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and external data .Types of data: Nominal, ordinal, interval 
and  ratio. Statistical data terminology : Population, 
population characteristics,  sample ,population census , 
sampling and non-sampling errors,… and variables. Obtaining 
data. Descriptive statistics: Summarizing data. One and two 
way frequency tables and how to make them. Scatter plots. 
Measures of central tendency, mean, median, mode (grouped 
and non-grouped data) . Measures of variability, standard 
deviation, range, skewness measure (grouped and non-grouped 
data).Quartiles and percentiles. Definitions of probability. 
Random variables and their distributions .  Simple 
uses/application  of binomial and normal distributions. Simple 
indices and rates . Scatter plots and simple  linear regression. 
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1.1 Examples of Statistical Problems 
 

The word "statistics" conveys a variety of meanings to people, many of 
which are inaccurate or, at the very least, misleading. To some, the word 
suggests only a plethora of mind-boggling tables, charts, and figures. Other 
people consider statistics to be an imposing form of mathematics. The use of 
the word certainly had an inauspicious beginning, as might be suspected 
from a cursory study of the word, for it was originally a term used to denote 
a collection of figures, graphs and the like which contained useful 
information for the state (primarily budget information such as taxation 
figures). 

Used in the context of its original meaning, statistics generally refers to 
information about an activity or a process that is expressed in numbers listed 
in tables or illustrated in figures. But, since its early connotation, statistics 
has grown to encompass a larger role than presenting us with charts, graphs, 
and tables or figures. In a modern setting, statistics refers to the science of 
collecting, presenting, and analyzing numerical data. A   statistician   is    
a person who engages in one or more of the following tasks: 

 (1) the clerical activities of tabulating, summarizing, and displaying      
       statistical data. 
(2) analyzing data by using statistical methods, usually for the purposes of    
      decision making. 
 (3) advancing the science of statistics by developing new and better     
       analysis methods.  
The levels of expertise required by statisticians ranges from mastering 

simple clerical operations with data to advanced training in applied 
mathematics, and statisticians are needed at all levels. 

The use of statistics has permeated almost every facet of our lives. The 
daily newspapers and the televised news reports supply us with numerous 
summaries of data such as stock market reports, financial summaries, and 
crime statistics-and with the results of statistical analyses-weather forecasts, 
political election outcome predictions, and so on. 

Governments, businesses, and individuals collect statistical data required 
to carry out their activities efficiently and effectively. The rate at which 
statistical data are being collected is staggering and is primarily due to the 
realization that better decisions are possible with more information and, 
perhaps more importantly, to technological advances that have enabled the 
efficient collection and analysis of large bodies of data.  
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The most important technological advance in this area has, of course, 

been the development of the electronic digital computer. Statistical concepts 
and methods, and the use of computers in statistical analyses, have affected 
virtually all disciplines biology, physics, engineering, economics, sociology, 
psychology, business, and others. In business and economics, the 
development and application of statistical methods have led to greater 
production efficiency, to better forecasting techniques, and to better 
management practices. It is becoming increasingly apparent that some 
knowledge of statistics and computers is essential for careers in economics, 
business, administration, and many other fields as well. To gain an 
appreciation for the breadth of applications of statistics to business and 
economic problems in particular, let us consider three examples. 

 

Example 1.1 

In operations management, a primary concern is controlling the quality of 
the items being produced. If the product is a transistor radio battery, for 
example, we may be concerned with the longevity of the batteries. Suppose 
it is desired that at least 95 percent of the batteries last through at least 20 
hours of continuous use. The actual percentage of batteries lasting m ore 
than 20 hours could be determined by inserting each and every battery 
produced into a transistor radio and recording its time to failure, but then 
there would be no batteries to sell. Rather, a manager may wisely decide in a 
day's production to pull every 100th battery off the production line, insert 
the sampled batteries in electrical test circuits and record their times to 
failure. The percentage of these batteries lasting through more than 20 hours 
of continuous use could be used to estimate the percentage of all batteries 
produced during that day which will last more than 20 hours. Moreover, if 
this estimated percentage drops much below 95 percent (say to 80 percent), 
the manager may wish to stop the production line until he can determine 
why the percentage of bad batteries appears to be greater than the tolerated 5 
percent. The manager is using a percentage statistic computed from a sample 
of all batteries produced to arrive at a decision regarding the quality of the 
set of all batteries produced on a given day.This example portrays a common 
phenomenon in quality control: destructive sampling. It is impossible to test 
the quality (longevity) of each battery produced because the test for 
longevity will ordinarily involve its destruction.  
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The manager has little recourse but to sacrifice a small number of 
batteries (the sample) in order to gain information about the entire set of 
batteries comprising the daily production (the population). 

Example 1.2 

Determining the saleability of a new product is a constant problem posed 
to many marketing research groups. In order to determine whether a new 
kitchen-ware product will sell, the marketers might conduct a house-to house 
survey of 1,000 households selected randomly in the product target areas, 
during which they present the product to the housewife for evaluation. The 
percentage of the housewives willing to buy the product at its listed price, 
together with other information obtained from the interviews could be used 
to decide whether or not the new item should undergo full-scale production. 

 

Example 1.3 

    Politicians and their supporters aelection as the campaign heads towards 
final balloting. By sampling 1,000 regire immensely interested in knowing 
their prospects of winning an stered voters prior to the election, the 
percentage who claim they will vote for a given candidate may be used to 
estimate the percentage of the votes the candidate will receive hi the 
election. The estimated percentage could be used to decide, for example, 
whether a greater campaign effort (more money) is required to assure the 
candidate's election. There are many more examples in business and other 
areas which might be cited, but the above five should indicate the many 
ways in which statistics can be employed. In the first two examples, 
statistics is used to describe large bodies of data. In this application, the 
word "statistic" is being used to describe a specific numerical quantity such 
as an average or a total, and the collection of statistics is used to summarize 
or condense a large set of numbers. These compiled statistics may, in turn, 
be used to assist in decision making. In the last three examples, statistics 
may be interpreted in a much broader sense; namely, the process of drawing 
conclusions about an entire population or collection of things based upon a 
sample, a subset of the population or collection. 
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    Most students probably view statistics in the context of the first example 
above; that is, as tables of figures, charts, and graphs (batting averages, pie 
charts illustrating the sources of government revenue, and so on). This 
concept is called descriptive statistics and was at one time the principal use 
of statistics in business. Currently, there is an increasing interest in the 
methods and uses of inferential statistics-the process of drawing inferences 
about the whole (the population) from a subset of it (the sample), as 
exemplified in Examples 1.1-1.3. Schematically, the process of drawing 
inferences about an unknown population numerical quantity (the proportion 
of defectives in a production lot, mean incomes of a class of laborers, etc..) 
is illustrated in figure 1.1. Units are selected from the population to form the 
sample which in turn is used to draw inferences about the population 
characteristic of interest. Much of this text is devoted to the study of 
statistical inference. In subsequent sections of this chapter, we will focus 
attention on the sources of data, methods of obtaining data, and data 
measurement considerations. 
 

Figure 1.1 The Statistical Inference Process 

  

1.2 Sources of Data 
  
    In most instances, businesses use internal data; that is:                                                           
data arising from bookkeeping practices, standard operating, business 
procedures, or planned experiments by research divisions within the 
company. Examples are profit and loss statements, employee salary 
information, production data and economic forecasts. Occasionally, it may 
be necessary or desirable to use sources of external data. By external,  
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We mean:                                                                                                        
sources of data outside the firm. External data may be of two types: 
primary data and secondary data. By primary data , we mean data obtained 
from the organization which originally collected them. An example is the 
population data collected by and available from the US. Bureau of the 
Census. Secondary data come from a source other than the one which 
originally collected them. 

Ordinarily, if external data must be used, it is recommended that primary 
data be sought out since it will not have undergone any "refining" by the 
secondary source. 

In the election survey (Example 1.3) in Section l. l, the Statistical Abstract 
provide numerous tables of both primary and secondary data, such as past 
voting records in districts and numbers of registered Democrats and 
Republicans, which may supply important information in conjunction with 
the internal sampled data on estimating a candidate's probability of being 
elected. 
There are many excellent sources of published (primary and secondary) data 
which have been compiled by the state and  government, by business and 
economic associations, and by commercial sources (periodicals). 
Some examples are: The Statistical Abstract of the United States (published 
annually by the Bureau of the Census), Survey of Current Business 
(published by the Department of Commerce), Monthly Labor Review 
(published by the Bureau of Labor Statistics), Harvard Business Review 
(periodical), Business Week (periodical), The Wall Street Journal 
(periodical), Dun's Statistical Review (periodical) and The Journal of 
Management Science (association journal). Additional sources of external 
data, available in most reference libraries, are The Economic Almanac, 
Federal Reserve Bulletin, Life Insurance Fact Book, International Financial 
Statistics, and Business Conditions Digest. 
Caution must always be exercised in using external sources of data, 
particularly secondary sources, as they may contain errors in transcription 
from the primary source. When external data are used, the conditions under 
which the data were collected and summarized must be determined to assure 
that they are relevant for the intended use. This determination usually re-
quires identifying and locating the primary source, 
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 which typically will discuss any restrictions placed on the data due to the 
process of their collection. Thus, while secondary sources of data are 
convenient, it usually is prudent to seek out and use primary sources of 
external data. 

1.3 Statistical Data Terminology 

When statistical data are collected and analyzed, it is usually in the 
context of populations and their characteristics. 

Definition 1.1 
Population and population characteristic 

A population is the totality of units under study. A population 
characteristic is an attribute of a population unit. 

We may be interested, for example, in the salaries of workers in a particular 
industry. If so, the population is the totality of these workers and the char-
acteristic of interest is each worker's salary. In collecting the salary data, we 
may be interested in other population characteristics as well, including sex, 
age, educational level, and other information. In general, a population unit 
may have one or more characteristics of interest in a particular study. 

As another illustration of a population, a firm may be interested in the 
proportion of defective units of a certain product that it has produced in a 
large lot stored in a warehouse. The population is the totality of units in the 
warehouse  and the characteristic is the acceptability of each unit of the 
product-it is either defective or non-defective  . 

A population may be either entirely inspected or partially inspected. When 
the data are produced by measuring the population characteristic for each 
and every unit in the population, we say a census of the population has been 
taken. 
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Definition 1.2 
A population census 

A population census is the evaluation of each and every unit in the 
population under study. 

In some situations, it is possible to take a complete census of the popula-
tion. This rarely occurs in business unless the population size is very small, 

due to cost and time considerations. A census of the US. population is under-
taken every ten years and it is truly a Herculean effort, subsidized, naturally, 
by the taxpayers. The US. census produces a wealth of data of considerable 
importance to the federal government and to firms and institutions, many of 

whom view the census as an important source of external data. 

In most instances, it is not possible to take a census of a population. It may 
be too costly, too time consuming, or the evaluation process may destroy the 
population unit as in Example 1.1. 

Definition 1.3 
A sample 

A sample is a part of a population in which the population 
characteristic is studied so that inferences may be made from the sample 

study about the entire population. 

  A classic example of a situation in which samples must be used rather than 
a census taken is destructive sampling in which the process of evaluating a 
unit of the population destroys or irrevocably damages that unit. 

Example 1.4 

    Suppose a tire manufacturer wishes to claim its new radial tire will last 
40,000 miles or more. To support this claim, a sample of all tires produced 
(the population) is selected for testing to determine how many miles the tires 
will last. Since testing destroys the tires, a complete census of the population 
is impossible. 

The advantages of sampling to taking a census are rather obvious. A sample 
is less expensive than a census, it can produce data more quickly, and the 
data are often more reliable because more time can be spent studying each 
sampled unit. But there clearly is a price to be paid as well. By looking at 
only a portion of the population, we are subject to errors because the sample 
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may not be representative of the whole population. 

Definition 1.4 
Sampling error 

Sampling error is the difference between the result of studying a 
sample and infering  a result about the population, and the result of a 

census of the whole population. 

Example 1.5 

   As an illustration of sampling error, suppose we are interested in the 
average salary of unionized workers in a specific industry and we know 
from union membership lists that there are presently 1,000 workers in this 
industry. Had we taken a census, we may have found that the average salary 
is, let us say, $25,000. Based upon a sample of 100 workers, we might find 
that the average salary is $27,200. The difference between the two figures-
$2,200 is the sampling error. 

 
Errors in acquiring and tabulating statistical data can arise in other ways as 
well, and these errors are called nonsampling  errors. 

Definition 1.5 
Nonsampling  error 

Nonsampling  errors are errors that occur in acquiring, recording, or 
tabulating statistical data that cannot be ascribed to sampling error. 

They may arise in either a census or a sample. 

Nonsampling  errors are usually more difficult to control and detect than 
sampling errors. 

Example 1.6 

 Suppose we are acquiring data on the 1,000 unionized workers mentioned 
above. If we approached a particular worker and asked for his or her income, 
we could be lied to-a troublesome and frequent source of nonsampling  error 
when a sensitive question is asked directly of a person. (What is your grade 
point average?) In some instances, a person may give a false response out of 
ignorance rather than by design. Another source of nonsampling  error is in 
recording the data. A"7" may be written as a "9," the decimal point may be 
incorrectly placed, and so on. Errors may also occur in tabulating the data-
keypunching errors in preparing computer cards and typing errors in 
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 transcribing data, for instance. It is always necessary to carefully edit data to 
minimize the chance of nonsampling errors adversely affecting the statistical 
analysis of the data. 
The identification of the units in a population under study can often be a 
surprisingly difficult task. We refer to a listing of population units as a 
frame. 

Definition 1.6 
Population frame 

The listing of all units in the population under study is called the 
population frame. 

Example 1.7 

If the population is a production lot of units stored in a warehouse, 
production records will give us a listing of the serial numbers of the units 
from which each unit may be identified. 

Example 1.8 

 If the population is the 1,000 unionized workers in a specific industry, union 
membership records may serve as a frame. 

 But, what about a frame for all persons who will vote in a particular 
election? A listing of registered voters is not appropriate, because in many 
elections less than 50 percent of the registered voters actually vote. Some 
classic errors have been made in identifying the frame.  

1.4 The acquisition of Data: Surveys and Experiments 

   When internal or external data are not readily available or are incomplete 
in a study attempting to answer questions about a population, a survey or an 
experiment may be conducted to provide the required information. 

Definition 1.7 
Statistical survey 

A survey is a process of collecting data from existing population 
units, with no particular control over factors that may affect the 

population characteristics of interest in the study. 
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   Most of us are very familiar with surveys. As students, we are asked about 
our opinions regarding dining hall food, impending tuition hikes, teaching 
effectiveness and so on. Filling  out survey questionnaires or answering an 
interviewer's questions has become a routine occurrence in most of our lives.  

Example 1.9 

   suppose we are interested in acquiring data on the salaries of 1,000 
unionized  workers in a specific industry. The population characteristic 
"salary" may be affected by a host of factors-age , race, sex, educational 
level, etc.. As we elicit a particular worker's salary, we have no control over 
educational level, age, and so on  these are existing attributes of the worker. 

 
In contrast to a survey is a statistical experiment in which we do exercise 
control over factors that may affect the population characteristics of interest. 

Definition 1.8 
Statistical experiment 

An experiment is a process of collecting data about population 
characteristics when control is exercised over some or all factors that 

may affect the characteristics of interest in the study. 

Example 1.10 

We may be interested, in the yield of a chemical process that is affected by 
temperature and pressure. A variety of settings for temperature and pressure 
could be selected, and the chemical process run for each setting to determine 
the yield. In this way, the joint effect of temperature and pressure on yield is 
studied in a controlled manner. 

Example 1.11 

 
   In management, we may be interested in the effects of a training program 
on the first year performance of new employees. A set of new employees 
may be split into two groups such that both groups are approximately alike 
in terms of age, sex, education, and other factors. The training program 
could be administered to one group and not to the other (the control group). 
At the end of the first year, performance characteristics could be measured to 
assess the effects of the training program, accounting for factors other than 
the training program that may affect performance. 
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    Experiments almost always provide better information than do surveys, 
but both are extremely important and useful tools for acquiring data. Though 
an experiment should be preferred to a survey, much of the data used in 
statistical analyses in business and economics are survey data. There are a 
number of reasons for this. First, most internal and external data are 
collected by surveys. Second, it is not always possible to conduct an experi-
ment to acquire the needed information. An interesting example of this is the 
effect of smoking on health. Virtually all data on the relationship between 
smoking and health are survey data; other factors that may affect health, 
such as age, race, sex, and physiological properties, are not in the control of 
those collecting the data. To run an experiment in this case would involve 
controlling persons' lives. Some people in the experiment would be required 
to smoke while others would not. It is neither feasible nor desirable to 
approach the acquisition of the data for the study of the relationship between 
smoking and health in this way. 
 
    The planning of a survey or an experiment is essential to ensure that the 
resulting information will be useful. A good plan usually involves the 
following steps (these steps are applied to the quality control problem in 
Example 1.1): 

1. A clear and detailed statement of the problem. 

The statement of the problem should clearly indicate that we are interested 
in determining whether or not the percentage of good batteries (those lasting 
through 20 hours) exceeds a specified percentage (95 percent). The 
population  is comprised of all batteries produced during a chosen period of 
time (a day or a week) and the characteristic in the population of interest is 
the number of hours the battery will continuously operate before failure. 

2. A decision to survey or to experiment. 
In this problem, it is possible to answer the question about the population by 
experimentation. We may test each selected battery under the set of 
conditions in which it was designed to operate. 

3. A decision to take a census or a sample. 
This is a case of destructive sampling. In determining the proportion of 
batteries that will last 20 or more hours, the tested batteries are "spent." We 
must, therefore, take a sample of batteries. 
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4. Designing the survey or experiment. 
The experiment must be designed so that we isolate the characteristic of 
interest-the lifetime of the battery. Test circuits must be constructed and 
carefully monitored when the selected batteries are inserted for testing. 

5. Collecting and analyzing the data. 
For each battery, the time to failure is recorded and the proportion of bat-
teries lasting 20 hours or more is calculated. 

6. Reaching conclusions about the population characteristics. 
The sample proportion of batteries surviving 20 or more hours is used as an 
estimate of the population proportion that survive 20 or more hours. 

7. Reporting the results. 
The report should include a thorough description of the problem, the 
sampling design, the testing method and the inferences. Sufficient monies    
should be allocated for a competent writing of the report. Indeed, many 
companies employ technical writers to put into "laymen's" words the 
experimental results. 
 
The manner in which a sample is drawn, the methods of analyzing statistical 
data , and the kinds of inferences that may be drawn from the 
analysis (steps 4, 5 , and 6) are major topics in this text. It is important not to 
minimize  the other  steps , particularly steps  I  and  7. A  clear and detailed 
statement of the problem is essential in planning a survey or an experiment. 
And the best analysis of survey or experimental results is meaningless unless 
the analysis can be accurately and understandably reported. 

1.5 Obtaining Data 

   Once it has been determined that a survey or experiment is required, there 
are a variety of methods that may be employed. The most difficult 

problems arise when gathering information from people in surveys and the 
methods most relevant to this situation will be emphasized. 

1.5.1 Self -Enumeration 

   Self-enumeration is probably the most common method of acquiring data 
from people in a survey or in an experiment. Questionnaires  are usually 
distributed to selected individuals by mail,  
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   although the distribution mechanism depends to a large extent on the 
purpose and nature of the questionnaire. For example, if the purpose of the 
questionnaire is to survey the attitudes of those using public transportation, 
the questionnaire may be distributed to persons while commuting to and 
from work on buses, subways, and trains. 
The use of questionnaires suffers from two serious drawbacks. First, if the 
respondent has difficulty in interpreting the questions, no one is available for 
assistance. If this situation arises, the information received may contain a 
high degree of nonsampling  error or the respondent may become frustrated 
and not bother completing or returning the questionnaire. Further, if a 
questionnaire is mailed to a household, it is often not clear who in the house-
hold responded to it. Second, questionnaires have typically an extremely 
poor response rate. It is not uncommon to have less than 30 percent returned 
on the first mailing of a questionnaire. The principal advantage of a 
questionnaire  is the low cost relative to the other means of obtaining 
information. Most mail questionnaires may be bulk mailed at a reasonable 
rate. But it is almost always necessary to contact nonrespondents  to the first 
mailing by subsequent mailings, telephone calls, or personal interviews, and 
these costs must be planned for in a well-designed self-enumeration survey 
or experiment. In most instances, those who do respond to the first mailing 
of a questionnaire are not representative of the entire population. To use only 
their responses would tend to bias the analytical results. Some self- 
enumeration questionnaires do enjoy high initial response rates. Examples 
are questions asked on warranty cards that must be returned to the 
manufacturer for warranty coverage of a new product . 

1.5.2 Personal Interview 

   In most situations, the best method of eliciting information from indi-
viduals is by a personal interview. The interviewer personally contacts 
individuals selected to participate in the survey or in the experiment. 
Responses are recorded on a schedule (a questionnaire form filled out by the 
interviewer). 
The personal interview method produces a higher response rate, than self-
enumeration questionnaires and further allows the interviewer to clear up 
any   misunderstandings about any of the questions on the schedule. But 
personal interviews are generally very expensive. Interviewers must be 
carefully selected and trained,  
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  and sufficient remuneration must be provided to ensure that the interviewer 
is competent and dedicated to the chore. It is always prudent in a personal 
interview survey to call a selected set of respondents to ensure that they were 
in fact contacted (as opposed to the interviewer filling in fake responses), to 
ascertain if the interviewer's demeanor was appropriate, and to determine 
whether the interviewer may have biased responses by making gestures 
when stating the questions or recording the responses. 

