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CHAPTER 1 STAT 110, J. TEBBS

1 Where Do Data Come From?

Complementary reading from Moore and Notz: Chapter 1.

1.1 Introduction

TERMINOLOGY : Statistics is the development and application of methods to the

collection, analysis, and interpretation of observed information (data) from planned in-

vestigations.

SCOPE OF APPLICATION : Statistical thinking can be used in all disciplines!! Consider

the following examples:

• In a reliability study, tribologists aim to determine the main cause of failure in a

jet engine assembly. Recently failures reported in the field have had an effect on

customer confidence (for safety concerns).

• In a marketing project, store managers in Aiken, SC want to know which brand of

coffee is most liked among the 18-24 year-old population.

• In a clinical trial, physicians on a Drug and Safety Monitoring Board want to

determine which of two drugs is more effective for treating HIV in the early stages

of the disease.

• In an automotive paint production process, a chemical reaction may produce a

change in color depending on the temperature and stirring rate in the vessel where

the reaction takes place. An engineer would like to understand how the color is

affected by the temperature and stirring rate.

• The Human Relations Department at a major corporation wants to determine

employee opinions about a prospective pension plan adjustment.

PAGE 1
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• In a public health study conducted in Sweden, researchers want to know whether

or not smoking (i) causes lung cancer and/or (ii) is strongly linked to a particular

social class.

• Shaquille O’Neill claims that he “can make free throws when they count.” Is there

any evidence to support his claim?

• Which professions boast the highest starting salaries for undergraduates? An ad-

visor at USC is interested in collecting information which she can provide to her

advisees.

• A physical therapist is trying to determine which type of therapy (conventional

versus experimental) is better at helping his patients recover from serious wrist

injuries.

1.2 Individuals, variables, and data

TERMINOLOGY : Individuals are simply the objects measured in a statistical problem.

A variable is a characteristic that we would like to measure on individuals. The actual

measurements recorded on individuals are called data.

Table 1.1: Yield data (kg/plot) for three different fertilizers.

Fertilizer 1 Fertilizer 2 Fertilizer 3

64.8 56.5 65.8

60.5 53.8 73.2

63.4 59.4 59.5

48.2 61.1 66.3

55.5 58.8 70.2

Example 1.1. In an agricultural study in Kansas, researchers want to know which of

three fertilizer compounds produces the highest wheat yield (in kg/plot). An experi-

PAGE 2
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Figure 1.1: Wheat experiment. Wheat yields for three different fertilizers.

menter uses 15 plots of land. Each fertilizer is applied to 5 plots of land. After harvest,

the resulting yield is measured. See Table 1.1 for the data in this investigation.

• Individuals: plots of land

• Variables: fertilizer type and yield (are there other variables of interest?)

Example 1.2. The HIV virus destroys the immune system; thus, individuals infected

are susceptible to various infections which ultimately leads to death. Individuals can

be infected with HIV when they come into contact with infected blood or other bodily

fluids. In a large study conducted in Houston, 921 heterosexual males were recruited.

These individuals were known intravenous drug users who were not receiving treatment

for their addiction. See Table 1.2 for the data in this investigation.

• Individuals: male subjects

• Variables: HIV (positive/negative status), drug injected

PAGE 3
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Table 1.2: Houston hiv study. Infectivity data for four different drug use behaviors.

Drug injected Number of subjects Number infected Percentage

Heroin 32 1 3.1%

Cocaine/Heroin 198 11 5.6%

Cocaine 476 44 9.2%

Cocaine/Amphetamines 215 21 9.8%

1.3 Observational studies

TERMINOLOGY : An observational study is an investigation carried out to observe

individuals, but there is no attempt to influence the responses from those individuals. A

response is a variable that measures the main outcome of the study. The purpose of an

observational study is to describe some group or situation.

Example 1.3. Questioning individuals about drug use, sexual orientation, criminal

activity, or other sensitive topics, is a difficult task. Individuals are not often willing to

reveal such information for fear of social stigma, yet, for public-health and socioeconomic

reasons, accurate information on such behaviors is often needed. In a telephone survey

involving USC undergraduates, 700 individuals were asked to respond to the question:

“Have you ever experimented with marijuana?”

Results: Of these 700 individuals, 360 responded “yes,” while 210 responded “no.”

There were 130 individuals which did not answer.

1.4 Populations and samples

TERMINOLOGY : In a statistical problem, the population is the entire group of in-

dividuals that we want to make some statement about. A sample is a part of the

population that we actually observe.

PAGE 4



CHAPTER 1 STAT 110, J. TEBBS

Question: In Examples 1.1, 1.2, and 1.3, what is the population? What is the sample?

Example 1.1. Population: Sample:

Example 1.2. Population: Sample:

Example 1.3. Population: Sample:

NOTE : Usually, we cannot examine all members of a population due to time, cost,

and other constraints. So, we examine only a portion of the population and try to

draw conclusions about the whole. This smaller portion is the sample. The process

of generalizing the results in our sample to that of the entire population is known as

statistical inference. We’ll study this more formally later in the course.

TERMINOLOGY : A special type of sample, known as a census, is one where an attempt

is made to canvas the entire population.

Example 1.4. The Population Estimates Program publishes total resident popula-

tion estimates and demographic components of change (births, deaths, etc.) each year.

The program also publishes the estimates by demographic characteristics (age, sex, race)

for the nation, states, and counties. For more information, see http://www.census.gov/.

1.5 Experiments

TERMINOLOGY : An experiment is a planned study where individuals are subjected

to treatments. An often important scientific question then becomes, “How do the

treatments affect the individuals’ responses?”

• Unlike observational studies, well-designed experiments can give us good evidence

for cause and effect.

• Virtually all scientific research involves conducting well-designed experiments. Re-

sults from these experiments either support or refute a given hypothesis.

PAGE 5
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Example 1.5. Salmonella bacteria are widespread in human and animal populations,

and there are over 2,000 known serotypes. The reported incidence of salmonella illnesses

in humans is about 17 cases per each 100,000 persons. (Source: CDC. Preliminary

FoodNet Data on the Incidence of Foodborne Illnesses, 2000). A food scientist wants to

see how withholding feed from pigs prior to slaughter can reduce the size of gastrointesti-

nal tract lacerations during the actual slaughtering process. This is an important issue

since pigs infected with salmonellosis may contaminate the food supply through these

lacerations (among other routes, including fecal matter and meat juices).

• Individuals = pigs

• Population = all market-bound pigs

• Sample = 45 pigs from 3 farms (15 per farm) assigned to three treatments:

– Treatment 1: no food withheld prior to transport,

– Treatment 2: food withheld 12 hours prior to transport, and

– Treatment 3: food withheld 24 hours prior to transport.

• Data were measured on many variables, including body temperature prior to slaugh-

ter, weight prior to slaughter, treatment assignment, the farm from which each pig

originated, number of lacerations recorded, and size of laceration (cm).

• Boxplots of the lacerations lengths (by treatment) are in Figure 1.2.

DISCUSSION QUESTIONS :

• How should we assign pigs to one of the three treatments?

• Why would one want to use animals from three farms?

• Why might body temperature or prior weight be of interest?

PAGE 6
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Figure 1.2: Salmonella experiment. Laceration length for three treatments.

REMARK : In agricultural, medical, and other experimental applications, the most com-

mon objective is to compare two or more treatments. In light of this, we will often talk

about statistical inference in the context of comparing treatments in an experimental

setting. For example, in the salmonella experiment, one goal is to compare the three

withholding times (0 hours, 12 hours, and 24 hours).

• Since populations are usually large, the sample we observe is just one of many

possible samples that are possible to observe. That is, samples may be similar, but

they are by no means identical.

• Because of this, there will always be a degree of uncertainty about the decisions that

we make concerning the population of interest!!

• We would like to make conclusions based on the data we observe, and, of course,

we would like our conclusions to apply for the entire population of interest. This

is the idea behind statistical inference.
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2 Samples, Good and Bad

Complementary reading from Moore and Notz: Chapter 2.

2.1 Introduction

BASIC IDEA: An investigator usually wants to make a statement about a large group

of individuals. This group is called the population.

• all eligible voters in SC

• all employees at a company

• all market-bound pigs

• all USC students

• all advanced-HIV patients.

THE CATCH : Because of cost and time considerations, it is not practical to measure

each individual in the population. Instead, only a part of the population can ever be

examined; this part is called the sample. Hopefully, the sample is representative of the

population. So, how do we choose a sample from a population?

TERMINOLOGY : The way which we select a sample from the population is called the

sampling design.

2.2 Poor sampling designs

TERMINOLOGY : If a sampling design provides samples that are not representative of

the population from which the individuals were drawn, we say that the sampling design

is biased. We now look at two biased sampling designs.

PAGE 8
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VOLUNTARY RESPONSE SAMPLE : A voluntary response sample (VRS) consists

of people who choose themselves by responding to a general appeal (e.g., online polls,

mail-in surveys, etc.). The problem with such samples is that people with strong opinions

are usually the only ones which respond. This gives biased results!

Example 2.1. C-Span routinely provides viewers the opportunity to phone in comments

about important political issues. Recently, callers were allowed to comment on the current

state of affairs with Iran and North Korea. Do the callers’ comments accurately reflect

the views of the entire voting public?

Example 2.2. The 1936 presidential election proved to shape the future of opinion

polling. The Literary Digest, the venerable magazine founded in 1890, had correctly

predicted the outcomes of the 1916, 1920, 1924, 1928, and 1932 elections by conducting

polls. These polls were a lucrative venture for the magazine: readers liked them; newspa-

pers played them up; and each “ballot” included a subscription blank. The 1936 postal

card poll claimed to have asked one forth of the nation’s voters which candidate they

intended to vote for. In Literary Digest’s October 31 issue, based on more than 2,000,000

returned post cards, it issued its prediction:

“Republican candidate Alfred Landon would win 57 percent of the popular vote.”

In the election, FDR won 62 percent of the popular vote in one of the biggest

landslides in election history! The failure of the Literary Digest poll can be attributed

to bad sampling techniques.

• The sample itself was a voluntary response sample. Some people who received

questionnaires responded, but most did not.

• The sampling frame was biased; the mailings went to people who had 1936 auto

registrations, who were listed in telephone books, and who were on Literary Digest’s

subscription list!

PAGE 9
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• Literary Digest went bankrupt soon after this debacle. Meanwhile, George Gallup

was beginning to use random samples and scientific methods, and the survey

research industry was born.

CONVENIENCE SAMPLE : A convenience sample chooses individuals that are easiest

to contact. The researcher makes no attempt, or only a limited attempt, to ensure that

this sample is an accurate representation of some larger group or population.

• In general, the statistics community frowns on convenience samples.

• You will often have great difficulty in generalizing the results of a convenience

sample to any population that has practical relevance.

Example 2.3. Interviewees standing by the door at Walmart taking surveys at 11.00am

are excluding those individuals who do not frequent Walmart and those individuals which

can not shop at that time.

Example 2.4. An interview on the street corner would exclude non-ambulatory patients.

If the outcome measures are not strongly related to this factor, this may be alright. For

example, an assessment of eye color is probably safe in this setting. But a street corner

interview would be a disaster if you were measuring something like the degree of disability.

2.3 Simple random samples

SIMPLE RANDOM SAMPLE : A simple random sample (SRS) is a sampling design

where each sample of size n has an equal chance of being selected.

• We are choosing individuals so that our sample will hopefully be representative.

• Each individual in the population has an equal chance of being selected.

• We use the terms “random sample” and “simple random sample” interchangeably.

PAGE 10



CHAPTER 2 STAT 110, J. TEBBS

CONCEPTUALIZATION : Drawing random samples can be “thought of” as picking

numbers at random from a hat. This is useful for small populations; not for large!

IN PRACTICE : Choosing random samples must involve the use of a randomization

mechanism. This is simply a tool which can select individuals using chance.

TABLE OF RANDOM DIGITS : Table A (see pages 550-551 MN) contains a Table of

Random Digits. We can use this as a randomization mechanism to help select simple

random samples!

• The table consists of integers 0, 1, 2, ..., 9.

• The integers have no pattern to them (they were most likely generated by a com-

puter program).

• Since they are randomly generated, we can exploit this to choose an SRS.

USING THE TABLE : We can use Table A to choose an SRS; we do this in three steps:

1. Assign a numerical label to every individual in the population. Be sure that all

labels have the same number of digits.

2. Starting anywhere in Table A, choose a long string of numbers.

3. Reading from left to right (for ease), match the chosen numbers to those individuals

in your list. Those that match make up the sample.

Example 2.5. Last semester, I taught a STAT 110 section with 50 students. I wanted

to get student feedback on my teaching styles, but I did not have time to get feedback

from every student in the class. I decided to take a random sample of n = 5 students

from the class. Then, with each student in the sample, I would get feedback (in the form

of a questionnaire) and then use this information to summarize the impressions of the

entire class. Here is a list of students (for verisimilitude, I have changed the last names

to preserve confidentiality):

PAGE 11
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Table 2.3: Class list for STAT 110, Spring, 2005.

BROWN 01 CALDWELL 26

CAMPBELL 02 CAST 27

CLAYTON 03 CLINGER 28

COLUMBUS 04 COUCH 29

DEE 05 DEROGATIS 30

DOTSON, C. 06 DOTSON, F. 31

ELLIS 07 FINE 32

GAY 08 GRAHAM, J. 33

GRAHAM, S. 09 GROUND 34

HAGENHOFF 10 HAMMON 35

HANSON 11 HII 36

HIX 12 HOPKINS 37

IVORY 13 KALAMAR 38

KREGER 14 LOPEZ 39

MANNING 15 MARTIN 40

MAXWELL 16 MCCUISTION 41

MCLEAN 17 MCMENAMY 42

MEHARG 18 MELTON 43

MILLER 19 MOWREY 44

OGLESBY 20 OLIVER 45

PERRYMAN 21 REBER 46

RIGDON 22 ROBINSON 47

ROGERS, D. 23 ROGERS, J. 48

SAURO 24 SCHIEBER 49

SHUGHART 25 SNOW 50

SELECTING THE SAMPLE : Starting at Line 122 in Table A, we read the random

digits across:

13873 81598 95052 90908.

With these digits, we can form the following two-digit numbers (reading left to right):

13, 87, 38, 15, 98, 95, 05, 29, 09, 08.

The first five that match our list are

13, 38, 15, 05, 29.
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The five students which constitute the random sample are

IVORY 13

KALAMAR 38

MANNING 15

DEE 05

COUCH 29

Exercise: Note that if you start at a different line in Table A, you will get a different

sample! Using a different line from the Table of Random Digits (you pick!), select another

random sample of students from the list in Table 2.3. Write your sample below.

SOFTWARE : Computer programs (much like those used to design Table A) can also be

used. The web site www.randomizer.org contains an applet that allows one to select a

random sample directly. Using the randomizer at this site, I asked for a random string

of numbers between 01 and 50; the string generated was 26, 49, 11, 46, and 23. The

students that match these numbers would constitute my sample.

DISCLAIMER: Selecting simple random samples from very large populations is not as

easy as it sounds! For example, the population size of USC students (just in Columbia)

is around 28,000! In practice, researchers most likely would not

(i) identify exactly what the population is,

(ii) identify all of the members of the population (an impossible task, most likely), and

(iii) choose an SRS from this list.
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REALITY : It is more likely that reasonable attempts will have been made to choose

the individuals at random from those available. Hence, in theory, the sample obtained

for analysis might not be “a true random sample;” however, in reality, the SRS model

assumption might not be that far off.

2.4 Trusting samples

PREVAILING THEME : When selecting a sample of individuals, our overall goal is to

choose one that is representative of the population.

• Good design: SRS

• Bad designs: VRS, convenience

MAIN POINT : Voluntary response and convenience samples will rarely provide repre-

sentative snapshot of the population. To avoid bias, the best design to use is an SRS.

UNFORTUNATE REALITY : Even if we use an SRS, we still may (due to chance luck

of the draw) select individuals which are not representative of the population in some

way. However, this is our best chance.

SCRUTINIZING WHAT YOU READ : When reading newspaper/online articles, the

following phrases usually indicate that the results are biased, most likely due to poor

sampling designs and/or poor data collection methods:

• “This is not a scientific poll.”

• “These results may not be representative of individuals in the general public.”

• “....based on a list of those individuals which responded.”

Example 2.6. On February 5, 2005, the New York Times published an editorial article

citing that 41 percent of biology teachers in Louisiana rejected the theory of evolution.
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3 What Do Samples Tell Us?

Complementary reading from Moore and Notz: Chapter 3.

3.1 Parameters and statistics

Example 3.1. A Fox News poll, taken on June 29, 2006, reported the results from an

SRS of n = 900 adults nationwide. Interviewers asked the following question:

“Do you approve or disapprove of the way George W. Bush is handling his

job as president?”

Of the 900 adults in the sample, 369 responded by stating they approve of the President’s

handling of his job. What does this information tell us about the population of US adults?

TERMINOLOGY : A parameter is a number that describes a population. Since it

characterizes a population, and we can not contact every member in the population, a

parameter is unknown. Parameters are fixed values (they are what they are, even if we

don’t know them!).

TERMINOLOGY : A statistic is a number that describes a sample. When we take

a sample, we can compute the value of the statistic. Of course, different samples may

produce different values of the statistic!

IMPORTANT : We use sample statistics to estimate population parameters.

Example 3.2. In Example 3.1, let

p = proportion of US adults which approve of President Bush

The value of p is a parameter since it represents the population. The parameter p is

called the population proportion. To know p, we would have to poll every American
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adult! Since this is not done, we do not get to know p. On the other hand, let

p̂ = proportion of individuals in our sample who approve of President Bush.

Since p̂ is computed from the sample of individuals, we call it the sample proportion.

Recall that, in the sample, 369 of the 900 adults approved of the way President Bush is

handling his job. Thus, the sample proportion is

p̂ =
369

900
= 0.41,

or 41 percent. We might state that

“Our sample results indicate that 41 percent of US adults favor the way that

President Bush is handling his job.”

SUMMARY :

• The population proportion p is unknown because it represents the entire popula-

tion of US adults.

• The sample proportion p̂ = 0.41 is computed from the sample of 900 US adults.

• We use p̂ = 0.41 as an estimate of p. That is, we use the sample proportion to

estimate the population proportion!

Example 3.3. A Columbia-based health club wants to estimate the proportion of

Columbia residents who enjoy running as a means of cardiovascular exercise. Define

p = proportion of Columbia residents who enjoy running as a means of exercise.

Since p denotes the proportion of all Columbia residents, it is a parameter which de-

scribes this population.
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SAMPLING DESIGN : We decide to take an SRS of n = 100 Columbia residents. Recall

that we have two values:

p = the true proportion of Columbia residents who enjoy running (unknown)

p̂ = the proportion of residents who enjoy running observed in our sample.

In our SRS of n = 100 Columbia residents, 19 said that they enjoy running as a means

of exercise. The sample proportion is

p̂ =
19

100
= 0.19,

or 19 percent.

HYPOTHETICALLY : Suppose now that I take another SRS of Columbia residents of

size n = 100 and 23 of them said that they enjoy running as a means of exercise. From

this sample, our estimate of p is

p̂ =
23

100
= 0.23,

or 23 percent. That the two samples gave different estimates should not be surprising

(the samples most likely included different people). Statistics’ values vary from sample

to sample because of this very fact. On the other hand, the value of p, the population

proportion, does not change!

OF INTEREST : In light of the fact that statistics’ values will change from sample to

sample, it is natural to want to know what would happen if we repeated the sampling

procedure many times. Suppose that I selected 50 different simple random samples,

each of size n = 100. Here are the results:

0.19 0.23 0.20 0.20 0.16 0.25 0.21 0.17 0.14 0.26

0.18 0.25 0.18 0.21 0.20 0.21 0.20 0.18 0.22 0.19

0.19 0.22 0.23 0.17 0.26 0.21 0.19 0.19 0.20 0.10

0.18 0.21 0.20 0.23 0.23 0.26 0.18 0.18 0.16 0.24

0.27 0.18 0.19 0.26 0.25 0.24 0.10 0.18 0.18 0.25

PAGE 17



CHAPTER 3 STAT 110, J. TEBBS

SUMMARY : We have just produced 50 different sample proportions p̂, each one com-

puted from an SRS of size n = 100. Based on these values of p̂, obtained from repeated

sampling from our population, consider the following questions:

• What do you think the true value of p is close to?

