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A small preface
"Originally, this work has been prepared in the framework of a seminar of the
University of Bonn in Germany, but it has been and will be extended (after

being presented and published online under www.dkriesel.com on
5/27/2005). First and foremost, to provide a comprehensive overview of the

subject of neural networks and, second, just to acquire more and more
knowledge about LATEX . And who knows – maybe one day this summary will

become a real preface!"

Abstract of this work, end of 2005

The above abstract has not yet become a preface but at least a little preface, ever since
the extended text (then 40 pages long) has turned out to be a download hit.

Ambition and intention of this manuscript

The entire text is written and laid out more effectively and with more illustrations
than before. I did all the illustrations myself, most of them directly in LATEX by using
XYpic. They reflect what I would have liked to see when becoming acquainted with
the subject: Text and illustrations should be memorable and easy to understand to
offer as many people as possible access to the field of neural networks.

Nevertheless, the mathematically and formally skilled readers will be able to under-
stand the definitions without reading the running text, while the opposite holds for
readers only interested in the subject matter; everything is explained in both collo-
quial and formal language. Please let me know if you find out that I have violated this
principle.

The sections of this text are mostly independent from each other

The document itself is divided into different parts, which are again divided into chap-
ters. Although the chapters contain cross-references, they are also individually acces-
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sible to readers with little previous knowledge. There are larger and smaller chapters:
While the larger chapters should provide profound insight into a paradigm of neural
networks (e.g. the classic neural network structure: the perceptron and its learning
procedures), the smaller chapters give a short overview – but this is also explained in
the introduction of each chapter. In addition to all the definitions and explanations I
have included some excursuses to provide interesting information not directly related
to the subject.

Unfortunately, I was not able to find free German sources that are multi-faceted in
respect of content (concerning the paradigms of neural networks) and, nevertheless,
written in coherent style. The aim of this work is (even if it could not be fulfilled at
first go) to close this gap bit by bit and to provide easy access to the subject.

Want to learn not only by reading, but also by coding? Use
SNIPE!

SNIPE1 is a well-documented JAVA library that implements a framework for neu-
ral networks in a speedy, feature-rich and usable way. It is available at no cost for
non-commercial purposes. It was originally designed for high performance simulations
with lots and lots of neural networks (even large ones) being trained simultaneously.
Recently, I decided to give it away as a professional reference implementation that cov-
ers network aspects handled within this work, while at the same time being faster and
more efficient than lots of other implementations due to the original high-performance
simulation design goal. Those of you who are up for learning by doing and/or have
to use a fast and stable neural networks implementation for some reasons, should
definetely have a look at Snipe.

However, the aspects covered by Snipe are not entirely congruent with those covered
by this manuscript. Some of the kinds of neural networks are not supported by Snipe,
while when it comes to other kinds of neural networks, Snipe may have lots and lots
more capabilities than may ever be covered in the manuscript in the form of practical
hints. Anyway, in my experience almost all of the implementation requirements of my
readers are covered well. On the Snipe download page, look for the section "Getting
started with Snipe" – you will find an easy step-by-step guide concerning Snipe and
its documentation, as well as some examples.

1 Scalable and Generalized Neural Information Processing Engine, downloadable at http://www.
dkriesel.com/tech/snipe, online JavaDoc at http://snipe.dkriesel.com
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SNIPE: This manuscript frequently incorporates Snipe. Shaded Snipe-paragraphs like this one
are scattered among large parts of the manuscript, providing information on how to implement
their context in Snipe. This also implies that those who do not want to use Snipe, just
have to skip the shaded Snipe-paragraphs! The Snipe-paragraphs assume the reader has
had a close look at the "Getting started with Snipe" section. Often, class names are used. As
Snipe consists of only a few different packages, I omitted the package names within the qualified
class names for the sake of readability.

It’s easy to print this manuscript

This text is completely illustrated in color, but it can also be printed as is in
monochrome: The colors of figures, tables and text are well-chosen so that in
addition to an appealing design the colors are still easy to distinguish when printed
in monochrome.

There are many tools directly integrated into the text

Different aids are directly integrated in the document to make reading more flexible:
However, anyone (like me) who prefers reading words on paper rather than on screen
can also enjoy some features.

In the table of contents, different types of chapters are marked

Different types of chapters are directly marked within the table of contents. Chap-
ters, that are marked as "fundamental" are definitely ones to read because almost all
subsequent chapters heavily depend on them. Other chapters additionally depend on
information given in other (preceding) chapters, which then is marked in the table of
contents, too.

Speaking headlines throughout the text, short ones in the table of
contents

The whole manuscript is now pervaded by such headlines. Speaking headlines are not
just title-like ("Reinforcement Learning"), but centralize the information given in the
associated section to a single sentence. In the named instance, an appropriate headline
would be "Reinforcement learning methods provide feedback to the network, whether it



behaves good or bad". However, such long headlines would bloat the table of contents
in an unacceptable way. So I used short titles like the first one in the table of contents,
and speaking ones, like the latter, throughout the text.

Marginal notes are a navigational aid

The entire document contains marginal notes in colloquial language (see the example
in the margin), allowing you to "scan" the document quickly to find a certain passage
in the text (including the titles).

New mathematical symbols are marked by specific marginal notes for easy finding (see
the example for x in the margin).

There are several kinds of indexing

This document contains different types of indexing: If you have found a word in the
index and opened the corresponding page, you can easily find it by searching for
highlighted text – all indexed words are highlighted like this.

Mathematical symbols appearing in several chapters of this document (e.g. Ω for an
output neuron; I tried to maintain a consistent nomenclature for regularly recurring
elements) are separately indexed under "Mathematical Symbols", so they can easily be
assigned to the corresponding term.

Names of persons written in small caps are indexed in the category "Persons" and
ordered by the last names.

Terms of use and license

Beginning with the epsilon edition, the text is licensed under the Creative Commons
Attribution-No Derivative Works 3.0 Unported License2, except for some little portions
of the work licensed under more liberal licenses as mentioned (mainly some figures from
Wikimedia Commons). A quick license summary:

1. You are free to redistribute this document (even though it is a much better idea
to just distribute the URL of my homepage, for it always contains the most recent
version of the text).

2 http://creativecommons.org/licenses/by-nd/3.0/
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2. You may not modify, transform, or build upon the document except for personal
use.

3. You must maintain the author’s attribution of the document at all times.

4. You may not use the attribution to imply that the author endorses you or your
document use.

For I’m no lawyer, the above bullet-point summary is just informational: if there is
any conflict in interpretation between the summary and the actual license, the actual
license always takes precedence. Note that this license does not extend to the source
files used to produce the document. Those are still mine.

How to cite this manuscript

There’s no official publisher, so you need to be careful with your citation. Please find
more information in English and German language on my homepage, respectively the
subpage concerning the manuscript3.
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Part I

From biology to formalization –
motivation, philosophy, history and

realization of neural models
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Chapter 1

Introduction, motivation and history
How to teach a computer? You can either write a fixed program – or you can

enable the computer to learn on its own. Living beings do not have any
programmer writing a program for developing their skills, which then only has
to be executed. They learn by themselves – without the previous knowledge

from external impressions – and thus can solve problems better than any
computer today. What qualities are needed to achieve such a behavior for

devices like computers? Can such cognition be adapted from biology? History,
development, decline and resurgence of a wide approach to solve problems.

1.1 Why neural networks?

There are problem categories that cannot be formulated as an algorithm. Problems
that depend on many subtle factors, for example the purchase price of a real estate
which our brain can (approximately) calculate. Without an algorithm a computer
cannot do the same. Therefore the question to be asked is: How do we learn to explore
such problems?

Exactly – we learn; a capability computers obviously do not have . Humans have a
brain that can learn. Computers have some processing units and memory. They allow
the computer to perform the most complex numerical calculations in a very short time,
but they are not adaptive. If we compare computer and brain1, we will note that,
theoretically, the computer should be more powerful than our brain: It comprises 109

1 Of course, this comparison is - for obvious reasons - controversially discussed by biologists and computer
scientists, since response time and quantity do not tell anything about quality and performance of the
processing units as well as neurons and transistors cannot be compared directly. Nevertheless, the
comparison serves its purpose and indicates the advantage of parallelism by means of processing time.
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Brain Computer
No. of processing units ≈ 1011 ≈ 109

Type of processing units Neurons Transistors
Type of calculation massively parallel usually serial
Data storage associative address-based
Switching time ≈ 10−3s ≈ 10−9s
Possible switching operations ≈ 1013 1

s ≈ 1018 1
s

Actual switching operations ≈ 1012 1
s ≈ 1010 1

s

Table 1.1: The (flawed) comparison between brain and computer at a glance. Inspired by: [Zel94]

transistors with a switching time of 10−9 seconds. The brain contains 1011 neurons,
but these only have a switching time of about 10−3 seconds.

The largest part of the brain is working continuously, while the largest part of the com-
puter is only passive data storage. Thus, the brain is parallel and therefore performing
close to its theoretical maximum, from which the computer is orders of magnitude away
(Table 1.1). Additionally, a computer is static - the brain as a biological neural network
can reorganize itself during its "lifespan" and therefore is able to learn, to compensate
errors and so forth.

Within this text I want to outline how we can use the said characteristics of our brain
for a computer system.

So the study of artificial neural networks is motivated by their similarity to successfully
working biological systems, which - in comparison to the overall system - consist of
very simple but numerous nerve cells that work massively in parallel and (which is
probably one of the most significant aspects) have the capability to learn. There
is no need to explicitly program a neural network. For instance, it can learn from
training samples or by means of encouragement - with a carrot and a stick, so to
speak (reinforcement learning).

One result from this learning procedure is the capability of neural networks to gen-
eralize and associate data: After successful training a neural network can find
reasonable solutions for similar problems of the same class that were not explicitly
trained. This in turn results in a high degree of fault tolerance against noisy input
data.

Fault tolerance is closely related to biological neural networks, in which this character-
istic is very distinct: As previously mentioned, a human has about 1011 neurons that



continuously reorganize themselves or are reorganized by external influences (about
105 neurons can be destroyed while in a drunken stupor, some types of food or envi-
ronmental influences can also destroy brain cells). Nevertheless, our cognitive abilities
are not significantly affected. Thus, the brain is tolerant against internal errors – and
also against external errors, for we can often read a really "dreadful scrawl" although
the individual letters are nearly impossible to read.

Our modern technology, however, is not automatically fault-tolerant. I have never
heard that someone forgot to install the hard disk controller into a computer and
therefore the graphics card automatically took over its tasks, i.e. removed conductors
and developed communication, so that the system as a whole was affected by the
missing component, but not completely destroyed.

A disadvantage of this distributed fault-tolerant storage is certainly the fact that we
cannot realize at first sight what a neural neutwork knows and performs or where its
faults lie. Usually, it is easier to perform such analyses for conventional algorithms.
Most often we can only transfer knowledge into our neural network by means of a
learning procedure, which can cause several errors and is not always easy to manage.

Fault tolerance of data, on the other hand, is already more sophisticated in state-of-
the-art technology: Let us compare a record and a CD. If there is a scratch on a record,
the audio information on this spot will be completely lost (you will hear a pop) and
then the music goes on. On a CD the audio data are distributedly stored: A scratch
causes a blurry sound in its vicinity, but the data stream remains largely unaffected.
The listener won’t notice anything.

So let us summarize the main characteristics we try to adapt from biology:

. Self-organization and learning capability,

. Generalization capability and

. Fault tolerance.

What types of neural networks particularly develop what kinds of abilities and can be
used for what problem classes will be discussed in the course of this work.

In the introductory chapter I want to clarify the following: "The neural network" does
not exist. There are different paradigms for neural networks, how they are trained and
where they are used. My goal is to introduce some of these paradigms and supplement
some remarks for practical application.

We have already mentioned that our brain works massively in parallel, in contrast to
the functioning of a computer, i.e. every component is active at any time. If we want



to state an argument for massive parallel processing, then the 100-step rule can be
cited.

1.1.1 The 100-step rule

Experiments showed that a human can recognize the picture of a familiar object or
person in ≈ 0.1 seconds, which corresponds to a neuron switching time of ≈ 10−3

seconds in ≈ 100 discrete time steps of parallel processing.

A computer following the von Neumann architecture, however, can do practically noth-
ing in 100 time steps of sequential processing, which are 100 assembler steps or cycle
steps.

Now we want to look at a simple application example for a neural network.

1.1.2 Simple application examples

Let us assume that we have a small robot as shown in fig. 1.1 on the next page. This
robot has eight distance sensors from which it extracts input data: Three sensors are
placed on the front right, three on the front left, and two on the back. Each sensor
provides a real numeric value at any time, that means we are always receiving an input
I ∈ R8.

Despite its two motors (which will be needed later) the robot in our simple example
is not capable to do much: It shall only drive on but stop when it might collide with
an obstacle. Thus, our output is binary: H = 0 for "Everything is okay, drive on"
and H = 1 for "Stop" (The output is called H for "halt signal"). Therefore we need a
mapping

f : R8 → B1,

that applies the input signals to a robot activity.

1.1.2.1 The classical way

There are two ways of realizing this mapping. On the one hand, there is the classical
way: We sit down and think for a while, and finally the result is a circuit or a small
computer program which realizes the mapping (this is easily possible, since the example
is very simple). After that we refer to the technical reference of the sensors, study their
characteristic curve in order to learn the values for the different obstacle distances, and
embed these values into the aforementioned set of rules. Such procedures are applied



Figure 1.1: A small robot with eight sensors and two motors. The arrow indicates the driving
direction.

in the classic artificial intelligence, and if you know the exact rules of a mapping
algorithm, you are always well advised to follow this scheme.

1.1.2.2 The way of learning

On the other hand, more interesting and more successful for many mappings and
problems that are hard to comprehend straightaway is the way of learning: We show
different possible situations to the robot (fig. 1.2 on the following page), – and the
robot shall learn on its own what to do in the course of its robot life.

In this example the robot shall simply learn when to stop. We first treat the neural
network as a kind of black box (fig. 1.3 on the next page). This means we do not
know its structure but just regard its behavior in practice.

The situations in form of simply measured sensor values (e.g. placing the robot in front
of an obstacle, see illustration), which we show to the robot and for which we specify
whether to drive on or to stop, are called training samples. Thus, a training sample
consists of an exemplary input and a corresponding desired output. Now the question
is how to transfer this knowledge, the information, into the neural network.



Figure 1.2: The robot is positioned in a landscape that provides sensor values for different situa-
tions. We add the desired output values H and so receive our learning samples. The directions in
which the sensors are oriented are exemplarily applied to two robots.

Figure 1.3: Initially, we regard the robot control as a black box whose inner life is unknown. The
black box receives eight real sensor values and maps these values to a binary output value.



The samples can be taught to a neural network by using a simple learning procedure (a
learning procedure is a simple algorithm or a mathematical formula. If we have done
everything right and chosen good samples, the neural network will generalize from
these samples and find a universal rule when it has to stop.

Our example can be optionally expanded. For the purpose of direction control it would
be possible to control the motors of our robot separately2, with the sensor layout being
the same. In this case we are looking for a mapping

f : R8 → R2,

which gradually controls the two motors by means of the sensor inputs and thus cannot
only, for example, stop the robot but also lets it avoid obstacles. Here it is more
difficult to analytically derive the rules, and de facto a neural network would be more
appropriate.

Our goal is not to learn the samples by heart, but to realize the principle behind
them: Ideally, the robot should apply the neural network in any situation and be able
to avoid obstacles. In particular, the robot should query the network continuously
and repeatedly while driving in order to continously avoid obstacles. The result is a
constant cycle: The robot queries the network. As a consequence, it will drive in one
direction, which changes the sensors values. Again the robot queries the network and
changes its position, the sensor values are changed once again, and so on. It is obvious
that this system can also be adapted to dynamic, i.e changing, environments (e.g. the
moving obstacles in our example).

1.2 A brief history of neural networks

The field of neural networks has, like any other field of science, a long history of
development with many ups and downs, as we will see soon. To continue the style
of my work I will not represent this history in text form but more compact in form of
a timeline. Citations and bibliographical references are added mainly for those topics
that will not be further discussed in this text. Citations for keywords that will be
explained later are mentioned in the corresponding chapters.

The history of neural networks begins in the early 1940’s and thus nearly simultaneously
with the history of programmable electronic computers. The youth of this field of

2 There is a robot called Khepera with more or less similar characteristics. It is round-shaped, approx. 7
cm in diameter, has two motors with wheels and various sensors. For more information I recommend to
refer to the internet.



Figure 1.4: Some institutions of the field of neural networks. From left to right: John von Neu-
mann, Donald O. Hebb, Marvin Minsky, Bernard Widrow, Seymour Papert, Teuvo Kohonen, John
Hopfield, "in the order of appearance" as far as possible.

research, as with the field of computer science itself, can be easily recognized due to
the fact that many of the cited persons are still with us.

1.2.1 The beginning

As soon as 1943 Warren McCulloch and Walter Pitts introduced models of
neurological networks, recreated threshold switches based on neurons and showed
that even simple networks of this kind are able to calculate nearly any logic or
arithmetic function [MP43]. Furthermore, the first computer precursors ("elec-
tronic brains")were developed, among others supported by Konrad Zuse, who
was tired of calculating ballistic trajectories by hand.

1947: Walter Pitts and Warren McCulloch indicated a practical field of applica-
tion (which was not mentioned in their work from 1943), namely the recognition
of spacial patterns by neural networks [PM47].

1949: Donald O. Hebb formulated the classical Hebbian rule [Heb49] which repre-
sents in its more generalized form the basis of nearly all neural learning proce-
dures. The rule implies that the connection between two neurons is strengthened
when both neurons are active at the same time. This change in strength is pro-
portional to the product of the two activities. Hebb could postulate this rule,
but due to the absence of neurological research he was not able to verify it.

1950: The neuropsychologist Karl Lashley defended the thesis that brain informa-
tion storage is realized as a distributed system. His thesis was based on experi-
ments on rats, where only the extent but not the location of the destroyed nerve
tissue influences the rats’ performance to find their way out of a labyrinth.



1.2.2 Golden age

1951: For his dissertation Marvin Minsky developed the neurocomputer Snark,
which has already been capable to adjust its weights3 automatically. But it
has never been practically implemented, since it is capable to busily calculate,
but nobody really knows what it calculates.

1956: Well-known scientists and ambitious students met at the Dartmouth Sum-
mer Research Project and discussed, to put it crudely, how to simulate a
brain. Differences between top-down and bottom-up research developed. While
the early supporters of artificial intelligence wanted to simulate capabilities
by means of software, supporters of neural networks wanted to achieve system
behavior by imitating the smallest parts of the system – the neurons.

1957-1958: At the MIT, Frank Rosenblatt, Charles Wightman and
their coworkers developed the first successful neurocomputer, the Mark I
perceptron , which was capable to recognize simple numerics by means of a
20 × 20 pixel image sensor and electromechanically worked with 512 motor
driven potentiometers - each potentiometer representing one variable weight.

1959: Frank Rosenblatt described different versions of the perceptron, formulated
and verified his perceptron convergence theorem. He described neuron layers mim-
icking the retina, threshold switches, and a learning rule adjusting the connecting
weights.

1960: Bernard Widrow and Marcian E. Hoff introduced the ADALINE
(ADAptive LInear NEuron) [WH60], a fast and precise adaptive learning
system being the first widely commercially used neural network: It could be
found in nearly every analog telephone for real-time adaptive echo filtering and
was trained by menas of the Widrow-Hoff rule or delta rule. At that time
Hoff, later co-founder of Intel Corporation, was a PhD student of Widrow, who
himself is known as the inventor of modern microprocessors. One advantage the
delta rule had over the original perceptron learning algorithm was its adaptivity:
If the difference between the actual output and the correct solution was large,
the connecting weights also changed in larger steps – the smaller the steps, the
closer the target was. Disadvantage: missapplication led to infinitesimal small
steps close to the target. In the following stagnation and out of fear of scientific
unpopularity of the neural networks ADALINE was renamed in adaptive
linear element – which was undone again later on.

3 We will learn soon what weights are.



1961: Karl Steinbuch introduced technical realizations of associative memory,
which can be seen as predecessors of today’s neural associative memories [Ste61].
Additionally, he described concepts for neural techniques and analyzed their
possibilities and limits.

1965: In his book Learning Machines, Nils Nilsson gave an overview of the progress
and works of this period of neural network research. It was assumed that the
basic principles of self-learning and therefore, generally speaking, "intelligent"
systems had already been discovered. Today this assumption seems to be an
exorbitant overestimation, but at that time it provided for high popularity and
sufficient research funds.

1969: Marvin Minsky and Seymour Papert published a precise mathematical
analysis of the perceptron [MP69] to show that the perceptron model was not
capable of representing many important problems (keywords: XOR problem and
linear separability), and so put an end to overestimation, popularity and research
funds. The implication that more powerful models would show exactly the
same problems and the forecast that the entire field would be a research dead
end resulted in a nearly complete decline in research funds for the next 15 years
– no matter how incorrect these forecasts were from today’s point of view.

1.2.3 Long silence and slow reconstruction

The research funds were, as previously-mentioned, extremely short. Everywhere re-
search went on, but there were neither conferences nor other events and therefore
only few publications. This isolation of individual researchers provided for many in-
dependently developed neural network paradigms: They researched, but there was no
discourse among them.

In spite of the poor appreciation the field received, the basic theories for the still
continuing renaissance were laid at that time:

1972: Teuvo Kohonen introduced a model of the linear associator, a model of
an associative memory [Koh72]. In the same year, such a model was presented
independently and from a neurophysiologist’s point of view by James A. An-
derson [And72].

1973: Christoph von der Malsburg used a neuron model that was non-linear and
biologically more motivated [vdM73].



1974: For his dissertation in Harvard Paul Werbos developed a learning procedure
called backpropagation of error [Wer74], but it was not until one decade later
that this procedure reached today’s importance.

1976-1980 and thereafter: Stephen Grossberg presented many papers (for
instance [Gro76]) in which numerous neural models are analyzed mathematically.
Furthermore, he dedicated himself to the problem of keeping a neural network
capable of learning without destroying already learned associations. Under
cooperation of Gail Carpenter this led to models of adaptive resonance
theory (ART).

1982: Teuvo Kohonen described the self-organizing feature maps
(SOM) [Koh82, Koh98] – also known as Kohonen maps. He was looking for
the mechanisms involving self-organization in the brain (He knew that the
information about the creation of a being is stored in the genome, which has,
however, not enough memory for a structure like the brain. As a consequence,
the brain has to organize and create itself for the most part).

John Hopfield also invented the so-called Hopfield networks [Hop82] which are
inspired by the laws of magnetism in physics. They were not widely used in tech-
nical applications, but the field of neural networks slowly regained importance.

1983: Fukushima, Miyake and Ito introduced the neural model of the Neocogni-
tron which could recognize handwritten characters [FMI83] and was an extension
of the Cognitron network already developed in 1975.

1.2.4 Renaissance

Through the influence of John Hopfield, who had personally convinced many re-
searchers of the importance of the field, and the wide publication of backpropagation
by Rumelhart, Hinton and Williams, the field of neural networks slowly showed
signs of upswing.

1985: John Hopfield published an article describing a way of finding acceptable
solutions for the Travelling Salesman problem by using Hopfield nets.

1986: The backpropagation of error learning procedure as a generalization of the delta
rule was separately developed and widely published by the Parallel Distributed
Processing Group [RHW86a]: Non-linearly-separable problems could be solved
by multilayer perceptrons, and Marvin Minsky’s negative evaluations were dis-
proven at a single blow. At the same time a certain kind of fatigue spread in the
field of artificial intelligence, caused by a series of failures and unfulfilled hopes.



From this time on, the development of the field of research has almost been explosive.
It can no longer be itemized, but some of its results will be seen in the following.

Exercises

Exercise 1. Give one example for each of the following topics:

. A book on neural networks or neuroinformatics,

. A collaborative group of a university working with neural networks,

. A software tool realizing neural networks ("simulator"),

. A company using neural networks, and

. A product or service being realized by means of neural networks.

Exercise 2. Show at least four applications of technical neural networks: two from
the field of pattern recognition and two from the field of function approximation.

Exercise 3. Briefly characterize the four development phases of neural networks and
give expressive examples for each phase.



Chapter 2

Biological neural networks
How do biological systems solve problems? How does a system of neurons

work? How can we understand its functionality? What are different quantities
of neurons able to do? Where in the nervous system does information

processing occur? A short biological overview of the complexity of simple
elements of neural information processing followed by some thoughts about

their simplification in order to technically adapt them.

Before we begin to describe the technical side of neural networks, it would be useful
to briefly discuss the biology of neural networks and the cognition of living organisms
– the reader may skip the following chapter without missing any technical informa-
tion. On the other hand I recommend to read the said excursus if you want to learn
something about the underlying neurophysiology and see that our small approaches,
the technical neural networks, are only caricatures of nature – and how powerful their
natural counterparts must be when our small approaches are already that effective.
Now we want to take a brief look at the nervous system of vertebrates: We will start
with a very rough granularity and then proceed with the brain and up to the neural
level. For further reading I want to recommend the books [CR00,KSJ00], which helped
me a lot during this chapter.

2.1 The vertebrate nervous system

The entire information processing system, i.e. the vertebrate nervous system, con-
sists of the central nervous system and the peripheral nervous system, which is only a
first and simple subdivision. In reality, such a rigid subdivision does not make sense,
but here it is helpful to outline the information processing in a body.
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2.1.1 Peripheral and central nervous system

The peripheral nervous system (PNS) comprises the nerves that are situated
outside of the brain or the spinal cord. These nerves form a branched and very dense
network throughout the whole body. The peripheral nervous system includes, for
example, the spinal nerves which pass out of the spinal cord (two within the level of
each vertebra of the spine) and supply extremities, neck and trunk, but also the cranial
nerves directly leading to the brain.

The central nervous system (CNS), however, is the "main-frame" within the ver-
tebrate. It is the place where information received by the sense organs are stored and
managed. Furthermore, it controls the inner processes in the body and, last but not
least, coordinates the motor functions of the organism. The vertebrate central nervous
system consists of the brain and the spinal cord (Fig. 2.1 on the facing page). How-
ever, we want to focus on the brain, which can - for the purpose of simplification - be
divided into four areas (Fig. 2.2 on page 18) to be discussed here.

2.1.2 The cerebrum is responsible for abstract thinking processes.

The cerebrum (telencephalon) is one of the areas of the brain that changed most
during evolution. Along an axis, running from the lateral face to the back of the head,
this area is divided into two hemispheres, which are organized in a folded structure.
These cerebral hemispheres are connected by one strong nerve cord ("bar") and several
small ones. A large number of neurons are located in the cerebral cortex (cortex)
which is approx. 2-4 cm thick and divided into different cortical fields, each having
a specific task to fulfill. Primary cortical fields are responsible for processing qual-
itative information, such as the management of different perceptions (e.g. the visual
cortex is responsible for the management of vision). Association cortical fields,
however, perform more abstract association and thinking processes; they also contain
our memory.

2.1.3 The cerebellum controls and coordinates motor functions

The cerebellum is located below the cerebrum, therefore it is closer to the spinal cord.
Accordingly, it serves less abstract functions with higher priority: Here, large parts
of motor coordination are performed, i.e., balance and movements are controlled and
errors are continually corrected. For this purpose, the cerebellum has direct sensory



Figure 2.1: Illustration of the central nervous system with spinal cord and brain.



Figure 2.2: Illustration of the brain. The colored areas of the brain are discussed in the text. The
more we turn from abstract information processing to direct reflexive processing, the darker the
areas of the brain are colored.

information about muscle lengths as well as acoustic and visual information. Further-
more, it also receives messages about more abstract motor signals coming from the
cerebrum.

In the human brain the cerebellum is considerably smaller than the cerebrum, but this
is rather an exception. In many vertebrates this ratio is less pronounced. If we take a
look at vertebrate evolution, we will notice that the cerebellum is not "too small" but
the cerebum is "too large" (at least, it is the most highly developed structure in the
vertebrate brain). The two remaining brain areas should also be briefly discussed: the
diencephalon and the brainstem.

2.1.4 The diencephalon controls fundamental physiological processes

The interbrain (diencephalon) includes parts of which only the thalamus will
be briefly discussed: This part of the diencephalon mediates between sensory and
motor signals and the cerebrum. Particularly, the thalamus decides which part of the
information is transferred to the cerebrum, so that especially less important sensory
perceptions can be suppressed at short notice to avoid overloads. Another part of
the diencephalon is the hypothalamus, which controls a number of processes within
the body. The diencephalon is also heavily involved in the human circadian rhythm
("internal clock") and the sensation of pain.



2.1.5 The brainstem connects the brain with the spinal cord and controls
reflexes.

In comparison with the diencephalon the brainstem or the (truncus cerebri) re-
spectively is phylogenetically much older. Roughly speaking, it is the "extended spinal
cord" and thus the connection between brain and spinal cord. The brainstem can
also be divided into different areas, some of which will be exemplarily introduced in
this chapter. The functions will be discussed from abstract functions towards more
fundamental ones. One important component is the pons (=bridge), a kind of transit
station for many nerve signals from brain to body and vice versa.

If the pons is damaged (e.g. by a cerebral infarct), then the result could be the locked-
in syndrome – a condition in which a patient is "walled-in" within his own body. He
is conscious and aware with no loss of cognitive function, but cannot move or commu-
nicate by any means. Only his senses of sight, hearing, smell and taste are generally
working perfectly normal. Locked-in patients may often be able to communicate with
others by blinking or moving their eyes.

Furthermore, the brainstem is responsible for many fundamental reflexes, such as the
blinking reflex or coughing.

All parts of the nervous system have one thing in common: information processing.
This is accomplished by huge accumulations of billions of very similar cells, whose
structure is very simple but which communicate continuously. Large groups of these
cells send coordinated signals and thus reach the enormous information processing
capacity we are familiar with from our brain. We will now leave the level of brain
areas and continue with the cellular level of the body - the level of neurons.

2.2 Neurons are information processing cells

Before specifying the functions and processes within a neuron, we will give a rough
description of neuron functions: A neuron is nothing more than a switch with infor-
mation input and output. The switch will be activated if there are enough stimuli of
other neurons hitting the information input. Then, at the information output, a pulse
is sent to, for example, other neurons.



Figure 2.3: Illustration of a biological neuron with the components discussed in this text.

2.2.1 Components of a neuron

Now we want to take a look at the components of a neuron (Fig. 2.3). In doing so, we
will follow the way the electrical information takes within the neuron. The dendrites
of a neuron receive the information by special connections, the synapses.

2.2.1.1 Synapses weight the individual parts of information

Incoming signals from other neurons or cells are transferred to a neuron by special
connections, the synapses. Such connections can usually be found at the dendrites of
a neuron, sometimes also directly at the soma. We distinguish between electrical and
chemical synapses.

The electrical synapse is the simpler variant. An electrical signal received by the
synapse, i.e. coming from the presynaptic side, is directly transferred to the postsy-
naptic nucleus of the cell. Thus, there is a direct, strong, unadjustable connection
between the signal transmitter and the signal receiver, which is, for example, relevant
to shortening reactions that must be "hard coded" within a living organism.

The chemical synapse is the more distinctive variant. Here, the electrical coupling
of source and target does not take place, the coupling is interrupted by the synaptic
cleft. This cleft electrically separates the presynaptic side from the postsynaptic one.



You might think that, nevertheless, the information has to flow, so we will discuss how
this happens: It is not an electrical, but a chemical process. On the presynaptic side
of the synaptic cleft the electrical signal is converted into a chemical signal, a process
induced by chemical cues released there (the so-called neurotransmitters). These
neurotransmitters cross the synaptic cleft and transfer the information into the nucleus
of the cell (this is a very simple explanation, but later on we will see how this exactly
works), where it is reconverted into electrical information. The neurotransmitters are
degraded very fast, so that it is possible to release very precise information pulses here,
too.

In spite of the more complex functioning, the chemical synapse has - compared with
the electrical synapse - utmost advantages:

One-way connection: A chemical synapse is a one-way connection. Due to the fact
that there is no direct electrical connection between the pre- and postsynaptic
area, electrical pulses in the postsynaptic area cannot flash over to the presynap-
tic area.

Adjustability: There is a large number of different neurotransmitters that can also be
released in various quantities in a synaptic cleft. There are neurotransmitters
that stimulate the postsynaptic cell nucleus, and others that slow down such
stimulation. Some synapses transfer a strongly stimulating signal, some only
weakly stimulating ones. The adjustability varies a lot, and one of the central
points in the examination of the learning ability of the brain is, that here the
synapses are variable, too. That is, over time they can form a stronger or weaker
connection.

2.2.1.2 Dendrites collect all parts of information

Dendrites branch like trees from the cell nucleus of the neuron (which is called soma)
and receive electrical signals from many different sources, which are then transferred
into the nucleus of the cell. The amount of branching dendrites is also called dendrite
tree.

2.2.1.3 In the soma the weighted information is accumulated

After the cell nucleus (soma) has received a plenty of activating (=stimulating) and
inhibiting (=diminishing) signals by synapses or dendrites, the soma accumulates these
signals. As soon as the accumulated signal exceeds a certain value (called threshold



value), the cell nucleus of the neuron activates an electrical pulse which then is trans-
mitted to the neurons connected to the current one.

2.2.1.4 The axon transfers outgoing pulses

The pulse is transferred to other neurons by means of the axon. The axon is a long,
slender extension of the soma. In an extreme case, an axon can stretch up to one meter
(e.g. within the spinal cord). The axon is electrically isolated in order to achieve a
better conduction of the electrical signal (we will return to this point later on) and it
leads to dendrites, which transfer the information to, for example, other neurons. So
now we are back at the beginning of our description of the neuron elements. An axon
can, however, transfer information to other kinds of cells in order to control them.

2.2.2 Electrochemical processes in the neuron and its components

After having pursued the path of an electrical signal from the dendrites via the synapses
to the nucleus of the cell and from there via the axon into other dendrites, we now
want to take a small step from biology towards technology. In doing so, a simplified
introduction of the electrochemical information processing should be provided.

2.2.2.1 Neurons maintain electrical membrane potential

One fundamental aspect is the fact that compared to their environment the neurons
show a difference in electrical charge, a potential. In the membrane (=envelope) of
the neuron the charge is different from the charge on the outside. This difference in
charge is a central concept that is important to understand the processes within the
neuron. The difference is called membrane potential. The membrane potential, i.e.,
the difference in charge, is created by several kinds of charged atoms (ions), whose
concentration varies within and outside of the neuron. If we penetrate the membrane
from the inside outwards, we will find certain kinds of ions more often or less often
than on the inside. This descent or ascent of concentration is called a concentration
gradient.

Let us first take a look at the membrane potential in the resting state of the neuron,
i.e., we assume that no electrical signals are received from the outside. In this case,
the membrane potential is −70 mV. Since we have learned that this potential depends
on the concentration gradients of various ions, there is of course the central question
of how to maintain these concentration gradients: Normally, diffusion predominates



and therefore each ion is eager to decrease concentration gradients and to spread out
evenly. If this happens, the membrane potential will move towards 0 mV, so finally
there would be no membrane potential anymore. Thus, the neuron actively maintains
its membrane potential to be able to process information. How does this work?

The secret is the membrane itself, which is permeable to some ions, but not for others.
To maintain the potential, various mechanisms are in progress at the same time:

Concentration gradient: As described above the ions try to be as uniformly
distributed as possible. If the concentration of an ion is higher on the inside of
the neuron than on the outside, it will try to diffuse to the outside and vice
versa. The positively charged ion K+ (potassium) occurs very frequently within
the neuron but less frequently outside of the neuron, and therefore it slowly
diffuses out through the neuron’s membrane. But another group of negative
ions, collectively called A−, remains within the neuron since the membrane is
not permeable to them. Thus, the inside of the neuron becomes negatively
charged. Negative A ions remain, positive K ions disappear, and so the inside
of the cell becomes more negative. The result is another gradient.

Electrical Gradient: The electrical gradient acts contrary to the concentration gradi-
ent. The intracellular charge is now very strong, therefore it attracts positive
ions: K+ wants to get back into the cell.

If these two gradients were now left alone, they would eventually balance out, reach
a steady state, and a membrane potential of −85 mV would develop. But we want
to achieve a resting membrane potential of −70 mV, thus there seem to exist some
disturbances which prevent this. Furthermore, there is another important ion, Na+

(sodium), for which the membrane is not very permeable but which, however, slowly
pours through the membrane into the cell. As a result, the sodium is driven into the
cell all the more: On the one hand, there is less sodium within the neuron than outside
the neuron. On the other hand, sodium is positively charged but the interior of the
cell has negative charge, which is a second reason for the sodium wanting to get into
the cell.

Due to the low diffusion of sodium into the cell the intracellular sodium concentration
increases. But at the same time the inside of the cell becomes less negative, so that K+

pours in more slowly (we can see that this is a complex mechanism where everything
is influenced by everything). The sodium shifts the intracellular equilibrium from
negative to less negative, compared with its environment. But even with these two
ions a standstill with all gradients being balanced out could still be achieved. Now the
last piece of the puzzle gets into the game: a "pump" (or rather, the protein ATP)
actively transports ions against the direction they actually want to take!



Sodium is actively pumped out of the cell, although it tries to get into the cell along
the concentration gradient and the electrical gradient.

Potassium, however, diffuses strongly out of the cell, but is actively pumped back into
it.

For this reason the pump is also called sodium-potassium pump. The pump main-
tains the concentration gradient for the sodium as well as for the potassium, so that
some sort of steady state equilibrium is created and finally the resting potential is
−70 mV as observed. All in all the membrane potential is maintained by the fact that
the membrane is impermeable to some ions and other ions are actively pumped against
the concentration and electrical gradients. Now that we know that each neuron has a
membrane potential we want to observe how a neuron receives and transmits signals.

2.2.2.2 The neuron is activated by changes in the membrane potential

Above we have learned that sodium and potassium can diffuse through the membrane
- sodium slowly, potassium faster. They move through channels within the membrane,
the sodium and potassium channels. In addition to these permanently open channels
responsible for diffusion and balanced by the sodium-potassium pump, there also exist
channels that are not always open but which only response "if required". Since the
opening of these channels changes the concentration of ions within and outside of the
membrane, it also changes the membrane potential.

