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1 Introduction

1.1 Blimp Overview

Blimp is an all-purpose data analysis and latent variable modeling program that
harnesses the flexible power of Bayesian estimation in a user-friendly application
that requires minimal scripting and no deep-level knowledge about Bayes. The
application, which is available for macOS, Windows, and Linux, was developed with
funding from Institute of Educational Sciences awards R305D150056 and
R305D190002. The application began as a platform for implementing multilevel
multiple imputation via fully conditional specification (Enders, Keller, & Levy, 2018),
and its second release transitioned the software to a full-featured multilevel analysis
package (Enders, Du, & Keller, 2020). Blimp 3 introduces wide ranging and powerful
capabilities for multivariate analyses with latent variables (e.g., path models,
measurement models, structural equation models), including many models not

available in other software packages.

The development team’s philosophy for Blimp is to bring easy Bayes estimation to
the masses; the program offers some opportunities for “getting under the hood”, but
algorithmic tweaks and nuanced model specifications are not as customizable as
they are in specialized (but less user-friendly) programs such as Stan or JAGS. To this
end, Blimps implements a reasonable set of diffuse or noninformative prior
distributions with a handful of “off-the-shelf” alternatives described in Bayesian texts.
In line with our overarching philosophy, complex models can be specified with
minimal coding by simply listing variable names in a format that resembles a
regression equation (e.g.,y ~ x1 x2 x3). In most cases, Blimp automatically
introduces means, variances, and covariances (or correlations) with no additional
specifications required, and the software also adds any supporting models needed

for missing data handling.

Blimp's primary purpose is to provide researchers with a powerful tool for analyzing

data, with or without missing values. Blimp 3 offers a commercial-grade user
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experience with the flexibility to estimate complex latent variable models, many of
which are not available in other software packages. Models can include up to three
levels with mixtures of binary, ordinal, multicategorical nominal, normal, skewed
continuous variables, and count variables. Chapters 4 through 7 of this guide
provides numerous examples. Separate from its data analytic core, Blimp continues
to offer the fully conditional specification routines introduced in Version 1. Blimp’s
implementation of fully conditional specification parallels van Buuren's popular MICE
program (van Buuren & Groothuis-Oudshoorn, 2011), but it uses latent response
variable framework to treat categorical variables and uses latent group means to
preserve multilevel data structures. Enders (2022) describes fully conditional
specification with latent variables, and Chapters 4 through 6 of this guide provides

illustrations.

1.2 Working in Blimp Studio

One of the major features in Blimp 3 is a redesigned graphical user interface called
Blimp Studio. The Studio application features a tabbed interface that makes it easy
to work with multiple scripts and projects at the same time. The graphic below

shows the Blimp Studio interface.

ece BlmpStetle
& 1taimp E 13impt
DATA: datal.dat;
VARIABLES: id n1 dl1 ol y x1 d2 x2 x3;
ORDINAL: d2;
MISSING: 999;
FIXED: d2;
CENTER: x1 d2 x2;
MODEL: y ~ x1 d2 x2;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;
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Clicking the blue arrow button on the toolbar executes a script and spawns a paned
interface that adds an output window containing the analysis results and a plotting

window displaying trace (time series) plots for every model parameter.

ece Blimp Studio
)
& 11aimp B 13imp
DATA: datal.dat;

VARIABLES: id nl dl ol y x1 d2 X2 X3;  BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:
ORDINAL: d2;

MISSING: 999; NOTE: Split chain PSR is being used. This splits each chain's
FIXED: d2; iterations to create twice as many chains.
: d2;

CENTER: x1 d2 x2; Comparing iterations across 4 chains Highest PSR Parameter #
MODEL: y ~ x1 d2 x2; 26 to 50 1.500
SEED: 90291; 51 to 100 1.172 15
BURN: 1000; 76 to 150 1.100 15

. . 101 to 200 1.090 11
ITERATIONS: 10000; 191 1o 200 1.0 n

Plot: 1.1 18

uuuuuuuuuu

Clicking on the normal distribution icon in the toolbar hides the plotting window,
which can also be disabled completely in the application’s Preferences, located
under the Blimp Studio > Preferences pull-down menu. Other visual settings such
as fonts and the orientation of the paned windows can also be set in the Preferences

pane, shown below.
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[ ) [ ] Settings
General Settings General Plot Settings
Syntax Window
Output Window Default Auto-Plotting:
Computational Engine -
Plot Settings GPU Rendering:
Misc Settings Default Save Type: PDF [
Default Plot Settings
Start Iteration: 1
Stop Iteration: 1000
Number of Chains: 4
Plot Pixel Width: 900
Plot Pixel Height: 400
Apply Cancel m

The MCMC summary tables on Blimp's output include unstandardized coefficients,
standardized slopes, and variance explained effect size estimates (Rights & Sterba,
2019). Certain types of analyses produce additional output (e.g., odds ratios in a
logistic regression; transformation parameters for skewed variables). The graphic
below shows a typical tabular display of the analysis results from a regression model.
Blimp automatically saves an output file with a .blimp-out extension to the same
directory as the analysis script. The outputs are linked to their analysis scripts, such

that double-clicking on one of the files opens both in the Blimp Studio interface.
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[ NN J Blimp Studio

@ Ex43imp

DATA: datal.dat;
VARIABLES: id v1 v2 v3 y x1 d x2 v4; OUTCOME MODEL ESTIMATES:

ORDINAL: d; Summaries based on 10000 iterations using 2 chains.
MISSING: 999;

FIXED: d;

CENTER: x1 x2; Outcome Variable: 'y

MODEL: y ~ x1 x2 d;
SEED: 90291;
BURN: 1000;

Grand Mean Centered: x1 x2

ITERATIONS: 10000; Parameters Median | Stbev 2 97K Chsa  Pvale | NET
Variances:
Residual Var. 14.611 0.928 12.916 16.584 - ---  6086.359
Coefficients:
Intercept 27.701 0.256 27.208 28.204 11669.256 0.000 4675.371
x1 0.588 0.060 0.472 0.706 96.354 0.000 5119.163
x2 0.191 0.045 0.101 0.277 18.167 0.000 4315.672
d 1.807 0.343 1.130 2.479 27.697 0.000 6642.630
Standardized Coefficients:
x1 0.401 0.036 0.328 0.468 124.838 0.000 5002.048
x2 0.173 0.040 0.092 0.249 18.824 0.000 4367.722
d 0.204 0.038 0.128 0.276 29.208 0.000 6503.835

Proportion Variance Explained
by Coefficients 0.259 0.033 0.195 0.323 --= ---  4367.193
by Residual Variation 0.741 0.033 0.677 0.805 - ---  4367.193

PREDICTOR MODEL ESTIMATES:

Summaries based on 10000 iterations using 2 chains.

MCMC estimation produces a distribution for each model parameter. The median
and standard deviation columns describe the center and spread of the posterior
distributions; although they make no reference to drawing repeated samples, they
are analogous—and numerically equivalent in most cases—to frequentist point
estimates and standard errors. The 95% credible intervals in the rightmost columns
give a range that captures 95% of the parameter’s distribution. These are akin to
confidence intervals, but the intervals describe parameter distributions rather than

characteristics of repeated samples.

Although MCMC estimation is grounded in the Bayesian statistical paradigm, one
can also view posterior medians, standard deviations, and credible intervals as
surrogates for frequentist point estimates, standard errors, and confidence intervals.
Levy and McNeish (2023) describe this perspective as “computational frequentism”.
Essentially, the researcher wants to operate within the frequentist framework, but

they use MCMC to solve a difficult estimation problem. Missing data analyses are a
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compelling use case for computational frequentism because optimal
likelihood-based solutions are not always available or easy to use. To facilitate this
perspective, the Blimp output also includes a chi-square statistic and p-value for
each model parameter (the Bayesian Wald test; Asparouhov & Muthén, 2021). These
Wald tests are like squared z-statistics from maximum likelihood estimation, but

MCMC generates the point estimate and “standard error” for the test.

1.3 rblimp: Blimp in R

The rblimp package for R is currently available for download at Brian Keller's github.

The standalone version of Blimp must be installed prior to downloading and
installing rblimp. The package is accessed using the remotes package. Executing the
following command downloads and installs rblimp. A zip archive of the rblimp scripts

for the analysis examples in Chapters 4 through 7 is here.

# install.packages('remotes')
remotes::install _github('blimp-stats/rblimp')

When working in R, each Blimp command is simply an input parameter into the

rblimp function. To illustrate, consider the following script from the GUI.

ece Blimp Studio

& tiaimp
DATA: datal.dat;
VARIABLES: id nl dl1 ol y x1 d2 x2 x3;
ORDINAL: d2;
MISSING: 999;
FIXED: d2;
CENTER: x1 d2 x2;
MODEL: y ~ x1 d2 x2;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;


https://github.com/blimp-stats/rblimp
https://dl.dropboxusercontent.com/scl/fi/hclz7b1sysgdfw25zmvx1/rblimp-User-Guide-Examples.zip?rlkey=l6n4jyx934tys3vo21cciec96&dl=1
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The corresponding R script is as follows.

library(rblimp)

setwd('~/desktop/")
datal <- as.data.frame(read.table('datal.dat', na.strings = '999'))
colnames(datal) <- c('id','vl','d1','ol','y"','x1"','d2"','x2"',"'x3")

mymodel <- rblimp(
data = datail,
ordinal = 'd2',
fixed = 'd2',
center = 'x1 d2 x2',
model = 'y ~ x1 d2 x2',
seed = 90291,
burn = 10000,
iterations = 20000

)
output(mymodel)

Each command in the Blimp script (each capitalized word) is an input parameter in
the rblimp function. The two exceptions are the VARIABLES and MISSING commands,
which are omitted because that information is contained in the R data file. Following
R convention, the input parameters are separated by commas. Alphanumeric inputs
like model statements, variable lists, transformations, and new parameters are
enclosed in quotes. Numeric inputs like the seed and number of iterations do not
require quotes. Finally, subcommands that are part of the same command (e.g.,
different equations in the MODEL command) are separated by semicolons, as they are

in the Blimp script.

model = '
d2 ~ x2;
x1 ~ d2 x2;

y ~ x1 d2 x2;',

The standalone version of Blimp must be installed prior to downloading and

installing rblimp because the R function calls the Blimp computational engine from
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the applications folder. Blimp otherwise behaves like any other package in the R

environment.
'K RStudio
o .o - Go to file/function - Addins ~ 2 Project: (None) ~
©' rBlimp Example.R - Environmen t  History Connections Tutorial -
Source onSave /' ~ #Run >+ $ Source - " # Import Dataset ~  * 484 MiB + & List ~

1 library(rblimp) R~ T Global Environment -
2 Data
3 setwd('~/desktop/") datal 630 obs. of 9 variables
4 datal <- as.data.frame(read.table('datal.dat', na.strings = '999')) mymodel Large blimp_obj ( 6.2 MB)
5 colnames(datal) <- c('id','n1','d1",'01","'y",'x1","'d2",'x2",'x3")
6
7 mymodel <- rblimp(
8 data = datal,
9 ordinal = 'd2',

10 fixed = 'd2',

1 center = 'x1 d2 x2',

12 model = 'y ~ x1 d2 x2',

13 seed = 90291, Files Plots Packages Help Viewer Presentation .. ™
14 burn = 10000, -3 Export -

15 iter = 20000)

16

17 output(mymodel)

181 | (Top Level = R Script *

Console  Terminal -~ Background Jobs —=

R R4.4.0 - ~/Desktop/

Coefficients:
Intercept 28.576 0.187 28.213 28.949 1.001 7335.528
x1 0.589 0.060 0.472 0.704 1.000 10546.146
d2 1.809 0.340 1.4 2.468 1.000 13554.712
x2 0.190 0.044 0.102 0.276 1.000  8509.929

Standardized Coefficients:
x1 0.400 0.036 0.327 0.466 1.000 10575.479
d2 0.204 0.037 0.129 0.275 1.000 13326.615

All results that Blimp produces (estimates, MCMC samples, imputations, diagnostics,
etc.) are automatically saved in the rblimp model object. Saved quantities can be
inspected by typing @ after the model object’s name in the R console. The analysis

examples in Chapters 4 through 7 include both the Blimp Studio and rblimp scripts.

1.4  Blimp’s Modeling Framework

The major feature that distinguishes Blimp's estimation architecture from other
latent variable modeling software packages is that it does not work with the joint
distribution of the analysis variables. Rather, the multivariate distribution is factored
into the product of multiple univariate distributions. To illustrate, consider an analysis
involving Y, X, and M. The trivariate distribution factors into the product of three

univariate distributions, each of which corresponds to a univariate regression model.
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fYX M) = f (VX M) < f(X|M) x f(M)

Blimp estimates the models on the right of the equals sign without assuming
anything about the form or shape of the multivariate distribution on the left. The
advantage of this specification is that the individual regression equations can feature
mixtures of categorical and normal variables, continuous variables with skewed
distributions, interactive or nonlinear terms, and other complex constructions. In
such cases, the multivariate distribution on the left doesn't have a known or simple
form, and model misspecifications (e.g., treating such data as multivariate normal)

can introduce bias.

The theory for Blimp's model specification is given by Ibrahim and colleagues
(Ibrahim, Chen, & Lipsitz, 2002; Ibrahim, Lipsitz, & Chen, 1999; Lipsitz & lbrahim, 1996),
and the software extends these ideas to latent variable models with up to three
levels. More recent literature refers to this model specification as fully Bayesian
estimation, the sequential specification, and factored regression (Enders et al., 2020;
Erler, Rizopoulos, Jaddoe, Franco, & Lesaffre, 2019; Erler et al., 2016; Ludtke, Robitzsch,
& West, 20203, 2020b; Zhang & Wang, 2017).

To illustrate Blimp’s modeling framework more concretely, consider a research
scenario where the focal analysis model is a linear regression of Y on Xand M. The
factorization above translates into the following linear regression models, where all

residuals are normal and have constant variance.

Y = B0+ 51X + BoM; + &5
Xi =01+ M; + 11
M; = 702 + 72

The X and M equations are essentially nuisance models in this example, and their
role is to link incomplete predictors to one another as well as to any complete

regressors.


https://www.codecogs.com/eqnedit.php?latex=f%5Cleft(Y%2CX%2CM%5Cright)%3Df%5Cleft(Y%5Cmiddle%7C%20X%2CM%5Cright)%5Ctimes%20f%5Cleft(X%5Cmiddle%7C%20M%5Cright)%5Ctimes%20f%5Cleft(M%5Cright)#0
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Any univariate equation can feature mixtures of categorical and normal variables,
continuous variables with skewed distributions, and interactive or nonlinear terms,
among other things. For example, the following equations include an interaction
between X and M in the focal model and a quadratic association between X and M in

the supporting predictor model.

Y =60+ 51X + oM+ B3 (X)(M) +¢
X =901 + M + 21 M? + 1
M =02 + 12

If either X or M has missing values, a joint modeling framework is inappropriate and
would produce biased estimates because the incomplete predictor distributions are
complicated nonlinear functions of the outcome; such associations are
fundamentally incompatible with off-the-shelf distributions such as the multivariate
normal (Bartlett, Seaman, White, & Carpenter, 2015; Liu, Gelman, Hill, Su, & Kropko,
2014). Specifying a model as a sequence of factored regressions bypasses the
problematic joint distribution altogether. These ideas readily extend to latent

variables, which Blimp views as missing data to be estimated (imputed).

1.5  Specifying Models for Incomplete Predictors

Throughout the guide, we use the term “predictors” to refer to exogenous
variables—in a path diagram, variables that do not have incoming arrows. When
predictors are complete, there is usually no reason to specify a distribution for these
variables. Instead, the covariate data essentially function as known constants, as in
ordinary least squares. In contrast, incomplete predictors require an explicit
distribution for imputation. Blimp allows these distributions to have many forms
(e.g., normal, skewed, discrete). In most cases, assigning a distribution to a predictor
means making that regressor a dependent variable in its own regression model.
These supporting models can be explicitly specified, or Blimp can create them

automatically. These two strategies are somewhat different and have different


https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X%2B%5Cbeta_2M%2B%5Cbeta_3%5Cleft(X)(M%5Cright)%2B%5Cvarepsilon#0
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https://www.codecogs.com/eqnedit.php?latex=M%3D%5Cgamma_%7B02%7D%2Br_2#0
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strengths and weaknesses. We use the following multiple regression to illustrate the

two model specification strategies, and we assume that all variables are incomplete.
Y = Bo+ B51X1+ BeXo+ B3X5+¢€

To begin, consider the situation where Blimp automatically constructs supporting

regression models for the predictors. The MODEL statement is as follows.

MODEL:
y ~ x1 x2 x3;

Throughout the guide, we refer to this specification as reflecting unspecified
associations among the predictors. The underlying regression models follow a

round robin pattern where each predictor is regressed on all other predictors.

Xy =1+ y11 (X — p2) + 721 (X3 — p3) + 11
Xo = pg + 12 (X1 — p1) + y22 (X3 — pz) + 12
X3 = pig + 713 (X1 — 1) + Y23 (Xa — p2) + 13

The regressions above are linear and assume normally distributed residuals, but this
specification also allows for binary, ordinal, and multicategorical nominal predictors,
in which case Blimp adopts a latent response variable formulation (Albert & Chib,
1993; Carpenter & Kenward, 2013; Enders et al., 2018; Johnson & Albert, 1999). Variable
metrics are specified using the ORDINAL and NOMINAL commands described in Chapter

2. Enders et al. (2020) describe the multilevel version of this specification.

More formally, adopting unspecified associations for the predictors invokes a model
that factors the joint distribution into the product of a univariate distribution for the

analysis model and a multivariate distribution for the predictors.

F Y, X1, Xs, X3) = f(V]|X1, X2, X3) X f (X1, X2, X3)

We refer to this setup as a partially factored specification because it leaves the

rightmost termm—a multivariate normal distribution for continuous predictors and


https://www.codecogs.com/eqnedit.php?latex=Y%3D%5C%20%5Cbeta_0%2B%5Cbeta_1X_1%2B%5Cbeta_2X_2%2B%5Cbeta_3X_3%2B%5Cvarepsilon#0
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https://www.codecogs.com/eqnedit.php?latex=f%5Cleft(Y%2CX_1%2CX_2%2CX_3%5Cright)%3Df%5Cleft(Y%7CX_1%2CX_2%2CX_3%5Cright)%5Ctimes%20f%5Cleft(X_1%2CX_2%2CX_3%5Cright)#0
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latent response variables—unfactored. With mixed response types, the multivariate
distribution’s covariance matrix is difficult to model because it could include a
mixture of fixed constants, variances and covariances, and correlations. The round
robin regression equations above simplify estimation by leveraging the property that
a multivariate normal distribution spawns an equivalent set of linear regression
models (Arnold, Castillo, & Sarabia, 2007; Liu, Gelman, Hill, Su, & Kropko, 2014).
Importantly, the normal distribution assumption precludes the possibility of
nonlinear associations among the predictors, as such relations are incompatible with

normal data.

Next, consider the situation where the user explicitly specifies the regression
equations for the predictors. This specification leverages the probability chain rule to
factorize the joint distribution of the analysis variables into the product of several
univariate conditional distributions, each of which corresponds to a regression

model.
fF Y, X1, Xo, X3) = f(Y]X1, Xo, X3) X f(X1|Xg, X3) %X

J (Xa]X3) x f(X3)

The corresponding regression equations follow the same cascading pattern where
the first predictor's model is empty, the second predictor is regressed on the first, the

third on the first and second, and so on.

X1 =71 +mXe + 721 X3+ 1
Xo = Y02 + 712X3 + 12

X3 =103 +73
The MODEL statement for this specification is

MODEL :
predictor.models:
x3 ~ 1;

X2 ~ X3;


https://www.codecogs.com/eqnedit.php?latex=f%5Cleft(Y%2CX_1%2CX_2%2CX_3%5Cright)%3Df%5Cleft(Y%7CX_1%2CX_2%2CX_3%5Cright)%5Ctimes%20f%5Cleft(X_1%7CX_2%2CX_3%5Cright)%5Ctimes#0
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X1 ~ x2 X3;
focal.model:
y ~ x1 x2 x3;

and the code block below illustrates a syntax shortcut for this specification that lists

all predictors to the left of a tilde.

MODEL :
predictor.models:
X1 x2 x3 ~ 1;
focal.model:

y ~ x1 x2 x3;

We refer to this setup as a factored regression specification or sequential
specification (Erler et al., 2016; Ludtke et al., 2020b).

Blimp's output produces a tabular summary for each estimated model (there are
four in the previous example). By default, the summary tables are alphabetized
according to the outcome’s name. Some users may prefer to order the tables so the
primary analysis results appear first. This is accomplished by using labels ending in a
colon to define blocks of models that appear in the order listed. The following
example creates two model blocks, such that the focal model summary table

appears first on the printed output.

MODEL :
focal.model:

y ~ x1 x2 x3;
predictor.models:
X1 x2 x3 ~ 1;

The sequential specification for predictors differs in important ways. First, the
predictor’'s equation can have any metric allowed by Blimp—normal, skewed
continuous, binary (probit or logit link), ordinal (probit link), multicategorical nominal

(logistic link), or count (negative binomial link). Second, associations among the
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predictors need not be linear. For example, the following equations include the

guadratic effect of X5 on X..

X1 =7 +miXe +721 X3+
Xo = Yo2 + 712X3 + 712X3? + 7o
X3 =103 +73

The corresponding MODEL statement is as follows.

MODEL:
predictor.models:
x3 ~ 1;

X2 ~ X3 (x372);
x1l ~ x2 X3;
focal.model:

y ~ x1 x2 x3;

When using a sequential specification, ordering the predictors in a particular way
can facilitate estimation and reduce the impact of model misspecifications. Ludtke
et al. (2020b, pp. 171-172) recommend ordering variables from left to right by their
missingness rates, with categorical variables before continuous variables. To
illustrate, suppose that X; is an incomplete binary variable, X, is complete, and X5 is an
incomplete continuous variable. Their recormmended specification would be as

follows

f(Y’Xl,Xg,Xg) X f(X3|X1,X2) X f(Xl‘XQ) X f(XQ)

and the corresponding model specification is

ORDINAL: x1;
MODEL :
predictor.models:
X2 ~ 1;

x1 ~ x2;

X3 ~ x1 x2;
focal.model:


https://www.codecogs.com/eqnedit.php?latex=X_1%3D%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DX_2%2B%5Cgamma_%7B21%7DX_3%2Br_1#0
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y ~ x1 x2 x3;

or simply as follows.

ORDINAL: x1;
MODEL :
predictor.models:
x3 x1 x2 ~ 1;
focal.model:

y ~ x1 x2 x3;

Finally, when predictors are complete, there is usually no reason to specify a
distribution for these variables; instead, the covariate data essentially function as
known constants, as in ordinary least squares. With either specification for the
predictors, listing complete predictors on the FIXED command line indicates that the
variable does not require a model (or distribution). Continuing with the previous
example where X, is complete, the sequential specification moves the complete

variable from the left to the right of the tilde, as follows.

FIXED: x2;

MODEL :
predictor.models:
x3 X1 ~ x2;
focal.model:

y ~ x1 x2 x3;

The partially factored specification with unspecified predictor associations is as

follows.

FIXED: x2;
MODEL :
y ~ x1 x2 x3;

The examples in Chapters 4 through 7 generally treat predictor distributions as
unspecified. This setup is easy to specify, and it is also convenient for centering

because the means are explicit model parameters that MCMC iteratively estimates.
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This approach does not limit the composition of the focal analysis model, which can
include interactive or nonlinear terms. However, predictor regressions are necessarily
additive, as interactions and similar nonlinearities are incompatible with a
multivariate normal distribution. As mentioned previously, unspecified predictor
associations accommodate normal, binary, ordinal, and multicategorical variables via
a latent response variable framework. Blimp can apply a Yeo-Johnson (Yeo &
Johnson, 2000) distribution to skewed variables and negative binomial regression to

count variables, but these features require a sequential specification.

The next section provides a complete description of the Blimp command language,
and Chapters 4 through 7 provide numerous analysis examples. The examples span
a wide variety of single-level and multilevel analyses with manifest and latent

variables, including analyses for missing not at random processes.

1.6 Missing Data Handling

As detailed in Section 1.3, Blimp's estimation architecture factorizes a multivariate
distribution into the product of univariate distributions. This factorization carries
through to missing data handling, where the distributions of missing values rely on a
collection of univariate models. The advantage of this specification is that Blimp can
generate appropriate imputations from models that are fundamentally incompatible
with known multivariate distributions. Examples include models with incomplete
interactive or polynomial effects, multilevel models with random effects, and models

with skewed variables or mixtures of discrete and numeric variables.

To illustrate missing data handling, consider an analysis involving Y, X, and M. To
refresh, the trivariate distribution factors into the product of three univariate

distributions, each of which corresponds to a regression model.
FYX, M) = f(YIX, M) x f(X|M)x f(M)

Blimp estimates the models on the right of the equals sign without assuming

anything about the form or shape of the multivariate distribution on the left. In a
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simple scenario where all three three variables are continuous, the factorization

corresponds to the following linear regression models.

Y = B0+ 5 X + BoM; + €
Xi =y + M + 1y,
M; = o2 + 12

In a factored regression framework, the distributions of missing values depend on
every model in which a variable appears. For example, the distribution of missing Y
values depends only on the analysis model, and MCMC samples imputations from a
normal curve with center and spread equal to a predicted value and residual

variance, respectively.
fY[X,M)=N (ﬂo + 51X, + B2 M;, U?)

Because it appears in two models—once as a predictor and once as an
outcome—the conditional distribution of missing X values is proportional to the

product of two normal distributions.
FXY, M) o f(Y|X, M) x f(X|M) =

N (50 + 81X + B2 M;, 052) X N (701 + Y11 M, U%)

In a similar vein, the conditional distribution of the missing M values is proportional

to the product of three normal distributions.

FMY, X) o N (Bo + Si1Xi + oMy, 02) XN (o1 + 711 My, 071) XN (Y02, 07)

These conditional distributions have analytic solutions in many cases (Levy & Enders,
2021), but Blimp's MCMC algorithm uses Metropolis sampling to draw imputations

from composite functions such as these.

With a collection of additive models like those above, the distributions of missing

values are equivalent to the distributions implied by a joint modeling framework or
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fully conditional specification. The same is not true for models with nonlinearities,
skewed variables, or mixtures of discrete and numeric variables. To illustrate, suppose
the analysis model includes an interaction between X and M. The factorization and

the corresponding regression models are as follows.
fFY, X, M)x f(YIX,M, X x M) x f(X|M)x f(M)
Y = Bo+ B X + BoM; + B3 (X; x M;) + ¢
Xi =01 + M + 114
M =02 + 12

As before, the distributions of missing values depend on every model in which a
variable appears. For example, the distribution of missing X values is again the

product of two normal distributions, as follows.
FXWY, M) o f(Y[X, M, X x M) x f(X|M)=

N (Bo + B1X; + BoM; + B3 (Xi x M;),02) x N (o1 + v11M;, 02)

Importantly, the conditional distribution of missing values is incompatible with
multivariate normality because its variance is heteroscedastic function (Enders et al,,
2020, Eq. 8). The same issue applies more broadly to models with polynomial or

nonlinear terms and multilevel models with random effects, among others.

