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Preface

Machine learning is a relatively young scientific discipline with the goal of achiev-
ing the capability of human decision making by learning from past experience. It
is an interdisciplinary field that requires knowledge from statistics, optimization,
engineering, and many innovations in computing. In the past few decades, we have
seen a rapid development of empirically successful machine learning algorithms,
to the degree that machine learning has become an indispensable technology to
solve many challenging problems in the modern society. In the mean time, the
mathematical theory of machine learning has been developed by researchers in
computer science, statistics, optimization, and engineering, who are interested in
establishing a rigorous mathematical foundation that not only can explain the
current algorithms, but also can motivate principled approaches for the future.
However, many of the existing theoretical results are scattered in the literature.
While there are a number of introductory books and survey articles that have
tried to cover some of these theoretical results, there isn’t any in-depth text book
that is able to provide a comprehensive introduction to standard mathematical
tools that have been developed in the literature.

The goal of this book is to present a systematic treatment of the main math-
ematical techniques that are commonly used to analyze machine learning al-
gorithms in the current literature. Due to the space limitation, the book itself
does not explain various machine learning algorithms and their application back-
grounds in details. Therefore it is assumed that readers of the book are already
familiar with standard machine learning algorithms such as support vector ma-
chines, decision trees, boosting, neural networks etc. The readers of the book
should also have the basic mathematical knowledge of calculus, linear algebra,
and probability, as well as sufficient mathematical maturity to follow rigorous the-
oretical proofs. For such readers, the main purpose of this book is to introduce
the modern mathematical techniques that are commonly used to analyze these
machine learning algorithms. The selected material is at a level that can provide
the readers sufficient technical background and knowledge to read research papers
in theoretical machine learning without much difficulty.

The topics selected in the book are intended to cover the most useful and com-
monly encountered mathematical tools and results at the current research level.
Some more specialized topics (such as active learning, semisupervised learning,
loss function consistency, differential privacy, to name a few) are omitted, but
readers who have learned the technical tools presented in the book should have

ix



CHAPTER 0. PREFACE X

no difficulty following current research on these topics. The book can be used for
a graduate level course on theoretical machine learning, and it can also serve as
a reference for researchers working on theoretical machine learning. While the
most fundamental concepts are illustrated in sufficient depth, some other top-
ics of current interests are covered with less details. Due to the large number
of topics, some presentations are relatively concise, and some other topics are
presented with a level of abstraction which targets for the unification of different
special cases that have appeared in the literature. Such abstraction and the con-
cise presentation might lead to some difficulty at a first reading. To alleviate the
difficulty, many examples are included to provide concrete interpretations and
appropriate context of the theoretical results. Historical remarks are included to
give the original sources of the topics covered in the book, as well as extra reading
material for readers who are interested in deeper understanding. The exercises
provided at the end of each chapter can help the readers to check their mastery
of the main concepts. Most exercises require good knowledge of the material, but
not difficult. Moreover, some of the exercises are designed to provide additional
information for topics related but not directly covered in the main text.

The book contains two main parts. The first part, from Chapter 1 to Chapter
12, covers the analysis of supervised learning algorithms in the iid setting. It starts
with the standard exponential tail inequalities for sums of independent variables,
and then spends several chapters to develop the technical tools for uniform con-
vergence, which is the main mathematical machinery to analyze machine learning
algorithms. Key results are established using the classical concepts such as cov-
ering numbers, VC dimension, and Rademacher complexity. The first part of the
book also covers the more recently emerged technique of stability analysis, which
can handle specific learning procedures such as stochastic gradient descent. As
applications of these basic mathematical tools, analysis of several commonly used
machine learning models including kernel methods, additive models, and neural
networks have also been presented in varying degrees of details. Finally, the first
part concludes with standard lower bound analysis in Chapter 12, which covers
the commonly used techniques such as Fano’s inequality and Assouad’s lemma.
Examples on least squares regression and density estimation are also provided.

The second part of the book, starting from Chapter 13, covers the analysis of
sequential statistical estimation problems, including online learning, bandit prob-
lems, and reinforcement learning. It starts with a generalization of the exponential
tail inequalities and uniform convergence analysis from iid random variables to
martingales in the sequential setting. It then describes specific algorithms and
their analysis in the subsequent chapters in online learning, bandits, and rein-
forcement learning. Both upper bounds and lower bounds are provided.

The book contains sufficient material for a two-semester graduate level course,
one for each part of the book. It can also be used for a one-semester course
that covers part of the book. The author has taught graduate courses at the
Hong Kong University of Science and Technology based on the content of the
book. Students taking the courses have already learned basic machine learning
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x1

algorithms, and want to further study the mathematical tools to analyze these
algorithms.

For a one-semester class on the mathematical foundation of machine learning,
the following selected materials can be considered: Section 2.1-2.6 on exponential
inequalities, Chapter 3 on uniform convergence, Section 4.1-4.4 on VC theory,
Section 5.1-5.2 on covering numbers, Section 6.1-6.4 on Rademacher complex-
ity (covering only the standard Rademacher complexity, while leaving the offset
Rademacher complexity as reading material), Section 8.1-8.3 on model selection,
Section 9.1-9.3 on kernel methods, Section 10.1-10.3 on additive models, Section
11.3, 11.4, 11.6, 11.7 on neural networks, Section 12.3 and 12.4 on lower bounds,
Section 13.1 and 13.3 on martingales, Section 14.1-14.4 on online learning, Sec-
tion 16.1, 16.2, 16.6 on bandits, Section 17.1, 17.3, 17.4 on contextual bandits,
and Section 18.1-18.3 on reinforcement learning. Lecture slides on these topics
are available on the author’s website.

The author would like to thank students who read early drafts of the book, and
provided useful suggestions. In particular, Chutian Huang, Yujia Jin, Yong Lin,
Zhefeng Qiao, Yifei Shen, Wei Xiong, Mengyue Zha provided feedbacks on parts
of the book. I'd also like to thank the editorial staffs at Cambridge university
press, Johnathan Fuentes and Katie Leach for their helps and suggestions on the
writing of the book. Finally I want to thank my wife Yue for her tremendous
support on this undertaking, which has made the writing of the book possible.

Hong Kong Tong Zhang
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1

Introduction

The goal of mathematical analysis of machine learning algorithms is to study
the statistical and computational behaviors of methods that are commonly used
in machine learning, and to understand their theoretical properties such as the
statistical rate of convergence (usually deriving upper bounds for specific algo-
rithms), the optimality of a statistical method (whether the derived statistical
upper bound matches the information theoretical lower bound), and the compu-
tational efficiency for various learning models under different assumptions.

This book mainly focuses on the analysis of two common learning models:
supervised learning and sequential decision making problems.

In supervised learning, we train a machine learning model using training data,
and then evaluate the model’s prediction performance on unseen test data. In
this case, we want to investigate the performance of this model on test data.

A mathematical theory for supervised learning answers the following basic
questions, where we take the linear model as an example.

e Suppose that we learn a d-dimensional linear classifier with n training data by
minimizing the training error. Assume that the training error is 10%. What
is the classifier’s test error on the (unseen) test data? The test error in this
setting is also referred to as generalization error because it is not observed.

e Can we learn a linear classifier that has test error nearly as small as the optimal
linear classifier?

e Can we find a computationally efficient procedure to find a linear classifier with
small test error?

The online learning model is an example of sequential decision making prob-
lems. In online learning, we are interested in the sequential prediction problem,
where we train a statistical model using historic data, and then test it on the
data in the next time step. We then observe the true outcome after prediction.
This process is repeated in a sequential manner. The problem itself is motivated
from time series analysis and forecasting problems. We want to know the ability
of a learning algorithm to predict future events based on historic observations.

A mathematical theory for online learning needs to answer the following basic
questions, where we again take the linear model as an example.

e In the online sequential prediction setting. Given a time step ¢, can we construct

1



CHAPTER 1. INTRODUCTION 2

an online learning algorithm that predicts nearly as well as the optimal linear
classifier up to time step t7

This course develops the mathematical tools that can be used to answer the
above questions.

1.1 Standard Model for Supervised Learning

In supervised learning, we observe an input random variable (feature vector)
X € R? that represents the known information, and output variable (label) Y
that represents the unknown information which we want to predict. The goal is
to predict Y based on X.

As an example, we may want to predict whether an image (represented as input
vector X)) contains a cat or a dog (label Y).

In practice, the set of prediction rules are derived by parametrized functions
flw,-) : RY — R* where w € Q is the model parameter that can be learned
on the training data. As an example, for k-class classification problem, where
Y € {1,...,k}, we predict Y using the following prediction rule given function

fw,z) =[fi(w,z),..., fu(w,z)] € R":

q(x) = arg 56?11%%1@} fo(w, ).

The prediction quality is measured by a loss function L(f(z),y): the smaller
the loss, the better the prediction accuracy.

The supervised learning approach is to estimate w € {2 based on observed
(labeled) historical data S, = [(X1,Y1), ..., (X, Ya)].

A supervised learning algorithm A takes a set of training data S, as input, and
outputs a function f(w,-), where w = A(S,,) € Q. The most common algorithm,
which we will focus on in this course, is empirical risk minimization (ERM):

W= argmig L(f(w, X;),Y:). (1.1)
we
=1
In the standard theoretical model for analyzing supervised learning problems,
we assume that the training data {(X;,Y;) : ¢ = 1,...,n} are iid (independent
and identically distributed) according to an unknown underlying distribution D.

The loss of a classifier f(z) = f(i,z) on the training data is the training error
1 n
training-loss() = — S L(f (i, X), Yi).
raining-loss(w) n 2 (f(w, X;),Y;)

Moreover, we assume that the test data (X,Y) (future unseen data) are also
taken from the same distribution D, and we are interested in knowing the gener-
alization error of f on the test data, defined as:

test-loss(w) = Ex,y)~pL(f(w, X),Y).

Since we only observe the training error of f = f(w,-), a major goal is to

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
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1.2. ONLINE LEARNING AND SEQUENTIAL DECISION MAKING 3

estimate the test error (i.e., generalization error) of f based on its training error,
referred to as generalization bound, which is of the following form. Given € > 0,
we we want to determine 6, (€) so that:

Pr (E(X,Y)NDL(f(w,X),Y) > ;;L(f(ﬁ},Xz),Y;) + 6) < 5”(6)7

where the probability is with respect to the randomness over the training data
S,.. In general, §,,(¢) — 0 as n — oo.

In the literature, the above result is often stated in the following alternative
form, where we want to determine a function €,(d) of 4, so that with probability
at least 1 — & (over the random sampling of the training data S,,):

B o[, X)) £ LS 0@ X))+ el (12)

We want to show that €,(d) — 0 as n — oc.

Another type of inequalities, often referred to as oracle inequalities, is to show
that with probability at least 1 — § (over the random sampling of training data
Sn):

E(X,y)NDL(f(’lf), X), Y) < 1})161% E(X7y)NDL(f(U), X), Y) + Gn(é) (13)

This shows that the test error achieved by the learning algorithm is nearly as
small as that of the optimal test error achieved by f(w,z) with w € Q. We say
the learning algorithm is consistent if €,(d) — 0 as n — 0. Moreover, the rate of
convergence refers to the rate of €,(d) converging to zero when n — co.

Chapter [2| and Chapter [3| establish the basis mathematical tools in empirical
processes for analyzing supervised learning. Chapter [4, Chapter [p] and Chapter [6]
further develop the techniques. Chapter [7] considers a different analysis which di-
rectly controls the complexity of a learning algorithm using stability. This analysis
is gaining popularity due to its ability to work directly with algorithmic proce-
dures such as SGD. Chapter [§] introduces some standard techniques for model
selection in the supervised learning setting. Chapter [9] analyzes the kernel meth-
ods. Chapter [10] analyzes additive models with a focus on sparsity and boosting.
Chapter investigates the analysis of neural networks. Chapter discusses
some common techniques and results for establishing statistical lower bounds.

1.2 Online Learning and Sequential Decision Making

In online learning, we consider observing (X;,Y;) one by one in a time sequence
from t = 1,2,.... An online algorithm A learns a model parameter w; at time ¢
based on previously observed data (X1,Y:),..., (X, Y:):

wy = A{(X1, Y1), .., (X, V) }).

We then observe the next input vector X, 1, and make prediction f(wy, X;;1). Af-
ter the prediction, we observe Y, 1, and then compute the loss L( f(w;, X¢11), Yii1).

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
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CHAPTER 1. INTRODUCTION 4

The goal of online learning is to minimize the aggregated loss
T-1
L(f(wtv XtJrl)v Kerl)'
t=0
In the mathematical analysis of online learning algorithms, we are interested
in the following inequality, referred to as regret bound, where the aggregated loss
of an online algorithm is compared to the optimal aggregated loss:

T-1 -1
L(f (4, Xi41), Vi) < UlJIelg Z L(f(w, Xiy1), Yig1) + €r (1.4)
t=0 t=0

The regret e, is the extra loss suffered by the learning algorithm, compared to
that of the optimal model at time T in retrospect.

As an example, we consider the stock price prediction problem, where the
opening price of a certain stock at each trading day is pi, pa, . ... At the beginning
of each day t, we observe py, ..., p;, and want to predict p,,; on day t+ 1, so that
we use this prediction to trade the stock.

The input X,,; is a d-dimensional real valued vector in R? that represents
the observed historical information of the stock on day t. The output Y,,; =
In(p;11/p:) will be observed on day ¢+ 1. We consider linear model with f(w,z) =

w'x, with Q = R%. The quality is measured by the least squares error

L(f(w, Xi41), Yirr) = (f (0, Xey1) = Yern)*.

The learning algorithm can be empirical risk minimization, where

t

1
W, = arg min — Z(wTXi —Y;)%

Rd
we i=1

In regret analysis, we compare the prediction error

T—1
D@ Xy = Yiga)?
t=0

to the optimal prediction

T-1
inf ('LUTXt_;,_l - th+1)2.
wek? 43

Martingale inequalities used in the analysis of sequential decision problems
will be introduced in Chapter The online learning model will be studied in
Chapter and Chapter The related bandit problem will be investigated in
Chapter [16| and Chapter In the bandit problem, we investigate online prob-
lems with incomplete information, where Y; is only partially revealed based on
actions of the learning algorithm. The goal is to take an optimal sequence of
actions to maximize rewards (or minimize loss). Finally in Chapter we will
introduce some basic techniques to analyze reinforcement learning. The reinforce-
ment learning model can be considered as a generalization of the bandit model,

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
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1.3. COMPUTATIONAL CONSIDERATION 5

where at each time step (epoch), multiple actions are taken to interact with the
environment. This is still an actively developing field, with major theoretical ad-
vances appearing in recent years. We will only cover some basic results that are
most closely related to the analysis of bandit problems.

1.3 Computational Consideration

In the ERM method, the model parameter w is the solution of an optimization
problem. If the optimization problem is convex, then the solution can be efficiently
computed. If the optimization problem is non-convex, then its solution may not
be obtained easily.

Theoretically, we separately consider two different types of complexity. One is
statistical complexity, where we may ignore the complexity of computation, and
try to derive bounds and even though the computational complexity
of the underlying learning algorithm (such as ERM) may be high.

However, in practice an important consideration is computational complexity,
where we are interested in computationally efficient algorithms with good gen-
eralization performance or regret bounds. For non-convex models, this kind of
analysis can be rather complexity, and usually require problem specific analysis
that are not generally applicable.

A generally studied approach to nonconvex problem is to use convex approxi-
mation (also referred to convex relaxation) to solve the non-convex problem ap-
proximately. The related theoretical question is that under what circumstances,
the solution has statistical generalization performance comparable to that of the
non-convex methods. An example is the sparse learning problem, where the con-
vex formulation with L; regularization is used as a proxy to the non-convex L
regularization. In this case, we are interested in establishing the condition under
which one can obtain a solution from L, regularization that is close to the true
sparse model.

The combined analysis of computational and statistical complexity is a major
research direction in theoretical machine learning. This book mainly covers the
statistical analysis aspect. Nevertheless, the computational complexity will also
be considered when practical algorithms are investigated.

1.4 Basic Concepts in Generalization Analysis

The goal of machine learning is to find a function f(w,x) that predicts well on
unseen data (test data). However, we only observe the prediction accuracy of
f(w,x) on the training data. In order to achieve high prediction accuracy, we
need to balance the following two aspects of learning:

e The prediction function should fit the training data well; that is, to achieve
small training error. This requires a more expressive model, with a larger pa-
rameter space €.

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
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CHAPTER 1. INTRODUCTION 6

high bias low bias_
low variance high variance
test error

error

training error

model complexity

Figure 1.1 Training and test errors versus model complexity

e Performance of prediction function on the test data should match that on
the training data. The difference is smaller for a less expressive model with a
smaller parameter space €.

The gap between the training error and test error depends on the model com-
plexity, which characterizes how large the model parameter space €2 is. When {2 is
too large, the training error becomes smaller, but the difference between training
error and test error increases. Therefore in practice there is a trade-off in machine
learning, and the best prediction performance is achieved with the right balance,
often via a tuning parameter in the learning algorithm that characterizes model
complexity. The phenomenon is described in Figure Such a tuning process is
often referred to as hyperparameter optimization.

When the class of prediction functions is too large (or complex), then the
difference between training error and test error increases. This leads to so-called
overfitting phenomenon. A simple example for overfitting can be described as
follows. Let X be a one-dimensional feature uniformly distributed in [—1, 1], with
class label Y =1 when X > 0 and Y = —1 when X < 0. The optimal classifier
can achieve a test error of 0.

Given training data (X;,Y;) (: =1,...,n), and assume X, are all different. If
we consider a prediction function class that contains all possible functions, then
the empirical risk minimization method with the following solution can fit data
perfectly:

Y, if X =X, for some ¢
(X) = .
1 otherwise

The above model class has a high model complexity measured by its covering
number which we will study in the book. However, the resulting ERM prediction
rule does not make any meaningful prediction when X is not in the training data.
This is because although the training error of 0 is small, it is significantly different
from the test error of 0.5.

In contrast, if we let the prediction model contain only one function {f(z) :
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1.5. HISTORICAL AND BIBLIOGRAPHICAL REMARKS 7

f(z) = 0}, then using the tail inequality of independent random variables of
Chapter [2, we know that the difference between the training error and the test
error will be small when n is large. However, since the training error of ~ 0.5 is
large, the test error is also large.

Let 1(xz € A) be the set indicator function that takes value 1 if x € A, and 0 if
x ¢ A. Assume that we pick the model function class { f(w,z) : f(w,z) = 21(x >
w) — 1} parametrized by a parameter w € R. Assume also that we find a classifier
f(, z) that minimizes the training error. Using techniques in Chapter [3] it can
be shown that both training error and test error of this classifier converge to zero
when n — oco. This model class balances the training error and generalization
performance. In summary, a key technique of the mathematical theory for ma-
chine learning is to estimate the generalization performance (prediction accuracy
on unseen data) of learning algorithms, and quantify the degree of overfitting.

Finally it is worth pointing out that the mathematical theory developed for
limiting model size and preventing overfitting is the key classical technique to
obtain good generalization results in machine learning. However, in recent years,
this classical view point has evolved due to the empirical observation in modern
neural network models that large models nearly always perform better. For such
models, one observes the so-called benign overfitting phenomenon, where learning
algorithms with appropriate implicit bias can still achieve good test performance
even if the resulting model completely overfits the noise. This is an active research
area that is still developing rapidly. Consequently the related theoretical results
are less mature. We will thus only discuss some theoretical intuitions behind this
phenomenon in Section but dedicate the main parts of the book to the
classical learning theory.

1.5 Historical and Bibliographical Remarks

Machine learning is now considered as the key technology for artificial intelligence
(AI), which has the goal of creating computing machines that can mimic the
problem solving skills of a human (McCarthy et al. 2006). In recent years,
machine learning has become an important scientific research field on its own, and
has many applications that have made significant impact in our modern society.
The term “machine learning” has often been attributed to [Samuel (1959), who
defined it as the “field of study that gives computers the ability to learn without
being explicitly programmed”.

There are two approaches to machine learning (AI), one is to use statistical
methods to learn functions from data and past experience, in order to predict fu-
ture events. This is the approach considered in this book. An alternative approach
to Al is symbolic reasoning, which creates a knowledge base, and then use logic to
create rules that can perform inference (Haugeland) [1989)). The latter approach
explicitly incorporates human knowledge into computer programs, without the
need for direct learning from past experiences. Although the symbolic approach
showed some promise in the early decades of Al research (Studer et all |1998),

it has major limitations in dealing with uncertainty in real world applications.
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CHAPTER 1. INTRODUCTION 8

For complex problems, the symbolic rules needed to handle difficult situations
are often too complex to build and maintain. For this reason, the modern appli-
cations of machine learning heavily relied on the statistical approach, although
the hybrid of statistical based machine learning and symbolic Al is still an active
research direction.

The mathematical foundation of machine learning has its origin in probability
and theoretical statistics. In particular, the theory of empirical processes has been
used to analyze the generalization performance of machine learning algorithms.
The first part of the book will describe the basic tools of empirical processes
that are commonly used in machine learning. Learning in the sequential decision
setting is a different paradigm for theoretical analysis, and the key quantity of
interests, regret bound, has its origin in theoretical computer science. The tech-
niques used in the analysis is also closely related to stochastic optimization and
stochastic processes. Both computational and statistical aspects are considered in
some of the procedures while only the statistical aspects are considered for others.
The second part of the book will describe the mathematical tools for analyzing
learning problems in the sequential decision setting.
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2

Basic Probability Inequalities for Sums of
Independent Random Variables

In machine learning, the observations contain uncertainty, and to incorporate un-
certainty, these observations are modeled as random variables. When we observe
many data, a basic quantity of interest is the empirical mean of the observed
random variables, which converges to the expectation according to the law of
large numbers. We want to upper bound the probability of the event when the
empirical mean deviates significantly from the expectation, which is referred to as
the tail probability. This chapter studies the basic mathematical tools to estimate
tail probabilities by using exponential moment estimates.

Let Xi,..., X, be n real-valued independent and identically distributed (iid)
random variables, with expectation u = EX;. Let

3 1 n
> (2.1)

Given € > 0, we are interested in estimating the following tail probabilities:

Pr<Xn Z H + 6)
Pr(X, < p—e).

In machine learning, we can regard X,, as the training error observed on the
training data. The unknown mean p is the test error which we want to infer from
the training error. Therefore in machine learning, these tail inequalities can be
interpreted as follows: with high probability, the test error is close to the training
error. Such results will be used to derive rigorous statements of generalization
error bounds in subsequent chapters.

2.1 Normal Random Variable

The general form of tail inequality for the sum of random variables (with relatively
light tails) is exponential in €?. To motivate this general form, we will consider
the case of normal random variables. The bounds can be obtained using simple
calculus.

Theorem 2.1. Let Xi,..., X, ben iid Gaussian random variables X; ~ N (p, a?),
and let X,, =n~'>." | X;. Then given any € > 0:

0.5¢ " (FT/ VT2 < Pr(X, > put€) < 05672

9
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Proof We first consider a standard normal random variable X ~ N (0, 1), which
has probability density function

Given € > 0, we can upper bound the tail probability Pr(X > €) as follows.

< 1 2
Pr(X >¢) = ——e " dx
- e V2
_/OO 1
~Jo V2

—0.5¢</2,

(oo}
2 ]_ 2 2
@ /2, < / ~@*+e)/24
€ X € X
~Jo V27

We also have the following lower bound:
<1

e V2T
Pl o
> — e @2y

_/0 V21

1
>/ 1 e~ 2= 2+ /2 00 > (). 34— (2e+€7)/2
- 0 2 N

Pr(X >¢) = e " 2 dy

>0.5¢(HD*/2,
Therefore we have
0.5¢~(tD*/2 < Pr(X >€) < 0.5¢ /2.
Since /n(X,, — u)/o ~ N(0,1), by using
Pr(X, > pi+ €) = Pr(va(X, — p)/o > v/ne/o),
we obtain the desired result. O

We note that the tail probability of a normal random variable decays exponen-
tially fast, and such an inequality is referred to as an exponential inequality. This
exponential bound is asymptotically tight as n — oo in the following sense. For
any € > 0, we have

62

1 _

nh—>Holo - InPr(| X, —ul >e¢) = ~557"
Such a result is also called a large deviation result, which is the regime when
the deviation € of the empirical mean from the true mean p is much larger than
the standard deviation o/y/n of X,, (Deuschel and Stroock, 2001). The analysis
of normal random variable can rely on standard calculus. For general random
variables with exponentially decaying tail probabilities, we can use the technique
of exponential moment to derive similar results. This leads to a general technique
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2.2. MARKOV’S INEQUALITY 11

to estimate the probability of large deviation of the empirical mean from the true
mean.

2.2 Markov’s Inequality

A standard technique to estimate the tail inequality of a random variable is
the Markov inequality. Let Xi,..., X, be n real-valued iid random variables
(that are not necessarily normal random variables) with mean u. Let X,, be the
empirical mean defined in , we are interested in estimating the tail bound
Pr(X, >y +¢), and Markov’s inequality states as follows.

Theorem 2.2 (Markov’s Inequality). Given any non-negative function h(zx) > 0,
and a set S C R, we have

o E h(X.)
< .
Pr(X, € §) < il h(2)

Proof Since h(z) is non-negative, we have
E h(X,) > Ex, es M(X,) > Ex, cg hs = Pr(X,, € S) hs,
where hg = inf,cg h(x). This leads to the desired bound. O]

In particular, we may consider the choice of h(z) = 22, which leads to Cheby-
shev’s inequality stated as below.

Corollary 2.3 (Chebyshev’s Inequality). We have

_ X
Pr(X, - ul > ) < YD), (2.2)
ne

Proof Let h(x) = x*, then
_ _ 1
Eh(X, —p) =E(X, —u)? = EVar(Xl).

The desired bound follows from the Markov inequality with S = {|X,, — u| >
€}. O

Note that Chebyshev’s inequality employs h(z) = 22, which leads to a tail
inequality that is polynomial in n~! and e. It only requires that the variance
of a random variable is bounded. In comparison, the Gaussian tail inequality
has a much faster exponential decay. Exponential tail inequality is important for
analyzing learning algorithms. In the following, we show that such an inequality
can be established for sums of random variables with exponentially decaying tail
probabilities.

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. (©)2021-2023 Tong Zhang



CHAPTER 2. BASIC PROBABILITY INEQUALITIES 12

2.3 Exponential Tail Inequality

Anz

In order to obtain exponential tail bounds, we will need to choose h(z) = e*"* in
Markov’s inequality with some tuning parameter A € R. Similar to Chebyshev’s
inequality, which requires that the variance of a random variable is bounded, we
assume that the exponential moment Ee**t < oo for some A # 0. This requires
that the random variable X; has tail probability that decays exponentially fast.
The following definition is helpful in the analysis.

Definition 2.4. Given a random variable X, we may define its logarithmic mo-
ment generating function as

Ax(\) = InEe*¥.
Moreover, given z € R, the rate function Ix(z) is defined as

supso Az — Ax(V] 2> p
—[X (Z) = 0 Z=U
supyoo Az — Ax (V)] 2 < 1,

where p = E[X].

The above definition can be used to obtain exponential tail bounds for sums
of independent variables as follows.

Theorem 2.5. For any n and € > 0:
1 _
— > < — =1 — AX1
nlnPr(Xn_,u—i—e)_ Iv,(n+e) /1\1;%[ AMp+ €) + InEe* ],
1 v . AX
—InPr(X, <p—¢€) <—Ix(n—c¢) = /1\111(?) [A(p—€) + InEe* ] .
n <

Proof We choose h(z) = *"* in Theorem 2.2 with S = {X,, —u > €}. For A > 0,
we have

]EeA"X" Ee)\ ZZL:1 X;

Pr(Xn > 2 =+ 6) Sekn(u-‘rf) - eAn(ute)

EH?:1 e “n(ute AX 1P
:7€An(u+e) = e (/‘ ) []Ee 1] .

The last equation used the independence of X; as well as they are identically
distributed. Therefore by taking logarithm, we obtain

InPr(X, >p+e) <n[-Ap+e +InEe].

Taking inf over A > 0 on the right hand side, we obtain the first desired bound.
Similarly, we can obtain the second bound. O

The first inequality of Theorem [2.5] can be rewritten as
Pr(X, > p+e€) < exp[—nlx, (pu + €)].
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2.3. EXPONENTIAL TAIL INEQUALITY 13

It shows that the tail probability of the empirical mean decays exponentially fast,
if the rate function I, () is finite. More concrete exponential tail inequalities can
be obtained by applying Theorem to specific random variables. For example,
for Gaussian random variables, we can derive a tail inequality using Theorem [2.5
and compare to that of Theorem

Example 2.6 (Gaussian Random Variable). Assume that X; ~ N(u,0?), then
the exponential moment is

EerMX1—#) :/00 2le>\ac€—ac2/2<72dx
—00 o

< 1
:/ e)\202/26—(w/0—)\0)2/2dx/0_ — €A202/2.
—co V2T

Therefore,

Ao €2
I = e — InEeANF1—0) | = Ae — =—
x (1 +€) ili%[ € —InEe } Sup | A€ — 52"

where the optimal \ is achieved at A\ = €/0?. Therefore

2
Pr(X, > p+e¢) <exp[—nlx, (u+¢€)] = exp [ 2nz } .
o

This leads to the same probability bound as that of Theorem 2.1 up to a constant
factor.

The Gaussian example above, together with Theorem implies that the
exponential inequality derived from Theorem is asymptotically tight. This
result can be generalized to the large deviation inequality for general random
variables. In particular, we have the following theorem.

Theorem 2.7. For all € > € > 0:
1 _
himn—woi In Pr(XTL >+ 6) > _IX1 (M =+ 6/)'
n
Similarly,

1 _
lim,, o~ IPr(X, < p—e) 2 —Lx,(n—¢€).

Proof We only need to prove the first inequality. Consider Pr(X; < z) as a
function of x, and define a random variable X with density at z as

dPr(X! < z) =M *aWNgPr(X; < 2).
This choice implies that

d _ JxerdPr(X, < z)

JAXI()‘) - [erdPr(X, <)
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CHAPTER 2. BASIC PROBABILITY INEQUALITIES 14

We now take A such that
A = argmax [N+ €) — Ax, (V)]

By setting the derivative to zero, we obtain

I d !
EX{XI - ﬁAxl ()‘) =p+e, (23)
—Mu+€)+AN) = —I(p+€). (2.4)

Let X/ = n~t3>"  X/. Then by the law of large numbers, we know that for
€’ > €/, we obtain from (2.3

lim Pr(X! —p € [e,€"]) = 1. (2.5)
n—oQ
Since the joint density of (X7,..., X)) satisfies
e AR mtnrha W TTdPr(X] < a;) = [[dPr(X; < ), (2.6)

by using 1(-) to denote the set indicator function, we obtain

Pr(X, > p+e€) >Pr(X, — pu € [¢€"])

x, WX — € [e,€"])

" efAnX;+nA(A)]]_(X7/L —ue [6, 6//])
26_/\”(“+6//)+"A(>\) PI"(X% e [6,6”]).

The first equality used the definition of Pr(-). The second equality used . The

last inequality used Markov’s inequality. Now by taking logarithm, and divide by
n, we obtain

%lnPr(Xn > i+ e) (2.7)
1 _
2 = Ap+€) + AQ) + ~ InPr(X;, — p€ [e, "))
1 _
=—I(p+ée)— N =€)+ - InPr(X, — p € [e,€"]), (2.8)

The equality used (2.4)). Now we obtain the desired bound by letting n — oo,
applying (2.5)), and letting €’ — € so that A(¢” — €') — 0 (this is true because A
depends only on €'). O

The combination of Theorem [2.5] and Theorem [2.7] shows that the large devia-
tion tail probability is determined by the rate function. This result is referred to
as Cramér’s theorem (Cramér, |1938} Deuschel and Stroock, 2001).

