
is in the home, not the office or the shop.’
Since these responses can be ordered, we can
use a second measure of central tendency –
the median. The median reports the middle
value in an ordered array of numbers and is
often referred to as the 50th percentile.2 In
this example, if we sorted (in ascending
order) the data relative to responses on this
question, the first 2420 (or 27.2% of) cases,
coded 1, register strong disagreement. The
following 4308 respondents (respondents
numbered 2421 through 6728) disagreed
with the statement. Given that 8831 respon-
dents answered the question, the median
value is associated with the 4416th case,
‘disagree’.
Variables at a higher level of measure-

ment can be characterized by the median
or the mode, but a more useful measure is
the mean. As precision of measurement
increases, the mode becomes less and less
useful, since the likelihood that multiple
respondents are (precisely) ‘the same’
declines. In practice, commonality of
responses on items that can be measured
with precision is more likely a function of
‘rounding’ in the respondent’s reporting.3
The weight variable provides such an exam-
ple here. One might have anticipated a
symmetric, bell-shaped curve on weight.
Instead, we see a set of spikes and toe holds,
which undoubtedly result from people
reporting their weight as ‘roughly’ 175, for
example, rather than 176.882. The mean, as
a measure of central tendency, is appropri-
ate to interval and ratio data. It assumes
that the values are meaningful quantities
(rather than a shorthand way of denoting
particular categories of qualitative informa-
tion), and the mathematics of its formula
uses this information of equally spaced
numerical intervals in calculating its value,
as in:

Special cases involve binary coded items
(i.e., items coded 0 or 1) such as gender and
employment status, in our extract. Mean
values for these variables are reported in
Table 3.1, but the information represented is
actually the proportions of cases coded 1
(here, women and employed) rather than 0
on the variable in question.The binary coding
transforms the summation into a counting
process, which yields the frequency of 1s.The
division by N relativizes the frequency for
sample size, yielding the relative frequency of
the category coded 1, or the proportion of the
sample who are women (0.504) or who are
employed (0.84).
Mean values for schooling, number of

jobs, number of pregnancies, age at inter-
view, age at first marriage, weight, net fam-
ily income, and tenure are all reported in
Table 3.1. In describing our sample, we
would say that, on average, our respondents
had completed 1 year of college beyond
high school, had worked at 9 jobs, were aged
33 at interview, weighed 170 pounds, and
had a net family income of $40 883.Women
had experienced 2 pregnancies, on average.
Among those ever married, the average age
at first marriage was just shy of 23. Among
those currently working, the average length
of time with their primary employer was
232 weeks.4
How useful is this information? How

accurate a picture do we now have of our
sample of respondents? Answers to these
questions require additional information
about the distributions that the measures of
central tendency were meant to describe. Are
our respondents a relatively homogeneous
group? Or are they widely divergent on the
characteristics of interest to us? This is the
issue of dispersion or variability.

Dispersion In the case of categorical mea-
sures, a measure of dispersion captures how
observations are distributed across the
various categories. First, we can visually
inspect the charts in Figure 3.1 to draw some
conclusions. Return to the graph of gender
composition. We have two possible cate-
gories, and the distribution is virtually
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bimodal. In other words, we have two groups
more or less equal in size. Does that suggest
homogeneity (sameness) or heterogeneity
(differences) among respondents in the
sample? To put it another way, if a case were
drawn at random from the sample, how con-
fident are you that you could correctly guess
the gender of the respondent? If your
response is that you would be no more confi-
dent than in calling the toss of a fair coin, you
would be correct.
Defining the limits of variability in a cate-

gorical measure leads us to the observation
that, when all cases belong to a single cate-
gory, the variance equals zero, which means
our ‘variable’ is in fact a constant. But what
defines the upper bound of variability?
Imagine observations flowing from that single
category into the second category, thereby
increasing variability. At what point is vari-
ance maximized? Within this context, vari-
ability increases as the proportion of cases in
the two categories moves to equality.
Therefore, for gender and employment, we
have less variability in employment status,
more variability in gender in our sample.
Again, since these items are binary, we can
express the variance as:

s2 = pq,

where p is the proportion coded 1, q its
complement, and n the number of cases.
Table 3.1 reflects this difference in variability:
the variance for gender is 0.25, for employ-
ment 0.13.
The logic of a variance measure is the same

when we have more than two categories.
Variance is maximized when cases are
equally distributed across all categories (the
frequency graph of categories is rectangular).
The measure of qualitative variation allows us
to assess the degree of dispersion in nominal
distributions. Based on the number of cate-
gories and their respective frequencies, the
larger the number of categories and the smaller
the differences in frequencies across cate-
gories, the larger the variance. The measure of
qualitative variation compares the total num-
ber of differences in the distribution to the
maximum number of possible differences for
the same distribution. Calculation therefore
requires an evaluation of observed differences
relative to possible differences. The number
of observed differences is

Total observed differences =
∑

fi fj, i ≠ j,

where f refers to the frequency of categories
i, j. We can calculate these differences for
gender and for marital status, by way of illus-
tration. For gender, the frequencies are 4409
for men and 4480 for women, so total
observed differences are 4409 × 4480 =
19 752 320. To calculate the maximum
number of possible differences (MPD), we
use the formula

where c is the number of categories and n is
the number of observations. In the case of
gender, we have

The index of qualitative variation or IQV
(Mueller and Schuessler, 1961: 177–9) is
defined as the ratio of observed differences to
maximum differences. Again, for gender, that
ratio is

which tells us that variability in gender in
this sample is all but at maximum.
Comparison of the value 0.25, which is the
variance calculated as previously noted, to
the maximum variance possible for a binary
item, 0.5 × 0.5 = 0.25, shows consistency in
the statistics.
Calculating IQV when there are more than

two categories becomes an increasingly
complex exercise, but it follows the same
logic. In evaluating IQV for marital status,
we use the same formula. To determine
observed differences, we have 10 elements in
the summation:

2327 × 4915 + 2327 × 513 + 2327 × 1076
+ 2327 × 53 + 4915 × 513 + 4915 × 1076
+ 4915 × 53 + 513 × 1076 + 513 × 53
+ 1076 × 53 = 23 964 774.
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MPD =
c (c − 1)

(
n
)
2

,
2 c

MPDGender =
2 × 1

(
8889

)
2

= 4444.52
2 2

= 19 753 580.25.