• Do you think that p is equal to 0.75? Why or why not?

• Notice how there is variability in the different values of p̂. Why do think that is?

3.2 Bias and variability

TERMINOLOGY : Bias is consistent, repeated deviation of a sample statistic from a

population parameter (in the same direction) when we take repeated samples.

TERMINOLOGY : Variability describes how spread out the values of the sample sta-

tistic are when we take repeated samples.

IMPORTANT : A good sampling design has both small bias and small variability!

• To reduce bias, use simple random sampling (SRS). Simple random sampling pro-

duces estimates which are unbiased. That is, the values of the statistic neither

overestimate nor underestimate the value of the population parameter.

• To reduce variability in an SRS, use a larger sample. The larger the sample size,

the smaller the variability!

SUMMARY : Large random samples almost always give an estimate that is close to the

truth (i.e., that is close to the value of the population parameter).

WARNING : We can reduce the variability in our estimates by taking larger samples;

however, this only applies to simple random samples! Larger sample sizes do not

reduce variability when using bad sampling designs (e.g., convenience samples and VRS).
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3.3 Margin of error

Example 3.4. During the week of 8/10/01, Gallup/CNN/USA conducted a poll asking

an SRS of 1000 Americans whether they approve of President Bush’s performance as

President. The approval rating was 57 percent. In their next poll conducted during the

week of 9/21/01, Gallup/CNN/USA conducted the same poll asking an SRS of 1000

Americans whether they approve of President Bush’s performance as President. The

approval rating was 90 percent. Why was there such a big difference in approval rating?

COMMON STATEMENT : When reported in the news, good news reporters would con-

vey this in the following manner:

• “... in this poll, the approval rating for President Bush is 57% plus or minus 3%.”

• “... in this poll, the approval rating for President Bush is 90% plus or minus 3%.”

• What is this plus or minus 3%??? Where does it come from?

FACT OF LIFE : An SRS is a good sampling design. It produces unbiased estimates

of population parameters and provides small variability as well. However, even with an

SRS, a sample statistic will never estimate the population parameter exactly. There

will always be a degree of uncertainty. This is true because we never sample the whole

population! Because we will never estimate the population parameter exactly, we would

like to quantify the uncertainty in our estimate; we do this by using the margin of error.

MARGIN OF ERROR: The margin of error is a value that quantifies the uncertainty

in our estimate. A measure of how close we believe the sample proportion p̂ is to the

population proportion p is given by the margin of error.

INTERPRETATION : In Example 3.4, the margin of error is given by the value “3%.”

This is the value that quantifies the uncertainty in our estimates

p̂ = 0.57 (before 9/11) and p̂ = 0.90 (after 9/11).
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INTERPRETATION : We interpret these statements as

• “We are 95 percent confident that the true approval rating for President is

between 54% and 60%.” (before 9/11)

• “We are 95 percent confident that the true approval rating for President is

between 87% and 93%.” (after 9/11)

NOTE : These statements describe the entire population of US adults!

COMPUTING THE MARGIN OF ERROR: With an SRS, we use the sample proportion

p̂ to estimate the true population proportion p. The margin of error associated with p̂,

using 95 percent confidence, is approximately equal to 1/
√

n; that is,

margin of error =
1√
n

.

Example 3.5. In Example 3.4, Gallup/CNN/USA used an SRS of size n = 1000 (before

9/11). The margin of error associated with the estimate p̂ is equal to

1√
1000

=
1

31.62
≈ 0.0316 (that is, about 3%).

Recall that Gallup/CNN/USA announced a margin of error of 3%. This is where that

figure comes from!

IMPORTANT QUESTION : What does the term “95 percent confident” really mean?

3.4 Confidence statements

ANSWER: The term “95 percent confident” has to do with the notion of repeated

sampling:

• If we took many samples using the same method, 95 percent of the time we would

get a result within the margin of error.
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• 95 percent of time, we will be close to the truth (i.e., close to the true p); that is,

our estimate p̂ will be inside the margin of error.

• 5 percent of the time, our estimate p̂ will “miss” by more than the margin of error.

• Unfortunately, we will never get to know whether we “hit” or “miss.” This is just

a fact of life!

FORMAL DEFINITION : A confidence statement has two parts:

• A margin of error. This quantifies how close the sample statistic is to the popu-

lation parameter.

• A level of confidence. This says what percentage of possible samples satisfy the

margin of error.

IMPORTANT POINTS : These are points to remember. All of these statements assume

that an SRS is being used.

1. The conclusion of a confidence statement applies to the population of interest, not

the sample.

2. Our conclusion about the population is never completely certain. The level of

confidence tells us how confident we are.

3. A survey can choose to use a confidence level other than 95 percent; however, it is

very common to report the margin of error for 95 percent confidence.

4. To reduce the margin of error associated with an estimate, use a larger sample.

5. The margin of error does not depend on the size of the population, as long as the

population is at least 100 times larger than the sample. We will often deal with

“large populations,” (e.g., all US adults, all cancer patients, all single mothers, etc.)

so this will not be a major point of contention.
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4 Sample Surveys in the Real World

Complementary reading from Moore and Notz: Chapter 4.

4.1 Introduction

FACT : Many people are hesitant to willingly participate in surveys, especially over the

phone, in person, or through email.

Example 4.1. A political opinion poll (conducted over the phone) talks to 1000 people,

chosen at random, announces its results, and announces a margin of error. However, let’s

look more closely at what it took to secure 1000 responses.

Table 4.4: Breakdown of individuals asked to participate in a phone survey.

No answer 938

Answered but refused 678

Not eligible 221

Incomplete interview 42

Complete interview 1000

Total called 2879

• A total of 2879 individuals were needed to get 1000 responses!

• The response rate is only
1000

2879
≈ 0.35

or 35 percent.

• Nonresponse rate is 65 percent!!

MORAL: Getting feedback from a simple random sample usually is not so simple. Human

subjects are inherently difficult to deal with.
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4.2 How sample surveys go wrong

TWO TYPES OF ERROR: There are two types of errors that are inherently part of all

sample surveys: sampling errors and nonsampling errors.

TERMINOLOGY : Sampling errors are errors caused by the act of taking a sample

from the population. They cause sample results to be different from the results of a

census (i.e., if we were to sample the entire population).

• Random sampling error

– the deviation between the sample statistic (estimate) and the population pa-

rameter

– caused by chance in taking random samples

– in an SRS, the margin of error quantifies this.

• Bad sampling methods (VRS, convenience)

• Undercoverage

– this occurs when some groups in the population are left out of the process of

choosing the sample

– often as a result of a defective sampling frame (a complete list of all indi-

viduals in the population).

SAMPLING FRAMES : If the sampling frame leaves out certain classes of people, even

random samples will cause biased results! Which groups of individuals are left out with

the following frames?

• Telephone directory of Columbia

• List of USC undergrad email addresses

• List of registered voters
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TERMINOLOGY : Nonsampling errors are errors not related to the act of selecting a

sample from the population.

• Processing errors/data entry errors

• Nonresponse: the failure to obtain data from an individual selected for a sample

(individual refuses to participate).

• Response bias

– Interviewer bias: occurs when the interviewer knowingly/unknowingly

sways responses

– Respondent bias: occurs when respondent gives false replies. This is espe-

cially prevalent when subjects are asked sensitive questions.

• Poorly worded questions: The wording of questions almost always influences

the answers.

EXAMPLES OF POORLY WORDED QUESTIONS :

“In light of the mounting casualties that we have seen in Iraq recently, do you

approve of the way President Bush has handled the war in Iraq?”

A more appropriate question would leave out the part about “mounting casualties.” No

one likes casualties.

“Does it seem possible or does it seem impossible to you that the Nazi exter-

mination of the Jews never happened?”

When 22 percent of the sample said that it was “possible,” the news media wondered

how so many Americans could be uncertain. A much simpler version of this question was

later asked and only 1 percent of the respondents said it was “possible.”
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“Is our government providing too much money for welfare programs?”

• 44 percent responded “yes.”

• when the word “welfare” was replaced with “assistance to the poor,” only 13 percent

responded “yes.”

• the word “welfare” carries with it a negative connotation.

4.3 Stratified random samples

TERMINOLOGY : A probability sample is a sample chosen by chance. There are two

types of probability samples we will discuss:

• simple random sample (SRS)

• stratified random sample

REVIEW : We prefer the simple random sampling (SRS) method over methods such as

voluntary response and convenience sampling because the latter methods are prone to

bias. The SRS method (in the absence of all nonsampling errors) eliminates bias and

produces small variability with large samples.

INNATE DEFICIENCY : With an SRS, because each sample of size n has the same

chance of being selected, we can not obtain information for separate “groups” of individ-

uals (e.g., individuals of different gender, race, income class, religion, etc.).

“Do you approve or disapprove of the way George W. Bush is handling the

response to Hurricane Katrina?”

LEGITIMACY : Might males/females respond to this question differently? Individuals of

different races? Individuals of different income classes? Individuals of different religions?

If so, then an SRS design would not be appropriate!
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TERMINOLOGY : A stratified random sampling design is selected as follows:

1. First, divide the sampling frame into distinct groups or strata.

2. Take simple random samples (SRS) within each stratum and combine these to make

up the complete sample.

Example 4.2. In a large HIV seroprevalence study conducted in Houston, 921 het-

erosexual males were recruited in a stratified fashion. These individuals were known

intravenous drug users who were not receiving treatment for their addiction. See Table

4.5 for the data in this investigation. Here we see that individuals have been separated

(stratified) by race.

Table 4.5: Houston hiv study. Infectivity data for three different races.

Race Number of subjects Number infected Percentage

Hispanic 107 4 3.7%

white 214 14 6.5%

black 600 59 9.8%

Example 4.3. In Example 4.2, what is the margin of error for each stratum?

• Hispanic group:

margin of error =
1√
107

≈ 0.10, or about 10 percent.

• White group:

margin of error =
1√
214

≈ 0.07, or about 7 percent.

• Black group:

margin of error =
1√
600

≈ 0.04, or about 4 percent.
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IMPORTANT QUESTION : Are there really true differences among the population

proportions for the three groups? Answer this question by writing confidence state-

ments for each race.

• Hispanic group:

• White group:

• Black group:

4.4 Questions to ask before you believe a poll

• Who carried out the survey?

• What was the population? To which group can I make a statement about?

• How was the sample selected?

• How large was the sample (do they give any insight as to the margin of error?)

• What was the response rate?

• How were the subjects contacted?

• When was the survey conducted?

• What were the exact questions asked?

WARNING : Always be very skeptical of anything you read which does not answer

all of these questions explicitly!
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5 Experiments, Good and Bad

Complementary reading from Moore and Notz: Chapter 5.

5.1 Terminology

Here is a quote from Moore and Notz (page 76):

“Observational studies are just passive data collection. We observe, record,

or measure, but we don’t interfere. Experiments are active data production.

Experimenters actively intervene by imposing some treatment in order to see

what happens.”

TERMINOLOGY : A response variable is a variable that measures an outcome or

result of a study.

TERMINOLOGY : An explanatory variable is a variable that we think explains or

causes changes in the response variable.

TERMINOLOGY : The individuals studied in the experiment are called subjects.

TERMINOLOGY : A treatment is any specific experimental condition applied to the

subjects.

5.2 Examples

Example 5.1. Does aspirin reduce the rate of heart attacks? The Physicians Health

Study (PHS) was a large double-blinded experiment involving 22,000 male physicians.

One of the goals of this study was to investigate whether taking aspirin reduces the risk

of heart attacks. One group of about 11,000 took an aspirin every second day, while the

rest of them took a placebo (i.e., a “sugar pill” designed to look like an aspirin).
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Figure 5.3: Number of beetles caught by colored boards. Boxplots for four colors.

• Subjects: Physicians (they receive the treatment)

• Response variable: Heart attack/not

• Explanatory variable: Drug (placebo/aspirin). Drug is also the treatment be-

cause it is the condition applied to the physicians.

FINDINGS : Daily low-dose aspirin decreased the risk of a first myocardial infarction by

44 percent over those that took placebo. For more information about the Physicians

Health Study, see http://phs.bwh.harvard.edu/index.html.

TERMINOLOGY : In Example 5.1, we might call the group that received the placebo

the control group. Using a control group gives a frame of reference for comparisons.

Example 5.2. Are beetles attracted to bright colors? To detect the presence of harmful

beetles in farm fields, experimenters placed six boards of each of four colors at random

locations in a field of oats and measured the number of cereal leaf beetles trapped. The

boards were covered with sticky material to trap the beetles easily. Side-by-side boxplots

appear in Figure 5.3.
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Figure 5.4: Pea section data for five sugar treatments.

• Subjects: Boards

• Response variable: Number of beetles trapped

• Explanatory variable: Color (blue, green, white, yellow). Color is also the

treatment because it is the condition applied to the boards.

NOTE : In this experiment, we have no control group (what would that even be?) but

we can compare the colors among themselves. In this case, the different colors act as

controls for each other.

Example 5.3. Does sugar affect the growth of pea stems? The data in Table 5.6 are

lengths of pea sections, in ocular units (×0.114 mm), grown in tissue culture with auxin

(a plant hormone) present. The purpose of the experiment was to test the effects of the

addition of various sugars on growth as measured by length. Pea plants were randomly

assigned to one of five treatment groups:
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Table 5.6: Pea plant data.

Control 2% fru 1%/1% g/f 2% glu 2% suc

75 58 58 57 62

67 61 59 58 66

70 56 58 60 65

75 58 61 59 63

65 57 57 62 64

71 56 56 60 62

67 61 58 60 65

67 60 57 57 65

76 57 57 59 62

68 58 59 61 67

Average 70.1 58.2 58.0 59.3 64.1

1. control (no sugar added)

2. 2% fructose added

3. 1% glucose and 1% fructose added

4. 2% glucose added

5. 2% sucrose added

DESIGN : Ten observations were obtained for each group of plants. In all, 50 pea plants

were used. How might we physically randomize the pea stems to the 5 treatments?

• Subjects: Pea stems

• Response variable: Growth

• Explanatory variable: Sugar content (control, fru, fru/glu, glu, suc). Sugar

content is also the treatment because it is the condition applied to the pea stems.
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5.3 How to experiment badly

TERMINOLOGY : A lurking variable is a variable that has an important effect on the

relationship among the variables in the study but is not one of the explanatory variables

studied.

TERMINOLOGY : Two variables are confounded when their effects on a response vari-

able can not be distinguished from each other. The confounded variables may be either

explanatory variables or lurking variables.

Example 5.4. In a clinical trial, physicians on a Drug and Safety Monitoring Board

want to determine which of two drugs is more effective for treating HIV in its early stages.

A sample 200 patients in the trial are randomly assigned to one of two treatment groups.

After 6 weeks on treatment, the net CD4 count change is observed for each patient.

• Does gender have an effect on the CD4 count response? If it does, and we ignore

it in the analysis of the data, then gender would be a lurking variable!

• If we give Drug 1 to only black subjects and Drug 2 to only white and Hispanic

subjects, then race is confounded with the drug! That is, if we did see a difference

between the drugs, we wouldn’t know if it was because of the drugs or because of

differences in the races!

5.4 Randomized comparative experiments

EXAMPLES : Examples 5.1-5.4 (notes) are all examples of randomized comparative

experiments. In such experiments,

• randomization is used to assign subjects to treatments.

• two or more treatments are to be compared.
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GENERAL OUTLINE : Here is the general outline of how a randomized comparative

experiment is performed:

General Outline of Experimentation

Sample subjects from population

↓
Randomize subjects to treatments

↓
Record data on each subject

↓
Analyze data

↓
Make statement about the differences among treatments.

IMPORTANCE : Randomization produces groups of subjects that should be similar in

all respects before we apply the treatments. Using impersonal chance to assign treatments

tends to “average out” the effects of other (possibly confounding) variables.

IMPORTANCE : Comparative design ensures that influences other than the treat-

ments operate equally on each group.

RESULT : In properly-designed randomized comparative experiments, differences in the

response variable must be due to the effects of the treatments!

GOAL: Our goal as an investigator is to determine if these treatment differences are

real. That is, are we seeing differences in the response because the treatments are truly

different, or, are we seeing treatment differences which could have arisen just by chance?

PREVIEW : To answer the last question formally, we need to learn more about statis-

tical inference.
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5.5 Principles of experimental design

IMPORTANT : Here are the three principles of experimental design that we should

keep in mind.

1. Control the effects of lurking variables on the response.

2. Randomize subjects to the different experimental treatments.

3. Use enough subjects in each group to reduce chance variation in the results.

The more subjects we use, the more information we have!

Example 5.5. Ginkgo is gaining recognition as a brain tonic that enhances memory

because of its positive effects on the vascular system, especially in the cerebellum. A

new drug (Drug A, based on Ginkgo extract) has been developed to help people improve

their memory. Is this drug better than the current standard? Suppose we tested each

member of the treatment groups through a memory exercise (a list of 10 objects).

• Situation #1:

– In Group A, 33% of the subjects remembered all items on the list.

– In Group B, 32% of the subjects remembered all items on the list.

Is this compelling evidence to show Drug A is better than Drug B?

• Situation #2:

– In Group A, 59% of the subjects remembered all items on the list.

– In Group B, 29% of the subjects remembered all items on the list.

Is this compelling evidence to show Drug A is better than Drug B?

TERMINOLOGY : An observed effect so large that it would rarely occur by chance is

called statistically significant.
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6 Experiments in the Real World

Complementary reading from Moore and Notz: Chapter 6.

6.1 Equal treatment

PREVAILING THEME : The logic behind randomized comparative experiments is

that all subjects are treated alike except for the treatments. Unequal treatment has the

potential to cause bias!

Example 6.1. A group of psychologists carried out an experiment to determine if certain

stimuli (e.g., shocks, etc.) had an effect on attitude and personality in college students.

One hundred college freshmen were recruited; 20 students to each of 5 different stimulus

groups. To conduct the experiment quickly, 5 different rooms were used; each stimulus

was administered in a different room. Is there potential for unequal treatment?

BLINDING : When the subjects in an experiment are humans, it is good to use blinding

(i.e., subjects do not know the identity of the treatment they have received). Many

studies incorporate double blinding, where neither the subjects nor the researchers

know which treatment has been given to subjects. This guards against researcher bias.

REMARK : Blinding and double blinding are very important in clinical trials!

• The patient. If the patient knows he/she is receiving a new treatment, this may

confer a psychological benefit. The degree of this benefit depends on the type of

disease and the nature of the treatments. Whether it is asthma, cancer, or heart

disease, the manner in which patients are informed of therapy can have a profound

effect in subsequent performance.

• The treatment team. Patients known to be receiving a new treatment may get

treated differently than those on a standard treatment. Such differences in ancillary

care may affect the eventual responses.
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• The evaluator. It is especially important that the individuals evaluating response

be objective. A physician who has some pre-conceived ideas of how a new treat-

ment might work may introduce bias in his/her evaluation if they are aware of the

patient’s treatment. Those analyzing the data from the trial must also be objective.

PLACEBOS : Blinding treatments takes a great deal of care and planning. If we are

giving pills, for example, we must make sure the pills are of the same size, color, taste,

texture, etc. It has been well documented that there is a placebo effect; i.e., an apparent

favorable/unfavorable response to a non-treatment!

• 42 percent of balding men maintain/increased amount of hair when taking an in-

nocuous chemical composition designed to look like hair gel.

• 13/13 patients broke out in a rash after receiving a solution not containing poison

ivy. 2/13 patients developed a rash after receiving a solution containing poison ivy!

NOTE : Although the principles of blinding are sound, they are sometimes not feasible.

For example, if we are comparing surgery versus chemotherapy in a cancer clinical trial,

there is no way to blind anyone.

6.2 Problems

UNDERCOVERAGE : Undercoverage is also an issue with experiments; e.g.,

• a clinical trial which excludes poor patients, those without insurance, etc.

• an agricultural experiment excluding pigs with certain diets, etc.