Basing imputations on factored regression specification is guaranteed to produce a
set of compatible univariate regressions, whereas conventional modeling
frameworks that create imputations based on a multivariate distribution are prone to
bias (Bartlett, Seaman, White, & Carpenter, 2015; Liu, Gelman, Hill, Su, & Kropko, 2014).
More generally, the univariate models described above could feature discrete
variables (binary, ordinal, multicategorical nominal, count), skewed continuous
variables, and even latent variables, which Blimp views as missing data to be

estimated (imputed).
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1.1 Prior Distributions

Blimp’'s MCMC algorithm adopts different prior distributions that depend on the
variable's metric and the type of model. Blimp invokes a normal distribution prior for
regression coefficients (and means). We denote these priors as normal(mu, var).The
default noninformative prior is a normal distribution with infinite variance. Variances
and residual variances use a conjugate inverse gamma prior distribution. The inverse
gamma distribution has two parameters, scale and shape. We denote this
distribution as invgamma(a,b). The scale parameter can be viewed as the prior
degrees of freedom + 2, and the shape parameter is the prior sums of squares + 2. For
covariance matrices, Blimp adopts conjugate inverse Wishart priors. The inverse
Wishart distribution is the multivariate extension of the inverse gamma. It too has
two parameters, a scale matrix and degrees of freedom. We denote this prior as
IN(SS,,df,), where SS, is the prior sum of squares and cross-products matrix (the
scale matrix), and df,, is the prior degrees of freedom. In the table below, we use p to
denote the number of variance in the covariance matrix. The table below
summarizes the default prior distributions, and the rightmost column indicates
whether the user can specify a custom prior. Priors are modified using either the

OPTIONS command or the PARAMETERS command.

Variable Type Parameter Default Prior Modifiable

Continuous exogenous Regression normal(0,Inf) No
manifest predictors with coefficients
unspecified associations

Continuous exogenous Residual invgamma(1,.5) Yes ( OPTIONS
manifest predictors with variance command)
unspecified associations

Ordinal exogenous Threshold uniform(-Inf,Inf) | No
manifest predictor (> two

categories)

Discrete exogenous Residual NA (fixed NA

manifest predictor variance parameter)
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Continuous outcome Regression normal(0,Inf) Yes (PARAMETERS
(manifest or latent) coefficients command)
Continuous outcome Residual invgamma(-1,0) Yes (OPTIONS
(manifest or latent) variance and PARAMETERS
commands)
Discrete outcome Regression normal(o,5) Yes (PARAMETERS
coefficients command)
Discrete outcome Residual NA (fixed NA
variance parameter)
Ordinal outcome (> two Threshold uniform(-Inf,Inf) | No
categories)
Random effect residual in | Covariance IW(0,-p-1) Yes ( OPTIONS
a mixed model matrix command)
Continuous outcome Covariance IW(o,-p-1) Yes ( OPTIONS
(manifest, latent, or matrix command)
binary/ordinal latent
response variables)

1.8  New Features

The following is a list of new features and functionality available in Version 3.2.

Multiple-equation models (e.g., path models) with up to three levels

Latent variables and latent variable regressions
Latent variables with random effects, interactions, and nonlinear effects

Single-level and multilevel selection and pattern mixtures models for missing
not at random processes

Multivariate regression models

Parameter constraints

Auxiliary parameters that are functions of estimated parameters
Latent variable imputation

Yeo-Johnson modeling for skewed continuous variables

Binary and multinomial logistic regression

Negative binomial regression for count outcomes
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Estimation with sampling weights

Facilities for computing new variables with numerous built-in functions
Built-in functions embedded within regression equations

Facilities for introducing custom univariate prior distributions

New Blimp Studio graphical user interface

Redesigned output with numerous enhancements and additional printing
options

Better optimization and many algorithmic improvements
Enhanced user guide with dozens of new examples and analysis scripts

Enhanced WALDTEST command for Bayesian Wald tests in all models Blimp
estimates

DIC and WAIC information criteria for model selection

Correlations among the residuals of all outcome variables for evaluating local
sources of model misfit

The following is a list of features and functionality that were introduced in Version 2.

WALDTEST command for Bayesian Wald tests (Asparouhov & Muthén, 2021)
Simplified scripting language and redesigned output

Graphical interface with automatic updates when new features become
available

Graphical engine that creates trace plots for all model parameters

Bayesian estimation of single-level, multilevel (up to three levels), and multiple
group regression models with complete or incomplete data

Posterior summaries of all model parameters from Bayesian estimation
(posterior mean, median, standard deviation, and credible interval)

Single-level and muiltilevel R-squared measures (Rights & Sterba, 2019)
Bayesian estimation for interactive and nonlinear effects with missing data

Bayesian estimation with grand mean centering (all models) and group mean
centering (two- and three-level models)

Post-hoc probing of interaction effects with continuous or categorical
moderators

Bayesian estimation of conditional effects (simple slopes) in regression models
with interaction effects

27
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Incomplete binary, ordinal, or nominal predictor variables
Discrete and latent imputations for binary, ordinal, and nominal variables

FCS or Bayesian estimation with level-2 and level-3 cluster means modeled as
latent variables

Contextual effects models with latent group means or manifest group means
Interaction effects with latent group means

Various algorithmic and interface enhancements (eg, random starting values,
options for saving various estimates and output)

1.9 Running From Terminal

Blimp scripts can also be executed from the terminal without the graphical interface.
This is useful when conducting computer simulations, for example. The most basic
specification includes a file path to the Blimp executable file followed by a file path to
the script to be executed. To illustrate, the following line of code executes a script

located on the desktop.

/Applications/Blimp/blimp ~/desktop/myscript.imp

Similarly, the following line uses the Blimp beta engine to execute the same file.

/Applications/Blimp/blimp-beta ~/desktop/myscript.imp

Several parts of the Blimp script can be specified via command line arguments. The
general form of an argument includes a double dash followed by a keyword and an
input parameter. For example, the following code block uses a command line

argument to specify the input data set.

BLIMPPATH=/Applications/Blimp/blimp
${BLIMPPATH} ~/desktop/myscript.imp --data ~/desktop/mydata.dat

Note that any parameters specified as command line arguments replace the current
contents of the script (e.g., the file specified on the DATA command is replaced by the

file ~/desktop/mydata.dat).
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In addition to the input data, command line arguments include the random number
seed and most quantities exported using the SAVE commmand. The code block below
shows the full array of command line arguments. The backslash is the Linux
command continuation character; the arguments would otherwise need to appear

on a single line separated by a space.

/Applications/Blimp/blimp ~/desktop/myscript.imp \
--seed {seed value} \
--data {filepath to input data} \
--output {filepath to blimp-out output file} \
--stacked {filepath to stacked imputation data} \
--stacked® {filepath to stacked original + imputed data} \
--separate {filepath to separate imputation data sets} \
--estimates {filepath to save estimate summary tables} \
--burn {filepath to save all burn-in estimates} \
--iterations {filepath to save all post burn-in estimates} \
--psr {filepath to save burn-in psr values} \
--waldtest {filepath to save Wald statistics} \
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2 Blimp Command Language

21  Overview

This chapter gives a detailed account of the Blimp's scripting language. Blimp
commands can be entered in the Blimp Studio syntax editor or in a plain text file
with .imp as the file extension. The code block below shows a typical script with

many of Blimp's major commands.

DATA: data.dat;

VARIABLES: id al:a4 y m x1:x3 z1 z2;
ORDINAL: x1;

NOMINAL: x3;

MISSING: 999;

FIXED: x3;

CENTER: grandmean = x1 x2;

MODEL :

# x1-x3 and x2-x3 interaction predicting m;
m ~ X1 X2 X3 Xx2*x3;

# m and x1-x3 predicting y;

y ~ m x1:x3;

SEED: 90291;

BURN: 2000;

ITER: 10000;

The Blimp command language uses the following general conventions, most of

which are shown in the previous code block.

Upper and lower case are equivalent, no case sensitivity

+ Command names (e.g., DATA, VARIABLES) end in a colon
Subcommands or specifications following a command in a semicolon
Commands and subcommands can span multiple lines

A colon can be used to specify a range of variables with the same prefix and
suffix

+ A#symbol indicates a comment that Blimp ignores until the end of the line

30
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Three symbols are needed to specify models: (a) ~ or <- denotes a regression
equation, (b) ~~ or ~~ denote variances and covariances, and (c) -> or =~ assigns
indicators to a latent variable

Mathematical operator symbols are * for multiplication, / for division, + for
addition, - for subtraction, » or ** to raise a variable or quantity to a power, and
parentheses for specifying order of operations

When running Blimp from within the rblimp package in R, each of the major

commands becomes an input parameter for the function. With the exception of

numeric inputs like the number of iterations, each input is enclosed in quotes as a

text string. For commands that require multiple lines (e.g., models with multiple

equations), multiple lines separated by the line terminator (;) are enclosed in quotes.

Returning to the previous example, the corresponding rblimp script is shown below.

library(rblimp)

setwd('~/desktop/")
datal <- as.data.frame(read.table('datal.dat', na.strings = '999'))
colnames(datal) <- c('id','vl','d1','ol','y",'x1"',"'d2"','x2"',"'x3")

mymodel <- rblimp(

)

data = datail,
ordinal = 'd2',

nominal = 'x3"',

fixed = 'd2',

center = 'grandmean = x1 x2',
model = '

m ~ x1 x2 x3 x2*x3;
y ~m x1:x3;",
seed = 90291,
burn = 2000,
iterations = 10000

14

output(mymodel)

Blimp also provides a number of built-in functions that work in conjunction with

certain commands. The TRANSFORM command can use these functions to create new

variables, the PARAMETERS command can use these routines to compute auxiliary

parameters that are functions of the estimated model parameters, and functions can
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be embedded within regression equations listed in the MODEL statement. The list of

functions is below.

+ abs(x) = absolute value of x

+ sqrt(x) = square root of x

+ exp(x) = exponential function applied to x

+ logit(x) = logit function applied to x

+« sigm(x) = sigmoid function applied to x

+  log(x) or ln(x) = natural log of x

+ loglp(x) =log(1l + x)

« expml(x) =exp(x) - 1

<+ phi(x) = normal cumulative distribution function of x

« iphi(x) or probit(x) = inverse normal cumulative distribution function of x
« yjt(x,lambda) = Yeo-Johnson transformation of x with optional shape parameter

+ 1yjt(x, lambda) = inverse Yeo-Johnson transformation of x with optional shape
parameter

« mean(x) = returns the mean of x

« mean(x, idvar) =returns the cluster means of x computed within the grouping
variable idvar

+ sd(x) = returns the standard deviation of x

+ sd(x, idvar) =returnsthe cluster standard deviation of x computed within the
grouping variable idvar

+ stand(x) or scale(x) =returns x standardized as a z-score

« stand(x, idvar) or scale(x, idvar) =returns x standardized as a z-score within
the grouping variable idvar

+ center(x) =returns x but centered. Equivalent to (x - mean(x))

+ center(x, idvar) =returns x but centered within the grouping variable idvar.
Equivalent to (x - mean(x, idvar))

« max(x) = returns the maximum of x
+ max(x, y) =returns the row-wise maximum between x and y
« min(x) = returns the minimum of x

« min(x, y) = returns the row-wise minimum between x and y
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+ vec(x) = creates a variable filled with the scalar x

The following built-in functions are only available in the TRANSFORM command:

%%
<

ismissing(x) = returns missing data indicator for x

K3
<

lagl(x, time) =returnsthe lag1of x based on the time variable

K3
<

lagl(x, time, 1idvar) =returnsthe lag1of x within the grouping variable idvar,
based on the time variable

K3

» ifelse(condition, value if true, value if false) recodes a variable X into a
new variable with two values

2.2  Blimp Commands

DATA Command

The DATA command specifies the input data set, which must be saved as a .csv
(comma separated values) format or a whitespace (including tab) delimited file (e.g.,
dat or .txt). Blimp accepts only numeric characters for data values (e.g., a nominal
variable cannot have alphanumeric labels as score values), although alphanumeric
characters (e.g., NA) can be used for missing value codes. Variable names can appear
in the column headers, but the VARIABLE command (described next) must be
omitted. No file path is needed if the Blimp script (the .imp file) is located in the

same directory as the data. The following code block illustrates this specification.

DATA: mydata.dat;

The DATA command requires a full file path to the input data set that is located in a
directory other than the one that contains the Blimp script. The file path should not
be enclosed in quotations. The following code block reads a data file located in a
directory named “research project” located on the desktop. In line with macOS and
other Unix-based systems conventions, a tilde can be used to reference the user’s
home directory. The following input line reads a data file from a directory within the

desktop folder.
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DATA: ~/desktop/research project/mydata.dat;

VARIABLE Command

The VARIABLES command specifies the variable names for the data set listed on the
DATA command. in the input file. This command should not be used if the data file
has variable names as column headers. The variable list may include variables that
are not used in an analysis model or imputation model. The code block below

illustrates a basic specification with five variables.

VARIABLES: y x1 x2 X3 x4;

A colon can be used to specify a range of variables with the same prefix but different

numeric suffixes, as follows.

VARIABLES: y x1:x4;

The colon specification also works if a group of variables has a commmon
alphanumeric string following the numeric values (e.g., a set of variables and their

recoded counterparts).

VARIABLES: y x1:x4 x1r:x4r;

ORDINAL Command

The ORDINAL command identifies ordinal variables that appear in a MODEL statement.
For computational efficiency, we recommend listing binary variables on the ORDINAL
line, but these variables could also be treated as nominal. A colon can be used to

specify a range of ordinal variables, as follows.

ORDINAL: x1:x5;

By default, Blimp uses a latent response variable (i.e., probit regression) framework

for ordinal variables (Albert & Chib, 1993; Carpenter & Kenward, 2013; Enders et al,,
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2018; Johnson & Albert, 1999), and a logistic link is an option for binary variables
(Asparouhov, T., & Muthén, B. (2021; Polson, Scott, & Windle, 2013).

NOMINAL Command

The NOMINAL command specifies nominal variables that appear in a MODEL statement.
Nominal variables must be represented as a single variable with numeric codes.
Blimp automatically recodes the discrete responses into a set of dummy codes (or
latent response difference scores, in some cases) during estimation. By default,
Blimp assigns the first (lowest) code as the reference category. To change the
reference category, list the numeric code of the desired reference group in
parentheses following the variable's name. To illustrate, consider two nominal
variables X and Z, each with codes 1, 2, and 3. The following example assigns X =3 and

Z =1 as the reference groups.

NOMINAL: x(3) z;

For predictors with unspecified associations, Blimp uses a latent difference score (i.e.,
multinomial probit regression) framework for nominal variables (Albert & Chib, 1993;
Carpenter & Kenward, 2013; Enders et al.,, 2018; Johnson & Albert, 1999), and it uses a
logistic link for multicategorial nominal variables on the left side of a tilde

(Asparouhoyv, T., & Muthén, B. (2021; Polson, Scott, & Windle, 2013).

COUNT Command

The COUNT command identifies count variables that appear in a MODEL statement.
Count dependent variables have a negative binomial regression (Asparouhov, T., &
Muthén, B. (2021; Polson, Scott, & Windle, 2013). Currently, incomplete count variables

can only be outcomes, not predictors.

COUNT: y x3;
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CLUSTERID Command

The CLUSTERID command specifies cluster-level identifier variable(s) needed for a
multilevel analysis or multilevel imputation. Two-level analyses require a single
identifier for the level-2 sampling unit (cluster), and three-level analyses require
level-2 and level-3 identifier variables. The order of the identifier variables does not
matter, as Blimp automatically determines variable levels. To illustrate, the following

code block specifies a single cluster-level identifier for a two-level analysis.

VARIABLES: level2id y x1 x2;
CLUSTERID: level2id;
MODEL: y ~ x1 x2;

The code block below illustrates a pair of cluster-level identifiers for a three-level

analysis.

VARIABLES: level2id level3id y x1 x2;
CLUSTERID: level2id level3id;
MODEL: y ~ x1 x2;

Blimp currently does not allow cross-classified clustering schemes.

WEIGHT Command

The WEIGHT command identifies a variable containing sampling (i.e., inverse
probability) weights. Blimp's MCMC estimation routine incorporates sampling
weights for single-level and two-level models. Goldstein (2011, Section 3.4.2) describes
MCMC estimation for multilevel models with sampling weights. Level-1 and level-2
sampling weights are rescaled following Goldstein (2011, Section 3.4.1). At level-1, the
rescaled weights within a given cluster sum to the cluster size. This is the same as

the so-called “cluster” method from Asparouhov (2006).

VARIABLES: v1 v2 v3 wght y x1:x5;
WEIGHT: wght;
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MISSING Command

The MISSING command is used to specify the missing value code. Missing values can
be coded with a single numeric (e.g., 999) or alphanumeric value (e.g., NA). The

following code block specifies a numeric value of 999 as the missing data code.

MISSING: 999;

LATENT Command

The LATENT command is used to define latent variables (e.g., factors in a
measurement model) that will be referenced in the MODEL section. For example, the
code block below illustrates the specification for a single latent factor with three

manifest indicators.

LATENT: yfactor;
MODEL :
yfactor -> y1:y3;

The default scaling for latent factors is described in the MODEL command section.
Blimp treats all latent variables as missing data to be imputed, and adding the
savelatent keyword to the OPTIONS line saves the estimated latent variable scores to

the imputed data.

Latent variables can be specified at any level of a multilevel model. This specification
references cluster-level identifier variables from the CLUSTERID line. For example, the
code below illustrates the specification of a level-1 latent factor with three manifest
indicators measured at level-1 and a level-2 latent factor with three indicators

measured at level-2. The variable

CLUSTERID: level2id;

LATENT: yfactor; level2id = xfactor;
MODEL :

yfactor -> y1:y3;

xfactor -> x1:x3;
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Latent variables can also be listed on separate lines as follows.

LATENT:
yfactor;
level2id = xfactor;

RANDOMEFFECT Command

The RANDOMEFFECT command is used to define new latent variables that equal the
random intercepts and slopes from a multilevel regression model. These latent
variables are referenced in the MODEL section, where they can be used to predict
other variables in a multilevel path or structural equation model. The RANDOMEFFECT
command is similar to the LATENT command except that the random intercept and

slope residuals can only function as predictors and not outcomes like a latent factor.

The specification for a random effect latent variable has four components: (a) the
new latent variable's name appears on the left side of the equation, (b) the target
equation’s outcome variable is listed after the equals sign, (c) the random slope
predictor's name from the target model appears after the vertical pipe, and (d) the
cluster-level identifier variable from the CLUSTERID command appears at the end of

the line in square brackets. The generic specification is as follows.

RANDOMEFFECT:
newlatent = outcome variable | random predictor [CLUSTERID var];

To illustrate more concretely, the code block below defines a pair of new latent
variables equal to the random intercept and random slope residuals from a two-level

model and uses the random effects to predict an outcome.

CLUSTERID: cluster;
RANDOMEFFECT:

ranicepts =y | 1 [cluster];
ranslopes =y | x [cluster];
MODEL :

y ~x | x;
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z ~ ranicepts ranslopes;

TRANSFORM Command

The TRANSFORM command creates new variables that are functions of existing
variables. If imputations are requested, the new variable is saved to the output data

sets. The general form of the TRANSFORM command is as follows.

TRANSFORM:
newvarl = expression or function;
newvar2 = expression or function;

Mathematical operator symbols are * and / for multiplication and division, + and — for
addition and subtraction, and A to raise a variable or quantity to a power. The
following examples apply these operators to create new variables from an existing

variable X.

TRANSFORM:
newvarl =
newvar?2
newvar3
newvar4
newvar>s

]
+ ~ *
NN DN DN
we e

e

e

X X X X

X"2;

Blimp also offers three ways to recode an existing variable into a new variable. The

switch function is the most convenient in many situations.

TRANSFORM:

newvar = switch(condition1, value if true,
condition2, value if true,
condition3, value if true,

value if all conditions are false);

To illustrate, consider the creation of a new binary variable that equals 1if X is less
than 50 and 2 if X is greater than or equal to 50. The TRANSFORM command for

recoding X into a binary variable is as follows.



Blimp User’s Guide (Version 3) 40

TRANSFORM:
newvar = switch(x < 50, 1, 2);

As a second example, suppose X is a multicategorical variable with four groups
coded 1through 4. The TRANSFORM command below creates a new three-category

variable that combines codes 3 and 4 into a single group.

TRANSFORM:
newvar = switch(x == 1, 1, x == 2, 2, 3);

The second recording strategy uses Boolean statements that evaluatetoalor 0. To
illustrate, consider the creation of a new binary variable that equals 1if X is less than
50 and 2 if X is greater than or equal to 50. The TRANSFORM command for recoding X

into a binary variable is as follows.

TRANSFORM:
newvar = (x < 50)*1 + (x >= 50)*2;

The Boolean operator (x < 50) evaluates to 1if X is less than 50 and O otherwise.
Multiplying by 1 establishes the score value that is assigned if the first condition is
true. The Boolean operator (x >= 50) similarly evaluates to a1 or O, and multiplying by
2 establishes the score value that is assigned if the second condition is true.
Summing the two components produces the desired binary variable because only

one of the two terms is non-zero.

As a second example, suppose X is a multicategorical variable with four groups
coded 1through 4. The TRANSFORM command below creates a new three-category

variable that combines codes 3 and 4 into a single group.

TRANSFORM:
newvar = (x == 1)*1 + (x == 2)*2 + (x == 3)*3 + (x == 4)*3;

Following the previous example, the command consists of four Boolean operators,

each of which evaluates to 1 or O if the condition is true or false, respectively. Each
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operator is multiplied by the score value that is assigned if the condition is true.
Finally, summing the result of each product recodes the variable because only one

condition is non-zero.

Multiple Boolean operators can be combined into a single condition by separating
two operators with and/or. For example, the TRANSFORM command below creates a
new three-category variable that uses an or logical argument to recode codes 3 and

4 into a single category.

TRANSFORM:
newvar = (x == 1)*1 + (x == 2)*2 + ((x == 3) or (x == 4))*3;

The ifelse function is a third method for recoding variables. The general form of the
command has three arguments: a condition to be evaluated, the value of the new
variable it the condition is true, and the value of the new variable if the condition is

false.

TRANSFORM:
newvar = ifelse(condition, value if true, value if false);

To illustrate, reconsider the creation of a new binary variable that equals 1if X is less
than 50 and 2 if X is greater than or equal to 50. The TRANSFORM command for

recoding X into a binary variable is as follows.

TRANSFORM:
newvar = ifelse(x >= 50, 2, 1);

The condition being evaluated is whether X is greater than or equal to 50, and the
new variable is assigned a value of 2 if the condition is true and 1 otherwise. Multiple
ifelse statements can be nested within each other, but the switch function is

generally more convenient for recoding variables into three or more score values.

Global functions are described in Section 2.1. The list below reiterates these functions.
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abs(x) = absolute value of x

sqrt(x) = square root of x

exp(x) = exponential function applied to x

logit(x) = logit function applied to x

sigm(x) = sigmoid function applied to x

log(x) or In(x) = natural log of x

loglp(x) =Tlog(1l + x)

expml(x) =exp(x) - 1

phi(x) = normal cumulative distribution function of x

iphi(x) or probit(x) = inverse normal cumulative distribution function of x
yjt(x,lambda) = Yeo-Johnson transformation of x with optional shape parameter

iyjt(x, lambda) = inverse Yeo-Johnson transformation of x with optional shape
parameter

mean(x) = returns the mean of x

mean(x, idvar) =returns the cluster means of x computed within the grouping
variable idvar

sd(x) = returns the standard deviation of x

sd(x, idvar) =returns the cluster standard deviation of x computed within the
grouping variable idvar

stand(x) or scale(x) = returns x standardized as a z-score

stand(x, idvar) or scale(x, idvar) =returns x standardized as a z-score within
the grouping variable idvar

center(x) = returns x but centered. Equivalent to (x - mean(x))

center(x, idvar) =returns x but centered within the grouping variable idvar.
Equivalent to (x - mean(x, idvar))

max(x) = returns the maximum of x
max(x, y) = returns the row-wise maximum between x and y
min(x) = returns the minimum of x
min(x, y) = returnsthe row-wise minimum between x and y

vec(x) = creates a variable filled with the scalar x
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The following functions are specific to the TRANSFORM command and cannot be used

elsewhere:

+ ismissing(x) = returns missing data indicator for a variable X

<+ missing(condition, value if true) =returns a missing value if the condition is
true and a value or variable otherwise

+ lagl(x, timescores, cluster) =in a multilevel longitudinal structure, shifts all
rows of variable X down by one row, as indexed by a level-1 temporal predictor
timescores nested within a cluster-level identifier variable cluster

« switch(conditionl, value if true, condition2, value if true, ..., value
if all conditions false) recodes existing variables

+ 1ifelse(condition, value if true, value if false) recodes a variable X into a
new variable with two values

BYGROUP Command

The BYGROUP command is used to perform fully conditional specification imputation
(when used in conjunction with the FCS command) or model estimation (when used
in conjunction with the MODEL command) for observed subgroups in the data. For
example, consider a manifest (and complete) grouping variable G with three
categories. The following code block specifies fully condition specification

imputation separately for each level of G.

BYGROUP: g;
FCS: y x1 x2;

Similarly, the following code block estimates a separate multiple regression model

for each subgroup of G.

BYGROUP: g;
MODEL: y ~ x1 x2;

Only a single categorical variable is allowed on the BYGROUP command, although this
limitation can be bypassed by recoding multiple categorical variables into a single

variable, sample size permitting. Additionally, the BYGROUP variable should not appear
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on the ORDINAL, NOMINAL, or MODEL lines. Trace plots are currently unavailable with
BYGROUP processing. Finally, you can use this command to fit multiple-group models,

but Blimp does not allow between-group constraints.

FIXED Command

The FIXED command identifies complete predictor variables that do not require a
distribution. Incomplete variables and outcome variables (variables that appear to
the left of a tilde) must be random variables with a distribution. With relatively few
exceptions, we recommend listing complete variables on the fixed line, as doing so
speeds computations and convergence. Fixed variables listed on the CENTERING line
will be centered at the means of the observed data (i.e., the means will not be
treated as random variables to be estimated). The following code block illustrates a

multiple regression analysis with two complete fixed variables, X; and X..

VARIABLES: y x1 x2 X3 x4;
FIXED: x1 x2;
MODEL: y ~ x1 x2 Xx3;

CENTER Command

The CENTERING command is used to center predictor variables in regression
equations. This commmand affects Blimp's printed estimates but has no bearing on
imputations generated by the SAVE command. For complete variables listed on the
FIXED line, Blimp centers variables at arithmetic averages (grand mean or group
means). For all variables assigned a distribution, the CENTERING command treats
grand means and group means as random variables to be estimated at each MCMC
iteration (Enders & Keller, 2019). Any product terms specified on the MODEL line

automatically reflect the specified centering method.

In a single-level model, there is no need to specify the type of centering because
centering at the grand means is the only option. The code block below shows a basic

grand mean centering specification for a single-level multiple regression model.



Blimp User’s Guide (Version 3) 45

CENTER: x1 x2;
MODEL: y ~ x1 x2 Xx3;

The equivalent specification below explicitly requests grand mean centering.