IQVGender =
19 752 320 = 0.9999,
19 953 580.25
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For the denominator,

therefore,

A second issue raised by measures such as
IQV is whether standardization clarifies or con-
fuses the interpretation of the measure. With
IQV as well as other like measures, the calcu-
lated level of diversity is expressed as a propor-
tion of the maximum possible diversity, given
the number of subgroups. Is this form of stan-
dardization desirable? Lieberson (1969) notes
that when dealing with a single population at a
single point in time, a standardized measure is
appropriate. Also, if the researcher is making
comparisons between different populations with
the same number of qualitative subgroups in
each population, either the standardized or an
unstandardized index may be used. However, if
the researcher is comparing two or more popula-
tions that differ in the number of qualitative sub-
groups, an unadjusted measure of diversity is
preferable. In general,when the goal is to describe
the actual level of diversity in a population, an
unadjusted measure is preferred. Lieberson’s
diversity measure,Aw, is defined as the probabil-
ity that randomly paired members of a popula-
tion will differ on a specified characteristic.5
Holding aside the modifications due to sampling
without replacement and the standardization
procedure just discussed,Aw is equivalent to the
index of qualitative variation (Lieberson, 1969).
To calculate Aw for marital status, which has

five categories, we let Pk be the proportion of
respondents in the first through fifth statuses,
such that P1 + P2 + P3 + P4 + P5 = 1.00. If we
assume sampling with replacement (for sim-
plicity’s sake) the proportion of pairs with
each possible marital status combination is
the square of the sum of the proportions, or
(P1 + P2 + P3 + P4 + P5)

2. Expanding this poly-
nomial gives us the following expression:

P1
2 + P2

2 + P3
2 + P4

2 + P5
2 + 2(P1P2

+ P1P3 + P1P4 + P2P3 + P2P4 + P2 + P5
+ P1P5 + P3P4 + P3P5 + P4P5) = 1.00.

The proportion of pairs with a common mari-
tal status, S, is the sum of the squares for all

marital statuses. In this example, S equals the
sum of the first five terms. The proportion of
pairs with a different marital status, D, is the
sum of the remaining terms, or twice the brack-
eted expression.Using the same information for
marital status from the data set, S = 0.2622
+ 0.5532 + 0.0582 + 0.1212+ 0.0062 = 0.3925,
and Aw, the probability of different marital
statuses, equals 1.00 – S = 0.6075.
A final lesson here is that with qualities or

characteristics that are classifiable, the more
lop-sided the distribution – the higher the
proportion of observations that fall in a single
category – the less variability we have, and the
better a descriptor the mode becomes. The
more equally divided observations are across
categories, the greater the variability (which is
maximized when all categories are equal),
and the less efficient is a measure of central
tendency as a summary of the distribution.
For interval/ratio variables, we have several

measures from which to choose. The simplest
is the range, which reports the difference
between the lowest value and the highest
value. For age the range is 8 years, a function of
sample design.The range for years of schooling
is 20, for weight 400.The range gives us a sense
of the magnitude of individual level differences
we might observe, but also has some limita-
tions. Suppose, for example, that in this sample
we had one person who weighed 450 pounds
and that the second highest weight was 300
pounds.A range of 400 suggests a level of vari-
ation that may be misleading in this case. A
derivative measure, the interquartile range,
reports the difference between the value asso-
ciated with the 25th percentile and the 75th
percentile. Nevertheless, both these measures
use only two data points in the distribution.
For interval/ratio variables, we would prefer

a measure that tells us about aggregate varia-
tion, a measure that utilizes information on
every observation, as the mean does for mea-
sures of central tendency. The two most com-
mon measures of dispersion are based on
deviations from the arithmetic mean of the
distribution.6 A deviation is a measure of
difference, in this case the difference between
an observed value and the mean. The sign of
the deviation, either positive or negative, indi-
cates whether the observation is larger than or
smaller than the mean. The magnitude of the
value reports how different (in the relevant
numerical scale) an observation is from the
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MPD = 5 × 4
(
8824

)
2

= 10 × 1776.82
2 5

= 31 570 182.4;

IQV = 23 964 774 = 0.76.
31 570 182.4
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mean. One of the features of the mean is that
the sum of the deviations across all observa-
tions must always equal zero. Hence, the mean
is often referred to as the center of gravity of a
distribution – the balancing point. By using the
absolute value of the deviation score, one can
calculate the average deviation as:

However, the most common measures of dis-
persion are the variance and the standard
deviation (which is the square root of the
variance). The sample variance is built on the
same concept of deviation score, but in this
case the deviations are squared (an important
distinction between the ‘average’ deviation
and the variance/standard deviation), and
then summed over all cases and divided by
n − 1:

Subtracting 1 from n in the denominator is
necessary to adjust for degrees of freedom,
which is a count of the remaining pieces of
information on which you have imposed no
linear constraints. Because we use sample
statistics to estimate population parameters,
we must be vigilant about keeping track of the
circumstances in which we must use sample
information (in this case,X

–
) to calculate other

sample estimates of parameters.7 The variance
is also referred to as the ‘mean squared error’
in the context of prediction error. The mean is
also the general least-squares estimate of
central tendency, which means that the sum of
the squared deviations around it (the numera-
tor of the variance formula) is minimized, i.e.,
smaller than around any other measure of
central tendency or any other value in the
distribution.Therefore, the mean becomes the
‘best’ predictor in the absence of any informa-
tion beyond the variable’s distribution.
The standard deviation, s, is found by

taking the square root of the variance, which
accomplishes a return to the original unit of
measurement. Although its value is generally
close to that of the average deviation, it
should not be confused with it in discussions.
So, for example, it is not correct to say that,
given a standard deviation value of 39.35 for
weight, respondents differ from mean weight
by 39.35 pounds on average.8
According to Chebyshev’s theorem, it is pos-

sible to calculate the minimum proportion of

observations that will fall within k (where
k > 1) standard deviations of the mean. The
formula for making this calculation, 1 − 1/k2, is
applicable to any distribution, regardless of
its shape. For example, at least 75% (1 − 1/4)
of the observations of a distribution will fall
within ±2 standard deviations of the mean. In
other words, knowing nothing about the
distribution but its mean and standard devia-
tion, one can say that at least 75% of all
observations lie with a range of ±2 standard
deviations around the mean; at least 89% lie
within ±3 standard deviations around the
mean; and at least 94% lie within ±4 standard
deviations around the mean.
One final measure of dispersion is the coeffi-

cient of variation, which relativizes the size
of the standard deviation to the scale of
measurement for the variable by dividing it
by the mean:

For example, the standard deviation for school-
ing is 2.44 and the standard deviation for
weight is 39.35. How can we make sense of
that magnitude of difference? Using the coeffi-
cient of variation, we have 2.44/12.98 = 0.108
for schooling and 39.35/170.47 = 0.231 for
weight. Clearly, the relative dispersion from
the mean is larger in the case of weight than it
is for schooling, but not nearly as much larger
as we may have initially believed. We could
also calculate V for number of pregnancies
(1.76/2.34 = 0.752) indicating that, although
the standard deviations for schooling and preg-
nancies were fairly close, the dramatically dif-
ferent means suggest that relative variation for
pregnancies is much higher.

Shape In addition to the midpoint of a distri-
bution and some notion of the degree of het-
erogeneity among respondents, information
about the shape of the distribution can also be
quite useful.Two measures that describe distri-
bution shapes are skewness and kurtosis.
Skewness describes the degree of symmetry

in a distribution, where symmetry refers to
the balance between the number of observa-
tions that are above the mean and the num-
ber of observations below the mean. If we
have an equal number of observations above
and below, and the distribution is unimodal,
the distribution is also symmetric. Since
equality of the number of observations on
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Average deviation = 1 ∑
|(X − X

–
)|.n

Variance = s2 = 1 ∑
(X − X

–
)2.

n − 1
Coefficient of variation = V = s .