These controllable channels are opened as soon as the accumulated received stimulus
exceeds a certain threshold. For example, stimuli can be received from other neurons or
have other causes. There exist, for example, specialized forms of neurons, the sensory
cells, for which a light incidence could be such a stimulus. If the incoming amount of
light exceeds the threshold, controllable channels are opened.

The said threshold (the threshold potential) lies at about −55 mV. As soon as the
received stimuli reach this value, the neuron is activated and an electrical signal, an
action potential, is initiated. Then this signal is transmitted to the cells connected
to the observed neuron, i.e. the cells "listen" to the neuron. Now we want to take a
closer look at the different stages of the action potential (Fig. 2.4 on the next page):

Resting state: Only the permanently open sodium and potassium channels are per-
meable. The membrane potential is at −70 mV and actively kept there by the
neuron.



Figure 2.4: Initiation of action potential over time.



Stimulus up to the threshold: A stimulus opens channels so that sodium can pour
in. The intracellular charge becomes more positive. As soon as the membrane
potential exceeds the threshold of −55 mV, the action potential is initiated by
the opening of many sodium channels.

Depolarization: Sodium is pouring in. Remember: Sodium wants to pour into the cell
because there is a lower intracellular than extracellular concentration of sodium.
Additionally, the cell is dominated by a negative environment which attracts the
positive sodium ions. This massive influx of sodium drastically increases the
membrane potential - up to approx. +30 mV - which is the electrical pulse, i.e.,
the action potential.

Repolarization: Now the sodium channels are closed and the potassium channels are
opened. The positively charged ions want to leave the positive interior of the cell.
Additionally, the intracellular concentration is much higher than the extracellular
one, which increases the efflux of ions even more. The interior of the cell is once
again more negatively charged than the exterior.

Hyperpolarization: Sodium as well as potassium channels are closed again. At first the
membrane potential is slightly more negative than the resting potential. This is
due to the fact that the potassium channels close more slowly. As a result, (posi-
tively charged) potassium effuses because of its lower extracellular concentration.
After a refractory period of 1− 2 ms the resting state is re-established so that
the neuron can react to newly applied stimuli with an action potential. In simple
terms, the refractory period is a mandatory break a neuron has to take in order
to regenerate. The shorter this break is, the more often a neuron can fire per
time.

Then the resulting pulse is transmitted by the axon.

2.2.2.3 In the axon a pulse is conducted in a saltatory way

We have already learned that the axon is used to transmit the action potential across
long distances (remember: You will find an illustration of a neuron including an axon in
Fig. 2.3 on page 20). The axon is a long, slender extension of the soma. In vertebrates
it is normally coated by a myelin sheath that consists of Schwann cells (in the
PNS) or oligodendrocytes (in the CNS) 1, which insulate the axon very well from
electrical activity. At a distance of 0.1− 2mm there are gaps between these cells, the

1 Schwann cells as well as oligodendrocytes are varieties of the glial cells. There are about 50 times more
glial cells than neurons: They surround the neurons (glia = glue), insulate them from each other, provide
energy, etc.



so-called nodes of Ranvier. The said gaps appear where one insulate cell ends and
the next one begins. It is obvious that at such a node the axon is less insulated.

Now you may assume that these less insulated nodes are a disadvantage of the axon -
however, they are not. At the nodes, mass can be transferred between the intracellular
and extracellular area, a transfer that is impossible at those parts of the axon which
are situated between two nodes (internodes) and therefore insulated by the myelin
sheath. This mass transfer permits the generation of signals similar to the generation
of the action potential within the soma. The action potential is transferred as follows:
It does not continuously travel along the axon but jumps from node to node. Thus,
a series of depolarization travels along the nodes of Ranvier. One action potential
initiates the next one, and mostly even several nodes are active at the same time
here. The pulse "jumping" from node to node is responsible for the name of this pulse
conductor: saltatory conductor.

Obviously, the pulse will move faster if its jumps are larger. Axons with large intern-
odes (2 mm) achieve a signal dispersion of approx. 180 meters per second. However,
the internodes cannot grow indefinitely, since the action potential to be transferred
would fade too much until it reaches the next node. So the nodes have a task, too: to
constantly amplify the signal. The cells receiving the action potential are attached to
the end of the axon – often connected by dendrites and synapses. As already indicated
above, the action potentials are not only generated by information received by the
dendrites from other neurons.

2.3 Receptor cells are modified neurons

Action potentials can also be generated by sensory information an organism receives
from its environment through its sensory cells. Specialized receptor cells are able
to perceive specific stimulus energies such as light, temperature and sound or the
existence of certain molecules (like, for example, the sense of smell). This is working
because of the fact that these sensory cells are actually modified neurons. They do not
receive electrical signals via dendrites but the existence of the stimulus being specific
for the receptor cell ensures that the ion channels open and an action potential is
developed. This process of transforming stimulus energy into changes in the membrane
potential is called sensory transduction. Usually, the stimulus energy itself is too
weak to directly cause nerve signals. Therefore, the signals are amplified either during
transduction or by means of the stimulus-conducting apparatus. The resulting
action potential can be processed by other neurons and is then transmitted into the
thalamus, which is, as we have already learned, a gateway to the cerebral cortex and



therefore can reject sensory impressions according to current relevance and thus prevent
an abundance of information to be managed.

2.3.1 There are different receptor cells for various types of perceptions

Primary receptors transmit their pulses directly to the nervous system. A good
example for this is the sense of pain. Here, the stimulus intensity is proportional to
the amplitude of the action potential. Technically, this is an amplitude modulation.

Secondary receptors, however, continuously transmit pulses. These pulses control
the amount of the related neurotransmitter, which is responsible for transferring the
stimulus. The stimulus in turn controls the frequency of the action potential of the
receiving neuron. This process is a frequency modulation, an encoding of the stimulus,
which allows to better perceive the increase and decrease of a stimulus.

There can be individual receptor cells or cells forming complex sensory organs (e.g. eyes
or ears). They can receive stimuli within the body (by means of the interoceptors)
as well as stimuli outside of the body (by means of the exteroceptors).

After having outlined how information is received from the environment, it will be
interesting to look at how the information is processed.

2.3.2 Information is processed on every level of the nervous system

There is no reason to believe that all received information is transmitted to the brain
and processed there, and that the brain ensures that it is "output" in the form of
motor pulses (the only thing an organism can actually do within its environment is
to move). The information processing is entirely decentralized. In order to illustrate
this principle, we want to take a look at some examples, which leads us again from the
abstract to the fundamental in our hierarchy of information processing.

. It is certain that information is processed in the cerebrum, which is the most
developed natural information processing structure.

. The midbrain and the thalamus, which serves – as we have already learned – as
a gateway to the cerebral cortex, are situated much lower in the hierarchy. The
filtering of information with respect to the current relevance executed by the
midbrain is a very important method of information processing, too. But even
the thalamus does not receive any preprocessed stimuli from the outside. Now
let us continue with the lowest level, the sensory cells.



. On the lowest level, i.e. at the receptor cells, the information is not only received
and transferred but directly processed. One of the main aspects of this subject is
to prevent the transmission of "continuous stimuli" to the central nervous system
because of sensory adaptation: Due to continuous stimulation many receptor
cells automatically become insensitive to stimuli. Thus, receptor cells are not a
direct mapping of specific stimulus energy onto action potentials but depend on
the past. Other sensors change their sensitivity according to the situation: There
are taste receptors which respond more or less to the same stimulus according to
the nutritional condition of the organism.

. Even before a stimulus reaches the receptor cells, information processing can
already be executed by a preceding signal carrying apparatus, for example in the
form of amplification: The external and the internal ear have a specific shape to
amplify the sound, which also allows – in association with the sensory cells of the
sense of hearing – the sensory stimulus only to increase logarithmically with the
intensity of the heard signal. On closer examination, this is necessary, since the
sound pressure of the signals for which the ear is constructed can vary over a wide
exponential range. Here, a logarithmic measurement is an advantage. Firstly, an
overload is prevented and secondly, the fact that the intensity measurement of
intensive signals will be less precise, doesn’t matter as well. If a jet fighter is
starting next to you, small changes in the noise level can be ignored.

Just to get a feeling for sensory organs and information processing in the organism, we
will briefly describe "usual" light sensing organs, i.e. organs often found in nature. For
the third light sensing organ described below, the single lens eye, we will discuss the
information processing in the eye.

2.3.3 An outline of common light sensing organs

For many organisms it turned out to be extremely useful to be able to perceive electro-
magnetic radiation in certain regions of the spectrum. Consequently, sensory organs
have been developed which can detect such electromagnetic radiation and the wave-
length range of the radiation perceivable by the human eye is called visible range or
simply light. The different wavelengths of this electromagnetic radiation are perceived
by the human eye as different colors. The visible range of the electromagnetic radia-
tion is different for each organism. Some organisms cannot see the colors (=wavelength
ranges) we can see, others can even perceive additional wavelength ranges (e.g. in the
UV range). Before we begin with the human being – in order to get a broader knowl-
edge of the sense of sight– we briefly want to look at two organs of sight which, from
an evolutionary point of view, exist much longer than the human.



Figure 2.5: Compound eye of a robber fly

2.3.3.1 Compound eyes and pinhole eyes only provide high temporal or spatial
resolution

Let us first take a look at the so-called compound eye (Fig. 2.5), which is, for example,
common in insects and crustaceans. The compound eye consists of a great number
of small, individual eyes. If we look at the compound eye from the outside, the
individual eyes are clearly visible and arranged in a hexagonal pattern. Each individual
eye has its own nerve fiber which is connected to the insect brain. Since the individual
eyes can be distinguished, it is obvious that the number of pixels, i.e. the spatial
resolution, of compound eyes must be very low and the image is blurred. But compound
eyes have advantages, too, especially for fast-flying insects. Certain compound eyes
process more than 300 images per second (to the human eye, however, movies with 25
images per second appear as a fluent motion).

Pinhole eyes are, for example, found in octopus species and work – as you can guess
– similar to a pinhole camera. A pinhole eye has a very small opening for light entry,
which projects a sharp image onto the sensory cells behind. Thus, the spatial resolution
is much higher than in the compound eye. But due to the very small opening for light
entry the resulting image is less bright.



2.3.3.2 Single lens eyes combine the advantages of the other two eye types, but
they are more complex

The light sensing organ common in vertebrates is the single lense eye. The resulting
image is a sharp, high-resolution image of the environment at high or variable light
intensity. On the other hand it is more complex. Similar to the pinhole eye the light
enters through an opening (pupil) and is projected onto a layer of sensory cells in
the eye. (retina). But in contrast to the pinhole eye, the size of the pupil can be
adapted to the lighting conditions (by means of the iris muscle, which expands or
contracts the pupil). These differences in pupil dilation require to actively focus the
image. Therefore, the single lens eye contains an additional adjustable lens.

2.3.3.3 The retina does not only receive information but is also responsible for
information processing

The light signals falling on the eye are received by the retina and directly preprocessed
by several layers of information-processing cells. We want to briefly discuss the dif-
ferent steps of this information processing and in doing so, we follow the way of the
information carried by the light:

Photoreceptors receive the light signal und cause action potentials (there are different
receptors for different color components and light intensities). These receptors
are the real light-receiving part of the retina and they are sensitive to such an
extent that only one single photon falling on the retina can cause an action
potential. Then several photoreceptors transmit their signals to one single

bipolar cell. This means that here the information has already been summarized. Fi-
nally, the now transformed light signal travels from several bipolar cells 2 into

ganglion cells. Various bipolar cells can transmit their information to one ganglion
cell. The higher the number of photoreceptors that affect the ganglion cell, the
larger the field of perception, the receptive field, which covers the ganglions –
and the less sharp is the image in the area of this ganglion cell. So the information
is already reduced directly in the retina and the overall image is, for example,
blurred in the peripheral field of vision. So far, we have learned about the
information processing in the retina only as a top-down structure. Now we want
to take a look at the

2 There are different kinds of bipolar cells, as well, but to discuss all of them would go too far.



horizontal and amacrine cells. These cells are not connected from the front back-
wards but laterally. They allow the light signals to influence themselves laterally
directly during the information processing in the retina – a much more pow-
erful method of information processing than compressing and blurring. When
the horizontal cells are excited by a photoreceptor, they are able to excite other
nearby photoreceptors and at the same time inhibit more distant bipolar cells
and receptors. This ensures the clear perception of outlines and bright points.
Amacrine cells can further intensify certain stimuli by distributing information
from bipolar cells to several ganglion cells or by inhibiting ganglions.

These first steps of transmitting visual information to the brain show that information
is processed from the first moment the information is received and, on the other hand,
is processed in parallel within millions of information-processing cells. The system’s
power and resistance to errors is based upon this massive division of work.

2.4 The amount of neurons in living organisms at different
stages of development

An overview of different organisms and their neural capacity (in large part from
[RD05]):

302 neurons are required by the nervous system of a nematode worm, which serves
as a popular model organism in biology. Nematodes live in the soil and feed on
bacteria.

104 neurons make an ant (To simplify matters we neglect the fact that some ant
species also can have more or less efficient nervous systems). Due to the use of
different attractants and odors, ants are able to engage in complex social behavior
and form huge states with millions of individuals. If you regard such an ant state
as an individual, it has a cognitive capacity similar to a chimpanzee or even a
human.

With 105 neurons the nervous system of a fly can be constructed. A fly can evade
an object in real-time in three-dimensional space, it can land upon the ceiling
upside down, has a considerable sensory system because of compound eyes, vib-
rissae, nerves at the end of its legs and much more. Thus, a fly has considerable
differential and integral calculus in high dimensions implemented "in hardware".
We all know that a fly is not easy to catch. Of course, the bodily functions are
also controlled by neurons, but these should be ignored here.



With 0.8 · 106 neurons we have enough cerebral matter to create a honeybee. Honey-
bees build colonies and have amazing capabilities in the field of aerial reconnais-
sance and navigation.

4 · 106 neurons result in a mouse, and here the world of vertebrates already begins.

1.5 · 107 neurons are sufficient for a rat, an animal which is denounced as being ex-
tremely intelligent and are often used to participate in a variety of intelligence
tests representative for the animal world. Rats have an extraordinary sense of
smell and orientation, and they also show social behavior. The brain of a frog
can be positioned within the same dimension. The frog has a complex build
with many functions, it can swim and has evolved complex behavior. A frog
can continuously target the said fly by means of his eyes while jumping in three-
dimensional space and and catch it with its tongue with considerable probability.

5 · 107 neurons make a bat. The bat can navigate in total darkness through a room,
exact up to several centimeters, by only using their sense of hearing. It uses
acoustic signals to localize self-camouflaging insects (e.g. some moths have a
certain wing structure that reflects less sound waves and the echo will be small)
and also eats its prey while flying.

1.6 · 108 neurons are required by the brain of a dog, companion of man for ages. Now
take a look at another popular companion of man:

3 · 108 neurons can be found in a cat, which is about twice as much as in a dog. We
know that cats are very elegant, patient carnivores that can show a variety of
behaviors. By the way, an octopus can be positioned within the same magnitude.
Only very few people know that, for example, in labyrinth orientation the octopus
is vastly superior to the rat.

For 6 · 109 neurons you already get a chimpanzee, one of the animals being very
similar to the human.

1011 neurons make a human. Usually, the human has considerable cognitive capabil-
ities, is able to speak, to abstract, to remember and to use tools as well as the
knowledge of other humans to develop advanced technologies and manifold social
structures.

With 2 · 1011 neurons there are nervous systems having more neurons than the hu-
man nervous system. Here we should mention elephants and certain whale
species.



Our state-of-the-art computers are not able to keep up with the aforementioned process-
ing power of a fly. Recent research results suggest that the processes in nervous systems
might be vastly more powerful than people thought until not long ago: Michaeva et
al. describe a separate, synapse-integrated information way of information process-
ing [MBW+10]. Posterity will show if they are right.

2.5 Transition to technical neurons: neural networks are a
caricature of biology

How do we change from biological neural networks to the technical ones? Through
radical simplification. I want to briefly summarize the conclusions relevant for the
technical part:

We have learned that the biological neurons are linked to each other in a weighted
way and when stimulated they electrically transmit their signal via the axon. From
the axon they are not directly transferred to the succeeding neurons, but they first
have to cross the synaptic cleft where the signal is changed again by variable chemical
processes. In the receiving neuron the various inputs that have been post-processed in
the synaptic cleft are summarized or accumulated to one single pulse. Depending on
how the neuron is stimulated by the cumulated input, the neuron itself emits a pulse or
not – thus, the output is non-linear and not proportional to the cumulated input. Our
brief summary corresponds exactly with the few elements of biological neural networks
we want to take over into the technical approximation:

Vectorial input: The input of technical neurons consists of many components, there-
fore it is a vector. In nature a neuron receives pulses of 103 to 104 other neurons
on average.

Scalar output: The output of a neuron is a scalar, which means that the neuron only
consists of one component. Several scalar outputs in turn form the vectorial
input of another neuron. This particularly means that somewhere in the neuron
the various input components have to be summarized in such a way that only
one component remains.

Synapses change input: In technical neural networks the inputs are preprocessed, too.
They are multiplied by a number (the weight) – they are weighted. The set of
such weights represents the information storage of a neural network – in both
biological original and technical adaptation.



Accumulating the inputs: In biology, the inputs are summarized to a pulse according
to the chemical change, i.e., they are accumulated – on the technical side this
is often realized by the weighted sum, which we will get to know later on. This
means that after accumulation we continue with only one value, a scalar, instead
of a vector.

Non-linear characteristic: The input of our technical neurons is also not proportional
to the output.

Adjustable weights: The weights weighting the inputs are variable, similar to the
chemical processes at the synaptic cleft. This adds a great dynamic to the net-
work because a large part of the "knowledge" of a neural network is saved in the
weights and in the form and power of the chemical processes in a synaptic cleft.

So our current, only casually formulated and very simple neuron model receives a
vectorial input

~x,

with components xi. These are multiplied by the appropriate weights wi and accumu-
lated: ∑

i

wixi.

The aforementioned term is called weighted sum. Then the nonlinear mapping f defines
the scalar output y:

y = f

(∑
i

wixi

)
.

After this transition we now want to specify more precisely our neuron model and
add some odds and ends. Afterwards we will take a look at how the weights can be
adjusted.

Exercises

Exercise 4. It is estimated that a human brain consists of approx. 1011 nerve cells,
each of which has about 103 to 104 synapses. For this exercise we assume 103 synapses
per neuron. Let us further assume that a single synapse could save 4 bits of information.
Naïvely calculated: How much storage capacity does the brain have? Note: The
information which neuron is connected to which other neuron is also important.





Chapter 3

Components of artificial neural networks
Formal definitions and colloquial explanations of the components that realize
the technical adaptations of biological neural networks. Initial descriptions of

how to combine these components into a neural network.

This chapter contains the formal definitions for most of the neural network components
used later in the text. After this chapter you will be able to read the individual
chapters of this work without having to know the preceding ones (although this would
be useful).

3.1 The concept of time in neural networks

In some definitions of this text we use the term time or the number of cycles of the
neural network, respectively. Time is divided into discrete time steps:

Definition 3.1 (The concept of time). The current time (present time) is referred to
as (t), the next time step as (t+ 1), the preceding one as (t− 1). All other time steps
are referred to analogously. If in the following chapters several mathematical variables
(e.g. netj or oi) refer to a certain point in time, the notation will be, for example,
netj(t− 1) or oi(t).

From a biological point of view this is, of course, not very plausible (in the human
brain a neuron does not wait for another one), but it significantly simplifies the imple-
mentation.
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3.2 Components of neural networks

A technical neural network consists of simple processing units, the neurons, and di-
rected, weighted connections between those neurons. Here, the strength of a connection
(or the connecting weight) between two neurons i and j is referred to as wi,j 1.

Definition 3.2 (Neural network). A neural network is a sorted triple (N,V,w)
with two sets N , V and a function w, where N is the set of neurons and V a set
{(i, j)|i, j ∈ N} whose elements are called connections between neuron i and neuron
j. The function w : V → R defines the weights, where w((i, j)), the weight of
the connection between neuron i and neuron j, is shortened to wi,j . Depending on
the point of view it is either undefined or 0 for connections that do not exist in the
network.

SNIPE: In Snipe, an instance of the class NeuralNetworkDescriptor is created in the first place.
The descriptor object roughly outlines a class of neural networks, e.g. it defines the number of
neuron layers in a neural network. In a second step, the descriptor object is used to instantiate
an arbitrary number of NeuralNetwork objects. To get started with Snipe programming, the
documentations of exactly these two classes are – in that order – the right thing to read. The
presented layout involving descriptor and dependent neural networks is very reasonable from the
implementation point of view, because it is enables to create and maintain general parameters
of even very large sets of similar (but not neccessarily equal) networks.

So the weights can be implemented in a square weight matrix W or, optionally, in a
weight vector W with the row number of the matrix indicating where the connection
begins, and the column number of the matrix indicating, which neuron is the target.
Indeed, in this case the numeric 0 marks a non-existing connection. This matrix
representation is also called Hinton diagram2.

The neurons and connections comprise the following components and variables (I’m
following the path of the data within a neuron, which is according to fig. 3.1 on the
facing page in top-down direction):

1 Note: In some of the cited literature i and j could be interchanged in wi,j . Here, a consistent standard
does not exist. But in this text I try to use the notation I found more frequently and in the more
significant citations.

2 Note that, here again, in some of the cited literature axes and rows could be interchanged. The published
literature is not consistent here, as well.
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Figure 3.1: Data processing of a neuron. The activation function of a neuron implies the threshold
value.



3.2.1 Connections carry information that is processed by neurons

Data are transferred between neurons via connections with the connecting weight being
either excitatory or inhibitory. The definition of connections has already been included
in the definition of the neural network.

SNIPE: Connection weights can be set using the method NeuralNetwork.setSynapse.

3.2.2 The propagation function converts vector inputs to scalar network
inputs

Looking at a neuron j, we will usually find a lot of neurons with a connection to j, i.e.
which transfer their output to j.

For a neuron j the propagation function receives the outputs oi1 , . . . , oin of other
neurons i1, i2, . . . , in (which are connected to j), and transforms them in consideration
of the connecting weights wi,j into the network input netj that can be further processed
by the activation function. Thus, the network input is the result of the propagation
function.

Definition 3.3 (Propagation function and network input). Let I = {i1, i2, . . . , in}
be the set of neurons, such that ∀z ∈ {1, . . . , n} : ∃wiz ,j . Then the network input of j,
called netj , is calculated by the propagation function fprop as follows:

netj = fprop(oi1 , . . . , oin , wi1,j , . . . , win,j) (3.1)

Here the weighted sum is very popular: The multiplication of the output of each
neuron i by wi,j , and the summation of the results:

netj =
∑
i∈I

(oi · wi,j) (3.2)

SNIPE: The propagation function in Snipe was implemented using the weighted sum.

3.2.3 The activation is the "switching status" of a neuron

Based on the model of nature every neuron is, to a certain extent, at all times active,
excited or whatever you will call it. The reactions of the neurons to the input values
depend on this activation state. The activation state indicates the extent of a neu-
ron’s activation and is often shortly referred to as activation. Its formal definition is



included in the following definition of the activation function. But generally, it can be
defined as follows:

Definition 3.4 (Activation state / activation in general). Let j be a neuron. The
activation state aj , in short activation, is explicitly assigned to j, indicates the extent
of the neuron’s activity and results from the activation function.

SNIPE: It is possible to get and set activation states of neurons by using the methods
getActivation or setActivation in the class NeuralNetwork.

3.2.4 Neurons get activated if the network input exceeds their treshold
value

Near the threshold value, the activation function of a neuron reacts particularly sen-
sitive. From the biological point of view the threshold value represents the threshold
at which a neuron starts firing. The threshold value is also mostly included in the
definition of the activation function, but generally the definition is the following:

Definition 3.5 (Threshold value in general). Let j be a neuron. The threshold
value Θj is uniquely assigned to j and marks the position of the maximum gradient
value of the activation function.

3.2.5 The activation function determines the activation of a neuron
dependent on network input and treshold value

At a certain time – as we have already learned – the activation aj of a neuron j depends
on the previous3 activation state of the neuron and the external input.

Definition 3.6 (Activation function and Activation). Let j be a neuron. The acti-
vation function is defined as

aj(t) = fact(netj(t), aj(t− 1),Θj). (3.3)

It transforms the network input netj , as well as the previous activation state aj(t− 1)
into a new activation state aj(t), with the threshold value Θ playing an important role,
as already mentioned.

3 The previous activation is not always relevant for the current – we will see examples for both variants.



Unlike the other variables within the neural network (particularly unlike the ones
defined so far) the activation function is often defined globally for all neurons or at
least for a set of neurons and only the threshold values are different for each neuron.
We should also keep in mind that the threshold values can be changed, for example by
a learning procedure. So it can in particular become necessary to relate the threshold
value to the time and to write, for instance Θj as Θj(t) (but for reasons of clarity, I
omitted this here). The activation function is also called transfer function.

SNIPE: In Snipe, activation functions are generalized to neuron behaviors. Such behaviors can
represent just normal activation functions, or even incorporate internal states and dynamics.
Corresponding parts of Snipe can be found in the package neuronbehavior, which also contains
some of the activation functions introduced in the next section. The interface NeuronBehavior
allows for implementation of custom behaviors. Objects that inherit from this interface can be
passed to a NeuralNetworkDescriptor instance. It is possible to define individual behaviors
per neuron layer.

3.2.6 Common activation functions

The simplest activation function is the binary threshold function (fig. 3.2 on
page 44), which can only take on two values (also referred to as Heaviside function).
If the input is above a certain threshold, the function changes from one value to
another, but otherwise remains constant. This implies that the function is not
differentiable at the threshold and for the rest the derivative is 0. Due to this fact,
backpropagation learning, for example, is impossible (as we will see later). Also very
popular is the Fermi function or logistic function (fig. 3.2)

1
1 + e−x , (3.4)

which maps to the range of values of (0, 1) and the hyperbolic tangent (fig. 3.2)
which maps to (−1, 1). Both functions are differentiable. The Fermi function can be
expanded by a temperature parameter T into the form

1
1 + e−xT

. (3.5)

The smaller this parameter, the more does it compress the function on the x axis.
Thus, one can arbitrarily approximate the Heaviside function. Incidentally, there exist
activation functions which are not explicitly defined but depend on the input according
to a random distribution (stochastic activation function).



A alternative to the hypberbolic tangent that is really worth mentioning was sug-
gested by Anguita et al. [APZ93], who have been tired of the slowness of the worksta-
tions back in 1993. Thinking about how to make neural network propagations faster,
they quickly identified the approximation of the e-function used in the hyperbolic
tangent as one of the causes of slowness. Consequently, they "engineered" an approx-
imation to the hyperbolic tangent, just using two parabola pieces and two half-lines.
At the price of delivering a slightly smaller range of values than the hyperbolic tangent
([−0.96016; 0.96016] instead of [−1; 1]), dependent on what CPU one uses, it can be
calculated 200 times faster because it just needs two multiplications and one addition.
What’s more, it has some other advantages that will be mentioned later.

SNIPE: The activation functions introduced here are implemented within the classes Fermi and
TangensHyperbolicus, both of which are located in the package neuronbehavior. The fast
hyperbolic tangent approximation is located within the class TangensHyperbolicusAnguita.

3.2.7 An output function may be used to process the activation once
again

The output function of a neuron j calculates the values which are transferred to the
other neurons connected to j. More formally:

Definition 3.7 (Output function). Let j be a neuron. The output function

fout(aj) = oj (3.6)

calculates the output value oj of the neuron j from its activation state aj .

Generally, the output function is defined globally, too. Often this function is the
identity, i.e. the activation aj is directly output4:

fout(aj) = aj , so oj = aj (3.7)

Unless explicitly specified differently, we will use the identity as output function within
this text.

4 Other definitions of output functions may be useful if the range of values of the activation function is
not sufficient.
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3.2.8 Learning strategies adjust a network to fit our needs

Since we will address this subject later in detail and at first want to get to know the
principles of neural network structures, I will only provide a brief and general definition
here:

Definition 3.8 (General learning rule). The learning strategy is an algorithm that
can be used to change and thereby train the neural network, so that the network
produces a desired output for a given input.

3.3 Network topologies

After we have become acquainted with the composition of the elements of a neural
network, I want to give an overview of the usual topologies (= designs) of neural
networks, i.e. to construct networks consisting of these elements. Every topology
described in this text is illustrated by a map and its Hinton diagram so that the reader
can immediately see the characteristics and apply them to other networks.

In the Hinton diagram the dotted weights are represented by light grey fields, the solid
ones by dark grey fields. The input and output arrows, which were added for reasons of
clarity, cannot be found in the Hinton diagram. In order to clarify that the connections
are between the line neurons and the column neurons, I have inserted the small arrow
� in the upper-left cell.

SNIPE: Snipe is designed for realization of arbitrary network topologies. In this respect, Snipe
defines different kinds of synapses depending on their source and their target. Any kind of
synapse can separately be allowed or forbidden for a set of networks using the setAllowed
methods in a NeuralNetworkDescriptor instance.

3.3.1 Feedforward networks consist of layers and connections towards
each following layer

Feedforward In this text feedforward networks (fig. 3.3 on the following page) are
the networks we will first explore (even if we will use different topologies later). The
neurons are grouped in the following layers: One input layer, n hidden pro-
cessing layers (invisible from the outside, that’s why the neurons are also referred to
as hidden neurons) and one output layer. In a feedforward network each neuron in
one layer has only directed connections to the neurons of the next layer (towards the
output layer). In fig. 3.3 on the next page the connections permitted for a feedforward
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Figure 3.3: A feedforward network with three layers: two input neurons, three hidden neurons
and two output neurons. Characteristic for the Hinton diagram of completely linked feedforward
networks is the formation of blocks above the diagonal.

network are represented by solid lines. We will often be confronted with feedforward
networks in which every neuron i is connected to all neurons of the next layer (these
layers are called completely linked). To prevent naming conflicts the output neurons
are often referred to as Ω.

Definition 3.9 (Feedforward network). The neuron layers of a feedforward network
(fig. 3.3) are clearly separated: One input layer, one output layer and one or more
processing layers which are invisible from the outside (also called hidden layers). Con-
nections are only permitted to neurons of the following layer.
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Figure 3.4: A feedforward network with shortcut connections, which are represented by solid lines.
On the right side of the feedforward blocks new connections have been added to the Hinton diagram.

3.3.1.1 Shortcut connections skip layers

Some feedforward networks permit the so-called shortcut connections (fig. 3.4): con-
nections that skip one or more levels. These connections may only be directed towards
the output layer, too.

Definition 3.10 (Feedforward network with shortcut connections). Similar to the
feedforward network, but the connections may not only be directed towards the next
layer but also towards any other subsequent layer.



3.3.2 Recurrent networks have influence on themselves

Recurrence is defined as the process of a neuron influencing itself by any means or
by any connection. Recurrent networks do not always have explicitly defined input
or output neurons. Therefore in the figures I omitted all markings that concern this
matter and only numbered the neurons.

3.3.2.1 Direct recurrences start and end at the same neuron

Some networks allow for neurons to be connected to themselves, which is called direct
recurrence (or sometimes self-recurrence (fig. 3.5 on the facing page). As a result,
neurons inhibit and therefore strengthen themselves in order to reach their activation
limits.

Definition 3.11 (Direct recurrence). Now we expand the feedforward network by
connecting a neuron j to itself, with the weights of these connections being referred to
as wj,j . In other words: the diagonal of the weight matrix W may be different from
0.

3.3.2.2 Indirect recurrences can influence their starting neuron only by making
detours

If connections are allowed towards the input layer, they will be called indirect re-
currences. Then a neuron j can use indirect forwards connections to influence itself,
for example, by influencing the neurons of the next layer and the neurons of this next
layer influencing j (fig. 3.6 on page 50).

Definition 3.12 (Indirect recurrence). Again our network is based on a feedforward
network, now with additional connections between neurons and their preceding layer
being allowed. Therefore, below the diagonal of W is different from 0.

3.3.2.3 Lateral recurrences connect neurons within one layer

Connections between neurons within one layer are called lateral recurrences (fig. 3.7
on page 51). Here, each neuron often inhibits the other neurons of the layer and
strengthens itself. As a result only the strongest neuron becomes active (winner-
takes-all scheme).
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Figure 3.5: A network similar to a feedforward network with directly recurrent neurons. The direct
recurrences are represented by solid lines and exactly correspond to the diagonal in the Hinton
diagram matrix.
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Figure 3.6: A network similar to a feedforward network with indirectly recurrent neurons. The
indirect recurrences are represented by solid lines. As we can see, connections to the preceding
layers can exist here, too. The fields that are symmetric to the feedforward blocks in the Hinton
diagram are now occupied.
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Figure 3.7: A network similar to a feedforward network with laterally recurrent neurons. The direct
recurrences are represented by solid lines. Here, recurrences only exist within the layer. In the Hinton
diagram, filled squares are concentrated around the diagonal in the height of the feedforward blocks,
but the diagonal is left uncovered.

Definition 3.13 (Lateral recurrence). A laterally recurrent network permits connec-
tions within one layer.

3.3.3 Completely linked networks allow any possible connection

Completely linked networks permit connections between all neurons, except for direct
recurrences. Furthermore, the connections must be symmetric (fig. 3.8 on the next
page). A popular example are the self-organizing maps, which will be introduced in
chapter 10.

Definition 3.14 (Complete interconnection). In this case, every neuron is always
allowed to be connected to every other neuron – but as a result every neuron can
become an input neuron. Therefore, direct recurrences normally cannot be applied
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Figure 3.8: A completely linked network with symmetric connections and without direct recur-
rences. In the Hinton diagram only the diagonal is left blank.

here and clearly defined layers do not longer exist. Thus, the matrix W may be
unequal to 0 everywhere, except along its diagonal.

3.4 The bias neuron is a technical trick to consider threshold
values as connection weights

By now we know that in many network paradigms neurons have a threshold value that
indicates when a neuron becomes active. Thus, the threshold value is an activation
function parameter of a neuron. From the biological point of view this sounds most
plausible, but it is complicated to access the activation function at runtime in order
to train the threshold value.

But threshold values Θj1 , . . . ,Θjn for neurons j1, j2, . . . , jn can also be realized as
connecting weight of a continuously firing neuron: For this purpose an additional bias
neuron whose output value is always 1 is integrated in the network and connected to



the neurons j1, j2, . . . , jn. These new connections get the weights −Θj1 , . . . ,−Θjn , i.e.
they get the negative threshold values.

Definition 3.15. A bias neuron is a neuron whose output value is always 1 and
which is represented by

GFED@ABCBIAS .

It is used to represent neuron biases as connection weights, which enables any weight-
training algorithm to train the biases at the same time.

Then the threshold value of the neurons j1, j2, . . . , jn is set to 0. Now the threshold
values are implemented as connection weights (fig. 3.9 on the following page) and can
directly be trained together with the connection weights, which considerably facilitates
the learning process.

In other words: Instead of including the threshold value in the activation function, it
is now included in the propagation function. Or even shorter: The threshold value
is subtracted from the network input, i.e. it is part of the network input. More
formally:

Let j1, j2, . . . , jn be neurons with threshold values Θj1 , . . . ,Θjn . By inserting a
bias neuron whose output value is always 1, generating connections between the
said bias neuron and the neurons j1, j2, . . . , jn and weighting these connections
wBIAS,j1 , . . . , wBIAS,jnwith −Θj1 , . . . ,−Θjn , we can set Θj1 = . . . = Θjn = 0 and receive
an equivalent neural network whose threshold values are realized by connection
weights.

Undoubtedly, the advantage of the bias neuron is the fact that it is much easier to im-
plement it in the network. One disadvantage is that the representation of the network
already becomes quite ugly with only a few neurons, let alone with a great number of
them. By the way, a bias neuron is often referred to as on neuron.

From now on, the bias neuron is omitted for clarity in the following illustrations, but
we know that it exists and that the threshold values can simply be treated as weights
because of it.

SNIPE: In Snipe, a bias neuron was implemented instead of neuron-individual biases. The
neuron index of the bias neuron is 0.



��GFED@ABCΘ1

  BBBBBBBBB
~~|||||||||

GFED@ABCΘ2

��

GFED@ABCΘ3

��

��GFED@ABCBIAS −Θ1 //

−Θ2
AAAA

  AAAA −Θ3
TTTTTTTTTT

**TTTTTTTTTT
?>=<89:;0

����?>=<89:;0

��

?>=<89:;0

��

Figure 3.9: Two equivalent neural networks, one without bias neuron on the left, one with bias
neuron on the right. The neuron threshold values can be found in the neurons, the connecting
weights at the connections. Furthermore, I omitted the weights of the already existing connections
(represented by dotted lines on the right side).

3.5 Representing neurons

We have already seen that we can either write its name or its threshold value into a
neuron. Another useful representation, which we will use several times in the following,
is to illustrate neurons according to their type of data processing. See fig. 3.10 on
the next page for some examples without further explanation – the different types of
neurons are explained as soon as we need them.

3.6 Take care of the order in which neuron activations are
calculated

For a neural network it is very important in which order the individual neurons receive
and process the input and output the results. Here, we distinguish two model classes:

3.6.1 Synchronous activation

All neurons change their values synchronously, i.e. they simultaneously calculate
network inputs, activation and output, and pass them on. Synchronous activation
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Figure 3.10: Different types of neurons that will appear in the following text.

corresponds closest to its biological counterpart, but it is – if to be implemented in
hardware – only useful on certain parallel computers and especially not for feedforward
networks. This order of activation is the most generic and can be used with networks
of arbitrary topology.

Definition 3.16 (Synchronous activation). All neurons of a network calculate
network inputs at the same time by means of the propagation function, activation by
means of the activation function and output by means of the output function. After
that the activation cycle is complete.

SNIPE: When implementing in software, one could model this very general activation order by
every time step calculating and caching every single network input, and after that calculating
all activations. This is exactly how it is done in Snipe, because Snipe has to be able to realize
arbitrary network topologies.

3.6.2 Asynchronous activation

Here, the neurons do not change their values simultaneously but at different points of
time. For this, there exist different orders, some of which I want to introduce in the
following:

3.6.2.1 Random order

Definition 3.17 (Random order of activation). With random order of activation
a neuron i is randomly chosen and its neti, ai and oi are updated. For n neurons
a cycle is the n-fold execution of this step. Obviously, some neurons are repeatedly
updated during one cycle, and others, however, not at all.



Apparently, this order of activation is not always useful.