• a psychology experiment excluding engineering majors, etc.

GOAL: We want our conclusions to apply to an appropriate population of interest (e.g.,

USC students, market-bound pigs, American adults with lung cancer). If certain groups

are not represented, our conclusions will be biased (or, at least, limited).
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NON-ADHERENCE : This occurs when human subjects (mostly) do not follow the treat-

ment regimen outlined by the investigator. For example, patients in a clinical trial might

take their treatment at incorrect times or take an incorrect dose.

DROPOUTS : When dealing with human subjects, some people decide that they no

longer want to participate in the study. This may be due to undesirable side effects, lack

of interest, or some other factor. Dropouts are subjects who begin the experiment but

do not complete it.

• How should we handle dropouts? Simply discard their data? Did they drop out

for a reason?

• Dropouts cause bias because we don’t get to see how these subjects truly respond

to the treatment.

LACK OF REALISM : Lack of realism occurs when we can not generalize our experi-

mental results to that of a larger population. For example,

• using only plots of land with excellent soil composition properties

• using patients for which the disease has not progressed

• center-brake light example (see page 101-102, MN)

• psychological experiments with an irritating stimulus; patients know the experiment

will be over soon.

Example 6.2. A new method has been developed to combat arthritis. Subjects can

take a new drug (high versus low dosage) and at the same time receive massage therapy

(traditional versus acupuncture). Researchers believe that efficacy should depend on the

dose of the drug and the massage therapy. With 100 patients, explain how you would

design an appropriate experiment to address the researchers’ questions. What are the

four possible treatment groups? What would you measure on each individual?
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6.3 Experimental designs

6.3.1 Completely randomized designs

TERMINOLOGY : In a completely randomized design, all the experimental subjects

(individuals) are allocated at random among all treatments.

Example 6.3. One of the important characteristics in the pulp and paper industry

is the brightness of the final product. In an experiment, engineers wanted to compare

four bleaching chemicals and their effects on paper brightness (measured on a scale from

0-10). The engineers used 20 pulp specimens (selected at random). The 20 specimens

were randomly assigned to the chemicals, 5 specimens to each chemical.

• Subjects/Individuals: Pulp specimens

• Response variable: Brightness rating

• Treatment: Bleaching chemical (also, an explanatory variable)

NOTE : What makes this a completely randomized design is the fact that individuals

(pulp specimens) were allocated at random among all treatments (chemicals). How

might we carry out the actual randomization? Could we use Table A? How?

6.3.2 Randomized block design

TERMINOLOGY : In a randomized block design, random assignment of subjects to

treatments is carried out separately within each block. In the language of experiments,

a block is a collection of individuals that are thought to be “more alike” in some way.

ASIDE : A block in an experiment may be thought of as a stratum in a sample survey (the

same idea: individuals within a block/strata share inherent characteristics; e.g., gender,

race, major, farm, etc.).

PAGE 38



CHAPTER 6 STAT 110, J. TEBBS

Example 6.4. An entomologist wants to determine if two preparations of a virus would

produce different effects on tobacco plants. Consider the following experimental design:

• He took 10 leaves from each of 4 plots of land (so that there are 40 leaves in the

experiment).

• For each plot, he randomly assigned 5 leaves to Preparation 1 and 5 leaves to

Preparation 2.

NOTE : Randomization in this experiment is restricted; leaves were randomly assigned

to treatments within each plot. In this experiment, the researcher wants to compare the

two preparations. This experiment is an example of a randomized block design where

• Subjects/Individuals: Tobacco leaves

• Response variable: Amount of leaf damage

• Treatment: Preparations (also, an explanatory variable)

• Block: Plot of land (also, an explanatory variable)

IMPORTANT : Suppose that our researcher used a completely randomized design and

simply randomized 20 leaves to each preparation. In this situation, he would have lost

the ability to account for the possible differences among plots! The effects of the different

preparations would be confounded with the differences in plots.

MAIN POINT : If there are differences among the blocks of subjects, then a completely

randomized design will be worse when compared to the randomized block design. The

former design ignores the differences among blocks; the latter design acknowledges it!

Example 6.5. In a clinical trial, physicians want to determine which of two drugs is

more effective in treating HIV in its early stages. Patients in the trial are randomly

assigned to one of two treatment (drug) groups. After 6 weeks on treatment, the net

CD4 count change is observed for each patient. Consider the following three designs:
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• Design 1: assign all the males to Drug 1, and assign all the females to Drug 2.

• Design 2: ignoring gender, randomize each individual to one of the two drugs.

• Design 3: randomly assign drugs within gender; that is, randomly assign the two

drugs within the male group, and do the same for the female group.

DISCUSSION : Design 1 would be awful since if we observed a difference (a significant

difference) between the CD4 counts for the two groups, we would have no way of knowing

whether or not it was from the treatments (i.e., drugs) or from the differences in gen-

ders. In this situation, the drugs are confounded with gender! Design 2 (a completely

randomized design) is much better than Design 1, but we still might not observe the

differences due to drugs since differences in genders may not “average out” between the

groups. However, Design 3 acknowledges that there may be an effect due to the different

genders and incorporates that into the randomization. Design 3 is an example of an

randomized block design with

• Subjects/Individuals: Patients with early-stage HIV

• Response variable: CD4 count

• Treatment: Drugs (also, an explanatory variable)

• Block: Gender (also, an explanatory variable).

6.3.3 Matched pairs design

Example 6.6. High blood pressure or hypertension is the most common cardiovascular

disease and one of the greatest public health problems, affecting more than 60 million

Americans. It directly contributes to the deaths of at least 250,000 people per year in

the United States. Researchers are studying a certain stimulus thought to produce an

increase in mean systolic blood pressure (SBP) in middle-aged men.
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DESIGN ONE : Take a random sample of men and randomly assign each man to receive

the stimulus (or not) using a completely randomized design. Here, the two groups

of men can be thought of as “independent” since the groups contain different men.

DESIGN TWO : Consider an alternative design, the so-called matched-pairs design.

• Rather than assigning men to receive one treatment or the other (stimulus/no

stimulus), obtain a response from each man under both treatments!

• That is, obtain a random sample of middle-aged men and take two readings on

each man, one with the stimulus and one without the stimulus.

• Because readings of each type are taken on the same man, the difference between

two readings on a given man should be less variable than the difference between a

stimulus-response on one man and an no-stimulus-response on a different man.

• The man-to-man (i.e., subject-to-subject) variation inherent in the latter difference

is not present in the difference between readings taken on the same subject!

ADVANTAGE OF MATCHED PAIRS : In general, by obtaining a pair of measurements

on a single individual (e.g., man, rat, pig, plot, tobacco leaf, etc.), where one of the

measurements corresponds to treatment 1 and the other measurement corresponds to

treatment 2, you eliminate the subject-to-subject variability. Thus, you may compare

the treatments (e.g., stimulus/no stimulus, ration A/ration B, etc.) under more ho-

mogeneous conditions where only variation within individuals is present (that is, the

variation arising from the difference in treatments).

A NOTE ON RANDOMIZATION : In matched-pairs experiments, it is common prac-

tice, when possible, to randomize the order in which treatments are assigned. This may

eliminate “common patterns” (that may confound our ability to determine a treatment

effect) from always following, say, treatment A with treatment B. In practice, the exper-

imenter could flip a fair coin to determine which treatment is applied first. If there are

carry-over effects that may be present, these would have to be dealt with accordingly.
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7 Data Ethics

Complementary reading from Moore and Notz: Chapter 7.

7.1 Introduction

REMARK : Usually, the goal of an experiment or observational study is to argue that a

hypothesis is valid; e.g.,

• “Our new Drug B is superior to Drug A.”

• “This brand of fertilizer is better than the competing fertilizers.”

• “Democrats are less likely to oppose Roe v. Wade than Republicans.”

• “Women in abusive relationships are more likely to suffer from depression.”

• “For HIV patients, those without dental insurance are more likely to have unmet

dental needs than those with private insurance.”

FACT : Hypotheses may or may not be true, and the data from our investigations are

used as evidence for or against them. If the data contradict a specific hypothesis put

forth by an investigator, he/she might be viewed negatively. Thus, there is much at stake

for the investigator in a statistical analysis!

REMARK : Because the investigation carries a lot with it (e.g., money, reputation, jobs,

etc.), some investigators may try to falsify the data or use unethical practices; e.g.,

• remove records/individuals from the study; only retain those data which are favor-

able to one’s hypothesis

• change one’s hypothesis (or assumptions) during the study

• using randomization methods inappropriately; “cheating” on the randomization.
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7.2 Ethical studies

DATA ETHICS : In large-scale studies which involve human subjects (e.g., clinical trials,

public surveys, etc.),

• the group/organization which carries out the study must have an institutional

review board (IRB) that reviews all studies (in advance and during) in order to

protect the participants from harm.

• All individuals in the study must give their informed consent to participate.

• All individual data are to be kept confidential. Only statistical summaries (e.g.,

means, proportions, etc.) for groups of subject may be made public.

INSTITUTIONAL REVIEW BOARDS : In 1974, the U.S. Congress established the Na-

tional Commission for the Protection of Human Subjects of Biomedical and Behavioral

Research as part of the National Research Act. The Act required the establishment of

the IRB for all research funded in whole, or in part, by the federal government. For

clinical trials, these were later modified to require IRB approval for all drugs or products

regulated by the Food and Drug Administration (FDA).

• IRBs must have at least five members with expertise relevant to safeguarding the

rights and welfare of subjects.

• At least one should be a scientist, one a non-scientist, and at least one must be

unaffiliated with the institution/organization.

• The IRB should be made up of individuals with diverse racial, gender, and cultural

backgrounds.

NOTES : IRBs approve human research studies that meet specific prerequisites.

• The risks to the study participants are minimized.
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• The selection of study patients is equitable.

• Informed consent is obtained and documented for each participant.

• The privacy of the participants and confidentiality of the data are protected.

TERMINOLOGY : Data confidentiality is the protection of information provided by

respondents and the assurance that information about individual respondents cannot be

derived from the statistics reported.

NOTE : Data anonymity is the protection of the individual’s data from all persons,

even those that are involved with the study.

7.3 Randomized response

HYPOTHETICALLY : What would you do if someone asked you the following question

in a survey:

“Have you ever used illegal drugs for non-medicinal purposes?”

REALITY : Questioning individuals about sexual orientation, criminal activity, abortion,

or other sensitive topics, is a difficult task. The randomized-response technique can

be an effective survey method to find such estimates because individual anonymity is

preserved. Suppose that Tim is to be interviewed. Here is how it works:

• The interviewer presents Tim with two questions:

– Question 1: “Have you ever smoked marijuana for non-medicinal purposes?”

– Question 2: “Is the last digit of your SSN odd?”

• The interviewer tells Tim to roll a die, but not to reveal the outcome of the die to

the interviewer.
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– If Tim rolls a 1, 2, 3, or 4, he is to answer yes/no to Question 1.

– If Tim rolls a 5 or 6, he is to answer yes/no to Question 2.

• Tim then hands his yes/no response back to the interviewer.

• The interviewer records the yes/no response, but does not know which question

Tim has answered.

ESTIMATE : If an SRS of n individuals uses this strategy, we can find an estimate of p,

the proportion of individuals who have used illegal drugs for non-medical purposes! For

the technique that we just outlined, the formula for the estimate of p is

3x

2n
− 1

4
,

where n is the number of individuals and x is the number of “yes” responses. Simple

probability calculations (STAT 201) can be used to show that this formula is correct.

NOTE : The formula that we learned in Chapter 3 for margin of error; recall

margin of error =
1√
n

,

does not apply to the randomized response technique! Thus, we can not make confidence

statements for the population using this formula.

7.4 More about clinical trials

TERMINOLOGY : Clinical trials are experiments that study the effectiveness of med-

ical treatments on actual patients. A clinical trial in the clearest method of determining

whether an intervention has a postulated effect. It is easy for anecdotal information

about the benefit of a therapy to be accepted and become standard. The consequences

of not conducting appropriate trials can be serious and costly.

• Laetrile was rumored to be a “wonder drug” for cancer patients even though there

was no evidence of biological activity. People were convinced that there was a
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conspiracy in the medical community to keep the treatment from them! The NIH

finally conducted a formal trial and demonstrated a lack of efficacy.

REALITY : A clinical trial involves human subjects. As such, we must be aware of

ethical issues in the design and conduct of such experiments. Some ethical issues that

need to be considered include the following:

• No superior alternative intervention is available for each subject.

• Equipoise. There should be genuine uncertainty about which trial intervention

might be superior for each individual subject before a physician is willing to allow

their patient to participate in such a trial.

• Exclude patients for whom risk/benefit ratio is likely to be too unfavorable.

• Exclude patients who have a very high risk of toxicity; e.g., if a drug may worsen

an existing problem.

• Other reasons for exclusion (e.g., pregnant women if possibility of harmful effect to

fetus, too sick to benefit, prognosis is good without intervention, etc.).

AXIOM : Clinical trials are ethical in the setting of uncertainty.

THE FIRST CLINICAL TRIAL? : In 1753, the following experiment was detailed by

James Lind, a naval surgeon in the Mediterranean:

“I took 12 patients in the scurvy abroad the Salisbury at sea. The cases were as

similar as I could have them.....they lay together in one place.....and had one

common diet to them all.....To two of them were given a quart of cider a day,

to two an elixir of vitriol, to two vinegar, to two oranges and lemons, to two

a course of sea water, and to the remaining two the bigness of nutmeg. The

most sudden and visible good effects were perceived from the use of oranges

and lemons, one of those who had taken them being at the end of six days fit

for duty.....the other was appointed nurse to the sick.”
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7.5 An unethical investigation

Background: Your thyroid gland is a small, butterfly-shaped gland located just below

your Adam’s apple. The thyroid produces hormones that affect your body’s metabolism

and energy level. Thyroid problems are among the most common medical conditions

but, because their symptoms often appear gradually, they are commonly misdiagnosed.

Synthroid is a thyroid hormone supplement used to treat people who do not produce

enough thyroid hormone on their own. Synthroid helps to reduce the symptoms of low

thyroid hormone such as weight gain, sensitivity to cold, lack of energy, and dry skin.

• made by Knoll Pharmaceuticals; one of the top 10 prescribed drugs in 1995.

• Knoll’s enormous success with Synthroid has been entirely dependent on its con-

tinuing ability to convince users that the drug is worth the extra cost.

• this the company has done brilliantly for decades, despite any real proof of Syn-

throids superiority.

Study:

• A clinical pharmacist at UC San Francisco, named Betty Dong, published a limited

study that strongly suggested Synthroid would beat out its competitors in a blinded

randomized trial with three other competing drugs.

• In 1987, the company approached Dong, offering her the full $250,000 needed to

pay for such a long and complex study.

Result:

• The study backfired on the company. To the surprise of nearly everyone, including

Dong, the results suggested that Synthroid was no more or less effective than three

much cheaper competitors!
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Catch:

• As the study’s sponsor, the company had not only been able to design the protocols

of the drug trial; it also had exclusive access to the prepublished results of the study

as well as final approval over whether the study could ever be made public.

Actions:

• With the results so threatening to its marketing efforts, the company set out to

thwart the study.

– Delayed publication in a scientific journal by many years, effectively destroying

the relevance of its data.

– The company preemptively published the UCSF data in a lesser-known journal

with a different (much friendlier) conclusion.

– The company waged a massive PR campaign against the real study written

by Dong et al. in the Journal of the American Medical Association.

Ramifications:

• A massive class-action lawsuit followed the publication of Dong’s JAMA paper,

alleging on behalf of all Synthroid users that Knoll had defrauded them of hundreds

of millions of dollars in inflated costs.

• The company has offered to settle for a sum close to $100 million, which would be

the largest cash settlement for a class-action suit of its kind in history.

Damage:

• Even with such a fantastic price to pay, one can only conclude that in the end Knoll

has benefited tremendously from its brash interference in the academic research

process. One hundred million dollars is a small fraction of the profits the company

made from Synthroid during the years it was suppressing the study. By its ability

to taint Dong’s study with controversy over the years, Knoll was able to nullify any

would-be effect.
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8 Measuring

Complementary reading from Moore and Notz: Chapter 8.

8.1 Introduction

TERMINOLOGY : We measure a property of a person or thing when we assign a number

to represent the property. We use an instrument to make a measurement. Measure-

ments will have units attached to them.

EXAMPLES :

• To measure the weight of pregnant mothers, we use a standard scale (instrument);

our measurements are recorded in pounds; e.g., 156.3 lbs.

• To measure time off from work due to sickness for USC employees, we use a payroll

database; our measurements are recorded in the number of days; e.g., 5.5 days.

• To measure the diameter of a plasma-punched hole in a metal slab, we use a hand-

held caliper; our measurements are recorded in centimeters; e.g., 12.45 cm.

• To measure the scholastic aptitude of entering freshmen, we use SAT scores; our

measurements are recorded in points; e.g., 1120 points.

• In a Senegalese study involving female prostitutes, to measure the rate of HIV

infecteds per 1000 people, we use an enzyme-linked immunosorbant assay (ELISA)

for each subject; our measurements are recorded as a rate; e.g., 94.7 infecteds/1000.

DIFFICULTIES : Some properties are difficult to measure!

• severity of depression

• amount of leisure time spent (what counts as leisure?)
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• student performance in college

• unemployment rate

• intelligence

• worker motivation

VALIDITY : A variable is a valid measure of a property if it is relevant or appropriate

as a representation of that property.

8.2 Rates

Example 8.1. The following table lists the number of sports-related injuries treated

in U.S. hospital emergency rooms in 2001, along with an estimate of the number of

participants (in thousands) in the sports:

Sport Injuries # partic. rate Sport Injuries # partic. rate

Basketball 646,678 26,200 24.7 Fishing 84,115 47,000 1.8

Bicycle riding 600,649 54,000 11.1 Horse riding 71,490 10,100 7.1

Base/softball 459,542 36,100 12.7 Skateboarding 56,435 8,000 7.1

Football 453,684 13,300 34.1 Ice hockey 54,601 1,800 30.3

Soccer 150,449 10,000 15.0 Golf 38,626 24,700 1.6

Swimming 130,362 66,200 2.0 Tennis 29,936 16,700 1.8

Volleyball 129,839 22,600 5.7 Ice skating 29,047 7,900 3.7

Roller skating 113,150 26,500 4.3 Water skiing 26,633 9,000 3.0

Weightlifting 86,398 39,200 2.2 Bowling 25,417 40,400 0.6

Question: If one uses the number of injuries as a measure of the hazardousness of

a sport, which sport is more hazardous between bicycle riding and football? between

soccer and ice hockey? between swimming and skateboarding?
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CALCULATIONS : Here is how injury rate was computed:

rate =
# injuries

# participants

Since the number of participants is recorded in 1000’s, this rate denotes the injury rate

per 1000 participants!

Question: In terms of the injury rate per 1000 participants, which sport is more

hazardous between bicycle riding and football? between soccer and ice hockey? between

swimming and skateboarding?

MORAL: Understand what it is being measured!! The injury rate per 1000 participants

is a more valid measure of a sports hazardousness than the number of injuries. The latter

variable excludes how many people participate in these sports!!

TERMINOLOGY : Often, a rate (a fraction, proportion, or percent) at which something

occurs is a more valid measure than a simple count of occurrences.

8.3 Predictive ability

TERMINOLOGY : A measurement of a property has predictive validity if it can be

used to predict success on tasks that are related to the property being measured. How

would you rate the predictive validity in the following situations?

• Mammogram image −→ breast cancer?

• SAT score −→ success in college?

• Sexual practices −→ HIV positive?

• Gun control −→ increase in crime rate?

• Number of fights with partner −→ problems with depression?
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8.4 Measurement error

Example 8.2. In 30 seconds, read the following passage and count the number of “F’s.”