CENTER: grandmean = x1 x2;
MODEL: y ~ x1 x2 x3;

Predictor variables in a multilevel regression model can be centered at the grand
means or group-level cluster means (lower-level regressors only). In this case, the
type of centering must be explicitly specified. The following code block illustrates a
two-level regression model with a cross-level interaction where a level-1 predictor X,
is centered at the level-2 latent group means, and a level-2 predictor X, is centered at
its grand mean (group mean centering is not an option for variables at the highest

level).

CLUSTERID: level2id;
CENTER: groupmean = x1.1; grandmean = x2_j;
MODEL: y ~ x1_1 x2_j x1.i*x2_j | x1_1;

Centering specifications can also be spread over multiple lines, as follows.

CLUSTERID: level2id;

CENTER:
groupmean = x1_1i;
grandmean = x2_3j;

MODEL: y ~ x1_1 x2_j x1.i*x2_j | x1_1;

Importantly, group mean centering reflects deviations between the raw scores and
latent group means (unless the variable is complete and listed on the FIXED ling, in
which case the group means are arithmetic averages). Further, group mean
centering is always performed by subtracting the latent group means at the next
level of the data hierarchy. For example, if the previous analysis was a three-level

model, the centering procedure would subtract X, scores from the level-2 latent
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group means. The group means themselves can be included in the analysis model,

and these latent variables can be centered just like any other predictor.

Categorical variables can also be centered (Enders & Tofighi, 2007; Yaremych &
Preacher, 2021). As mentioned elsewhere, categorical predictors (binary, ordinal, or
nominal) are modeled as underlying normal latent response variables. The grand
and group means are also modeled on the latent metric, and listing categorical
variables on the CENTERING command invokes a transformation that converts the
latent mean to the metric required by the analysis model (Enders & Keller, 2019). For
example, centering a binary predictor converts the latent grand mean to a “manifest”
mean equal to the model-implied proportion of ones in the data. Applying centering
to nominal variables with three or more categories can be computationally intensive
because the latent mean conversion requires Monte Carlo integration at each MCMC

step.

MODEL Command

The MODEL command typically consists of one or more univariate regression models.
Blimp's modeling framework can accommodate a wide range of analyses ranging
from basic multiple regression models to complicated multilevel structural equation
models with interactions involving latent variables. This section describes the

command, and Chapters 4 through 7 provide numerous examples.
Regression Models

Univariate regression models are the building blocks for specifying more complex
multivariate models involving networks of variables—Blimp's modeling framework
simply defines any multivariate model as a collection of individual univariate
regressions (see Section 1.3). A univariate regression is specified by listing an
outcome variable to the left of the tilde symbol and predictors (or perhaps just an
intercept) to the right of the tilde. The code block below illustrates a multiple

regression analysis with three predictors.
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MODEL:
y ~ 1 x1 x2 x3;

Outcome variables that appear to the left of a tilde can be latent factors or manifest
variables with a variety of different metrics (normal, skewed continuous, binary,
ordinal, multicategorical nominal, count). With the exception of latent outcomes
where means are set equal to zero, Blimp estimates the intercept by default, and the

above specification can be shortened as follows.

MODEL :
# unspecified predictor models
y ~ x1 x2 x3;

As explained in Section 1.4, supporting regression models for incomplete predictors
can be explicitly specified (i.e., they can appear as outcomes to the left of a tilde), or
Blimp can create them automatically. The previous code block does not list models
for the regressors, so Blimp constructs them as needed for missing data handling.
The examples in Chapter 3 generally adopt this specification because it is easy to
implement and accommodates normal, binary, ordinal, and multicategorical
nominal variables. Leaving predictor associations unspecified also facilitates
centering because grand means and latent group means (multilevel models) are
iteratively estimated parameters. To reiterate, regressions among the predictors are
simply a device for assigning distribution to and preserving associations among
incomplete covariates. These models usually are not the substantive focus, and they

need not have a logical causal construction.

Alternatively, predictor models can be invoked with a sequential specification that
features a cascading pattern of univariate regressions, where the first predictor’'s
model is empty, the second predictor is regressed on the first, the third on the first

and second, and so on.

MODEL :
# sequentially specified predictor models
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x3 ~ 1;
X2 ~ X3;
X1 ~ x2 X3;

# focal analysis model
y ~ x1 x2 x3;

Sequential models can be specified more succinctly by listing all predictors on the

left side of the same tilde.

MODEL :

# sequentially specified predictor models
X1 x2 x3 ~ 1;

# focal analysis model

y ~ x1 x2 x3;

When using the FIXED command to identify complete predictor variables that do not
require a distribution, those predictors should only appear on the right side of a tilde

in a sequential specification.

FIXED: x2;

MODEL :
# sequentially specified predictor models
X1 X3 ~ x2;

# focal analysis model
y ~ x1 x2 x3;

A sequential specification is primarily useful for two scenarios: modeling nonlinear
associations among predictors and modeling skewed or count distributions. In most
other situations, unspecified and sequentially specified predictor models are
equivalent. To illustrate, the code below depicts a scenario where X, is a quadratic

function of X5 (see the later section on interactive and polynomial effects).

MODEL:

x3 ~ 1;

X2 ~ X3 (x372);
X1l ~ x2 X3;

y ~ x1 x2 x3;
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As a second example, the following code block assigns a Yeo-Johnson normal
distribution (Yeo & Johnson, 2000) that allows X,'s distribution to be positively or

negatively skewed (see the later section on functions embedded within equations).

MODEL :

x3 ~ 1;
yjt(x2) ~ x3;
X1 ~ x2 X3;

y ~ x1 x2 x3;

Ludtke et al. (2020b) provide recommendations for ordering variables when

adopting a sequential specification (see Section 1.4).

Blimp prints a table of estimates for each outcome variable in a model (i.e,, every
variable to the left of a tilde. By default, the tables are printed in alphabetical order.
Users can specify a custom order for tables by defining equation blocks within the
MODEL statement. Equation blocks are defined by specifying an arbitrary name for the
block (which will appear on the output) followed by a colon. For example, the code
below defines two equation blocks, such that the focal regression output would be

the first table of results. Within a given block, order is alphabetic.

MODEL :
focal.regression:
y ~ x1 x2 x3;
predictor:models:

x3 ~ 1;
yjt(x2) ~ x3;
X1 ~ x2 Xx3;

With the exception of latent dependent variables, Blimp automatically estimates
each equation’s intercept and residual variance. In some situations, it may be
necessary to explicitly mention these parameters (e.g., when imposing a constraint
or labeling a parameter). The code block below explicitly references the intercept by
including a 1on the right of the tilde (the keyword intercept can be used in lieu of

the 1), and it uses a double-headed arrow to reference the residual variance
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MODEL:
y ~ 1 x1 x2 x3;
y ~~Y;

Variances can also be specified with double tildes, as follows.

MODEL:
y ~ 1 x1 x2 x3;
y ~~Y;

Discrete Outcomes

Discrete outcomes are defined on the ORDINAL, NOMINAL, and COUNT lines. In general,
little or no further specification is needed. For example, the following code block

illustrates a probit regression for a binary outcome.

ORDINAL: y;
MODEL :
y ~ x1 x2 x3;

A logistic regression additionally applies the logit function to the dependent variable,

as shown below.

ORDINAL: y;
MODEL :
logit(y) ~ x1 x2 x3;

Discrete Predictors

Discrete predictors are defined on the ORDINAL, NOMINAL, and COUNT lines (the latter is
only available with a sequential specification). In general, little or no further
specification is needed to invoke a discrete predictor. For example, the following

code block illustrates a linear regression where X, is a binary dummy code.

ORDINAL: x2;
MODEL :
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y ~ x1 x2 x3;

The discrete scores appear in the focal analysis model, but Blimp uses a latent
response variable formulation for the predictor’s supporting regression model

(which is left unspecified above).

The specification for nominal variables is similar. To illustrate, the code block below

specifies a linear regression where X, is a multicategorical predictor (X, =1, 2, 3).

NOMINAL: x2;
MODEL:
y ~ x1 x2 x3;

Blimp uses a latent difference variable formulation (multinomial probit model) for
the predictor’s supporting regression (which is left unspecified above), but a set of
dummy codes appear in the focal analysis model. By default, Blimp assigns the first
(lowest) numeric code as the reference category. To override this default behavior, list
the desired reference group's numeric code in parentheses on the NOMINAL line. To

illustrate, the following code block assigns X, = 3 as the reference category.

NOMINAL: x2(3);
MODEL:
y ~ x1 x2 x3;

In some situations, it may be necessary to refer to a specific dummy code (e.g., when
constraining or labeling a parameter). This specification uses a period and a numeric
label following the variable’'s name. For example, the following code block assigns X,
= 3 as the reference group, and it explicitly references the dummy codes for the X, =1

and 2 categories in a MODEL statement.

NOMINAL: x2(3);
MODEL :
y ~ x1 x2.1 x2.3 x3
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Interaction and Polynomial Terms

Traditional modeling frameworks that assume a multivariate distribution for the
analysis variables (e.g., all structural equation models based on multivariate normal
distribution) are fundamentally incompatible with incomplete nonlinear effects. This
includes models with incomplete interaction effects, curvilinear effects, and random
slopes (two- or three-level models). Practically speaking, incompatibility means that
imputations generated by a multivariate distribution are mathematically impossible

given the configuration of effects in the focal analysis model.

Blimp's estimation architecture avoids this problem by working with a set of
univariate regression models that are guaranteed to be mutually compatible. Rather
than imputing the product directly, Blimp uses a Metropolis sampling step to select
imputations that are consistent with any nonlinear effects in the univariate
regression models. The methodological literature uniformly favors this strategy over
so-called just-another-variable imputation schemes that apply normal distribution
assumptions to incomplete nonlinear effects (Bartlett et al., 2015; Enders et al., 2020;
Erler et al., 2016; Kim, Belin, & Sugar, 2018; Kim, Sugar, & Belin, 2015; Ludtke, Robitzsch,
& West, 2019; Zhang & Wang, 2017). The specifications described below are the same

for single-level and multilevel regression models.

Interaction terms are specified by connecting two predictors in the same equation
with an asterisk. The following code block illustrates a two-way interaction with
lower-order terms. The supporting regressions for incomplete predictors are

constructed automatically (see Section 1.4).

MODEL:
y ~ x1 x2 x1*x2;

Similarly, the code below shows a three-way interaction with all possible two-way

interactions and lower-order terms.
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MODEL:
y ~ x1 x2 x3 x1*x2 x1*x3 x2*x3;

Generally speaking, any variable to the left of a tilde (dependent variables, predictors
in a factored regression specification) can have interaction effects in its regression

model.

Blimp allows for interactions with categorical predictors defined on the NOMINAL and
ORDINAL lines. Binary and ordinal predictors function as numeric variables when
multiplied by another variable; the supporting regressor model again uses a latent
response variable formulation. Interactions involving multicategorical nominal
variables require product terms for each dummy code in a set. By default, Blimp
automatically creates a model that includes the necessary product terms. To
illustrate, the code block below illustrates an interaction effect where X, is a

multicategorical nominal predictor (X, =1, 2, 3) and Xs is continuous.

NOMINAL: x2;
MODEL :
y ~ x1 x2 x3 x2*x3;

In this case, Blimp automatically generates a model with two product terms, one for
each of the two dummy codes (recall that X, = 1is the reference group). In some
situations, it may be necessary to refer to a specific component of the product (e.g.,
when constraining or labeling a parameter). The following specification is equivalent

to the one above.

NOMINAL: x2;
MODEL :
y ~ X1 X2 X3 x2.2*x3 x2.3*x3;

A polynomial term in a curvilinear regression is just interaction between a variable
and itself. As such, these terms can specified by connecting a regressor with itself
using an asterisk. The following code block illustrates a quadratic function a with

lower-order term and a covariate.
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MODEL:
y ~ x1 x1*x1 x2;

Alternatively, the quadratic term can be specified by using a function embedded in a

regression equation, as follows..

MODEL :
y ~ x1 (x172) x2;

Correlations and Residual Correlations

In Blimp, univariate regression models are always the building blocks for specifying
more complex multivariate models involving networks of variables—the modeling
framework simply defines a multivariate model as a collection of individual
univariate regressions (see Section 1.3). Because Blimp does not work with the joint
distribution of the variables (e.g., impose a multivariate normal distribution on the
data), these univariate equations are uncorrelated by construction. For example, the
code block below illustrates a bivariate analysis with two empty regression
equations, but the correlation (or covariance) between the two dependent variables

is not a byproduct of estimation.

MODEL :
vl ~ 1;
y2 ~ 1;

Blimp has two ways of estimating associations among a set of variables like those
above. Whenever possible, the software assigns a multivariate distribution with a
mean vector and covariance matrix as the parameters. The covariance matrix
approach invokes a Wishart prior distribution. The second approach uses phantom
latent factors to correlate dependent variables from different regression equations.
Variances and correlations are the parameters of this specification. In a single-level
model, the procedure is the “srs” specification described in Merkle and Rosseel

(2018), and Blimp extends their approach to two- and three-level models. The
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phantom variable approach uses a so-called separation strategy (Barnard,
McCulloch, & Meng, 2000; Liu, Zhang, & Grimmm, 2016) that assigns distinct priors to
the diagonal and off-diagonal elements of the covariance matrix. A path diagram of

the underlying model is shown below.

e

N

The multivariate structure of this specification consists of variances (or residual
variances) and correlations (or residual correlations). If desired, covariances can be
obtained by using the PARAMETERS command to define these quantities as auxiliary
functions of the estimated parameters. The phantom variable approach can be

manually specified by listing the use_phantom keyword on the OPTIONS line.

Like variances, correlations and residual correlations are specified with
double-headed arrows or double tildes. The following code block illustrates a simple

bivariate analysis with two empty regression models.

MODEL :
yl ~ 1;
y2 ~ 1;
yl ~~ y2;
MODEL :
yl ~ 1;
y2 ~ 1;
yl ~~ y2;

The analysis can be specified more succinctly as follows.

MODEL :
yl ~~ y2;
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The same specification applies to correlated residual terms from a multivariate

regression.

MODEL :

yl ~ x1 x2 x3;
y2 ~ x1 x2;

yl ~~ y2;

Finally, multiple correlations can be specified by listing a set of variables on each side
of a double-headed arrow or double tilde. The following code block requests all

possible correlations among a set of five variables.

MODEL:
yl:y3 x1 x2 ~~ yl:y3 x1 x2;

Parameter Constraints

Blimp allows for many types of parameter constraints. These restrictions are imposed
by listing the @ symbol and a numeric value or label following a variable's name. For
example, the following code block uses a label “beta” to specify an equality

constraint on X; and X,'s regression slopes.

MODEL:
y ~ x1@beta x2@beta x3;

As a second example, the code below uses a numeric label to fix the regression

intercept to zero during estimation.

MODEL :
y ~ 1@0 x1 x2;

Similarly, the code below fixes the variance of a variable to one during estimation.

MODEL:
y ~ x1 x2;
y ~~ y@i;
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Many, but not all model parameters can be constrained. For example,

between-group constraints are not permissible when using BYGROUP processing.

Auxiliary Variables

Blimp uses a sequential specification to incorporate auxiliary variables into a model.
Associations among the auxiliary variables and analysis variables follow the same
cascading pattern of univariate models used to connect regressors; the first auxiliary
is regressed on the analysis variables, the second auxiliary variable is regressed on
the first plus the analysis variables, the third is regressed on the first two, and so on.
The code block below illustrates a multiple regression analysis with three auxiliary

variables, A, to As.

MODEL :

y ~ x1 x2;

al ~ y x1 x2;

a2 ~ al y x1 x2;

a3 ~ al a2 y x1 x2;

The auxiliary models can be specified more succinctly by listing all auxiliary variables

on the left side of the same tilde.

MODEL:
y ~ X1 X2;
a3 a2 al ~ y x1 x2;

Latent Variables

The LATENT command described earlier defines latent variables (e.g., factors in a
measurement model) referenced in the MODEL section. To illustrate, the following
code block shows a basic measurement model with a single latent factor and three

normally distributed indicators (indicators can also be binary or ordinal).

LATENT: yfactor;
MODEL:
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yfactor -> y1:y3;

By default, Blimp establishes identification by fixing the first factor loading to one
and the latent mean (or intercept) to zero. The following code block uses univariate

regression equations to achieve an identical specification.

LATENT: yfactor;
MODEL :

yfactor ~ 1@0;
yl ~ yfactor@i;
y2 ~ yfactor;

y3 ~ yfactor;

It may be beneficial to override the default identification settings in some cases. For
example, convergence speed may be improved by scaling the latent factor to an
indicator with complete data (or the indicator with the least amount of missing data)
or fixing one of the regression intercepts instead of the latent mean to zero. To
illustrate, the code block below illustrates a specification with the following features:
(a) Yi's loading is freely estimated, (b) the latent mean is estimated, (c) Y5's
measurement intercept is constrained to one, and (d) Ys's loading is constrained to

one.

LATENT: yfactor;

MODEL:
# estimate the latent mean
yfactor ~ 1;

# estimate loadings

yl ~ yfactor;

y2 ~ yfactor;

# fix intercept to 0 and loading to 1
y3 ~ 1@0 yfactor@i;

Blimp's univariate modeling framework treats latent factors as incomplete variables
to be imputed (adding the savelatent keyword to the OPTIONS line saves the
estimated latent scores to the imputed data sets). Imputing the latent scores opens

up interesting opportunities not available in other software packages. For example,
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Blimp allows a latent variable to interact with a manifest variable or with another
latent variable (Keller, 2021). The following code block illustrates a latent-by-manifest

variable interaction.

LATENT: xfactor;

MODEL :

xfactor -> x1:x3;

y ~ xfactor z xfactor*z;

The manifest variable Z is normal in this example, but it could have any metric that
Blimp supports. Similarly, two latent variables can interact with one another. The
following code block illustrates a latent-by-latent interaction involving two factors

with three indicators each.

LATENT: xfactor mfactor;

MODEL :

xfactor -> x1:x3;

zfactor -> z1:z3;

y ~ xfactor zfactor xfactor*zfactor;

Finally, an outcome variable (manifest or latent) can be a polynomial function of a
latent variable. The code below shows a latent variable with a quadratic effect on the

outcome.

LATENT: xfactor;

MODEL:

xfactor -> x1:x3;

y ~ xfactor (xfactor”~2) z;

Multilevel Regression Models

Multilevel regression models require relatively few additional specifications beyond
those for single-level regression models. Blimp automatically determines the level at
which a variable is measured in a multilevel data set, so the user need only provide a
basic model specification. The one exception is latent variables, the levels of which

must be specified in the LATENT command. Enders et al. (2020) provide specific
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details about Blimp's multilevel modeling framework, which uses the same factored
regression specification outlined for single-level models. Predictor variables can be
centered at their grand means or group means (Enders & Tofighi, 2007) using the
CENTERING command (discussed later). By default, Blimp centers using latent group

means (Ludtke et al., 2008).

Section 1.5 described Blimp's treatment of incomplete predictors (exogenous
variables that do not appear to the left of a tilde (in a path diagram, variables that do
not have incoming arrows). When predictors are complete, there is usually no reason
to specify a distribution for these variables. Instead, the covariate data essentially
function as known constants, as in ordinary least squares. In contrast, incomplete
predictors require an explicit distribution for imputation. Blimp allows these
distributions to have many forms (e.g., normal, skewed, discrete). In most cases,
assigning a distribution to a predictor means making that regressor a dependent
variable in its own regression model. These supporting models can be explicitly
specified, or Blimp can create them automatically. The situation with predictors is
somewhat more complicated in multilevel models because lower-level regressors
generally have two sources of variability. The following rules dictate Blimp's

treatment of predictors in multilevel models.

If any predictor is incomplete, then all predictors are assigned explicit
supporting models

+  Specifying the SIMPLE command for conditional effects induces an explicit
model for all predictors, complete or incomplete.

« If all predictors are complete, then they are treated as fixed (no distribution or
supporting model), unless group mean centering is requested on the CENTERING
command

Any level-1 predictor variable with group mean centering will have its latent
group means estimated via an explicit between-cluster model

+ Any level-1 predictor variable with its latent group means referenced using the
.mean function will have its means estimated via an explicit between-cluster
model
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+  Manifest (arithmetic) group means are available only for complete variables. The
group means can be computed as a new variable using the TRANSFORM
command (e.g., xmeans = mean(x, 12id);)

Grand mean centering does not affect whether a predictor variable is
automatically assigned a distribution

If the ICC is exactly zero or nearly zero (e.g., a time variable in a growth model),

then no between-cluster model is invoked because such a model would

produce an immediate convergence failure (Blimp issues a warning message)
Blimp automatically adds random intercepts residuals to all lower-level models
(outcomes or predictors) whenever the CLUSTERID command is used to specify a
cluster-level identifier variable. To illustrate, consider a two-level regression model
where X; and X, are level-1 and level-2 predictors, respectively. The following code

block illustrates a regression model with random intercepts.

CLUSTERID: level2id;
MODEL :
y ~ x1_1 x2_3;

The estimated model includes a random intercept in the analysis model as well as in
X;'s supporting model. In some cases, it may be necessary to manually reference the
random intercept (e.g., when labeling or constraining the parameter). In the code

block below, the 1to the right of the vertical pipe represents a random intercept.

CLUSTERID: level2id;
MODEL:
y ~x1_1x2_3 | 1;

Random slope coefficients are specified by listing lower-level predictors to the right
of a vertical pipe. For example, the code block below illustrates a regression model

with random intercepts (implicit) and a random slope for the level-1 predictor X..

CLUSTERID: level2id;
MODEL :
y ~x1_ 1 x2_j | x1_1;
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Blimp estimates an unstructured variance—covariance matrix for the random
intercepts and random slopes. Adding the savelatent keyword to the OPTIONS line

saves the random effect estimates to the imputed data sets.

Random intercepts and slopes can also appear as regressors in other equations. To
illustrate, the code block below uses the RANDOMEFFECT command to define the

intercepts and slopes as cluster-level latent variables that predict another variable Z.

CLUSTERID: level2id;
RANDOMEFFECT:

ranicepts =y | 1 [level2id];
ranslopes =y | x1_1 [level2id];
MODEL :

y ~x1_1 x2_j | x1_1;

z ~ ranicepts ranslopes;

Blimp can also estimate three-level models. To illustrate, consider a three-level
model where X; and X, are level-1 and level-2 regressors, respectively, and Xx is a
level-3 predictor. As before, Blimp automatically detects the level at which a variable
is measured. The following code block illustrates a three-level regression model with

random intercepts induced by a pair of cluster-level identifier variables.

CLUSTERID: level2id level3id;
MODEL :
y ~ x1_1 x2_j x3.k;

As a second example, the code block below illustrates a three-level random slope
model where the influence of the level-1 regressor X, varies across level-2 and level-3

units and the influence of the level-2 predictor X, varies across level-3 units.

CLUSTERID: level2id level3id;
MODEL:
y ~ x1_1 x2_j x3.k | x1_1 x2_j;

By default, Blimp estimates an unstructured variance-covariance matrix of the

random effects at all higher levels of the data hierarchy.
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In some situations, it is desirable or necessary to override Blimp's default behavior
and fix certain variance components to zero (or alternatively, select which variances
get estimated). This is achieved by listing the desired random effects on the right
side of the vertical pipe and appending to the effect's name a cluster-level identifier
in square brackets. To illustrate, the following code block illustrates a three-level
model with random intercepts at both levels and a random coefficient for X; at the

second level.

CLUSTERID: level2id level3id;
MODEL :
y ~ x1_1 x2_j x3.k | 1[level2id] 1[level3id] x1[level2id];

The resulting variance—covariance matrix at level-2 is an unstructured 2 x 2 matrix,
and the level-3 covariance matrix reduces to a scalar with only a random intercept
variance. When using this specification, omitting a random effect from the right side

of the vertical pipe implicitly sets its variance and covariances to zero.

Multilevel regression models can also include cluster means as group-level
predictors (i.e., contextual effects; Longford, 1989; Raudenbush & Bryk, 2002).
Appending the .mean keyword to the end of a lower-level covariate's name references
that variable’s latent group means. To illustrate, the following code block specifies a
two-level regression model that includes X, as a level-1 predictor and its group means

as a level-2 predictor.

CLUSTERID: level2id;
MODEL :
y ~ x1 x1.mean x2;

Importantly, the group means are cluster-level latent variables rather than
deterministic arithmetic averages of the level-1 scores. Methodology research favors a
latent variable specification because it can reduce bias associated with arithmetic or
“manifest” group means in some scenarios (Hamaker & Muthén, 2019; Ludtke et al,,

2008).



Blimp User’s Guide (Version 3) 64

In a three-level model, appending the .mean suffix to a level-1 predictor automatically
introduces the level-2 and level-3 latent group means as predictors. To specify the
group means at one level but not the other, additionally append the cluster-level
identifier variable in square brackets. For example, the following code block
illustrates a three-level random intercept regression with X;'s level-3 latent group

means as a predictor but not its level-2 averages.

CLUSTERID: level2id level3id;
MODEL:
y ~ x1 x1.mean[level3id] x2 x3;

Functions Embedded in Equations

Blimp allows users to embed functions inside parentheses on the right side of
regression equations and, in limited cases, on the left side as well. As an example, the

following code block features a predictor centered at a constant value of 10.

MODEL:
y ~ (x1 - 10);

The next example uses an embedded function to specify a curvilinear regression

where the outcome is a quadratic function of the predictor.

MODEL :
y ~ x (x"2);

Embedded functions can also reference multiple variables. For example, the
following code block defines the predictor variable as the sum of four ordinal
variables. A common application occurs with scale scores computed as the sum of

several questionnaire items.

ORDINAL: x1:x4;
MODEL:
y ~ (X1 + X2 + x3 + x4);
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Importantly, the embedded sum function does not imply a deterministic
computation or passive imputation. Rather, the sum is essentially a random variable
that varies as a function of its four components (e.g., items). Any missing data
handling uses a Metropolis sampling step to impute the individual components
while simultaneously accounting for the fact that the incomplete component is part
of a larger summation. The procedure for treating missing data is described in
Alacam, Enders, Du, and Keller (2023).

There are two equivalent ways to specify a sum function in a regression equation.

The first is to separate the first and last variables in the sum with :+: as shown below.

ORDINAL: x1:x4;
MODEL:
y ~ X1:+:x4;

The second method defines the function or computation as a new variable and then
uses that new variable in a regression equation. The code block below illustrates this

approach, which is equivalent to the previous two.

ORDINAL: x1:x4;
MODEL:

xsum = x1:+:x4;
y ~ XSum;

Again, it is important to emphasize that xsum is itself a random variable rather than a

deterministic computation or passive imputation.

Although computationally different, the previous sum functions are conceptually
equivalent to placing equality constraints on item-level coefficients from the same

scale, as follows.

ORDINAL: x1:x4;
MODEL:
y ~ x1@beta x2@beta x3@beta x4@beta;
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Embedded functions can also be part of interactive effects. To illustrate, the following
code block shows an interaction between a scale (sum) score involving five items

and a continuous moderating variable M (manifest or latent).