Overall, the personal interview method of conducting an experiment or 
survey, where the population units are people, is the best way to acquire data 
if the process is properly planned and executed, and if it can be afforded. 

1.5.3 Telephone and Internet Interviews 

    Occasionally, it is possible to conduct an interview over the telephone or 
internet with the interviewer working from a schedule as in a personal 
interview. Polls to determine the most popular programs on television are 
frequently conducted in this manner. Telephone and internet interviews are 
usually less expensive than personal interviews, but the response rate is 
lower and fewer questions may be asked before the respondent tires of the 
proceedings. And, not everyone owns a phone or e-mail-even today. 

1.6 Constructing Questionnaires and Schedules 

    There are three basic steps to constructing a questionnaire or schedule:  
(1) designing the instrument, (2) the pretest, and (3) editing the results. The 
construction of a questionnaire or schedule instrument is time consuming 
and difficult. There is a natural tendency to rush through the construction of 
the instrument so that the data collection process can commence. But time 
spent in this stage of a well-planned survey or experiment is invariably 
found to be extremely valuable in retrospect. 
The proper construction of questionnaires is a skill which is generally 
developed only by experience in the use of research methodology or by on -
the-job  training. We will discuss only some of the basic concepts 
concerning the  construction of a questionnaire. 
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1.6.1 The Design 

    There are basically three kinds of questions that may be asked:         
dichotomous, multiple choice, or free answer. In the dichotomous question, 
the respondent is asked to select one of two responses, usually "yes" and 
"no." For example, in a transportation study, a worker may be asked,  

Did you drive a car to work this morning? YES ( ), NO ( )   . 

The dichotomous question is simple and straightforward, and perhaps 
comes closest to decisions that respondents are used to making. 

In the multiple choice question, the respondent is asked to select one of a 
number of responses: 
 
What is the likelihood of your using the following services for preventive 
health care purposes in the next two years? (a) Dental check-up, (b) Eye 
exam, (c) General physical. 
 
 
 
 
 

 a b c 
Extremely unlikely      ( )       ( )         ( )   
Unlikely                       ( )       ( )         ( )  
Slightly unlikely          ( )       ( )         ( )  
Not certain                   ( )       ( )         ( )  
Slightly likely              ( )       ( )         ( )  
Likely                          ( )       ( )         ( ) 

           Extremely likely   ( )  ( )  ( ) 
 

The multiple choice question gives the respondent a greater range of 
responses to choose from, but it may also request a more qualified response 
than the respondent is prepared to make. For instance, a respondent may 
answer "yes" to the dichotomous question, "will you have a physical this 
year" when it is not a certain event-good intentions are not always realized. 
Yet, the respondent may not be able to properly conceptualize the assign-
ment of a likelihood (slightly likely, likely, extremely likely) to the event, "I 
will have a physical this year." All too often, responses in situations like this 
lead to "end-loading"-selecting the response which most closely approaches 
a simple "yes-no" response.  
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In this case, the respondent would select the "extremely likely" response 
in place of "yes" if he or she is given the multiple choice response format, 
for instance. 

 
In the free answer form, the respondent is asked to answer a question in 

his or her own words in essay form: 

What is your opinion of the dining hall food and service? 
The difficulty with the free answer question is in classifying the responses. 
This may not only be difficult and somewhat arbitrary, but it is also  
extremely time consuming. 

In most instruments, it usually is necessary to employ all three types of 
questions to elicit the information required. , 

The order of the questions in the instrument can be extremely important. 
The questionnaire or survey should begin slowly, with easily answered 
questions to develop rapport with the respondent. Respondents tend to "tie" 
questions together and a particular ordering of questions may produce a 
different set of responses than another set for this reason. 

      The degree of directness of the questions is also important. If sensitive 
questions are asked directly, respondents may distort their answers. This 
invariably happens when a person is asked for his income. To elicit informa-
tion about sensitive questions, indirect questions may be employed. For 
example, we may ask the respondent to indicate his salary range among a set 
of ranges. Later, we may ask what proportion of his monthly income is spent 
on food and much later, what his average monthly expenditure for food is. 
We may be able to determine a person's salary indirectly in this way better 
than by directly asking for his or her income. At the very least, we have a 
consistency check to determine how reliable the responses are. 
It is important that the questions are stated clearly and do not bias the results. 
Ideally, the question should have the same meaning to every respondent in 
the survey or experiment. And the questions should be relatively short. Bias 
may arise when leading questions are used, such as: 

The food in the dining hall is rotten. 
Agree ( ) Uncertain ( ) Disagree ( )  . 
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   Given to the typical college student, the response will invariably be, 
"agree." A less biased question might be, "The food in the dining hall is of 
acceptable quality." 

1.6.2 The Pretest 

    The pre-test is an essential step in constructing a questionnaire or schedule 
instrument. The instrument is given to a small number of respondents to 
determine whether there are any problems with it. Almost always there are. 
There may be ambiguous questions, the ordering may require changing, and 
some questions may have to be asked in different forms. The time to identify 
difficulties with the instrument is before the full scale survey or experiment 
is conducted-not after. 
Further, the information gathered during the pretest phase may be used to 
estimate statistics required for the proper planning of the statistical design of 
the experiment.  

1.6.3 Editing 

    The completed questionnaires or schedules must be carefully checked and 
edited for errors. Often, it is possible to design in questions which represent 
internal consistency checks for the respondent's answers. Finding recording, 
transcription, or clerical errors can be very tedious work, but it is necessary 
if the data are going to be of value in decision making. Today, the computer 
is used extensively to edit data. Various computer assisted techniques have 
been developed to identify "outliers"-responses  which are greatly different 
from the majority of the responses. Many outliers result from recording, 
transcription, or clerical errors, or from false information provided by the 
respondent. 

1.7 Variables and Scales of Measurement 

    The characteristic of the population under study is called a variable if it 
can take on two or more different values among the population units. For 
instance, if we are interested in the incomes of workers in a particular 
industry, we may also record other characteristics about the worker as well, 
as for example age, race, level of education, and sex. 
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    In this instance, the five characteristics-income, age, race, level of 
education, and sex-are variables in the survey or experiment. 
Further, we would call income a dependent variable and the other four 
independent variables if we are concerned with how sex, age, level of 
education, and race affect income. Income is the basic variable of interest 
and our interest in the other variables is in their influence on income. 
If we are measuring a set of variables from a population, the determination 
of which are dependent and independent variables is a function of the 
purpose of the survey or experiment. An independent variable in one study 
may be a dependent variable in another. 
A quantitative variable is one that can be measured numerically, such as 
income and age. A qualitative variable is one that is nonnumeric  , such as 
sex, race, and level of education (high school, college, graduate school,  
 etc  ... 
In preparing data for analysis, we must be familiar with the four numerical 
scales of measurement: nominal, ordinal, interval and ratio. The nominal 
scale applies whenever we have used numbers only to categorize outcomes 
of a variable. For instance, we could let a "male" be 1 and a "female" be 0, 
but this numerical assignment is clearly arbitrary-a female could be 
assigned 100 and a male, 0. The ordinal scale differs from the nominal 
scale in that the ordering of the numbers has meaning. An example is the 
responses to a multiple-response question: 
 
Strongly               Agree             Uncertain                Disagree            Strongly                   

agree                                                                                                     disagree                          

-2                            -1            0                              +1                    +2 

The numerical assignments of -2, - 1, 0, 1, and 2 indicate the degree of 
agreement, but they could just as easily have been 0, 10, 100, 200, and 500, 
respectively. The key here is that while a -2 indicates stronger agreement 
than a - 1, the difference between -2 and - 1 may not be the same as 
between 0 and + 1. In the interval scale, the relative order of the numbers 
is important, but so is the difference between them. This scale uses the 
concept of unit distance such that the difference between any two numbers 
may be expressed as some number of units. The interval scale requires a 
zero point, but its location may be arbitrary.  
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     Good examples of interval scales are the Fahrenheit and Celsius 
temperature scales. Both have different zero points and unit distances. The 
principle of an interval scale is not violated by a change in scale or 
location or both. The ratio scale is used when the interval size is important 
and also the ratio between two numbers has meaning. By this, we mean it 
is appropriate to speak of one number being, say, twice as big as another. 
This is clearly not possible with an interval scale, where, for instance, 
80°F is not twice as "hot" as 40°F-measured on the Celsius scale, these 
two temperatures are 27°C and 4°C, respectively, and 27°C is not twice 
4°C. Examples of instances when ratio scales are appropriate are 
measurements of heights, weights, and age. Most of the statistical methods 
we will develop in this book require that the variable be measured at least 
on the interval scale. 
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Tutorial 1 

l. Briefly describe each of the following terms: 
a. A statistician.  
b. Schedule. 
c. Descriptive statistics.  
d. Questionnaire. 
e. Inferential statistics.  
f. Survey. 
g. Population.  
h. Experiment. 
i. Population characteristic.  
j. Variable. 
k. Census.  
l. Quantitative variable.  
m. Sample.  
n. Qualitative variable.  
q. Sampling error.  
r. Dependent variable. 
s. Nonsampling error.  
t. Independent variable.  
u. Frame. 
 
2. Distinguish between a schedule and a questionnaire. What is each used 
for? 
 
 3. Distinguish between a survey and an experiment. Which is preferred and 
why? 
 
4. Distinguish between primary and secondary data. Which is the most 
reliable? Why? 
 
5. There are three kinds of questions that may be used in a schedule or in a 
questionnaire. Describe each, and discuss its advantages and disadvantages. 

6. In constructing a schedule or questionnaire, there are three primary steps: 
design, pretest and editing. Describe each step. 
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7. There are four measurement scales: nominal, ordinal, interval, and ratio. 

Describe each, and give an example of a survey question that may use 
measurements of each type. 
 
8. For each of the following, indicate the scale of measurement: a. Red (1), 
Blue (0), Yellow (- 1) 
b. Extremely Likely (5), Likely (4), Indifferent (3), Unlikely (2) and Ex-
tremely Unlikely (1). 
c. Pressure in pounds per square inch; from 0 to ∞. 
d. Volume in cubic centimeters  from 0 to ∞.  
e. Age in years 0 to  ? 
f. Salary in dollars 0 to  ? 
g. Rank of a state in population 1 to 50. 
 
9. For each of the following, indicate whether it is a quantitative or 
qualitative variable. 
a. Hair color. 
b. Sales volume of an automotive firm. 
c. Sex of an individual. 
d. Number of persons unemployed. 
 
10. Distinguish between sampling and nonsampling  error. Which can occur 
in a census? Which can occur in a sample? 
 
11. A manufacturer buys electronic parts from a supplier with the 
understanding that 1 percent or less of the parts are defective. In a particular 
shipment of 5,000 parts, the supplier finds in a sample of 100 parts that none 
are defective. The manufacturer decides to check the parts as well and, in 
another sample of 100 parts, finds that four are defective. On this basis, the 
manufacturer decides to reject the lot. 
a. How is it possible that one sample produces 0 percent defectives while 
another produced 4 percent defectives? 
b. Is it possible that the manufacturer is making a mistake by not accepting 
the shipment. 
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2.1 Introduction 
 
    Grouping, classifying, and thus describing measurements and obser-
vations is as basic in statistics as it is in science and in many activities of 
everyday life. To illustrate its importance in statistics, let us consider the 
problem of an economist who wants to study the size of farms in the United 
States. Not even giving a thought to the possibility of conducting a survey of 
his own, since the expense would be staggering, he immediately turns to one 
of the many organizations that specialize in the gathering of statistical data, 
namely, the US. Department of Commerce. This department not only 
provides government agencies with statistical data needed for over-all 
planning and day-by-day operations, but it also makes this information 
available to businessmen and research workers in various fields. Like other 
organizations engaged in gathering statistical data, it thus faces the problem 
of how to present the results of its surveys in the most effective and the most 
usable form. With reference to the information needed by the above-
mentioned economist, the Department of Commerce could print sheets 
containing millions of numbers, the actual sizes of all farms in the United 
States; it is needless to say, however, that this would not be very effective 
and, without some treatment, not very "usable." 

When dealing with large sets of numbers, a good over-all picture and 
sufficient information can often be conveyed by grouping the data into a 
number of classes, and the Department of Commerce could, and in fact does, 
publish its data on the size of farms in tables like the following: 

                                             Table 2.1 

Size of Farms in 1964 Number of Farms 
    (acres)           (thousands) 

                                 Under 10                       183 
    10-49             637 
    50-99                          542  

                                100-179                      633     
                                180-259                      355  
                                260-499                      451  
                                500-999            210 

   1,000 and over             145 
   Total          3156    

This kind of table is called a frequency distribution (or simply a 
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distribution) : It shows the frequencies with which the farm sizes are 
distributed among the chosen classes. Tables of this sort, in which the data 
are grouped according to numerical size, are called numerical or quantitative 

distributions. In contrast, tables like the one given below, in which the data 
are sorted according to certain categories, are called categorical or 
qualitative distributions, as table 2.2 below: 

  
                                  Table 2.2 

                           1967 Motor Vehicle 
Registration                                                        
(thousands) 

United States                                             96945 

Other North and Central America          8900 

South America                                           5490 

Europe                                                      65969 

Africa                                                         3822 

Asia                                                           13937 

             Oceania                  5519 

     Although frequency distributions present data in a relatively compact 
form, give a good over-all picture, and contain information which is ade-
quate for many purposes, there are evidently some things which can be 
obtained from the original data that cannot be obtained from a distribution. 
For instance, referring to the first of the above tables, we cannot find the 
exact size of the smallest and largest farms, nor can we find the exact 
average size of the 542000 farms in the 50-99 acre group. Nevertheless, 
frequency distributions present raw (unprocessed) data in a more usable 
form, and the price which we must pay, the loss of certain information, is 
usually a fair exchange. 

Data are sometimes grouped solely to facilitate the calculation of further 
statistical descriptions.  
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2.2 Frequency Distributions 
 
The construction of a numerical distribution consists essentially of three 
steps:  
(1) we must choose the classes into which the data are to be grouped,   
(2) we must sort (or tally) the data into the appropriate classes, and 
(3) we must count the number of items in each class. 
Since the last two of these steps are purely mechanical, we shall concentrate 
on the first, namely, the problem of choosing suitable classifications. Note 
that if the data are recorded on punch-cards or tape, methods that are 
nowadays widely used, the sorting and counting can be done automatically 
in a single step. 

The two things we shall have to consider in the first step are those of 
determining the number of classes into which the data are to be grouped and 
the range of values each class is to cover, that is, "from where to where" 
each class is to go. Both of these choices are largely arbitrary, but they 
depend to some extent on the nature of the data and on the ultimate purpose 
the distribution is to serve. The following are some rules which are generally 
observed: 

 (a) We seldom use fewer than 6 or more than 15 classes. This rule 
reflects sound practice based on experience; in any given example, 
the actual choice will have to depend on the number of 
observations we want to group (we would hardly group 5 
observations into 12 classes), and on their range. 

(b) We always choose classes which will accommodate all the data. To 
this end we must make sure that the smallest and largest values fall 
within the classification, and that none of the values can fall into 
possible gaps between successive classes. 

(c) We always make sure that each item goes into only one class. In 
other words, we must avoid successive classes which overlap, that 
is, successive classes having one or more values in common. 

(d) Whenever possible, we make the class intervals of equal length, 
that is, we make them cover equal ranges of values. It is generally 
desirable to make these ranges (intervals) multiples of 5, 10, 100, 
etc.., or other numbers that are easy to work with, to facilitate the 
tally (perhaps, mechanically) and the ultimate use of the table. 
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Note that the first three, but not the fourth,of these rules were observed in 

the construction of the farm-size distribution on page 23, assuming that the 
figures were rounded to the nearest acre. (Had these figures been rounded to  
the nearest tenth of an acre, a farm of, say, 49.6 acres could not have been 
accommodated, as it would have fallen between the second class and the 
third.) The fourth rule was violated in two ways: First, the intervals from 10 
to 49 acres, 100 to 179 acres, and 260 to 499 acres, among others, cover 
unequal ranges of values. Second, the first and last classes are open-for all 
we know, the last class might include farms of a million acres or more, and 
if we had grouped profits and losses instead of acreages, the first class might 
even have included negative values. If a set of data contains a few values 
that are much greater (or much smaller) than the rest, open classes can help 
to simplify the over-all picture by reducing the number of required classes; 
otherwise, open classes should be avoided as they can make it impossible (or 
at least difficult) to give further descriptions of the data. 

As we have pointed out in the preceding paragraph, the appropriateness of 
a classification may depend on whether the data are rounded to the nearest 
acre or to the nearest tenth of an acre. Similarly, it may depend on whether 
data are rounded to the nearest dollar or the nearest cent, whether they are 
given to the nearest inch, the nearest tenth of an inch, or the nearest 
hundredth of an inch, and so on. Thus, if we wanted to group the amounts of 
the sales made by a saleslady in a department store, we might use the 
classification  given in table 2.3 below 

 
                                                  Table 2.3 

  Size of Sale 

(dollars) 

0.00 - 4.99 

5.00 - 9.99 

10.00 – 14.99 

15.00 – 19.99 

20.00 – 24.99 

Etc. 
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And if we wanted to group the heights of children measured to the nearest 
tenth of an inch, we might use the classification shown in table 2.4 

                                                     Table 2.4 

Height 

(inches) 

20.0 - 29.9 

30.0 – 39.9 

40.0 – 49.9 

50.0 – 59.9 

Etc.  

Note that in each of these examples the nature of the data is such that a value 
can fall into one and only one class. 

To give a concrete illustration of the construction of a frequency dis-
tribution, let us consider the following data(table 2.5) representing the scores 
which 150 applicants for secretarial positions in a large company obtained in 
an achievement test: 

                                              Table 2.5 

27 79 69 40 51 88 55 48 36 61 
53 44 94 15

1 
65 42 58 55 69 63 

70 48 61 55 60 25 47 78 61 54 

57 76 73 62 36 67 40 51 59 68 

27 46 62 43 54 83 59 13 72 57 

82 45 54 52 71 53 82 69 60 35 

41 65 62 75 60 42 55 34 49 45 

49 64 40 61 73 44 59 46 71 86 

43 69 54 31 56 51 75 44 66 53 

80 71 53 56 91 60 41 29 56 57 

35 54 43 39 56 27 62 44 85 61 

59 89 60 51 71 53 58 26 77 68 
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62 57 48 69 76 52 49 45 54 41 

33 61 80 57 42 45 59 44 68 73 

55 70 39 58 69 51 85 46 55 67 
 
 

 
Since the smallest of these scores is 17 and the largest is 94, it would 

seem reasonable (for most practical purposes) to choose the nine classes 
going from 10 to 19, from 20 to 29, . . ., and from 90 to 99. Performing the 
actual tally and counting the number of values falling into each class, we 
obtain the results shown in  table 2.6 . The numbers  shown in the right-hand 
column of this table are called class frequencies; they give the number of 
items falling into each class. Also, the smallest and the largest values that 
can go into any given class are referred to as its class limits; thus, the class 
limits of the above table are 10 and 19, 20 and 29, 30 and 39, and so on. 
More specifically, 10, 20, 30, . . ., and 90 are referred to as the lower class 
limits, while 19, 29, 39, ..., and 99 are referred to as the upper class limits of 
the respective classes. 

 
 

Table 2.6 
 
 

Scores Tally Frequency 
10 -19 1 1 
20 – 29 111111 6 
30 – 39 111111111 9 
40 – 49 1111111111111111111111111111111        31 
50 – 59 111111111111111111111111111111111111111111        42 
60 – 69 11111111111111111111111111111111        32 
70 – 79 11111111111111111        17 
80 – 89 1111111111        10 
90 – 99 11 2 

                                                                                                               150 
 
 
If we are dealing with figures rounded to the nearest whole number, as in 

the size-of-farms distribution on page 23, the class which has the limits 10 
and 49 actually contains all values between 9.5 and 49.5. Similarly, if we are 
dealing with measurements rounded to the nearest tenth of an inch, as in the 
height distribution on page 27, the class which has the limits 30.0 and 39.9 
actually contains all values between 29.95 and 39.95, and the class which 
has the limits 40.0 and 49.9 actually contains all values between 39.95 and 
49.95. It is customary to refer to these dividing lines between successive 
classes as the class boundaries, although they are sometimes referred to 
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instead as the "real" class limits. In order to make this concept apply also to 
the classes which are at the two extremes of a distribution, we simply act as 
if the table were continued in both directions. Thus, the first class of the 
above distribution of the 150 scores has the lower boundary 9.5, while the 
last class has the upper boundary 99.5. 
 

It is important to remember that class boundaries should always be 
"impossible" values, namely, numbers which cannot occur among the values  
we want to group. We make sure of this by accounting for the extent to 
which the numbers are rounded when we choose appropriate classifications. 
For instance, the class boundaries of the size-of-sales distribution on page 28  
are -0.005, 4.995, 9.995, 14.995, and so on. Similarly, for the distribution of 
the, scores, the class boundaries are 9.5, 19.5, 29.5,  …  , and 99.5, while the 
figures themselves are, of course, whole numbers. Had there been scores less 
than 10 in this example, we would have begun the table with the class 0-9, 
whose boundaries are -0.5 and 9.5. 

