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Chapter 1

Introduction

1.1 Preliminary Material

Computer Security is a part B third year option for undergraduates in Computer
Science or Mathematics & Computer Science, and a Schedule B option for the taught
Masters in Computer Science. There are 16 lectures (three per week in the first two
weeks, then a planned two per week for weeks 3–7). There are four classes (weeks 3, 4,
6, & 8) and two practicals (weeks 2–4 and 6–8).

Prerequisites

Most chapters involve a little discrete probability, including conditional probability and
random variables. There is nothing more advanced than would be covered by any intro-
ductory probability course.

Chapter 5 involves some modular arithmetic. Undergraduates will have seen enough in
the first year discrete mathematics (CS) or algebra (M&CS) courses. These lecture notes
include basic definitions but students who have never seen modular arithmetic, or who
have forgotten it, may wish to do some background reading.

The practical work is in Java. No advanced programming techniques will be used, it
should be sufficient to know the basic syntax.

1



2 CHAPTER 1. INTRODUCTION

Syllabus

Aspects of security, security models. Tools for achieving particular security goals, at-
tacks, and countermeasures: one-way functions, symmetric and asymmetric block ciphers
including key generation and block modes, keyed hashes, digital signatures, simple key
exchange protocols. Applications in practice.

Synopsis of Lectures

Introduction. Motivating example, definitions of security aspects.

Access control. Models of security and the example of Unix permissions.

Symmetric key ciphers. Block ciphers, Kerckhoffs’ Principle, attack models, examples
of attacks (including meet-in-the-middle). Perfect security, Shannon’s conditions, Vernam
cipher and the one-time pad. Feistel networks, DES, state-of-art encryption. Block
modes, stream ciphers.

Cryptographic hash functions. One-way and cryptographic hash functions, relation-
ships with other security properties; attacks on iterative algorithms. Hashes for password
storage and key generation: offline attacks, strengthening by salting and stretching, exam-
ples in practice. Hashes for message integrity, collision resistance. The Merkle-D̊amgard
construction, padding, MD4 and its successors.

Asymmetric key ciphers. The RSA cryptosystem: proof of correctness, discussion of
efficiency. The RSA security assumption, relationship with integer factorization. Discus-
sion of appropriate key size. Homomorphic property, number theoretic attacks, PKCS
v1.5 padding. Brief survey of alternative public key ciphers. Brief description of DHKE.

Message authentication & digital signatures. The Dolev-Yao model. Message au-
thentication codes, HMAC. Digital signatures, attack models. RSA signatures, textbook
weaknesses, and PKCS v1.5 padding. Combining signatures and encryption. Brief survey
of alternative signature schemes.

Protocols. Entity-entity authentication protocols given shared secret or public keys,
weaknesses and attacks. Key distribution and certification, chains of trust, PKI. Medi-
ated authentication protocols, weaknesses and attacks. The SSL/TLS application layer
protocol.
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Reading Material

The main course text is

• “Network Security: Private Communication in a Public World”(Kaufman et al.,
2002), second edition.

It is reasonably cheap (from £30) and very readable. It covers nearly everything in the
course, sometimes in good detail and sometimes only in outline, except for the lecture on
access control which is barely covered at all. The authors seem reluctant to use equations
and the book sometimes lacks formality, but these lecture notes are intended to bridge
that gap. Published in 2002 but not noticeably out of date.

Other good textbooks include:

• “Computer Security”(Gollmann, 2010). The third edition is most recent, but any
edition is fine. It has more material on computer security aspects, and models of secu-
rity, than any of the other books, and less on ciphers and hashes. A good complement
to the others. Published in 2010. From about £30.

• “Cryptography Engineering – Design Principles and Practical Applications” (Fer-
guson et al., 2010). Published in 2010, this is an updated version of a book called
“Practical Cryptography” by two of the same authors, but the older book is sketchy on
details and rather outdated. Alternates between chatty prose and detailed implemen-
tations of security primitives, but good on the common pitfalls. Cheap (from around
£20).

• “Handbook of Applied Cryptography”(Menezes et al., 1996). As the title suggests,
focuses on cryptographic topics, but does contain plenty of material on protocols. A
comprehensive tome which contains the state of the art as of 1996, thus sometimes
out of date. The entire book can be downloaded for free at http://www.cacr.math.

uwaterloo.ca/hac/.

At the end of each chapter is a bibliography with references to relevant literature. Where
possible, links to freely downloadable copies of the papers have been included. The
internet, of course, contains copious material on computer security but beware: not
everything on it is completely reliable.

Course Website

The course page is at http://www.cs.ox.ac.uk/teaching/courses/security/. At the ap-
propriate time the class exercises, practical manuals, lecture slides and lecture notes, will
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all appear on the “course materials” page. This will also contain links to key items of
security literature.

Please send any lecture note and problem sheet corrections to adk@cs.ox.ac.uk; an errata
will appear on the course website if necessary.

1.2 Notation

Computer security is a broad discipline and different parts of it have different notational
conventions. Some have no conventions at all. In these notes, tuples will be written
〈a, b〉 and sequences 〈x1, x2, . . . , xn〉. When applying a function to a single sequence the
argument will be written without parentheses, thus f〈x, y〉 instead of f(〈x, y〉). The
operator ⊕ means exclusive-or (XOR), applied elementwise if to sequences of bits and
bitwise if to words.

Concatenation is written ‖ (a computer security standard) and this notation is abused
to mean both the formation of concatenated sequences and their deconstruction, thus
x = y ‖ z splits x into y and z. We will not always mention how the algorithm involved
is supposed to know where y ends and z begins, but it will usually be either because
they are of fixed length or because there is an unambiguous separator. We will be very
lazy about types: an integer n will be used interchangeably with the sequence of bits
representing n (but one has to be careful about this in practice: see endian-ness).

If Σ is an alphabet (in the course usually either binary digits or bytes) then Σn denotes the
set of sequences of length n, and Σ∗ the set of all finite sequences in Σ. The zero-length
sequence will be denoted 〈〉.

In most of the course, x (mod n) denotes the nonnegative remainder when x is divided
by n. In chapter 5 we will use it in the more mathematically precise sense.

1.3 Aspects of Computer Security

Computer security is an extremely wide field, and difficult to define. It includes purely
mathematical topics such as cryptography, and abstract quantifications of cryptographic
security, through to rather non-technical subjects such as access policy and resource
allocation. Computer security is primarily concerned with information flow, and some
people define computer security as that subset of information security which pertains to
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computers. In this course we stick mainly to matters of network communications security
(chapter 2 is the exception).

Security means freedom from risk or danger: thus we define security by the risks and
dangers we want to avoid. In computer systems, these risks include unavailability of
a system or unauthorized behaviour by users; in communications systems they include
unauthorized eavesdropping, tampering, or redirection of messages. It includes both
prevention and detection. We restrict our attention to malicious behaviour by so called
attackers, leaving computer reliability to hardware experts and communications fidelity
to engineers.

There are a number of particular aspects of security which we want to consider here. We
will look at each in turn.

1.3.1 Authorization

Authorization specifies the rights of actors to access resources. This includes the rights
to view or change information on a shared system or database, as well as rights to know
or alter the content of certain communications. It is the most basic element of computer
security, as the policies which circumscribe these rights also define the security threats.
The word attacker is synonymous with unauthorized actor.

It is normally policed by the operating system, database management service, or other
program which administers the information. (Ensuring authorization in the absence
of a so-called reference monitor is particularly challenging.) The main difficulty with
authorization is less often about ensuring that the policies are followed, than in describing
and maintaining them correctly.

1.3.2 Confidentiality

Confidentiality means that information is not disclosed to unauthorized entities. It is
sometimes referred to as secrecy or privacy, both imprecise terms which can have other
meanings. In terms of information flow it is a safety property: information does not flow
from authorized to unauthorized entities.

Confidentiality is necessary for private data (medical records, financial information), pri-
vate communication (diplomatic messages, sensitive emails), or even for storing autho-
rization tokens. Breaches of confidentiality can happen if computer media is mislaid, if



6 CHAPTER 1. INTRODUCTION

internet packets are intercepted or radio overheard, or if an unauthorized user plays tricks
on a computer system to deduce contents of files to which they should have no access.

It is typically achieved using symmetric or asymmetric encryption (cryptography), which
are the topics of chapters 3 and 5. Note that confidentiality does not mean that the
existence of the private information is kept secret, only its contents.

1.3.3 Integrity

Integrity means that if information is altered by unauthorized entities then authorized
entities are aware that it was altered. Some authors consider that integrity means that
unauthorized alteration is impossible, but this is not realistic for unsecured communica-
tion channels. Instead, we say that the receiver (or reader) of altered information will
refuse to accept it, if unauthorized alteration is detected.

Examples of where integrity is necessary include any communication or stored data which
intrinsically provides authorization (to avoid bypassing the authorization), financial trans-
actions (to avoid an unauthorized party diverting funds), or safety critical information.

It is typically achieved by including, along with information whose integrity is to be
assured, a cryptographic hash function (chapter 4) of that information. It can later be
checked that the information still maps to the same hash value, and it is practically
impossible for an attacker to alter the information without breaking this relationship.
The hash will either have to be encrypted or keyed (first part of chapter 6). It is a
common error to think that cryptography alone automatically ensures the integrity of
confidential communications.

1.3.4 Authentication

Authentication refers to the verification of identity. It includes authentication of an entity
to a computing resource (“logging on” by password or suchlike) and authentication of
one entity to another (verifying other users’ identities remotely, usually in the context of
verifying the originator of a message). It is a safety property of information flow in the
sense that an attacker is unable to spoof an identity.

Authentication is necessary from the very beginning, since users must identify themselves
to their machines before they can hope to identify themselves to anyone else. (This mode
of authentication should not be confused with authorization: possession of a password
does not necessarily imply authorization, if the password was stolen.) It is important
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in all non-anonymous, non-broadcast, communication as there is little point ensuring
confidentiality and integrity of communications if they are going to the wrong place.

Entity to entity authentication is typically achieved using asymmetric cryptography, and
a trusted third party to supply or verify the cryptographic keys of the entities involved.

When discussing communication channels, authentication has a particular meaning. A
channel is authenticated if every message on it

(i) was sent by the purported sender

(ii) who intended to send it to the recipient, and

(iii) has not been received out-of-order or in duplicate.

Integrity is usually implicit in this sense of the authentication.

1.3.5 Non-repudiation

Non-repudiation means that an actor cannot deny having taken a particular action. In
this course it will be limited to an actor being unable to deny that they authored a
particular message. It means that unforgeable evidence exists that the message was sent
by them. More widely, one can separate non-repudiation of sending from non-repudiation
of receipt; we will only consider the former. It is a liveness property of information flow,
and a sort of complement to anonymity (which does not appear in this course).

Non-repudiation is necessary if digital communications are to be binding in the same way
that conventional signatures are. It is fairly worthless without integrity and authenticity,
of course. Non-repudiation is typically achieved using digital signatures, which involve
asymmetric cryptography and cryptographic hash functions. They provide a combination
of integrity, authenticity, and non-repudiation.

1.3.6 Availability

Availability means that information and resources are available to authorized parties. In
terms of information flow it is a liveness property: information does flow when authorized.
In this sense it is a complement to authorization.

The necessity of availability is clear: without its requirement, the most secure computer
system is that which is switched off. Availability may be breached by denial of service
attacks, which are becoming an increasingly important part of computer security. But
they are not within the scope of this course.
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1.3.7 Other Aspects

There are many other aspects of security which we do not have time to cover here. They
include accountability and audit (positive information), anonymity and plausible
deniability (negative information). Note that these aspects can be contradictory be-
cause different information flows are desirable in different situations: anonymity is a
must for electronic voting systems, whereas accountability is vital for payment systems.
Another security aspect, perhaps less familiar, is commitment, where an actor reveals
information which limits one of their later actions.
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Chapter 2

Access Control

Reading (course text): Kaufman et al. §1.8, 1.13 (barely covered)

Alternatives &
further depth:

Gollmann chapters 5–7, 11 (goes way beyond the syllabus)
Ferguson et al.: no significant material
Menezes et al.: no significant material

In this chapter we are concerned with authorization, when a computer system limits
access to resources. First we consider how to model the access rules, second how to model
security of a system which implements the rules, and finally how systems enforce the rules
in practice.

This is a large topic and the chapter forms only a brief survey. Some computer security
books do not discuss this much, and there is little in the course text (Kaufman et al.,
2002). The book (Gollmann, 2010) is a better source for this material, and goes much
further than these notes.

2.1 Modelling Access Control

A computer system might be one multi-user machine, or a collection of computers and
other devices offering some sort of distributed service. In this chapter we assume that all
users are who they purport to be (i.e. authenticity has already been established).

9



10 CHAPTER 2. ACCESS CONTROL

The terminology of access control is as follows. A subject is an entity1 who wishes to
access a certain object, which is some kind of resource: a file or directory, printer or
webcam, or even a table within a database. There are usually different modes of access:
reading, writing, or executing a file; listing, changing path to, adding to, or deleting from
a directory; reading or writing a peripheral or network socket; selecting from, inserting
into, deleting from, or dropping a table in a database (this list is not exhaustive). These
modes are called permissions.

In models of access control, the modes are usually given the same set of names for
all resources (e.g. “read”, “write”, “execute”, “append”) with each being interpreted
differently on different types of resource2. Let S be the set of all subjects, O the set of all
objects, and P the set of all permissions.

The complete description of access control can be given by a set A ⊆ S × O × P. If the
triple 〈s, o, p〉 ∈ A, then subject s has permission p to object o. When a subject requests
a particular permission (or set of permissions) for a particular object (or set of objects),
their request is granted or refused depending on whether their request is a subset of A.
Thus there are two sets: those of permissions which will be granted if requested, and
those which are currently granted. When new permissions are added, triplets are added
to A; when they are removed (revoked), triplets are deleted.

A set of triplets is an ugly structure to reason about, so the literature uses a number of
more refined representations of the same information:

• An access control matrix is a matrix (Ms,o) whose rows are subjects and columns
are objects. Element Ms,o ⊆ P is the set of permissions that subject s is authorized
for object o.

• An access control list is a set {Ao | o ∈ O}, one element for each object. The elements
of the list are the pairs 〈s, p〉 of subjects s who have permission p to that object.

• Storing capabilities means giving to each subject tokens which give them access to
the permissions they are entitled. Tokens are generated by the access control system,
and tested at the point of use. They are stored by the subject.

1Subject is not exactly synonymous with user, because a user might have multiple identities on the
computer system, corresponding to different roles.

2In practice, a persistent difficulty is that the exact meaning of permissions can be misunderstood.
For example, permission to execute a file may or may not imply permission to read it, and “execute”
permission on a directory is an unintuitive concept.
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In abstract, access control lists (ACLs) store access control information by object, which
makes it easy to tell which subjects have permissions to a particular object but difficult
to list all the permissions of an individual subject. Conversely, capabilities store access
control information by subject, which makes it easy to list the permissions of each subject
but difficult to find all the subjects with access to a particular object. Furthermore,
capabilities are stored by the subject rather than the access control system (they are
generated and checked by mechanisms with which we will not concern ourselves). They
have the advantage that they can be transmitted over a network (if securely!) and used
in a distributed system.

Similarly, ACLs make it easy to grant or revoke permissions for a particular object, for
example to make a file secret or to begin allowing access to a network resource: only one
list need be updated. Capabilities make it difficult to revoke permissions, since the tokens
are stored by the subjects: various mechanisms exist, including timeouts and one-time
use.

An important distinction is between mandatory and discretionary access control. In
the former, there are system-wide policies which determine the permissions, and only the
security policy administrator can change them. In the latter, each object is assigned an
owner, who is allowed to grant or revoke permissions for that object. Most familiar oper-
ating systems and database management systems operate discretionary access control, but
some special versions (particularly for military or medical use) enforce mandatory con-
trols, often with some limited discretionary controls as well. The advantage of mandatory
access controls is that the security of the system does not depend on the good behaviour
of users.

2.2 Modelling Security

A security model is a mathematical formulation of security policies. An implemen-
tation of an access control system (e.g. an OS) can be tested against the model. For
example, we can ask whether the system protects the confidentiality or integrity of cer-
tain data. In military settings, it may even be necessary to supply a formal proof that
the implementation meets the requirements of the model. There is much that could be
said about security models, but most will not be said here.

Perhaps the most famous security model is the Bell-LaPadula (BLP) model, which
dates from the 1970s. A nicely readable exposition is given in (Rushby, 1986). This
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model aims to capture confidentiality requirements only; richer models are necessary to
specify integrity and other security properties. At its heart is a multi-level security
policy: there are a set of security levels L, which are comparable by an operation ≤3.
Then functions fS : S→ L, which assigns to every subject their maximal security level or
clearance, fC : S → L, which assigns to every subject their current security level, and
fO : O→ L, which assigns to every object a security level known as its classification.

The BLP model considers four modes of permission: read access, write access which
implicitly includes the ability to observe the object being written to, append access which
allows blind writing but no reading, and execute permission which, by itself, permits
neither read nor write.

The idea of state is important in the BLP model: the system is modelled as transitions
through a set of states, starting from an initial state. The transitions are operations which
change users’ current or maximal security level, change the security level of objects, grant
or revoke any kind of access, and so on. The security policy leads to a set of conditions
on the states. The one relevant to discretionary access control is simple:

A state satisfies the ds-property4 if, whenever access 〈s, o, p〉 has been granted,
〈s, o, p〉 ∈ A.

The mandatory access control properties, which prevent the leakage of high-classification
data to low-clearance users, are more difficult to get right. The first says that no subject
may observe (read or write) any object with a higher classification. This is known as a
no read-up condition:

A state satisfies the ss-property5 if, whenever access 〈s, o,read〉 or 〈s, o,write〉
has been granted, fO(o) ≤ fS(s).

This alone does not prevent information from flowing from areas of high-clearance to
low-clearance, because a high-clearance subject would be allowed to write or append
information into a low-classification object. The second property states this should not

3The formal requirement is that L should be a lattice, though it is not uncommon for L simply to be
an ordered list e.g. unclassified ≤ confidential ≤ secret ≤ top secret.

4The “discretionary security” property.
5The “simple security” property.
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happen, a no write-down condition. But high-clearance users can temporarily reduce
their level (recall the distinction between maximal and current security levels), in which
case they should not be able to read above the clearance of the object they are writing
to:

A state satisfies the ∗-property6 if, whenever access 〈s, o,append〉 or 〈s, o,write〉
has been granted, fC(s) ≤ fO(o) and fO(o′) ≤ fO(o) for all objects o′ where
〈s, o′,read〉 or 〈s, o′,write〉 has been granted.

Some versions also include the so-called tranquility property which prevents objects’
classifications from being changed while they are being accessed.

The general idea is that an implementation is checked against this model, proving that
the initial state satisfies the security properties and that every implemented transition
preserves the properties. In which case, the system is provably secure at all times. The
BLP model, however, is inadequate to deal with issues more complex than confidentiality
and one would look to models by Biba or Clark/Wilson. Another issue is the change of
permissions, for which the BLP model allows great latitude.

2.3 Enforcing Access Control

Access control is implemented in the operating system (or web server, database manage-
ment system, etc.) which runs on a hardware device. The part of the OS which decides
whether each access is permitted is called the reference monitor and it acts as a gate
through which all accesses are made. (The OS will most likely also enforce audit, i.e.
logging of certain actions.) But software alone is not enough to enforce access control.
Consider a process running under an operating system: if the process were allowed to
perform any processor instruction it wished, it could issue instructions to overwrite the
operating system itself, disabling the reference monitor. The first principle of access con-
trol is that the reference monitor’s integrity must be guaranteed. Thus enforcement of
access control must begin in the hardware itself.

Modern processors support a notion of security level. This idea was introduced by Multics,
which used eight levels, and modern x86 processors support four levels. In most operating
systems, only two levels are used: a user mode (called ring 3 on x86 processors) and

6Apparently so-called because the authors could not think of a name and used ∗ as a placeholder.
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a kernel mode or system mode (ring 0). Each thread of execution, and each page
of memory, is marked with a level. Threads running in user mode are refused access to
certain processor instructions. Prohibited instructions include access to pages of memory
owned by kernel mode threads, instructions to access hardware directly, and instructions
to modify system interrupts. (There is no prohibition on kernel mode threads writing
into user mode pages.) The prohibitions are enforced by a little reference monitor built
into the processor, operating at the silicon or microcode level. So underneath the OS
access control is a simple multilevel access control system inside the CPU.

When an operating system starts, almost its first task is to request access to kernel mode.
The part of the operating system which will deal with hardware (in monolithic kernels
this means all device drivers), and also the OS reference monitor, run in kernel mode, and
user-generated processes run in user mode. Thus processes spawned on the OS cannot
attack the OS reference monitor7. User mode processes have means to request kernel
mode processes to perform actions on their behalf, but their authorization is checked first
and the so-called context switch is a notoriously slow operation, which is why more and
more modules make their way into kernel mode.

Thus protected by the hardware, the operating system can authenticate users (who log
in by password or other means that we will discuss later), keeping track of their actions
and the processes they run. When a user starts a process, it runs with their privileges.
A tricky problem arises when the following timeline occurs: the user requests access to
a resource, which is granted; a change of authorization occurs revoking that access; the
user performs the access. This is a race condition called time of check to time of use
(TOCTTOU) and it seems to be difficult to solve.

Most operating systems include a special user called the superuser, often with the name
root. The superuser is allowed universal access. Such a user is needed in order to
change authorizations, and only they are allowed, by the OS, to perform certain actions
including accessing privileged network ports and direct hardware interaction. Typically it
is system administrators who know the root password, and it must be guarded carefully.
It is important to note, however, that the superuser is still a user: their processes run in
user mode and they have no special status in the CPU.

Let us briefly mention how operating system access control can be attacked. The aim
of the attacker is to gain a permission to a resource not granted to them. There are

7But this is no good if an attacker gets to kernel mode before the OS does, as for example boot sector
viruses do. On the other hand, wider use of processor rings is regaining interest as it can be used for
virtualization, where the OS itself runs inside a hypervisor.
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(very broadly) two approaches to this: tricking the reference monitor into granting an
access it should not, or tricking the processor into executing some code which will alter or
disable the reference monitor. Exploiting the TOCTTOU problem, where a user knows
that extra permissions will briefly appear (perhaps while one file is being copied on top
of another) and targets their authorization request to the window of opportunity, is an
example of the former. Because of the hardware protections against user mode threads
writing to kernel mode memory, the latter requires finding bugs in parts of the OS running
in kernel mode.

Such bugs are common. Failure to enforce boundary conditions, to fully check syntax of
user-supplied arguments, and allowing the infamous buffer overrun8, can all result in
user-supplied input to kernel mode threads overwriting the thread code itself. Although
it might seem impossible to ensure that spewing partially-controlled data all over a kernel
memory page could do anything other than crash the OS, hackers have found ways to
control the outcomes and write precisely into the part of the OS which controls their
access rights, giving them root access or other privileges. This is known as privilege
escalation. It explains why it is dangerous when any user or network service in a system,
no matter how restricted their own privileges, allows unauthorized access: a hacker may
take advantage of the weak user and then perform a privilege escalation attack.

These methods are not only for evil hackers. Many people own mobile phones with very
restrictive access controls, and they wish to make more use of their device – which they
legally own – than the manufacturer intended. So-called rooting or jailbreaking of a
device means attempting to gain superuser access on the underlying operating system, and
it typically involves exploiting a bug in the kernel mode code (of course, the manufacturer
updates the code so that the same bug does not exist in the next version of firmware). The
protection mechanisms for modern phones – and modern games consoles – are really quite
complicated, involving multiple stages of security checks with a highly-secure bootloader
which performs integrity checks on the operating system (see chapter 6) and refuses to
boot tampered code.

Finally, there are ways attackers may gain access even to a perfectly secure system if the
humans involved act insecurely. An attacker might fool another user into giving them
access to something unwittingly (less successful in mandatory access control systems),
or fool a superuser into changing their permissions. One of the most effective attacks

8A classic reference is found at http://www.phrack.org/issues/49/14.html, which explains the
general idea of supplying long arguments to write into memory not intended for data.
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on computer systems, certainly up to the end of the 1990s, was to phone up the system
administrator and pretend to be another user, asking for a password reset.

2.4 Case Study: UNIX Permissions

Time permitting, the lectures will discuss how traditional UNIX/POSIX systems imple-
ment file and directory access control. There is such copious information online and in
books like (Barrett et al., 2003) that it would be pointless to include it again in these
notes. Only the bare bones appear here.

The permissions are closer to ACLs than capabilities, in that they attach to the files
themselves, but they are not as fined-grained as full ACLs9. This is to allow for more
efficient administration. Each user (subject) has an integer identifier (UID) and belongs
to at least one group. Groups are also identified by an integer (GID). Each file is “owned”
by a single user and a single group, and has nine permissions: read (r), write (w), and
execute (x) for its owner, members of its group, and everyone else. Every process runs
with a UID and GID, normally those of the user who executed it. If a process p tries to
access an object (file or directory) o, the OS: checks whether p has the same UID as the
user owning o, in which case it determines the permissions based on the user rwx flags;
if not, it checks whether p has the same GID as the group owning o, in which case the
group rwx permissions are used; if not, the remaining rwx permissions are used.

Only the owner of a file can change its permissions, except that the superuser root has
universal rights to access files and change permissions (and owners, groups, etc).

The group system makes it easy to add new users whose access rights are similar to
others’, or to change access permissions en masse, if the groups correspond well with
users roles. But, like all access control systems, it has a number of quirks which make
it easy to misconfigure the permissions: if a file’s owner is also in the group which owns
it, they do not inherit the rights of the group; execution of certain files will not work
unless read permission is also set (but for certain files it will); permissions on symbolic
links seem to have no useful meaning. Finally, permissions for directories contain many
traps: read permission determines whether the names of its files can be listed, but execute
permission allows the files to be used if accessed directly by their names. And write access
allows any file in the directory to be removed, regardless of the access permissions of the
file itself!

9Modern linux filesystems do support ACLs, but they are usually disabled.



BIBLIOGRAPHY 17

The first lesson of any access control system is to make sure that you fully understand the
meanings of the permissions, before attempting to configure the rights of the subjects.
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Chapter 3

Symmetric Key Ciphers

Reading (course text): Kaufman et al. §2.1-2.2, 3.1-3.3, 3.5-3.6, 4.2, 4.4

Alternatives &
further depth:

Gollmann §14.5, 14.5.1, 14.5.2, 14.6 (very sketchy)
Ferguson et al. §2.6, 2.7.2, 2.8, chapters 3 & 4
Menezes et al. §7.1-7.4, 1.13.1, 1.13.3, 6.1

In this chapter we consider ways to achieve confidentiality. We have in mind the
following scenario: Alice, a sender, wants to transmit a message to Bob, the receiver.
Unfortunately, the channel over which she transmits is insecure, perhaps involving radio
(which might be received by any party) or the internet (on which any router can read
packets passing through). The message should be kept confidential, despite the possible
presence of an eavesdropper who is called the attacker, enemy, or cryptanalyst. In
the first part of this course we will mainly consider this so-called passive intruder, who
is able to eavesdrop, but not to alter the content of messages or redirect them completely.

This same scenario also covers secure storage, if we imagine that Bob is the future version
of Alice and the transmission channel is the storage medium.

The classical way to achieve confidentiality is to use cryptography: Alice encrypts the
message using a secret key which she shares with Bob. In this chapter we will not worry
about how Alice and Bob come to share the key: that is a problem we shall address later.