3.6.2.2 Random permutation

With random permutation each neuron is chosen exactly once, but in random order,
during one cycle.

Definition 3.18 (Random permutation). Initially, a permutation of the neurons is
calculated randomly and therefore defines the order of activation. Then the neurons
are successively processed in this order.

This order of activation is as well used rarely because firstly, the order is generally
useless and, secondly, it is very time-consuming to compute a new permutation for
every cycle. A Hopfield network (chapter 8) is a topology nominally having a random or
a randomly permuted order of activation. But note that in practice, for the previously
mentioned reasons, a fixed order of activation is preferred.

For all orders either the previous neuron activations at time t or, if already existing,
the neuron activations at time t+ 1, for which we are calculating the activations, can
be taken as a starting point.

3.6.2.3 Topological order

Definition 3.19 (Topological activation). With topological order of activation
the neurons are updated during one cycle and according to a fixed order. The order is
defined by the network topology.

This procedure can only be considered for non-cyclic, i.e. non-recurrent, networks,
since otherwise there is no order of activation. Thus, in feedforward networks (for
which the procedure is very reasonable) the input neurons would be updated first,
then the inner neurons and finally the output neurons. This may save us a lot of time:
Given a synchronous activation order, a feedforward network with n layers of neurons
would need n full propagation cycles in order to enable input data to have influence
on the output of the network. Given the topological activation order, we just need one
single propagation. However, not every network topology allows for finding a special
activation order that enables saving time.



SNIPE: Those who want to use Snipe for implementing feedforward networks may save some
calculation time by using the feature fastprop (mentioned within the documentation of the
class NeuralNetworkDescriptor. Once fastprop is enabled, it will cause the data propagation
to be carried out in a slightly different way. In the standard mode, all net inputs are calculated
first, followed by all activations. In the fastprop mode, for every neuron, the activation is
calculated right after the net input. The neuron values are calculated in ascending neuron
index order. The neuron numbers are ascending from input to output layer, which provides us
with the perfect topological activation order for feedforward networks.

3.6.2.4 Fixed orders of activation during implementation

Obviously, fixed orders of activation can be defined as well. Therefore, when
implementing, for instance, feedforward networks it is very popular to determine the
order of activation once according to the topology and to use this order without further
verification at runtime. But this is not necessarily useful for networks that are capable
to change their topology.

3.7 Communication with the outside world: input and output
of data in and from neural networks

Finally, let us take a look at the fact that, of course, many types of neural networks
permit the input of data. Then these data are processed and can produce output. Let
us, for example, regard the feedforward network shown in fig. 3.3 on page 46: It has
two input neurons and two output neurons, which means that it also has two numerical
inputs x1, x2 and outputs y1, y2. As a simplification we summarize the input and output
components for n input or output neurons within the vectors x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn).

Definition 3.20 (Input vector). A network with n input neurons needs n inputs
x1, x2, . . . , xn. They are considered as input vector x = (x1, x2, . . . , xn). As a conse-
quence, the input dimension is referred to as n. Data is put into a neural network
by using the components of the input vector as network inputs of the input neurons.

Definition 3.21 (Output vector). A network with m output neurons provides m
outputs y1, y2, . . . , ym. They are regarded as output vector y = (y1, y2, . . . , ym).
Thus, the output dimension is referred to as m. Data is output by a neural network
by the output neurons adopting the components of the output vector in their output
values.



SNIPE: In order to propagate data through a NeuralNetwork-instance, the propagate method
is used. It receives the input vector as array of doubles, and returns the output vector in the
same way.

Now we have defined and closely examined the basic components of neural networks
– without having seen a network in action. But first we will continue with theoretical
explanations and generally describe how a neural network could learn.

Exercises

Exercise 5. Would it be useful (from your point of view) to insert one bias neuron
in each layer of a layer-based network, such as a feedforward network? Discuss this in
relation to the representation and implementation of the network. Will the result of
the network change?

Exercise 6. Show for the Fermi function f(x) as well as for the hyperbolic tangent
tanh(x), that their derivatives can be expressed by the respective functions themselves
so that the two statements

1. f ′(x) = f(x) · (1− f(x)) and

2. tanh′(x) = 1− tanh2(x)

are true.



Chapter 4

Fundamentals on learning and training
samples

Approaches and thoughts of how to teach machines. Should neural networks
be corrected? Should they only be encouraged? Or should they even learn

without any help? Thoughts about what we want to change during the
learning procedure and how we will change it, about the measurement of

errors and when we have learned enough.

As written above, the most interesting characteristic of neural networks is their capa-
bility to familiarize with problems by means of training and, after sufficient training,
to be able to solve unknown problems of the same class. This approach is referred to
as generalization. Before introducing specific learning procedures, I want to propose
some basic principles about the learning procedure in this chapter.

4.1 There are different paradigms of learning

Learning is a comprehensive term. A learning system changes itself in order to adapt
to e.g. environmental changes. A neural network could learn from many things but,
of course, there will always be the question of how to implement it. In principle, a
neural network changes when its components are changing, as we have learned above.
Theoretically, a neural network could learn by

1. developing new connections,

2. deleting existing connections,

3. changing connecting weights,
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4. changing the threshold values of neurons,

5. varying one or more of the three neuron functions (remember: activation function,
propagation function and output function),

6. developing new neurons, or

7. deleting existing neurons (and so, of course, existing connections).

As mentioned above, we assume the change in weight to be the most common procedure.
Furthermore, deletion of connections can be realized by additionally taking care that
a connection is no longer trained when it is set to 0. Moreover, we can develop further
connections by setting a non-existing connection (with the value 0 in the connection
matrix) to a value different from 0. As for the modification of threshold values I refer
to the possibility of implementing them as weights (section 3.4). Thus, we perform
any of the first four of the learning paradigms by just training synaptic weights.

The change of neuron functions is difficult to implement, not very intuitive and not
exactly biologically motivated. Therefore it is not very popular and I will omit this
topic here. The possibilities to develop or delete neurons do not only provide well ad-
justed weights during the training of a neural network, but also optimize the network
topology. Thus, they attract a growing interest and are often realized by using evolu-
tionary procedures. But, since we accept that a large part of learning possibilities can
already be covered by changes in weight, they are also not the subject matter of this
text (however, it is planned to extend the text towards those aspects of training).

SNIPE: Methods of the class NeuralNetwork allow for changes in connection weights, and
addition and removal of both connections and neurons. Methods in NeuralNetworkDescriptor
enable the change of neuron behaviors, respectively activation functions per layer.

Thus, we let our neural network learn by modifying the connecting weights according to
rules that can be formulated as algorithms. Therefore a learning procedure is always
an algorithm that can easily be implemented by means of a programming language.
Later in the text I will assume that the definition of the term desired output which is
worth learning is known (and I will define formally what a training pattern is) and that
we have a training set of learning samples. Let a training set be defined as follows:

Definition 4.1 (Training set). A training set (named P ) is a set of training patterns,
which we use to train our neural net.

I will now introduce the three essential paradigms of learning by presenting the differ-
ences between their regarding training sets.



4.1.1 Unsupervised learning provides input patterns to the network, but
no learning aides

Unsupervised learning is the biologically most plausible method, but is not suitable
for all problems. Only the input patterns are given; the network tries to identify similar
patterns and to classify them into similar categories.

Definition 4.2 (Unsupervised learning). The training set only consists of input
patterns, the network tries by itself to detect similarities and to generate pattern
classes.

Here I want to refer again to the popular example of Kohonen’s self-organising maps
(chapter 10).

4.1.2 Reinforcement learning methods provide feedback to the network,
whether it behaves well or bad

In reinforcement learning the network receives a logical or a real value after com-
pletion of a sequence, which defines whether the result is right or wrong. Intuitively it
is clear that this procedure should be more effective than unsupervised learning since
the network receives specific critera for problem-solving.

Definition 4.3 (Reinforcement learning). The training set consists of input patterns,
after completion of a sequence a value is returned to the network indicating whether
the result was right or wrong and, possibly, how right or wrong it was.

4.1.3 Supervised learning methods provide training patterns together with
appropriate desired outputs

In supervised learning the training set consists of input patterns as well as their
correct results in the form of the precise activation of all output neurons. Thus, for
each training set that is fed into the network the output, for instance, can directly
be compared with the correct solution and and the network weights can be changed
according to their difference. The objective is to change the weights to the effect that
the network cannot only associate input and output patterns independently after the
training, but can provide plausible results to unknown, similar input patterns, i.e. it
generalises.



Definition 4.4 (Supervised learning). The training set consists of input patterns with
correct results so that the network can receive a precise error vector1 can be returned.

This learning procedure is not always biologically plausible, but it is extremely effective
and therefore very practicable.

At first we want to look at the the supervised learning procedures in general, which -
in this text - are corresponding to the following steps:

Entering the input pattern (activation of input neurons),

Forward propagation of the input by the network, generation of the output,

Comparing the output with the desired output (teaching input), provides error vector
(difference vector),

Corrections of the network are calculated based on the error vector,

Corrections are applied.

4.1.4 Offline or online learning?

It must be noted that learning can be offline (a set of training samples is presented,
then the weights are changed, the total error is calculated by means of a error function
operation or simply accumulated - see also section 4.4) or online (after every sample
presented the weights are changed). Both procedures have advantages and disadvan-
tages, which will be discussed in the learning procedures section if necessary. Offline
training procedures are also called batch training procedures since a batch of results
is corrected all at once. Such a training section of a whole batch of training samples
including the related change in weight values is called epoch.

Definition 4.5 (Offline learning). Several training patterns are entered into the
network at once, the errors are accumulated and it learns for all patterns at the same
time.

Definition 4.6 (Online learning). The network learns directly from the errors of each
training sample.

1 The term error vector will be defined in section 4.2, where mathematical formalisation of learning is
discussed.



4.1.5 Questions you should answer before learning

The application of such schemes certainly requires preliminary thoughts about some
questions, which I want to introduce now as a check list and, if possible, answer them
in the course of this text:

. Where does the learning input come from and in what form?

. How must the weights be modified to allow fast and reliable learning?

. How can the success of a learning process be measured in an objective way?

. Is it possible to determine the "best" learning procedure?

. Is it possible to predict if a learning procedure terminates, i.e. whether it will
reach an optimal state after a finite time or if it, for example, will oscillate
between different states?

. How can the learned patterns be stored in the network?

. Is it possible to avoid that newly learned patterns destroy previously learned
associations (the so-called stability/plasticity dilemma)?

We will see that all these questions cannot be generally answered but that they have
to be discussed for each learning procedure and each network topology individually.

4.2 Training patterns and teaching input

Before we get to know our first learning rule, we need to introduce the teaching input.
In (this) case of supervised learning we assume a training set consisting of training
patterns and the corresponding correct output values we want to see at the output
neurons after the training. While the network has not finished training, i.e. as long as
it is generating wrong outputs, these output values are referred to as teaching input,
and that for each neuron individually. Thus, for a neuron j with the incorrect output
oj , tj is the teaching input, which means it is the correct or desired output for a training
pattern p.

Definition 4.7 (Training patterns). A training pattern is an input vector p with
the components p1, p2, . . . , pn whose desired output is known. By entering the training
pattern into the network we receive an output that can be compared with the teaching
input, which is the desired output. The set of training patterns is called P . It
contains a finite number of ordered pairs(p, t) of training patterns with corresponding
desired output.



Training patterns are often simply called patterns, that is why they are referred to
as p. In the literature as well as in this text they are called synonymously patterns,
training samples etc.

Definition 4.8 (Teaching input). Let j be an output neuron. The teaching input
tj is the desired and correct value j should output after the input of a certain training
pattern. Analogously to the vector p the teaching inputs t1, t2, . . . , tn of the neurons
can also be combined into a vector t. t always refers to a specific training pattern p
and is, as already mentioned, contained in the set P of the training patterns.

SNIPE: Classes that are relevant for training data are located in the package training. The
class TrainingSampleLesson allows for storage of training patterns and teaching inputs, as well
as simple preprocessing of the training data.

Definition 4.9 (Error vector). For several output neurons Ω1,Ω2, . . . ,Ωn the differ-
ence between output vector and teaching input under a training input p

Ep =

 t1 − y1
...

tn − yn


is referred to as error vector, sometimes it is also called difference vector. Depend-
ing on whether you are learning offline or online, the difference vector refers to a specific
training pattern, or to the error of a set of training patterns which is normalized in a
certain way.

Now I want to briefly summarize the vectors we have yet defined. There is the

input vector x, which can be entered into the neural network. Depending on the type
of network being used the neural network will output an

output vector y. Basically, the

training sample p is nothing more than an input vector. We only use it for training
purposes because we know the corresponding

teaching input t which is nothing more than the desired output vector to the training
sample. The

error vector Ep is the difference between the teaching input t and the actural output
y.



So, what x and y are for the general network operation are p and t for the network
training - and during training we try to bring y as close to t as possible. One advice
concerning notation: We referred to the output values of a neuron i as oi. Thus, the
output of an output neuron Ω is called oΩ. But the output values of a network are
referred to as yΩ. Certainly, these network outputs are only neuron outputs, too, but
they are outputs of output neurons. In this respect

yΩ = oΩ

is true.

4.3 Using training samples

We have seen how we can learn in principle and which steps are required to do so.
Now we should take a look at the selection of training data and the learning curve.
After successful learning it is particularly interesting whether the network has only
memorized – i.e. whether it can use our training samples to quite exactly produce
the right output but to provide wrong answers for all other problems of the same
class.

Suppose that we want the network to train a mapping R2 → B1 and therefor use the
training samples from fig. 4.1 on the next page: Then there could be a chance that,
finally, the network will exactly mark the colored areas around the training samples
with the output 1 (fig. 4.1, top), and otherwise will output 0 . Thus, it has sufficient
storage capacity to concentrate on the six training samples with the output 1. This
implies an oversized network with too much free storage capacity.

On the other hand a network could have insufficient capacity (fig. 4.1, bottom) –
this rough presentation of input data does not correspond to the good generalization
performance we desire. Thus, we have to find the balance (fig. 4.1, middle).

4.3.1 It is useful to divide the set of training samples

An often proposed solution for these problems is to divide, the training set into

. one training set really used to train ,

. and one verification set to test our progress



Figure 4.1: Visualization of training results of the same training set on networks with a capacity
being too high (top), correct (middle) or too low (bottom).



– provided that there are enough training samples. The usual division relations are,
for instance, 70% for training data and 30% for verification data (randomly chosen).
We can finish the training when the network provides good results on the training data
as well as on the verification data.

SNIPE: The method splitLesson within the class TrainingSampleLesson allows for splitting
a TrainingSampleLesson with respect to a given ratio.

But note: If the verification data provide poor results, do not modify the network
structure until these data provide good results – otherwise you run the risk of tailoring
the network to the verification data. This means, that these data are included in the
training, even if they are not used explicitly for the training. The solution is a third
set of validation data used only for validation after a supposably successful training.

By training less patterns, we obviously withhold information from the network and
risk to worsen the learning performance. But this text is not about 100% exact repro-
duction of given samples but about successful generalization and approximation of a
whole function – for which it can definitely be useful to train less information into the
network.

4.3.2 Order of pattern representation

You can find different strategies to choose the order of pattern presentation: If patterns
are presented in random sequence, there is no guarantee that the patterns are learned
equally well (however, this is the standard method). Always the same sequence of
patterns, on the other hand, provokes that the patterns will be memorized when using
recurrent networks (later, we will learn more about this type of networks). A random
permutation would solve both problems, but it is – as already mentioned – very time-
consuming to calculate such a permutation.

SNIPE: The method shuffleSamples located in the class TrainingSampleLesson permutes a
lesson.

4.4 Learning curve and error measurement

The learning curve indicates the progress of the error, which can be determined in
various ways. The motivation to create a learning curve is that such a curve can
indicate whether the network is progressing or not. For this, the error should be



normalized, i.e. represent a distance measure between the correct and the current
output of the network. For example, we can take the same pattern-specific, squared
error with a prefactor, which we are also going to use to derive the backpropagation
of error (let Ω be output neurons and O the set of output neurons):

Errp = 1
2
∑
Ω∈O

(tΩ − yΩ)2 (4.1)

Definition 4.10 (Specific error). The specific error Errp is based on a single training
sample, which means it is generated online.

Additionally, the root mean square (abbreviated: RMS) and the Euclidean dis-
tance are often used.

The Euclidean distance (generalization of the theorem of Pythagoras) is useful for
lower dimensions where we can still visualize its usefulness.

Definition 4.11 (Euclidean distance). The Euclidean distance between two vectors
t and y is defined as

Errp =
√∑

Ω∈O
(tΩ − yΩ)2. (4.2)

Generally, the root mean square is commonly used since it considers extreme outliers
to a greater extent.

Definition 4.12 (Root mean square). The root mean square of two vectors t and y
is defined as

Errp =
√∑

Ω∈O(tΩ − yΩ)2

|O|
. (4.3)

As for offline learning, the total error in the course of one training epoch is interesting
and useful, too:

Err =
∑
p∈P

Errp (4.4)

Definition 4.13 (Total error). The total error Err is based on all training samples,
that means it is generated offline.



Analogously we can generate a total RMS and a total Euclidean distance in the course
of a whole epoch. Of course, it is possible to use other types of error measurement.
To get used to further error measurement methods, I suggest to have a look into the
technical report of Prechelt [Pre94]. In this report, both error measurement methods
and sample problems are discussed (this is why there will be a simmilar suggestion
during the discussion of exemplary problems).

SNIPE: There are several static methods representing different methods of error measurement
implemented in the class ErrorMeasurement.

Depending on our method of error measurement our learning curve certainly changes,
too. A perfect learning curve looks like a negative exponential function, that means
it is proportional to e−t (fig. 4.2 on the following page). Thus, the representation of
the learning curve can be illustrated by means of a logarithmic scale (fig. 4.2, second
diagram from the bottom) – with the said scaling combination a descending line implies
an exponential descent of the error.

With the network doing a good job, the problems being not too difficult and the
logarithmic representation of Err you can see - metaphorically speaking - a descending
line that often forms "spikes" at the bottom – here, we reach the limit of the 64-bit
resolution of our computer and our network has actually learned the optimum of what
it is capable of learning.

Typical learning curves can show a few flat areas as well, i.e. they can show some steps,
which is no sign of a malfunctioning learning process. As we can also see in fig. 4.2, a
well-suited representation can make any slightly decreasing learning curve look good –
so just be cautious when reading the literature.

4.4.1 When do we stop learning?

Now, the big question is: When do we stop learning? Generally, the training is stopped
when the user in front of the learning computer "thinks" the error was small enough.
Indeed, there is no easy answer and thus I can once again only give you something to
think about, which, however, depends on a more objective view on the comparison of
several learning curves.

Confidence in the results, for example, is boosted, when the network always reaches
nearly the same final error-rate for different random initializations – so repeated ini-
tialization and training will provide a more objective result.
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Figure 4.2: All four illustrations show the same (idealized, because very smooth) learning curve.
Note the alternating logarithmic and linear scalings! Also note the small "inaccurate spikes" visible
in the sharp bend of the curve in the first and second diagram from bottom.



On the other hand, it can be possible that a curve descending fast in the beginning
can, after a longer time of learning, be overtaken by another curve: This can indicate
that either the learning rate of the worse curve was too high or the worse curve itself
simply got stuck in a local minimum, but was the first to find it.

Remember: Larger error values are worse than the small ones.

But, in any case, note: Many people only generate a learning curve in respect of the
training data (and then they are surprised that only a few things will work) – but for
reasons of objectivity and clarity it should not be forgotten to plot the verification data
on a second learning curve, which generally provides values that are slightly worse and
with stronger oscillation. But with good generalization the curve can decrease, too.

When the network eventually begins to memorize the samples, the shape of the learn-
ing curve can provide an indication: If the learning curve of the verification samples
is suddenly and rapidly rising while the learning curve of the verification data is con-
tinuously falling, this could indicate memorizing and a generalization getting poorer
and poorer. At this point it could be decided whether the network has already learned
well enough at the next point of the two curves, and maybe the final point of learning
is to be applied here (this procedure is called early stopping).

Once again I want to remind you that they are all acting as indicators and not to draw
If-Then conclusions.

4.5 Gradient optimization procedures

In order to establish the mathematical basis for some of the following learning proce-
dures I want to explain briefly what is meant by gradient descent: the backpropagation
of error learning procedure, for example, involves this mathematical basis and thus
inherits the advantages and disadvantages of the gradient descent.

Gradient descent procedures are generally used where we want to maximize or minimize
n-dimensional functions. Due to clarity the illustration (fig. 4.3 on the next page) shows
only two dimensions, but principally there is no limit to the number of dimensions.

The gradient is a vector g that is defined for any differentiable point of a function, that
points from this point exactly towards the steepest ascent and indicates the gradient
in this direction by means of its norm |g|. Thus, the gradient is a generalization of
the derivative for multi-dimensional functions. Accordingly, the negative gradient −g
exactly points towards the steepest descent. The gradient operator ∇ is referred to



Figure 4.3: Visualization of the gradient descent on a two-dimensional error function. We
move forward in the opposite direction of g, i.e. with the steepest descent towards the lowest
point, with the step width being proportional to |g| (the steeper the descent, the faster the
steps). On the left the area is shown in 3D, on the right the steps over the contour lines are
shown in 2D. Here it is obvious how a movement is made in the opposite direction of g towards
the minimum of the function and continuously slows down proportionally to |g|. Source:
http://webster.fhs-hagenberg.ac.at/staff/sdreisei/Teaching/WS2001-2002/
PatternClassification/graddescent.pdf

as nabla operator, the overall notation of the the gradient g of the point (x, y) of a
two-dimensional function f being g(x, y) = ∇f(x, y).

Definition 4.14 (Gradient). Let g be a gradient. Then g is a vector with n
components that is defined for any point of a (differential) n-dimensional function
f(x1, x2, . . . , xn). The gradient operator notation is defined as

g(x1, x2, . . . , xn) = ∇f(x1, x2, . . . , xn).

g directs from any point of f towards the steepest ascent from this point, with |g|
corresponding to the degree of this ascent.

Gradient descent means to going downhill in small steps from any starting point of our
function towards the gradient g (which means, vividly speaking, the direction to which
a ball would roll from the starting point), with the size of the steps being proportional
to |g| (the steeper the descent, the longer the steps). Therefore, we move slowly on a
flat plateau, and on a steep ascent we run downhill rapidly. If we came into a valley,
we would - depending on the size of our steps - jump over it or we would return into



Figure 4.4: Possible errors during a gradient descent: a) Detecting bad minima, b) Quasi-standstill
with small gradient, c) Oscillation in canyons, d) Leaving good minima.

the valley across the opposite hillside in order to come closer and closer to the deepest
point of the valley by walking back and forth, similar to our ball moving within a
round bowl.

Definition 4.15 (Gradient descent). Let f be an n-dimensional function and s =
(s1, s2, . . . , sn) the given starting point. Gradient descent means going from f(s)
against the direction of g, i.e. towards −g with steps of the size of |g| towards smaller
and smaller values of f .

Gradient descent procedures are not an errorless optimization procedure at all (as we
will see in the following sections) – however, they work still well on many problems,
which makes them an optimization paradigm that is frequently used. Anyway, let us
have a look on their potential disadvantages so we can keep them in mind a bit.

4.5.1 Gradient procedures incorporate several problems

As already implied in section 4.5, the gradient descent (and therefore the backpropaga-
tion) is promising but not foolproof. One problem, is that the result does not always
reveal if an error has occurred.



4.5.1.1 Often, gradient descents converge against suboptimal minima

Every gradient descent procedure can, for example, get stuck within a local minimum
(part a of fig. 4.4 on the preceding page). This problem is increasing proportionally
to the size of the error surface, and there is no universal solution. In reality, one
cannot know if the optimal minimum is reached and considers a training successful, if
an acceptable minimum is found.

4.5.1.2 Flat plataeus on the error surface may cause training slowness

When passing a flat plateau, for instance, the gradient also becomes negligibly small
because there is hardly a descent (part b of fig. 4.4), which requires many further
steps. A hypothetically possible gradient of 0 would completely stop the descent.

4.5.1.3 Even if good minima are reached, they may be left afterwards

On the other hand the gradient is very large at a steep slope so that large steps can
be made and a good minimum can possibly be missed (part d of fig. 4.4).

4.5.1.4 Steep canyons in the error surface may cause oscillations

A sudden alternation from one very strong negative gradient to a very strong positive
one can even result in oscillation (part c of fig. 4.4). In nature, such an error does not
occur very often so that we can think about the possibilities b and d.

4.6 Exemplary problems allow for testing self-coded learning
strategies

We looked at learning from the formal point of view – not much yet but a little. Now
it is time to look at a few exemplary problem you can later use to test implemented
networks and learning rules.



i1 i2 i3 Ω
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Table 4.1: Illustration of the parity function with three inputs.

4.6.1 Boolean functions

A popular example is the one that did not work in the nineteen-sixties: the XOR
function (B2 → B1). We need a hidden neuron layer, which we have discussed in detail.
Thus, we need at least two neurons in the inner layer. Let the activation function in
all layers (except in the input layer, of course) be the hyperbolic tangent. Trivially, we
now expect the outputs 1.0 or −1.0, depending on whether the function XOR outputs
1 or 0 - and exactly here is where the first beginner’s mistake occurs.

For outputs close to 1 or -1, i.e. close to the limits of the hyperbolic tangent (or
in case of the Fermi function 0 or 1), we need very large network inputs. The only
chance to reach these network inputs are large weights, which have to be learned: The
learning process is largely extended. Therefore it is wiser to enter the teaching inputs
0.9 or −0.9 as desired outputs or to be satisfied when the network outputs those values
instead of 1 and −1.

Another favourite example for singlelayer perceptrons are the boolean functions AND
and OR.

4.6.2 The parity function

The parity function maps a set of bits to 1 or 0, depending on whether an even
number of input bits is set to 1 or not. Basically, this is the function Bn → B1. It is
characterized by easy learnability up to approx. n = 3 (shown in table 4.1), but the
learning effort rapidly increases from n = 4. The reader may create a score table for
the 2-bit parity function. What is conspicuous?



Figure 4.5: Illustration of the training samples of the 2-spiral problem

4.6.3 The 2-spiral problem

As a training sample for a function let us take two spirals coiled into each other
(fig. 4.5) with the function certainly representing a mapping R2 → B1. One of the
spirals is assigned to the output value 1, the other spiral to 0. Here, memorizing does
not help. The network has to understand the mapping itself. This example can be
solved by means of an MLP, too.

4.6.4 The checkerboard problem

We again create a two-dimensional function of the form R2 → B1 and specify checkered
training samples (fig. 4.6 on the next page) with one colored field representing 1 and
all the rest of them representing 0. The difficulty increases proportionally to the size
of the function: While a 3× 3 field is easy to learn, the larger fields are more difficult
(here we eventually use methods that are more suitable for this kind of problems than
the MLP).

The 2-spiral problem is very similar to the checkerboard problem, only that, mathe-
matically speaking, the first problem is using polar coordinates instead of Cartesian
coordinates. I just want to introduce as an example one last trivial case: the identity.



Figure 4.6: Illustration of training samples for the checkerboard problem

4.6.5 The identity function

By using linear activation functions the identity mapping from R1 to R1 (of course only
within the parameters of the used activation function) is no problem for the network,
but we put some obstacles in its way by using our sigmoid functions so that it would
be difficult for the network to learn the identity. Just try it for the fun of it.

Now, it is time to hava a look at our first mathematical learning rule.

4.6.6 There are lots of other exemplary problems

For lots and lots of further exemplary problems, I want to recommend the technical
report written by prechelt [Pre94] which also has been named in the sections about
error measurement procedures..



4.7 The Hebbian learning rule is the basis for most other
learning rules

In 1949, Donald O. Hebb formulated the Hebbian rule [Heb49] which is the basis
for most of the more complicated learning rules we will discuss in this text. We
distinguish between the original form and the more general form, which is a kind of
principle for other learning rules.

4.7.1 Original rule

Definition 4.16 (Hebbian rule). "If neuron j receives an input from neuron i and if
both neurons are strongly active at the same time, then increase the weight wi,j (i.e.
the strength of the connection between i and j)." Mathematically speaking, the rule
is:

∆wi,j ∼ ηoiaj (4.5)

with ∆wi,j being the change in weight from i to j , which is proportional to the
following factors:

. the output oi of the predecessor neuron i, as well as,

. the activation aj of the successor neuron j,

. a constant η, i.e. the learning rate, which will be discussed in section 5.4.3.

The changes in weight ∆wi,j are simply added to the weight wi,j .

Why am I speaking twice about activation, but in the formula I am using oi and aj , i.e.
the output of neuron of neuron i and the activation of neuron j? Remember that the
identity is often used as output function and therefore ai and oi of a neuron are often
the same. Besides, Hebb postulated his rule long before the specification of technical
neurons. Considering that this learning rule was preferred in binary activations, it is
clear that with the possible activations (1, 0) the weights will either increase or remain
constant . Sooner or later they would go ad infinitum, since they can only be corrected
"upwards" when an error occurs. This can be compensated by using the activations
(-1,1)2. Thus, the weights are decreased when the activation of the predecessor neuron
dissents from the one of the successor neuron, otherwise they are increased.

2 But that is no longer the "original version" of the Hebbian rule.



4.7.2 Generalized form

Most of the learning rules discussed before are a specialization of the mathematically
more general form [MR86] of the Hebbian rule.

Definition 4.17 (Hebbian rule, more general). The generalized form of the Heb-
bian Rule only specifies the proportionality of the change in weight to the product of
two undefined functions, but with defined input values.

∆wi,j = η · h(oi, wi,j) · g(aj , tj) (4.6)

Thus, the product of the functions

. g(aj , tj) and

. h(oi, wi,j)

. as well as the constant learning rate η

results in the change in weight. As you can see, h receives the output of the predeces-
sor cell oi as well as the weight from predecessor to successor wi,j while g expects the
actual and desired activation of the successor aj and tj (here t stands for the aforemen-
tioned teaching input). As already mentioned g and h are not specified in this general
definition. Therefore, we will now return to the path of specialization we discussed
before equation 4.6. After we have had a short picture of what a learning rule could
look like and of our thoughts about learning itself, we will be introduced to our first
network paradigm including the learning procedure.

Exercises

Exercise 7. Calculate the average value µ and the standard deviation σ for the
following data points.

p1 = (2, 2, 2)
p2 = (3, 3, 3)
p3 = (4, 4, 4)
p4 = (6, 0, 0)
p5 = (0, 6, 0)
p6 = (0, 0, 6)





Part II

Supervised learning network
paradigms
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Chapter 5

The perceptron, backpropagation and its
variants

A classic among the neural networks. If we talk about a neural network, then
in the majority of cases we speak about a percepton or a variation of it.

Perceptrons are multilayer networks without recurrence and with fixed input
and output layers. Description of a perceptron, its limits and extensions that
should avoid the limitations. Derivation of learning procedures and discussion

of their problems.

As already mentioned in the history of neural networks, the perceptron was described
by Frank Rosenblatt in 1958 [Ros58]. Initially, Rosenblatt defined the already
discussed weighted sum and a non-linear activation function as components of the
perceptron.

There is no established definition for a perceptron, but most of the time the term is
used to describe a feedforward network with shortcut connections. This network has a
layer of scanner neurons (retina) with statically weighted connections to the following
layer and is called input layer (fig. 5.1 on the next page); but the weights of all other
layers are allowed to be changed. All neurons subordinate to the retina are pattern
detectors. Here we initially use a binary perceptron with every output neuron having
exactly two possible output values (e.g. {0, 1} or {−1, 1}). Thus, a binary threshold
function is used as activation function, depending on the threshold value Θ of the
output neuron.

In a way, the binary activation function represents an IF query which can also be
negated by means of negative weights. The perceptron can thus be used to accomplish
true logical information processing.
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Abbildung 5.1: Aufbau eines Perceptrons mit einer Schicht variabler Verbindungen in verschiede-
nen Ansichten. Die durchgezogene Gewichtsschicht in den unteren beiden Abbildungen ist trainier-
bar.
Oben: Am Beispiel der Informationsabtastung im Auge.
Mitte: Skizze desselben mit eingezeichneter fester Gewichtsschicht unter Verwendung der definier-
ten funktionsbeschreibenden Designs für Neurone.
Unten: Ohne eingezeichnete feste Gewichtsschicht, mit Benennung der einzelnen Neuronen nach
unserer Konvention. Wir werden die feste Gewichtschicht im weiteren Verlauf der Arbeit nicht mehr
betrachten.
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Figure 5.1: Architecture of a perceptron with one layer of variable connections in different views.
The solid-drawn weight layer in the two illustrations on the bottom can be trained.
Left side: Example of scanning information in the eye.
Right side, upper part: Drawing of the same example with indicated fixed-weight layer using the
defined designs of the functional descriptions for neurons.
Right side, lower part: Without indicated fixed-weight layer, with the name of each neuron
corresponding to our convention. The fixed-weight layer will no longer be taken into account in the
course of this work.

Whether this method is reasonable is another matter – of course, this is not the easiest
way to achieve Boolean logic. I just want to illustrate that perceptrons can be used as
simple logical components and that, theoretically speaking, any Boolean function can
be realized by means of perceptrons being connected in series or interconnected in a
sophisticated way. But we will see that this is not possible without connecting them
serially. Before providing the definition of the perceptron, I want to define some types
of neurons used in this chapter.

Definition 5.1 (Input neuron). An input neuron is an identity neuron. It exactly
forwards the information received. Thus, it represents the identity function, which



should be indicated by the symbol �. Therefore the input neuron is represented by
the symbol GFED@ABC� .

Definition 5.2 (Information processing neuron). Information processing neu-
rons somehow process the input information, i.e. do not represent the identity func-
tion. A binary neuron sums up all inputs by using the weighted sum as propagation
function, which we want to illustrate by the sign Σ. Then the activation function of
the neuron is the binary threshold function, which can be illustrated by L|H. This

leads us to the complete depiction of information processing neurons, namely WVUTPQRSΣ
L|H

.

Other neurons that use the weighted sum as propagation function but the activation
functions hyperbolic tangent or Fermi function, or with a separately defined activation
function fact, are similarly represented by

WVUTPQRSΣ
Tanh

WVUTPQRSΣ
Fermi

ONMLHIJKΣ
fact

.

These neurons are also referred to as Fermi neurons or Tanh neuron.

Now that we know the components of a perceptron we should be able to define it.

Definition 5.3 (Perceptron). The perceptron (fig. 5.1 on the facing page) is1 a
feedforward network containing a retina that is used only for data acquisition and
which has fixed-weighted connections with the first neuron layer (input layer). The
fixed-weight layer is followed by at least one trainable weight layer. One neuron layer
is completely linked with the following layer. The first layer of the perceptron consists
of the input neurons defined above.

A feedforward network often contains shortcuts which does not exactly correspond to
the original description and therefore is not included in the definition. We can see
that the retina is not included in the lower part of fig. 5.1. As a matter of fact the
first neuron layer is often understood (simplified and sufficient for this method) as
input layer, because this layer only forwards the input values. The retina itself and
the static weights behind it are no longer mentioned or displayed, since they do not
process information in any case. So, the depiction of a perceptron starts with the input
neurons.

1 It may confuse some readers that I claim that there is no definition of a perceptron but then define the
perceptron in the following section. I therefore suggest keeping my definition in the back of your mind
and just take it for granted in the course of this work.



SNIPE: The methods setSettingsTopologyFeedForward and the variation -WithShortcuts
in a NeuralNetworkDescriptor-Instance apply settings to a descriptor, which are appropriate
for feedforward networks or feedforward networks with shortcuts. The respective kinds of
connections are allowed, all others are not, and fastprop is activated.

5.1 The singlelayer perceptron provides only one trainable
weight layer

Here, connections with trainable weights go from the input layer to an output neuron
Ω, which returns the information whether the pattern entered at the input neurons
was recognized or not. Thus, a singlelayer perception (abbreviated SLP) has only one
level of trainable weights (fig. 5.1 on page 84).

Definition 5.4 (Singlelayer perceptron). A singlelayer perceptron (SLP) is a
perceptron having only one layer of variable weights and one layer of output neurons
Ω. The technical view of an SLP is shown in fig. 5.2 on the facing page.

Certainly, the existence of several output neurons Ω1,Ω2, . . . ,Ωn does not considerably
change the concept of the perceptron (fig. 5.3 on the next page): A perceptron with
several output neurons can also be regarded as several different perceptrons with the
same input.

The Boolean functions AND and OR shown in fig. 5.4 on page 88 are trivial examples
that can easily be composed.

Now we want to know how to train a singlelayer perceptron. We will therefore at first
take a look at the perceptron learning algorithm and then we will look at the delta
rule.

5.1.1 Perceptron learning algorithm and convergence theorem

The original perceptron learning algorithm with binary neuron activation function
is described in alg. 1. It has been proven that the algorithm converges in finite time
– so in finite time the perceptron can learn anything it can represent (perceptron
convergence theorem, [Ros62]). But please do not get your hopes up too soon!
What the perceptron is capable to represent will be explored later.

During the exploration of linear separability of problems we will cover the fact that at
least the singlelayer perceptron unfortunately cannot represent a lot of problems.
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Figure 5.2: A singlelayer perceptron with two input neurons and one output neuron. The network
returns the output by means of the arrow leaving the network. The trainable layer of weights is
situated in the center (labeled). As a reminder, the bias neuron is again included here. Although
the weight wBIAS,Ω is a normal weight and also treated like this, I have represented it by a dotted
line – which significantly increases the clarity of larger networks. In future, the bias neuron will no
longer be included.
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Figure 5.3: Singlelayer perceptron with several output neurons
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Figure 5.4: Two singlelayer perceptrons for Boolean functions. The upper singlelayer perceptron
realizes an AND, the lower one realizes an OR. The activation function of the information processing
neuron is the binary threshold function. Where available, the threshold values are written into the
neurons.



1: while ∃p ∈ P and error too large do
2: Input p into the network, calculate output y {P set of training patterns}
3: for all output neurons Ω do
4: if yΩ = tΩ then
5: Output is okay, no correction of weights
6: else
7: if yΩ = 0 then
8: for all input neurons i do
9: wi,Ω := wi,Ω + oi {...increase weight towards Ω by oi}

10: end for
11: end if
12: if yΩ = 1 then
13: for all input neurons i do
14: wi,Ω := wi,Ω − oi {...decrease weight towards Ω by oi}
15: end for
16: end if
17: end if
18: end for
19: end while
Algorithm 1: Perceptron learning algorithm. The perceptron learning algorithm
reduces the weights to output neurons that return 1 instead of 0, and in the inverse
case increases weights.