Two other terms used in connection with frequency distributions are 

"class mark" and "class interval." A class mark is simply the mid-point' of a 
class, and it is obtained by averaging the class limits (or boundaries), that is, 
by dividing their sum by 2. Thus, the class marks of the distribution of the 
scores are 14.5, 24.5, 34.5, ..., and 94.5, while those of the size-of-sales 
distribution, table 2.3 on page 28 are 2.495, 7.495, 12.495, and so on. A 
class interval is merely the length of a class (the range of values it can 
contain), and it is given by the difference between its class boundaries. If the 
classes of a distribution are all equal in length, their common class interval 
(which we refer to as the class interval of the distribution) is also given by 
the difference between any two successive class marks. Since 19.5 - 9.5 = 
10, 29.5 - 19.5 = 10, ..., and 99.5 - 89.5 = 10, the distribution of the scores 
has class intervals of length 10, and we say that this is the class interval of 
the distribution. Note that the class interval is not given by the difference 
between the respective upper and lower class limits, which in our example 
would equal 9, and not 10. 

Suppose now that in connection with the scores of the 150 applicants for 
secretarial positions, it is of interest to know how many fell below various 
levels. To provide this information, we have only to convert the distribution, 
table 2.6on page 30 into what is called a cumulative frequency distribution 
or simply a cumulative distribution. Successively adding the frequencies in 
the table, we thus obtain the following "less than" cumulative distribution, 
shown in table 2.7 
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Table 2.7 

 

 Scores 
   Cumulative 

  Frequencies 

Less than 10 0 

Less than 20 1 

Less than 30 7 

Less than 40 16 

Leas than 50 47 

Less than 60 89 

Less than 70 121 

Less than 80 138 

Less than 90 148 

Less than    100 150 

 
Note that in this table we could just as well have written "9 or less" instead 
of "less than 10," "19 or less" instead of "less than 20," ..., and "99 or less" 
instead of "less than 100." 

If we successively add the frequencies starting at the other end of the 
distribution, we similarly get a cumulative "or more" distribution (or a 
cumulative "more than" distribution), which shows how many of the scores 
are "10 or more" (or "more than 9"), how many are "20 or more" (or "more 
than 19"), and so on. 
Sometimes it is preferable to show what percentage of the items falls into 
each class, or what percentage of the items falls above or below various 
values. To convert a frequency distribution (or a cumulative distribution) 
into a corresponding percentage distribution, we have only to divide each 
class frequency (or each cumulative frequency) by the total number of items 
grouped and multiply by 100. For instance, for the size-of-farm distribution 
on page 25, it may be more informative to indicate that                            
(183/ 3,156)100 = 5 .8   per cent of the farms are under 10 acres, that        
(637/3,156)100 =20.2    per cent of the farms are from 10 to 49 acres, and so 
on. Generally speaking, percentage distributions are useful, especially when 

we want to compare two or more sets of data. 
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For instance, it may well be more informative  to say that the percentages of 
farms under 10 acres in two counties are, respectively, 5 per cent and 6 per  

cent, than to report that in one county 16 of 321 farms and in the other 
county 43 of 717 farms are under 10 acres. 
So far we have discussed only numerical distributions, but the general 
problem of constructing categorical (or qualitative) distributions is very 
much the same. Again we must decide how many classes (categories) to use 
and what kind of items each category is to contain, making sure that all of 
the items are accommodated and that there are no ambiguities. Since the 
categories must often be selected before any data are actually obtained, 
sound practice is to include a category labeled "others" or "miscellaneous." 

When dealing with categorical distributions we do not have to worry about 
such mathematical details as class limits, class boundaries, class marks, etc..; 
on the other hand, we now have a more serious problem with ambiguities, 
and we must be careful and explicit in defining what each category is to 
contain. For instance, if we tried to classify items sold at a supermarket into 
"meats," "frozen foods," "baked goods," and so oil, it would be difficult to 
decide where to put, for example, frozen beef pies. Similarly, if we wanted 
to classify occupations, it would be difficult to decide where to put a farm 
manager, if our table contained (without qualification) the two categories 
"farmers" and "managers." For this reason, it is often advisable to use 
standard categories developed by the Bureau of the Census and other 
government agencies.  

2.3 Graphical Presentations 
 
When frequency distributions are constructed primarily to condense large 
sets of data and display them in an "easy to digest." form, it is usually 
advisable to present them graphically, that is, in a form that appeals to the 
human power of visualization.  

 Some of the common graphical presentations of statistical data are : 

1)Histogram, 2)Bar chart, 3)Polygon, 4)Curve, 5)Pictogram, 
5)Cumulative(less) distribution and  6)Cumulative(more) distribution.   

The most common among all graphical presentations of statistical data is the 
histogram, an example of which is shown in figure 2.1. A histogram is 
constructed by representing                                              
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measurement or observations that are grouped (in figure 2.1 the scores) 
on a horizontal scale, the class frequencies on a vertical scale, and 
drawing rectangles whose bases equal the class interval and whose 
heights are determined by the corresponding class frequencies. The 
markings on the horizontal scale can be the class limits as in figure 2.1, 
the class boundaries, the class marks, or arbitrary key values. 
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For easy readability it is generally preferable to indicate the class limits, 
although the bases of the rectangles actually go from one class boundary to 
the next. Similar to histograms are bar charts, like the one of figure 2.2, 
where the lengths of the bars are proportional to the class frequencies, but 
there is no pretense of having a continuous (horizontal) scale. 

There are several points that must be watched in the construction of 
histograms. First, it must be remembered that this kind of figure cannot 
be used for distributions with open classes. Second, it should be noted 
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that the picture presented by a histogram can be very misleading if a 
distribution hits unequal classes and no suitable adjustments are made. To 
illustrate this point, let us regroup the distribution of the 150 scores by 
combining all those from 60 to 79 into one class. Thus, the new distribution 
is given by the following table 
 
                                                Table 2.8 
 

Scores Frequency 

10-19 1 

20-29 6 

30-39 9 

40-49 31 

50-59 42 

60-79 49 

80-89 10 

90-99 2 

 

and its histogram (with the class frequencies represented by the heights of 
the rectangles) is shown in figure 2.3. This figure gives the impression that  

just about half the scores fall on the interval from 60 to 79, where as 
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the correct proportion is close to 1/3,49/150  to be exact. This error is due 
to the fact that when we compare the size of rectangles, triangles, and 
other plane figures, we instinctively compare their areas and not their 
sides. In order to correct for this, we simply draw the rectangles of the 
histogram so that the class frequencies are represented by their areas, and 
not by their heights. In figure 2.4 we accomplished this by reducing the 
height of the rectangle representing the class 60-79 to half of what it was 
in figure 2.3. 
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   The practice of representing class frequencies by means of areas is      
especially important if histograms are to be approximated with smooth 
curves. For instance, if we wanted to approximate the histogram of  

     figure 2.1 with a smooth curve, we could say that the number of scores      
     exceeding 69 is given by the shaded area of figure 2.5. Clearly, this area      
     is approximately equal to the sum of the areas of the corresponding three    
     rectangles. 
           An alternate, though less widely used, form of graphical presentation     
     is the frequency polygon (see figure 2.6). Here the class frequencies are    
     plotted at the class marks and the successive points are connected by  
     means of straight lines. Note that we added classes with zero frequencies 
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at both ends of the distribution in order to "tie down" the graph to the 
horizontal scale. 

If we apply the same technique to a cumulative distribution, we obtain 
what is called an ogive. Note, however, that now the cumulative frequencies 
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are not plotted at the class marks-it stands to reason that the cumulative 
frequency corresponding, say, to "less than 20" in our example should be 
plotted at 20, or preferably at the class boundary of 19.5, since "less than 20" 
actually includes everything up to 19.5. figure 2.7 shows an ogive 
representing the cumulative "less than" distribution of the scores of the 150 
applicants. 

 
Although the visual appeal of histograms, frequency polygons, and ogives 

exceeds that of frequency tables, there are ways in which distributions can 
be presented even more dramatically and probably also more effectively. We 
are referring here to the various kinds of pictograms  ( pictorial pre-

sentations )(see, for example, figure 2.8 ) with which the reader must surely 
be familiar through newspapers, magazines, advertising, and other sources. 
The number of ways in which distributions (and other statistical data) can be 
displayed pictorially is almost unlimited, depending only on the imagination 
and artistic talent of the individual preparing the presentations. 
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Tutorial 2 

1. Decide for each of the following quantities whether it can be deter-
mined on the basis of the distribution of the 150 scores on page 30; if 
possible, give a numerical answer: 

(a) The number of scores which were at least 50. 
(b) The number of scores which were greater than 50.  
(c) The number of scores which were 80 or less.  
(d) The number of scores which were less than 80. 

             (e) The number of scores which were more than 90. 
(f) The number of scores which were greater than 39 but at most 69. 

 
2. If the amounts paid for the repairs of cars damaged in accidents are 

grouped into a frequency table with the classes $0.00-$99.99, 
$100.00$199.99, $200.00-$299.99, $300.00-$399.99, $400.00-
$499.99, and $500.00 or more, decide for each of the following 
quantities whether it can be determined on the basis of this 
distribution: 

               (a) How many of the amounts were less than $200.00. 
               (b) How many of the amounts were at least $200.00. 
               (c) How many of the amounts were more than $200.00. 

  (d) How many of the amounts were $200.00 or more. 

    3. The following is the distribution of the weekly earnings of 1, 216                           
        secretaries in the Phoenix, Arizona, metropolitan area in March, 1969: 

           Number of 

Weekly Earnings Secretaries 

 Under $80                        21 

$80- $99                         296 
$100-$119                      494  
$120-$139                      247 

                             $140-$159                       119 
   $160 and over                 39 

Decide for each of the following quantities whether it can be determined 
on the basis of this distribution; if possible give a numerical answer: 
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(a) The number of secretaries with weekly earnings of at least $120.  
(b) The number of secretaries with weekly earnings of more than $120. 
(c) The number of secretaries with weekly earnings of more than $180. 
(d) The number of secretaries with weekly earnings of less than $100. 
(e) The number of secretaries with weekly earnings of at most $100. 
 (f) The number of secretaries with weekly earnings of at least $60. 

4. The number of students absent from school each day are grouped into a 
distribution having the classes 3-10, 11-18, 19-26, 27-34, and 35-42. Find 
(a) the limits of each class, (b) the class boundaries, and (c) the class 
marks. 

5. The following is the distribution of the actual weight (in ounces) of 50 
"one-pound" bags of coffee, which a grocery clerk filled from bulk stock: 

Weight Number of bags 

15.5 – 15.6 3 

15.7 – 15.8 9 

15.9 – 16.0 17 

16.1 – 16.2 14 

16.3 – 16.4 6 

16.5 – 16.6 1 

Find (a) the limits of each class, (b) the class marks, and (c) the class                                                                
boundaries. 

6. The weights of certain  laboratory animals, given to the nearest tenth of 
an ounce, are grouped into a table having the class boundaries 11.45, 
13.45, 15.45, 17.45, and 19.45 ounces. What are the limits of the four 
classes of this distribution? 

7. The class marks of a distribution of temperature readings, given to the 
nearest degree Fahrenheit, are 113, 128, 143, 158, and 173. Find the 
class boundaries of this distribution, and also the class limits. 

8. Class limits and class boundaries have to be interpreted very carefully       
when we are dealing with ages, for the age group from 5 through 9, for 
example, includes all those who have passed their fifth birthday but not 
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yet reached their tenth. Taking this into account, what are the boundaries 
and the class marks of the following age groups: 10-19, 20-29, 30-39, and 
40-49. 

9. A study of air pollution in a city yielded the following daily readings of 
the concentration of sulfur dioxide (in parts per million): 

.04 .11 .05 .01 .15 .12 .19 .06 .13 .03 

.18 .01 .08 .11 .08 .14 .02 .14 .08 .10 

.17 .09 .14 .07 .13 .11 .09 .05 .15 .08 

.06 .05 .12 .10 .27 .12 .16 .10 .09 . I 5 

.07 .10 .17 .13 .20 .18 .11 .17 .14 .04 

.22 .11 .09 .02 .12 .16 .15 .12 .13 .07 

.05 .14 .04 .16 .19 .10 .06 .03 .16 .13 

.18 .13 .11 .09 .06 .23 .11 .12 .07 .11 

 
         (a) Group these data into a table having the classes .00-.04, .05--.09, 

.10-.14, .15-.19, .20-.24, and .25-.29. 
(b) Convert the distribution obtained in (a) into a cumulative "less 

than" distribution. 
(c) Construct a histogram of the distribution obtained in (a). 
(d) Draw an ogive  of the cumulative "less than" distribution obtained 

in (b) and use it to read off (roughly) the value below which we 
should find the lowest, half of the data 

10. The following are the number of customers a restaurant served for 
lunch on 120 week days 

 
50 64 55 51 60 41 71 53 63 64 46 59 

66 45 61 57 65 62 58 65 55 61 50 55 

53 57 58 66 53 56 64 46 59 49 64 60 

58 64 42 47 59 62 56 63 61 68 57 51 

61 51 60 59 67 52   52 58 64 43 60 62 

48 62 56 63 55 73  
60 69 53 66 54 52 

56 59 65 60 61 59 63 56 62 56 62 57 

57 52 63 48 58 64 59 43 67 52 58 47 

63 53 54 67 57 61 65 78 60 66 63 58 

60 55 61 59 74 62 49 63 65 55 61 54 
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(a) Group these data into a table having the classes 40-44, 45-49, 
50-54, 55-59, 60-64, 65-69 ,70-74 and 75- 79. 

(b) Convert the distribution obtained in (a) into a cumulative "less than"   
distribution. 

(c) Construct a histogram of the distribution obtained in (a). 
(d) Draw an ogive  of the cumulative "less than" distribution obtained in (b) 

and use it to read off (roughly) the value below which we should find the 
lowest, half of the data . 
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Measures of Location  
 
 

3.1 Introduction  
3.2 The arithmetic mean 
3.3 The mean of a distribution 
3.4 The coding method 
3.5 The mode  
3.6 The median 
3.7 Other numerical measures 
     3.7.1 Geometric mean 
     3.7.2 Quartiles and Percentiles 
 
      Tutorials:  3.1 & 3.2 
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3.1 Introduction 
 
    Descriptions of statistical data can be quite brief or quite elaborate, 

depending partly on the nature of the data themselves, and partly on the 
purpose for which they are to be used. Sometimes, we even describe the 
same set of data in several different ways. To draw an analogy, a large motel 
might describe itself to the public as having luxurious facilities, a heated 
swimming pool, and TV in every room; on the other hand, it might  describe 
itself to the fire department by giving the floor space of each unit, the 
number of sprinklers, and the number of employees. Both of these 
descriptions may serve the purpose for which they are designed, but they 
would hardly satisfy the State Corporation Commission in passing on the 
owner's application for issuing stock. This would require detailed 
information on the management of the motel, various kinds of financial 
statements, and so on. 

Whether we describe things statistically or whether we simply describe 
them verbally, it is always desirable to say neither too little nor too much. 
Thus, it may sometimes be satisfactory to present data simply as they are 
and let them "speak for themselves"; in other instances it may be satisfactory 
to group, classify, and present them using the methods of Chapter 2. 
However, most of the time it is necessary to summarize them further by 
means  of one or more well-chosen descriptions. In this chapter and in 
chapter  4 we shall concentrate mainly on two kinds of descriptions ,called  
measures of location, and measures of variation. 
 

The measures of location we shall study in this chapter are also referred 
to at times as "measures of central tendencies," "measures of central values," 
and "measures of position." Except for some of the measures discussed in 
Section 3.4, they may also be referred to crudely as "averages" in the sense 
that they provide numbers that are indicative of the "center," "middle," or the 
"most typical" of a set of data. 

When we said that the choice of a statistical description depends partly 
on the nature of the data themselves, we were referring among other things 
to the following distinction: if a set of data consists  of all conceivably possi-
ble (or hypothetically possible) observations of a certain phenomenon, We 
refer to it as a population; if it contains only part of these observations, we 
refer to  it  as a sample. The qualification "hypothetically possible" was 
added to take care of such clearly hypothetical situations where, say, twelve 
flips of a coin are looked upon as a sample from the population of all 
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possible flips of the coin, or where we shall want to look upon the weights of 
eight 30-day-old calves as a sample of the weights of all (past, present, and  
future) 30-day-old calves. In fact, we often look upon the results obtained in 
an experiment as a sample of what we might obtain if the experiment were 
repeated over and over again. 

In this chapter and the next we shall limit ourselves to methods of 
description without making generalizations, but it is important even here to 
distinguish between samples and populations. As we have said before, the 
kind of description we may want to use will depend on what we intend to do 
later on, whether we merely want to present facts about populations or 
whether we want to generalize from samples. We shall, thus, begin in this 
chapter with the practice of using different symbols depending on whether 
we are describing samples or populations; in Chapter 4 we shall carry this 
distinction one step further by even using different formulas. 
 

3.2 The Mean 
 
     There are many problems in which we have to represent data by means of 
a single number which, in its way, is descriptive of the entire set. The most 
popular measure used for this purpose is what the layman calls an "average" 
and what, in statistics, is called an arithmetic mean., or simply a mean. We 
gave the word "average," in quotes because it generally has a loose 
connotation and different meanings-for example, when we speak of a batting 
average, an average housewife, a person with average taste, and so on.  
 

Definition 3.1 
                                               Arithmetic mean 

The arithmetic mean of a set of n numbers is defined simply as their sum 
divided by n. 

Example 3.1                                                                                             

Given that the total attendance at major league baseball games in the years 
1965, 1966, 1967, and 1968 was, respectively, 22.4, 25.2, 23.8, and 23.0 
million, we find that the mean, namely, the "average" annual attendance for 
these foul: years was                 (22.4+25.2+23.8+23.0)/4= 23.6 million 

In order to develop a simple formula for the mean that is applicable to any 
set of data, it will be necessary to represent the figures (measurements or 
observations) to which the formula is to be applied with some general  
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symbols such as x, y, or z. In the above example, we could have represented  

the annual attendance figures with the letter x and referred to the four values  

as x1 (x sub-one), x2 (x sub-two), x3, and x4. More generally, if we have n 
measurements which we designate x1, x2, x3, ..., and xn,, we can write 

Mean  x =(x1+x2+…..+xn)/n 

This formula is perfectly general and it will take care of any set of data, but 
it is still somewhat cumbersome. To make it more compact, we introduce the 
symbol ∑ (capital sigma, the Greek letter for S), which is simply a 
mathematical shorthand notation indicating the process of summation or 
addition. If we write ∑x, this represents the "sum of the x's ," and we have  

 
                                                        x‾=∑ xi/n 

Using the sigma notation in this form, the number of terms to be added is not 
stated explicitly; it is tacitly understood, however, to refer to all the X's with 
which we happen to be concerned. . For a further discussion of the use of 
subscripts and the ∑ notation, we shall finish simplifying our notation by 
assigning a special symbol to the mean itself. If we look upon the x's as a  
sample, we   write their  mean as     x‾(x-bar); if we look upon them as a 
population, we write their mean as μ .If we refer to sample data as y's or z's, 
we correspondingly write their means as y or z. To further emphasize the 
distinction between samples and populations, we denote the number of 
values in a sample, the sample size, with the letter n and the number of 
values in a population, the population size, with the letter N. We thus have 
the formulas                             x =∑xi/n      ,       µ=∑xi/N  , 

         
 
x=∑xi/n       ,                 x=∑xi/n      ,  µ=∑xi/N  , 
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depending on whether we are dealing with a sample or a population. In order 
to distinguish between descriptions of samples and descriptions of 
populations, statisticians not only use different symbols, but they refer to the 
first as statistics and the second as parameters. Hence, we say that  x is a 
statistic and that µ is a parameter. 

The popularity of the mean as a measure describing the "middle" or 
"center" of a set of data is not just accidental. Anytime we use a single 
number to describe a set of data, there are certain desirable properties we 
must keep in mind.  

Thus, some of the noteworthy properties of the mean are: 
(1) it is familiar to most persons, although they may not call it by this name, 
(2) it always exists, that is, it can be calculated for any kind of numerical 
data, 
(3) it is always unique, or in other words, a set of data has  one and only one 
mean,  
(4) it takes into account each individual item , 
(5) it lends itself to further statistical manipulation , (it is possible to 
combine the means of several sets of data into an over-all mean without 
having to refer back to the original raw data), and  
(6) it is relatively reliable in the sense that it does not vary too much when 
repeated samples are taken from one and the same population, at least not as 
much as some other kinds of statistical descriptions.  
     This question of reliability is of fundamental importance when it comes 
to problems of estimation, hypothesis testing, and making predictions, and 
we shall have a good deal more to say about it later in this book. 