19
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3.1 Formal Definition

Formally, encryption and decryption are functions. We suppose that there is a set M

of messages or plaintexts, which is mapped to a set C of ciphertexts. The encryption
key comes from a set K called the keyspace. (In practice, usually both M and C are
the sets binary strings of fixed length n, where n is called the block size. K is often, but
not always, a set of binary strings of length k, the key size.) Then we have encryption
and decryption functions

E : K×M→ C; D : K× C→M.

Some people just write E(k,m) = c but most write the key as a subscript, thus Ek(m) = c
means that message m is transformed into ciphertext c. The sets M, C, and K, together
with E−(−) and D−(−) are called a cryptosystem or cipher1.

We require that messages are passed correctly by the cryptosystem, thus

∀m ∈M. Dk(Ek(m)) = m.

The above definitions formalise a symmetric key cryptosystem, so called because the
same key is used for encryption and decryption. In chapter 5 we will meet asymmetric
key cryptosystems, in which the decryption key differs from the encryption key.

That decryption correctly reverses encryption is, of course, only part of the requirement
for a cryptosystem. We also need to know that an enemy with access to ciphertexts
cannot deduce the plaintexts without knowledge of the key. This is much more difficult
to formalise (in fact to formalise completely would be beyond the scope of this course).
We must first know what kind of enemy we are working against.

3.2 Attacks

An enemy, or eavesdropper, is defined by what they know about plaintexts and cipher-
texts. There are many different attack models in cryptography.

1Strictly speaking, the cryptosystem should also include the method for generating keys. We postpone
this for later.
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The first thing we must admit is that the attacker knows the encryption and decryption
functions. This is known as Kerckhoffs’ Principle, named after a Dutch cryptographer
who wrote a famous treatise in the 19th century enumerating some properties of a proper
cryptosystem. Claude Shannon translated the Principle as “assume the enemy knows the
system”. It is simply too risky to try to keep the encryption and decryption functions
secret, because there might now or one day be a traitor in your communication system, or
a piece of encryption software might fall into enemy hands. Furthermore, it is presumably
a lot cheaper to change an encryption key, should it become disclosed to the enemy, than
to change the entire cipher.

This is related to the debate on “security through obscurity” in software design, but in
cryptography there is no debate: a cipher which relies on the secrecy of its operation is
not secure.

Ciphertext Only Attack (COA)

In this attack, the enemy only has access to a number of ciphertexts. Unless the cipher is
completely broken it will be impossible for them to say anything about the corresponding
plaintexts unless they have some sort of information about possible messages. But in
practice the enemy may well have such information:

• They might know that the plaintext consists of English words encoded, for example,
in ASCII.

• They might at least know that the plaintext consists of ASCII characters encoded as
bytes (this is still powerful information: in plain ASCII, the most significant bit of
every byte is zero).

• They might know that the plaintext carries an email, in which case it will have recog-
nisable headers.

• They might know that the plaintext has been compressed using off-the-shelf compres-
sion software, in which case the first few bytes will be a recognisable header.

• Similarly, they might know that the plaintext is a JPEG or TIFF image (recognisable
headers), an mp3 file (ditto), a piece of video (ditto), an binary file executable on some
operating system (ditto), . . . .

This is known as the recognisable plaintext assumption and it is necessary for a COA
attack to be possible. Nonetheless, the COA is the most difficult attack to succeed with,
and therefore makes for the weakest enemy.
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Known Plaintext Attack (KPA)

Here we assume that the enemy knows the encryption of a certain plaintext, or knows a
limited number of plaintext-ciphertext pairs, all under the same key. This is a plausible
assumption if secrecy is lifted after a certain period of time. Or the contents of the
plaintext might be deduced by other means, for example in the case of the Enigma
machine where the Allies realised that a weather report was always sent at a certain time
of day.

The attacker attempts to deduce the key, or the decryption of new ciphertexts (encrypted
with the same key) from the known plaintext-ciphertext pairs. This attack is easier than
the COA, and most weak cryptosystems fall to it very quickly.

Chosen Plaintext Attack (CPA)

The attacker is able to find out the encryption of any plaintext they want. Usually
the attacker is allowed to do this as many times as their computation power allows.
At first sight this might seem unreasonable, but consider that there might be a traitor
somewhere in the communication system who can plant messages which will eventually
be transmitted by Alice. Or the attacker might be able to provoke Alice into forwarding
a certain message, along the lines of “please tell Bob...” (this was used in attacking
Enigma). Chosen plaintexts are completely normal in public key cryptography, which we
shall come to in chapter 5, because the encryption key is made public.

There are two variants of the CPA. In the plain version, the attacker is supposed to decide
on the plaintexts they choose to have encrypted all at once; in the adaptive version, they
are allowed to use the results of previous encryptions to choose future plaintexts.

Chosen Ciphertext Attack (CCA)

The toughest attack model gives the attacker the power to decrypt chosen ciphertexts
even though they do not know the key. The only restriction is that they may not decrypt
the one ciphertext which they are trying to break. This is realistic in certain public key
scenarios (we shall see in chapter 6 that digital signatures are related to decryption),
or in circumstances where a user leaves a computer unattended during which time, it is
hypothesised, the attacker borrows it to make some decryptions in the hope of deducing
the key.

Like the CPA, there are two variants of the CCA depending on whether the attacker is
allowed to choose the decryptions adaptively or not.
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A cipher is considered secure only if it is secure against at least the CPA (in the sense
that it requires the attacker to perform an unfeasible amount of computation). For some
situations, particularly with public keys, security against CCA is also required. No matter
how proud one might be of a new cipher, if it fails to respect Kerckhoffs’ Principle or falls
to a COA, KPA, or CPA, it is not secure.

3.3 Weak Ciphers

There is copious non-academic literature on code breaking, which contains many examples
of weak ciphers, e.g. books by Simon Singh, David Kahn, Bruce Schneier, etc. This section
therefore contains just a few examples to illustrate important principles in the design of
good ciphers.

If the keyspace is too small, the cipher is certain to be weak. A classic (some would say
hackneyed) example is the Caesar cipher. The plaintexts and ciphertexts are fixed-
length blocks of Roman alphabet characters (no spaces) encoded as integers A = 0, B =
1, . . . , Z = 25, thus M = C = {0, . . . , 25}n. The key is an integer in the range 0, . . . , 25.
The encryption and decryption functions are cyclic shifts on each character2:

Ek〈m1, . . . ,mn〉 = 〈m1 + k, . . . ,mn + k〉 (mod 26),

Dk〈c1, . . . , cn〉 = 〈c1 − k, . . . , cn − k〉 (mod 26).

Then caesarcipher encrypts under key k = 10 to mkockbmszrob. Even without knowing
the decryption key you can probably work out for yourself what nbcmcmuqyuewcjbyl was
the ciphertext for.

The Caesar cipher is weak for many reasons, one of which is the very small keyspace.
It takes but an instant for a computer to try all 26 possible keys to determine which is
the decryption of plausible English (a ciphertext only attack) or which matches a single
known plaintext-ciphertext pair (a known plaintext attack). The keyspace must always
be large enough to protect against this exhaustion attack (also known as the brute
force attack) which tries all possible keys: in the worst case the exhaustion attack
requires |K| attempts to find the right key, but on average only 1

2 |K|. The minimum size
keyspace to make exhaustion infeasible depends on how long it takes to try a decryption,
but in practice 240 keys is much too short, 264 is nowadays still too short3, 280 is good

2This is effectively ECB on a single-character cipher, see section 3.7.
3The first publicly-known exhaustion attack against a 64-bit key was completed in 2002, taking 5 years

and using the spare computer time of tens of thousands of computers http://www.distributed.net/
RC5. But 64-bit exhaustions are now considered practical for a determined opponent.
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for security right now, but we would want at least 296 if preserving secrets for 30 years.
Bear in mind that an enemy might store our ciphertexts for a long time, and that for
serious secrets we might want to maintain confidentiality for more than 30 years.

A cipher which looks stronger than the Caesar cipher is the monoalphabetic substi-
tution cipher. With the same encoding of blocks of letters as above, the keyspace is
any permutation of the numbers 0, . . . , 25, and the encryption and decryption functions
just apply the permutation to each letter:

Eπ〈m1, . . . ,mn〉 = 〈π(m1), . . . , π(mn)〉, Dπ〈c1, . . . , cn〉 = 〈π−1(c1), . . . , π−1(cn)〉.

In plain language, every letter of the alphabet is substituted by another. Of course,
the Caesar cipher is just a special case of the monoalphabetic substitution cipher, but
now the keyspace is considerably larger. There are 26! ≈ 288 possible permutations4,
which should certainly defeat a casual exhaustion attack, but it is still insecure because
it preserves the structure of the plaintext, in this case the English language. Such ciphers
have long been broken by frequency analysis (knowledge that certain letters occur more
often than others) and other such tricks. You may wish to try your hand at deciphering
pdttrbadwblpvaabchvzd (and then working out where the key came from). And of course
a single known plaintext-ciphertext pair is also enough to break the code.

Frequency analysis is an example of cryptanalysis, the aim of which is to break the
confidentiality of the ciphertext. A cryptanalysis is considered successful if it requires
less work than an exhaustion attack on the same cipher.

Let us turn to more realistic computer ciphers, based on blocks of binary. Suppose that
the plaintexts, ciphertexts, and keys are sequences of n-bits {0, 1}n. For reasonably large
n, the keyspace is much too big for exhaustion attacks. We define

Ek(m) = m⊕ k, Dk(c) = c⊕ k,

where ⊕ represents the bitwise exclusive-or operation (XOR). Recall that XOR is a self-
inverse operation. This is the Vernam cipher, of which more shortly. It is “perfect” in
a theoretical sense we will define in the next section, but completely insecure against a
single known plaintext-ciphertext pair: given Ek(m) = c we simply deduce

k = c⊕m.

4The size of keyspace is usually measured in bits, so we would say that this cipher has an 88-bit
keyspace.
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The root of this weakness is that the cipher is linear in the key, making it simple to
solve the equation Ek(m) = c for k. There are other forms of linearity which can lead to
weakness. For example, if we remove the linearity in k by changing the cipher to

Ek(m) = m⊕h(k), Dk(c) = c⊕h(k),

where h is some one-way function which is practically impossible to invert (the topic of
chapter 4) then one cannot solve Ek(m) = c for k. But, given m and c, we can still
decrypt any other message using the same key, because Ek(m

′) = c′ implies that

c⊕ c′ = m⊕m′,

from which m′ = c′ ⊕m⊕ c recovers the unseen plaintext m′. This version of the cipher
was still linear in m, causing the weakness.

The word linearity is used to mean a number of related things in cryptography, for
example when Ek(m1 ⊕m2) is some easy to compute function of Ek(m1) and Ek(m2), or
E(k1⊕ k2)(m) a simple function of Ek1(m) and Ek2(m). Linearity can occur with respect
to normal addition or indeed any other operation, but XOR is the most commonly-
exploited example. All types of linearity are dangerous; even without a known plaintext-
ciphertext pair, linearity properties give rise to nonuniformities which can be exploited
for COA. Some subtle contemporary attacks on difficult ciphers work by making linear
approximations to cipher components.

Thus it is extremely important to include nonlinear operations in the design of good
ciphers.

3.4 Perfect Security

As computer scientists, we would like to have a proper definition of “security” in the sense
of confidentiality. The first definitions began to appear in the 1940s, beginning with the
idea of perfect security or perfect secrecy. You can find many definitions of perfect
security in the literature, all aiming to capture the idea that an attacker can say nothing
new about the plaintext once given the ciphertext, and almost all of them turn out to
be equivalent. Here we will go back to the first such definition, from Shannon’s seminal
postwar publication (Shannon, 1949).
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3.4.1 Shannon Security

First, recall some discrete probability. For events A and B, P[A] denotes the probability
that A occurs, P[A ∧ B] the probability that A and B both occur, and P[A |B] the
conditional probability that A occurs “given that B occurs” formally defined by

P[A |B] =
P[A ∧B]

P[B]
.

A random variable, formally a function on a sample space, can be thought of as a
random quantity. If X is a random variable drawn from a set X, then X = x denotes
the event that X takes value x (it is conventional to write random variables as uppercase
letters, with lowercase letters for the corresponding realisations). A random variable X
is defined by its distribution, which is the probabilities of all the events X = x for
each x ∈ X. The uniform distribution on X is the one where each x has the same
probability, P[X = x] = 1/|X| for each x.

Shannon’s notion of perfect security assumes that the messages are chosen at random
from M with some (any) distribution, and similarly for the keys. This means that the
ciphertexts are also random. Although we might think, as cryptographers, that our mes-
sages are certainly not random, it is plausible that the attacker is intercepting messages
at random, or they can model us as a random process.

Shannon’s definition of perfect security is:

(i) For all m ∈M and c ∈ C,

P[M = m |C = c] = P[M = m].

(ii) Also, the keys are drawn uniformly from K, and each key is used for one encryption
only.

(i) captures the idea that the attacker gains no extra information about the message m, if
they are given the ciphertext c. They might as well not have seen c at all. It corresponds
to the idea of defeating a COA and does not make any assumptions about limitations on
the attacker’s computational power. (ii) makes a KPA, CPA, or CCA impossible, because
the enemy will never see other encryptions or decryptions using the same key. Moreover,
they have no way to guess which key is likely to be used next, because no key is more
likely than any other.
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Sadly for cryptographers, both conditions turn out to be impractical. It is easier to see
why the second is difficult: it would be tiresome to change keys as frequently as every
message. The first is also difficult because of the following theorem, which some call the
impracticability theorem:

Theorem 3.1 Let M′ ⊆ M denote the set of all messages with strictly positive proba-
bility. Shannon’s first condition P[M = m |C = c] = P[M = m] requires |K| ≥ |M′ |.

Proof First note that, as long as P[M = m] 6= 0,

P[M = m |C = c] = P[M = m]

⇒ P[M = m ∧ C = c] = P[M = m]P[C = c] (hence M and C are independent)

⇒ P[C = c |M = m] = P[C = c].

Now suppose that |K| < |M′ |. Pick any possible ciphertext c (i.e. something in the image
of E). Because c is possible, P[C = c] > 0. Now consider the following subset of M′:

{m |Dk(c) = m for some k}.

Because the number of possible outputs of a function cannot be more than the number
of possible inputs,

|{m |Dk(c) = m for some k}| ≤ |K| < |M′ |.

This means that there exists at least one m0 ∈M with P[M = m0] > 0 and

Dk(c) 6= m0 for any k

which in turn implies that
Ek(m0) 6= c for any k

and hence that
P[C = c |M = m0] = 0.

Thus P[C = c] 6= P[C = c |M = m0], completing the contradiction. �

Why does this make perfect security impractical? If there are at least as many possible
keys as there are possible messages, it will take at least as many bits to store/transmit
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the key as the message itself (this can be made more precise, using a more refined version
of Shannon’s theorem and the concept of entropy). And according to Shannon’s second
condition, we must share a new key for every message. Our assumption was that the
communicating parties are able to share the secret key, but if the secret keys are longer
than the messages then they might as well not bother with encryption and just share
the message instead! The only advantage of perfect cryptography is that the keys can be
shared well in advance.

3.4.2 The Vernam Cipher and the One-Time Pad

Notwithstanding the apparent difficulties, there does exist a perfect cipher which has
been used in practice. It is based on the Vernam cipher, which you have already seen.
It is named for its inventor Gilbert Vernam, who patented it in 1919. The message
space, cipher space, and keyspace all equal the set of n-bit binary sequences {0, 1}n, with
encryption and decryption given by

Ek(m) = m⊕ k; Dk(c) = c⊕ k.

That is, the plaintext is simply XORed with the key. The Vernam cipher is insecure
because it falls to a single known plaintext attack as we have seen. Even in the absence
of a known plaintext, it can usually be broken by COA if the same key is used for more
than one plaintext: an example along these lines appears on the first problem sheet.

Notwithstanding its insecurity,

Claim 3.2 The Vernam cipher, with a truly random key (uniformly distributed over all
n-bit sequences, independent of the message), meets Shannon’s first condition.

Proof We use the independence and uniform distribution of the key to compute

P[M = m∧C = c] = P[M = m∧K = c⊕m] = P[M = m]P[K = c⊕m] = P[M = m]2−n

and
P[C = c] =

∑
m

P[M = m ∧ C = c] =
∑
m

P[M = m]2−n = 2−n.

Dividing,
P[M = m |C = c] = P[M = m]. �
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We can reconcile these apparently contradictory statements by remembering that perfect
security requires that the same key is never used twice (strictly speaking, we should
say that keys are re-used no more often than expected of uniformly randomly chosen
keys). Thus the KPA does not apply, nor the COA requiring two ciphertexts with the
same key.

When the Vernam cipher is used with uniformly random keys, changing the key for every
encryption, it is called the one-time pad (OTP). Although it suffers from exactly the
problem we described in the previous section – the secret key is the same size as the
message being transmitted – it was certainly usable in practice. The KGB in the 1950s
and 60s, for example, sometimes issued agents with pads of paper with pages covered
in random letters. To communicate with their recipient, agents would form some type
of XOR5 of their plaintext with the text from the pad, and indicate at the top of the
message which page of the pad was used. After encryption, they burned the page, and
the recipient would burn their copy (the only other copy in existence) after decryption.
If used properly this is perfectly secure.

In practice one needs to take great care in generating the key (the pads). Some diplomatic
pads were generated by secretaries typing at random into actual typewriters with, pre-
sumably, carbon copy paper. People do not press typewriter keys uniformly at random!
And a Soviet blunder resulted in the re-use of some OTP keys and this was exploited by
the US and UK from the 1940s to the 1980s. Similar mistakes have caused the down-
fall of many ciphers, and history seems to show that the policy surrounding the use of
cryptography is often more easily attackable then the cryptography itself.

3.5 Practical Security

Let us return to the real world of computer security. Perfect security seems to be im-
practical, so we must aim for near-perfect security. Defining near-perfect security is more
difficult than defining perfect security, and anyway we care more about an attacker who
has a limited amount of computation rather than, as in the last section, attackers with
unbounded computational power. It took a while for computer scientists to come up with

5presumably modular addition.
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a definition of a computationally secure encryption, and the technicalities are beyond
the scope of this course6.

We can make progress by going back to Shannon’s 1949 paper and looking at his general
comments on the design of good cryptography. Since we are working in the real world,
from now on we will assume that the plaintexts and ciphertexts come from the same
set of fixed-length sequences of bits {0, 1}n, and keys from {0, 1}k. Shannon gives two
properties, slightly vague, which lead to good ciphers:

Confusion: Given m and c, the equation “find k such that Ek(m) = c” should be
very hard to solve. This implies nonlinearity, amongst other things, since linear
equations are easy to solve. The aim is to make the KPA difficult (and, since it
should hold for all m, the CPA too).

Diffusion: Nonuniformity in parts of m should be spread out so that Ek(m), for any
k, is close to uniform. This is designed to defeat a COA by obscuring redundancy
(like the nonuniformity of letters in English).

Bear in mind that Shannon was thinking about cryptanalysis by hand, since this work
was contemporaneous with only the very first computers, hence the idea that equations
should be “hard to solve” by hand. Diffusion does have a more precise definition, but it
is not helpful to us here.

As well as Shannon’s insights, cryptographers tend to be guided by empirical evidence:
if many academics have searched in vain for an attack on a particular cipher then it
is probably secure. In (Kaufman et al., 2002) this is called the “Fundamental Tenet
of Cryptography”. In a field which is constantly evolving, with new types of attack
discovered and new cipher styles to defeat them, this is about the best we can do.

3.5.1 Feistel Structures

It is not so difficult to invent an encryption function which has reasonable confusion and
diffusion: just throw bits around, combine them in nonlinear ways, and repeat until you

6Definitions of a computationally secure encryption are usually based on the idea of a game, played
between the sender and the cryptanalyst, where the cryptanalyst has to guess something about the sender’s
message given certain information. A simple example of such a definition would be as follows. Suppose
that the plaintexts are uniformly distributed over M. Then encryption is secure if, given randomly chosen
M and K, and for any function A(x) computable in polynomial time, the difference in probability that A
gives the right decryption, compared to random guessing, |P[A(EK(M)) = M ]− 1

|M| | ≤ ν(log |K|), where

ν(k) is some negligible function, one whose reciprocal grows more quickly than any polynomial.
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think they are thoroughly mixed up. Unfortunately, there will probably be no decryption
function to match it! The problem can be solved using a nice little trick, a structure
called a Feistel structure or Feistel network (named after the IBM cryptographer
who invented it).

Consider the following function on pairs of blocks:

Round(x, y) = 〈y, F (y)⊕x〉.

were F is some “mangler” function which mixes up its inputs in nonlinear and confusing
ways. Although F is probably not invertible, Round is invertible with inverse

Round−1(x′, y′) = 〈F (x′)⊕ y′, x′〉.

Only the second part of Round’s output is confused, of course, but the function can be
iterated (still invertibly) to produce thoroughly mixed output7.

A Feistel structure is a keyed version of this. We begin by splitting the plaintext m
(assumed to be a block of bits) into two halves L0 and R0 (conventionally these bit
blocks seem to be written as uppercase letters). We require a function F (Ki, Xi) which
takes both a subkey or round key Ki (part of the crypto key, usually a selection of bits
from it) and bit block Xi. The aim of F is to make the output confusing with respect to
both Ki and Xi. Then we iterate through r rounds,

Ln+1 = Rn

Rn+1 = F (Kn+1, Rn)⊕Ln

Finally, Rr ‖Lr the ciphertext output (note the reversed order of blocks).

To decrypt a ciphertext c we split into two halves L′0 ‖R′0 and iterate

L′n+1 = R′n

R′n+1 = F (Kr−n, R
′
n)⊕L′n

with m = R′r ‖L′r. You can check (proof by induction) that this is the correct inverse.
Swapping the order of the two halves of the ciphertext has given the handy property that

7There is some good theory to back this up: the Luby-Rackoff Theorem says that if F is computa-
tionally indistinguishable from a random function then at least four iterations of the Feistel construction
lead to an invertible function which is computationally secure.



32 CHAPTER 3. SYMMETRIC KEY CIPHERS

decryption is the same as encryption, except that the subkeys are used in reverse order.
So only one program, or digital circuit, needs to be built for both.

Many ciphers make use of some version of this structure, or variants of it (e.g. different
mangler functions on each round, or unbalanced splitting into left and right halves).

3.5.2 DES

The Data Encryption Standard (DES) was the first cryptographic method certified
by the US National Bureau of Standards, and it was became very widely used. It was
a development of IBM’s Lucifer cipher, and was developed by IBM’s cryptographers in
cooperation with the NSA8, although the exact level of the NSA’s involvement is disputed.
The final version of DES was published in 19779; it was not successfully attacked until
the late 1990s.

DES uses 64-bit plaintext and ciphertext blocks and a 56-bit key. It consists of a 16-round
Feistel network

Ln+1 = Rn

Rn+1 = F (Kn+1, Rn)⊕Ln

where each subkey Kn is a different selection of 48 bits from the key, and the mangle
function F can be concisely described by

F (K,R) = P (S(E(R)⊕K))

where
E : {0, 1}32 → {0, 1}48

is the so-called expansion permutation which duplicates some of the 32 input bits to
make the output up to 48 bits (it is not really a permutation),

S : {0, 1}48 → {0, 1}32

8The NSA is the government agency of the United States which is responsible for signals intelligence
(i.e. eavesdropping) and communications security (i.e. cryptography). Its activities are classified and
subject to much speculation. The UK equivalent is GCHQ.

9It was renewed in 1988 and 1993, the latest version of the standard is (National Bureau of
Standards, 1993)
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is a fixed nonlinear function. Its 48 bits of input are broken down into eight block of six,
each of which is fed into one of the eight independent S-boxes

S1, S2, . . . , S8 : {0, 1}6 → {0, 1}4,

whose outputs are concatenated into a 32-bit block. Finally,

P : {0, 1}32 → {0, 1}32

is just a fixed permutation of the 32 bits. It is sometimes called the P-box.

Before being input to the Feistel network, the plaintext is subject to a fixed initial permu-
tation (IP) of its bits; similarly, the output of the network takes the inverse permutation
to become the ciphertext (these permutations are essentially irrelevant to its security).
The overall structure of DES is depicted in Fig. 3.1. The details – the expansion permuta-
tion E, the tables describing the S-boxes, the permutation P and the initial permutation
IP, and the key schedule which selects 48 bits of the key for each round – can be found
in many textbooks and webpages and will not be repeated here. You will need to be
familiar with the details for the second practical.

DES was designed for hardware implementation: operations such as permutation of bits
is very fast in hardware (cross some wires!) and slower in software. The S-boxes have
particularly efficient silicon implementations. The speed of DES in software is a bit
disappointing.

DES was carefully designed with all the knowledge of 1970s cryptography and cryptanal-
ysis. The S-boxes are the nonlinear component, essentially fixed tables giving one of 16
outputs to each of 64 possible inputs (everything else in DES is linear). They ensure
confusion, because any equation relating the input bits to output bits will necessarily be
very complicated10.

The P-box permutations are primarily responsible for diffusion. Suppose that one bit is
changed in Rn. After the expansion map and XOR with the round key, this means that
one or two inputs to the S-boxes are altered, which affects all 4 output bits of each box
(any or all of them might be changed, depending on the other bits). Then the P-box
moves those changes so that, when the next Feistel round occurs, the affected bits are
now dispersed into many S-boxes affecting very many bits, and within very few rounds
all output bits are affected. The same is true of changing one bit of the key.

For example, if we write the bitstreams as sequences of hexadecimal nibbles11, standard

10That has not stopped cryptanalysts trying to solve them, as happens in certain attacks on DES.
114 bits per character.
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Figure 3.1: Outline of the structure of DES.
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DES gives

EAAAAAAAAAAAAAA(0000000000000000) = 7D239B3EF2E153C4;

changing one bit of the message gives

EAAAAAAAAAAAAAA(0000000010000000) = 6E9483109EB171FA;

and changing one bit of the key gives

EAAAAAAAAAAAAAB(0000000000000000) = CF53E71144F80DDF.

The fact that the S-boxes are many-to-one (in fact they all map exactly four inputs to each
possible output) is also important. It means that it is impossible to reason backwards,
from the output of the Feistel round back up towards the subkey, because the number of
possibilities multiplies as you go back through the rounds.

There have been very many attempts to attack DES, none of them very successful. An
interesting attack is called differential cryptanalysis, which looks at how small changes
in the input cause changes in the output which, sometimes, reveal partial information
about the key. Differential cryptanalysis was published in 1990, but it turns out that
the functions which make up the S-boxes of DES are tuned to be resistant to it. It is
undisputed that the NSA designed the S-boxes used for DES, which tells us that the NSA
already knew about differential cryptanalysis in the 1970s.

The best attack, involving multiple linear approximations to the DES round function,
requires approximately 241 known plaintext-ciphertext pairs. It is not actually practical,
but the combination of increasing computing power with decreasing costs means that
the plain exhaustion attack (which requires only one known plaintext-ciphertext pair!) is
now a reasonable option, either with dedicated hardware or with distributed computing.

Indeed, the main weakness of DES is simply that the key size is a bit too small. This
was a criticism even when DES was first proposed, and it is now a serious weakness
(Triples DES, see section 3.6, is still considered a decent cipher). The reasoning behind
the decision to use only 56 bits for the key, when the same structure could easily have
accommodated 64 or even more, was always rather vague. It is widely suspected that
the NSA put pressure on IBM to keep the key size down, to make it easier for them to
eavesdrop on others’ secrets...
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3.5.3 AES

When it became clear that computational power was making DES insecure, an open
competition was held to find a replacement. The successor to DES, also published as a
US standard (National Institute of Standards and Technology, 2001), is called
the Advanced Encryption Standard (AES).

