1. 4024/11/M/J/18 Q21

$$\mathbf{p} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$

(a) Write 3p - q as a column vector.

Answer $\left(\begin{array}{c} \end{array}\right)$ [1]

(b) R is the point (11, -2) and O is the point (0, 0). The vector \overrightarrow{OR} can be written in the form $\mathbf{p} + n\mathbf{q}$, where n is an integer.

Find the value of *n*.

Answer
$$n = \dots [2]$$

2. 4024/12/M/J/18 Q23

$$\mathbf{A} = \begin{pmatrix} 4 & -1 \\ 2 & 0 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 6 & -3 \\ 0 & -2 \end{pmatrix}$$

(a) Find the matrix X, such that 2A + X = B.

(b) Find the matrix **Y**, such that $\mathbf{AY} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

3.

4024/22/M/J/18 Q8b	
(b) $\overrightarrow{OA} = 3\mathbf{a}$ and $\overrightarrow{OC} = 6\mathbf{c}$ and $CB : BY = 1 : 2$.	
Find, as simply as possible, in terms of a and/or c	
(i) \overrightarrow{AB} ,	
(ii) \overrightarrow{CY} .	Answer $\overrightarrow{AB} = \dots [1]$
(c) Find, in its simplest form, the ratio(i) OX: XB,	Answer $\overrightarrow{CY} = \dots [2]$
(ii) area of triangle COX : area of triangle ABX ,	Answer[2]
(iii) area of triangle AYB: area of trapezium OABC.	Answer[1]

Answer[1]

4. 4024/11/0/N/18 Q20

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 4 & 3 \\ 6 & -2 \end{pmatrix}$$

(a) Express 2A - B as a single matrix.

Answer ([2]

(b) Find A^{-1} .

Answer () [2]

5. 4024/12/0/N/18 Q23

(a) Express $\binom{2}{1} - 3\binom{-1}{2} + 2\binom{0}{-2}$ as a single vector.

(b) Find $(2 -1)\begin{pmatrix} 0 & -1 & 2 \\ 3 & 1 & -3 \end{pmatrix}$.

Answer [2]

6. 4024/21/0/N/18 Q7

The position vector, \overrightarrow{OA} , of point A is $\begin{pmatrix} -4 \\ 7 \end{pmatrix}$ and $\overrightarrow{AB} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}$.

(a) Find the position vector, \overrightarrow{OB} , of point B.

Answer $\overrightarrow{OB} = \left(\right)$ [1]

(b) Find $|\overrightarrow{AB}|$.

Answer[2]

(c) Given that $\overrightarrow{AB} = 3\overrightarrow{CB}$, find the coordinates of point C.

Answer (.....) [2]

7. 4024/11/M/J/19 Q15

$$\mathbf{T} = \begin{pmatrix} 2 & 7 \\ 1 & 5 \end{pmatrix}$$

Find T^{-1} .

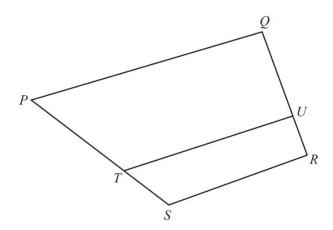
8. 4024/12/M/J/19 Q25

(a)
$$\mathbf{P} = \begin{pmatrix} 4 & 0 \\ -2 & 3 \end{pmatrix}$$
 $\mathbf{Q} = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$

Evaluate PQ.

(b)
$$\mathbf{M} = \begin{pmatrix} 3 & -1 \\ 2 & k \end{pmatrix}$$

The determinant of matrix M is -4.


(i) Find the value of k.

$$k = \dots$$
 [1]

(ii) Find \mathbf{M}^{-1} .

9. 4024/21/M/J/19 Q9

(a)

NOT TO SCALE

In the diagram, $\overrightarrow{PQ} = 4\mathbf{p}$, $\overrightarrow{QR} = 3\mathbf{q}$ and $\overrightarrow{PT} = \mathbf{p} + 2\mathbf{q}$.

$$\overrightarrow{QU} = \frac{2}{3}\overrightarrow{QR}$$
 and $\overrightarrow{PT} = \frac{2}{3}\overrightarrow{PS}$.