5.1.2 The delta rule as a gradient based learning strategy for SLPs

In the following we deviate from our binary threshold value as activation function
because at least for backpropagation of error we need, as you will see, a differen-
tiable or even a semi-linear activation function. For the now following delta rule (like
backpropagation derived in [MR86]) it is not always necessary but useful. This fact,
however, will also be pointed out in the appropriate part of this work. Compared with
the aforementioned perceptron learning algorithm, the delta rule has the advantage to
be suitable for non-binary activation functions and, being far away from the learning
target, to automatically learn faster.

Suppose that we have a singlelayer perceptron with randomly set weights which we
want to teach a function by means of training samples. The set of these training
samples is called P . It contains, as already defined, the pairs (p, t) of the training
samples p and the associated teaching input t. I also want to remind you that

. x is the input vector and

. y is the output vector of a neural network,

. output neurons are referred to as Ω1,Ω2, . . . ,Ω|O|,

. i is the input and

. o is the output of a neuron.

Additionally, we defined that

. the error vector Ep represents the difference (t − y) under a certain training
sample p.

. Furthermore, let O be the set of output neurons and

. I be the set of input neurons.

Another naming convention shall be that, for example, for an output o and a teaching
input t an additional index p may be set in order to indicate that these values are
pattern-specific. Sometimes this will considerably enhance clarity.

Now our learning target will certainly be, that for all training samples the output y of
the network is approximately the desired output t, i.e. formally it is true that

∀p : y ≈ t or ∀p : Ep ≈ 0.

This means we first have to understand the total error Err as a function of the weights:
The total error increases or decreases depending on how we change the weights.
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Figure 5.5: Exemplary error surface of a neural network with two trainable connections w1 und
w2. Generally, neural networks have more than two connections, but this would have made the
illustration too complex. And most of the time the error surface is too craggy, which complicates
the search for the minimum.

Definition 5.5 (Error function). The error function

Err : W → R

regards the set2 of weights W as a vector and maps the values onto the normalized
output error (normalized because otherwise not all errors can be mapped onto one
single e ∈ R to perform a gradient descent). It is obvious that a specific error
function can analogously be generated for a single pattern p.

As already shown in section 4.5, gradient descent procedures calculate the gradient of
an arbitrary but finite-dimensional function (here: of the error function Err(W )) and
move down against the direction of the gradient until a minimum is reached. Err(W )
is defined on the set of all weights which we here regard as the vector W . So we try to
decrease or to minimize the error by simply tweaking the weights – thus one receives
information about how to change the weights (the change in all weights is referred to
as ∆W ) by calculating the gradient ∇Err(W ) of the error function Err(W ):

∆W ∼ −∇Err(W ). (5.1)

Due to this relation there is a proportionality constant η for which equality holds (η
will soon get another meaning and a real practical use beyond the mere meaning of a
proportionality constant. I just ask the reader to be patient for a while.):

∆W = −η∇Err(W ). (5.2)

2 Following the tradition of the literature, I previously defined W as a weight matrix. I am aware of this
conflict but it should not bother us here.



To simplify further analysis, we now rewrite the gradient of the error-function according
to all weights as an usual partial derivative according to a single weight wi,Ω (the only
variable weights exists between the hidden and the output layer Ω). Thus, we tweak
every single weight and observe how the error function changes, i.e. we derive the error
function according to a weight wi,Ω and obtain the value ∆wi,Ω of how to change this
weight.

∆wi,Ω = −η∂Err(W )
∂wi,Ω

. (5.3)

Now the following question arises: How is our error function defined exactly? It is not
good if many results are far away from the desired ones; the error function should then
provide large values – on the other hand, it is similarly bad if many results are close
to the desired ones but there exists an extremely far outlying result. The squared
distance between the output vector y and the teaching input t appears adequate to
our needs. It provides the error Errp that is specific for a training sample p over the
output of all output neurons Ω:

Errp(W ) = 1
2
∑
Ω∈O

(tp,Ω − yp,Ω)2. (5.4)

Thus, we calculate the squared difference of the components of the vectors t and y,
given the pattern p, and sum up these squares. The summation of the specific errors
Errp(W ) of all patterns p then yields the definition of the error Err and therefore the
definition of the error function Err(W ):

Err(W ) =
∑
p∈P

Errp(W ) (5.5)

= 1
2

sum over all p︷ ︸︸ ︷∑
p∈P

∑
Ω∈O

(tp,Ω − yp,Ω)2


︸ ︷︷ ︸

sum over all Ω

. (5.6)

The observant reader will certainly wonder where the factor 1
2 in equation 5.4 suddenly

came from and why there is no root in the equation, as this formula looks very similar
to the Euclidean distance. Both facts result from simple pragmatics: Our intention is
to minimize the error. Because the root function decreases with its argument, we can
simply omit it for reasons of calculation and implementation efforts, since we do not
need it for minimization. Similarly, it does not matter if the term to be minimized is
divided by 2: Therefore I am allowed to multiply by 1

2 . This is just done so that it
cancels with a 2 in the course of our calculation.



Now we want to continue deriving the delta rule for linear activation functions. We
have already discussed that we tweak the individual weights wi,Ω a bit and see how the
error Err(W ) is changing – which corresponds to the derivative of the error function
Err(W ) according to the very same weight wi,Ω. This derivative corresponds to the
sum of the derivatives of all specific errors Errp according to this weight (since the
total error Err(W ) results from the sum of the specific errors):

∆wi,Ω = −η∂Err(W )
∂wi,Ω

(5.7)

=
∑
p∈P
−η∂Errp(W )

∂wi,Ω
. (5.8)

Once again I want to think about the question of how a neural network processes data.
Basically, the data is only transferred through a function, the result of the function
is sent through another one, and so on. If we ignore the output function, the path
of the neuron outputs oi1 and oi2 , which the neurons i1 and i2 entered into a neuron
Ω, initially is the propagation function (here weighted sum), from which the network
input is going to be received. This is then sent through the activation function of the
neuron Ω so that we receive the output of this neuron which is at the same time a
component of the output vector y:

netΩ → fact

= fact(netΩ)
= oΩ

= yΩ.

As we can see, this output results from many nested functions:

oΩ = fact(netΩ) (5.9)

= fact(oi1 · wi1,Ω + oi2 · wi2,Ω). (5.10)

It is clear that we could break down the output into the single input neurons (this is
unnecessary here, since they do not process information in an SLP). Thus, we want to
calculate the derivatives of equation 5.8 and due to the nested functions we can apply
the chain rule to factorize the derivative ∂Errp(W )

∂wi,Ω
in equation 5.8.

∂Errp(W )
∂wi,Ω

= ∂Errp(W )
∂op,Ω

· ∂op,Ω
∂wi,Ω

. (5.11)



Let us take a look at the first multiplicative factor of the above equation 5.11 on the
preceding page which represents the derivative of the specific error Errp(W ) according
to the output, i.e. the change of the error Errp with an output op,Ω: The examination of
Errp (equation 5.4 on page 92) clearly shows that this change is exactly the difference
between teaching input and output (tp,Ω − op,Ω) (remember: Since Ω is an output
neuron, op,Ω = yp,Ω). The closer the output is to the teaching input, the smaller is the
specific error. Thus we can replace one by the other. This difference is also called δp,Ω
(which is the reason for the name delta rule):

∂Errp(W )
∂wi,Ω

= −(tp,Ω − op,Ω) · ∂op,Ω
∂wi,Ω

(5.12)

= −δp,Ω ·
∂op,Ω
∂wi,Ω

(5.13)

The second multiplicative factor of equation 5.11 on the preceding page and of the
following one is the derivative of the output specific to the pattern p of the neuron Ω
according to the weight wi,Ω. So how does op,Ω change when the weight from i to Ω is
changed? Due to the requirement at the beginning of the derivation, we only have a
linear activation function fact, therefore we can just as well look at the change of the
network input when wi,Ω is changing:

∂Errp(W )
∂wi,Ω

= −δp,Ω ·
∂
∑
i∈I(op,iwi,Ω)
∂wi,Ω

. (5.14)

The resulting derivative ∂
∑

i∈I(op,iwi,Ω)
∂wi,Ω

can now be simplified: The function∑
i∈I(op,iwi,Ω) to be derived consists of many summands, and only the sum-

mand op,iwi,Ω contains the variable wi,Ω, according to which we derive. Thus,
∂
∑

i∈I(op,iwi,Ω)
∂wi,Ω

= op,i and therefore:

∂Errp(W )
∂wi,Ω

= −δp,Ω · op,i (5.15)

= −op,i · δp,Ω. (5.16)

We insert this in equation 5.8 on the previous page, which results in our modification
rule for a weight wi,Ω:

∆wi,Ω = η ·
∑
p∈P

op,i · δp,Ω. (5.17)



However: From the very beginning the derivation has been intended as an offline rule
by means of the question of how to add the errors of all patterns and how to learn them
after all patterns have been represented. Although this approach is mathematically
correct, the implementation is far more time-consuming and, as we will see later in
this chapter, partially needs a lot of compuational effort during training.

The "online-learning version" of the delta rule simply omits the summation and learning
is realized immediately after the presentation of each pattern, this also simplifies the
notation (which is no longer necessarily related to a pattern p):

∆wi,Ω = η · oi · δΩ. (5.18)

This version of the delta rule shall be used for the following definition:

Definition 5.6 (Delta rule). If we determine, analogously to the aforementioned
derivation, that the function h of the Hebbian theory (equation 4.6 on page 79) only
provides the output oi of the predecessor neuron i and if the function g is the difference
between the desired activation tΩ and the actual activation aΩ, we will receive the delta
rule, also known as Widrow-Hoff rule:

∆wi,Ω = η · oi · (tΩ − aΩ) = ηoiδΩ (5.19)

If we use the desired output (instead of the activation) as teaching input, and therefore
the output function of the output neurons does not represent an identity, we obtain

∆wi,Ω = η · oi · (tΩ − oΩ) = ηoiδΩ (5.20)

and δΩ then corresponds to the difference between tΩ and oΩ.

In the case of the delta rule, the change of all weights to an output neuron Ω is
proportional

. to the difference between the current activation or output aΩ or oΩ and the
corresponding teaching input tΩ. We want to refer to this factor as δΩ , which is
also referred to as "Delta".

Apparently the delta rule only applies for SLPs, since the formula is always related to
the teaching input, and there is no teaching input for the inner processing layers of
neurons.



In. 1 In. 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

Table 5.1: Definition of the logical XOR. The input values are shown of the left, the output values
on the right.
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Figure 5.6: Sketch of a singlelayer perceptron that shall represent the XOR function - which is
impossible.

5.2 A SLP is only capable of representing linearly separable
data

Let f be the XOR function which expects two binary inputs and generates a binary
output (for the precise definition see table 5.1).

Let us try to represent the XOR function by means of an SLP with two input neurons
i1, i2 and one output neuron Ω (fig. 5.6).

Here we use the weighted sum as propagation function, a binary activation function
with the threshold value Θ and the identity as output function. Depending on i1 and
i2, Ω has to output the value 1 if the following holds:

netΩ = oi1wi1,Ω + oi2wi2,Ω ≥ ΘΩ (5.21)



Figure 5.7: Linear separation of n = 2 inputs of the input neurons i1 and i2 by a 1-dimensional
straight line. A and B show the corners belonging to the sets of the XOR function that are to be
separated.

We assume a positive weight wi2,Ω, the inequality 5.21 on the preceding page is then
equivalent to

oi1 ≥
1

wi1,Ω
(ΘΩ − oi2wi2,Ω) (5.22)

With a constant threshold value ΘΩ, the right part of inequation 5.22 is a straight line
through a coordinate system defined by the possible outputs oi1 und oi2 of the input
neurons i1 and i2 (fig. 5.7).

For a (as required for inequation 5.22) positive wi2,Ω the output neuron Ω fires for
input combinations lying above the generated straight line. For a negative wi2,Ω it
would fire for all input combinations lying below the straight line. Note that only
the four corners of the unit square are possible inputs because the XOR function only
knows binary inputs.

In order to solve the XOR problem, we have to turn and move the straight line so that
input set A = {(0, 0), (1, 1)} is separated from input set B = {(0, 1), (1, 0)} – this is,
obviously, impossible.



Figure 5.8: Linear separation of n = 3 inputs from input neurons i1, i2 and i3 by 2-dimensional
plane.

Generally, the input parameters of n many input neurons can be represented in an
n-dimensional cube which is separated by an SLP through an (n − 1)-dimensional
hyperplane (fig. 5.8). Only sets that can be separated by such a hyperplane, i.e. which
are linearly separable, can be classified by an SLP.

Unfortunately, it seems that the percentage of the linearly separable problems rapidly
decreases with increasing n (see table 5.2 on the facing page), which limits the func-
tionality of the SLP. Additionally, tests for linear separability are difficult. Thus, for
more difficult tasks with more inputs we need something more powerful than SLP.
The XOR problem itself is one of these tasks, since a perceptron that is supposed to
represent the XOR function already needs a hidden layer (fig. 5.9 on the next page).

5.3 A multilayer perceptron contains more trainable weight
layers

A perceptron with two or more trainable weight layers (called multilayer perceptron or
MLP) is more powerful than an SLP. As we know, a singlelayer perceptron can divide



n number of
binary
functions

lin.
separable
ones

share

1 4 4 100%
2 16 14 87.5%
3 256 104 40.6%
4 65, 536 1, 772 2.7%
5 4.3 · 109 94, 572 0.002%
6 1.8 · 1019 5, 028, 134 ≈ 0%

Table 5.2: Number of functions concerning n binary inputs, and number and proportion of the
functions thereof which can be linearly separated. In accordance with [Zel94,Wid89,Was89].
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Figure 5.9: Neural network realizing the XOR function. Threshold values (as far as they are
existing) are located within the neurons.



the input space by means of a hyperplane (in a two-dimensional input space by means
of a straight line). A two-stage perceptron (two trainable weight layers, three neuron
layers) can classify convex polygons by further processing these straight lines, e.g. in
the form "recognize patterns lying above straight line 1, below straight line 2 and below
straight line 3". Thus, we – metaphorically speaking - took an SLP with several output
neurons and "attached" another SLP (upper part of fig. 5.10 on the facing page). A
multilayer perceptron represents an universal function approximator, which is
proven by the Theorem of Cybenko [Cyb89].

Another trainable weight layer proceeds analogously, now with the convex polygons.
Those can be added, subtracted or somehow processed with other operations (lower
part of fig. 5.10 on the next page).

Generally, it can be mathematically proven that even a multilayer perceptron with
one layer of hidden neurons can arbitrarily precisely approximate functions with only
finitely many discontinuities as well as their first derivatives. Unfortunately, this proof
is not constructive and therefore it is left to us to find the correct number of neurons
and weights.

In the following we want to use a widespread abbreviated form for different multilayer
perceptrons: We denote a two-stage perceptron with 5 neurons in the input layer, 3
neurons in the hidden layer and 4 neurons in the output layer as a 5-3-4-MLP.

Definition 5.7 (Multilayer perceptron). Perceptrons with more than one layer of
variably weighted connections are referred to as multilayer perceptrons (MLP).
An n-layer or n-stage perceptron has thereby exactly n variable weight layers and
n+1 neuron layers (the retina is disregarded here) with neuron layer 1 being the input
layer.

Since three-stage perceptrons can classify sets of any form by combining and sepa-
rating arbitrarily many convex polygons, another step will not be advantageous with
respect to function representations. Be cautious when reading the literature: There
are many different definitions of what is counted as a layer. Some sources count the
neuron layers, some count the weight layers. Some sources include the retina, some
the trainable weight layers. Some exclude (for some reason) the output neuron layer.
In this work, I chose the definition that provides, in my opinion, the most information
about the learning capabilities – and I will use it cosistently. Remember: An n-stage
perceptron has exactly n trainable weight layers. You can find a summary of which
perceptrons can classify which types of sets in table 5.3 on page 102. We now want to
face the challenge of training perceptrons with more than one weight layer.
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Figure 5.10: We know that an SLP represents a straight line. With 2 trainable weight layers,
several straight lines can be combined to form convex polygons (above). By using 3 trainable
weight layers several polygons can be formed into arbitrary sets (below).



n classifiable sets
1 hyperplane
2 convex polygon
3 any set
4 any set as well, i.e. no

advantage

Table 5.3: Representation of which perceptron can classify which types of sets with n being the
number of trainable weight layers.

5.4 Backpropagation of error generalizes the delta rule to
allow for MLP training

Next, I want to derive and explain the backpropagation of error learning rule (ab-
breviated: backpropagation, backprop or BP), which can be used to train multi-stage
perceptrons with semi-linear3 activation functions. Binary threshold functions and
other non-differentiable functions are no longer supported, but that doesn’t matter:
We have seen that the Fermi function or the hyperbolic tangent can arbitrarily approx-
imate the binary threshold function by means of a temperature parameter T . To a
large extent I will follow the derivation according to [Zel94] and [MR86]. Once again I
want to point out that this procedure had previously been published by Paul Werbos
in [Wer74] but had consideraby less readers than in [MR86].

Backpropagation is a gradient descent procedure (including all strengths and weak-
nesses of the gradient descent) with the error function Err(W ) receiving all n weights
as arguments (fig. 5.5 on page 91) and assigning them to the output error, i.e. being
n-dimensional. On Err(W ) a point of small error or even a point of the smallest error
is sought by means of the gradient descent. Thus, in analogy to the delta rule, back-
propagation trains the weights of the neural network. And it is exactly the delta rule
or its variable δi for a neuron i which is expanded from one trainable weight layer to
several ones by backpropagation.

3 Semilinear functions are monotonous and differentiable – but generally they are not linear.
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Figure 5.11: Illustration of the position of our neuron h within the neural network. It is lying in
layer H, the preceding layer is K, the subsequent layer is L.

5.4.1 The derivation is similar to the one of the delta rule, but with a
generalized delta

Let us define in advance that the network input of the individual neurons i results from
the weighted sum. Furthermore, as with the derivation of the delta rule, let op,i, netp,i
etc. be defined as the already familiar oi, neti, etc. under the input pattern p we used
for the training. Let the output function be the identity again, thus oi = fact(netp,i)
holds for any neuron i. Since this is a generalization of the delta rule, we use the same
formula framework as with the delta rule (equation 5.20 on page 95). As already
indicated, we have to generalize the variable δ for every neuron.

First of all: Where is the neuron for which we want to calculate δ? It is obvious to
select an arbitrary inner neuron h having a set K of predecessor neurons k as well as a
set of L successor neurons l, which are also inner neurons (see fig. 5.11). It is therefore
irrelevant whether the predecessor neurons are already the input neurons.

Now we perform the same derivation as for the delta rule and split functions by means
the chain rule. I will not discuss this derivation in great detail, but the principal



is similar to that of the delta rule (the differences are, as already mentioned, in the
generalized δ). We initially derive the error function Err according to a weight wk,h.

∂Err(wk,h)
∂wk,h

= ∂Err
∂neth︸ ︷︷ ︸
=−δh

·∂neth
∂wk,h

(5.23)

The first factor of equation 5.23 is −δh, which we will deal with later in this text.
The numerator of the second factor of the equation includes the network input, i.e.
the weighted sum is included in the numerator so that we can immediately derive it.
Again, all summands of the sum drop out apart from the summand containing wk,h.
This summand is referred to as wk,h · ok. If we calculate the derivative, the output of
neuron k becomes:

∂neth
∂wk,h

= ∂
∑
k∈K wk,hok
∂wk,h

(5.24)

= ok (5.25)

As promised, we will now discuss the −δh of equation 5.23, which is split up again
according of the chain rule:

δh = − ∂Err
∂neth

(5.26)

= −∂Err
∂oh

· ∂oh
∂neth

(5.27)

The derivation of the output according to the network input (the second factor in
equation 5.27) clearly equals the derivation of the activation function according to the
network input:

∂oh
∂neth

= ∂fact(neth)
∂neth

(5.28)

= fact
′(neth) (5.29)

Consider this an important passage! We now analogously derive the first factor in
equation 5.27. Therefore, we have to point out that the derivation of the error function
according to the output of an inner neuron layer depends on the vector of all network
inputs of the next following layer. This is reflected in equation 5.30:

−∂Err
∂oh

= −
∂Err(netl1 , . . . ,netl|L|)

∂oh
(5.30)



According to the definition of the multi-dimensional chain rule, we immediately obtain
equation 5.31:

−∂Err
∂oh

=
∑
l∈L

(
− ∂Err
∂netl

· ∂netl
∂oh

)
(5.31)

The sum in equation 5.31 contains two factors. Now we want to discuss these factors
being added over the subsequent layer L. We simply calculate the second factor in the
following equation 5.33:

∂netl
∂oh

= ∂
∑
h∈H wh,l · oh
∂oh

(5.32)

= wh,l (5.33)

The same applies for the first factor according to the definition of our δ:

− ∂Err
∂netl

= δl (5.34)

Now we insert:

⇒ −∂Err
∂oh

=
∑
l∈L

δlwh,l (5.35)

You can find a graphic version of the δ generalization including all splittings in fig. 5.12
on the following page.

The reader might already have noticed that some intermediate results were shown in
frames. Exactly those intermediate results were highlighted in that way, which are a
factor in the change in weight of wk,h. If the aforementioned equations are combined
with the highlighted intermediate results, the outcome of this will be the wanted change
in weight ∆wk,h to

∆wk,h = ηokδh with (5.36)

δh = f ′act(neth) ·
∑
l∈L

(δlwh,l)

– of course only in case of h being an inner neuron (otherweise there would not be a
subsequent layer L).
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Figure 5.12: Graphical representation of the equations (by equal signs) and chain rule splittings
(by arrows) in the framework of the backpropagation derivation. The leaves of the tree reflect the
final results from the generalization of δ, which are framed in the derivation.



The case of h being an output neuron has already been discussed during the derivation
of the delta rule. All in all, the result is the generalization of the delta rule, called
backpropagation of error :

∆wk,h = ηokδh with

δh =
{
f ′act(neth) · (th − yh) (h outside)
f ′act(neth) ·∑l∈L(δlwh,l) (h inside)

(5.37)

In contrast to the delta rule, δ is treated differently depending on whether h is an
output or an inner (i.e. hidden) neuron:

1. If h is an output neuron, then

δp,h = f ′act(netp,h) · (tp,h − yp,h) (5.38)

Thus, under our training pattern p the weight wk,h from k to h is changed
proportionally according to

. the learning rate η,

. the output op,k of the predecessor neuron k,

. the gradient of the activation function at the position of the network input
of the successor neuron f ′act(netp,h) and

. the difference between teaching input tp,h and output yp,h of the successor
neuron h.

In this case, backpropagation is working on two neuron layers, the output layer
with the successor neuron h and the preceding layer with the predecessor neuron
k.

2. If h is an inner, hidden neuron, then

δp,h = f ′act(netp,h) ·
∑
l∈L

(δp,l · wh,l) (5.39)

holds. I want to explicitly mention that backpropagation is now working on three
layers. Here, neuron k is the predecessor of the connection to be changed with
the weight wk,h, the neuron h is the successor of the connection to be changed
and the neurons l are lying in the layer following the successor neuron. Thus,
according to our training pattern p, the weight wk,h from k to h is proportionally
changed according to

. the learning rate η,



. the output of the predecessor neuron op,k,

. the gradient of the activation function at the position of the network input
of the successor neuron f ′act(netp,h),

. as well as, and this is the difference, according to the weighted sum of the
changes in weight to all neurons following h, ∑l∈L(δp,l · wh,l).

Definition 5.8 (Backpropagation). If we summarize formulas 5.38 on the previous
page and 5.39 on the preceding page, we receive the following final formula for back-
propagation (the identifiers p are ommited for reasons of clarity):

∆wk,h = ηokδh with

δh =
{
f ′act(neth) · (th − yh) (h outside)
f ′act(neth) ·∑l∈L(δlwh,l) (h inside)

(5.40)

SNIPE: An online variant of backpropagation is implemented in the method
trainBackpropagationOfError within the class NeuralNetwork.

It is obvious that backpropagation initially processes the last weight layer directly by
means of the teaching input and then works backwards from layer to layer while con-
sidering each preceding change in weights. Thus, the teaching input leaves traces in all
weight layers. Here I describe the first (delta rule) and the second part of backpropaga-
tion (generalized delta rule on more layers) in one go, which may meet the requirements
of the matter but not of the research. The first part is obvious, which you will soon
see in the framework of a mathematical gimmick. Decades of development time and
work lie between the first and the second, recursive part. Like many groundbreaking
inventions, it was not until its development that it was recognized how plausible this
invention was.

5.4.2 Heading back: Boiling backpropagation down to delta rule

As explained above, the delta rule is a special case of backpropagation for one-stage
perceptrons and linear activation functions – I want to briefly explain this circum-
stance and develop the delta rule out of backpropagation in order to augment the
understanding of both rules. We have seen that backpropagation is defined by

∆wk,h = ηokδh with

δh =
{
f ′act(neth) · (th − yh) (h outside)
f ′act(neth) ·∑l∈L(δlwh,l) (h inside)

(5.41)



Since we only use it for one-stage perceptrons, the second part of backpropagation
(light-colored) is omitted without substitution. The result is:

∆wk,h = ηokδh with
δh = f ′act(neth) · (th − oh) (5.42)

Furthermore, we only want to use linear activation functions so that f ′act (light-colored)
is constant. As is generally known, constants can be combined, and therefore we
directly merge the constant derivative f ′act and (being constant for at least one lerning
cycle) the learning rate η (also light-colored) in η. Thus, the result is:

∆wk,h = ηokδh = ηok · (th − oh) (5.43)

This exactly corresponds to the delta rule definition.

5.4.3 The selection of the learning rate has heavy influence on the
learning process

In the meantime we have often seen that the change in weight is, in any case, propor-
tional to the learning rate η. Thus, the selection of η is crucial for the behaviour of
backpropagation and for learning procedures in general.

Definition 5.9 (Learning rate). Speed and accuracy of a learning procedure can
always be controlled by and are always proportional to a learning rate which is
written as η.

If the value of the chosen η is too large, the jumps on the error surface are also too
large and, for example, narrow valleys could simply be jumped over. Additionally, the
movements across the error surface would be very uncontrolled. Thus, a small η is the
desired input, which, however, can cost a huge, often unacceptable amount of time.
Experience shows that good learning rate values are in the range of

0.01 ≤ η ≤ 0.9.

The selection of η significantly depends on the problem, the network and the training
data, so that it is barely possible to give practical advise. But for instance it is popular
to start with a relatively large η, e.g. 0.9, and to slowly decrease it down to 0.1. For
simpler problems η can often be kept constant.



5.4.3.1 Variation of the learning rate over time

During training, another stylistic device can be a variable learning rate: In the
beginning, a large learning rate leads to good results, but later it results in inaccurate
learning. A smaller learning rate is more time-consuming, but the result is more precise.
Thus, during the learning process the learning rate needs to be decreased by one order
of magnitude once or repeatedly.

A common error (which also seems to be a very neat solution at first glance) is to
continually decrease the learning rate. Here it quickly happens that the descent of the
learning rate is larger than the ascent of a hill of the error function we are climbing.
The result is that we simply get stuck at this ascent. Solution: Rather reduce the
learning rate gradually as mentioned above.

5.4.3.2 Different layers – Different learning rates

The farer we move away from the output layer during the learning process, the slower
backpropagation is learning. Thus, it is a good idea to select a larger learning rate for
the weight layers close to the input layer than for the weight layers close to the output
layer.

5.5 Resilient backpropagation is an extension to
backpropagation of error

We have just raised two backpropagation-specific properties that can occasionally be
a problem (in addition to those which are already caused by gradient descent itself):
On the one hand, users of backpropagation can choose a bad learning rate. On the
other hand, the further the weights are from the output layer, the slower backpropa-
gation learns. For this reason, Martin Riedmiller et al. enhanced backpropagation
and called their version resilient backpropagation (short Rprop) [RB93,Rie94]. I
want to compare backpropagation and Rprop, without explicitly declaring one version
superior to the other. Before actually dealing with formulas, let us informally compare
the two primary ideas behind Rprop (and their consequences) to the already familiar
backpropagation.

Learning rates: Backpropagation uses by default a learning rate η, which is selected
by the user, and applies to the entire network. It remains static until it is
manually changed. We have already explored the disadvantages of this approach.



Here, Rprop pursues a completely different approach: there is no global learning
rate. First, each weight wi,j has its own learning rate ηi,j , and second, these
learning rates are not chosen by the user, but are automatically set by Rprop
itself. Third, the weight changes are not static but are adapted for each time
step of Rprop. To account for the temporal change, we have to correctly call
it ηi,j(t). This not only enables more focused learning, also the problem of an
increasingly slowed down learning throughout the layers is solved in an elegant
way.

Weight change: When using backpropagation, weights are changed proportionally to
the gradient of the error function. At first glance, this is really intuitive. However,
we incorporate every jagged feature of the error surface into the weight changes.
It is at least questionable, whether this is always useful. Here, Rprop takes other
ways as well: the amount of weight change ∆wi,j simply directly corresponds to
the automatically adjusted learning rate ηi,j . Thus the change in weight is not
proportional to the gradient, it is only influenced by the sign of the gradient.
Until now we still do not know how exactly the ηi,j are adapted at run time, but
let me anticipate that the resulting process looks considerably less rugged than
an error function.

In contrast to backprop the weight update step is replaced and an additional step for
the adjustment of the learning rate is added. Now how exactly are these ideas being
implemented?

5.5.1 Weight changes are not proportional to the gradient

Let us first consider the change in weight. We have already noticed that the weight-
specific learning rates directly serve as absolute values for the changes of the respective
weights. There remains the question of where the sign comes from – this is a point
at which the gradient comes into play. As with the derivation of backpropagation,
we derive the error function Err(W ) by the individual weights wi,j and obtain gradi-
ents ∂Err(W )

∂wi,j
. Now, the big difference: rather than multiplicatively incorporating the

absolute value of the gradient into the weight change, we consider only the sign of
the gradient. The gradient hence no longer determines the strength, but only the
direction of the weight change.

If the sign of the gradient ∂Err(W )
∂wi,j

is positive, we must decrease the weight wi,j . So
the weight is reduced by ηi,j . If the sign of the gradient is negative, the weight needs
to be increased. So ηi,j is added to it. If the gradient is exactly 0, nothing happens at
all. Let us now create a formula from this colloquial description. The corresponding



terms are affixed with a (t) to show that everything happens at the same time step.
This might decrease clarity at first glance, but is nevertheless important because we
will soon look at another formula that operates on different time steps. Instead, we
shorten the gradient to: g = ∂Err(W )

∂wi,j
.

Definition 5.10 (Weight change in Rprop).

∆wi,j(t) =


−ηi,j(t), if g(t) > 0
+ηi,j(t), if g(t) < 0
0 otherwise.

(5.44)

We now know how the weights are changed – now remains the question how the learning
rates are adjusted. Finally, once we have understood the overall system, we will deal
with the remaining details like initialization and some specific constants.

5.5.2 Many dynamically adjusted learning rates instead of one static

To adjust the learning rate ηi,j , we again have to consider the associated gradients g
of two time steps: the gradient that has just passed (t − 1) and the current one (t).
Again, only the sign of the gradient matters, and we now must ask ourselves: What
can happen to the sign over two time steps? It can stay the same, and it can flip.

If the sign changes from g(t− 1) to g(t), we have skipped a local minimum in the gra-
dient. Hence, the last update was too large and ηi,j(t) has to be reduced as compared
to the previous ηi,j(t − 1). One can say, that the search needs to be more accurate.
In mathematical terms, we obtain a new ηi,j(t) by multiplying the old ηi,j(t− 1) with
a constant η↓, which is between 1 and 0. In this case we know that in the last time
step (t− 1) something went wrong – hence we additionally reset the weight update for
the weight wi,j at time step (t) to 0, so that it not applied at all (not shown in the
following formula).

However, if the sign remains the same, one can perform a (careful!) increase of ηi,j
to get past shallow areas of the error function. Here we obtain our new ηi,j(t) by
multiplying the old ηi,j(t− 1) with a constant η↑ which is greater than 1.

Definition 5.11 (Adaptation of learning rates in Rprop).

ηi,j(t) =


η↑ηi,j(t− 1), g(t− 1)g(t) > 0
η↓ηi,j(t− 1), g(t− 1)g(t) < 0
ηi,j(t− 1) otherwise.

(5.45)



Caution: This also implies that Rprop is exclusively designed for offline. If the
gradients do not have a certain continuity, the learning process slows down to the
lowest rates (and remains there). When learning online, one changes – loosely speaking
– the error function with each new epoch, since it is based on only one training pattern.
This may be often well applicable in backpropagation and it is very often even faster
than the offline version, which is why it is used there frequently. It lacks, however, a
clear mathematical motivation, and that is exactly what we need here.

5.5.3 We are still missing a few details to use Rprop in practice

A few minor issues remain unanswered, namely

1. How large are η↑ and η↓ (i.e. how much are learning rates reinforced or weak-
ened)?

2. How to choose ηi,j(0) (i.e. how are the weight-specific learning rates initialized)?4

3. What are the upper and lower bounds ηmin and ηmax for ηi,j set?

We now answer these questions with a quick motivation. The initial value for the
learning rates should be somewhere in the order of the initialization of the weights.
ηi,j(0) = 0.1 has proven to be a good choice. The authors of the Rprop paper explain
in an obvious way that this value – as long as it is positive and without an exorbitantly
high absolute value – does not need to be dealt with very critically, as it will be quickly
overridden by the automatic adaptation anyway.

Equally uncritical is ηmax, for which they recommend, without further mathematical
justification, a value of 50 which is used throughout most of the literature. One can
set this parameter to lower values in order to allow only very cautious updates. Small
update steps should be allowed in any case, so we set ηmin = 10−6.

Now we have left only the parameters η↑ and η↓. Let us start with η↓: If this value is
used, we have skipped a minimum, from which we do not know where exactly it lies
on the skipped track. Analogous to the procedure of binary search, where the target
object is often skipped as well, we assume it was in the middle of the skipped track.
So we need to halve the learning rate, which is why the canonical choice η↓ = 0.5 is
being selected. If the value of η↑ is used, learning rates shall be increased with caution.
Here we cannot generalize the principle of binary search and simply use the value 2.0,
otherwise the learning rate update will end up consisting almost exclusively of changes
in direction. Independent of the particular problems, a value of η↑ = 1.2 has proven

4 Protipp: since the ηi,j can be changed only by multiplication, 0 would be a rather suboptimal initialization
:-)



to be promising. Slight changes of this value have not significantly affected the rate of
convergence. This fact allowed for setting this value as a constant as well.

With advancing computational capabilities of computers one can observe a more and
more widespread distribution of networks that consist of a big number of layers, i.e.
deep networks . For such networks it is crucial to prefer Rprop over the original
backpropagation, because backprop, as already indicated, learns very slowly at weights
wich are far from the output layer. For problems with a smaller number of layers, I
would recommend testing the more widespread backpropagation (with both offline and
online learning) and the less common Rprop equivalently.

SNIPE: In Snipe resilient backpropagation is supported via the method
trainResilientBackpropagation of the class NeuralNetwork. Furthermore, you can
also use an additional improvement to resilient propagation, which is, however, not dealt with
in this work. There are getters and setters for the different parameters of Rprop.

5.6 Backpropagation has often been extended and altered
besides Rprop

Backpropagation has often been extended. Many of these extensions can simply be
implemented as optional features of backpropagation in order to have a larger scope
for testing. In the following I want to briefly describe some of them.

5.6.1 Adding momentum to learning

Let us assume to descent a steep slope on skis - what prevents us from immediately
stopping at the edge of the slope to the plateau? Exactly - our momentum. With
backpropagation the momentum term [RHW86b] is responsible for the fact that a
kind of moment of inertia (momentum) is added to every step size (fig. 5.13 on the
next page), by always adding a fraction of the previous change to every new change in
weight:

(∆pwi,j)now = ηop,iδp,j + α · (∆pwi,j)previous.

Of course, this notation is only used for a better understanding. Generally, as already
defined by the concept of time, when referring to the current cycle as (t), then the
previous cycle is identified by (t − 1), which is continued successively. And now we
come to the formal definition of the momentum term:



Figure 5.13: We want to execute the gradient descent like a skier crossing a slope, who would
hardly stop immediately at the edge to the plateau.

Definition 5.12 (Momentum term). The variation of backpropagation by means of
the momentum term is defined as follows:

∆wi,j(t) = ηoiδj + α ·∆wi,j(t− 1) (5.46)

We accelerate on plateaus (avoiding quasi-standstill on plateaus) and slow down on
craggy surfaces (preventing oscillations). Moreover, the effect of inertia can be varied
via the prefactor α, common values are between 0.6 und 0.9. Additionally, the momen-
tum enables the positive effect that our skier swings back and forth several times in
a minimum, and finally lands in the minimum. Despite its nice one-dimensional ap-
pearance, the otherwise very rare error of leaving good minima unfortunately occurs
more frequently because of the momentum term – which means that this is again no
optimal solution (but we are by now accustomed to this condition).

5.6.2 Flat spot elimination prevents neurons from getting stuck

It must be pointed out that with the hyperbolic tangent as well as with the Fermi
function the derivative outside of the close proximity of Θ is nearly 0. This results
in the fact that it becomes very difficult to move neurons away from the limits of the
activation (flat spots) , which could extremely extend the learning time. This problem



can be dealt with by modifying the derivative, for example by adding a constant (e.g.
0.1), which is called flat spot elimination or – more colloquial – fudging.

It is an interesting observation, that success has also been achieved by using derivatives
defined as constants [Fah88]. A nice example making use of this effect is the fast
hyperbolic tangent approximation by Anguita et al. introduced in section 3.2.6 on
page 42. In the outer regions of it’s (as well approximated and accelerated) derivative,
it makes use of a small constant.

5.6.3 The second derivative can be used, too

According to David Parker [Par87], Second order backpropagation also usese the
second gradient, i.e. the second multi-dimensional derivative of the error function, to
obtain more precise estimates of the correct ∆wi,j . Even higher derivatives only rarely
improve the estimations. Thus, less training cycles are needed but those require much
more computational effort.