For specific cases, one can obtain an estimate of Pr(X! —u € [, €"]) in with
finite n at € = e+ 2y/Var(X;)/n and ¢’ = e+4/Var(X;)/n. Using Chebyshev’s
inequality, we expect that Pr(X/ — u € [e,€"]) is lower bounded by a constant.
This means that as n — oo, the exponential tail inequality of Theorem is gen-
erally loose by no more than O(y/Var(X;)/n) in terms of deviation €. A concrete
calculation will be presented for bounded random variables in Section [2.5
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2.3. EXPONENTIAL TAIL INEQUALITY 15

Before we investigate concrete examples of random variables, we state the fol-
lowing property of the logarithmic generating function of a random variable,
which provides intuitions on its behavior. The proof is left as an exercise.

Proposition 2.8. Given a random variable with finite variance. We have:

dAx(\ PAx (N
Ax(V)| =0, ;‘A() — E[X], dAXQ() = Var[X].
A=0 A=0

In the application of large deviation bounds, we are mostly interested in the
case that deviation e is close to zero. As shown in Example the optimal A we
shall choose is A = O(¢) ~ 0. It is thus natural to consider the Taylor expansion
of the logarithmic moment generating function around A = 0. Proposition [2.8
implies that the leading terms of the Taylor expansion are:

2

Ax(N) = A+ %Var[X] +0(N\?),

where p = E[X]. The first two terms match that of the normal random variable
in Example When € > 0 is small, then to obtain the rate function

)\2
Ix(p+€) =sup |Mp+e) — A — 5 Var[X] — o(A\) |,

A>0 2
we should set the optimal A approximately as A ~ ¢/Var[X], and the correspond-
ing rate function becomes

62

2Var[X] +o(e”).

Ix(p+e) =

For specific forms of logarithmic moment generation functions, one may obtain
more precise bounds of the rate function. In particular, the following general esti-
mate is useful in many applications. This estimate is what we will use throughout
the chapter.

Lemma 2.9. Consider a random wvariable X so that E[X] = p. Assume that
there exists o > 0 and 8 > 0 such that for A\ € [0,871):

Ax(\) < A+ M, (2.9)

then for e > 0:
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CHAPTER 2. BASIC PROBABILITY INEQUALITIES 16

Proof Note that

a?
_ <inf |— AN
Ix(p+e) < inf Mp+€) + A+ 20— BN
We can take A at A = ¢/(a + Be). This implies that a)/(1 — S)\) = e. Therefore
a\? Ae €

TS A TN T T T Taa

Moreover, with the same choice of A, we have

B 2) < < B > a\? €
-1 —e’ ) <— 1+ — —_——— = —.
X(,u—i-e~|—2ae < —Xe +2a6 +2(1—5)\) %0

This proves the second desired bound. O
Lemma [2.9] implies the following generic theorem.

Theorem 2.10. If X, has a logarithmic moment generating function that satis-

fies (2.9) for A >0, then all € > 0:

Pr(X, > p+e) <exp [2(;1656)] )

Moreover, fort >0, we have
- [2at t
Pr (Xn > u+ a+5> <et.
n n

Proof The first inequality of the theorem follows from the first inequality of
Lemma [2.9) and Theorem The second inequality of the theorem follows from
the second inequality of Lemma and Theorem ﬁ with € = y/2at/n. O

2.4 Sub-Gaussian Random Variable

The logarithmic moment generating function of a normal random variable is
quadratic in A. More generally, we may define a sub-Gaussian random variable as
a random variable with logarithmic moment generating function dominated by
a quadratic function in A. Such random variables have light tails, which implies
that they have a tail probability inequality similar to that of a Gaussian random
variable.

Definition 2.11. A sub-Gaussian random variable X has quadratic logarithmic
moment generating function for all A € R:
2

InEe™ < A\ + %b. (2.10)
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2.5. HOEFFDING’S INEQUALITY 17

Using ([2.10), we can obtain an upper bound of the rate function for sub-
Gaussian random variables, which imply the following tail inequality.

Theorem 2.12. If X; is sub-Gaussian as in (2.10)), then for all t > 0:

- 2Dt

Pr <Xn > u+ ) <e™,
n

Pr (Xn <p—1f 26t> <e t.
n

Proof The result follows from Theorem [2.10| with v = b and § = 0. O

Common examples of sub-Gaussian random variables include Gaussian random
variables and bounded random variables.

Example 2.13. A Gaussian random variable X; ~ N(u,0?) is sub-Gaussian
with b = o2

Example 2.14. Consider a bounded random variable: X; € [, 8]. Then X, is
sub-Gaussian with b = (8 — «)? /4.

The tail probability inequality of Theorem [2.12] can also be expressed in a
different form. Consider 6 € (0,1) such that 6 = exp(—t), we have ¢ = In(1/9).
This means that we can alternatively express the first bound of Theorem [2.12] as
follows. With probability at least 1 — §, we have

- 2bIn(1/6
X, <pu+ 117(1/)

This form is often preferred in the theoretical analysis of machine learning algo-
rithms.

2.5 Hoeffding’s Inequality

Hoeffding’s inequality (Hoeffding), 1963)) is an exponential tail inequality for
bounded random variables. In the machine learning and computer science litera-
ture, it is often referred to as the Chernoff bound.

Lemma 2.15. Consider a random variable X € [0,1] and EX = p. We have the
following inequality:

InEe™ < Inf(1 — p)e® + pet] < A+ \?/8.

Proof Let hi(\) = Ee* and hp(\) = (1 — p)e® + pe*. We know that hp(0) =
hr(0). Moreover, when A > 0:

R (A\) = EXeM <EXe? = pe* = hy(N),
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CHAPTER 2. BASIC PROBABILITY INEQUALITIES 18

and similarly A’ (A) > h/z(A) when A < 0. This proves the first inequality.
Now we let

h(A) = In[(1 — p)e® + pe?].

It implies that
A
/ pe
h'(A) =
() (1 — p)e® + per’

and

(1= p)e® + per  [(1— p)e + pe)?
=M1 = [R'(N)]) < 1/4.

B = pe (pe?)?

Using Taylor expansion, we obtain the inequality h(A\) < h(0) + AA/(0) + A\?/8,
which proves the second inequality. O

The lemma implies that the maximum logarithmic moment generating func-
tion of a random variable X taking values in [0, 1] is achieved by a {0, 1} valued
Bernoulli random variable with the same mean. Moreover, the random variable
X is sub-Gaussian. We can then apply the sub-Gaussian tail-inequality in Theo-
rem to obtain the following additive form of Chernoff bound.

Theorem 2.16 (Additive Chernoff Bounds). Assume that X; € [0,1]. Then for
all e > 0:

Proof We simply take b =1/4 and t = 2ne* in Theorem to obtain the first
inequality. The second inequality follows from the equivalence of X,, <y — € and
_Xn S —K +e m

In some applications, one often needs to employ a more refined form of Chernoff
bound, which can be stated as follows.

Theorem 2.17. Assume that X; € [0,1]. Then for all e > 0, we have

Pr()_(n >+ 6) Se*nKL(#ﬂLCHM),

Pr(Xn <p— 6) Se—nKL(M—EHH)’
where KL(z||p) is the Kullback-Leibler divergence (KL divergence) defined as
-z

_M'

1
KL(z||p) = 2In 2+ (1-2)In 1
W
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2.5. HOEFFDING’S INEQUALITY 19

Proof Consider the case z = u + €. We have
I, (2) < inf[-Az + (1 - p)e” + ped)].
>

Assume that the optimal value of A on the right hand side is achieved at A.. By
setting the derivative to zero, we obtain the expression:

L e
T (1= p)el + et

which implies that

no_ 21— p)

e = ——=.
n(l—z)

This implies that —Ix, () < —KL(z||p). The case of z = p1 — € is similar. We can
thus obtain the desired bound from Theorem O

In many applications, we will be interested in the situation p ~ 0. For ex-
ample, this happens when the classification error is close to zero. In this case,
Theorem [2.17] is superior to Theorem and the result implies a simplified
form stated in the following corollary.

Corollary 2.18 (Multiplicative Chernoff Bounds). Assume that X; € [0,1].
Then for all € > 0:

2

_ —nie
Pr(X, > (1 < ,
r( > ( +e)u)_exp[2+€]

Pr (X, < (1-€)u) < exp [_”2’“2] .

Moreover, fort >0, we have:

— 2ut t
Pr(Xn2u+ M+>§e_t.
n 3n

Proof The first and the second results can be obtained from Theorem [2.17] and
the inequality KL(z||p) > (2 — p)?/ max (2, p + 2) (which is left as an exercise).
We then take z = (1 + €)p and z = (1 — €)u respectively for the first and the
second inequalities.

For the third inequality (which is sharper than the first inequality), we may
apply Theorem Just observe from Lemma that when A\ > 0:

Ax,(A) <Inf(1 = p)e” + pe?]

)\k
<p(er =1) = pr +p E T
k>2

pA®
<uA .
T yEY
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CHAPTER 2. BASIC PROBABILITY INEQUALITIES 20

In the above derivation, the equality used the Taylor expansion of exponential
function. The last inequality used k! > 2-3%=2 and the sum of infinite geometric
series. We may take @ = p and § = 1/3 in Theorem to obtain the desired
bound. O

The multiplicative form of Chernoff bound can be expressed alternatively as
follows. With probability at least 1 — 4:

_ 2uln(1/6
< X+ #ri/)
It implies that for any v € (0, 1):
- In(1/6)
X, 1- - —. 2.11
> (=== (2.11)

Moreover, with probability at least 1 — §:

_ 2uln(1/6 In(1/6
X < 2RO | In(1/)
n 3n

It implies that for any v > 0:

(3+27)In(1/8)

X, < (1
14y + 6y

(2.12)

For Bernoulli random variables with X; € {0, 1}, the moment generating function
achieves equality in Lemma[2.15] and thus the proof of Theorem [2.17]implies that
the rate function is given by

Ix,(2) = KL(z||p).

We can obtain the following lower bound from (2.8]), which suggests that the KI.-
formulation of Hoeffding’s inequality is quite tight for Bernoulli random variables
when n is large.

Corollary 2.19. Assume that X, € {0,1}. Then for all € > 0 that satisfies

¢ =ct2/(ut ol —(u+o)/n<l—p,
andn > (1—p—e€)/(n+¢€), we have
Pr(X, > p+e€) > 0.25 exp [-nKL(u + €||p) — vVnAI],

where

(p+e)d—p)
(L= (u+e)n

Proof 1In (2.8)), we let €’ = 2¢’ — €. Since X € {0,1} and EX] = p + €', we have

AT=2/(u+)(1—p—en
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2.6. BENNETT’S INEQUALITY 21

Var(X7) = (u+ €)(1 — u — €). Using Chebyshev’s inequality, we obtain

Pr (X, —(u+e)|>€—¢) < (h+ )1 —p—¢)

n(e — e)?
_(pteH)d—p—¢) < (te) o5y €€
Ap+e)l—(ut+e) ~ 4p+te) 4(p+e)
Therefore
Pr(X,e(u+epn+te)=1-Pr(|X,—(u+€)>e—e¢)
! 1_ _
>0.75 — = 0.75 - 0.5, — 1 >0.25.
4(p+e) n(p+€)

The choice of X in ([2.4) is given by

/ 1 _
o BN /u)
(1= (p+e)u
By using the above estimates, we can obtain the desired bound from (2.8)). [

2.6 Bennett’s Inequality

In Bennett’s inequality, we assume that the random variable is upper bounded,
and has a small variance. In this case, one can obtain a more refined estimate
of the moment generating function by using the variance of the random variable
(Bennett, |1962).

Lemma 2.20. If X —EX <, then YA > 0:

InEe < AEX + A2¢(\b)Var(X),
where ¢(z) = (e* — 2z — 1) /22.
Proof Let X' = X —EX. We have

InEe* =AEX + In Ee X
<AEX +EeM — 1

AXT X -1
=) \EX )\QEG—
- X2

<AEX + AEp(Ab)(X')?,

(X7)?

where the first inequality used Inz < z — 1; the second inequality follows from
the fact that the function ¢(z) is non-decreasing (left as an exercise) and A X’ <
Ab. O

The above lemma gives an estimate of the logarithmic moment generating
function, which implies the following result from Theorem
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CHAPTER 2. BASIC PROBABILITY INEQUALITIES 22

Theorem 2.21 (Bennett’s Inequality). If X; < p + b, for some b > 0. Let
P(z) = (14 2)In(1 + z) — 2, then Ve > 0:

Pr[X, > i+ e <exp [—nVZ;'(Xl)w (Vare(bXﬂ)] ,

_ —ne?
Pr[X, > < .
X 2 pt ] sexp [QVar(Xl) + 2eb/3}

Moreover, fort > 0:

< e t.

Pr|X,>u+

2Var(X,)t bt ]
-~ 7 _|_ -
n 3n

Proof Lemma implies that
—Ix,(p+e) < inf [—Xe +b7%(e* — Ab — 1) Var(X,)] .

We can set the derivative of the objective function on the right hand side with
respect to A to zero at the minimum solution, and obtain the condition for the
optimal A as follows:

—e+ b7 (e —1)Var(X;) = 0.

This gives the solution A = b~ In(1 + eb/Var(X;)). Plugging this solution into
the objective function, we obtain
Var(X;) eb
-1 < — .
xilpte) s v Y\ Varxy)

The first inequality of the theorem follows from an application of Theorem

Given X € (0,3/b), it is easy to verify the following inequality using the Taylor
expansion of the exponential function

Ax,(N) <pA+b77 [e* — Xb — 1] Var(X))

<ur+ VE’“(;W S (Ab/3)™ = A + m (2.13)

m=0
The second and the third desired bounds follow from direct applications of The-
orem with a = Var(X;) and 8 = b/3. O

Bennett’s inequality can be expressed alternatively as follows. Given any § €
(0,1), with probability at least 1 — §, we have

% <pt \/QVar(Xl)ln(l/cS) | bIn(1/8)

n 3n

If we apply this to the case that X; € [0, 1], then using the variance estimation
Var(X;) < pu(1 —p), and b <1 — p, the above bound implies

X, <t \/zu(l — ,:3 In(1/6) , (1- M;:ln(l/é)
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2.7. BERNSTEIN’S INEQUALITY 23

This is slightly tighter than the corresponding multiplicative Chernoff bound in

Corollary [2.18]

Compared to the tail bound for Gaussian random variables, this form of Ben-
nett’s inequality has an extra term b1n(1/0)/(3n), which is of higher order O(1/n).
Compared to the additive Chernoff bound, the Bennett’s inequality is superior
when Var(X;) is small.

2.7 Bernstein’s Inequality

In Bernstein’s inequality, we obtain results similar to Bennett’s inequality, but
using a moment condition (Bernstein, |1924)) instead of the boundedness condition.
There are several different forms of such inequalities, and we only consider one
form, which relies on the following moment assumption.

Lemma 2.22. If X satisfies the following moment condition with b,V > 0 for
integers m > 2:

E[X — ™ < m!(b/3)"2V/2,
where c is arbitrary. Then when X € (0,3/b):
A2V
InEe* < \EX + ——————.
S TS YE)

Proof We have the following estimation of logarithmic moment generating func-
tion:

InEe* < Ac+ Ee* ™9 — 1 <AEX +0.5VA* > (b/3)" A"
m=2

=AEX + 0.5)\*V (1 — \b/3)~".
This implies the desired bound. O

In general we may take ¢ = E[X] and V = Var[X]|. The following bound is a
direct consequence of Theorem [2.10]

Theorem 2.23 (Bernstein’s Inequality). Assume that X, satisfies the moment

condition in Lemma[2.29. Then for all € > 0:

_ —ne?
Pr[X, > < e
tXn 2 it e <exp [2V+2€b/3] ’

and for allt > 0:

- 2Ve bt
PriX,>p+/—+—| <e"
n 3n
Proof We simply set a =V and § = b/3 in Theorem O
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CHAPTER 2. BASIC PROBABILITY INEQUALITIES 24

Similar to Bennet’s inequality, Bernstein’s inequality can be alternatively ex-
pressed as follows. With probability at least 1 — 6,

2VIn(1/) , bin(1/5)

n 3n

,u<Xn+

)

which implies with probability at least 1 — 0, the following inequality holds for
all v > 0:

- b(3+2v)In(1/6
@< X, + (v/b)V + (8 +27) In(1/9) (2.14)
6yn
Example 2.24. If the random variable X is bounded with |X — p| < b, then the
moment condition of Lemma holds with ¢ = p and V = Var(X).

2.8 Non-identically Distributed Random Variables

If Xy,..., X, are independent but not identically distributed random variables,
then a tail inequality similar to that of Theoremholds. Let X, =n~' >0 | X,
and p = EX,,, then we have the following bound.

Theorem 2.25. We have for all € > 0:

i=1

X, > < inf |— AXi
Pl“(Xn_,u‘Fﬁ)_/l\I;f(;l An(u—{—e)-l—ZlnEe

For sub-Gaussian random variables, we have the following bound.

Corollary 2.26. If {X,} are independent sub-Gaussian random variables with
InEeM < AEX; + 0.5\2b;, then for all € > 0:

2.2
Pr(X, > u+e) <exp {— ne }

2 Z?:l bz

The following inequality is a useful application of the above sub-Gaussian
bound for Rademacher average. This bound, also referred to as the Chernoff
bound in the literature, is essential for the symmetrization argument of Chap-

ter @

Corollary 2.27. Let o; = {1} be independent Bernoulli random variables (
each takes value +1 with equal probability). Let a; be fized numbers (i = 1,...,n).
Then for all e > 0:

n 2
1 ne
Pr (n g oia; > e) < exp [_Qn—l Z?:l a?] .

i=1

Proof Consider X; = o;a; in Corollary We can take p = 0 and b; = a? to
obtain the desired bound. O
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One can also derive a Bennett style tail probability bound.

Corollary 2.28. If X; — EX; <b for all i, then for all € > 0:

n2e?

Pr(X, > < - )
HXn 2 pite) < exp 25" Var(X;) + 2nbe/3

2.9 Tail Inequality for x>

Let X; ~ N(0,1) be iid normal random variables (i = 1,...,n), then the random
variable

Z=3% x?
=1

is distributed according to the chi-square distribution with n degrees of freedom,
which is often denoted by x2.

This random variable plays an important role in the analysis of least squares
regression. More generally, we may consider the sum of independent sub-Gaussian
random variables, and obtain the following tail inequality from Theorem [2.5

Theorem 2.29. Let {X;}" , be independent zero-mean sub-Gaussian random
variables that satisfies

A?b;

InEx, exp(AX;) < 5

then for A < 0.5b;, we have
1
InEy, exp(AX?) < —5 In(1 = 2Xb,).

Let Z =5%" | X2, then

Pr ZZZ@—FQ thf—i-Zt(maxbi) <e!

=1 i=1

and

Pr Zgibi—Q tibf
=1 i=1

Proof Let & ~ N(0,1) which is independent of X;. Then for all \b; < 0.5, we
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CHAPTER 2. BASIC PROBABILITY INEQUALITIES 26

have
Ax2(X) =InEx, exp(AX7)
=InEy,E; exp(V2X{X;)
=InE:Ey, exp(V2X{X;)
<InE¢ exp(AE?D;)
1
=— —In(1 —2Xb;),
2
where the inequality used the sub-Gaussian assumption. The second and the last
equalities can be obtained using Gaussian integration. This proves the first bound

of the theorem.
For A > 0, we obtain

=05) (226:)
k=1

k
<Ab; + (Ab:)? Y (20;)"

k>0
(Ab;)?
1—2Xb;
The first probability inequality of the theorem follows from Theorem [2.10] with
p=n"t3" b, a=(2/n)>"  b? and f = 2max;b;.
If A <0, then

=Ab; +

Ax>(A) < =0.5In(1 — 2Xb;) < Ab; + A

The second probability inequality of the theorem follows from the sub-Gaussian
tail inequality of Theorem with u=n"1>" b and b= (2/n) >  b?. O

=1 "7

From Theorem we can obtain the following expressions for x? tail bound
by taking b; = 1. With probability at least 1 — §:

Z <n+24/nln(1/0) + 21In(1/6),

and with probability at least 1 — ¢:

Z >n—24/nln(1/4).

One may also obtain a tail bound estimate for x? distributions using direct inte-
gration. We leave it as an exercise.

2.10 Historical and Bibliographical Remarks

Chebyshev’s inequality is named after the Russian mathematician Pafnuty Cheby-
shev, and was known in the 19th century. The investigation of exponential tail
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2.10. HISTORICAL AND BIBLIOGRAPHICAL REMARKS 27

inequalities for sums of independent random variables occurred in the early 20th
century. Bernstein’s inequality was one of the first such results. The large devia-
tion principle was established by Cramér, and was later rediscovered by
. In the following decade, several important inequalities were obtained
such as Hoeffding’s inequality and Bennett’s inequality. The tail bounds in Theo-
rem for x* random variables was first documented in (Laurent and Massart,
, where they were used to analyze least squares regression problems with
Gaussian noise. It was later extended to arbitrary quadratic forms of independent
sub-Gaussian random variables by Hsu et al.| (2012b).
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2.1

2.2

2.3

2.4
2.5

2.6

2.7

Exercises
Assume that X1, Xa,..., X, are real-valued iid random variables with density function
2
T
xr) =
p(z) N
Let M= EXL and Xn = n_1 Z?:l Xi-

e Estimate In[E exp(AX7)
o Estimate Pr(X, > p+¢)
e Estimate Pr(X, < p —¢)

exp(—a?/2).

Prove Proposition [2.8
Prove the following inequality

(z—n”
KL(2|lp) = max(s T 20
which is needed in the proof of Corollary 2:18
Prove that the function ¢(z) = (e* — z — 1)/2? is non-decreasing in z.
Assume that the density function of a distribution D on Ris (1-p)U (-1, 1)+pU(—1/p,1/p)
for p € (0,0.5), where U(-) denotes the density of the uniform distribution. Let X1,..., Xn
be iid samples from D. For € > 0, estimate the probability

1 n
Pr (n ‘Zl)(i > e)
iz

using Bernstein’s inequality.

Write down the density of X2 distribution, and use integration to estimate the tail in-
equalities. Compare the results to those of Theorem [2:29]

Prove Corollary and Corollary
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3

Uniform Convergence and (eneralization
Analysis

3.1 Probably Approximately Correct Learning

Probabilistic Approximately Correct (PAC) learning is a mathematical model
for analyzing algorithms that can learn Boolean functions (Valiant, [1984)) from
random examples. This is analogous to supervised learning, except that there is
a computational complexity requirement.

In this model, we observe a binary valued vector X € {0,1} as input. A
Boolean function f maps a binary vector X to a binary output Y € {0,1}. Such
a Boolean function is also referred to as a concept in the literature. A concept class
C, is a set of such Boolean functions: {0,1}% — {0,1}. In the machine learning
literature, a concept is also referred to as a hypothesis, and a concept class is also
referred to as a hypothesis space or hypothesis class. In machine learning, C is also
called a model class.

Example 3.1 (AND Function Class). Each member of AND function class can
be written as
f@) =]z JcA{L,....d}
jeJ

Example 3.2 (Decision List). A decision list is a function of the following form.
Let {i,...,iq} be a permutation of {1,...,d}, and let a;,b; € {0,1} for i =
1,...,d 4+ 1. The function f(z) can be computed as follows. if x;, = a; then
f(x) = by; else if z;, = ay then f(x) = by, ---, else if x;, = ay then f(z) = by;
else f(x) = bgy1.

Assume now that there is an unknown true function f,(z) € C which we want
to learn. In the PAC learning model, the input X is taken from an unknown
distribution D, and there is an oracle O that can sample from this distribution.
Each call to O returns a sample X ~ D, together with the value Y = f,(X). The
goal of a PAC learner is to learn this function approximately up to an accuracy
€ with respect to D by randomly sampling its inputs.

More formally, the (generalization) error of a learned function f(z) is defined
as

errp(f) = Exupl(f(x) # f.(x)).

.....

The learner A takes S,, and returns a function f € C. Due to the randomness of

29
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S, the function f is also random. Therefore the quality of the learner should be
stated in probabilistic terms.

Definition 3.3 (PAC Learning). A concept class C is PAC learnable if there
exists a learner A so that for all f, € C, distribution D on the input, approxima-
tion error € > 0 and probability 6 € (0,1), the following statement holds. With
probability at least 1 — ¢ over samples from the oracle O over D, the learner
produces a function f such that

errp(f) <,
with the computational complexity polynomial in (e™*,d71, d).

The term probabilistic approximately correct is due to the fact that the state-
ment is with probability at least 1 — ¢, and the correctness is up to approximation
error €. The PAC learning model is similar to the supervised learning framework,
except for the additional requirement that the computational complex should be
polynomial. One may also extend the basic notation of PAC learning by assuming
that the oracle O may take additional information, so that the learning algorithm
can interact with the oracle sequentially.

In Definition we assume that the output Y is generated by a function
f« € C. This is referred to as realizable in the learning theory literature, and re-
ferred to as correctly specified model (or well-specified) in the statistics literature.

In general, one may also extend the definition of PAC learning to non-realizable
situations, where the output Y is not generated by a function f, € C. This corre-
sponds to the situation of misspecified model in statistics. We will only consider
the realizable case in this section, but will consider more general situations in
subsequent sections.

In the statistical complexity analysis of learning algorithms, the computational
complexity requirement is de-emphasized. The analysis will focus on the sample
complezity, which is the minimum sample size n as a function of (e7!,67!,d),
required to achieve e accuracy with probability 1 — é.

Definition 3.4 (ERM). Define the training error of f € C as
_ 1
i, (f) = — > U(F(Xi) # Vo).

i=1

The ERM (empirical risk minimization) method finds a function f € C that
minimizes the training error.

Since by the realizable assumption of PAC learning, f. € C achieves zero train-
ing error, the empirical minimizer also finds a function f that achieves zero train-
ing error. That is:

A

errs, (f) = 0.

However, there may be more than one functions that can achieve zero-error on
any given training data. The algorithm simply returns an arbitrarily picked one
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3.2. ANALYSIS OF PAC LEARNING 31

of such functions. More generally, we may consider approximate ERM, which
returns f so that

s, (f) < ¢ (3.1)

for some accuracy € > 0.
Next we show that by using union bound and Hoeffding’s inequality, we can
obtain a sample complexity bound for PAC learning analysis.

3.2 Analysis of PAC Learning

In the analysis of the ERM learner, we are interested in bounding the difference
of the test error errp(f) and the optimal test error errp(f,), using a decomposi-
tion described below. Note that although in the realizable PAC learning setting,
errp(f.) = 0, in the more general case considered in later sections, the optimal
test error may be nonzero. The following decomposition can be applied both
to the realizable PAC learning setting, and the more general situation where

errp(f.) # 0.
errp(f) —errp(fy)
(

= lerrp(f) - etts, (f)] + 6t (f) — @it (f.)] + 6T, (f.) = errp(f.)]

A B “
< ?cgg[errp(f) —errs, ()] +0 + [erts, (f«) — errp(f.)]
. c
<2sup |errp(f) — erts, (f)]
fer
N

In the above decomposition, the key idea is to bound the test error in term of the
training error. The inequality B < 0 follows from the fact that ERM achieves the
smallest training error. The inequality A < A’ follows from f € F. The quantity
C can be bounded using probability inequalities of Chapter [2l The quantity A’
or A” requires that the convergence of empirical mean to the true mean holds for
all f € F. Such a convergence result is referred to as uniform convergence, and
probability inequalities of Chapter [2| are not immediately applicable.

The key mathematical tool to analyze uniform convergence is the union bound,
described in Proposition In this book, we employs one-sided uniform conver-
gence A’, and the quantity C will be analyzed separately. The bounding of C' is
relatively simple, and it doesn’t require uniform convergence because f, is a fixed
function. The one-sided analysis makes it easier to handle probability inequalities
that may have different forms in the case of under estimating the true mean ver-
sus over estimating the true mean (for example, this happens with multiplicative
Chernoff bounds). However, we note that in the literature, many of the existing
analysis considers the two-sided uniform convergence quantity A” for the sake of
simplicity.

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. (©)2021-2023 Tong Zhang



CHAPTER 3. UNIFORM CONVERGENCE 32

Proposition 3.5 (Union Bound). Consider m events Ei,...E,,. The following
probability inequality holds:

Pr(E,U---UE,) <> Pr(E)).
j=1

The union bound has an alternative expression, which is often used in the
learning theory analysis. If each E; occurs with probability at least 1 — ¢, for
j=1,...,m, then with probability at least 1 — 37", ;, all of events { E;} occur
simultaneously for j =1,...,m.

In the application of union bound, we generally assume that the probability
>0 Pr(E;) is small. In such case, Exercises implies that when the events
{E;:j=1,...,m} are independent. then the union bound is relatively tight. If
{E;} are correlated, then the union bound may not be tight. For example when
they are completely correlated: £y = --- = F,,, then

1 m
Pr(E, U+ U By) = Pr(Ey) = — > Pr(E;),
j=1

which can be significantly smaller than the union bound. Therefore in some the-
oretical analysis, in order to obtain sharp results from the union bound, we may
need to carefully define events so that they are not highly correlated.

We will use the union bound to derive sample complexity bounds for PAC
learning using ERM. To simplify the analysis, we will first assume that the con-
cept class C contains N different functions.

An important observation is that we cannot directly apply the Chernoff bound
of Theorem to the function f learned from the training data S,,, because it
is a random function that depends on S,,. Instead, we can apply Theorem to
each fixed function f(z) € C, and rely on the union bound to obtain the desired
result that holds uniformly for all f(z) € C given any sample S,,. Since the bound
holds uniformly for all f(x) € C, it also holds for f that depends on S,,.

To illustrate the basic argument, we first apply the additive Chernoff bound of
Theorem to obtain for each fixed f € C:

Pr (errp(f) > érts, (f) + €) < exp(—2ne?).

Therefore

Pr (sup ferro(f) — aits, (/)] > )

fec
=Pr(3f € C:errp(f) > errs, (f) +¢€)

< ZPr (errp(f) > érts, (f) +¢€) < Nexp(—2ne?).
fec

The first inequality used the union bound, and the second inequality used Theo-
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3.2. ANALYSIS OF PAC LEARNING 33

rem Now by setting N exp(—2ne?) = § and solving for € to get
In(N/6)

2n
we obtain the following equivalent statement. With probability at least 1 — 4§, the
following inequality holds for all f € C:

erro(f) < s, (1) + | 2oL

Such a result is called uniform convergence, because given an empirical sample
S,,, the inequality holds for all f € C, and thus it also holds for the output f of
any learning algorithm.

By applying the uniform convergence result to the approximate ERM learner
of , we obtain the following generalization bound. With probability at least
1 -4, the following inequality holds for the ERM PAC learner for all v > 0:

errp(f) < € + hl(é\;/é):(l—i-v) m(é\;/a) (3.2)
with
¢ =~ ln(é\gé)_

In the generalization analysis, we are interested in the dependency of the gener-
alization error on the training sample size n. The bound on the right hand side
implies a statistical convergence rate of O(1/y/n). It can be expressed in another
form of sample complexity bound. If we let

o (149 In(N/6)

- 262 )

then errp(f) < € with probability at least 1 — §. That is, with large probabil-
ity, the result implies a sample complexity bound of n = O(1/€?) to achieve e
generalization error.