ORDINAL: x1:x4;
MODEL :
y ~ x1:+:x4 m (( x1:+:x4 ) * m);

Alternatively, the same analysis can be expressed by first defining the sum function

as a new random variable as follows.

ORDINAL: x1:x4;
MODEL :

Xsum = x1:+:x4;

Y ~ XSUm m Xsum*m;

Although computationally different, the embedded function above is conceptually
equivalent to placing equality constraints on products involving items and the

moderator, as follows.

ORDINAL: x1:x5;

MODEL:

y ~ x1@betal x2@betal x3@betal x4@betal m x1*m@beta3 x2*m@beta3l
x3*m@beta3 x4*m@beta3;

Extending the previous idea, the code below shows the interaction between two
scale scores, one computed as the sum of four ordinal items and the other

computed as the sum of six items.

ORDINAL: x1:x4 ml:m6;
MODEL:
y ~ x1:+:x4 ml:+:m6 (( x1:+:x4 ) * ( ml:+:m6 ));

Alternatively, the same analysis can be expressed by first defining the sum function

as a new random variable as follows.
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ORDINAL: x1:x4;

MODEL:

Xxsum = x1:+:x4;

msum = ml:+:m6;

y ~ XSUMm MSUMm Xsum*msum;

Blimp also allows embedded functions on the left side of the tilde, but the range of
allowable functions is limited (e.g., to basic mathematical operations and
transformations). Moreover, the embedded function can only reference a single
(dependent) variable. A commmon application of this functionality involves
transformations to a skewed outcome variable. As an example, the following code

block applies a natural log transformation to a positively-valued dependent variable.

MODEL :
In(y) ~ x1 x2 x3;

As a second example, the code below applies the Yeo-Johnson (Yeo & Johnson, 2000)

transformation to a skewed outcome variable.

MODEL :
yjt(y) ~ x1 x2 x3;

The Yeo-Johnson procedure estimates the shape of the data as the MCMC algorithm
iterates and produces imputations from a skewed distribution. The analysis examples

in Chapter 3 illustrate the procedure in more detail.

The description of the TRANSFORM command in Section 2.2 outlined Boolean operators
(true/false functions) that can be used to recode an existing variable into a new
variable. Boolean operators can also be used to define predictors in a regression
equation. To illustrate, consider a binary dummy variable that equals O if X is less
than 50 and Tif X is greater than or equal to 50. In lieu of using the TRANSFORM
command to compute a new variable, listing a Boolean operator as a predictor

similarly creates a dummy variable predictor.



Blimp User’s Guide (Version 3) 68

MODEL:
y ~ (x >= 50);

As explained previously, the operator evaluates to 1 or O if the condition in
parentheses is true or false, respectively. Note that variables created with TRANSFORM
are saved to the imputed data sets, whereas variables created via inline functions are
not. When X has missing values, the continuous version of the variable links to other
predictors, whereas the discrete version predicts Y. The imputation algorithm uses a
Metropolis sampling step that allows X to simultaneously function as a continuous

and binary variable.

SIMPLE Command

The SIMPLE command is used to request conditional effects (e.g., simple intercepts
and simple slopes) from a regression model with an interaction effect. At each MCMC
iteration, Blimp computes conditional effects by applying an appropriate contrast
vector to the analysis model’s regression coefficients. These additional auxiliary
parameters thus have their own distribution, credible intervals, et cetera. The

PARAMETERS command described next can also be used to compute contrasts.

The code block below shows the basic specification where the SIMPLE command
requests the conditional effects of X (the focal predictor) at different values of M (the

moderator).

CENTER: x m;
MODEL: y ~ X m x*m;
SIMPLE: x | m;

Multiple sets of conditional effects can be separated by semicolons

CENTER: X m;
MODEL: y ~ X m x*m;
SIMPLE: x | m; m | X;

or listed on separate lines, as follows.
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CENTER: X m;
MODEL: y ~ X m X*m;

SIMPLE:
x | m;
m | x;

When a continuous moderator is listed to the right of the vertical pipe, Blimp
automatically reports conditional effects at zero, plus or minus one, and plus or
minus two standard deviations from zero. We highly recommend centering the focal
predictor and moderator such that zero represents the mean. In a multilevel model,
the standard deviation is determined by the type of centering. A continuous
moderator centered at its group means has only within-cluster variation, so the
pooled within-cluster standard deviation is used. A continuous moderator centered
at its grand mean has both within-cluster and between-cluster variation, so the total
standard deviation is used. The number of standard deviation units can also be
specified. For example, the code block below requests the simple slopes of X at one

half of a standard deviation above and below the mean of M.

CENTER: x m;
MODEL: y ~ X m X*m;

SIMPLE:
X | m@.5SD;
x | m@-.5SD;

When a nominal moderator variable is listed to the right of the vertical pipe, Blimp
automatically computes and reports conditional effects for every group. When an
ordinal variable is listed to the right of the vertical pipe, the pick-a-point score values
must be specified. To illustrate, the following code block specifies conditional effects
at M =0and M =1 (e.g, conditional effects at each level of a binary dummy code). The

same method identifies specific points for continuous moderators.

CENTER: X m;

MODEL: y ~ X m x*m;
SIMPLE:

X | m@o;
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x | m@1;

The main restriction with the SIMPLE command occurs in models with multiple
equations. In this case, a dependent variable in one equation can serve as the
moderator in another equation, but the user must specify the values being
conditioned on. The code block below shows a specification where M is the
dependent variable in one equation and a moderator in the other. The variable M
appears to the right of the vertical pipe along with the fixed values to condition in

(i.e., default standard deviation units are not an option).

CENTER: X m;

MODEL :

m~ X z;

y ~ X M X*m;
SIMPLE:

X | m@o;

x | m@1;

No such specification is necessary if the dependent variable in one equation is the
focal predictor in the other (i.e., appears to the left of the vertical pipe). The code
block below shows a specification where M is the dependent variable in one
equation and the focal predictor in the other. The variable X appears to the right of
the vertical pipe, and the output would return the conditional effect of M at standard

deviation units above and below X's mean.

CENTER: x m;
MODEL:

m~ X z;

y ~ X M X*m;
SIMPLE:

m | x;

PARAMETERS Command

The PARAMETERS command is used to (a) define auxiliary parameters that are

functions of a model's estimated parameters, and (b) specify custom prior
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distributions. The command uses the same mathematical operators and accesses
the same functions as the TRANSFORM command described earlier. Auxiliary
parameters are computed by attaching alphanumeric labels to model parameters,
then using those labels in an equation that defines a new parameter. Auxiliary
parameters are computed at every MCMC iteration, and thus they have their own

distributions and summary tables in the output.

As a first example, recall from the MODEL command section that Blimp links
dependent variables from separate equations with correlations or residual
correlations (instead of covariances). One use of the PARAMETERS command is to
compute covariances. The code block below labels the variances and correlation and
uses the labels to compute the covariance, which is the product of the correlation

and the standard deviations.

MODEL:

y ~~ y@yvar;

X ~~ X@xvar;

y ~~ X@yxcorr;

PARAMETERS:

yXcov = yxcorr * sqrt(yvar * xvar);

As a second example, the following code block labels the three slope coefficients in a
moderated regression model and uses the PARAMETERS command to compute the

conditional effect of X (i.e., simple slope) at valuesof M=0and M =1.

MODEL :
y ~ x@betal m@beta2 x*m@beta3;
CENTER: x m;
PARAMETERS:
moO = 0;

ml=1;

slope.at.mO
slope.at.ml

betal + m0@ * beta3;
betal + m1 * beta3;
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As a final example, the code block below labels pathways from a single-mediator

model and uses the PARAMETERS command to compute the product of coefficients

estimator (i.e., the product of the X to M and M to Y paths; Mackinnon, 2008).

MODEL :

m ~ x@apath;

y ~ x@cpath m@bpath;
PARAMETERS:

indirect = apath * bpath;

The second major use for the PARAMETERS command is to introduce custom prior
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distributions. This functionality is currently restricted to the following list of univariate

prior distributions.

% normal(mu, var) or N(mu, var) =normal distribution with mu as the mean and

var as the variance

+ 1invgamma(a, b) =inverse gamma distribution with a = scale (i.e., alpha; prior
degrees of freedom + 2) and b = shape (i.e,, beta; prior sums of squares + 2)

+ gamma(k, theta) = gamma distribution with k = shape and theta = scale

« uniform(a, b) or unif(a, b) = uniform distribution with lower bound a and
upper bound b. Note that -Inf or Inf are not permissible arguments.

+ beta(a, b) =beta distribution with a = alpha and b = beta
+ laplace(mu, b) =laplace distribution with mu = location and b = scale
« cauchy(a, g) = cauchy distribution with a = location and g = scale

«  truncate(a, b) or trunc(a, b) =truncate function to generate truncated
distributions with a = lower bound and b = upper bound. To obtain one sided

truncation, you can set either parameter to -Inf or Inf for positive and negative

infinity.

To illustrate, the following code block shows a simple regression model with

informative normal priors on the regression coefficients and an inverse gamma prior

for the variance with a=1and b = .5 (i.e,, 2 additional degrees of freedom and unit

sum of squares). This prior specification for the variance is identical to listing prioril

on the OPTIONS line.
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MODEL :

y ~ 1@betaOprior x@betalprior;
y ~~ y@resvarprior;
PARAMETERS:

betaOprior ~ normal(2,20);
betalprior ~ normal(5,10);
resvarprior ~ invgamma(1,.5);

In addition to the mathematical operators and functions described in the TRANSFORM
command section, the PARAMETERS command can also access the following

model-predicted variance expressions. These expressions could be used, for example,

to create custom R? statistics beyond those included in the default output.

+ varname.totalvar = model-predicted total variance of an outcome variable (a
variable to the left of a tilde) named varname

« varname.coefvar = explained variance in an outcome variable named varname by
the fixed effects coefficients

+ varname.slopevar =explained variance in an outcome variable named varname
by the fixed effects coefficients via random slopes in a multilevel model

+ varname.iceptvar =explained variance in an outcome variable (a variable to the
left of a tilde) named varname by the random intercepts

% varname.residvar =residual variance in an outcome variable named varname
WALDTEST Command

Although MCMC estimation is grounded in the Bayesian statistical paradigm, one
can also view posterior medians, standard deviations, and credible intervals as
surrogates for frequentist point estimates, standard errors, and confidence intervals.
Levy and McNeish (2023) describe this perspective as “computational frequentism”.
Essentially, the researcher wants to operate within the frequentist framework, but
they use MCMC to solve a difficult estimation problem. Missing data analyses are a
compelling use case for computational frequentism because optimal
likelihood-based solutions are not always available or easy to use. To facilitate this
perspective, the WALDTEST command implements custom significance tests via the

Bayesian Wald test described by Asparouhov and Muthén (2021).
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The Wald test statistic is a chi-square variable measuring the sum of squared,
standardized differences between the point estimates (posterior means) and the null
hypothesis values. The test's degrees of freedom equals the number of parameters
or constraints being evaluated. The chi-square is an MCMC-generated estimate of a
frequentist test statistic, and the p-value is the area above the test statistic value in a
central chi-square distribution. As such, the test can be used for frequentist
inference. By default, Blimp prints univariate Wald tests for all parameters except

variances and variance explained test statistics.

The WALDTEST command provides multiple ways to specify custom hypotheses. One
approach is to label parameters in the MODEL statement and use the WALDTEST
command to specify the null hypothesis or condition to be evaluated. The example

below illustrates a test of whether two slopes simultaneously equal O.

MODEL:

y ~ x1@b1 x2@b2 x3@b3;
WALDTEST :

bl = 0;

b2 = 0;

Tests of multiple parameters can also be specified using the following shortcut.

MODEL :

y ~ x1@b1 x2@b2 x3@b3;
WALDTEST:

b1:b3 = 0;

More than one test can be performed by specifying multiple WALDTEST commandes.
For example, the following code block yields two tests, the first of which involves a

single parameter, the second of which involves two slopes.

MODEL:

y ~ x1@b1 x2@b2 x3@b3;
WALDTEST:

bl = 0;

WALDTEST:
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b2:b3 = 0;

In rblimp, multiple tests are specified as elements in a list, as follows.

waldtest = 1list('bl1 = 0','b2:b3 = 0"')

The WALDTEST command can also evaluate equality and other types of constraints.
For example, the following code block tests an equality constraint on two regression

slopes.

MODEL:

y ~ x1@b1 x2@b2 x3@b3;
WALDTEST:

bl = b2;

Complex hypotheses are specified by listing multiple conditions in a single WALDTEST
command. For example, the following code block evaluates whether one slope

differs from O and whether two slopes differ from one another.

MODEL:

y ~ x1@b1 x2@b2 x3@b3;
WALDTEST:

bl = b2;

b3 = 0;

The second way to implement the WALDTEST command is similar to the MODEL
statement—it specifies a regression model. However, the model listed on the
WALDTEST line must be nested within the model listed on the MODEL statement. The
first way to specify the nested model is to exclude parameters from the nested
model. The code block below illustrates a comparison involving a full model with

three predictors and a restricted model with only an intercept.

MODEL :
y ~ x1 x2 x3;
WALDTEST:

W kg
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Alternatively, a nested model can be specified by fixing parameters to desired test
values by appending an @ and a numeric label to a variable or effect. For example,
the following code block illustrates an equivalent specification that fixes three slope

coefficients to one.

MODEL :

y ~ x1 x2 x3;
WALDTEST:

y ~ x1@0 x2@0 x3@0;

The WALDTEST command produces the output table below.

MODEL FIT:

Asparouhov & Muthén Wald Tests

Test #1
Wald Statistic (Chi-Square) 133.705
Number of Parameters Tested (df) 3
Probability 0.000

The WALDTEST command can also compare nested models with different variances. To
illustrate, the code block below shows a two-level model with random coefficients,
where the WALDTEST command is used to specify a random intercept model with two

fewer parameters.

CLUSTERID: level2id;
MODEL :

y ~ x1 x2 x3 | x1;
WALDTEST :

y ~ x1 x2 x3 | x1@0;

FCS Command

The FCS command invokes a fully conditional specification multiple imputation
(FCS-MI) approach similar to that described by Stef van Buuren and colleagues (van

Buuren, 2007; van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006). This
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command cannot be used in conjunction with the MODEL commmand. Rather, FCS
deploys an MCMC algorithm that cycles through incomplete variables one at a time,
imputing each variable from an additive equation that features the incomplete
variable regressed on all other variables listed on the FCS line. This algorithm makes
no distinction between outcomes and regressors in the subsequent analysis model;
all entities listed on the FCS line are simply variables to be imputed or complete
variables that contribute to imputation. The SAVE command outputs the filled-in data
sets for reanalysis using frequentist methods (Rubin, 1987). FCS-MI is known to
introduce bias when applied to analysis models with nonlinear terms such as
interactions, polynomial effects, or random coefficients. The model-based imputation

routines illustrated in Chapter 3 are far superior.

To illustrate FCS-MI, consider a simple scenario with one continuous variable
X, one binary dummy variable D, and one 7-category ordinal variable O. The code

block below shows a basic script (which could also include nominal variables).

DATA: data.dat;
VARIABLES: 1d al:a5 x d o z;
ORDINAL: d o;

MISSING: 999;

FCS: x d o;

NIMPS: 100;

CHAINS: 100;

BURN: 1000;

ITER: 10000;

OPTIONS: savelatent;
SAVE: stacked = imps.dat;

At a minimum, the FCS command should include all variables and effects of interest
in the analysis model(s), but the list may also include additional auxiliary variables.

The commands following the FCS line in the script are described later in this section.

Blimp's FCS-MI routine primarily differs from the classic MICE (Multiple Imputation

by Chained Equations; van Buuren & Groothuis-Oudshoorn, 2011) approach in two
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ways. First, Blimp's algorithm is a true Gibbs sampler; this is a small technical nuance
that makes no difference in practice. Second, Blimp adopts a fully latent specification
for all categorical variables. As noted previously, Blimp uses a probit regression
framework that views discrete scores as arising from one or more normally
distributed latent response variables (or latent response difference scores in the case
of multicategorical nominal variables). Applied to the previous example, the binary
dummy variable D and the 7-category ordinal variable O have corresponding latent
response variables D*and O* respectively. Blimp's FCS-MI routine uses the latent
variables both as predictors and as outcomes. The round robin imputation models

for this example are as follows.
X = px + 11 (D" — pp+) + Y01 (OF — po=) + 11
D* = pp- + 72 (0" — po+) + 22 (X — px) + 72
O" = po- +ms (X — px) + 723 (D" — pp+) + 73

The latent response models also incorporate threshold parameters that divide the
latent distributions into discrete segments, and the residual variances of r, and rz are

fixed at one to establish the latent variable metrics.

Listing the savelatent keyword on the OPTIONS line saves both the discrete and latent
response variables to the imputed data files (by default, only the discrete imputes are
written to the imputed data files). The imputed latent scores (plausible values) could
be used in lieu of the discrete scores in a subsequent analysis. For example, the
analysis in Section 5.7 illustrates an item-level factor analysis that uses imputed
latent response scores. In a similar vein, Muthén and Asparouhov (2016) describe an
application that replaces a binary mediator with a latent response variable. As an
aside, the savelatent keyword can also be used in conjunction with imputations

generated by the MODEL command.

If desired, listing the mice and manifest keywords on the OPTIONS line alters

Blimp's default behaviors and invokes an algorithm that is equivalent to the one in
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the MICE package in R (van Buuren & Groothuis-Oudshoorn, 2011). In addition to a
slight algorithmic modification, this specification uses discrete variables as predictors
on the right side of equations. The round robin imputation models for this example

are as follows.

X =751 +711D + 7210 + 11
D* = 752 + 7120 + 722 X + 19
O" = Y3 + 713X + Y23D + 73

The MICE package deploys logistic rather than probit models for categorical

variables, but this distinction tends to make little difference in practice.

The multilevel version of fully conditional specification (Enders et al., 2018)
automatically introduces the latent group means of all lower-level variables in the
imputation model (i.e., latent contextual effects); this is true for both continuous and
latent response variables. Including the group means in the imputation model
allows all between-cluster associations to vary independently of the within-cluster
associations. Listing the noclmean keyword on the OPTIONS line removes the latent
group means from the regression models, producing a more restrictive imputation
model where the within- and between-cluster regressions are assumed to be equal.
For two-level models, a heterogeneous level-1 variance structure is invoked by listing
the hev keyword on the OPTIONS line. This method is described in Kasim and
Raudenbush (1998).

BURN Command

The BURN command specifies the number of burn-in iterations. Bayesian analysis
results summarize estimates taken from iterations following the burn-in period, and
multiple imputations (via FCS or MODEL) are saved after the burn-in period. To

illustrate, the following code block illustrates a 5,000-iteration burn-in period.
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BURN: 5000;

The number of burn-in iterations should always be determined by examining the
potential scale reduction factor diagnostic (Gelman & Rubin, 1992) from the Blimp
output. Material at the beginning of Chapter 3 describes how to use these

diagnostics.

ITER Command

The ITER (also ITERATIONS) command specifies the number of iterations after the
burn-in period. The tabular summaries reflect Bayesian analysis results taken from
the post burn-in period. To illustrate, the following code block specifies 10,000 MCMC

iterations following an initial burn-in period of 5,000 iterations.

BURN: 5000;
ITER: 10000;

Note that the total number of iterations is distributed equally across the number of
MCMC chains, the default value of which is two (see the CHAINS command). In our
experience, 10,000 iterations is usually more than sufficient, but material at the

beginning of Chapter 3 describes how to verify that this is the case.

CHAINS Command

The CHAINS command is used to specify the number of MCMC processes (and
optionally, the number of processors used for computation). The default number of
chains is two, and the total number of computational cycles specified on the ITER
line is always divided equally across chains. By default, Blimp attempts to distribute
MCMC chains across physical cores, resulting in faster computation (e.g., on a 10-core
machine, specifying 10 chains would automatically assign one MCMC process per
core). Because Blimp automatically uses the maximum available cores, this

specification would primarily be used to specify fewer resources. For example, the
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code block below specifies 10,000 iterations spread across 10 uniqgue MCMC chains.

The MCMC processes are completed sequentially using two physical cores.

ITER: 10000;
CHAINS: 10 processors 2;

By default, each chain will have a different seeding value and different random
starting values. Random starting values can be disabled by specifying the

norandomstarts keyword on the OPTIONS line.

NIMPS Command

The NIMPS command is used to specify the desired number of multiple imputation
data sets to save during MCMC estimation (saving imputed data sets is optional).
Graham, Olchowski, and Gilreath (2007) suggest using at least 20 imputed data sets
to maximize power, and other studies have shown that 100 or more imputations may
be necessary to reduce the impact of Monte Carlo simulation error on standard
errors and get precise estimates of confidence interval half-widths and probability
values (Bodner, 2008; Harel, 2007; von Hippel, 2018). Imputations can be saved at
regular intervals during a single MCMC chain, at the final iteration of multiple MCMC
processes, or some combination of the two. The code block below saves 100 imputed
data sets from the final iteration of 100 MCMC chains, each with 5,000 burn-in
iterations and 100 iterations thereafter (i.e., 10,000 total iterations spread across 100

MCMC processes).

BURN: 5000;
ITER: 10000;
NIMPS: 100;
CHAINS: 100;

THIN Command

The THIN command is used to specify the between-imputation interval when saving

multiple imputations from the same MCMC chain. For example, the following code
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block deploys two MCMC chains (the default) that create 100 filled-in data sets by

saving imputations every 1,000 iterations after the 5,000-iteration burn-in period.

NIMPS: 100;
BURN: 5000;
THIN: 1000;

Saving multiple imputations is optional, and this command is not necessary;
however, either THIN or ITER must be specified when saving filled-in data sets. The
THIN command has no impact on printed parameter summaries, which are always

based on the post burn-in iterations.

OPTIONS Command

The following keywords are used in conjunction with either the FCS or MODEL

commands. Bolded keywords are default and do not require explicit specification.

« priorl/prior2/prior = Three common prior distributions for the residual
variances and covariances of dependent variables; prioril is more informative
because it adds to the degrees of freedom and sums of squares, prior2 is less

82

informative because subtracts from the degrees of freedom, and prior3 has zero

degrees of freedom and adds zero to the sums of squares

« xpriorl/xprior2/xprior3 =Three common prior distributions for the residual
variances of predictor variables with unspecified associations

« psr/nopsr = Compute the potential scale reduction factor diagnostic
+ hov/hev = homogenous versus heterogeneous within-cluster variances

« randomstarts/norandomstarts = Enable/disable random starting values for
different MCMC chains

+ listwise = Enable listwise deletion (off by default).

« saveVariableNames or saveVarNames = write variable names as column headers
when saving imputed data sets.

The following keywords are used in conjunction with the FCS command to alter the

behavior of the fully conditional specification imputation algorithm.

+ mice = classic mice algorithm instead of a Gibbs sampler
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+ manifest = manifest categorical rather than latent response variables as
predictors in the imputation model

+ noclmean = exclude latent cluster means from level-2 (and level-3) imputation
models
The following keywords are used in conjunction with the SAVE command to alter the

composition of imputed data files.

+ savelatent = save factor or latent variable scores (measurement models),
random effects (two-level models), latent response variables (categorical
variables), and normalized values from the Yeo-Johnson transformation

+  savepredicted = save the predicted values of continuous outcomes, predicted
probabilities for binary and nominal outcomes, and predicted latent response
variable scores for ordinal outcomes

+« saveresidual = save residuals (or within cluster residuals)

+  CsVv = save data sets as comma separated .csv files (instead of space delimited
.dat files) and write variable names as column headers

OUTPUT Command

The OUTPUT command is used to customize the printed parameter summaries. By
default, Blimp prints the posterior median, posterior standard deviation, 95% credible
interval limits, split chain potential scale reduction factor, and effective number of
MCMC samples (estimated number of independent MCMC iterations using split
chain approach) for each parameter. Listing any of the following keywords on the
OUTPUT command overrides Blimp's default output tables with new tables
containing the requested quantities. Although not printed by default, Wald tests for
individual parameters can be requested by listing the wald and pvalue options on

the OUTPUT command.

+ default = posterior median, standard deviation, 95% credible interval, split chain
potential scale reduction factor, effective number of MCMC samples

+ default_mean = posterior mean, standard deviation, 95% credible interval, split
chain potential scale reduction factor, effective number of MCMC samples
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+ default_median = posterior median, posterior median absolute deviation
(scaled to be same metric as std. dev.), 95% credible interval, split chain potential
scale reduction factor, effective number of MCMC samples

< mean = posterior mean
+ median = posterior median
+ stddev = posterior standard deviation

+ mad_sd = posterior median absolute deviation (scaled to be same metric as the
standard deviation)

« quant = 2.5%, 25%, 50%, 75%, 97.5% quantiles

« quant50 = 25% and 50% quantiles

+ quant95 = 2.5% and 97.5% quantiles

+  psr = potential scale reduction factor computed after the burn-in period
+ n_eff = print effective number of MCMC samples

« mcmc_se = print MCMC simulation standard error

+ wald = print Bayesian Wald chi-square statistics for each parameter

+ pvalue = print p-values for Bayesian Wald chi-square tests

To illustrate, the code block below creates a custom table displaying only the
median, a set of quantiles (2.5%, 25%, 50%, 75%, and 97.5%), and potential scale

reduction factors computed following the burn-in period.

OUTPUT: median quant psr;

The code block below specifies Blimp's default output with the additional quantities.

OUTPUT: default median quant psr;

The final code block below specifies Blimp’s default output with parameter-specific

Bayesian Wald chi-square statistics and p-values.

OUTPUT: default wald pvalue;
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SAVE Command

The SAVE command is used to save byproducts of MCMC estimation. The principal
use for this command is to save multiply imputed data sets, but the commmand also
saves parameter estimates from the burn-in and post burn-in iterations, posterior
summaries, and potential scale reduction factors. Unless a full file path is specified,

Blimp saves the specified files to the directory that contains the input script.

Multiple imputations can be saved in three different formats: (a) as separate data
files (ideal for analysis in Mplus or HLM), (b) in a single stacked file with an additional
identifier variable that indexes imputations (ideal for analysis in R, SPSS, and SAS),
and (c) a single stacked file that includes the original data indexed with a zero value
(ideal for analysis in Stata). The following code block illustrates all three

specifications.

SAVE:

separate = imp*.dat;
stacked = imps.dat;
stacked® = imps0.dat;

When saving imputations to separate files, the asterisk in the file path is replaced
with an integer in the file name (e.g., specifying imp*.dat produces imputed data
sets named impl.dat, imp2.dat, imp3.dat, et cetera). The separate-file specification
also generates a text file that contains the names of the individual data files (this file

functions as the input data when analyzing imputations in Mplus).

The imputed data sets include all variables from the input data (regardless of
whether they were used in an analysis or imputation routine) along with the values
of any latent variables, predicted scores, and residuals specified on the OPTIONS line
(the savelatent, savepredicted, and saveresidual keywords). The stacked format
adds a variable to the first column of the data that indexes the data sets. The order of
the variables in the imputed data sets is listed at the bottom of the Blimp output.