Since the computation of means is quite easy, involving only addition and 
one division, there is usually no need to look for short-cuts or simplifi-
cations. However, if the numbers are unwieldy, that is, if each number has 
many digits, or if the sample (or population) size is very large, it may be 
advantageous to group the data first and then compute the mean from the 
resulting distribution. Another reason why we shall investigate the problem 
of obtaining means from grouped data is that published data are very often 
available only in the form of distributions. 
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3.3 The mean of a distribution 
 
To obtain a formula for the mean of a distribution, let us write the 

successive class marks as x1,, x2, ..., xk   (assuming that there are k classed 
and the corresponding class frequencies as fl, f2, . . ., fk . The total that goes 
into the numerator of the formula for the mean is thus obtained by adding f1 
times the value x1, f1 times the value x2, . . ., and fk. times the value xk; in 
other words, it is equal to x1f1 + x2f2 +. . . + xkfk. Using the ∑ notation, we 
can now write the formula for the mean of a distribution . 

 
                                            Definition 3.2 
                                     Mean of a distribution 
                      

                                                X=∑xi . fi /∑ fi, 

 
where n equals f1 + f2 +. ..+ fk, the sum of the class frequencies, or ∑ fi. 

(When dealing with a population instead of a sample, we have only to 
substitute µ for x in this formula and N for n.)                           
Example 3.2 

To illustrate the calculation of the mean of a distribution, let us refer again 
to the distribution of the scores of the 150 applicants on chapter 2. Writing 
the class marks in the second column, we get 

 
Class Marks  Frequencies 

  X            f 
Products 

x. f 

10-19      14.5  1         14.5 
20-29      24.5  6       147.0 

30-39      34.5  9       310.5 

40-49      44.5  31     1379.5 

50-59      54.5  42     2289.0 

60-69      64.5  32     2064.0 

70-79      74.5  17     1266.5 

80-89      84.5  10       845.0 

90-99      94.5  2       189.0 

    Total 150     8505.0 
 

and it follows that the mean of the distribution is 
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                                   x‾=8505.0/150=56.7 

It is of interest to note that the mean of the original raw is 8500/150=56.67 
so that the difference between the two means is extremely  small. 

 

3.4 The coding method 

 
The calculation of the mean of the distribution of the 150 scores was fairly 
easy because the frequencies were all small. Even so, the calculations can be 
simplified by performing a change of scale; that is, we replace the class 
marks with numbers that are easier to handle. This is also referred to as 
"coding," and in our example, we might replace the class marks of the 
distribution of the scores with the consecutive integers -4, -3, -2, -1, 0, 1, 2, 
3, and 4. Of course, when we do something like this, we also have to account 
for it in the formula we use to calculate the mean. Referring to the new 
(coded) class marks as u's, it can easily be shown  that the formula for the 
mean of a distribution becomes 
 

Definition 3.3 
Coding (shortcut) Mean 

The coding (shortcut) mean is given by 
                                        _ 
                                        X = x0+(∑ui . fi/n) . c 
 
where xo  is the class mark (in the original scale) to which we assign 0 in the 
new scale, c is the class interval, n is the number of items grouped, and 
 ∑ ui*fi is the sum of the products obtained by multiplying each of the coded 
class marks by the corresponding frequency. 
 
Example 3.3 

 

Illustrating this short-cut technique by recalculating the mean of the 
distribution of the scores of the 150 applicants, we obtain 

 
 
 
 

 



 54 

 
 
 

Class 
Marks 

ui fi ui.f 

14.5 -4 1 -4 
24.5 -3 6 -18 

34.5 -2 9 -18 

44.5 -1 31 -31 

54.5 0 42 0 

64.5 1 32 32 

74.5 2 17 34 

84.5 3 10 30 

94.5 4 2 8 

                                    Total                        150           33 
 

 
                            X = 54.5+(33/150)10=56.7, 
should be noted that this agrees with the result obtained earlier; the short-

cut formula does not entail any further approximation, and it should always 
yield the same result as the formula of definition 3.2. 

Unless one can use an automatic computer, the short-cut method will 
generally save a good deal of time; about the only time that the short-cut 
method will not provide appreciable savings in time and energy is when the 
original class marks are already easy-to-use numbers. In order to reduce the 
work to a minimum, it is generally advisable to put the zero of the u-scale 
near the middle of the distribution, preferably at a class mark having one of 
the highest frequencies. 

 
Remark 3.1: 
A fact worth noting is that this short-cut method cannot be used for 

distributions with unequal classes, although there exists a modification 
which makes it applicable also in that case. Neither the short-cut formula nor 
the formula on definition 3.2 is applicable to distributions with. open classes; 
the means of such distributions cannot be found without going back to the 
raw data or making special assumptions about the values which fall into an 
open class. 
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Tutorial 3.1 
 
1. Suppose we are given the high temperature recorded each day of 
    the year 1972 in Atlanta, Georgia. Give one illustration each of a 
   situation   where these data would be looked upon (a) as a 
    population, and (b) as a sample. 
2. Suppose that the final election returns from a given county show 

that the two candidates for a certain office received, respectively, 
16,283 and 13,559 votes. What office might these candidates be 
running for so that we can look upon these figures (a) as a 
sample and (b) as a population? 

3. The dean of a college has in his files a complete record of how 
many A's, B's, C's, etc.., each instructor gave to his students 
during the academic year 1971-72. Give one illustration each of 
a problem (situation) in which the dean would look upon this 
information (a) as a sample and (b) as a population. 

4. The following are the speeds (in miles per hour) at which 25 cars 
were timed on the San Bernardino  Freeway in early-morning 
traffic: 52, 56, 54, 78, 71, 66, 69, 60, 70, 53, 55, 62, 67, 60, 56, 
72, 73, 61, 68, 59, 67, 66, 67, 73, and 65. Find the mean of these 
speeds and comment on the (misleading?) argument that "on the 
average cars do not exceed the speed limit of 65 miles per hour 
on this freeway in early-morning traffic." 

5. The following are the monthly water bills which a resident of 
Scottsdale, Arizona, received in 1971: $10.26, $9.29, $11.24, 
$12.22, $19.07, $21.03, $22.50, $26.41, $18.09, $23.96, $16.18, 
and $15.60. Find the mean, namely, the average water bill this 
person paid per month in 1971. 

6. The following are the number of seconds which 16 insects survived 
after being sprayed with a certain insecticide: 121, 115, 79, 52, 102, 
126, 81, 65, 109, 119, 115, 121, 103, 75, 59, and 110. 

(a) Calculate the mean of these 16 measurements. 
(b) Recalculate the mean of these 16 measurements by first 

subtracting 100 from each value, finding the mean of the 
numbers thus obtained, and then adding 100 to the result. 
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(What general simplification does this suggest for the 
calculation of means?) 

7. Twenty-four cans of a floor wax, randomly selected from a large 
production lot, have the following net weights (in ounces): 12.0, 11.9, 
12.2, 12.0, 11.9, 12.0, 12.0, 12.1, 11.8, 12.0, 12.0, 12.1, 11.9, 11.9, 12.2, 
12.1, 12.0, 11.9, 11.9, 12.1, 12.0, 12.0,11.9, and 12.0. 

(a) Calculate the mean of these 24 weights. 
(b) Recalculate the mean of these 24 weights by first 

subtracting 12.0 from each value, finding the mean of the 
numbers thus obtained, and then adding 12.0 to the result. 
(What general simplification does this suggest for the 
calculation of means?) 

8. The following are the number of twists that were required to 
break 20 forged alloy bars: 37, 29, 34, 21, 54, 38, 30, 26, 48, 37, 
24, 33, 39, 51, 44, 38, 35, 29, 46, and 31. Find the mean of these 
values.                                                                                                                                        

9. In business and economics, there are many problems in which   

we are interested in index numbers, that is, in measures of the 
changes that have taken place in the prices (quantities, or values) 
of various commodities. In general, the year or period we want to 
compare by means of an index number is called the given year or 
given period, while the year or period relative to which the 
comparison is made is called the base year or base period. 
Furthermore, given-year prices are denoted pn base-year prices 
are denoted po, and the ratio pn / po for a given commodity is 
called the corresponding price relative. A very simple kind of 
index number is given by the mean of the price relatives of the 
commodities with which we are concerned, multiplied by 100 to 
express the index as a percentage.                                               
(a) Find the mean of the price relatives comparing the 1969 
prices of the given processed fruits and vegetables (in cents) with 
those of 1965: 
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 1965 1969 

Fruit cocktail, No. 303 can 26.1 27.9 

Pears , No.21 can 47.0 50.9 

Frozen orange juice, 6 oz, 23.7 24.3 

Pears , No.303 can 23.7 24.6 

Tomatoes, No. 303 can 16.1 19.6 

Frozen broccoli, 10 oz, 26.4 27.6 

(b) Find the mean of the price relatives comparing the following 1967 
prices with those of 1960, where all prices are in cents per pound: 

 1960 1967 

Copper 32.4 38.6 

Lead 11.9 14.0 

Zinc 12.9 13.8 
10. If we substitute q's for p's in the index number of Exercise 9. where 

given-year quantities (produced, sold, or consumed) are denoted qn and 
base-year quantities are denoted q0 , we obtain a corresponding quantity 
index. Given the following data in thousands of short tons, find the mean 
of the quantity relatives comparing the 1967 production figures with 
those of 1960: 

 1960 1967 

Copper 1080 954 

Lead  247 317 

Zinc 435 549 
11. Another way of obtaining an index comparing given-year prices with a 

corresponding set of base-year prices (see Exercise 9) is to average the 
two sets of prices separately, take the ratio of the two means, and then 
multiply by 100 to express the index as a percentage. Canceling 
denominators, the formula for such a simple aggregative index is thus 
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3.5 The Mode 
Definition 3.4 

 Mode 
The mode, denoted by mo, of a set n observations x1,x2,…,xn 

(or of a frequency table)is the value of X which occurs with 
greatest frequency. 

Example 3.4 

 

Find the mode for the following observations: 3, 7, 3, 5, 2, 8 
 
Solution: 
mo=3 

Example 3.5 

 

Compute the mode for the following 12 numbers: 
2 , 3, 2, 5, -1, -2, -1, 2, -1, 5, 0, 8 

Solution: 
mo1=-1 , mo2=2 
In this case, we will say that the set of numbers is bimodal.  
 
Example 3.6  
 
Determine the mode of the six measurements: 2, 3, -1, 4, 0, 1 
 
Solutions: 
In the case, we will say that the set of numbers does not have a 
mode. 
 
3.6 The Median  
 
    To avoid the difficulty met on section 3.2, where we showed that an 
extreme value (perhaps, a gross error) can have a pronounced effect on the  
mean, we sometimes describe the "middle" or "center"  of a set of data with 
other kinds of statistical descriptions.  
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One of these is the median, which is defined simply as: 
 

Definition 3.5 
 Median 

The median of a set of data ,is the value of the middle item (or the mean of 
the values of the two middle items) when the data are arranged in an 

increasing or decreasing order of magnitude. 
 
If we have an odd number of items, there is always a middle item whose 
value is the median. For example, the median of the five numbers 5, 10, 2, 7, 
and 8 is 7, as can easily be verified by first arranging these numbers 
according to size, and the median of the nine numbers 3, 5, 6, 9, 9, 10, 10, 
12, and 13 is 9. Note that there are two 9's in this last example and that we 
do not refer to either of them as the median. The median is a number and not 
an item, namely, the value of the middle item. Generally speaking, if there 
are n items and n is odd, the median is the value of the (n + 1)/2 th. largest 
item. Thus, the median of 25 numbers is given by the value of the 
(25+1)/2=13th largest, the median of 49 numbers is given by the value 
(49+1)/2=25 th largest, and the median of 81 numbers is given by the value 
of the  (81+1)/2=41 st largest. 

If we have an even number of items, there is never a middle item, and the 
median is defined as the mean of the values of the two middle items. For 
instance, the median of the six numbers 3, 6, 8, 10, 13, and 15 (which 

are already ordered according to size) is (8+10)/ 2 = 9. It is halfway between 

the two middle values (here the 3rd and the 4th) and, if we interpret it 

correctly, the formula (n+1)/2 again gives the position of the median. 

For the six given numbers the median is, thus, the value of the (6+1)/2=3.5th 

largest, and we interpret this as "halfway between the values of the third and 

the fourth." Similarly, the median of 100 numbers is given by 
the value of the (100+1)/2= 50.5 th largest item, or halfway between the 
values of the 50th and tile 51st. 
It is important to remember that the formula (n+1)/2 is not a formula for the 
median, itself; it merely tells us the position of the median, namely, the 
number of items we have to count until we reach the item whose value is the 
median (or the two items whose values have to be averaged to obtain the 
median). 
 
 
 



 60 

To find the median of a distribution with a total frequency of n, we 
must, so to speak, count n/2 items starting at either end and use def.3.6. 

 
Definition 3.6 

 Median 

 
The median of grouped data denoted by m is defined by 

m=(Lower boundary of the class containing the median)+(((n/2)-cum.. 
frequency before the median class)/ frequency of median class) . c 

 
Example 3.7 

To illustrate this procedure , let us refer again to the distribution of the 150 
scores since n=150 in this example , we will have to count n/2= 75 items 
from either end. Beginning at the bottom of the distribution, we find that 47 
of the values are less than 50 while 89 are less than 60, so that the median 
must fall into the class whose limits are 50-59. Since 47 of the values fall 
below this class, we must count another 75 - 47 = 28 of its 42 values, and we 
accomplish this by adding 42 of the class interval of 10 to 49.5, the lower 
boundary of the class. (We add 42 of the class interval because we want to 
count 28 of the 42 values contained in this class.) We thus get  
 
                                m= 49.5 +(28/42) . 10=56.2   
rounded to one decimal. 

Generally speaking, if L is the lower boundary of the class containing the 
median, f is its frequency, c the class interval, and j the number of items we 
still lack when reaching L, then the median of the distribution is given by 
the formula 

                                      m=L+(j/f) . c 

It is possible, of course, to arrive at the median of a distribution by 
starting at the other end and subtracting an appropriate fraction of the class 
interval from the upper boundary U of the class into which the median must 
fall. For the distribution of the scores we thus obtain 

                            m=59.5+(14/42) . 10=56.2 

and  the two answers are identical, as they should be.  
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3.7 Other Numerical Measures 

There are numerous representative measures other than the mean, median, 
and mode. The geometric mean is commonly used in business problems to 
describe the "average" of ratios. Although the geometric mean is not as 
important as the three principal representative measures (mean, median, and 
mode). 

3.7.1 Geometric mean 

Definition 3.7 

 Geometric mean 
The geometric mean of a set of n measurements, x1, x2,...,xn denoted by 

GM is defined by 
 

                                                  1/n 

                                      GM= [x1 . x2 . x3 …xn]    . 
 

The geometric mean is the nth root of the product of all the measurements. 
It is not as easily computed as the arithmetic mean-the computation is eased 
somewhat by taking logarithms of both sides of above equation  

 
log(GM) =1/n  [log x1 + log x2 +…+ log xn] , 

                       10 
 

it is apparent that the geometric mean can be computed by taking the antilog  
of the arithmetic mean of the logs of the measurements. 
 

Example 3.8 

Determine the geometric mean of the three measurements: 

x1 =2 , x2=4  and  x 3=8 

Solution: 

                                                   1/3     

GM = ((2)(4)(8)) =4. 

Example 3.9 

Find the arithmetic and geometric mean of 100, 100, 100 and 1000. 
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Solution: 

 

                        X = (100+100+100+1000)/4 =325 

 

Geometric mean: log (GM) = 1/4[1og100 + 1og100 + 1og100 + Iog1000] 

                                            =1/4[2+2+2+3]=1/(4*9)=2.25  

                                                                    2.25 

                                                    GM = (10)   = 177.8. 

   The above example illustrates the fact that the geometric mean is less 
affected by one (or two) extremely large (or small) values than is the 
arithmetic mean. Unfortunately, the geometric mean is neither easy to 
compute nor amenable to use for statistical inferences. It is very useful, 
however, in averaging ratios-a process that frequently arises in computing 
cost-of-living or other index numbers. 
 
 

3.7.2 Quartiles and Percentiles 
   The mean, median, and mode can be thought of as measures of location - 
they attempt to locate the most representative value. Other measures of 
location are quartiles and percentiles. 

Definition 3.8 
Lower, middle, and upper quartiles 

The lower quartile (q1) of a set of n measurements x1 , x2, ..., xn which 
have been ordered from the smallest to the largest is the value of x that 
exceeds 1/4 , of the measurements and is less than the remaining 3/4 . 

The middle quartile (q2) is the median. 
 
The upper quartile (q3) is the value of x that exceeds 3/4, of the 

measurements is less than the remaining 1/4. 

 

Example 3.10 

Find the lower, middle, and upper quartiles for the data set: 
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20, 34, 17, 18, 28, 33, 12, 1S, 17, 12, 41, 
4S, 18, 19, 16, 21, 26, 14, 26, 13, 29 

Solution: 
Ordered from the smallest to the largest, the 21 measurements are:  

 

12, 12, 13, 14, 15, 16, 17, 17, 18, 18, 19, 20, 21, 26, 26, 28, 29,33,34,41, 45           

                           ↑                                ↑                               ↑   

                       q1 = 15.25 q2 = 19      q3 = 28.75 
To determine the first quartile, one fourth of the measurements is 21 /4 = 5.2  
and three-fourths is 15.75. We wish to find, therefore, the measurement in 
the data set such that 5.25 of the measurements are below it and 15.75 are 
above it. Of course, no such measurement exists, so to find q1, we must 
interpolate  between the values of the fifth and sixth measurements, 15 and 
16. This results in q1= 15.25. 

Definition 3.9 
 The Pth percentile 

The Pth, percentile of a set of n measurements x1, x2, . . . , xn denoted by P, 
is the value of x such that P  percent of the values are less than P and (100 - 

P) percent of the values are greater than P. 

 
Example 3.11 

Find the 85th percentile for the data set in Example 3.6. 

Solution: 
Since 85 percent of n = 21 is 17.85, we are looking for the measurement 

such that 17.85 of the measurements are below it and 3.15 are above. This 
value lies between 29 and 33. By interpolation 

P = 32.4 . 

By looking at the difference among the quartiles, we can get a feel for the 
variability of the data. One measure of variability using the quartiles is the 
interquartile range defined by 

q3-q1 . 
The larger the interquartile range, the more spread out the set of measure-
ments will be. 
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Tutorial 3.2 
 
1. In the Complaints Department of a large department store on a given day. 

the lengths (in seconds) of the first 100 telephone calls were recorded 
(rounded to the nearest second), and the following frequency distribution 
was constructed: 

Class    Class limit Class boundary Frequency 

1 0-59 -0.5 to 59.5 5 
2 60-119 59.5 to 119.5 20 

3 120-179 119.5 to 179.5 40 

4  180-239 179.5 to 239.5 25 

5  240-299 239 5 to 299.5 10 

 
a. Construct a histogram from this frequency distribution. 
b. Construct a polygon from this frequency distribution. 
c. Compute the approximate mean length of the 100 telephone calls. 
 

2. The following 25 measurements represent the number of business trips 
taken annually by 25 claim adjusters of the Acme Insurance Company: 

33, 17, 2, 10, 12, 15, 22, 18, 20, 24,8, 27, 8, 
12,17, 15, 21, 38, 16, 18,10,12, 9, 5, 28 

Construct a frequency distribution with 5 classes for this data. Give the  
relative frequencies and construct a histogram from the frequency   
distribution. Compute the mean, median, and mode . 
 

3. Find the median ,mean and the mode for the data given in  Ex9 ,and  Ex10 
of  tutorial 2. 
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4 
Measures of Variation 

 
 
 

4.1 Introduction  
4.2 The range 
4.3 The standard deviation & the variance 
4.4 The standard deviation & the variance of grouped data 
4.5 Measure of relative variation 
4.6 Measure of skewness 
      Tutorial: 4 
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4.1 Introduction  
 

While representative measures provide certain information about a 
distribution, more is needed before a clear picture of the shape of the 
distribution can be formulated. In figure 4.1 for example, both distributions 
have the same mean value, but obviously differ in another respect-the 
amount of dispersion or variability of the values. The concept of variability 
is very important in statistics. For example, in production management, a 
major concern is the variability of the quality of a product being produced or 
the variability of a crucial measurement of a product such as a bearing 
diameter. More important, in statistical inference, we shall use the concept 
of variability to determine how good our inferences are. For the moment, it 
is sufficient to recognize the need for measuring the variability of a set of 
values to get a better idea of the shape of the distribution of the measure-
ments. 
Figure 4.1 Two dissimilar distributions with identical means 

 

 

 

 

 
 
 
 
 



 67 

4.2 The range  
 
The first and simplest measure of variability is the range. 

 
Definition 4.1 

Range 
The range of a set of measurements x1, x2,..., xn  is the algebraic 

difference between the largest and smallest values. 

 

Example 4.1 

Given the following 6 numbers, determine their range. 

x1=5 , x2=0 , x3=6 , x4=2 , x5=-2 , x6=9 

Solution: 
The largest number is 9 while the smallest is - 2. Thus the 
range is 9 -(- 2) = 11. 