Next, we show that for the realizable case considered here, we can obtain a
better result by applying the union bound, together with the multiplicative form
of Chernoff bound in Corollary

Theorem 3.6. Consider a concept class C with N elements. With probability at
least 1 — &, the ERM PAC learner (3.1) with

o _ . 2n(N/)

n

for some v > 0 satisfies

errn(f) < (149 22070
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CHAPTER 3. UNIFORM CONVERGENCE 34

Proof Given any f € C, we have from Corollary [2.1§] that

2
Pr(errn(f) = s, (1) +) < exp (55 ).

Now by setting exp(—ne?/2errp(f)) = /N, and solve for e:
. \/2errp(f) In(N/6)

n

we obtain the following equivalent statement. With probability at least 1 — ¢ /N

errp(f) < étis, (f) + \/QGHD(f) In(N/5)

n

The union bound thus implies the following statement. With probability at least
1-94, forall feC:

errn(f) < s, (f) + \/Qerrp(f) ln(N/(S)‘

n

The above inequality also holds for the ERM PAC learner solution (3.1]). We thus
obtain

errp(f) <étts (f)+\/2errp(f)ln(N/5)

- n n

_2(N/8) ¢ 2errp(f) In(N/5)

The second inequality uses the assumption of the theorem on the approximate
ERM solution. We can solve the above inequality for errp(f) and obtain

f 2In(N/§
errp(f) < (VP +0.54+ /72 + 0,25)n(n/)7
which implies the desired bound because 4> +0.5+ V77 +0.25 < (1 +7)%. O

Note that compared to (3.2)), which shows that the generalization error errp( f)
decays at a rate of O(1/y/n), Theorem implies that the generalization error
decays at a faster rate of O(1/n). This means that the multiplicative Chernoff
bound is preferred to the additive Chernoff bound for the realizable case, where
Y is generated by f.(X) for some f, € C.

Theorem implies the following sample complexity bound. Given § € (0, 1).
For all sample size

n > (1 +7)22ln(£\7/5)’

we have errp(f) < e with probability at least 1 — 4.
The generalization error bound has a logarithmic dependency In N on the con-
cept class size N. This logarithmic dependency is important for analyzing machine
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3.3. EMPIRICAL PROCESS 35

learning algorithms, and such a dependency requires the exponential tail proba-
bility bounds developed in Chapter [2] Since the generalization analysis does not
depend on the underlying distribution D, the resulting bound is referred to as a
distribution free generalization bound.

Example 3.7. The AND concept class C is PAC learnable. To show this, we will
prove that the ERM solution can be obtained in a computationally efficient
way with ¢ = 0. If this is true, then Theorem implies that C is PAC-learnable
because the number of AND functions cannot be more than N = 2¢. Therefore
InN <dln2.

In the following, we show that ERM solution can be efficiently obtained. Given
S, = {(X1,%1),...,(X,,Y,)} ~ D", we define J = {j: V1<i<n,X,,; >V}
(where X;; denotes the j-th component of the i-th training data X,) and f(z) =
[I;c;jz;. This choice implies that f( ;) = Y; when Y; = 1. It can be easily
verified that if the true target is f.(z) = [[;c; z;, then J D J. This implies that

f(x) < f.(z). This implies that f(X;) = Y; when Y; = 0, and hence értg, (f) = 0.

3.3 Empirical Process

The analysis of realizable PAC learning can be generalized to deal with general
non-binary-valued function classes which may contain an infinitely number of
functions. It may also be generalized to handle the non-realizable case where
f«(z) ¢ C or when the observation Y contains noise. For such cases, the corre-
sponding analysis requires the technical tool of empirical processes.

To simplify the notations, in the general setting, we may denote the obser-
vations as Z; = (X;,Y;) € Z = X x ), prediction function as f(X;) (which is
often a vector-valued-function) and loss function as L(f(X;),Y;). Assume fur-
ther that f(z) is parametrized by w € Q as f(w,z), and the hypothesis space is
{f(w,-) :w € Q}.

Let training data S, = {Z; = (X,,Y;) : ¢ = 1,...,n}. In the following, we
consider a more general form of ERM, approximate ERM, which satisfies the
following inequality for some € > 0:

—ZL ) < inf ZL Y)| +¢€. (3.3)

weR [N

The quantity € > 0 indicates how accurately we solve the ERM problem.
We introduce the following simplified notation that will be used throughout
the book.

Definition 3.8. We define

¢(w? Z) = L(f(w’ x)a y) - L*(xa y)? (3'4)

for w e Qand z = (z,y) € Z = X x ), and a pre-chosen L,(x,y) of z = (x,y)
that does not depend on w.
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CHAPTER 3. UNIFORM CONVERGENCE 36

For training data S,, = {Z; = (X,,Y;) : i = 1,...,n}, we define the training
loss for w € €2 as

n

Bw,5) = =Y 0w, %) (35)

Moreover, for a distribution D on Z, we define the test loss for w € Q as:

¢(w,D) = Ezepp(w, Z). (3.6)

Since L, (z,y) does not depend on w, the ERM solution with respect to the loss
L(-) is equivalent to the ERM solution with respect to ¢(w,-). Therefore with
the simplified notations, the approximate ERM method is a special case of
the following method:

O, 5,) < inf o(w, S,) + ¢ (3.7)

In general, we may simply take L,(z,y) = 0 in (3.4)). However, for some appli-
cations, we may choose a non-zero L,(z,y) so that

L(f(w,x),y) - L*(IL‘,y)

has a small variance. For least squares loss, this can be achieved with L, (x,y) =
L(f.(z),y) where f.(z) is the optimal prediction function that minimizes the test
loss as shown in Example |3.9 The smaller variance, combined with Bernstein’s
inequality, implies better generalization bound (see Section for more details).

Example 3.9. Consider linear model f(w,z) = w'z, and let L(f(w,x),y) =
(wTz — y)? be the least squares loss. Then with L, (z,y) = 0, we have ¢(w, z) =
(w'z —y)? for z = (z,y).

If we further assume that the problem is realizable by linear model, and w,
is the true weight vector: Ely|x] = w]z. It follows that we may take L.(z,y) =

(U)IIL‘ - y)2) and
P(w, z) = (w'z —y)* = (wz —y)?
which has a small variance when w ~ w, because lim,,_,,,, ¢(w, z) = 0.

We assume now that training data Z; are iid samples from an unknown test
distribution D. Similar to the PAC learning analysis, we are interested in bound-
ing the test error ¢(w,D) in terms of the training error ¢(w,S,) for the ERM
method .

The family of loss functions forms a function class {¢(w, z) : w € Q} indexed
by w € Q. We call {¢p(w,S,) : w € Q} an empirical process indexed by €.
Similar to the PAC learning analysis in Section we need to bound the uniform
convergence of training error to test error that holds true for all w € 2. This is also
referred to as uniform convergence of the empirical process {¢(w,S,) : w € Q}.
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3.3. EMPIRICAL PROCESS 37

Definition 3.10 (Uniform Convergence). Given a model space €2, and distri-
bution D. Let S, ~ D™ be n iid examples sampled from D on Z. We say that
o(w,S,) (w € Q) converges to ¢(w, D) uniformly in probability if for all € > 0:

i P (sup[6(w,5,) — 0w, D) > ¢ ) =0

we

where the probability is over iid samples of S,, ~ D".

Uniform convergence is also referred to as the uniform law of large numbers.
It says that the law of large numbers holds for all @w € ) that may depend
on the training data S,,. It can thus be applied to the output of any learning
algorithm. While two-sided uniform convergence of Definition [3.10|are frequently
used in the literature, we will employ one-sided uniform convergence which is
more convenient for multiplicative bounds.

Similar to the analysis of PAC learning, the uniform convergence result can be
used to obtain an oracle inequality for the approximate ERM solution as in the
following lemma. Note that for a Chernoff style bound, we may take a = o’ = 1.
However, if we apply multiplicative Chernoff bound, or Bernstein’s inequality,
then we often choose multiplicative factors @ < 1 and o/ > 1.

Lemma 3.11. Assume that for any 6 € (0, 1), the following uniform convergence
result holds with some a > 0 (we allow « to depend on S,,). With probability at
least 1 — 61,

Vw € Q: a¢(w7D) < ¢(w58n) + En(alaw)'

Moreover, Yw € ), the following inequality holds with some o/ > 0 (we allow o’
to depend on S, ). With probability at least 1 — 0o,

P(w,Sn) < o'¢(w, D) + €, (02, w).

Then the following statement holds. With probability at least 1 — 6; — 0o, the
approzimate ERM method (3.7)) satisfies the oracle inequality:

O‘¢<UA}7 D) < Helg [0/¢(w, D) + 6;(6% w)] + ¢ + en(dla d])

Proof Consider an arbitrary w € 2. We have with probability at least 1 — d;:

ad (i, D) <6(ib, S,) + €0 (1, )
§¢(w, Sn) + ¢ + 6n((slv uA))? (38)

where the first inequality is due to uniform convergence, and the second inequality
is due to (3.7)). Moreover, with probability at least 1 — d,:

d(w,S,) < 'p(w, D) + €, (62, w). (3.9)

Taking the union bound of the two events, we obtain with probability at least
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CHAPTER 3. UNIFORM CONVERGENCE 38

1 — 61 — &2, both (3.8) and (3.9) hold. It follows that

ad(, D) <p(w,S,) + € + €,(01, W)
<d'¢p(w, D)+ €, (b2, w) + € + €,(01,W).

Since w is arbitrary, we let w approach the minimum of the right hand side, and
obtain the desired bound. O

We observe that in Lemma the first condition requires one sided uni-
form convergence for all w € ). The second condition does not require uniform
convergence, but only requires that a tail bound of Chapter [2| holds for all indi-
vidual w € 2. The above result shows that the uniform convergence of empirical
processes can be used to derive oracle inequalities for the ERM method.

Example 3.12. We consider the PAC learning example of Theorem but
assume that infy errp(f) # 0. We have the following uniform convergence result
from the proof of Theorem With probability 1 — 4,

ln(N/(51)

2errp(f)nln(N/51) < érts, (f) +vyerrp(f) + 277”

Vf :errp(f) Sél"\l“sn(f)"‘\/

In addition, from (2.12)), we have for all f, with probability 1 — do,

ETT 3+ 2v)In(1/6
errsn(f)<(1+7)errp(f)+( +2y)In(1/ 2).

6yn
We can thus take a =1—7, o' =1+, ¢, = %’ and ¢ = w 0

Lemma 3.11] Let § = d;/2 = /2, we obtain the following oracle inequality from
Lemma [3.11] With probability at least 1 — §:

(1- ’y)errp(f) <(1+47) ir}ferrp(f) L+ ln(22:;\7fl/6) + 3+ Qgi:ln@/(s)_

Next we will investigate the main technique to derive uniform convergence
bounds.

3.4 Covering Number

If  is finite, then we can use union bound to obtain uniform convergence of
empirical processes. If € is infinite, then we can approximate the function class

G={o(w,2z) :we Q}

using a finite function class. We can then apply union bound to this finite ap-
proximation. Different types of approximations lead to different types of covering,
which lead to different definitions of covering numbers. This section introduces a
simple covering number which is easy to apply.

Definition 3.13 (Lower Bracketing Cover). Given a distribution D. A finite

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. (©)2021-2023 Tong Zhang



3.4. COVERING NUMBER 39

function class G(€) = {p1(2),...,dn(2)} is an € lower bracketing cover of G (with
L,(D) metric) if for all w € Q, there exists j = j(w) such that

Vz:9;(2) < ¢(w, 2), Ezp¢;j(Z) > Ezupdp(w, Z) — €.
The e-lower bracketing number of G, denoted by Npg(€,G, L1(D)), is the smallest

cardinality of such G(¢). The quantity In Npg(e,G, L1(D)) is referred to as the
e-lower bracketing entropy.

We shall mention that the functions ¢;(z) may not necessarily belong to G.
Next we show that the lower bracketing number can be used to obtain uniform
convergence bounds for infinite function classes.

Theorem 3.14. Assume that ¢p(w,z) € [0,1] for all w € Q and z € Z. Let
G ={o(w,z): we Q}. Then given 6 € (0,1), with probability at least 1 — 0, the
following inequality holds:

Vw e Q: ¢(w, D) < [p(w,S,) +€.(0,G,D)],

where

ot \/ln(NLB(e,g,Ll(D)) 75)

(6.6.2) = nf 7

Moreover, with probability at least 1 — 0, the following inequality holds:
Vy € (0,1),YVw € Q: (1 —7)p(w,D) < ¢p(w,S,) +€.(6,G,D),

where

i In(N ,G,L1(D))/d
(6.6,) = inf [ (1 = e 2l 2LDIEN],

Proof For any € > 0, let G(e) = {¢1(2),...,0n(2)} be an € lower bracketing
cover of G with N = Nyg(e,G, L1(D)). We may assume that ¢,(z) € [0,1] for all
J (otherwise, we may set ¢;(z) to min(1, max(0, ¢;(z)))). In the following, we let
j = j(w) for simplified notation:

% " 6w, Z) — Egpdlw, Z) > % S 05(Z) — Bty (Z) —e. (3.10)
i=1 i=1
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CHAPTER 3. UNIFORM CONVERGENCE 40

9

Let ¢’ = /In(IN/d)/2n. It follows from the union bound on j that

Pr (Elw eQ: li ;d)(w, Z)—Ezpp(w,Z) + e+ €"

9

Z ( Z ¢J EZ~D¢j(Z) +e' < O>

§N exp(—2n(€’)?) = 6.

3j [i Z $;(Zi) —Ezupg;(Z) + €’

The first inequality used . The second inequality used the union bound.
The last inequality used the additive Chernoff bound (Theorem . This leads
to the first desired bound of the theorem.

Moreover, using the multiplicative Chernoff bound and the union bound,
we obtain the following statement. With probability at least 1 — §, the following
inequality holds for all j:

(1 —)Ezupd;(Z Z 0;(Z (/o). (3.11)

n

Therefore for all w € Q, let j = j(w), we obtain
(1 =7Ezepd(w, Z) ( —7Ezp$i(Z) + (1 - 7)e
1 In(N/$
Zd)j n(n/)+(1—7)e

<Ly o z)+ 2171““2/‘” (1=

The first and the third inequalities used the definition of lower bracketing cover.
The second inequality used (3.11]). This leads to the second desired bound. [

The uniform convergence bounds in Theorem imply generalization bounds
as follows. We may take ¢(w, z) = L(f(w,x),y) with L,.(z,y) = 0 to obtain an
oracle inequality for the approximate ERM method (3.3]).

Corollary 3.15. Assume that ¢(w,z) € [0,1] for all w € Q and z € Z. Let
G = {o(w,2) : w € Q}. With probability at least 1 — J, the approximate ERM
method (3.7) satisfies the (additive) oracle inequality:

\/an(QNLB(e, G,L.(D))/9)

n

o(w,D) < mf ¢(w, D) + € + inf

e>0

€+

Moreover, with probability at least 1 — §, we have the following (multiplicative)
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3.5. A SIMPLE EXAMPLE 41

oracle inequality for all v € (0,1):
(1 =)¢(w, D) < inf (1 +7)d(w, D) + ¢

+ igg {(1 —y)e+ (v+2) ln(2NL2i(;,g,L1(D))/(5) '

Proof We can set @ = 1 and take €,(0/2,w) = €,(6/2,G,D), as defined in
the first bound of Theorem [3.14 We then use the additive Chernoff bound of
Theorem and set o’ =1 and

¢ (§/2,w) = \/1n(2/5) < \/ln(QNLB(e,Q,Ll(D))/5)
2n 2n

for an arbitrary € > 0. The conditions of Lemma hold. We can then use the
above upper bound on €,(6/2,w) to simplify the result of Lemma and take
the minimum over € to obtain the first desired bound of the corollary.

To derive the second desired inequality of the corollary, we can set o« = (1 — )
and €,(6/2,w) = €(0/2,G, D), as defined in the second bound of Theorem
We then use the multiplicative Chernoff bound as in , and set o' =1+~

and

(L+7)In2/9) _ (1 +7)n2Nes(e, 9, 11(D))/9)

(/2 =

for an arbitrary € > 0. Now by combining these estimates with the second bound
of Theorem we can obtain the desired bounds from Lemma [3.11 O

3.5 A Simple Example

We consider a one dimensional classification problem, where the input z is uni-
formly distributed in [0, 1], and the output y € {£1} is generated according to

if z > w,

Pr(y = l|z) = {p (3.12)

(1 —p) otherwise
for some unknown w, € [0,1] and p € (0.5, 1]. See Figure
Since we don’t know the true threshold w,, we can consider a family of classifiers

1 ifz>w
—1 otherwise’

flw,z) =21(x >w) — 1= {

where w € Q0 = [0, 1] is the model parameter to be learned from the training data.
Here 1(+) is the binary indicator function, which takes value 1 if the condition in
1(-) holds, and value 0 otherwise.

In this example, we consider the following classification error loss function

L(f(x),y) = 1(f(z) # ).
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CHAPTER 3. UNIFORM CONVERGENCE 42

Pr(y = 1fz) = p

Pr(y =1fz) =1-p

Figure 3.1 Conditional probability Pr(y = 1|z) as a function of =

In this case, the optimal Bayes classifier is f.(z) = 21(z > w,) — 1, and the
optimal Bayes error is

EX,Y L(f(w*,X),Y) =1 — P.

We will study the generalization performance of empirical risk minimization.
Since for this example, it is easy to find a model parameter @ to minimize the
empirical risk (the solution may not be unique), we will set ¢ = 0 in (3.3).

Lower bracketing cover
Given any € > 0, we let w; =0+ je for j =1,...,[1/€]. Let
0 if x € [w; — e, w;
(;Sj(z) — [ J ]]
¢(wj,z) otherwise,

where z = (z,y). Note that ¢, ¢ G.

It follows that for any w € [0, 1], if we let w; be the smallest j such that w; > w,
then we have ¢,(z) = 0 < ¢(w, z) when z € [w; — €, w,], and ¢;(2) = P(w, 2)
otherwise, where z = (z,y). Moreover,

EZND[¢j(Z) - ¢(w7 Z)] = EXE[wj—e,wj][O - ¢(w7 Z)] > —€.
This means that {¢;(z)} is an € lower bracketing cover of G, and thus

NLB<€7 g7L1(D)) S 1+ 671-

Oracle inequalities

We have (by picking € = 2/n):

in {6 . \/21n<2NLB<e,g,L1(D>>/6>] L2, \/21n(<n+2>/5>

e>0 n n n
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3.6. UNIFORM BERNSTEIN’S INEQUALITY 43

This implies the following additive oracle inequality from Corollary [3.15] with
¢(w,z) = L(f(w,x),y). With probability at least 1 — 9,

Exy)~pL(f(0, X),Y) <(1 —p) + % + \/m(("nw

In addition, we have (by picking € = 2/n):

inf |(1—7)e + o +2) IH(QNL;(:QM(D))/d)]
L201=7) (1 +2)In((n+2)/9)
on 2vn

This implies the following multiplicative oracle inequality from Corollary
with ¢(w, z) = L(f(w,x),y). With probability at least 1 — 9, for all v € (0,1):
14 2 +2)1 +2)/0

1 pye 2, G +2)/)
1—~ n 2v(1 —y)n
The multiplicative bound is superior to the additive bound when the Bayes error

is small, such as when p = 1. In this case, the multiplicative bound implies a
convergence rate of Inn/n instead of \/Inn/n from the additive form.

Exy)~pL(f(w0, X),Y) <

3.6 Uniform Bernstein’s Inequality

In this section, we show that better bounds can be obtained with Bernstein’s
inequality under the following condition.

Definition 3.16 (Variance Condition). Given a function class G. We say it sat-
isfies the variance condition if there exists ¢y, ¢; > 0 such that for all ¢(z) € G:

Varzop(¢(Z2)) < ¢ + ciEzopd(Z), (3.13)
where we require that Ezpp(Z) > —c3/c; for all ¢ € G.

In applications, the following modification of the variance condition is often
more convenient to employ

Ez~p[$(2)°] < ¢ + ciEzpp(Z). (3.14)
It is easy to see that (3.14) implies (3.13)). If ¢(Z) is bounded, then the two

conditions are equivalent.

In general, if the variance condition only holds for ¢; = 0, then we can
only obtain a convergence rate that is O(1/y/n) at the best. When the variance
condition holds for ¢; > 0 and ¢y = 0, then we may be able to obtain a con-
vergence rate faster than O(1/y/n) by using Bernstein’s inequality. The ability
to achieve faster convergence is the main reason to study this condition. The
following examples satisfy the variance condition.

Example 3.17 (Bounded Function). Let G = {¢(-) : Vz, ¢(z) € [0,1]}. Then G
satisfies the variance condition (3.14) with ¢ = 0 and ¢; = 1.
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CHAPTER 3. UNIFORM CONVERGENCE 44

Example 3.18 (Least Squares). Consider the least squares method L(f(x),y) =
(f(z)—y)?, with bounded response: L(f(z),y) < M? for some M > 0. Let F be a
convex function class (that is, for any fi, f» € F,and a € (0,1), afi+(1—a)fs €
F), and define the optimal function in F as:

fopt = arg 1}161.71:—1 E(LU)NDL(f(‘T)) y) (315)

Let z = (z,y), and

G ={0(): 0(2) = L(f(2),y) — L{fope(2),9), f(x) € F}.

Then G satisfies the variance condition (3.14]) with ¢y = 0, and ¢; = 4M?. We
leave the proof as an exercise.

More generally, if F is bounded nonconvex function class with f(x) € [0, M]
for all f € F. If we assume that y € [0, M], then the variance condition may not
hold with f,, in (3.15). However, if we replace fopx by fi(z) = E[Y|X = z] in
the definition of G as follows:

then all functions in G satisfy the variance condition (3.14]) with ¢y = 0, and
c; = 2M?. Note that in general f, may not belong to F. However if the problem
is well-specified (that is, f.(x) € F), then the variance condition holds with

fopt = f*

Example 3.19 (Tsybakov’s Noise Condition). Consider the binary classification
problem on X x ) with y € {0,1}. A distribution D on X x ) satisfies the
Tsybakov’s noise condition if there exists 5 € (0,1], ¢ > 0, and ¢, € (0,0.5] so
that

Pr [|Pr(Y = 1|X) —0.5| < ] < ¢e?/0P)

X~D

for € € [0, €.

This condition says that the ambiguous points Pr(Y = 1|X) ~ 0.5 occur with
small probability. In particular, if 5 = 1, then |Pr(Y = 1|X) — 0.5| > ¢, for all
X.

Under the Tsybakov’s noise condition, for any binary function class f(w,x) :
Q2 x X — {0, 1}, the binary classification loss

P(w,z) = 1(f(w,x) #y) — 1(f(x) # y)

satisfies the following generalized variance condition, where f,(z) = 1(Pr(Y =
1]X = x) > 0.5) is the optimal Bayes classifier. There exists c¢g > 0 so that

Ezplp(w, Z2)?] < ¢ P[Ezepo(w, Z)]°. (3.16)

We leave the proof as an exercise. When = 1, this is equivalent to (3.14]) with
¢o = 0. When f < 1, it also implies the variance condition of (3.14]) with

_ 0.5.0.5/(1—3) _ -1/B
co=(1-p8)" cg, = Pegy
where v > 0 is a tuning parameter.
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3.6. UNIFORM BERNSTEIN’S INEQUALITY 45

Example 3.20. In the example of Section [3.5] there exist p dependent constants
co(p) and ¢;(p) such that the e lower bracket cover of G satisfies (3.14) with
c2 = co(p)e and ¢; = ¢1(p). The proof is left as an exercise.

Under the variance-condition , we can obtain the following uniform con-
vergence result using Bernstein’s inequality. The statement allows unbounded loss
function ¢(w, z) because the logarithmic moment generating function estimate in
Lemma[2.22|for Bernstein’s inequality allows unbounded functions. The condition
holds automatically for bounded functions such that max ¢(z) —min ¢(z) < b for
all ¢ € G.

Theorem 3.21. Assume that for all € € [0,¢0], G = {p(w, z) : w € Q} has an €
lower-bracketing cover G(e€) with Npg(€,G, L1(D)) members so that G(e€) satisfies

the variance condition .

Moreover, assume for all (z) = ¢p(w, z) € GUG(€) as a function of z € Z, the
random variable ¢(z) satisfies the conditions of Lemma([2.24 with V = Var(¢(Z)),
and Ezpd(Z) > 0. Then V6 € (0,1), with probability at least 1 — 6, the following
inequality holds for all v € (0,1) and w € Q:

(1 =7)¢(w, D) < ¢(w,5y) + €(6,6,D),

where

QID(NLB(G,g7L1(D))/5)>1/2 (3.17)

n

€(8,G,D) = inf l (I —=7)e+co <

e€(0,¢0]

(3c1 + 2v9b) In(Np (€, G, L1(D))/9) ]
+ .
6yn

Proof For any € > 0, let G(e) = {¢1(2),...,0n(2)} be an € lower bracketing
cover of G with N = Nyg(¢,G, L1(D)).

Using Bernstein’s inequalities and the union bound, we obtain the following
statement. With probability at least 1 — 4, the following inequality holds for all

Ezpd;(Z Z 6, \/ 2VarZND¢j< ) In(N/6) bln(N/é)
L Z o2 2c) lnnN/5 2¢q| EZND¢] Z)|In(N/5) bln(N/é)
S%Z(ﬁj(zz‘)-i-co szV/(s +VE s (Z) + 1 II;SZ/(S) blné];[/é)

(3.18)

The derivation of the first inequality used Bernstein’s inequality. The derivation
of the second inequality used the fact that ¢;(z) satisfies the variance (3.13)), and
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CHAPTER 3. UNIFORM CONVERGENCE 46

used the inequality va + b < v/a + Vb to simplify the result. The derivation of
the third inequality used v2ab < ya + (b/27).
Therefore for all w € Q, let j = j(w), we obtain
(1 - 7>EZND¢(U)7 Z)
<1 =7)Ez.p9;(Z) + (1 —7)e

" n 1/2 c n
! S 6,20+ (21 (N/(S)) L Bert 2gb)1 (/) |y,
n n yn
n n 1/2 1 n
S e (2O B D)

In the above derivation, the first inequality and the third inequality used the
definition of lower bracket cover. The second inequality used (3.18]). This implies
the desired bound. O

Similar to Corollary we can obtain from Theorem [3.21] and Lemma [3.11
the following oracle inequality.

Corollary 3.22. Let w, = argming,eq Ex y)opL(f(w, X),Y), and assume that
the conditions of Theorem[3.21] hold with ¢(w,z) = L(f(w,z),y) — L(f(w.,z),y).
Then, with probability at least 1 —§, the approximate ERM method satisfies
the following oracle inequality

E(ny)NDL(f(wa X)? Y) < E(X,Y)NDL(f(w*7 X)7 Y) + 2(69{5<67 ga D) + 6/)7

where €7(0,G, D) is given by (3.17)).

Proof Theorem implies the following. V§ € (0, 1), with probability at least
1-0

(1=7)¢(w, D) < ¢(w, Sy,) + €,(6,G, D).
Since the approximate empirical risk minimizer satisfies
P(, Sy) < €,
we obtain
(1=7)¢(w,D) <€ +€(5,G,D).
This implies the desired bound with v = 0.5. O
We use the following example to illustrate Corollary

Example 3.23. Consider the example of Section We consider the following
modified definition of ¢(w, z):

d(w, 2) = 1(f(w,z) # y) = 1(f (w., z) # y),

and the functions ¢’ (z) = ¢;(2)—1(f(w., ) # y) with ¢;(z) defined in Section
form an e lower-bracketing cover of {¢(w, z) : w € [0,1]}. Example implies
that for this cover, the conditions of Theorem hold for € < ¢ with ¢2 =
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3.6. UNIFORM BERNSTEIN’S INEQUALITY 47

co(p)eo, c1 = c1(p). We may also take b = 2. By taking v = 0.5, ¢ = ¢y = 2/n,
€ =0, together with Ny 5(€,G, L1(D)) < (n+ 2)/2, we obtain

€(5/2,6,D) = O <h1(”n/5)) .

Note also that E(x yywp 1(f(ws, X) #Y) =1 — p, we obtain from Corollary
that with probability at least 1 — §:

Exypl(f(0,X) #Y) < (1—-p)+ 0O (W) :
This shows the ERM method has generalization error converging to the Bayes
error at a rate of O(Inn/n). This result achieves a better convergence rate than
those in Section when p € (0.5,1). The rate O(lnn/n) can be improved to
O(1/n) using a slightly more refined technique referred to as “peeling”. We leave
it as an exercise.

Example 3.24. In general, for bounded parametric function classes with d real-
valued parameters (such as linear models f(w,z) = w'x defined on a compact
subset of R?), we expect the entropy (more details can be found in Section
to behave as

In Ny g(e,G, L1(D)) = O(dIn(1/¢)).

Assume that the variance condition (3.16)) holds. Then it implies (3.14)) with
appropriate tuning c¢q and ¢;. By optimizing the trade-off between cq and ¢y, it can
be shown that the generalization bound in Corollary implies a convergence
rate of

d 1/(2-8)
EnL(f(i, X),Y) < EpL(f(w., X),Y) + O ((mm/@) ) |

n

Example 3.25. Consider the parametric least squares regression problem with
either a convex or a nonconvex but realizable function class F. Example
implies that the variance condition holds with f,,.(z) € F. Example shows
that by using Corollary [3.22] we obtain with probability at least 1 — ¢:

M?In(n/6) ) |

EpL(f(X),Y) < EpL(fops(X),Y) + O ( .

where f is the empirical risk minimizer in F with the least squares loss.
However, if the function class F is nonconvex, then the variance condition does
not hold with respect to fop, when the model is misspecified (that is when f,(z) =
Ely|z] ¢ F). This implies a convergence rate of O(1/y/n) when competing with
fopt- In fact, even for problems with two functions, one can obtain a convergence
no better than O(1/4/n) for least squares problem in the worst case. For example,
we can assume f,(X) =0, and assume Y ~ N(0,1). Consider F = {fi, fo}, with
Jopt(X) = fi(X) = —1 and fo(X) =1+ 1/y/n. Then with n observations, ERM
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CHAPTER 3. UNIFORM CONVERGENCE 48

will choose f, with constant probability, which implies a test loss that is Q(1/+/n)
worse than the optimal function f.,. = f1 (also Proposition [8.12). This suggests
the importance of convex function classes for least squares regression.

For nonparametric function classes such as kernel methods, we generally expect
the entropy to grow polynomially in 1/€ as

In Npg(e,G, L1(D)) = O(1/€?)

for some ¢ > 0 (see Chapter. Another way to view nonparametric models is that
the “effective dimension” of nonparametric models depends on the approximation
scale €, and it increases as d ~ 1/e? when ¢ — 0.

Example 3.26. Let G be the class of monotone functions [0,1] — [0, 1]. Then
the low bracketing entropy of G satisfies In N 5(€,G, L1(D)) = O(1/¢).

In the case of nonparametric functions, Corollary may not be tight. It
can be improved by using a technique called “chaining”, which requires the use
of Ly(D) bracketing number (see Definition [3.27), instead of the L, lower brack-
eting number considered here. In this book, we will only explain the chaining
technique for Ly-empirical covering numbers in Chapter [4] A similar analysis for
Lsy-bracketing numbers can be found in (van der Vaart and Wellner, 1996)).

3.7 General Bracketing Number

In some applications, we are interested in two-sided uniform convergence, which
bounds the error

sup ‘(b(wa Sn) - (b(w?,D)’

we

In order to obtain such a uniform convergence result, we may employ two-sided
bracketing cover defined as follows.

Definition 3.27 (Bracketing Number). Let G = {¢(w,-) : w € Q} be a real-
valued function class, equipped with a pseudometric d. We say

G(e) = {[¢1(2), 81 (2], .- -, [on (2), #X (2)]}

is an e-bracket of G under metric d if for all w € 2, there exists j = j(w) such
that Vz:

¢;(2) < d(w,2) < ¢ (2),  d(gy.¢]) <e

The e-bracketing number is the smallest cardinality Njj(e, G, d) of such G(e). The
quantity In Nj(e, G, d) is called e bracketing entropy.