“THE NECESSITY OF TRAINING HANDS FOR FIRST-CLASS FARMS IN THE

FATHERLY HANDLING OF FRIENDLY FARMS LIVESTOCK IS FOREMOST IN

THE MINDS OF FARM OWNERS. SINCE THE FOREFATHERS OF THE FARM

OWNERS TRAINED THE FARM HANDS FOR FIRST-CLASS FARMS IN THE FA-

THERLY HANDLING OF FARM LIVESTOCK, THE OWNERS OF THE FARMS FEEL

THEY SHOULD CARRY ON WITH THE FAMILY TRADITION OF TRAINING FARM

HANDS OF FIRST-CLASS FARMS IN THE FATHERLY HANDLING OF FARM LIVE-

STOCK BECAUSE THEY BELIEVE IT IS THE BASIS OF GOOD FUNDAMENTAL

FARM EQUIPMENT.”

Number of F’s on 1st reading:

Number of F’s on 2nd reading:

TERMINOLOGY : A measurement process has bias if it systematically overstates or

understates the true value of the property it measures.

TERMINOLOGY : A measurement process has random error if repeated measurements

on the same individual give different results. If random error is small, the measurement

process is reliable. If a measurement process is not reliable, then our data are not either!

CONCEPTUALIZATION : The measurements that we take on any individual obey the

following conceptual formula:

measured value = true value + bias + random error.

MORAL: There is no such thing as a perfectly reliable measurement instrument; i.e.,

there will always be random error! However, we would like to use an instrument which

does not have bias.

WEIGHT-SCALE ANALOGY : See pages 141-142 MN.

PAGE 52



CHAPTER 8 STAT 110, J. TEBBS

8.5 Likert scales

TERMINOLOGY : A Likert scale (named after Rensis Likert; invented 1932) is a rating

scale measuring the strength of agreement with a clear statement. Often, a Likert scale

is used in the form of a questionnaire used to gauge attitudes or reactions. Response

choices almost always have “roughly equal intervals” with respect to agreement.

Example 8.3. The following statement appeared recently in an employee satisfaction

survey:

My job provides the opportunity for independent action.

Strongly Disagree Disagree Slightly Disagree Undecided Slightly Agree Agree Strongly Agree

1 2 3 4 5 6 7

NOTE : The Likert scale is a commonly-used measurement scale, but there are a few

issues that always arise with using it; e.g.,

• How many response choices should be included?

• Which number should be the “midpoint label?” Should it be included?

– Subjects will often choose the middle category when it is offered.

• How strong is the statement? Statements that are too mild may generate some

“yea-saying;” harsh statements might generate stronger opposing views.

– “Physicians generally ignore what patients say.”

– “Sometimes, physicians do not pay as much attention as they should to pa-

tients’ comments.”

– “Once in a while, physicians might forget or miss something that a patient has

told them.”
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9 Do the Numbers Make Sense?

Complementary reading from Moore and Notz: Chapter 9.

UNFORTUNATE REALITY : Statistics has a public relations problem, and people often

perceive statistics as a “fishy science.” In this chapter, we’ll talk about some reasons why.

SIX GOOD QUESTIONS : Here are 6 questions to consider when looking at a report of

statistics. Answer these questions before you believe what is being said.

• What didn’t they tell us?

• Are the numbers consistent with each other?

• Are the numbers plausible?

• Are the numbers too good to be true?

• Is the arithmetic right?

• Is there a hidden agenda?

9.1 What didn’t they tell us?

Example 9.1. A news report on snowstorms says, “A winter storm spread snow across

the area, causing 28 minor traffic accidents.” What aren’t they telling us? How many

traffic accidents happen on days with good weather? Did the snowstorm actually prevent

more accidents?

Example 9.2. Universities and their average SAT scores. Northeastern University

leaves out international and “remedial” students! What does this do to the average?

Example 9.3. Chicago Cubs. When comparing numbers over time, you can slant the

comparison by choosing your starting point. Suppose the track record for the Chicago
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Cubs over a 10 game sequence is L, L, L, L, L, W, W, W, W, L (L=lose, W=win). Here

are two statements, both of which are correct!

1. “‘The Cubs are hobbling into tonight’s game, having lost 6 of their past 10 games.”

2. “The Cubs are the division’s hottest team, having won 4 of their last 5 games.”

Example 9.4. “In a survey, four out of five dentists agree that....”

9.2 Are the numbers consistent with each other?

Example 9.5. A researcher was performing an experiment on 6 sets of 20 animals

each. He reported the percentage of successes (e.g., cured/not cured) with each set. The

percentages he reported were 53, 58, 63, 46, 48, 67. Are these numbers consistent with

the particular experiment in mind? Exactly how can one get 53 percent successes out of

20 animals?

9.3 Are the numbers plausible?

Example 9.6. The (very reputable) journal Science reported a California field produces

750,000 melons per acre. Well, there are 43,560 square feet in an acre, so this means

melons/square foot =
750, 000

43, 560
= 17.2.

Does this even make sense? The editor later reported that the correct figure was about

11,000 melons per acre.

9.4 Are the numbers too good to be true?

MISLEADING THE PUBLIC : Writers and reporters will often report only those

cases/statistics which are favorable to their point of view. Newspaper editors usually
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have no idea what is valid and what is not.

“Torture numbers, and they’ll confess to anything.”

Example 9.7. Do 41 percent of Louisiana biology teachers really reject evolution? The

New York Times editors believed (or wanted to believe) so; see the recent Chance article.

9.5 Is the arithmetic right?

Example 9.8. In a paper submitted by a student for a class project (at a public

university in California), the student mentions the following: “Who uses the gym? Here

are some relevant statistics: 42% Men; 40% Women; 18% Other.”

Example 9.9. Poll results for the survey question: “Do you approve of the current bond

measure? Results: 52% Yes; 44% No; 15% Undecided.”

PERCENTAGE CHANGE : A statistic often quoted is the percentage change. This

quantity is found by

percent change =
amount of change

starting value
× 100%.

Example 9.10. Monthly sales were $21.58 million in November and $23.90 million in

December. What is the percentage change in sales?

percent change =
23.90 − 21.58

21.58
× 100%

= 10.8%

That is, their was a 10.8% increase in sales between November and December.

NOTE : When reporting percent changes, those who lie with statistics might use the

divisor that makes their point. To make a percent change appear bigger, they will use

the smaller divisor. To make the percent change appear smaller, they will use the larger
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divisor. In the last example, if we erroneously compute the percentage change as

percent change =
23.90 − 21.58

23.90
× 100%

= 9.7%,

the result looks less than the real percentage change of 10.8%!

NOTE : A quantity can increase by any amount. A 100% increase just means that the

quantity has doubled, a 200% increase means that the quantity has tripled, and so on.

NOTE : Nothing can decrease by more than 100%. If a quantity has lost 100% of its

value, it has lost it’s entire value! A statement like “this mouthwash reduces plaque on

teeth by 200%” makes no sense.

Example 9.11. Organic Gardening magazine once said that “the US Interstate Highway

System spans 3.9 million miles and is wearing out 50% faster than it can be fixed.

Continuous road deterioration adds $7 billion yearly in fuel costs to motorists.”

Question: What is the distance from Charleston to Seattle? (about 3,000 miles).

9.6 Is there a hidden agenda?

MY OPINION : Too many people use statistics to “drive their agenda” and lack the

patience and perspicacity to understand what the data are actually saying.

Example 9.12. The following excerpt recently appeared the news:

“It is estimated that disposable diapers account for less than 2% of the trash

in today’s landfills. In contrast, beverage containers, third-class mail and yard

wastes are estimated to account for about 21% of the trash in landfills. Given

this, in your opinion, would it be fair to ban disposable diapers?”

Is it fair to compare the 2 and 21 percent statistics (provided, of course, that these are

even accurate)? Why or why not?
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9.7 Top 10 List: Favorite statistics quotes

10. “Statistics class is a lot like church−many attend but few understand.”

9. “People can come up with statistics to prove anything...forty percent of all people know

that.”

8. “There are two kinds of statistics, the kind you look up, and the kind you make up.”

7. “The statistics on sanity are that one out of every four Americans is suffering from some

form of mental illness. So, think of your three best friends. If they’re okay, then it’s

you.”

6. “Statistics are like lampposts: they are good to lean on, but they don’t shed much light.”

5. “Like other occult techniques of divination, the statistical method has a private jargon

deliberately contrived to obscure its methods from non-practitioners.”

4. “Smoking is one of the leading causes of statistics.”

3. “A statistician is a man who believes figures don’t lie, but admits that under analysis

some of them won’t stand up either.”

2. “If you want to inspire confidence, give plenty of statistics. It does not matter that they

should be accurate, or even intelligible, as long as there is enough of them.”

1. “There are three kinds of lies: lies, damned lies, and statistics.”
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10 Graphs, Good and Bad

Complementary reading from Moore and Notz: Chapter 10.

10.1 Types of variables

RECALL: A variable is a characteristic (e.g., temperature, age, race, CD4 count, growth,

education level, etc.) that we would like to measure on individuals. The actual measure-

ments recorded on individuals in the sample are called data.

TWO TYPES : Quantitative variables have measurements (data) on a numerical scale.

Categorical variables have measurements (data) where the values simply indicate group

membership.

Example 10.1. Which of the following variables are quantitative in nature? Which are

categorical?

• IKEA-Atlanta daily sales (measured in $1000’s)

• store location (Baltimore, Atlanta, Houston, Detroit, etc.)

• CD4 cell count

• yield (bushels/acre)

• payment times (in days)

• payment times (late/not late)

• age

• advertising medium (ratio/TV/internet)

• number of cigarettes smoked per day

• smoking status (yes/no).
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10.2 Graphs for categorical variables

TERMINOLOGY : The distribution of a variable tells us what values the variable takes

and how often it takes these values.

IMPORTANT : Presenting data effectively is an important part of any statistical analysis.

How we display data distributions depends on the type of variable(s) or data that we are

dealing with.

• Categorical: pie charts, bar charts, tables

• Quantitative: stemplots, boxplots, histograms, timeplots

UNDERLYING THEMES : Remember that the data we collect may be best viewed as a

sample from a larger population of individuals. In this light, we have two primary goals

in this section:

• learn how to summarize and to display the sample information, and

• start thinking about how we might use this information to learn about the under-

lying population distribution.

Example 10.2. HIV infection has spread rapidly in Asia since 1989, partly because

blood and plasma donations are not screened regularly before transfusion. To study this,

researchers collected data from a sample of 1390 individuals from villages in rural eastern

China between 1990 and 1994 (these individuals were likely to donate plasma for financial

reasons). One of the variables studied was education level. This was measured as a

categorical variable with three categories (levels): illiterate, primary, and secondary.

TABLES : I think the easiest way to portray the distribution of a categorical variable is

to use a table of counts and/or percents. A table for the education data collected in

Example 10.2 is given in Table 10.7.
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Table 10.7: Education level for plasma donors in rural eastern China between 1990-1994.

Education level Count Percentage

Illiterate 645 46.4

Primary 550 39.6

Secondary 195 14.0

Total 1390 100.0

REMARK : Including percentages in the table (in addition to the raw counts) is helpful for

interpretation. Most of us can understand percentages easily. Furthermore, percentages

put numbers like “645” into perspective; e.g., 645 out of what?

INFERENCE : These data are from a sample of rural villagers in eastern China. From

these data, what might we be able to say about the entire population of individuals?

PIE CHARTS AND BAR GRAPHS : Pie charts and bar graphs are appropriate for

categorical data but, unlike tables, are more visual in nature.

Illiterate

Primary 

Secondary

46.4%

39.6%

14.0%

(a) Pie chart.
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(b) Bar graph.

Figure 10.5: Education level for plasma donors in rural eastern China between 1990-1994.

QUESTIONS : Which display do you like better? Is there anything dissatisfying with the

bar graph?
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10.3 Line graphs

LONGITUDINAL DATA: In many applications, especially in business, data are observed

over time. Data that are observed over time are sometimes called longitudinal data.

More often, longitudinal data are quantitative (but they need not be). Examples of

longitudinal data include monthly sales, daily temperatures, hourly stock prices, etc.

TERMINOLOGY : If it is the longitudinal aspect of the data that you wish to examine,

you need to use a graphical display which exploits this aspect. A line graph (or time

plot) of a variable plots each observation against the time at which it was measured.

To construct a line graph, simply plot the individual values (on the vertical axis) versus

time (on the horizontal). Individual values are then connected with lines.

Example 10.3. The Foster Brewing Company is largely responsible for the development

of packaged beers in Australia. In fact, some of the first canned American beers were

first produced in Australia in the early 1950s. In the last 50 years, improved engineering

techniques have led to larger vessels and improved productivity. The data are available

online at

http://www.maths.soton.ac.uk/teaching/units/math6011/mwhdata/Beer2.htm

are the monthly beer sales data in Australia from January 1991 to September 1996. A

time plot of the data appears in Figure 10.6.

INTERPRETING TIME PLOTS : When I look at time plots, I usually look for two

things in particular:

• Increasing or decreasing trends. Is there a general shift over time upward or

downward? Is it slight or notably apparent?

• Evidence of seasonal effects. Are there repeated patterns at regular intervals? If

there is, what is most likely to have produced this pattern?
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Figure 10.6: Australian beer sales from January 1991 to September 1996.

USEFULNESS : Analyzing longitudinal data is important for forecasting or prediction.

For example, can we forecast the next two years of beer sales? Why might this information

be important?

10.4 Bad/misleading graphs

MISCONCEPTION : Statistics is a boring topic so graphs should be “souped up” to

attract readers.

CONSEQUENCE : This practice leads to graphs that are misleading and confusing.

• Graphical displays that display chartjunk hinder the main message; readers ad-

dress the design and not the substance!

• For examples of chartjunk, pick up any copy of USA Today (they are the worst).

See also the next page!!
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(a) Advertising figures. (b) Car sales.

Figure 10.7: Examples of chartjunk.

(a) Scale: 0-6000 thousand. (b) Scale: 1000-5000 thousand.

Figure 10.8: Number of unmarried couples; illustrates the effects of using different scales.
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Figure 10.9: The best graphical display ever made?
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11 Displaying Distributions with Graphs

Complementary reading from Moore and Notz: Chapter 11.

11.1 Introduction

REMARK : In the last chapter, we discussed graphical displays for categorical data (pie

charts and bar graphs). In this chapter, we focus primarily on graphical displays for

use with quantitative data. In particular, we discuss

• Histograms

• Stem plots

NOTE : Both of these displays will help us graphically portray the distribution of quan-

titative data.

11.2 Histograms

Example 11.1. Monitoring the shelf life of a product from production to consumption

by the consumer is essential to ensure the quality of a product. A sample of n = 25 cans

of a beverage were used in an industrial experiment that examined the beverage’s shelf

life, measured in days (clearly, shelf life is a quantitative variable). The data collected

are given in Table 11.8.

Table 11.8: Beverage shelf life data.

262 188 234 203 212 212 301 225 241 211 231 227 217

252 206 281 251 219 268 231 279 243 241 290 249
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TERMINOLOGY : In order to construct a histogram, we first construct a frequency table.

A frequency table simply summarizes quantitative data in a tabular form. Included

are two things:

• class intervals: intervals of real numbers

• frequencies: how many observations fall in each interval.

Table 11.9: Frequency table for the shelf life data in Example 11.1.

Class Interval Frequency

175 ≤ days < 200 1

200 ≤ days < 225 7

225 ≤ days < 250 9

250 ≤ days < 275 4

275 ≤ days < 300 3

300 ≤ days < 325 1

NOTE : There is no one right way to choose the class intervals!

• Different choices will lead to different-looking histograms!

• Class intervals should all have the same width!

• Make sure that all data values are included!

• The number of class intervals should be large enough that not all observations fall

in one or two intervals, but small enough so that we don’t have each observation

belonging to its own interval.

HISTOGRAMS : To construct a histogram, all you do is plot the frequencies on the

vertical axis and the class intervals on the horizontal axis. The histogram for the shelf

life data in Example 11.1 is given in Figure 11.10.
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Figure 11.10: Histogram for the shelf life data in Example 11.1.

GOALS :

• The goal of a graphical display is to provide a visual impression of the char-

acteristics of the data from a sample. The hope is that the characteristics of the

sample are a likely indication of the characteristics of the population from which

it was drawn.

• When we examine histograms (or stem plots), we will be always be interested in

the overall pattern and any striking deviations from that pattern; in particular:

– center of the distribution of data

– spread (variation) in the distribution of data

– shape: is the distribution symmetric or skewed? Symmetric distributions

are those whose left and right-hand sides look like mirror images of one another

(perfect symmetry is a rarity in real life).

– the presence of outliers (i.e., “unusual observations”).
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REMARK : Here is how we would interpret the distribution of the shelf life data.

• Center: The center looks to be around 240 days.

• Spread: There is quite a bit of variability in the shelf lives; the lives ranging from

188 to 301 days.

• Shape: The shape of the distribution looks approximately symmetric (or

maybe slightly skewed right).

• Outliers: There does not appear to be any gross outliers.

NOTES :

• We can use the histogram to estimate what percentage of cans have shelf life in a

certain range of interest. Suppose that the experimenter believed “most shelf lives

should be larger than 250 days.” From the distribution, we see that this probably

is not true if these data are representative of the population of shelf lives.

• We can also associate the percentage of lives in a certain interval as being propor-

tional to the area under the histogram in that interval.

• For example, are more cans likely to have shelf lives of 200-225 days or 300-325

days? We can estimate these percentages by looking at the data graphically.

TERMINOLOGY : If a distribution is not symmetric, it is said to be skewed.

• A distribution is skewed to the right if there is a long right tail.

• A distribution is skewed to the left if there is a long left tail.

SKEWED DISTRIBUTIONS : Skewed distributions occur naturally in many applica-

tions. Not all distributions are symmetric or approximately symmetric! In Figure 11.11,

the left distribution is skewed right; the right distribution is skewed left.
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Figure 11.11: Left: Death times for rats treated with a toxin. Right: Percentage of

monthly on-time payments.

11.3 Stem plots

STEM PLOTS : Stem plots provide a display of the distribution while retaining the nu-

merical values themselves. The idea is to separate each data value into a stem and a leaf.

Stem plots work well with small-to-moderate-sized data sets, say, 15 to 50 observations.

DIRECTIONS : To create a stem plot for this data (see textbook for full instructions).

1. Separate each of the observations into 2 parts: the rightmost digit (the leaf) and

the remaining digits (the stem). Rounding may be necessary.

2. Vertically list the levels of the stem in ascending order (smallest on top) and draw

a vertical line to its right.

3. Write each leaf to the right of the appropriate stem. For a given stem, the leaves

should be in ascending order from left to right.
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Table 11.10: Stem plot for the shelf life data in Example 11.1.

18 8

19

20 3 6

21 1 2 2 7 9

22 5 7

23 1 1 4

24 1 1 3 9

25 1 2

26 2 8

27 9

28 1

29 0

30 1

SHELF LIFE DATA: The stem plot for the shelf life data in Example 11.1 appears in

Table 11.10. In this plot, the units digit is the leaf; the tens and hundreds digits

form the stem.

Exercise: Here are final exam scores from a course I taught in Summer, 2003 (Intro-

duction to Business Statistics) at Oklahoma State. Make a histogram and a stem plot

for these data.

93 92 88 79 63 55 90 81 87 79 87 58 66 80 77 59

81 81 78 79 68 76 79 76 73 81 78 64 71 47 70 65

• For the histogram, use the class intervals, 40-50, 50-60, 60-70, 70-80, 80-90, and

90-100.

• For the stem plot, use the units digit as the leaf; use the tens digit as the stem.

• Describe the distribution of these scores (talk about things like center, variability,

shape, presence of outliers, etc.).
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12 Describing Distributions with Numbers

Complementary reading from Moore and Notz: Chapter 12.

REMARK : In the last chapter, our main goal was to describe quantitative data distri-

butions graphically. We now wish to do this numerically. For the remainder of the

course, we will adopt the following notation to describe a sample of quantitative data.

n = number of observations in sample x = variable of interest

x1, x2, ..., xn = the n data values in our sample

PREVAILING THEME : Whenever we examine a sample of data, our goal is to numer-

ically summarize the distribution of the sample and get an idea of these same notions

for the population from which the sample was drawn.

12.1 Median, quartiles, and boxplots

12.1.1 Median

Example 12.1. In Example 11.1 (notes), we looked at an engineering process which

produced the following quantitative data (beverage shelf lives, measured in days).

Table 12.11: Beverage shelf life data.