In general, we use further derivatives (i.e. Hessian matrices, since the functions are
multidimensional) for higher order methods. As expected, the procedures reduce the
number of learning epochs, but significantly increase the computational effort of the
individual epochs. So in the end these procedures often need more learning time than
backpropagation.

The quickpropagation learning procedure [Fah88] uses the second derivative of the
error propagation and locally understands the error function to be a parabola. We
analytically determine the vertex (i.e. the lowest point) of the said parabola and
directly jump to this point. Thus, this learning procedure is a second-order procedure.
Of course, this does not work with error surfaces that cannot locally be approximated
by a parabola (certainly it is not always possible to directly say whether this is the
case).

5.6.4 Weight decay: Punishment of large weights

The weight decay according to Paul Werbos [Wer88] is a modification that extends
the error by a term punishing large weights. So the error under weight decay

ErrWD



does not only increase proportionally to the actual error but also proportionally to
the square of the weights. As a result the network is keeping the weights small during
learning.

ErrWD = Err + β · 1
2
∑
w∈W

(w)2

︸ ︷︷ ︸
punishment

(5.47)

This approach is inspired by nature where synaptic weights cannot become infinitely
strong as well. Additionally, due to these small weights, the error function often
shows weaker fluctuations, allowing easier and more controlled learning.

The prefactor 1
2 again resulted from simple pragmatics. The factor β controls the

strength of punishment: Values from 0.001 to 0.02 are often used here.

5.6.5 Cutting networks down: Pruning and Optimal Brain Damage

If we have executed the weight decay long enough and notice that for a neuron in
the input layer all successor weights are 0 or close to 0, we can remove the neuron,
hence losing this neuron and some weights and thereby reduce the possibility that the
network will memorize. This procedure is called pruning.

Such a method to detect and delete unnecessary weights and neurons is referred to
as optimal brain damage [lCDS90]. I only want to describe it briefly: The mean
error per output neuron is composed of two competing terms. While one term, as
usual, considers the difference between output and teaching input, the other one tries
to "press" a weight towards 0. If a weight is strongly needed to minimize the error, the
first term will win. If this is not the case, the second term will win. Neurons which
only have zero weights can be pruned again in the end.

There are many other variations of backprop and whole books only about this subject,
but since my aim is to offer an overview of neural networks, I just want to mention
the variations above as a motivation to read on.

For some of these extensions it is obvious that they cannot only be applied to feedfor-
ward networks with backpropagation learning procedures.

We have gotten to know backpropagation and feedforward topology – now we have to
learn how to build a neural network. It is of course impossible to fully communicate this
experience in the framework of this work. To obtain at least some of this knowledge,
I now advise you to deal with some of the exemplary problems from 4.6.



5.7 Getting started – Initial configuration of a multilayer
perceptron

After having discussed the backpropagation of error learning procedure and knowing
how to train an existing network, it would be useful to consider how to implement such
a network.

5.7.1 Number of layers: Two or three may often do the job, but more are
also used

Let us begin with the trivial circumstance that a network should have one layer of
input neurons and one layer of output neurons, which results in at least two layers.

Additionally, we need – as we have already learned during the examination of linear
separability – at least one hidden layer of neurons, if our problem is not linearly
separable (which is, as we have seen, very likely).

It is possible, as already mentioned, to mathematically prove that this MLP with one
hidden neuron layer is already capable of approximating arbitrary functions with any
accuracy 5 – but it is necessary not only to discuss the representability of a problem
by means of a perceptron but also the learnability. Representability means that a
perceptron can, in principle, realize a mapping - but learnability means that we are
also able to teach it.

In this respect, experience shows that two hidden neuron layers (or three trainable
weight layers) can be very useful to solve a problem, since many problems can be
represented by a hidden layer but are very difficult to learn.

One should keep in mind that any additional layer generates additional sub-minima of
the error function in which we can get stuck. All these things considered, a promising
way is to try it with one hidden layer at first and if that fails, retry with two layers.
Only if that fails, one should consider more layers. However, given the increasing
calculation power of current computers, deep networks with a lot of layers are also
used with success.

5 Note: We have not indicated the number of neurons in the hidden layer, we only mentioned the hypo-
thetical possibility.



5.7.2 The number of neurons has to be tested

The number of neurons (apart from input and output layer, where the number of
input and output neurons is already defined by the problem statement) principally
corresponds to the number of free parameters of the problem to be represented.

Since we have already discussed the network capacity with respect to memorizing or
a too imprecise problem representation, it is clear that our goal is to have as few free
parameters as possible but as many as necessary.

But we also know that there is no standard solution for the question of how many
neurons should be used. Thus, the most useful approach is to initially train with only
a few neurons and to repeatedly train new networks with more neurons until the result
significantly improves and, particularly, the generalization performance is not affected
(bottom-up approach).

5.7.3 Selecting an activation function

Another very important parameter for the way of information processing of a neural
network is the selection of an activation function. The activation function for
input neurons is fixed to the identity function, since they do not process information.

The first question to be asked is whether we actually want to use the same activation
function in the hidden layer and in the ouput layer – no one prevents us from choosing
different functions. Generally, the activation function is the same for all hidden neurons
as well as for the output neurons respectively.

For tasks of function approximation it has been found reasonable to use the hy-
perbolic tangent (left part of fig. 5.14 on the next page) as activation function of the
hidden neurons, while a linear activation function is used in the output. The latter is
absolutely necessary so that we do not generate a limited output intervall. Contrary
to the input layer which uses linear activation functions as well, the output layer still
processes information, because it has threshold values. However, linear activation func-
tions in the output can also cause huge learning steps and jumping over good minima
in the error surface. This can be avoided by setting the learning rate to very small
values in the output layer.

An unlimited output interval is not essential for pattern recognition tasks6. If the
hyperbolic tangent is used in any case, the output interval will be a bit larger. Unlike

6 Generally, pattern recognition is understood as a special case of function approximation with a few
discrete output possibilities.
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with the hyperbolic tangent, with the Fermi function (right part of fig. 5.14) it is
difficult to learn something far from the threshold value (where its result is close to
0). However, here a lot of freedom is given for selecting an activation function. But
generally, the disadvantage of sigmoid functions is the fact that they hardly learn
something for values far from thei threshold value, unless the network is modified.

5.7.4 Weights should be initialized with small, randomly chosen values

The initialization of weights is not as trivial as one might think. If they are simply
initialized with 0, there will be no change in weights at all. If they are all initialized
by the same value, they will all change equally during training. The simple solution of
this problem is called symmetry breaking, which is the initialization of weights with
small random values. The range of random values could be the interval [−0.5; 0.5] not
including 0 or values very close to 0. This random initialization has a nice side effect:
Chances are that the average of network inputs is close to 0, a value that hits (in most
activation functions) the region of the greatest derivative, allowing for strong learning
impulses right from the start of learning.

SNIPE: In Snipe, weights are initialized randomly (if a synapse initialization is wanted).
The maximum absolute weight value of a synapse initialized at random can be set in a
NeuralNetworkDescriptor using the method setSynapseInitialRange.



5.8 The 8-3-8 encoding problem and related problems

The 8-3-8 encoding problem is a classic among the multilayer perceptron test training
problems. In our MLP we have an input layer with eight neurons i1, i2, . . . , i8, an
output layer with eight neurons Ω1,Ω2, . . . ,Ω8 and one hidden layer with three neurons.
Thus, this network represents a function B8 → B8. Now the training task is that an
input of a value 1 into the neuron ij should lead to an output of a value 1 from the
neuron Ωj (only one neuron should be activated, which results in 8 training samples.

During the analysis of the trained network we will see that the network with the 3
hidden neurons represents some kind of binary encoding and that the above mapping
is possible (assumed training time: ≈ 104 epochs). Thus, our network is a machine in
which the input is first encoded and afterwards decoded again.

Analogously, we can train a 1024-10-1024 encoding problem. But is it possible to
improve the efficiency of this procedure? Could there be, for example, a 1024-9-1024-
or an 8-2-8-encoding network?

Yes, even that is possible, since the network does not depend on binary encodings:
Thus, an 8-2-8 network is sufficient for our problem. But the encoding of the network
is far more difficult to understand (fig. 5.15 on the next page) and the training of the
networks requires a lot more time.

SNIPE: The static method getEncoderSampleLesson in the class TrainingSampleLesson allows
for creating simple training sample lessons of arbitrary dimensionality for encoder problems like
the above.

An 8-1-8 network, however, does not work, since the possibility that the output of
one neuron is compensated by another one is essential, and if there is only one hidden
neuron, there is certainly no compensatory neuron.

Exercises

Exercise 8. Fig. 5.4 on page 88 shows a small network for the boolean functions
AND and OR. Write tables with all computational parameters of neural networks (e.g.
network input, activation etc.). Perform the calculations for the four possible inputs
of the networks and write down the values of these variables for each input. Do the
same for the XOR network (fig. 5.9 on page 99).

Exercise 9.



Figure 5.15: Illustration of the functionality of 8-2-8 network encoding. The marked points rep-
resent the vectors of the inner neuron activation associated to the samples. As you can see, it is
possible to find inner activation formations so that each point can be separated from the rest of
the points by a straight line. The illustration shows an exemplary separation of one point.

1. List all boolean functions B3 → B1, that are linearly separable and characterize
them exactly.

2. List those that are not linearly separable and characterize them exactly, too.

Exercise 10. A simple 2-1 network shall be trained with one single pattern by means
of backpropagation of error and η = 0.1. Verify if the error

Err = Errp = 1
2(t− y)2

converges and if so, at what value. How does the error curve look like? Let the
pattern (p, t) be defined by p = (p1, p2) = (0.3, 0.7) and tΩ = 0.4. Randomly initalize
the weights in the interval [1;−1].

Exercise 11. A one-stage perceptron with two input neurons, bias neuron and binary
threshold function as activation function divides the two-dimensional space into two
regions by means of a straight line g. Analytically calculate a set of weight values for



such a perceptron so that the following set P of the 6 patterns of the form (p1, p2, tΩ)
with ε� 1 is correctly classified.

P ={(0, 0,−1);
(2,−1, 1);
(7 + ε, 3− ε, 1);
(7− ε, 3 + ε,−1);
(0,−2− ε, 1);
(0− ε,−2,−1)}

Exercise 12. Calculate in a comprehensible way one vector ∆W of all changes in
weight by means of the backpropagation of error procedure with η = 1. Let a 2-2-1
MLP with bias neuron be given and let the pattern be defined by

p = (p1, p2, tΩ) = (2, 0, 0.1).

For all weights with the target Ω the initial value of the weights should be 1. For all
other weights the initial value should be 0.5. What is conspicuous about the changes?





Chapter 6

Radial basis functions
RBF networks approximate functions by stretching and compressing Gaussian
bells and then summing them spatially shifted. Description of their functions

and their learning process. Comparison with multilayer perceptrons.

According to Poggio and Girosi [PG89] radial basis function networks (RBF net-
works) are a paradigm of neural networks, which was developed considerably later
than that of perceptrons. Like perceptrons, the RBF networks are built in layers.
But in this case, they have exactly three layers, i.e. only one single layer of hidden
neurons.

Like perceptrons, the networks have a feedforward structure and their layers are com-
pletely linked. Here, the input layer again does not participate in information process-
ing. The RBF networks are - like MLPs - universal function approximators.

Despite all things in common: What is the difference between RBF networks and
perceptrons? The difference lies in the information processing itself and in the compu-
tational rules within the neurons outside of the input layer. So, in a moment we will
define a so far unknown type of neurons.

6.1 Components and structure of an RBF network

Initially, we want to discuss colloquially and then define some concepts concerning
RBF networks.

Output neurons: In an RBF network the output neurons only contain the identity as
activation function and one weighted sum as propagation function. Thus, they
do little more than adding all input values and returning the sum.
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Hidden neurons are also called RBF neurons (as well as the layer in which they are
located is referred to as RBF layer). As propagation function, each hidden neuron
calculates a norm that represents the distance between the input to the network
and the so-called position of the neuron (center). This is inserted into a radial
activation function which calculates and outputs the activation of the neuron.

Definition 6.1 (RBF input neuron). Definition and representation is identical to
the definition 5.1 on page 84 of the input neuron.

Definition 6.2 (Center of an RBF neuron). The center ch of an RBF neuron h is
the point in the input space where the RBF neuron is located . In general, the closer
the input vector is to the center vector of an RBF neuron, the higher is its activation.

Definition 6.3 (RBF neuron). The so-called RBF neurons h have a propagation
function fprop that determines the distance between the center ch of a neuron and the
input vector y. This distance represents the network input. Then the network input
is sent through a radial basis function fact which returns the activation or the output

of the neuron. RBF neurons are represented by the symbol WVUTPQRS||c,x||
Gauß

.

Definition 6.4 (RBF output neuron). RBF output neurons Ω use the weighted
sum as propagation function fprop, and the identity as activation function fact. They

are represented by the symbol ONMLHIJKΣ
� .

Definition 6.5 (RBF network). An RBF network has exactly three layers in the
following order: The input layer consisting of input neurons, the hidden layer (also
called RBF layer) consisting of RBF neurons and the output layer consisting of RBF
output neurons. Each layer is completely linked with the following one, shortcuts do
not exist (fig. 6.1 on the next page) – it is a feedforward topology. The connections
between input layer and RBF layer are unweighted, i.e. they only transmit the input.
The connections between RBF layer and output layer are weighted. The original
definition of an RBF network only referred to an output neuron, but – in analogy
to the perceptrons – it is apparent that such a definition can be generalized. A bias
neuron is not used in RBF networks. The set of input neurons shall be represented by
I, the set of hidden neurons by H and the set of output neurons by O.

Therefore, the inner neurons are called radial basis neurons because from their defini-
tion follows directly that all input vectors with the same distance from the center of a
neuron also produce the same output value (fig. 6.2 on the facing page).
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Figure 6.1: An exemplary RBF network with two input neurons, five hidden neurons and three
output neurons. The connections to the hidden neurons are not weighted, they only transmit the
input. Right of the illustration you can find the names of the neurons, which coincide with the
names of the MLP neurons: Input neurons are called i, hidden neurons are called h and output
neurons are called Ω. The associated sets are referred to as I, H and O.

Figure 6.2: Let ch be the center of an RBF neuron h. Then the activation function facth is radially
symmetric around ch.
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6.2 Information processing of an RBF network

Now the question is, what can be realized by such a network and what is its purpose.
Let us go over the RBF network from top to bottom: An RBF network receives the
input by means of the unweighted connections. Then the input vector is sent through
a norm so that the result is a scalar. This scalar (which, by the way, can only be
positive due to the norm) is processed by a radial basis function, for example by a
Gaussian bell (fig. 6.3) .

The output values of the different neurons of the RBF layer or of the different Gaussian
bells are added within the third layer: basically, in relation to the whole input space,
Gaussian bells are added here.

Suppose that we have a second, a third and a fourth RBF neuron and therefore four
differently located centers. Each of these neurons now measures another distance from
the input to its own center and de facto provides different values, even if the Gaussian
bell is the same. Since these values are finally simply accumulated in the output
layer, one can easily see that any surface can be shaped by dragging, compressing and
removing Gaussian bells and subsequently accumulating them. Here, the parameters
for the superposition of the Gaussian bells are in the weights of the connections between
the RBF layer and the output layer.
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Furthermore, the network architecture offers the possibility to freely define or train
height and width of the Gaussian bells – due to which the network paradigm becomes
even more versatile. We will get to know methods and approches for this later.

6.2.1 Information processing in RBF neurons

RBF neurons process information by using norms and radial basis functions

At first, let us take as an example a simple 1-4-1 RBF network. It is apparent that we
will receive a one-dimensional output which can be represented as a function (fig. 6.4).
Additionally, the network includes the centers c1, c2, . . . , c4 of the four inner neurons
h1, h2, . . . , h4, and therefore it has Gaussian bells which are finally added within the
output neuron Ω. The network also possesses four values σ1, σ2, . . . , σ4 which influence
the width of the Gaussian bells. On the contrary, the height of the Gaussian bell is
influenced by the subsequent weights, since the individual output values of the bells
are multiplied by those weights.
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Figure 6.5: Four different Gaussian bells in two-dimensional space generated by means of RBF
neurons are added by an output neuron of the RBF network. Once again r =

√
x2 + y2 applies for

the distance. The heights w, widths σ and centers c = (x, y) are: w1 = 1, σ1 = 0.4, c1 = (0.5, 0.5),
w2 = −1, σ2 = 0.6, c2 = (1.15,−1.15), w3 = 1.5, σ3 = 0.2, c3 = (−0.5,−1), w4 = 0.8, σ4 =
1.4, c4 = (−2, 0).



Since we use a norm to calculate the distance between the input vector and the center
of a neuron h, we have different choices: Often the Euclidian norm is chosen to calculate
the distance:

rh = ||x− ch|| (6.1)

=
√∑
i∈I

(xi − ch,i)2 (6.2)

Remember: The input vector was referred to as x. Here, the index i runs through the
input neurons and thereby through the input vector components and the neuron center
components. As we can see, the Euclidean distance generates the squared differences of
all vector components, adds them and extracts the root of the sum. In two-dimensional
space this corresponds to the Pythagorean theorem. From the definition of a norm
directly follows that the distance can only be positive. Strictly speaking, we hence
only use the positive part of the activation function. By the way, activation functions
other than the Gaussian bell are possible. Normally, functions that are monotonically
decreasing over the interval [0;∞] are chosen.

Now that we know the distance rh between the input vector x and the center ch of the
RBF neuron h, this distance has to be passed through the activation function. Here
we use, as already mentioned, a Gaussian bell:

fact(rh) = e

(
−r2
h

2σ2
h

)
(6.3)

It is obvious that both the center ch and the width σh can be seen as part of the
activation function fact, and hence the activation functions should not be referred to
as fact simultaneously. One solution would be to number the activation functions like
fact1, fact2, . . . , fact|H| with H being the set of hidden neurons. But as a result the
explanation would be very confusing. So I simply use the name fact for all activation
functions and regard σ and c as variables that are defined for individual neurons but
no directly included in the activation function.

The reader will certainly notice that in the literature the Gaussian bell is often nor-
malized by a multiplicative factor. We can, however, avoid this factor because we
are multiplying anyway with the subsequent weights and consecutive multiplications,
first by a normalization factor and then by the connections’ weights, would only yield
different factors there. We do not need this factor (especially because for our purpose
the integral of the Gaussian bell must not always be 1) and therefore simply leave it
out.



6.2.2 Some analytical thoughts prior to the training

The output yΩ of an RBF output neuron Ω results from combining the functions of an
RBF neuron to

yΩ =
∑
h∈H

wh,Ω · fact (||x− ch||) . (6.4)

Suppose that similar to the multilayer perceptron we have a set P , that contains |P |
training samples (p, t). Then we obtain |P | functions of the form

yΩ =
∑
h∈H

wh,Ω · fact (||p− ch||) , (6.5)

i.e. one function for each training sample.

Of course, with this effort we are aiming at letting the output y for all training patterns
p converge to the corresponding teaching input t.

6.2.2.1 Weights can simply be computed as solution of a system of equations

Thus, we have |P | equations. Now let us assume that the widths σ1, σ2, . . . , σk, the
centers c1, c2, . . . , ck and the training samples p including the teaching input t are given.
We are looking for the weights wh,Ω with |H| weights for one output neuron Ω. Thus,
our problem can be seen as a system of equations since the only thing we want to
change at the moment are the weights.

This demands a distinction of cases concerning the number of training samples |P | and
the number of RBF neurons |H|:

|P | = |H|: If the number of RBF neurons equals the number of patterns, i.e. |P | = |H|,
the equation can be reduced to a matrix multiplication

T = M ·G (6.6)

⇔ M−1 · T = M−1 ·M ·G (6.7)

⇔ M−1 · T = E ·G (6.8)

⇔ M−1 · T = G, (6.9)

where



. T is the vector of the teaching inputs for all training samples,

. M is the |P | × |H| matrix of the outputs of all |H| RBF neurons to |P |
samples (remember: |P | = |H|, the matrix is squared and we can therefore
attempt to invert it),

. G is the vector of the desired weights and

. E is a unit matrix with the same size as G.

Mathematically speaking, we can simply calculate the weights: In the case of
|P | = |H| there is exactly one RBF neuron available per training sample. This
means, that the network exactly meets the |P | existing nodes after having calcu-
lated the weights, i.e. it performs a precise interpolation. To calculate such
an equation we certainly do not need an RBF network, and therefore we can
proceed to the next case.

Exact interpolation must not be mistaken for the memorizing ability mentioned
with the MLPs: First, we are not talking about the training of RBF networks
at the moment. Second, it could be advantageous for us and might in fact be
intended if the network exactly interpolates between the nodes.

|P | < |H|: The system of equations is under-determined, there are more RBF neurons
than training samples, i.e. |P | < |H|. Certainly, this case normally does not
occur very often. In this case, there is a huge variety of solutions which we do
not need in such detail. We can select one set of weights out of many obviously
possible ones.

|P | > |H|: But most interesting for further discussion is the case if there are signifi-
cantly more training samples than RBF neurons, that means |P | > |H|. Thus,
we again want to use the generalization capability of the neural network.

If we have more training samples than RBF neurons, we cannot assume that
every training sample is exactly hit. So, if we cannot exactly hit the points
and therefore cannot just interpolate as in the aforementioned ideal case with
|P | = |H|, we must try to find a function that approximates our training set P
as closely as possible: As with the MLP we try to reduce the sum of the squared
error to a minimum.

How do we continue the calculation in the case of |P | > |H|? As above, to solve
the system of equations, we have to find the solutionM of a matrix multiplication

T = M ·G. (6.10)



The problem is that this time we cannot invert the |P | × |H| matrix M because
it is not a square matrix (here, |P | 6= |H| is true). Here, we have to use the
Moore-Penrose pseudo inverse M+ which is defined by

M+ = (MT ·M)−1 ·MT (6.11)

Although the Moore-Penrose pseudo inverse is not the inverse of a matrix, it can
be used similarly in this case1. We get equations that are very similar to those
in the case of |P | = |H|:

T = M ·G (6.12)

⇔ M+ · T = M+ ·M ·G (6.13)

⇔ M+ · T = E ·G (6.14)

⇔ M+ · T = G (6.15)

Another reason for the use of the Moore-Penrose pseudo inverse is the fact that it
minimizes the squared error (which is our goal): The estimate of the vector G in
equation 6.15 corresponds to the Gauss-Markov model known from statistics,
which is used to minimize the squared error. In the aforementioned equations 6.11
and the following ones please do not mistake the T in MT (of the transpose of
the matrix M) for the T of the vector of all teaching inputs.

6.2.2.2 The generalization on several outputs is trivial and not quite
computationally expensive

We have found a mathematically exact way to directly calculate the weights. What
will happen if there are several output neurons, i.e. |O| > 1, with O being, as usual,
the set of the output neurons Ω? In this case, as we have already indicated, it does
not change much: The additional output neurons have their own set of weights while
we do not change the σ and c of the RBF layer. Thus, in an RBF network it is easy
for given σ and c to realize a lot of output neurons since we only have to calculate the
individual vector of weights

GΩ = M+ · TΩ (6.16)

for every new output neuron Ω, whereas the matrixM+, which generally requires a lot
of computational effort, always stays the same: So it is quite inexpensive – at least
concerning the computational complexity – to add more output neurons.
1 Particularly, M+ = M−1 is true if M is invertible. I do not want to go into detail of the reasons for
these circumstances and applications of M+ - they can easily be found in literature for linear algebra.



6.2.2.3 Computational effort and accuracy

For realistic problems it normally applies that there are considerably more training
samples than RBF neurons, i.e. |P | � |H|: You can, without any difficulty, use 106

training samples, if you like. Theoretically, we could find the terms for the mathemati-
cally correct solution on the blackboard (after a very long time), but such calculations
often seem to be imprecise and very time-consuming (matrix inversions require a lot
of computational effort).

Furthermore, our Moore-Penrose pseudo-inverse is, in spite of numeric stability, no
guarantee that the output vector corresponds to the teaching vector, because such
extensive computations can be prone to many inaccuracies, even though the calculation
is mathematically correct: Our computers can only provide us with (nonetheless very
good) approximations of the pseudo-inverse matrices. This means that we also get
only approximations of the correct weights (maybe with a lot of accumulated numerical
errors) and therefore only an approximation (maybe very rough or even unrecognizable)
of the desired output.

If we have enough computing power to analytically determine a weight vector, we
should use it nevertheless only as an initial value for our learning process, which leads
us to the real training methods – but otherwise it would be boring, wouldn’t it?

6.3 Combinations of equation system and gradient strategies
are useful for training

Analogous to the MLP we perform a gradient descent to find the suitable weights by
means of the already well known delta rule. Here, backpropagation is unnecessary
since we only have to train one single weight layer – which requires less computing
time.

We know that the delta rule is

∆wh,Ω = η · δΩ · oh, (6.17)

in which we now insert as follows:

∆wh,Ω = η · (tΩ − yΩ) · fact(||p− ch||) (6.18)

Here again I explicitly want to mention that it is very popular to divide the training
into two phases by analytically computing a set of weights and then refining it by
training with the delta rule.



There is still the question whether to learn offline or online. Here, the answer is similar
to the answer for the multilayer perceptron: Initially, one often trains online (faster
movement across the error surface). Then, after having approximated the solution, the
errors are once again accumulated and, for a more precise approximation, one trains
offline in a third learning phase. However, similar to the MLPs, you can be successful
by using many methods.

As already indicated, in an RBF network not only the weights between the hidden and
the output layer can be optimized. So let us now take a look at the possibility to vary
σ and c.

6.3.1 It is not always trivial to determine centers and widths of RBF
neurons

It is obvious that the approximation accuracy of RBF networks can be increased by
adapting the widths and positions of the Gaussian bells in the input space to the
problem that needs to be approximated. There are several methods to deal with the
centers c and the widths σ of the Gaussian bells:

Fixed selection: The centers and widths can be selected in a fixed manner and regard-
less of the training samples – this is what we have assumed until now.

Conditional, fixed selection: Again centers and widths are selected fixedly, but we
have previous knowledge about the functions to be approximated and comply
with it.

Adaptive to the learning process: This is definitely the most elegant variant, but cer-
tainly the most challenging one, too. A realization of this approach will not be
discussed in this chapter but it can be found in connection with another network
topology (section 10.6.1).

6.3.1.1 Fixed selection

In any case, the goal is to cover the input space as evenly as possible. Here, widths
of 2

3 of the distance between the centers can be selected so that the Gaussian bells
overlap by approx. "one third"2 (fig. 6.6 on the next page). The closer the bells are
set the more precise but the more time-consuming the whole thing becomes.

2 It is apparent that a Gaussian bell is mathematically infinitely wide, therefore I ask the reader to apologize
this sloppy formulation.



Figure 6.6: Example for an even coverage of a two-dimensional input space by applying radial basis
functions.

This may seem to be very inelegant, but in the field of function approximation we
cannot avoid even coverage. Here it is useless if the function to be approximated is
precisely represented at some positions but at other positions the return value is only
0. However, the high input dimension requires a great many RBF neurons, which in-
creases the computational effort exponentially with the dimension – and is responsible
for the fact that six- to ten-dimensional problems in RBF networks are already called
"high-dimensional" (an MLP, for example, does not cause any problems here).

6.3.1.2 Conditional, fixed selection

Suppose that our training samples are not evenly distributed across the input space.
It then seems obvious to arrange the centers and sigmas of the RBF neurons by means
of the pattern distribution. So the training patterns can be analyzed by statistical
techniques such as a cluster analysis, and so it can be determined whether there are sta-
tistical factors according to which we should distribute the centers and sigmas (fig. 6.7
on the following page).

A more trivial alternative would be to set |H| centers on positions randomly selected
from the set of patterns. So this method would allow for every training pattern p to



Figure 6.7: Example of an uneven coverage of a two-dimensional input space, of which we have
previous knowledge, by applying radial basis functions.

be directly in the center of a neuron (fig. 6.8 on the next page). This is not yet very
elegant but a good solution when time is an issue. Generally, for this method the
widths are fixedly selected.

If we have reason to believe that the set of training samples is clustered, we can use
clustering methods to determine them. There are different methods to determine
clusters in an arbitrarily dimensional set of points. We will be introduced to some of
them in excursus A. One neural clustering method are the so-called ROLFs (section
A.5), and self-organizing maps are also useful in connection with determining the
position of RBF neurons (section 10.6.1). Using ROLFs, one can also receive indicators
for useful radii of the RBF neurons. Learning vector quantisation (chapter 9) has also
provided good results. All these methods have nothing to do with the RBF networks
themselves but are only used to generate some previous knowledge. Therefore we will
not discuss them in this chapter but independently in the indicated chapters.

Another approach is to use the approved methods: We could slightly move the positions
of the centers and observe how our error function Err is changing – a gradient descent,



Figure 6.8: Example of an uneven coverage of a two-dimensional input space by applying radial ba-
sis functions. The widths were fixedly selected, the centers of the neurons were randomly distributed
throughout the training patterns. This distribution can certainly lead to slightly unrepresentative
results, which can be seen at the single data point down to the left.

as already known from the MLPs. In a similar manner we could look how the error
depends on the values σ. Analogous to the derivation of backpropagation we derive

∂Err(σhch)
∂σh

and ∂Err(σhch)
∂ch

.

Since the derivation of these terms corresponds to the derivation of backpropagation
we do not want to discuss it here.

But experience shows that no convincing results are obtained by regarding how the er-
ror behaves depending on the centers and sigmas. Even if mathematics claim that such
methods are promising, the gradient descent, as we already know, leads to problems
with very craggy error surfaces.

And that is the crucial point: Naturally, RBF networks generate very craggy error
surfaces because, if we considerably change a c or a σ, we will significantly change the
appearance of the error function.



6.4 Growing RBF networks automatically adjust the neuron
density

In growing RBF networks, the number |H| of RBF neurons is not constant. A
certain number |H| of neurons as well as their centers ch and widths σh are previously
selected (e.g. by means of a clustering method) and then extended or reduced. In the
following text, only simple mechanisms are sketched. For more information, I refer
to [Fri94].

6.4.1 Neurons are added to places with large error values

After generating this initial configuration the vector of the weights G is analytically
calculated. Then all specific errors Errp concerning the set P of the training samples
are calculated and the maximum specific error

max
P

(Errp)

is sought.

The extension of the network is simple: We replace this maximum error with a new
RBF neuron. Of course, we have to exercise care in doing this: IF the σ are small, the
neurons will only influence each other if the distance between them is short. But if
the σ are large, the already exisiting neurons are considerably influenced by the new
neuron because of the overlapping of the Gaussian bells.

So it is obvious that we will adjust the already existing RBF neurons when adding the
new neuron.

To put it simply, this adjustment is made by moving the centers c of the other neurons
away from the new neuron and reducing their width σ a bit. Then the current output
vector y of the network is compared to the teaching input t and the weight vector
G is improved by means of training. Subsequently, a new neuron can be inserted if
necessary. This method is particularly suited for function approximations.

6.4.2 Limiting the number of neurons

Here it is mandatory to see that the network will not grow ad infinitum, which can
happen very fast. Thus, it is very useful to previously define a maximum number for
neurons |H|max.



6.4.3 Less important neurons are deleted

Which leads to the question whether it is possible to continue learning when this
limit |H|max is reached. The answer is: this would not stop learning. We only have
to look for the "most unimportant" neuron and delete it. A neuron is, for example,
unimportant for the network if there is another neuron that has a similar function:
It often occurs that two Gaussian bells exactly overlap and at such a position, for
instance, one single neuron with a higher Gaussian bell would be appropriate.

But to develop automated procedures in order to find less relevant neurons is highly
problem dependent and we want to leave this to the programmer.

With RBF networks and multilayer perceptrons we have already become acquainted
with and extensivley discussed two network paradigms for similar problems. Therefore
we want to compare these two paradigms and look at their advantages and disadvan-
tages.

6.5 Comparing RBF networks and multilayer perceptrons

We will compare multilayer perceptrons and RBF networks with respect to different
aspects.

Input dimension: We must be careful with RBF networks in high-dimensional func-
tional spaces since the network could very quickly require huge memory storage
and computational effort. Here, a multilayer perceptron would cause less prob-
lems because its number of neuons does not grow exponentially with the input
dimension.

Center selection: However, selecting the centers c for RBF networks is (despite the
introduced approaches) still a major problem. Please use any previous knowledge
you have when applying them. Such problems do not occur with the MLP.

Output dimension: The advantage of RBF networks is that the training is not much
influenced when the output dimension of the network is high. For an MLP, a
learning procedure such as backpropagation thereby will be very time-consuming.

Extrapolation: Advantage as well as disadvantage of RBF networks is the lack of
extrapolation capability: An RBF network returns the result 0 far away from
the centers of the RBF layer. On the one hand it does not extrapolate, unlike
the MLP it cannot be used for extrapolation (whereby we could never know if
the extrapolated values of the MLP are reasonable, but experience shows that



MLPs are suitable for that matter). On the other hand, unlike the MLP the
network is capable to use this 0 to tell us "I don’t know", which could be an
advantage.

Lesion tolerance: For the output of an MLP, it is no so important if a weight or a
neuron is missing. It will only worsen a little in total. If a weight or a neuron
is missing in an RBF network then large parts of the output remain practically
uninfluenced. But one part of the output is heavily affected because a Gaussian
bell is directly missing. Thus, we can choose between a strong local error for
lesion and a weak but global error.

Spread: Here the MLP is "advantaged" since RBF networks are used considerably less
often – which is not always understood by professionals (at least as far as low-
dimensional input spaces are concerned). The MLPs seem to have a considerably
longer tradition and they are working too good to take the effort to read some
pages of this work about RBF networks) :-).

Exercises

Exercise 13. An |I|-|H|-|O| RBF network with fixed widths and centers of the
neurons should approximate a target function u. For this, |P | training samples of the
form (p, t) of the function u are given. Let |P | > |H| be true. The weights should be
analytically determined by means of the Moore-Penrose pseudo inverse. Indicate the
running time behavior regarding |P | and |O| as precisely as possible.

Note: There are methods for matrix multiplications and matrix inversions that are
more efficient than the canonical methods. For better estimations, I recommend to look
for such methods (and their complexity). In addition to your complexity calculations,
please indicate the used methods together with their complexity.



Chapter 7

Recurrent perceptron-like networks

Some thoughts about networks with internal states.

Generally, recurrent networks are networks that are capable of influencing themselves
by means of recurrences, e.g. by including the network output in the following
computation steps. There are many types of recurrent networks of nearly arbitrary
form, and nearly all of them are referred to as recurrent neural networks. As a
result, for the few paradigms introduced here I use the name recurrent multilayer
perceptrons.

Apparently, such a recurrent network is capable to compute more than the ordinary
MLP: If the recurrent weights are set to 0, the recurrent network will be reduced to an
ordinary MLP. Additionally, the recurrence generates different network-internal states
so that different inputs can produce different outputs in the context of the network
state.

Recurrent networks in themselves have a great dynamic that is mathematically difficult
to conceive and has to be discussed extensively. The aim of this chapter is only to
briefly discuss how recurrences can be structured and how network-internal states can
be generated. Thus, I will briefly introduce two paradigms of recurrent networks and
afterwards roughly outline their training.

With a recurrent network an input x that is constant over time may lead to different
results: On the one hand, the network could converge, i.e. it could transform itself
into a fixed state and at some time return a fixed output value y. On the other hand,
it could never converge, or at least not until a long time later, so that it can no longer
be recognized, and as a consequence, y constantly changes.
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Figure 7.1: The Roessler attractor

If the network does not converge, it is, for example, possible to check if periodicals
or attractors (fig. 7.1) are returned. Here, we can expect the complete variety of
dynamical systems. That is the reason why I particularly want to refer to the
literature concerning dynamical systems.

Further discussions could reveal what will happen if the input of recurrent networks is
changed.

In this chapter the related paradigms of recurrent networks according to Jordan and
Elman will be introduced.

7.1 Jordan networks

A Jordan network [Jor86] is a multilayer perceptron with a setK of so-called context
neurons k1, k2, . . . , k|K|. There is one context neuron per output neuron (fig. 7.2 on
the next page). In principle, a context neuron just memorizes an output until it can be
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Figure 7.2: Illustration of a Jordan network. The network output is buffered in the context neurons
and with the next time step it is entered into the network together with the new input.

processed in the next time step. Therefore, there are weighted connections between
each output neuron and one context neuron. The stored values are returned to the
actual network by means of complete links between the context neurons and the input
layer.

In the originial definition of a Jordan network the context neurons are also recurrent
to themselves via a connecting weight λ. But most applications omit this recurrence
since the Jordan network is already very dynamic and difficult to analyze, even without
these additional recurrences.

Definition 7.1 (Context neuron). A context neuron k receives the output value of
another neuron i at a time t and then reenters it into the network at a time (t+ 1).

Definition 7.2 (Jordan network). A Jordan network is a multilayer perceptron with
one context neuron per output neuron. The set of context neurons is called K. The
context neurons are completely linked toward the input layer of the network.
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Figure 7.3: Illustration of an Elman network. The entire information processing part of the network
exists, in a way, twice. The output of each neuron (except for the output of the input neurons)
is buffered and reentered into the associated layer. For the reason of clarity I named the context
neurons on the basis of their models in the actual network, but it is not mandatory to do so.

7.2 Elman networks

The Elman networks (a variation of the Jordan networks) [Elm90] have context
neurons, too, but one layer of context neurons per information processing neuron layer
(fig. 7.3). Thus, the outputs of each hidden neuron or output neuron are led into the
associated context layer (again exactly one context neuron per neuron) and from there
it is reentered into the complete neuron layer during the next time step (i.e. again
a complete link on the way back). So the complete information processing part1 of
the MLP exists a second time as a "context version" – which once again considerably
increases dynamics and state variety.

Compared with Jordan networks the Elman networks often have the advantage to act
more purposeful since every layer can access its own context.

Definition 7.3 (Elman network). An Elman network is an MLP with one context
neuron per information processing neuron. The set of context neurons is calledK. This

1 Remember: The input layer does not process information.



means that there exists one context layer per information processing neuron layer with
exactly the same number of context neurons. Every neuron has a weighted connection
to exactly one context neuron while the context layer is completely linked towards its
original layer.

Now it is interesting to take a look at the training of recurrent networks since, for
instance, ordinary backpropagation of error cannot work on recurrent networks. Once
again, the style of the following part is rather informal, which means that I will not
use any formal definitions.