AES operates on 128 bit plaintext blocks, and uses a 128-bit key (variations with 192-
and 256-bit keys are available). It has components which will be familiar. It is not a
Feistel network, but has a similar structure: a 128 bit block is kept as a 4× 4 matrix of
bytes, which undergoes ten rounds. In each round some columns are exchanged and rows
reordered (permutation), each byte undergoes a fixed nonlinear substitution (S-box), and
a subkey is XORed with the block. There is an additional step, where the elements of the
matrix are combined together in a complicated bitwise operation which ensures strong
diffusion. The details can be found in (Kaufman et al., 2002, §3.5).

AES was finalized in 2001 and is considered to be a secure cipher. Some attacks reduce
the security of the 192- and 256-bit versions, and there are attacks on versions of AES
with fewer than ten rounds. Some specific flawed implementations can be attacked, but
at the time of writing there were no attacks on the full 128-bit AES algorithm any better
than the completely-impractical exhaustion attack.

3.6 Repeated Encryption

Suppose we are given a cipher with the same plaintext space as ciphertext space C = M

(as usual), which we think might have slightly too-small a keyspace K,

E : K×M→M; D : K×M→M.

An example might be DES, which seems to be quite a good cipher except for its 56-bit
keyspace.

We might try to strengthen it against an exhaustion attack by encrypting twice. That
is, we create a new cipher

E′ : K×M→M; D : K×M→M

E′k(m) = Ek(Ek(m)); D′k(c) = Dk(Dk(c)).
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Hopefully you can see that this provides little extra security against an exhaustion attack.
Read in (Kaufman et al., 2002, 4.4.1.1) if you need a hint.

So we might try encrypting twice under two different keys. That is, we create a new
cipher

E′′ : K′ ×M→M; D′′ : K′ ×M→M

with K′ = K×K defined by

E′′〈k,k′〉(m) = Ek′(Ek(m)); D′′〈k,k′〉(c) = Dk(Dk′(c)).

This new keyspace has cardinality the square of the old keyspace, or twice as many bits.
For example, “double DES” would have 2112 possible keys. Apparently, an exhaustion
attack on E′′ would square the number of steps in the exhaustion attack on E. However,
this is not the case.

The attack known as meet-in-the-middle12 trades space for time. This is a KPA.

Meet-in-the-middle attack

(1) Obtain a plaintext m with known encryption c.

(2) For each k ∈ K, compute Ek(m) and store 〈k,Ek(m)〉 in list L.

(3) For each k′ ∈ K, compute Dk′(c) and search for 〈k,Dk′(c)〉 in L; if found, 〈k, k′〉 is
called a candidate pair. Store a list of all candidate pairs.

(4) Test the candidate pairs 〈k, k′〉 against a new plaintext m′ with known encryption
c′. Discard the pair if Ek′(Ek(m

′)) 6= c′.

(5) Repeat the previous step until only one candidate pair remains: this is the double
encryption key.

For step (3) to be efficient, L should be sorted by second component after step (2), or
stored in a suitable data structure.

The attack works because Ek(m) = Dk′(c) if Ek′(Ek(m)) = c. It requires O(2n+1)
en/decryptions for steps (2)-(3) if K has n bits, and the rest is insignificant. That is to
say, double encryption only requires approximately double the number of steps to attack
as does single encryption, rather than a square number.

12under no circumstances to be confused with man-in-the-middle, see chapter 7.
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Meet-in-the-middle is a nice trick, though it requires a lot of working space (as you will
show on the first problem sheet). A popular way to improve the security of a cipher with
limited keyspace is to use a form of triple encryption.

E′′′〈k,k′,k′′〉(m) = Ek′′(Dk′(Ek(m)))

with the obvious corresponding decryption. The use of Dk′(−) in the middle does defend
against some mild attacks, and also makes the triple encryption backwards-compatible
with single encryption if k = k′ = k′′. Triple encryption is used to strengthen DES.

Of course, one cannot improve the security of a completely flawed cipher, like the monoal-
phabetic substitution cipher, by repeating it. Indeed, since permutation operations form
a group, multiple encryptions are equivalent to just one encryption under a combined
key. It has been proved that DES encryption is not a group, so multiple encryption
should improve security.

The FIPS standard which defines DES allows Triple DES with arbitrary k, k′, k′′, which
gives 168 bits of keyspace, but a meet-in-the-middle attack can reduce the exhaustion
attack from 2168 to 2112 steps. It has become common to set k = k′′, thus there are 112
bits of keyspace involved. There are recent KPA or CPA attacks which exploit the triple
encryption structure and take about 280 steps. This is good security for now, but perhaps
not for secrets which must remain so for many years, particularly if we take into account
the possibility that more efficient attacks may appear in future.

3.7 Encrypting Longer Messages

We have not said how to encrypt messages longer than a single plaintext. In section 3.3
we effectively used single-character encryption and a sequence of plaintexts encrypted
to the corresponding sequence of ciphertexts, but this is not secure: it is what leads to
the frequency analysis attack. There are several better possibilities which appear in the
official standard with DES, and we cover them in this section.

This material can be found in many places online and is very well covered in chapter 4
of the course text (Kaufman et al., 2002), so these lecture notes only include outline
material.
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Electronic Codebook (ECB)

Each plaintext block is encrypted separately:

ci = Ek(mi).

Decryption is similar. It leads to weaknesses if plaintexts might include repeated or
similar blocks (highly plausible).

Cipherblock Chaining (CBC)

The encryption of block i is XOR-ed with the plaintext of block i + 1 before encryp-
tion, acting as a pseudorandom “blinding”. The sequence needs to be started with an
initialization vector IV .

c1 = IV ,

ci+1 = Ek(mi ⊕ ci).

Note that the IV must be transmitted to Bob, who will discard it after use:

mi = ci ⊕Dk(ci+1).

The initialization vector is important, and it is risky to leave it constant: if the same IV
is used every time, the attacker will be able to tell when identical plaintexts have been
sent. It is better to randomise it, and change the encryption key often enough that IVs
are not repeated. Introducing a random component also defeats a chosen plaintext attack
and we will see the importance of randomised encryption in chapter 5.

Output Feedback Mode (OFB)

Output feedback mode simulates the one-time pad, using an iterated encryption to gen-
erate a pseudorandom stream 〈r2, r3, . . .〉 which can simply be XORed with the plaintext.
In fact, it is effectively a stream cipher (see section 3.8) and so is good for low latency
situations.

c1 = r1 = IV ,

ri+1 = Ek(ri),

ci+1 = mi ⊕ ri+1.

The pseudorandom stream can be generated on demand or in advance. As with CBC,
the IV is important and must be transmitted to the recipient. A weakness arises if the
pseudorandom sequence ever repeats a block: it will then get into a cycle. It is important
to change the key often enough to make this unlikely. An alternative is the following.
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Counter Mode (CTR)

Counter mode creates pseudorandom blocks by encrypting an increasing sequence:

ri = Ek(IV ⊕ i)

c1 = IV

ci+1 = mi ⊕ ri+1

CTR mode will not get into a cycle. It has some theoretical guarantees of security under
certain assumptions about the block cipher used, and unlike CBC or OFB it can be
parallelized because the cipher blocks do not depend on each other. However, it seems to
be little used.

Cipher Feedback Mode (CFB)

There is also a mode known as Cipher Feedback Mode, which is a modification of OFB
which removes some of the advantage of a stream cipher but adds a property known as
self-synchronization. We will not cover it in this course, but see (Kaufman et al.,
2002, §4.2.4) for details.

We finish with a warning. Some authors discuss the robustness of these block modes,
which means that small changes made to the ciphertext cause only small changes in the
decrypted plaintext (in the case of ECB only the block changed is affected, in CBC the
following block is also affected, in OFB/CTR only the bits changed are affected, and
things are more complex for CFB). Robustness might be seen as an advantage, if the
ciphertext is to be transmitted through a noisy channel such as radio, or a weakness if
the recipient wants to be able to detect tampering of the ciphertext. The latter would
be considered in the context of an attacker who can tamper with the ciphertext, perhaps
to cause a desired alteration in the plaintext, but it is a mistake to think that symmetric
cryptography alone, no matter what block mode is used, guarantees the integrity of the
message. Chapters 4–6 describe the tools used for integrity of a transmitted message.

3.8 Stream Ciphers

Stream ciphers attempt to simulate the perfectly secure one-time pad, using a crypto-
graphic key to generate (or seed) a pseudorandom stream of bits, or blocks of bits, which
is then XORed with the plaintext for encryption, and XORed again for decryption. A
block cipher in OFB or CTR mode is an example of this, but the pseudorandom stream
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could be generated by other means and need not use a block cipher at its heart. Stream
ciphers do not provide perfect security because the pseudorandom stream is not truly
random: the symbols are not (quite) independent, and even very weak dependencies can
often lead to powerful exploits.

In fact, it is probably fair to say that stream ciphers are generally less secure than block
ciphers. But they have a particular advantage in low latency applications. It could be
tiresome to wait for a complete block before encryption and transmission, or expensive
in bandwidth to pad mostly-empty blocks more often, but a stream cipher can produce
pseudorandom bits and send the cipher bits immediately (or, like OFB/CTR, produce
blocks of bits in advance so that they can be used on demand).

The whole development of stream ciphers is different from that of block ciphers, being
closer to that of pseudorandom number generation than true cryptography, and the ter-
minology is a bit different. The construction of most stream ciphers involves a hidden
state from a set of possible states S, an initialization function I : K → S which con-
structs an initial state from the key, an update function U : S → S which alters the
state, and an output function f : S→ Σ, where Σ is the alphabet for the stream cipher
(usually bits or bytes, for low latency applications). Every time the output function is
called to request a new symbol from the stream, the state is updated.

The most widely-used stream cipher is RC4, which features in the SSL protocol and WEP
wireless security. It has some weaknesses but is extremely fast and the weaknesses can
be avoided in careful use. (The most important thing is to discard the first few bytes of
the output stream.)

Although we will not analyse its security, we can give a brief description of RC4. Let
B = {0, 1, . . . , 255} be the set of unsigned byte integers, and SB the set of all permutations
of B. Then

K = B256 and S = SB ×B ×B
i.e. a key is a sequence of 256 bytes (shorter keys are okay too: they are repeated cycli-
cally to make them up to length 256) and the state is a tuple 〈π, x, y〉 where π is some
permutation of B.

The initialisation is I(K) = 〈π, 0, 0〉 where π is the permutation given by the program

for i = 0 .. 255 : π(i) = i

k = 0

for i = 0 .. 255 : k = k +Ki + π(i); swap π(i), π(k)
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The update function is U〈π, x, y〉 = 〈π′, x′, y′〉 where

x′ = x+ 1

y′ = y + π(x)

π′ = π swapping π(x′), π(y′)

and the output function is

f〈π, x, y〉 = π(π(x) + π(y))

(in all of the above the arithmetic is implicitly mod 256).

The weaknesses found so far in RC4 (see (Fluhrer et al., 2001) for some of the first
serious attacks) are not so great as to outweigh its extreme ease of use, which is why it
continues to be deployed today. Although there are weaknesses in WEP which exploit
the correlation of the first RC4 output bytes with its key, they are primarily flaws in
the way WEP uses RC4, and indeed there are other flaws in WEP not related to RC4
(notably its very short IV).

3.9 Concluding Remarks

We have discussed the formal definition of ciphers, seen some weak examples, and ex-
plained why perfect security is not usually practicable. Then we examined the develop-
ment of modern ciphers. Given that symmetric key cryptography is a maturing field,
and that experts consider AES to be secure, have we solved the security problem of
confidentiality in communications and data storage?

Not really. All we have done is reduce the problem of confidentiality of the message to the
problem of sharing a secret cipher key (and this had better be done confidentially, with
integrity and authentication too). Thankfully, we will address these problems later in the
course. We may also note that only the contents of the message are made confidential, and
often at least some information about the length is revealed (even with perfectly secure
cryptography). Cryptography certainly reveals the fact that the confidential information
exists...

We have outlined the design and construction of some commonly-used ciphers. But this
is not meant to encourage you to design or implement a cipher yourself: it is all too easy
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to make mistakes which introduce weaknesses, and much better to rely on the community
of cryptographers to invent, refine, and create safe implementations of good ciphers.

We conclude by stressing that symmetric key cryptography is designed to offer confiden-
tiality, not integrity, authentication, or non-repudiation. It is easy to see why conditions
(i)-(iii) in subsection 1.3.4 are not satisfied by the simple use of symmetric key ciphers.
In particular, there is no defence against replay or reordering of the encrypted messages.
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Chapter 4

Cryptographic Hashes

Reading (course text): Kaufman et al. §2.6, 5.1-5.2, 5.4-5.6, 9.1, chapter 10

Alternatives &
further depth:

Gollmann §14.3, chapter 4 (very sketchy)
Ferguson et al. chapter 5, §21.2
Menezes et al. §9.1-9.4, 9.6-9.7, 10.2

Broadly speaking, a cryptographic hash function condenses an arbitrary-length piece of
data into a short, fixed-size, block called a digest or hash. The idea is that the digest can
“represent” the data in situations when a fixed-length sequence of bits is required, and
without disclosing the data itself. There are many such situations, and in this chapter
we will consider three particular applications:

(i) In a multi-user system where users log in by password, the password database itself
presents a potential vulnerability. If the hashes of passwords are stored in the
database, and the log in program checks the hash of the supplied password against
the database entry, disclosure of the database does not immediately expose all users’
passwords. But extra steps must be taken to avoid offline dictionary attacks.

(ii) In symmetric encryption, Alice and Bob need to share a secret key dozens of bits
long, which would be very difficult to memorise. If they instead share a memorable
password, they can generate the secret key by hashing the password. Further steps
must be taken to avoid dictionary attacks.

45
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(iii) If a message is transmitted alongside its own hash, tampering with the message
will break the relationship with the hash. Used with symmetric key encryption,
integrity of the message can be assured.

There are other uses too, most importantly the digital signatures which we will see in
chapter 6 but also the general technique of commitment, which is to demonstrate that
you know a certain piece of information without revealing the information until later.

These applications do not require exactly the same conditions of the hash function used,
but the conditions tend to be met by similar constructions and common practice is to
find a function satisfying all the conditions and use it for all the applications.

The hash functions in this chapter will be unkeyed: their only parameter is the data
they digest. In chapter 6 we will consider keyed hash functions, which provide greater
security.

4.1 One-Way Functions and Cryptographic Hashes

The word “hash” appears in many areas of computer science, and we stress that the
hash functions used in some algorithms (e.g. hash tables) have nothing to do with those
used in cryptography. We should also point out that the all the terminology relating to
cryptographic hash functions is very confused, with different authors using completely
different terms for each concept, so one must read carefully in this area.

Suppose that h : D → {0, 1}n, where D is the domain and n is some fixed output length.
Here are some possible conditions we might put on h:
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(1A) D = {0, 1}n.

(1B) D = {0, 1}n+k with k > 0.

(1C) D = {0, 1}∗. This condition is called compression.

(2) For all x ∈ D, h(x) is easy to compute.

(3) For almost all y ∈ Im(h)1, it is computationally infeasible to find an x such that
h(x) = y. This condition is called preimage resistance or one-way.

(4) Given x ∈ D, it is always computationally infeasible to find x′ 6= x such that
h(x) = h(x′). This condition is called 2nd-preimage resistance or weak colli-
sion resistance.

(5) It is computationally infeasible to find any pair x 6= x′ such that h(x) = h(x′). This
condition is called collision resistance or strong collision resistance.

The book (Menezes et al., 1996, §9.2) gives certain collections of these properties par-
ticular names:

A one-way function satisfies (1A), (2), and (3).

A compression function satisfies (1B), (2), (3), (4), and (5).

A one-way hash function satisfies (1C), (2), (3), and (4).

A cryptographic hash function satisfies (1C), (2), (4), and (5).

We repeat that different authors use the same terminology in different ways and the terms
“one-way” and “hash function” are often abused by vague usage. It is probably true to
say that almost everyone agrees on the terminology cryptographic hash function
as above, except that some might include (3) as well. Thankfully, (3) almost always
follows from (4), though there are some artificial counterexamples. It is typical of this
messy area, and unfortunate, that the property of “compression” is not satisfied by a
“compression function”...

Condition (3) is carefully worded. For most y there will probably be infinitely many
different x which map to y, but we only need one such x to make a preimage. On the
other hand, if we pick an output y that does not correspond to any input x then of course
it would not be possible to find x such that h(x) = y. More importantly, if we were to
pick a random input and compute h(x) = y, it then becomes very easy to find a preimage
for y! That is why the condition requires it be difficult to find preimages for almost all
possible outputs. One can always perform a partial exhaustion attack by tabulating

1Im(h) denotes the image of h, the set {h(x) |x ∈ D}.
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some hash values and then hoping that the requested preimage has already been found.
A more precise, complexity-style definition of (3) would say that it is infeasible to find
inputs corresponding to a non-negligible proportion of possible outputs.

For condition (5), note that the compression property implies that the function must be
many-to-one, because the domain is infinite and the codomain finite, so infinitely many
collisions exist. But it should be computationally infeasible to find any of them2.

In practice, the one-way and collision-resistance conditions require the hash function to
have similar diffusion properties (changing one bit of the input changes potentially all
bits of the output, unpredictably) as do symmetric key ciphers. However, the community
has had less success in designing good hash functions than good encryption.

4.1.1 Proofs About Hash Function Properties

We can prove results about these conditions, for example transferring collision resistance
from a function to something based on it. We almost always prove the contrapositive,
because it is much easier to assume that something is not preimage, 2nd-preimage, or
collision resistant, and then to prove that something else cannot have the property either.
It is worth writing explicitly:

(¬3) h is not preimage resistant if, for more than a negligible proportion of y ∈ Im(h),
it is computationally feasible to find an x such that h(x) = y.

(¬4) h is not 2nd-preimage resistant if, from even one x ∈ D, it is computationally
feasible to find x′ 6= x such that h(x) = h(x′).

(¬5) h is not collision resistant if it is computationally feasible to find even one pair
x 6= x′ such that h(x) = h(x′).

Remember that it only requires a few invertible outputs to falsify preimage resistance, a
2nd-preimage of one output to falsify 2nd-preimage resistance, and the generation of a
single pair of colliding inputs to falsify collision resistance.

An example of a proof about collision resistance is

2As with symmetric key encryption, one can formalise the definition of computational infeasibility for
cryptographic hash properties. For example, the one-way property could be defined as: given randomly
chosen Y , for any function A(Y ) computable in polynomial time the difference in probability that A finds
a preimage, compared to random guessing, |P[h(A(Y )) = Y ] − 2−n| ≤ ν(n), where ν(n) is a negligible
function.
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Claim 4.1 Let f, g : {0, 1}∗ → {0, 1}n. Define the function h(x) = f(x) ‖ g(x). Then if
either f or g is collision resistant then so is h.

Proof A collision for h means two inputs x and x′ such that h(x) = h(x′), which in
turn implies f(x) = f(x′) and g(x) = g(x′). Therefore, if it is easy to find a collision for
h then it is easy to find a collision for f and a collision for g. The contrapositive of this
statement is the one required. �

You will see more examples in the exercises.

4.1.2 From Compression Functions to Hashes

A common use of compression functions is to construct, by iteration, one-way hash func-
tions and cryptographic hash functions.

Suppose we have a function g : {0, 1}n+k → {0, 1}n. Let us split the input to a compres-
sion function into two parts, so that it becomes

g : {0, 1}n × {0, 1}k → {0, 1}n.

Then we can take an arbitrary-length input x, split it into a sequence of k-bit blocks
〈x1, . . . , xm〉, and then perform an iterative process

h〈〉 = IV

h〈x1, x2, . . . , xm〉 = g(h〈x1, . . . , xm−1〉, xm).

where IV is some initialization vector.

This is the most common way to create one-way and cryptographic hash functions, but
it is very easy to make them insecure. For one thing, we will need to decide how to
pad incomplete blocks and it is vital to get this right otherwise it creates easy-to-find
collisions, as we will see in section 4.6. If done correctly, however, it is possible to transfer
preimage resistance, 2nd-preimage resistance, and collision resistance properties from g
to h.

For now, let us look at some quick examples of insecure hashes. The simplest would
be to use the above construction with n = k = 32 and the function g(x, y) = x + y
(mod 232) where x and y are 32-bit unsigned integers. If the IV is zero, this is the
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checksum hash which treats the input as 32-bit words and computes their sum. It does
have the compression property, but it is not preimage resistant (since every 32-bit input
maps to itself), nor 2nd-preimage resistance (since appending an extra 32-bit block of
zeros does not change the output), nor collision resistant (for the same reason). Many
other common checksums such as CRC are also not preimage, 2nd-preimage, or collision
resistant because they have linearity properties.

It might seem natural to use a block cipher as a compression function, but there can be
subtle flaws. Let Ek(x) denote the encryption of a block cipher using some fixed (known)
key k. The iteration

h〈〉 = 0 (a block of zeros)

h〈x1, . . . , xm〉 = Ek(h〈x1, . . . , xm−1〉⊕xm)

is not collision resistant, as we can show without attacking the encryption component
itself. Pick any x such that x is exactly two blocks long, x = x1 ‖x2. Set x′ =
x′′ ‖ (Ek(x

′′)⊕x′′) where x′′ = Ek(x1)⊕x2. Then compute

h(x) = Ek(Ek(x1)⊕x2),

h(x′) = Ek
(
Ek(x

′′)⊕(Ek(x
′′)⊕x′′)

)
= Ek(x

′′) = Ek(Ek(x1)⊕x2),

and x 6= x′ almost certainly.

In one of the problem sheets you will find additional attacks on (a more general version
of) this function, including its preimage resistance. When the function is keyed by k this
is called a CBC-MAC – see chapter 6 – but hash functions are unkeyed and k must be
a publicly known component, which is the source of its weakness.

For the rest of this chapter, until section 4.6, we will assume that perfect one-way and
cryptographic hash functions exist and turn to the applications.

4.2 Exhaustion Attacks on Hashes

An important distinction between one-way and cryptographic hash functions is the diffi-
culty of a brute-force exhaustion attack. Brute forcing a preimage x such that h(x) = y,
or a second preimage x′ such that h(x) = h(x′), means testing all members of the domain
one-by-one until a solution is found. For one-way and cryptographic hash functions the
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domain is the infinite set {0, 1}∗! But in practice a solution is almost always to be found
in an input sequence of length n (the same size as the output). The average time to find
a solution is then 2n−1, similarly to the exhaustion attack for symmetric key ciphers. A
good one-way hash function, then, should offer “n bits of security” in the sense that it
takes about half of 2n tries to break the one-wayness.

Collision resistance is different. An exhaustion attack needs to find x and x′ such that
h(x) = h(x′), otherwise unconstrained. The attack should proceed by computing hashes
of random inputs, recording the outputs in a suitable data structure, until a duplicate
output is found. This takes much less time than brute forcing a preimage, as we prove
next.

4.2.1 The Birthday Paradox

The birthday “paradox” is commonly stated thus: you only need 23 people in a room for
there to be at least a 50% chance that two share the same birthday3. This is a “paradox”
because the number 23 seems is much smaller, in relation to the possible number of
birthdays 365, than mathematically ignorant people expect. The reason is that, for no
coincident birthdays to occur, the first person in the room is unconstrained, the second
person must dodge one date, the third must dodge two dates, the fourth three dates, and
so on. As more people enter the room it gets less likely that the next person does not
duplicate someone else’s birthday.

This is of direct relevance to the exhaustion attack on hashes: for the exhaustion attack
to fail to complete by step t, all randomly-chosen inputs up to and including step t must
have produced a fresh hash output. Let us write h = 2n for the number of possible hash
outputs, and say that T is the random variable representing the step at which we find
the first duplicate hash output, the first collision. If the inputs are randomly chosen and
the hash produces uniformly random outputs4 then we can write

P[T > t] = 1 ·
(

1− 1

h

)
·
(

1− 2

h

)
· · ·
(

1− t− 1

h

)
.

This formula is difficult to work with, but there is a good approximation which comes
from the Taylor expansion exp(x) = 1 + x+O(x2), which implies that 1− x ≈ exp(−x)

3Under the assumption that birthdays are uniformly distributed over 365 days of the year, and ignoring
leap years.

4If the outputs are not uniform then collisions become even more likely, and the running time calcu-
lations will be overestimates.
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for small x. It gives

P[T > t] ≈ exp

(
−1

h

)
exp

(
−2

h

)
· · · exp

(
− t− 1

h

)

= exp

(
−1

h

t−1∑
i=1

i

)

= exp

(
− t(t− 1)

2h

)

≈ exp

(
− t

2

2h

)
With these simplifications we are in position to compute, approximately, the number of
steps at which the probability of finding two equal hashes has risen to 50%. We solve
P[T > t] = 0.5,

exp

(
− t

2

2h

)
≈ 1

2

which gives
t ≈

√
2 ln(2)h.

(h = 365 gives the standard birthday paradox.) Note that this is just a constant (close
to 1) times h0.5.

Or perhaps we care about the average number of steps to the first collision, since we
will not stop until we find one. This is more difficult. First, recall that for non-negative
integer-valued random variables the mean has a nice alternative formula

E[T ] =

∞∑
t=0

tP[T = t] =

∞∑
t=0

P[T > t]

(because the second sum counts P [T = 0] zero times, P [T = 1] one time, and so on). So

E[T ] =
∞∑
t=0

P[T > t] ≈
∞∑
t=0

exp

(
− t

2

2h

)

Then we need a piece of really cheeky mathematics to approximate an impossible infinite
sum by the integral of the area under a curve, and then recognise the integral as one
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relating to the Normal distribution (if you have not seen this, you may take it as read):

E[T ] ≈
∫ ∞
0

exp

(
− t

2

2h

)
dt =

√
π

2
h.

Once again, this is a constant (close to 1) times h0.5.

Mathematicians might be horrified about the loose use of approximations here. Rest
assured that the analysis has been done properly (by Ramanujan, no less!) and the
precise result is

E[T ] ∼
√
π

2
h− 1

3
+

1

12

√
π

2h
+O(1/h).

4.2.2 Consequences of the Birthday Paradox

The birthday paradox means that we only have to do O(2n/2) computations of an n-bit
hash, until we find a value we have seen before. Thus the exhaustion attack on the collision
resistance of cryptographic hash functions is much cheaper than on preimage resistance.
It means that, when we care about collisions, we should choose hash functions with output
about twice as long as the corresponding key in symmetric cryptography. For this reason,
even basic hash functions have 128-bit outputs.

Alert readers will have wondered about the practicalities of the exhaustion attack: re-
membering every hash value we have seen before may take a lot of space, and searching
through those values might take a non-negligible amount of time. Instead we should use
methods which iterate the hash function until a cycle results, at which point a collision
has been found. There are a number of linear-time, constant-space algorithms for cycle
finding, e.g. Floyd’s “tortoise and hare” algorithm (Knuth, 1998, Ex 3.1.6).

4.3 Hashes and Passwords

One of the most basic mechanisms in computer security is the password. At some point
in time the user A is initialised by creating a username – some unique identifier – and
an initial password. The pair

〈UsernameA,PasswordA〉
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will be held in some database by the host and there will probably be some process by
which the password can or must be changed from time to time. When necessary, the user
enters their username and password to authenticate themselves to the host (note that
this separates identification of the user, which is achieved by the username, from the
authentication of that identity by knowledge of the password).