262 188 234 203 212 212 301 225 241 211 231 227 217

252 206 281 251 219 268 231 279 243 241 290 249

GOAL: Find the median for these data. Informally, the median is the middle ordered

value (when the data have been ordered from low to high).
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FORMALLY : The median is the midpoint of a distribution; i.e., the observation such

that half of observations are smaller and the other half are larger.

COMPUTATION : Here are the steps we take for computing the median, M .

1. Order the data from low to high.

2. Compute the median position location; i.e., compute

median position location =
n + 1

2
.

3. The median of the data is given by the ordered value in this position.

• If n is odd, the median position location will be a whole number, say, 8; in

this case, the median would be the 8th ordered observation.

• If n is even, the median position location will be a fraction, say, 8.5; in this

case, the median would be the (arithmetic) average of the 8th and 9th ordered

observations.

Example 12.2. Here are the final exam scores for a class that I taught last semester:

96 92 84 77 74 84 80 74

Here, n = 8 (the number of observations). First, we order the data from low to high:

74 74 77 80 84 84 92 96

The median position location is

median position location =
n + 1

2
=

8 + 1

2
= 4.5.

Thus, the median is the average of the 4th and 5th ordered values; i.e., the median is

M =
80 + 84

2
= 82.

REMARK : Note that exactly half of the scores are below 82, and half of the scores are

above 82. This is what the median does; it is the value which “halves” the data.
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Example 12.1 (continued): In the last chapter, we constructed the stem plot for the

beverage shelf life data. What is the median shelf life?

Table 12.12: Stem plot for the shelf life data in Example 12.1.

18 8

19

20 3 6

21 1 2 2 7 9

22 5 7

23 1 1 4

24 1 1 3 9

25 1 2

26 2 8

27 9

28 1

29 0

30 1

12.1.2 Quartiles

QUARTILES : We have seen that the median M is the value which “halves” the data

(the lower half and the upper half). Informally, the first quartile is the median of the

lower half; similarly, the third quartile is the median of the upper half.

FORMALLY : To calculate the quartiles, we do the following:

1. Arrange data from low to high and calculate the median M .

• Identify the lower half of the data (M excluded)

• Identify the upper half of the data (M excluded)

2. The first quartile, Q1, is the median of the lower half of the data.

3. The third quartile, Q3 is the median of the upper half of the data.
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Example 12.1 (continued): The median of the beverage shelf life data is

M = 234.

The lower half of the beverage data is

188 203 206 211 212 212 217 219 225 227 231 231

(note how we have excluded the median M = 234 in presenting the lower half). The

first quartile Q1 is the median of this lower half; i.e.,

Q1 =
212 + 217

2
= 214.5.

The upper half of the beverage data is

241 241 243 249 251 252 262 268 279 281 290 301

(note how we have excluded the median M = 234 in presenting the upper half). The

third quartile Q1 is the median of this upper half; i.e.,

Q3 =
252 + 262

2
= 257.

12.1.3 Five Number Summary and boxplots

TERMINOLOGY : The Five Number Summary of a data distribution consists of the

following statistics:

1. Min, the smallest observation

2. Q1

3. M

4. Q3

5. Max, the largest observation.
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REMARK : The Five Number Summary offers a helpful numerical description of a

data set. The median is a measure of center; the Min and Max summarize the smallest

and largest observations (so you can get an idea of how spread out the distribution is);

the difference in the quartiles gives you an idea of how spread out the middle 50 percent

of the distribution is.

Example 12.1 (continued). For the beverage shelf life data in Example 12.1, the Five

Number Summary is

Min = 188 Q1 = 214.5 M = 234 Q3 = 257 Max = 301

TERMINOLOGY : A boxplot is a graph of the Five Number Summary!

180

220

260

300

Sh
el

f L
ife

 (i
n 

da
ys

)

Figure 12.12: Box plot for shelf life data in Example 12.1.

REMARK : As a practicing statistician, I am a big fan of boxplots, especially when they

are used to compare different data distributions. We have seen examples of side-by-side

boxplots in earlier chapters (see also next page).

Question: What would the boxplot look like for a distribution which was perfectly

symmetric? skewed right? skewed left?
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Figure 12.13: Number of beetles caught by colored boards. Boxplots for four colors.

12.2 Measures of center

TERMINOLOGY : With a sample of observations x1, x2, ..., xn, the sample mean is

defined as

x =
x1 + x2 + · · · + xn

n

=
1

n

∑
xi.

That is, the sample mean is just the arithmetic average of the n values x1, x2, ..., xn. The

symbol x is pronounced “x-bar,” and is common notation. Physically, we can envision x

as the balancing point on the histogram for the data.

SIGMA NOTATION : The symbol
∑

(the capital Greek letter “sigma”) simply means “add.” This is convenient shorthand

notation that we will use for the remainder of the course.

Example 12.3. With our beverage shelf life data from Example 12.1, the sum of the
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Figure 12.14: Histogram for the shelf life data in Example 12.1.

data is
∑

xi = x1 + x2 + · · · + x25 = 262 + 188 + · · · + 249 = 5974,

and the sample mean of the 25 shelf lives is given by

x =
1

25

∑
xi =

1

25
(5974) = 238.96 days.

Note that the mean and median are fairly “close,” but not equal; i.e., x = 238.96 and

M = 234. Both statistics measure the center of a distribution.

COMPARING THE MEAN AND MEDIAN : The mean is a measure that can be heavily

influenced by outliers.

• Unusually high data observations will tend to increase the mean, while unusually

low data observations will tend to decrease the mean. One or two outliers will

generally not affect the median!

• Sometimes we say that the median is generally robust to outliers.
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Example 12.4. In a manufacturing process involving the production of automotive

paint, a specimen is taken from the filling floor and sent to the chemistry lab for analysis

(chemists check for color, texture, viscosity, etc.). Here is a sample of n = 10 elapsed

times (in hours) for the chemistry lab to complete the analysis, after receiving a specimen

from filling:

2.5 1.8 0.8 3.2 2.1 2.0 2.5 26.9 2.8 1.7

The ordered data are

0.8 1.7 1.8 2.0 2.1 2.5 2.5 2.8 3.2 26.9

CALCULATIONS : The median is equal to

M =
2.1 + 2.5

2
= 2.3 hours.

The mean is equal to

x =
1

10

∑
xi =

1

10
(46.3) = 4.63 hours.

COMPARISON : Note the large difference in the two measures of center! The sample

mean suggests that the “normal” waiting time is greater than 4 hours (half of an 8-hour

shift!). The sample median suggests that the “normal” waiting time is just a shade over

2 hours. These statistics convey very different interpretations. The question should be,

“What happened to cause the 26.9 observation?”

Exercise: Recalculate the mean and median in Example 12.4, but exclude the outlier.

Which statistic’s value changes more?

MORAL: If there are distinct outliers in your data set, then the median should be used

as a measure of center instead of the mean.

MORAL: The source of outliers should always be investigated! The presence of outliers

suggests the presence of assignable-cause variation (rather than just chance variation).

If we know what this assignable cause is, we can take the necessary steps to eliminate it.
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OBSERVATION : The following results hold true for data distribution shapes:

• if a data distribution is perfectly symmetric, the median and mean will be equal.

• if a data distribution is skewed right, the mean will be greater than the median.

• if a data distribution is skewed left, the mean will be less than the median.

12.3 Measures of spread

OBSERVATION : Two data sets could have the same mean, but values may be spread

about the mean value differently. For example, consider the two data sets:

24 25 26 27 28

6 16 26 36 46

Both data sets have x = 26. However, the second data set has values that are much more

spread out about 26. The first data set has values that are much more compact about

26. That is, variation in the data is different for the two data sets.

12.3.1 Range and interquartile range

RANGE : An easy way to assess the variation in a data set is to compute the range,

which we denote by R. The range is the largest value minus the smallest value; i.e.,

R = Max − Min.

For example, the range for the first data set above is 28− 24 = 4, while the range for the

second is 46 − 6 = 40.

DRAWBACKS : The range is very sensitive to outliers since it only uses the extreme

observations!
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INTERQUARTILE RANGE : The interquartile range, IQR, measures the spread in

the center half of the data; it is the difference between the first and third quartiles; i.e.,

IQR = Q3 − Q1.

NOTE : This measure of spread is more resistant to outliers since it does not use the

extreme observations. Because of this, the IQR can be very useful for describing the

spread in skewed distributions.

12.3.2 Variance and standard deviation

TERMINOLOGY : The sample variance of the data x1, x2, ..., xn is denoted by s2 and

is given by

s2 =
1

n − 1

∑
(xi − x)2.

RATIONALE : We are trying to measure how far observations deviate from the sample

mean x. To do this, a natural quantity to examine would be each observation’s deviation

from the mean, i.e., xi − x. However, one can show that

∑
(xi − x) = 0;

that is, the positive deviations and negative deviations “cancel each other out” when you

add them!

REMEDY : Devise a measure that maintains the magnitude of each deviation but ignores

their signs. Squaring each deviation achieves this goal. The quantity

∑
(xi − x)2

is called the sum of squared deviations. Dividing
∑

(xi − x)2 by (n − 1) leaves

(approximately) an average of the n squared deviations. This is the sample variance s2.

TERMINOLOGY : The sample standard deviation is the positive square root of the

variance; i.e.,

s =
√

s2 =

√
1

n − 1

∑
(xi − x)2.
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Example 12.5. Keeping plants healthy requires an understanding of the organisms

and agents that cause disease as well as an understanding of how plants grow and are

affected by disease. In an experiment studying disease transmission in insects, x denotes

the number of insects per plot. A sample of n = 5 plots is observed yielding x1 = 5,

x2 = 7, x3 = 4, x4 = 9 and x5 = 5. What is the sample standard deviation?

Solution. Here are the steps that I take when computing variance and standard devi-

ation “by hand.” Note that the sum of the data is

∑
xi = 5 + 7 + 4 + 9 + 5 = 30.

Thus, the sample mean (we need this first!) is

x =
1

5
(30) = 6 insects.

Now, we form the following table:

Observation Mean Deviation from mean Squared deviation from mean

xi x xi − x (xi − x)2

5 6 5 − 6 = −1 (−1)2 = 1

7 6 7 − 6 = 1 12 = 1

4 6 4 − 6 = −2 (−2)2 = 4

9 6 9 − 6 = 3 32 = 9

5 6 5 − 6 = −1 (−1)2 = 1

The sum of squared deviations is equal to

∑
(xi − x)2 = 1 + 1 + 4 + 9 + 1 = 16.

The sample variance is

s2 =
1

n − 1

∑
(xi − x)2 =

1

4
(16) = 4.

The sample standard deviation is

s =
√

s2 =
√

4 = 2.
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FACTS ABOUT THE STANDARD DEVIATION AND VARIANCE :

1. The larger the value of s (s2), the more variation in the data x1, x2, ..., xn; i.e., the

larger the spread in the distribution of data.

2. s ≥ 0 (s2 ≥ 0); i.e., these values can not be negative!

3. If s = 0 (s2 = 0), then x1 = x2 = · · · = xn. That is, all the data values are equal

(there is zero spread).

4. s and s2, in general, are heavily influenced by outliers. To be precise, outliers drive

up the values of s and s2.

5. s is measured in the original units of the data; s2 is measured in (units)2. This

is an advantage of using the sample standard deviation.

Exercise: Here are the number of points scored by LA Lakers basketball player Kobe

Bryant over an n = 11 game span in the 1999-2000 season:

15 22 18 22 30 31 13 26 29 18 18

Find the sample mean and sample standard deviation for these data.

12.4 Review

NOTES : In this chapter, we have talked about different statistics to summarize (numer-

ically) the notion of center and spread in a quantitative data distribution.

HOWEVER: When you are doing exploratory data analysis, simply computing the

values of these statistics (e.g., mean, standard deviation, etc.) is not enough. If you only

look at these numerical values, you are missing the picture that the distribution paints

for you. Always plot your data distribution first before doing any computations!
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13 Normal Distributions

Complementary reading from Moore and Notz: Chapter 13.

13.1 Introduction

RECALL: We now have examined graphical displays for quantitative data (e.g., boxplots,

histograms, stem plots); we use these displays to portray empirical distributions (i.e.,

distributions of data). For any quantitative data distribution, we know to always inves-

tigate

• the shape of the distribution (e.g., symmetric, skewed, etc.)

• the center of the distribution (numerically summarize with mean or median)

• the spread of the distribution (numerically summarize with standard deviation,

range, IQR)

• the presence of unusual observations and deviations (e.g., outliers, etc.).

Example 13.1. Low infant birth weight is a fairly common problem that expecting

mothers experience. In Larimer County, CO, a group of researchers studied mothers

aged from 25 to 34 years during 1999 to 2003. During this time, 5242 male birth weights

were recorded. The data appear in a relative frequency histogram in Figure 13.15.

A relative frequency histogram is a special histogram. Percentages are plotted on the

vertical axis (instead of counts like we did in Chapter 11). Plotting percentages does not

alter the shape of the histogram.

ANALYSIS :

• The distribution of male birth weights in Larimer County looks very symmetric.

• The center of the distribution appears to be close to 8 lbs (or slightly less).

PAGE 84



CHAPTER 13 STAT 110, J. TEBBS

4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Male birthweights (in lbs.)

Figure 13.15: Distribution of male birth weights in Larimer County, CO.

• The spread in the distribution is apparent, ranging from around 4 lbs (or slightly

less) to 12 lbs (or slightly more).

• The distribution looks very symmetric with no real evidence of outliers (e.g.,

there aren’t any babies weighing 16 pounds!).

13.2 Density curves

OBSERVATION : Sometimes the overall pattern of a large number of observations is so

“regular” that we can describe the pattern by a smooth curve. We call this curve a

density curve. A density curve describes the overall pattern of a distribution.

TERMINOLOGY : One can think of a density curve as a “smooth curve approxi-

mation” to a histogram of data. It is sometimes convenient to think about them as

theoretical models for the variable of interest (in Example 13.1, male birth weights
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Figure 13.16: Distribution of male birth weights in Larimer County, CO. A density curve

has been superimposed over the relative frequency histogram.

for Larimer County, CO). In Figure 13.16, I have superimposed a density curve over the

relative frequency histogram.

PROPERTIES : In general, a density curve associated with a quantitative variable (e.g.,

male birth weights, etc.) is a curve with the following properties:

1. the curve is non-negative

2. the area under the curve is 1

3. the area under the curve between two values a and b represents the proportion of

observations that fall in that range.

NOTE : We display density curves in a way so that the proportion of observations in any

region can be found by finding the area under the curve. To do this, we rescale the

vertical axis so that the total area under the curve is equal to 1.
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Figure 13.17: Density curve for the remission times of leukemia patients.

Example 13.1 (continued). For the density curve in Figure 13.16,

• Approximate the proportion of male newborns that weigh between 7 and 9 lbs.

Shade this area under the curve.

• Approximate the proportion of male newborns that weigh less than 5.5 lbs (i.e.,

are classified as low birthweight). Shade this area under the curve.

Example 13.2. Researchers have learned that the best way to treat patients with acute

lymphoid leukemia is to administer large doses of several chemotherapeutic drugs over a

short period of time. The density curve in Figure 13.17 represents the remission time for

a certain group of leukemia patients (note how the vertical axis has been scaled). The

shaded area represents the proportion of remission times between 10 and 20 months.

FACT : Density curves come in many different shapes and sizes! We can still characterize

a density curve as symmetric or skewed. See Figure 13.18.
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Figure 13.18: Four density curves.

13.3 Measuring the center and spread for density curves

MAIN POINT : The notion of center and spread is the same for density curves as

before when we were discussing histograms. However, because we are now talking about

theoretical models (instead of raw data), we change our notation to reflect this. In

particular,

• the mean for a density curve is denoted by µ.

• the standard deviation for a density curve is denoted by σ.

SUMMARY : Here is a review of the notation that we have adopted so far in the course.

This is standard notation.

Observed data Density curve

Mean x µ

Standard deviation s σ
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CONNECTION :

• The sample values x and s are computed from observed data. These are statistics!

• The population values µ and σ are theoretical values. These are parameters!

COMPARING MEAN AND MEDIAN : The mean for a density curve µ can be thought

of as a “balance point” for the distribution. On the other hand, the median for a density

curve is the point that divides the area under the curve in half. The relationship between

the mean and median is the same as it was before; namely,

• if a density curve is perfectly symmetric, the median and mean will be equal.

• if a density curve is skewed right, the mean will be greater than the median.

• if a density curve is skewed left, the mean will be less than the median.

Figure 13.19: Comparing the mean and median for density curves.

13.4 Normal distributions

NORMAL DENSITY CURVES : The most famous (and important) family of density

curves is the normal family or normal distributions. A normal distribution is also

sometimes called the “bell-shaped distribution” or “bell-shaped curve.”
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Figure 13.20: Two normal curves. The standard deviation fixes the spread of the curve.

DESCRIPTION : There are many normal curves! To describe a particular normal curve,

we need 2 pieces of information:

• the mean µ

• the standard deviation, σ.

FACTS : Here are some properties for the normal family of density curves:

• the curves are symmetric (mean and median are equal)

• area under the a normal density curve is 1

• “mound shaped” and unimodal; i.e., there is only one “peak”

• change of curvature points at µ ± σ.

SHORT-HAND NOTATION FOR NORMAL DISTRIBUTIONS : Because we will men-

tion normal distributions often, a short-hand notation is useful. We abbreviate the normal
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distribution with mean µ and standard deviation σ by

N (µ, σ).

To denote that a quantitative variable X follows a normal distribution with mean µ and

standard deviation σ, we write X ∼ N (µ, σ). The shorthand symbol “∼” is read “is

distributed as.”

13.4.1 Empirical Rule

EMPIRICAL RULE : For the normal family of distributions, approximately

• 68 percent of the observations will be within one standard deviation of the mean,

• 95 percent of the observations will be within two standard deviation of the mean,

and

• 99.7 percent (or almost all) of the observations will be within three standard

deviations of the mean.

This is also known as the 68-95-99.7 Rule.

Example 13.3. The variable X denotes the tomato yields (measured in bushels/acre)

in an agricultural experiment for a certain region. In Figure 13.22, we have a normal

density curve with µ = 25 bushels/acre and σ = 5 bushels/acre; this is the density curve

for X. We write X ∼ N (25, 5). The Empirical Rule says that

• about 68 percent of the observations (yields) will be within 25 ± 5, or between 20

and 30 bushels/acre.

• about 95 percent of the observations (yields) will be within 25± 10, or between 15

and 35 bushels/acre.
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Figure 13.21: The Empirical Rule for normal distributions. The normal distribution

depicted here has µ = 0 and σ = 1.

• about 99.7 percent of the observations (yields) will be within 25 ± 15, or between

10 and 40 bushels/acre.

Exercise: Refer to Figure 13.22, a normal distribution with mean µ = 25 and standard

deviation σ = 5. This is our theoretical model for the distribution of tomato yields.

Using the Empirical Rule,

(a) what proportion of tomato yields will be less than 20 bushels per acre?

(b) what proportion of tomato yields will be greater than 35 bushels per acre?

(c) what proportion of tomato yields will be between 10 and 35 bushels per acre?

(d) what proportion of tomato yields will be between 15 and 30 bushels per acre?

For each question, draw the corresponding picture (with appropriate shading). Make

sure that your picture is well-labeled.
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Figure 13.22: A normal density curve with mean µ = 25 and standard deviation σ = 5.

A model for tomato yields.

13.4.2 Standardization

TERMINOLOGY : The standard normal distribution is a normal density curve with

mean 0 and standard deviation 1. This density curve is abbreviated N (0, 1).

STANDARDIZED SCORES : If x is an observation from a N (µ, σ) density curve, then

the standard score of x is

z =
x − µ

σ
.

This is also called a standardized value or z-score.

FACTS ABOUT STANDARDIZED VALUES :

• Standardized values follow a standard normal distribution!

• Standardized values are unitless (i.e., they have no units attached to them).
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• A standardized value z indicates how many standard deviations an observation x

falls above or below the mean µ.

– If the standardized value z < 0, then x is below the mean µ.

– If the standardized value z > 0, then x is above the mean µ.