The output excerpt below provides an illustration.
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VARIABLE ORDER IN IMPUTED DATA:
stacked = ‘imps.dat’

imp# 1d n1 d1 ol y x1 d2 x2 x3

In addition to creating imputed data sets, the SAVE command can produce files
containing the estimated parameters for burn-in iterations (burn = filename;),
estimated parameters for the post burn-in iterations (iterations = filename;),
posterior summaries of the parameter estimates as they appear on the Blimp output
(estimates = filename;), starting values (starts = filename;), the potential scale
reduction factor values for all parameters (psr = filename;), the Bayesian Wald test
statistic (waldtest = filename;), and the average imputation across the post burn-in
iterations (avgimp = averageimps.dat;). The code block below illustrates these

options.

SAVE:

burn = burnin.dat;
iterations = iterations.dat;
estimates = estimates.dat;
starts = starts.dat;

psr = psr.dat;

waldtest = wald.dat;

avgimp = averageimps.dat;

When using multiple MCMC chains, chain-specific quantities can be saved by
specifying an asterisk in the filename. Blimp replaces this symbol in the filename
with a numeric value that indexes the chains. The following code block illustrates this

specification.

SAVE:

burn = burnin*.dat;
iterations = iterations*.dat;
estimates = estimates.dat;
starts = starts.dat;

psr = psr.dat;

avgimp = averageimps.dat;
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Parameter summaries and starting values are saved in a single file regardless of the

number of MCMC chains used for computations.
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3 Diagnosing Convergence and Specifying the Number of Iterations

Diagnosing the MCMC algorithm’s convergence and determining the total number
of computational cycles is an important part of any analysis. The initial burn-in (trial)
period should be long enough for the algorithm to achieve independence from its
random starting values and achieve a steady state (i.e., converge in distribution); the
total number of iterations after the burn-in period should be large enough to provide
adequate precision. This section describes this process of determining these two
guantities. These steps are applicable to any analysis, including all the ensuing
examples. Clicking the links below downloads the Blimp scripts and data for this
example, and the full set of User Guide examples is available from a pull-down menu

in the graphical interface.

Ex3a.imp Ex3b.imp data8.dat

The first step in an analysis is to perform a preliminary diagnostic run to determine
the length of the burn-in period. This initial period should be long enough for the
MCMC algorithm to converge. As a starting point, we find it useful to specify 10,000
burn-in cycles for the preliminary analysis. The code block below estimates a
two-level random coefficient model (see Example 6.3) with this setting on the BURN
line. The default number of chains is two, and the number of iterations after the

burn-in period (the ITER line) is not important at this point.

DATA: data8.dat;

VARIABLES: levellid level2id x1_1 x2_1 y_1 x3_1 x4_1 d1.j
nl_j x5_j x6_j x7_3j x8_3j x9_3j;

CLUSTERID: level2id;

ORDINAL: d1_j;

MISSING: 999;

FIXED: d1_j;

CENTER: groupmean = x1_1; grandmean = x2_1 x7_j di1_j;

MODEL: vy 1 ~ x1_1 x2_1 x7_j d1_j | x1_1;

SEED: 90291;

BURN: 10000;

ITER: 10000;


https://www.dropbox.com/s/03hggemxp60pqgd/Ex3a.imp?dl=1
https://www.dropbox.com/s/2mh2pyofcyv8rbr/Ex3b.imp?dl=1
https://www.dropbox.com/s/u0luo59hqwcrr7f/data8.dat?dl=1
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OPTIONS: labels;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = datas,
clusterid = 'level2id',
ordinal = 'd1.j',
fixed = 'd1.3',
center = 'groupmean = x1.1;
grandmean = x2.1 x7.j di1.3j',

model = " y.1 ~ x1.1 x2.1 x7.j d1.j | x1.1',
seed = 90291,
burn = 10000,
iter = 10000,
options = 'labels'
)
output(mymodel)

Blimp divides the burn-in period into 20 equal segments and computes the
split-chain potential scale reduction factor (Gelman et al,, 2014) at the end of each
interval. The table below shows the highest (worst) potential scale reduction factor

across all model parameters.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR  Parameter #
251 to 500 1.461 12
501 to 1000 1.303 13
751 to 1500 1.157 13

1001 to 2000 1.313 5
1251 to 2500 1.085 13
1501 to 3000 1.055 5
1751 to 3500 1.096 13
2001 to 4000 1.090 13
2251 to 4500 1.051 13
2501 to 5000 1.024 13
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2751 to 5500 1.020 13
3001 to 6000 1.015 13
3251 to 6500 1.041 5
3501 to 7000 1.011 5
3751 to 7500 1.015 8
4001 to 8000 1.009 3
4251 to 8500 1.030 8
4501 to 9000 1.028 14
4751 to 9500 1.032 8
5001 to 10000 1.024 8

The table shows that the index drops to acceptable levels (e.g., less than 1.05, where 1
is the theoretical minimum) by iteration 5,000. A good rule of thumb is to set the
burn-in period for the final run to a value at least as large as 5,000. If the value in the
bottom row of the table (the final checkpoint) exceeds 1.05, increase the number of

burn-in iterations (e.g., to 20,000) and rerun the model.

The potential scale reduction factor table indicates that the highest (worst) values
prior to convergence are primarily associated with parameter numbers 13 and 5.
Listing the optional labels keyword on the OPTIONS line prints a table of potential
scale reduction factors for all model parameters along with their numeric indices. In
some cases (e.g., latent variable models), very high potential scale reduction factors
will be associated with standardized regression weights (e.g., due to scaling
constraints). In general, these can be ignored, and the focus should be on the
unstandardized parameters. The table for the focal regression model is shown below
(unspecified predictor models also have similar tables). The table indicates that
parameter numbers 13 and 5 correspond to the standardized coefficient for a level-2
predictor and the intercept, respectively. The columns of the table give the potential

scale reduction factors for the final five checkpoints during the burn-in period.

PARAMETER LABELS:
Printing out PSR for last 5 comparisons:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains
[1] 4001 to 8000
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[2] 4251 to 8500
[3] 4501 to 9000
[4] 4751 to 9500
[5] 5001 to 10000

Outcome Variable: y_i

A wWN R

O oo ~NO U

10
11
12
13

14
15
16
17

A trace plot of the intercept estimates from the first 5,000 computational cycles is

Variances:
L2 : Var(Intercept)
L2 : Cov(x1.1,Intercept)
L2 : Var(x1.i)
Residual Var.

Coefficients:
Intercept
x1_ 1
x2_1
X7_j
d1_j

Standardized Coefficients:
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shown below. Plot features such as the number of chains or iterations printed can be

set in the Blimp Studio > Preferences pull-down menu. Plotting can also be turned

off completely in these settings (this can reduce post-processing time considerably).
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Parameter 5 of 36

Save All Save Plot
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The next step is to set the burn-in period and total number of iterations for the final
analysis. We find it useful to specify 10,000 iterations following the initial burn-in
period, which for this example we set at 5,000 based on the preliminary diagnostic
run. The code block below reflects these settings on the BURN and ITER line. The

labels keyword and OPTIONS line are no longer needed.

DATA: data8.dat;

VARIABLES: levellid level2id x1_1 x2_1 y_1 x3_1 x4_1 d1.j
nl _j x5_j x6_3j x7_3j x8_3j x9_3j;

CLUSTERID: level2id;

ORDINAL: di_j;

MISSING: 999;

FIXED: d1_j;

CENTER: groupmean = x1_1; grandmean = x2_1 x7_j di1_j;

MODEL: vy 1 ~ x1_1 x2_1 x7_j d1_j | x1_1;

SEED: 90291;

BURN: 5000;

ITER: 10000;

The corresponding rblimp script is as follows.
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library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = data8,
clusterid = 'level2id',
ordinal = 'd1.j',
fixed = 'd1.3',
center = 'groupmean = x1.1i;
grandmean = x2.1 x7.j di1.3j',

model = ' y.1 ~ x1.1 x2.1 x7.j d1.j | x1.1',
seed = 90291,
burn = 5000,
iter = 10000
)
output(mymodel)

The Blimp output tables include point estimates and measures of uncertainty
(posterior median and standard deviation), 95% credible interval limits, potential
scale reduction factors for the iterations following the burn-in period, and the
effective number of MCMC samples. The output tables generally include a section for
variances, coefficients, standardized estimates, and variance explained effect sizes
(Rights & Sterba, 2019).

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 2 chains.

Outcome Variable: y_1

Grand Mean Centered: di_j x2_i x7.j
Group Mean Centered: x1.1i

Parameters Median StdDev 2.5% 97.5% PSR N_Eff
Variances:
L2 : Var(Intercept) 0.619 0.083 0.484 0.811 1.001 4793.680
L2 : Cov(xl.i,Intercept) 0.013 0.016 -0.018 0.045 1.000 1569.242
L2 : Var(x1.i) 0.020 0.006 0.011 0.034 1.002 715.523
Residual Var. 0.358 0.011 0.336 0.382 1.000 4620.046
Coefficients:
Intercept 4.168 0.070 4.030 4,305 1.015 169.900
x1_1i -0.094 0.019 -0.132 -0.056 1.000 1841.459
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x2_1 0.086 0.008 0.071 0.102 1.000 2622.345
X7_3 0.056 0.066 -0.072 0.194 1.025 149.321
di_j -0.104 0.150 -0.398 0.193 1.003 143.175
Standardized Coefficients:
x1_1 -0.094 0.020 -0.133 -0.056 1.001 1870.786
x2_1 0.184 0.019 0.148 0.222 1.001 2510.830
x7_j 0.054 0.064 -0.069 0.183 1.025 151.449
di_j -0.050 0.071 -0.188 0.093 1.003 143.392
Proportion Variance Explained
by Coefficients 0.061 0.017 0.038 0.105 1.011 186.000
by Level-2 Random Intercepts 0.580 0.034 0.515 0.646 1.001  2791.706
by Level-2 Random Slopes 0.020 0.006 0.011 0.034 1.003 655.997
by Level-1 Residual Variation 0.335 0.027 0.281 0.389 1.002  1828.375

The rightmost column of the table—the effective number of MCMC samples—is
essentially the number of independent estimates on which the parameter
summaries are based after removing autocorrelations from the MCMC process.
Gelman et al. (2014, p. 287) recommend values greater than 100. All valuesin the
example table exceed this recommended minimum. Increasing the total number of

iterations would provide more precise summaries.
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4 Regression Model Analysis Examples

The analysis examples in this chapter primarily illustrate different types of univariate
regression models. Univariate regressions are the basic building blocks of more
complicated multivariate and latent variable models, which are just collections of
univariate equations. In general, it is possible to mix and match features from any
examples to easily create complex analysis models that honor features of the data.
The examples use a generic notation system where variable names usually consist of
an alphanumeric prefix and a numeric suffix (e.g., Y, X;, X;,N,, D;, D,). The letter Y
designates a dependent variable, a D prefix denotes a binary dummy variable, an O
prefix indicates an ordinal variable, and an N prefix indicates a multicategorical
nominal variable. Finally, the model equations use a “cgm” superscript to indicate
grand mean centering. The following list outlines the examples in this section.The

following list outlines the examples in this section.

4.1: Correlations and Descriptive Statistics

4.2: Polychoric Correlations With Latent Response Variables
4.3: Linear Regression

4.4: Model-Based Multiple Imputation

4.5:; Linear Regression With Nominal Predictors

4.6: Fully Conditional Specification Multiple Imputation
4.7 Auxiliary Variables

4.8: Moderated Regression With an Interaction

4.9: Multiple Imputation Within Subgroups

4.10: Curvilinear Regression

4.11: Probit Regression With a Binary Outcome

4.12: Probit Regression With an Ordinal Outcome

4.13: Logistic Regression With a Binary Outcome

414 Logistic Regression With a Multicategorical Outcome
4.15: Count Regression

4]6: Zero-Inflated Count Outcome
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4.17: Scale Scores With Incomplete Item Responses
4.18: Scale Score Interactions

4.19: Skewed Predictor With a Yeo-Johnson Transform
4.20: Skewed Outcome With a Yeo-Johnson Transform
4.21: Propensity Score Estimation With Missing Data
4.22: Sampling Weights

4.23: Wald Significance Tests

4.1: Correlations and Descriptive Statistics

This example illustrates correlations and descriptive statistics. Blimp has two ways of
estimating associations among a set of variables. Whenever possible, the software
assigns a multivariate distribution with a mean vector and covariance matrix as the
parameters. The covariance matrix approach invokes a Wishart prior distribution. The
second approach uses phantom latent factors to correlate dependent variables from
different regression equations. Variances and correlations are the parameters of this
specification. In a single-level model, the procedure is the “srs” specification
described in Merkle and Rosseel (2018), and Blimp extends their approach to two-
and three-level models. A path diagram of the underlying model is shown in the
MODEL section of Chapter 2. The phantom variable approach uses a so-called
separation strategy (Barnard, McCulloch, & Meng, 2000; Liu, Zhang, & Grimm, 2016)
that assigns distinct priors to the diagonal and off-diagonal elements of the
covariance matrix. Computer simulation studies suggest that the separation strategy
gives more accurate estimates of the variance components, although the correlation
estimate may be attenuated when the number of level-2 units is small (Keller &
Enders, 2021).

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex4Ja.imp Ex4.lb.imp Ex4lc.imp datal.dat



https://dl.dropboxusercontent.com/s/kblzk7gmod5gdan/Ex4.1a.imp?dl=1
https://dl.dropboxusercontent.com/s/knlgw753g4yqizx/Ex4.1b.imp?dl=1
https://dl.dropboxusercontent.com/s/3tiljnpf2uaarqd/Ex4.1c.imp?dl=1
https://www.dropbox.com/s/cn8s1cx10q029vs/data1.dat?dl=1
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The following code block uses the default approach to estimate means, covariances,

and correlations.

DATA: datal.dat;

VARIABLES: id n1 di1 y1 y2 x1 d2 x2 x3;
MISSING: 999;

MODEL :

x1 y1l y2 ~~ x1 y1 y2;

SEED: 90291;

BURN: 10000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = datail,
model = 'x1 y1 y2 ~~ x1 y1 y2',

seed = 90291,

burn = 10000,

iter = 10000
)
output(mymodel)

Adding the use_phantom keyword to the OPTIONS line invokes the phantom variable

approach with separation priors.

DATA: datal.dat;

VARIABLES: i1d n1 d1 y1 y2 x1 d2 x2 x3;
MISSING: 999;

MODEL:

x1 y1l y2 ~~ x1 yl1 y2;

SEED: 90291;

BURN: 10000;

ITER: 10000;

OPTIONS: use_phantom;
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Finally, the code block below labels variance parameters and uses the PARAMETERS
command to compute standard deviations. Omitting the use_phantom argument

defaults to a standard multivariate model.

DATA: datal.dat;
VARIABLES: id nl1 d1 y1 y2 x1 d2 x2 x3;
MISSING: 999;

MODEL:
x1 y1l y2 ~~ x1 yl1 y2;
X1 ~~ x1@varx1;

yl ~~ yl@varyl;
y2 ~~ y2@vary2;

PARAMETERS:

sd_x1 = sqrt(varxl);
sd_y1 = sqrt(varyl);
sd_y2 = sqrt(vary2);

SEED: 90291;
BURN: 10000;
ITER: 10000;

4.2: Polychoric Correlations With Latent Response Variables

This example illustrates polychoric correlations among continuous variables and
latent response scores from binary and ordinal variables. Clicking the links below
downloads the Blimp scripts and data for this example, and the full set of User Guide

examples is available from a pull-down menu in the graphical interface.

Ex4.2.imp datal.dat

The syntax highlights are as follows.

«  ORDINAL command identifies binary and ordinal variables

DATA: datal.dat;

VARIABLES: id n1 d1 ol y1 x1 d2 x2 x3;
ORDINAL: di1 oi;

MISSING: 999;

MODEL :

dl o1 y1 x1 ~~ d1 o1 y1 x1;


https://www.dropbox.com/s/079heumk0j8c9fs/Ex4.2.imp?dl=1
https://www.dropbox.com/s/cn8s1cx10q029vs/data1.dat?dl=1
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SEED: 90291;
BURN: 25000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = datail,
ordinal = 'd1 o1',
model = 'dl o1 y1 x1 <-> d1 o1 y1 x1',

seed = 90291,

burn = 30000,

iter = 10000
)
output(mymodel)

4.3: Linear Regression

This example illustrates a linear regression analysis. Clicking the links below
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downloads the Blimp scripts and data for this example, and the full set of User Guide

examples is available from a pull-down menu in the graphical interface.

Ex4.3.imp datal.dat

The model features a pair of continuous predictors and a binary dummy code, as

follows. The cgm superscript denotes variables centered at their grand means.

Y = B0+ S1 X7 + B X539 + BsD + ¢

The syntax highlights are as follows.

+  ORDINAL command identifies a binary predictor
+  FIXED command identifies a complete predictor
«  CENTER command applies grand mean centering to predictors

Unspecified associations for predictor variables


https://www.dropbox.com/s/vjbmqi1x2tqb88n/Ex4.3.imp?dl=1
https://www.dropbox.com/s/cn8s1cx10q029vs/data1.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2X_2%5E%7Bcgm%7D%2B%5Cbeta_3D%2B%5Cvarepsilon#0
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DATA: datal.dat;

VARIABLES: id v1 v2 v3 y x1 d x2 v4;
ORDINAL: d;

MISSING: 999;

FIXED: d;

CENTER: x1 x2;

MODEL: y ~ x1 x2 d;

SEED: 90291;

BURN: 1000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = datail,

ordinal = 'd',
fixed = 'd',
center = 'x1 x2',
model = 'y ~ x1 x2 d',
seed = 90291,
burn = 1000,
iter = 10000
)
output(mymodel)

4.4: Model-Based Multiple Imputation

Blimp can save multiple imputations from any model it estimates. This example
illustrates a model-based multiple imputation procedure tailored around the linear
regression model from Example 4.3. Clicking the links below downloads the scripts
and data for this example, and the full set of User Guide examples is available from a

pull-down menu in the graphical interface.

Ex4.4.imp Ex4.4.R datal.dat

The syntax highlights are as follows.


https://www.dropbox.com/s/488yvbb1urgip92/Ex4.4.imp?dl=1
https://www.dropbox.com/s/m7xeb65o3pofkx3/Ex4.4.R?dl=1
https://www.dropbox.com/s/cn8s1cx10q029vs/data1.dat?dl=1
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+  ORDINAL command identifies a binary predictor
+  FIXED command identifies a complete predictor

«  CENTER command grand mean centers predictors in the Bayesian output, saved
imputations are on the original metric

Unspecified associations for predictor variables
«  NIMPS command specifies 20 imputed data sets

«  Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

Imputations are stacked in a single file with an index variable added in the first
column

DATA: datal.dat;
VARIABLES: id v1 v2 v3 y x1 d x2 v4;
ORDINAL: d;

MISSING: 999;

FIXED: d;

CENTER: x1 x2;

MODEL: y ~ x1 x2 d;

SEED: 90291;

BURN: 1000;

ITER: 10000;

CHAINS: 20;

NIMPS: 20;

SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the
output file, and all variables in the input file appear in the output file regardless of
whether they were imputed.
VARIABLE ORDER IN IMPUTED DATA:
stacked = 'imps.dat'

imp# 1d n1 d o1 y x1 d2 x2 x3

The imputed data sets can be analyzed in other software packages.
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R provides an easy platform for analyzing multiple imputations. To illustrate, R script
below uses rblimp to create multiple imputations and the mitml package (Grund,
Robitzsch, & Ludke, 2021) for analysis and pooling. Note that the SAVE command is no
longer necessary because imputations are automatically stored in an rblimp list
object called mymodel@imputations. The pooled estimates are numerically equivalent

to the Bayesian results from Example 4.3.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = datail,

ordinal = 'd',
fixed = 'd',
center = 'x1 x2',
model = 'y ~ x1 x2 d',
seed = 90291,
burn = 1000,
iter = 10000,
chains = 20,
nimps = 20

)

output(mymodel)

# mitml list
implist <- as.mitml(mymodel)

# pooled grand means
mean_x1 <- mean(unlist(lapply(implist, function(data) mean(data$x1))))
mean_x2 <- mean(unlist(lapply(implist, function(data) mean(data$x2))))

# analysis and pooling with mitml

results <- with(implist, Im(y ~ I(x1 - mean_x1) + I(x2 - mean_x2) + d))
testEstimates(results, extra.pars = T, df.com = 626)

4.5: Linear Regression With Nominal Predictors

This example illustrates a linear regression model with a multicategorical nominal

predictor. Clicking the links below downloads the scripts and data for this example,
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and the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex4.4a.imp Ex4.4b.imp data2.dat

The regression model is

Y =By + 81 XYY" + BoD + B3Ny + B3N + B3Ny + €5

where Y is a continuous outcome, X is a continuous predictor, D is a dummy code,
and N,, N3, and N, are dummy codes that represent a four-category nominal
predictor (N =1, 2, 3, 4). The cgm superscript denotes variables centered at their
grand means. The syntax highlights are listed below. Adding the NIMPS and SAVE
commands generates model-based multiple imputations for a frequentist analysis

(see Example 4.4).

+  ORDINAL command identifies a binary predictor

+  NOMINAL command identifies a 4-category discrete predictor that Blimp
automatically converts to dummy codes with the lowest numeric value as the
reference group

+  FIXED command identifies a complete predictor
+  CENTER command grand mean centering to predictors

Unspecified associations for predictor variables

DATA: data2.dat;
VARIABLES: id y vl x d v2 n v3 v4;
ORDINAL: d;
NOMINAL: n;
MISSING: 999;
FIXED: Xx;

CENTER: Xx;

MODEL: v ~ x d n;
SEED: 90291;
BURN: 2000;

ITER: 10000;

The corresponding rblimp script is as follows.


https://www.dropbox.com/s/awf5j2lkdzr80ei/Ex4.5.imp?dl=1
https://dl.dropboxusercontent.com/scl/fi/qse0u1vit20t2xcclx0aa/Ex4.5b.imp?rlkey=w5k1geynhslm4f2w04hlx61tv&dl=1
https://www.dropbox.com/s/595p4yuoj01fsm9/data2.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X%5E%7Bcgm%7D%2B%5Cbeta_2D%2B%5Cbeta_3N_%7B2%7D%2B%5Cbeta_3N_%7B3%7D%2B%5Cbeta_3N_%7B4%7D%2B%5Cvarepsilon_i#0
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library(rblimp)
load(file = 'data2.rda')

mymodel <- rblimp(
data = data2,

ordinal = 'd',
nominal = 'n',
fixed = 'x',
center = 'x',
model = 'y ~x d n',
seed = 90291,
burn = 2000,
iter = 10000
)
output(mymodel)

Alternatively, the individual dummy codes can be referenced on the MODEL line by

appending their numeric code to the end of the predictor’'s name, as follows.

DATA: data2.dat;

VARIABLES: id y vl x d v2 n v3 v4;
ORDINAL: d;

NOMINAL: n;

MISSING: 999;

FIXED: Xx;

CENTER: Xx;

MODEL: v ~ x d n.2 n.3 n.4;
SEED: 90291;

BURN: 2000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data2.rda')

mymodel <- rblimp(
data = data2,
ordinal = 'd',
nominal 'n',

fixed = 'x',



Blimp User’s Guide (Version 3) 105

center = 'x',
model = 'y ~x d n.2 n.3 n.4',
seed = 90291,
burn = 2000,
iter = 10000
)
output(mymodel)

4.6: Fully Conditional Specification Multiple Imputation

The model-based multiple imputation procedure illustrated in Example 4.4 creates
filled-in data sets tailored to the analysis specified on the MODEL line. The resulting
imputations are appropriate for fitting the identical model (or one that is nested
within the target model) in the frequentist framework. Fully conditional specification
multiple imputation instead uses a round robin sequence of regression models, each
of which features an incomplete variable regressed on all other variables (complete
or previously imputed). Blimp's implementation of fully conditional specification is

described in Chapter 2 (see the FCS command).

This example illustrates a fully conditional specification imputation routine that
would yield appropriate imputations for the linear regression model from Example
4.5 (or any additive model that includes the variables listed on the FCS line). Note that
fully conditional specification should not be applied to analysis models with
interactive or nonlinear effects, as it is prone to bias in such cases (Bartlett et al.,, 2015;
Seaman, Bartlett, & White, 2012). The model-based multiple imputation procedure
illustrated in Example 4.8 is a better option. Clicking the links below downloads the
scripts and data for this example, and the full set of User Guide examples is available

from a pull-down menu in the graphical interface.

Ex4.6.imp data2.dat

The syntax highlights are as follows.

«  ORDINAL command identifies binary variables

+ NOMINAL command identifies a 4-category nominal variable


https://www.dropbox.com/s/2r4rjmgk4bj7v8o/Ex4.6.imp?dl=1
https://www.dropbox.com/s/595p4yuoj01fsm9/data2.dat?dl=1
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+  FIXED command identifies complete variables
+ FCS command includes all analysis variables plus two auxiliary variables
«  NIMPS command specifies 20 imputed data sets

«  Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

Imputations are stacked in a single file with an index variable added in the first
column

DATA: data2.dat;
VARIABLES: id y1 y2 x1 d1 d2 nl1 x2 n2;
ORDINAL: di d2;

NOMINAL: ni1;

FIXED: x1 d2;

MISSING: 999;

FCS: y1 x1 d1 d2 nl1 x2;
SEED: 90291;

BURN: 1000;

ITER: 1000;

CHAINS: 20;

NIMPS: 20;

SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the
output file, and all variables in the input file appear in the output file regardless of
whether they were imputed.
VARIABLE ORDER IN IMPUTED DATA:
stacked = 'imps.dat'

imp# 1d y1 y2 x1 d1 d2 n1 x2 n2
The imputed data sets can be analyzed in other software packages.

R provides an easy platform for analyzing multiple imputations. To illustrate, R script
below uses rblimp_fcs to create multiple imputations and the mitml package

(Grund, Robitzsch, & Ludke, 2021) for analysis and pooling. Note that the MISSING and
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FCS commands are no longer necessary.. The former is omitted because that
information is contained in the R data file. The FCS command is replaced by a
variables parameter that lists the variables to be included in the imputation model.
Additionally, the SAVE commmand is no longer necessary because imputations are

automatically stored in an rblimp list object called mymodel@imputations.

library(rblimp)
load(file = 'data2.rda')

mymodel <- rblimp_fcs(
data = data2,
ordinal = 'd1 d2',
nominal = 'n1',
fixed = 'x1 d2°',
variables = 'yl x1 d1 d2 n1 x2',
seed = 90291,
burn 1000,
iter 1000,
chains = 20,
nimps = 20)

output(mymodel)

# mitml list
implist <- as.mitml(mymodel)

# pooled grand mean
mean_x1 <- mean(unlist(lapply(implist, function(data) mean(datas$x1))))

# analysis and pooling with mitml
results <- with(implist, Im(y1l ~ I(x1 - mean_x1) + d1 + factor(n1)))
testEstimates(results, extra.pars = T, df.com = 1994)

4.1: Auxiliary Variables

This example illustrates how to add missing data auxiliary variables to a regression
model. Clicking the links below downloads the Blimp scripts and data for this
example, and the full set of User Guide examples is available from a pull-down menu

in the graphical interface.
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Ex4.7a.imp Ex4.7b.imp data3.dat

The model analysis model features a continuous variable and dummy code as

predictors. The cgm superscript denotes variables centered at their grand means.