Modern computer systems prevent a brute force attack on a user’s password by limiting
the number of incorrect guesses which can be made, either by refusing any more authen-
tication by the user (requiring superuser action to renew the password) after too many
attempts, or simply by replying slowly to incorrect guesses.

However, the system must store the password database somewhere. In a sensible system
the password database would be readable only by privileged users such as the superuser
and the login process, but this security might be bypassed5. Furthermore, users have bad
habits and choose the same passwords for different systems. If we want security in depth,
we should hope that disclosure of the password database does not necessarily breach the
security of every user of the system, or risk the security of other systems.

One could encrypt the password database. But the decryption key must exist somewhere
on the computer system too, so this does not provide significant additional security.
(Many e-commerce websites provide a forgotten password feature which will send a
user their password via email. This is subject to many security risks in itself, but also
indicates that the plaintext password is available to the host and therefore potentially
disclosable. It also highlights the risk of using the same password on multiple hosts.)

A good, simple, solution is for the host not to store the user passwords at all. Instead,
they store the results of a one-way hash function on the passwords: the password database
contains

〈UsernameA, h(PasswordA)〉,

and the login process checks whether the supplied password computes to the correct hash.
This is the technique used by UNIX systems, which historically allowed the password
database to be readable by any user. Unfortunately the hash used was not wonderfully

5For example, a logged-in superuser might be away from their keyboard, and an attacker uses the
window of opportunity to copy the password database to a file with universal read permissions. This
exploit once allowed the lecturer to break into the computer system at his school. Please note: this action
predated the Computer Misuse Act 1990. It is unethical, and now illegal, to obtain unauthorized access
to a computer resource.
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secure: modern versions use a different hash and keep the password hashes secret just in
case.

We do not need the function h to have all the properties of a cryptographic hash. We
do not even need it to accept arbitrary-length inputs, as long as it accepts inputs long
enough for secure passwords. Collisions do not present a security risk, and neither do
2nd-preimage attacks. The only requirements are (2) that it be easy to compute and (3)
one way: preimage attacks are serious, because they allow an attacker who has obtained
the password database to deduce the users’ passwords and then, presumably, impersonate
them. In practice, however, one tends to use an algorithm designed as a full cryptographic
hash, because they are easily available and the extra properties should not hurt.

4.3.1 Offline Attacks

Let us examine the situation where an attacker has obtained the password database
which contains usernames and (securely one-way) hashed passwords. Now they are in a
position to mount an offline attack, meaning that they do not need to interact with the
host. A brute-force exhaustion attack can test every possible sequence of characters to
see whether it maps to one of the hashed passwords, and so one possible password can be
tried in the time it takes to compute one hash. (As with cryptography, we must assume
that the enemy knows the system, i.e. the hash function used.)

It is for this reason that many systems require strong passwords, which are 1) not
too short, 2) not composed of restricted sets of characters such as lowercase-only letters,
and 3) not derived from dictionary words. For example, a 6-character password drawn
from all 95 printable ASCII characters6 has 956 ≈ 239 possibilities, which is attackable
by brute force given enough determination. And if the characters are restricted to, say,
lowercase letters and numbers then we have only 366 ≈ 231 possibilities, much too weak.
Additional characters create, of course, exponentially more work for an attacker but even
8-character passwords are insecure if they are drawn from lowercase letters and numbers
only. Dictionary words are even more attackable: there are probably fewer than a million
(220) English words. One can find password lists including English words, modifications
by adding digits or replacing digits by numbers, common pairs of words and proper names,
with tens of millions of entries. If the user’s password is drawn from one of these lists, it
will not take too long for the attacker to find it.

Attackers would like to do their work only once, creating a database of hash values for ev-
ery combination of printable character passwords up to as big a length as possible. When

6
0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ !"#$%&’()*+,-./:;<=>?@[\]^_‘{|}~
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new hashes are disclosed, they can quickly be checked against a sorted list of hashed
passwords. But even if this has practical computation time, the space requirements are
infeasible for longer passwords: to store 128-bit hashes of all 956 6-character printable
passwords would require over 10TB and 7- or 8-character passwords are completely be-
yond reach. However, there is a time-space tradeoff which allows slower checking of hashes
in exchange for much smaller stored data.

The simplest tradeoff is to use a chain of hashes, an idea described by Martin Hellman.
We sketch it here, and more details can be found in the original paper (Hellman, 1980).
Given a set of possible passwords P we have the hash function h : P → H, where H is
the set of possible hashes; to make this tradeoff we need to create a function g : H → P .

Then we pick a large selection from P , {p1, . . . , pn}. For each pi we compute an iterated
chain

pi, g(h(pi)), g(h(g(h(pi)))), g(h(g(h(g(h(pi)))))) . . .

for k steps. We store only the first password pi and the last password which we will call
qi in each chain. We vary n and k so that the storage requirement is manageable, and
that we hope to have passed through the hashes of most passwords in P .

Then if we are given a hash y to invert, we apply g and check whether this appears as qi
for any i. If not, we apply h and then g and try again, repeating up to k times. If at any
point we hit qi we go back to the starting point of the chain pi and iterate through until
we hit y somewhere along the chain.

There are some difficulties with this technique when the chains collide, and an improved
version of the technique is known as the rainbow table. This uses a family of different
functions gj : H → P , applying gj at position j of the chain. It makes chains less likely
to get tangled.

Various projects are underway to compute rainbow tables for popular hash functions. For
example they are available for the NTLM hash (used in modern versions of Windows) for
7-character passwords of any type and 8-character passwords without punctuation. They
even come with user-friendly brute forcing software7.

One defence against precomputed tables is to add a salt to the password. This simply
means that the password database stores

〈UsernameA, h(Salt ‖PasswordA)〉
7http://ophcrack.sourceforge.net/



4.3. HASHES AND PASSWORDS 57

where Salt is a fixed string. This effectively pads out the passwords to make them too
long for general tables. Even better is to make the salt depend on the username, storing

〈UsernameA, h(g(UsernameA) ‖PasswordA)〉

for some function g, perhaps itself a hash function. This means that an attack table
cannot be built against your own computer system8.

There are other ways to strengthen hashed passwords against brute force attack. One
is sometimes called hash stretching, in which the hash is iterated a reasonably large
number n times (say n = 1000). This makes it n times slower to check the authentication,
but also n times slower for an attacker to compute hashes themselves. Another is to
compute a randomly salted hash h(Salt ‖PasswordA), where the salt is a small number
of random bytes (1–2), and then discard the salt. The host will have to check whether
any possible salt could have lead to the stored hash, and likewise the attacker. Both of
these techniques illustrate that condition (2) of cryptographic hash functions, that they
be quick to compute, is also an advantage to a brute-force attacker.

These attacks are of contemporary importance because the disclosure of (partial) databases
of usernames and hashed passwords is quite common at the moment. They are proba-
bly obtained by privilege escalation due to insecurities in server scripts which have been
written in computer languages with poorly-defined semantics.

4.3.2 Password Eavesdroppers and Lamport’s Scheme

The normal “login” password protocol could be written like this:

1. A → H : UsernameA

2. H → A : Password?

3. A → H : PasswordA

4. H grants access if 〈UsernameA, h(PasswordA)〉 is in its password
database.

This is the protocol notation we will use in chapter 7, but here its meaning should be
evident. This protocol is all very well as long as Alice’s communication with the host

8A contemporary example of the vulnerability of unsalted hashes is described at http:
//nakedsecurity.sophos.com/2012/06/06/linkedin-confirms-hack-over-60-of-stolen-
passwords-already-cracked/: of about 5.8 million leaked SHA-1 password hashes, over 60% could
be brute-forced within a day or two.
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is secure, for example if she is typing directly into the host computer’s keyboard9. It is
obviously hopelessly insecure if Alice is trying to authenticate to a remote host over an
insecure network, as any eavesdropper can see her password and use it themselves later
(the replay attack). The old File Transfer Protocol (FTP) used a cleartext password
like this, and was a serious security problem.

Lamport proposed an elegant scheme which defeats an eavesdropper’s replay attack,
although it is only secure against passive attackers and cannot protect Alice if her com-
munications are being redirected via an intruder. At initialization, a large integer n is
chosen and 〈UsernameA, h

n(PasswordA)〉 written to the password database. hn(x)
indicates that the function h is iterated n times on x. Alice must remember the integer
n. Then the authentication protocol is

1. A → H : UsernameA

2. H → A : Code?

3. A → H : Code = hn−1(PasswordA)

4. H grants access if 〈UsernameA, h(Code)〉 is in its password database
and if so updates the password entry to 〈UsernameA,Code〉.

5. A decrements n.

Once a correct code has been sent, it immediately becomes out of date and cannot be
used by an eavesdropper. This protocol has the disadvantage that user must keep their n
in sync with what is expected by the host: a lost confirmation from the host could cause
all future attempts to fail, for example. It also has the disadvantage, though some might
say advantage, that the password must be changed every n uses.

4.3.3 Authentication Tokens and Biometrics

Instead of, or as well as, a password, some systems require a physical device called an
authentication token. The device could be a magnetic swipe card, a smart card (a
tiny device with embedded processor), or just a car key. Such devices are more difficult
to clone than eavesdropping on a password, and the more complex the device the more
difficult the cloning. Car keys are easy to copy, but smart cards protected by a PIN
and offering cryptographic challenge-responses are much more difficult. Online banking

9...and knows that the host has not had a keylogger installed, and knows that the keyboard and
keyboard cable have not had a keylogger attached. And knows that nobody is standing behind her, etc.
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often requires the use of a standalone, PIN-protected, calculating machine (of which more
later).

Finally, if a password is something you know and a token something you have, a biometric
is something you are: a fingerprint, retinal scan, voice ident, etc. Biometrics are often
difficult to clone (particularly without connivance of the owner), but unlike passwords
and tokens they are difficult or impossible to change.

Sections 10.8 to 10.10 of the course text (Kaufman et al., 2002) cover this material very
well, and it will not be repeated here.

4.3.4 The LM Hash

Here we consider a short case study. The LM Hash, which is 128 bits long, was used
to store passwords in versions of Microsoft Windows up to the early 1990s. It is a
good lesson in bad hash function use because it manages to reduce the work of brute-
force search from 2128 to about 244. Sadly, it continued to be supported for reasons of
backwards compatibility and only the most recent versions of Windows disabled it by
default. The algorithm is as follows:

LM Hash

(1) Null-pad the password to 14 characters. (Longer passwords were not allowed).

(2) Force any lowercase letters to uppercase, to make the password case insensitive.

(3) Split into two 7-byte halves, each of which makes a 56-bit DES key.

(4) Use each DES key to encrypt the fixed 64-bit block consisting of ASCII characters
KGS!@#$%.

(5) Concatenate the two DES encryptions to make a 128-bit hash.

Guessing a preimage – a password which hashes to a given value – should involve searching
2128 possibilities, but a restriction to 14 printable ASCII characters reduces this to about
9514 ≈ 292. Making it case insensitive further reduces the search space to 69 characters,
6914 ≈ 286 possibilities. The worst part of the algorithm is producing two separate hashes
of seven-character halves: this way, one can brute force each half separately for a total
work of about 2 · 243. (And most likely the second half of the password is not the full
seven characters, which means that it will probably be found more quickly, and then
these characters might be used to help with a dictionary attack on the first half).
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There is no salt, so the same password leads to the same LM hash on every Windows
system. Although a full table of hash inverses would still be too large to store on a modern-
day computer, it is feasible to compute and store a rainbow table or similar structure,
and these now can be found on the internet. Any LM hash can now be inverted within
a few seconds.

4.4 Hashes and Key Generation

Recall from chapter 3 the need for Alice and Bob to share a secret cipher key. It might
not be too easy to them to memorise a binary sequence, of length 56 for DES or 128
for AES, so they will want a way to generate the key from a more memorable secret.
Such a device is called a key derivation function (KDF) and it can be used in many
situations, including when Alice and Bob want to generate a disposable key from a secret
they already share.

Key generation is an important part of a cryptosystem, which we did not discuss in
chapter 3, and it seems to be an area which has received relatively little attention. We
can only present some simple techniques here, and urge caution10.

Obviously Alice and Bob cannot simply hash their memorable password to use as a key,
because that exposes them to dictionary attacks: the enemy can try a KPA using hashes
of extended dictionaries and have a good chance of much quicker success than plain
exhaustion over the key. Since we are avoiding dictionary attacks, the same techniques
that were used in the previous section apply. Ideally we want the KDF to be so difficult
to attack that it would be preferable to exhaust over the key itself instead of the shared
password.

Alice and Bob should certainly add a salt to the hash, at least 64 bits long, but if we take
Kerckhoffs’ Principle seriously then we should not rely on keeping the salt secret. Their
best defence is to make the KDF very slow, bearing in mind that Alice and Bob should
not need to use it very often. The “stretching” technique is commonly used, with the
hash being iterated many times, perhaps thousands, in order to slow down a dictionary

10An interesting history of password hash and KDF development can be found at http://www.
openwall.com/presentations/PHDays2012-Password-Security/.
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attacker. One example of a KDF like this is

u1 = h
(

(p⊕ c1) ‖h
(
(p⊕ c2) ‖ s

))
,

ui = h
(

(p⊕ c1) ‖h
(
(p⊕ c2) ‖ui−1

))
for i = 2, . . . , n,

k =

n⊕
i=1

un

where p is the shared password, s a fixed salt, c1 and c2 constants. The idea is simply to
XOR together hashes iterated n times, where n might be 1000 or more, and this process
produces a key which is the same length as the hash function (it can be chopped down
if a smaller key is needed). The nested hash is a MAC function which will be explained
in chapter 6.

The standard key derivation function PBKDF211 slightly generalizes the above scheme to
allow generation of keys which are longer than the length of the hash function. Its under-
lying hash function is SHA-1. It is used in the WPA and WPA2 wireless authentication
protocols.

Although cryptographic hashes are used in KDFs, the application does not require col-
lision resistance or 2nd-preimage resistance. Even preimage resistance is only important
if Alice and Bob need to keep their original key, and their salt, secret from the attacker.
The most important thing is that the iterated hash output should be well-dispersed over
its codomain, but it is not difficult to see why this is a prerequisite for good collision
resistance anyway.

4.5 Hashes and Message Integrity

As we stressed in chapter 3, encryption does not guarantee the integrity of the encrypted
message. This is relevant in the context of an active attacker who might, maliciously,
alter the contents of communications between Alice and Bob. Bob may need a mechanism
to ensure that the message is not altered in transit, and to reject it (and presumably ask
for a repeat transmission) if it has been.

A cryptographic hash function is useful because it can accept an arbitrary-length input.
If Alice’s message is m she can use the hash h(m) as a guarantor of integrity, because

11http://www.ietf.org/rfc/rfc2898.txt
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a modified message m′ will no longer (with very high probability) have the same hash.
However, a hash alone cannot provide integrity: the simple protocol

1. A → B : m||h(m)

2. B separates the message m′||y and accepts m′ only if h(m′) = y.

does not provide integrity. An attacker capable of replacing m by m′ can likewise replace
h(m) by h(m′), fooling Bob into accepting m′.

Nonetheless, this is essentially what is going on when one downloads software from a
website which provides a checksum (usually an MD5 hash, see subsection 4.6.3) of the
package. The checksum is partly to identify non-malicious transmission errors, which it
does perfectly well, but also to prevent an attacker from replacing the software with their
own malicious code. However, it seems likely that an attacker could replace the hash
on the website at the same time! And few people actually bother to check that their
downloaded package has the correct checksum.

Proper message integrity requires a key, similar to an encryption key. One solution is

1. A → B : Ek(m||h(m))

2. B decrypts and separates the message m′||y, accepting m′ only if
h(m′) = y.

where Ek(−) is some secure encryption and k a shared secret key. This prevents an
attacker from replacing h(m) with the new hash. This paradigm is used often, but it is
unsatisfactory for two reasons. First, the message integrity relies on its confidentiality,
and we would prefer to separate the security concerns. Second, it is vulnerable to a
truncation attack: if Alice can be persuaded to send m2 = m ‖h(m) ‖m1 to Bob, their
transmission is Ek(m ‖h(m) ‖m1 ‖h(m2)) which, under some block cipher modes, can be
truncated by the attacker to Ek(m ‖h(m)). Thus the attacker fools Bob into thinking
that Alice intended to send m, but this was only part of the message whose integrity was
supposed to be preserved.

Another solution is

1. A → B : m ‖Ek(h(m))

2. B separates m′||c, accepting m′ only if h(m′) = Dk(c).
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This is an example of a Message Authentication Code (MAC), which we shall examine
in Chapter 6. Note that, in this protocol, the message can be sent in the clear.

4.5.1 Do Collisions Matter?

When used in this way, the 2nd-preimage resistance property of the cryptographic hash
function h is paramount: it is what prevents the attacker from finding a different message
m′ which the same hash. But cryptographic hash functions require full collision resistance,
which would mean that an attacker cannot find any pair of messages with the same hash.
An attack on collision resistance would probably find a pair of random-looking byte
sequences which happen to hash to the same value: is this really a problem? We have
shown in section 4.2 that (strong) collision resistance is a difficult condition requiring,
all other things being equal, hash outputs to be twice as long for an equivalent level of
security against exhaustion attacks. Perhaps 2nd-preimage resistance is sufficient, and
we can dispense with full collision resistance?

This is a dangerous way of thinking, particularly for commonly-used hash functions. It
is a consequence of their iterative construction that common hash functions have the
property

h(x) = h(x′) implies h(x ‖ y) = h(x′ ‖ y)

for all y. This is true of MD5 and SHA-1, the most widely-used hash functions today,
if they are not padded correctly. There have been a number of attacks which find, by
brute force or more clever methods, collisions in MD5 which amount to (abstracting all
the details)

h(v=0;) = h(v=1;)

from which one can produce code (or documents, or certificates...) which satisfy

h(v=0;if v==0 then ...something innocent... else ...something guilty)

= h(v=1;if v==0 then ...something innocent... else ...something guilty)

See (Daum & Lucks, 2005) for a readable description of this attack, with links to other
work. The moral of the story is: any hash collision is potentially an attack on integrity.

4.6 Construction of Cryptographic Hash Functions

Finally, we outline how cryptographic hash functions are constructed in practice. This
field is not as mature as cryptography, and most experts fear that the current options
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have significant weaknesses, but there is hope that newly-developed hash functions will
be as secure, in their own way, as AES seems to be for symmetric key cryptography.

4.6.1 The Merkle-Damg̊ard Construction

We have already seen, in subsection 4.1.2, that the compression property of hash functions
can be achieved by iterating a compression function over fixed-length blocks of hash input:

h〈〉 = IV

h〈x1, x2, . . . , xm〉 = g(h〈x1, . . . , xm−1〉, xm)

for some initialization vector IV (which must be fixed).

Hashes computed in this way are sometimes strengthened by applying one more function
to the hash output. This is called finalization.

This iterative construction was studied independently by Ralph Merkle and Ivan Damg̊ard,
who proved that this is a secure construction in the sense that if g is a compression func-
tion in the sense of section 4.1 and the input x is padded up to a multiple of the blocksize
in a secure way, then h will be a cryptographic hash function. It is now known as the
Merkle-Damg̊ard construction and most hash functions use it. The security result
can be made quite precise, in terms of measuring the “advantage” gained by an attacker
(which, loosely speaking, is the probability that an attacker can break the one-way or
collision-resistance properties): the maximum advantage against the iterated construction
h is no greater than the maximum advantage against the compression function g.

Padding the input turns out to be extremely important for security, because the iterative
nature of the construction is open to abuse. For example, imagine a compression function
with block length 8 bytes. If we simply pad out the input with trailing zeros, then

h(message) = h(message0)

(where 0 represents a zero byte) is an easy-to-find collision. This is avoided by padding
with 100 · · · , which may require adding an additional block.

A weak flaw can exist if any padded message can ever be a suffix of another, i.e. pad(x) =
y ‖pad(x′) for some x, x′, and y. In such a case it is possible for collisions to be found
amongst padded messages, even when h is collision resistant. A proof of this highly
technical result can be found in (Nandi, 2009). Motivated by this, it is usual to encode
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the size of the message in the padding. Merkle’s original suggestion, now called MD-
strengthening, uses the padding

pad(x) = x100 · · · 0 ‖ l

where l is the binary representation of the length of x (measured in bytes or bits; this
limits the possible input to a size which can be encoded within one block). Thus as many
as two additional blocks might be added to the original data.

To prove security of the overall hash function, the padding must preclude these attacks.
So called MD-compliant padding is a sufficient condition:

(i) x is a prefix of pad(x).

(ii) If |x| = |y| then |pad(x)| = |pad(y)|
(iii) If |x| 6= |y| then the last blocks of pad(x) and pad(y) are not equal.

It is easy to see that the “MD-strengthening” padding satisfies these conditions.

We should say that there are arguments against the MD construction. Joux (Joux,
2004) points out that collisions of two messages can be extended, exploiting the iterative
structure, to make collisions of exponentially many (unpadded) messages. In (Ferguson
et al., 2010) the authors are very critical about the use of iterated compression functions:
they claim that the intermediate values of the computation give away information which
makes attacks more likely. The advocate using h(h(x) ‖x), instead of h(x), for any
iterative hash function h. This, however, takes twice as long to compute.

4.6.2 The MD4 Hash

The cryptographic hash function called MD4 was published by Ron Rivest in 199012.
It was designed to be fast on 32-bit processors, and we will use “word” to mean a 32-
bit quantity throughout this section. The input is processed in blocks of 512 bits (16
words). The output is 128 bits (4 words), which is perhaps too short: recall that the
birthday paradox means that only about 264 hashes would be needed to find a collision by
chance. MD4 follows the Merkle-Damg̊ard paradigm, with a fixed IV and the following
compression function written as a function of 4+16 input words and 4 output words13:

g(h1, h2, h3, h4, x1, . . . , x16) = (h1 + h′1, h2 + h′2, h3 + h′3, h4 + h′4)

12http://www.ietf.org/rfc/rfc1186.txt
13This description is to give a flavour of the algorithm, not the full details; see (Menezes et al., 1996)

for a complete description. We have not followed the description of (Kaufman et al., 2002) because it is
incomprehensible.
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where (h′1, h
′
2, h
′
3, h
′
4) is the result of iterating 48 rounds of the function:

r(a, b, c, d) = (d, Fj , b, c)

to starting values (h1, h2, h3, h4). This looks rather like a 48-round Feistel network,
except that there are four blocks of bits which are shuffled around. (Remember though
that cryptographic hash functions are not supposed to be invertible!) Fj is a “mangler”
function output, which is slightly different in each round, defined by

Fj = (a+ fj(b, c, d) + x[ij ] + cj)≪ sj

where

• j is the round number (1–48);

• fj is a nonlinear binary function (operating bitwise on three 32-bit inputs), it changes
every 16 rounds;

• ij determines which of the sixteen 32-bit data words of x is used in this round (each
is used three times);

• cj is a constant which changes every 16 rounds;

• sj is the amount of rotational left bit shift, which changes every round;

• The operator ≪ n rotates the 32 bits in a word n to the left;

• + represents addition modulo 232.

MD4 throws just about everything at the bits in an effort to smash any structure and
diffuse any changes. It represents a triumph of overcomplexity because it is completely
insecure in spite of all this. Only five years after its proposal in 1990, the first full
collision attack on MD4 was found (Dobbertin, 1998). It reduced the work required
from 264 MD4 computations to the equivalent of 220, and thus was able to find two
distinct messages with the same hash within a few seconds on a PC. Subsequent work
found and refined new attacks to the point where only three MD4 hash operations were
required in order to calculate a colliding pair of inputs: a comprehensive refutation of
its collision-resistance. Furthermore, Guo et al. claim preimage attacks which reduce
the work required for finding a preimage (respectively 2nd-preimage) from 2128 to about
278 (respectively 269) MD4 operations (Guo et al., 2010). While still a large amount of
computation, this suggests that the one-way property of MD4 cannot be relied upon.

4.6.3 Successors to MD4

MD4 was popular for a while; it was used, for example, in the NTLM password digest
(NTLM is the successor to LM from subsection 4.3.4). But even before the collision and
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preimage attacks there were doubts about its security: it is common, in both cryptography
and hashing, to find attacks on reduced-round versions before a full attack, and a 32-
round version of MD4 was attacked as early as 1991. We now briefly sketch the widely-
used successors to MD4.

MD5 was published by Ron Rivest in 1992 and became very widely used, particularly
to check the integrity of file transfers in the days when modems where the most common
method of communication. MD5 “checksums” are still used in some file repositories
today.

MD5 is not all that different to MD4. It adds 16 additional rounds to the iteration in
the compression function, changes the round function to

r(a, b, c, d) = (d, b+ Fj , b, c),

and then replaces the nonlinear functions fj , the indexes ij , the constants cj , and the
rotational shifts sj (mainly by giving them a less regular pattern). Everything else is the
same. The full details can be found in (Menezes et al., 1996, §9.4.2(ii)) and many other
places online.

The security of MD5 lasted longer than MD4, with collisions created in 2004 and a
series of more serious attacks then following. The current best attack takes about 221

computations to create a collision. At the present time, there are no preimage or 2nd-
preimage attacks significantly better than exhaustive search. Nonetheless, it is considered
an insecure hash and new security systems will avoid it.

MD5 is used by some certification authorities to validate SSL certificates, and it has been
shown that collisions can be exploited to create fake validation of invalid certificates. In
2012 an MD5 collision was used, by the widespread malware Flame, to forge a Windows
code-signing certificate.

SHA-1 was published in 1995. Like DES it was published by NIST as a US Federal
Information Processing Standard. It was designed by the NSA, which immediately made
some people suspicious of it. Almost every modern application which does not use MD5
uses SHA-1 (and some use both).

SHA-1 has a hash length of 160 bits. It is similar to MD5 but feeds five, rather than
four, 32-bit words from compression function to compression function. Each compression
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function iterates 80 rounds,

r(a, b, c, d, e) = (Fj , a, b≪ 30, c, d)

and the mangler functions Fj are rather similar to those in MD4. The main difference
is that each message block is expanded to a full 80 32-bit words, by forming different
XOR and bit-rotated combinations of the 16 32-bit words which make up the 512-bit
block. These 80 words are then used in one round each. The full details can be found
in (Menezes et al., 1996, §9.4.2(iii)).

There is some uncertainty about the best attacks on SHA-1, perhaps because they are
so complicated that it takes a long time to verify them. There are, as yet, no preimage
or 2nd-preimage attacks better than exhaustive search, but claims have been made that
collisions can be found in 250–260 hash computations, compared with the birthday paradox
baseline of 280. Some attacks on reduced-round SHA-1 make cryptographers nervous
about the security of the full version.

There is also a SHA-2, which can output hashes of 224–512 bits. It is not widely
used, perhaps because SHA-1 weaknesses were not identified until 2005, and are still
not very severe. A 5-year contest to select SHA-3, inspired by the contest structure
which produced the AES encryption algorithm, finished in October 2012; it was not held
because of weaknesses in SHA-2, but in order to have a differently-designed alternative
available (in case of future attacks). The algorithm known as Keccak was the winner.
In its default 64-bit mode (in which all operations are on 64-bit words, for efficiency on
modern processors) it supports outputs of 224, 256, 384, and 512 bits; its word size can
also be scaled up or down. Hopefully these super-secure hash functions will begin to be
adopted.

Bibliography

Daum, M. & Lucks, S. (2005). Hash Collisions (The Poisoned Message Attack).
Webpage based on Eurocrypt 2005 rump session talk: http://th.informatik.

uni-mannheim.de/people/lucks/HashCollisions/.