In particular, given a distribution D and p > 1, we define L,-seminorm in
function space as

1f = Flle,o) = Bzonl £(2) — F(2)|7]". (3.19)
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3.7. GENERAL BRACKETING NUMBER 49

It induces a pseudometric, denoted as d = L,(D), and the corresponding brack-
eting number is Ny(e,G, L, (D)).

For p = oo, the L., (D)-seminorm is defined as the essential supremum semi-
norm, which leads to the pseudometric

d(f, ') = inf{w: Prp[|f(Z2) = f(Z2)] < w] =1},

However, when p = oo, instead of using the L., bracketing number, it is more
conventional to use the equivalent notion of L., covering number (see Proposi-
tion .

We have the following relationship of lower bracketing number and bracketing
numbers with different norms.

Proposition 3.28. We have for all p > 1:

Nin(e,G.L1(D)) < Ny(€.G, Li(D)) < Ny(e, G, L,(D)).

Proposition implies that Theorem also holds for the L,(D) brack-
eting numbers (p > 1). Under the variance condition, Theorem also holds
for the L,(D) bracketing numbers (p > 1). It follows that Theorem and
Theorem [3.21| applies for all Ny(e,G, L,(D)) with p > 1. However, for p > 2,
one may use the chaining technique to derive better uniform convergence bounds
than that of Theorem We will not develop such refined analysis for brack-
eting numbers in this book because bracketing numbers are not used as widely
as empirical and uniform covering numbers in the machine learning literature.
We will thus only derive the consequence of the chaining analysis for Ly-uniform
covering numbers in Chapter 4| The analysis for the bracketing numbers, using
Bernstein’s inequality, will be similar.

We also have the following property of bracketing numbers, which can be used
to derive bracketing numbers for compositions of function classes.

Proposition 3.29. Consider function classes F and G. For any real number «
and 3, define the function class

aF + BG ={af(2) + Bg(z): f € F,g € G},
then
In Ny(|aler + |Blex, oF + BG, L, (D)) < In Ny(er, F, L,(D)) + In Nyy(e2, G, L,(D)).

Moreover, let (a) : R — R be a Lipschitz function: |¢(a) — ¥(b)| < v|a —b|. Let
O(F) = {0(f(2)) : f € F}, then

In Ny(ve, ¥(F), L,(D)) < In Ny(e, F, L,(D)).
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CHAPTER 3. UNIFORM CONVERGENCE 50

3.8 Historical and Bibliographical Remarks

The theory of empirical process was started from the study of the convergence
property of empirical distributions of real valued random variables. In our nota-
tion, this corresponds to the choice of function class ¢(w,z) = 1(z < w), where
w € R and z € R. It was shown in (Cantelli, |1933} |Glivenko| [1933) that the uni-
form law of large numbers hold for this function class. Therefore function classes
that satisfy the uniform law of large numbers are also called Glivenko-Cantelli
classes. Similar to Theorem [3.14] it can be shown (see|[van der Vaart and Wellner)
chapter 2.4) that G is a Glivenko-Cantelli class under distribution D if

Ve > 0, N[](e,g,Ll(D)) < Q.

One can further prove a functional extension of the central limit theorem for

certain empirical processes (Donsker],[1952), and function classes that satisfy such
central limit theorems are called Donsker classes. It is known (see Chapter 2.5 of

van der Vaart and Wellner, [1996) that G is a Donsker class if

/OO VI Ny(€.G. Ly(D)) de < c.
0

We will not consider central limit theorems in this book, and refer the readers
to (van der Vaart and Wellner} |1996]) for further readings on empirical processes.

The first use of empirical process to analyze empirical risk minimization is
attributed to [Vapnik and Chervonenkis (1968}, [1971) during the late 1960’s.
The theory is also referred to as the VC theory, which was described in some
recent papers and books by [Vapnik| (1999, 2013)). The modern theory of machine
learning covers a much broader range of techniques and problems. The PAC
learning framework, introduced by , incorporated computational
constraints into statistical learning. The theoretical study of machine learning
algorithm with computational constraints is often referred to as computational
learning theory.

The variance condition and its extension in are widely used in
the recent learning theory literature to obtain faster than O(1/4/n) convergence
rates for ERM. In particular, for binary classification problems, the condition
is implied by the Tsybakov’s noise condition of Example [3.19] (Mammen and|
'Tsybakov, 1999; Tsybakov, 2004)).
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3.1

3.2

3.3

3.4
3.5
3.6
3.7

3.8
3.9

3.10
3.11

Exercises

Assume that E; (j =1,...,m) are independent events. Prove

2

m m
Pr(EyU-UEpR) >y Pr(E;) —05 > Pr(E))
j=1 j=1

Describe a computationally efficient learning algorithm for Decision List, and show that
it is PAC learnable.

In Section if we assume that all functions ¢ € G U G(e) are sub-Gaussians. That is,
there is a constant V' so that

)\2
+7

Bz exp(\(2)) < NEG(Z) + 5 V.

Derive an oracle inequality for approximate ERM in the form of Corollary 3.1.

Prove Example

Prove Example [3.19]

In Example compute cg(p) and c1(p).

Consider Example We illustrate how to remove the Inn factor in the resulting gen-
eralization bound using the peeling technique, which considers a sequence of local covers.
Let €g = c¢In(4/68)/n for a sufficiently large constant c. For £ =1,2,..., let ¢y = 2660, and
define Qp = {w : ¢(w, D) € [ep, €441]}-

e Show that Gy = {¢(w, 2) : w € Q} has a constant €;/4-bracketing cover.

e Apply Theoremto Gy (€ > 1) and show that when c is sufficiently large and v = 0.5:

en(0/(L(€+1)),Gp, D) < (1 = y)ee.

Show that this implies Pr(Vw € Qy : ¢(w,Sp) > 0) > 1—35/(£(€ + 1)).

e Show that with probability at least 1 — ¢, the empirical risk minimizer w ¢ €, for all
¢ > 1. This implies that with probability at least 1 — §: ¢(w, D) < 2¢p.

Prove Example [3.24

Consider a modification of the Example in Section [3.5] where we assume that the condi-

tional probability in (3.12)) is replaced by
Pr(y = 1jz) = 0.5 4+ 0.5(z — w«).

Show this example satisfies an appropriate Tsybakov noise condition, and use this condi-
tion to derive a variance condition (3.16)). Derive the corresponding oracle inequality using
Corollary

Prove Example
Prove Proposition [3.29]
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4

Empirical Covering Number Analysis and
Symmetrization

In the seminal paper of Vapnik and Chervonenkis (1971)), a mathematical theory
was developed to analyze the generalization performance of binary classification
algorithms. It influenced the development of computational learning theory, in-
cluding PAC learning described in Chapter 3] An essential component of the
analysis is a bound on the empirical covering number of binary functions (which
can be considered as a family of sets) using VC-dimension; another essential com-
ponent is the uniform convergence analysis using empirical covering numbers.

In Chapter [3, we have shown uniform convergence results can be established
using lower-bracketing covers, which directly estimate the number of functions
over the unknown test distribution. To analyze empirical covering numbers, we
need to introduce an additional technique, leading to the analysis of symmetrized
empirical processes. The symmetrization method is also used in the analysis of
Rademacher complexity, which is studied in Chapter [6]

In this chapter, we will consider a version of the symmetrization argument
for empirical covering numbers. The key idea is to consider a validation set of
size n, and analyze the empirical validation performance on the validation data,
with model trained on the training data of size n. The uniform convergence
is with respect to the convergence of training loss to the validation loss under
random assignments of pairs of data to training and validation sets. We show
that the uniform convergence with respect to the validation data can be used to
derive a generalization bound on the test distribution. We note that the method
for partitioning a dataset randomly into training and validation subsets is also a
technique heavily used in the empirical evaluation of machine learning algorithms.
A typical scheme in practice employs random permutation. The permutation
argument was also used in the original analysis of |Vapnik and Chervonenkis
(1971). We will not study the permutation technique, but rather employ the
related symmetrization argument instead of permutation because it is also used
in the Rademacher complexity analysis (see Chapter @

4.1 Metric and Empirical Covering Numbers

We introduce metric covering numbers on a general pseudometrics space as fol-
lows.

Definition 4.1. Let (V,d) be a pseudometric space with metric d(-,-). A finite
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set G(e) C V is an € cover (or € net) of G C V if, for all ¢ € G, there exists
@' € G(e) so that d(¢’,¢) < e. The e-covering number of G with metric d is the

smallest cardinality N (e, G, d) of such G(¢). The number In N (¢, G, d) is called the
e-entropy.

For a function class G with seminorm L,(D) in (3.19)), we denote the corre-
sponding L,(D)-covering number as N(e,G, L,(D)). When 1 < p < ¢, we have

N(e,G. L, (D)) < N(e, G, L,(D)).

It is easy to verify the following relationship, which implies that L,(D) brack-
eting cover is a stronger requirement than L,(D) cover.

Proposition 4.2. The following result holds:
N(e, G, Ly(D)) < Ny(2¢,G, Ly(D)).

Proof Let {[¢1(2), Y (2)]...,[¢%(2),¢%(2)]} be an 2¢ L,(D)-bracketing cover
oi Cg/ Let ¢;(2) = (o5 (2) + ¢ (2))/2, then {¢1(2),...,¢n(2)} is an € LP(D)—coveDr

The following result shows that with p = oo, the reverse of Proposition
holds. That is, the L. (D) bracketing cover is equivalent to L., (D) cover. This
means that the analysis in Chapter [3| which employs lower bracketing number,
can be applied to L., (D) covering number as well.

Proposition 4.3. We have
Ny(€,G,Loo(D)) = N(€/2,G, Loo(D)).

Proof Let {¢;} be an ¢/2 Lo (D) cover of G. Let ¢% = ¢; — €/2 and ¢} =
¢; + €/2. Then [¢F, ¢] forms an € bracketing cover. The reverse is also true as
in Proposition [4:2] O

The above result implies that L., (D) covering number leads to an upper bound
of L;(D) bracketing number. Consequently, one can obtain uniform convergence
result using L., (D) covering number as indicated by Theorem However, one
cannot directly obtain uniform convergence using L, (D) covering number directly
with p < co. In order to do so, one needs to introduce the concept of empirical
and uniform covering numbers.

Definition 4.4 (Empirical and Uniform Covering Number). Given an empirical
distribution S,, = {Z1, ..., Z,}, we define the pseudometric d = L,(S,,) as

o 1/p
=D 16(Z) = # (2
nis
The corresponding metric covering number N (¢, G, L,(S,)) is referred to as the
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CHAPTER 4. EMPIRICAL COVERING NUMBER ANALYSIS 54

empirical L, covering number. Given n, the largest L, covering number over
empirical distribution S, is referred to as the uniform L, covering number

N,(e,G,n) = sgp N(e,G,L,(Sy)).

Since the L,(S,) pseudometric increases with p, we have the following simple
result.

Proposition 4.5. For 1 < p < q, we have
N(€,G, Lp(Sn)) < N(€,G, Ly(Sn)),
and
N,(e,G,n) < N,(€,G,n).

We will later show that the uniform L; covering number can be used to obtain
uniform convergence and oracle inequalities. First, we show that it is easy to
obtain an estimate of the empirical L., covering number for linear classifiers,
which implies a bound on the uniform L; covering number.

Example 4.6. Consider {0, 1} valued linear classifiers in d dimension of the form
fw,z) = L(w'z > 0), where w € Q = R? and € X = R?% Let Y € {0,1}, then
classification error is ¢(w, z) = 1(f(w,x) # y), where z = (x,y). Note that it is
difficult to obtain bracketing cover for such problems with arbitrary D. However
it is easy to obtain L., empirical covering number. A general bound of uniform
L, covering numbers can be obtained using the concept of VC-dimension. One
may also use convex optimization to obtain a bound for linear classifiers as

Noo(gve’n) < (2n)d7
with € = 0. See Exercise [£.4]

4.2 Symmetrization

Using the notations in Chapter |3 we let Z = (X,Y). Consider the setting that
we observe training data S,, = {Z1,..., Z,}, drawn independently from D, and a
separate validation data S/, = {Z;, ..., Z/}, also drawn independently from D.

Given a function f(Z), we may define the training loss and the validation loss
as

S =2 S 1@, IS) =1 Y 1(2)

Z€S, zes),

for each partition (S,,S),). A natural question is how to bound the validation
loss in terms of training loss. Note that such a validation result can be naturally
converted into a generalization result with respect to the test distribution D.

In the symmetrization argument, we bound the validation loss using the uni-
form convergence of symmetrized empirical process, which is defined as follows.
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4.2. SYMMETRIZATION 55

Since the symmetrized empirical process only depends on the empirical data S,
it can be analyzed using covering numbers on the empirical data.

Definition 4.7. Consider a real-valued function family F : Z — R. Consider n
iid Bernoulli random variables o; € {£1}, where Pr(o; = 1) = Pr(o;, = —1) = 0.5.
The symmetrized empirical process is

f0.8) =123 0f(Z)  feF,

where the randomness is with respect to both S,, = {Z,;} and ¢ = {0;}.

Note that in order to bound the symmetrized empirical process, we only need
a covering number result on S,,. Therefore the symmetrization analysis allows us
to work with empirical covering numbers. Next we will show that a bound on
the symmetrized empirical process can be used to obtain uniform convergence
of the empirical process {f(S,) : f € F} to the corresponding result on the
validation data. Since one can relate the validation loss of a learning algorithm
to its generalization error on the test data, we can use this result to obtain
generalization bounds.

The following lemma shows that if we can obtain an upper bound on the
symmetrized empirical process {f(o,S,) : f € F}, and the upper bound satisfies
a superadditive property, then we can obtain the uniform convergence of the
empirical process {f(S,) : f € F} on the training data S,, to the corresponding
result on the validation data S;,.

Lemma 4.8 (Symmetrization). Consider a real valued function family F = {f :
Z — R}. Assume there ezists a function ¢ : F x Z" — R and €, : (0,1) - R so
that with probability at least 1 — 0

VieF, f(o,8.) <v(f,8n)+ e(d),

where the randomness is over both S, ~ D™ and o. If there exists 1Z(f, S, US))
so that the following superadditive inequality holds for all (S,,S))

U(f,Sa) +U(f.SL) < O(f, S, US)),

then with probability at least 1 — & over independent random data (S,,,S)) ~ D?":

VEEF, f(SL) < f(Sh)+d(f, S, USL) +26,(5/2).

Proof Consider independent random samples (S,,,S!,) ~ D?". The distribution
of f(S,)— f(S)) is the same as that of f(0,S,)— f(0,S),), and the latter contains
additional randomness from Bernoulli random variables o, drawn independently

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. (©)2021-2023 Tong Zhang



CHAPTER 4. EMPIRICAL COVERING NUMBER ANALYSIS 56

of (S,,S),), as in Definition It follows that

3 € F,£(S) > [(S2) + B8, US,) +26(5/2))

Pr(
=Pr (Elf € F, f(0,S,) > f(o,Sn) +{l}v(f’$nUS’:L) +26n(5/2)>

EPr|3f € F f(0.8)) > 1(0.8.) + (0(F.82) + (£, SL) + 260(5/2)

Eo

P [3f € F.f(0.80) > 0(£.51) + ea(6/2)

E;

+Pr|3f € F,—f(0,8,) > U(f,S,) + €a(6/2)

—2Pr (3f € F, f(0,5,) > ¥(f.Sn) + €a(6/2)) < 2(5/2).

In the above derivation, the first equation used the fact that f(S,) — f(S),) and
f(o,S8,) — f(0,S]) have the same distributions. (a) used the assumption ¥(S,,) +
W(S) < (S, US,). (b) used the union bound, and the fact that if event Ej
holds, then either event E; holds or event E5 holds. The next equation used the
symmetry of —f(o,S,,) and f(0,S,,), and the last inequality used the assumption
of the lemma. The result implies the desired bound. O

Lemma shows that symmetrized empirical process can be used to obtain a
uniform convergence result of a properly defined training statistics (e.g. training
loss) to validation statistics (e.g. validation loss). The following example illus-
trates the consequences.

Example 4.9. We may take ¢ = {ﬁv = 0 in Lemma Assume we have the
following bound for the symmetrized empirical process:

VfeF, [flo,8n) < end),
then with probability at least 1 — §:
VieF, [(5,) < F(8)+26u(6/2).
Example 4.10. In Lemma we may also take v € (0,1). Let

g - o / - ’
V(RS =S = LI H(Z), WS US) = 132 + £(2).
i=1 i=1
Assume that we have the following bound for the symmetrized empirical process:

with probability at least 1 — ¢,
VieF, [f(0,8:)<7f(Sn)+enld),
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then we obtain with probability at least 1 — §:

VieF, (1=7)f(S,) <A +)f(Sn)+2.(6/2).

The following result can be used with Lemma to obtain the uniform con-
vergence of training statistics to the test statistics (e.g. test loss). The resulting
bound can then be used with Lemma to obtain oracle inequalities for em-
pirical risk minimization.

Lemma 4.11. Let ¥y : F X 2" - R, Yyu : F X Z" = R, gy : F XD —
R be appropriately training (where D denotes probability distributions on Z),
validation, and test statistics. Assume that for any 6, € (0,1), the following
uniform convergence result holds. With probability at least 1 — §; over randomly
drawn training and validation sets (S,,,S!,) ~ D*":

Vf S F : wval(fv 87/1) S wtrn(f7 Sn) + 6;(51)
Moreover, assume Vf € F, we have with probability 1 — 05 over randomly drawn

S! ~D:
¢tst(f7 D) S Qj)vaul(fa S:L) + 63(52)

Then the following uniform convergence statement holds. With probability at least

1-— 61 - 62;
VfeF: Yuse(f, D) < Yunl(f,Sn) + 6,11(51) + 62(52)-

Proof Let Q(f,S,) = Vit (f, D) — Yien(f, Sn) — (€1.(61) +€2(d2)), and let E be the
event that sup;.» Q(f,S,) < 0. We pick f(S,) € F so that if £ holds, then we

choose an arbitrary Q(f(S,),S,) < 0, and if E does not hold, we choose f(S,) so

~

that Q(f(S,),S,) > 0. We consider sample (S,,,S!) ~ D?". For simplicity, in the
following, we let f = f(S,). The uniform convergence condition of the theorem
implies that with probability at least 1 — d;, the following event holds:

El : wval(fy‘syll) S wtrn<f7 Sn) + 631(61)

Note that the validation data S), is independent of the training data S,,. Therefore
S, is also independent of f. Therefore the condition of the theorem implies that
with probability at least 1 — §,, the following event holds:

By: ([, D) < ([, S)) + €2(3s).
If both events F; and E5 hold, then
Yot (f, D) <t (f, S)) + €2(35)
<Pan(f,80) + €3(51) + €(62).

The definition of f implies that E holds. Therefore Pr(E) > Pr(E,&E,) > 1 —
61 — 65. This implies the desired bound. O
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In the literature, one can also obtain a different bound by considering the Inde-
pendence relationship between f and F,. We leave the derivation as an exercise.

4.3 Uniform Convergence with Uniform L, Covering Number

Using the same notations of Chapter [3| we consider a function class
G = {p(w, =) s w e Q)

with ¢(w, S,,) and ¢(w, D) defined in and (3.6). We can obtain the following
uniform convergence bounds, which are analogous to the results of Theorem [3.14
Here we simply replace L;(D) lower bracketing number by the L; uniform cov-
ering number. It is also possible to relax the requirement of uniform covering
number by assuming the bound holds with large probability. We do not consider
such analysis for simplicity.

Theorem 4.12. Assume that ¢(w,z) € [0,1] for all w and z. Then given § €
(0,1), with probability at least 1 — ¢, the following inequality holds:

Yw € Q: ¢(w,D) < p(w,S,) + €,(0),

where

€n (5) - lgg 2n

26+3\/ln(3N1(6,g,2n)/5)] '

Moreover, for any v € (0,1), with probability at least 1—§, the following inequality
holds:

Vw € Q: (1 —v)2¢(w, D) < p(w,S,) + €,(9),

where

€,(0) = inf [26 +

e>0

(5 —47v)In(3N, (e, G, n)/é)}
2yn )

Proof Let F = {f(2) = ¢(w,z) — 0.5 : w € Q}. Given S,,, we consider an e-
L(S,) cover F.(S,) of F, of size no more N = N;(¢,G,n). We may assume that
f(Z;) € [-0.5,0.5] for f € F.(S,). From Corollary (with a; = 0.5) and the
union bound, we obtain the following uniform convergence result over F.(S,).
With probability 1 — §:
In(N/d
V€ FuSa) : f(0,8,) < “(271/)
Since for all f € F, we can find f’ € F.(S,) sothat n™' Y, s |f(Z)—f'(Z)| <€
for all Z € S,,. It follows that
In(N/o)

f(O’,Sn)Sf/(O',Sn)-i—ESE-F T

Using Lemma[4.8 with ¢ = 0, this uniform convergence result for the symmetrized
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empirical process implies the following uniform convergence result. With proba-
bility at least 1 — d; over (S,,S) ~ D™

2In(2N/d
Yw e Q: op(w,S) < dlw,S,)+2 2@N/0)
N—_—— N—_—— n
hval Pern L (51)

The standard additive Chernoff bound implies that for all w € €2, with probability
at least 1 — d5:

In(1/6

6w, D) < g, 5,) + L)
—_——  — 2n
'L/}tst "bval E%L (52)

Therefore in Lemma we can take symbols as defined above, together with
91 = 20/3 and 0, = 0/3 to obtain the desired bound.

Similarly, we consider F = {f(z) = ¢(w,2) : w € Q}. Given S,,, we consider
an e-L(S,,) cover F.(S,,) of F, of size no more N = N;(¢,G,n). We assume that
f(Z:) € [0,1] for all f € F.(S,). From Corollary and the union bound, we
obtain the following uniform convergence result over F(S,,). With probability at
least 1 — §:

Ve F(S,): f(o,5,) <

\/ 2 ,cs. [(Z)? In(N/3)

<7*Zf 2725)-

The first inequality used Corollary The second inequality used v2ab <
Ya+b/(29) and f(Z)* < f(Z). Since for all f € F, we can find [’ € F.(S,) so
that 5, ¢ |f(Z) — f'(Z)| < e. It follows that

f(o,8n) <f’(0 Sn) +

1 In(N/9)
< Z%;f TR
<7f S f(z)+ N/‘;) + (147
ZESn

Now, with ¥(f,S,) = ¥(f,S,) = Y'Y ses, f(Z), we obtain from Lemma
the following uniform convergence result. With probability at least 1 — §; over

(S,,S),) ~ D>

In(2N/6;)
Ynoo

Let 4" = 7v/(2—7), then it is easy to check algebraically that (1—~")/(1+7') = 1—v

Vw e Q: (1-9)p(w,S,) < (L+7)d(w,S,) +2(1 ++)e +
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CHAPTER 4. EMPIRICAL COVERING NUMBER ANALYSIS 60

and 1/(+'(14+7)) = (2 —7)?/(27). We thus obtain:

(2—17)*In(2N/6,)
2yn ’

YVwe Q: (1 —7)o(w,S)) < o(w,S,) + 2€+
—_—
Pval Vern

(4.1)

€5, (61)

The standard multiplicative Chernoff bound in (2.11]) implies that with proba-
bility 1 — §5:

(1= 21— )6, D) < (1= ). S0) + (1 - 9) 25 L)
Pre thval
7 (52)

Therefore in Lemma [4.11} we can use symbols as displayed above, together with
91 = 20/3 and 0, = 0/3 to obtain the desired bound. O

Using Lemma the following oracle inequalities can be obtained from The-
orem [£.12] The result is analogous to Corollary with a similar proof. We
will thus leave the proof as an exercise.

Corollary 4.13. If ¢(w, z) € [0,1]. Let G = {¢(w, 2) : w € Q}. With probability
at least 1 — 6, the approzimate ERM method (3.3)) satisfies the (additive) oracle
inequality:

Ezpp(w, Z) < llég Ezwpp(w,Z) + €

2€+\/81n(4N1(e,g,n)/5)]‘

+ inf
e>0 n

Moreover, we have the following (multiplicative) oracle inequality for all v €
(0,1): with probability at least 1 — 6,

(1 —7)’Exy)pd(w, Z) < Uljlég(l +V)Ex,yv)~pd(w, Z) + €
(6 — 3v)In(4N, (e, G, n)/é)}

+ inf [26 +
€>0 2yn

Example 4.14. Consider the linear classifier example in Example Since
In Noo(€,G,n) < dIn(2n), it follows that for the ERM method, we have the fol-
lowing oracle inequalities. With probability at least 1 — §:

EpL(f(,X) #Y) < inf Epl(f(w,X)#Y) + \/8(111(4/5) +dIn(2n))

n

Moreover, by optimizing the multiplicative bound over v from the set v € {i/n :
i € [n]}, and take a union bound, we can obtain the following inequality. With
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probability at least 1 — §:
Epl(f(w,X)#Y) <err,
—1 -1
\/err* In(6=') + dln(n) N In(6~') + dln(n)

n n

+C

)

where C' is an absolute constant and

erT, = irégED]l(f(w,X) #Y).

4.4 Vapnik-Chervonenkis Dimension

Let G = {¢p(w,2) : w € Q} be a {0,1} valued binary function class of z € Z
indexed by w € . Given an arbitrary set of n samples S, ={Z1,...,2,} € 2",
we are interested in the number of functions (uniform L., cover of the function
class at e = 0) that G(S,,) = {[¢(w, Z1),...,¢(w, Z,)] : w € Q} can achieve. We
introduce the following definition of [Vapnik and Chervonenkis (1971)).

Definition 4.15 (VC-dimension). We say that G shatters S,, if the number of
elements |G(S,,)| is 2". That is, we can always find w € Q so that ¢(w, z) matches
any arbitrary possible choice of {0,1}" values at the n points. The maximum n
such that G shatters at least one instance of S,, € Z", denoted by vc(G), is called
the VC-dimension of G.

Note that the maximum number of functions in G(S,) is 2". If n > d, then
for any n samples S,,, G(S,,) contains fewer than 2" elements. Surprisingly, if a
binary-valued function class G has VC dimension d, then when n > d, the size of
set G(S,) can grow only polynomially in n. This gives an O(dInn) upper bound
on the uniform entropy of the function class G with a finite VC-dimension (see
Vapnik and Chervonenkis, 1968, 1971} [Sauer, [1972).

Lemma 4.16 (Sauer’s Lemma). If ve(G) = d, then we have for all n > 0 and
empirical samples S,, = {Zy,...,Z,} € Z":

GSHI <D (Z) < max(2,en/d)".

Proof First, we prove the statement under the assumption that |G(S,,)| is upper
bounded by the number of subsets of S, (including the empty set) that are
shattered by G. Under this assumption, since any subset shattered by G cannot
be larger than d by the definition of VC-dimension, and the number of subsets of
size ¢ is (Z), we know that the number of subsets shattered by G cannot be more

than Y7 (). When n > d, we have (see Exercise

3 (’;) < (en/d)". (4.2)

£=0
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CHAPTER 4. EMPIRICAL COVERING NUMBER ANALYSIS 62

When n < d, we have ZZ:O (’Z) < 24, This implies the desired result.

In the following, we only need to prove the statement that |G(S,)| is upper
bounded by the number of subsets of S,, that are shattered by G. This can be
proved by induction on n. When n = 1, one can check that the claim holds
trivially.

Now assume that the claim holds for all empirical samples of size no more than
n — 1. Consider n samples {Z,...,Z,}. We define

¢(w7 Sk) :[¢(wv Zl)’ ) ¢(wa Zk?)]v
gn—l(Sn> = {[¢(w78n—1)7 1] : [(b(w? Sn—l)a 0]7 [¢(w7 Sn—h 1] € g(Sn)} .

Using the induction hypothesis, we know that |G,_1(S,,)| is bounded by the num-
ber of shattered subset S C §,,_1; for each shattered S C S,_1, SU{Z,} is
shattered by G(S,,) because both [¢(w,S,_1),1] and [¢(w,S,_1),0] belong to
G(S,). Therefore |G,,_1(S,,)| is no more than the number of shattered subsets of
S,, that contains Z,,.

Moreover, since for ¢(w, ) € G(S,) —Gn_1(Sn), ¢(w, Z,) is uniquely determined
by its values at S,,_; (if not, then both [¢(w,S,_1),0] and [¢(w,S,_1),1] can be
achieved in G(S,,)—G,,_1(S,), which is impossible because by definition, we should
have put [¢p(w,S,_1),1] in G, 1(S,)), it follows that |G(S,,) —G,_1(S,)]| is no more
than |G(S,-1)|- By induction hypothesis, |G(S,—1)| is no more than the number
of shattered subsets of S,, that does not contain Z,,. By combining the above two
facts, |G(S,)| is no more than the number of shattered subsets of S,,. O

Sauer’s lemma implies the following oracle inequalities for problems with finite
VC dimensions. It is a direct consequence of Corollary [4.13]

Theorem 4.17. Assume L(-,-) € {0,1} is a binary valued loss function. Let
G = {L(f(w,x),y) : w € Q}, with a finite VC-dimension vC(G) = d. Given
n > d, and consider the approzimate ERM method (3.3|), with probability at least
1-4:

EpL(f(i,X),Y) < inf EpL(f(w,X).Y)

N \/Sdln(en/d) + 81n(4/9)

n

Moreover, for all v € (0,1), with probability at least 1 —§, the following inequality
holds

(1 =)’EpL(f(, X),Y) < inf (1+5)EpL(f(w, X),Y)+

I (6 — 3v)(dIn(en/d) + 1n(4/5)).
2vn

Proposition 4.18. Consider d-dimensional {0, 1} valued linear classifiers of the
form F = {f,(x) = 1(w "z > 0),w € R}, we have VC(F) = d. This implies that
d-dimensional linear classifier G = {1(f,(X) #Y),w € R} has VC dimension
ve(G) =d.
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Proof Since it is easy to find n = d points shattered by F, we only need to show
that any n = d + 1 points cannot be shattered by linear functions.

Let the d + 1 points be z1,...,24:1. Then we know that they are linearly
dependent. Therefore there exists d + 1 real valued coefficients aq, ..., a4, that
are not all zeros, such that a1z + -+ 4+ agi12441 = 0 and we can assume that
there exists at least one a; such that a; > 0.

In order to show that x;,...,x4,1 cannot be shattered by n points, we only
need to show that there is no w € R? such that

L(w'z; >0)=0 (a;>0); I(w'z; >0)=1 (a; <0),

which implies that a particular set of function value on these points cannot be
achieved. We prove this by contradiction. Assume the above function values can
be achieved, then a;w"x; < 0 for all i. Since there is at least one a; > 0, we know
that for this j, a;w'z; < 0. Therefore

d+1

Z a;w' z; < 0.
i=1

However, this is a contradiction to the fact that a;xy + -+ - + agp12441 = 0. O

Note that results of Theorem holds uniformly for all distributions D.
Therefore concept classes with finite VC dimensions are PAC learnable by ERM
if we assume that it is computationally efficient to solve ERM. On the other hand,
if the VC dimension of a concept class is infinity, then for any sample size n, there
exists a distribution D with n samples, so that the concept class can achieve all
possible binary values of 2" on D. Therefore on such a distribution, the learning
of this concept class cannot be better than random guessing on some training
distributions. The following is an example of infinite VC dimension.

Example 4.19. The binary-valued function class G = {1(cos(wz) > 0) : w, z €
R} has infinite VC-dimension.