X
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either side of the mean is equivalent to saying
the mean and median of the distribution are
equal, Pearson developed a coefficient of skew-
ness based on the difference between the
mean X

_
and the median X

~
:

Since the numerator is the simple difference
between the two measures of ‘average’ value,
the measure of skewness is signed: a distribu-
tion can be either positively skewed or nega-
tively skewed, with the sign indicating which
tail of the distribution contains the smaller
proportion of observations. The mean is
greater than the median when extreme posi-
tive values pull the mean in the direction of
the right tail. Since the mean, unlike the
median, uses information on the specific
value, rather than simply noting its rank
among other observations, even a relatively
small number of very large observed values
can shift a distribution away from symmetry.
Another measure of skewness is reported in

Table 3.2, which contains the four sample
moments around themean of a distribution.The
first moment is the midpoint, around which the
sum of the deviations equals zero. The second
moment is the variance, or mean squared devi-
ation around the mean. The third moment is
the average of the cubed deviations around the
mean, which measures skewness when divided
by the cube of the standard deviation. Since the
variance is based on squared deviations around
the mean, it must always be positive (with the
standard deviation being defined as the positive
square root). Cubing the deviations around the
mean reintroduces the sign, positive or nega-
tive, to the measure.
Imagine a distribution of 1,2,2,3,3,3,4,4,5.

The mean, median and mode are all equal to
3. Variance is equal to 1.5. Skewness is equal
to 0. Now change the 5 to 10. The median
and mode remain 3, but the mean is now
3.56. Variance is 6.78. Skewness is 2.21. We
have five observations less than the mean; three
observations greater than the mean, and a
skewness value that tells us this fact: we have
fewer observations to the right of the mean
than to the left of the mean.
The frequency distribution of total family

income is an example from our data set of a
distribution that is positively skewed, with a
value of 2.455. Income distributions are
frequently skewed, which is to say that if

one uses the arithmetic mean of an income
distribution as its ‘midpoint’, one is indeed
describing the center of gravity of the distrib-
ution. But since the distribution is asymmet-
rical, that balance point is such that more
than half the cases lie below the mean (values
lower than the mean are sampled in greater
density because they are more likely observa-
tions). The relatively rare but very large
values to the right of the mean dispropor-
tionately influence the ‘balance point’. The
greater the difference between the median
value and the mean value, the more skewed
the distribution; the more skewed the distri-
bution, the more necessary it becomes to
provide two measures of central tendency.
The median will always be the proportional
midpoint of the observations, the point above
and below which 50% of the cases fall. The
mean will be the numerical midpoint of the
observed values in the distribution, a differ-
ent meaning of ‘midpoint’. In skewed distri-
butions, that distinction is very important.
We could not say, for example, that half the
respondents in our sample have family
income in excess of $40 883. We can say,
however, that half the respondents in our
sample have family income in excess of
$33 200, since this is the median value of the
distribution.
Kurtosis tells us whether the distribution is

very peaked around the mean, or whether it
is relatively flat. It is based on the fourth
moment around the mean of a distribution.
Since the mean deviations are now raised to
the fourth power, measures of kurtosis will
always be positive. In addition, by summing
the mean deviations raised to the fourth
power, observations that are far from the
mean receive much more weight than they
do in the calculation of the variance. A very
peaked unimodal and symmetric distribution
with observations compactly distributed
around the mean is called leptokurtic (k > 3).
A flatter unimodal and symmetric distribu-
tion with observations more widely dispersed
around the mean is called platykurtic (k < 3).
Mesokurtic describes a distribution that is
neither excessively peaked nor excessively
flat (k = 3).

THE NORMAL DISTRIBUTION

One type of symmetrical distribution is the
normal distribution9 or normal curve, which is a
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distribution of particular significance in data
analysis. The normal distribution is both sym-
metrical and bell-shaped, with the three mea-
sures of central tendency (the mean, median,
and mode) equal to the same numerical
value; skewness is zero; kurtosis is equal to 3.
Although, in theory, the normal distribution
is asymptotic to the axis, in practice, applica-
tions generally have a finite number of obser-
vations. The exact shape of the normal
distribution is determined by two parameters,
the mean and the standard deviation of the
distribution; its probability density function
(pdf) is defined as:

where µ is the population mean of X, σ is
the population standard deviation of X,
π = 3.14159…, and e = 2.71828… . This for-
mula allows one to calculate the value of the
expected frequency (or density) of observa-
tion associated with a given value of x for a
normal curve specified by a particular mean
and standard deviation.
In estimating probabilities, the normal dis-

tribution is particularly useful, since the area
under the curve, given by the cumulative
density function (cdf), allows us to estimate
the probability of a given range of outcomes.
The total area under the curve, ranging

from −∞ to +∞ , totals 1:

Because x is continuous and the probability is
defined by area, it is not possible to assess the
probability of a specific outcome value.
Rather, one defines a range of values, which
may be small or large depending on the ques-
tion at hand, to determine the probability:

where f(x) dx is the probability associated
with a small interval of a continuous variable,
the interval [a, b].
Being able to locate a specific observation

in the normal distribution therefore allows
one to determine the empirical probability of
values less than or greater than the observa-
tion of interest. This practice is limited
to variables that are measured at the interval/
ratio level, with normal distributions.
However, since any given normally distrib-
uted variable will present its own mean and
standard deviation, calculation of these prob-
abilities (through integration of areas under
the curve) would be tedious. By making an
adjustment to an observed distribution that
would set the mean and standard deviation at
standard values, we could utilize a single nor-
mal distribution, which is, in fact, how we
proceed.
This standardization procedure is generally

called the z-transformation, and it is appropri-
ate to normally distributed interval/ratio vari-
ables. Calculating a z-score, or transforming
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Table 3.2 Relationship between features of a
distribution and moments around the mean
Moments of a random variable

First moment (mean) µ = E{x}
Second moment (variance) σ2 = E{(x − µ)2}

Third moment (skewness) γ1 = 1
σ3

E{(x − µ)3}

Fourth moment (kurtosis) γ2 = 1
σ4

E{(x − µ)4}

Sample moments around the mean

m1 =
∑

(X − X
–
)

First moment
n

m2 =
∑

(X − X
–
)2

Second moment
n

m3 =
∑

(X − X
–
)3

Third moment
n

m4 =
∑

(X − X
–
)4

Fourth moment
n

Statistics of a distribution
∑

XiArithmetic mean
n

Midpoint of the
distribution

∑
(Xi − X

–
)2

Variance
n −1

Measure of dispersion
around the mean

m3Skewness
m3/2

2

Measure of symmetry
around the mean

m4Kurtosis
m2

2

Measure of peakedness
at the mean

f(X) = 1
e−(1/2) [(X − µ)/σ]2

σ
√
2π

∫∞

−∞
f(x)dx = 1.