Dobbertin, H. (1998). Cryptanalysis of MD4. Journal of Cryptology, 11, 253–271.
Available at http://repo.meh.or.id/Cryptography/EN-Cryptanalyse%20Md4.pdf.



BIBLIOGRAPHY 69

Guo, J., Ling, S., Rechberger, C., & Wang, H. (2010). Advanced meet-in-the-
middle preimage attacks: First results on full Tiger, and improved results on MD4
and SHA-2. In Advances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture
Notes in Computer Science (pp. 56–75). Springer. Extended version available at
http://eprint.iacr.org/2010/016.pdf.

Hellman, M. E. (1980). A cryptanalytic time–memory trade-off. IEEE Transactions
on Information Theory, 26(4), 401–406. Available at http://www-ee.stanford.edu/

~hellman/publications/36.pdf.

Joux, A. (2004). Multicollisions in iterated hash functions. Application to cascaded
constructions. In Advances in Cryptology – CRYPTO 2004, 24th Annual Interna-
tional Cryptology Conference, volume 3152 of Lecture Notes in Computer Science
(pp. 306–316). Springer. Available at http://www.iacr.org/cryptodb/archive/2004/

CRYPTO/1472/1472.pdf.

Knuth, D. E. (1998). The Art of Computer Programming Volume 2 – Seminumerical
Algorithms. Addison-Wesley, 3rd edition.

Nandi, M. (2009). Characterizing padding rules of MD hash functions preserving colli-
sion security. In Information Security and Privacy, volume 5594 of Lecture Notes in
Computer Science (pp. 171–184). Springer. Available at http://eprint.iacr.org/

2009/325.pdf.



70 BIBLIOGRAPHY



Chapter 5

Asymmetric Key Ciphers

Reading (course text): Kaufman et al. §2.5, 6.1-6.3, chapter 7

Alternatives &
further depth:

Gollmann §14.2, 14.5.3 (barely covered)
Ferguson et al. §2.3, chapters 10 & 12
Menezes et al. §2.4.1-2.4.3, 4.1, 4.2.3, 8.1-8.2, 11.3.6

A major drawback of symmetric key ciphers is the requirement for a secret key. Although
it might be feasible for small numbers of people to meet, and for each pair to agree on
their own key, for larger groups it becomes both unwieldy to keep track of a key for
every pair of people and impossible to exchange the keys in the first place. Asymmetric
ciphers allow users to communicate confidentially after transmitting a key which is not
confidential1. Intuition suggests that this ought to be impossible, because an eavesdropper
knows everything the participants transmit, but it becomes possible with mathematical
tricks called trapdoor functions. A trapdoor function is a bit like a hash in that it is
easy to perform and difficult to invert, but different in that it becomes easy to invert given
some extra information. The RSA system uses a classic example and we will dedicate
this chapter to it.

With an asymmetric cipher, the encryption key and decryption key are different. The
encryption key, called the public key, is published, and it should be computationally

1The authenticity of the public key, however, does need to be established. We return to this in
chapter 7.
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infeasible to deduce the decryption key, called the private key or secret key, from the
public key. This makes key distribution much easier, because everyone can publish their
own public key. (In the following chapter we will see how to create asymmetric signatures,
which tend to go hand-in-hand with asymmetric ciphers, to prevent an attacker from
forging another person’s key; later in the course we can combine all the components to
allow users who have never met to verify each others’ identity and communicate securely.)

5.1 Number Theory Primer

We summarise, very briefly, the necessary number theory to understand why the RSA
cryptosystem works.

• The notation x | y, “x divides y”, means that the integer y is a multiple of the integer
x.

• A positive integer p is prime if its only divisors are 1 and itself. (1 is not a prime
number).

• The greatest common divisor of two integers, m and n, is the greatest integer
which divides both. It is written gcd(m,n).

• gcd(m,n) can be computed extremely efficiently using Euclid’s Algorithm. Further-
more, if gcd(m,n) = g then Euclid’s Algorithm finds integers x, y satisfying the equa-
tion g = mx + ny. Euclid’s Algorithm takes O(log min(m,n)) steps and each step
involves a fixed number of arithmetical operations on numbers no greater than m or
n.

• Two integers, m and n, are coprime if gcd(m,n) = 1.

• When gcd(m,n) = 1,
if m |x and n |x then mn |x. (5.1)

• We write x ≡ y (mod n) if n |x − y, which is equivalent to saying that x and y have
the same remainder when divided by n. The positive integer n is called the modulus.

• Arithmetic can be performed on the remainders modulo n, because x1 ≡ y1 (mod n)
and x2 ≡ y2 (mod n) imply that x1 +x2 ≡ y1 + y2 (mod n), x1 ·x2 ≡ y1 · y2 (mod n),
and xe1 ≡ ye1 (mod n) for any positive integer e.

• If gcd(a, n) = 1, there exists a multiplicative inverse for a, which is an integer b
such that ab ≡ 1 (mod n). When n is implicit, the inverse of a is written a−1. It can
be found using Euclid’s Algorithm: we find integers such that ax+ ny = 1, and then
a−1 ≡ x (mod n).



5.2. THE RSA CRYPTOSYSTEM 73

Most textbooks present quite a lot of number theory in order to get to RSA. We only
need one result, a special case of Euler’s theorem often known as Fermat’s Little
Theorem:

Claim 5.1 For prime p,

ap−1 ≡

{
0 (mod p), if p | a,

1 (mod p), otherwise.
(5.2)

Proof If p | a then p | ap−1, so the first case is immediate. Suppose that p does not
divide a. Now consider the following sets,

A = {1, 2, . . . , p− 1},
B = {a · 1 (mod p), a · 2 (mod p), . . . , a · (p− 1) (mod p)}.

No members of B can be zero since a · x ≡ 0 (mod p) requires p | a or p |x, neither of
which happens. All members of B must be different since a · x ≡ a · y (mod p) requires
p | a · (x− y) which means p | a or p |x− y, neither of which happens. By the pigeonhole
principle, A and B must be the same set. Now multiply the elements in each set together:
we must have

p−1∏
i=1

i ≡
p−1∏
i=1

(a · i) ≡ ap−1
p−1∏
i=1

i (mod p). (5.3)

Finally,
∏p−1
i=1 i is coprime to p so it has a multiplicative inverse b. Multiplying (5.3) by

b gives the desired result. �

5.2 The RSA Cryptosystem

The RSA system is named after its inventors Ronald Rivest, Adi Shamir, and Leonard
Adleman, and was first published in 1978. In fact, it had already been discovered by
Clifford Cocks at GCHQ in 1973, but was considered more of a mathematical curiosity
than a practical cipher. Mathematical work at GCHQ was classified and not published,
and it was not until 1997 that Cocks was allowed to admit his earlier discovery in public.
Until 2000 there were some restrictions on the RSA algorithm because it was patent
encumbered. It is now used very widely in cryptographic and authentication protocols.
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The keys are generated entirely by the recipient Bob. He first chooses a key length b:
larger b increases the security of the system and also increases the length of message
which can be sent, but at greater computational cost. A typical value is b = 1024.

Key Generation

(1) Choose two prime numbers each b/2 bits in size, call them p and q. Compute their
b-bit product n = pq and the so-called totient φ = (p− 1)(q − 1).

(2) Choose an integer e which is coprime to φ.

(3) Publish the public key, which is the pair pkB = 〈n, e〉.
(4) Find an integer d such that ed ≡ 1 (mod φ).

(5) The private key is the pair skB = 〈n, d〉2.

Alice can use the public key pkB to transmit a message, confidentially, to Bob. In the
terminology of chapter 3, the keyspace refers only to the unpublished part of the secret
key, the integer d ∈ K = {2, . . . , n− 1}. The plaintexts and ciphertexts are both numbers
and M = C = {0, 1, . . . , n− 1}.

The encryption and decryption functions use the public and private keys, respectively:

Encryption

(1) (“pad” m, which we will later see is necessary for security).

(2) EpkB
(m) = me (mod n).

Decryption

(1) DskB
(c) = cd (mod n).

(2) (discard padding).

The RSA system is making use of the following trapdoor: given n and e, it is easy to
compute me (mod n) from m but difficult to do the reverse; however, given the factors of
n it is easy to follow the mathematics below and find m from me (mod n).

So much for the abstract formulation. We need to check that decryption actually works,
that the above algorithms can be performed efficiently, and that an attacker cannot
decrypt in reasonable time without the secret key.

2If Bob stores p and q as well, he can make decryption somewhat more efficient. See (Kaufman et al.,
2002, §6.3.4.4).
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5.2.1 Correctness

We need to check that DskB
(EpkB

(m)) = m. Because the message is smaller than n, it
suffices to prove that this holds (mod n).

The encryption and decryption algorithms give that DskB
(EpkB

(m)) ≡ med (mod n).
And the key generation algorithm ensured that ed ≡ 1 (mod φ), which is equivalent to
ed = 1 + k(p− 1)(q − 1) for some integer k. Now calculate

med = m ·mk(p−1)(q−1) ≡ m · (mp−1)k(q−1)
(5.2)
≡
{
m · 0k(q−1), if p |m
m · 1k(q−1), otherwise

}
≡ m (mod p),

med = m ·mk(p−1)(q−1) ≡ m · (mq−1)k(p−1)
(5.2)
≡
{
m · 0k(p−1), if q |m
m · 1k(p−1), otherwise

}
≡ m (mod q).

Now we have p |med −m and q |med −m, which with (5.1) gives pq |med −m i.e.

med ≡ m (mod pq).

(Some literature incorrectly asserts that it is necessary for m to be coprime to n for the
above result to hold. It is necessary for a particular proof to work, but our proof works
for any m.)

5.2.2 Efficiency

All parts of the RSA cryptosystem depend on modular arithmetic with a very large base,
n or φ. The numbers involved will easily overflow 32- or 64-bit integers so they must be
stored in some sort of large or arbitrary-precision number format. Because these formats
are not native to CPUs, operations on them will be slow. We must use efficient algorithms
to implement RSA.

The key generation phase begins with searching for very large prime numbers in a certain
range (with a certain number of bits). Stage (1) will be done using a pseudo-random
primality test, for example the Miller-Rabin test. Depending on the exact algorithm
used, the time complexity will be O(b3) or O(b4). In stage (2), we choose e and then
check that gcd(e, φ) = 1 using Euclid’s Algorithm (if not, repeat with a different value
of e, or if e is fixed we regenerate p and q). This takes O(b) steps, each involving a fixed
number of addition and multiplication operations on b-bit integers, for an overall time of
O(b3). The same run of Euclid’s Algorithm gives us d as well, since it is the multiplicative
inverse of e (mod φ) and that completes all the computation of the key generation phase.
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We can make the encryption more efficient by choosing a fixed small value of e: the only
constraint is that it must be coprime to p − 1 and q − 1. Obviously e should not be 1,
otherwise encryption is the identity function, and e = 2 is impossible because it will not
be coprime to the even numbers p− 1 or q − 1. It is quite popular to choose e = 3, and
search for primes p and q such that p− 1 and q− 1 are not multiples of 3. This allows for
very fast encryption, using only two modular multiplications3. Or sometimes e = 65537
is chosen. However we cannot choose a convenient exponent for decryption because d
must be kept secret so cannot be fixed. As the solution to the equation ed ≡ 1 (mod φ),
d will typically be b bits long.

When it comes to exponentation in encryption or decryption, we make use of the method
of repeated squaring,

xy =


1, if y = 0

(x2)k, if y = 2k

x · (x2)k, if y = 2k + 1

which allows us to compute exponentation to power y using O(log y) modular multipli-
cations. In our case, if e is fixed then O(1) multiplications are used for encryption and
O(b) for decryption. Each modular multiplication is of b-bit numbers, which normally
takes O(b2) CPU operations (including the division-and-remainder operation to do the
modular reduction). Overall then, encryption with a fixed e takes O(b2) operations, and
decryption takes O(b3).

There are many algorithmic improvements, surveyed in detail in (Menezes et al., 1996,
Chapter 14). A clever trick called Montgomery multiplication allows modular multiplica-
tion without a division step for the modular reduction (it is described concisely in (Guan,
2003)). The Chinese Remainder Theorem allows the multiplications to be done mod p
and q separately, saving a factor of 4 on the time complexity (Kaufman et al., 2002,
§6.3.4.4). For large b (in practice for b greater than about 1024), even the multiplication
operation can be improved, for example by Karatsuba multiplication, which is O(blog2 3)
rather than O(b2) (Knuth, 1998, §4.3.3). There are a number of other possibilities, most
of which are only useful for very large values of b.

It is commonly stated that RSA operations are very expensive, compared with symmetric
key cryptography which is often designed precisely for CPU primitives. For example,

3Note that there are severe attacks on RSA if e is small, and sometimes small e is banned by industry
standards, but these attacks are foiled by sensible padding and small e is now generally considered safe.
See section 5.4.
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“DES and other block ciphers are much faster than the RSA algorithm. DES is generally
at least 100 times as fast in software and between 1,000 and 10,000 times as fast in
hardware, depending on the implementation.”4 In order to pin this down, the lecturer
implemented both DES and RSA in C, and ran them on a 3.46GHz Xeon processor. The
DES implementation was tightly-written, making use of the processor’s 64-bit registers.
The RSA implementation used a well-optimized library for manipulation of arbitrary-size
integers, with varying b and fixed e = 3. Plaintexts were random. The operations were
benchmarked as follows:

b = 512 b = 768 b = 1024 b = 1536 b = 2048 b = 3072 b = 4096

Key generation 3 ms 11 ms 30 ms 106 ms 320 ms 1123 ms 3960 ms
Encryption 1 µs 3 µs 7 µs 13 µs 24 µs 46 µs 85 µs
Decryption 114 µs 446 µs 1.2 ms 3.5 ms 8.6 ms 25 ms 63 ms

DES equivalent∗ 0.8 µs 1.2 µs 1.6 µs 2.4 µs 3.2 µs 4.8 µs 6.4 µs

*En/decryption of 64-bit block using DES: 100 ns, scaled to RSA blocksize

The table reflects the approximate RSA time complexities we previously described: key
generation is between O(b3) and O(b4), encryption with fixed e is slightly better than
O(b2), and decryption is approximately O(b3). It also shows that RSA encryption with a
fixed small value of e is only a few times slower than DES encryption, but decryption is
100-10000 times slower. The time needed for RSA key generation is quite substantial for
large values of b – even a few seconds, which could severely impede a protocol supposed
to run in real time – but very large keys would only be used for long-term purposes and
therefore infrequently generated.

It is one thing to run RSA algorithms on a 3.46GHz Xeon processor, and quite another
to run it on devices with limited computational power. The following benchmarks are
from a mobile phone (with a 1GHz processor)5. The Java library which the phone uses
for RSA operations is fixed for e = 65537, so we will expect it to be a bit slower than
with e = 3, and one would expect slower performance with code written in Java rather
than a lower-level language like C.

b = 512 b = 768 b = 1024 b = 1536 b = 2048 b = 3072 b = 4096

Key generation 226 ms 864 ms 11 s 35.8 s 55.7 s 257 s 582 s
Encryption 1 ms 3 ms 6 ms 14 ms 25 ms 56 ms 95 ms
Decryption 13 ms 37 ms 86 ms 267 ms 633 ms 2.1 s 4.9 s

4http://www.rsa.kz/node/rsalabs/node54d2.html?id=2215
5Many thanks to Bangdao Chen for mobile phone and smart card benchmarks.
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Clearly, mobile phones are not able to generate large RSA keys, and even small keys would
cause an unacceptable delay if they had to be generated anew on each communication
(some protocols may require this). Even with a fixed key, the RSA encryption operation
would cause long latencies (and unacceptable battery drain!) if it used to encrypt every
wireless or GSM packet, for example. Smart cards are even more limited in computa-
tional power: simply to encrypt (e = 65537) a single 1024-bit RSA communication takes
nearly 4 seconds on a processor typical of chip-and-pin cards, a Teridian 73S1217 (up to
24Mhz, 2KB memory). This presents cryptographers with interesting challenges, trying
to squeeze the maximum security out of the hardware capabilities.

The use of RSA for everyday encryption, then, is rather expensive, and this is something
true of all current asymmetric cryptosystems. What happens in practice is that RSA
is used at the start of communication, just once or twice, to send or agree on a unique
session key, a symmetric cipher key which is used for one series of communications and
then discarded. (At the same time the communicating parties probably authenticate each
other, using the same asymmetric cipher.) The session key can be quite long, if it fits
within the RSA modulus, and the subsequent communications use much faster symmetric
cryptography operations. In chapter 7 we will examine the protocols which do this.

5.2.3 Security

The encryption is only secure if an enemy is unable to deduce the plaintext m, which
is to solve the so-called RSA Problem: from the ciphertext me (mod n), and given n
and e, deduce m. As with symmetric ciphers, we can only appeal to the “Fundamental
Tenet of Cryptography”: the problem is well-studied by the academic community, and
no computationally feasible solution has been found for large key sizes. Therefore an
attacker should not be able to do it either.

We should be clear about these mathematical assumptions. The so-called RSA As-
sumption is that the RSA Problem is computationally infeasible for large n6. We will
generally accept the RSA Assumption, with some caution.

There are a number of ways the RSA Assumption could be broken. Easiest would be if the
attacker could deduce the factors p and q. From then, they could simply follow the key
generation algorithm to compute d and decrypt messages as easily as Bob. But it is usu-
ally assumed that the so-called Integer Factorization Problem is infeasibly difficult,

6More precisely, given n a product of two primes pq, e coprime to φ = (p − 1)(q − 1), a randomly
chosen M less than n, for any function A(n, e, x) computable in polynomial time, the probability that A
gives the right answer P [A(n, e,Me (mod n)) = M ] ≤ ν(logn), where ν(−) is some negligible function.
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for large enough n. Integer Factorization is the most studied problem in computational
number theory.

In fact the attacker does not need to know p and q; it is enough to know φ, from which
they proceed to compute d via ed ≡ 1 (mod φ). However, finding φ from n is equally as
difficult as factorizing n. You will prove this in one of the exercises. We can go one step
further: the attacker does not even need to know φ, since d is enough. However, it is
also proved that finding d is computationally no easier than finding φ, hence equivalent
to factorizing n. You will prove this, at least in the case of small e, in the exercises.

If the Integer Factorization Problem were “solved” (in the sense that answers could be
computed for much larger numbers than before), the security of RSA would be reduced
or destroyed. But even if not, the RSA Problem could still be solved in its own right.
All we know is that solving the RSA Problem is at least as easy as integer factorization7.
The reference (Rivest & Kaliski Jr., 2005) is a very readable summary of the many
variations on the RSA Assumption and their relevance to security.

If we accept the RSA Assumption, there are still dangers to avoid. We should not encrypt
the plaintexts m = 0 or m = 1, since they encrypt to themselves under any key, we should
not encrypt other small numbers because they might not cause any modular reductions,
leading to an easy recovery of the plaintext, we should not encrypt the same message
under many different keys, and all encrypted messages should be unpredictable: these
can all be prevented by good padding and are discussed in section 5.4.

Just as with symmetric key cryptography, the most important thing we can do is to ensure
a long enough key. But RSA keys will need to be a lot longer than their symmetric key
counterparts.

So how long a key length is secure? Given proper padding, the most realistic attack at
present is to try to factorize n. Despite the discussion above, attacks on the RSA Problem
directly have been much less successful than those on integer factorization, so the size
of secure key is determined by the attacker’s ability to factorize. And if we want our
secrets to remain secret for, say, 30 years then we need to consider an attacker’s ability
to factorize on computers, and with algorithms, available in 2040!

For large numbers, the state-of-art factoring algorithm is the general number field sieve
(GNFS, see (Pomerance, 1996) for a history of its development), a rather complicated

7This is a common source of confusion. It is not yet proven that solving the RSA Problem is as difficult
as solving integer factorization.
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algorithm which has time complexity roughly O
(
exp(1.93b1/3(log b)2/3)

)
. This function

grows faster than any polynomial in n, but slower than any exponential: a polynomial-
time factorization algorithm would be a major advance in computational number theory8.
Parts of the GNFS algorithm can be parallelized efficiently and factorizations of very large
numbers are attacked by clusters of computers.

Researchers constantly compete for the integer factorization record; based on historial
records, Brent made a prediction in 1999: that a 768-bit RSA key would be factorized in
2009, a 1024-bit key in 2018, a 2048-bit key in 2041, and a 4096-bit key in 2070 (Brent,
1999). So far the prediction has been accurate: the the current record is factorization of
a 768-bit RSA key and it was announced in 2010.

Home computers, if equipped with an optimized GNFS algorithm (open source imple-
mentations exist), can currently factorize 512-bit integers in a few weeks, so key sizes as
low as this are only suitable for casual security. Current advice9 is that 1024-bit keys
are suitable for corporate use and 2048-bit keys for extremely valuable long-term use. As
with symmetric cryptography, it pays to be conservative in case unpredictable algorithmic
advances are made.

5.3 RSA Signatures

RSA encryption and decryption commute, i.e. DskB
(EpkB

(m)) = EpkB
(DskB

(m)) =
m. This allows Bob to use the algorithm backwards, announcing the pair 〈m, s〉 =
〈m,DskB

(m)〉 for some payload m. Anyone else can verify that EpkB
(s) = m and thus

Bob has proved the authenticity ofm, and also made it impossible to repudiatem, because
nobody else could compute such an s. This forms the basis of RSA signatures, which we
discuss in the next chapter.

5.4 Attacks on RSA

There are a few attacks on RSA which are based on its number-theoretic properties rather
than attempts to factorize n.

8Shor’s algorithm (Shor, 1997) is a cubic-time factorization algorithm for quantum computers. As yet
it has not proved very useful: in 2012, a research group at UC Santa Barbara issued a press release saying
that they had built a quantum computer which managed to show that 15 = 5 × 3, with approximately
50% certainty.

9http://www.rsa.kz/node/rsalabs/node6501.html?id=2218
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We have already said that the plaintext m should not be 0 or 1, because they encrypt to
themselves under any key. In fact any value of m < e

√
n is insecure, because c = me does

not involve a modular reduction at all: it means that the attacker can simply compute the
integer root e

√
c to recover the plaintext. This is actually a very likely situation when e is

a small fixed value, such as e = 3 that we suggested earlier, because the most typical use
of RSA is to convey either a symmetric key or a cryptographic hash, which are likely to
be only 64, 128, or 160 bits long: much smaller than the cube-root of a 1024-bit modulus.

In any public key scenario the Chosen Plaintext Attack is always available, because the
attacker can use the public key to make their own ciphertexts at will. So Alice must be
careful not to send messages which come from a small set of possibilities. For example,
she should not use it to send a short password to Bob, because the attacker can try
an offline dictionary attack, encrypting all the possibilities until he finds a ciphertext to
match the one Alice sent.

There is a more subtle danger with RSA, called a same-message attack. If the attacker
knows that Alice is sending the exact same message to at least e different people, i.e.
encrypted under e different public keys, even if the keys are all different it is possible to
recover the message m without breaking the keys. This appears on one of the problem
sheets.

Finally, RSA has a curious mathematical property. Because (m1m2)
e = me

1m
e
2, we have

EpkB
(m1) · EpkB

(m2) = EpkB
(m1 ·m2). (5.4)

This is called the homomorphic property of RSA and it looks a bit like the linearity
property we saw in chapter 3. It leads to a potential attack under the Chosen Ciphertext
Assumption (CCA, section 3.2) which implies an extremely strong adversary: if the
attacker receives encrypted message c = me (mod n), they can multiply by the encryption
of a random number re (mod n) and ask the decryption oracle to decrypt rec, which gives
them back rm. Finally, they can multiply by r−1 (mod n) to recover m. There are other
attacks which exploit the homomorphic property too.

Most of these can be avoided by padding the plaintext before encryption. Unlike with
hashing, padding does more than round up the plaintext to a full “block”, it also acts
to blind the contents. There are a number of ways to pad RSA plaintexts, and one is
described by the PKCS#1 set of standards10. Here we will describe PKCS#1 v1.5. It
is slightly outdated, but it is easy to see why it achieves its aims.

10http://www.ietf.org/rfc/rfc3447.txt
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Suppose that a payload has been created. First, compute the maximum number of whole
bytes guaranteed to fit within the modulus, B = blog2(n − 1)/8c. The payload will be
padded to B bytes. Suppose that the payload is a bytestream Payload, p ≤ B − 11
bytes long. The plaintext is the integer m represented by the bytestream

00 02 Padding 00 Payload

where Padding is a random sequence of B − p − 3 nonzero bytes. After this padding,
the ciphertext is me (mod n) as usual (PKCS#1 v1.5 is designed to be used with e = 3).
Because the padding is terminated by the zero byte before the payload it can be removed
unambiguously after decryption.

The padding slightly reduces the capacity of each encryption. But it defeats the attacks
we mentioned above, because

• we never encrypt 0 or 1;

• moreover, the high-order bytes 00 02 guarantee that m > 3
√
n;

• even if Alice’s message is known to be from a small set, there are still very many
possibilities for the plaintext, given that there are at least 8 bytes of random padding;

• similarly, it is vanishingly unlikely the the same plaintext will be sent to multiple
recipients;

• the padding bytes should balk attempts to use the homomorphic property to tamper
with messages;

• furthermore, in the unlikely event of the existence of a decryption oracle it should at
least refuse to disclose the decryption of incorrectly padded messages, preventing the
CCA-based multiplicative attack11.

Note that padding, in the case of asymmetric cryptography, is markedly different to
padding of hashes: the latter has to be nonrandom so that users can compare hashes,
but the former can and must be randomized in order to prevent dictionary attacks on
short plaintexts. In public key cryptography, randomized padding is an essential part
of the cryptosystem, not an optional extra. (In symmetric encryption, padding was so
unimportant that we barely mentioned it.)

11One should be rather careful about protocols where messages are refused for incorrect padding as it
can give rise to subtle attacks. An attack on RSA-PKCS#1, if incorrect padding can be detected by an
attacker, can be found in (Bleichenbacher, 1998).
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There is another class of attacks on RSA: so-called side channel attacks observe the
running of the RSA algorithms and deduce information about the secret key. For ex-
ample, timing attacks use variations in the running time of modular exponentiation
and multiplication as the operands vary, and power attacks measure variations in the
power drain of CPUs as the calculations change. Although it might seem unlikely that
much information can be gleaned from these measurements, both types of attack have
been implemented successfully in real-world scenarios, for example (Brumley & Boneh,
2003). Power attacks are particularly applicable to smart cards.

5.5 Other Asymmetric Ciphers

RSA is far from the only asymmetric cipher, and there are also asymmetric schemes
which provide digital signatures but not encryption itself. We have chosen to focus on
RSA because it is widely used, fairly easy to describe, and has interesting mathematical
analysis.

Many options are surveyed in (Menezes et al., 1996, Chapter 8). Some popular asym-
metric ciphers include:

Rabin public-key encryption

Even simpler than RSA: Bob generates two large primes p and q; they form the secret
key. He publishes n = pq, which is the public key. Encryption is EpkB

(m) = m2 (mod n).
Decryption is therefore a matter of finding square roots (mod n); this is relatively easy
when the factorization of n is known, as for Bob, but difficult otherwise.

In this case, when n is a product of two primes, it is known that finding square roots
is equivalent to factorization in computational complexity. Thus the Rabin system is
provably equivalent to the problem of integer factorization, and provably secure under the
assumption that factorization is difficult. Despite this, it is not much used in practice.

It has similar mathematical dangers to RSA, and good padding is essential.