 
While the range is very easy to compute, it is not a very satisfactory 

measure of variability, as figure 4.2 illustrates. The distribution on the left 
clearly is less variable than the distribution on the right, yet the ranges for 
the two distributions are identical (10 - 0 = 10). 
The mean of these six measurements is:  
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Figure 4.2 Two distributions with equal ranges 

 

  

 

 

4.3 The Standard Deviation and the Variance. 

    Since the variation of a set of numbers is small if they are bunched 
closely about their mean and it is large if they are spread over considerable 
distances away from their mean, it would seem reasonable to define 
variation in terms of the distances (deviations) by which numbers depart, 
from their mean. If we have a set of numbers x1, x2,...,and xn whose mean is 
x‾, we can write the amounts by which they differ from their mean as    x‾1 - 
x, x‾2-x,..., and x‾n-x. These quantities are called the deviations from the 
mean and it suggests itself that we might use their average, namely, their 
mean, as a measure of the variation of the  numbers. This would not be a 
bad idea, if it were not for the fact that we would always get 0 for an 
answer, no matter how widely dispersed the data might be. As the quantity 
∑ (xi –  x¯  ) is always equal to zero-some of the deviations are positive, 
some are negative, but they "average out," that is, their sum as well as their 
mean are always equal to zero. 

Since we are really interested in the magnitude of tile deviations and not 
in their signs, we might simply "ignore" the signs and, thus, define a 
measure of variation in terms of the absolute values of the deviations from 
the mean. Indeed, if we added the values of the deviations from the mean as 
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if they were all positive and divided by n., we would obtain a measure of 
variation called the mean deviation (see Exercises 5 and 6 on tutorial V). 
Unfortunately, this measure of variation has the drawback that, owing to the 
absolute values, it is difficult to subject it to any sort of theoretical 
treatment; for instance, it is difficult to study mathematically how in 
problems of sampling, mean deviations are affected by chance. However, 
there exists another way of eliminating the signs of the deviations from the 
mean, which is preferable on theoretical grounds: The squares of the 
deviations from the mean cannot be negative; in fact, they are positive 
unless a value happens to coincide with  the, mean, in which case ∑(xi-x)is 
equal to zero.  

Definition 4.2 
Variance 

                                                                             

The variance of n measurements x1,x2,…,xn is denoted by s2 , is given by  
                                                    

                                                s2  =∑( xi  - x‾ )2/n, 
and this is how, traditionally, the variance has been defined. Expressing 
literally what we have done here mathematically, it has also been called the 
mean-square deviation. 

Nowadays, it has become the custom among most statisticians and 
research workers to make a slight modification in this definition, which 
consists of dividing the sum of the squared deviations from the mean by 
n- 1 instead of n. Following this practice, which will be explained later, 
let us thus formally define  the sample variance , as 

                                        2                                                              

                                        s*  =∑( xi  -  x   ) 2  /(n – 1) . 
 

Definition 4.3                                                                                                 
Standard deviation 

               The standard deviation is denoted by s(s*) is given by   
                                                                                                                                                                     

                                        
                                    s= (∑( xi – x‾  ) 2  / n) ½    ,           
                                   

                            or 
                                    s*= (∑( xi – x‾  ) 2  /( n-1)) ½    . 
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The formulas we have given so far in this section are meant to apply to 
samples, but if we substitute µ for x‾ and N(or N-1) for n(or n-1), we obtain 
analogous formulas for the standard deviation and the variance of a 
population. It has become fairly general practice to write population standard 
deviations as S when dividing by N and S* when dividing by N - 1; 
symbolically, 
 

Definition 4.4 
Population Standard Deviation 

The Population standard deviation of N observation is denoted by S(S*) is 
given by 

 
                                                                                               2      1/2 

S = (∑(  xi-  μ ) /N) , 
                                    or 
 

                               2               1/2 

                                          S* = (∑( x i- μ) /(N-1)). 
  
To explain why we divide by n- 1 instead of n and N - I instead of N in the 
formulas for s and S, let us point out that if we wanted to use sample 
variances to estimate the respective variances of the populations from which 
the samples were obtained, division by n instead of n - 1 would give us 
values which on the average are too small. We cannot prove the following at 
the level of this note, but it is shown in most textbooks on mathematical 
statistics that the values would be too small on the average by the factor 
 (n-1)/n . 

 
For instance, for n = 5 the estimates would on the average be (5-1)/5 = 0.80 
or 80 per cent of what they should be,and hence 20 per cent too small. To 
compensate for this we divide by n - 1 instead of n in the formulas for the 
sample standard deviation and the sample variance. As the statisticians say,  
this makes the sample variance                                                   

s2 unbiased; that is, if we calculate s*2 for several samples taken                       
from the same population, the values we  get should average     S2, the 
variance of the population. Note, however, that this modification is of no 
significance unless n is small; generally, its effect is negligible when it is 
large, say 100 or more. The same applies to the difference between S2 and 
S*2, which is negligible unless the size of the population is very small, and 
in actual practice this is usually not the case. 
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Example 4.2 

To illustrate the calculation of a sample standard deviation, let us find s for 
the following data on the number of burglaries reported in a town during the 
first six weeks of 1972: 12, 18, 7, 11, 15, and 9. First calculating x, we get 

             x‾=(12+18+7+11+15)/6=12. 

and then the remainder of the calculations are as shown in the following 
table 

x 

 

     (x-x‾)             (x- x‾) 2 

12 0    0 

18 6  36 
7 -5  25 

11 -1   1 

15 3   9 

9 -3   9 

 0  80 

 and   
                                       s*= (∑( xi – x‾  ) 2  /( n-1)) ½     
 

                                          =(80/(6-1)) 1/2 =(16) 1/2 =4  .                                               

 

Thus, x‾ = 12 provides us with an estimate of the average number of 
burglaries in this town per week, and the value of the standard deviation, 

s* = 4, tells us something about the variability of the figures from week to 
week. How such a value of s is to be interpreted will be discussed   

and how it can be used to judge how close  x‾ = 12 might be to μ, the true 
average number of burglaries in this town per week, will be discussed. (Note 
that in the above table we totaled, as a check, the x‾ - x column, and as we 
have indicated , the sum of its values must always equal zero.) 

The calculation of s was very easy in this example, and this was due 
largely to the fact that the x's, their mean, and hence also the deviations from 
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the mean were  all whole numbers. Had this not been the case, it might have 
been profitable to use the following short-cut formula for s: 

 
                                s*=((n(∑ x2) – (∑ x) 2)/n(n-1)) ½  . 

 

This formula does not involve any approximations and it can be derived 
from the other formula for s by using the rules for summations. The 
advantage of this short-cut formula is that we do not have to go through the 
process of actually finding the deviations from the mean; instead we 
calculate ∑x, the sum of the x's , ∑ x2, the sum of their squares, and 
substitute directly into the formula. Referring again to the burglary data, we 
now have 

 
 
 

                                          x                      x2  
                                         12                   144 
                                         18                   324 
                                           7                      49 
                                         11                    121 
                                         15                    225 
                                           9                      81 
                                         72                  944 

 

                               s*=((n(∑ x2) – (∑ x) 2)/n(n-1)) ½  ,    
 
                                      = (6(944)-(72)2/6.5) ½   =4. 
 
It appears that in this particular example the "short-cut" method is actually 
more involved; this may be the case, but in actual practice, when we are and  
dealing with realistically complex data, the short-cut formula usually 
provides considerable simplifications. 
 
Example 4.3 

To demonstrate the advantages of the short-cut formula, let us determine 
the sample variance of the numbers 12, 7, 9, 5, 4, 8, 17, 2, 11, 14, 13, and 9, 
using first the formula definition 4.3 and then the short-cut formula. Without 
using the short-cut formula we get 
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x 

 
 (x- x‾ ) 

 
           ( x- x‾  ) 2 

12 2.75  7.5625 
 7 -2.25  5.0625 
9 -0.25  0.0625 
5 -4.25              18.0625 
4 -5.25 27.5625 
8 -1.25    1.5625 

                 17  7.75 60.0625 
  2 -7.75 52.5625 
11  1.75   3.0625 
14  4.75 22.5625 
13  3.75 14.0625 
  9 -0.25   0.0625 

               111 0 212.2500 
 

                                                                              
and 

 x‾ = (111/12)=9.25 ,           
 s*2 =(212.2500/11)=19.3, 
 
and working with the short-cut formula we get 

  
     x X2 

12 144 

7 49 

9 81 

5 25 

4 16 

8 64 

17 289 

2 4 

11 121 

14 196 

13 169 

9 81 

111 1239 
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                   s*2=(12(1239)-(111) 2) /12.11 
                        =19.3. 
 
 
Here the short-cut formula provided considerable simplifications. 
 

A further simplification in the calculation of s* or s*2 consists of adding 
all arbitrary positive or negative number to each measurement. It is easy to 
prove that this would have no effect on the final result, and had we used this 
trick in the last example, we might, have subtracted 10 (added -10) from 
each number, getting 2, -3, -1, -5, -6, -2, 7, -8, 1, 4, 3, and – 1 instead of the 
original numbers. The sum of these numbers is -9, the sum of their squares is 
219, and substitution into the formula for 
s*2 yields 

s*2 =(12(219)-(-9) 2)/12.11  

=19.13. 

 

which is exactly what we had before. Since the purpose of this trick is to 
reduce the size of the numbers with which we have to work, it is usually 
desirable to subtract, a number that is close to the mean. In our example the 
mean was 9.25, and the calculations might have been even simpler if we had 
subtracted 9 instead of 10. Although the short-cut formula was given for use 
with samples, we have only to substitute N for n throughout to make the 
formula applicable to the calculation of s*2 or s*.  

 

4.4 Standard deviation and Variance for grouped data. 
 
If we want to calculate the standard deviation of data which have already 
been grouped, we are faced with the same problem as on the mean. 
Proceeding as we did in connection with the mean, and assigning the value 
of the class mark to each value falling into a given class. 
 

 
Definition 4.5 

Standard deviation for Grouped Data 
The standard deviation of grouped data is 

 
                                 s* = ( ( ∑( xi – x   ) 2  . fi/(n-1)) 1/2   , 
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                                                                                   n=∑fi, 

 
and, if we substitute µ for   x and N or N - 1 for n - 1, we obtain analogous 
formulas for s. Note that in this formula the x's are now the class marks and 
the f's are the corresponding class frequencies. 
The above formula serves to define s for grouped data, but it is seldom 
used in actual practice. Either we use a computing formula analogous to the 
short-cut formula , 

                                        s*=((n(∑(xi2 fi)-(∑xifi) 2)/n(n-1)) ½  ,
 

where the x's are the class marks and the f's the corresponding class fre-
quencies, or we use the same kind of coding as in the calculation of the 
mean of grouped data. 

Following of the mean, we obtain  

s*=c((n(∑(ui2 fi)-(∑uifi) 2)/n(n-1)) /12              
 

This is the coding  formula for computing the standard deviation of 
grouped data. Note that this formula can be used only when the class 
intervals are all equal. 
Although this short-cut formula may look fairly complicated, it makes the 
calculation of s very easy. Instead of having to work with the actual class 
marks arid the deviations from the mean, we have only to find the sum of 
the products obtained by multiplying each u by the corresponding f, the 
sum of the products obtained by multiplying the square of each u by the 
corresponding f, and substitute into the formula. 
 
Example 4.4 

To illustrate the use of this short-cut formula for the calculation of s for 
grouped data, let us refer again to the distribution of the scores of the150 
applicants. Using the same u-scale, we get   
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Class Marks 
 xi 

ui fi ui .fi ui2.fi 

14.5 -4 1 -4 16 

24.5 -3 6 -18 54 

34.5 -2 9 -18 36 

44.5  -1 31 -31 31 

54.5   0 42 0 0 

64.5   1 32 32 32 

74.5   2 17 34 68 

84.5   3 10 30 90 

94.5  4 2 8 32 

  33 359 

and 
s*=c((n(∑(ui2 fi)-(∑uifi) 2)/n(n-1)) /12  , 

 
      =10((150(359)-(33) 2 )150.149) ½ 

=15.4 . 
 
The variation of the scores of the 150 applicants is, thus, measured by a 
standard deviation of 15.4, and we shall indicate below how such a figure 
might be interpreted. 
 

4.5 Measures of Relative Variation 

The standard deviation of a set of measurements is often used as an 
indication of their inherent precision. If we repeatedly measure the same 
quantity, for example, a person's temperature, the mileage a person gets with 
a certain gasoline, or the weight of a piece of rock brought down from the 
moon, we would hardly expect always to get the same result. Consequently, 
the amount of variation we do find in repeated measurements of the same 
kind provides us with information about their precision. To give an example, 
suppose that 5 measurements of the length of a certain object have a 
standard deviation of 0.20 in. Although this information may be important, it 
does not allow us to judge the relative precision of these measurements; for 
this purpose we would also have to know something about the actual size of 
the quantity we are trying to measure. Clearly, a standard deviation of 0.20 
in. would indicate that the measurements are very precise if we measured the 
span of a bridge; on the other hand, they would be far from precise if we 
measured the diameter of a small ball bearing. 
 
This illustrates the need for measures of relative variation, that is, measures 
which express the magnitude of the variation relative to the size of whatever 
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is being measured. The most widely used measure of relative variation is the 
coefficient of variation. 
 
 

Definition 4.6 
Coefficient of Variation 

The coefficient of variation of grouped (or non-grouped data) is denoted by 
CV ,is given by the formula 

 
 

CV = (s/ x ) . 100. 
 
This simply expresses the standard deviation of a set of data (or distribution) 
as a percentage of its mean. When dealing with populations, we ,analogously 
define the coefficient of variation as  
 
                                              CV = (S/μ) . 100 
 
If in the above example the standard deviation s = 15.4 and  x‾=56.7 ,then 
  
                                     … CV=(15.4/56.7) . 100. … 

By using the coefficient of variation, it is also possible to compare the 
dispersions of two or more sets of data that are given in different units of 
measurement. Instead of having to compare, say, the variability of weights 
in pounds, lengths in inches, ages in years, and prices in dollars, we can 
instead compare the respective coefficients of variation-they are all 
percentages.  

4.6 Skewness Measure 

As suggested earlier in this chapter, one possible measure of the skewness 
of a distribution of a set of measurements is the difference between its mean 
and its median. We will use a function of this difference as a measure of 
skewness. 

Definition 4.7 
Skewness measure( Sk) 

The skewness measure of a set of n measurements x1,x2,..., xn (or 
grouped data)denoted by Sk, is defined as three times the difference 
between the mean and the median, divided by the standard deviation: 

 

                                               Sk=3(  x  - m)/s . 
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   If the distribution is skewed right, the mean will be larger than the median 
and Sk will be positive. If the distribution is skewed left, the mean will be 
smaller than the median and Sk will be negative. 
The effect of dividing by s in Sk is to produce a statistic which is not depen-
dent on the unit of measurement. The mean, median and standard deviation 
are all measured in the same units for a given data set. 
 
   The skewness measure Sk can be used in two ways. First, the sign of Sk 
indicates the direction of skewness: +, skewed right and -, skewed left. 
Second, if Sk is larger in magnitude in one data set than in another, the first 
data set distribution is more skewed than the other. That is, Sk can be used 
as a relative measure of the degree of skewness among data sets. 
 

Example 4.5 

Compute Sk for the following set of 5 measurements: 

x1=10 , x2=4 , x3=4 , x4=6  and  x5=1. 

 

Solution: 

 
The mean, median and standard deviation for this data set are x = 5, m = 4 
and s= 2.97. Therefore, 

Sk=3 . (5-4)/2.97=1.01 
Since Sk is positive, the distribution of the 5 measurements is skewed to the 
right. 
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Tutorial 4 

 
1. Find the range , s2, s ,CV &Sk of the data of Ex. 6,7 & 8 of tutorial 3. 
2. The following is the distribution of the percentage of students belonging     

to a certain minority group in 40 schools: 
 

Percentage Frequenc
y 

0- 4 14 

5- 9 11 

10-14 7 

15-19 6 

20-24 2 

 
a. Calculate the mean.  
b. Calculate the mode. 
c. Calculate the median. 
d. Calculate s2 for this distribution 

 (i) without coding; 
 (ii) with coding. 

e .Calculate C.V. 
f. Calculate Sk. 
 
3.Consider the following frequency distribution  
 

Class                     Freq. 
                                            0-2                          10 
                                            3-5                            6 
                                            6-8                            3 
                                           9-11                           1 
   Calculate : 
    a.s2 & s. 
    b.median. 
    c.mode. 
    d. CV. 
    e. Sk. 
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4.Suppose that the random variable x has the following table  
 
 
 

Class                     Freq. 
                                            0-7                            2 
                                            8-15                         10 
                                           16-23                         8 
                                           24-31                         3 
                                           32-39                         2 
 
 a. Calculate the mean.  
 b. Calculate the mode. 
 c. Calculate the median. 
 d. s2 & s . 
 e. C.V . 
 f.  range.  
 j. Sk. 
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5.1 Introduction 
5.2 The sample and event spaces 
5.3 Computing probabilities from the sample space 
5.4 Permutations, combinations, and other counting rules  
5.5 Random variable  
5.6 Probability mass function 
5.7 Probability density function 
      Tutorials 5.1 & 5.2 
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5.1 Introduction  
Probability plays an integral role in inferential statistics by building a 

"bridge" between the population and the sample taken from it. Our initial 
applications of probability in this connection will be to make deductions 
about a sample from a known population .The use of probability is as 
indicated in figure 5.1: probability reasons from the population to the 
sample, while statistical inferences are drawn about the population from the 
sample. 

 
Figure  5.1 Role of probability in the statistical inference process 

 
 

 
 
 
Example 5.1 

As an example of the use of probability in this context, consider the 
national election for the office of president of the United States. Let us sup-
pose that only two candidates are listed on the ballot for the presidency, the 
Democratic candidate (A), and the Republican candidate (B). Further, 
suppose it is known in the population of registered persons who will vote on 
election day that 60 percent will vote for A and 40 percent will vote for B. If 
we now randomly sample one person from this population, what is the 
probability that he or she will vote for A? Since we know that 60 percent of 
the persons will vote for A, the probability that the one sampled person will 
vote for A is 0.60. Knowledge of the probabilities of the two possible out-
comes of the experiment (voting for A or voting for B) enables us to deduce 
the probability of the outcome in our sample of one. 

Indeed, by using this knowledge, we could deduce the probabilities of 
zero, one, or two persons voting for A in a sample of two, and so on for 
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larger sample sizes. Thus, if the population is known in the sense that the 
probabilities associated with the values in it are known, then this knowledge  
can be used to deduce the probabilities of the outcomes in the sample. 
To illustrate the use of probability in making inferences from a sample to the 
population, suppose candidate A conjectures before the election that 60 
percent of the people in the voting population will vote for him. In order to 
check this conjecture, his campaign manager randomly samples ten indi-
viduals from the population and finds that all ten intend to vote for candidate 
B. If the probability of a randomly chosen person voting for A is really 0.60, 
it is extremely unlikely that ten randomly chosen persons would all vote for 
candidate B. It is more likely that the true percentage who will vote for A is 
something considerably less than 60 percent. Hence, knowledge of this 
experiment (sample outcome) indicates to A that more resources (cam-
paigning, etc..) may have to be employed if he is to have a chance of 
winning the election. Candidate A is interested, of course, in testing whether 
this sample is indicative of the population characteristics (voting patterns), 
whether more sample information should be obtained, or whether the elec-
tion is likely to go to B (in which case A would be wasting his time by 
campaigning further). 
In practical situations, probability is used as a vehicle in drawing inferences 
about unknown population characteristics. Additionally, as we shall see 
later, probability concepts can be used to give us an indication of how good 
these inferences are. 
In this chapter, we will assume the population is known and compute the 
probability of the occurrence of various sample outcomes. In effect, we will 
be selecting a probability model depicting the outcomes in the population. In 
practical applications of statistics, we shall see that the selection of this 
model is an integral part of the statistical inference process. 

5.2 The Sample and Event Spaces 

 
In the presidential election example discussed in the previous section, 

we defined a population which consists of registered persons who will vote 
on election day. Suppose we assign a"1" to an individual if he or she intends 
to vote for candidate A, and "0" if he or she intends to vote for candidate B. 
The population can then be thought of as a collection of ones and zeroes. 
How are these ones and zeroes generated? Each person in the population 
must be contacted and represented by a"1" or a "0." The process of con-
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tacting each person to determine the outcome ("1" or "0") is called an 
experiment. 

 

Definition 5.1 
Experiment 

An experiment is a process which results in one and only one outcome 
of a set of disjoint outcomes, where the outcomes cannot be predicted 

with certainty. 

 In the voting example, there are only two possible outcomes, and they are 
disjoint (non-overlapping): a zero and a one. With our previous assumption 
that only two candidates are listed on the ballot, each experiment results in 
one and only one of the two possible experimental outcomes. And we cannot 
predict with certainty the outcome before the experiment is conducted. 
Repeated trials of this experiment will generate the population of zeroes and 
ones. Other examples of experiments are: 

Example 5.2 

A professor at a large university is selected and his salary is recorded. 

Example 5.3                                                                                                      
A unit of a product is selected from an assembly line and is analyzed to 
determine whether it is defective. 

Example 5.4 

 A light bulb is randomly selected from the day's production and its time to 
failure measured. 