∫a
b

f(x)dx = P(a < x b),
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the observed empirical distribution into the
standardized normal distribution, is accom-
plished by dividing the unit deviation by the
standard deviation:

This produces a distribution with mean equal
to 0 and a standard deviation of 1. By calcu-
lating the z-scores, we can immediately view
each observation in probabilistic terms.
A positive z-score means the observation is

higher than the mean, which automatically
signals that the respondent scored higher
than at least half the respondents in the sam-
ple. How many more than half the sample?
Although Chebyshev’s theorem could prove
useful here, we have more information than
that theorem requires. Chebyshev’s theorem
is silent on the shape of the distribution;
therefore, it is applicable to all distributions
of all shapes and sizes. We are now working
with a particular type of distribution – a nor-
mal distribution. Using this additional infor-
mation, we can be more precise about the
proportion of observations that lie within
the range of k standard deviations around the
mean.The empirical rule can be applied here,
allowing us to say that 68.3% of the values
will fall between ± 1 standard deviation
around the mean; 95.5% will fall between ± 2
standard deviations around the mean; and
99.7% will fall between ± 3 standard devia-
tions around the mean.
The z-transformation allows us to take

advantage of tables that report already calcu-
lated areas under the normal curve (see the
Appendix at the back of the book), rather
than having to evaluate integrals in each dis-
tinct normal distribution we observe. Since
we are dealing with a continuous distribu-
tion, the probabilities we can assess must be
bounded by two values; we cannot ascertain
the probability of observing a specific dis-
crete value.Working through a few examples
should make this clear.
Table 3.3 shows a small portion of the

z-distribution included in the Appendix. The
range of possible values for z lies between
−∞ and +∞. Since the variance of the distrib-
ution is also 1, the sum of the area under the
curve is equal to 1 as well, which is the upper
limit of a probability. Given that the curve is
symmetric, the mean divides the area in two,
with 0.5 between the mean and +∞ , and 0.5
between the mean and −∞. Tables that report

the area under the normal curve either report
the area that lies between the mean and a
given z-score or the area that lies between the
given z-score and infinity. Both the extract in
Table 3.3 and the complete table in the
Appendix report the area between the mean
and the z-score. Finally, only positive z-scores
are reported in the table.Again the symmetry
of the curve allows the reader to determine
the area between negative z-scores and the
mean as easily as between positive z-scores
and the mean.
Consider the quantitative portion of the

Graduate Record Examination (GRE), one of
the exams often required for admission to
graduate school in the US. The highest possi-
ble score is 800. Suppose in a given year that
the mean score was 480, the standard devia-
tion was 100, and your score was 600. You
can convert your score to a z-score by divid-
ing 120 by 100, which is 1.2.Your score is 1.2
standard deviations above the mean, so you
know you scored better than more than half
of those who took the exam. How much bet-
ter? Consider the extract from the z-distribution
in Table 3.3. You find the area associated
with your z-score by looking in the row
headed 1.2 and the column headed 0.00.The
value is 0.3849, which describes the area
between the mean, 0, and your score, 1.2
(Figure 3.2 (a)). Add to that the area in the
other half of the distribution, 0.5, and you
gain the information that you scored better
than 88.49% of those taking the exam. To
determine the probability that someone
picked at random scored better than you,
simply subtract 0.8849 from 1: 0.1151 is
your answer.
As a second example, consider a score of

350, which converts to a z-score of −1.3. The
area between the mean and a z-score of 1.3 is
0.4032, therefore the area between the mean
and a z-score of −1.3 is also 0.4032. In this
case, 90.32% scored better than 350, and
9.68% scored worse (Figure 3.2 (b)).
As a final example, consider the area under

the normal curve that corresponds to the dif-
ference between scoring 325 and scoring 628.
The corresponding z-scores are −1.55 and
1.48 (Figure 3.2 (c)).The corresponding areas
from the table are 0.4394 and 0.4306. Based
on that information, we can say that 87%
scored between 325 and 628; the probability
that someone at random scored better than
628 is 0.0694; the probability that someone at
random scored worse than 325 is 0.0606.
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JOINT DISTRIBUTIONS AND MEASURES

OF ASSOCIATION

An understanding of the main features of
univariate distributions is an important pref-
ace to answering questions of relationships
between or among variables. It is this notion
of ‘relationship’ that is often of primary inter-
est. Bivariate relationships can be assessed for
different types of variables, thereby generating
information about ‘total’ or ‘gross’ effects. But
the complexity of the research questions we
ask often requires us to assess ‘partial’ or ‘net’
relationships between variables. So how do
we move from the characteristics of single dis-
tributions to those of joint distributions? One
place to begin is with bivariate distributions.10

Bivariate distributions

Interval/ratio variables Given that we ended
the last section with z-scores, observed values
transformed into values from the standard nor-
mal distribution, let us begin this section with
two standardized variables, Z1 and Z2, which
are the z-transformed values for X1 and X2.The
distributions of Z1 and Z2 are standard normal,
with mean equal to 0 and variance and stan-
dard deviation equal to 1. What does their
bivariate distribution, or joint distribution, look
like? Somehow this third distribution must
incorporate information from both univariate
distributions in such a way that we can make
judgments about whether the two variables are
related, and if so, how they are related.
What does it mean to say two variables are

related? We know what it means to say two
people ‘are related’. They belong to the same
family: if ‘closely related’ they stem from the
same portion of their ‘family tree’. If ‘distantly

related’, the branches of their respective
nuclear families diverged some number of
generations ago.Therefore, a close relationship
can indicate a shared genetic structure (in a
biological sense) but also shared likes and dis-
likes, similar attitudes, preferences, behaviors,
mannerisms and so on (in a social sense). It
also implies a certain predictability, which is
the major reason family medical history is
collected by physicians. So how do we trans-
late this commonplace notion of ‘relation-
ship’ to statistics?
Begin with the notion of predictability.

How can an observed value for one variable
be predicted by the value for the second vari-
able? Suppose these values were equal.
Suppose that, for respondent after respon-
dent, the numerical value for Z1 is the same
as the numerical value for Z2. This situation
would allow us to perfectly predict the distri-
bution of Z2, if we knew Z1 values, and vice
versa, since each pair of observed values con-
tains two identical numbers. To say that we
can perfectly reproduce a second distribution
by utilizing knowledge of the first distribution
is to say that the two variables are related –
perfectly related. Can we translate that
statement into a statistic? We want to sum-
marize, on a case-by-case basis, how the dis-
tributional position of the value of Z1
corresponds to the distributional position of
the value of Z2. Recall that the variance
measures heterogeneity in a univariate distri-
bution by summing the squared mean devia-
tions, case by case, and dividing by n − 1.
Since z-scores are themselves indicators of
distributional position (e.g., 1 standard devia-
tion above the mean, 2.3 standard deviations
below the mean), the variance of Z1 and Z2
would be written as (