NOVELTY : Standardized scores are helpful because they allow us to compare observa-

tions on a unitless scale. The following example illustrates this.

Example 13.4. College entrance exams, such as the SAT and ACT, are important in

determining whether or not a potential undergraduate student is admitted. Historical

evidence suggests that

• SAT scores are normally distributed with mean 1000 and standard deviation 180.

• ACT scores are normally distributed with mean 21 and standard deviation 5.

(a) Draw sketches of these two distributions. Label the scales as accurately as possible.

(b) Suppose that Joe scores 1180 on the SAT and Jane scores 30 on the ACT. Mark

these values on your sketches. Who has done better compared to their peers? Answer

this question by computing each student’s standardized score.

(c) Suppose that Matt scores 910 on the SAT and Maria scores 15 on the ACT. Mark

these values on your sketches. Who has done better compared to their peers?
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Figure 13.23: Standard normal density curve. Left: The 93.32nd percentile is z = 1.5.

Right: The 6.68th percentile is z = −1.5.

13.4.3 Percentiles

TERMINOLOGY : The cth percentile of a distribution is a value such that c percent of

the observations lie below it, and the rest lie above. Here, c is a value between 0 and 100.

We have a table that provides percentiles for the standard normal distribution! This is

the table on the next page (in the text, it is Table B, page 552).

SPECIAL PERCENTILES : We have already discussed some “special” percentiles; in

particular,

• the median is the 50th percentile.

• the first quartile, Q1, is the 25th percentile.

• the third quartile, Q3, is the 75th percentile.

Question: What are these values for the standard normal density curve? See next page.
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Table 13.13: Percentiles of the standard normal distribution.

Standard Standard Standard
score (z) Percentile (c) score (z) Percentile (c) score (z) Percentile (c)

-3.4 0.03 -1.1 13.57 1.2 88.49
-3.3 0.05 -1.0 15.87 1.3 90.32
-3.2 0.07 -0.9 18.41 1.4 91.92
-3.1 0.10 -0.8 21.19 1.5 93.32
-3.0 0.13 -0.7 24.20 1.6 94.52
-2.9 0.19 -0.6 27.42 1.7 95.54
-2.8 0.26 -0.5 30.85 1.8 96.41
-2.7 0.35 -0.4 34.46 1.9 97.13
-2.6 0.47 -0.3 38.21 2.0 97.73
-2.5 0.62 -0.2 42.07 2.1 98.21
-2.4 0.82 -0.1 46.02 2.2 98.61
-2.3 1.07 0.0 50.00 2.3 98.93
-2.2 1.39 0.1 53.98 2.4 99.18
-2.1 1.79 0.2 57.93 2.5 99.38
-2.0 2.27 0.3 61.79 2.6 99.53
-1.9 2.87 0.4 65.54 2.7 99.65
-1.8 3.59 0.5 69.15 2.8 99.74
-1.7 4.46 0.6 72.58 2.9 99.81
-1.6 5.48 0.7 75.80 3.0 99.87
-1.5 6.68 0.8 78.81 3.1 99.90
-1.4 8.08 0.9 81.59 3.2 99.93
-1.3 9.68 1.0 84.13 3.3 99.95
-1.2 11.51 1.1 86.43 3.4 99.97
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FINDING PERCENTILES FOR ANY NORMAL DENSITY CURVE : We have seen

that the standardized value z is related to an observation x in the following way:

z =
x − µ

σ
.

If we solve this equation for the observation x, we get

x = µ + zσ

This equation allows us to find percentiles for any normal density curve. All we have to

know is µ, σ, and z.

Example 13.5. Historical evidence suggests that SAT scores are normally distributed

with mean 1000 and standard deviation 180. What score do you have to make to be in

the top 10 percent?

Solution. We would like to find the 90th percentile of a N (1000, 180) density curve

(draw this density curve below). For c = 90, we have that

z ≈ 1.3.

We already know that µ = 1000 and σ = 180. Thus, solving for x, we obtain

x = µ + zσ = 1000 + 1.3(180) = 1000 + 234 = 1234.

If we score a 1234 (or higher), then we would be in the top 10 percent.
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Questions: Historical evidence suggests that SAT scores are normally distributed with

mean 1000 and standard deviation 180.

(a) What SAT score do you have to make to be in the top 30 percent?

(b) Ten percent of all SAT scores will be below which value?

(c) What is the interquartile range of the SAT score distribution? Recall that IQR =

Q3 − Q1.
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14 Describing Relationships: Scatterplots and Cor-

relation

Complementary reading from Moore and Notz: Chapter 14.

14.1 Introduction

OVERVIEW : A problem that often arises in the social sciences, economics, industrial

applications, and biomedical settings is that of investigating the mathematical relation-

ship between two variables.

EXAMPLES :

• amount of alcohol in the body (BAL) versus body temperature (degrees C)

• weekly fuel consumption (degree days) versus house size (square feet)

• amount of fertilizer (pounds/acre) applied versus yield (kg/acre)

• sales ($1000s) versus marketing expenditures ($1000s)

• HIV status (yes/no) versus education level (e.g., primary, secondary, college, etc.)

• gender (M/F) versus promotion (yes/no). Are promotion rates different?

• helium-filled footballs versus air-filled footballs. Is there a difference?

• Remission time (in days) versus treatment (e.g., surgery/chemotherapy/both)

Example 14.1. Many fishes have a lateral line system enabling them to experience

mechanoreception, the ability to sense physical contact on the surface of the skin or

movement of the surrounding environment, such as sound waves in air or water. In an

experiment to study this, researchers subjected fish to electrical impulses. The frequency

(number per second) of electrical impulses (EI) emitted from n = 7 fish measured at

several temperatures (measured in Celcius); the data are listed in Table 14.14.
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Table 14.14: Fish electrical impulse data.

Temperature (x) Frequency (y) Temperature (x) Frequency (y)

20 224 27 301

22 252 28 306

23 267 30 318

25 287

14.2 Scatterplots

TERMINOLOGY : A scatterplot is a graphical display which shows the relationship

between two quantitative variables measured on the same individuals.

• The values of one variable appear on the horizontal axis; the values of the other

variable appear on the vertical axis.

• Each individual in the data appears as the point in the plot fixed by the values of

both variables for that individual.

NOTE : Scatterplots give a visual impression of how the two variables behave together.

Example 14.1 (continued). The scatterplot for the fish electrical impulse data is given

in Figure 14.24. It is clear that these variables are strongly related. As the water

temperature increases, there is a tendency for the frequency of impulses to increase as

well.

VARIABLES : In studies where there are two variables under investigation (e.g., temper-

ature, EI frequency), it is common that one desires to study how one variable is affected

by the other. In some problems, it makes sense to focus on the behavior of one variable

and, in particular, determine how another variable influences it. In a scientific investiga-

tion, the variable that is of primary interest is the response variable. An explanatory

variable explains or causes changes in the response variable.
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Figure 14.24: Scatterplot for EI frequency at different temperatures.

NOTATION : As a reminder, we usually denote the response variable by y and the ex-

planatory variable by x. In Example 14.1, EI frequency (y) is the response variable, and

temperature (x) is the explanatory variable.

INTERPRETING SCATTERPLOTS : It is important to describe the overall pattern of

a scatterplot by examining the following:

• form; are there linear or curved relationships or different clusters of observations?

• direction; are the two variables positively related or negatively related?

• strength; how strong is the relationship? Strong? Weak? Mild?

• the presence of outliers.

LINEAR RELATIONSHIPS : If the form of the scatterplot looks to resemble a straight-

line trend, we say that the relationship between the variables is linear.
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Figure 14.25: Upper left: positive linear relationship. Upper right: mild linear negative

relationship. Lower left: curved relationship. Lower right: random scatter.

TERMINOLOGY : Two variables are positively related if they tend to increase to-

gether. They are negatively related if an increase in one is associated with a decrease

in the other.

Example 14.2. Consider a situation where interest focuses on two different methods of

calculating the age of a tree. One way is by counting tree rings. This is considered to

be very accurate, but requires sacrificing the tree. Another way is by a carbon-dating

process. Suppose that data are obtained for n = 50 trees on age by the counting method

(x) and age by carbon dating (y), both measured in years. A scatterplot of these data is

given in Figure 14.26.
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Figure 14.26: Tree ages measured by two different methods. A straight line has been

superimposed to emphasize the linear trend.

INTERPRETATION :

• Form: There is linear relationship between the two aging methods.

• Direction: The two aging methods are positively related.

• Strength: The relationship between the two aging methods is strong (this is

reassuring; this suggests that both methods are similar in assessing tree age; i.e.,

the carbon dating method could be used in place of the ring-counting method).

• Outliers: There is not a strong indication of outliers being present here.

Example 14.3. Two identical footballs, one air-filled and one helium-filled, were used

outdoors on a windless day at Ohio State University’s athletic complex. Each football was

kicked 39 times and the two footballs were alternated with each kick. The experimenter

recorded the distance traveled by each ball. The distances are recorded in yards.
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Figure 14.27: Ohio State football data. Helium versus air football distances.

INTERPRETATION :

• Form: There does not look to be a linear relationship between the two types of

footballs (although it slightly linear).

• Direction: It is hard to discern whether or not the relationship is positive or

negative (although it is slightly positive).

• Strength: This relationship is not strong (“weak” at best).

• Outliers: A few outliers (perhaps). This is not data from Ohio State’s 2006 kicker!

14.3 Correlation

SCENARIO : We would like to study the relationship between two quantitative variables,

x and y. Scatterplots give us a graphical display of the relationship between two

quantitative variables. We now wish to summarize this relationship numerically.
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TERMINOLOGY : The correlation is a numerical summary that describes the strength

and direction of the straight-line (linear) relationship between two quantitative variables.

The correlation is denoted by r.

FORMULA: With a sample of n individuals, denote by xi and yi the two measurements

for the ith individual. The correlation is computed by the following formula:

r =
1

n − 1

∑ (
xi − x

sx

)(
yi − y

sy

)
,

where x and y are the sample means and sx and sy are the sample standard deviations.

It is often best to use statistical software to compute the correlation. You should note

that the terms
xi − x

sx

and
yi − y

sy

,

are the sample standardized values of xi and yi, respectively.

HAND-CALCULATION : See Examples 2 and 3, pages 273-6 (MN).

14.4 Understanding correlation

MY PHILOSOPHY : Knowing how to compute the correlation r “by hand” is not very

important at this level. It is much more important that you understand how the

correlation measures the association between two variables.

PROPERTIES OF THE CORRELATION :

1. The correlation r is a unitless number; that is, there are no units attached to it

(e.g., dollars, mm, etc.). This also means that you could change the units of your

data (e.g., inches to cm) and this would not affect the value of r.

2. It also makes no difference what you call x and what you call y; the correlation will

be the same. That is, the correlation r ignores the distinction between explanatory

and response variables.

3. The correlation r always satisfies −1 ≤ r ≤ 1.
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Figure 14.28: Four scatterplots using data generated from Minitab. Upper left: r = 0.

Upper right: r = 0.9. Lower left: r = −0.99. Lower right: r = −0.5.

4. If r = 1, then all data lie on a straight line with positive slope. If r = −1, then

all the data lie on a straight line with negative slope.

5. When 0 < r < 1, there is a tendency for the values to vary together in a positive

way (i.e., a positive linear relationship). When −1 < r < 0 there is a tendency for

the values to vary together in a negative way (i.e., a negative linear relationship).

6. Values of r close to zero (e.g., −0.25 < r < 0.25) indicate very weak linear associ-

ation between x and y. If r = 0, then there is no linear relationship present in

the data.
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Figure 14.29: Plant growth versus water amount.

7. The correlation only measures linear relationships! It does not describe

a curved relationship, no matter how strong that relationship is! Thus, we could

have two variables x and y that are very strongly related, but the correlation still

be close to zero! This would occur if the variables are related quadratically. See

Example 14.3.

8. The value of r could be highly affected by outliers. This makes sense since sample

means and sample standard deviations are affected by outliers (and these values

are required to compute r).

Example 14.3 (continued). The correlation between air and helium is r = 0.231. This

suggests a weak positive association.

Example 14.4. Researchers are trying to understand the relationship between the

amount of water applied to plots (measured in cm) and total plant growth (measured in

cm). A sample of n = 30 plots is taken from different parts of a field. The data from the
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sample are given in Figure 14.29. Using statistical software, the correlation between plant

growth and water amount is computed to be r = 0.088. This is an example where the

two variables under investigation (water amount and plant growth) have a very strong

relationship, but the correlation is near zero. This occurs because the relationship is not

linear; rather, it is quadratic. An investigator that did not plot these data and only

looked at r could be lead astray and conclude that these variables were not related!

MORAL: Always plot your data first in a scatterplot to detect possible nonlinear rela-

tionships. The correlation does not measure nonlinear relationships!

Example 14.5. As we pointed out, outliers can drastically change the value of the

correlation. To illustrate this, consider the following two scatterplots. Depicted here are

the lengths of the femur (leg bone) and the humerus (upper arm bone) for five fossils for

extinct animals (archaeopteryx). The data are given in Example 2 (page 273, MN).

(a) No outlier. (b) Outlier.

Figure 14.30: Scatterplots of the lengths of two bones in 5 fossil specimens of the ar-

chaeopteryx. This shows the effect of outliers on the correlation. Left: r = 0.994. Right:

r = 0.640.

MORAL: Always plot your data first in a scatterplot to detect possible outliers; these

unusual observations can have a large effect on the correlation.
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15 Describing Relationships: Regression, Prediction,

and Causation

Complementary reading from Moore and Notz: Chapter 15.

15.1 Introduction

GOAL: If a scatterplot shows a straight-line relationship between two quantitative

variables, we would like to summarize this overall pattern by “fitting” a line to the data.

Example 15.1. In Example 14.1 (notes), we looked at the relationship between the

temperature and EI frequency for fish (the scatterplot is below). As before, we have

plotted temperature (x) on the horizontal axis and EI frequency (y) on the vertical.
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Figure 15.31: Scatterplot for EI frequency at different temperatures.

ASSESSMENT : There is a strong positive straight-line relationship between these two

variables (temperature and EI frequency).
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Figure 15.32: EI frequency at different temperatures with a straight-line fit.

TERMINOLOGY : A regression line is a straight line that describes how a response

variable y changes as an explanatory variable x changes.

NOTE : With real data (like above), it will be generally impossible to find a line that

“goes through all the points.” There will always be some observations which fall above

the line; some below. More on this momentarily...

Example 15.2. These data are rates of oxygen consumption (y) for birds measured at

different temperatures (x). The temperatures were set by the investigator, and the O2

rates (ml/g/hr) were observed for these particular temperatures. The scatterplot of the

data appears in Figure 15.33(a). The regression line appears in Figure 15.33(b).

x, (degrees Celcius) −18 −15 −10 −5 0 5 10 19

y, (ml/g/hr) 5.2 4.7 4.5 3.6 3.4 3.1 2.7 1.8

ASSESSMENT : There is strong negative straight-line relationship between the two

variables (temperature and oxygen consumption).
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(b) With regression line.

Figure 15.33: Bird oxygen rate data for different temperatures.

IDEA: We often use a regression line to predict the value of the response variable y for a

given value of the explanatory variable x. For example, looking at the scatterplots (with

straight-line fits),

• in Example 15.1, what would you predict the EI frequency to be when the temper-

ature is 26 degrees C?

• in Example 15.2, what would you predict the O2 consumption rate to be when the

temperature is 2.5 degrees C?

15.2 Regression equations

STRAIGHT LINE EQUATIONS : Suppose that y is the response variable (plotted on

the vertical axis) and that x is the explanatory variable (plotted on the horizontal axis).

A straight line relating y to x has an equation of the form

y = a + bx,

where the constant b represents the slope of the line and a denotes the y-intercept.
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INTERPRETATION : The slope of a regression line gives the amount by which the

response y changes when x increases by one unit. The y-intercept gives the value of the

response y when x = 0.

RECALL: With real data, we will never be able to find a line which “fits perfectly;” i.e.,

that goes through all the points. So, how do we find the equation of the regression line?

LEAST-SQUARES PRINCIPLE : The least-squares regression line is the line which

minimizes the sum of squared vertical distances of the data points from the line. There

is only one line that does this!
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Figure 15.34: A scatterplot with straight line and residuals associated with the straight

line.

TERMINOLOGY : Each observation has its own vertical distance from the regression

line. We call these vertical distances residuals. See Figure 15.34.

NOTE : In this class, we will not give the formulas for computing the least-squares regres-

sion line; this is the job of a computer with appropriate software (e.g., Excel, Minitab).

We will only focus on interpretation.
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Example 15.2 (continued). Using statistical software, I found the regression equation

for the bird-oxygen rate data. It is

O2Rate = 3.47 − 0.0878 Temperature.

INTERPRETATION :

• The slope b = −0.0878 is interpreted as follows: “for a one-unit (degree) increase in

temperature, we would expect for the oxygen rate to decrease by 0.0878 ml/g/hr.”

• The y-intercept a = 3.47 is interpreted as follows: “for a temperature of x = 0, we

would expect the oxygen rate to be 3.47 ml/g/hr.”

15.3 Prediction

Example 15.3. In Example 14.5 (notes), we examined the lengths (cm) of the femur

(leg bone) and the humerus (upper arm bone) for five fossils for extinct animals (ar-

chaeopteryx). The data are given in Example 2 (page 273, MN). The equation of the

least-squares regression line for these data is

humerus = −3.66 + 1.197 femur.

In Figure 15.35, we see the scatterplot, the least-squares regression line superimposed.

Question. What would you predict the humerus length to be for an animal whose

femur length was 50 cm?

Solution. Answering questions like this is easy. All we have to do is substitute “50”

into the regression equation for femur (x) and solve for humerus (y). The calculation is

humerus = −3.66 + 1.197(50) = 56.2 cm;

that is, for a fossil with a femur 50 cm long, we would predict the humerus length to be

56.2 cm.
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Figure 15.35: Scatterplot of the lengths of two bones in 5 fossil specimens of the ar-

chaeopteryx. The least squares regression line is superimposed. The dotted line represents

a prediction when x = 50.

Example 15.4. For our bird-oxygen data in Example 15.2, suppose we wanted to predict

a future oxygen consumption rate (for a new bird used in the experiment, say) when the

temperature is set at x = 2.5 degrees. Using our regression equation, the prediction is

y = 3.47 − 0.0878(2.5) = 3.252 ml/g/hr.

Thus, for a bird subjected to 2.5 degrees Celsius, we would expect its oxygen rate to be

approximately 3.252 ml/g/hr.

ADEQUACY : Predictions are best when the model fits the data well. If our data are

“well-fit” by a regression line, then our predictions are going to be good. If a straight

line is not adequate for the data, then our predictions are not going to be very good.

EXTRAPOLATION : It is sometimes desired to make predictions based on the fit of the

straight line for values of x outside the range of x values used in the original study. This

is called extrapolation, and can be very dangerous. In order for our inferences to be
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valid, we must believe that the straight line relationship holds for x values outside the

range where we have observed data.

15.4 Correlation and regression

OBSERVATION : Correlation and regression are both statistical techniques used with

data for two quantitative variables.

• The correlation r measures the strength and direction of a straight-line relationship

with a single number; e.g., r = 0.84.

• A regression line is a mathematical equation that describes the relationship.

Both correlation and regression are strongly affected by outliers; see Figure 15.36.

Figure 15.36: Least-squares regression lines are strongly influenced by outliers. The solid

line is based on all 50 states (r = 0.408); the dotted line leaves out Hawaii (r = 0.195).
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LINK : The usefulness of the regression line for prediction depends on the strength of the

straight-line association (which is measured by the correlation).

SQUARE OF THE CORRELATION : In a regression analysis, one way to measure how

well a straight line fits the data is to compute the square of the correlation r2. This

statistic is interpreted as the proportion of total variation in the data explained by the

straight-line relationship with the explanatory variable.

NOTE : Since −1 ≤ r ≤ 1, it must be the case that

0 ≤ r2 ≤ 1.

Thus, an r2 value “close” to 1 is often taken as evidence that the predictions made using

the model are going to be adequate.