7.3 Training recurrent networks

In order to explain the training as comprehensible as possible, we have to agree on
some simplifications that do not affect the learning principle itself.

So for the training let us assume that in the beginning the context neurons are ini-
tiated with an input, since otherwise they would have an undefined input (this is no
simplification but reality).

Furthermore, we use a Jordan network without a hidden neuron layer for our training
attempts so that the output neurons can directly provide input. This approach is a
strong simplification because generally more complicated networks are used. But this
does not change the learning principle.

7.3.1 Unfolding in time

Remember our actual learning procedure for MLPs, the backpropagation of error, which
backpropagates the delta values. So, in case of recurrent networks the delta values
would backpropagate cyclically through the network again and again, which makes the
training more difficult. On the one hand we cannot know which of the many generated
delta values for a weight should be selected for training, i.e. which values are useful.
On the other hand we cannot definitely know when learning should be stopped. The
advantage of recurrent networks are great state dynamics within the network; the
disadvantage of recurrent networks is that these dynamics are also granted to the
training and therefore make it difficult.

One learning approach would be the attempt to unfold the temporal states of the net-
work (fig. 7.4 on page 149): Recursions are deleted by putting a similar network above
the context neurons, i.e. the context neurons are, as a manner of speaking, the output



neurons of the attached network. More generally spoken, we have to backtrack the
recurrences and place "‘earlier"’ instances of neurons in the network – thus creating
a larger, but forward-oriented network without recurrences. This enables training a
recurrent network with any training strategy developed for non-recurrent ones. Here,
the input is entered as teaching input into every "copy" of the input neurons. This can
be done for a discrete number of time steps. These training paradigms are called un-
folding in time [MP69]. After the unfolding a training by means of backpropagation
of error is possible.

But obviously, for one weight wi,j several changing values ∆wi,j are received, which
can be treated differently: accumulation, averaging etc. A simple accumulation could
possibly result in enormous changes per weight if all changes have the same sign. Hence,
also the average is not to be underestimated. We could also introduce a discounting
factor, which weakens the influence of ∆wi,j of the past.

Unfolding in time is particularly useful if we receive the impression that the closer past
is more important for the network than the one being further away. The reason for this
is that backpropagation has only little influence in the layers farther away from the
output (remember: the farther we are from the output layer, the smaller the influence
of backpropagation).

Disadvantages: the training of such an unfolded network will take a long time since a
large number of layers could possibly be produced. A problem that is no longer negli-
gible is the limited computational accuracy of ordinary computers, which is exhausted
very fast because of so many nested computations (the farther we are from the out-
put layer, the smaller the influence of backpropagation, so that this limit is reached).
Furthermore, with several levels of context neurons this procedure could produce very
large networks to be trained.

7.3.2 Teacher forcing

Other procedures are the equivalent teacher forcing and open loop learning. They
detach the recurrence during the learning process: We simply pretend that the re-
currence does not exist and apply the teaching input to the context neurons during
the training. So, backpropagation becomes possible, too. Disadvantage: with Elman
networks a teaching input for non-output-neurons is not given.
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Figure 7.4: Illustration of the unfolding in time with a small exemplary recurrent MLP. Top: The
recurrent MLP. Bottom: The unfolded network. For reasons of clarity, I only added names to
the lowest part of the unfolded network. Dotted arrows leading into the network mark the inputs.
Dotted arrows leading out of the network mark the outputs. Each "network copy" represents a time
step of the network with the most recent time step being at the bottom.



7.3.3 Recurrent backpropagation

Another popular procedure without limited time horizon is the recurrent backpro-
pagation using methods of differential calculus to solve the problem [Pin87].

7.3.4 Training with evolution

Due to the already long lasting training time, evolutionary algorithms have proved
to be of value, especially with recurrent networks. One reason for this is that they are
not only unrestricted with respect to recurrences but they also have other advantages
when the mutation mechanisms are chosen suitably: So, for example, neurons and
weights can be adjusted and the network topology can be optimized (of course the
result of learning is not necessarily a Jordan or Elman network). With ordinary MLPs,
however, evolutionary strategies are less popular since they certainly need a lot more
time than a directed learning procedure such as backpropagation.



Chapter 8

Hopfield networks
In a magnetic field, each particle applies a force to any other particle so that
all particles adjust their movements in the energetically most favorable way.
This natural mechanism is copied to adjust noisy inputs in order to match

their real models.

Another supervised learning example of the wide range of neural networks was devel-
oped by John Hopfield: the so-called Hopfield networks [Hop82]. Hopfield and
his physically motivated networks have contributed a lot to the renaissance of neural
networks.

8.1 Hopfield networks are inspired by particles in a magnetic
field

The idea for the Hopfield networks originated from the behavior of particles in a
magnetic field: Every particle "communicates" (by means of magnetic forces) with every
other particle (completely linked) with each particle trying to reach an energetically
favorable state (i.e. a minimum of the energy function). As for the neurons this state
is known as activation. Thus, all particles or neurons rotate and thereby encourage
each other to continue this rotation. As a manner of speaking, our neural network is
a cloud of particles

Based on the fact that the particles automatically detect the minima of the energy
function, Hopfield had the idea to use the "spin" of the particles to process information:
Why not letting the particles search minima on arbitrary functions? Even if we only
use two of those spins, i.e. a binary activation, we will recognize that the developed
Hopfield network shows considerable dynamics.
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Figure 8.1: Illustration of an exemplary Hopfield network. The arrows ↑ and ↓ mark the binary
"spin". Due to the completely linked neurons the layers cannot be separated, which means that a
Hopfield network simply includes a set of neurons.

8.2 In a hopfield network, all neurons influence each other
symmetrically

Briefly speaking, a Hopfield network consists of a set K of completely linked neurons
with binary activation (since we only use two spins), with the weights being symmetric
between the individual neurons and without any neuron being directly connected to
itself (fig. 8.1). Thus, the state of |K| neurons with two possible states ∈ {−1, 1} can
be described by a string x ∈ {−1, 1}|K|.

The complete link provides a full square matrix of weights between the neurons. The
meaning of the weights will be discussed in the following. Furthermore, we will soon
recognize according to which rules the neurons are spinning, i.e. are changing their
state.

Additionally, the complete link leads to the fact that we do not know any input, output
or hidden neurons. Thus, we have to think about how we can input something into
the |K| neurons.

Definition 8.1 (Hopfield network). A Hopfield network consists of a set K of com-
pletely linked neurons without direct recurrences. The activation function of the neu-
rons is the binary threshold function with outputs ∈ {1,−1}.

Definition 8.2 (State of a Hopfield network). The state of the network consists of
the activation states of all neurons. Thus, the state of the network can be understood
as a binary string z ∈ {−1, 1}|K|.



8.2.1 Input and output of a Hopfield network are represented by neuron
states

We have learned that a network, i.e. a set of |K| particles, that is in a state is
automatically looking for a minimum. An input pattern of a Hopfield network is
exactly such a state: A binary string x ∈ {−1, 1}|K| that initializes the neurons. Then
the network is looking for the minimum to be taken (which we have previously defined
by the input of training samples) on its energy surface.

But when do we know that the minimum has been found? This is simple, too: when
the network stops. It can be proven that a Hopfield network with a symmetric weight
matrix that has zeros on its diagonal always converges [CG88] , i.e. at some point it
will stand still. Then the output is a binary string y ∈ {−1, 1}|K|, namely the state
string of the network that has found a minimum.

Now let us take a closer look at the contents of the weight matrix and the rules for the
state change of the neurons.

Definition 8.3 (Input and output of a Hopfield network). The input of a Hopfield
network is binary string x ∈ {−1, 1}|K| that initializes the state of the network. After
the convergence of the network, the output is the binary string y ∈ {−1, 1}|K| generated
from the new network state.

8.2.2 Significance of weights

We have already said that the neurons change their states, i.e. their direction, from
−1 to 1 or vice versa. These spins occur dependent on the current states of the
other neurons and the associated weights. Thus, the weights are capable to control
the complete change of the network. The weights can be positive, negative, or 0.
Colloquially speaking, for a weight wi,j between two neurons i and j the following
holds:

If wi,j is positive, it will try to force the two neurons to become equal – the larger
they are, the harder the network will try. If the neuron i is in state 1 and the
neuron j is in state −1, a high positive weight will advise the two neurons that
it is energetically more favorable to be equal.

If wi,j is negative, its behavior will be analoguous only that i and j are urged to be
different. A neuron i in state −1 would try to urge a neuron j into state 1.

Zero weights lead to the two involved neurons not influencing each other.
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Figure 8.2: Illustration of the binary threshold function.

The weights as a whole apparently take the way from the current state of the network
towards the next minimum of the energy function. We now want to discuss how the
neurons follow this way.

8.2.3 A neuron changes its state according to the influence of the other
neurons

Once a network has been trained and initialized with some starting state, the change
of state xk of the individual neurons k occurs according to the scheme

xk(t) = fact

∑
j∈K

wj,k · xj(t− 1)

 (8.1)

in each time step, where the function fact generally is the binary threshold function
(fig. 8.2) with threshold 0. Colloquially speaking: a neuron k calculates the sum of
wj,k · xj(t − 1), which indicates how strong and into which direction the neuron k is
forced by the other neurons j. Thus, the new state of the network (time t) results
from the state of the network at the previous time t − 1. This sum is the direction
into which the neuron k is pushed. Depending on the sign of the sum the neuron takes
state 1 or −1.

Another difference between Hopfield networks and other already known network topolo-
gies is the asynchronous update: A neuron k is randomly chosen every time, which then



recalculates the activation. Thus, the new activation of the previously changed neu-
rons immediately influences the network, i.e. one time step indicates the change of a
single neuron.

Regardless of the aforementioned random selection of the neuron, a Hopfield network
is often much easier to implement: The neurons are simply processed one after the
other and their activations are recalculated until no more changes occur.

Definition 8.4 (Change in the state of a Hopfield network). The change of state
of the neurons occurs asynchronously with the neuron to be updated being randomly
chosen and the new state being generated by means of this rule:

xk(t) = fact

∑
j∈J

wj,k · xj(t− 1)

 .
Now that we know how the weights influence the changes in the states of the neurons
and force the entire network towards a minimum, then there is the question of how to
teach the weights to force the network towards a certain minimum.

8.3 The weight matrix is generated directly out of the
training patterns

The aim is to generate minima on the mentioned energy surface, so that at an input
the network can converge to them. As with many other network paradigms, we use
a set P of training patterns p ∈ {1,−1}|K|, representing the minima of our energy
surface.

Unlike many other network paradigms, we do not look for the minima of an unknown
error function but define minima on such a function. The purpose is that the network
shall automatically take the closest minimum when the input is presented. For now
this seems unusual, but we will understand the whole purpose later.

Roughly speaking, the training of a Hopfield network is done by training each training
pattern exactly once using the rule described in the following (Single Shot Learning),
where pi and pj are the states of the neurons i and j under p ∈ P :

wi,j =
∑
p∈P

pi · pj (8.2)



This results in the weight matrix W . Colloquially speaking: We initialize the network
by means of a training pattern and then process weights wi,j one after another. For
each of these weights we verify: Are the neurons i, j n the same state or do the states
vary? In the first case we add 1 to the weight, in the second case we add −1.

This we repeat for each training pattern p ∈ P . Finally, the values of the weights
wi,j are high when i and j corresponded with many training patterns. Colloquially
speaking, this high value tells the neurons: "Often, it is energetically favorable to hold
the same state". The same applies to negative weights.

Due to this training we can store a certain fixed number of patterns p in the weight
matrix. At an input x the network will converge to the stored pattern that is closest
to the input p.

Unfortunately, the number of the maximum storable and reconstructible patterns p is
limited to

|P |MAX ≈ 0.139 · |K|, (8.3)

which in turn only applies to orthogonal patterns. This was shown by precise (and
time-consuming) mathematical analyses, which we do not want to specify now. If more
patterns are entered, already stored information will be destroyed.

Definition 8.5 (Learning rule for Hopfield networks). The individual elements of the
weight matrix W are defined by a single processing of the learning rule

wi,j =
∑
p∈P

pi · pj ,

where the diagonal of the matrix is covered with zeros. Here, no more than |P |MAX ≈
0.139 · |K| training samples can be trained and at the same time maintain their func-
tion.

Now we know the functionality of Hopfield networks but nothing about their practical
use.

8.4 Autoassociation and traditional application

Hopfield networks, like those mentioned above, are called autoassociators. An autoas-
sociator a exactly shows the aforementioned behavior: Firstly, when a known pattern
p is entered, exactly this known pattern is returned. Thus,

a(p) = p,



with a being the associative mapping. Secondly, and that is the practical use, this also
works with inputs that are close to a pattern:

a(p+ ε) = p.

Afterwards, the autoassociator is, in any case, in a stable state, namely in the state
p.

If the set of patterns P consists of, for example, letters or other characters in the form
of pixels, the network will be able to correctly recognize deformed or noisy letters with
high probability (fig. 8.3 on the following page).

The primary fields of application of Hopfield networks are pattern recognition and
pattern completion, such as the zip code recognition on letters in the eighties. But
soon the Hopfield networks were replaced by other systems in most of their fields of
application, for example by OCR systems in the field of letter recognition. Today
Hopfield networks are virtually no longer used, they have not become established in
practice.

8.5 Heteroassociation and analogies to neural data storage

So far we have been introduced to Hopfield networks that converge from an arbitrary
input into the closest minimum of a static energy surface.

Another variant is a dynamic energy surface: Here, the appearance of the energy
surface depends on the current state and we receive a heteroassociator instead of an
autoassociator. For a heteroassociator

a(p+ ε) = p

is no longer true, but rather
h(p+ ε) = q,

which means that a pattern is mapped onto another one. h is the heteroassociative
mapping. Such heteroassociations are achieved by means of an asymmetric weight
matrix V .



Figure 8.3: Illustration of the convergence of an exemplary Hopfield network. Each of the pictures
has 10 × 12 = 120 binary pixels. In the Hopfield network each pixel corresponds to one neuron.
The upper illustration shows the training samples, the lower shows the convergence of a heavily
noisy 3 to the corresponding training sample.



Heteroassociations connected in series of the form

h(p+ ε) = q

h(q + ε) = r

h(r + ε) = s

...
h(z + ε) = p

can provoke a fast cycle of states

p→ q → r → s→ . . .→ z → p,

whereby a single pattern is never completely accepted: Before a pattern is entirely
completed, the heteroassociation already tries to generate the successor of this pattern.
Additionally, the network would never stop, since after having reached the last state z,
it would proceed to the first state p again.

8.5.1 Generating the heteroassociative matrix

We generate the matrix V by means of elements v very similar to the autoassociative
matrix with p being (per transition) the training sample before the transition and q
being the training sample to be generated from p:

vi,j =
∑

p,q∈P,p6=q
piqj (8.4)

The diagonal of the matrix is again filled with zeros. The neuron states are, as always,
adapted during operation. Several transitions can be introduced into the matrix by a
simple addition, whereby the said limitation exists here, too.

Definition 8.6 (Learning rule for the heteroassociative matrix). For two training
samples p being predecessor and q being successor of a heteroassociative transition the
weights of the heteroassociative matrix V result from the learning rule

vi,j =
∑

p,q∈P,p6=q
piqj ,

with several heteroassociations being introduced into the network by a simple addition.



8.5.2 Stabilizing the heteroassociations

We have already mentioned the problem that the patterns are not completely generated
but that the next pattern is already beginning before the generation of the previous
pattern is finished.

This problem can be avoided by not only influencing the network by means of the
heteroassociative matrix V but also by the already known autoassociative matrixW .

Additionally, the neuron adaptation rule is changed so that competing terms are gener-
ated: One term autoassociating an existing pattern and one term trying to convert the
very same pattern into its successor. The associative rule provokes that the network
stabilizes a pattern, remains there for a while, goes on to the next pattern, and so
on.

xi(t+ 1) = (8.5)

fact


∑
j∈K

wi,jxj(t)︸ ︷︷ ︸
autoassociation

+
∑
k∈K

vi,kxk(t−∆t)︸ ︷︷ ︸
heteroassociation



Here, the value ∆t causes, descriptively speaking, the influence of the matrix V to
be delayed, since it only refers to a network being ∆t versions behind. The result is
a change in state, during which the individual states are stable for a short while. If
∆t is set to, for example, twenty steps, then the asymmetric weight matrix will realize
any change in the network only twenty steps later so that it initially works with the
autoassociative matrix (since it still perceives the predecessor pattern of the current
one), and only after that it will work against it.

8.5.3 Biological motivation of heterassociation

From a biological point of view the transition of stable states into other stable states
is highly motivated: At least in the beginning of the nineties it was assumed that the
Hopfield modell will achieve an approximation of the state dynamics in the brain, which
realizes much by means of state chains: When I would ask you, dear reader, to recite
the alphabet, you generally will manage this better than (please try it immediately)
to answer the following question:

Which letter in the alphabet follows the letter P?
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Figure 8.4: The already known Fermi function with different temperature parameter variations.

Another example is the phenomenon that one cannot remember a situation, but the
place at which one memorized it the last time is perfectly known. If one returns to
this place, the forgotten situation often comes back to mind.

8.6 Continuous Hopfield networks

So far, we only have discussed Hopfield networks with binary activations. But Hopfield
also described a version of his networks with continuous activations [Hop84], which we
want to cover at least briefly: continuous Hopfield networks. Here, the activation
is no longer calculated by the binary threshold function but by the Fermi function with
temperature parameters (fig. 8.4).

Here, the network is stable for symmetric weight matrices with zeros on the diagonal,
too.

Hopfield also stated, that continuous Hopfield networks can be applied to find accept-
able solutions for the NP-hard travelling salesman problem [HT85]. According to some
verification trials [Zel94] this statement can’t be kept up any more. But today there
are faster algorithms for handling this problem and therefore the Hopfield network is
no longer used here.



Exercises

Exercise 14. Indicate the storage requirements for a Hopfield network with |K| =
1000 neurons when the weights wi,j shall be stored as integers. Is it possible to limit
the value range of the weights in order to save storage space?

Exercise 15. Compute the weights wi,j for a Hopfield network using the training set

P ={(−1,−1,−1,−1,−1, 1);
(−1, 1, 1,−1,−1,−1);
(1,−1,−1, 1,−1, 1)}.



Chapter 9

Learning vector quantization
Learning Vector Quantization is a learning procedure with the aim to represent

the vector training sets divided into predefined classes as well as possible by
using a few representative vectors. If this has been managed, vectors which

were unkown until then could easily be assigned to one of these classes.

Slowly, part II of this text is nearing its end – and therefore I want to write a last
chapter for this part that will be a smooth transition into the next one: A chapter
about the learning vector quantization (abbreviated LVQ) [Koh89] described by
Teuvo Kohonen, which can be characterized as being related to the self organizing
feature maps. These SOMs are described in the next chapter that already belongs to
part III of this text, since SOMs learn unsupervised. Thus, after the exploration of
LVQ I want to bid farewell to supervised learning.

Previously, I want to announce that there are different variations of LVQ, which will
be mentioned but not exactly represented. The goal of this chapter is rather to analyze
the underlying principle.

9.1 About quantization

In order to explore the learning vector quantization we should at first get a clearer
picture of what quantization (which can also be referred to as discretization) is.

Everybody knows the sequence of discrete numbers

N = {1, 2, 3, . . .},
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which contains the natural numbers. Discrete means, that this sequence consists of
separated elements that are not interconnected. The elements of our example are ex-
actly such numbers, because the natural numbers do not include, for example, numbers
between 1 and 2. On the other hand, the sequence of real numbers R, for instance, is
continuous: It does not matter how close two selected numbers are, there will always
be a number between them.

Quantization means that a continuous space is divided into discrete sections: By delet-
ing, for example, all decimal places of the real number 2.71828, it could be assigned to
the natural number 2. Here it is obvious that any other number having a 2 in front of
the comma would also be assigned to the natural number 2, i.e. 2 would be some kind
of representative for all real numbers within the interval [2; 3).

It must be noted that a sequence can be irregularly quantized, too: For instance, the
timeline for a week could be quantized into working days and weekend.

A special case of quantization is digitization: In case of digitization we always talk
about regular quantization of a continuous space into a number system with respect
to a certain basis. If we enter, for example, some numbers into the computer, these
numbers will be digitized into the binary system (basis 2).

Definition 9.1 (Quantization). Separation of a continuous space into discrete sec-
tions.

Definition 9.2 (Digitization). Regular quantization.

9.2 LVQ divides the input space into separate areas

Now it is almost possible to describe by means of its name what LVQ should enable
us to do: A set of representatives should be used to divide an input space into classes
that reflect the input space as well as possible (fig. 9.1 on the facing page). Thus, each
element of the input space should be assigned to a vector as a representative, i.e. to a
class, where the set of these representatives should represent the entire input space as
precisely as possible. Such a vector is called codebook vector. A codebook vector is
the representative of exactly those input space vectors lying closest to it, which divides
the input space into the said discrete areas.

It is to be emphasized that we have to know in advance how many classes we have and
which training sample belongs to which class. Furthermore, it is important that the
classes must not be disjoint, which means they may overlap.



Figure 9.1: BExamples for quantization of a two-dimensional input space. DThe lines represent
the class limit, the × mark the codebook vectors.

Such separation of data into classes is interesting for many problems for which it is
useful to explore only some characteristic representatives instead of the possibly huge
set of all vectors – be it because it is less time-consuming or because it is sufficiently
precise.

9.3 Using codebook vectors: the nearest one is the winner

The use of a prepared set of codebook vectors is very simple: For an input vector y
the class association is easily decided by considering which codebook vector is the
closest – so, the codebook vectors build a voronoi diagram out of the set. Since each
codebook vector can clearly be associated to a class, each input vector is associated to
a class, too.



9.4 Adjusting codebook vectors

As we have already indicated, the LVQ is a supervised learning procedure. Thus, we
have a teaching input that tells the learning procedure whether the classification of
the input pattern is right or wrong: In other words, we have to know in advance the
number of classes to be represented or the number of codebook vectors.

Roughly speaking, it is the aim of the learning procedure that training samples are
used to cause a previously defined number of randomly initialized codebook vectors to
reflect the training data as precisely as possible.

9.4.1 The procedure of learning

Learning works according to a simple scheme. We have (since learning is supervised) a
set P of |P | training samples. Additionally, we already know that classes are predefined,
too, i.e. we also have a set of classes C. A codebook vector is clearly assigned to each
class. Thus, we can say that the set of classes |C| contains many codebook vectors
C1, C2, . . . , C|C|.

This leads to the structure of the training samples: They are of the form (p, c) and
therefore contain the training input vector p and its class affiliation c. For the class
affiliation

c ∈ {1, 2, . . . , |C|}

holds, which means that it clearly assigns the training sample to a class or a codebook
vector.

Intuitively, we could say about learning: "Why a learning procedure? We calculate the
average of all class members and place their codebook vectors there – and that’s it."
But we will see soon that our learning procedure can do a lot more.

I only want to briefly discuss the steps of the fundamental LVQ learning procedure:

Initialization: We place our set of codebook vectors on random positions in the input
space.

Training sample: A training sample p of our training set P is selected and presented.

Distance measurement: We measure the distance ||p−C|| between all codebook vec-
tors C1, C2, . . . , C|C| and our input p.



Winner: The closest codebook vector wins, i.e. the one with

min
Ci∈C

||p− Ci||.

Learning process: The learning process takes place according to the rule

∆Ci = η(t) · h(p, Ci) · (p− Ci) (9.1)

Ci(t+ 1) = Ci(t) + ∆Ci, (9.2)

which we now want to break down.

. We have already seen that the first factor η(t) is a time-dependent learning rate
allowing us to differentiate between large learning steps and fine tuning.

. The last factor (p − Ci) is obviously the direction toward which the codebook
vector is moved.

. But the function h(p, Ci) is the core of the rule: It implements a distinction of
cases.

Assignment is correct: The winner vector is the codebook vector of the class
that includes p. In this case, the function provides positive values and the
codebook vector moves towards p.

Assignment is wrong: The winner vector does not represent the class that in-
cludes p. Therefore it moves away from p.

We can see that our definition of the function h was not precise enough. With good
reason: From here on, the LVQ is divided into different nuances, dependent of how ex-
actly h and the learning rate should be defined (called LVQ1, LVQ2, LVQ3, OLVQ,
etc). The differences are, for instance, in the strength of the codebook vector move-
ments. They are not all based on the same principle described here, and as announced
I don’t want to discuss them any further. Therefore I don’t give any formal definition
regarding the aforementioned learning rule and LVQ.

9.5 Connection to neural networks

Until now, in spite of the learning process, the question was what LVQ has to do with
neural networks. The codebook vectors can be understood as neurons with a fixed
position within the input space, similar to RBF networks. Additionally, in nature it



often occurs that in a group one neuron may fire (a winner neuron, here: a codebook
vector) and, in return, inhibits all other neurons.

I decided to place this brief chapter about learning vector quantization here so that
this approach can be continued in the following chapter about self-organizing maps:
We will classify further inputs by means of neurons distributed throughout the input
space, only that this time, we do not know which input belongs to which class.

Now let us take a look at the unsupervised learning networks!

Exercises

Exercise 16. Indicate a quantization which equally distributes all vectors H ∈ H in
the five-dimensional unit cube H into one of 1024 classes.



Part III

Unsupervised learning network
paradigms
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Chapter 10

Self-organizing feature maps

A paradigm of unsupervised learning neural networks, which maps an input
space by its fixed topology and thus independently looks for simililarities.

Function, learning procedure, variations and neural gas.

If you take a look at the concepts of biological neural networks mentioned in the intro-
duction, one question will arise: How does our brain store and recall the impressions
it receives every day. Let me point out that the brain does not have any training
samples and therefore no "desired output". And while already considering this subject
we realize that there is no output in this sense at all, too. Our brain responds to
external input by changes in state. These are, so to speak, its output.

Based on this principle and exploring the question of how biological neural networks
organize themselves, Teuvo Kohonen developed in the Eighties his self-organizing
feature maps [Koh82,Koh98], shortly referred to as self-organizing maps or SOMs.
A paradigm of neural networks where the output is the state of the network, which
learns completely unsupervised, i.e. without a teacher.

Unlike the other network paradigms we have already got to know, for SOMs it is
unnecessary to ask what the neurons calculate. We only ask which neuron is active
at the moment. Biologically, this is very motivated: If in biology the neurons are
connected to certain muscles, it will be less interesting to know how strong a certain
muscle is contracted but which muscle is activated. In other words: We are not
interested in the exact output of the neuron but in knowing which neuron provides
output. Thus, SOMs are considerably more related to biology than, for example, the
feedforward networks, which are increasingly used for calculations.
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10.1 Structure of a self-organizing map

Typically, SOMs have – like our brain – the task to map a high-dimensional input (N
dimensions) onto areas in a low-dimensional grid of cells (G dimensions) to draw a
map of the high-dimensional space, so to speak. To generate this map, the SOM simply
obtains arbitrary many points of the input space. During the input of the points the
SOM will try to cover as good as possible the positions on which the points appear by
its neurons. This particularly means, that every neuron can be assigned to a certain
position in the input space.

At first, these facts seem to be a bit confusing, and it is recommended to briefly reflect
about them. There are two spaces in which SOMs are working:

. The N -dimensional input space and

. the G-dimensional grid on which the neurons are lying and which indicates
the neighborhood relationships between the neurons and therefore the network
topology.

In a one-dimensional grid, the neurons could be, for instance, like pearls on a string.
Every neuron would have exactly two neighbors (except for the two end neurons). A
two-dimensional grid could be a square array of neurons (fig. 10.1 on the next page).
Another possible array in two-dimensional space would be some kind of honeycomb
shape. Irregular topologies are possible, too, but not very often. Topolgies with more
dimensions and considerably more neighborhood relationships would also be possible,
but due to their lack of visualization capability they are not employed very often.

Even if N = G is true, the two spaces are not equal and have to be distinguished. In
this special case they only have the same dimension.

Initially, we will briefly and formally regard the functionality of a self-organizing map
and then make it clear by means of some examples.

Definition 10.1 (SOM neuron). Similar to the neurons in an RBF network a SOM
neuron k does not occupy a fixed position ck (a center) in the input space.

Definition 10.2 (Self-organizing map). A self-organizing map is a set K of SOM
neurons. If an input vector is entered, exactly that neuron k ∈ K is activated which
is closest to the input pattern in the input space. The dimension of the input space is
referred to as N .

Definition 10.3 (Topology). The neurons are interconnected by neighborhood re-
lationships. These neighborhood relationships are called topology. The training of
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Figure 10.1: Example topologies of a self-organizing map. Above we can see a one-dimensional
topology, below a two-dimensional one.

a SOM is highly influenced by the topology. It is defined by the topology function
h(i, k, t), where i is the winner neuron1 ist, k the neuron to be adapted (which will be
discussed later) and t the timestep. The dimension of the topology is referred to as
G.

10.2 SOMs always activate the neuron with the least
distance to an input pattern

Like many other neural networks, the SOM has to be trained before it can be used.
But let us regard the very simple functionality of a complete self-organizing map before
training, since there are many analogies to the training. Functionality consists of the
following steps:

Input of an arbitrary value p of the input space RN .

Calculation of the distance between every neuron k and p by means of a norm, i.e.
calculation of ||p− ck||.

1 We will learn soon what a winner neuron is.



One neuron becomes active, namely such neuron i with the shortest calculated dis-
tance to the input. All other neurons remain inactive.This paradigm of activity
is also called winner-takes-all scheme. The output we expect due to the input of
a SOM shows which neuron becomes active.

In many literature citations, the description of SOMs is more formal: Often an input
layer is described that is completely linked towards an SOM layer. Then the input layer
(N neurons) forwards all inputs to the SOM layer. The SOM layer is laterally linked
in itself so that a winner neuron can be established and inhibit the other neurons. I
think that this explanation of a SOM is not very descriptive and therefore I tried to
provide a clearer description of the network structure.

Now the question is which neuron is activated by which input – and the answer is
given by the network itself during training.

10.3 Training

[Training makes the SOM topology cover the input space] The training of a SOM is
nearly as straightforward as the functionality described above. Basically, it is struc-
tured into five steps, which partially correspond to those of functionality.

Initialization: The network starts with random neuron centers ck ∈ RN from the input
space.

Creating an input pattern: A stimulus, i.e. a point p, is selected from the input
space RN . Now this stimulus is entered into the network.

Distance measurement: Then the distance ||p− ck|| is determined for every neuron k
in the network.

Winner takes all: The winner neuron i is determined, which has the smallest dis-
tance to p, i.e. which fulfills the condition

||p− ci|| ≤ ||p− ck|| ∀ k 6= i

. You can see that from several winner neurons one can be selected at will.



Adapting the centers: The neuron centers are moved within the input space according
to the rule2

∆ck = η(t) · h(i, k, t) · (p− ck),

where the values ∆ck are simply added to the existing centers. The last factor
shows that the change in position of the neurons k is proportional to the distance
to the input pattern p and, as usual, to a time-dependent learning rate η(t). The
above-mentioned network topology exerts its influence by means of the function
h(i, k, t), which will be discussed in the following.

Definition 10.4 (SOM learning rule). A SOM is trained by presenting an input
pattern and determining the associated winner neuron. The winner neuron and its
neighbor neurons, which are defined by the topology function, then adapt their centers
according to the rule

∆ck = η(t) · h(i, k, t) · (p− ck), (10.1)

ck(t+ 1) = ck(t) + ∆ck(t). (10.2)

10.3.1 The topology function defines, how a learning neuron influences its
neighbors

The topology function h is not defined on the input space but on the grid and
represents the neighborhood relationships between the neurons, i.e. the topology of the
network. It can be time-dependent (which it often is) – which explains the parameter
t. The parameter k is the index running through all neurons, and the parameter i is
the index of the winner neuron.

In principle, the function shall take a large value if k is the neighbor of the winner
neuron or even the winner neuron itself, and small values if not. SMore precise defini-
tion: The topology function must be unimodal, i.e. it must have exactly one maximum.
This maximum must be next to the winner neuron i, for which the distance to itself
certainly is 0.

Additionally, the time-dependence enables us, for example, to reduce the neighborhood
in the course of time.

2 Note: In many sources this rule is written ηh(p− ck), which wrongly leads the reader to believe that h
is a constant. This problem can easily be solved by not omitting the multiplication dots ·.
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Figure 10.2: Example distances of a one-dimensional SOM topology (above) and a two-
dimensional SOM topology (below) between two neurons i and k. In the lower case the Euclidean
distance is determined (in two-dimensional space equivalent to the Pythagoream theorem). In the
upper case we simply count the discrete path length between i and k. To simplify matters I required
a fixed grid edge length of 1 in both cases.

In order to be able to output large values for the neighbors of i and small values for
non-neighbors, the function h needs some kind of distance notion on the grid because
from somewhere it has to know how far i and k are apart from each other on the grid.
There are different methods to calculate this distance.

On a two-dimensional grid we could apply, for instance, the Euclidean distance (lower
part of fig. 10.2) or on a one-dimensional grid we could simply use the number of the
connections between the neurons i and k (upper part of the same figure).

Definition 10.5 (Topology function). The topology function h(i, k, t) describes the
neighborhood relationships in the topology. It can be any unimodal function that
reaches its maximum when i = k gilt. Time-dependence is optional, but often used.



10.3.1.1 Introduction of common distance and topology functions

A common distance function would be, for example, the already known Gaussian
bell (see fig. 10.3 on the next page). It is unimodal with a maximum close to 0.
Additionally, its width can be changed by applying its parameter σ , which can be
used to realize the neighborhood being reduced in the course of time: We simply relate
the time-dependence to the σ and the result is a monotonically decreasing σ(t). Then
our topology function could look like this:

h(i, k, t) = e
(
− ||gi−ck||

2

2·σ(t)2

)
, (10.3)

where gi and gk represent the neuron positions on the grid, not the neuron positions
in the input space, which would be referred to as ci and ck.

Other functions that can be used instead of the Gaussian function are, for instance,
the cone function, the cylinder function or the Mexican hat function (fig. 10.3
on the following page). Here, the Mexican hat function offers a particular biological
motivation: Due to its negative digits it rejects some neurons close to the winner neuron,
a behavior that has already been observed in nature. This can cause sharply separated
map areas – and that is exactly why the Mexican hat function has been suggested by
Teuvo Kohonen himself. But this adjustment characteristic is not necessary for the
functionality of the map, it could even be possible that the map would diverge, i.e. it
could virtually explode.

10.3.2 Learning rates and neighborhoods can decrease monotonically over
time

To avoid that the later training phases forcefully pull the entire map towards a new
pattern, the SOMs often work with temporally monotonically decreasing learning rates
and neighborhood sizes. At first, let us talk about the learning rate: Typical sizes of
the target value of a learning rate are two sizes smaller than the initial value, e.g

0.01 < η < 0.6

could be true. But this size must also depend on the network topology or the size of
the neighborhood.

As we have already seen, a decreasing neighborhood size can be realized, for example,
by means of a time-dependent, monotonically decreasing σ with the Gaussin bell being
used in the topology function.
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Figure 10.3: Gaussian bell, cone function, cylinder function and the Mexican hat function sug-
gested by Kohonen as examples for topology functions of a SOM..



The advantage of a decreasing neighborhood size is that in the beginning a moving
neuron "pulls along" many neurons in its vicinity, i.e. the randomly initialized network
can unfold fast and properly in the beginning. In the end of the learning process, only
a few neurons are influenced at the same time which stiffens the network as a whole
but enables a good "fine tuning" of the individual neurons.

It must be noted that
h · η ≤ 1

must always be true, since otherwise the neurons would constantly miss the current
training sample.

But enough of theory – let us take a look at a SOM in action!

10.4 Examples for the functionality of SOMs

Let us begin with a simple, mentally comprehensible example.

In this example, we use a two-dimensional input space, i.e. N = 2 is true. Let the grid
structure be one-dimensional (G = 1). Furthermore, our example SOM should consist
of 7 neurons and the learning rate should be η = 0.5.

The neighborhood function is also kept simple so that we will be able to mentally
comprehend the network:

h(i, k, t) =


1 k direct neighbor of i,
1 k = i,

0 otherw.
(10.4)

Now let us take a look at the above-mentioned network with random initialization of
the centers (fig. 10.4 on the next page) and enter a training sample p. Obviously, in
our example the input pattern is closest to neuron 3, i.e. this is the winning neuron.

We remember the learning rule for SOMs

∆ck = η(t) · h(i, k, t) · (p− ck)

and process the three factors from the back:

Learning direction: Remember that the neuron centers ck are vectors in the input
space, as well as the pattern p. Thus, the factor (p− ck) indicates the vector of
the neuron k to the pattern p. This is now multiplied by different scalars:
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Figure 10.4: Illustration of the two-dimensional input space (left) and the one-dimensional topolgy
space (right) of a self-organizing map. Neuron 3 is the winner neuron since it is closest to p. In
the topology, the neurons 2 and 4 are the neighbors of 3. The arrows mark the movement of the
winner neuron and its neighbors towards the training sample p.

To illustrate the one-dimensional topology of the network, it is plotted into the input space by the
dotted line. The arrows mark the movement of the winner neuron and its neighbors towards the
pattern.



Our topology function h indicates that only the winner neuron and its two closest
neighbors (here: 2 and 4) are allowed to learn by returning 0 for all other neurons.
A time-dependence is not specified. Thus, our vector (p − ck) is multiplied by
either 1 or 0.

The learning rate indicates, as always, the strength of learning. As already mentioned,
η = 0.5, i. e. all in all, the result is that the winner neuron and its neighbors
(here: 2, 3 and 4) approximate the pattern p half the way (in the figure marked
by arrows).

Although the center of neuron 7 – seen from the input space – is considerably closer to
the input pattern p than neuron 2, neuron 2 is learning and neuron 7 is not. I want to
remind that the network topology specifies which neuron is allowed to learn and not
its position in the input space. This is exactly the mechanism by which a topology can
significantly cover an input space without having to be related to it by any sort.

After the adaptation of the neurons 2, 3 and 4 the next pattern is applied, and so on.
Another example of how such a one-dimensional SOM can develop in a two-dimensional
input space with uniformly distributed input patterns in the course of time can be seen
in figure 10.5 on the following page.