∑
Z1
2)/(n − 1) and

(
∑
Z2
2)/(n − 1), respectively.11What we want in

this case is a measure of the mean difference
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Table 3.3 Extract from the table of the z-distribution
Second decimal place in z

z

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

0.00

0.3413
0.3643
0.3849
0.4032
0.4192
0.4332
0.4452
0.4554
0.4641
0.4713

0.01

0.3438
0.3665
0.3869
0.4049
0.4207
0.4345
0.4463
0.4564
0.4649
0.4719

0.02

0.3461
0.3686
0.3888
0.4066
0.4222
0.4357
0.4474
0.4573
0.4656
0.4726

0.03

0.3485
0.3708
0.3907
0.4082
0.4236
0.4370
0.4484
0.4582
0.4664
0.4732

0.04

0.3508
0.3729
0.3925
0.4099
0.4251
0.4382
0.4495
0.4591
0.4671
0.4738

0.05

0.3531
0.3749
0.3944
0.4115
0.4265
0.4394
0.4505
0.4599
0.4678
0.4744

0.06

0.3554
0.3770
0.3962
0.4131
0.4279
0.4406
0.4515
0.4608
0.4686
0.4750

0.07

0.3577
0.3790
0.3980
0.4147
0.4292
0.4418
0.4525
0.4616
0.4693
0.4756

0.08

0.3599
0.3810
0.3997
0.4162
0.4306
0.4429
0.4535
0.4625
0.4699
0.4761

0.09

0.3621
0.3830
0.4015
0.4177
0.4319
0.4441
0.4545
0.4633
0.4706
0.4767
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in the product of relative placement in the
two distributions. That measure is named the
covariance of Z1 and Z2 and is given by

If we return to our invented data set of nine
cases (1,2,2,3,3,3,4,4,5) and create values on
a second variable as 5,10,10,15,15,15,
20,20,25, then transform both distributions
to z-scores, we have the two identical distri-
butions in Z1 and Z2. Calculating the covari-
ance by summing the products across all
cases and dividing by n − 1 yields a value of 1
(Table 3.4).

Since we have now linked the value of 1.00
with a ‘relationship’ of identity, we have also
established a limit on the positive value of
the covariance between two z-distributions. If
we reverse the signs of observed values for Z2
to produce Z*2 and repeat the calculation of
the covariance, we get a value of –1.00.What
does this mean? It means that on a case-by-
case basis, the relative position in the distri-
bution of Z1 is the reverse of, or opposite to,
the position of the respondent in Z*2. If, as
before, we assume these scores to be evalu-
ations of respondents’ performances on two
tests, we can say, for example, that if the
ninth respondent performed better than
94.84% of the sample on measure X1, he per-
formed worse than 94.84% of the respon-
dents on X2. If the third respondent
performed better than 20.62% of the respon-
dents on X1, she scored worse than 20.62% of
the respondents on X2.

12 The other limiting
value of the covariance between two z-
distributed variables is −1.00, which indicates
a perfect negative relationship, a predictabil-
ity of one outcome to its opposite.
But what if we were not using z-scores?

What if we were using values in their
observed metric? In that case, we would use
the more general formula for the covariance,
which is

If we return to the original metrics of X1 and
X2, our covariance is 7.5. What does that
mean? When dealing with various measure-
ment units on different scales, dealing with
just the covariance tells us something about
how the two variables are related (e.g., whether
positive or negative), but the strength of the
association is ambiguous, because we lack
defined limits for each pair of variables. The
advantage of assessing the bivariate distribu-
tion of two z-distributed variables is that both
distributions have been standardized to
means of 0 and standard deviations of 1. In
other words, through the z-transformation,
we had incorporated into each observation
the information of the first and second
moments of each univariate distribution,
thereby producing a set of values already
standardized on this distributional informa-
tion. Therefore, it seems only reasonable that
if we calculate the covariance of two distri-
butions in their original metrics, we then apply
some kind of distributional adjustment to
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0.3849

0.1151

1.2(a)

0.0606
0.06940.4394

0.4306

−1.55 1.48(c)

0.4032

−1.3(b)

Figure 3.2 Calculating probabilities of various
outcomes using the area under the normal curve

cov(Z1, Z2) =

∑
Z1 Z2 .
n − 1

cov(X1, X2) =
∑
(X1i −X

–
1)(X2i −X

–
2) .

n − 1

Hardy & Bryman-3836-Ch-03:Hardy & Bryman-3836-Ch-03.qxp 12/12/2008 5:08 PM Page 47



again move us to a standard metric.We need
a joint adjustment for the two distributions,
and we accomplish that by dividing the
covariance by the product of the two stan-
dard deviations. So, for example, if we divide
the covariance of X1 and X2, 7.5, by the
product of the two standard deviations,
1.225 × 6.124 = 7.5, we reproduce the value
of 1.
This standardized measure of the covari-

ance is, in fact, Pearson’s product moment13 cor-
relation coefficient (r), one of the most
commonly used measures of linear associ-
ation for interval/ratio variables, and is defined
as the ratio of the covariance to the product
of the standard deviations. Pearson’s r can also
be transformed into a proportional reduction of
error (PRE) measure of association, which
returns us to the notion of predictability. PRE
measures of association are a special class of
measures that indicate how much the error in
prediction of one variable can be reduced by
knowing the value of the other variable.
Since such a proportion must always be pos-
itive and because the limiting values of r are
−1.00 and +1.00, we know that r itself cannot
be a PRE measure. But r2 is, with a range of 0
to 1: information on a second variable can
reduce your prediction errors not at all, can
reduce them to zero (100%), or by any
amount between the two.
In addition, some measures of association

are symmetrical. Symmetrical measures of
association assume no causal direction to the
relationship, whereas asymmetrical measures

assume that one variable depends on the
other. Asymmetrical measures therefore
make a distinction between dependent and
independent variables, and the mathematical
value of the measure incorporates this
assumption. Symmetrical measures use the
information of both variables in exactly the
same way. Reviewing the measures already
introduced, we can see that the covariance, r,
and r 2 are all symmetrical measures.
We can now return to our data extract and

explore the bivariate distributions of our
interval/ratio variables. Table 3.5 contains
information for the interval/ratio variables,
including zero-order14 (bivariate) correlation
coefficients, r, the covariance, and the pair-
wise number of cases.15 Among things to note
are that r and the covariance always have the
same sign; that r ranges between −1 and +1;
that larger values of the covariance do not
imply larger values of r. On this latter point,
note as examples the bivariate relationships
between income and weight, between age at
first marriage and weight, and between age at
interview and weight.The covariance between
income and weight is very large (more than
33 000) and the correlation coefficient is
quite small (0.023) – about as small as the
correlation coefficient between age at inter-
view and weight, which has a covariance less
than 2. The correlation between age at first
marriage and weight, 0.11, is notably larger
(although still not what we would call ‘large’
in an absolute sense), with a covariance in
the teens. The point is that the size of the

FOUNDATIONS48

Table 3.4 Demonstration data for z-scores, covariance and correlation
Case no. X1 X2 ZX1 ZX2 ZX1ZX2

1 1 5 −1.63 −1.63 2.67
2 2 10 −0.82 −0.82 0.67
3 2 10 −0.82 −0.82 0.67
4 3 15 0 0 0
5 3 15 0 0 0
6 3 15 0 0 0
7 4 20 0.82 0.82 0.67
8 4 20 0.82 0.82 0.67
9 5 25 1.63 1.63 2.67
Sum 27 135 0.00 0.00 8.00
Mean 3 15 0 0
St. Dev. 1.22 6.12 1 1
Variance 1.5 37.5 1 1
Skew 0 0 0 0
Kurtosis −0.29 −0.29 −0.29 −0.29∑