Y =By + 51 X" + oD + ¢

In Blimp, auxiliary variables are introduced via a factored regression (sequential)
specification where analysis variables predict the auxiliary variables and auxiliary
variables predict each other in a cascading pattern (i.e,, the first auxiliary predicts the

second, the first and second predict the third, and so on).

A =01 +711Y + 2 XYY" 4 51D + 1
Ao = o2 + 71241 + Y22Y + Y32 X" + 40D + 19
As = Y03 + 71342 + 2341 + ¥33Y + Va3 X" 4 v53D + 13

The syntax highlights are as follows.

»  ORDINAL command identifies binary variables
+  FIXED command identifies a complete predictor
+  CENTER command applies grand mean centering to a predictor

+ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command features a factored regression (sequential specification) for
auxiliary variables

Unspecified associations for predictor variables

DATA: data3.dat;

VARIABLES: id x a1 a2 y d a3 vi:v4;
MISSING: 999;

ORDINAL: d a3;

FIXED: d;

CENTER: Xx;

MODEL:

focal.model:

y ~ x d;

auxiliary.model:


https://www.dropbox.com/s/4hbvfki38uky72z/Ex4.7a.imp?dl=1
https://www.dropbox.com/s/junf8066zzemro1/Ex4.7b.imp?dl=1
https://www.dropbox.com/s/o6rd8ko6pcbm6di/data3.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X%5E%7Bcgm%7D%2B%5Cbeta_2D%2B%5Cvarepsilon_i#0
https://www.codecogs.com/eqnedit.php?latex=A_1%3D%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DY%2B%5Cgamma_%7B21%7DX%5E%7Bcgm%7D%2B%5Cgamma_%7B31%7DD%2Br_1#0
https://www.codecogs.com/eqnedit.php?latex=A_2%3D%5Cgamma_%7B02%7D%2B%5Cgamma_%7B12%7DA_1%2B%5Cgamma_%7B22%7DY%2B%5Cgamma_%7B32%7DX%5E%7Bcgm%7D%2B%5Cgamma_%7B42%7DD%2Br_2#0
https://www.codecogs.com/eqnedit.php?latex=A_3%3D%5Cgamma_%7B03%7D%2B%5Cgamma_%7B13%7DA_2%2B%5Cgamma_%7B23%7DA_1%2B%5Cgamma_%7B33%7DY%2B%5Cgamma_%7B43%7DX%5E%7Bcgm%7D%2B%5Cgamma_%7B53%7DD%2Br_3#0
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al ~ y x d;

a2 ~aly x d;
a3 ~ al a2 x d;
SEED: 90291;
BURN: 1000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data3.rda')

mymodel <- rblimp(
data = data3,

ordinal = 'd a3',
fixed = 'd’',
center = 'x',
model = '
focal.model:

y ~ x d;
auxiliary.model:
al ~ y x d;

a2 ~aly x d;
a3 ~al a2 x d',
seed = 90291,

burn = 1000,

iter = 10000
)
output(mymodel)

The script below illustrates a syntax shortcut that specifies the sequential

specification by listing all auxiliary variables to the left of the tilde sign.

DATA: data3.dat;

VARIABLES: id x a1l a2 y d a3 vi1:v4;
MISSING: 999;

ORDINAL: d a3;

FIXED: d;
CENTER: Xx;
MODEL:

focal.model:
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y ~ x d;
auxiliary.model:
a3 a2 a1l ~ y x d;
SEED: 90291;
BURN: 1000;

ITER: 10000;

Adding the NIMPS, CHAINS, and SAVE commands to the script creates model-based
multiple imputations that can be analyzed in the frequentist framework (see

Example 4.4).

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data3.rda')

mymodel <- rblimp(
data = data3,
ordinal = 'd a3',
fixed = 'd',
center = 'x',
model = '
focal.model:
y ~ x d;
auxiliary.model:
a3 a2 a1l ~y x d',

seed = 90291,

burn = 1000,

iter = 10000
)
output(mymodel)

4.8: Moderated Regression With an Interaction

This example illustrates a moderated regression with an interaction between a
continuous predictor and binary moderator and an incomplete binary covariate.
Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.
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Ex4.8a.imp Ex4.8b.imp Ex4.8b.R data4.dat

The model is as follows, and the cgm superscript denotes variables centered at their

grand means.

Y = o+ BiX" + BoM + B3(X)(M) + fu D™ + €

The syntax highlights are as follows.

+  ORDINAL command identifies a binary predictor

+  NOMINAL command identifies a binary predictor

+  FIXED command identifies a complete variable

+  CENTER command applies grand mean centering to predictors
#  MODEL command features a product term

«  SIMPLE command produces conditional effects (simple slopes) at each level of
the nominal moderator

Unspecified associations for predictor variables

DATA: data4d.dat;
VARIABLES: id v1:v3 y x v4 v5 d m v6:v24;
ORDINAL: d;

NOMINAL: m;

MISSING: 999;

FIXED: m;

CENTER: x d;

MODEL: y ~ x m x*m d;
SIMPLE: x | m;

SEED: 90291;

BURN: 1000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,


https://www.dropbox.com/s/vukl3j7amyf5ooj/Ex4.8a.imp?dl=1
https://www.dropbox.com/s/b94psbc66xt1dnt/Ex4.8b.imp?dl=1
https://www.dropbox.com/s/aq0xban8vhvbk5c/Ex4.8.R?dl=1
https://www.dropbox.com/s/hcr6lq58pl7pfqz/data4.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X%5E%7Bcgm%7D%2B%5Cbeta_2M%2B%5Cbeta_3(X)(M)%2B%5Cbeta_4D%5E%7Bcgm%7D%2B%5Cvarepsilon#0
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ordinal = 'd',
nominal = 'm',
fixed = 'm',
center = 'x d',
model = 'y ~ x m x*m d',
simple = 'x | m',
seed = 90291,
burn = 1000,
iter = 10000

)

output(mymodel)

Blimp can save multiple imputations from any model it estimates. The script below
illustrates model-based multiple imputation (imputation tailored around one
specific analysis) for the linear moderated regression model. The new syntax features

are as follows.

«  CENTER command grand mean centers predictors in the Bayesian output, but
saved imputations are on the original metric

+ NIMPS command specifies 20 imputed data sets

+  Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

Imputations are stacked in a single file with an index variable added in the first
column

DATA: data4.dat;
VARIABLES: id v1:v3 y x v4 v5 d m v6:v24;
ORDINAL: d;

NOMINAL: m;

MISSING: 999;

FIXED: m;

CENTER: x d;

MODEL: y ~ x m X*m d;
SIMPLE: x | m;

SEED: 90291;

BURN: 1000;

ITER: 10000;

CHAINS: 20;

NIMPS: 20;
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SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the
output file, and all variables in the input file appear in the output file regardless of

whether they were imputed.

VARIABLE ORDER IN IMPUTED DATA:
stacked = 'imps.dat'

imp# 1d a1l a2 a3 y x1 x2 n1 d1 d2 ol 02 03 04 o5 06 o7 08
09 010 011 012 013 014 o015 016 017 018 019

The imputed data sets can be analyzed in other software packages.

R provides an easy platform for analyzing multiple imputations. To illustrate, R script
below uses rblimp to create multiple imputations and the mitml package (Grund,
Robitzsch, & Ludke, 2021) for analysis and pooling. Note that the SAVE command is no
longer necessary because imputations are automatically stored in an rblimp list
object called mymodel@imputations. The product term is not an imputed variable.
Rather, the product is formed from the imputed lower-order variables, as shown
below. The pooled multiple imputation estimates are numerically equivalent to the

Bayesian results.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = data4,

ordinal = 'd',

nominal = 'm',

fixed = 'm',

center = 'x d',

model = 'y ~ x m x*m d',
simple = 'x | m',

seed = 90291,
burn 1000,



Blimp User’s Guide (Version 3) N4

iter = 10000,
chains = 20,
nimps = 20
)
output(mymodel)

# mitml list
implist <- as.mitml(mymodel)

# pooled grand means
mean_x <- mean(unlist(lapply(implist, function(data) mean(data$x))))
mean_d <- mean(unlist(lapply(implist, function(data) mean(data$d))))

# analysis and pooling with mitml

results <- with(implist, Im(y ~ I(x - mean_x) + m + I(x - mean_x):m + I(d -
mean_d)))

testEstimates(results, extra.pars = T, df.com = 295)

4.9: Multiple Imputation Within Subgroups

Fully conditional specification multiple imputation is generally inappropriate for
interactive effects because it is prone to bias. The moderated regression in Example
4.8 is an exception that could be handled by imputing the data separately within
each group of the complete moderator variable (Enders & Gottschall, 2011; Graham,
2009). This example illustrates a multiple-group multiple imputation strategy that
stratifies the data by subgroup and imputes within each strata. Clicking the links
below downloads the Blimp scripts and data for this example, and the full set of User

Guide examples is available from a pull-down menu in the graphical interface.

Ex49.imp Ex4.9.R data4.dat

The syntax highlights are as follows.

+  ORDINAL command identifies a binary variable
+  FIXED command identifies a complete variable

+  BYGROUP identifies complete, nominal strata variable not listed on the ORDINAL (or
NOMINAL) command


https://www.dropbox.com/s/xg1czljm59gosud/Ex4.9.imp?dl=1
https://www.dropbox.com/s/x3yhoul43d3dyxm/Ex4.9.R?dl=1
https://www.dropbox.com/s/v9cj4nn1nb078qh/data4.dat?dl=1
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+ FCS command includes all analysis variables (other than the one listed on the
BYGROUP line) plus three auxiliary variables

«  NIMPS command specifies 20 imputed data sets

«  Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

Imputations are stacked in a single file with an index variable added in the first
column

DATA: data4.dat;
VARIABLES: id al:a3 y x vl v2 d group v3:v21;
ORDINAL: d;

MISSING: 999;

FIXED: group;

BYGROUP: group;

FCS: al:a3 y x d;

SEED: 90291;

BURN: 1000;

ITER: 10000;

CHAINS: 20;

NIMPS: 20;

SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the
output file, and all variables in the input file appear in the output file regardless of

whether they were imputed.
VARIABLE ORDER IN IMPUTED DATA:

stacked = 'imps.dat'

imp# 1d al a2 a3 y x vl v2 d group v3 v4 v5 v6 v7 v8 V9
v10 v11 v12 v13 vi14 v15 vi16 v17 vi18 v19 v20 v21

The imputed data sets can be analyzed in other software packages.

R provides an easy platform for analyzing multiple imputations. To illustrate, R script
below uses rblimp_fcs to create multiple imputations and the mitml package

(Grund, Robitzsch, & Ludke, 2021) for analysis and pooling. Note that the MISSING and



Blimp User’s Guide (Version 3)

FCS commands are no longer necessary.. The former is omitted because that

information is contained in the R data file. The FCS command is replaced by a

116

variables parameter that lists the variables to be included in the imputation model.

Additionally, the SAVE commmand is no longer necessary because imputations are

automatically stored in an rblimp list object called mymodel@imputations. Finally, the

BYGROUP command is replaced by listing |> by_group('group') after the rblimp_fcs

function (group is the grouping variable's name in the data)

library(rblimp)
load(file = 'data2.rda')

mymodel <- rblimp_fcs(
data = data4,

ordinal = 'd',

variables = 'al:a3 y x d',
seed = 90291,

burn = 1000,

iter = 10000,

chains = 20,

nimps = 20

) |> by_group('group")
lapply(mymodel,output)

# mitml list
implist <- as.mitml(mymodel)

# pooled grand means
mean_x <- mean(unlist(lapply(implist, function(data) mean(data$x))))
mean_d <- mean(unlist(lapply(implist, function(data) mean(datas$d))))

# analysis and pooling with mitml
results <- with(implist,

Im(y ~ I(x - mean_X) + group + I(x - mean_x):group + I(d - mean_d)))
testEstimates(results, extra.pars = T, df.com = 295)

4.10: Gurvilinear Regression

This example illustrates a curvilinear regression with a quadratic term and

continuous and binary covariates. Clicking the links below downloads the Blimp
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scripts and data for this example, and the full set of User Guide examples is available

from a pull-down menu in the graphical interface.

Ex4.10.imp dataS5.dat

The regression model is as follows, and the cgm superscript denotes variables

centered at their grand means.

Y = Bo+ 51 X7 + 52(X1Cgm)2 + B3 X359 + ByDy + BsDs + €

The syntax highlights are listed below. Adding the NIMPS and SAVE commands
generates model-based multiple imputations for a frequentist analysis (see Example
4.8).

+  ORDINAL command identifies binary predictors

+  FIXED command identifies complete predictors

+  CENTER command applies grand mean centering to predictors

+  MODEL command features an embedded function that squares a predictor

Unspecified associations for predictor variables

DATA: data5.dat;

VARIABLES: id d1 d2 vi:v3 x1 x2 y;
MISSING: 999;

ORDINAL: di1 d2;

FIXED: di1 x2;

CENTER: x1 x2;

MODEL: y2 ~ x1 (x172) x2 di1 d2;
SEED: 12345;

BURN: 1000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data5.rda')

mymodel <- rblimp(


https://www.dropbox.com/s/9hlkud6t9xfikxb/Ex4.10.imp?dl=1
https://www.dropbox.com/s/v09lxxp6zmnr1eu/data5.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2(X_1%5E%7Bcgm%7D)%5E2%2B%5Cbeta_3X_2%5E%7Bcgm%7D%2B%5Cbeta_4D_1%2B%5Cbeta_5D_2%2B%5Cvarepsilon#0
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data = data5,
ordinal = 'd1 d2',
fixed = 'd1 x2',

center = 'x1 x2',
model = 'y ~ x1 (x172) x2 d1 d2',
seed = 12345,
burn = 1000,
iter = 10000
)
output(mymodel)

4.11: Probit Regression With a Binary Outcome

This example illustrates probit regression for a binary outcome. Clicking the links
below downloads the Blimp scripts and data for this example, and the full set of User

Guide examples is available from a pull-down menu in the graphical interface.

Ex41la.imp Ex4.llb.imp datal.dat

The model features a latent response variable regressed on continuous predictors
and a binary dummy code, and the cgm superscript denotes variables centered at

their grand means.

Y* = Bo+ 51X + 5o X5 4+ 83D + ¢

A single threshold value fixed at zero is automatically included and does not require
specification. The syntax highlights are listed below. Adding the NIMPS and SAVE
commands generates model-based multiple imputations for a frequentist analysis

(see Example 4.8).

+  ORDINAL command identifies a binary outcome and predictor
+  FIXED command identifies a complete predictor
«  CENTER command applies grand mean centering to predictors

Unspecified associations for predictor variables

DATA: datal.dat;


https://www.dropbox.com/s/z8i3h0apl2avdh7/Ex4.11a.imp?dl=1
https://www.dropbox.com/s/7bxaxeggqtrwpp7/Ex4.11b.imp?dl=1
https://www.dropbox.com/s/dpvvc4bu3rbnwfp/data1.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%5E%5Cast%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2X_2%5E%7Bcgm%7D%2B%5Cbeta_3D%2B%5Cvarepsilon#0
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VARIABLES: id vl y v2 x1 x2 d v3 v4;
ORDINAL: y d;
MISSING: 999;

FIXED: d;
CENTER: x1 x2;
MODEL:

y ~ x1 x2 d;

SEED: 90291;
BURN: 1000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = datal,
ordinal = 'y d',

fixed = 'd',
center = 'x1 x2',
model = 'y ~ x1 x2 d',
seed = 90291,
burn = 1000,
iter = 10000

)

output(mymodel)

Blimp can also create auxiliary parameters that are functions of the estimated model
parameters. To illustrate, the following script uses parameter labels, built-in

functions, and the PARAMETERS command to compute the predicted probability of a

“success” or “case” at each level of the D; dummy code (and at the means of the

continuous predictors). The additional syntax highlights are as follows.

+  MODEL command labels the intercept and the binary predictor’s slope

+  PARAMETERS command defines news parameters that give the predicted
probability of a “success” (outcome =1) at each level of the dummy code and the
group difference on the probability metric
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DATA: datal.dat;
VARIABLES: id vl y v2 x1 x2 d v3 v4;
ORDINAL: y d;

MISSING: 999;

FIXED: d;

CENTER: x1 x2;

MODEL :

y ~ 1@0 x1 x2 d@b3;
PARAMETERS:

pp_do = phi(bo);

pp_d1 = phi(b0 + b3);
pp_diff = pp_d1 - pp_do;
SEED: 90291;

BURN: 1000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = datail,
ordinal = 'y d',
fixed = 'd',
center = 'x1 x2',
model = 'y ~ 1@0 x1 x2 d@b3"',
parameters = 'pp_d0@ = phi(b0);
pp_d1 = phi(b0 + b3);
pp_diff = pp_d1 - pp_do',
seed = 90291,

burn = 1000,

iter = 10000
)
output(mymodel)

4.12: Probit Regression With an Ordinal Outcome

This example illustrates a probit regression for an ordered categorical outcome with

seven response options (e.g., a Likert scale). Clicking the links below downloads the
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Blimp scripts and data for this example, and the full set of User Guide examples is

available from a pull-down menu in the graphical interface.

Ex4.12.imp dataldat

The model features a latent response variable regressed on continuous predictors
and a binary dummy code, and the cgm superscript denotes variables centered at

their grand means.

Y* = By + /1 X779 + Bo X3 + 83D + &

Six threshold parameters that divide the latent response distribution into seven bins
are automatically included and do not require specification (the lowest is fixed at
zero for identification). The syntax highlights are listed below. Adding the NIMPS and
SAVE commands generates model-based multiple imputations for a frequentist

analysis (see Example 4.8).

«  ORDINAL command identifies an ordinal outcome and a binary predictor
Automatic threshold specification for binary and ordinal variables

+  FIXED command identifies a complete predictor

«  CENTER command applies grand mean centering to predictors
Unspecified associations for predictor variables

Longer burn-in period for ordered categorical variables

DATA: datal.dat;

VARIABLES: id v1 v2 y x1 x2 d v3 v4;
ORDINAL: vy d;

MISSING: 999;

FIXED: d;
CENTER: x1 x2;
MODEL :

y ~ x1 x2 d;

SEED: 90291;
BURN: 20000;
ITER: 10000;


https://www.dropbox.com/s/6uyh83vsxsoddac/Ex4.12.imp?dl=1
https://www.dropbox.com/s/dpvvc4bu3rbnwfp/data1.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%5E%5Cast%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2X_2%5E%7Bcgm%7D%2B%5Cbeta_3D%2B%5Cvarepsilon#0
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The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = datal,
ordinal = 'y d',
fixed = 'd',
center = 'x1 x2',
model = 'y ~ x1 x2 d',
seed = 90291,

burn = 20000,

iter = 10000
)
output(mymodel)

4.13: Logistic Regression With a Binary Outcome

This example illustrates logistic regression for a binary outcome. Clicking the links
below downloads the Blimp scripts and data for this example, and the full set of User

Guide examples is available from a pull-down menu in the graphical interface.

Ex413a..mp Ex413b.imp datal.dat

The model features a binary outcome regressed on continuous predictors and a
binary dummy code, and the cgm superscript denotes variables centered at their

grand means.

ln< Pr(y =1)

— Xcgm Xcgm D
1—Pr(Y:1)> Bo+ b1 X" + B X" + s

The syntax highlights are listed below. Adding the NIMPS and SAVE commands
generates model-based multiple imputations for a frequentist analysis (see Example
4.8). When saving imputations, adding the savepredicted keyword to the OPTIONS

command saves predicted probabilities (see Example 4.21).

+  ORDINAL command identifies a binary outcome and predictor


https://www.dropbox.com/s/pvlavlymjw4q9mc/Ex4.13a.imp?dl=1
https://www.dropbox.com/s/gng8frxmg5s1azj/Ex4.13b.imp?dl=1
https://www.dropbox.com/s/dpvvc4bu3rbnwfp/data1.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(Y%3D1%5Cright)%7D%7B1-Pr%5Cleft(Y%3D1%5Cright)%7D%5Cright)%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2X_2%5E%7Bcgm%7D%2B%5Cbeta_3D#0
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+  FIXED command identifies a complete predictor
+  CENTER command applies grand mean centering to predictors

+  Applying the logit function to the dependent variable on the MODEL line
requests a logit rather than probit link

Unspecified associations for predictor variables

DATA: datal.dat;

VARIABLES: id vl y v2 x1 x2 d v3 v4;
ORDINAL: vy d;

MISSING: 999;

FIXED: d;
CENTER: x1 x2;
MODEL:

logit(y) ~ x1 x2 d;
SEED: 90291;
BURN: 2000;
ITER: 10000;

Note that the outcome variable must be coded as O and 1 when using the logit
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command in conjunction with ORDINAL. If the outcome has different codes (e.g., 1and

2), either use TRANSFORM to recode the variable or use the NOMINAL command to

identify the outcome as categorical.

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = datail,
ordinal = 'y d',

fixed = 'd',

center = 'x1 x2',

model = 'logit(y) ~ x1 x2 d',
seed = 90291,

burn = 2000,

iter = 10000

)
output(mymodel)
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Blimp can also create auxiliary parameters that are functions of the estimated model

parameters. To illustrate, the following script uses parameter labels, built-in

functions, and the PARAMETERS command to compute the predicted probability of a

“success” or “case” at each level of the D, dummy code (and at the means of the

continuous predictors). The additional syntax highlights are as follows.

%  MODEL command labels the intercept and the binary predictor’s slope

+  PARAMETERS command defines news parameters that give the predicted
probability of a “success” (outcome =1) at each level of the dummy code and the

group difference on the probability metric

DATA: datal.dat;

VARIABLES: id vl y v2 x1 x2 d v3 v4;
ORDINAL: y d;

MISSING: 999;

FIXED: d;

CENTER: x1 x2;

MODEL:

logit(y) ~ 1@0 x1 x2 d@b3;
PARAMETERS:

pp_do = exp(b0) / (1 + exp(b0));
pp_dl = exp(b® + b3) / (1 + exp(b0® + b3));
pp_diff = pp_dl1 - pp_do;

SEED: 90291;

BURN: 2000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = datail,
ordinal = 'y d',
fixed = 'd’',
center = 'x1 x2',
model = 'logit(y) ~ 1@b0 x1 x2 d@b3',
parameters = 'pp_d0 = exp(b0®) / (1 + exp(b0));
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pp_dl = exp(b0® + b3) / (1 + exp(b® + b3));
pp_diff = pp_d1 - pp_do',
seed = 90291,

burn = 2000,

iter = 10000
)
output(mymodel)

4.14: Logistic Regression With a Multicategorical Outcome

This example illustrates logistic regression for a multicategorical outcome with three
levels. Clicking the links below downloads the Blimp scripts and data for this
example, and the full set of User Guide examples is available from a pull-down menu

in the graphical interface.

Ex4.14.imp data4.dat

The model features a 3-category outcome (Y =1, 2, 3) regressed on three continuous
predictors, with the lowest numeric code (e.g., Y =1) as the reference group. The cgm

superscript denotes variables centered at their grand means.

Pr(Y =2) cam com o
hl(f%(Y':])) = Boz + Bra X" + Boa X7 + B3 X357
PT Y:3 cgm cgm cgm
in(pry 1)) = e+ BXE A

The syntax highlights are listed below. Adding the NIMPS and SAVE commands
generates model-based multiple imputations for a frequentist analysis (see Example
4.8).

+  NOMINAL command identifies a multicategorical outcome, which automatically
invokes a logit link when the categorical variable is an outcome (applying the
logit function to the dependent variable is optional)

+  FIXED command identifies a complete predictor
«  CENTER command applies grand mean centering to predictors

Unspecified associations for predictor variables


https://www.dropbox.com/s/n2h4l5x8t5mq2gs/Ex4.14.imp?dl=1
https://www.dropbox.com/s/35c9focn4jelb0m/data4.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(Y%3D2%5Cright)%7D%7BPr%5Cleft(Y%3D1%5Cright)%7D%5Cright)%3D%5Cbeta_%7B02%7D%2B%5Cbeta_%7B12%7DX_1%5E%7Bcgm%7D%2B%5Cbeta_%7B22%7DX_2%5E%7Bcgm%7D%2B%5Cbeta_3X_3%5E%7Bcgm%7D#0
https://www.codecogs.com/eqnedit.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(Y%3D3%5Cright)%7D%7BPr%5Cleft(Y%3D1%5Cright)%7D%5Cright)%3D%5Cbeta_%7B03%7D%2B%5Cbeta_%7B13%7DX_1%5E%7Bcgm%7D%2B%5Cbeta_%7B23%7DX_2%5E%7Bcgm%7D%2B%5Cbeta_%7B33%7DX_3%5E%7Bcgm%7D#0

Blimp User’s Guide (Version 3) 126

DATA: data4.dat;

VARIABLES: id x1:x3 vi1:v3 y v4:v24;
NOMINAL: y;

MISSING: 999;

FIXED: x2 x3;

CENTER: x1 x2 x3;

MODEL: logit(y) ~ x1 x2 x3;

SEED: 90291;

BURN: 2000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,

nominal = 'y',
fixed = 'x2 x3',
center = 'x1 x2 x3',
model = 'logit(y) ~ x1 x2 x3',
seed = 90291,
burn = 2000,
iter = 10000
)
output(mymodel)

4.15: Count Regression

This example illustrates a regression analysis with a count outcome. Blimp uses the
negative binomial regression model described by Asparouhov and Muthén (2021).
The negative binomial (NB) model is similar to the Poisson model, but it incorporates
an additional overdispersion term that accounts for heterogeneity among
individuals with the same predicted score. The interpretation of the coefficients is
the same as a Poisson regression (Coxe, West, & Aiken, 2009). Clicking the links below
downloads the Blimp scripts and data for this example, and the full set of User Guide

examples is available from a pull-down menu in the graphical interface.
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Ex4.15.imp data22.dat

The model features a pair of continuous predictors and a binary dummy code, as

follows. The cgm superscript denotes variables centered at their grand means.

In(ft) = Bo + L1D1 + BaDa + B X9 4 B4 X57™

The term inside the natural log is the predicted count given the constellation of
predictors on the right side of the equation. The model parameters reflect changes
on the natural log of the count. As noted earlier, the model incorporates an
overdispersion parameter that accommodates heterogeneity among individuals

with the same predicted value.
The syntax highlights are as follows.