End states of one- and two-dimensional SOMs with differently shaped input spaces can
be seen in figure 10.6 on page 183. As we can see, not every input space can be neatly
covered by every network topology. There are so called exposed neurons – neurons
which are located in an area where no input pattern has ever been occurred. A one-
dimensional topology generally produces less exposed neurons than a two-dimensional
one: For instance, during training on circularly arranged input patterns it is nearly
impossible with a two-dimensional squared topology to avoid the exposed neurons in
the center of the circle. These are pulled in every direction during the training so that
they finally remain in the center. But this does not make the one-dimensional topology
an optimal topology since it can only find less complex neighborhood relationships than
a multi-dimensional one.

10.4.1 Topological defects are failures in SOM unfolding

During the unfolding of a SOM it could happen that a topological defect (fig. 10.7
on page 184) occurs, i.e. the SOM does not unfold correctly. A topological defect can
be described at best by means of the word "knotting".

A remedy for topological defects could be to increase the initial values for the neigh-
borhood size, because the more complex the topology is (or the more neighbors each



Figure 10.5: Behavior of a SOM with one-dimensional topology (G = 1) after the input of 0, 100,
300, 500, 5000, 50000, 70000 and 80000 randomly distributed input patterns p ∈ R2. During the
training η decreased from 1.0 to 0.1, the σ parameter of the Gauss function decreased from 10.0
to 0.2.



Figure 10.6: End states of one-dimensional (left column) and two-dimensional (right column)
SOMs on different input spaces. 200 neurons were used for the one-dimensional topology, 10× 10
neurons for the two-dimensionsal topology and 80.000 input patterns for all maps.



Figure 10.7: A topological defect in a two-dimensional SOM.

neuron has, respectively, since a three-dimensional or a honeycombed two-dimensional
topology could also be generated) the more difficult it is for a randomly initialized map
to unfold.

10.5 It is possible to adjust the resolution of certain areas in
a SOM

We have seen that a SOM is trained by entering input patterns of the input space RN
one after another, again and again so that the SOM will be aligned with these patterns
and map them. It could happen that we want a certain subset U of the input space
to be mapped more precise than the other ones.

This problem can easily be solved by means of SOMs: During the training dispropor-
tionally many input patterns of the area U are presented to the SOM. If the number of
training patterns of U ⊂ RN presented to the SOM exceeds the number of those pat-



Figure 10.8: Training of a SOM with G = 2 on a two-dimensional input space. On the left side,
the chance to become a training pattern was equal for each coordinate of the input space. On the
right side, for the central circle in the input space, this chance is more than ten times larger than
for the remaining input space (visible in the larger pattern density in the background). In this circle
the neurons are obviously more crowded and the remaining area is covered less dense but in both
cases the neurons are still evenly distributed. The two SOMS were trained by means of 80.000
training samples and decreasing η (1→ 0.2) as well as decreasing σ (5→ 0.5).

terns of the remaining RN \U , then more neurons will group there while the remaining
neurons are sparsely distributed on RN \ U (fig. 10.8).

As you can see in the illustration, the edge of the SOM could be deformed. This can be
compensated by assigning to the edge of the input space a slightly higher probability
of being hit by training patterns (an often applied approach for reaching every corner
with the SOMs).

Also, a higher learning rate is often used for edge and corner neurons, since they are
only pulled into the center by the topology. This also results in a significantly improved
corner coverage.



10.6 Application of SOMs

Regarding the biologically inspired associative data storage, there are many fields
of application for self-organizing maps and their variations.

For example, the different phonemes of the finnish language have successfully been
mapped onto a SOM with a two dimensional discrete grid topology and therefore
neighborhoods have been found (a SOM does nothing else than finding neighborhood
relationships). So one tries once more to break down a high-dimensional space into a
low-dimensional space (the topology), looks if some structures have been developed –
et voilà: clearly defined areas for the individual phenomenons are formed.

Teuvo Kohonen himself made the effort to search many papers mentioning his SOMs
in their keywords. In this large input space the individual papers now individual
positions, depending on the occurrence of keywords. Then Kohonen created a SOM
with G = 2 and used it to map the high-dimensional "paper space" developed by him.

Thus, it is possible to enter any paper into the completely trained SOM and look which
neuron in the SOM is activated. It will be likely to discover that the neighbored papers
in the topology are interesting, too. This type of brain-like context-based search
also works with many other input spaces.

It is to be noted that the system itself defines what is neighbored, i.e. similar, within
the topology – and that’s why it is so interesting.

This example shows that the position c of the neurons in the input space is not signifi-
cant. It is rather interesting to see which neuron is activated when an unknown input
pattern is entered. Next, we can look at which of the previous inputs this neuron was
also activated – and will immediately discover a group of very similar inputs. The
more the inputs within the topology are diverging, the less things they have in com-
mon. Virtually, the topology generates a map of the input characteristics – reduced
to descriptively few dimensions in relation to the input dimension.

Therefore, the topology of a SOM often is two-dimensional so that it can be easily
visualized, while the input space can be very high-dimensional.

10.6.1 SOMs can be used to determine centers for RBF neurons

SOMs arrange themselves exactly towards the positions of the outgoing inputs. As a
result they are used, for example, to select the centers of an RBF network. We have
already been introduced to the paradigm of the RBF network in chapter 6.



As we have already seen, it is possible to control which areas of the input space should
be covered with higher resolution - or, in connection with RBF networks, on which
areas of our function should the RBF network work with more neurons, i.e. work more
exactly. As a further useful feature of the combination of RBF networks with SOMs
one can use the topology obtained through the SOM: During the final training of a
RBF neuron it can be used to influence neighboring RBF neurons in different ways.

For this, many neural network simulators offer an additional so-called SOM layer in
connection with the simulation of RBF networks.

10.7 Variations of SOMs

There are different variations of SOMs for different variations of representation tasks:

10.7.1 A neural gas is a SOM without a static topology

The neural gas is a variation of the self-organizing maps of Thomas Martinetz
[MBS93], which has been developed from the difficulty of mapping complex input
information that partially only occur in the subspaces of the input space or even
change the subspaces (fig. 10.9 on the following page).

The idea of a neural gas is, roughly speaking, to realize a SOM without a grid structure.
Due to the fact that they are derived from the SOMs the learning steps are very similar
to the SOM learning steps, but they include an additional intermediate step:

. again, random initialization of ck ∈ Rn

. selection and presentation of a pattern of the input space p ∈ Rn

. neuron distance measurement

. identification of the winner neuron i

. Intermediate step: generation of a list L of neurons sorted in ascending order by
their distance to the winner neuron. Thus, the first neuron in the list L is the
neuron that is closest to the winner neuron.

. changing the centers by means of the known rule but with the slightly modified
topology function

hL(i, k, t).



Figure 10.9: A figure filling different subspaces of the actual input space of different positions
therefore can hardly be filled by a SOM.

The function hL(i, k, t), which is slightly modified compared with the original function
h(i, k, t), now regards the first elements of the list as the neighborhood of the winner
neuron i. The direct result is that – similar to the free-floating molecules in a gas
– the neighborhood relationships between the neurons can change anytime, and the
number of neighbors is almost arbitrary, too. The distance within the neighborhood
is now represented by the distance within the input space.

The bulk of neurons can become as stiffened as a SOM by means of a constantly
decreasing neighborhood size. It does not have a fixed dimension but it can take the
dimension that is locally needed at the moment, which can be very advantageous.

A disadvantage could be that there is no fixed grid forcing the input space to become
regularly covered, and therefore wholes can occur in the cover or neurons can be
isolated.

In spite of all practical hints, it is as always the user’s responsibility not to understand
this text as a catalog for easy answers but to explore all advantages and disadvantages
himself.

Unlike a SOM, the neighborhood of a neural gas must initially refer to all neurons since
otherwise some outliers of the random initialization may never reach the remaining
group. To forget this is a popular error during the implementation of a neural gas.



With a neural gas it is possible to learn a kind of complex input such as in fig. 10.9
on the preceding page since we are not bound to a fixed-dimensional grid. But some
computational effort could be necessary for the permanent sorting of the list (here, it
could be effective to store the list in an ordered data structure right from the start).

Definition 10.6 (Neural gas). A neural gas differs from a SOM by a completely
dynamic neighborhood function. With every learning cycle it is decided anew which
neurons are the neigborhood neurons of the winner neuron. Generally, the criterion for
this decision is the distance between the neurosn and the winner neuron in the input
space.

10.7.2 A Multi-SOM consists of several separate SOMs

In order to present another variant of the SOMs, I want to formulate an extended
problem: What do we do with input patterns from which we know that they are
confined in different (maybe disjoint) areas?

Here, the idea is to use not only one SOM but several ones: A multi-self-organizing
map, shortly referred to as M-SOM [GKE01b, GKE01a, GS06]. It is unnecessary
that the SOMs have the same topology or size, an M-SOM is just a combination of M
SOMs.

This learning process is analog to that of the SOMs. However, only the neurons
belonging to the winner SOM of each training step are adapted. Thus, it is easy to
represent two disjoint clusters of data by means of two SOMs, even if one of the clusters
is not represented in every dimension of the input space RN . Actually, the individual
SOMs exactly reflect these clusters.

Definition 10.7 (Multi-SOM). A multi-SOM is nothing more than the simultaneous
use of M SOMs.

10.7.3 A multi-neural gas consists of several separate neural gases

Analogous to the multi-SOM, we also have a set of M neural gases: a multi-neural
gas [GS06, SG06]. This construct behaves analogous to neural gas and M-SOM:
Again, only the neurons of the winner gas are adapted.

The reader certainly wonders what advantage is there to use a multi-neural gas since an
individual neural gas is already capable to divide into clusters and to work on complex
input patterns with changing dimensions. Basically, this is correct, but a multi-neural
gas has two serious advantages over a simple neural gas.



1. With several gases, we can directly tell which neuron belongs to which gas. This
is particularly important for clustering tasks, for which multi-neural gases have
been used recently. Simple neural gases can also find and cover clusters, but now
we cannot recognize which neuron belongs to which cluster.

2. A lot of computational effort is saved when large original gases are divided
into several smaller ones since (as already mentioned) the sorting of the list
L could use a lot of computational effort while the sorting of several smaller lists
L1, L2, . . . , LM is less time-consuming – even if these lists in total contain the
same number of neurons.

As a result we will only obtain local instead of global sortings, but in most cases these
local sortings are sufficient.

Now we can choose between two extreme cases of multi-neural gases: One extreme case
is the ordinary neural gas M = 1, i.e. we only use one single neural gas. Interesting
enough, the other extreme case (very large M , a few or only one neuron per gas)
behaves analogously to the K-means clustering (for more information on clustering
procedures see excursus A).

Definition 10.8 (Multi-neural gas). A multi-neural gas is nothing more than the
simultaneous use of M neural gases.

10.7.4 Growing neural gases can add neurons to themselves

A growing neural gas is a variation of the aforementioned neural gas to which more
and more neurons are added according to certain rules. Thus, this is an attempt to
work against the isolation of neurons or the generation of larger wholes in the cover.

Here, this subject should only be mentioned but not discussed.

To build a growing SOM is more difficult because new neurons have to be integrated
in the neighborhood.

Exercises

Exercise 17. A regular, two-dimensional grid shall cover a two-dimensional surface
as "well" as possible.

1. Which grid structure would suit best for this purpose?



2. Which criteria did you use for "well" and "best"?

The very imprecise formulation of this exercise is intentional.





Chapter 11

Adaptive resonance theory
An ART network in its original form shall classify binary input vectors, i.e. to

assign them to a 1-out-of-n output. Simultaneously, the so far unclassified
patterns shall be recognized and assigned to a new class.

As in the other smaller chapters, we want to try to figure out the basic idea of the
adaptive resonance theory (abbreviated: ART) without discussing its theory pro-
foundly.

In several sections we have already mentioned that it is difficult to use neural networks
for the learning of new information in addition to but without destroying the already
existing information. This circumstance is called stability / plasticity dilemma.

In 1987, Stephen Grossberg and Gail Carpenter published the first version of
their ART network [Gro76] in order to alleviate this problem. This was followed by a
whole family of ART improvements (which we want to discuss briefly, too).

It is the idea of unsupervised learning, whose aim is the (initially binary) pattern recog-
nition, or more precisely the categorization of patterns into classes. But additionally
an ART network shall be capable to find new classes.

11.1 Task and structure of an ART network

An ART network comprises exactly two layers: the input layer I and the recognition
layer O with the input layer being completely linked towards the recognition layer.
This complete link induces a top-down weight matrix W that contains the weight
values of the connections between each neuron in the input layer and each neuron in
the recognition layer (fig. 11.1 on the following page).

193



�� �� �� ��GFED@ABCi1

��















�� ��44444444444444

##FFFFFFFFFFFFFFFFFFFFF

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOO

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS GFED@ABCi2

{{xxxxxxxxxxxxxxxxxxxxx

��















�� ��44444444444444

##FFFFFFFFFFFFFFFFFFFFF

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOO GFED@ABCi3

wwooooooooooooooooooooooooooooo

{{xxxxxxxxxxxxxxxxxxxxx

��















�� ��44444444444444

##FFFFFFFFFFFFFFFFFFFFF GFED@ABCi4

uukkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

wwooooooooooooooooooooooooooooo

{{xxxxxxxxxxxxxxxxxxxxx

��















�� ��44444444444444

GFED@ABCΩ1

EE















;;xxxxxxxxxxxxxxxxxxxxx

77ooooooooooooooooooooooooooooo

55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

��

GFED@ABCΩ2

OO EE















;;xxxxxxxxxxxxxxxxxxxxx

77ooooooooooooooooooooooooooooo

��

GFED@ABCΩ3

YY44444444444444

OO EE















;;xxxxxxxxxxxxxxxxxxxxx

��

GFED@ABCΩ4

ccFFFFFFFFFFFFFFFFFFFFF

YY44444444444444

OO EE















��

GFED@ABCΩ5

ggOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

ccFFFFFFFFFFFFFFFFFFFFF

YY44444444444444

OO

��

GFED@ABCΩ6

iiSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

ggOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

ccFFFFFFFFFFFFFFFFFFFFF

YY44444444444444

��

Figure 11.1: Simplified illustration of the ART network structure. Top: the input layer, bottom:
the recognition layer. In this illustration the lateral inhibition of the recognition layer and the control
neurons are omitted.

Simple binary patterns are entered into the input layer and transferred to the recogni-
tion layer while the recognition layer shall return a 1-out-of-|O| encoding, i.e. it should
follow the winner-takes-all scheme. For instance, to realize this 1-out-of-|O| encoding
the principle of lateral inhibition can be used – or in the implementation the most
activated neuron can be searched. For practical reasons an IF query would suit this
task best.

11.1.1 Resonance takes place by activities being tossed and turned

But there also exists a bottom-up weight matrix V , which propagates the activities
within the recognition layer back into the input layer. Now it is obvious that these ac-
tivities are bounced forth and back again and again, a fact that leads us to resonance.
Every activity within the input layer causes an activity within the recognition layer
while in turn in the recognition layer every activity causes an activity within the input
layer.

In addition to the two mentioned layers, in an ART network also exist a few neurons
that exercise control functions such as signal enhancement. But we do not want to
discuss this theory further since here only the basic principle of the ART network should



become explicit. I have only mentioned it to explain that in spite of the recurrences,
the ART network will achieve a stable state after an input.

11.2 The learning process of an ART network is divided to
top-down and bottom-up learning

The trick of adaptive resonance theory is not only the configuration of the ART network
but also the two-piece learning procedure of the theory: On the one hand we train the
top-down matrix W , on the other hand we train the bottom-up matrix V (fig. 11.2 on
the next page).

11.2.1 Pattern input and top-down learning

When a pattern is entered into the network it causes - as already mentioned - an
activation at the output neurons and the strongest neuron wins. Then the weights of
the matrix W going towards the output neuron are changed such that the output of
the strongest neuron Ω is still enhanced, i.e. the class affiliation of the input vector to
the class of the output neuron Ω becomes enhanced.

11.2.2 Resonance and bottom-up learning

The training of the backward weights of the matrix V is a bit tricky: Only the weights
of the respective winner neuron are trained towards the input layer and our current
input pattern is used as teaching input. Thus, the network is trained to enhance input
vectors.

11.2.3 Adding an output neuron

Of course, it could happen that the neurons are nearly equally activated or that several
neurons are activated, i.e. that the network is indecisive. In this case, the mechanisms
of the control neurons activate a signal that adds a new output neuron. Then the
current pattern is assigned to this output neuron and the weight sets of the new
neuron are trained as usual.
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Abbildung 11.2: Vereinfachte Darstellung des
zweigeteilten Trainings eines ART-Netzes: Die
jeweils trainierten Gewichte sind durchgezogen
dargestellt. Nehmen wir an, ein Muster wurde in
das Netz eingegeben und die Zahlen markieren
Ausgaben. Oben: Wir wir sehen, ist Ω2 das Ge-
winnerneuron. Mitte: Also werden die Gewichte
zum Gewinnerneuron hin trainiert und (unten)
die Gewichte vom Gewinnerneuron zur Eingangs-
schicht trainiert.

einer IF-Abfrage, die man in den Mecha-
nismus eines Neuronalen Netzes gepresst
hat.

11.3 Erweiterungen

Wie schon eingangs erwähnt, wurden die
ART-Netze vielfach erweitert.

ART-2 [CG87] ist eine Erweiterung
auf kontinuierliche Eingaben und bietet
zusätzlich (in einer ART-2A genannten
Erweiterung) Verbesserungen der Lernge-
schwindigkeit, was zusätzliche Kontroll-
neurone und Schichten zur Folge hat.

ART-3 [CG90] verbessert die Lernfähig-
keit von ART-2, indem zusätzliche biolo-
gische Vorgänge wie z.B. die chemischen
Vorgänge innerhalb der Synapsen adap-
tiert werden1.

Zusätzlich zu den beschriebenen Erweite-
rungen existieren noch viele mehr.

1 Durch die häufigen Erweiterungen der Adaptive
Resonance Theory sprechen böse Zungen bereits
von ”ART-n-Netzen“.
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Figure 11.2: Simplified illustration of the two-piece training of an ART network: The trained
weights are represented by solid lines. Let us assume that a pattern has been entered into the
network and that the numbers mark the outputs. Top: We can see that Ω2 is the winner neuron.
Middle: So the weights are trained towards the winner neuron and (below) the weights of the
winner neuron are trained towards the input layer.



Thus, the advantage of this system is not only to divide inputs into classes and to find
new classes, it can also tell us after the activation of an output neuron what a typical
representative of a class looks like - which is a significant feature.

Often, however, the system can only moderately distinguish the patterns. The question
is when a new neuron is permitted to become active and when it should learn. In an
ART network there are different additional control neurons which answer this question
according to different mathematical rules and which are responsible for intercepting
special cases.

At the same time, one of the largest objections to an ART is the fact that an ART
network uses a special distinction of cases, similar to an IF query, that has been forced
into the mechanism of a neural network.

11.3 Extensions

As already mentioned above, the ART networks have often been extended.

ART-2 [CG87] is extended to continuous inputs and additionally offers (in an exten-
sion called ART-2A) enhancements of the learning speed which results in additional
control neurons and layers.

ART-3 [CG90] 3 improves the learning ability of ART-2 by adapting additional bio-
logical processes such as the chemical processes within the synapses1.

Apart from the described ones there exist many other extensions.

1 Because of the frequent extensions of the adaptive resonance theory wagging tongues already call them
"ART-n networks".
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Appendix A

Excursus: Cluster analysis and regional and
online learnable fields

In Grimm’s dictionary the extinct German word "Kluster" is described by "was
dicht und dick zusammensitzet (a thick and dense group of sth.)". In static

cluster analysis, the formation of groups within point clouds is explored.
Introduction of some procedures, comparison of their advantages and

disadvantages. Discussion of an adaptive clustering method based on neural
networks. A regional and online learnable field models from a point cloud,
possibly with a lot of points, a comparatively small set of neurons being

representative for the point cloud.

As already mentioned, many problems can be traced back to problems in cluster
analysis. Therefore, it is necessary to research procedures that examine whether
groups (so-called clusters) exist within point clouds.

Since cluster analysis procedures need a notion of distance between two points, a
metric must be defined on the space where these points are situated.

We briefly want to specify what a metric is.

Definition A.1 (Metric). A relation dist(x1, x2) defined for two objects x1, x2 is
referred to as metric if each of the following criteria applies:

1. dist(x1, x2) = 0 if and only if x1 = x2,

2. dist(x1, x2) = dist(x2, x1), i.e. symmetry,

3. dist(x1, x3) ≤ dist(x1, x2) + dist(x2, x3), i.e. the triangle inequality holds.
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Colloquially speaking, a metric is a tool for determining distances between points in
any space. Here, the distances have to be symmetrical, and the distance between to
points may only be 0 if the two points are equal. Additionally, the triangle inequality
must apply.

Metrics are provided by, for example, the squared distance and the Euclidean
distance, which have already been introduced. Based on such metrics we can define
a clustering procedure that uses a metric as distance measure.

Now we want to introduce and briefly discuss different clustering procedures.

A.1 k-means clustering allocates data to a predefined number
of clusters

k-means clustering according to J. MacQueen [Mac67] is an algorithm that is often
used because of its low computation and storage complexity and which is regarded as
"inexpensive and good". The operation sequence of the k-means clustering algorithm
is the following:

1. Provide data to be examined.

2. Define k, which is the number of cluster centers.

3. Select k random vectors for the cluster centers (also referred to as codebook
vectors).

4. Assign each data point to the next codebook vector1

5. Compute cluster centers for all clusters.

6. Set codebook vectors to new cluster centers.

7. Continue with 4 until the assignments are no longer changed.

Step 2 already shows one of the great questions of the k-means algorithm: The number
k of the cluster centers has to be determined in advance. This cannot be done by the
algorithm. The problem is that it is not necessarily known in advance how k can be
determined best. Another problem is that the procedure can become quite instable if
the codebook vectors are badly initialized. But since this is random, it is often useful
to restart the procedure. This has the advantage of not requiring much computational
effort. If you are fully aware of those weaknesses, you will receive quite good results.

1 The name codebook vector was created because the often used name cluster vector was too unclear.



However, complex structures such as "clusters in clusters" cannot be recognized. If k is
high, the outer ring of the construction in the following illustration will be recognized
as many single clusters. If k is low, the ring with the small inner clusters will be
recognized as one cluster.

For an illustration see the upper right part of fig. A.1 on page 205.

A.2 k-nearest neighboring looks for the k nearest neighbors of
each data point

The k-nearest neighboring procedure [CH67] connects each data point to the k
closest neighbors, which often results in a division of the groups. Then such a group
builds a cluster. The advantage is that the number of clusters occurs all by itself. The
disadvantage is that a large storage and computational effort is required to find the
next neighbor (the distances between all data points must be computed and stored).

There are some special cases in which the procedure combines data points belonging to
different clusters, if k is too high. (see the two small clusters in the upper right of the
illustration). Clusters consisting of only one single data point are basically conncted
to another cluster, which is not always intentional.

Furthermore, it is not mandatory that the links between the points are symmetric.

But this procedure allows a recognition of rings and therefore of "clusters in clusters",
which is a clear advantage. Another advantage is that the procedure adaptively re-
sponds to the distances in and between the clusters.

For an illustration see the lower left part of fig. A.1.

A.3 ε-nearest neighboring looks for neighbors within the
radius ε for each data point

Another approach of neighboring: here, the neighborhood detection does not use a
fixed number k of neighbors but a radius ε, which is the reason for the name epsilon-
nearest neighboring. Points are neigbors if they are at most ε apart from each
other. Here, the storage and computational effort is obviously very high, which is a
disadvantage.



But note that there are some special cases: Two separate clusters can easily be con-
nected due to the unfavorable situation of a single data point. This can also happen
with k-nearest neighboring, but it would be more difficult since in this case the number
of neighbors per point is limited.

An advantage is the symmetric nature of the neighborhood relationships. Another ad-
vantage is that the combination of minimal clusters due to a fixed number of neighbors
is avoided.

On the other hand, it is necessary to skillfully initialize ε in order to be successful, i.e.
smaller than half the smallest distance between two clusters. With variable cluster
and point distances within clusters this can possibly be a problem.

For an illustration see the lower right part of fig. A.1.

A.4 The silhouette coefficient determines how accurate a
given clustering is

As we can see above, there is no easy answer for clustering problems. Each procedure
described has very specific disadvantages. In this respect it is useful to have a criterion
to decide how good our cluster division is. This possibility is offered by the silhouette
coefficient according to [Kau90]. This coefficient measures how well the clusters
are delimited from each other and indicates if points may be assigned to the wrong
clusters.

Let P be a point cloud and p a point in P . Let c ⊆ P be a cluster within the point cloud
and p be part of this cluster, i.e. p ∈ c. The set of clusters is called C. Summary:

p ∈ c ⊆ P

applies.

To calculate the silhouette coefficient, we initially need the average distance between
point p and all its cluster neighbors. This variable is referred to as a(p) and defined
as follows:

a(p) = 1
|c| − 1

∑
q∈c,q 6=p

dist(p, q) (A.1)



Figure A.1: Top left: our set of points. We will use this set to explore the different clustering
methods. Top right: k-means clustering. Using this procedure we chose k = 6. As we can
see, the procedure is not capable to recognize "clusters in clusters" (bottom left of the illustration).
Long "lines" of points are a problem, too: They would be recognized as many small clusters (if k
is sufficiently large). Bottom left: k-nearest neighboring. If k is selected too high (higher than
the number of points in the smallest cluster), this will result in cluster combinations shown in the
upper right of the illustration. Bottom right: ε-nearest neighboring. This procedure will cause
difficulties if ε is selected larger than the minimum distance between two clusters (see upper left of
the illustration), which will then be combined.



Furthermore, let b(p) be the average distance between our point p and all points of the
next cluster (g represents all clusters except for c):

b(p) = min
g∈C,g 6=c

1
|g|
∑
q∈g

dist(p, q) (A.2)

The point p is classified well if the distance to the center of the own cluster is minimal
and the distance to the centers of the other clusters is maximal. In this case, the
following term provides a value close to 1:

s(p) = b(p)− a(p)
max{a(p), b(p)} (A.3)

Apparently, the whole term s(p) can only be within the interval [−1; 1]. A value close
to -1 indicates a bad classification of p.

The silhouette coefficient S(P ) results from the average of all values s(p):

S(P ) = 1
|P |

∑
p∈P

s(p). (A.4)

As above the total quality of the cluster division is expressed by the interval [−1; 1].

As different clustering strategies with different characteristics have been presented now
(lots of further material is presented in [DHS01]), as well as a measure to indicate the
quality of an existing arrangement of given data into clusters, I want to introduce a
clustering method based on an unsupervised learning neural network [SGE05] which
was published in 2005. Like all the other methods this one may not be perfect but it
eliminates large standard weaknesses of the known clustering methods

A.5 Regional and online learnable fields are a neural
clustering strategy

The paradigm of neural networks, which I want to introduce now, are the regional
and online learnable fields, shortly referred to as ROLFs.

A.5.1 ROLFs try to cover data with neurons

Roughly speaking, the regional and online learnable fields are a set K of neurons which
try to cover a set of points as well as possible by means of their distribution in the input
space. For this, neurons are added, moved or changed in their size during training if
necessary. The parameters of the individual neurons will be discussed later.



Definition A.2 (Regional and online learnable field). A regional and online learnable
field (abbreviated ROLF or ROLF network) is a set K of neurons that are trained to
cover a certain set in the input space as well as possible.

A.5.1.1 ROLF neurons feature a position and a radius in the input space

Here, a ROLF neuron k ∈ K has two parameters: Similar to the RBF networks, it
has a center ck, i.e. a position in the input space.

But it has yet another parameter: The radius σ, which defines the radius of the
perceptive surface surrounding the neuron2. A neuron covers the part of the input
space that is situated within this radius.

ck and σk are locally defined for each neuron. This particularly means that the neurons
are capable to cover surfaces of different sizes.

The radius of the perceptive surface is specified by r = ρ ·σ (fig. A.2 on the next page)
with the multiplier ρ being globally defined and previously specified for all neurons.
Intuitively, the reader will wonder what this multiplicator is used for. Its significance
will be discussed later. Furthermore, the following has to be observed: It is not
necessary for the perceptive surface of the different neurons to be of the same size.

Definition A.3 (ROLF neuron). The parameters of a ROLF neuron k are a center
ck and a radius σk.

Definition A.4 (Perceptive surface). The perceptive surface of a ROLF neuron k
consists of all points within the radius ρ · σ in the input space.

A.5.2 A ROLF learns unsupervised by presenting training samples online

Like many other paradigms of neural networks our ROLF network learns by receiving
many training samples p of a training set P . The learning is unsupervised. For each
training sample p entered into the network two cases can occur:

1. There is one accepting neuron k for p or

2. there is no accepting neuron at all.

If in the first case several neurons are suitable, then there will be exactly one accepting
neuron insofar as the closest neuron is the accepting one. For the accepting neuron
k ck and σk are adapted.

2 I write "defines" and not "is" because the actual radius is specified by σ · ρ.



Figure A.2: Structure of a ROLF neuron.

Definition A.5 (Accepting neuron). The criterion for a ROLF neuron k to be an
accepting neuron of a point p is that the point p must be located within the perceptive
surface of k. If p is located in the perceptive surfaces of several neurons, then the
closest neuron will be the accepting one. If there are several closest neurons, one can
be chosen randomly.

A.5.2.1 Both positions and radii are adapted throughout learning

Let us assume that we entered a training sample p into the network and that there
is an accepting neuron k. Then the radius moves towards ||p − ck|| (i.e. towards the
distance between p and ck) and the center ck towards p. Additionally, let us define the
two learning rates ησ and ηc for radii and centers.

ck(t+ 1) = ck(t) + ηc(p− ck(t))
σk(t+ 1) = σk(t) + ησ(||p− ck(t)|| − σk(t))

Note that here σk is a scalar while ck is a vector in the input space.



Definition A.6 (Adapting a ROLF neuron). A neuron k accepted by a point p is
adapted according to the following rules:

ck(t+ 1) = ck(t) + ηc(p− ck(t)) (A.5)

σk(t+ 1) = σk(t) + ησ(||p− ck(t)|| − σk(t)) (A.6)

A.5.2.2 The radius multiplier allows neurons to be able not only to shrink

Now we can understand the function of the multiplier ρ: Due to this multiplier the
perceptive surface of a neuron includes more than only all points surrounding the
neuron in the radius σ. This means that due to the aforementioned learning rule σ
cannot only decrease but also increase.

Definition A.7 (Radius multiplier). The radius multiplier ρ > 1 is globally defined
and expands the perceptive surface of a neuron k to a multiple of σk. So it is ensured
that the radius σk cannot only decrease but also increase.

Generally, the radius multiplier is set to values in the lower one-digit range, such as 2
or 3.

So far we only have discussed the case in the ROLF training that there is an accepting
neuron for the training sample p.

A.5.2.3 As required, new neurons are generated

This suggests to discuss the approach for the case that there is no accepting neuron.

In this case a new accepting neuron k is generated for our training sample. The result
is of course that ck and σk have to be initialized.

The initialization of ck can be understood intuitively: The center of the new neuron is
simply set on the training sample, i.e.

ck = p.

We generate a new neuron because there is no neuron close to p – for logical reasons,
we place the neuron exactly on p.

But how to set a σ when a new neuron is generated? For this purpose there exist
different options:

Init-σ: We always select a predefined static σ.



Minimum σ: We take a look at the σ of each neuron and select the minimum.

Maximum σ: We take a look at the σ of each neuron and select the maximum.

Mean σ: We select the mean σ of all neurons.

Currently, the mean-σ variant is the favorite one although the learning procedure also
works with the other ones. In the minimum-σ variant the neurons tend to cover less
of the surface, in the maximum-σ variant they tend to cover more of the surface.

Definition A.8 (Generating a ROLF neuron). If a new ROLF neuron k is generated
by entering a training sample p, then ck is intialized with p and σk according to one
of the aforementioned strategies (init-σ, minimum-σ, maximum-σ, mean-σ).

The training is complete when after repeated randomly permuted pattern presentation
no new neuron has been generated in an epoch and the positions of the neurons barely
change.

A.5.3 Evaluating a ROLF

The result of the training algorithm is that the training set is gradually covered well
and precisely by the ROLF neurons and that a high concentration of points on a spot
of the input space does not automatically generate more neurons. Thus, a possibly
very large point cloud is reduced to very few representatives (based on the input set).

Then it is very easy to define the number of clusters: Two neurons are (according
to the definition of the ROLF) connected when their perceptive surfaces overlap (i.e.
some kind of nearest neighboring is executed with the variable perceptive surfaces). A
cluster is a group of connected neurons or a group of points of the input space covered
by these neurons (fig. A.3 on the facing page).

Of course, the complete ROLF network can be evaluated by means of other clustering
methods, i.e. the neurons can be searched for clusters. Particularly with clustering
methods whose storage effort grows quadratic to |P | the storage effort can be reduced
dramatically since generally there are considerably less ROLF neurons than original
data points, but the neurons represent the data points quite well.



Figure A.3: The clustering process. Top: the input set, middle: the input space covered by ROLF
neurons, bottom: the input space only covered by the neurons (representatives).



A.5.4 Comparison with popular clustering methods

It is obvious, that storing the neurons rather than storing the input points takes the
biggest part of the storage effort of the ROLFs. This is a great advantage for huge
point clouds with a lot of points.

Since it is unnecessary to store the entire point cloud, our ROLF, as a neural clustering
method, has the capability to learn online, which is definitely a great advantage. Fur-
thermore, it can (similar to ε nearest neighboring or k nearest neighboring) distinguish
clusters from enclosed clusters – but due to the online presentation of the data without
a quadratically growing storage effort, which is by far the greatest disadvantage of the
two neighboring methods.

Additionally, the issue of the size of the individual clusters proportional to their dis-
tance from each other is addressed by using variable perceptive surfaces - which is also
not always the case for the two mentioned methods.

The ROLF compares favorably with k-means clustering, as well: Firstly, it is unnec-
essary to previously know the number of clusters and, secondly, k-means clustering
recognizes clusters enclosed by other clusters as separate clusters.

A.5.5 Initializing radii, learning rates and multiplier is not trivial

Certainly, the disadvantages of the ROLF shall not be concealed: It is not always
easy to select the appropriate initial value for σ and ρ. The previous knowledge about
the data set can so to say be included in ρ and the initial value of σ of the ROLF:
Fine-grained data clusters should use a small ρ and a small σ initial value. But the
smaller the ρ the smaller, the chance that the neurons will grow if necessary. Here
again, there is no easy answer, just like for the learning rates ηc and ησ.

For ρ the multipliers in the lower single-digit range such as 2 or 3 are very popular.
ηc and ησ successfully work with values about 0.005 to 0.1, variations during run-time
are also imaginable for this type of network. Initial values for σ generally depend on
the cluster and data distribution (i.e. they often have to be tested). But compared to
wrong initializations – at least with the mean-σ strategy – they are relatively robust
after some training time.

As a whole, the ROLF is on a par with the other clustering methods and is particularly
very interesting for systems with low storage capacity or huge data sets.



A.5.6 Application examples

A first application example could be finding color clusters in RGB images. Another
field of application directly described in the ROLF publication is the recognition of
words transferred into a 720-dimensional feature space. Thus, we can see that ROLFs
are relatively robust against higher dimensions. Further applications can be found in
the field of analysis of attacks on network systems and their classification.

Exercises

Exercise 18. Determine at least four adaptation steps for one single ROLF neuron k
if the four patterns stated below are presented one after another in the indicated order.
Let the initial values for the ROLF neuron be ck = (0.1, 0.1) and σk = 1. Furthermore,
let ηc = 0.5 and ησ = 0. Let ρ = 3.

P = {(0.1, 0.1);
= (0.9, 0.1);
= (0.1, 0.9);
= (0.9, 0.9)}.





Appendix B

Excursus: neural networks used for
prediction

Discussion of an application of neural networks: a look ahead into the future
of time series.

After discussing the different paradigms of neural networks it is now useful to take
a look at an application of neural networks which is brought up often and (as we
will see) is also used for fraud: The application of time series prediction. This
excursus is structured into the description of time series and estimations about the
requirements that are actually needed to predict the values of a time series. Finally,
I will say something about the range of software which should predict share prices or
other economic characteristics by means of neural networks or other procedures.

This chapter should not be a detailed description but rather indicate some approaches
for time series prediction. In this respect I will again try to avoid formal definitions.

B.1 About time series

A time series is a series of values discretized in time. For example, daily measured
temperature values or other meteorological data of a specific site could be represented
by a time series. Share price values also represent a time series. Often the measurement
of time series is timely equidistant, and in many time series the future development of
their values is very interesting, e.g. the daily weather forecast.

Time series can also be values of an actually continuous function read in a certain
distance of time ∆t (fig. B.1 on the next page).
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Figure B.1: A function x that depends on the time is sampled at discrete time steps (time dis-
cretized), this means that the result is a time series. The sampled values are entered into a neural
network (in this example an SLP) which shall learn to predict the future values of the time series.



If we want to predict a time series, we will look for a neural network that maps the
previous series values to future developments of the time series, i.e. if we know longer
sections of the time series, we will have enough training samples. Of course, these
are not examples for the future to be predicted but it is tried to generalize and to
extrapolate the past by means of the said samples.

But before we begin to predict a time series we have to answer some questions about
this time series we are dealing with and ensure that it fulfills some requirements.

1. Do we have any evidence which suggests that future values depend in any way
on the past values of the time series? Does the past of a time series include
information about its future?

2. Do we have enough past values of the time series that can be used as training
patterns?

3. In case of a prediction of a continuous function: What must a useful ∆t look
like?

Now these questions shall be explored in detail.

How much information about the future is included in the past values of a time series?
This is the most important question to be answered for any time series that should be
mapped into the future. If the future values of a time series, for instance, do not depend
on the past values, then a time series prediction based on them will be impossible.

In this chapter, we assume systems whose future values can be deduced from their
states – the deterministic systems. This leads us to the question of what a system
state is.

A system state completely describes a system for a certain point of time. The future of
a deterministic system would be clearly defined by means of the complete description
of its current state.

The problem in the real world is that such a state concept includes all things that
influence our system by any means.

In case of our weather forecast for a specific site we could definitely determine the tem-
perature, the atmospheric pressure and the cloud density as the meteorological state of
the place at a time t. But the whole state would include significantly more information.
Here, the worldwide phenomena that control the weather would be interesting as well
as small local pheonomena such as the cooling system of the local power plant.
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Figure B.2: Representation of the one-step-ahead prediction. It is tried to calculate the future
value from a series of past values. The predicting element (in this case a neural network) is referred
to as predictor.