(X1–X
_
1)(X2–X

_
2) 60

∑
Z1Z2 8

cov(X1, X2) 7.5 cov(Z1, Z2) 1
rX1X2

1 rZ1Z2
1
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covariance, being influenced by the scale on
which the variable is measured (e.g., the
range of values), tells us only the sign of
the relationship. If we want a measure of the
strength of association, we must use r, since it
is a standardized measure.
The closer the value of r is to its limits, the

stronger the relationship; the closer the value
of r is to zero, the weaker the relationship.
But if we want to discuss strength of associ-
ation in the text of a report, the preference is
to use r2, since it is a PRE measure. For
example, the correlation between age at first
marriage and schooling is 0.325, which indi-
cates that more than 10% (0.3252 = 0.1056)
of the variance in schooling can be explained
(accounted for) by age at first marriage. The
relationship is positive; therefore, we can say
that respondents who married at older ages
achieved higher levels of schooling, on aver-
age, than those who married at younger ages.
The qualification ‘on average’ is an important
component of the statement. We are not
claiming that if we compared, one by one,
those who married at younger ages with
those whomarried at older ages,we would find
no case in which the respondent who married
at the younger age had more schooling. We
are, however, claiming that if you calculate
mean schooling for each value of age at first
marriage, as age at first marriage increases,
so would mean schooling. A cruder way of

testing this statement would be to bisect the
distribution of age at first marriage into two
groups: those who married at age 20 or
younger and those who married when they
were older than 20. If we do so, we find a
mean of 11.9 for those who married ‘young’
and a mean of 13.52 for those who were
‘older’ when married. As we can see, the
mean for the ‘young’ group is less than that
for those who married later.
Another important caveat is to note that

we cannot claim that the level of schooling is
caused by age at marriage. The causal direc-
tion could be the reverse – age at marriage
may have led to the level of completed
schooling. Or there could be no causal rela-
tionship between these two features. Rather,
both completed schooling and age at first
marriage may be two outcomes of a more
complex social process that we have not con-
sidered in this simple example. Demon-
strating causal relationships requires more
than establishing a statistical correlation (see
Winship and Sobel, this volume).

Nominal/ordinal variables For variables
that are classifications we must rely on a
different set of tools to assess relationships.
The logic is the same.We are interested in pre-
dictability from one set of information to a
second, wondering whether having a certain
quality makes more or less likely a particular
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Table 3.5 Zero-order correlation matrix for variable in data extract
weight tenure no. job schooling age (int) age (fm) no. preg.

tenure 0.06
519.1
7298

no. jobs 0.024 −0.468
5.01 −547.4
8677 7464

schooling −0.044 0.062 0.096
−4.223 33.13 1.242
8679 7465 8877

age (int) 0.021 0.161 −0.118 0.011
1.817 80.533 −1.395 0.063
8684 7469 8882 8884

age (fm) 0.11 0.044 0.075 0.325 0.045
17.83 41.648 1.623 3.311 0.422
6299 5507 6448 6452 6455

no. preg. 0.039 −0.138 −0.086 −0.293 0.146 −0.268
2.494 −50.12 −0.744 −1.253 0.577 −1.855
4227 3502 4409 4408 4411 3371

income −0.023 0.192 −0.043 0.37 0.079 0.206 −0.108 r
−33023.2 1573591 −8216.5 33031.7 6443 31613.3 −6795.6 covariance

6882 5950 6998 6999 7004 5250 3514 no. of cases
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Table 3.6 Bivariate distribution of gender and employment status,
percentaged by column

Gender of respondent

Men (0) Women (1) Total

Employment status Count 495 925 1420
0 % within gender (11.2) (20.6) (16.0)

Count 3914 3555 7469
1 % within gender (88.8) (79.4) (84.0)
Total Count 4409 4480 8889

% within gender (100) (100) (100)

Source: Author’s calculations, using NLSY data

preference, or whether making one choice
increases the likelihood of a particular second
choice. The bivariate distribution for inter-
val/ratio measures was represented by the
covariance. Bivariate distributions of categori-
cal variables are represented through cross-
tabulations. Using variables from our data
extract, we could ask whether employment
rates were different for men and women.
Essentially, this is a question of proportions.
We know that 49.6% of our sample are men,
50.4% are women, and that 84% are
employed and 16% are not. If gender and
employment are not related, what should we
expect? The absence of a relationship sug-
gests uniformity of outcome, that employ-
ment among women is no more or less likely
than employment among men. In other
words, the proportion of respondents who are
employed does not depend on (i.e., does not
differ by) gender. That suggests that if we
limit our attention to women and calculate
proportion employed and not employed, we
should find the same proportional distribu-
tion as for the sample as a whole: 84% and
16%. The same should apply to men.16 If we
produce the joint distribution of gender and
employment, we assign each respondent to
one of four groups: not employed men,
employed men, not employed women, and
employed women. Each of these ‘groups’ is
represented by a cell in a 2 × 2 table, as in
Table 3.6.
The four shaded cells in the table display

the joint distribution of gender by employ-
ment. Each cell is associated with a particular
pair of categories on the two variables. For
example, 495 respondents are both men and
not employed; 3555 respondents are both
women and employed. Within the body
of the table, each respondent is jointly
characterized on both variables. The column
to the right of the shaded cells and the

row below the shaded cells are the marginal
distributions of our two original variables.We
have 4409 men and 4480 women, 7469
employed persons and 1420 who are not
employed. The bottom right cell gives us the
total valid cases for these two variables,
n = 8889.
If the likelihood of employment is not

related to respondent’s gender, the condi-
tional distribution of employment by gender
should be the same as the marginal distribu-
tion of employment, ignoring gender. Because
we often do not have the same number of
observations in each category, we cannot rely
on frequencies to tell the story. Instead, we
look at the proportional distribution within
categories of gender. For example, 88.8%
(3914/4409) of men are employed compared
to 79.4% (3555/4480) of women. In our
sample, then, employment is more likely
among men than women.
Is there a statistic we can use to quantify

that conclusion? There are several. Since this
table is 2 × 2, we can use the phi (φ) statistic
as a measure of association. Calculation of
phi depends on a more basic statistic for
cross-tabular analyses, chi-square (χ2).
The chi-square statistic results from a com-

parison of the observed bivariate distribution
with the bivariate distribution we would
expect to see if, in fact, gender and employ-
ment were not related, that is, under the
assumption of independence. Using probabil-
ity theory, the definition of independence
is that the marginal probability equals the
conditional probability, as in:

Pr(EMP = 1) = Pr(EMP = 1| Gender = male)
= Pr(EMP = 1| Gender = female).

In our example, the empirical probabilities are
the same as the proportion of respondents
satisfying a particular condition.The probability
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of employment compared to the probability
of employment conditioned on gender is

Pr(EMP = 1) = 0.840,€€

Pr(EMP = 1|Gender =
male) = 0.888,€€

Pr(EMP = 1| Gender = female) = 0.794.