»  ORDINAL command identifies binary predictors

«  COUNT command identifies a count outcome

+  FIXED command identifies complete predictors

+ CENTER command applies grand mean centering to predictors

Unspecified associations for predictor variables

DATA: data22.dat;
VARIABLES: id d1 x1 v1 d2 x2 v2 y v3 v4;
ORDINAL: di1 d2;

COUNT: vy;

MISSING: 999;

FIXED: di1 x1;

CENTER: x1 x2;

MODEL: y ~ d1 d2 x1 x2;
SEED: 90291;

BURN: 5000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data22.rda')


https://dl.dropboxusercontent.com/s/cnon1buau6fhry1/Ex4.15.imp?dl=1
https://dl.dropboxusercontent.com/s/deqpqq2otxk55yo/data22.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=ln(%5Chat%7B%5Cmu%7D)%3D%5Cbeta_0%2B%5Cbeta_1D_1%2B%5Cbeta_2D_2%2B%5Cbeta_3X_1%5E%7Bcgm%7D%2B%5Cbeta_4X_2%5E%7Bcgm%7D#0
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mymodel <- rblimp(
data = data22,
ordinal = 'd1 d2',

count = 'y',
fixed = 'd1 x1',
center = 'x1 x2',

model = 'y ~ d1 d2 x1 x2',
seed = 90291,

burn = 5000,

iter = 10000
)
output(mymodel)

4.16: Zero-Inflated Count Outcome

This example illustrates a regression analysis with a count outcome that features
excessive zeros. Blimp uses the negative binomial regression model described by
Asparouhov and Muthén (2021). The negative binomial (NB) model is similar to the
Poisson model, but it incorporates an additional overdispersion term that accounts
for heterogeneity among individuals with the same predicted score. The
interpretation of the coefficients is the same as a Poisson regression (Coxe, West, &
Aiken, 2009).

A two-part model like that from Olsen and Schafer (2001) is used for the zero

inflation. The two-part model features a binary indicator Y, that equals zero if the

count variable Y equals zero and one if Yis greater than zero. The binary indicator is
the dependent variable in a probit regression model predicting whether the count is
non-zero. In probit regression, the binary indicator appears as a normally distributed
latent response variable. In the model below, the latent response (denoted by an
asterisk superscript) is regressed on a pair of binary dummy codes and continuous

predictors.

Y;‘;n = 50 + BlDl -+ ﬁQDQ —+ 53chgm 4 54X209m +e


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bbin%7D%5E%5Cast%3D%5Cbeta_0%2B%5Cbeta_1D_1%2B%5Cbeta_2D_2%2B%5Cbeta_3X_1%5E%7Bcgm%7D%2B%5Cbeta_4X_2%5E%7Bcgm%7D%2B%5Cvarepsilon#0
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The cgm superscript denotes centering at their grand mean. The probit model
includes a single threshold value that is automatically fixed at zero for identification.

The residual variance is similarly fixed at one.

The second part of the model considers only the non-zero counts. The outcome is a

recoded version of Y that is missing whenever Y (or Y,,,) equals zero. In the example

below, the non-zero counts are regressed on a pair of binary dummy codes and

continuous covariates.

In(f) = Bo + BiD1 + BoDs + Bz X7 + By X5

The cgm superscript denotes grand mean centering. The term inside the natural log
is the predicted count given the constellation of predictors on the right side of the
equation. The model parameters reflect changes on the natural log of the count. As
noted earlier, the model incorporates an overdispersion parameter that

accommodates heterogeneity among individuals with the same predicted value.

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.
Ex4l6.imp dataz2.dat

The syntax highlights are listed below. Adding the NIMPS and SAVE commands
generates model-based multiple imputations for a frequentist analysis (see Example
4.8).

«  ORDINAL command identifies binary predictors and the binary outcome
indicating whether the count was greater than zero

«  COUNT command identifies a count outcome

+  TRANSFORM command creates the variables for the two-part model
+  FIXED command identifies complete predictors

+ CENTER command applies grand mean centering to predictors

Unspecified associations for predictor variables


https://www.codecogs.com/eqnedit.php?latex=ln(%5Chat%7B%5Cmu%7D)%3D%5Cbeta_0%2B%5Cbeta_1D_1%2B%5Cbeta_2D_2%2B%5Cbeta_3X_1%5E%7Bcgm%7D%2B%5Cbeta_4X_2%5E%7Bcgm%7D#0
https://dl.dropboxusercontent.com/scl/fi/ni7gc8gsmyme9n1en3nbe/Ex4.23.imp?rlkey=0966ak3hul4615eg2o5q2hrvc&dl=1
https://dl.dropboxusercontent.com/scl/fi/xaagl742f4ow28prmq9zd/data22.dat?rlkey=s51tpco1zvdk4s4s94uvserjj&dl=1
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DATA: data22.dat;

VARIABLES: id d1 x1 v1 d2 x2 v2 ycnt v3 v4;
ORDINAL: di1 d2;

ORDINAL: di1 d2 ybin;

COUNT: vy;

TRANSFORM:

y = missing(ycnt == 0, ycnt);
ybin = ifelse(ycnt == 0, 0, 1);
MISSING: 999;

FIXED: d1 x1;

CENTER: x1 x2;

MODEL :

y ~ dl d2 x1 x2;

ybin ~ d1 d2 x1 x2;

SEED: 90291;

BURN: 5000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data22.rda')

mymodel <- rblimp(
data = data22,
ordinal = 'd1l d2',
count = 'y',
transform = 'y = missing(ycnt == 0, ycnt);
ybin = ifelse(ycnt == 0, 0, 1)',
fixed = 'd1 x1',
center = 'x1 x2',
model = '
y ~ dl d2 x1 x2;
ybin ~ d1 d2 x1 x2',

seed = 90291,
burn = 5000,
iter = 10000

)
output(mymodel)
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4.17: Scale Scores With Incomplete Item Responses

This example illustrates a regression analysis that features a 6-item sum (scale) score
as the outcome, a 7-item sum score as a predictor, and two binary covariates. The
ordered categorical (e.g., questionnaire) items that determine the sum are
incomplete. Clicking the links below downloads the Blimp scripts and data for this
example, and the full set of User Guide examples is available from a pull-down menu

in the graphical interface.

Ex417a.imp Ex4.17b.imp data4.dat

The analysis model is

Y = 8o+ 51X + BoDy + 33Dy + €
=06+ 01 (Xi+...+Xq)+ BaD1+ 3Dy + €

where X is the scale (sum) score, and X; to X; are its ordinal components. It is

important to treat missing data at the item level when analyzing incomplete
composite scores, as doing so maximizes power and precision. This example
illustrates the approach from Alacam, Du, Enders, and Keller (2023) and Enders
(2022). It is important to reiterate that the scale score (represented as an embedded
function) is essentially a random variable that depends on its constituent parts rather
than a deterministic computation or passive imputation (see the Functions
Embedded in Equations section from Chapter 2). The syntax highlights are listed
below. Adding the NIMPS and SAVE commands generates model-based multiple

imputations for a frequentist analysis (see Example 4.8).

«  ORDINAL command identifies binary and ordinal variables
Automatic threshold specification for binary and ordinal variables

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for all predictors


https://www.dropbox.com/s/192fcrbcpy91u0j/Ex4.16a.imp?dl=1
https://www.dropbox.com/s/k0ui8kzvnzf2yrk/Ex4.16b.imp?dl=1
https://www.dropbox.com/s/arwxqp6uc7dp91g/data4.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X%2B%5Cbeta_2D_1%2B%5Cbeta_3D_2%2B%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=%3D%5Cbeta_0%2B%5Cbeta_1%5Cleft(X_1%2B%5Cldots%2BX_7%5Cright)%2B%5Cbeta_2D_1%2B%5Cbeta_3D_2%2B%5Cvarepsilon#0
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%  MODEL command features an embedded function that defines the sum of ordina
items as a predictor

%  MODEL command defines the sum of ordinal items as a random variable

DATA: data4.dat;

VARIABLES: id vi1:v3 y v4:v6 d1 d2
v7:v12 x1:x7 v13:v18;

ORDINAL: x1:x7 di1 d2;

MISSING: 999;

MODEL :

focal.model:

xscale = x1:+:x7; # define sum function

y ~ xscale d1 d2; # embedded sum variable as a predictor

predictor.model:

x1:x7 d1 d2 ~ 1;

SEED: 90291;

BURN: 5000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datada.rda')

mymodel <- rblimp(
data = datada,
ordinal = 'x1:x7 d1 d2',
model = '
focal.model:
xscale = x1:+:x7;
y ~ xscale di1 d2;
predictor.model:
x1:x7 d1 d2 ~ 1',

seed = 90291,

burn = 5000,

iter = 10000
)
output(mymodel)

The previous script used a composite score as the dependent variable but did not

incorporate the dependent variable's component items into the model. Doing so
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would improve precision because the items are strong correlates of the sum score.

The code block below leverages item-level correlations by introducing five of the six
outcome items as auxiliary variables (Eekhout et al., 2015). The component items are
added using the same aukxiliary variable approach from Example 4.7. The additional

syntax highlights are as follows.

+  MODEL command features a factored regression (sequential specification) for the
dependent variable's scale score and its items

All but one of the dependent variable’s scale items are used as auxiliary variables
(using all items induces linear dependencies)

DATA: data4.dat;

VARIABLES: id a1l a2 a3 yscale v zscale n1 di d2
yl:y6 x1:x7 z1:z6;

ORDINAL: x1:x7 di1 d2;

MISSING: 999;

MODEL :

focal.model:

xscale = x1:+:x7;

yscale ~ xscale di d2;

predictor.model:

x1:x7 d1 d2 ~ 1;

auxiliary.models:

# sequential specification for y scale items

yl:y5 ~ yscale;

SEED: 90291;

BURN: 20000,

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,
ordinal = 'y1l:y5 x1:x7 d1 d2',
model = '
focal.model:
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xscale = x1:+:x7;
yscale ~ xscale di d2;
predictor.model:
x1:x7 d1 d2 ~ 1;
auxiliary.models:
yl:y5 ~ yscale',

seed = 90291,

burn = 20000,

iter = 10000
)
output(mymodel)

4.18: Scale Score Interactions

This example illustrates a moderated regression with an interaction between a
7-item sum score predictor and binary moderator. Clicking the links below
downloads the Blimp scripts and data for this example, and the full set of User Guide

examples is available from a pull-down menu in the graphical interface.

Ex4.18.imp data4.dat

The analysis model is

Y =By + 1 X + oM + Bs(M)(X) + ¢
=B+ (Xi+...+X7)+PoM+B3(M)( X1+ ...+ X7) +¢

where X is the scale (sum) score, and X; to X; are its ordinal components. It is

important to treat missing data at the item level when analyzing incomplete
composite scores, as doing so maximizes power and precision. This example extends
the approach from Alacam, Du, Enders, and Keller (2023) to include interaction
effects involving an incomplete sum score. Enders (2022) summarizes the approach.
It is important to reiterate that the scale score (represented as an embedded
function) is essentially a random variable that depends on its constituent parts rather
than a deterministic computation or passive imputation (see the Functions

Embedded in Equations section from Chapter 2). The syntax highlights are listed


https://www.dropbox.com/s/yzl1eancdw881uk/Ex4.17.imp?dl=1
https://www.dropbox.com/s/bgeuxz9n4mud365/data4.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X%2B%5Cbeta_2M%2B%5Cbeta_3(M)(X)%2B%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=%3D%5Cbeta_0%2B%5Cbeta_1%5Cleft(X_1%2B%5Cldots%2BX_7%5Cright)%2B%5Cbeta_2M%2B%5Cbeta_3(M)%5Cleft(X_1%2B%5Cldots%2BX_7%5Cright)%2B%5Cvarepsilon#0
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below. Adding the NIMPS and SAVE commands generates model-based multiple

imputations for a frequentist analysis (see Example 4.8).

«  ORDINAL command identifies binary and ordinal variables
Automatic threshold specification for binary and ordinal variables

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for all predictors

%  MODEL command features an embedded function that defines the sum of ordinal
items as a predictor

%  MODEL command defines the sum of ordinal items as a random variable

+ MODEL command features a factored regression (sequential specification) for the
dependent variable's scale score and its items

All but one of the dependent variable'’s scale items are used as auxiliary variables
(using all items induces linear dependencies)

Longer burn-in period for estimating threshold parameters

DATA: data4.dat;

VARIABLES: id v1:v3 yscale xscale v4:v6 m
yl:y6 x1:X7 v7:v12;

ORDINAL: yl1:y5 x1:x7 m;

MISSING: 999;

MODEL:

focal.model:

xscale = x1:+:x7;

yscale ~ xscale m m*xscale;

predictor.model:

X1:X7 m ~ 1;

auxiliary.model:

# sequential specification for y scale items

yl:y5 ~ yscale;

SEED: 90291;

BURN: 20000;

ITER: 10000;

The corresponding rblimp script is as follows.
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library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,
ordinal = 'y1l:y5 x1:x7 m',
model = '
focal.model:
xscale = x1:+:x7;
yscale ~ xscale m m*xscale;
predictor.model:
X1:x7 m ~ 1;
auxiliary.model:
yl:y5 ~ yscale',

seed = 90291,

burn = 20000,

iter = 10000
)
output(mymodel)

4.19: Skewed Predictor With a Yeo-Johnson Transformation

This example illustrates a Yeo-Johnson (Yeo & Johnson, 2000) transformation that
samples imputations from a skewed distribution. Clicking the links below downloads
the Blimp scripts and data for this example, and the full set of User Guide examples

is available from a pull-down menu in the graphical interface.

Ex4.19.imp datac.dat

The analysis model is a logistic regression with two continuous variables and two

binary dummy codes as predictors.

ln( Pr(y =1)

1—Pr(Y = 1)) = fo+ X1+ BoXo + B3D1 + Baln

X,'s distribution is markedly peaked and positively skewed, and drawing imputations

from a normal distribution would likely distort the variable’s distribution.

The Yeo-Johnson procedure estimates the variable's shape and draws imputations

from a nonnormal distribution. Applying the Yeo-Johnson transformation normalizes


https://www.dropbox.com/s/t1smsba5j4uuk6o/Ex4.18.imp?dl=1
https://www.dropbox.com/s/zewyybil0lhc1g1/data6.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(Y%3D1%5Cright)%7D%7B1-Pr%5Cleft(Y%3D1%5Cright)%7D%5Cright)%3D%5Cbeta_0%2B%5Cbeta_1X_1%2B%5Cbeta_2X_2%2B%5Cbeta_3D_1%2B%5Cbeta_4D_2#0
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the predictor variable, such that the resulting linear regression reflects associations
between the normalized variable and other predictors. The sequential specification
in the code block below invokes the following regression equation for the

normalized predictor.
5(;2 =% +7X1 + 7D+

However, skewed imputations on the raw score metric always appear on the right
side of any regression equation (e.g., the focal regression model). Normalized

imputations can be saved by adding the savelatent keyword to the OPTIONS line.

The Yeo-Johnson transformation can be very slow (or fail) to converge if the skewed
variable's mean is far from zero. To facilitate interpretation, the code block below
centers the predictor scores at the median value of 16. Additional details about the
procedure are available in the literature (Enders, 2022; Ludtke et al., 2020b). The
syntax highlights are listed below. Adding the NIMPS and SAVE commands generates

model-based multiple imputations for a frequentist analysis (see Example 4.8).

«  ORDINAL command identifies a binary outcome and predictors
+  FIXED command identifies complete predictors

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command features a factored regression (sequential specification) for
incomplete predictor variables

Unspecified associations for complete predictor variables

+ Applying the yjt function to the skewed predictor on the MODEL line requests a
Yeo-Johnson transformation

Applying a subtraction function to center the skewed predictor at its median
facilitates convergence

+ Applying the logit function to the dependent variable on the MODEL line
requests a logit rather than probit link

DATA: data6.dat;


https://www.codecogs.com/eqnedit.php?latex=%7B%5Cwidetilde%7BX%7D%7D_2%3D%5Cgamma_0%2B%5Cgamma_1X_1%2B%5Cgamma_2D_1%2Br#0
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VARIABLES: id d1 x1 v1 d2 v2 x2 v3 v4 y;
ORDINAL: y di1 d2;
MISSING: 999;

FIXED: di1 x1;

MODEL :

focal.model:

logit(y) ~ x1 x2 di1 d2;
predictor.model:

yjt(x2 - 16) ~ x1 di;
d2 ~ x2 x1 di;

SEED: 90291;

BURN: 1000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data6.rda')

mymodel <- rblimp(
data = datasé,
ordinal = 'y d1 d2',
fixed = 'd1 x1',
model = '
focal.model:
logit(y) ~ x1 x2 di1 d2;
predictor.model:
yjt(x2 - 16) ~ x1 di;
d2 ~ x2 x1 d1',
seed = 90291,

burn = 1000,

iter = 10000
)
output(mymodel)

4.20: Skewed Qutcome With a Yeo-Johnson Transformation

This example applies the Yeo-Johnson transformation to a nonnormal dependent
variable. Clicking the links below downloads the Blimp scripts and data for this
example, and the full set of User Guide examples is available from a pull-down menu

in the graphical interface.
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Ex4.20a.imp Ex4.20b.imp Ex4.20.R data2.dat

The untransformed analysis model features two continuous variables and one binary
dummy code as predictors, where the cgm superscript denotes variables centered at

their grand means.

Y = By + S1 X7 + B X59" + 83D + ¢

The outcome variable's distribution is markedly peaked and positively skewed.
Applying the Yeo-Johnson transformation normalizes the dependent variable, such
that the resulting linear regression reflects associations between the normalized

outcome and the predictors.

V=9 +nX{"" + %X +3D +r

Normalized imputations can be saved by adding the savelatent keyword to the
OPTIONS line. The Yeo-Johnson transformation can be very slow (or fail) to converge if
the skewed variable's mean is far from zero. To facilitate interpretation, the code
block below centers the outcome at the median value of 9. Additional details about

the procedure are available in the literature (Enders, in press; Ludtke et al,, 2020b).
The syntax highlights are listed below.

+  ORDINAL command identifies a binary predictor
+  FIXED command identifies complete predictors

+ Applying yjt function to the skewed outcome on the MODEL line requests a
Yeo-Johnson transformation

Applying a subtraction function to center the skewed outcome at its median
facilitates convergence

Unspecified associations for predictor variables

DATA: data2.dat;

VARIABLES: id y vl x1 d v2 v3 x2 v4;
ORDINAL: d;

MISSING: 999;


https://www.dropbox.com/s/p6c4f3g9i7txdqs/Ex4.19a.imp?dl=1
https://www.dropbox.com/s/n6an66jff7y95l0/Ex4.19b.imp?dl=1
https://www.dropbox.com/s/zehaxa9q9nzs4oe/Ex4.19.R?dl=1
https://www.dropbox.com/s/w7eizepp1l94czo/data2.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2X_2%5E%7Bcgm%7D%2B%5Cbeta_3D%2B%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=%5Cwidetilde%7BY%7D%3D%5Cgamma_0%2B%5Cgamma_1X_1%5E%7Bcgm%7D%2B%5Cgamma_2X_2%5E%7Bcgm%7D%2B%5Cgamma_3D%2Br#0
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FIXED: x1;

CENTER: x1 x2;

MODEL:

yit(y - 9) ~ x1 x2 d;
SEED: 90291;

BURN: 1000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data2.rda')

mymodel <- rblimp(
data = data2,

ordinal = 'd',
fixed = 'x1',
center = 'x1 x2',
model = 'yjt(y - 9) ~ x1 x2 d',
seed = 90291,
burn = 1000,
iter = 10000
)
output(mymodel)

Blimp can save multiple imputations from any model it estimates. Adding the NIMPS
and SAVE commands generates model-based multiple imputations for a frequentist
analysis, and listing the savelatent keyword on the OPTIONS commmand saves the
normalized imputes from the Yeo-Johnson transformation alongside the skewed
imputes on the raw score metric (this keyword also saves the latent response scores

for the binary predictor).

DATA: data2.dat;

VARIABLES: id y n1 x1 d1 d2 n2 x2 n3;
ORDINAL: di;

MISSING: 999;

FIXED: x1;

CENTER: x1 x2;

MODEL:

yjt(y - 9) ~ x1 x2 di;
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SEED: 90291;

BURN: 3000;

ITER: 10000;

# save model-based multiple imputations;
CHAINS: 20;

NIMPS: 20;

OPTIONS: savelatent;

SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the
output file, and all variables in the input file appear in the output file regardless of

whether they were imputed.

VARIABLE ORDER IN IMPUTED DATA:

stacked = 'imps.dat'
imp# id v vl x1 d v2 v3 x2 v4 yjt(yjt(y-9)) d.latent

The variable y contains skewed imputations on the raw score metric, and the variable
yjt(yjt(y-9)) contains the normalized imputes. The imputed data sets can be

analyzed in other software packages.

R provides an easy platform for analyzing multiple imputations. To illustrate, R script
below uses rblimp to create multiple imputations and the mitml package (Grund,
Robitzsch, & Ludke, 2021) for analysis and pooling. Note that the SAVE command is no
longer necessary because imputations are automatically stored in an rblimp list

object called mymodel@imputations.

library(rblimp)
library(mitml)
load(file = 'data2.rda')

mymodel <- rblimp(
data = data2,

ordinal = 'd',
fixed = 'x1',
center = 'x1 x2',

model = 'yjt(y - 9) ~ x1 x2 d',
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seed = 90291,
burn = 1000,
iter = 10000,
chains = 20,
nimps = 20

)
output(mymodel)

# inspect variable names
names(mymodel@imputations[[1]])

# mitml list
implist <- as.mitml(mymodel)

# plot raw and transformed scores
dat2plot <- do.call(rbind, implist)
hist(dat2plotSy,breaks = 20)
hist(dat2plotSyjt.yjt.y.9..,breaks = 20)

# pooled grand means
mean_x1 <- mean(unlist(lapply(implist, function(data) mean(data$x1))))
mean_x2 <- mean(unlist(lapply(implist, function(data) mean(data$x2))))

# analyze skewed outcome
results <- with(implist,

Im(y ~ I(x1 - mean_x1) + I(x2 - mean_x2) + d))
testEstimates(results, extra.pars = T, df.com = 1996)

# analyze normalized outcome
results <- with(implist,

Im(yjt.yjt.y.9.. ~ I(x1 - mean_x1) + I(x2 - mean_x2) + d))
testEstimates(results, extra.pars = T, df.com = 1996)
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To illustrate, the script below uses the R package mitml (Grund et al.,, 2021) to fit the

regression model to the filled-in data sets. The positively skewed raw score
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imputations are on the original metric, whereas the transformed imputations are

approximately normal.

# set working directory
fdir::set()

# read data from working directory

imps <- read.table("imps.dat")

names(imps) <- c("imputation","id","y","v1","x1","d",
"v2","v3","x2","v4" ,"ytransform","d1.latent")

# plot raw and transformed scores
hist(impsSy)
hist(imps$ytransform)

# center predictors
imps$x1_cgm <- imps$x1l - mean(imps$x1)
imps$x2_cgm <- imps$x2 - mean(imps$x2)

# analysis and pooling with mitml
implist <- mitml::as.mitml.list(split(imps, impsS$imputation))

# analyze skewed outcome
results <- with(implist, Im(y ~ x1_cgm + x2_cgm + d))
mitml::testEstimates(results, extra.pars = T, df.com = 1996)

# analyze transformed outcome
results <- with(implist, Im(ytransform ~ x1_cgm + x2_cgm + d))
mitml::testEstimates(results, extra.pars = T, df.com = 1996)

4.21: Propensity Score Estimation With Missing Data

This example illustrates propensity score estimation with missing data. Clicking the
links below downloads the Blimp scripts and data for this example, and the full set of

User Guide examples is available from a pull-down menu in the graphical interface.

Ex4.2l.imp data4.dat

The focal model features a binary dummy code (the “treatment” indicator)

predicting a continuous outcome.


https://www.dropbox.com/s/rkpzuvdsdh8hion/Ex4.21.imp?dl=1
https://www.dropbox.com/s/y80x13ezra79zv3/data4.dat?dl=1
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Y=0+pD+e

The propensity score model features the treatment indicator regressed on potential

confounder variables and their higher-order interaction terms.

m( Pr(D=1)

= X X X X
1—Pr(D:1)) Yo + Y1X1 + YaXo + ¥3 X3 + YaXsTt

V5 X1 X9 + Y6 X1 X3 + 17 X1 Xy + 18X X3 + Y9 Xo Xy + 710 X3Xy

Because the treatment indicator D, consists of naturally occurring groups, this

variable could be incomplete, which it is here. In this case, it is important for

propensity score estimation to account for both models.

«  ORDINAL command identifies a binary outcome and predictor
+  FIXED command identifies a complete predictor

+ Applying the logit function to the dependent variable on the MODEL line
requests a logit rather than probit link

+  FIXED command identifies complete predictors
«  CENTER command applies grand mean centering to predictors

#  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

#  MODEL command features a product term

+ The savepredicted keyword on the OPTIONS line saves the predicted probabilities
of treatment group membership, which are the propensity scores

Unspecified associations for predictor variables
+ NIMPS command specifies 20 imputed data sets

+  Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

Imputations are stacked in a single file with an index variable added in the first
column

DATA: data4d.dat;
VARIABLES: id x1:x4 y v1 v2 d v3:v22;
ORDINAL: d;


https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1D%2B%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(D%3D1%5Cright)%7D%7B1-Pr%5Cleft(D%3D1%5Cright)%7D%5Cright)%3D%5Cgamma_0%2B%5Cgamma_1X_1%2B%5Cgamma_2X_2%2B%5Cgamma_3X_3%2B%5Cgamma_4X_4%2B#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma_5X_1X_2%2B%5Cgamma_6X_1X_3%2B%5Cgamma_7X_1X_4%2B%5Cgamma_8X_2X_3%2B%5Cgamma_9X_2X_4%2B%5Cgamma_%7B10%7DX_3X_4#0
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MISSING: 999;

FIXED: x2 x3;

MODEL :

focal.model:

e (g
propensity.model:
logit(d) ~ x1 x2 x3 x4 x1*x2 x1*x3 Xx1*x4 x2*x3 x2*x4 x3*x4;
SEED: 90291;

BURN: 2000;

ITER: 10000;

OPTIONS: savepredicted;
CHAINS: 20;

NIMPS: 20;

SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the
output file, and all variables in the input file appear in the output file regardless of

whether they were imputed.

VARIABLE ORDER IN IMPUTED DATA:
stacked = 'imps.dat'

imp# 1d x1 x2 x3 x4 y vl v2 d v3 v4 v5 v6 v7 v8 v9 v10
vll v12 v13 v14 v15 v16 vi17 v18 v19 v20 v21 v22
y.predicted d.predicted

The variable d.predicted contains the propensity scores. Following earlier examples,

imputed data sets from Blimp can be analyzed in other software packages.

The corresponding rblimp script is as follows. Note that the SAVE command is no
longer necessary because imputations are automatically stored in a rblimp list object
called mymodel@imputations. Predicted probabilities are automatically stored in a

rblimp list object called mymodel@predicted.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
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data = data4,

ordinal = 'd',
fixed = 'x2 x3',
model = '
focal.model:

y ~ d;

propensity.model:
logit(d) ~ x1 x2 x3 x4 x1*x2 x1*x3 X1*x4 x2*x3 x2*x4 x3*x4',
seed = 90291,
burn = 2000,
iter = 10000,
chains = 20,
nimps = 20
)
output(mymodel)

4.22: Sampling Weights

This example illustrates a linear regression analysis with sampling (i.e., inverse
probability) weights. Clicking the links below downloads the Blimp scripts and data
for this example, and the full set of User Guide examples is available from a

pull-down menu in the graphical interface.

Ex4.22.imp data?l.dat

The analysis model features three continuous predictors.