By repeating an experiment many times, a population of outcomes can be 
generated. For example, if we repeated the experiment in 3. until each and 
every light bulb in the day's production run had been tested to failure, the 
population of all times to failure of this set of light bulbs would have been 
generated. In the process of doing this, it should also be noted that the entire 
day's production of light bulbs (the population) would have been destroyed. 
We can also think of the sample being generated by repeated trials of an 
experiment. For example, if we wanted to sample ten light bulbs, we could 
repeat the experiment ten times. 
The outcomes of an experiment are called simple events. Simple events shall 
be denoted by the capital letter E subscripted to associate E; with a particular 
outcome (ith) of an experiment. 
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Definition 5.2                                                                                   
Simple event 

A simple event is the outcome of an experiment. 

Example 5.5 

Suppose in our presidential election example that we randomly sample two 
persons in the population of voters. A possible set of simple events 
associated with this experiment is: 

                                                 Vote By 
 

Event              First person   Second person 
E 1                         A                              A 
E 2                         A                              B 
E 3                         B                              A 
E 4                         B                              B 

 
These outcomes of the experiment can also be indicated by using an 
outcome tree as shown in figure 5.2. The first "branch" of the tree is associ-
ated with the first person who votes either for A or for B. The second set of 
branches is associated with the second person who votes either for A or for 
B also. 

The outcome tree represents a logical way to list the simple events of an 
experiment. It is very practical if the number of events is not too large. 

Figure 5.2 Outcome tree for Example 5.5 
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Example 5.6 

Suppose three persons, A, B, and C, are interviewing for a job. Two will 
be hired. The experiment is the selection of two of the three interviewed 
individuals for the job. The simple events can be listed using an outcome 
tree as illustrated in figure 5.3. 

 
 

Figure 5.3 Outcome tree for Example 5.6 

 

 
Notice in Example 5.6 that the six simple events listed specify not only the 
two individuals selected, but also the order in which they are selected. That 
is, E, and E, both result in the first two individuals, A and B, being selected. 
If the order in which the two individuals are selected is not important, then 
we need not distinguish between E1 and E2, E3 and E5. and E5, and E6. In this 
case, a simpler set of outcomes would be: 

E1*: A and B are selected, 

 E2*: A and C are selected, 

 E3*: B and C are selected. 

As suggested above, it is often possible to define the outcomes and the 
experimental simple events differently in the same experiment. To gain an  
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understanding of how to define the simple outcomes of an experiment, 
consider the following example. 

 
Example 5.7 

Assume that Herman is to toss a "fair coin" twice. He informs you that 
there are three possible outcomes (simple events) of this experiment: 

 E1*: No heads (two tails), 
 E2*: One head (one tail), 
 E3*: Two heads (no tails). 

Herman tells you that the probability of any one of the three simple events 
occurring is 1/3.He then wishes to wager with you on the outcome of one 
trial of the experiment, say E2-one head occurring in two tosses of the coin. 

Before deciding to accept a wager, you construct an outcome tree of a 
single trial of the experiment. 

From the outcome tree, it is clear that we may define another set of simple 
events for this experiment: 

E1: (H,H), 

E2: (H.T), 
E3: (T,H),  
E4: (T,T). 

If the coin is "fair," then the probability of each of the outcomes E1, E2, E3  
and E4 in figure 5.4 occurring is 1/4. 

In terms of the original three outcomes, E*1, E*2 and E*3 it is clear that 
each does not have a 1/3, probability of occurring - the proper probabilities 
are: 

  P( E1*)= 1/4  , [E1* = E1 (H,H)],  
  P(E2*)= 2/4  , [E2* = E2 or E3 (H,T) or (T,H)], 
  P(E3*)= 1/4  , [E3* = E4 (T,T)]. 
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Figure 5.4 Outcome tree for a coin-tossing experiment 

                                             1 st coin toss                               2 nd coin toss 

                      

 

Definition 5.3 
Event 

An event is a subset of outcomes of an experiment. 

Notice that any simple event of an experiment is an event because it is a 
single outcome of the experiment. 

 

Definition 5.4 
Null event 

A null event is an event containing no simple events in an experiment. It 
is denoted by  : ф. 

In Example 5.5, an example of a null event is "no persons vote for A 
or for B." It is impossible for this event to happen, because there are 
only two candidates, A and B, and the population consists of 
individuals who will vote in the election. In this instance, the event 
set is empty, for it does not contain any of the simple events in the 
experiment. 
The simple events of an experiment and events defined to be 
collections of these simple events can be portrayed graphically by a 
Venn diagram. The Venn diagram associated with the simple events 
in Example 5.5 and the event D defined above is shown in 
 figure 5.5. Each simple event in a 
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Figure 5.5 A Venn diagram for the simple events in Example 5.5 

 

Venn diagram is shown as a "point" with its corresponding subscripted letter 
E. The collection of all simple events in an experiment is the complete set of 
sample points in the Venn diagram and is called the sample space. The event 
D is illustrated in the Venn diagram by enclosing the sample points 
belonging to it; the resulting closed region is called the event space, D. 

 

Definition 5.5 

Sample point 
A sample point is a simple event in an experiment. 

 

Definition 5.6                  
Sample space 

A sample space is the set of all possible outcomes of an    

                                  experiment. 

                                    

Definition 5.7 

Event space 

An event space is the collection of sample points 
corresponding to an event defined over the sample space. 
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Figure 5.6 Venn diagram for the experiment shown in Figure 5.3 

 
 
 
 
 
 
 
 
 
 
 
 
In Example 5.6 suppose that we define the following events: 

F: A is chosen first                                                                  

G: A is chosen without regard to selection order 

H: A and B are chosen without regard to selection order. 
 

Assume that we define the simple events as in Figure 5.3: 

E1: A and B E3: B and A     E5: C and A 

                        E2:A andC  E4:B andC     E6: C and B. 

 
The Venn diagram showing the sample space for this experiment, the sample 
points, and the event spaces F, G, and H is illustrated in figure 5.6. 

5.3 Computing Probabilities from the Sample Space 

In Example 5.5, where two persons are randomly selected from the voting 
population, there are four possible outcomes of the experiment. In the cor-
responding sample space for this experiment, illustrated in Figure 5.5, we 
defined the event D to be, "at least one of the two persons votes for 
candidate A." What is the probability that the event D occurs in this 
experiment? This question can be answered directly from the sample space 
associated with the experiment if the probabilities of the simple events 
occurring are known. Thus, to answer a probability question about an event 
in an experiment, we first must assign probabilities to the simple events 
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associated with the experiment. We will denote by P(Ei) the probability 
assigned to the simple event Ei. The assigned probabilities P(E1 ), P(E2), . . . 
, P(Em), where there are M simple events in the experiment sample space, 
must satisfy three probability axioms for experiments that have a finite 
number of outcomes. 

Axiom 1 

 
0≤ P(Ei)≤ 1 for i = 1, 2, ..., m. 

The first axiom requires that every simple event be assigned as its proba-
bility a non-negative number between 0 and I inclusive. 

Axiom 2 

                                                      m 

                                                     ∑  P(Ei) = 1  .                                                                                                                             
i                                                                          i =1 

The second axiom requires that the probabilities assigned to all the simple 
events in the experiment must total one. 

                                                    Axiom 3 

                
 P(E1 or E2  or E3 or ...) = P(E1) + P(E2) + P(E3) +… 

The third axiom requires that the probability of one or more members of a 
set of simple events occurring in an experiment is the sum of their respective 
probabilities. 

 

Example 5.8 

Suppose in Example 5.6 we assign the following probabilities to the simple 
events in that experiment: 

 

E1 
Simple events 

(A,A) 
Probability   
P(E1) = 1/4 

E2 (A,B)     P(E2)= 1/4 

E3 (B,A) P(E3) = 1/4 

E4 (B,B) P(E4) = 1/4 
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These probability assignments satisfy the above three axioms-each 
probability assigned is a positive number between 0 and I inclusive, the 
probabilities total one, and the probability that any member of a collection of 
the simple events will occur is the sum of the probabilities of the members in 
the collection. 
 
These axioms are intuitive; most of us have an understanding of them before 
taking any formal training in probability. If an event is certain to happen, its 
probability of occurrence is 1 and if an event is certain not to happen, its 
probability of occurrence is 0. 
How do we, in fact, formally define probability? We will consider one way 
of defining probability. 
 

Definition 5.8 
Relative frequency definition of probability 

If an event E is defined in an experiment, the experiment is repeated a very 
large number of times, say N, and the event E is observed to occur in n of 

these N experimental trials, then 

… P(E) =n/ N . … 

The ratio n/N represents the proportion of the time that event E occurs in 
repeated experiments.  

 

5.4 Permutations Combinations and other Counting Rules 
 

Numerous counting rules can be used to count the number of points in 
sample and event spaces. We shall consider four of the most important 
counting rules. Each will be presented without proof and followed by 
examples. 

Rule5.1 

 
… m.n rule … 

Suppose that there are m distinguishable objects in one group and n dis-
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tinguishable objects in another group. If one element is selected from each 
group, it is possible to form m . n pairs of objects. 

 

Example 5.9 

Herman has decided to purchase a new hi-fi system with the money he 
saved by buying a compact car instead of a large sedan. His hi-fi system will 
be composed of a receiver, a pair of speakers, a record changer, and a tape 
deck. In the store where he will make the purchase, there are 10 different 
kinds of receivers, 5 kinds of speakers, 4 kinds of changers, and 8 kinds of 
tape decks. How many systems can Herman choose from? 

 
Solution: 

Since he must select one element from each of the four groups, he can 
choose from (10)(5)(4)(8) = 1600 possible systems. 
 

The next two counting rules apply to a different type of experiment as 
indicated in the following example. 

Example 5.10 

Suppose three persons, A, B, and C, are competing for two job 
positions. How many ways can two people be selected for employment 
from the three? 

Solution: 
In this problem, it is easy to list the possible different outcomes of the 

experiment. There are three: AB, AC, and BC. However, we may be 
interested in the order of the selection as well as the content of the 
resulting pairs. If this is the case, there are six possible outcomes: AB,  
BA, AC, CA, BC, and CB. 
In Example 5.10, there are two different ways to view the pairs formed 
by selecting two persons out of three. Suppose there are n distinguishable 
objects from which we are selecting a subset of size r. If we are 
concerned about the number of groups of size r that can be formed from 
the n where one group of size r is different from another if its content is 
different, we want to determine the number of combinations of r things 
selected from n. If, on the other hand, we want to compute the number of 
groups of size r that can be formed from n where one group of size r is 
different from another in terms of both its content and the order in which 
the r things were drawn, then we want to determine the number of 
permutations of r things drawn from n. 

In Example 5.10, the number of combinations of two persons drawn 



 94 

from three is 3, while the number of permutations of two persons drawn 
from three is 6. 
In conjunction with the rules for computing the number of permutations and 
combinations, the complete definitions follow. 

    Definition 5.9                
Permutations 

An ordered arrangement of r distinguishable objects is called a 
permutation. The number of permutations of r objects taken from n 

distinguishable objects will be denoted by Pr
n. 

 

Definition 5.10 
Combinations 

A set of r distinguishable objects is called a combination. The number 
of combinations of r objects taken from n distinguishable objects will be 

denoted by Cr
n. 

 

Rule 5.2 
Permutations 

Pr
n=n!/(n-r)! 

 

Rule 5.3 

Combinations 

...Cr
n =n!/r!(n-r)!=(1/r!) Pr

n>> 

The symbol n! is called "n-factorial"; n! = n(n - 1)(n - 2) ...(2)(1 ). Thus, 

 4! = 4(3)(2)(1) = 24 and 6! =(6)(5)(4)(3)(2)(l) = 720; 1! = 1 and, by 
definition, 0! = 1. 

Example 5.11 

A committee of three is to monitor the activities of the local club. The 
committee is to be formed by selecting three people from a group of five 
persons. How many different committees could be formed? 

Solution: 
Nothing is mentioned about the order or arrangement of the three selected 

individuals. Thus, one committee will be different from another if it has one 
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or more different people in it. We are only concerned about the content of 
each group, and therefore we want to determine the number of combinations 
of three things taken from five. 

                             C3
5 =  5!/ 3!(5 - 3)!=5.4.3.2.1/(3.2.1)(2.1) 

                                   =10,  
   

thus, it is possible to develop 10 different committees of three people 
;elected from five. You  can check this result by listing all possible groups of 
three drawn from five, where the five people are labeled A. B, C. D, and E. 

Example 5.12 
A club committee of three is to be formed by selecting three people from a 
group of five. One of the selected people will be chosen a chairman of the 
committee, another the secretary, and the third person will simply be a 
"member" of the committee. How many different committees can be 
formed? 

Solution: 
Suppose the three people (denoted by A, B, and C, respectively) have been 
chosen from among the five. Once we have this combination of three people, 
we must then assign them to the three positions: chairman, secretary, and 
member.  
 

 
We can view this process as ordering the three persons. That is, let the first 
position in the ordering (or permutation) be the chairman, the second be the 
secretary, and the third be the member. The possible permutations are: ABC, 
ACB, BAC, BCA, CAB, and CBA. Each of these combinations is a different 
committee, although each contains the same three people, A, B, and C. Thus, 
we want to compute the number of permutations of r = 3 people chosen from 
n = 5. 
                                                P3

5=5!/(5-3)!=60 

In this case, there are 60 different committees which can be formed. Notice 
that this is six times as many committees that could be formed in Example 
5.11 because for each combination in Example 5.11, there are 6 permuta-
tions in Example 5.12. 
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Tutorial 5.1 

l. Give the sample space of each of the following experiments in the form of 
a Venn diagram. Be certain to define the simple events corresponding to 
the sample points in the sample space. 
a. A fair coin is tossed three times. 

  b. A coin and a die are tossed together.  
c. Two fair dice are tossed, and the sum of the dots of the two faces 

turning up is recorded. 
     d . A student receives his score on a multiple choice exam containing 20       
     questions. 

e. A student receives his grade on an exam. 
f. The number of telephone calls received at a switchboard during a live 

minute interval is recorded. 
g. A child is selected in a first grade class, and his or her weight (to the 

nearest pound) is recorded. 
2. A committee is composed of two men and two women. One member of 

the committee is selected to serve as chairman and another is selected to 
serve as secretary. 
a. Define the simple events comprising the sample space of this 
experiment. Identify which sample points in the sample space belong to 
the following event spaces: 
b. The younger man is selected as chairman: Event A.  
c. A man is selected as chairman: Event B. 
d. A woman is selected as secretary: Event C.  
e. Events A and C occur: Event D. 
f. Events B or C or both occur: Event E. 
g. Show the live event spaces in a Venn diagram. 

3. Two college job recruiting officers. Herman and Bill, come to the 
University of Truth campus to fill positions in their organizations. Each 
officer is attempting to fill three positions. Three students qualify for the 
positions described. and each will be interviewed by the two officers. If a 
sample point is defined as a specific number of students hired by Herman 
or Bill, define the following events as specific collections of sample 
points: Note: there are six jobs and three students three jobs will not be 
filled. (Hint: The sample space is two-dimensional.) 
a. The sample space S which consists of all outcomes defining the 

number of students hired by each officer. 
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b. Event A: Herman hires at least two students.  
 

c. Event B: All three students are hired by Bill. 
d. Event C: Exactly one student is hired by Bill. 
e. Event D: Bill hires two students and so does Herman. 

 

4. When one card is drawn from a well-shuffled deck of 52 playing cards  
what are the probabilities of getting: 

a) a black king. 
b) an ace. 
c) a red card. 
d) a king or a queen. 
e) a black card. 

Remark: Four groups (with two colors) 1 - 10 + King, queen, jack. 
 
5. A bowel contains 17 red balls, 10 black, .10 white balls and 20 blue balls. 

If one of these is drawn at random, what the probabilities that it will 
be: a) a red b) a white c) a blue d) red or white e) white or 
blue f) neither white nor red. 

 
6. Bowel I contains 12 red and 13 blue balls. Bowel II contains 10 red, 15 

blue balls and 15 black balls. One ball is drawn from bowel I and 
placed in bowel II, then one ball is drawn from bowel II. Find 
probabilities that it will be: 

a) a red ball b) a blue ball 
c) a black ball. 
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5.5 Random Variable 
 
In a typical population, it is usually possible to identify more than one 

characteristic of the units comprising it. For example, suppose the 
population is the collection of all full-time students registered at your 
university or college during the present academic term. In this instance, it is 
possible to identify numerous characteristics of the population unit-earned 
income, height, weight, sex, hair color, number of parking tickets 
accumulated during the term, grade-point average and so on. In a statistical 
study of the units in this population, we may be interested in just one 
characteristic (e.g…, gradepoint average) or in a collection of such 
characteristics (e.g…, sex and grade point average, or earned income and 
grade point average). 

In Chapter 1, we referred to a population characteristic as a variable if the 
characteristic can assume one or more values in the population. We must 
now more specifically define a "variable" when we use the word to mean a 
measure of a population characteristic. 

 
Definition 5.11 

Random variable 
A random variable is a numerically valued function whose value is 

determined by a random experiment. 
 

A more mathematically rigorous definition is: 

A random variable is a numerically valued function defined over a sample 
space. 

Example 5.13 

Suppose we consider the population of full-time students registered at 
your university or college. If we are interested in the population character- 
istic, "grade point average," and we select one student at random from this 
population, then the characteristic may be viewed as a random variable; its 
value is numeric and arises from a random experiment, and it is a function 
because it defines a correspondence between members of one set (the stu- 
dent population) and members of another set (the set of all possible grade 
point averages, from 0.00 to 4.00). For each student, the random variable 
defines one and only one grade point average, while more than one student 
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may have the same grade point average. 
 

 
To better appreciate the concept of a random variable being a function. let us 
consider an example. 
 

Example 5.14 

Suppose the random experiment is tossing a coin twice, and we define the 
random variable, X = number of heads in the two tosses. figure 5.1 
illustrates the correspondence between members of the experimental 
outcomes and possible values of the random variable. 
 

 Figure 5.7 Random  variable X: number of heads in two tosses of a coin     

      

 
Notice that the random variable X is a function. To each member in the first 
set (the simple events in the experimental sample space) there corresponds 
one and only one member in the second set (the values of the random 
variable). But each value of the random variable may correspond to one or 
more simple events. Notice that we have written the random variable in 
functional notation in figure 5.7 to emphasize its meaning. 
 

Example 5.15 

A production lot of 100 transistor radios contains 10 defectives. A retailer 
decides to select two of the radios at random, and by extensive testing, to 
determine whether they are defective. If neither radio is defective, he will 
accept the lot. Define the random variable, X = number of defective radios  
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(X = 0, 1, or 2). Determine the probabilities that X assumes each of its 
three possible values. 

 

 

Solution: 
In the experiment of selecting two radios at random, define the events: 

 A1: First radio is defective 

 A2: Second radio is defective 
 A3: First radio is not defective 
 A4: Second radio is not defective 

The four simple events of the experiment are given in Table 5.1. The prob-
ability of each simple event occurring is determined by using the multiplica-
tive law For example, 

                P(A1 ∩ A2) = P(A1)P(A2/A1 )= (10/100)(9/99) = 0.0091 
Notice that the two events are not independent; the outcome of the first 
selection affects the chance of the second radio being defective. Notice that 
the probabilities in Table 5.1 sum to one-we have specified the four mutually 
exclusive and collectively exhaustive simple events of the experiment. 

  Table  5.1 Outcomes and probabilities for Example 5.13 

Simple events Probability Values of X 

E1:A1∩A2 (10/100)(9/99)= 0.0091 2 

E2:A1∩A4  (10/100)(90/99)= 0.0909 1 

    E3:A3∩A2   (90/100)(10/99)=0.0909 1 

    E4:A3∩A4   (90/100)(89/99)= 0.8091 0 

 
Since the simple events are mutually exclusive and collectively exhaustive, 
P(X = 2) = 0.009 1, P(X = 1) = 0.0909 + 0.0909 = 0. 1818, and P(X = 0) = 
0.8091. The values of the random variable X and their probabilities of 
occurrence are given in Table 5.2. This Table represents the probability 
distribution of the random variable X-a list of each value and its probability 
of occurrence. 
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                Table 5.2 
Probability 
distribution of X 
X P(x) 
0 0.8091 
1          0.1818 
2          0.0091 
 

 
From the probability distribution the probability that the retailer will accept 
the lot is 0.8091. 

                   Table 5.3 Examples of discrete random variables 

   

Definition 5.12 
Discrete random variable 

A random variable is discrete if its set of values is finite or countably 
infinite in number. 

A continuous random variable assumes values which occur on an interval or 
intersection of intervals on the real line. The number of values that a 
continuous random variable may assume is infinite. Examples of continuous 
random variables include height, weight, and the diameter of ball bearings. 
Although each of these variables is bounded (for example, the weight of 
individuals is bounded between zero lbs. and, say 500 lbs.), the variable can 
assume any of an infinite number of values between these bounds. Other 
examples of continuous random variables are given in Table 5.4. 
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Table 5.4 Examples of continuous random variables 
               Definition of X   Range of values of X 
1. Diameter of 1/2 bolts produced in a machine shop            X≥ 0 
2. Weight of a student in your class  X≥ 0 
3. Amount of rainfall in inches recorded at a weather   X≥0      
station on a given day 
4. Weight lost by a person weighing 300 lbs. on a            X≤ 300 
diet designed for weight loss                                        (A negative value of X              
                                                                                    indicates a weight gain.) 

 

Definition 5.13 
Continuous random variable 

A random variable is continuous if it may assume all real number values in 
an interval. 