Merkle-Hellman knapsack encryption

The idea behind this scheme is to use an NP-complete problem, in this case the infamous
0-1 knapsack problem, so that the attacker has to solve an infeasible problem to attack
the encryption. The secret key is a trapdoor which makes the instance of the knapsack
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problem tractable. However, the scheme is insecure and a decryption key can be deduced
from the public key in polynomial time. (Some other knapsack-based encryption schemes
do seem to be secure, but cryptography based on NP-complete problems has generally
had little success.)

Elliptic Curve Cryptography (ECC)

A more recent invention making use of algebraic operations on elliptic curves. Algo-
rithms such as RSA are still applied, but instead of integers modulo N we use points on
a certain type of curve y2 = x3 + ax + b, and instead of multiplication we use a strange
operation that maps two points on the curve to another. The advantage of this rather
bizarre method is that the public keys are considerably shorter, and the problem equiv-
alent to factorization has fewer known good algorithms for solving it. In practice, ECC
keys can be considerably shorter than RSA keys for what is believed to be equivalent
security: a 224-bit ECC-RSA key is thought approximately as secure as a 2048-bit RSA
key.

5.6 Key Exchange

As we have said, a typical use of asymmetric ciphers is to transmit a symmetric session
key. There are other methods for Alice and Bob to agree on a secret symmetric key using
only public communication, which in fact predates RSA. The earliest key exchange
protocol is called Diffie-Hellman Key Exchange (DHKE). The participants agree,
publicly, on a large prime p and a number g12. Then Alice picks a random integer sa,
and Bob a random integer sb, which they keep secret. The protocol goes as follows:

1. A → B : a = gsa (mod p)

2. B → A : b = gsb (mod p)

3. A computes bsa (mod p)

4. B computes asb (mod p)

After the communications, Alice and Bob have both computed gsasb (mod p), which they
can use to generate a session key.

Note that this is not a cipher, and it cannot be used to communicate directly. Neither
Alice nor Bob can control the secret, rather they both contribute to it (although they

12For good security they want g to have a large prime order, which is explored a little in the exercises.
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can affect some of its properties in limited ways: for example if sa is chosen even then
the secret must be a perfect square (mod p)).

Key exchange, and DHKE in particular, have become particularly important recently.
If Alice and Bob set up a supposedly-secure channel (by some protocol involving public
key cryptography, perhaps) then their next action could be to run the DHKE protocol
and swap to the new, DHKE-derived, session key. The advantage is that an attacker
who has recorded all their communications, and later manages to break the channel’s
confidentiality, has to solve a DHKE problem to get at the session. Furthermore, they
have to do solve another DHKE problem for every other session. The security persists
even after a breach of the key that created the channel.

5.6.1 Security

Why is the secret a secret from an eavesdropper? The security is related to the Discrete
Logarithm Problem (DLP): from mx (mod n), given m and n, compute x. This is the
computational number theory problem (aside from factorization) that has been studied
the most extensively, and it is widely believed to be hard as long as the modulus is large,
notwithstanding some recent algorithmic advances.

If the DLP can be solved efficiently, then DHKE falls immediately: the attacker, who
knows g and p, can compute the secrets sa and sb. But, just as the RSA Problem is not
necessarily as difficult as factorizing, so DHKE could conceivably fall even if DLP does
not. The Diffie Hellman Problem is: given g, p, gsa , gsb , determine gsasb . We only
know that it is at least as easy as the DLP; nobody has proved it to be as difficult.

We should warn, however, of the significant weakness of the DHKE protocol. If run on an
unauthenticated channel against an active adversary, it is subject to a notorious man-in-
the-middle attack. We will not describe it in detail here, just consider that the attacker
can share one secret with Alice and another with Bob, while Alice and Bob think that
they shared one between themselves. DHKE must be authenticated in some way: either
run through an already-authenticated channel, or the parties should digitally sign (e.g.
with an RSA signature) their transmissions.
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Chapter 6

Message Authentication & Digital
Signatures

Reading (course text): Kaufman et al. §2.5.5, 2.6.2, 5.2.2, 5.7, 6.3.6.3, 26.5-26.7

Alternatives &
further depth:

Gollmann §14.1.1, 14.3.3, 14.4 (very sketchy)
Ferguson et al. §2.2, 2.4, chapter 6, §7.2, 12.4.1, 12.7
Menezes et al. §9.2.2, 9.5, 11.1-11.2, 11.3.1-11.3.3, 11.3.6

Having discussed confidentiality and integrity, we now turn to authenticity and non-
repudiation. This chapter covers two topics: MACs, which provide integrity and a limited
form of authenticity, and digital signatures which provide integrity, authenticity, and non-
repudiation. To do this we combine material from the previous three chapters.

Before beginning, we will revise our assumptions about the security of the communications
network, to make it more realistic.

6.1 The Dolev-Yao Model

In security, one should always be conservative: it never hurts to overestimate the oppo-
nent, but it can be disastrous to underestimate them. So let us consider an appropriate
model for communications over the internet, at the network layer.

87
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Recall the Internet Protocol (IP): internet packets are transmitted from router to
router until they reach their destination. Each packet has addressing information – the
sender, the recipient, some timing and administrative data – and then the contents. All
of these are stored in plaintext: the packet contents may have been encrypted at a higher
layer (e.g. by the application which sent the packets) but the addressing information is
always in the clear1. When a packet passes through a router, there is nothing to stop the
router from altering any of the addresses, blocking it (though the transport layer protocol
which sent the packet may eventually detect this), saving it and repeating it, or changing
the contents.

Because there is no physical security on the internet, and even most internal networks
cannot guarantee the absolute security of their cables, an enemy might perform these
actions at any point of the network. The conservative assumption must be that the enemy
could be anywhere and everywhere, doing anything to any packet. Thus a threat model
was proposed by Dolev and Yao (Dolev & Yao, 1983), and has come to widespread
acceptance for cryptographic protocols. In the model, the enemy:

• can eavesdrop on every message that passes through the network;

• can intercept any message, masquerading as the intended receiver;

• can impersonate any principal (user, agent) by sending messages in their name;

• is also a legitimate user of the network, and can send messages under their own name.

This Dolev-Yao model can be summarised simply: assume that the enemy carries the
messages.

Do not despair. The enemy is still limited by computational feasibility, and one usually
assumes that they are not allowed to block every single message thus bringing the network
down. With the prior distribution of just a few keys it is possible (see chapter 7) to
provide authenticated communication over such a network. We also assume that the
agents themselves, the computers on the network, are not compromised by the enemy,
so that their own computation and key storage is secure. (Online banks, however, are
concerned with the possibility of compromised web browsers and keyloggers: this leads
to some new protocols, and is a topic of current research.)

1This is not the case for IPsec, which is an alternative to the IP protocol designed to guarantee
integrity of the addressing information and authenticity of the origination. IPsec is now supported by
most operating systems and is widely used with VPNs. However, unsecured IP traffic is far more common.
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6.2 Authenticity and Integrity: MACs

First, we should clarify the definition of authenticity in the context of the Dolev-Yao
model. If Bob receives a message purporting to come from Alice, authenticity does not
guarantee that he received it directly from Alice, only that Alice was the originator of
the message. (This implicitly requires integrity, so that Bob receives Alice’s message,
not a tampered version.) In the Dolev-Yao model, no actor can ever be certain who their
immediate correspondent is, because the attacker can always interpose themselves. It is
sufficient to know that the message has arrived somehow and that Alice originated it.

We saw, in section 4.5, that a cryptographic hash can form the basis for checks on integrity,
and this can be extended to authenticity (in a slightly limited way) if it becomes a keyed
hash, which would be a function

h : K× {0, 1}∗ → {0, 1}n

written hk(x), with all the properties of a cryptographic hash function for each fixed k,
plus the property that it is difficult to find k and x such that hk(x) = y.

Rather than pursue keyed hashes, we will generalise a bit to the Message Authentica-
tion Code (MAC)2. A MAC is a function

MAC : K× {0, 1}∗ → D,

where K is a secret keyspace and D a set of possible digests (usually bit streams, but
not always). It comes with a corresponding MAC verifier

VER : K× {0, 1}∗ ×D→ {True,False}.

For a message m, and given a shared secret key k, the purpose of the MAC is to compute
a relatively short digest MAC k(m) which would detect any changes to either k or m. The
verifier will say whether any changes occurred, that is to say

VERk(m
′,MAC k′(m)) =

{
True, if m = m′ and k = k′,

False, (almost certainly), otherwise.

2Things get a bit confusing here. Some literature says that keyed hashes and MACs are precisely the
same thing. As far as the lecturer is concerned, the only difference is that keyed hash functions output
bit streams, whereas MACs can output any type of data. Some call (unkeyed) hashes MDCs, with keyed
hashes MACs, and some literature uses MIC instead of MAC. Some use “HMAC” to mean any MAC
based on a hash function, but HMAC is also the name of a specific MAC. The MAC verifier is absent
from some literature, with the verification forced to be VERk(m, d) = (d == MAC k(m)). Read with
care.
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For attackers who do not know k, it should be impossible to create any valid digests.
Given mi and MAC k(mi), for some values mi, but not given the secret key k, it should
be impossible to find any other m and d such that VERk(m, d) = True. In particular,
an attacker should not be able to change m and determine the consequent change in d.
(There are more subtle grades of security but we will return to the them in section 6.3.)

There does exist a notion of perfect security for MACs, similar to the Shannon security
for ciphers. A MAC is perfectly secure if, for all k, given a message m and its digest
MAC k(m), for any m′ 6= m and any d ∈ D,

P[MAC k(m
′) = d] = 1/|D|.

That is to say, even after seeing one digest (or indeed more than one), the digest of any
other message is uniformly distributed. Such a condition is not achievable in practice,
and formal security of MACs follows the line of getting ν-close to uniform distribution,
for negligible ν. But one of the exercises considers a one-time MAC which achieves
perfect security, albeit at the unrealistic cost of changing the key for every use.

Given a MAC, Alice can send a message m to Bob thus:

1. A → B : m

2. A → B : d = MAC k(m)

3. B accepts m if VERk(m, d) = True, rejects m otherwise.

We have written Alice’s communication of m and d separately to stress that they could
be transmitted along completely different channels.

The integrity of the message m is ensured by the security of the MAC, similarly to
integrity-protection using (unkeyed) hash functions. The authenticity is also ensured,
but only to a limited extent. The recipient Bob knows that only he and Alice share the
secret key k and so only Alice could have constructed MAC k(m). However, they can
only prove authenticity of the message to other parties if they reveal the secret key, and
either of Alice or Bob could have been the message originator.

Note that the MAC does not attempt to provide confidentiality. The message itself is
transmitted as plaintext. Of course, Alice can encrypt the message before she sends it
(of which more in section 6.5) to have confidentiality as well as the other properties.
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Beware that there is nothing to stop an active attacker from intercepting message-MAC
pairs and then replaying them to Bob in a different order, or multiple times. (Recall that
an authenticated channel requires security from replay or out-of-order messages, see
subsection 1.3.4.) MAC authentication only proves that Alice sent the message at some
point. Of course, Alice can, and probably will, include the sender, recipient, and time
of sending in the message itself; then integrity of the message guarantees that duplicates
and messages out of order can be detected. But this strays into the area of protocols,
which are the subject of the next chapter.

6.2.1 MACs Based on Ciphers

We have already seen one MAC based on encryption: given an n-bit block cipher, an
n-bit MAC is MAC k(m) = Ek(h(m)) and VERk(m, y) = (Ek(h(m)) == y). However
this uses both encryption and hashing, which is expensive, and possibly introduces new
vulnerabilities.

There are MACs based solely on ciphers. Most notable is the infamous CBC-MAC,
which tries to make use of the fact that every block of a message affects the last cipher
block under CBC symmetric encryption. Let Ek(−) be some symmetric encryption func-
tion and IV a public initialization vector. Split the message m into blocks m1, . . . ,mn

(with some sort of padding if mn does not make a full block for the cipher). The CBC-
MAC is simply the last block of ciphertext if the message is encrypted using CBC. This
is equivalent to:

CBC -MAC k〈〉 = IV ,

CBC -MAC k〈m1, . . . ,mn〉 = Ek(mn ⊕CBC -MAC k〈m1, . . . ,mn−1〉).

If the input messages are of fixed size, CBC-MAC has theoretical guarantees. But for
arbitrary-length messages, CBC-MAC is flawed. If given two signed messages, m, m′,
d = CBC -MAC k(m), d′ = CBC -MAC k(m

′), it is easy to create a valid digest for another
message. First, split m′ into blocks m′ = 〈m′1, . . . ,m′n〉. Then

CBC -MAC (m ‖ (m′1 ⊕ d⊕ IV ) ‖m′2 ‖ · · · ‖m′n) = d′.

Thus some forged digests are possible. It turns out to be difficult to arrange final-block
padding to defeat this attack.

To some extent this can be avoided if the MAC output is not the complete cipher block,
but only a selection of bits from it. This prevents the m′1 ⊕ d step, because d does not
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contain all the data necessary. However, it means than an n-bit digest still requires less
work than 2n to guess.

There is also a birthday attack on CBC-MAC, exploiting the algebraic connections be-
tween CBC -MAC (m) and CBC -MAC (m ‖m′).

There is an elementary error with CBC-MAC, when combining integrity protection with
confidentiality, which is to use the same key for the MAC as for the encryption. In the
case of CBC-MAC this is obviously silly because the MAC is just the last cipher block and
hence easily forgeable. Various modifications exist, but the only fully secure alternative
is to use a completely different key for encryption and authentication.

These problems have been fixed in a number of different ways. A leading cipher-based
MAC function is called CMAC, and it works by deriving two subkeys from the MAC
key and using them to pad the last block of the message: one key is used if the block
is incomplete, and the other if the block is complete. Then, like CBC-MAC, the digest
is some bits from the last CBC block. This does prevent the combination attack just
mentioned, and in fact there is a formal proof of its security. CMAC is now a recognised
standard (Dworkin, 2005).

6.2.2 MACs Based on Hashes

MACs based on hashes are very popular, perhaps partly because the security requirements
of a MAC are similar to those of a hash. Take any n-bit cryptographic hash function h.
There is an immediately obvious n-bit MAC:

MAC k(m) = h(m ‖ k).

However, this is rather dangerous if the hash is built by iterating a compression function,
allowing the prediction of h(m ‖m1) from h(m). An attacker who can find a hash collision
h(m) = h(m′) can now produce many MAC collisions, by appending any message tail
and any key,

MAC k(m ‖m1) = h(m ‖m1 ‖ k) = h(m′ ‖m1 ‖ k) = MAC k(m
′ ‖m1).

The next choice would be
MAC k(m) = h(k ‖m).

This is fairly safe, because an attacker needs to find hash collisions with the correct prefix
in order to find MAC collisions with a specific key. Nonetheless, the extension property
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of hashes makes researchers nervous: if a message and its corresponding digest are both
disclosed, it is probably possible for an attacker to compute a digest, with that key, for
any extension of that message. Even the construction

MAC k(m) = h(k ‖m ‖ k)

has raised some security concerns, although the chance of a realistic attack seems low.

Instead, some interesting theoretical work has tended to focus minds on another format.
The HMAC is, in simple form,

HMAC k(m) = h(k ‖h(k ‖m)).

The advantage of such a function is that there are theoretical guarantees about its se-
curity, even if the underlying hash function h has is not perfectly secure (and, as we
have seen, most aren’t!). Accordingly to Goldwasser and Bellare, the security theorem
can be summarised thus: “an attacker who can forge the HMAC function can, with the
same effort, either find collisions in the hash function even when the IV is random and
secret, or compute an output of the compression function even with an IV that is ran-
dom”(Goldwasser & Bellare, 2008). Normally, a hash IV must be public (since the
algorithm is unkeyed), so a weakness assuming a random IV must be a severe attack on
the underlying hash. Thus the HMAC construction is, in a sense, more secure than the
underlying hash it uses.

In case the key is not a multiple of the blocksize of the compression function creating h,
and also to ensure that the two copies of k have few bits in common, the full definition is

HMAC k(m) = h((c1 ⊕ k) ‖h((c2 ⊕ k) ‖m))

where k is zero-padded to a multiple of the blocksize, and c1 and c2 repeat the binary
strings 01011100 and 00110110. There is nothing too special about these strings, except
for the heuristic that c1 ⊕ k and c2 ⊕ k are not strongly correlated.

The disadvantage of the HMAC construction is that two hashes must be computed, but
the outer hash is of a short input (keylength plus hash output) so this is not a substantial
additional computation burden.

6.2.3 Other Types of MAC

There are other ways to create MACs, including universal one-way hash functions
which are often the fastest to compute. Sadly, there is no time for them here.
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6.3 Authenticity and Non-Repudiation: Digital Signatures

Message authentication codes provide integrity and authentication, but only to the person
who shares the secret key. They do not provide non-repudiation. Non-repudiation
would mean that Alice cannot deny having been the originator of the message. Because
MAC keys are symmetric, Bob is also able to compute the same MAC, and so Alice could
claim that a message from her was actually from Bob.

The idea of a digital signature, with binding force somehow equivalent to a physical
signature, was widely discussed during the 1980s. Admittedly, paper documents are
rarely fully authenticated – photo manipulation and other forgery being rather too easy
– but the main force of a paper signature is to bind the signatory to some contract. The
signatory should not be able to deny having signed.

Mathematical constructions which could provide a digital signature, offering integrity, au-
thenticity, and non-repudiation, followed soon after the publication of the RSA algorithm,
but they did not become widely used until the 1990s.

The formal definition of a digital signature is similar to that of a MAC, but it involves
asymmetric keys. We assume that there are sets K, a secret keyspace, and K′, a public
keyspace, and a method of generating secret-public key pairs 〈ks, kv〉 ∈ K×K′. ks will
be called a signing key and kv a verification key. The verification key is published.
There must be a function

SIGN : K× {0, 1}∗ → S,

where S is a set of possible signatures. It comes with a corresponding signature verifier

VER : K′ × {0, 1}∗ × S→ {True,False}.

SIGN ks(m) is a digest of m in the same vein as MACs and hashes, with security properties
that we shall discuss shortly. The verifier will expose any changes to the message, or use
of the wrong key:

VERkv(m′,SIGN ks(m)) =

True,
if m = m′ and 〈ks, kv〉
are a secret-public key pair,

False, (almost certainly), otherwise.

This means that any person can verify a signed message, but only the sender can create
the signature from the message. This is what provides the non-repudiation property: only
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Alice had the secret information necessary to have signed the message, so she cannot deny
having originated it.

We must define the security properties of the signature function. It should be infeasible to
deduce ks from kv, but there is more to say than this. As with symmetric cryptography,
there are a number of classes of attacks on signatures:

• In the Key Only Attack (KOA), the attacker only has knowledge of the verification
key kv.

• In the Known Message Attack (KMA), the attacker knows kv and a number of
message-signature pairs: mi and SIGN ks(mi), i = 1, . . . , n.

• In the Chosen Message Attack (CMA), the attacker knows kv and can choose
a certain number of messages m1, . . . ,mn of which they are then told the signature
(this must exclude the signature of anything they forge). There is also an adaptive
chosen message attack in which they may choose later messages depending on
previous signatures.

KOA is analogous to extracting the secret key from a public key of an asymmetric cipher.
KMA is similar to the KPA of symmetric ciphers, and CMA similar to CPA3.

Each attack can have a different type of success:

• A Universal Forgery (UF) allows the attacker to sign any message they choose.

• An Existential Forgery (EF) allows the attacker to sign at least one message, not
necessarily of their choosing.

Some authors also distinguish the UF from a total break which reveals the signing key
itself. Some define a Selective Forgery (SF), which allows the attacker to sign a set of
a certain non-negligible size, but we do not find the distinction between UF and SF very
helpful. Clearly, achieving UF (or SF) is a more serious attack than EF, but an EF can
still be serious: the classic example occurs if the message represents a sum of money to
transfer to the recipient, and using an EF the recipient can change the sum to a random
32- or 64-bit number. Even with no control of the sum, they are likely to get very rich!

Existential forgery attacks are very common (as well shall see next) and many textbook
signature schemes are vulnerable to them. But the gold standard for a signature scheme

3In fact, though, since signatures are often obtained by an inverse of encryption, in theoretical security
terms the CMA is usually related to the CCA.
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to be secure is that it is proof against EF even under the adaptive CMA model. As
always, this is in the context of an attacker who has reasonable computing resources4.

There is an important difference between the secret keys used for asymmetric encryption
(chapter 5) and signatures. If a decryption key is disclosed, all the secrets which have
ever been hidden (using the corresponding public key) are potentially revealed. Bearing
in mind that the enemy can store encrypted messages for a long time, hoping to gain
access to the key later, the decryption key must be kept secret for a very long time.
Confidentiality hinges on its long-term secrecy.

Disclosure of a private signing key, on the other hand, is not as severe. Signed messages
which have already been received still have their integrity protected, since it is too late
for the attacker to alter than, and cannot be repudiated by the sender. Any signed
messages received after the disclosure of the signing key should be discarded, because an
attacker could have changed them and/or forged a signature, but messages from the past
are unaffected.

This indicates that signing keys have a different status to decryption keys, but also
that the disclosure of a signing key must be detected and communicated immediately to
any potential signature recipients, otherwise they will not know to disregard signatures
generated afterwards. This is a very topical subject, given the recent compromise of some
SSL certification authorities (see chapter 7).

6.4 RSA Signatures

Digital signatures are often built using one-way functions (the signature) with a trapdoor
(the verification). This means that the same tools used for asymmetric ciphers are often
appropriate.

One of the first digital signature schemes was based on RSA encryption, and we briefly
mentioned it in the last chapter. Alice generates a secret decryption key skA = 〈n, d〉
and a public encryption key pkA = 〈n, e〉. The decryption key is used for signing:

SIGN skA
(m) = md (mod n)

4As usual, the formal definition is that a polynomial-time attacker, with access to a signature oracle,
has no more than ν probability of guessing a valid signature for any message, where ν is negligible.
If you wish to study the complexity-based approach to cryptographic security, see the comprehensive
notes (Goldwasser & Bellare, 2008).
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and the public encryption key can be used in verification:

VERpkA
(m,x) = (xe ≡ m (mod n)).

Because of correctness of the RSA system, the verifier functions correctly.

However, this description of RSA signatures only allows the signature of short messages
(small enough to fit within the RSA modulus). Worse, it is seriously insecure.

Claim 6.1 The simple RSA signature is universally forgeable under a chosen message
attack, or existentially forgeable under either a known message attack or even a simple
key only attack. (UF under a CMA, EF under KMA, and EF under KOA.)

Proof The first two rely on the homomorphic property of RSA (5.4), but the other is
more generic.

UF under CMA: The attacker picks a random r, coprime to n, and asks for the two
signatures

SIGN (r−1) = (r−1)d (mod n) and SIGN (mr) = (mr)d (mod n).

Multiplying the two signatures, they have found a signature for m, because

VER((r−1)d(mr)d,m) = VER(md,m) = (med ≡ m (mod n)).

EF under KMA: If the attacker knows two signatures

SIGN (m1) = md
1 (mod n) and SIGN (m2) = md

2 (mod n).

then, as above, they can multiply them to obtain a valid signature of m1m2.

EF under KOA: The attacker can pick any number x and compute xe (mod n). Then
they can sign xe (mod n), because

VER(xe, x) = (xe ≡ xe (mod n)).

This works because every number is the signature of something. �

To avoid the EF attacks (the last one works for many other signature schemes too), it is
necessary to make the signature recognisable in some way (this is dual to the notion
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of recognisable plaintext in the COA on symmetric encryption). A simple solution is for
Alice to compute SIGN skA

(Alice ‖m), and the verifier to check the prefix. If signed
messages are multiplied, the result will no longer begin with Alice and will no longer
verify correctly, defeating the KMA. It also defeats the KOA because it is (somewhat)
infeasible for the attacker can find x such that xe (mod n) begins with Alice: if they
could, it would be a partial break of RSA encryption itself.

Whether the addition of recognisable format into the signed message affects the CMA
depends on whether the oracle, in the chosen message attack framework, enforces the
formatting requirement. If it does, then even the UF under CMA is defeated.

A better solution is for Alice to hash the message before signing. This makes the EF
attacks useless, because even if an attacker can create a valid signature for a particular
hash output h, they will be unable to find a message which hashes to h (assuming that
the hash function is preimage resistant). It also defeats both attacks exploiting the homo-
morphic property, because the property does not also apply to hash functions. Signing a
hash also has the attractive property that the message can be arbitrary length, and only
a single signature computation need be performed as long as the hash output is short
enough to fit within the RSA modulus. This should be true, with RSA moduli in the
region of 21024–24096 and hash outputs being 128–512 bits long.

However, signing a hash opens up additional attacks if hash collisions can be found. A
2nd-preimage attack is particularly dangerous: if h(m) = y, and message m is signed
by computing some function of y, then the same signature verifies any other message m′

with h(m′) = y.

RSA signatures do not have as many traps as RSA encryption: there is no need to worry
about a dictionary attack on plaintexts from a small set of possibles, and the signing
exponent is not small (it is e, not d, which is often a fixed small number) so we need
not worry about low-exponent attacks. However, it is still wise to pad the hash before
performing the RSA exponentiation.

In chapter 5 we saw the PKCS#1 v1.5 padding for encryption, and much the same
padding is used for signatures:

00 01 Padding 00 h(Message)
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where h is the chosen hash function and Padding is a suitable length to fill up the RSA
modulus. The verifier discards the padding, but checks the second byte: it differs from
padding for encryption, so that there cannot be any confusion between encryption and
signatures (see subsection 6.5) and so that an RSA signature oracle cannot be tricked
into decrypting something.

A more complex padding mechanism has been proposed, based on a construction which
has provable security (in much the same sense as HMAC). The so-called RSA PSS (prov-
ably secure signature) scheme5 first produces, from the message Message, a double hash

H = h(0x008 ‖h(Message) ‖Salt)

where 0x008 represents 8 zero bytes, l is the length of the hash output (in bytes), and
Salt is up to B − l − 2 pseudorandom bytes. Then

S = (Padding ‖ 0x01 ‖Salt)⊕MGF (H)︸ ︷︷ ︸
B−l−1 bytes

‖H ‖ 0xbc

where Padding is B− l−2−|Salt| pseudorandom bytes and MGF is essentially another
hash function, which outputs B− l− 1 bytes. It is S which is fed into the RSA signature
function Sd (mod n).

The reason for this convoluted construction is security: apart from the last byte (to com-
ply with some standards) S is a pseudorandom string with, assuming truly pseudorandom
output from the hash and MGF, statistical properties identical to true randomness. This
is the basis for the formal proof of security.

6.5 Signing and Encryption

Digital signatures and MACs do not provide confidentiality: they do not contain the
signed/digested message in full, and it must be sent by other means. In many situations
we wish transmit the message confidentially, along with a signature, but there are a few
pitfalls. These issues arise with both symmetric and asymmetric integrity protection
(MACs and signatures) and symmetric and asymmetric confidentiality protection (secret
or public key ciphers).

5http://www.ietf.org/rfc/rfc3447.txt
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First, it is sensible to use a different key for signing/MAC and encryption. In the case
of MACs and symmetric encryption, there are sometimes interactions between the MAC
digest and the ciphertext (most obviously if using CBC-MAC and CBC encryption). In
the case of asymmetric signatures and encryption, it is because the long-term security of
the two keys need not be equal; as we have said above, disclosure of a signing key only
affects future communications and it would be unfortunate if the disclosure also affected
confidentiality of past communications too. A similar argument says that it is not a
disaster if the signing key is lost, since a new one can be generated, but if a decryption
key is lost then so is access to all the encrypted data. Again, this is a reason for using
different keys when the security requirements are different.