- (i) Express, as simply as possible, in terms of \mathbf{p} and/or \mathbf{q} ,
 - (a) \overrightarrow{PS} ,

$$\overrightarrow{PS} = \dots$$
 [1]

(b) \overrightarrow{SR} .

$$\overrightarrow{SR} = \dots [2]$$

(ii) State the name of the special quadrilateral *PQRS*. Using vectors, give a reason for your answer.

because _____

(iii) Find, in its simplest form, the ratio $|\overrightarrow{PQ}| : |\overrightarrow{SR}|$.

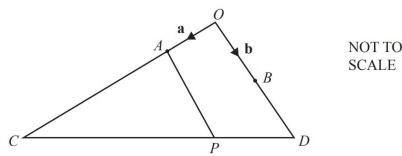
.....[2]

__

(b)
$$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 $\overrightarrow{BC} = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$ $\overrightarrow{CD} = \begin{pmatrix} -7 \\ -3 \end{pmatrix}$

(i) Find \overrightarrow{AD} .

(ii) Find $|\overrightarrow{BC}|$.


$$\overrightarrow{AD} = \left(\qquad \right) \quad [1]$$

.....[2]

(iii) Given that E is the midpoint of BC, find \overrightarrow{AE} .

$$\overrightarrow{AE} = \left(\right)$$
 [2]

10. 4024/11/0/N/19 Q25

In the diagram, B is the midpoint of OD and OA : AC = 1 : 3.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OB} = \mathbf{b}$.

- (a) Express, as simply as possible, in terms of a and/or b
 - (i) \overrightarrow{OC} ,

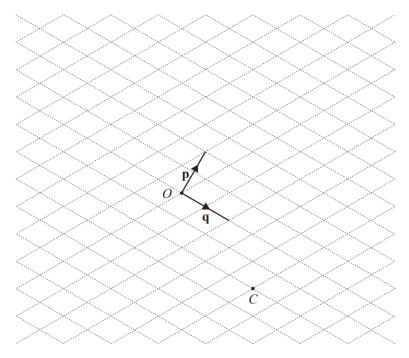
$$\overrightarrow{OC} = \dots$$
 [1]

(ii) \overrightarrow{CD} .

$$\overrightarrow{CD} = \dots$$
 [1]

- **(b)** *P* is the point on *CD* where $CP = \frac{3}{4}CD$.
 - (i) Express \overrightarrow{AP} , as simply as possible, in terms of a and/or b.

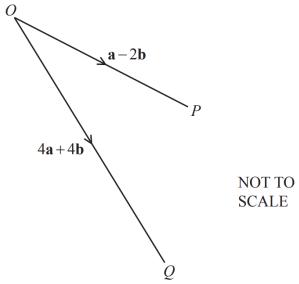
$$\overrightarrow{AP} = \dots$$
 [2]


(ii) Find *AP* : *BD*.

(iii) What special type of quadrilateral is ABDP?

L					[1]
---	--	--	--	--	-----

11. 4024/12/0/N/19 Q21

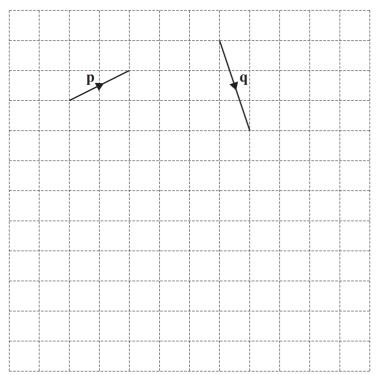

The diagram shows points O and C and the vectors \mathbf{p} and \mathbf{q} .

- (a) Given that $\overrightarrow{OA} = 2\mathbf{p}$, mark and label the point A on the diagram. [1]
- **(b)** Given that $\overrightarrow{OB} = \mathbf{p} 2\mathbf{q}$, mark and label the point *B* on the diagram. [1]
- (c) Express \overrightarrow{OC} in terms of **p** and **q**.