5.6 Probablity Mass Function                                                       
                                                                                                                       
The probability distribution can be described by a function P(x), call a 
probability mass function, which assigns probabilities to the values of 
discrete random variable. 

Definition 5.14 

Probability mass function (finite case) 
Let the random variable X assume a finite number of values, r in total, and 

denote these values by x1, x2, ..., xr. 
Let P(xi) be the probability that the random variable X assumes the value xi. 
A probability mass function is a function which assigns probabilities to the 
values of a discrete random variable such that the following two conditions 
on the function P(x) are satisfied:  
 

…1. 0 ≤  P(xi)≤1 ,  i = 1,2, . . ., r,… 
 
                            r 

              2.  ∑    P(xi) = 1. 
                                                               i=1 
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Figure  5.8 Three ways of presenting the distribution of the                                        
discrete random variable in Example 5.15 

 

Example 5.16 

A committee of two persons is to be formed from four persons, three of 
whom are female. The committee is formed anew at the end of each working 
week. The members of the committee have the duty of arriving at the office 
30 minutes early to prepare the morning coffee, turn on lights, plug in 
machines and so on. In any given week, let X be the number of women 
serving on the present committee. Form the probability distribution of the 
random variable X. 

    Figure 5.9 Probability mass function for the random variable in Example                      

                                                        5.16 

 

The average of the values of a random variable is called the expected value 
of the random variable and is given for a discrete random variable:  
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Definition 5.15 
Expected value of a random variable (discrete case) 

Let X be a discrete random variable with a finite number of values denoted 
by x1, x2; ..., xn. The mean or expected value of the random variable, 

denoted by E(X), is given by 
 
r 

    E(X) =  ∑   xi . p(xi)  .                                                                                      
i=1 

Example 5.17 

Expected value of the random variable in Example 5.14 is given by  the 
following table : 

Table 5.7 

xi        P(x)             xP(x) 
0            0.8091            0.0000 
1            0.1818                 0.1818 
2            0.0091                 0.0182 
Total                                 0.2000 

 

 Definition 5.16  
 Variance of a random variable (discrete case)  

Let X be a discrete random variable with a finite number of values denoted 
b) x1, x2, ..., xn. The variance of the random variable, denoted by V(X), is 

given by 
 

                                                    r 
 V(X)=∑   (xi- E(x)) 2  p(xi)  ,       or                                                       

           i=1    

 

                  r 

                                        V(X) =∑   xi
2 p(xi) – [E(x)] 2 . 

            i=1                                                                                                      

 



 105 

The first form of V(X) in definition 5.16 is a definitional form, and the 
second is the "computing form." Giving two expressions for V(X) is similar 
to giving two expressions for the population variance σ2 in chapter 4. 
 
Example 5.18 

Compute the variance of the random variable in Example 5.15. 

Solution: 
The easiest way to compute the variance of a discrete random variable is by 
using a table similar to Table 5.8 below 

Table 5.8 Partial computation of the 
variance of the random variable in 

Example 5.7 
I xi P(xi) xi

2 xi
2P(xi) 

1 0 0.8091 0 0.0000 

2 1 0.1818 1 0.1818 

3 2 0.0091 4 0.0364 

    0.2182 

From Table 5.7, E(X) = 0.2. 
 Thus                                              
                                      3 

                          V(x)=∑   xi
2P(xi)- [E(x)] 2                                                                           

                                                         i=1 
= 0.2182 - (0.2)2 = 0.1782. 

The variance of X is O.1782 and the standard deviation of X, denoted by  s  
is (0.1782) 1/2 = 0.422.  

5.7 Probability Density Function 

Definition 5.17 
 

Probability density function (continuous case) 
 

Let X be a continuous random variable defined over an interval of the real 
line from a to b, as illustrated in Figure 5.13. 

The probability density function of X, denoted by f(x) , must satisfy two 
conditions: 

 
1. f(x) ≥ 0 , a ≤ x ≤ b, 
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2. The area under f(x) from X= a to X= b must be one. 

 

Figure 5.10 Probability density function f(x) of a continuous 

random variable 

 

 

Notice the similarity between the conditions for P(x) to be a probability 
mass function of a discrete random variable given in definition 5.12 and the 
conditions placed on f(x) to be a probability density function for a con-
tinuous random variable given in definition 5.13. In the discrete case, prob-
ability is "massed" at the discrete values of the random variables while in the 
continuous case, the probability is spread "densely" over the range of the 
random variable. In the discrete case, the probability sticks must sum to one 
while in the continuous case, the dense set of sticks (the area under the 
function f(x) from a to b) must have an area of one unit. 

Recall that if we desire to compute P(c ≤ X ≤ d) where d ≥ c for a discrete 
random variable, we need only sum the probabilities of X taking on the 
values c through d; that is: 
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                                              x=d 

       P (c≤ X ≤d)=∑  P(x)  ,   d ≥ c. 
                            x=c 

 
 
       Figure 5.11 Area under the curve corresponding to P(c ≤ X≤ d) 
 

 

 

 
The analogy to a continuous random variable is straightforward. The 
probability that a continuous random variable X takes on a value between c 
and d is the area under f(x) between c and d as illustrated in Figure 5.11. 
There is one significant difference in computing probabilities for a discrete 
and a continuous random variable. If the discrete random variable X can 
assume the value e, then the probability that X does assume this value is 
P(e), the height of the stick over e on the stick diagram for X. However, if e 
resides within the defined interval for a continuous random variable X, the 
probability that X assumes the value of e is zero; that is, P(X = e) = 0. This 
is true regardless of the numerical value of e over the defined interval of real 
numbers for the random variable X. Thus, P(X = e) is not equal to f(e), the 
height of the curve at the point X = e. 
The reason for this may be argued as follows. Let us assume that the 
continuous random variable is defined for values on the real line from X = a 
to X = b. Assume that e is in the interval (a, b) and we let P(X = e) = f(e). 
Since we have defined the probability that X assumes the value of e in (a, b) 
in this manner, this definition must also hold for all other values, say e1, e2, 
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e3, . . . , in the interval (a, b). Since there is an infinite number of values (not 
countable) between (a, b), we can see that the sum of the "probabilities" f(e) 
+ f(e1 )+ f(e2) + f(e3) +••• will quickly exceed one, which means that any 
particular number, say f(e2), can no longer be interpreted as a probability. 
Indeed, a single f(ei) may exceed one by itself if the height of the curve at 
the point X = e; is greater than one. 
 
Another way to look at this is to write P(X = e) as P(e ≤ X≤ e) and use the 
definition for the probability that X assumes a value between two points, 
say c and d, as illustrated in figure 5.9. Since there is no area between e and 
e, P(X = e) = P(e ≤ X≤ e) = 0. 

Table 5.9 Comparison of properties of discrete and continuous random       

                                                  variables 

Example 5.18 
Consider the probability density function  

                                             1            0 ≤x≤ 1 , 

                              f(x)=   

                                             0            x <0 or x> 1. 

 

Find : 

1. P(0 ≤ x ≤ 1) 
2. P(0.25 ≤ x ≤ 0.60)                    
3. P(x > 0.75) 
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Solution:    

1. P(0 ≤ x ≤ 1)= 0∫
1 f(x) dx 

      = 0∫
1 1 dx  = 1.                                                 

2. P(0.25 ≤ x ≤ 0.60) =  0.25∫
0.6 f(x) dx     

3. P(x  > 0.75) = 0.75∫
1 f(x) dx          

 

Definition 5.18 
Expectation of a random variable (continuous case) 

Let X be a continuous random variable defined over the interval (a, b) with 
probability density function f(x). The mean or expected value of the 

random variable, denoted by E(X), is given by 

E(X) = a∫
b x f(x) dx. 

 

Definition 5.19 
Variance of a random variable (continuous case) 

Let X be a continuous random variable defined over the interval (a, b) 
with probability density function f(x). The variance of the random 

variable, denoted by V(X), is given by 

V(X) = a∫
b [x -E(x)]

 2 f(x)dx,  or 

V (X) =a∫
b x2 f(x) dx-[E(x)]

 2 . 

It is interesting to note the similarity in the computation of the expected 
value and the variance of a discrete and a continuous random variable as 
illustrated in Table 5.10. The analogy to summing in the discrete case is 
integrating in the continuous case . 
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Table 5.10 Comparison of the expected value and variance formulas   
for discrete and continuous random variables 

 

 

Example 5.19                                                                             
 

Let                                                                   

                          0.5,    0 ≤ x ≤ 2 , 

f(x)=  {      

               0     ,  otherwise. 

Find:                                                                     
a. E(x)                                                                          
b.Var (x) 

Solution : 

E(x)= 0∫
2
  1/2 x dx   = x2 /4 ]0

2 =  1  ,                                  

Var(x)= 0∫
2
  1/2  x2  dx – (1)2 =2/6. 
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Tutorial 5.2 

I . In a certain population of voters, it is known that 60 percent are 
Democrats and 40 percent are Republicans. If a sample of' three voters is 
extracted from this population, find the probability distribution of the 
random variable, X = Number of Democrats in the sample. 
 
2. An automobile salesperson has a probability of 0.20 of selling a car to 
each individual interested in buying a car with whom she speaks on the 
showroom floor. On a certain day, the salesperson talks with four individuals 
regarding the purchase of a car. Find the probability distribution of the 
random variable, X = Number of cars sold. Show the distribution in the form 
of a table, a stick diagram, and (if possible) a formula. 
 
3. A multiple choice exam consists of four questions, each of which has four 
possible answers. If a student is forced to guess on all four questions, what is 
the probability distribution of the random variable, X = Number of correct 
guesses? 
 
4. In an organization consisting of 5 women and 10 men, a committee of 
four individuals is to be selected at random from the 15 people. Find the 
distribution of the random variable, X = Number of women on the 
committee. 
 
5. In a six-cylinder automobile engine. two spark plugs are defective. Three 
spark plugs are removed at random and checked. Let X be the number of 
defectives found (0, 1, or 2). Find the probability distribution of X. 
 
6. Suppose two dice are tossed. Let X be the sum of the dots on the top faces 
of the two dice. Find the probability distribution of X. 
 
7. Let X be a random variable with probability distribution given by the 
following table: 
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X 
0 

P(x) 
0.70 

Find: a. 
 
b. 
c. 

The expected value 
of X. 
The variance of X. 
The mode of X. 

1 0.20  d. The range of X. 

2 0.06    

3 0.04    

 
8.It is found that the probability distribution of X is: 

X P(x)                                                                   
0 ........0.95                                     
1 ........0.03 
2 ........0.015 
3  .......0.003 
4  .......0.0015 
5  .......0.0005 

Find: 

a. 
 
b. 
c. 

The expected value 
of X. 
The variance of X. 
The mode of X. 

d. The range of X. 
 

9. Consider the formula: P(x) = x2/21, x = 0, 1, 2, 4. Is P(x) a probability 
mass function? If so, show the distribution of X in tabular form and compute 
the expected value of X. 
 
10. Simulate the experiment in Problem 5 by taking six scraps of paper 
and marking on two of them, the  letter "D." Place the six scraps of 
paper in a box and randomly select three of the scraps. Record the 
number marked D.Do this experiment 100 times. Construct a frequency 
distribution for this sample and compare it with the theoretical 
probability distribution determined in Problem 5. 
11. Compute the expected value of the random variable X in Problem 5. 
Find the sample mean number of defectives recorded per trial in the 
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Problem 10 simulation experiment. Does X, the sample mean, provide a 
good estimate of E(X)" Should X provide a good estimate of E(X)? 
Why? 
 
12. From the most recent national census, it is found that the number of 
children (X) in American families follows the following probability 
distribution: 

Number of Proportion of 
children, X families. P(x) 

0  .................  0.48 
1 ..................  0.20 
2 ..................  0.15 
3 ..................  0.08 
4  .................  0.05 
5  .................  0.03  
6 ………….. 0.01 

It is assumed that the proportion of families with more than six children 
is negligible. 
a. Find the expected value and standard deviation of X. 
b. Form a stick diagram of this distribution. Is the distribution skewed? 
c. find var(X). 
 
13. Consider the following functions  
 
                    (2/3) x                  -1< x< 2       , 
f(x)=        
                      0                            otherwise 

 
                          1/5 ,             -1 < x  < 4 , 

f(x)=           

                     0 ,              otherwise. 
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Calculate : 

a.p(-1<x<0) ,   

b.p(X>1)  , 

c.p(X=2), 

d.E(X) ,    

e.var(X) . 
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6 
 

Binomial & Normal 
distributions 

 
 
 
6.1 Probability function 
6.2 The binomial distribution 
6.3 The normal distribution  
      Tutorial 6 
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6.1  Probability Function 
 

The following  tables, serve to illustrate what we mean by a probability 
function, namely, a correspondence which assigns probabilities to the values 
of a random variable. 
 
Example 6.1 

 The first of the two tables which follow was easily obtained on the basis of 
the assumption that each face of the die in question has a probability of 1/6  
and the second was obtained by considering as equally likely the eight  
possible outcomes HHH, HHT, HTH, THH, HTT, THT, TTH, and TTT of 
three flips of a coin, where H stands for heads and T for tails: 
 
                     Table 6.1                                       Table 6.2 

 
 
Note that in each of these examples the sum of all the probabilities is 1. 
Note also that since the values of probability functions are probabilities, they 
must always be positive or zero, and cannot exceed 1. 

Whenever possible, we try to express probability functions by means of 
formulas which enable us to calculate the probabilities associated with the 
various values of a random variable. With the usual functional notation.  

 
 



 117 

we can thus  write 
                                   f(x)=1/6           for x=1,2,...,6, 

for the first of the above examples, where f(1) represents the probability of 
rolling a 1, f(2) represents the probability of rolling a 2, and so on.  
 

6.2 The Binomial Distribution 
 
There are many applied problems in which we are interested in the proba-
bility that an event will take place x times in n "trials," or in other words, x 
times out of n, while the probability that it will take place in any one trial is 
some fixed number p and the trials are independent. We may thus be 
interested in the probability of getting 24 responses to 80 mail question-
naires, the probability that in a sample of 50 voters 32 will favor Candidate 
A, the probability that 3 of 10 laboratory mice react positively to a new drug, 
and so on. Referring to the occurrence of any one of the individual events as 
a "success", we are thus interested in the probability of getting x successes in 
n trials. To handle problems of this kind, which incidentally include, we use 
a special probability function, that of the binomial distribution. 

If p denotes the probability of a success on any given trial, the probability 
of getting x successes in n trials (and hence, x successes and n - x failures) in 
some specific order is px (1 - p)n-x. There is one factor p for each success, one 
factor 1 - p for each failure, and the x factors p and n - x factors 1 - p are all 
multiplied together by virtue of the assumption that the n trials are 
independent. Since this probability is the same for each point of the sample 
space where there are x successes and n- x failures (it does not depend on the 
order in which the successes and failures are obtained), the desired 
probability for x successes in n trials in any order is obtained by multiplying 
px (1-p)n-x by the number of points of the sample space (that is, individual 
outcomes) where there are x successes and n - x failures. In other words, px 
(1-p)n-x is multiplied by the number of ways in which the x successes can be 
distributed among the n trials, namely, by n!/x!(n-x)! we have thus arrived at 
the following result: 
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Definition 6.1                                                                                                     
Binomial distribution 

The probability of getting x successes in n independent trials is given 
by        

f(x)= (x
n) px (1-p)n-x                 for n=0,1,2,...,n, 

where p is the constant probability of a success for each individual 
trial. 

  It is customary to say that the number of successes in n trials is a 
random variable having the binomial probability distribution, or 
simply the binomial distribution. The terms "probability distribution" 
and "probability function" are often used interchangeably, although 
some persons make the distinction that the term "probability 
distribution" refers to all the probabilities associated with a random 
variable, and not only those given directly by its probability function. 
Incidentally, we refer to this distribution as the binomial distribution 
because for x = 0, 1, 2, . . ., and n, the values of its probability function 
are given by the successive terms of the binomial expansion of             
((1 - p) + p)n. 

Example 6.2 

To illustrate the use of the above formula, let us first calculate the 
probability of getting 5 heads and 7 tails in 12 flips of a balanced coin. 

Substituting x = 5, n = 12, p=1/2, and (12!/5!.7!)=792  

f(5)= 792 (1/2)5 (1-1/2)12-5= 99/512, 

or approximately 0.19. Similarly, to find the probability that 7 of 10 mice 
used in an experiment will react positively to a drug, when the probability 
that any one of them will react positively is 4/5 we substitute x = 7, n = 10, 
p =4/5 and  (10!/7! 3!)= 120 , and we get 

   
f(7)=120(4/5)7(1-4/5) 10-7 

or approximately 0.20 . 
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Remark 6.1  
Some of probability values of binomial distribution are given in Table 
1(in appendix).  
 
Example 6.3 

 

To give an example in which we calculate all of the values of a bino-
mial distribution, suppose that a safety engineer claims that only 60 
per cent of all drivers whose cars are equipped with seat belts use them 
on short trips. Assuming that this figure is correct, what are the 
probabilities that under such conditions 0, 1, 2, 3, 4, or 5 of 5 drivers 
will be using their seat belts? Substituting n = 5, p = 0.60, and, 
respectively, x= 0, 1, 2, 3, 4, and 5, we use 

            f(x)= (x
n) px (1-p)n-x        for n=0,1,2,3,4,5, 

Then 
 

 

where all the answers are rounded to three decimals. A histogram of this 
distribution is shown in figure 6.1. 
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Figure 6.1 Histogram of binomial distribution with  n=5 and p=0.60. 
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Figure 6.2 Some specific members of the binomial distributions where :                     
         a- p = 0.2             ,              b- p = 0.5 ,                    c- p = 0.8 ,  

 

         d- p = 0.2             ,              e- p = 0.5 ,                     f- p = 0.8 . 

Remark 6.2   If X is a binomial random variables then its mean E(x) and 
variance , V(x) are given by:  

… E(x) =n.p ,  var(x)= n.p(1-p) … 

Example 6.4 

Consider figure 6.2 find the mean and the variance for each p.m.f. 
Solution: 
i) E(x)=2(0.2) , 
   Var(x)=2 (0.2)(0.8) , 
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ii) E(x)=2(0.5) , 
     Var(x)=2(0.5)(0.5) , 
iii) E(x)=2(0.8) , 
      Var(x)=2(0.8)(0.2), 
iv) E(x)=5(0.2) , 
      Var(x)=5(0.2)(0.8) , 
v) E(x)=5(0.5) , 
    Var(x)=5(0.5)(0.5) , 
vi) E(x)=5(0.8), 
     Var(x)=5(0.8)(0.2) . 
 

6.3 The Normal Distribution 
 

The normal distribution is "probably" the most important probability 
distribution in statistics. It is a probability distribution of a continuous  

 
Figure 6.3 Three forms of the normal distribution 

random variable, yet it is often used to model the distribution of discrete   

 

 

 

 

 

random  variables as well as the distributions of other continuous random 

variables. 

The reason for the versatility in using the normal distribution as a probability 
distribution model is indicated in figure 6.3. The basic form of the normal  
 
distribution is that of a bell-it has a single mode and is symmetric about its 
central value. The flexibility in using the normal distribution is due to the 
fact that the curve may be centered over any number on the real line and that 
it may be made flat or peaked to correspond to the amount of dispersion in 
the values of a random variable. Many quantitative characteristics have  
distributions similar in form to the normal distribution's bell shape. 
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Examples of random variables that have been modeled successfully by the 
normal distribution are the height and the weight of people, the diameters of 
bolts produced by a machine, the IQ of people, the life of batteries or light 
bulbs, and so on. Typically, the type of experiment that produces a random 
variable that can be successfully approximated by a normal random variable 
is one in which the values of the random variable are produced by a measur-
ing process, where it is known that the measurements tend to cluster sym-
metrically about a central value. A random variable that is an average or a 
sum of values of another random variable is, under very general conditions, 
almost always distributed approximately as a normal random variable, 
regardless of the form of the distribution of the random variable whose 
values are summed or averaged. An example of such a random variable is 
the mean grade point average of a randomly selected group of students. The 
notion that a random variable that is an average is distributed as a normal 
random variable is discussed in the next chapter with the central limit 
theorem. 

Unfortunately, if it is known that the distribution of a random variable is 
symmetrically distributed with a single mode, the random variable may not 
necessarily be a normal random variable. There are other distributions in 
statistics that are unimodal and symmetric. However they also can often be 
modeled successfully by the normal distribution. For a random variable to be 
normally distributed, the mathematical expression delineating the form of 
the bell must be of a specific type, as described in the following definition. 

 

 
Definition 6.2 
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6.3.1 Mean and variance of the normal random variable 
 

The mean and variance of the normal random variable may be determined 
by performing the following integrations: 

 

 

 

 

 

 

As might be suspected, these integrals are not easily evaluated. The results 
of integration are rather simple, however, and are given in the following 
theorem. 

Remark 6.3  

 

 

 

 

 

 

 

Notice that the mean depends only on the parameter µ, and that the variance 
depends only on the parameter σ. Thus, the normal distribution may be 
located over its central value on the real line independently of the amount of 
dispersion σ2 specified for the distribution. Contrast this with the binomial 
distribution (and others discussed thus far) in which the mean and the 
variance both depend upon the parameters n and p, [E(X) = n.p ,            
V(X) = n.p.(1-p) ] and hence are not independent of one another. This 
property of the normal distribution adds immeasurably to its flexibility in 
modeling the distributions of non-normal random variables. 
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We will now return to the problem of computing probabilities associated 

with a normal random variable. 