Clearly these three values are not equal, but
can we quantify the extent to which they are
different? We can begin by generating the fre-
quencies we would expect if gender and
employment were independent. We know
what the conditional probabilities would be:
0.84 for men and 0.84 for women. If we have
4409 men and the probability of employment
for men were 0.84, how many men would be
employed? The answer is 3704.7.17 Similarly, if
we have 4480 women, 84% of whom should
be employed (under independence),we should
have 3764.3 employed women. We apply the
same logic to determine the expected number
of not employed persons, 16% of 4409 = 704.3
and 16% of 4480 = 715.7, and we have a com-
plete set of expected frequencies.18
We noted earlier in the chapter that a

measure of variance was a way to quantify
differences among mathematical values, dif-
ferences between the value observed and the
value expected (the mean) if we had com-
plete homogeneity. Here, we need a measure
that will quantify differences between
observed and expected (under the condition
of independence) frequencies. We calculate
the chi-square statistic as follows:

where fobs are observed frequencies, fexp are
expected frequencies, and the summation is
performed across all cells, which is denoted by
the double summation indicating across all
rows and columns. In our example, X2 equals
146.909, which allows us to calculate phi as:

In cases where both variables are dichoto-
mous, φ is the equivalent of the correlation
coefficient, r. Known as a tetrachoric correla-
tion coefficient, it describes the relationship
between two binary variables, which are
observed indicators of an underlying latent

variable. The latent variable is assumed to be
normally distributed, but unobservable.19
The procedure is the same when the bivariate

distribution requires more than four cells.
However, as the number of cells increases the
likelihood that some cells may have a zero or
very low frequency increases, which creates a
problem for the use of chi-square or any other
type of cross-tabular analysis. Small expected
frequencies can lead to very large values of chi-
square, therefore chi-square should not be used
if expected cell frequencies are smaller than 5.
Suppose, for example, we continued to be

interested in the relationship between
schooling and age at first marriage. Since both
are discrete variables, we can look at their
joint distribution, cell by cell. But schooling
has a range of 20 and age at first marriage a
range of 24. Therefore, the joint distribution
is defined by a 20 × 24 matrix, or 480 cells.
However, we always have the option of com-
bining categories (values), or reclassifying
according to some other conceptual scheme.
Our interest may be in the effect of marrying
at a young age, say age 20 or younger, versus
marrying at a later age on completing school-
ing, with the expectation that marrying at a
young age would be linked to less schooling.
We can reclassify age at first marriage into two
groups, and then compare the two groups’
schooling distributions. But one could also
argue that the primary interest is in obtaining
educational credentials, so we can also reclas-
sify years of completed schooling into five
categories: 11 or fewer years, 12 years, 13 to 15
years, 16 years, and 17 or more years. The
bivariate distribution of these recoded vari-
ables produces a 5 × 2 = 10 cell table.
When we compare the conditional distribu-

tions (within columns of age at first marriage)
to the marginal distribution of schooling, we
see that those who married at 20 or younger
are overrepresented among high school
dropouts and those with a high school diploma.
Those who married later are overrepresented
among those who went on to college, received
a college degree, and continued postgraduate
education.The value of chi-square for this table
is 614.413. Because the table is larger than
2 × 2 and both variables are ordinal in their
collapsed state, appropriate measures of associ-
ation include Somer’s d (0.355), gamma
(0.499), Kendall’s τb (0.277), and Spearman’s
correlation coefficient (0.303). All these
measures rely on paired responses.
Gamma, also known as Goodman and

Kruskal’s gamma (Goodman and Kruskal,
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X2 =
R C ( fobs − fexp)

2∑ ∑
fexpr=1 c=1

φ =
√
146.909 = 0.129.
8889
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1954), is a symmetric measure of association
for ordinal variables based on the number of
same-ordered pairs (Ns) and the number of
different-ordered pairs (Nd). Tied pairs are
not considered in the calculation of gamma.
The coefficient is defined as

Calculation of γ requires a return to the table
and an accounting of the different types of
pairs. We begin in the upper left corner
(435), which describes those who married
young and have the least schooling. For
same-ranked pairs, we move down and to the
right in the table, since respondents in the
four cells below right all married later and
completed more schooling than our initial
435 respondents. Hence, the first element in
our summation of same-ranked pairs is 435
(1700 + 1126 + 716 + 451). Pursuing this
same logic, we have three remaining ele-
ments in the summation: 1132 (1126 +
716 + 451) + 406 (716 + 451) + 63 × 451.
Altogether, then, we have 4 834 846 same-
ordered pairs.
To find the number of different-ordered

pairs, we move to the upper right cell, with
392 respondents who married later but com-
pleted the lowest level of schooling. For pairs
that share this difference in ranking (later on
marriage but sooner on stopping school), we
look to the cells down and to the left, since
they are occupied by those who married
younger, yet completed more schooling than
our 392 respondents. Our first element in the

different-ordered pairs is therefore 392
(1132 + 406 + 63 + 31). Remaining elements
in the summation are determined by moving
down one cell in the right-hand column and
multiplying by the combined number of
respondents in cells to the lower left. The
three remaining elements in the summation
are therefore 1700 (406 + 63 + 31) + 1126
(63 + 31) + 716 × 31,which sums to 1 617 784
different-ordered pairs.We then calculate γ by
substituting into the formula, using 1 617 784
for the second term in the numerator (since it
is smaller than 4 834 846) and generate a
value of 0.4986. Ranging between −1.00 and
+1.00, γ also allows a PRE interpretation. A
second formula for γ follows the same logic,
but combines the information in a somewhat
simpler way:

which, in our example, would give us
3 226 315/6 443 377 = 0.4986.20
Kendall’s τb addresses this limitation by

amending the formula for γ by including tied
pairs in the denominator:

where Ty and Tx are the number of pairs tied
on y and x, respectively. In our example,
schooling is y and age at first marriage is x.
We find the number of ties on y by multiply-
ing across columns, within rows, such that
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Table 3.7 Bivariate distribution of age at first marriage
(dichotomized) and years of completed schooling,
percentaged by column

Age at first marriage

≤ 20 > 20 Total

Schooling completed
<12 Count 435 392 827

% within age (21.0) (8.9) 12.8%
12 Count 1132 1700 2832

% within age (54.8) (38.8) 43.9%
13–15 Count 406 1126 1532

% within age (19.6) (25.7) 23.7%
16 Count 63 716 779

% within age (3.0) (16.3) 12.1%
17+ Count 31 451 482

% within age (1.5) (10.3) 7.5%

Total 2067 4385 6452

γ = 0.499 Somer’s d = 0.355 τb = 0.277 Spearman’s rho = 0.303

Source: Author’s calculations, using NLSY data

γ =
0.5 (Ns + Nd) − min (Ns, Nd) .

0.5 (Ns + Nd)

γ =
Ns − Nd ,
Ns + Nd

τb =
Ns − Nd ,√

(Ns + Nd + Ty ) (Ns + Nd + Tx)
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435 × 392 + 1132 × 1700 + 406 × 1126
+ 63 ×716 + 31 × 451 = 2 611 165 = Ty.

To find pairs tied on x, we move across
rows but within columns, such that

435 (1132 + 406 + 63 + 31) + 1132(406
+ 63 + 31) + 406 (63 + 31) + 63 × 31
+ 392 (1700 + 1126 + 716 + 451)
+ 1700 (1126 + 716 + 451)
+ 1126 (716 + 541)
+ 716 × 451 = 8 416 351 = Tx.