Example 15.5. With our bird-oxygen rate data from Example 15.2 I used statistical

software to compute the correlation r = −0.99. The square of the correlation is

r2 = (−0.99)2 = 0.9801.

Thus, 98.01 percent of the variation in the oxygen rate data is explained temperature (x).

This is a very high percentage! The other 1.99 percent is explained by other variables

(not accounted for in our straight-line regression model). We could feel good about our

predictions in this case.

15.5 Causation

SMOKING : Few would argue that cancer is not associated with persistent smoking.

However, does smoking actually cause cancer? This is a more difficult question to answer.

Here is a response I found at http://www.quitsmokingsupport.com/questions.htm.

“Yes. Tobacco smoke contains at least 43 carcinogenic (cancer-causing) sub-

stances. Smoking causes many kinds of cancer, not just lung cancer. Tobacco

PAGE 116



CHAPTER 15 STAT 110, J. TEBBS

Figure 15.37: A less-than-impressive graphical display which attempts to convey smoking

behavior among men and its association with the incidence of cancer.

use accounts for 30 percent, or one in three, of all cancer deaths in the United

States. Smoking is responsible for almost 90 percent of lung cancers among

men and more than 70 percent among women, about 83 percent overall.”

ASSESSING CAUSATION : Here are three important facts about statistical evidence for

assessing causation:

1. A strong relationship between two variables does not necessarily mean that changes

in one variable cause changes in the other.

2. The relationship between two variables is often influenced by other variables lurk-

ing in the background.

3. The best evidence for causation comes from randomized comparative experi-

ments.
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Figure 15.38: Chicago fire damages ($1000s) and the number of fire trucks.

Example 15.6. A Chicago newspaper reported that “there is a strong correlation be-

tween the number of fire trucks (x) at a fire and the amount of damage (y, measured

in $1000’s) that the fire does.” Data from 20 recent fires in the Chicago area appear in

Figure 15.38. From the plot, there appears to be a strong linear relationship between the

number of fire fighters and the amount of damage. Few, however, would infer that the

increase in the number of fire trucks actually causes the observed increase in damages!

MORAL: This phenomenon is the basis of the remark “Correlation does not necessarily

imply causation.” An investigator should be aware of the temptation to infer causation

in setting up a study, and be on the lookout for lurking variables that are actually the

driving force behind observed results. In general, the best way to control the effects of

lurking variables is to use a carefully designed experiment. Unfortunately, it may not

be possible to perform such experiments when dealing with human subjects!

REALITY : In observational studies, it is very difficult to make causal statements. The

best we can do is make statements documenting an association, and nothing more.
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16 Thinking About Chance

Complementary reading from Moore and Notz (MN): Chapter 17.

Note that we are not covering Chapter 16 (MN).

16.1 Introduction

CHANCE EVENTS IN REAL LIFE : We are inundated everyday with numbers which

quantify the chance of something occurring in the future (perhaps to us); e.g.,

• “The chance of winning the Powerball lottery is 1 in 56,000,000.”

• “Duke is a 2:1 favorite to win the ACC men’s basketball regular season champi-

onship.”

• “For this cohort, subjects not wearing condoms are estimated to be 3 times more

likely to contract an STD when compared to those subjects who wear condoms.”

• “The chance of dying in a plane crash is 1 in 7,000,000.”

• “The probability of transmission from aphid to host plant is 0.02.”

• “As the course instructor, I give A’s to the top 2 percent of the class.”

16.2 Probability

TERMINOLOGY : We call a phenomenon random if individual outcomes are uncer-

tain but there is nonetheless a regular distribution of outcomes in a large number of

repetitions.

TERMINOLOGY : The probability of any outcome is the proportion of times the out-

come would occur in a very long series of independent repetitions.
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Figure 16.39: The proportion of flips which result in a “tails”; each plot represents 1, 000

flips of a fair coin.

NOTE : A probability is a number between 0 and 1.

• The higher the probability for a particular outcome (i.e., the closer it is to 1), the

more likely it is to occur.

• The lower the probability for a particular outcome (i.e., the closer it is to 0), the

less likely it is to occur.

• Outcomes with probability 1 will always occur. Outcomes with probability 0 will

never occur.

Example 16.1. Flipping a coin. Flip a coin. If it is unbiased, then each side (H, T)

should occur with the same chance. And, over the long run (i.e., after many many flips),

the proportion of “tails” which occur should be close to 1/2. However, the outcome on

any one flip can not be predicted with certainty!
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Figure 16.40: The proportion of tosses which result in a “2”; each plot represents 1, 000

rolls of a fair die.

Example 16.2. Rolling a die. Roll a die. If it is unbiased, then each side (1, 2, 3, 4,

5, 6) should occur with the same chance. And, over the long run (i.e., after many many

rolls), the proportion of “2”’s which occur should be close to 1/6. But, it is impossible

to know, with certainty, which face will appear on a particular roll.

MORAL: Chance behavior is unpredictable in the short run, but it has a regular and

predictable pattern in the long run. Probability provides a language to describe the

long-term regularity of random behavior.

16.3 Probability myths

SHORT TERM REGULARITY : Probability deals with long term regularity; not short

term behavior. Consider each of the following situations where people try to place faith

in the myth of short-term regularity.
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• At a roulette wheel, the following colors have been observed in the last 15 plays:

R G B R B R B R B B B B B B B

We walk to the table with this information. What should we bet on the next play?

• Growing up in Iowa, I always watched Chicago Cubs games (which were announced

by the late Harry Caray). Because the Cubs were usually behind in the 9th inning

(except in 1984), Harry would try to rally the crowd by making statements like the

following:

“At bat is Sandburg, who is hitting .250 for the season. Today’s he’s 0

for 3, so he is due for hit.”

• Empirical data suggests that the boys and girls are born at roughly the same rate

(about 50/50). A couple’s first three children are boys. What is the probability

that the next borne will be a girl?

SURPRISE EVENTS : Certain events may be unlikely, but this doesn’t mean that they

can’t occur! Even outcomes with small probability occur! Consider each of the

following examples of “surprise events.”

• Winning the lottery twice. In 1986, Evelyn Marie Adams won the NJ state lottery

for a second time (1.5 and 3.9 million dollar payoffs). Robert Humphries (PA) won

his second lottery two years later (6.8 million total).

• Vioxx. In Merck’s VIGOR study, comparing Vioxx to naproxen (a nonsteroidal

anti-inflammatory drug), there was a highly statistically significant five-fold

increase in heart attacks in the overall rofecoxib group (0.5 percent) compared to

the naproxen group (0.1 percent). This amounted to 20 heart attacks with rofecoxib

(out of 4,047 patients) compared with 4 with naproxen (out of 4,029 patients). If

there is really no difference between the heart attack rates for the two drugs, the

chance this would occur (the 20-4 split in heart attacks) is approximately 0.00014,

or about 1.4 in 1000.
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• Having the same birthday. Chances are, there are two people sitting in this room

with the same birthday. Does this sound surprising? Consider the following table

of calculations:

Table 16.15: The probability of having at least one common birthday in a group of n

people.

n Probability n Probability

2 0.0027397 28 0.6544615

4 0.0163559 30 0.7063162

6 0.0404625 32 0.7533475

8 0.0743353 34 0.7953169

10 0.1169482 36 0.8321821

12 0.1670248 38 0.8640678

14 0.2231025 40 0.8912318

16 0.2836040 50 0.9703736

18 0.3469114 60 0.9941227

20 0.4114384 70 0.9991596

22 0.4756953 80 0.9999143

24 0.5383443 90 0.9999938

26 0.5982408 100 0.9999997

16.4 Law of averages

THE LAW OF AVERAGES : As the number of repetitions increases (i.e., in the long

run), the sample proportion p̂ of successes approaches the true probability of success

p. We have seen this empirically in Examples 16.1 and 16.2.

CONNECTION WITH SAMPLING : In earlier chapters, we discussed the notion of using

a sample proportion p̂ to estimate the population proportion p using simple random

sampling. The Law of Averages states that as the sample size n increases, the sample

proportion p̂ approaches the true population proportion p.

Example 16.3. A Fox News poll, taken on June 29, 2006, reported the results from an

SRS of n = 900 adults nationwide. Interviewers asked the following question: “Do you
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approve or disapprove of the way George W. Bush is handling his job as president?” Of

the 900 adults in the sample, 369 responded by stating they approve of the President’s

handling of Katrina. The sample proportion of those who support President Bush is

p̂ =
369

900
≈ 0.41.

Recall that the margin of error is approximately

1√
900

≈ 0.033.

With n = 2, 000 persons, our margin of error would have been 0.022. With n = 5, 000

persons, the margin of error is 0.014. With n = 15, 000, the margin of error is 0.008.

MORAL: As the sample size increases, the margin of error decreases; i.e., p̂ gets closer

to the true p. This is precisely what the Law of Averages says should happen!

16.5 Personal probability assignment

Example 16.4. At this point in the class, what do you think your chance is of earning a

‘B’ or higher in this class? Express your answer as a probability (i.e., a number between

0 and 1).

QUESTION : The number you’ve written is a probability, but how does the notion of

probability in this case differ from the notion of long-term regularity?

TERMINOLOGY : A personal probability of an outcome is a number between 0 and

1 that expresses an individual’s judgment of how likely an outcome is. It is not based on

the notion of the long-term regularity of random behavior.

• Personal probability: subjective; based on personal opinion (and, hence, is often

not scientific)

• Long term regularity interpretation: based on the notion of repeated trials; e.g.,

“what happens in the long term?”
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17 Introduction to Statistical Inference and Sam-

pling Distributions

Complementary reading from Moore and Notz (MN): Chapter 18 (only pages 373-377).

17.1 Introduction

RECALL: Statistical inference deals with drawing conclusions about a population on

the basis of data from a sample.

• A Columbia-based health club wants to estimate the proportion of Columbia resi-

dents who enjoy running as a means of cardiovascular exercise. In a random sample

of n = 100 residents, 23 percent (i.e., p̂ = 0.23) said they enjoy running. What

does this suggest about the population proportion p?

• Does Dramamine reduce seasickness? A random sample of n = 500 Navy service-

men received the drug to control seasickness while at sea, and 34 percent (i.e.,

p̂ = 0.34) experienced some form of motion sickness. What does this suggest about

the population proportion (p) of Navy sea servicemen who experience motion sick-

ness?

• An education major would like to estimate the mean GPA for undergraduate pre-

nursing students in South Carolina. A random sample of n = 20 students produces

a sample mean x = 3.39. What does this say about the population mean µ of all

undergraduate pre-nursing students?

• In a large scale Phase III clinical trial involving patients with advanced lung cancer,

the goal is to determine the efficacy of a new drug. Ultimately, we would like to

know whether this drug will extend the life of lung cancer patients as compared to

current available therapies. What do the results from the trial suggest about the

population of individuals with advanced lung cancer?

PAGE 125



CHAPTER 17 STAT 110, J. TEBBS

• The National Collegiate Athletic Association (NCAA) requires colleges to report

the graduation rates of their athletes. Here are the data from a Big 10 University

Report. Student athletes admitted during 1989-1991 were monitored for six years.

The (six-year) graduation rates were 37 of 45 female athletes and 58 of 102 male

athletes. Is there a true (statistically significant) difference between the genders

with respect to graduation rates?

RECALL: In Chapter 3, we talked about confidence statements; e.g.,

We are “very confident” that the proportion of all Navy sea servicemen who

experience seasickness, while taking Dramamine, is between 30% and 38%.

RECALL: A confidence statement has two parts:

• A margin of error. This quantifies how close the sample statistic is to the popu-

lation parameter.

• A level of confidence. This says what percentage of possible samples satisfy the

margin of error.

NOTES : The term “very confident” has to do with the notion of repeated sampling:

• In Chapter 3, we took the phrase “very confident” to mean “95 percent confident.”

• That is, if we took many samples using the same method, 95 percent of the time

we would get a result within the margin of error.

• 95 percent of time, we will be close to the truth (i.e., close to the true population

parameter); that is, we will be inside the margin of error.

• 5 percent of the time, we will “miss” by more than the margin of error.
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TERMINOLOGY : A 95 percent confidence interval is an interval calculated from

sample data by a process that is guaranteed to capture the true population parameter in

95 percent of all samples.

OUR GOAL: We aspire to construct confidence intervals for population parameters.

These intervals help us make statements about the population of individuals under in-

vestigation (consider each of the examples stated at the beginning of this chapter).

17.2 Sampling distributions

Example 17.1. A Columbia-based health club wants to estimate the proportion of

Columbia residents who enjoy running as a means of cardiovascular exercise.

p = the true proportion of Columbia residents who enjoy running (unknown)

p̂ = the proportion of residents who enjoy running observed in our sample.

SIMULATION : We know that statistics’ values will change from sample to sample. A

natural question is “What would happen if I took many samples?” We can answer this

question by using simulation. Simulation studies are commonly used by statisticians to

determine “what if?” questions like this.

SIMULATION : Here is what happened when I simulated 100 different values of p̂ under

the assumption that p = 0.2. Each sample proportion is based on an SRS of n = 100.

0.17 0.16 0.20 0.20 0.16 0.25 0.21 0.17 0.14 0.26 0.12 0.20 0.18

0.15 0.28 0.20 0.21 0.24 0.25 0.22 0.18 0.20 0.19 0.16 0.21 0.21

0.25 0.18 0.20 0.14 0.14 0.21 0.20 0.17 0.18 0.15 0.21 0.12 0.18

0.23 0.18 0.22 0.26 0.18 0.13 0.19 0.17 0.28 0.18 0.21 0.22 0.18

0.19 0.22 0.23 0.17 0.26 0.21 0.19 0.19 0.20 0.10 0.17 0.18 0.18

0.18 0.21 0.20 0.23 0.23 0.26 0.18 0.18 0.16 0.24 0.22 0.16 0.21

0.27 0.18 0.19 0.26 0.25 0.24 0.10 0.18 0.18 0.25 0.18 0.21 0.20

0.21 0.20 0.18 0.22 0.19 0.26 0.17 0.16 0.20
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Figure 17.41: Sampling distribution of the sample proportion p̂ when p = 0.2.

USING HISTOGRAMS : Another natural question is, “What does the distribution of p̂

values look like?” To answer this, we can do the following:

1. Take a large number of samples assuming that p = 0.2, and calculate the sample

proportion p̂ for each sample (we have done this above).

2. Make a histogram of the values of p̂.

3. Examine the distribution displayed in the histogram.

RESULTS : When I did this using 10,000 simulated random samples, each of size n = 100,

I got the histogram in Figure 17.41.

SAMPLING DISTRIBUTIONS : The sampling distribution of a statistic is the dis-

tribution of values taken by the statistic in repeated sampling using samples of the same

size. Figure 17.41 portrays the sampling distribution of the sample proportion p̂ when

n = 100 and p = 0.2.
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REMARK : Sampling distributions are important distributions in statistical inference.

As with any distribution, we are interested in the following:

• center of the distribution

• spread (variation) in the distribution

• shape: is the distribution symmetric or skewed?

• the presence of outliers.

17.2.1 Unbiased estimators

TERMINOLOGY : A statistic is said to be an unbiased estimator for a parameter if

the mean of the statistic’s sampling distribution is equal to the parameter. If the mean of

the statistic’s sampling distribution is not equal to this parameter, the statistic is called

a biased estimator.

It should be clear that bias (or lack thereof) is a property that concerns the

center of a sampling distribution.

MATHEMATICAL FACT : If we use simple random sampling from a large population,

the sample proportion p̂ is an unbiased estimator for the true population proportion

p. This fact would be proven in a more mathematical course.

17.2.2 Variability

TERMINOLOGY : The variability of a statistic is described by the spread in the

statistic’s sampling distribution. This variability will always depend on the sample size

n. In SRS designs, larger sample sizes correspond to smaller variability. This is desirable!

We can increase our precision by taking larger samples!
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(a) n = 100
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(b) n = 1000

Figure 17.42: Sampling distribution of the sample proportion when p = 0.2. Note how

the variability associated with the sampling distribution based on n = 1000 observations

is much smaller than that based on n = 100 observations.

IDEAL SITUATION : Better statistics are those which have small (or no) bias and small

variability.

• If a statistic is unbiased (or has very low bias) then we know that we are approx-

imately “right on average.”

• If we have a statistic with small variability, then we know there is not a large

spread in that statistic’s sampling distribution.

• The combination of “right on average” and “small variation” is the ideal case!

SUMMARY : To reduce bias, use random sampling. SRS designs produce unbiased es-

timates of population parameters. To reduce variation, use a larger sample size n. The

variation in the sampling distribution decreases as n increases.

GOING FORWARD : Now that we have discussed sampling distributions, we can move

forward to the issue of confidence intervals.
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18 Confidence Intervals for Proportions

Complementary reading from Moore and Notz (MN): Chapter 21 (only pages 425-436).

Note that we are not covering Chapters 19 and 20 (MN).

18.1 Sampling distribution for the sample proportion

GOAL: Our goal is to come up with a formula we can use to compute a 95 percent

confidence interval for p, the population proportion.

RECALL: In the last chapter, we used simulation to generate the sampling distrib-

ution of the sample proportion p̂ when n = 100 and p = 0.2; see Figure 18.43.

0.05 0.10 0.15 0.20 0.25 0.30 0.35

0
50

0
10

00
15

00
20

00

p.hat

Figure 18.43: Sampling distribution of the sample proportion p̂ when p = 0.2.

RECALL: The sampling distribution of a statistic is the distribution of values taken

by the statistic in repeated sampling using samples of the same size.

DESCRIPTION : In Figure 18.43, we make the following observations:
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• The center of the sampling distribution looks to be right around p = 0.2.

• The spread of the sampling distribution ranges from about 0.05 to 0.30.

• The distribution shape is very symmetric; in fact, it looks like the histogram would

be very well approximated by a normal density curve!

• There are no outliers.

IMPORTANT RESULT : Take an SRS of size n from a large population of individuals,

where p denotes the population proportion (p is an unknown parameter). Let p̂ denote

the sample proportion; i.e.,

p̂ =
number of sample successes

n
.

Note that p̂ is a statistic because it is computed from the sample. For large samples

(i.e., for large n),

• The sampling distribution of p̂ is approximately normal.

• The mean of the sampling distribution is p; i.e., p̂ is an unbiased estimator of p.

• The standard deviation of the sampling distribution is

√
p(1 − p)

n
.

Putting this altogether, we have that

p̂ ∼ AN
(

p,

√
p(1 − p)

n

)
.

The symbol AN is read “approximately normal.”

REMARK : This result is appropriate only when we have an SRS from a large population

and the sample size n is large. The larger the sample size, the better the normal density

curve approximates the sampling distribution of p̂.
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Figure 18.44: The values of the sample proportion of successes p̂ follow an approximate

normal distribution.

18.2 Confidence intervals for a population proportion

Example 18.1. The Women’s Interagency HIV Study (WIHS) is a longitudinal, multi-

center study funded by the National Institutes of Health to investigate the effect of HIV

infection in women. The WIHS collaborative study group includes 6 clinical consortia

in Brooklyn, Chicago, Washington DC, San Francisco, Los Angeles, and Honolulu. An

American Journal of Public Health article (published in April, 2000) reports that a total

of 1,288 HIV-infected women were recruited in this study to examine the prevalence of

childhood abuse. Of the 1,288 HIV positive women, a total of 399 reported that, in fact,

they had been a victim of childhood abuse. Treating these 1,288 women as the sample,

the value of the sample proportion of childhood abuse victims is

p̂ =
399

1288
≈ 0.31,

This is an estimate of p, the population proportion of childhood abuse victims among

HIV-infected women living in the United States. In this application, the sample size is

quite large, so the normal approximation described earlier is probably very good.

So, how do we construct the confidence interval for p?
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Figure 18.45: Critical values z∗ from the standard normal distribution. The shaded region

represents C percent.

TERMINOLOGY : A level C confidence interval is an interval calculated from sample

data by a process that is guaranteed to capture the true population parameter in C

percent of all samples.

• The parameter is p, the population proportion.

• C is a percentage between 0 and 100.

• We usually take C to be a large percentage; e.g., C = 80, C = 90, C = 95, and

C = 99 are commonly used. Larger C =⇒ more confidence.