Using different keys for signing and encryption means that work cannot be saved by
using overlap between the two algorithms (if any). Cryptographers have been searching
for ways to combine encryption and authentication in one construction, but most early
efforts were found to be insecure.

Once we have decided that authentication and encryption are to be done separately,
there is a more difficult question about the order of these operations. In what follows, E
denotes encryption (either symmetric or asymmetric), and SIGN the integrity protection
mechanism (which could be MAC rather than signature, but we continue to use the word
“sign” for it). We follow (Krawczyk, 2001) and distinguish three approaches:

• Authenticate then Encrypt (AtE): Sign the message, then encrypt the message
and signature together:

A→ B : E(m ‖SIGN (m)).

This might be called the “SSL approach”, as it is used by the SSL application-layer
protocol (chapter 7), once symmetric session keys have been agreed.

• Encrypt then Authenticate (EtA): Encrypt the message, then sign the encrypted
message:

A→ B : E(m) ‖SIGN (E(m)).

This might be called the “IPsec approach”, as it is used by the IPsec network-layer
protocol designed to replace IP.

• Encrypt and Authenticate (E&A): Sign the message, send separately encrypted
message:

A→ B : E(m) ‖SIGN (m).
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This might be called the “SSH approach”, as it is what the SSH protocol uses once
symmetric session keys have been agreed.

The community has not come to a firm conclusion on which option should be used, as you
might guess from the fact that three different mainstream protocols use three different
options. But there are certainly arguments in favour of one or the other depending on
the application.

On theoretical grounds, EtA has the best claim: if the component MAC and encryption
are perfectly secure (against CMA and CPA, respectively), then the EtA combination is
also provably secure, and the same is not true for AtE or E&A. But these are theoretical
arguments which have little sway in practice, perhaps because nobody actually uses
perfectly secure MACs or encryption.

E&A has the minor advantage of being able to run authentication and encryption in
parallel, since there are no nested operations.

EtA has the advantage of foiling the following “attack” in the case of asymmetric signa-
tures and encryption. Suppose that Alice uses a private signing key skA and Bob has a
public encryption key pkB. If Alice uses AtE and transmits

A→ B : EpkB
(m ‖SIGN skA

(m))

then Bob can, maliciously, decrypt the message and re-encrypt using Charlie’s public key
pkC , pretending to be Alice and sending

BA → C : EpkC
(m ‖SIGN skA

(m)).

Thus Bob has fooled Charlie into thinking that Alice intended to send the signed message
to Charlie instead of Bob. The same attack works for E&A, but it does not seem to be
possible with EtA because its authentication attests that the encryption key has not been
changed.

But this is not really an attack! MACs and digital signatures provide authenticity of
origin, and it is true that Alice did originate the message m. If we want authenticity
of intended recipient, a full protocol must be used, presumably with Alice including the
name of the intended recipient (and a timestamp, to avoid replays) in the message itself.
This is the subject of the next chapter.
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6.6 Alternative Signature Schemes

RSA is far from the only digital signature scheme. There is also a Rabin signature,
which exactly parallels the Rabin asymmetric cipher. Others include ElGamal and its
variants Schnorr and DSS (Digital Signature Standard); DSS has been ratified as a NIST
standard. ElGamal-style signatures require more involved mathematics, but they carry
very similar lessons: some sort recognisable padding is essential, otherwise there are
existential forgeries like the EF under KOA attack on RSA signatures.

6.7 Concluding Remarks

We have now studied mechanisms to protect integrity, authenticity of origin, and (in the
case of asymmetric schemes, i.e. digital signatures) non-repudiation. RSA signatures are
relatively simple to describe, but must have proper padding to avoid existential forgeries.

One thing we have not mentioned is that it is possible to reveal the signature before
the message. Like revealing a hash, this is a form of commitment: at the point of
commitment (when the signature is revealed) the sender is bound to one message (unless
there is a flaw in the signature or an underlying hash function) and they open the
commitment when they reveal that message. One can imagine how Alice and Bob can
use this to play a game of Rock-Paper-Scissors over a network: no cheating by waiting
for your opponent’s move before deciding your own!

Note that the authenticity we provide is only authenticity of origin. On receipt of a
signed message from Alice, Bob cannot be certain that Alice intended the message for
him, and the message might have been intercepted and replayed or sent out-of-order by
a Dolev-Yao attacker. We have repeatedly found that, as well as the message, we should
encrypt/sign the name of the sender, recipient, and some sort of timestamp. These are
protocols, the subject of the next chapter.

At the end of chapter 3, we commented that symmetric encryption does not exactly solve
the confidentiality problem, but replaces it with a key distribution problem. Similarly,
digital signature schemes do not exactly solve integrity, authenticity, and non-repudiation
problems, since they still rely on the authenticity of the public keys. Under the Dolev-
Yao model, Alice might publish her public encryption and signature keys but have every
publication intercepted by an attacker who inserts their own keys instead. In the final
chapter we will discuss approaches to the key authenticity problem.
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Chapter 7

Security Protocols

Reading (course text): Kaufman et al. §9.7-9.8, chapters 11 & 19

Alternatives &
further depth:

Gollmann chapter 15, §16.1, 16.5
Ferguson et al. chapters 7 & 13, parts of 14, 16-19
Menezes et al. §10.3, 10.5, 12.1-12.3, 12.9, 13.2, 13.4, 13.6

So far, our uses of cryptographic primitives have generally been in isolation: a single
message is sent with various security properties (confidentiality, integrity, some senses of
authenticity, or non-repudiation) guaranteed. Furthermore, these primitives depend on a
cryptographic key: in the case of symmetric encryption or MAC keys, the key itself must
have been shared with integrity and confidentiality; in the case of asymmetric encryption
or signing keys, integrity of the key is required (it must be the public key corresponding
to the intended recipient’s secret key; we can also call this a form of authenticity). We
are now in a position to discuss security protocols, sequences of messages between the
parties which provide security properties for the stream of communications and, in some
cases, address how the keys are exchanged.

Proposed security protocols usually assume the Dolev-Yao attack model, the very pow-
erful enemy introduced in section 6.1, and also assume that the cryptographic primitives
themselves are not attackable in isolation. Thus ciphers and hashes are assumed to be
perfect. In fact, the prevailing view is more pessimistic, and researchers are aware that
ciphers can be attacked, particularly given lots of chosen plaintext attack data (similarly
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signatures, hashes, etc). So, in addition to providing security properties in the presence of
perfect ciphers, we aim to avoid giving the opponent easy routes to attack the underlying
primitives.

Security protocols are difficult to design. Even apparently-simple protocols can contain
serious flaws, which are sometimes not discovered until years after the protocol has been
proposed and widely deployed. Sometimes the flaw arises because the protocol designer
was not clear about the security guarantees they thought they were providing. Sometimes
they arise because a combination of multiple runs of the protocol allows an attacker to
interpose themselves into the conversations. Sometimes they arise because the protocol
enables a minor weakness in the encryption function, which was thought to be unimpor-
tant, to be exploited. And, as Kaufman notes (Kaufman et al., 2002, end of §11.1), the
combination of secure schemes can, in some cases, be insecure.

Let us begin with a simple warning example. Consider the following protocol, which
allows Alice and Bob to exchange a stream of (supposedly) secure messages 〈m1,m2, . . .〉.

Protocol 1. Don’t use this!

1. A → B : Please send public key

2. B → A : pkB

3. A → B : EpkB
(ks)

4. A → B : Eks(m1)

5. B → A : Eks(m2)

6. etc.

The notation should be obvious: message 1 is sent from Alice to Bob, and so on. ks is
a symmetric session key, in this case generated by Alice, for their stream of commu-
nication. The encryption function in message 3 is different from the rest: it is a public
key cipher, the exact type of which we need not specify if we assume that it is perfectly
secure, whereas the other encryptions are symmetric.

There is a variety of notation used for protocols, but it is usually fairly simple to work
out what is meant. A common shorthand for encryption is {m}kAB

for a message en-
crypted by a symmetric key and {m}pkA

for an asymmetric key. (The double subscript
in kAB indicates that it is symmetric.) This is useful for representing nested encryptions
concisely. The identical notation is sometimes used for signatures, thus {m}ks represents
the signature of m with signing key ks: note that this usually means the concatenation
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of m with its signature. Some authors have used square brackets for signatures. Hashes
are usually just written as h(−), or more specifically like md5(−), and keyed hashes as
HMAC k(−). We will stick to our established notation, but be aware of these possibilities
when reading security literature.

The idea of protocol 1 is that Alice transmits a session key, safely encrypted using Bob’s
public key, and then the parties rely on the symmetric cipher for their security. We have
not specified exactly what the protocol was supposed to achieve, but in fact it achieves
nothing: a Dolev-Yao attacker can impersonate either party and read or tamper with any
message, even if the ciphers are perfect. In the exercises you are asked to list as many
different weaknesses as possible, and many attacks are illustrated in the material which
follows.

7.1 Entity-Entity Authentication

The simplest sort of entity authentication is unilateral: in these examples, Alice proves
her identity to Bob but Bob does not prove his to Alice. This proof depends on a shared
secret or known public key, which is assumed to exist at the beginning of the protocol.
Logging on by password is a simple example of unilateral authentication, but as we
discussed in chapter 4 it is vulnerable to eavesdroppers and replay attacks, and therefore
not suitable against a Dolev-Yao attacker.

7.1.1 Unilateral Authentication

Secure unilateral authentication usually follows the pattern challenge-response. Bob
sends a challenge to Alice, to which only she knows the correct answer. Because the
challenge is different every time, attackers cannot replay the response. We begin with
protocols which assume that Alice and Bob share the secret key kAB, and that nobody
else knows it.

Protocol 2. Unilateral authentication, given symmetric key

1. A → B : Alice

2. B → A : EkAB
(nonce)

3. A → B : nonce

Here, the word “Alice” signifies some sort of identification of Alice, perhaps a username
or network address. A nonce is a number which is used once. For now, we might
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think of it as a random number, in this case chosen by Bob, but we will discuss nonces
further in subsection 7.1.3. In this particular protocol it is important that the nonce be
unpredictable, otherwise an attacker can use Alice’s reply to guess the next nonce value,
thus impersonating her on the next authentication run.

Before even considering its advantages and disadvantages, we have to be careful about
what this protocol is supposed to achieve. With a Dolev-Yao attacker, Bob cannot know
that he is talking directly to Alice, since it is always possible that his communications
are being forwarded via an attacker. All Bob can establish is that Alice is alive, and his
communications with her have got through correctly on this occasion.

The disadvantage of protocol 2 is that an attacker can use Alice as a decryption oracle
for any message sent using kAB: by intercepting her request to Bob and replying with
a chosen ciphertext, they can obtain the decryption of any message (once for each time
Alice tries to authenticate herself to Bob)1. This could be defeated in a number of ways,
including giving structure to the nonce (e.g. it must begin with a particular sequence)
and having Alice refuse to reply if the decryption does not have the same structure.
But this reduces the number of possible nonces, forcing more frequent nonce re-use. An
alternative protocol is

Protocol 3. Unilateral authentication, given symmetric key

1. A → B : Alice

2. B → A : nonce

3. A → B : EkAB
(nonce) (or MAC kAB

(nonce))

This has the advantage that it can work with non-invertible function (e.g. a MAC rather
than an encryption). It does not allow the attacker to run the chosen ciphertext attack,
but instead they can run a chosen plaintext attack against the key kAB.

There are modifications of protocols 2 and 3 which avoid chosen plaintext or chosen
ciphertext attacks, at the cost of more work by Alice and Bob. One appears in the
exercises. Another is

1If Bob uses the same shared key to authenticate to Alice as she does to him, this leads to an easy
attack, see subsection 7.1.2.
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Protocol 4. Unilateral authentication, given symmetric key

1. A → B : Alice

2. B → A : EkAB
(nonce)

3. A → B : EkAB
(nonce + 1)

If keeping the number of messages low is a priority, it is sometimes possible to authenticate
using a timestamp instead:

Protocol 5. Unilateral authentication using timestamp, given symmetric key

1. A → B : Alice, EkAB
(timestamp)

Here only one communication is needed, and another advantage is that Bob is stateless:
he does not need to remember what challenge he sent to Alice, and is less open to denial-
of-service attacks designed to make him remember too many things in a short space of
time. But it is fraught with other difficulties. Bob should accept the decrypted timestamp
only if it is reasonably recent, but that still leaves a window of time in which an attacker
could run a replay attack. In order to avoid an attacker replaying the message, Bob would
have to remember the timestamps he recently accepted, and refuse to accept duplicates,
but that negates the advantage of having a stateless receiver. Furthermore, now the clock
becomes part of the security system: Bob must protect his clock against alteration (e.g.
an attacker setting it back in order to run a replay) and his clock must be reasonably
synchronized with Alice’s. Too much clock skew and Alice’s legitimate timestamps may
be rejected as old. If Alice and Bob attempt to synchronize clocks over the network, a
new attack vector is created.

However, one could argue that all of the preceding protocols are useless, because all they
achieve is that Bob knows that Alice is alive somewhere. They do not allow Alice and
Bob to communicate except using their key kAB. And if, after authenticating, Alice and
Bob continue to communicate, an attacker could swoop in and impersonate Alice to Bob
from that point on. Even if the attacker does not know the key kAB, they could replay
parts of old messages.

If Alice and Bob want to continue to exchange messages m1,m2, . . ., still assured that
they are talking to the right person, they must bind the messages to the authentication
and we say that they begin an authenticated session. One way is to include the nonce
in every future communication.
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Protocol 6. Unilateral authentication establishing a session

1. A → B : Alice

2. B → A : nonce

3. A → B : EkAB
(nonce)

4. A → B : EkAB
(m1 ‖nonce ‖Alice ‖ counter)

5. B → A : EkAB
(m2 ‖nonce ‖Bob ‖ counter)

6. etc.

(Step 3 can probably be omitted.) Note the structure surrounding the messages mi: in
addition to the nonce binding it to the authentication, there is the sender’s name and a
message counter which increments on each message sent. This ensures that an attacker
cannot try to cause trouble by a) replaying Alice’s own messages back at her, as if they
were from Bob, and b) repeating messages or changing their order. Such protection
is needed for a truly authenticated channel (subsection 1.3.4). A disadvantage is that
the counter is presumably a fixed-length field and will eventually overrun (a sequence
of over 232 messages is not impossible!). To make replays impossible, at the point of
counter exhaustion the authentication should be restarted with a new nonce. (For a
truly authenticated channel, we will need to add integrity protection too, and see the
discussion in section 6.5 about the combination of encryption of authentication.)

Rather than continuing to use kAB for the entire session, a better option is to use the
authentication opening to agree a session key, a new symmetric key which is used for
this session only and then discarded. Using a session key means that the secret kAB
is only used during the opening of the protocol: there is less chance of an opponent
managing to break this key, for which less ciphertext has been transmitted. Indeed, some
cryptographers would say that a key “wears out” if used too much, because an opponent
may eventually amass enough ciphertext (perhaps along with the knowledge of some of
the plaintexts) to break it. We can distinguish the long-term secret kAB, on which
the authentication depends, from a short-term secret session key, and we take extra
precautions to make it difficult for the long-term secret to be broken.

In the following protocol, Alice generates a session key and transmits it at stage 3:
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Protocol 7. Unilateral authentication establishing a session

1. A → B : Alice

2. B → A : nonce

3. A → B : EkAB
(nonce ‖ ks)

4. A → B : Eks(m1 ‖Alice ‖ counter)

5. etc.

Thus there is a difference between plain authentication and key establishment: the
former is only able to detect whether a user is alive, whereas the latter sets up a short-
term key for an authenticated session. There are a number of different ways of doing
the latter: in the example above, Alice generated the key and sent it to Bob. This is
called key transport. One has to be careful about which party gets to generate the
key because, if they are an enemy, they might choose to re-use an old key or generate a
deliberately weak key (if that suits their attack). In the case above, it made sense that
Alice should generate the key because it is only Alice who has proved her identity!

Rather than leave session key generation to one party, it is also possible to have both
parties contribute. This is called key agreement. One method for this is Diffie-
Hellman Key Exchange, which appears in the third problem sheet, and others can be
found in (Menezes et al., 1996, §12.6). Sometimes ks can be derived from exchanged
nonces, but obviously not in protocol 7 where the nonce is sent in the clear.

Now let us consider authentication when one party knows the other’s public key, under
the assumption that the key is authentic. There are simple challenge-response protocols:

Protocol 8. Unilateral authentication, given public key

1. A → B : Alice

2. B → A : EpkA
(nonce)

3. A → B : nonce

Protocol 9. Unilateral authentication, given public key

1. A → B : Alice

2. B → A : nonce

3. A → B : SIGN skA
(nonce)
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Alice proves her identity by demonstrating her possession of the corresponding secret
key. The disadvantage is that, like in protocol 2, Alice is acting as an oracle against
her secret key: she will decrypt or sign anything given to her, allowing a CCA or CMA.
It is absolutely vital that the same public key is not used for anything else, otherwise
Alice destroys her own security by running this protocol: Alice must have a separate
authentication key. And the public key cipher or signing algorithm will have to be
resistant to CCA or CMA, even when almost unlimited numbers of chosen ciphertexts or
messages are allowed. To some extent this can be alleviated by imposing structure on the
nonce, or example requiring Bob to send EpkA

(Bob ‖nonce) and Alice to refuse to reply
if the decrypted message is not of this form. Or there are other, longer (and therefore
more expensive), protocols which avoid giving the attacker so simple a shot at CCA or
CMA (one appears on the final problem sheet).

As we saw in chapter 5, asymmetric key encryption is expensive, so Alice and Bob will
want to agree a symmetric session key for future communications. Simple use of this
protocol contains a danger:

Protocol 10. Unilateral authentication establishing a session, given public key

1. A → B : Alice

2. B → A : EpkA
(nonce)

3. A → B : nonce

4. B → A : EpkA
(nonce ‖ ks)

5. A → B : Eks(m1 ‖Alice ‖ counter)

6. etc.

Bob has generated the session key, but in this unilateral authentication run he did not
prove his identity to Alice. Thus it is okay for Bob to send Alice secrets using the session
key, but Alice should not send secrets to “Bob” because she might actually be talking to
an attacker instead. If Alice wanted to generate the session key, she would have to know
Bob’s public key in order to protect it:
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Protocol 11. Unilateral authentication establishing a session, given public key

1. A → B : Alice

2. B → A : EpkA
(nonce)

3. A → B : EpkB
(nonce ‖ ks)

4. A → B : Eks(m1 ‖Alice ‖ counter)

5. etc.

More likely, Alice and Bob will both contribute to the session key, perhaps using a Diffie-
Hellman exchange.

7.1.2 Bilateral Authentication

In the preceding section, the aim was for Bob to know that he is talking to Alice. If Alice
also wants to verify Bob’s identity, authentication needs to be bilateral (also called
mutual). It is not as simple as running two separate unilateral authentications: the
attacker could impersonate Alice to Bob on one run, and Bob to Alice on the other.
The two runs need to be bound together, for example by sharing a nonce. Furthermore,
we might hope to make bilateral authentication more efficient than twice the work of
unilateral authentication.

A simple idea, combining together the communications of two runs of protocol 3, is not
secure:

Protocol 12. Bilateral authentication, given symmetric key: FLAWED

1. A → B : Alice, nonceA

2. B → A : EkAB
(nonceA), nonceB

3. A → B : EkAB
(nonceB)

It is vulnerable to the reflection attack, in which the attacker intercepts all of the
communications (cutting off Bob) and initiates a second run of the protocol pretending
to be Bob talking to Alice. The notation IB means an attacker (intruder) impersonating
B.
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Attack. Reflection attack on protocol 12

1. A → IB : Alice, nonceA

1′. IB → A : Bob, nonceA

2′. A → IB : EkAB
(nonceA), nonceB′

2. IB → A : EkAB
(nonceA), nonceB

3. A → IB : EkAB
(nonceB)

Bob might not even be alive, but Alice thinks he is because she was tricked into encrypting
her own nonce, answering her own challenge.

If protocol 12 is extended to establish a session key, the same insecurity appears not as
serious.

Protocol 13. Bilateral authentication establishing a session: FLAWED

1. A → B : Alice, nonceA

2. B → A : EkAB
(nonceA), nonceB

3. A → B : EkAB
(nonceB ‖ ks)

4. A → B : Eks(m1 ‖Alice ‖ counter)

5. etc.

Although an attacker can make Alice think that she is talking to Bob, they cannot get the
session key so they cannot fake subsequent messages from Bob to Alice. (They can replay
messages between Alice and Bob if they become a man-in-the-middle: see the following
example).

The moral of this lesson is that protocols should not be symmetrical : Alice’s and Bob’s
roles should not be interchangeable. An easy way to break symmetry is to put some
structure in the communications or in the nonces, for example only accepting odd nonceA
and even nonceB. Or have the response to a nonce include the name of the sender,
encrypted together with the nonce. There is also a general principle that the initiator
should be first to prove their identity, which is not followed in protocol 12.

As in subsection 7.1.1, there are alternatives to the basic challenge-response involving
timestamps or key agreement, perhaps the simplest being
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Protocol 14. Bilateral authentication using timestamp, given symmetric key

1. A → B : Alice, EkAB
(Alice ‖ timestamp)

2. B → A : EkAB
(Bob ‖ (timestamp + 1))

added to which either party can generate a session key, or they can agree on one. Care
must be taken to avoid replay attacks. The same idea will appear in the mediated
protocols of section 7.3.

Now let us turn to bilateral authentication based on public keys. There is an infamous
protocol called Needham-Schroeder public key protocol2 (NSPK) (Needham &
Schroeder, 1978), which appears in various forms. The simplest is perhaps:

Protocol 15. Bilateral authentication, given public keys: FLAWED

1. A → B : Alice, EkB (Alice ‖nonceA)

2. B → A : EkA(nonceA ‖nonceB)

3. A → B : EkB (nonceB ‖ ks)
4. A → B : Eks(m1 ‖Alice ‖ counter)

5. etc.

In the original NSPK protocol, it was suggested that the session key could be derived
from the two nonces. In the version above, Alice has chosen the session key; this is an
inessential difference.

The above protocol is infamous because it was proposed in 1978, had a formal proof of its
security (using a logic designed to reason about actors’ knowledge) published in 1989, but
then showed to be flawed in 1995. The flaw is a man-in-the-middle attack, in which
the attacker, having been contacted by Alice at some point in the past, is now able to
interpose themselves between Alice and Bob with complete knowledge of the session key:

2Not to be confused with the Needham-Schroeder symmetric key protocol, number 17.
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Attack. Man-in-the-middle attack on protocol 15

1. A → I : Alice, EkI (Alice ‖nonceA)

1′. IA → B : Alice, EkB (Alice ‖nonceA)

2′. B → IA : EkA(nonceA ‖nonceB)

2. I → A : EkA(nonceA ‖nonceB)

3. A → I : EkI (nonceB ‖ ks)
3′. IA → B : EkB (nonceB ‖ ks)
4′. IA → B : Eks(. . .)

At the end of this attack, Bob thinks that he is talking to Alice (though Alice knows
that she is talking to the attacker, a session which will presumably be dropped), and the
attacker knows ks so that they can continue the rest of the session with Bob, imperson-
ating Alice. Man-in-the-middle attacks are common and easy to miss. This particular
attack needs Alice to have initiated an authentication run with the attacker, but this
is not implausible: remember that a Dolev-Yao attacker is also a legitimate user of the
network and can expect (or entice...) apparently-legitimate communication from users.

We will discuss the formal proof of protocols, in the above case obviously flawed, in
section 7.6. An obvious fix for the protocol3 (called Needham-Schroeder-Lowe) is

Protocol 16. Fixed version of protocol 15

1. A → B : Alice, EkB (Alice ‖nonceA)

2. B → A : EkA(nonceA ‖Bob ‖nonceB)

3. A → B : EkB (nonceB ‖ ks)
4. A → B : Eks(m1 ‖Alice ‖ counter)

5. etc.

The inclusion of Bob’s name in step 2 means that the message cannot be used by an
attacker operating under any name other than Bob’s.

7.1.3 On Nonces

Nonces have played a pivotal role in all the protocols we have examined, and it is
possible to introduce vulnerabilities if they are used incorrectly. A nonce could be a

3But “obvious” is a dangerous word in protocol analysis, since researchers thought that the Needham-
Schroeder protocol was “obviously” secure for 17 years before they found out that it was not.
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(pseudo-)random number, a counter, or a timestamp.

Random numbers are safest in the sense that there is practically no chance that an
attacker can predict them, but thanks to the birthday paradox (subsection 4.2.1) they
repeat more often than counters. As long as it is 128 bits or longer, we can probably
forget about the possibility of a repeat, but care must be taken to use a proper random
number generator4. Nowadays most people would intend that a nonce should be random,
but early literature on security would often allow counters and would state explicitly if
randomized nonces were required. The lesson is to be certain what the nonce is used for.

It is clear why protocol 2 must use an unpredictable nonce (otherwise an enemy can
predict the response and impersonate Alice). In (Ferguson et al., 2010, §11.5) the
authors claim that the same is true of protocol 3 as well, but this author disagrees.
Although an attacker can impersonate Alice to Bob, they can do so only in the same way
that any Dolev-Yao attacker can, by interposing themselves in the message stream, and
they would not recover any session key transmitted in the authentication.

Timestamps are not usually called “nonces”, but they often play the same role. One must
be careful about predictability, and may also rely on synchronized and secure clocks. It
is common, though, for a timestamp to be included as part of the generation of a nonce,
if only to supply a bit more “randomness” to the generation process.

7.2 Key Distribution

Authentication protocols inevitably involve a shared secret: a public or symmetric crypto
key or some piece of information known to no other parties. If there are n users in a
network, pairwise keys require O(n2) shared secrets, which becomes infeasible for large
networks. In order to reduce the requirements for so many keys, it is necessary to use
trusted third parties (TTP).

The word trusted has a particular meaning in security engineering: it indicates a subject
who can destroy the security of the system by behaving badly. Trusted does not mean the
same as trustworthy, and indeed one should view trusted subjects with caution because

4Incidentally, the same is true for generation of session keys. A line of code incorrectly commented
out, in library PRNG code in an old version of OpenSSL for Debian, led to predictable generation of
weak nonces and weak session keys and caused serious flaws in a large number of servers including SSH
and SSL (Appelbaum et al., 2008). It has been described as the biggest Debian bug ever.
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of their power to damage the system. Nonetheless, most users can safely put their trust
in some sort of authority, if only the authority which gives them physical access to their
computer hardware or network connection.

Trusted third parties can help the key distribution problem by acting as a link between
users, when the trusted entity shares cryptographic keys with each of them (needing O(n)
such keys). For example, if the University of Oxford shares authentication keys with each
university member, two members who wish to authenticate can each use this trusted
entity to verify the other’s identity, or simply to generate a session key for them to do
their own authentication.

There are two commonly-used paradigms for authentication via TTPs. One is the key
distribution centre (KDC): if Alice wants an authenticated session with Bob, she talks
securely with the TTP (using the key she shares with it), and asks it to generate a session
key. Encrypted with the key Bob shares with the TTP, his copy of the session key also
arrives safely (usually via Alice), and now Alice and Bob can proceed to authenticate as
in the previous section.