.....[2]

12. 4024/11/M/J/20 Q25

O, P and Q are points as shown in the diagram.



 $\overrightarrow{OP} = \mathbf{a} - 2\mathbf{b}$ and $\overrightarrow{OQ} = 4\mathbf{a} + 4\mathbf{b}$.

Express \overrightarrow{PQ} , as simply as possible, in terms of **a** and **b**.

$$\overrightarrow{PQ} = \dots$$
 [2]

13. 4024/12/M/J/20 Q19

Vectors **p** and **q** are shown on the grid.

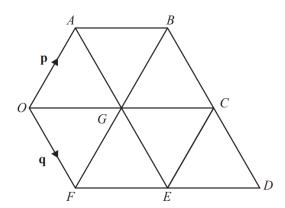
On the grid, draw the vector

(b)
$$q-p$$
. [1]

14. 4024/21/0/N/20 Q9

- (a) H is the point (5, 2) and J is the point (-3, 6).
 - (i) Find \overrightarrow{HJ} .

$$\overrightarrow{HJ} = \left(\qquad \right) \quad [1]$$


(ii) Calculate the magnitude of \overrightarrow{HJ} .

.....[2]

(iii) M is the midpoint of HJ.

Find the position vector of M.

(b)

The diagram shows a shape made from seven identical equilateral triangles. $\overrightarrow{OA} = \mathbf{p}$ and $\overrightarrow{OF} = \mathbf{q}$.

- (i) Express, as simply as possible, in terms of **p** and/or **q**
 - (a) \overrightarrow{FB} ,

$$\overrightarrow{FB} = \dots$$
 [1]

(b) \overrightarrow{FE} .

$$\overrightarrow{FE} = \dots$$
 [1]

(ii) X is a point on FB and FX: XB = 3:1.

Express \overrightarrow{OX} , as simply as possible, in terms of **p** and/or **q**.

$$\overrightarrow{OX} = \dots$$
 [2]

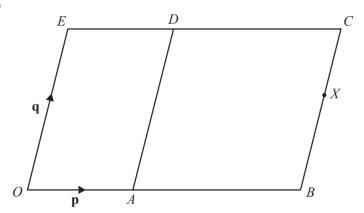
(iii) Y is a point on BD. Quadrilateral OXYF is a trapezium.

Express \overrightarrow{XY} , as simply as possible, in terms of **p** and/or **q**.

$$\overrightarrow{XY} = \dots$$
 [3]

For	more	tonical	nact	nanare	and	rovicion	notac	vicit	exambudd	vora
1 01	111016	ιυμιται	pası	haheis	anu	164121011	110163	VISIL	Exambudu	y.or g

15. 4024/22/0/N/20 Q8


- (a) H is the point (-7, 4) and $\overrightarrow{HJ} = \begin{pmatrix} 10 \\ -6 \end{pmatrix}$.
 - (i) Calculate the magnitude of \overrightarrow{HJ} .

______[2]

(ii) Given that $\overrightarrow{HK} = 3\overrightarrow{HJ}$, find the coordinates of point K.

(.....) [2]

Fol(b)

NOT TO SCALE

The diagram shows a parallelogram OBCE.

$$\overrightarrow{OA} = \mathbf{p}$$
 and $\overrightarrow{OE} = \mathbf{q}$.

$$AD$$
 is parallel to OE and $OA:AB=1:3$.

X is a point on BC such that
$$BX : XC = 3 : 2$$
.

Express, as simply as possible, in terms of \mathbf{p} and/or \mathbf{q}

(i) \overrightarrow{OC} ,

 $\overrightarrow{OC} = \dots$ [1]

(ii) \overrightarrow{AX} ,

 $\overrightarrow{AX} = \dots$ [2]

(iii) \overrightarrow{EX} .

 $\overrightarrow{EX} = \dots$ [2]

16. 4024/21/M/J/21 Q10

(a)
$$\overrightarrow{AB} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$

(i) Calculate $|\overrightarrow{AB}|$.