Given any d, we consider {z; = 1677 :j=1,...,d}. Let w = 2?21(1 —b;)167,
with b; € {0,1}. It is easy to verify that 1(cos(w z;) > 0) = b;. It follows that
the set can be shattered by G.

4.5 Uniform Convergence with Uniform L, Covering Number

In order to apply Lemma [4.8, we need to estimate the uniform convergence of a
symmetrized empirical process. We have shown in Section such a bound can
be obtained using the empirical L; covering number. In the following, we show
that with empirical L, covering number, one can obtain a more refined result
by using an important technique called chaining. The improvement is obtained
by considering multiple approximation scales instead of a single scale used in
Section (also in Chapter [3]). The resulting formula is often expressed in the
so-called entropy integral form, due to Dudley (1984).

While it is possible to work with empirical L, covering numbers directly, it
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is more convenient to apply Rademacher complexity and concentration inequal-
ities, as in Chapter [6] We will thus leave the analysis to Chapter [6] but list its
consequence here for comparison with the L; covering number analysis presented
earlier.

The following result is a direct consequence of the uniform convergence result of
Corollary oracle inequality of Corollary with Rademacher complexity
estimated from the L, empirical covering number in Theorem [6.25]

Proposition 4.20. Given a function class G € [0,1] . Let

dey + 12/ \/IHN(E ’%LQ(Sn))de'] ,

then with probability at least 1 — §: for all w € 2,

R(G,S,) = inf
€0>0

o(w, D) <p(w,S,,) + 2Es [R(G,S,)] + lngf)

This implies that for the approximate ERM method (3.3), we have with proba-
bility at least 1 —§:

In(2/9)
2n

¢(,D) < inf p(w, D) + ¢ + 2Es, [R(G, S,)] +2

In Proposition the average integral of Ly entropy replaces the worst case
L, entropy of Theorem If the uniform L, entropy of G is of the form

In Ny(e,G,n) = O(dIn(1/e))
as in the case of VC dimension (see Theorem , then the complexity term

which removes an Inn factor from the uniform L; entropy analysis in Section [4.3
Moreover, if uniform L, entropy of G is of the form

In Ny(e,G,n) = O(e™?) (4.3)
for some ¢ < 2, then the complexity term

Function classes with uniform L, entropy that satisfies (4.3) are Donsker classes
for which the central limit theorem holds.
In comparison, if we consider the uniform L,-covering number analysis of The-

orem and assume that
In Ni(e,G,n) = O(e?),
then the complexity term in the additive Chernoff bound is

) =10 (e Jero/mn) =,
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which implies a convergence rate slower than 1/y/n.
It is also possible to obtain fast convergence rate under the variance condition.
We will leave such derivation to Section [6.5]

4.6 Uniform Convergence with Uniform L., Covering Number

The L, covering number analysis has been used to study large margin methods
where the training loss and the test loss differ. Consider a function class F =
{f(w,x) : w € Q}, and a test loss L(f(z),y). However, instead of minimizing the
test loss directly, we try to minimize a surrogate training loss

—ZL Y)) < inf nZL )| +¢€, (4.4)

where we assume that the surrogate is an upper bound of training loss under
small L., perturbation of size v > 0:

L(f,y) = sup L(f',y). (4.5)
[f = fl<~y
In this case, one would like to bound the test loss using surrogate training loss.
An example for binary classification problem (y € {#£}) is to take the test loss
as the binary classification error L(f(x),y) < 1(f(x)y < 0), and L(f(z),y) =
1(f(z)y < =) as the margin error with margin v > 0.
The L..-covering number can be used to obtain a result similar to Theo-

rem with a similar proof.

Theorem 4.21. Assume that L(f(w,z),y), L(f(w,z),y) € [0,1] for all w and
(x,y), and both (4.4) and (4.5) hold. Then given § € (0,1), with probability at
least 1 — 6, the following inequality holds for all w € §:

BoenmnL(f(w, X),Y) <3 (7w, X.),Y)
i=1

L3 \/ln(?)Noo (7/21, F,2n) /5).

Moreover, with probability at least 1 — 0, the following inequality holds for all
w € Q:

(1= 2By L(f(0.X).Y) <33 L(f(w. X)), Y)

N (5 — 49) In(3N.(v/2, F, 2n) /)
2vn ’

Proof Given S, = {(X1,Y1),...,(X,, Y} and S, = {(X1,Y1),..., (X, Yo)},
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we consider a 7v/2-L..(S,) cover F, (S, US)) of F, of size no more N =
Noo(v/2,F,2n). Let

L'(f,y)= sup L(f'y),

[f'=fI<v/2

then for any f, f’ such that |f — f'| < /2, we have

L(f.y) = L'(f'.y) > L(f.,y). (4.6)

We obtain from Corollary (with a; = 0.5) the following uniform convergence
result over F, »(S, US),). With probability 1 — ¢:

VS € Fp(SaUS) iZnIoi[L%f(Xi),m 0] < |/ V),

i=1

Lemma (which is valid even when F in the lemma depends on S, US],) with
1 = 0 implies that with probability at least 1 — ¢;:

n

1 o 2In(2N /6,
V€ Fa(SaUS)) ZL’ XD < 5 L PUXD Y + 2hEn/n)

Since for all f € F, we can find f' € F,2(S, US,,) so that |f(z) — f'(z)| < v/2,
it follows that

% Z L(f(X)),Y)) g% Z L'(f'(X)),Y!)

Pval

iiL’(f’(Xi),m 1y 2REN/0)

n

1 2In(2N /6,
; @N/6)

;3

n
—_————
€5, (01)

Ptrn

Note that the first and the last inequalities used (4.6). The standard additive
Chernoff bound implies that for all w € ), with probability at least 1 — ds:

In(1/6
Ex vy~ L(f( Z L(f (222) :
—_——————
e - =
val

Therefore in Lemma [£.11] we can take symbols as defined above, together with
91 = 20/3 and 05 = 0/3 to obtain the desired bound.
Similarly, we obtain from Corollary the following uniform convergence
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result over 7. »(S, US,). With probability 1 — 6, Vf € F,,2(S,US,,):

LS L (X0, ) s\/ 2500, L(f(X0), Y)? In(N/0)

n2
In(N/0)
29'n

< S DU Y+

¥(f,Sn)

Then Lemma (which is valid even when F in the lemma depends on S, US)))
implies the following uniform convergence result. With probability at least 1 — d;
over (S,,8),) ~ D™

/ 11— . / / /
Vf€EF, 28 US,): n7 ZL(f(Xi)’Yi)
i=1
1+9 & ., In(2N/4,)
< L'(f(X;),Y; E——
I PSR

Since for all f € F, we can find f' € F.(S,) so that |f(z) — f'(x)] < v/2, it
follows that

S L) < Y LYY
1+ ’Y/ - 1( et ID(QN/(Sl)
< ;L(f(Xi%Yi)‘FT
149 &< - In(2N/6;)

Note that the first and the last inequalities used (4.6)). Let v/ = /(2 —+), then it

is easy to check algebraically that (1 —+')/(14++)=1—~and 1/(v'(1+7')) =

(2 —~v)?/(27). We thus obtain:

(2 —7)?In(2N/6,)
2yn ’

vie Fi S LD, Y) £ 5 Y LX) Y+

Pval wtru 6}7’(61)

The standard multiplicative Chernoff bound in (2.11]) implies that with proba-
bility 1 — §s:

(1 =)= B nL(F(X), V) < L S LX), YY)
st ~
In(1/62)
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CHAPTER 4. EMPIRICAL COVERING NUMBER ANALYSIS 68

Therefore in Lemma, we can use symbols as displayed above, together with
01 = 20/3 and 05 = 0/3 to obtain the desired bound. O

Similar to Corollary one may also obtain an oracle inequality from The-
orem which we will not state here.

Example 4.22. Consider binary classification with classifier f(w, X) € R and
Y € {£1}. The classification loss is

L(f(X),Y) = 1(f(X)Y <0),
and the margin loss for v > 0 is

L(f(X),Y) = L(f(X)Y < ).
Theorem implies that

1 — In(3Ny(v/2, F,2n)/8)
XY <0) < 3 1w XY <)+ 3¢/ >

i=1

Therefore if the function class has a finite L., norm at scale v/2, then minimizing
the margin loss leads to approximate minimization of training loss. Unlike VC-
dimension, the L., cover can be small even for infinite-dimensional systems with
proper regularization. For example, if we consider regularized linear function class
with
{f(w,2) =w ¥(z) : |wll. < A},
and assume that ||[¢(x)|]2 < B, then Theorem implies that
A?B?In(n + AB/7)

72 ’
which is independent of the dimension of w. In comparison, the VC dimension
depends on the dimensionality of w even with regularization. This implies that

for high dimensional problems, maximizing margin leads to more stable general-
ization performance.

In Ny (v/2,F,2n) =0 <

4.7 Historical and Bibliographical Remarks

In (Vapnik and Chervonenkis, |1968, |1971)), Vapnik and Chervonenkis developed
a theory to use the uniform entropy to analyze empirical processes and the gen-
eralization performance of empirical risk minimization. This style of analysis is
covered in Section and often referred to as the VC theory. The original anal-
ysis of [Vapnik and Chervonenkis (1968) used a random permutation argument
instead of the symmetrization argument employed here. We leave it as an exer-
cise in Exercise [4.7 The symmetrization argument for the additive version of
the Chernoff bound was used by |Pollard| (1984). However, the treatment here is
modified so that it can handle more general situations such as the multiplicative
Chernoff bound and Bernstein’s inequality. The multiplicative form of Chernoff
bound can also be found in (Blumer et al.,|1989)) using the permutation argument.
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Note that we do not try to optimize constants here. It is possible to obtain better
constants using more complex techniques, for example, concentration inequalities
in Chapter [6]

Lemma was obtained by [Vapnik and Chervonenkis| (1968, 1971)), and in-
dependently discovered by [Sauer| (1972). It is often referred to as the Sauer’s
lemma in the computer science literature. The idea of chaining was invented
by Kolmogorov in the 1930’s, according to Chentsov| (1956), and further de-
veloped by Dudley in Dudley (1967, 1978, [1984). The entropy integral form in
Proposition is often credited to Dudley.

The L.-cover analysis follows the analysis of large margin methods by Bartlett|
(1998), with a slight generalization. Similar analysis has been employed
to analyze support vector machines (see (Cristianini and Shawe-Taylor| 2000).
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4.1
4.2

4.3

4.4

4.5
4.6

4.7

Exercises

Prove that (4.2) holds for n > d. Hint: consider the upper bound Zgzo(d/n)e_d(z).
Prove that for any non-decreasing convex function ® : Ry — Ry, the following sym-
metrization inequality holds.

feF feF

E o <sup[f(8n) —f(D)]) <E® (2 sup f(J,Sn)> .

In the proof of Lemma Show that Pr(E°&FE2) < Pr(EY{). Use this relationship to
show that Pr(E) > 1 —61/(1 — d2).
Prove the result of Example using convex optimization.

e Consider {X1,..., Xn}. Consider any w, and let w(J) be defined as the unique solution
to the following optimization problem for all J C Jp, = {1,...,n}:

w(w, J) = arg min ||ul|3
u

uWX; >0 ifw ' X;>0 _
for 1 e J.

subject to
{uTXi <-1 ifw'X;<0

Show this is a convex optimization problem, with a unique solution determined by J.
Write the KKT conditions of the solution.

e Let J be the smallest cardinality of subsets .J of .J,, such that @(w, J) = @(w, Jp). Show
that for all i € J: thXi =0ifw' X >0 and lIJTXi =—1lifw' X <O0. Moreover,
7] < d.

e Show that there are at most (2n)d possible choices of J , and this implies that the
achievable values of {L(w' X; > 0):1 <4 < n} can be no more than (2n)%.

Prove Corollary [£.13]
Consider z € R%, let w = (W1, ..., Wg, W41, ---,Waq). Find the VC dimension of the
function class

fuw(z) =1(z € C(w)),

where C(w) = {z = [21,...,24] : 2j € [wj, waq;]}-

In addition to symmetrization, uniform convergence can be obtained using random per-
mutations, as in [Vapnik and Chervonenkis| (1971). Consider F = {f : Z — [0, 1]}. Given
a dataset Sop,, we consider random partitions of Sg,, into disjoint training and validation

subsets S, U S, via random permutation of the data, with the first half in Sp,, and the
second half in S,.

e Show that conditioned on Sz, for random permutation, the following inequality holds
for all f € F:

In ESmSL exp(Anf(Sn)) < nlnEg, exp(Af(X1)).
(Hint: this inequality was proved in (1963).

e Use this inequality to derive a result similar to Theorem [2.5] and then use this result
to derive an additive Chernoff bound of the form for all f € F:

Pr (£(Sn) < f(San) +€(8)) > 1—4.
e Derive a uniform convergence result of the form
Pr(Vf € F: f(Sh) < f(S2n) +€(0)) 214

using the empirical covering number N (e, F, Loo(Sar)) of Sap.
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e Derive a uniform convergence result of the form
Pr(Vf € F: f(D) < f(Sn) +e(6) > 15

using Lemma [£.11]
e Derive an oracle inequality for the empirical risk minimization method, and compare

to that of Corollary [£.13]
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5

Covering Number Estimates

This chapter derives covering number estimates of certain function classes, in-
cluding some parametric and nonparametric function classes.

5.1 Packing Number

In many applications, it is more convenient to estimate the packing number of
a set, which is a concept closely related to covering number. Given a set G in
a pseudometric space, one can naturally define its metric covering number as in
Definition Similarly, one can define its packing number below.

Definition 5.1 (Packing Number). Let (V,d) be a pseudometric space with
metric d(-,-). A finite subset G(€) C G is an e-packing of G if d(¢,¢") > € for all
o,¢" € G(e). The e-packing number of G, denoted by M (e, G,d), is the largest
cardinality of e-packing of G.

The following results illustrate the equivalence between covering number and
packing number. One advantage of using an € packing of G instead of an € cover
of G is that all members in the € packing also belong to G. There if members in
G satisfy certain assumptions such as the variance condition, then members of
its € packing also satisfy such assumptions. For this reason, we will use packing
numbers instead of covering numbers in some of the theoretical analysis in later
chapters.

Theorem 5.2. For all € > 0, we have
N(e, G, d) < M(e,G,d) < N(e/2,G,d).

Proof Let G(€) = {¢1,...,0m} C G be a maximal e-packing of G. Given any
¢ € G, by the definition of maximality, we know that there exists ¢; € G(e)
so that d(¢;,¢) < e. This means that G(e¢) is also an € cover of G. Therefore
N(e,G,d) < M. This proves the first inequality.

On the other hand, let G'(e/2) be an €/2 cover of G. By definition, for any
¢; € G(e), there exists g(¢;) € G'(€/2) such that d(§(¢,), ¢;) < €/2. For j # i, we
know that d(¢;, ¢;) > €, and thus triangle inequality implies that

d(g(9;), ¢i) = d(i, d;) — d(g(¢;), ¢5) > €/2 = d(g(¢3), $i).-
72
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Therefore §(¢;) # g(¢;). This implies the map ¢; € G(e) — G(¢;) € G'(¢/2) is
one to one. Therefore |G(€)| < |G'(e/2)|. This proves the second inequality. [

We have the following well-known estimate of the covering and packing numbers
on a finite dimensional compact set.

Theorem 5.3. Let || - || be a seminorm on R*. Let B(r) = {z € RF : ||z|| < r} be
the || - ||-ball with radius r. Then

M(e, B(r), || - I) < (1 +2r/e)".

Moreover,

N(e, B(r). |l -II) = (r/€)".

Proof Let {z,...,2m} C B(r) be a maximal € packing of B(r). Let B; = {z €
¥z — 24|l < €/2}, then B;N By, =0 for j # k and B; C B(r + ¢/2) for all j.
It follows that

Zvolume(Bj) = volume(U}L, B;) < volume(B(r + €/2)).

Let v = volume(B(1)). Since volume(B;) = (¢/2)"v and volume(B(r + €/2)) =
(r + €/2)*v, we have

M(e/2)Fv < (r +¢€/2)"
This implies the first bound.

Let {21,...,2x} C R¥ be a cover of B(r). If we define B; = {z € R¥ : ||z — 2| <
€}, then B(r) C U;B;. Therefore

N
volume(B(r)) < volume(Ul, B;) Z volume(B

Let v = volume(B(1)). Since volume(B;) = (€)*v and volume(B(r)) = r*v, we
have
r*u < NeFv.

This implies the second bound. O

5.2 Lipschitz Function in Finite Dimension

We now consider the following function class
{op(w,Z) :w € O}, (5.1)

where 0 C R* is a compact set. The situation that the model parameter w is
finite dimensional is often called a parametric model. The following result shows
that the bracketing number of parametric model is polynomial in e.
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Theorem 5.4. Consider (5.1). Assume that Q C R is a compact set so that
Q € B(r) with respect to a norm || - ||. Assume for all z, ¢p(w, z) is y(z) Lipschitz
with respect to w:

|p(w, 2) = p(w', 2)| < 7(2)[|w — w'[].
Given p > 1, let v, = (Ez.p|y(Z)[P)V/?. Then
Ny(2¢,G,Ly(D)) < (1+ 2y,r/€)".

Proof Let {w,...,wy} be an €/7, packing of 2. Then it is also an €/, cover
of Q. Let ¢7(2) = ¢(wj,z) — y(2)e/v, and ¢Y(2) = dp(w;, z) + v(2)€/7,. Then
{lof,¢Y] : = 1,...,M} is an 2¢ L,(D)-bracketing cover. We can now apply
Theorem [£.3] to obtain the desired result. O

Note that if we take p = 0o, the we obtain the following result on the uniform
covering number.

Noo(e,G,n) < (1 + 2y.r/€)".

One may also obtain bracketing numbers for certain smooth nonparametric
function classes, with entropy of the form

In N[] (67 g, LP(D)) = O(eiﬁ)’

We refer the readers to (van der Vaart and Wellner, 1996, chapter 2.7) and (Nickl
and Potscher), [2007) for such examples.

5.3 Empirical L, Covering Numbers of VC-class

We have obtained empirical L., covering number bounds for VC classes in Sec-
tion [£.4] and the covering number depends logarithmically on the sample size n.
It is also possible to obtain the empirical L, covering number for VC classes for
p < oo which is independent of n. The estimate of L, empirical covering number
can be directly used with chaining.

Recall that given empirical distribution &,,, the empirical L, cover is the num-
ber of functions needed to cover ¢,, based on the empirical L, metric:

1/p

4,(6:6) = |~ Y 16(2) ~ S (2]

We have the following estimate.

Theorem 5.5. If a binary valued function class G = {p(w, Z) : w € Q} is a VC
class, then for e < 1:

InM(e,G, L1(S,)) < 3d+ dIn(In(4/€)/e).
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Proof Given S, = {Z1,...,2Z,}. Let Q = {¢1,...,0,} be a maximal € L;(S,,)
packing of G. @) is also an L; e-cover of G. Consider the empirical distribution,
denoted by S,,, which puts a probability of 1/n on each Z;. We have for j # k:

wa’gn[qﬁj(Z) =¢n(Z2)] =1—-Ezus,10;(Z2) —or(Z2)] <1 —e

Now consider random sample with replacement from S, for 7' times to obtain
samples {Z;,, ..., Z;, }. We have

Pr({Vl: ¢;(Z;,) = ¢n(Zi,)}) < (L — )" < e

That is, with probability larger than 1 — e~T¢,

A 9;(Z;,) # on(Z;,).

Taking the union bound for all j # k, we have with probability larger than
1— (%) -e T, for all j # k:

3 ¢(Z:,) # or(Zi)-

If we take T = [In(m?)/e€], then e 7¢("') < 1. Then there exists 7" samples
{Z;, : ¢ =1,...,T} such that ¢; # ¢, for all j # k when restricted to these
samples. Since VC(G) = d, we obtain from Sauer’s lemma:

m < max[2,eT/d]* < max[2,e(1 + In(m?)/¢)/d]".
The theorem holds automatically when m < 2?. Otherwise,
Inm < dIn(1/€) 4+ dIn((ee/d) + (2¢/d) In(m)).

Let u =d 'lnm —In(1/e) —Inln(4/€) and let € < 1, we can obtain the following
bound by using the upper bound of Inm:

u < —1Inln(4/€) + In((ee/d) 4+ 2e(u + In(1/€) + Inln(4/€)))
N 2e(u+0.5+1n(1/€) +1Inln(4/¢))
In(4/€)

<1
<In(4u+7),

where the last inequality is obtained by taking sup over € € (0, 1]. By solving this
inequality we obtain a bound u < 3. This implies the desired result. O

It is possible to prove a slightly stronger result using a refined argument in the
proof of Theorem

Theorem 5.6 (Haussler, 1995). Let G be a binary valued function class with
vC(G) =d. Then

InM(e,G, L1(S,)) <14+ 1In(d+ 1) + dIn(2e/e).

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. (©)2021-2023 Tong Zhang



CHAPTER 5. COVERING NUMBER ESTIMATES 76

From Exercise [5.3] we have
InN(e,G,L,(S,)) <1+1In(d+ 1)+ dln(2e/e?).
If we replace S,, by any distribution D over Z, then we still have
InN(e,G,L,(D)) <1+1In(d+ 1)+ dIn(2e/e"),

because any D can be approximated by empirical distribution drawn from D with
sufficiently large n. We thus have the following result.

Corollary 5.7. If vc(G) = d, then for all distributions D over Z, we have
InN(e,G,L,(D)) <1+1In(d+ 1)+ dln(2e/€”)
fore € (0,1] and p € [1,0).

We note that the result of Corollary is independent of the underlying distri-
bution. For empirical distribution S,,, the bound is independent of n. Of partic-
ular interest is the case of p = 2, for which we may apply the chaining technique
with the Ly(S,,) covering number bound of Corollary The result (see Exam-

ple [6.26)) removes a Inn factor, when compared to the result in Theorem
which employs the original L..(S,,) VC covering number bound.

5.4 VC-subgraph Class

One may extend the concept of VC dimension to real valued functions by intro-
ducing the definition of VC subgraph class.

Definition 5.8. A real valued function class of z € Z
g ={o(w,2) 1w e}
is a VC-subgraph class, if the binary function class
Gsubgraph = {L(t < ¢(w, 2)) : w € N}

defined on (z,t) € Z xR is a VC class. The VC dimension (some times also called
pseudo-dimension) of G is VC(G) = VC(Gsub—graph)-

Example 5.9. The d dimensional linear functions of the form f,(z) = w'z is
VC subgraph class of VC dimension d + 1. This is because w'z — t is linear
function in d + 1 dimension, and we have shown that it has VC dimension d + 1.

Example 5.10. If 7 = {f(w,z) : w € Q} is a VC subgraph class and h is
monotone function, then h o F = {h(f(w,x)) : w € 2} is a VC subgraph class
with ve(h o F) < vCo(F).

Theorem 5.11. Assume that G is a VC subgraph class, with VC' dimension d,
and all ¢ € G are bounded: ¢(Z) € [0,1]. Then for any distribution D over Z,
e € (0,1] and p € [1,00), we have

InN(e,G,L,(D)) <1+1In(d+ 1)+ dIn(2e/e?).
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Moreover,
In N (¢,G,n) < dlnmax[2,en/(de)].

Proof Let U be a random variable distributed uniformly over [0, 1]. Then for all
a€ (0,1): Ey1(U < a) = a. Thus for all ¢, ¢’ € G:

Epl6(Z) - ¢/(Z)IF
—Ep|Eu[L(U < $(2)) - L(U < ¢/(Z))]]"
<EpEu[1(U < 6(2)) ~ 1(U < ¢'(Z))]".

The last inequality used the Jensen’s inequality. Therefore
InN(e,G, L,(D)) < In N (e, Gsubgrapn, Lp(D x U(0,1))).

This leads to the first desired bound.

The second bound can be proved by discretizing U into intervals with thresholds
min(1,e(2k + 1)) for k = 0,1,... with no more than [(2¢)7'] < 1/e thresholds.
This gives an e-cover of U in Euclidean distance. We can then approximate Ey
by average over the thresholds to get € L., cover with the discretization. Let the
set of thresholds be U’. If D contain n data points, then D x U’ contains at most
n|U’| < n/e points, and one may apply Sauer’s lemma to obtain a cover on these
points. This implies the second bound. O

5.5 Convex Hull Class

Convex hull of a function class is frequently encountered in applications, and is
related to L; regularization. We can define the convex hull of a function class as
follows.

Definition 5.12. The convex hull of a function class F = {f(0,z) : 6 € ©} is
defined as
CONV(F) = {ijf(ﬂj,x) :m >0, [|w|; =1, w; >0, 6; € @}.
j=1
We also include the closure of the finite sum functions above with respect to an
appropriate topology in the convex hull.
If F is finite, then we have the following covering number estimates.

Theorem 5.13. Consider a finite function class F = {fi,..., fa}, and assume
that for a distribution D and p € [1,p|, sup;cp || fllL, ) < A. Then for e < A:

In M (e, CONV(F), L,(D)) < dIn(3A/e).
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Proof Let B; € R? be the L; ball
By ={geR":lqlh <1}.

Let Q = {q*,...,¢™} be a maximal e L; packing of B;. Theoremimplies that
M < (3/¢)d.
Note that for any q = [q1, ..., q4] € B, let ¢* € Q so that ||¢ — ¢*[|; < e, then
1/p
< €A.

p

lEZND

Zfoj(Z) - qufj(Z)

Therefore {ijl @f;k=1,..., N} is an €A L,-cover of CONV(F). The result
follows. O

The above result is linear in the dimension d. However, for high dimensional
problems, one would like to obtain a bound that is logarithmic in the dimen-
sionality d. The following result gives such a bound for L, cover, but with a
polynomial dependency on 1/¢ instead of logarithmic dependency on 1/e.

Theorem 5.14. Consider any class F = {f1,..., fa}, and assume that for a
distribution D, supcz || fllz.0) < A. Then

In N (e, CONV(F), Ly(D)) < [A?/€*] Ine + ede® /A?].

Proof For simplicity, we assume that A = 1. Given any f = Zj a; f; € CONV(F),
with Zj a; = 1 and o; > 0, we can regard p, as a probability measure on
{1,...,d} with p,(j) = a; (j = 1,...,d). Now, let ji,...,ji be k iid samples
from po, then f =3 a;f; =E; f;..

1 ’ 1<
Bj oo || 72 S fi-f = Varj, _j, z > 1.
s=1 L2 (D) s=1 L2(D)
k
=k Var;, (I 7.l )
s=1
k
SkiQZEjs( | fi 13 ,m)) < 1/E.
s=1
It means that there exists 7, ..., js such that

<1/Vk.

L2(D)

1 k
%;fjs—f

Now, consider

1 d d
Qr = {kznjfj Y oy =kin; > 0}-
j=1 j=1
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Since k! 25:1 fi. € Qi, we know that Qy is an 1/v/k cover of CONV(F). Take
k = [1/€*], we know that @ is an € cover. Moreover, since

|ng(d+z‘1>ge%r+wm%

we obtain the bound in the theorem. O

We can also estimate the L, covering number for the convex hull of a parametric
function class, such as VC-subgraph class. Specifically, in a parametric function
class, the covering number is given by

In N(e, F, Ly(D)) < Vn(c/e), (5.2)

where c¢ is a constant, and V' is the dimensionality (such as VC-dimension) of the
function class F.

The convex hull of is referred to as the VC-hull class. Its covering number
estimate can be obtained as follows.

Theorem 5.15. Consider a function class F with covering number given by (|5.2)
for some ¢ >0 and V > 0. Let A = sup;cz || f||1,(p), then we have

In N (e, CONV(F), Ly(D)) < 10(2¢/€)?V/V 2 Inmax[124/¢,3 + 3(2¢/€)"]
for all e < 2c.

Proof We let F, be an €/2 cover of F in Ly(D). Then any €/2 cover of CONV(F,)
gives an € cover of CONV(F).

Moreover, we consider F. as an € /2 cover of F, for some €’ > €, and decompose
each f; € F. as

f=f+Af,

where f' € Fo and [|Af||1,) < €/2.
Let AF, = {Af: f € F.}, then using this decomposition, we know that

CONV(F.) C CONV(AF,) + CONV(F.).

It follows that

In N (e, CONV(F), Ly(D)) < In N(e/2, CONV(F,), L2(D))

<In N(e/4,CONV(F. ), L2(D)) + In N(e/4, CONV(AF,), Ly(D)).
Since
|[Fel < (2¢/€)7,
we have from Theorem (.13
In N(e/4,cONV(F.), Ly(D)) < (2¢/€ )Y In(124/¢).

Moreover, since

|AF| < |F| < (2¢/e),
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CHAPTER 5. COVERING NUMBER ESTIMATES 80

we have from Theorem [5.14] that
In N(e/4,cCONV(AF,), Ly(D)) < (3¢'/e)* Inle + e(2¢/€) (¢/€)].
Now let € /2¢ = (¢/2¢)%/(V+2) | we have
In N(e/4, CONV(F.), Lo(D)) + In N(e/4, CONV(AF.), L2(D))

(2¢c/€')V In(124/€) + (3€'/€)* In[e + e(2¢/€)" (¢/€)]

<
<(2¢/€)?V/ VD In(124/€) 4+ 9(2¢/€)*V/ VD Inle + e(2¢/€)V].

This proves the theorem. O

Note that for a finite dimensional class d = |F| < oo, its VC dimension is no
more than log, d because any |log, |F|| + 1 points cannot be shattered. It means
that we can take V = log, d, and obtain a result

In N (e, CONV(F), Ly(D)) = O (6—21% d/log2(1d) 109 dIn(1 /e)) ,

which is slightly better in its dependency of € than that of Theorem which
has an entropy growth rate of O(e?).

Using a similar proof technique, but with a more careful analysis, it is possible
to get rid of In(1/€) in Theorem [5.15] and obtain the following result. The details
can be found in (van der Vaart and Wellner, 1996)).

Theorem 5.16. Let A =sup;cz || fllr.p)- If In N(F, ¢, Ly(D)) < Vin(cA/e) for
somec>1 and V >0, then when ¢ < 1, we have

In N(CONV(F), €, Ly(D)) < K(c, V)(AJe)?V/ V2
for some K(c,V') that depends on ¢ and V.

The convex hull of a parametric function class has entropy growth rate with a
polynomial (1/€)” dependency on 1/e. Since r < 2, the entropy integral

/OO \/N(e, CONV(F), Lyo(D))de < oo.

Therefore the convex hull of a parametric function class is a Donsker class, for
which the central limit theorem holds for the corresponding empirical process.

Example 5.17. Consider neural networks with z € R Let hiz) = 1/(1 +
exp(—z)) be the sigmoid activation function. Let

F={h0"z):0 cR}YU{-h(0"z):0 c R}

be the function class of one-layer neurons, then F is a VC sub-graph class with
VC(F) = d+ 1. Thus it has parametric covering number

N(e, F,Ly(D)) < (c/e)*!
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5.6. REGULARIZED LINEAR FUNCTION CLASSES 81

uniformly for all distributions D. The L, regularized two-layer neural network of
the form

G = {ijh(ﬁij) w|, < A}
j=1

has entropy number of

In N(¢,G, Ly(D)) = O(e 2D/ (@43,

5.6 Regularized Linear Function Classes

In machine learning, one often encounters a linear function class of the form:
F={f(w,z) =w'y(z):weQxcX} (5.3)

where ¢(z) is a known feature vector, and we assume both w and (z) can be
infinite dimensional. This includes kernel methods, which are studied in Chap-
ter[9} We have the following theorem, which can be used to estimate the covering
numbers for kernel methods. The result is independent of the dimensionality of
the problem.