The other method is to use the TTP to certify users’ public keys, in which case it is called
a certification authority (CA). In this scenario, Alice generates a public key and asks
the CA to sign it with a digital signature. The CA makes whatever (physical) checks are
necessary to verify Alice’s identity before agreeing, and then produces this signature which
is called a certificate. Every user has a copy of the CA’s public signature verification
key. Alice can then publish a signed key, and every other user has the ability to check
the signature, thus preventing a Dolev-Yao attacker from interfering with the integrity of
Alice’s public key.

Both of these paradigms are widely used today. It is interesting to compare their relative
merits. KDCs must be online, i.e. available whenever any two users wish to communicate.
This makes them a bottleneck, and potential target for denial-of-service attack. On the
other hand, a CA is only involved in the signature of a new user’s key. If the CA were to be
taken offline, authentication of existing users can continue uninterrupted. Furthermore,
should a KDC be compromised, it can eavesdrop on every future conversation between
users, whereas a compromised CA can issue false certificates and (eventually) cause false
authentication between users, but cannot itself decrypt any communications because it
never sees session keys. (Nonetheless, a compromised CA is a serious problem, as we
mention in section 7.5).



7.2. KEY DISTRIBUTION 119

The main disadvantage of CAs is revocation, which is the removal of a signed public
key (due to its expiry, if a user leaves a network, or learning that it was issued in error).
With KDCs it is easy to revoke a user’s privileges to authenticate with other users: simply
delete their key from the KDC’s database. But once a public key has been signed by
a CA, the signed copy can be stored and produced at any point later. Certificates do
include an (integrity-protected) expiry date, but they are usually valid for a year so there
needs to be another method for quicker revocation of certificates.

One solution is the certificate revocation list, simply a list of certificates no longer
valid. It is then up to the user to check that they received a valid public key by checking
that it is not on a revocation list. However, one is left with two options. Either the lists
can be queried on demand, in which case the CA (or its proxy) will have to be online,
defeating the advantages of the certification approach. Or the lists are generated offline
and posted from time to time, in which case they will become out of date. Options such as
forcing shorter expiry dates on certificates, or asking the revocation lists to be published
often, still leave small windows of time in which invalid authentication may occur.

In the real world, there is no single point of trust and no single TTP. For example, users
of the Oxford University network might all authenticate using a central Oxford KDC or
CA, and users of the Cambridge University network via one in Cambridge. In order for
Oxford and Cambridge users to authenticate across sites, a chain of trust must be built
between them. In the case of KDCs, the Oxford KDC shares bilateral authentication keys
with the Cambridge KDC and requests for authentication are transferred from one site to
the other. In the case of CAs, the Oxford CA signs the Cambridge CA’s verification key,
and vice versa, so that an Oxford user can check the validity of a Cambridge user’s public
key by first checking the Oxford CA’s certificate for the Cambridge CA’s verification key.

More generally, a chain of trust is a path through a network such that each node trusts
the next (and vice versa for bilateral authentication). Establishing such a chain can
be difficult, and a common model is a tree-like structure: in simple terms, each user
trusts a local TTP, local TTPs trust some regional centre, regional centres a national
one, and national centres all trust each other. This is roughly how things work for
CAs, with authentication possible as long as Alice and Bob both trust the same root
CAs; validating certificate chains is at the heart of the authentication process in
section 7.4. A network of trust authenticating public keys, along with security procedures
for establishing that network, is known as public key infrastructure (PKI).

We will not focus on the details of PKI or the mechanisms of trust transfer, particularly
with KDCs for which there are countless options, but it is a current area of interest
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because some root CAs have recently shown themselves to be quite untrustworthy. We
have also not addressed the question of identity and names, which are important in
building a public key infrastructure.

7.3 Mediated Authentication

Finally, we can put together the authentication protocols with PKI to make remote
authentication possible. If Alice and Bob want bilateral authentication and both trust
the same root CA, they can exchange public keys along with (chains of) certificates
proving their authenticity, then engage in something along the lines of protocol 16. There
is nothing particularly special about the protocols involved (except for remembering to
check against revocation lists).

Alternatively, they can involve a KDC, which can be trusted to generate a symmetric
key kAB for them to use in protocol 14 or suchlike; in fact the same key can be used
as a session key, since it is generated anew by the KDC each time. In practice, only
the initiator communicates with the KDC (it being difficult to synchronize three-way
communications over a network), and they receive a ticket, encrypted under Bob’s key,
which they forward to Bob. One such protocol is

Protocol 17. Needham-Schroeder with KDC

1. A → KDC : Alice, Bob, nonceA′

2. KDC → A : EkA(nonceA′ ‖Bob ‖ kAB ‖ ticket),

where ticket = EkB (Alice ‖ kAB)

3. A → B : ticket , EkAB
(nonceA)

4. B → A : EkAB
(nonceA − 1 ‖nonceB)

5. A → B : EkAB
(nonceB − 1)

6. A → B : EkAB
(m1 ‖Alice ‖ counter)

7. etc.

The idea is as follows. kA (respectively kB) is a cryptographic key – which could be
symmetric or asymmetric – shared only between Alice (respectively Bob) and the KDC:
it is certainly not a public key. Note that Alice and Bob share no secrets at the start
of the protocol, only their trust in the KDC. nonceA′ is the challenge to the KDC to
prove its own identity through knowledge of kA. The ticket contains all the information
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Bob needs to know to authenticate with Alice, but protected by Bob’s key kB, and Alice
forwards it to him5.

The protocol is secure under the normal attack model (if the crypto is perfect), but it
does present some vulnerabilities in practice. The message at step 4, EkAB

(nonceA −
1 ‖nonceB), must not use ECB block mode lest the two encrypted nonces be separated:
it leads to a man-in-the-middle attack.

Another potential weakness occurs if an old session key kAB is ever compromised by an
attacker (by dictionary attack, for example). Later, the attacker can intercept message
3 and replay the old ticket which first established kAB, fooling Bob into reusing the
old session key, which is not fresh. Freshness of tickets is addressed by the Kerberos
protocol6, developed by MIT in the late 1980s and early 1990s. It uses timestamps – and
thus requires the system time to be included into the security system – and each ticket
contains an expiry date.

Protocol 18. Kerberos, simplified

1. A → KDC : Alice, Bob, nonce ′A
2. KDC → A : EkA(nonce ′A ‖Bob ‖ kAB ‖ expiry ‖ ticket),

where ticket = EkB (Alice ‖ kAB ‖ expiry)

3. A → B : ticket , EkAB
(timestamp)

4. B → A : EkAB
(timestamp + 1)

5. etc.

There are a number of versions of Kerberos, and the above protocol is a simplification. In
the full protocol, there is a distinction between the authentication server and the ticket
granting server. If permission to authenticate is revoked, there can be a time of check to
time of use problem.

The Oxford “Single Sign-On” (SSO) uses the Webauth7 system, part of which uses version
5 of Kerberos. Webauth uses SSL/TLS (see next section) for Alice’s authentication of

5Apparently encryption under kB is used to protect the integrity of the ticket: we know from chapter 3
that this is a bad idea. The encryption does give Bob an assurance that the KDC has been involved in
the generation of the ticket, which might help foil denial-of-service attacks.

6http://www.ietf.org/rfc/rfc4120.txt
7http://webauth.stanford.edu/protocol.html
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the KDC, the KDC’s authentication of Alice by a straight password, and various commu-
nications (specifically between service providers and the KDC) use Kerberos-established
session keys with tickets encoded into cookies for web browsers.

In protocols using tickets, the client machines must take care to protect the confidentiality
and integrity of the ticket itself, and the operating system security must be reliable if the
ticket is stored in memory or on disk. When tickets are encoded as cookies, the cookies
themselves must be protected, and this presents more attack possibilities: cookies have
a long history of causing security flaws because they can sometimes be read or changed
by malicious websites.

One other slight drawback with Kerberos, at least in the standard version, is that Alice
does not authenticate herself to the KDC. Thus an attacker can request any number of
bogus tickets. They will not be much help in themselves, but could be used to mount a
cryptanalytic attack on the cipher, or to run a denial-of-service attack against the KDC.

Although Kerberos guarantees fresh session keys (fairly fresh, since a certain amount
of clock skew must be allowed and the expiry cannot be too short), it does not give
perfect forward secrecy. Such a level of security would mean that previous sessions
are still secure from eavesdroppers even if the long-term keys are later compromised.
It is so-named because present secrecy (or security), provided by the session key, is
carried forward into the future. Clearly, this is impossible for protocols which transport
the session key under the security of a long-term encryption key, but it is possible for
protocols where the session key is never sent but instead agreed between the parties. A
classic example is to use a Diffie-Hellman exchange to agree a session key, or use some
other one-time ephemeral key.

7.4 The SSL/TLS Protocol

Rather than rely on centralised KDCs, the Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) protocols are designed to run inside applications (strictly speaking
in the application layer of the OSI model, or between it and the transport layer) to
provide authentication via certificates, plus confidentiality and integrity of a session. SSL
was designed with web browsers in mind, by Netscape in the early 1990s, but early
versions contained serious flaws. TLS is its successor, introduced by the IETF in 19998:
TLS version 1.0 is almost, but not quite, compatible with the last version of SSL, and

8http://www.ietf.org/rfc/rfc2246.txt
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is now supported by all major browsers under the HTTPS URI. There are some more
recent revisions to the TLS protocol, bringing it to version 1.2 in 2008, but this was not
deployed until recently: it was only in 2013 that the major browsers implemented TLS
above version 1.0, despite major weaknesses being discovered in 2011. And all major
browsers currently (November 2014) still support fallback to the last version of SSL,
despite even more glaring weaknesses found there.

There are two varieties of TLS: for unilateral and bilateral authentication. Because most
clients do not possess signed certificates proving their identity (they are web browsers used
by people, not servers belonging to businesses) the unilateral variety is most common and
is the one we will consider here. The principle is not that difficult: a client contacts a
server, they agree on which cryptographic primitives to use, the server sends a certificate
chain to the client, and they exchange nonces from which session keys are created. The
details can be a bit ugly so we present a highly abstracted version of the protocol:

Protocol 19. Most basic form of TLS

1. C → S : nonceC ,

Available Cipher Suites

2. S → C : nonceS ,

Selected Cipher Suite,〈
S, pkS , Issuer1, expiry , SIGN sk Iss1

(S ‖ pkS ‖ expiry)
〉
,〈

Issuer1, pk Iss1, Issuer2, expiry , SIGN sk Iss2
(Issuer1 ‖ pk Iss1 ‖ expiry)

〉
,

· · ·
3. C → S : EpkS

(Protocol Version ‖nonceP )

4. C → S : EkeC

(
Messages1−3 ‖MAC kmC

(Messages1−3)
)

5. S → C : EkeS

(
Messages1−4 ‖MAC kmS

(Messages1−4)
)

6. C → S : EkeC

(
m1 ‖MAC kmC

(counter ‖m1)
)

7. S → C : EkeS

(
m2 ‖MAC kmS

(counter ‖m2)
)

8. etc.

In the bilateral variety of TLS, the client sends their own certificate chain at step 3. There
are also other parts of the protocol we have omitted, for example a request to change
cipher suite, or to save and resume a session at a later date.

Here are some other comments and observations on the simplified protocol above.
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1. nonceC is 32 bytes: four bytes making up the current time, and 28 random. The in-
clusion of the time may help preserve freshness even if the random number generator
is broken (though this seems a bit futile!). A cipher suite includes an asymmetric
cipher (RSA, ECC, or use of Diffie-Hellman key exchange instead, etc), a symmet-
ric cipher (NULL for no cipher, the stream cipher RC4, Triple DES with CBC,
AES with CBC, etc) and hash (MD5 or SHA-1). The client lists the cipher suites
acceptable to them.

2. nonceS has the same properties as nonceC . The protocol fails if the server doesn’t
like any of the client’s suggested cipher suites. The certificate chain should end
with a root CA trusted by the client, otherwise they will reject the authenticity of
the server. In practice, web browsers come with about 300 trusted root CAs built-
in (occasionally updated, but perhaps not often enough) and the user is presented
with a warning if the certificate chain is invalid or leads to an untrusted root. Sadly,
many users proceed despite such warnings...

3. EpkS
indicates asymmetric encryption using the cipher selected in message 2. The

48-byte random nonce nonceP is called the pre-master secret. Both client and
server can now compute the 48-byte master secret,

prf(nonceP , “master secret” ‖nonceC ‖nonceS),

where prf is a ludicrously complex pseudorandom function (based on a combination
of MD5 and SHA-1 hashes and the HMAC construction) and “master secret” is
a fixed ASCII-encoded salt. Using another ludicrously complex pseudorandom
function, six keys are created from the master secret: session encryption keys for
messages from C and S (keC and keS), IVs for these encryptions if in block mode9,
and MAC integrity-check keys for messages from C and S (kmC and kmS). Note
that the cryptographic keys for messages from the client to server are different from
those from server to client, preventing any reflection-type attack.

4/5. The client and server prove their authenticity by returning an encrypted and
integrity-protected copy of previous messages. The server can only do this if they
can compute the master secret, which they can only do if they can decrypt nonceP ,
which they can only do if they possess skS . And the certificate chain ensures that
only the true server has asked for the corresponding pkS to be signed by a trusted
CA.

6. The authenticated, encrypted, integrity-protected communications make use of the
client and server encryption and MAC keys. The MAC uses the HMAC construc-

9The use of secret IVs is unusual, see section 7.5.
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tion, along with the basic hash selected in the cipher suite. Note the use of the
Authenticate then Encrypt paradigm (section 6.5), with the MAC wrapped inside
the encryption. The message counter is included in the MAC, but not actually
transmitted: this is because the recipient can keep count for themselves.

In many ways, this protocol is over-engineered. There is an unnecessary amount of
hashing together of secrets and nonces in order to generate the session keys, and some
of the communication is superfluous (for example the cumbersome way that the parties
prove knowledge of the premaster secret in steps 4/5). The pseudorandom function has
no theoretical security guarantees, although its similarities with HMAC are grounds for
reassurance.

TLS is used for many vital secure applications over the internet, including email and
banking. Thus there is a big prize for a malicious attacker who can break the confi-
dentiality of the communications, or interpose themselves as a man-in-the-middle. As a
result, it has been the subject of much scrutiny resulting in many attacks, most of them
on specific implementations (timing attacks or exploiting a weak PRNG) rather than on
the protocol itself. The complexity of the protocol is not a security advantage – it makes
formal analysis more difficult – but there have not yet been any attacks on the core TLS
protocol itself, if one excludes session resumption10 and crypto- or implementation-level
attacks.

SSL/TLS is not the only way to authenticate over the internet. The IPsec protocol
exists at the IP layer (below the transport layer rather than, as TLS/SSL, above it), and
encrypts packet headers and contents. It can provide packet-level authentication through
a number of means, including the Internet Key Exchange (IKE) protocol. Because it is
implemented in the operating system, it is transparent to applications, but this means
that the level of security is only from host to host rather than application to application.

7.5 Recent Attacks on SSL/TLS

The TLS protocol, and where necessary additional primitives such as digital signatures,
are supposed to provide the security assurances we need in order to communicate se-
curely in a Dolev-Yao world. Many digital infrastructures rely on it: internet banking,

10An attack exploiting the gaps in authentication of resumed sessions was published in 2009. An article
reflecting on the attack is (Farrell, 2010).
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confidential email, secure voice-over-IP, and instant messaging services. Although there
have been a few attacks on early versions of the SSL protocol, modern versions of the
core protocol are “probably” secure against attacks.

Nonetheless, the protocol has recently had some bad press and featured in a number of
malicious attacks. They attack the tools which are added to the protocol, but have been
potentially very serious. There now follows a brief exposition of some recent attacks.

7.5.1 Attacks on Certification Authorities

First, there have been attacks on certification authorities themselves. Sadly, the certificate
system requires placing one’s trust entirely in the hands of these authorities, and they have
not always lived up to this responsibility. Some CAs have been hacked and, potentially,
their private signing keys stolen. With these keys, anyone can create a fake certificate
chain. Even without the private keys, if the CA can be spoofed into issuing certificates
then TLS traffic may be compromised. In the recent “Arab spring”, email and other
digital communications were key to co-ordinating civil disobedience. Around that time,
a compromised CA was found to have issued certificates for *.*.com and *.*.org, which
can certify almost any website, and particular attacks seemed to focus on major free
webmail providers. It has been reported that Iranian authorities were able to snoop
on the emails of thousands of people, though the veracity of such reports is difficult to
establish. What is not in doubt is that fake certificates, if issued to people in a repressive
regime, will allow a man-in-the-middle attack for that regime to snoop on (and even
tamper with) their https usage, using simple tools widely available today.

A further concern is that all CAs are based in some country, by whose laws they are
controlled. Should their country’s authorities demand (lawfully or not...) that they
create fake certificates, it would be difficult for them to refuse. Although certificates
can be revoked, the revocation lists take time to be updated, and could even be blocked
by the country. And there is no central system for spotting fake certificates in the first
place. This exposes the essential flaw in a CA system: there is no agility of trust. The CA
system was designed in the 1990s when a single, central, fixed, trusted CA was envisaged.
Recent research has proposed that trust should be both distributed and easier to alter,
with multiple CAs being used, compared, and dropped if found to be unworthy11.

11An entertaining talk can be found at http://www.youtube.com/watch?v=Z7Wl2FW2TcA.
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7.5.2 Attacks on SSL/TLS Block Modes

In late 2011 there was a lot of press about an attack called “BEAST” on the cryptography
used in TLS12. While its application was a bit limited, it is interesting enough to be worth
discussion.

The idea behind the attack has actually been known for some time (Bard, 2006). It
involves the combination of two ideas: attacking the secrecy of the IVs in TLS, and using
malicious code (e.g. some javascript) to get inside a web browser running a TLS session
and insert chosen plaintext into the middle of important TLS-protected messages from
client to server. This allows linear-time attacks on unknown ciphertext, which you saw
in the first practical.

It might seem unreasonable to grant the attacker the power to insert extra plaintext into
the client’s message, but when a web browser creates a TLS session it is possible for
malicious javascript code to send its own communication to the server, mixed up with
the authentic communication from the client13. The use of a randomized and secret IV,
however, makes it impossible for the attacker to spot equal plaintexts, since the same
plaintext will encrypt to different ciphertexts with different IVs. The “BEAST” attack
was defeated in TLS version 1.1, which generates a fresh random IV for each message, but
it took a long time before versions 1.1 and 1.2 were deployed in practice: communications
were theoretically vulnerable for more than a year after BEAST hit the headlines.

It is difficult to know where to lay the blame for this attack: with the implementations
which generated a non-secret “random” IV, with the idea of keeping IVs secret in the first
place, or with the general possibility of inserting malicious plaintext into TLS sessions?
As with many security bugs, it is the combination of small weaknesses which lead to the
attack.

A more recent (2014) attack based on CBC block mode is called POODLE14. This attack
only works for the older SSL protocol, which unfortunately most browsers still implement:
the first move of the attacker is to tamper with the packets to make the parties fall back
to SSL version 3. Then a flaw in SSL, that the block padding used in CBC block mode
is not verified by the MAC, is used to conduct a linear-time recovery of secret plaintext.
Only 256 SSL requests are needed for each byte decrypted.

12http://www.theregister.co.uk/2011/09/19/beast_exploits_paypal_ssl/
13In Bard’s original paper, it was assumed that the SSL/TLS session was some sort of tunnel, such as

an SSL-VPN, which made it easier for malicious software to insert communication into it.
14https://www.openssl.org/~bodo/ssl-poodle.pdf
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Attacks such as BEAST and POODLE are one reason why the RC4 stream cipher is a
popular choice in the cipher suite (one recent study put its prevalance at over 50% of
TLS traffic). Stream ciphers need no block mode at all.

7.5.3 Attacks on SSL/TLS Compression

There have been many recent attacks making alternative uses of the ability to insert
plaintext. One is “CRIME”15 (2012), and in 2013 a follow-up called “BREACH”, which
tries to determine the value of encrypted cookies by injecting plaintext similar to cookies
and noting the size of the ciphertext. Because most browsers and servers can compress
the plaintext, or at least the headers, prior to encryption (to make it quicker to encrypt
and transmit) the ciphertext gets smaller when there is more redundancy in the plaintext.
When the inserted data has significant overlaps with the secret plaintext cookie the cipher
stream is shorter, thus leaking information about the cookie being extracted. The attack
seems to be quite practical, and the only workaround is to disable compression. The
upcoming revision of TLS (version 1.3) will not support compression, but this standard
has not even been finalized yet, let alone deployed.

7.5.4 Attacks on RC4

Unfortunately, the move towards RC4 as the symmetric cipher in the suite only allows
for other exploits. Although the “biases” (non-uniformity) in the byte stream produced
by RC4 have long been known, in 2013 they were refined to the point where they can be
used for attacks on TLS (as well as the wireless protocol WPA that succeeded WEP).

The attack16 requires the same plaintext to be sent many times, using different keys: this
is plausible if one prompts a server to reset the keys (which is part of the TLS protocol)
and resend the same secret. Around 230 repetitions of the same plaintext under different
(unknown) keys is sufficient to get first 256 bytes of plaintext encrypted by RC4. It is
practically difficult to get a server to respond to more than 220 or so connections per
hour, so the overall time for this attack is in the scale of weeks rather than seconds, but
a few bytes can be deduced more quickly and this could be sufficient to weaken a secret
authentication cookie.

The authors conclude that RC4 is fundamentally flawed, and predict that stronger biases
will be found in future.

15https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_
-lCa2GizeuOfaLU2HOU

16http://www.isg.rhul.ac.uk/tls/RC4biases.pdf
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This means that many of the TLS cipher suite options are insecure. As long as both
server and client are sufficiently modern to implement AES encryption (or one of the
21st century alternatives), with a counter-style block mode such as Galois Counter Mode
(GCM), then communication with no known flaws can happen. But neither party can
permit use of RC4 or a block cipher with CBC, and both header compression and SSL
fallback must be disabled. Some of these require manual configuration in current browers.

7.5.5 Denial-of-Service Attacks

In 2011 there was publicity about a denial-of-service attack on TLS. It appeared to make
use of the fact that the server has to do the bulk of the cryptography work first, when the
client sends a request to renegotiate the session keys (an advanced feature of TLS that we
have not described). The authors claim17 that the attack even works when renegotiation
is disabled. Computational inequality makes it easier for a client to overload a server,
even if the client has limited bandwidth. In general, it is a good idea for a protocol to
make more, or at least the first, computational demands on the initiator.

The security community does not seem particularly perturbed by this attack, though,
and it may turn out to be ineffective in practice. It is frustrating that attacks like these
are often not published as papers in computer security journals or scientific conferences,
the authors preferring to make a “presentation” at a hacking party or conference instead.
It means that the details are not always full understood or scrutinized.

7.6 Concluding Remarks

The world of protocols is a huge area, and a topic of current research. One topic of
relevance to this chapter is zero knowledge authentication, in which an actor proves
knowledge of some data (for example a password) without revealing to anyone – including
the other authentication party – any information about that data. More precisely, they
cannot be used by any other party as an oracle to reveal the data. There are also
protocols for many things besides authentication, including blind auctions, anonymous
communication, and voting.

As we have seen, it is difficult to get protocols right. When it is “obvious” that a
protocol is correct, it might be flawed. Even standing the test of time might not be
a guarantee of security, as the Needham-Schroeder public key protocol demonstrated.

17http://www.thc.org/thc-ssl-dos/
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Various researchers have articulated their lessons for the design of good protocols, for
example (Abadi & Needham, 1995), but collected wisdom can only go so far. A danger
is that a failure of any of the three main aspects of a secure channel (confidentiality,
integrity, authenticity) causes the whole channel to fail. For example, there is no point
having confidential conversations with one’s enemy. How can we satisfy ourselves that a
proposed protocol really is secure?

There is a large body of research on protocol verification. One approach is to design
logics to reason about actors’ knowledge, and use formal proof (or theorem proving soft-
ware) to show that unauthorized actors cannot learn secret information. The pioneering
example is “BAN logic”, from which came a number of different formal systems. However,
the infamous NSPK protocol shows the potential problems with such an approach: NSPK
was proved secure in the original BAN logic, but we now know that it is not secure. This
is because the logic’s intruder model assumed that all principals are honest (preventing
the intruder from being one of them). Because attackers are ingenious, they sometimes
come up with types of attack not envisaged by the logic designer.

Another approach is to model the entire communication system as a finite state machine,
describe security properties for it (taking us back to the security models material in
chapter 2), and use model checking to verify that running protocols cannot break se-
curity. A particularly user-friendly example is Casper18, which compiles human-readable
descriptions of protocols into the process algebra CSP, then uses the FDR model checker
to prove security or find attacks.

Finally, let us return to the attack model for security protocols. The Dolev-Yao model,
plus an assumption of perfect cryptography, is now seen as too weak: we have already
seen how protocols are designed to protect long-term secret keys from cryptanalysis,
and how block modes should be considered carefully. More seriously, we should start to
question the assumption that principals’ computation is secure. Contemporary hackers
make frequent use of keylogging software, and install kernel-mode “rootkits” which can
peek inside web browsers’ memory stores. If a user accesses a website secured using
TLS, their assurance of its authenticity could be misplaced when the browser itself has
been compromised, or their passwords and credit card information logged directly from
the keyboard. It is truly impossible for Alice and Bob to create a secure session if they
cannot trust their own terminals.

In response, online banks usually make use of small secure hardware devices. Such devices

18http://www.cs.ox.ac.uk/gavin.lowe/Security/Casper/
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were issued to “high-net-worth” customers some years ago, and recently extended to all
customers. The device is plugged into a computer or stands alone, and its main feature
is fixed firmware which cannot be hacked, and whose keypresses cannot be logged. A
PIN is usually required to activate the device. Authentication to the online banking
website (potentially bilaterally) is performed by a challenge-response protocol between
three parties: the bank, the untrusted browser, and the trusted device. See (Mannan &
van Oorschot, 2011) for a description of one such protocol.

The author’s bank uses a standalone device which is unique to each customer: after being
activated by a PIN, the device generates a 6-digit number (a different number is generated
every second). This, along with a conventional password, authenticates the user to the
bank’s https://... website. We can deduce that the device contains a hardcoded user
identifier and a clock. Thus the transmission must be something like (D is the device):

1. A → B : Andrew

2. D → A : EkB (Andrew ‖ timestamp)

3. A → B : ETLS session

(
password , EkB (Andrew ‖ timestamp)

)
where EkB uses a key written by the bank into their device: it could be a MAC rather
than an encryption. The bank will not allow timestamps which are too old, and must not
permit exhaustion attacks on the 6-digit response (in general, protocols which involve
human mediation have to use short codes and then take special precautions against
exhaustion). Notice that the device is not providing any additional authentication of the
bank, beyond that provided by TLS (running on a potentially-compromised computer,
remember, which rather ruins the value of any certificates).

When the user requests to transfer money to a new payee, the device is used in a differ-
ent way, with a challenge-response involving the last four digits of the payee’s account
number. Clearly, this is to prevent a compromised web browser from silently rewriting
the destination account to that of an accomplice. However, this looks a bit dubious: the
amount itself is not included in the challenge-response protocol so it cannot be authen-
ticated, and it should not be difficult for a determined attacker to open a few thousand
bank accounts (in different banks all over the country), making it quite likely that they
can redirect money to them even if they cannot alter the last four digits of the account
number.

At first sight, this device appears to add relatively little to security: it prevents replay of
authentication credentials, and that is about all. It also makes things a bit more difficult
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for the user, who needs physical possession of the device whenever they use the online
banking service, and must not lose it. Given that banks lose billions of dollars to fraud
every year, one would expect that they could afford to have some security experts provide
a properly-designed solution.
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