 $\left|\overrightarrow{AB}\right| = \dots$ [2]

- (ii) $\overrightarrow{AC} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$ and C is the point (10, -1).
 - (a) Find the coordinates of the point A.

(.....) [1]

(b) B is the midpoint of AD.

Find the coordinates of the point D.

(b) P NOT TO SCALE Q

The diagram shows triangle \overrightarrow{OPQ} . $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$.

R is the point on OQ such that OR = 2RQ.

S is the midpoint of PQ.

Express, as simply as possible, in terms of **p** and/or **q**

(i) \overrightarrow{PQ} ,

 $\overrightarrow{PQ} = \dots$ [1]

(ii) \overrightarrow{OS} ,

 $\overrightarrow{OS} = \dots$ [2]

(iii) \overrightarrow{SR} .

17. 4024/22/M/J/21 Q12

- (a) A is the point (2, 3) and B is the point (3, -5).
 - (i) Find \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\right)$$
 [2]

(ii)
$$\overrightarrow{BC} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$

Find the coordinates of *C*.

(iii)
$$|\overrightarrow{AD}| = \sqrt{74}$$
 and $D = (-3, n)$.

Find the possible values of n.

$$n = \dots$$
 or $n = \dots$ [3]

(b) NOT TO **SCALE** p

OQRP is a parallelogram.

$$\overrightarrow{OP} = \mathbf{p}$$
 and $\overrightarrow{OQ} = \mathbf{q}$.

 $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$. *K* is the midpoint of OQ and *L* is a point on *PR*.

$$\overrightarrow{KL} = \mathbf{p} - \frac{1}{10}\mathbf{q}.$$

Find PL:LR.

		13
•••••	• • • • • • • • •	

18. 4024/11/0/N/21 Q15

The point A has position vector $\begin{pmatrix} 3 \\ -7 \end{pmatrix}$ and $\overrightarrow{AB} = \begin{pmatrix} -5 \\ 12 \end{pmatrix}$.

(a) Find the coordinates of point B.

(.....) [2]

(b) Find $|\overrightarrow{AB}|$.

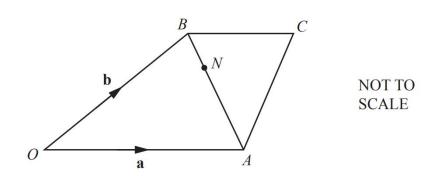
$$\left| \overrightarrow{AB} \right| = \dots$$
 units [2]

For more	tonical	nacti	nanare	and	revision	notac	vicit	exambudd	vor	.~
rui illui e	ιυμιται	pasi	papers	anu	16/12/01/	110162	VISIL	exambuuu	y.ui	y

19. 4024/22/0/N/21 Q7

- (a) P is the point (-5, 2), Q is the point (3, 7) and $\overrightarrow{QR} = \begin{pmatrix} -4 \\ 6 \end{pmatrix}$.
 - (i) Find the coordinates of the midpoint of PQ.

(.....) [1]


(ii) Find the coordinates of point R.

(.....) [1]

(iii) Find $|\overrightarrow{QR}|$.

 $|\overrightarrow{QR}|$ = units [2]

(b)

OACB is a quadrilateral and N is a point on AB.

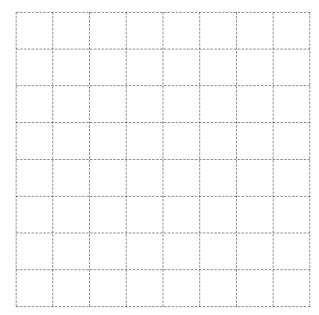
$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OB} = \mathbf{b}$.

$$\overrightarrow{OA} = 2\overrightarrow{BC}$$
 and $BN : NA = 1 : 3$.