MAIN RESULT : Choose an SRS of size n from a large population of individuals where p

denotes the population proportion of interest. Also, as usual, let p̂ denote the sample

proportion. For large sample sizes, an approximate level C confidence interval for p is

p̂ ± z∗
√

p̂(1 − p̂)

n︸ ︷︷ ︸
margin of error

,

where z∗ is a critical value which depends on the confidence level C. See Figure 18.45.
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INTERPRETATION : When we compute this interval, we say that “we are C percent

confident that

p̂ ± z∗
√

p̂(1 − p̂)

n
,

contains the true population proportion p.”

FINDING z∗: The value z∗ is a percentile of the standard normal distribution! Here are

the values of z∗ for commonly used confidence levels.

C 80 90 95 99

z∗ 1.28 1.64 1.96 2.58

REMARKS : Some very important points are worth noting.

• Note that, for C = 95 percent, z∗ = 1.96 is very close to 2 (which is what we would

expect from the Empirical Rule).

• As the level of confidence C increases, the value of z∗ increases as well. This

increases the margin of error, and thus, the length of the interval. This makes

sense intuitively; namely, lengthier intervals are more likely (we’re more confident)

to capture the true population parameter p.

• In the long run, C percent of our intervals will contain the true population propor-

tion; see Figure 18.46.

Example 18.1 (continued). Let’s compute a 95 percent confidence interval for p, the

true population proportion of childhood abuse victims among HIV-infected women

living in the United States. The sample proportion of childhood abuse victims is

p̂ =
399

1288
≈ 0.31.

The value of z∗ = 1.96. The margin of error, m, is

m = z∗
√

p̂(1 − p̂)

n
= 1.96

√
0.31(1 − 0.31)

1288
≈ 0.03.
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Figure 18.46: Twenty five samples from the same population give 95 percent confidence

intervals. In the long run, 95 percent of the intervals will contain the true population

proportion p, marked by the vertical line.

Thus, a 95 confidence interval for p is

0.31 ± 0.03 =⇒ (0.28, 0.34).

INTERPRETATION : Based on our sample, we are 95 percent confident that the true

proportion of childhood abuse victims among American HIV-positive women is between

0.28 and 0.34 (i.e., between 28 and 34 percent).

Example 18.2. Apple trees in a large orchard are sprayed in order to control moth

injuries to apples growing on the trees. A random sample of n = 1000 apples is taken

from the orchard, 150 of which are injured. Find a 95 percent confidence interval for p,

the true population proportion of injured apples in the orchard.
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Solution. The sample proportion of injured apples is

p̂ =
150

1000
= 0.15.

The value of z∗ = 1.96. The margin of error, m, is

m = z∗
√

p̂(1 − p̂)

n
= 1.96

√
0.15(1 − 0.15)

1000
≈ 0.02.

A 95 percent confidence interval for p, the population proportion of injured apples, is

0.15 ± 0.02 =⇒ (0.13, 0.17).

INTERPRETATION : Based on our sample, we are 95 percent confident that the true

proportion of injured apples in this orchard is between 0.13 and 0.17 (i.e., between 13

percent and 17 percent).

18.2.1 A closer look at the confidence interval form

CONFIDENCE INTERVAL FORM : Let’s look at the formula for a 95 percent confi-

dence interval for the population proportion p. This is given by

p̂ ± 1.96

√
p̂(1 − p̂)

n
.

The form of this interval is ubiquitous in statistical inference; in particular, note how the

interval is computed by taking

estimate ± margin of error.

Here, the margin of error is approximately equal to

m ≈ 2

√
p̂(1 − p̂)

n
.

INSIGHT : We know that

p̂ is always between 0 and 1 =⇒ p̂(1 − p̂) is always between 0 and 0.25

=⇒
√

p̂(1 − p̂) is always between 0 and 0.5

=⇒ 2
√

p̂(1 − p̂) is always between 0 and 1
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DISCOVERY : Using “1” as a conservative upper bound estimate for 2
√

p̂(1 − p̂) we get

m ≈ 2

√
p̂(1 − p̂)

n
≈

√
1

n
.

This should look familiar. This was our “quick formula” for the margin of error associated

with p̂ back in Chapter 3!!!

MOVING FORWARD : From now on, we can be more exact when we make confidence

statements regarding p and use

p̂ ± z∗
√

p̂(1 − p̂)

n
.

We no longer need to use the “quick formula” for margin of error as we did before.

Example 18.3. In a Phase III clinical trial involving n = 1200 subjects taking a new

medication for sleep deprivation, 30 of them experienced some form of nausea. Using this

sample information, find a 99 percent confidence interval for p, the population proportion

of patients who will experience nausea. Interpret the interval.

Solution. The value of the sample proportion of those experiencing nausea is

p̂ =
30

1200
= 0.025.

The value of z∗ = 2.58. The margin of error, m, is

m = z∗
√

p̂(1 − p̂)

n
= 2.58

√
0.025(1 − 0.025)

1200
≈ 0.012.

Thus, a 95 percent confidence interval for p is given by

0.025 ± 0.012 =⇒ (0.013, 0.037).

INTERPRETATION : Based on our sample, we are 99 percent confident that p, the true

proportion of subjects who will experience nausea from the medication, is between 0.013

and 0.037 (i.e., between 1.3 and 3.7 percent).

Exercise: Find a 90 percent confidence interval for p. What do you note about the

length of this interval when compared to the 99 percent interval?
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18.2.2 Choosing a sample size

CHOOSING A SAMPLE SIZE : Before one launches into a research investigation where

data are to be collected, inevitably one starts with the simple question:

“How many observations do I need?”

The answer almost always depends on the resources available (e.g., time, money, space,

etc.) and statistical issues like confidence and margin of error.

RESULT : To determine an appropriate sample size for estimating p with a level C

confidence interval, we need to specify the margin of error that we desire; i.e.,

m = z∗
√

p̂(1 − p̂)

n
.

We would like to solve this equation for n. However, note that m depends on p̂, which,

in turn, depends on n. This is a small problem, but we can overcome the problem by

replacing p̂ with p∗, a guess for the value of p. Doing this, the last expression becomes

m = z∗
√

p∗(1 − p∗)
n

,

and solving this equation for n, we get

n =

(
z∗

m

)2

p∗(1 − p∗).

This is the desired sample size to find a level C confidence interval for p with a prescribed

margin of error equal to m.

Example 18.4. In a Phase II clinical trial, it is posited that the proportion of patients

responding to a certain drug is p∗ = 0.4. To engage in a larger Phase III trial, the

researchers would like to know how many patients they should recruit into the study.

Their resulting 95 percent confidence interval for p, the true population proportion of

patients responding to the drug, should have a margin of error no greater than m = 0.03.
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What sample size do they need for the Phase III trial?

Solution. Here, we have m = 0.03, p∗ = 0.4, and z∗ = 1.96. The desired sample size is

n =

(
z∗

m

)2

p∗(1 − p∗)

=

(
1.96

0.03

)2

0.4(1 − 0.4) ≈ 1024.43.

Thus, their Phase III trial should recruit around 1025 patients.

Exercise: With the information from Example 18.4, determine the necessary sample

size for a 99 percent confidence interval (still take m = 0.03 and p∗ = 0.4). Is this larger

or smaller than that corresponding to 95 percent? Why?

CONSERVATIVE APPROACH : If there is no sensible guess for p available, use p∗ = 0.5.

In this situation, the resulting value for n will be as large as possible. Put another way,

using p∗ = 0.5 gives the most conservative solution (i.e., the largest sample size).

Example 18.5. To gauge the public’s opinion on the alleged “greenhouse effect” (i.e.,

the accumulation of CO2 in the atmosphere caused by burning fossil fuels like oil, coal,

and natural gas), a researcher would like to take a random sample of individuals. She

would like to write a 95 percent confidence interval for p, the population proportion of

individuals who believe the greenhouse effect is a serious problem. But, she would like

her margin of error to be no greater than 0.01. How many individuals does she need to

contact?

Solution. Here, we have m = 0.01, p∗ = 0.5 (no prior guess available), and z∗ = 1.96.

The desired sample size is

n =

(
z∗

m

)2

p∗(1 − p∗)

=

(
1.96

0.01

)2

0.5(1 − 0.5) = 9604.

Thus, she would need to contact 9,604 individuals!

Exercise: With the information from Example 18.5, determine the necessary sample

size for a 95 percent confidence interval with margin of error m = 0.05. Is this larger or

smaller than the sample size computed with m = 0.01?
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19 Confidence intervals for means

Complementary reading from Moore and Notz (MN): Chapter 21 (only pages 436-440).

19.1 Introduction

REVIEW : In the last chapter, we discussed sampling distributions and confidence inter-

vals for proportions. Proportions summarize categorical data. We found out that, in

certain instances, the sample proportion p̂ follows an approximate normal distribution.

We used this fact to construct confidence intervals for p, the population proportion.

For example, we might want to write a confidence interval for p, where p denotes

• the true proportion of SC voters supporting Mark Sanford

• the true proportion of Iowa cattle suffering from some disease

• the true proportion of Roger Federer’s successful first serves

• the true proportion of childhood abuse victims among American HIV+ women.

NOW : To summarize quantitative data, we use statistics like the sample mean, the

sample standard deviation, etc. These statistics have sampling distributions too, and

confidence intervals follow directly from these distributions. In this chapter, we pay

attention to the sampling distribution of the sample mean x. We will then use this

distribution to construct level C confidence intervals for the population mean µ. For

example, we might want to write a confidence interval for µ, where µ denotes

• the true mean GPA for all USC undergraduate pre-nursing students

• the true mean monthly income among all university professors

• the true mean yield in an agricultural experiment

• the true mean IQ among all South Carolina high school seniors.
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19.2 Sampling distribution of the sample mean x, CLT

FACTS : Choose an SRS of size n from a population in which individuals have mean µ

and standard deviation σ. Let x denote the sample mean. Then,

• The sampling distribution of x is approximately normal when the sample size

n is large.

• The mean of the sampling distribution is equal to µ; that is, x is an unbiased

estimator of µ.

• The standard deviation of the sampling distribution is σ/
√

n.

SUMMARIZING : Putting this all together, we have that

x ∼ AN
(

µ,
σ√
n

)
.

The symbol AN is read “approximately normal.” The preceding list of facts comes from

a very powerful result in theoretical statistics; this result is called the Central Limit

Theorem. Succinctly put, this theorem says that “averages are approximately normal.”

REMARK : Note that the precision with which x estimates µ improves as the sample

size increases. This is true because the standard deviation of x gets smaller as n gets

larger! Thus, the sample mean x is a very good estimate for the population mean µ; it

has the desirable properties that a statistic should have; namely, unbiasedness and the

potential to have small variability for large sample sizes.

Example 19.1. Animal scientists are interested in the proximate mechanisms animals

use to guide movements. The ultimate bases for movements are related to animal adap-

tations to different environments and the development of behaviors that bring them to

those environments. As part of a project, we are measuring the distance (in meters) that

a banner-tailed kangaroo rat moves from its birth site to the first territorial vacancy.

Suppose that the density curve for these distance measurements has mean µ = 10, has

standard deviation σ = 3.2, and is strongly skewed right; see Figure 19.47 (upper left).
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Figure 19.47: Upper left: Population distribution of distance traveled to first territorial

vacancy for banner-tailed kangaroo rats in Example 19.1; Upper right: Sampling distrib-

ution of x when n = 5; Lower left: Sampling distribution of x when n = 25; Lower right:

Sampling distribution of x when n = 100.

INVESTIGATION : Suppose that I take an SRS of n banner-tailed kangaroo rats and

record the distance traveled for each rat. How will the sample mean x behave in repeated

sampling (i.e., what is the sampling distribution of x)? To investigate this, we can use

a simulation study.

• Generate 10,000 samples, each of size n, from this density curve with mean µ = 10

and standard deviation σ = 3.2. These simulations are easy to do with a computer.

• Compute x, the sample mean, for each sample.

• Plot all 10,000 sample means in a histogram. This histogram approximates

the true sampling distribution of x.
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OBSERVATIONS : We first note that the density curve is heavily skewed right. How-

ever, from Figure 19.47, we note that

• the sampling distribution for x, when n = 5, is still skewed right, but it already is

taking a unimodal shape.

• the sampling distribution for x, when n = 25, is almost symmetric! Sharp eyes

might be able to detect a slight skew to the right.

• the sampling distribution for x, when n = 100, is nearly perfectly normal in shape!

What is going on here?

CENTRAL LIMIT THEOREM : Draw an SRS of size n from any density curve with

mean µ and standard deviation σ. When n is large, the sampling distribution of x is

approximately normal with mean µ and standard deviation σ/
√

n; that is,

x ∼ AN
(

µ,
σ√
n

)
.

The real novelty in this result is that the sample mean x will be approximately normal

for large sample sizes, even if the original density curve is not!

Example 19.2. For one specific cultivar of potatoes, Cherry Red, an experiment was

carried out using 40 plots of land. The plots were fairly identical in every way in terms

of soil composition, amount of precipitation, etc. The density curve associated with the

yields from last year’s harvest was estimated to have mean µ = 158.2 and standard

deviation σ = 14.9 (bushels/plot). Suppose that this year’s average yield (in the forty

plots) was only x = 155.8. Would you consider this to be necessarily unusual?

Solution. We can answer this question by computing the standardized value of our

observed sample mean x = 155.8. Using last year’s information, the standard deviation

of the sampling distribution of x is

σ√
n

=
14.9√

40
≈ 2.4.
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Figure 19.48: Sampling distribution of the sample mean x when n = 40. This histogram

represents the sampling distribution of x in Example 19.2. This sampling distribution

was generated using a computer.

From the Central Limit Theorem (CLT), we know that

x ∼ AN
(

µ,
σ√
n

)
i.e., x ∼ AN (158.2, 2.4) .

Thus, the standardized value of this year’s sample mean x = 155.8 is

z =
x − µ

σ/
√

n
=

155.8 − 158.2

2.4

= −1.0.

This sample has produced a result which is just one standard deviation below last year’s

mean µ = 158.2. Is this year’s results really all that unusual? See Figure 19.48.

• What does it mean for a sample result to be unusual?

• How can we find a level C confidence interval for the population mean µ?
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19.3 Confidence intervals for a population mean µ

MAIN RESULT : Choose an SRS of size n from a large population of individuals having

mean µ and standard deviation σ.

• The sample mean is x.

• The sample standard deviation is s.

• These are both statistics (estimates); they are computed from the sample data.

When n is reasonably large, a level C confidence interval for the population mean µ

is

x ± z∗
(

s√
n

)

︸ ︷︷ ︸
marg. err.

,

where z∗ is the critical value associated with the confidence level C. Popular critical

values (and confidence levels) are below (these are unchanged from before). Recall how

these critical values come from the standard normal distribution; see Figure 19.49.

C 80 90 95 99

z∗ 1.28 1.64 1.96 2.58

IMPORTANT NOTE : Note that the particular form of this confidence interval is

estimate ± margin of error.

Example 19.3. An education major would like to estimate the mean GPA for under-

graduate pre-nursing students at USC. An SRS of n = 20 students produced the following

grade-point average data:

3.8 3.5 3.6 3.4 3.2 3.4 2.8 3.6 3.4 2.7

3.2 3.5 3.9 3.3 3.8 2.9 3.4 3.0 3.8 3.8
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Figure 19.49: Critical values z∗ from the standard normal distribution.

MINITAB : I used Minitab (a statistics package) to calculate some summary statistics:

Variable N Mean StDev Min Q1 Median Q3 Max

GPA 20 3.4 0.4 2.7 3.2 3.4 3.7 3.9

Here, we have that n = 20 (sample size), x = 3.4 (sample mean), and s = 0.4 (sample

standard deviation). A 95 percent confidence interval for µ, the population mean GPA

is given by

x ± z∗
(

s√
n

)
=⇒ 3.4 ± 1.96

(
0.4√
20

)

=⇒ 3.4 ± 0.18

=⇒ (3.22, 3.58).

Thus, we are 95 percent confident that the true mean GPA for USC undergraduate

pre-nursing students is between 3.22 and 3.58.

Exercise: Using the data from Example 19.3, find an 80 percent confidence interval for

the mean GPA µ; also, find a 99 percent confidence interval. Interpret each interval!
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Solutions:

• 80 percent:

x ± z∗
(

s√
n

)
=⇒ 3.4 ± 1.28

(
0.4√
20

)

=⇒ 3.4 ± 0.11

=⇒ (3.29, 3.51).

We are 80 percent confident that the mean GPA for SC undergraduate pre-nursing

students is between 3.29 and 3.51.

• 99 percent:

x ± z∗
(

s√
n

)
=⇒ 3.4 ± 2.58

(
0.4√
20

)

=⇒ 3.4 ± 0.23

=⇒ (3.17, 3.63).

We are 99 percent confident that the mean GPA for SC undergraduate pre-nursing

students is between 3.17 and 3.63.

NOTE : The shortest interval is the 80 percent interval. The largest is the 99 percent

interval. The higher the confidence level, the larger the interval will be.

19.3.1 Interval length

CONFIDENCE INTERVAL LENGTH : The length of a level C confidence interval is

equal to twice the margin of error; i.e.,

length ≈ 2z∗
(

σ√
n

)
.

• As the confidence level increases, so does z∗ =⇒ interval length increases.

• For larger values of σ =⇒ interval length increases.

• As the sample size n increases =⇒ interval length decreases.
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19.3.2 Sample size determination

CHOOSING SAMPLE SIZE : Suppose that we would like to determine the sample size

necessary to estimate µ with a level C confidence interval. The margin of error asso-

ciated with the confidence interval is approximately equal to

m = z∗
(

σ√
n

)
.

This is an equation we can solve for n; in particular,

n =

(
z∗σ
m

)2

.

REALIZATION : If we specify our confidence level C, an estimate of the population

standard deviation σ (a guess, most likely), and a desired margin of error m that we are

willing to “live with,” we can find the sample size needed.

Example 19.4. In a biomedical experiment, we would like to estimate the mean re-

maining life of healthy rats (µ, measured in days) that are given a high dose of a toxic

substance. This may be done in an early phase clinical trial by researchers trying to find

a maximum tolerable dose for humans. Suppose that we would like to write a 99 percent

confidence interval for µ with a margin of error equal to m = 2 days. The researchers

have provided a guess of σ ≈ 8 days. How many rats should we use for the experiment?

Solution: With a confidence level of C = 99 percent, our value of z∗ is

z∗ = 2.58.

If the desired margin of error is m = 2 days, the sample size needed is

n =

(
2.58 × 8

2

)2

≈ 106.5.

That is, we would need n = 107 rats to achieve these goals.

CURIOSITY : If collecting 107 rats is not feasible, we might think about weakening our

requirements (after all, 99 percent confidence is very high, and the margin of error is

tight). Suppose that we used a 90 percent confidence level instead with margin of error
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m = 5 days. Then, the desired sample size would be

n =

(
1.64 × 8

5

)2

≈ 6.9.

This is an easier experiment to carry out now (we need only 7 rats). However, we have

paid a certain price: less confidence and less precision (in our confidence interval).

19.3.3 Warnings about confidence intervals

CAUTIONS : We need to be aware of some of the potential difficulties that arise when

computing/presenting confidence intervals for a population mean:

• Data that we use to construct a confidence interval should be (or should be close to)

a simple random sample. If the sampling design is biased, the results likely will

be as well. Poor data collection techniques inundated with nonsampling errors

will produce poor results too!

• Confidence interval formulas for µ are different if you use different probability

sampling designs (e.g., stratified samples, etc.). These would be presented in an

advanced course.

• Outliers almost always affect the analysis. You need to be careful in checking for

them and deciding what to do about them.

• When the sample size n is small, and when the population density curve is highly

nonnormal (as in Example 19.1), the confidence interval formula we use for µ is

probably a bad formula. This is true because the normal approximation to the

sampling distribution for x is probably a bad approximation. The text offers an

n ≥ 15 guideline for most population distributions. That is, if your sample size

is larger than or equal to 15, you’re probably fine. However, this is only a

guideline. If the underlying density curve is very skewed, this may or may not be

a good guideline (you might need the sample size n to be larger).

• Always plot your data to get an idea of skewness and outliers!
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