Theorem 5.18. Let w = [wy,ws,...] € R® and ¢¥(z) = [¢1(x), Y2(),...] € R™.
Let Q = {w : ||w|]s < A}. Given a distribution D on X. Assume there exists
By > By > --- such that

E.vp Z Pi(z)® < BJZ--

i>j
Define

d(e) =min{j > 0: AB;,; < ¢}.
Then the function class F of satisfies:

In N (e, F, Lo(D)) < d(e/2) In <1 + 4‘431) .

€

Proof Given e > 0. Consider j = d(e/2) such that AB, ., < ¢/2. Let F; =
{2 wihi(z) s w € QF and Fp = {37, wihi(x) : w € Q}. Since || f||,0) < €/2
for all f € F,, we have N(e/2,F, L2(D)) = 1. Moreover, Theorem implies
that

In N(e/2, Fr, Lo(D)) < d(¢/2) In (1 + 4‘430) |

€

Note that F C F; + Fa, we have In N(e, F, Ly(D)) < InN(e/2,Fi, L2(D)) +
In N(e/2, Fa, Ly(D)). This implies the result. O

One may regard d(e) as the effective dimension of the regularized linear system
(5.3) at a scale €. The following example gives a consequence of Theorem
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Example 5.19. Assume that B; = j79, then

In N (e, F, Ly(D)) = O (¢ “In(1/¢)) .
If B; = O(¢?) for some ¢ € (0,1), then

In N (e, 7, Lo(D)) = O ((n(1/e))?) .

For a general linear function class (5.3)) with L, regularization: ||w]s < A
and || (x)|l2 < B, we can obtain a bound on In N(¢, F, L(D)) using Gaussian
complexity estimate and Sudakov minoration (see Theorem .

Moreover, it is known that the uniform L., covering number of Ly-regularized
linear function class can be bounded as follows. The proof can be found in (Zhangj,
2002).

Theorem 5.20. Assume that Q = {w : |[w|ls < A} and ||¢(x)]]2 < B, then the
function class (5.3) has the following covering number bound:

A2
I N(F, e, Lo(S,)) < 0

In[2[(4AB/e) + 2|n + 1].

It is also possible to obtain uniform L., covering number results under other
regularization conditions. Of particular interest is the covering number for L-
regularization, which we present below. The proof can also be found in (Zhang,
2002).

Theorem 5.21. Assume that Q = {w € R? : ||w||; < A} and ||[¢(2)]| < B,
then the function class (5.3|) has the following covering number bound:

_ 2884°B%(2 + Ind)

€2

In N(F, €, Loo(S,)) In[2[(8AB/e) + 2|n + 1].

The uniform L., cover results in Theorem and Theorem [5.21] can be com-
bined with the analysis of Section to study large margin methods. They can
also be used to study vector valued prediction problems which were considered
in Section [9.4]

5.7 Historical and Bibliographical Remarks

The concepts of covering number and entropy were introduced by [Kolmogorov
and Tikhomirov (1959). A number of results for smooth function classes were
established there. Since then, the tool of covering numbers has been widely used in
the theoretical analysis of empirical processes. The volume comparison argument
used in the proof of Theorem is well-known, and can be found in (Lorentz,
1966)). See (Pisier, 1999) and (Edmunds and Triebel, |1996) for entropy estimates
on Banach and general function spaces. Some estimates of bracketing numbers
for smooth function classes can be found in (van der Vaart and Wellner} {1996,
Chapter 2.7), (van der Vaart|, [1994), and (Nickl and Potscher, [2007).  Such
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estimates can be used as estimates of lower bracketing numbers, which can be used
to analyze ERM as in Chapter [3] Additional applications of bracketing numbers
in statistical analysis such as the analysis of maximum likelihood estimate can
be found in (Birgé and Massart, [1993; van de Geer} |1993; [Wong and Shen, [1995;
van de Geer,, [2000).

In the machine learning literature, the use of uniform covering numbers has be-
come prevalent, largely influenced by the original VC analysis (Vapnik and Cher-|
vonenkis, [1971). Note that uniform covering number results similar to bracketing
results can be obtained for smooth function classes (Nickl and Potscher;, [2007)).
Therefore this is not a severe limitation. For VC-classes, the n-independent em-
pirical L; covering number bounds have been considered by and
(1992). The extension of VC dimension to real-valued VC-subgraph class
was investigated in (Pollard} |1984; Haussler} [1992)). Additional generalization to
fat-shattering dimension was proposed in (Kearns and Schapirel (1994} |Bartlett
11996), which can also be used to obtain bounds of covering numbers.
However, due to the complexity of fat-shattering dimension, it is often easier to
directly estimate covering numbers using other techniques. Therefore we do not
discuss fat-shattering dimension in this chapter. The result in Theorem is
due to [Haussler| (1995), where a matching lower bound was also obtained. The
covering number estimates of VC-hull class can be found in (van der Vaart and|
, Chapter 2.6) and , 1997). Covering number bounds for ker-
nel function classes were studied in (Guo et al., [1999; |Cucker and Smale, [2002;
Zhou, 2002, [2003; Kiihn) 2011). We have only considered a simplified version in
Theorem [5.18 Uniform L., covering number bounds for general regularized
linear function classes were obtained in . These bounds are useful

in large margin analysis, and in vector valued prediction problems.
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5.1

5.2

5.3

5.4

5.5

Exercises

Consider the function class F of monotone functions from R — [0, 1]. Show that for any

distribution D on R:

In Ny (e, F, L1(D)) < P] In [ﬂ .

€ €
Hint: discretize both R and [0, 1] into regular grids and use piecewise constant approxi-
mations.

For Exercise[5.1] a more involved argument can be used to show that

K,
In Njj(e, F, Lp(D)) < ?p

where K is a constant that depends on p (see [van der Vaart and Wellner} [1996, Theorem

2.7.5). Use this result to bound the bracketing numbers of real-valued function class with
bounded total variation:

F=A/:VIN<BY V(D= swp 3 |f(@) = [l
TOSTIS STm ;g

Assume that ¢(z) € [0,1] for all g € G. Show that for p > 1:

InN(e,G, Lp(D)) < InN(P, G, L1(D)).

Consider the following set in R%:
Q={z:|zllp <1},
where 1 < p < 2. Show that there are constants Cp and rp such that
In N(e, Q| - ||l2) < Cpe " Ind.

Consider the set

oo
Q:{m:[a:l,J:Q,...]EROO:Zi-x?ﬁl},

i=1

with metric induced by the Lo-norm ||z|l2 = y/>°;2; 2. Derive an upper bound and a
lower bound for In N (e, 2, || - ||2).
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6

Rademacher Complexity and Concentration
Inequalities

In Chapter [3] and Chapter |4 we obtained uniform convergence results using cov-
ering numbers and exponential probability inequalities. This chapter considers a
different, although highly related method. In this approach, we first bound the ex-
pectation of the supremum of an underlying empirical process using the so-called
Rademacher complexity, and then use concentration inequalities to obtain high
probability bounds. This approach simplifies various derivations in generalization
analysis.

6.1 Rademacher Complexity

Using the notations from Section [3.3] we are given a function class G = {¢(w, z) :
w € Q}, and are interested in the uniform convergence of training error

on a training data S, = {Z;,...,Z,} ~ D", to the test error
¢(w,D) =Ezpod(w, Z)

on the test data D. In particular, in the general analysis of learning algorithms,
we want to estimate the supremum of the associated empirical process:

sup [p(w, D) — p(w,S,)] -

We introduce the following definition, which will be useful in the analysis of this
chapter.

Definition 6.1. Given an empirical process {¢(w,S,) : w € Q}, with S,, ~ D".
Define the expected supremum of this empirical process as

€n(G,D) = Es, Slég [¢(w, D) — d(w,S,)],

which will be referred to as the uniform convergence complezity of the function
class G.

The smaller this quantity is, the closer the gap between the training error and
the test error is, which implies that we have less overfitting. In Chapter [3| we
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obtained large probability uniform convergence results for empirical processes,
and then derived oracle inequalities in large probabilities. In the following, we
show that if average convergence can be obtained, then we can derive oracle
inequalities in expectation directly.

Theorem 6.2. Consider ¢(w,Z) with Z ~ D. Let S, ~ D" be n #id samples
from D. Then the approximate ERM method of (3.7) satisfies

Esn¢(w’ D) < qj}relg ¢(w7 D) + ¢ + €n(ga D)

Proof Given any w € €, we have for each instance of training data &,
o(w, D) <p(w,Sy) + Slégww, D) — ¢(w, S,)]
<¢(w, Sn) + € + sup[p(w, D) — ¢(w, S,)].

weN
Taking expectation with respect to S,,, and note that w does not depend on S,,,
we obtain

Es, ¢(,D) < ¢(w, D) + € + Es, sup[p(w, D) — ¢(w, S,,)].

wes

This implies the desired bound. O

We are now ready to define Rademacher complexity. While the standard def-
inition is two-sided where the supremum is over the absolute value of the sum,
we consider one-sided bound which is more convenient for our purpose.

Definition 6.3. Given S,, = {Z1,..., Z,}, the (one-sided) empirical Rademacher
complexity of G is defined as

R(g? Sn) = EU sup l Z 0i¢(w7 Zz)a

weQ N i—1

where oy, ...,0, are independent uniform {+1}-valued Bernoulli random vari-
ables. Moreover, the expected Rademacher complexity is

R.(G,D) =Es,~p-R(G,S,).

The following result shows that the quantity €,(G, D) can be upper bounded by
Rademacher complexity. It follows that an average oracle inequality can be ob-
tained using Rademacher complexity. The proof employs the symmetrization tech-
nique, which was also used in Chapter {4] to obtain uniform convergence bounds
from empirical covering numbers.

Theorem 6.4. We have
€.(G,D) < 2R,(G,D).
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6.2. OFFSET RADEMACHER COMPLEXITY 87

Consequently, the approrimate ERM method of (3.7) satisfies
Es, ¢(w, D) < irE%QS(w,D) +¢€ +2R,(G,D).

Proof LetS! ={Z,...,Z} ~ D" beniid samples from D that are independent
of S,,. We have

€n(G, D) =Es, ~p» sup[d(w, D) — ¢(w,S,)]

we
:ESnNDn Sug[ES;le” Cb(UJ, S;L) - ¢(wa Sn)]

we
SE(STL’SL)ND% Sug[qb(w?‘sr/z) - ¢(w78n)]

we
1 < ,
=E(s, .s)~pEo sup — > [0:6(w, Z]) — a:(w, Z;)]
weQ N i1
<Es,,s;)~p>»[R(G,S,) + R(G,S,)] = 2R, (G, D).
This proves the desired bound. O

One reason to introduce Rademacher complexity is that it can be estimated
on the training data. Moreover, for many problems it is often not difficult to
estimate this quantity theoretically. The following example demonstrates this.

Example 6.5. Consider a (binary-valued) VC class G such that vc(G) = d. Con-
sider n > d. Then Sauer’s lemma implies that for any S,,, the number of functions
of ¢ € G on S, is no more than (en/d)?. We thus obtain (see Theorem [6.23))

R(G,S,) < 2dln(en/d)'

n
This implies that the approximate ERM method of (3.7 satisfies

2d1 d
Mﬁmﬂhﬁ%amm+a+24;&ﬂg
A better bound can be obtained using Theorem and Theorem [6.25] which

removes the Inn factor. Also see Example [6.26

6.2 Offset Rademacher Complexity

While the standard Rademacher complexity is suitable for many problems, for
regularized empirical risk minimization problems which frequently occur in prac-
tice, it can be more convenient to use offset Rademacher complexity. In this
section, we consider a generalization of the empirical risk minimization method,
where we allow the training error to be different from the test error, which fre-
quently occurs in practical applications. A typical example is to include a regular-
izer in the training loss to stablize the training process, such as L, regularization
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CHAPTER 6. RADEMACHER COMPLEXITY 88

0.5\ ||w||3. In such case, we consider the following regularized training loss, with
a general training set dependent regularizer h(w,S,,):

o(w,S,) + h(w, S,), where ¢(w,S,) = % i o(w, Z;).

Here we assume that h(w,S,,) is a general function that can depend on the train-
ing data S,,. By following the notations from Section we use ¢(w, z) to denote
the loss function at a data point z, and use S,, = {Z1, ..., Z, } to denote the train-
ing data. The test loss is

¢(w’ D) = EZ~D¢(w7 Z)

with respect to the unknown test distribution D. Training data S,, are iid samples
from D.

We consider a function class G = {¢(w, z) : w € Q}, and the following approx-
imate regularized ERM method to find w:

[p(0,S,) + h(w,S,)] < glelg [p(w,S,) + h(w,S,)] + €, (6.1)

which is a more general formulation than . This formulation will become
convenient in some of the future analysis. In order to analyze the behavior of this
method, we need to analyze the uniform convergence of the regularized training
loss to the test loss.

For this purpose, we consider a modified empirical process (to compensate the
difference of training error and test error), which we refer to as offset empirical
process, and study the supremum of this offset empirical process:

zlég [¢(wa D) - ¢(wa Sn) - h(wv‘sn)] :
It characterizes the degree of (one-sided) uniform convergence of function class
G, with a offset function h(w,S,,). Here we incorporate a known offset function
h(w,S,) into the training loss, which may depend on the model parameter and
training data. In the usual setting of empirical process in Chapter [3] and Chap-
ter |4 one may simply take h(w,S,) = 0.

Definition 6.6. Consider any known data-dependent offset function h(w,S,).
Define the uniform convergence complexity of a function class G with offset h as

€n(G. D) = Es, ~pn sup [(w, D) — ¢(w, Sn) — h(w, S,)] - (6.2)
we
This quantity measures the one-sided expected uniform convergence of function
class G with offset function h(w,S,).
We note that
e.(G,D) = €' (G, D), with A = 0.

We have the following generalization of Theorem with a similar proof.
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Theorem 6.7. Let S, be n iid samples from D. Then the approximate ERM
method of (6.1)) satisfies

Es,¢(w,D) < inf [¢(w, D) +Es, h(w,S,)] + € + €1(G, D).

Proof Given any w € (), we have for each training data S,
¢(w, D)
:[(JS(lZ}, Sn) + h(’LZ), Sn)] + [qb(’LZi, D) - QS(QZJ,Sn) - h(?f), Sn)]
<[p(,Sn) + h(w, S,)] + Slég[@ﬁ(wv D) — ¢(w, S,) — h(w, S,,)]
<[p(w,Sn) + h(w, S,)] + € + sup[p(w, D) — ¢(w, S,) — h(w, S,)].

we

+h
+h
In the derivation of the last inequality, we used (6.1). Taking expectation with
respect to S, and note that w does not depend on S,,, we obtain

Es, ¢(w,D) <¢(w,D) + Es, h(w,S,) + €
+ ESn Slég[d)(va) - ¢(w> Sn) - h(wa Sn)]

This implies the desired bound. O

The following example shows that with an appropriately defined offset function,
we can obtain generalization result for regularized empirical risk minimization.

Example 6.8. Take h(w,S,) = g(w) in (6.1), and let ¢p(w, z) = L(f(w,z),y),
then Theorem implies the following generalization bound for the approximate
regularized ERM method in (6.1)):

Es,Exy)~pL(f (W, X),Y) < inf Ecxy)~p [L(f(0,X),Y) + g(w)]
+¢€ +€(G, D).

From Theorem we may also obtain a slightly more general formulation,
which is some times useful.

Corollary 6.9. Consider (6.1)), and define

h(w,S,) = h(w,S,) + h'(w),

where h'(w) is an arbitrary function of w. Then

Es, [p(, D) — k' (w)] < inf [¢p(w, D) + Es, h(w,S,)] + € + €(G, D).

weN

Proof Let

¢(w7 Z) = ¢(w7 Z) - h/(w)v
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then remains the same with ¢(w, z) replaced by ¢(w z), and h(w,S,) re-
placed by h(w S,.). We can now apply Theorem |6.7| with € (G, D) replaced by

4G, D) = Es, sup[6(w, D) = 6(w, S,) = h(w, S,) = W' (w)]
to obtain
Es,&(,D) < inf |¢(w, D) +Es, h(w,S,)| + ¢ + eh(G, D).
This implies the desired bound. O

Example 6.10. One advantage of Corollary is that it allows us to intro-
duce an unknown distribution dependent offset term h’(w) into the definition of
uniform convergence complexity because the learning algorithm in does not
depend on A/(w). As a simple example, we may take h'(w) = y¢(w, D) and obtain

(1 - ’Y)ESW,¢(UA)7,D) < I}}Ielg [¢(w7D) + Eth(wvsn)] + ¢ +e€ (g D)

We are now ready to define (one-sided) offset Rademacher complexity. Note
that the offset function in Rademacher complexity is more restrictive than the
more general offset function considered in the uniform convergence complexity
. This is because we would like to use symmetrization argument, which works
only for this special form of offset function.

Definition 6.11. Consider a function class G = {¢(w, Z) : w € Q}, and let h be
an offset function of the following form

_ % S h(w,Z),  h(w,2) = ho(w) + ha(w, 2). (6.3)

Given S, = {Zi,...,Z,}, the (one-sided) empirical Rademacher complexity of G
with offset h decomposition (6.3)) is defined as

R"(G,S,) =E, sup Zal ) + 0.5h (w, Z;)] — 0.5h(w, S,,)
weQ | N
where oy, ...,0, are independent uniform {+1}-valued Bernoulli random vari-

ables. Moreover, the expected Rademacher complexity is

R!(G,D) = Es,~p-R"(G,S,).

We note that the standard Rademacher complexity can be regarded as a special
case of the offset Rademacher complexity with h(-) = ho(-) = hi(-) = 0:

R(g,Sn) = Ro(gv Sn)v Rn(gu D) = R70’L(g7 D)

It should be pointed out that the decomposition of A in ([6.3)) may not be unique,
and the offset Rademacher complexity relies on the specific decomposition used.
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As shown in Example[6.10] we allow distribution dependent offset in the definition
of uniform convergence complexity. We also allow distribution dependent offset
in the definition of offset Rademacher complexity.

The following result shows that for some cases, offset Rademacher complexity
can be obtained easily for some function classes.

Example 6.12. Consider a function class F = {f(w,z) = w'¢(z) : w € R},
consisting of linear functions. Let h(w) = ho(w) = 0.5\||w]|3. Then for any S,
we have

R"(F,S,) =E, sup l me (X H IIZ]
1
! ;aﬂmx = ) Z e
Let Fap = {{f(w,z) =w ¢(z) : |w|s < A, ||¢(x)||2 < B}, then for any X:
R(Fap.S) < BY(F.S) + ar< B 2

By optimizing over A\, we obtain

R(Fap,Sy) < AB/+v/n.

The following example illustrates that offset Rademacher complexity can lead
to a result analogous to the multiplicative form of the Chernoff bound.

Example 6.13. Consider a (binary-valued) VC class G such that vc(G) = d.
Consider n > d, and let h(f,S,) = hi(f,S,) = (v/n) >, f(Z;). Then Sauer’s
lemma implies that for any S,,, the number of functions of ¢ € G on §,, is no
more than (en/d)?. We thus obtain (see Theorem |6.23))
(14 0.57)?dIn(en/d)

n '
This result can be compared to the standard Rademacher complexity result in
Example which leads to an additive expected generalization bound.

R"(G,S,) <

The following result is a generalization of Theorem
Theorem 6.14. Consider offset function of . We have
€' (G,D) < 2R!(G,D).
Consequently, the approximate reqularized ERM method of satisfies
Es,¢(, D) < inf [6(w, D) + Es, h(w,S,)] + € + 2R}(G. D).
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CHAPTER 6. RADEMACHER COMPLEXITY 92

Proof LetS, ={Z,...,Z} ~ D" beniid samples from D that are independent
of §,,. We have

€,(G,D) =Es, .pn sup[p(w, D) — ¢(w,S,) — h(w, S,,)]

we

:ESnND” Sup[ES;,wD"gb(w? STI’L) - (ZS(QU, Sn) - h(w¢ Sn)]

we
<E(s,.s)~D" sug[gb(w, S —od(w,S,) — h(w,S,)]
we
=E(s,,s)~D2" sulg)2 [[¢(w,S]) + 0.5h (w,S))] — 0.5h(w,S))
we
—[p(w, S,) + 0.5k (w, S,,)] — 0.5h(w, S,,)]

a ]- !/ !’ /

YE s, s )uprEo -sup Z oi(p(w, Z!) + 0.5h1 (w, Z!)) — 0.5h(w, S
—oi(p(w, Z;) + 0 5h (w, Z;)) — 0.5h(w, S,)]

<E(s,,s:)~p>Es sup — Z oi(p(w, Z]) + 0.5hy (w, Z})) — 0.5h(w, S),)]

weQ N

+ ]E(S ,S! )ND27L]E sup — Z O'Z U), Z,L) + 05h1 ('lU, Zz) — O5h(w, Sn)]

weQ N

=E(s,.s,)~0>[R"(G,Sn) + Rh(gaST'L)} =2R/'(G, D).

In the above derivation, (a) used the fact that o;(¢(w, Z!) + 0.5h(w, Z}))
oi(o(w, Z;)+0.5h (w, Z;)) and (¢p(w, Z!)+0.5h1 (w, Z]))— (¢p(w, Z;)4+0.5h (w, Z;)
have the same distributions.

o=

Example 6.15. Using the offset Rademacher complexity estimate for VC-class
in Example we can obtain the following multiplicative form of expected
oracle inequality from Theorem
2(1 4 0.57)*d1In(en/d)

n ’

Es,¢(@, D) < (1+7) inf ¢(w, D) +¢ +

This implies an expected generalization of O(dInn/n) when inf,cq ¢(w, D) = 0.
In comparison, the standard Rademacher complexity leads to a convergence of

O(y/dInn/n) in Example

6.3 Concentration Inequality

We showed that using Rademacher complexity, we may obtain an oracle inequal-
ity in expectation. By using concentration inequality, we can also obtain high
probability uniform convergence and oracle inequality statements.

The simplest concentration inequality is a generalization of the additive Cher-
noff bound, due to McDiarmid (1989).
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6.3. CONCENTRATION INEQUALITY 93

Theorem 6.16 (McDiarmid’s Inequality). Consider n independent random vari-
ables X1, ..., X, and a real-valued function f(Xi,...,X,) that satisfies the fol-
lowing inequality

sup |f(xla wrn) - f(xla" . ,$i,1,$2,$i+1,~--,$n)| S C;

for all 1 <i<n. Then for all € > 0:
—92¢2
Pr[f(Xla---vXn) > Ef(Xb?Xn) +6] < exXp <n62> .
2ie1 G
Stmilarly:

Pr[f(Xla"-aXn) SEf(Xb’X")_E] < exp <Z:_n26262> ’

Proof Let X; = {Xy,...,X;}. Consider X7, and for some 1 < k < n, we use
the simplified notation X7 = {Xy,..., Xy_1, Xk, Xx11, X,,}. Then we have

Exp,, f(XT) = Exp, f(XP)] < e

k+1
We now consider Exr,  f (X7") as a random variable depending on X}, condi-
tioned on XF~*. Tt follows from derivation of the Chernoff bound that we have the
following logarithmic moment generating function estimate (see Example [2.14)):

InEy, expAEx;  f(X])] < AExp f(XT) + A¢i /8.

k+1
Now we may exponentiate the above inequality, and take expectation with respect
to X*~! to obtain

Exy exp[AExp, , f(XT)] < Eyr-1 exp[AEx; f(XT) + A°ci/8].
By taking logarithm, we obtain
InExr exp[AExp,  f(X])] < InEyr1 exp[AEx; f(XT)] + i /8.
By summing from k£ =1 to k£ = n, and canceling redundant terms, we obtain

InExy explAf(X])] < NExp F(X7) + A2 /8. (6.4)

k=1
Let
§ =Pr[f(X]) > Ex; f(X]) + €] .
Using Markov’s inequality, we have for all positive A
§ < e MExp )Jre)EXine)‘f(Xl) <exp |—Ae+ 3 Zci] .
k=1

Since A > 0 is arbitrary, we conclude that
P 2¢2
Ind < inf | — S —Xe| = ————.
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CHAPTER 6. RADEMACHER COMPLEXITY 94

This implies the theorem. O

McDiarmid’s inequality is referred to as concentration inequality because it
states that the sample dependent quantity f(Xi,...,X,) does not deviate sig-
nificantly from its expectation Ef(Xy,...,X,).

Note that if we take

n

1
f(xla"'7xn) - ﬁzxza

i=1

and assume that z; € [0, 1], then we can take ¢; = 1/n, which implies the ad-
ditive Chernoff bound in Theorem [2.16] Therefore McDiarmid’s inequality is a
generalization of the additive Chernoff bound.

We can apply Theorem to empirical processes and obtain a uniform con-
vergence result. In order to handle offset Rademacher complexity, we introduce
the sensitivity of h(w,S,,) as follows, which measures the maximum change when
the data S, is modified by no more than one element. Note that the sensitivity
is needed in order to apply McDiarmid’s inequality.

Definition 6.17. Given a function h(w, S,,), we define
A, h(w) = sup{n - |h(w,S,) — h(w,S,)|: |S. NS, | =n—1}.

Example 6.18. If the offset function h(w,S,) has the decomposition (6.3)), then
Anh(w) < suplia(w, 2) — b (w, #)].

In particular, if h(w, S,,) = ho(w), then
Ay h(w) = 0.
We have the following uniform convergence result using Rademacher complex-
ity.
Corollary 6.19. Assume that for some M > 0:
sgg sull)[qb(w, z) — d(w, 2] + Anh(w)} < M.

Then with probability at least 1 — §: for all w € €,

In(1/6
8w, D) <ow,8,) + h(w, 5,) + (@, D) + ay LD
Moreover, assume that the decomposition (6.3)) holds, then with probability at least
1—46: for allw € Q,

¢(w, D) <¢(w,S,) + h(w,S,) + 2R}(G, D) + MW'
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6.3. CONCENTRATION INEQUALITY 95

P’I"OOf Consider Sn = {Zlu ey Zn} and S;z = {Zla NN Zi—lu Zz/7 Zi+17 ceey Zn}
Let f(S,) = sup,ecqld(w,D) — ¢(w,S,) — h(w,S,)]. For simplicity, we assume
that the sup can be achieved at w as

w = arg max[¢(w, D) — ¢(w,S,,) — h(w,S,,)].

Then
f(Sn) = £(S3)
=[¢(w, D) — ¢(w, S,) — h(w, S,)] — z&g[‘f’@’ D) - ¢(w,S,) — h(w, S,)]
<[¢(w, D) — ¢(w,Sy) — h(, S,)] = [¢(w, D) — ¢(b, ;) — h(d, S,,)]

,_n

Similarly, f(S)) — f(S.) < M/n. Therefore we may take ¢; = M/n in Theorem

n

which implies the first desired result. The second bound follows from the
estlmate €"(G,D) < 2R"G,D) of Theorem O

Example 6.20. If we use the standard Rademacher complexity, then A, h(w) =
0. Corollary implies that

In(1/0)
2n
In(1/6)
2n

¢(w, D) <¢(w, S,) + (G, D) + M

<¢(w,Sn) + 2R (G, D) + M

where M = SUPyeq Supz,z’ [@(w, Z) - Cb(w, Z/)]
Corollary implies the following result.

Corollary 6.21. Assume that for some M > 0:
sup [suplo,2) = ol )] + M) | < .
weR | 2,2’

Then the approximate ERM method (6.1) satisfies the following oracle inequality.
With probability at least 1 — 3§ — ¢':

oy <
¢(w, D) < inf 5

o(w,D) + Es, h(w,S,,) + A, h(w) ln(1/5')‘|

In(2/9)

D)+2M
+ € +€(G, D)+ o

If h() has the decomposition (6.3)), then

oy <
¢(w, D) < inf ™

é(w, D) + Es, h(w, S,) + Anh(w) 1n(1/5’)]

In(2/4)

+¢€ +2R"G, D)+ 2M 5
n
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CHAPTER 6. RADEMACHER COMPLEXITY 96

Proof Given any w € €, from the Chernoff bound, we know that with probability
1-4/2,

In(2/6
$(w,S,) < p(w, D) + M H(QT{ ), (6.5)
Moreover, from McDiarmid’s inequality, we know that with probability 1 — ¢§’,
In(1/¢
h(w,S,) < Es, h(w,S,) + A,h(w) n(%é ). (6.6)

Taking the union bound with the inequality of Corollary at /2, we obtain
at probability 1 — 6 — ¢’
In(2/6)

6(t, D) <p(i, S) + h(ih, Sy) + €(G, D) + My — "=

<6(w. D) + h(w,S,) + ¢ + (G, D) + 2211 2EL)

2n
<¢(w, D) + Es, h(w, S,) + AW(WW

+é + (G, D)+ 2M M
2n
In the above derivation, the first inequality used Corollary The second
inequality used . The third inequality used . The last inequality used
. This proves the first desired bound. The second desired bound employs
Theorem [6.141 O

Example 6.22. If we use standard Rademacher complexity, then A, h(w) =
0. Corollary implies that the approximate ERM method (6.1]) satisfies the
following oracle inequality. With probability at least 1 — §:

(@, D) < inf 6(w, D) + ¢ + (G, D) +2M 1n(227”{ g
n(2/9)

< i !
< inf ¢(w, D) + € +2Ra(G, D) + 2M Y| — —,

where M = SUPyeq Supz,z’ [gb(w’ Z) - Q{)(U], Z/)]’

The Rademacher complexity analysis (together with McDiarmid’s inequality)
is convenient to apply. Therefore we will focus on this analysis in later chapters.
However, one drawback of the Rademacher complexity analysis is that it only
leads to convergence rates of no better than O(1/4/n). In order to prove faster
convergence rate, we will have to reply on more sophisticated analysis, referred
to as local Rademacher complexity analysis, which we will discuss in Section [6.5
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6.4. ESTIMATING RADEMACHER COMPLEXITY 97

6.4 Estimating Rademacher Complexity

This section provides some useful results to estimate Rademacher complexity. We
mainly focus on the standard Rademacher complexity. For a finite function class,
we have the following simple estimate.

Theorem 6.23. If G is a finite function class with |G| = N, then

2In N
—

R(G,Sn) < sup |lgllzacs,) -
geg
If moreover, for all g € G, g(z) € [0,1]. Consider the offset decomposition (6.3)),
and let ho(g) =0, and hi(g,S,) = (v/n) >oi_, 9(Z:). Then we have

(1+0.57)*In N
mn ’

R"(G,S,) <

Proof Let B = sup,g ||9|L,(s,)- Then we have for all A > 0:

R(G,S,) =E, sup — ZUZ

gegnz 1

ln Z exp

geg

(a)

)\ng
0 1
<—1n]E Eexp l)\ZJz

geSG
anHE exp [Aoig(Z;)]
geg i=1
1
2 2, P2
_)\n lnéﬂexp N2g(Z:)?/2] < )\—lnNexp[)\ nB*/2].

In (a), we used soft-max to bound the max operator. In (b), we used Jensen’s
inequality and the concavity of logarithm. In (¢), we used the moment generating
function for bounded random variables (see Example . Now we can obtain
the first desired bound by optimizing over A > 0.