So we shall note that the system state is desirable for prediction but not always possible
to obtain. Often only fragments of the current states can be acquired, e.g. for a weather
forecast these fragments are the said weather data.

However, we can partially overcome these weaknesses by using not only one single state
(the last one) for the prediction, but by using several past states. From this we want
to derive our first prediction system:

B.2 One-step-ahead prediction

The first attempt to predict the next future value of a time series out of past values is
called one-step-ahead prediction (fig. B.2).

Such a predictor system receives the last n observed state parts of the system as input
and outputs the prediction for the next state (or state part). The idea of a state space
with predictable states is called state space forecasting.

The aim of the predictor is to realize a function

f(xt−n+1, . . . , xt−1, xt) = x̃t+1, (B.1)

which receives exactly n past values in order to predict the future value. Predicted
values shall be headed by a tilde (e.g. x̃) to distinguish them from the actual future
values.

The most intuitive and simplest approach would be to find a linear combination

x̃i+1 = a0xi + a1xi−1 + . . .+ ajxi−j (B.2)



that approximately fulfills our conditions.

Such a construction is called digital filter. Here we use the fact that time series
usually have a lot of past values so that we can set up a series of equations1:

xt = a0xt−1 + . . .+ ajxt−1−(n−1)

xt−1 = a0xt−2 + . . .+ ajxt−2−(n−1)
... (B.3)

xt−n = a0xt−n + . . .+ ajxt−n−(n−1)

Thus, n equations could be found for n unknown coefficients and solve them (if possi-
ble). Or another, better approach: we could use m > n equations for n unknowns in
such a way that the sum of the mean squared errors of the already known prediction
is minimized. This is called moving average procedure.

But this linear structure corresponds to a singlelayer perceptron with a linear activation
function which has been trained by means of data from the past (The experimental
setup would comply with fig. B.1 on page 216). In fact, the training by means of the
delta rule provides results very close to the analytical solution.

Even if this approach often provides satisfying results, we have seen that many prob-
lems cannot be solved by using a singlelayer perceptron. Additional layers with linear
activation function are useless, as well, since a multilayer perceptron with only linear
activation functions can be reduced to a singlelayer perceptron. Such considerations
lead to a non-linear approach.

The multilayer perceptron and non-linear activation functions provide a universal non-
linear function approximator, i.e. we can use an n-|H|-1-MLP for n n inputs out of
the past. An RBF network could also be used. But remember that here the number n
has to remain low since in RBF networks high input dimensions are very complex to
realize. So if we want to include many past values, a multilayer perceptron will require
considerably less computational effort.

B.3 Two-step-ahead prediction

What approaches can we use to to see farther into the future?

1 Without going into detail, I want to remark that the prediction becomes easier the more past values of
the time series are available. I would like to ask the reader to read up on the Nyquist-Shannon sampling
theorem
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Figure B.3: Representation of the two-step-ahead prediction. Attempt to predict the second future
value out of a past value series by means of a second predictor and the involvement of an already
predicted value.

B.3.1 Recursive two-step-ahead prediction

In order to extend the prediction to, for instance, two time steps into the future,
we could perform two one-step-ahead predictions in a row (fig. B.3), i.e. a recursive
two-step-ahead prediction. Unfortunately, the value determined by means of a one-
step-ahead prediction is generally imprecise so that errors can be built up, and the
more predictions are performed in a row the more imprecise becomes the result.

B.3.2 Direct two-step-ahead prediction

We have already guessed that there exists a better approach: Just like the system
can be trained to predict the next value, we can certainly train it to predict the
next but one value. This means we directly train, for example, a neural network to
look two time steps ahead into the future, which is referred to as direct two-step-
ahead prediction (fig. B.4 on the next page). Obviously, the direct two-step-ahead
prediction is technically identical to the one-step-ahead prediction. The only difference
is the training.
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Figure B.4: Representation of the direct two-step-ahead prediction. Here, the second time step is
predicted directly, the first one is omitted. Technically, it does not differ from a one-step-ahead
prediction.

B.4 Additional optimization approaches for prediction

The possibility to predict values far away in the future is not only important because we
try to look farther ahead into the future. There can also be periodic time series where
other approaches are hardly possible: If a lecture begins at 9 a.m. every Thursday,
it is not very useful to know how many people sat in the lecture room on Monday
to predict the number of lecture participants. The same applies, for example, to
periodically occurring commuter jams.

B.4.1 Changing temporal parameters

Thus, it can be useful to intentionally leave gaps in the future values as well as in the
past values of the time series, i.e. to introduce the parameter ∆t which indicates which
past value is used for prediction. Technically speaking, we still use a one-step-ahead
prediction only that we extend the input space or train the system to predict values
lying farther away.

It is also possible to combine different ∆t: In case of the traffic jam prediction for a
Monday the values of the last few days could be used as data input in addition to the
values of the previous Mondays. Thus, we use the last values of several periods, in this
case the values of a weekly and a daily period. We could also include an annual period
in the form of the beginning of the holidays (for sure, everyone of us has already spent
a lot of time on the highway because he forgot the beginning of the holidays).
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Figure B.5: Representation of the heterogeneous one-step-ahead prediction. Prediction of a time
series under consideration of a second one.
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Figure B.6: Heterogeneous one-step-ahead prediction of two time series at the same time.

B.4.2 Heterogeneous prediction

Another prediction approach would be to predict the future values of a single time
series out of several time series, if it is assumed that the additional time series is
related to the future of the first one (heterogeneous one-step-ahead prediction,
fig. B.5).

If we want to predict two outputs of two related time series, it is certainly possible to
perform two parallel one-step-ahead predictions (analytically this is done very often
because otherwise the equations would become very confusing); or in case of the neural
networks an additional output neuron is attached and the knowledge of both time series
is used for both outputs (fig. B.6).

You’ll find more and more general material on time series in [WG94].



B.5 Remarks on the prediction of share prices

Many people observe the changes of a share price in the past and try to conclude
the future from those values in order to benefit from this knowledge. Share prices
are discontinuous and therefore they are principally difficult functions. Furthermore,
the functions can only be used for discrete values – often, for example, in a daily
rhythm (including the maximum and minimum values per day, if we are lucky) with
the daily variations certainly being eliminated. But this makes the whole thing even
more difficult.

There are chartists, i.e. people who look at many diagrams and decide by means of a
lot of background knowledge and decade-long experience whether the equities should
be bought or not (and often they are very successful).

Apart from the share prices it is very interesting to predict the exchange rates of
currencies: If we exchange 100 Euros into Dollars, the Dollars into Pounds and the
Pounds back into Euros it could be possible that we will finally receive 110 Euros. But
once found out, we would do this more often and thus we would change the exchange
rates into a state in which such an increasing circulation would no longer be possible
(otherwise we could produce money by generating, so to speak, a financial perpetual
motion machine.

At the stock exchange, successful stock and currency brokers raise or lower their thumbs
– and thereby indicate whether in their opinion a share price or an exchange rate will
increase or decrease. Mathematically speaking, they indicate the first bit (sign) of the
first derivative of the exchange rate. In that way excellent worldclass brokers obtain
success rates of about 70%.

In Great Britain, the heterogeneous one-step-ahead prediction was successfully used
to increase the accuracy of such predictions to 76%: In addition to the time series of
the values indicators such as the oil price in Rotterdam or the US national debt were
included.

This is just an example to show the magnitude of the accuracy of stock-exchange
evaluations, since we are still talking only about the first bit of the first derivation!
We still do not know how strong the expected increase or decrease will be and also
whether the effort will pay off: Probably, one wrong prediction could nullify the profit
of one hundred correct predictions.

How can neural networks be used to predict share prices? Intuitively, we assume that
future share prices are a function of the previous share values.



But this assumption is wrong: Share prices are no function of their past values, but
a function of their assumed future value. We do not buy shares because their values
have been increased during the last days, but because we believe that they will futher
increase tomorrow. If, as a consequence, many people buy a share, they will boost the
price. Therefore their assumption was right – a self-fulfilling prophecy has been
generated, a phenomenon long known in economics.

The same applies the other way around: We sell shares because we believe that tomor-
row the prices will decrease. This will beat down the prices the next day and generally
even more the day after the next.

Again and again some software appears which uses scientific key words such as ”neural
networks” to purport that it is capable to predict where share prices are going. Do not
buy such software! In addition to the aforementioned scientific exclusions there is one
simple reason for this: If these tools work – why should the manufacturer sell them?
Normally, useful economic knowledge is kept secret. If we knew a way to definitely
gain wealth by means of shares, we would earn our millions by using this knowledge
instead of selling it for 30 euros, wouldn’t we?



Appendix C

Excursus: reinforcement learning
What if there were no training samples but it would nevertheless be possible
to evaluate how well we have learned to solve a problem? Let us examine a

learning paradigm that is situated between supervised and unsupervised
learning.

I now want to introduce a more exotic approach of learning – just to leave the usual
paths. We know learning procedures in which the network is exactly told what to do,
i.e. we provide exemplary output values. We also know learning procedures like those
of the self-organizing maps, into which only input values are entered.

Now we want to explore something in-between: The learning paradigm of reinforcement
learning – reinforcement learning according to Sutton and Barto [SB98].

Reinforcement learning in itself is no neural network but only one of the three learning
paradigms already mentioned in chapter 4. In some sources it is counted among the
supervised learning procedures since a feedback is given. Due to its very rudimentary
feedback it is reasonable to separate it from the supervised learning procedures – apart
from the fact that there are no training samples at all.

While it is generally known that procedures such as backpropagation cannot work in the
human brain itself, reinforcement learning is usually considered as being biologically
more motivated.

The term reinforcement learning comes from cognitive science and psychology and
it describes the learning system of carrot and stick, which occurs everywhere in nature,
i.e. learning by means of good or bad experience, reward and punishment. But there
is no learning aid that exactly explains what we have to do: We only receive a total
result for a process (Did we win the game of chess or not? And how sure was this
victory?), but no results for the individual intermediate steps.
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For example, if we ride our bike with worn tires and at a speed of exactly 21, 5kmh
through a turn over some sand with a grain size of 0.1mm, on the average, then
nobody could tell us exactly which handlebar angle we have to adjust or, even worse,
how strong the great number of muscle parts in our arms or legs have to contract
for this. Depending on whether we reach the end of the curve unharmed or not, we
soon have to face the learning experience, a feedback or a reward, be it good or bad.
Thus, the reward is very simple - but on the other hand it is considerably easier to
obtain. If we now have tested different velocities and turning angles often enough and
received some rewards, we will get a feel for what works and what does not. The aim
of reinforcement learning is to maintain exactly this feeling.

Another example for the quasi-impossibility to achieve a sort of cost or utility function
is a tennis player who tries to maximize his athletic success on the long term by
means of complex movements and ballistic trajectories in the three-dimensional space
including the wind direction, the importance of the tournament, private factors and
many more.

To get straight to the point: Since we receive only little feedback, reinforcement learn-
ing often means trial and error – and therefore it is very slow.

C.1 System structure

Now we want to briefly discuss different sizes and components of the system. We will
define them more precisely in the following sections. Broadly speaking, reinforcement
learning represents the mutual interaction between an agent and an environmental
system (fig. C.2).

The agent shall solve some problem. He could, for instance, be an autonomous robot
that shall avoid obstacles. The agent performs some actions within the environment
and in return receives a feedback from the environment, which in the following is called
reward. This cycle of action and reward is characteristic for reinforcement learning.
The agent influences the system, the system provides a reward and then changes.

The reward is a real or discrete scalar which describes, as mentioned above, how well
we achieve our aim, but it does not give any guidance how we can achieve it. The aim
is always to make the sum of rewards as high as possible on the long term.



C.1.1 The gridworld

As a learning example for reinforcement learning I would like to use the so-called
gridworld. We will see that its structure is very simple and easy to figure out and
therefore reinforcement is actually not necessary. However, it is very suitable for
representing the approach of reinforcement learning. Now let us exemplary define the
individual components of the reinforcement system by means of the gridworld. Later,
each of these components will be examined more exactly.

Environment: The gridworld (fig. C.1 on the following page) is a simple, discrete world
in two dimensions which in the following we want to use as environmental system.

Agent: As an Agent we use a simple robot being situated in our gridworld.

State space: As we can see, our gridworld has 5 × 7 fields with 6 fields being unac-
cessible. Therefore, our agent can occupy 29 positions in the grid world. These
positions are regarded as states for the agent.

Action space: The actions are still missing. We simply define that the robot could
move one field up or down, to the right or to the left (as long as there is no
obstacle or the edge of our gridworld).

Task: Our agent’s task is to leave the gridworld. The exit is located on the right of
the light-colored field.

Non-determinism: The two obstacles can be connected by a "door". When the door is
closed (lower part of the illustration), the corresponding field is inaccessible. The
position of the door cannot change during a cycle but only between the cycles.

We now have created a small world that will accompany us through the following
learning strategies and illustrate them.

C.1.2 Agent und environment

Our aim is that the agent learns what happens by means of the reward. Thus, it is
trained over, of and by means of a dynamic system, the environment, in order to
reach an aim. But what does learning mean in this context?

The agent shall learn a mapping of situations to actions (called policy), i.e. it shall
learn what to do in which situation to achieve a certain (given) aim. The aim is simply
shown to the agent by giving an award for the achievement.
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Figure C.1: A graphical representation of our gridworld. Dark-colored cells are obstacles and
therefore inaccessible. The exit is located on the right side of the light-colored field. The symbol
× marks the starting position of our agent. In the upper part of our figure the door is open, in the
lower part it is closed.
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Figure C.2: The agent performs some actions within the environment and in return receives a
reward.



Such an award must not be mistaken for the reward – on the agent’s way to the solution
it may sometimes be useful to receive a smaller award or a punishment when in return
the longterm result is maximum (similar to the situation when an investor just sits
out the downturn of the share price or to a pawn sacrifice in a chess game). So, if
the agent is heading into the right direction towards the target, it receives a positive
reward, and if not it receives no reward at all or even a negative reward (punishment).
The award is, so to speak, the final sum of all rewards – which is also called return.

After having colloquially named all the basic components, we want to discuss more
precisely which components can be used to make up our abstract reinforcement learning
system.

In the gridworld: In the gridworld, the agent is a simple robot that should find the
exit of the gridworld. The environment is the gridworld itself, which is a discrete
gridworld.

Definition C.1 (Agent). In reinforcement learning the agent can be formally de-
scribed as a mapping of the situation space S into the action space A(st). The mean-
ing of situations st will be defined later and should only indicate that the action space
depends on the current situation.

Agent: S → A(st) (C.1)

Definition C.2 (Environment). The environment represents a stochastic mapping
of an action A in the current situation st to a reward rt and a new situation st+1.

Environment: S ×A→ P (S × rt) (C.2)

C.1.3 States, situations and actions

As already mentioned, an agent can be in different states: In case of the gridworld, for
example, it can be in different positions (here we get a two-dimensional state vector).

For an agent is ist not always possible to realize all information about its current state
so that we have to introduce the term situation. A situation is a state from the
agent’s point of view, i.e. only a more or less precise approximation of a state.

Therefore, situations generally do not allow to clearly "predict" successor situations –
even with a completely deterministic system this may not be applicable. If we knew
all states and the transitions between them exactly (thus, the complete system), it
would be possible to plan optimally and also easy to find an optimal policy (methods
are provided, for example, by dynamic programming).



Now we know that reinforcement learning is an interaction between the agent and the
system including actions at and situations st. The agent cannot determine by itself
whether the current situation is good or bad: This is exactly the reason why it receives
the said reward from the environment.

In the gridworld: States are positions where the agent can be situated. Simply said,
the situations equal the states in the gridworld. Possible actions would be to move
towards north, south, east or west.

Situation and action can be vectorial, the reward is always a scalar (in an extreme case
even only a binary value) since the aim of reinforcement learning is to get along with
little feedback. A complex vectorial reward would equal a real teaching input.

By the way, the cost function should be minimized, which would not be possible,
however, with a vectorial reward since we do not have any intuitive order relations in
multi-dimensional space, i.e. we do not directly know what is better or worse.

Definition C.3 (State). Within its environment the agent is in a state. States
contain any information about the agent within the environmental system. Thus, it is
theoretically possible to clearly predict a successor state to a performed action within
a deterministic system out of this godlike state knowledge.

Definition C.4 (Situation). Situations st (here at time t) of a situation space S
are the agent’s limited, approximate knowledge about its state. This approximation
(about which the agent cannot even know how good it is) makes clear predictions
impossible.

Definition C.5 (Action). Actions at can be performed by the agent (whereupon it
could be possible that depending on the situation another action space A(S) exists).
They cause state transitions and therefore a new situation from the agent’s point of
view.



C.1.4 Reward and return

As in real life it is our aim to receive an award that is as high as possible, i.e. to
maximize the sum of the expected rewards r, called return R, on the long term. For
finitely many time steps1 the rewards can simply be added:

Rt = rt+1 + rt+2 + . . . (C.3)

=
∞∑
x=1

rt+x (C.4)

Certainly, the return is only estimated here (if we knew all rewards and therefore the
return completely, it would no longer be necessary to learn).

Definition C.6 (Reward). A reward rt is a scalar, real or discrete (even sometimes
only binary) reward or punishment which the environmental system returns to the
agent as reaction to an action.

Definition C.7 (Return). The return Rt is the accumulation of all received rewards
until time t.

C.1.4.1 Dealing with long periods of time

However, not every problem has an explicit target and therefore a finite sum (e.g. our
agent can be a robot having the task to drive around again and again and to avoid
obstacles). In order not to receive a diverging sum in case of an infinite series of reward
estimations a weakening factor 0 < γ < 1 is used, which weakens the influence of future
rewards. This is not only useful if there exists no target but also if the target is very
far away:

Rt = rt+1 + γ1rt+2 + γ2rt+3 + . . . (C.5)

=
∞∑
x=1

γx−1rt+x (C.6)

The farther the reward is away, the smaller is the influence it has in the agent’s deci-
sions.

1 In practice, only finitely many time steps will be possible, even though the formulas are stated with an
infinite sum in the first place



Another possibility to handle the return sum would be a limited time horizon τ so
that only τ many following rewards rt+1, . . . , rt+τ are regarded:

Rt = rt+1 + . . .+ γτ−1rt+τ (C.7)

=
τ∑
x=1

γx−1rt+x (C.8)

Thus, we divide the timeline into episodes. Usually, one of the two methods is used
to limit the sum, if not both methods together.

As in daily living we try to approximate our current situation to a desired state. Since
it is not mandatory that only the next expected reward but the expected total sum
decides what the agent will do, it is also possible to perform actions that, on short
notice, result in a negative reward (e.g. the pawn sacrifice in a chess game) but will
pay off later.

C.1.5 The policy

After having considered and formalized some system components of reinforcement
learning the actual aim is still to be discussed:

During reinforcement learning the agent learns a policy

Π : S → P (A),

Thus, it continuously adjusts a mapping of the situations to the probabilities P (A),
with which any action A is performed in any situation S. A policy can be defined as
a strategy to select actions that would maximize the reward in the long term.

In the gridworld: In the gridworld the policy is the strategy according to which the
agent tries to exit the gridworld.

Definition C.8 (Policy). The policy Π s a mapping of situations to probabilities to
perform every action out of the action space. So it can be formalized as

Π : S → P (A). (C.9)

Basically, we distinguish between two policy paradigms: An open loop policy rep-
resents an open control chain and creates out of an initial situation s0 a sequence of
actions a0, a1, . . . with ai 6= ai(si); i > 0. Thus, in the beginning the agent develops
a plan and consecutively executes it to the end without considering the intermediate
situations (therefore ai 6= ai(si), actions after a0 do not depend on the situations).



In the gridworld: In the gridworld, an open-loop policy would provide a precise direc-
tion towards the exit, such as the way from the given starting position to (in abbrevi-
ations of the directions) EEEEN.

So an open-loop policy is a sequence of actions without interim feedback. A sequence
of actions is generated out of a starting situation. If the system is known well and
truly, such an open-loop policy can be used successfully and lead to useful results.
But, for example, to know the chess game well and truly it would be necessary to try
every possible move, which would be very time-consuming. Thus, for such problems
we have to find an alternative to the open-loop policy, which incorporates the current
situations into the action plan:

A closed loop policy is a closed loop, a function

Π : si → ai with ai = ai(si),

in a manner of speaking. Here, the environment influences our action or the agent
responds to the input of the environment, respectively, as already illustrated in fig.
C.2. A closed-loop policy, so to speak, is a reactive plan to map current situations to
actions to be performed.

In the gridworld: A closed-loop policy would be responsive to the current position and
choose the direction according to the action. In particular, when an obstacle appears
dynamically, such a policy is the better choice.

When selecting the actions to be performed, again two basic strategies can be exam-
ined.

C.1.5.1 Exploitation vs. exploration

As in real life, during reinforcement learning often the question arises whether the
exisiting knowledge is only willfully exploited or new ways are also explored. Initially,
we want to discuss the two extremes:

A greedy policy always chooses the way of the highest reward that can be deter-
mined in advance, i.e. the way of the highest known reward. This policy represents
the exploitation approach and is very promising when the used system is already
known.

In contrast to the exploitation approach it is the aim of the exploration approach
to explore a system as detailed as possible so that also such paths leading to the target
can be found which may be not very promising at first glance but are in fact very
successful.



Let us assume that we are looking for the way to a restaurant, a safe policy would
be to always take the way we already know, not matter how unoptimal and long it
may be, and not to try to explore better ways. Another approach would be to explore
shorter ways every now and then, even at the risk of taking a long time and being
unsuccessful, and therefore finally having to take the original way and arrive too late
at the restaurant.

In reality, often a combination of both methods is applied: In the beginning of the
learning process it is researched with a higher probability while at the end more existing
knowledge is exploited. Here, a static probability distribution is also possible and often
applied.

In the gridworld: For finding the way in the gridworld, the restaurant example applies
equally.

C.2 Learning process

Let us again take a look at daily life. Actions can lead us from one situation into
different subsituations, from each subsituation into further sub-subsituations. In a
sense, we get a situation tree where links between the nodes must be considered
(often there are several ways to reach a situation – so the tree could more accurately
be referred to as a situation graph). he leaves of such a tree are the end situations of
the system. The exploration approach would search the tree as thoroughly as possible
and become acquainted with all leaves. The exploitation approach would unerringly
go to the best known leave.

Analogous to the situation tree, we also can create an action tree. Here, the rewards
for the actions are within the nodes. Now we have to adapt from daily life how we
learn exactly.

C.2.1 Rewarding strategies

Interesting and very important is the question for what a reward and what kind of
reward is awarded since the design of the reward significantly controls system behavior.
As we have seen above, there generally are (again as in daily life) various actions that
can be performed in any situation. There are different strategies to evaluate the
selected situations and to learn which series of actions would lead to the target. First
of all, this principle should be explained in the following.

We now want to indicate some extreme cases as design examples for the reward:



A rewarding similar to the rewarding in a chess game is referred to as pure delayed
reward: We only receive the reward at the end of and not during the game. This
method is always advantageous when we finally can say whether we were succesful
or not, but the interim steps do not allow an estimation of our situation. If we win,
then

rt = 0 ∀t < τ (C.10)

as well as rτ = 1. If we lose, then rτ = −1. With this rewarding strategy a reward is
only returned by the leaves of the situation tree.

Pure negative reward: Here,

rt = −1 ∀t < τ. (C.11)

This system finds the most rapid way to reach the target because this way is automat-
ically the most favorable one in respect of the reward. The agent receives punishment
for anything it does – even if it does nothing. As a result it is the most inexpensive
method for the agent to reach the target fast.

Another strategy is the avoidance strategy: Harmful situations are avoided. Here,

rt ∈ {0,−1}, (C.12)

Most situations do not receive any reward, only a few of them receive a negative reward.
The agent agent will avoid getting too close to such negative situations

Warning: Rewarding strategies can have unexpected consequences. A robot that is told
"have it your own way but if you touch an obstacle you will be punished" will simply
stand still. If standing still is also punished, it will drive in small circles. Reconsidering
this, we will understand that this behavior optimally fulfills the return of the robot
but unfortunately was not intended to do so.

Furthermore, we can show that especially small tasks can be solved better by means
of negative rewards while positive, more differentiated rewards are useful for large,
complex tasks.

For our gridworld we want to apply the pure negative reward strategy: The robot shall
find the exit as fast as possible.



-6 -5 -4 -3 -2
-7 -1
-6 -5 -4 -3 -2
-7 -6 -5 -3
-8 -7 -6 -4
-9 -8 -7 -5
-10 -9 -8 -7 -6

-6 -5 -4 -3 -2
-7 -1
-8 -9 -10 -2
-9 -10 -11 -3
-10 -11 -10 -4
-11 -10 -9 -5
-10 -9 -8 -7 -6

Figure C.3: Representation of each optimal return per field in our gridworld by means of pure
negative reward awarding, at the top with an open and at the bottom with a closed door.

C.2.2 The state-value function

Unlike our agent we have a godlike view of our gridworld so that we can swiftly
determine which robot starting position can provide which optimal return.

In figure C.3 these optimal returns are applied per field.

In the gridworld: The state-value function for our gridworld exactly represents such a
function per situation (= position) with the difference being that here the function is
unknown and has to be learned.

Thus, we can see that it would be more practical for the robot to be capable to evaluate
the current and future situations. So let us take a look at another system component
of reinforcement learning: the state-value function V (s), which with regard to a
policy Π is often called VΠ(s). Because whether a situation is bad often depends on
the general behavior Π of the agent.

A situation being bad under a policy that is searching risks and checking out limits
would be, for instance, if an agent on a bicycle turns a corner and the front wheel
begins to slide out. And due to its daredevil policy the agent would not brake in this



situation. With a risk-aware policy the same situations would look much better, thus
it would be evaluated higher by a good state-value function

VΠ(s) simply returns the value the current situation s has for the agent under policy
Π. Abstractly speaking, according to the above definitions, the value of the state-
value function corresponds to the return Rt (the expected value) of a situation st. EΠ
denotes the set of the expected returns under Π and the current situation st.

VΠ(s) = EΠ{Rt|s = st}

Definition C.9 (State-value function). The state-value function VΠ(s) has the task of
determining the value of situations under a policy, i.e. to answer the agent’s question
of whether a situation s is good or bad or how good or bad it is. For this purpose it
returns the expectation of the return under the situation:

VΠ(s) = EΠ{Rt|s = st} (C.13)

The optimal state-value function is called V ∗Π(s).

Unfortunaely, unlike us our robot does not have a godlike view of its environment. It
does not have a table with optimal returns like the one shown above to orient itself.
The aim of reinforcement learning is that the robot generates its state-value function
bit by bit on the basis of the returns of many trials and approximates the optimal
state-value function V ∗ (if there is one).

In this context I want to introduce two terms closely related to the cycle between
state-value function and policy:

C.2.2.1 Policy evaluation

Policy evaluation is the approach to try a policy a few times, to provide many
rewards that way and to gradually accumulate a state-value function by means of
these rewards.

C.2.2.2 Policy improvement

Policy improvement means to improve a policy itself, i.e. to turn it into a new and
better one. In order to improve the policy we have to aim at the return finally having
a larger value than before, i.e. until we have found a shorter way to the restaurant
and have walked it successfully
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Figure C.4: The cycle of reinforcement learning which ideally leads to optimal Π∗ and V ∗.

The principle of reinforcement learning is to realize an interaction. It is tried to evaluate
how good a policy is in individual situations. The changed state-value function provides
information about the system with which we again improve our policy. These two
values lift each other, which can mathematically be proved, so that the final result is
an optimal policy Π∗ and an optimal state-value function V ∗ (fig. C.4). This cycle
sounds simple but is very time-consuming.

At first, let us regard a simple, random policy by which our robot could slowly fulfill
and improve its state-value function without any previous knowledge.

C.2.3 Monte Carlo method

The easiest approach to accumulate a state-value function is mere trial and error. Thus,
we select a randomly behaving policy which does not consider the accumulated state-
value function for its random decisions. It can be proved that at some point we will
find the exit of our gridworld by chance.

Inspired by random-based games of chance this approach is called Monte Carlo
method.

If we additionally assume a pure negative reward, it is obvious that we can receive an
optimum value of −6 for our starting field in the state-value function. Depending on
the random way the random policy takes values other (smaller) than −6 can occur for
the starting field. Intuitively, we want to memorize only the better value for one state
(i.e. one field). But here caution is advised: In this way, the learning procedure would
work only with deterministic systems. Our door, which can be open or closed during
a cycle, would produce oscillations for all fields and such oscillations would influence
their shortest way to the target.



With the Monte Carlo method we prefer to use the learning rule2

V (st)new = V (st)alt + α(Rt − V (st)alt),

in which the update of the state-value function is obviously influenced by both the old
state value and the received return (α is the learning rate). Thus, the agent gets some
kind of memory, new findings always change the situation value just a little bit. An
exemplary learning step is shown in fig. C.5 on the next page.

In this example, the computation of the state value was applied for only one single
state (our initial state). It should be obvious that it is possible (and often done) to
train the values for the states visited in-between (in case of the gridworld our ways to
the target) at the same time. The result of such a calculation related to our example
is illustrated in fig. C.6 on page 241.

The Monte Carlo method seems to be suboptimal and usually it is significantly slower
than the following methods of reinforcement learning. But this method is the only one
for which it can be mathematically proved that it works and therefore it is very useful
for theoretical considerations.

Definition C.10 (Monte Carlo learning). Actions are randomly performed regardless
of the state-value function and in the long term an expressive state-value function is
accumulated by means of the following learning rule.

V (st)new = V (st)alt + α(Rt − V (st)alt),

C.2.4 Temporal difference learning

Most of the learning is the result of experiences; e.g. walking or riding a bicycle without
getting injured (or not), even mental skills like mathematical problem solving benefit
a lot from experience and simple trial and error. Thus, we initialize our policy with
arbitrary values – we try, learn and improve the policy due to experience (fig. C.7). In
contrast to the Monte Carlo method we want to do this in a more directed manner.

Just as we learn from experience to react on different situations in different ways
the temporal difference learning (abbreviated: TD learning), does the same by
training VΠ(s) (i.e. the agent learns to estimate which situations are worth a lot and
which are not). Again the current situation is identified with st, the following situations

2 The learning rule is, among others, derived by means of the Bellman equation, but this derivation is not
discussed in this chapter.
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Figure C.5: Application of the Monte Carlo learning rule with a learning rate of α = 0.5. Top: two
exemplary ways the agent randomly selects are applied (one with an open and one with a closed
door). Bottom: The result of the learning rule for the value of the initial state considering both
ways. Due to the fact that in the course of time many different ways are walked given a random
policy, a very expressive state-value function is obtained.
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Figure C.6: Extension of the learning example in fig. C.5 in which the returns for intermediate
states are also used to accumulate the state-value function. Here, the low value on the door field
can be seen very well: If this state is possible, it must be very positive. If the door is closed, this
state is impossible.
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Figure C.7: We try different actions within the environment and as a result we learn and improve
the policy.



with st+1 and so on. Thus, the learning formula for the state-value function VΠ(st)
is

V (st)new =V (st)
+ α(rt+1 + γV (st+1)− V (st))︸ ︷︷ ︸

change of previous value

We can see that the change in value of the current situation st, which is proportional
to the learning rate α, is influenced by

. the received reward rt+1,

. the previous return weighted with a factor γ of the following situation V (st+1),

. the previous value of the situation V (st).

Definition C.11 (Temporal difference learning). Unlike the Monte Carlo method,
TD learning looks ahead by regarding the following situation st+1. Thus, the learning
rule is given by

V (st)new =V (st) (C.14)

+ α(rt+1 + γV (st+1)− V (st))︸ ︷︷ ︸
change of previous value

.

C.2.5 The action-value function

Analogous to the state-value function VΠ(s), the action-value function QΠ(s, a) is
another system component of reinforcement learning, which evaluates a certain action
a under a certain situation s and the policy Π.

In the gridworld: In the gridworld, the action-value function tells us how good it is to
move from a certain field into a certain direction (fig. C.8 on the next page).

Definition C.12 (Action-value function). Like the state-value function, the action-
value function QΠ(st, a) evaluates certain actions on the basis of certain situations
under a policy. The optimal action-value function is called Q∗Π(st, a).

As shown in fig. C.9, the actions are performed until a target situation (here referred
to as sτ ) is achieved (if there exists a target situation, otherwise the actions are simply
performed again and again).
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Figure C.8: Exemplary values of an action-value function for the position ×. Moving right, one
remains on the fastest way towards the target, moving up is still a quite fast way, moving down is
not a good way at all (provided that the door is open for all cases).
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Figure C.9: Actions are performed until the desired target situation is achieved. Attention should
be paid to numbering: Rewards are numbered beginning with 1, actions and situations beginning
with 0 (This has simply been adopted as a convention).



C.2.6 Q learning

This implies QΠ(s, a) as learning fomula for the action-value function, and – analo-
gously to TD learning – its application is called Q learning:

Q(st, a)new =Q(st, a)
+ α(rt+1 + γmax

a
Q(st+1, a)︸ ︷︷ ︸

greedy strategy

−Q(st, a))

︸ ︷︷ ︸
change of previous value

.

Again we break down the change of the current action value (proportional to the
learning rate α) under the current situation. It is influenced by

. the received reward rt+1,

. the maximum action over the following actions weighted with γ (Here, a greedy
strategy is applied since it can be assumed that the best known action is selected.
With TD learning, on the other hand, we do not mind to always get into the
best known next situation.),

. the previous value of the action under our situation st known as Q(st, a) (remem-
ber that this is also weighted by means of α).

Usually, the action-value function learns considerably faster than the state-value func-
tion. But we must not disregard that reinforcement learning is generally quite slow:
The system has to find out itself what is good. But the advantage of Q learning is: Π
can be initialized arbitrarily, and by means of Q learning the result is always Q∗.

Definition C.13 (Q learning). Q learning trains the action-value function by means
of the learning rule

Q(st, a)new =Q(st, a) (C.15)
+ α(rt+1 + γmax

a
Q(st+1, a) −Q(st, a)).

and thus finds Q∗ in any case.



C.3 Example applications

C.3.1 TD gammon

TD gammon is a very successful backgammon game based on TD learning invented
by Gerald Tesauro. The situation here is the current configuration of the board.
Anyone who has ever played backgammon knows that the situation space is huge
(approx. 1020 situations). As a result, the state-value functions cannot be computed
explicitly (particularly in the late eighties when TD gammon was introduced). The
selected rewarding strategy was the pure delayed reward, i.e. the system receives the
reward not before the end of the game and at the same time the reward is the return.
Then the system was allowed to practice itself (initially against a backgammon program,
then against an entity of itself). The result was that it achieved the highest ranking in
a computer-backgammon league and strikingly disproved the theory that a computer
programm is not capable to master a task better than its programmer.

C.3.2 The car in the pit

Let us take a look at a car parking on a one-dimensional road at the bottom of a deep
pit without being able to get over the slope on both sides straight away by means
of its engine power in order to leave the pit. Trivially, the executable actions here
are the possibilities to drive forwards and backwards. The intuitive solution we think
of immediately is to move backwards, to gain momentum at the opposite slope and
oscillate in this way several times to dash out of the pit.

The actions of a reinforcement learning system would be "full throttle forward", "full
reverse" and "doing nothing".

Here, "everything costs" would be a good choice for awarding the reward so that the
system learns fast how to leave the pit and realizes that our problem cannot be solved
by means of mere forward directed engine power. So the system will slowly build up
the movement.

The policy can no longer be stored as a table since the state space is hard to discretize.
As policy a function has to be generated.



C.3.3 The pole balancer

The pole balancer was developed by Barto, Sutton and Anderson.

Let be given a situation including a vehicle that is capable to move either to the right
at full throttle or to the left at full throttle (bang bang control). Only these two
actions can be performed, standing still is impossible. On the top of this car is hinged
an upright pole that could tip over to both sides. The pole is built in such a way that
it always tips over to one side so it never stands still (let us assume that the pole is
rounded at the lower end).

The angle of the pole relative to the vertical line is referred to as α. Furthermore, the
vehicle always has a fixed position x an our one-dimensional world and a velocity of
ẋ. Our one-dimensional world is limited, i.e. there are maximum values and minimum
values x can adopt.

The aim of our system is to learn to steer the car in such a way that it can balance
the pole, to prevent the pole from tipping over. This is achieved best by an avoidance
strategy: As long as the pole is balanced the reward is 0. If the pole tips over, the
reward is -1.

Interestingly, the system is soon capable to keep the pole balanced by tilting it suffi-
ciently fast and with small movements. At this the system mostly is in the center of
the space since this is farthest from the walls which it understands as negative (if it
touches the wall, the pole will tip over).

C.3.3.1 Swinging up an inverted pendulum

More difficult for the system is the following initial situation: the pole initially hangs
down, has to be swung up over the vehicle and finally has to be stabilized. In the
literature this task is called swing up an inverted pendulum.

C.4 Reinforcement learning in connection with neural
networks

Finally, the reader would like to ask why a text on "neural networks" includes a chapter
about reinforcement learning.

The answer is very simple. We have already been introduced to supervised and unsu-
pervised learning procedures. Although we do not always have an omniscient teacher



who makes unsupervised learning possible, this does not mean that we do not receive
any feedback at all. There is often something in between, some kind of criticism or
school mark. Problems like this can be solved by means of reinforcement learning.

But not every problem is that easily solved like our gridworld: In our backgammon
example we have approx. 1020 situations and the situation tree has a large branching
factor, let alone other games. Here, the tables used in the gridworld can no longer be
realized as state- and action-value functions. Thus, we have to find approximators for
these functions.

And which learning approximators for these reinforcement learning components come
immediately into our mind? Exactly: neural networks.

Exercises

Exercise 19. A robot control system shall be persuaded by means of reinforcement
learning to find a strategy in order to exit a maze as fast as possible.

. What could an appropriate state-value function look like?

. How would you generate an appropriate reward?

Assume that the robot is capable to avoid obstacles and at any time knows its position
(x, y) and orientation φ.

Exercise 20. Describe the function of the two components ASE and ACE as they
have been proposed by Barto, Sutton and Anderson to control the pole balancer.

Bibliography: [BSA83].

Exercise 21. Indicate several "classical" problems of informatics which could be solved
efficiently by means of reinforcement learning. Please give reasons for your answers.
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