6.3.2 Standardized normal distribution 

 
Probabilities associated with any member of the normal distribution family 

can be computed from a table of probabilities compiled for the standard 
normal distribution. 

Definition 6.3 
Standard normal distribution 

 
A normal distribution with µ= 0 and σ = 1 is called a standard normal 

distribution. When a normal random variable X has a mean of zero and a 
variance of one, it will be called a standardized normal random variable 
and will be denoted by Z. The probability density function of the 
standardized normal random variable Z is: 

 
 
 
 

 

The form of the standard normal distribution is illustrated in figure 6.4. As 
indicated in figure 6.4, and for any normal distribution, 68.27 percent of the 
values of z lie within one standard deviation of the mean, 95.45 percent of 
the values lie within two standard deviations of the mean, and 99.73 percent 
of the values lie within three standard deviations of the mean. 

 
Probabilities of a standardized normal random variable of the form P (0 ≤ Z≤ 
a) are provided in Table 2(appendix) . By using the fact that the normal 
distribution is symmetric about its mean (zero in this case), and that the total 
area under the curve is one (half to the left of zero, and half to the right), the 
probability that Z resides in any interval on the real line may be determined 
from this table, as the following example indicates. 
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Figure   6.4 Standard normal distribution 

 

  
 
Example 6.5 
 

Find the area under the standard normal distribution curve for each of the 
intervals listed below.  
a. Between Z = 0 and Z = 2.0         

 b. Between Z=-1.28 and Z = 0.0 

c. Between Z=-0.58 and Z= 2.54     

d. Between Z = 1.20 and Z = 2.4                                                                                  

e. Greater than Z = 2.87 
 
 
Solution: 
 
a. In Table 1, proceed downward in the leftmost column until 2.0 is reached.  
Select the first column marked .00 indicating that the second decimal place 
is zero. The area read from the table is 0.4772.  
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b. Since the normal distribution is symmetric, the area between - 1.28 and 
0.0 is equal to the area between 0.0 and 1.28. Thus, proceed down the 
leftmost column until 1.2 is reached. Select the ninth column marked 0.08. 
The resulting number in the table is 0.3997.    
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c. We may determine this area in two parts: total area = (area between 0.0 
and 2.54) + (area between -0.58 and 0.0). The area between 0.0 and 2.54 is 
0.4945 from Table 1. The area between -0.58 and 0.0 is the same as the area 
between 0.0 and 0.58, which is 0.2190. The answer is 0.4945 + 0.2190 = 
0.7135. 

 
 

d. We may determine this area by differencing the area from 0 to 2.44 and 
from 0 to 1.20. The area between 0 and 2.44 is 0.4927, and the area 



 129 

between 0 and 1.20 is 0.3849. Thus, the area between 1.20 and 2.44 is 
0.4927 - 0.3849 = 0.1078. 

 

 
 

 
 
 
e. Since the area between 0 and + ∞ is 0.5, we can determine the area from 

2.87 to ∞ by subtracting the area from 0 to 2.87 (0.4979) from 0.5: 0.5000 
-0.4979=0.0021.   

 
 
 
 
 
 
 
 
 
 

 
     In many problems, we will be given the area in a certain interval and be 

asked to determine the value of Z that specifies the interval. This is the 
reverse of the problems solved in Example 6.5 demonstrates the use of 
Table 1 to solve the "reverse" problem.                                                      

 
Example6.6    

                                                                                                                                         
Find the value of Z on the standard normal distribution axis for each of 
the areas listed below.            

   a. The area between 0 and z is 0.3413 b. The area to the right of z is 0.8982                                 
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Solution:                                                                                                                                                      
a. Table 1 must be used in reverse. We look in the body of the table for 
the area 0.3413. It appears in the row marked 1.0 and the column marked 
0.0. Thus, the value of Z is 1.00. 

 

 
 

 

b. Since the area given is greater than 0.5, we know that z must be less 
than zero. The area between z and 0 is 0.8982 - 0.5000 = 0.3982. 
Now assume that z is positive and find z so that the area between 0 
and z is 0.3982. The area of 0.3982 does not appear in the tables; the 
closest numbers are 0.3980 and 0.3997. The exact value of z could 
be determined by interpolation, but we will use z= 1.27 since 0.3980 
is closer to 0.3982 than is 0.3997. We must remember that z must be 
to the left of zero (a negative number). Thus, z = -1.27. 

  
 

6.3.3 Areas under the normal distribution 
 

Probabilities associated with a normal random variable X that is not 
standardized can be determined from Table 1 by using the results of the 
following theorem. 
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Theorem 6.1 
Standardization of a normal random variable 

If X is a normal random variable, the mean of which is μ and the standard 
deviation of which is σ, then 

… Z=(x – μ )/σ ,… 

is a standardized normal random variable with a mean of zero and a 
standard deviation of one. 

The following examples illustrate the use of Theorem 6.1, and more 
generally, the applicability of the normal distribution model. 

 

Example 6.7 

 
The mean lifetime of 50-watt lightbulbs produced by the Stay-Bright 

Lightbulb Company is 200 hours. It is known that the standard deviation is 
20 hours. Assuming that the lifetimes of the lightbulbs are normally, 
distributed, what are the probabilities that a single 50-watt lightbulb ex-
tracted from the production lot will 

a. Burn out between 180 hours and 210 hours? 

b. Burn out at a time greater than 250 hours? 

                                      
 
Solution: 
 
a. The solution on the X distribution with a mean of 200 and a standard 

deviation of 20 is the area between X = x1 = 180 and X=x2= 210. This 
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area can he determined by first standardizing x1 and x2: 
 

Z1= (x1 – μ )/σ = (180 - 200)/20 = - 20/20 = - 1.00 
The area between - 1.0 and 0.50 on the standard normal distribution will 

equal the area between 180 and 210 on the X distribution. The  area 
between z1 = - 1.00 and  z2 = 0.50 from Table 1 is: 

 Area(- 1.00 to 0.00) = 0.3413  
+ Area(0.00 to 0.50) = 0.1915 
                                     0.5328 
Thus , Prob (180  ≤  X  ≤  210) = P(-1.00≤Z≤0.50)= 0.5328. This answer              
tells us that  53.28 percent of the 50-watt lightbulbs   comprising the 
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Tutorial 6  
 

 
2. 

 
 
 3. Check whether the following can be looked upon as probability    
      functions (defined in each case only for the given values of x) and   
      explain your answers: 
 

(a) f(x) = 1/4                           for x= 0, 1, 2, 3, or  

(b) f(x) = (x+1)/10         for x = 0, 1, 2, or 3; 
 
 (c) f(x) = (x-2)/5            for x = 1, 2, 3, 4, or 5; 
 
 (d) f(x) =x2/30                for x = 0, 1, 2, 3, or 4. 
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4. In each case check whether the given values can be looked upon as the 
values of the probability function of a random variable which can take on 
only the values 1, 2, 3, and 4, and explain your answers: 

(a) f(1) = 0.24, f(2) = 0.24, f(3) = 0.24 , f(4) = 0.24; 

(b) f(1) = 1/6, f(2) = 2/6, f(3) = 2/6 , f(4) = 1/6; 

(c) f(1) = 0. 13, f(2) = 0.38, f(3) = 0.04 , f(4) = 0.45; 

(d) f( l )  = 1/2,  f(2) = 1/4, f(3) = 1/8 , f(4) = 1/16. 

 
5. Use the formula for the binomial distribution to find the probability of 

getting : 
 (a) exactly 3 heads in 8 flips of a balanced coin; (b) at 
most 3 heads in 8 flips of a balanced coin; (c) exactly 1 one 
in 3 rolls of a balanced die; (d) at most 1 one in 3 rolls of a 
balanced die,(e) calculate E(x) and Var(x) . 
 

6. A multiple-choice test consists of 8 questions and 3 answers to each 
question (of which only one is correct). If a student answers each question 
by rolling a balanced die and checking the first answer if he gets a 1 or a 
2, the second answer if he gets a 3 or a 4, and the third answer if he gets a 
5 or a 6, find (by means of the formula for the binomial distribution) the 
probability of getting 

(a) exactly 3 correct answers; 
(b) no correct answers; 
(c) at least 6 correct answers. 
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Regression Analysis  
 

 
 
7.1 Introduction  
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7.4 Fitting of a simple linear regression model 
     Tutorial 7 
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7.1 Introduction 
 

Linear regression analysis is a technique used to predict the value of one 
quantitative variable by using its relationship with one or more additional 
quantitative variables. For example, if we know the relationship between 
height and weight in adult. males, we can use regression analysis to predict 
weight given a particular value for height. 

The relationship between height and weight is familiar to us; generally, 
the taller a person is, the more he weighs. Another example of a familiar 
relationship is that of crop yield and the amount of fertilizer applied to the 
land; the more fertilizer applied to the land, the greater the yield-to a point. 
If too much fertilizer is applied, the crop will be killed off by the fertilizer 
chemicals-the land will be "burned." An important relationship in business 
is the relationship between the allocation of dollars to advertising effort and 
the level of sales of a product; the more money expended in advertising, the 
greater the level of sales (in general). 

In this chapter, we will emphasize the development of regression analysis 
when a single predictor variable is used to predict the variable of interest, 
and where the relationship between the variables is linear. In this context, 
the variable which is used to predict the variable of interest is called the 
independent variable, and the variable we are trying to predict is called the 
dependent variable. The analysis used is called simple linear regression 

analysis-simple because there is only one predictor or independent variable, 
and linear because of the assumed linear relationship between the 
dependent and the independent variables. 

Certainly, it is common to find that the variable of interest is related to 
more than one predictor or independent variable, or that the relationship is 
not linear. An example is the level of sales of a product and the advertising 
expenditure. The sales level of a product generally "depends" upon more 
predictor variables than advertising expenditure alone. However, we will 
often find that quite good predictions are possible based upon a single 
predictor variable. 
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7.2 Relationships between Variables 

 

The concept of a functional relationship between two variables is 
familiar to us. If a functional relationship exists between two variables, then 
it is possible to represent the relationship by a formula Y = f'(X), where X is 
the independent (or predictor) variable, and Y is the dependent (or pre-
dicted) variable. 

 

Example 7.1 

Suppose for every unit of a product sold, a company makes a profit of $3. 
Let X = number of units sold, and Y =total profit. Then. Y = 3X. Illustrate 
this linear relationship. 

 
Figure 7.1 Graph of the functional relation Y= 3X 
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Solution: 
 
This linear functional relationship is illustrated in Figure 7.1. 
For example, if X = 10, Y= 3(10) =30; if X = 30, Y = 3(30) =90 and if X = 
50; Y = 3(50) =$150, Notice that all three of the pairs (X, Y) of points fall 
exactly on a straight line. 
 

In Example 7.1, the functional relationship is linear. An example of a 
nonlinear functional relationship is Y= Xz. If, for example, X= 2, then Y= 4. 
A graph of the functional relationship Y = Xz is illustrated in figure 7.2. 

In a statistical relationship, the variables are not perfectly related as they 
are in a functional relationship. The pairs of points (X, Y) will not all lie 
perfectly on the curve representing the relationship between the variables. 

 

Example 7.2 

 

An example of a statistical relationship is the relationship between heights 
and weights of adult. males. Table 7.1 contains the heights and weights of 
ten randomly selected  males. Plot this data as a graph similar to Figure 7.1. 

 

Solution: 

 
These data are plotted in figure 7.2. Clearly, the taller a man is, the more 

he weighs. But, the relationship is not a perfect one, as is evident in Figure 
7.3. The line in figure 7.2 has been drawn to fit reasonably well through the 
ten points, and the points are scattered about this line. The 
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Figure 7.2 Graph of the nonlinear functional relation Y= Xz 

 

  
 
 
scattering of points suggests that some of the variation in weight is not 
accounted for by height alone. For instance, two men are 70 inches tall, but 
their weights differ- 185 pounds and 170 pounds. The variation in weight not 
accounted for by height alone may be considered to be random in nature, but 
may also be due to the failure to include other important independent 
predictor variables. The randomness of the scattering of points about the 
fitted line is an important element in assessing the validity of a regression 
model. Before explaining how we fit a line to the data, we must first 
describe the regression model and the assumptions necessary for its correct 
application. 
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Table 7.1 Heights (X) and weights (Y) of ten randomly selected 
adult males 

Height (X) Weight (Y) 
inches                 pounds 

60 ...................... 110 
65 ...................... 150 
74 ...................... 200 
70 ...................... 185 
70  ..................... 170 
66  ..................... 160 
68 ...................... 180 
72 ...................... 195 
64 ...................... 135 
71 ...................... 215 

 

Figure 7.3 Plot of data in Table 7.1 
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7.3 Simple Linear Regression Model 
 

The simple linear regression model is a mathematical way of stating the 
statistical relationship that exists between two variables. The two principle 

elements of a statistical relationship are:  

(1) the tendency of the dependent variable Y to vary in a systematic way 
with the independent variable X, and  

 (2) the scattering of points about the "curve" that represents the rela-
tionship between X and Y.  

These two elements of a statistical relationship are represented in a simple 
linear regression model by assuming that:  

(i) there is a probability distribution of Y for each value of X, and  

(ii) the means of these probability distributions fall perfectly on a line. 

 These two  assumptions are illustrated in figure 7.4 for the Example 7.2 
data. The systematic way in which Y varies as a function of X is identified 
as a straight line, the regression line of Y on X. The regression line goes 
perfectly through the means of the conditional probability distributions of Y, 
given a value of X. The data are collected by taking random samples from 
the conditional probability distribution of Y for values of X. For example, 
from Table 7.1, when X = 60 inches, Y was observed to be 110 pounds. This 
particular value of Y represents a random sample of size one drawn from the 
conditional probability distribution of Y when X = 60 inches.  
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Figure 7.4 Graphical form of the simple linear regression model  

 

The formal statement of the simple linear regression model is: 

Yi=β0 +βi.Xi+ei, i= 1,2,...,n, 
where: 

Yi = Value of the dependent variable in the ith trial , 
                           β0, β1= Parameters in the model, 

 Xi = Value of the independent variable in the ith trial,  
  ei = Random error term in the ith trial. 

By trial, we mean an observed value of Y for a fixed value of X. For 
example, in Table 7.1, the data are generated by making ten trials of the 
simple experiment. In the first trial, we set X = 60 inches and from the 
distribution of weights for all. adult males who are 60 inches tall, we sample 
one whose weight is 110 pounds. 
There are actually two ways we may acquire the needed sample information 
as given in Table 7.1: by experimentation or by survey. To experimentally 
generate the sample data, we would select a set of values of X, and for each 
we would randomly sample one or more values of Y. For example, we may 
be interested in the yield of a chemical compound Y measured in grams as a 
function of pressure X in a chemical production process.  
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We could select a set of pressures (values of X) and then run the production 
process at each pressure setting one or more times to produce observations 
on Y. Alternatively, we could generate the sample data by taking a survey. 
For example, we could randomly sample ten adult. males to determine their 
heights and weights. But, the survey method has the disadvantage that we 
must take whatever values of X(height) occur in the survey; the selection of 
the set of values of X, the independent variable, is out of our control. We 
might be so unfortunate, for instance, to find that all ten men in our survey 
were 64 inches tall. We ideally want a spread of X values over the range of 
interest and over which the regression line will be built. 

It is always better to produce the sample data by experimentation, if 
possible, for then we can control the independent variable X-the experiment 
can be designed to suit our needs. When experimentation is not possible, 
surveys must be used to generate the data. 
The assumptions corresponding to the simple linear regression model are: 

 
1. For the ith trial, the expected value of the error component ei is zero  
[E(ei) = 0], and the variance of the error component [V(ei)] is σ2 and is 

constant for all values of i, i= 1, 2, ..., n. 
2. The error components in any pair of trials, say the ith and the jth, are 

uncorrelated. 
3. The terms βo and β1 in the model are parameters whose values are 

typically unknown and must, therefore, be estimated from sample data. 
Further, X; is considered to be a known constant in the model. 

 
The consequences of these assumptions are: 

1. The observed value of Y in the i th trial, Yi, is the sum of two 
components; a constant and a random variable: 

                                    Yi    =   β0    +  β1  Xi        +     ei 

           ↑                         ↑                   

                  constant       random variable 
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2. By using the expectation operator rule given in Chapter 5, we get 
 
E[Yi]=E[β0+ β1Xi+ei]= β0+ β1Xi+E[ei]. But, 
 
E[ei]=0 , so E[Yi]= β0+ β1Xi. 

 
Thus, the mean of the conditional probability distribution of Y given a value  
of X, denoted by µy/x, is equal to β0 + β1 Xi. 
And. therefore, the regression function corresponding to the regression 
model is  
 

… E[ Y]= β0 + β1 X. … 
 

3. By using the variance operator rule given in Chapter 5,  
      
     V[Yi]=V[β0+ βi  Xi+ei]=V[β0+ β1 Xi]+V[ei] 
                                            =0+V[ei]. 
  
   But,                             … V[ei] = σ2, so  V[Yi] = σ2. …  
 
   Thus, the variance of the conditional probability distribution of Y given a      
   value of X, denoted by σ2

y/x, is equal to σ2 and each conditional   
   probability distribution has the same variance, σ2. 
 
4. The observed value of Y in the ith trial is larger or smaller than  μy/x 
     by the amount ei, the value of the error component in the ith trial. 

5. By the second assumption , the outcome in any trial is not affected by or 
does not itself affect the error term in any other trial .  
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7.4 Fitting of a Simple Linear Regression Model 

Since β0 and β1, are generally not known in a regression problem, they must 
be estimated from sample data taken on the dependent variable Y for a 
number of values of the independent variable X. These pairs of sample 
values are obtained either by experimentation or by survey. The data given 
in Table 7.1 were determined by survey- 10 adult. males were selected at 
random and their heights and weights were recorded. 
Returning to the data given in Table 7.1, we will first produce a scatter plot 
of these data. The scatter plot is given in figure 7.5. In figure 7.6, we have 
superimposed two "fitted" lines through this scatter of points, 

 

                   Figure 7.5 Scatter plot of data given in table 7.1 
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Figure 7.6 Scatter plot and fitted lines for data in Table 7.1 

 

 

 

Ŷ = 170 + 0 X and Ŷ = -310.76 + 7.07X, respectively. It is apparent in 
Figure 7.6 that the line Ŷ = -310.76 + 7.07X fits the given data "better," 
but we must establish a criterion to evaluate when one line is "better" than 
another so that we may find the best fitting line. The criterion we shall use 
is called least squares. For each sample observation (Xi, Yi), the least 
squares criterion considers the deviation of Yi from its expected value: 

 

 

 

and requires that values of β0 and β1, be found which minimize: 
 
 
 
 
 
The specific values of β0 and β1, that minimize LS are the regression coef-
ficient estimates, denoted by b0 and b1 respectively. 
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 Thus, the least squares criterion requires that we find a line, denoted by Ŷ = 
b0+ b1 X, such that the sum of the squared vertical deviations between the 
line and the scatter of points is minimized. In figure 7.6, the vertical 
deviations corresponding to the line Ŷ = 170 + 0X, where b0 = 170 and  
b1 = 0, are indicated. Obviously, the line Ŷ = -310.76 + 7.07X in figure 
13.11, where b0 = -310.76 and b1 = 7.07, does much better in the least 
squares sense because its vertical deviations from the scatter of points, when 
squared and summed, will be less than the sum of squared deviations for the 
line Ŷ = 170 + 0 X. 
 
It turns out that the values of b0 and b1 , which minimize LS are solutions to 
the following two simultaneous equations, which are referred to as the 
normal equations: 
 
 
 
 

 

Solving the normal equations for b0 and b1, produces the point estimators of 
β0 and β1 respectively. The resulting formulas for b0 and b1,                               
are given below: 

 

 

 

 

 

 
 
 

Example 7.3 

 
Let us now fit a simple Linear regression model to the data on heights and 
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weights given in Table 7.1 

 

Solution: 
 

The computations for determining b0 and b1, are given in Table 7.2. The 
format in this table provides a convenient worksheet for finding the neces-
sary components in the formulas for b0 and b1  

 
 
 
 

 
 

 
 
 
 
 
 
Thus, the fitted regression line is Ŷ=- 310.76 + 7.07X and this is the best 
fitting line based upon the least squares criterion. 
 
 
TABLE 7.2 Computation worksheet for determining b0 and b1 in Example 7.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 150 

Tutorial 7 
 
I. Distinguish between dependent and independent variables in a regression 

model. 
 
2. Why is it important to plot a scatter diagram of the relationship between 

variables in a simple linear regression model? 
 
3. What is meant by "least squares" in a simple regression model? 
 
4. Describe the normal equations and how they are derived. 
 
5. Discuss the assumptions made in using simple linear regression about the 

distributions of the conditional mean values. 
 

6. What is meant by the coefficient of determination? 
 
7. Plot each of the following sets of data as a scatter diagram. Which curves 

seem to fit the data best?                                                              
Determine the regression equation for each set of data. 
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 Table 1 Binomial Distribution Probability 
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Table 2 Standard normal distribution areas 
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