For the second desired bound, we can obtain by duplicating the previous steps
up to step (c¢) to obtain

RM"G,S,) =E, sup — Zaz 14 0.5v)g(Z:) — 0.579(Z,)]

geg N

<— anexp Z [A?(1+0.57)%9(Z;)? /2 — 0.56Mv9(Z;)]

9€g 1=1
o . h 1 . . .
Now set A = /(1 + 0.57)%, we obtain R"(G,S,) < 3-In>" ; 1, which implies
the second bound. O
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CHAPTER 6. RADEMACHER COMPLEXITY 98

Example 6.24. Consider ¢(w, Z) € [0,1] and |G| = N. With probability 1 — §.
We have the following uniform convergence results for all w. If we use the union
of Chernoff bound (covering number) method, then

In(N/9)
2n

which implies that

$(w, D) < p(w,S,) + \/1n2(nN> N \/ln(21n/5)‘

If we use the Rademacher complexity bound, then we can obtain from Corol-
lary (with Rademacher complexity estimate from Theorem [6.23))

o) < ot 4P G

which leads to similar result. We may also obtain multiplicative bound using offset
Rademacher complexity from Corollary (with offset Rademacher complexity
estimate from Theorem with h(w,S,) = y¢(w,S,,)) as follows

2(1+0.5v)*In N In(1/d
(105N | /6
n 2n

¢(w, D) < (1 4+7)p(w,Sn) +

While the expected uniform convergence has O(1/n) rate, the concentration term
has a slower rate of O(1/+y/n) due to the use of McDiarmid’s concentration. This
can be addressed using localized analysis in Section

The following result shows that Rademacher complexity can be estimated from
the empirical Ly covering number using the chaining technique. The result is ex-
pressed in Dudley’s entropy integral. The constant can be improved using packing

number (see Exercise [6.4).
Theorem 6.25. We have

4e+12/ \/IHN(e’g’LQ(S"»de’

n

R(G,S,) < inf
€20

Proof Let B =sup,cg ||9llL.(s,), and let ¢, = 2B for £ = 0,1,.... Let G, be an
e,-cover of G with metric Ly(S,,), and N, = |G,| = N (e, G, Lo(S,.)). We may let
Go = {0} at scale ¢y = B.

For each g € G, we consider g,(g9) € G, so that ||g — g¢(9)|£.(s,) < €o- The key
idea in chaining is to rewrite g € G using the following multi-scale decomposition:

9="(9-9.(g +de — ge-1(9))-

We also have

19¢(9) = ge-1(9) Loy < 9e(9) — gllLacsn) + 19e-1(9) — 9llracs,) < 3ee. (6.7)
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The number of distinct g,(g) — ge—1(g) is no more than N,N,_;. It implies that

L
R(G,S,) = E, sup — Zaz (9= 90()(Z) + (9e(g) — ge-1(9))(Z:)
9€g M\ =1
<E,sup — foz 9-9c(g +ZE sup — ZUz 9e(9) — 90-1(9))(Z:)
geg N geg N
(a) 2In|N,N,_
Lo+ 350 ) — 01 (9 ) 2L
=19
(b) 2In[N,N
<€L+3ZGM/ n|NeNe]
hl[Ng]
< 12 —
<€r + ;(64 €r4+1) o
o0 In N(¢ L
§6L+12/ \/n (1,6, La(S)) 40
EL/2 n

The derivation of (a) used Theorem and the derivation of (b) used (6.7).
The next two inequality used N(e, G, Ly(S,) is a non-increasing function of e.
Now given any € > 0, we can choose €7, so that € € [ef, /4, €7, /2]. This leads to the
desired result. O

Example 6.26. From Corollary we know that if a binary-valued function
class G (or a VC-subgraph class with values in [0, 1]) has VC-dimension d, then

In Nyo(€,G,n) < 1+1In(d+ 1) + dIn(2e/e?).

Since N5(0.5,G,n) = 1, we have

o] 0.5
12/ \/In Ny(e,G,n)de < 12/ \/1 +In(d+ 1) + dIn(2e/e?)de < 16Vd.
0 0

It follows that

16v/d
vn
The constant isn’t optimal, and in fact a better constant can be obtained us-

ing packing number (see Example . The result implies the following uniform
convergence result: with probability at least 1 — ¢, for all w € €,

32vd In(1/9)
vn + 2n

This bound removes a Inn factor from the additive uniform convergence bound
in Theorem .17

R(G,S,) <

¢(w,D) < p(w, Sy) +
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Example 6.27. If In Ny(¢,G,n) < 1/¢? for g € (0,2), then

/oo \/In Na(e,G,n)de < oo.
0

Therefore there exists C > 0 such that

C
< —.
R(G,S,) < NG
If In Ny(€,G,n) < 1/e for g > 2, then

R(G,S,) <O (i&ﬁ <e + 61\;?)) = O(n~9).

This implies a convergence slower than 1//n.

One convenient fact about Rademacher average is the following result. Let {¢;}
be a set of functions, each characterized by a Lipschitz constant ;. Then the result
implies a bound on the Rademacher complexity of the function composition ¢o f.

Theorem 6.28. Let {¢;}!, be functions with Lipschitz constants {v;}_, respec-
tively. That is, Vi € [n]:

|9s(0) — ¢:(0")] < :l0 — O]

Then for any real valued function h : F x 2" - R, and S,, ={Z,,...,Z,} C 2",
we have

£ sup |3 0 £(Z) — h(f,S.)

fer =1

< E, sup lz oY f(Zi) — h(f,Sn)

fer li=
Proof The result is a direct consequence of the Lemma where we simply

set c(w) = —h(w,S,.), gi(w) = ¢:(f(Z;)), and g;(w) = v f(Z;). O

Lemma 6.29 (Rademacher comparison lemma). Let {g;(w)} and {g;(w)} be sets
of functions defined for all w in some domain 2. If for all i, w, w’,

19i(w) = gi(w)] < |gi(w) — gi(w),

then for any function c(w),

E, sup
weN

< E, sup
weN

c(w) + Z o:gi(w)

c(w) + Z aigi(w)] )
i=1
Proof We prove this result by induction. The result holds for n = 0. Assume
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that the result holds for n = k, then when n = k£ + 1, we have:

k+1

c(w) + E oigi(w)

k
=E;, . o SUD lw + Zo-i gz(wl) —;—gz(wg)

i=1

+

Gr1(wr) ; 9k+1(w2)]

l<w>+<w> N SPICORTIC
' 2

=1

_l’_

|G (wr) — 9k+1(w2)\]
2

lc(wl)—kc(wg) + zkzaigi(wl) + gi(ws)

w1, w2 2 P 2
|Gt (wr) — gk-ﬁ-l(“&)‘]
+
2
k
_E, . sup lc@h);c(wz) I ST ICAERICE
e i=1
g1 (wr) — §k+1(w2)]
* 2

.....

k
oxEoy iy SUP | (W) + Opp1 g1 (w) + Z aigi(w)]
w i=1

S Eol ..... O'k]EO'k+1 Sup
w

c(w) + o y1gk1(w) + Z Uz@i(w)} :

The last inequality follows from the induction hypothesis. OJ
The following example shows an application of Theorem

Example 6.30. Consider binary classification with y € {1}, and let F =
{f(w,z) = w"(x)} be the class of linear classifiers. Consider the smoothed
classification loss function L(f(z),y) = min(1, max(0, 1—vf(z)y)) for some vy > 0,
as in Figure Let G = {L(f(w,z),y)}. Then L(f,y) is v Lipschitz in f.
Consider the regularizer in Example with h(w) = ho(w) = 0.5\|w|)3 in

(6.3). We obtain from Theorem
RM"G,S,) <yRMI(F,S,),
which implies that

2 n
RG.8,) < 305 3 (Xl
i=1
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L(f(z),y)

f(@)y

0 1/5 1
Figure 6.1 Smoothed Classification Loss

It follows that
,.YQ
R!(G,D) < EEXMDW(X)H%

The following result is a direct consequence of Theorem [6.28/and Corollary [6.21]

Theorem 6.31. Consider real-valued function class F = {f(w,-) : w € Q}, and
G = {¢(w,2) = L(f(w,x),y) : w € Q,z = (x,y)}. Assume that we have the
decomposition in (6.3) with hy(w,S,) = 0. Assume that

sup |L(f(w,x),y) — L(f(w,2"),y")| < M,

(z,y),(2",y")

and L(f,y) is ~y-Lipschitz in f:

IL(f,y) = L(f )l <Alf = fI-
Let S, be n iid samples from D. With probability at least 1 — 3, for all w € Q:

BoL(f(w, X),Y) < 3 L(f(w, X0, Y0) + ho(u)

+ 2yRM(F, D)+ M ln(;?f %),

Moreover, for the approximate regularized ERM method (6.1) with ¢(w,z) =
L(f(w,z),y), we have with probability at least 1 — 4:

EDL(f(wv X)7 Y) < ul}relg [EDL(f(w? X)> Y) + hO(w)]

¢ 4 2y RM(F, D) + My 220 lnf/ J)

We have the following example for the smoothed classification loss.

Example 6.32. Consider the smoothed classification loss in Example [6.30] with

A
hw, $,) = g(w) = 5wl
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For the approximate regularized ERM method in (6.1)), we have with probability
at least 1 — 4:

A
EpL(f(0,X).) < inf [EoL(f(w, ). ¥) + ul}] + ¢

272 ) 21n(2/9)
—Ex~ X My —————=.
+ X o)l + b1y 22

6.5 Local Rademacher Complexity Analysis

The technique to prove McDiarmid’s inequality is called the Martingale method,
and it can derive concentration inequalities with convergence rates of O(1/y/n).
As shown in Example it is possible to obtain O(1/n) expected convergence
result using offset Rademacher complexity. However, the rate with respect to
concentration is still 1/4/n. In order to improve the analysis, we need to establish
concentration inequalities with faster convergence rate. It is possible to prove
faster convergence rates with the Martingale method by deriving Bernstein style
concentration inequalities. However, more refined forms of Bernstein style concen-
tration inequalities are needed to analyze empirical processes, and those refined
forms are referred to as Talagrand’s concentration inequality (Talagrand), [1995,
1996b)). We state the following version of Talagrand’s inequality by Bousquet
(2002).

Theorem 6.33 (Bousquet, [2002). Consider iid random variables (Zy,...,Z,) ~
D™, Let ¢ be a real-valued function of (Z1,...,Z,). Moreover, for each k € [n],
let (i, be a real-valued function of (Zy,...,Zx_1,Zxs1,-..,%,) S0 that

n

Z[C -Gl < ¢

k=1
Assume that for each k, there exists a function (j, of (Z1,...,Z,) such that
We have for all t > 0:

Pr [g > EC +4/2((1 +u) M EC + no®)t + % <et,

where 0 >n~tY " Ez (C)2

Theorem [6.33|is a Bernstein style concentration inequality, which can be com-
pared to the additive Chernoff style concentration inequality of Theorem We
can apply Theorem to empirical processes, and obtain the following coun-
terpart of Corollary A similar (two-sided) uniform convergence result can
be found in (Bousquet, [2002]).

Corollary 6.34. Consider a real valued function class F = {f(z) : Z — R}. Let
D be a distribution on Z. Assume that there exists M,oc > 0 so that Vf € F,
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0? > Vargup|f(Z)], and sup,cz[Ezpf(Z)— f(Z)] < M. Let S, = {Z1, ..., Z,}
be n independent random variables from D. Then with probability at least 1 — §
over S, for all f € F,

Ezwpf(Z) —— Zf
<. (F.D)+ \/ (4Me, (7. D) n+ /) | M/t
<2 (F,D) +1/ 2% 12(1/5) L AM 1;(01/5)7

where €,(F, D) is Definition [6.1]
Proof Let

n

nEspf(Z) - f(Z,)

i=1

¢ =sup
fer

i

and

G = Sup [(n ~DEzenf(Z) = > f(Zi

i#k
Assume that ;, is achieved at f;, and ¢ achieved at fy. Then

Z[C - Ck] < Z[EZNDfO(Z) - fO(Zk)] =¢.

Let

Cllc = *Cka

nEz.p fr(Z Z fe(Z

then
G < C— G < [Ezfo(2) — fo(Zy)] < M.
Moreover, since Z;, is independent of f;, we have
Ez.G =Bz [Ez fu(Z) — fi(Zk)] =0
Ez (G)* =Bz [Ez fi(Z) — fiu(Z1)] < o?
By taking u = 1 in Theorem [6.33] we obtain the first desired bound. The second

bound is a consequence of

\/(4Me,(F, D) +20%) In(1/6)/n

<\/AMe,(F, D) In(1/8)/n + /20 In(1/8) /n

<e (F,D)+ MIn(1/5)/n+1/20%1n(1/0)/n.

The first inequality used va+b < /a + Vb, and the second inequality used
vVidab < a+b. O

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. (©)2021-2023 Tong Zhang



6.5. LOCAL RADEMACHER COMPLEXITY ANALYSIS 105

(o, F, D)

Figure 6.2 Rate function

To illustrate its consequences, we introduce the following definition of rate func-
tion. In general, we expect the uniform convergence complexity €, (F"(r'/a), D)
to grow sublinearly in 7’ (see examples later), which implies that the rate function
7 is well-defined (see Figure [6.2)).

Definition 6.35. Given D and F, and consider a localization function h : 7 — R
such that by = inf ;e h(f) > —oo. Define localized function class F"(b) = {f €
F : h(f) < b} for all b > by. For any o > 0, the rate function with respect to
localization h is defined as

Fﬁ(a,}',l)):sup{r:rg inf ¢, (fh(r’/a),D)}.

r/>max(r,abg)

We note that the requirement of ' > aby in Definition is only to make
sure that 7" (' /a) is always non-empty, and thus e, (F"(r'/a), D) is well-defined.

Example 6.36. In (Bartlett et al., [2005), the definition of the localization func-
tion is h(f) = Ezup[f(Z)?]. The localized function class F(b,D) is {f € F :
E[f(Z)?] < b}, with by > 0.

In the analysis of ERM, it is natural to employ the same local function class
as in (Bartlett et all 2005), the more general definition given in Definition
simplifies some calculations of 7, («, F,D) using the offset uniform convergence
complexity, as shown in Proposition This leads to a result similar to Ex-
ample which employs offset uniform convergence.

Next we state the following simple property of rate function.

Proposition 6.37. The rate function in Definition[6.35] is always non-negative.

Proof Note that F"(r'/a) # ) when r’ > max(0, aby). Since €,(F"(r'/a), D)
is always non-negative, with » = 0, we have r < €,(F"(r'/a),D) when r’ >
max(r, aby). O
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The usefulness of rate function 7 in Definition [6.35] is based on the following
result, which shows that €, can be upper bounded by this quantity.

Proposition 6.38. For all o > 0 and b > inf ;e h(f), we have
€, (F"(b), D) < max (7 (a, F, D), ab) .

Proof Note that F"(b) is non-empty. Let # = 7" («, F, D). The definition implies
that

> €, (]-'h(f/a),D) .
If b < 7/a, then
en(F"(b),D) < €, (F"(#/a), D) < # = (a, F, D).

Otherwise, let 7/ = ab > 7 = 7 («, F, D). By the definition of 7 («, F, D), we
have

€n(F"(0), D) =€, (F"(r'/a),D) < 71" = ab.
By combining the two situations, we obtain the desired bound. O

Example 6.39. Let h(f) = Ep[f(Z)?] and assume that by = inf ;e h(f) = 0. If
. h(p). D) < gbqﬂ
o (P0.D) <

for some 0 < ¢ < 1, then we obtain

—gz2\ 1/(2=9)
a1
n

(o, F, D) < (

As we will see, the convergence rate of ERM under variance condition is deter-
mined by 7" (v, F, D), and this leads to a rate of convergence faster than O(1/y/n).

The following result shows that under the variance condition, the rate func-
tion can be estimated from the uniform convergence complexity with a properly
defined offset function.

Proposition 6.40. Let F = {¢(w, Z) : w € Q}. Consider a localization function
h(w) and the corresponding offset function h'(w,S,) = 0.5ah(w). Then

7 (o, F,D) < max (262’ (F,D),«a irg2 h(w)> :

Proof Let by = inf,cq h(w). Consider any r > 0 such that

r < inf )en(]-'h(r’/a),D).

T r/>max(r,aby
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For any ¢(w,-) € F"(r'/a, D), we know by the definition of localized function
class that

R (w,S,) = 0.5ah(w) < 0.5r".
It follows that
en(F"(r' /), D) < el (F"(1' /o), D) + 0.5 < €' (F, D) + 0.5r".

This means that for all " > max(r, aby), the condition

r < e, (F'(r'/a),D
implies that

r < e (F, D)+ 0.5
Let " — max(r, aby), we obtain either r < aby, or

r < e (F, D)+ 0.5r.
Therefore

r < max (262/ (F,D), ab()) )

This implies the desired bound. O

By using the concept of rate function, we can obtain the following uniform
convergence result from Corollary [6.34] where we assume that the localization
function satisfies a variance condition similar to (3.13)).

Theorem 6.41. Consider F, D, and #id samples S,, = {Z1,...,Z,} ~ D. Let
f(D) =Ezp[f(Z)], and f(S,) =n"* >, f(Z:). Assume that for all f € F,

Varp[f(Z)] < ¢ + cih(f)

for some co, c1,h(-) > 0. Assume also that F is bounded: sup,,[f(D)— f(z')] < M
for all f € F. Then with probability at least 1 — § over S,, Vf € F and Ya > 0:

2¢21In(1/4) N (3c1 + 4aM) In(1/9)

f(D) <f(Sn) + 5ah(f) + 5ro + n 3an

)
where

22 (3 daM
To :fﬂa,}",D)—i—a}nfh + ﬁ—i— cl+ oM)
eF n

2c3 daM
<2¢" (afD)+2a1nfh )+ Co—i— 301+ a ),
with W' (f,S,) = 0.5ah(f).
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Proof The inequality for r( is a direct consequence of Proposition [6.40]
We will now use a peeling argument. For £ = 1,2,..., let r, = a1 (1.5) 1.
Define F, = {f € F : h(f) < r.}. It follows that

sup Varp[f(2)] < 2 + cih(f) < 2+ eire.
feF,

For each ¢ > 1, let 6, = 46/((¢ + 3)(£ + 4)). We have with probability 1 — d,:
Vf e Fu,

f(D) = f(Sn)

2(ck + c1re) In(1/4y) N 4M In(1/6,)
n 3n

SQEn(Fg, D) + \/

2(c3 + 1) In(1/6,) N AM In(1/6,)

<27"(a, F, D) + 2ar, + \/

n 3n
2¢3 In(1 2¢,7¢ In(1 4M In(1
SQFZ(O[’-F,D)+2OZT[—{— % D( /5Z) + CiTy n( /55) + Il( /54)
l n n 3n
2¢21n(1/6 3 4aM)In(1/6
<27"(a, F, D) + 2.5ar; + ¢oIn(1/6) _|_< 1+ 4aM)In(1/6,)
n 3an
2
<2.5ar, + 2c¢§In(1/6) 4 (3¢c; +4aM)In(1/9)
n 3an
92 In(EBEDY (30, 4+ a4 M) In (3D
+2rn(a,f,z>)+\/ (T | Bet daM) ()
n 3an
(@) 2¢21n(1/6 3c; + 4aM)In(1/6
<2501 + 1| 2D n(1/ )+( & + 4oM)In{l/ )—1—27’0 x (are/ro)'/?

n 3an

263 1n(1/8) | (3¢y +4aM) In(1/5)

n 3an

The first inequality used Corollary The second inequality used Proposi-
tion with 7, > o~ trg > inf re 7 h(f) > 0. The third inequality used va + b <
va + v/b. The fourth inequality used v2ab < 0.5ca + b/a. The fifth inequality
used va+b < v/a + Vb. The last inequality used 2b(ca/b)"/? < 0.5aa + 2b.
Inequality (a) used the definition of ry, and the fact that

max <2, \/ln (+ 31(6 + 4),111 e+ 3)4(€ i 4)> < 2(1.2)7t < 2(ar /o).

<Bary + + 27¢.

Note that ¢>1 0¢ = d. Taking union bound, we know that the above inequality
holds with probability at least 1—4 for all £ > 1 and f € F,. Given any f € F, let
¢(f) be the smallest ¢ so that f € F,. It follows that for this choice of ¢ = ¢(f):

re < max(1.5h(f),a 'ry) < 1.5A(f) +a 'ro.
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We thus obtain the desired bound. O

Example 6.42. In Theorem we can take h(f) = 0, and we can take ¢;, o« —
0 with ¢; /a — 0. Since 7 (0, F, D) = ¢€,(F, D), we obtain

f(D) < f(S.)+ 0 <en(f, D) + 2¢8 1f711(1/5) N Mlnél/&)) |

If ¢g is small, then this result improves Corollary with h = 0 since M is
replaced by a potentially smaller quantity ¢y in the O(1/4/n) term.

Example 6.43. In Theorem assume that f(Z) € [0,1]. Then we can take
h(f) = f(D) so that the variance condition holds with ¢o = 0 and ¢; = 1. In such
case, we may take « as a constant. This implies the following bound:

(1= 50) (D) < f(Sa) + 57 (a, F, D) + O <<1+02711n<1/5>> |

This leads to a O(1/n) concentration term. This result can be used to improve
the concentration of the multiplicative bound in Example We leave it as an
exercise.

While the Chernoff style bound of Corollary only implies an oracle in-
equality for ERM with convergence rate no better than O(1/4/n), the Bennett
style bound in Theorem [6.41| can lead to faster convergence rate. We state the
following result, which is a direct consequence of Theorem [6.41

Corollary 6.44. Let ¢p(w,z) = L(f(w,x),y) — L.(z,y) for an appropriately de-
fined L,(x,y) so that ¢(w,D) > 0. Assume sup,, sup, .[¢(w, z) — ¢p(w,2")] < M,
and the variance condition holds. Consider ho(w) > 0, and let h(w,S,,) =
S5achg(w). Then for & such that In(2/9) > 1, with probability at least 1 —§, for all
a > 0, the approximate ERM method satisfies

(1= 50)¢(w, D) < inf [(1+ 60)¢(w, D) + L0aho(w)] + ¢ + 57" (o, G, D)

w7 2¢21n(2/96) n (7c1 + 10aM) In(2/96)

n an

)

where h'(w) = ho(w) + ¢(w, D) and G = {dp(w,z) : w € Q}. Moreover, with
probability at least 1 — §, we have
(1= 5a)¢(i, D) < inf [(1+ 11a)¢(w, D) + Loahg(w)] + ¢ +106;°*" (G, D)

47 2¢21n(2/6) N (Ter + 10aM) ln(2/(5)‘
n an

Proof For any w € 2, we know from Bennett’s inequality that with probability
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1-4/2,
d(w,S,) <é(w,D) + \/QVaTZNDW(:a Z)]In(2/9) + er;f/&
<¢(w, D) + ¢ 20et + Cl¢<“7;v D)) In(2/8) | Mh;f/d)

2¢21n(2/0) N 2¢,6(w, D) In(2/96) N M1n(2/6)
n n 3n
2c3In(2/6)  (3¢1 + aM)In(2/0)
n + 3an )

<¢(w, D) +

<(1+0.5a)¢(w, D) +

The first inequality used the Bennett’s inequality for sum of independent random
variables. The second inequality used the variance condition. The third inequality
used vVa+b < a+ Vb. The last inequality used V2ab < 0.5aa + b/a.

Moreover, from Theorem with h(¢(w,-)) = h/(w), we obtain with proba-
bility 1 — §/2:

(1 = b5a)p(w, D) <é(w,S,) — bad(w, D) + bah' (W) + 5rg
2¢2In(2/6) = (3¢1 +4aM)1n(2/9)
n + 3an

2¢21n(2/96)

n

:QS(UA),SH) + 5Oéh0(lb) + 579 +
(3¢ + 4aM) In(2/9)

3an
<¢(w,S,) + dahg(w) + € + 5ry
2¢21n(2/6) n (3¢, +4aM)1n(2/4)
n 3an '

The first inequality used Theorem The second inequality used (6.1]). By
taking the union bound of the two inequalities, we obtain with the probability at
least 1 — §:

(1 —5a)p(, D) < [(1+0.5a)¢(w, D) + sahe(w)] + € + 57 (o, G, D)

2¢21n(2/4) n (7Tcy + 10aM ) In(2/9)
n an

where we used In(2/d) > 1 to simplify the result. By taking the inf over w € Q
on the right hand side, we obtain the first bound. By using Proposition we
obtain

57 (a, G, D) < 10627 (G, D) + 5afp(w, D) + ho(w)).

Substitute into the previous inequality, and take the inf over w € € on the right
hand side, we obtain the second bound. O
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We have the following interpretation of Corollary [6.44}

Example 6.45. In Corollary we take L,(z,y) = L(f(w.,z),y) for some
w, € , and assume that the variance condition holds with ¢y = 0. The rate of
convergence is determined by 7" («, G, D), where h(w) = ¢(w, D) (i.e., ho(w) =0
in Corollary and a constant o = 0.1.

EZNDL(f('va X)? Y) SEZNDL(f(w*v X)? Y)

o) (a +77(0.1,G,D) + (1 + M) ln(1/5)> .

n

Since Example [3.18] implies that least squares regression satisfies the variance
condition, this bound holds for least squares regression.

The following result shows that the rate function can be obtained from a uni-
form upper bound of the Rademacher complexity.

Proposition 6.46. Consider function class G = {¢(w, z) : w € Q} with h(w) =
¢(w, D) and inf,eq h(w) = 0. Assume that |¢(-)| < M and the variance condition
(13.14)) holds with co = 0. Assume that for any b > 0, we have

s;lp R ({qb(w, E :Liqﬁ(w,Zi)Q < b} ,Sn) < r,(b),

where 1,(b) is a continuous concave function of b. Let o < 0.5¢, /M and
bo = sup{b > 0:b < (4d¢;/a)r,(b)},

then 7" (a, g,D) < 0.5abg/cy.

Proof Consider any b, > by and let
Go ={¢(w,") : ¢(w,D) < 0.5b/c1},

and define
R 1<
b(S,) = sup — Z)2.
(8.) = sup - ;g( )
We have
R(QOuSn) < Tn(i)(sn)), R(_ggusn) < ZMTTL(B(STL))' (6'8)

The first inequality used the definition of r,, and the definition of b. The second in-
equality used Theorem and |p(wq, 2)* — P(wy, 2)?| < 2M|p(wy, 2) — P(ws, 2)|.
Let b = Eg, b(S,,), then we have
b=Es, b(S,) < e,(—G2, D) + 0.5},
<2R,(-G¢,D) + 0.5

~ ~

/ /
<AMEs, r,(b(S,)) + 0.5b; < (2¢1/a)r,(b) 4 0.5b.
. . 2 / .
The first inequality used sup,cg, Ez-pg(Z)* < 0.5b;, which follows from the
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CHAPTER 6. RADEMACHER COMPLEXITY 112

variance condition. The second inequality used Theorem [6.4} The third inequality
used (6.8). The last inequality used the concavity of r,(-) and 4M < 2¢;/a.

From the above inequality, we have either b < b, or b < (2¢1/a)r,(b) + 0.5b.
The latter also implies that b < by < b}, by using the definition of by. We thus
obtain

~ ~

€.(Go) < 2Es, R(Go,S,) < 2Es, 7,(b(S,)) < 2r,(b) < (0.5a/cy)by.

The first inequality used Theorem The second inequality . The third
inequality used the concavity of r,(-). The last inequality used b < bj, by > by,
and the definition of by. 3
Therefore if we let 7 = 0.5(cv/c1)bpy, then €,(G"(r/a)) = €,(Go) < 2r,(b) <
r, where by < 2(c;/a)r. The condition that r,(-) is continuous implies that
lima, 0+ €,(G"((r + Ar)/a)) < r. The desired result follows from the definition
of ™ (a, G, D). O

In the following, we apply Proposition [6.46]to obtain the rate function estimate.
In general, from Figure we know that b, can be obtain by solving

by = (4e1/a)rn(bo).
For parametric models, we have the following result (see Section .
Example 6.47. In Example [6.45] assume that
In Ny(e,G,n) < dln(n/e).
Then Theorem implies that r,,(b) = O(y/bdInn/n), and

#(a, G, D) :O<dlr;(n)>'

For nonparametric models, we have the following result from Proposition [6.46

Example 6.48. In Example [6.45] assume that

In Na(e,G,n) < c/e’
for some p < 2. Then it can be shown from Theorem that (we leave it to
Exercise . (b) = O((v/0)'~%% /\/n). This implies that

FZ(% G,D) = O(n—l/(1+p/2))_

In comparison, we may apply the uniform L, entropy analysis with

In Ni(e,G,n) < c/e.
The multiplicative Chernoff bound in Corollary [£.13| has a suboptimal complexity
of

inf [e + L} = O(n~1/0+P)y,
e>0 ePn
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Example 6.49. Consider a function class F and the ERM method for least
squares regression:

f = argin - > (7(X) - Yo,

=1

where Z; = (X,,Y;) are iid samples from D. Assume that |f(X) — Y| € [0, 1] for
all X and Y. Example implies that the loss function ¢(f,Z) = [(f(X) —
Y)? = (f.(X)—Y)?] satisfies the variance condition if the true regression function
fi € F. Assume also that the empirical covering number of F satisfies:

In Ny(e, F,n) < Eﬁp (6.9)

for some constant ¢ > 0 and p > 0. We consider the following two situations:
p € (0,2) and p > 2. Let h(f) = ¢(f, D) with ho(f) = 0.

e p € (0,2). The conditions of Corollary hold with ¢y = 0. This implies the
following bound (see Exercises on the rate function with constant a:

(o, F,D) = O (n*Q/(QH’)) .

We thus have with probability at least 1 — 9:

. In(1
EpL(f(X),Y) < BoL(f.(X),Y) +0 (o UL,
n
e p > 2. The entropy integral of Theorem [6.25] implies that
h 1
Ry (F(8).D) < -

for some constant ¢;. We thus obtain a rate of convergence of
(e, F,D) = O (n/7)

for local Rademacher complexity. It can be shown that this is the same rate as
what we can obtain from the standard non-localized Rademacher complexity

(see Exercise .

6.6 Historical and Bibliographical Remarks

The introduction of Rademacher complexity in machine learning was due to
Koltchinskii (2001); Koltchinskii and Panchenko| (2002)); Bartlett and Mendelson
(2002). The treatment presented here mainly follows that of Bartlett and Mendel-
son| (2002), and the proof of Lemmawas presented in Meir and Zhang| (2003)),
which generalizes a result of Ledoux and Talagrand| (2013) to handle offset func-
tions. We also employs a generalized version of Rademacher complexity which
we refer to as offset Rademacher complexity. The notation of offset Rademacher
complexity was considered by |Liang et al.| (2015]).
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The concept of local Rademacher complexity was proposed in |[Bartlett et al.
(2005). Our treatment follows their approach, which leads to the uniform conver-

gence result presented in Corollary [6.34], and oracle inequality in Corollary
Similar results can be found in [Bartlett et al.| (2005)), which also employed the
notation of rate function, although the precise definition is different.

The idea of concentration inequality can be dated back to the Efron-Stein
inequality in (Efron and Stein, |1981; Steele, |1986), which can be stated as follows.

Proposition 6.50. Let f(X1,...,X,) be a function of n variables, and {X;, X!}
(1 <i<n) be2n iid random variables, then

Var[f(X)] < LS (£(X) - FXO), (6.10)

where X = [Xl,. . '7XTL]7 and X(Z) = [Xla-- . 7Xi—17X1(7Xi+17~-- 7Xn]

This inequality may be regarded as a generalization of Chebyshev’s inequality
for the sum of iid random variables. Similarly, the McDiarmid’s inequality
, can be regarded as a generalization of the Chernoff bound. The
generalization of Bernstein style inequality for empirical processes, needed for
establishing convergence rate faster than O(1/4/n) and for the local Rademacher
complexity analysis, is more complicated. Such an inequality was obtained first
by [Talagrand, (1995], 1996b), and thus has been referred to as Talagrand’s inequal-
ity. Its variations and improvements have been obtained by various researchers
(Ledoux, [1997; Massartl, [2000; Boucheron et al., 2000, 2003; Bousquet), [2002;
Boucheron et al.,|2013)). Talagrand’s inequality can also be used with matrix con-
centration techniques to obtain sharper tail bounds for the spectral norm of the

sum of independent matrices (Troppl [2015).
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6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Exercises

Consider G = {¢p(w, z) : w € Q} with ¢(w, z) € [0, 1]. Given a dataset Sp4m, we consider
random partitions of Sy4m into disjoint subsets Sy, U Syy,. Define

R(G,8n,Sm) = sup [¢(w, Spim) — $(w, Sn)]-
we
If Sptm ~ D™ then find constant ¢y, m so that e,(G, D) < enmBs,us: R(G, Sn,Sh).