Find, in terms of a and b, in its simplest form

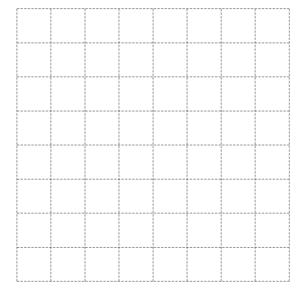
(i) \overrightarrow{AB} ,

$$\overrightarrow{AB} = \dots$$
 [1]

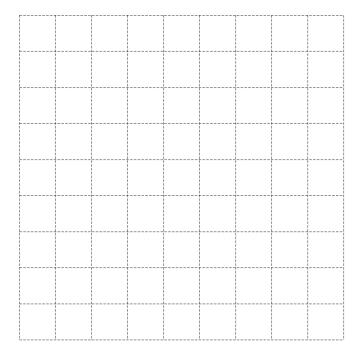

(ii) \overrightarrow{NC} .

$$\overrightarrow{NC} = \dots$$
 [3]

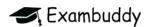
20. 4024/11/M/J/22 Q16


$$\mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

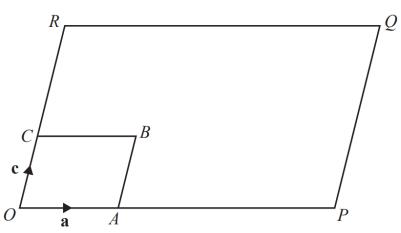
(a) On the unit grid below, draw and label vector **p**.


[1]

(b) On the unit grid below, draw and label vector 2q.



[1]


(c) On the unit grid below, draw and label vector $\mathbf{p} - \mathbf{q}$.

[2]

21. 4024/12/M/J/22 Q25

NOT TO SCALE

OABC and OPQR are parallelograms.

A is a point on OP and C is a point on OR.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OC} = \mathbf{c}$.

$$OA : OP = 1 : 4 \text{ and } OC : CR = 2 : 3.$$

(a) Find \overrightarrow{OR} in terms of c.

$$\overrightarrow{OR} = \dots$$
 [1]

(b) Find \overrightarrow{CQ} , as simply as possible, in terms of **a** and **c**.

$$\overrightarrow{CQ} = \dots$$
 [2]

(c) Find the ratio area OABC: area OPQR.

.....[1]

22. 4024/21/0/N/22 Q6

- (a) The position vector of point A is $\binom{4}{7}$ and the position vector of point B is $\binom{9}{2}$.
 - (i) Find the column vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\right)$$
 [1]

(ii) Find $|\overrightarrow{AB}|$.

$$\left| \overrightarrow{AB} \right| = \dots$$
 [2]

(iii) ABCD is a parallelogram with sides AB, BC, CD and DA.

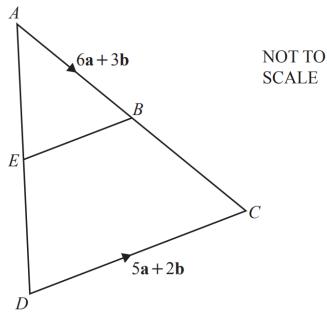
$$\overrightarrow{BC} = \begin{pmatrix} -4\\1 \end{pmatrix}$$
.

Find the coordinates of point C and point D.

$$C = (\dots, \dots, \dots)$$

$$D = (\dots, \dots, \dots)$$
 [2]

(b)	P is th	ne point	(r, 4)	and g	Q is	the	point	(t,	<i>u</i>).
------------	---------	----------	--------	-------	------	-----	-------	-----	-------------


The midpoint of line PQ is (1, 3).

The gradient of line PQ is $-\frac{1}{4}$.

Find the value of each of r, t and u.

=	
=	
=	 [4]

23. 4024/11/M/J/22 Q25

In triangle ACD, B is the midpoint of AC and E is the midpoint of AD. $\overrightarrow{AB} = 6\mathbf{a} + 3\mathbf{b}$ and $\overrightarrow{DC} = 5\mathbf{a} + 2\mathbf{b}$.

- (a) Express, as simply as possible, in terms of a and b.
 - (i) \overrightarrow{AC}

$$\overrightarrow{AC} = \dots$$
 [1]

(ii) \overrightarrow{AD}

$$\overrightarrow{AD} = \dots$$
 [2]

(b) Show that \overrightarrow{EB} is parallel to \overrightarrow{DC} .