The final calculation for Kendall’s τb is:

which is much closer in value to those
reported for Somer’s d and for Spearman’s
rho. Since the tied pairs amend the denomi-
nator, the value of τb will never be greater
than γ, although it may be equal to γ in cases
where there are no tied pairs.When tied pairs
are present, τb will always be smaller than γ,
with the difference increasing as the number
of tied pairs increases. τb is also a symmetrical
measure of association, ranging from −1 to +1.
Somer’s d is a measure of association for

ordinal variables, which is also a PRE mea-
sure. In this example, it indicates that some-
what more than 7% of the variation in
education is accounted for by age at first
marriage. Rather than including tied pairs on
both x and y, Somer’s d adds only pairs tied
on y to the denominator, so that the calcula-
tion is:

Spearman’s rho measures the degree of
monotonic relationship between two ordinal
variables. As the number of categories
increases, Spearman’s rho becomes a more
useful measure, since it relies on a compar-
ison of the rank ordering of respondents
within the two distributions. Rank orderings
that are quite similar produce high positive
values of ρS; rank orderings that are opposite
produce high negative values of ρS; and rank
orderings that are unrelated produce values
close to zero. It is defined by

where n is the number of pairs of observa-
tions in the sample and d is the difference in

the ranks of each pair (not Somer’s d). In this
example, the value of 0.303 indicates a posi-
tive relationship between the two variables
(as age at first marriage increases, average
schooling completed increases, as well).Also a
PRE measure, the squared value indicates that
approximately 9% of the variation in school-
ing is explained by age at first marriage.21
Another useful method for comparing the

ordered distribution of two groups is calcu-
lating the index of net difference (Lieberson,
1976). Although researchers often compare
means for different groups, or compare
medians when the observed distributions are
skewed, the index of net difference makes no
assumptions about the distributional form for
either group involved in the comparison and
is most useful when the researcher is inter-
ested in a comparison between entire distrib-
utions. TheWilcoxon (1945, 1947) rank-sum
statistic and its more general forms, the
Mann–Whitney U test (for comparisons
between two samples of unequal size) and
the Kruskal–Wallis H test (for comparisons of
more than two samples) were used fre-
quently in the 1960s and 1970s; however,
this set of statistics was less useful in compar-
ing distributions with frequent ties (when the
pairs have the same ranking within their
groups, which occurs more frequently as the
number of ordinal categories decreases).
To calculate the index of net difference, we

assume two observed occupational distribu-
tions, for example, for groups A and B. We
then randomly pair observations from these
two groups, noting that sometimes the rank-
ing in A exceeds the ranking in B; sometimes
the ranking in B exceeds the ranking in A; and
sometimes the rankings are equal (tied). We
can express these outcomes in terms of prob-
abilities, which sum to 1.00, since they
exhaust the set of possible outcomes. The net
difference is NDAB = Pr(A > B) − Pr(B > A).
Ranking in value from +1 to −1, NDAB will
equal zero if the probabilities are the same.
The existence of ties is reflected in the maxi-
mum NDAB. If, for example, the Pr(A = B) =
0.60, then the maximum value for
NDAB = ±0.40.

Elaborating relationships

Although bivariate relationships are a good
starting point when you begin to analyze
your data, many of the research questions we
develop are more complex and therefore
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τb = 3 226 315
= 0.278,√

9 054 542 × 14 859 728

d = 3 226 315 = 0.355.
9 054 542

ρS = 1−
6

∑
d2

,
n(n2 − 1)
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require multivariate rather than bivariate
analyses. The remaining chapters in this vol-
ume will provide readers with a variety of
approaches to more complex questions with
different types of data. In this section, we will
briefly explore what is meant by partial rela-
tionships, intervening variables, and interaction.
In assessing partial relationships, we add at

least one more variable to the mix. Our
intention is to re-examine the relationship of
initial interest under a new set of conditions.
The term ‘partial’ is used because we are
interested only in that part of the initial
relationship that continues to obtain once
these new control variables are introduced.
The new set of conditions consists in ‘con-
trolling’ for the effects of additional vari-
ables. When we introduced the term
‘relationship’, we linked it to the covariance
between two variables, which represented
their bivariate distribution. As we add vari-
ables, it becomes more difficult to think in
these terms so long as we try to think of all
variables at once. If we knew a way to pull
them apart, then perhaps our understanding
would improve.
Let us return to our example of age at first

marriage and schooling, measured as interval
variables. We reported a zero-order correla-
tion between the two of 0.325, which is quite
close to the statistical estimates of association
we calculated after collapsing the two mea-
sures into categories.To introduce partials, we
will return to the interval metric and exam-
ine the process implied by ‘partialling’. In
fact, the term ‘partialling’ is descriptive of
what we want to accomplish in terms of the
covariance, or the semblance of bivariate dis-
tributions we have implied. Suppose we are
particularly interested in the relationship
between age of first marriage and schooling
among women in the sample, and we wonder
whether the number of pregnancies experi-
enced could be involved in the earlier rela-
tionship we observed. It may be that
marrying young need not necessarily interfere
with schooling, but marrying young could
imply a larger number of pregnancies, and it
is the pregnancies that make continued
schooling impossible. To address that ques-
tion, what we want is a measure of associ-
ation between schooling and age at first
marriage (in this example, just for women),
controlling for the number of pregnancies
they have experienced.
What does it mean to say we want to ‘con-

trol’ for number of pregnancies? In the

nomenclature of ‘partialling out’ the effect of
pregnancies, we want to rid the covariance
between schooling and age at first marriage of
the potentially confounding covariance that
is shared with number of pregnancies.
Although we have already reported the set of
zero-order correlations for the sample, in this
case we need to reproduce the same correla-
tions for women only.The zero-order correla-
tion coefficient between schooling and
number of pregnancies (−0.2609) tells us
that 6.8% of the variance in schooling is
shared with number of pregnancies, such that
more pregnancies are associated with less
schooling. Similarly, the correlation coeffi-
cient of age at first marriage and number of
pregnancies (−0.2681) indicates that 7.2% of
the variation in age at first marriage is
explained by (overlaps with) the variation in
number of pregnancies, such that younger
ages of marriage are associated with more
pregnancies, on average. What we want to
correlate is the remaining 93.2% of the vari-
ance in schooling with the remaining 92.8%
of the variation in age at first marriage. Then
we can see how that correlation coefficient
compares to the zero-order coefficient we
calculated. This new correlation coefficient is
called a first-order partial because we are
controlling for one additional variable.22
If we denote pregnancies as P, schooling as

S, and age at first marriage by AFM, we can
calculate the partial correlation coefficient as

The notation for the term to the left of the
equal sign defines the first-order partial cor-
relation between schooling and age at first
marriage, controlling for the number of preg-
nancies the respondent has experienced. To
the right of the equal sign we have a combi-
nation of all possible zero-order correlations
– those between schooling and age at first
marriage, between schooling and pregnancies,
and between age at first marriage and preg-
nancies. Consider the denominator first.
When we said earlier that we wanted the
remaining 91.4% of the variance in schooling
and the 92.8% of the variance that remains in
age at first marriage, we were describing the
kind of operations performed in the denomi-
nator. The expression in the first set of paren-
theses under the radical sign equals 0.914
(expressed as a proportion rather than a
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rS, AFM.P =
rS, AFM − rS,PrAFM,P .√
(1 − r2S,P )(1 − r2AFM,P)
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