Given a dataset Sy,4+m, we consider random partitions of Sy, 4, into disjoint subsets Sp, U
S},. Consider any function f(Z) € [a, b]. Define

S =1 S H@), [Snim) = —— S 12,

Zes, ZESmim

e Show that the sub-Gaussian inequality holds:

1 A(b - a)?
TInEs, us;, oD (AF(S)) < F(Saim) + 20 D

where the expectation is over random partitions. Hint: see (Hoeffding} [1963]).

e Derive a Chernoff bound
Pr(f(Sn) — f(Sn+m) > ¢€),

where € > 0. Here the probability is with respect to all random partitions of Sy4m.
e If |G| = N is finite, derive an upper bound of

Es,us: R(G,Sn,Sm)

by using the proof technique of Theorem [6.23] where the expectation is with respect to
the random partition.

For general G, with covering number N (€, G, Loo(Sn+m)), estimate
ESnUS;n R(g7 Sn, S’I’”ﬂ)

defined in the previous problem by using the chaining technique of Theorem [6.25] Here
the expectation is with respect to the random partition.

In Theorem [6.25] assume that 0 € G. If we replace covering number by packing number,
then show that can be improved to obtain

4€+4/oo \/1nM(€/,g,L2(Sn))del

n

R(G,Sn) < inf
e>0

Let F = {f(w,z) : w € Q}, where z € X, and and each function f(w,z) takes binary
values in {£1}. Consider Sp = {(X1,Y1),...,(Xn,Yn)}, where X; € X and Y; € {£1}.
Let ¢(w, X,Y) = L(f(w,X) #Y), and G = {¢(w, X,Y) : w € Q} Let R(F,Sn) be the
Rademacher complexity of F on Sp, find R(G, Sn).

Consider the least squares problem in Example [6.49] If p = 2, derive an oracle inequality
using local Rademacher complexity.

Assume the empirical covering number of a function class F satisfies with p > 2.
Estimate the Rademacher complexity R(F,Sn).

Assume that we have a VC-subgraph class with finite VC-dimension d. The variance
condition holds. Use Theorem and Theorem to derive a multiplicative
style uniform convergence result. Compare with Example [6.24]
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CHAPTER 6. RADEMACHER COMPLEXITY 116

6.9 In Example prove the bound for FZ (o, G, D) when p < 2. Moreover assume that
p > 2; find a bound for Fﬁ(a, G,D).

6.10 Consider the variance condition for some 8 € (0,1). Use the result of Example
to write this condition in the form of with [-dependent tuning parameters cg
and c¢;. Write an oracle inequality using Corollary [6.44] Consider the entropy number in
Example [6.48] and compute the convergence rate in terms of 8 by optimizing the tuning
parameters cg and cg.
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7

Algorithmic Stability Analysis

The theory of empirical processes has become an important tool to analyze the
generalization ability of learning algorithms based on empirical risk minimiza-
tion. However, in practical applications, we typically solve the empirical risk
minimization problem using optimization methods such as stochastic gradient de-
scent (SGD). Such an algorithm searches a model parameter along a path, which
does not cover the entire model space. Therefore the empirical process analysis
may not be optimal to analyze the performance of specific computational proce-
dures. In recent years, another theoretical tool, which we may refer to as stability
analysis, has been proposed to analyze such computational procedures.

7.1 Algorithmic Stability

We consider an arbitrary randomized learning algorithm A that maps a training
data S, of n samples to a (random) weight vector w € Q. An example of such
randomized algorithm is SGD, which produces a random weight vector due to
the randomness in selecting training examples during the training of SGD.
Similar to previous chapters, our goal is still to minimize the expected test loss

gzﬁ(w, D) = EZND¢(w, Z),

and we assume that S,, contains n iid samples, drawn from D. Here the test loss
¢(w, z) can be different from training loss as in regularized ERM method .
But we consider a more general setting where the training algorithm may not
necessarily correspond to an ERM method.

We are still interested in bounding the difference of training error and general-
ization of such an algorithm. We introduce the notation of algorithmic stability
as follows.

Definition 7.1. An algorithm A is e-uniformly stable if for all S,, and S, that
differ by only one element:

sup[E4¢(A(S,), 2) — Eag(A(Sn), 2)] <,

zEZ

where E 4 denotes the expectation over the internal randomization of the algo-
rithm.

Stability can be used to derive an expected generalization bound for a learning
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CHAPTER 7. STABILITY ANALYSIS 118

algorithm. We have the following result, which shows that the expected gener-
alization loss of a stable learning algorithm is bounded by the expected training
loss.

Theorem 7.2. If an algorithm A is e-uniformly stable, then for S, ~ D":
ES,LEAd)(A(Sn)) D) < ES,LEAQS(A(‘Sn% ‘Sn) + e

Proof Consider two independent samples of size n: S, =
ST/L = {Z{7 ey Z;L} Let ST(LZ) = {Zh ey Zifl, ZZ/, Zi+17 N 2
distribution obtained by A with S{). We have

ESHEA¢(A(Sn)7 D) - ESHEA(ﬁ(A(Sn)v Sn)

1 n ) 1 n
= Y Es Es,Ead(ASY), Z:) — - > Es,Ead(A(S,), Z)
=1 =1

{Z:,....2,} and
1. Let p{” be the

Z% Z Es Es, [E4¢(A(SY), Z;) — Ead(A(S,), Z;)] < e.

The first equation used the fact that Z; is independent of S\, and thus the
distribution of ¢(A(S()), Z;) is the same as that of ¢(A(S,), Z) with Z ~ D. The
inequality used the definition of uniform stability. O

It is also possible to obtain a large probability statement for any uniformly
stable algorithm. The proof relies on a concentration inequality for leave-one-out
estimate, which we leave to Section (see Theorem . Using this result, we
can obtain the following high probability result that bounds the generalization
loss in terms of training loss for uniformly stable algorithms.

Theorem 7.3. Assume that A is € uniformly stable. Let S,, = {Z1,...,Z,} ~ D"
and 8!, = {Z;,...,Z!} ~ D" be independent training and validation sets of iid
data from D. Assume that there exists a € (0,1] such that for some § € (0,1), we
have the following inequality between the expected validation loss and the expected
test loss. With probability at least 1 — 6,

1 n
alls, Ea ¢(A(Sq),P) = Y Es, B4 6(A(Sn), Z)) + €n(6)- (7.1)
1=1
Then with probability at least 1 — §:

EA¢(A(Sn)7 D) SEAQZ)(A(STL)? Sn) + (1 - a)ES7LEA¢(A(Sn)7Sn)
+€,(6/2) + (24 5[logy n])eln(2/d) + (3 — a)e.

Proof We define
9(Sn; 2) = Ead(A(Sn), D) — E4¢(A(S,), 2).-
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7.1. ALGORITHMIC STABILITY 119

Then Ezg(S,; Z) = 0 and ¢(S,; #) is 2¢ uniformly stable. Theorem implies
that with probability at least 1 — §/2:

9(Sny1) < 2[logy nle(1 +2.51n(2/4)), (7.2)
where
1NN (i) (i)
Sui1) =2 3 | (Bad(ASL]1). D) ~ Ead(A(SI). 2)

~ (Ese) Bad(A(S2), D) ~ By Ead(AS, ). )

Ay

Here Sn+1 =S, U{Z,.1} with Zn+1 ~ D independent of S,. Moreover, as in
Theorem we use the notation SnJrl ={Z1,.. . Zi 1, Zps1, Zis1y -y Zn}

In , we observe that Es, E4 ¢(A(S,), D) is a number that depends on D,
and Es, E4 ¢(A(S,), Z!) depends only on Z!. Therefore by changing S,, to 57(121
and Z] to Z;, we obtain the following equivalent form of . With probability
at least 1 —0/2:

1 n

A, = Z [Esgl Ea ¢(A(S),), D) — Eso) Ea P(AS), Zz‘)}
<(1 - a)Es, E4¢(A(Sn), D) + €,(0/2)
<(1 = a)Es, E4p(A(Sn), Sn) +€a(6/2) + (1 — a)e. (7.3)

The first inequality is equivalent to ([7.1)). The second inequality used Theorem
It follows from the union bound that with probability 1 — d, both (7.2) and (7.3))
hold. This implies that

E¢(A(S,), D)

n

<D [EAASL D)) + ¢

1=1
fZEm A(SYL) 2]+ §(Snsar) + A + €

n

< Y IEAS(ASEL); 20) +2flogy nle(1 + 25 1n(2/9)

+ (1= a)Es, EAG(A(S,), Sn) + en(6/2) + (2 — a)e
<% S EAG(A(S): 2] +2[logy me(1 +2.51n(2/3)

+ (1 — )Es, EAP(A(S,),Sn) + €,(6/2) + (3 — a)e.

In the proof, the first inequality used uniform stability of A. The second inequality
used ([7.2]) and (7.3). The third inequality used the uniform stability of A. O
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CHAPTER 7. STABILITY ANALYSIS 120

Example 7.4. For bounded loss ¢(-,-) € [0, 1], we can apply the additive Cher-
noff bound and let « =1 and

_/In(1/6)
&n(9) = 2n
in ((7.1). This leads to the following inequality. With probability at least 1 — §:
In(2/6)
E4¢(A(S0), D) <Ea9(A(5n), Sn) + (2 + 5[log, n])eln(2/0) + 2 + ) — .

We note that in Example if we employ a uniformly stable algorithm A(S,,)
that achieves approximate empirical risk minimization, then the same argument
in the standard analysis of ERM method (such as those in Chapter 3) can be used
to derive an oracle inequality for A that holds in high probability. An important
advantage of deriving such results using stability analysis instead of empirical
process in Chapter (3] is that stability analysis does not have to rely on covering
numbers (or related concept such as Rademacher complexity). As we will see
later, stability analysis can be used with computational procedures such as SGD
for which the concept of covering numbers can be difficult to apply.

Example 7.5. For bounded loss ¢(-,-) € [0, 1], we can apply the multiplicative
Chernoff bound (2.11)) with a = 1 — v for v € (0,1), and

In(1/4)

ST

in ((7.1). This leads to the following inequality. With probability at least 1 — §:

In(2/4
+ (2 + 5[log, n])eln(2/6) + 3¢ + (7/)
2vn
The result implies that if one can design a stable learning algorithm that achieves
near zero training loss, then the test loss is also near zero with large probability.
One may also use Bernstein’s inequality together with the variance condition to
obtain a similar result. We leave it as an exercise.

In addition to uniform stability, we will also consider the following closely
related concept of leave-one-out stability. It is easier to define training data de-
pendent stability using leave-one-out stability, and to allow different training loss

and test loss, as in (6.1)).

Definition 7.6. Given datasets S, = {Z1,...,Z,} CSns1 ={Z1,.. ., Zn, Zpni1}-
Let €(-, -) be a function Z x Z"*1 — R. The algorithm A(S,,) is €(-, -) leave-one-out

stable if there exists A(S,,11) such that for all (Z,,11,S,:1):
EA¢(A(Sn); Zni1) = Eap(A(Sni1)s Zni1) < €(Zni1; Snir),

where E4 denotes the expectation over the internal randomization of the algo-
rithm.

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. (©)2021-2023 Tong Zhang



7.2. REGULARIZED EMPIRICAL RISK MINIMIZATION 121

The following result shows that the expected generalization loss of A on S,
can be bounded by the expected training loss of A on S, 1. The proof is left as
an exercises.

Theorem 7.7. If an algorithm A is €(-,-)-leave-one-out stable, then
ESn EA¢(A(8n)> D) S]ESW,+1EA¢(A(S11+1)7 Sn+l)

1
+E3n+1m Z E(Z7‘Sn+1)‘
ZESn4+1

For certain problems, one can obtain more refined results using the data-
dependent leave-one-out stability analysis of Theorem We will mostly con-
sider this approach in this chapter.

7.2 Regularized Empirical Risk Minimization

In this section, we consider empirical risk minimization with convex functions,
and analyze its generalization using stability. Properties of convex functions that
are useful for our purpose can be found in Appendix [A] Additional background
on convex analysis and convex optimization can be found in Rockafellar (2015);
Boyd and Vandenberghe| (2004).

We can now analyze the empirical risk minimization method for convex objec-
tives.

Theorem 7.8. Assume that ¢(w,z) is G(z)-Lipschitz in w on a closed convex
set Q. The training loss ¢p(w,S,) = ¢(w,S,) + h(w) is X strongly convex. Then
the reqularized empirical risk minimization method

A(S,) = arg glelg o(w,S,)

18 €(Zni1,Sns1) = G(Z,11)?/(M(n+1)) leave-one-out stable. If moreover we have
sup, G(z) < G, then it is e = 2G?/(An) uniformly stable.
Assume h(w) > 0, then the following expected oracle inequality holds:
. E,G(Z)
< _—.

Proof Consider S,, and S,11 =S, U{Z,+1}. We define

- n

d(w, Sny1) = p(w, Sppr) + T

h(w)7

and let A(S,, 1) be its minimizer on 2. Using the optimality of .A(S,) and Propo-
sition we obtain

VO(A(Sa), Su) T (A(Sns1) — A(Sn)) = 0, (7.4)
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CHAPTER 7. STABILITY ANALYSIS 122

where Vg (w, -) is the gradient with respect to w. Since

n
n+1

é(A(Sn)aSn+l) -
It follows that
V&(A(Sn)v Sn+1)T(~’Zl(Sn+1) - A(‘Sn))

&(-A(Sn)vsn) + ¢(A(Sn)7zn+1)'

n+1

_ (n 1VOAS), 8+ VHAS,) zn+1)) (A(S51) — A(S,)

1

Zn - 1V¢(A(3n), Zni1) (A(Sni1) — A(Sn))
G(Zn+1) 1
> — ni_{_lH-A(Snﬂ) —A(Sn)) |2

The first inequality used (7.4). The second inequality used the Lipschitz property
of ¢. Since A(S,41) is the minimizer of ¢(w,S, 1) over w € Q, we obtain from

Proposition that
1 G(Zn+1)
— < ot
JAGS.) = A8l < e
It follows that

H(A(S), Zni1) — S(A(Snir), Znsr)
<GZ A ~ Sl < G

This proves the leave-one-out stability result. Similarly we can prove the uniform
stability result, which we leave as an exercise.
Now Theorem [7.7] implies that

_ 1 G(Z)?
B 6(AS). D) B, 6 ASi1)sSuin) + B Y 2L

ZESn+1 A(n + 1)
1 G(Z)?
<inf [Es,., é(w, Sunn) + h(w)] + Bs,oomg D )\(n(—i—)l)
ZeSnt1
_ E,G(Z)?
= Hul)f [p(w, D) + h(w)] + )\?n—(l—l))

In the derivation, the inequality used the fact that A(S,.;) is the minimizer of
the regularized empirical risk, and h(w) > 0. O

Example 7.9. We consider the binary linear support vector machine (SVM)
formulation with y € {£1}, which employs the hinge loss

L(f(w,2), ) = max(1 ~ f(w,2)y,0), () = 5wl

with linear function class {f(w,z) = w'¥(z) : w € R4}, where ¢(z) € R? is a
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7.2. REGULARIZED EMPIRICAL RISK MINIMIZATION 123

known feature vector. The loss ¢(w,z) = L(f(w,x),y) + g(w) with h(w) = 0 is
A strongly convex. Moreover, the empirical minimizer A(S,,) satisfies

P(A(Sn), Sn) < 6(0,S,) = 1.

Therefore || A(S,)|l2 < y/2/A. This implies that we may consider the restriction
of SVM to

0 —{uws fuls < 277}

without changing the solution. It is clear that on Q, ¢(w, Z) with Z = (X,Y) is
G(Z) = ||[¢(X)]||2 + V2A Lipschitz. From Theorem 7.8, we obtain the following
expected generalization bound for SVM:

Ex ((X)]lz + v23)?
A(n+1) )

Using Theorem one can obtain an oracle inequality that holds with high
probability. We leave it as an exercise.

Bs, (A(S,), D) < inf 6(w,D) +

Similarly to the case of Lipschitz convex objective function, we have the fol-
lowing result for smooth convex functions.

Theorem 7.10. Assume that ¢(w, z) is A-strongly convex and L-smooth in w on
R?. Then the empirical Tisk minimization method

A(S,) = arg min ¢(w, S,)

weR?

18 €(Zp+1,Sns1) = (L+L/(220))||VO(A(Snt1)s Zn+1)l15/(An) leave-one-out stable

with respect to A(S,41) = A(Spt1).
Moreover, if L < 0.2An, then the following expected oracle inequality holds:

Es, 6(A(S,).D) < inf |é(w, D)+ 2By p|Vo(w, Z)|2]

weR? n

Proof Consider S,, and S,,11 =S8, U{Z,1}. Let

A(Sp11) = arg ine}RI}i d(w, Spia).

Using the optimality of A(S,,.1) and Proposition we obtain

VO(A(Sui1); Sutr) T (A(S) — A(Sni1)) = 0. (7.5)
Since
n+1 1
¢(A(Sn+1)78n) = n ¢(A(Sn+1)78n+l) - E(Z)(A(Sn-%l)a Zn-l-l)a
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it follows that
V(A(Sni1), 8n) T (A(Sn) = A(Snt1))

- (n;t 1v¢(A(Sn+1),Sn+1) - iv¢(A(Sn+1),Zn+1)> (A(S,) — A(Sni))

v

VHAS ), Zin) (AS,) — A1)
> _ ||V¢(A(Sn+1)v Zn+1)

2 4(S,00) = A .

The first inequality used (7.5). Using the fact that A(S,) is the minimizer of
o(-,S,), we obtain from Proposition that

IVO(A(Sni1), Zngr)ll2 '

[A(S:) = A(Snt1)2 < b

(7.6)
We thus obtain
HAS), Zur) ~ D A1), Zos)
STHAGS 1), Zua) T(AS) — A(Sun)) + SIAS,) — A
<IVOAS 1), Zast)IAS,) = Al + FIAS) — A
< (50 * g3 ) IVOAG ), Zu)

The first inequality used the smoothness of ¢. The second inequality used Cauchy-
Schwartz. The third inequality used . This implies the stability result.

Next we want to apply Theorem and need to bound the right hand side.
For this purpose, we consider an arbitrary w € R%:

1 2
n+1 Z%}H ”VQZ)(A(S”JJ)’ Z)Hz
2
<1 2 V6w, 2) = VO(ASw), Z)[3 + Vo (w, 2)]3]
Ze€Snt1
L
Ze€Snt1
2
+ Z IVo(w, 2)]3

=4L[p(w, Sn11) — A(A(Sn41), Snt1) = VO(A(Sni1), Snar) T (w — A(Spi1))]

2
+—— Y |Véw,2)|3
n + 1 ZESn4+1

=4L[p(w, Spi1) — O(A(Sn+1), Snt1)] + :

— 2 IVe(w, 2l (1)

Zesn+1
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7.2. REGULARIZED EMPIRICAL RISK MINIMIZATION 125

In the above derivation, the first inequality used the algebraic calculation |a|z <
2||b — all3 4 2||b]|3. The second inequality is due to Proposition The last
equation used the fact that Vo(A(S,41),Snt1) = 0.

Now we obtain

E5n¢(A(Sn)a D) §E8n+l ¢(A(Sn+1)7 SnJrl)

L+ L)\/ T(LWL)) - i 3 ;S: IVG(A(Sus1), Z)I2
< (1- FEEED By A ), S
4L(1 +fn/(2)\n))Esn+l¢(waSn+1)
$ A, X Vo2
B So) + A B S Vo )
2(1+ L/(2An))

:¢(w7D) +

L2, ol Vo(w, 2)|
In the above derivation, the first inequality is an application of Theorem [7.7]
with the leave-one-out stability result in the first part of the theorem. The second
inequality used ([7.7). The third inequality used the fact that ¢(A(S,41), Snt1) <
d(w,8,11), and 1 — (4L(1 + L/(2An)))/(An) > 0. We can now use L/(An) < 0.2
to obtain the desired bound. O

Example 7.11. We consider the linear ridge regression formulation with y € R,
which employs the least squares loss

A

L{f(w,2),y) = (f(w,2) =y)*, g(w) =3

lwllz,
€ R?}, where ¢(z) € R? is

with linear function class {f(w,z) = w'(z) : w
= L(f(w,z),y) + g(w) is A strongly

a known feature vector. The loss ¢(w, 2)
convex. Moreover, ¢(w, z) is

L= 2sup [¥(@)]3 + A

smooth for all z = (z,y). If L < 0.2An, we obtain from Theorem

B, 6(A(S,), D) < inf, |p(w, D) + 5 Bx [9(X)3Brix (f(w, X) - V)|

weR?

In particular, if there exists w, such that noise is uniformly bounded:

Eyix (f(w., X) = Y)* < o
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for all X, then

] 5 A , 8.802 )
Es, #(A(S,),D) < inf |o” + S flw.l; + —Ex[[v(X)]3
weRd 2 )\n

The result is superior to what can be obtained from Theorem when o? is
small.

7.3 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) has been widely used in practical machine
learning applications. Since it approximately implements the ERM method, one
may use empirical process and uniform convergence to study its generalization
behavior. However, one challenge is the lack of covering number bounds for gen-
eral convex objective functions, although covering number results for special cases
such as linear function classes exist. Another consideration is that in many ap-
plications, one may need to run SGD for finite iterations without achieving con-
vergence to the minimum solution of ERM. In such case, it is often much easier
to obtain generalization analysis for SGD using the stability analysis, as demon-
strated in (Hardt et al., 2016)).

Algorithm 7.1: Stochastic Gradient Descent Algorithm

Input: S, ¢(w, 2), wy, learning rates {n,}
Output: wr
1 fort=1,2,...,7T do
Randomly pick Z ~ S,
Let w; = projo(wi—1 — n:V(wi—1, Z))
where proj,(v) = arg min,cq ||u — v||3

[ I

Return: wr

A key lemma in (Hardt et al., 2016) to analyze SGD for smooth convex function
is the contraction property of SGD as follows.

Lemma 7.12 (SGD contraction). Assume ¢(w) is an L-smooth and \-strongly
convex function of w on R?. Given any w,w’ € RY, we have for all n € [0,1/L]:

Iprojo(w — 1V (w)) — projo(w' — nVé(w))ll2 < (1 = Ayp)|lw — w'|2.

Proof Let

Ay =p(w) — $(w') = Vo(w') " (w —w'),
b -V

_( ,
_ / N

Ay =p(w') — p(w)
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We have

l(w = nVo(w)) — (' = V()]
=[w —w'|l3 = 29(V(w) = Vo(w)) " (w — w') + 1?[|V(w) — V(w3
=[lw —w'[[5 = 2n(A1 + As) + ?(|Vo(w) — Vo(w')|3
<lw —w'[|3 = 2n(Ar + As) + *L(A; + Ay)
<[lw — w5 = n(Ar + Az) < (1 —nA)lw —w'[l3.
In the derivation, the first inequality used Proposition [A.7 The second inequality

used nL < 1. The third inequality used the strong convexity. We can now obtain
the desired result by noticing that ||projg(u) — projg(v)|ls < ||[u — v||2. O

We have the following uniform stability result for the SGD procedure. The
proof is similar to that of Theorem and we leave it as an exercise.

Theorem 7.13. Assume that ¢(w, z) = ¢(w, z) + h(w) is A-strongly convex and
L-smooth in w on RY. Moreover, assume ¢(w, z) is G Lipschitz on . Define
bo =0, and fort > 1:

2
b, = (1 - 77t)\)bt—1 + %G2a

where n, € [0,1/L]. Then after T' steps, Algorithm 1s € = by uniformly stable
with respect to ¢p(w, z). The result also holds for an arbitrary convex combination
of the form ZtT:o o w; as the output of Algorithm as long as the convex coef-
ficient o (where oy > 0 and Zfzo a; = 1) are drawn from a known distribution.

We also have the following more refined result for SGD using the leave-one-out
stability analysis.

Theorem 7.14. Assume that ¢(w,2) = ¢(w, z) + h(w) is A-strongly convez and
L-smooth in w on R, Moreover, assume ¢(w, z) is G(z) Lipschitz on Q. Define
bo =0, and fort > 1:

2
b= (1= \bios + I EpG(Z),

n

where n, € [0,1/L]. We have the following result for Algom'thm
ES,LEA¢(A(SH)5 D) < ESTL+1EA¢(‘A(871+1)7 Sn+1) + bTa

where we use E 4 to denote the randomization in SGD. The result also holds for
an arbitrary convexr combination of the form ZtT:o aw; as the output of Algo-
rithm as long as the convex coefficient «; (where oy > 0 and Z;:T:o ap=1)
are drawn from a known distribution.

Proof Let w,; be the intermediate steps of SGD on S,,, and w; be the intermediate
steps of SGD on S,,41 = S, U{Z,;1}. We consider a coupling of w; and w;, with
the same randomization for w, and wj, except when we choose Z = Z,,, for
update of w;, we choose Z = Z; for updating of w, with i drawn uniformly from

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. (©)2021-2023 Tong Zhang



CHAPTER 7. STABILITY ANALYSIS 128

[n]. It follows from Lemma that with this coupling, at each time ¢, with
probability n/(n + 1), we choose the same Z; to update both w; and wj:

Jwr — will2 < (1= Ane)lwe—y — wi_y[fa-
With probability 1/(n + 1), we have

[[we — wyl2
Nfwiy = mV(wiy, Zi)] = [w,_y =V o(wi_y, Z)] |
+ [ Vo(wi_y, Zi) = Vo(wi_y, Znga)la
<(1 = An)[Jwe—r — wi_yll2 + 0 ([[Vo(wi_y, Znia)|l2 + [[Vo(wi_y, Zi)|2),

where ¢ is uniformly from [n]. Note that the second inequality used Lemma
again. Therefore

Eallwe = will <(1 = mA)Eallwi—y — w42

n

T
+ wnt ) ;(G(Zi) +G(Zpi1)).

We now define

sy = Es,, Ea |wy — wil|2G(Zn11),

then we have

n

st <(1—m\)se_s +Es,., ﬁ ;G(zi) + G (Z041))G(Zus1)

=(1 = N)sios + 1 [EpG(Z)° + (EnG(2))’]

2n,
n+1

S(l — 7715)\)51571 + EDG(Z)2

It follows from the definition of b, that s, < b;. Therefore
E57l+1]EA Hwt — w;HQG(ZnH) S bt S bT. (78)

Assume that A(S,) returns an arbitrary convex combination Y., cyw;, and
A(S,,11) returns Ztho ayw, with the same random coefficients «; from the same
known distribution. Let €(Z,,41,Sn11) = Ead(A(S,), Zni1) —Ead(A(Sni1), Zni1),
then from the Lipschitz condition of ¢(w, Z,+1) and (7.8)), we obtain

ES EAE(Zn+17Sn+1) S ]ES ]EAHA(Sn) - A(Sn+1)“2G(Zn+1) S bT'

n+1

We obtain from Theorem [Z.7 that

ESnEA(ﬁ(A(Sn)a D) < ESn-HEA(é(A(Sn-‘rl)v Sn-‘rl) + bT-

n+1

This proves the desired result. O
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Example 7.15. We can obtain an oracle inequality from Theorem [7.14] by as-
suming further that after T SGD steps, Algorithm [7.1] approximately solves the
empirical risk minimization problem as

EA¢(A(SH+1)7 Sn-H) < I}Eg (Z)(w78n+1) + GT(Sn-H)

for some er(-) > 0. Here A may return a convex combination of w; for t < T (see
Section for examples of such convergence results). Using such a result, we
obtain from Theorem the following oracle inequality:

Es,Ea$(A(S,), D) < inf §(w, D) + Es,,, ex(Sni1) + br-

In particular, we consider h(w) = 0, a constant learning rate n for 7" steps, and
a final estimator w,; from the algorithm with ¢ drawn uniformly from 0 to 7" — 1.
Then Theorem implies that

w3

€T (5n+1) 2T77

N ~2
+ 2G ;
where we assume that |[Vé(w, 2)||s < G. In this case, b, = 2ntG*/(n + 1). This
implies a bound

[[wo — wll3

2Tn

2nTG?

Es,Ead(A(S,), D) < inf |$(w, D) + ntl’

M ~2
+ 2G +
Note that this result allows T' > n, which means we can run SGD repeatedly over
the dataset S,. For example, we may take T' = n? and n = O(n~®) to obtain a
convergence rate of O(1/y/n).

In comparison, the online to batch conversion technique in Chapter [I4] requires
each data point Z in the algorithm to be drawn independently from D. This
means that the online to batch technique applies only when we run SGD over
the dataset S,, once via sampling without replacement. It does not handle the
situation that SGD is applied to the dataset repeatedly (as commonly done in
practice).

Similar to Theorem [7.10} it is possible to remove the Lipschitz condition in
Theorem and obtain bounds in terms of smoothness only. However, the
resulting bound will become more complex, and we will leave it as an exercise.

7.4 Gibbs Algorithm for Non-convex Problems

Although it is possible to derive stability results for SGD for nonconvex problems
under restrictive conditions, as shown in Hardt et al.| (2016), the resulting bounds
are rather weak. It is also difficult to establish stability results for the ERM
solution of nonconvex optimization. However, in the following, we show that
appropriate randomization can be used to achieve stability even in the nonconvex
case. In particular, we consider a learning algorithm that randomly draws w from
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the following “posterior distribution”, also referred to as the Gibbs distribution:

p(wl[S,,) « po(w) exp (—B Z o(w, Z)) , (7.9)

ZeS,

where 5 > 0 is a tuning parameter, py(w) is a prior on . This randomized learn-
ing algorithm is often referred to as the Gibbs Algorithm, and its test performance
is measured by the expectation:

EA¢(A(S,), D) = Eyrp(uls,) d(w, D).

If B — oo, the method converges to ERM. We have the following charac-
terization of Gibbs distribution, which means that it can be regarded as the
entropy-regularized ERM over the probability distributions A(€2). Here KL(-||-)
is the KL-divergence defined in Appendix [B] which is always non-negative.

Proposition 7.16. Given any function U(w), we have

min [E,,U(w) + KL(p|[po)] = —InEynp, exp(—=U(w)),
PEA(Q)

and the solution is achieved by the Gibbs distribution q(w) x po(w) exp(—U(w)).
Here A(QY) denotes the set of probability distributions on Q.

Proof Let C =E, ., exp (—U(w)). Then we have

p(w)
EupU(w) + KL(p||po) =Ey~p In
P ( ) ( H 0) D po(w)exp(—U(w))
p(w)
=E,-,In > —InC.
" Cqw)
The inequality used the fact that KL(p||g) > 0, and the equality holds when
p(w) = q(w). 0
Proposition implies that (7.9) satisfies
. 1
p(wlS,) = arg min \Eup@(w, ) + %KL(pllpo) : (7.10)

We can now state the uniform stability result for the Gibbs distribution.

Theorem 7.17. Consider the Gibbs algorithm A described in (7.9). If for all z:
SUp,,cq P(w, 2) — infyeq d(w, 2) < M, then A is € = 0.5(e*™ — 1) M uniformly
stable.

Proof Consider S,, and S/, that differ by one element. It follows that for any w:

- exp(—Bo(w,S,))
(=AM < D ho(w, 5.)

< exp(BM).
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