Y =B+ 51Xy + BoXo + B3 X3+ ¢

Blimp's MCMC estimation routine incorporates sampling weights using the
procedure described in Goldstein (2011, Section 3.4.2). The syntax highlights are as

follows.
+ WEIGHT command identifies the inverse probability sampling weights

Unspecified associations for predictor variables

DATA: data21.dat;
VARIABLES: v1:v3 wght y x1:x3 v4 v5;


https://dl.dropboxusercontent.com/s/ppqcxiibrcmtqx9/Ex4.22.imp?dl=1
https://dl.dropboxusercontent.com/s/wnj36mej6z3bmbg/data21.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_1%2B%5Cbeta_2X_2%2B%5Cbeta_3X_3%2B%5Cvarepsilon#0
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WEIGHT: wght;
MISSING: 999;

MODEL: y ~ x1 x2 x3;
SEED: 90291;

BURN: 1000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data21l.rda')

mymodel <- rblimp(
data = data21l,
model = 'y ~ x1 x2 x3',
weights = 'wght',
seed = 90291,

burn = 1000,

iter = 10000
)
output(mymodel)

4.23: Wald Significance Tests

This example illustrates the linear regression analysis fromm Eample 4.3 with the
Bayesian Wald test described by Asparouhov and Muthén (2021). These tests are
printed by default for selected individual parameters. This example illustrates how to
specify a custom significance test for evaluating the omnibus null hypothesis that all
regression slopes equal zero. Other tests are possible as well (e.g., tests of equality
constraints, nested model tests). Clicking the links below downloads the Blimp
scripts and data for this example, and the full set of User Guide examples is available

from a pull-down menu in the graphical interface.

Ex4.23.imp datal.dat

The model features a pair of continuous predictors and a binary dummy code, where

the cgm superscript denotes variables centered at their grand means.


https://www.dropbox.com/s/xbm0a1w19b0dvpn/Ex4.20.imp?dl=1
https://www.dropbox.com/s/3ef11ct14bassl8/data1.dat?dl=1

Blimp User’s Guide (Version 3) 148

Y = B0+ 51 X" + B X5 + BsD 4 ¢

The syntax highlights are as follows.

«  ORDINAL command identifies a binary predictor

+  FIXED command identifies a complete predictor

«  CENTER command applies grand mean centering to predictors

«  WALDTEST commands specify three custom Bayesian Wald significance tests

Unspecified associations for predictor variables

DATA: datal.dat;

VARIABLES: id v1:v3 y x1 d x2 v4;
ORDINAL: d;

MISSING: 999;

FIXED: d;

CENTER: x1 x2;

MODEL: y ~ x1@b1 x2@b2 d@b3;
WALDTEST: b1:b3 = 0;
WALDTEST: bl:b2 = 0;
WALDTEST: bl = b2;

SEED: 90291;

BURN: 1000;

ITER: 10000;

The corresponding rblimp script is as follows. Notice that each test is an elementin a

list.

library(rblimp)
load(file = 'data21l.rda')

mymodel <- rblimp(
data = datail,

ordinal = 'd',
fixed = 'd',
center = 'x1 x2',

model = 'y ~ x1@b1 x2@b2 d@b3',

waldtest = list('b1:b3 = 0', 'b1:b2 = 0', 'bl = b2'),
seed = 90291,

burn = 1000,


https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2X_2%5E%7Bcgm%7D%2B%5Cbeta_3D%2B%5Cvarepsilon#0
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iter = 10000)
output(mymodel)

The WALDTEST command produces the output table below. The Wald test statistic is a
chi-square variable, and the test's degrees of freedom equals the number of
parameters by which the two models differ. The chi-square is an MCMC-generated
estimate of a frequentist test statistic, and the p-value is the area above the test
statistic value in a chi-square distribution. As such, the test can be used for
frequentist inference. This approach adopts MCMC estimation for its computational
benefits rather than its philosophical appeal (i.e., Bayes as computational
frequentism; Levy & McNeish, 2023). By default, Blimp prints univariate Wald tests for

all parameters except variances and variance explained test statistics.
WALD TESTS (Asparouhov & Muthén, 2021)

Test #1

Full:
[1] y ~ Intercept x1@b1l x2@b2 d@b3

Restricted:
[1] y ~ Intercept x1@b1l x2@b2 d@b3

Constraints in Restricted:

[1] b1 =0
[2] b2 =0
[3] b3 =0
Wald Statistic (Chi-Square) 158.084
Number of Parameters Tested (df) 3
Probability 0.000
Test #2
Full:

[1] y ~ Intercept x1@b1l x2@b2 d@b3

Restricted:
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[1] y ~ Intercept x1@1 x2@b2 d@b3

Constraints in Restricted:
[1] b1 =0
[2] b2 =0

Wald Statistic (Chi-Square)
Number of Parameters Tested (df)
Probability

Test #3

Full:
[1] y ~ Intercept x1@1 x2@b2 d@b3

Restricted:
[1] y ~ Intercept x1@b1l x2@b2 d@b3

Constraints in Restricted:
[1] b1 = b2

Wald Statistic (Chi-Square)
Number of Parameters Tested (df)
Probability

113.818
2
0.000

28.673

0.000

150
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5 Path Analysis and Latent Variable Model Examples

This section illustrates path analyses and latent variable models in Blimp. These
multivariate analyses are specified as collections of univariate equations. In general, it
is possible to mix and match features from any examples to easily create complex
analysis models that honor features of the data. Additional details about fitting path
and latent variable models in Blimp can be found in Keller (2022), which is available

for download here.

Following the previous chapter, the examples in this section use a generic notation
system where variable names usually consist of an alphanumeric prefix and a
numeric suffix (e.g., Y, X;, X;,N;, D,, D,). The letter Y designates a dependent variable, a
D prefix denotes a binary dummy variable, an O prefix indicates an ordinal variable,
and an N prefix indicates a multicategorical nominal variable. Finally, the model
equations use a “cgm” superscript to indicate grand mean centering. The following

list outlines the examples in this section.

5.1: Mediation Analysis

5.2: Moderated Mediation

5.3: Mediation With a Binary Outcome

5.4: Mediation With a Categorical Mediator

5.5: Mediation With a Count Outcome

5.6: Mediation With a Zero-Inflated Count Outcome

5.7: CFA With Continuous Indicators

5.8: CFA With Binary Indicators (2-Parameter IRT Model)
5.9: CFA With Ordinal Indicators

5.10: Imputing Latent Response Scores for Item-Level Factor Analysis
5.11: Skewed Indicators With a Yeo-Johnson Transformation
5.12: Latent Variable Regression Model

513: Latent-by-Manifest Variable Interaction

5.14: Moderated Nonlinear Factor Analysis (MNLFA)


https://www.dropbox.com/s/6l0sh8t100nj7e1/Keller%20%282022%29%20-%20Blimp.pdf?dl=1
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5.15: Latent-by-Latent Variable Interaction
5.16: Three-Way Latent Variable Interaction
517: Latent Growth Curve Model

5.1: Mediation Analysis

This example illustrates a single-mediator path model. The regression models are

shown below

M=1y+aX +cy
Y=Iy+BM+7X+ey

where a and 8 are slope coefficients that define the indirect effect or product of the
coefficients estimator, and 7’ is the direct effect of X on Y. A path diagram of the
analysis is shown below. The model also incorporates three auxiliary variables

following the procedure from Example 4.7.

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex51limp data4.dat

The syntax highlights are as follows.


https://www.codecogs.com/eqnedit.php?latex=M%3DI_M%2B%7B%5Calpha%7DX%2B%5Cvarepsilon_M#0
https://www.codecogs.com/eqnedit.php?latex=Y%3DI_Y%2B%7B%5Cbeta%7DM%2B%7B%5Ctau%7D%5E%7B'%7DX%2B%5Cvarepsilon_Y#0
https://www.dropbox.com/s/2qbokthuug4mqwu/Ex5.1.imp?dl=1
https://www.dropbox.com/s/y80x13ezra79zv3/data4.dat?dl=1
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»  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command labels the indirect effect’'s component pathways

+ MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

«  PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

DATA: data4.dat;
VARIABLES: id al:a3 vl y m v2 x v3:v22;
MISSING: 999;

MODEL :

mediation.model:

m ~ x@alpha;

y ~ m@beta x;
auxiliary.model:

al:a3 ~ y m Xx;
PARAMETERS:

indirect = alpha * beta;
SEED: 90291;

BURN: 1000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,
model = '
mediation.model:
m ~ x@alpha;
y ~ m@beta x;
auxiliary.model:
al:a3 ~y m x',

parameters = 'indirect = alpha * beta',
seed = 90291,

burn = 1000,

iter = 10000
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)
output(mymodel)

5.2: Moderated Mediation

This example adds moderated pathways to the single-mediator model from the

previous example. The regression models are shown below
M =1 +aX —|—’}/1D + Y2 (X)(D) +Eem

Y = Iy + M +7 X + 73D + 74 (M)(D) + ey

and the corresponding path diagram is as follows.

- X |
\
1 D “ Y

The dashed lines pointing from D to the directed arrows convey that D moderates

the mediation model paths.

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.2.imp data4.dat

The syntax highlights are as follows.

ORDINAL command identifies a binary predictor

FIXED commmand identifies a complete predictor


https://www.codecogs.com/eqnedit.php?latex=M%3DI_M%2B%5Calpha%20X%2B%5Cgamma_1D%2B%5Cgamma_2%5Cleft(X)(D%5Cright)%2B%5Cvarepsilon_M#0
https://www.codecogs.com/eqnedit.php?latex=Y%3DI_Y%20%2B%20%5Cbeta%20M%2B%5Ctau%5E%7B'%7DX%2B%5Cgamma_3D%2B%5Cgamma_4%5Cleft(M)(%20D%5Cright)%2B%5Cvarepsilon_Y#0
https://www.dropbox.com/s/5tab0x075dzo13v/Ex5.2.imp?dl=1
https://www.dropbox.com/s/y80x13ezra79zv3/data4.dat?dl=1
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+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command labels the indirect effect’'s component pathways
+  MODEL command features a product term

+  MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

«  PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator at each level of the binary moderator

DATA: data4.dat;

VARIABLES: id al:a3 vi y m v2 x d v3:v21;

ORDINAL: d;

MISSING: 999;

FIXED: d;

MODEL :

mediation.model:

m ~ x@alpha d x*d@alphamod;

y ~ m@beta x d m*d@betamod;

auxiliary.model:

# sequential specification for auxiliary variables
al:a3 ~y m x d;

PARAMETERS:
indirect.do
indirect.d1
SEED: 90291;
BURN: 1000;
ITER: 10000;

alpha * beta;
( alpha + alphamod ) * ( beta + betamod );

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,

ordinal = 'd',
fixed = 'd',
model = '

mediation.model:
m ~ x@alpha d x*d@alphamod;
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y ~ m@eta x d m*d@betamod;

auxiliary.model:

al:a3 ~ymxd',

parameters = 'indirect.d® = alpha * beta;

indirect.d1 = ( alpha + alphamod ) * ( beta + betamod )',
seed = 90291,

burn = 1000,

iter = 10000
)
output(mymodel)

5.3: Mediation With a Binary Outcome

This example illustrates a single-mediator model with a binary outcome. The

regression models are shown below
M=1y+aX + ey
Y*=1Iy + M+ 7 X + ey~

where Y* denotes the underlying latent response variable for a binary outcome,
and all other features of the model are the same as Example 5.1. A path diagram of
the mediation model is shown below, with the ellipse denoting the latent response

variable, the residual variance of which is fixed at one for identification

N

Muthén, Muthén, and Asparouhov (2016) show that the indirect effect alone does not

capture the fact that changes in Y are non-constant on the probability metric. They


https://www.codecogs.com/eqnedit.php?latex=M%3DI_M%2B%7B%5Calpha%7DX%2B%5Cvarepsilon_M#0
https://www.codecogs.com/eqnedit.php?latex=Y%5E%7B*%7D%3DI_Y%2B%7B%5Cbeta%7DM%2B%7B%5Ctau%7D%5E%7B'%7DX%2B%5Cvarepsilon_%7BY%5E*%7D#0
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give the following expression for computing the probability that Y =1given a
particular value of X (Equations 8.4 to 8.6). The script below uses these equations to

compute the probability at different values of X.
EY*X)=Iy+IyB+aBX +7X =
V(Y*|X) = BP0, +1

PY =1|X) = o[E(Y"|X)/v/V(Y*]X)]

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.3a.inp Ex5.3b.inp data20.dat

The syntax highlights are as follows.

+  ORDINAL command identifies a binary outcome and predictor

+  FIXED command identifies a complete predictor

+  CENTER command applies grand mean centering to predictors
Unspecified associations for predictor variables

+ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+ MODEL command labels intercepts, slopes, and the residual variance of the
mediator

+  MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

«  PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

+  PARAMETERS command uses labeled quantities to compute the the probability
that Y equals 1 at three values of X (the mean and plus/minus one standard
deviation from the mean)

DATA: data20.dat;


https://www.codecogs.com/eqnedit.php?latex=E(Y%5E*%7CX)%3DI_Y%2BI_M%7B%5Cbeta%7D%2B%7B%5Calpha%7D%7B%5Cbeta%7DX%2B%7B%5Ctau%7D%5E%7B'%7DX%3D#0
https://www.codecogs.com/eqnedit.php?latex=V(Y%5E*%7CX)%3D%5Cbeta%5E2%5Csigma_M%5E2%2B1#0
https://www.codecogs.com/eqnedit.php?latex=P(Y%3D1%7CX)%20%3D%20%5Cphi%5BE(Y%5E*%7CX)%2F%5Csqrt%7BV(Y%5E*%7CX)%7D%5D#0
https://dl.dropboxusercontent.com/s/med8snahdtekc3t/Ex5.3a.imp?dl=1
https://dl.dropboxusercontent.com/s/88v77wx58wk1fei/Ex5.3b.imp?dl=1
https://dl.dropboxusercontent.com/s/gwokk1ierasop1h/data20.dat?dl=1
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VARIABLES: id al:a3 vl y m v2 x v3:v22;
MISSING: 999;

ORDINAL: y;

CENTER: Xx;

MODEL :

mediation.model:

# single-mediator model with parameter labels
m ~ 1@m_icept x@alpha;

m ~~ m@m_resvar;

y ~ 1@y_icept m@beta x@tau;
auxiliary.model:

al:a3 ~y m Xx;

PARAMETERS:
xvaluel = -.50;
xvalue2 = 0;
xvalue3 = .50;

ab_xvall = phi((y_1icept + beta*m_icept +
beta*alpha*xvaluel + tau*xvaluel)/
sqrt(beta”2*m_resvar + 1));

ab_xval2 = phi((y_1icept + beta*m_icept +
beta*alpha*xvalue2 + tau*xvalue2)/
sqrt(beta”2*m_resvar + 1));

ab_xval3 = phi((y_1icept + beta*m_icept +
beta*alpha*xvalue3 + tau*xvalue3)/
sqrt(beta”2*m_resvar + 1));

SEED: 90291;

BURN: 1000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data20.rda')

mymodel <- rblimp(
data = dataz20,
ordinal = 'y',
center = 'x',
model = '
mediation.model:
m ~ 1@m_icept x@alpha;
m ~~ m@m_resvar;
y ~ 1@y_icept m@beta x@tau;
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auxiliary.model:

al:a3 ~y m x',

parameters = 'xvaluel = -.50;

xvalue2 = 0;

xvalue3 = .50;

ab_xvall = phi((y_1icept + beta*m_icept +
beta*alpha*xvaluel + tau*xvaluel)/
sqrt(beta”2*m_resvar + 1));

ab_xval2 = phi((y_1icept + beta*m_icept +
beta*alpha*xvalue2 + tau*xvalue2)/
sqrt(beta”2*m_resvar + 1));

ab_xval3 = phi((y_1icept + beta*m_icept +
beta*alpha*xvalue3 + tau*xvalue3)/
sqrt(beta”2*m_resvar + 1))',

seed = 90291,

burn = 1000,

iter = 10000
)
output(mymodel)

The script above defines the binary outcome as a latent response variable (i.e., probit
regression). Applying the logit function to the dependent variable on the MODEL line

requests a logit rather than probit link.

M =Ty +aX +ey
logit(Y)=1Iy + M +7 X

The conditional probabilities from Muthén, Muthén, and Asparouhov (2016) shown
above do not have a simple expression when using a logit link. Instead, we can use
the conditional indirect effects expressions defined in Geldhof et al. (2018, p. 304).

They define the conditional indirect effect at a given value of X as follows

7
B w e[y-ﬁ—ﬁM—i—r X

af|X = ax (1 + el +BM+7'X)2

The PARAMETERS command in the script below computes these conditional indirect

effects at three values of X.


https://www.codecogs.com/eqnedit.php?latex=M%3DI_M%2B%7B%5Calpha%7DX%2B%5Cvarepsilon_M#0
https://www.codecogs.com/eqnedit.php?latex=logit(Y)%3DI_Y%2B%7B%5Cbeta%7DM%2B%7B%5Ctau%7D%5E%7B'%7DX#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%5Cbeta%7B%20%7C%20%7D%20X%20%3D%5Calpha%20%5Ctimes%20%5Cfrac%7B%5Cbeta%20%5Ctimes%20e%5E%7BI_Y%20%2B%20%5Cbeta%20M%20%2B%20%7B%5Ctau%7D%5E%7B'%7DX%7D%7D%7B(1%20%2B%20e%5E%7BI_Y%20%2B%20%5Cbeta%20M%20%2B%20%7B%5Ctau%7D%5E%7B'%7DX%7D)%5E2%7D#0
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DATA: data20.dat;

VARIABLES: id al:a3 vl y m v2 x v3:v22;
MISSING: 999;

ORDINAL: y;

CENTER: x;

MODEL:

mediation.model:

# single-mediator model with parameter labels
m ~ 1@m_icept x@alpha;

logit(y) ~ 1@y_icept m@beta x@tau;
auxiliary.model:

# sequential specification for auxiliary variables
al:a3 ~y m Xx;

PARAMETERS:
xvaluel = -.50;
xvalue2 = 0;

xvalue3 = .50;
ab_xvalil = alpha *
(beta*exp(y_1icept + beta*m_icept + tau*xvaluel)) /
(1 + exp(y_icept + beta*m_icept + tau*xvaluel))”2;
ab_xval2 = alpha *
(beta*exp(y_icept + beta*m_icept + tau*xvalue2)) /
(1 + exp(y_icept + beta*m_icept + tau*xvalue2))”2;
ab_xval3 = alpha *
(beta*exp(y_1icept + beta*m_icept + tau*xvaluel)) /
(1 + exp(y_icept + beta*m_icept + tau*xvalue3))”2;
SEED: 90291;
BURN: 1000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data20.rda')

mymodel <- rblimp(
data = dataz20,
ordinal = 'y',
center = 'x',
model = '
mediation.model:
m ~ 1@m_icept x@alpha;
logit(y) ~ 1@y_icept m@beta x@tau;
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auxiliary.model:

al:a3 ~y m x',

parameters = 'xvaluel = -.50;

xvalue2 = 0;

xvalue3 = .50;

ab_xvall = alpha * (beta*exp(y_icept + beta*m_icept + tau*xvaluel)) /
(1 + exp(y_1icept + beta*m_icept + tau*xvaluel))”2;

ab_xval2 = alpha * (beta*exp(y_icept + beta*m_icept + tau*xvalue2)) /
(1 + exp(y_1icept + beta*m_icept + tau*xvalue2))”2;

ab_xval3 = alpha * (beta*exp(y_icept + beta*m_icept + tau*xvalue3)) /
(1 + exp(y_icept + beta*m_icept + tau*xvalue3))”2',

seed = 90291,

burn = 1000,

iter = 10000
)
output(mymodel)

5.4: Mediation With a Categorical Mediator

This example illustrates a single-mediator path model with an ordered categorical
mediator (the mediator could also be binary). The regression models are shown

below
M*:]M—FOéX—i-E?V[

Y=Iy+BM*"+7X +ey

where a and 8 are slope coefficients that define the indirect effect or product of the
coefficients estimator, and 7' is the direct effect of X on Y. A path diagram of the
analysis is shown below. The model also incorporates three auxiliary variables

following the procedure from Example 4.7.


https://www.codecogs.com/eqnedit.php?latex=M%5E%7B*%7D%3DI_M%2B%7B%5Calpha%7DX%2B%5Cvarepsilon_M%5E%7B*%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y%3DI_Y%2B%7B%5Cbeta%7DM%5E%7B*%7D%2B%7B%5Ctau%7D%5E%7B'%7DX%2B%5Cvarepsilon_Y#0
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When M is binary or ordinal, the a path represents the regression of a latent response
variable on X. Typically, the discrete M would then serve as a predictor of Y, thus
leading to an awkward situation where M essentially has two different metrics within
the same model (i.e., M is latent when it is an outcome variable but ordinal when it is
a predictor). Alternatively, Blimp can use the latent response variable in both
regressions, effectively converting a complicated categorical variable regression into
a straightforward linear regression with latent response variables. This idea was
proposed in Muthén, Muthén, and Asparouhov (2016). Clicking the links below
downloads the Blimp scripts and data for this example, and the full set of User Guide

examples is available from a pull-down menu in the graphical interface.

Ex5.4a.imp Ex5.4bimp data4.dat

The syntax highlights are as follows.

+  ORDINAL command identifies an ordinal mediator
+  CENTER command applies grand mean centering to predictors

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command labels the indirect effect’'s component pathways

+  MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

+ Appending the .latent suffix to the mediator’s variable name in the MODEL
statement accesses the latent response variable instead of the discrete
responses


https://dl.dropboxusercontent.com/scl/fi/qjyk9yg047eyzh5jhihti/Ex5.4a.imp?rlkey=tlnsmpj7jiqtisb8ta0x2z9o4&dl=1
https://dl.dropboxusercontent.com/scl/fi/3tl3052jen1ez54kwwvn4/Ex5.4b.imp?rlkey=iyz1hrq6zpx7rfbo6ttfrumnq&dl=1
https://www.dropbox.com/s/y80x13ezra79zv3/data4.dat?dl=1
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+  PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

DATA: data4.dat;
VARIABLES: id al1:a3 vl y v2 v3 x v4:v22 m;
MISSING: 999;

ORDINAL: m;

MODEL :

mediation.model:

m ~ Xx@alpha;

y ~ m.latent@beta x;
auxiliary.model:

al:a3 ~ y m.latent x;
PARAMETERS:

indirect = alpha * beta;
SEED: 90291;

BURN: 10000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datada.rda')

mymodel <- rblimp(
data = data4da,
ordinal = 'm',
center = 'x',
model = '
mediation.model:
m ~ x@alpha;
y ~ m.latent@beta x;
auxiliary.model:
al:a3 ~ y m.latent x',

parameters = 'indirect = alpha * beta',
seed = 90291,
burn = 10000,
iter = 10000

)
output(mymodel)

163
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An alternate approach uses the conditional indirect effects expressions defined in
Geldhof et al. (2018, p. 304). To illustrate, suppose that M is a binary mediator. The

mediation model equations adopt a logistic model for M.
logit(M) = Iy + aX

Y =Iy +8M+7X +ey

Applying the logit function to the mediator variable on the MODEL line requests a
logit link for this variable. Geldhof et al. define conditional indirect effects that reflect

changes to M on the probability metric as follows.

a x eltaX

(1 + elm+aX)?

af|X = x 8

The PARAMETERS command in the script below computes these conditional indirect
effects at three values of X. The TRANSFORM command uses an ifelse function to

recode the 7-point M into a binary mediator.

DATA: data4.dat;

VARIABLES: id al:a3 vl y v2 v3 x v4:v22 m;
MISSING: 999;

TRANSFORM: m = ifelse(m7pt <= 4, 0, 1);
ORDINAL: m;

CENTER: Xx;

MODEL:

mediation.model:

logit(m) ~ 1@m_icept x@alpha;

y ~ m@beta x;

auxiliary.model:

# sequential specification for auxiliary variables
al:a3 ~y m x;

PARAMETERS:
xvaluel = -.50;
xvalue2 = 0;
xvalue3 = .50;

ab_xvall = (alpha*exp(m_icept + alpha*xvaluel)) /
(1 + exp(m_icept + alpha*xvaluel))”2 * beta;

ab_xval2 = (alpha*exp(m_icept + alpha*xvalue2)) /
(1 + exp(m_icept + alpha*xvalue2))”2 * beta;


https://www.codecogs.com/eqnedit.php?latex=logit(M)%3DI_M%2B%7B%5Calpha%7DX#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%5Cbeta%7B%20%7C%20%7D%20X%20%3D%5Cfrac%7B%5Calpha%20%5Ctimes%20e%5E%7BI_M%20%2B%20%5Calpha%20X%7D%7D%7B(1%20%2B%20e%5E%7BI_M%20%2B%20%5Calpha%20X%7D)%5E2%7D%20%5Ctimes%20%5Cbeta#0
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ab_xval3 = (alpha*exp(m_icept + alpha*xvalue3)) /
(1 + exp(m_icept + alpha*xvalue3))”2 * beta;

SEED: 90291;

BURN: 10000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,

ordinal = 'm',

transform = 'm = ifelse(m7pt <= 4, 0, 1)',
center = 'x',

model = '

mediation.model:

logit(m) ~ 1@m_icept x@alpha;

y ~ m@beta x;

auxiliary.model:

al:a3 ~y m x',

parameters = 'xvaluel = -.50;

xvalue2 = 0;

xvalue3 = .50;

ab_xvall = (alpha*exp(m_icept + alpha*xvaluel)) /
(1 + exp(m_icept + alpha*xvaluel))”2 * beta;

ab_xval2 = (alpha*exp(m_icept + alpha*xvalue2)) /
(1 + exp(m_icept + alpha*xvalue2))”2 * beta;

ab_xval3 = (alpha*exp(m_icept + alpha*xvalue3)) /
(1 + exp(m_icept + alpha*xvalue3))”2 * beta',

seed = 90291,

burn 10000,

iter = 10000,

output = 'default wald pvalue')

5.5: Mediation With a Count Qutcome

This example illustrates a single-mediator model with a count outcome. Additional

details about Blimp's count (negative binomial) modeling procedure is found in
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Examples 4.15 and 4.16. The model equations are shown below, where X is binary and

M is a continuous mediator.
M=1y+aX +ep
In(p)=Iy + M +7 X

The term inside the natural log is the predicted count given the constellation of
predictors on the right side of the equation. The g and and 7' coefficients reflect
changes on the natural log of the count. As noted in Example 4.15, the model
incorporates an overdispersion parameter that accommodates heterogeneity

among individuals with the same predicted value.

Geldhof et al. (2018) show that indirect effects that reflect changes to Y on the count
metric are conditional on the values of X. In this example, X is binary, so there are two
conditional indirect effects. They define the conditional indirect effect at a given

value of X as follows

Oéﬁ|X — a X (ﬁely+6M+TlX)

The PARAMETERS command in the script below computes these conditional indirect

effects at each value of X.

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.5.imp data22.dat

The syntax highlights are as follows.

«  ORDINAL command identifies binary predictors
«  COUNT command identifies a count outcome
+  MODEL command labels the indirect effect’'s component pathways

«  PARAMETERS command uses labeled quantities to compute conditional indirect
effects


https://www.codecogs.com/eqnedit.php?latex=M%3DI_M%2B%7B%5Calpha%7DX%2B%5Cvarepsilon_M#0
https://www.codecogs.com/eqnedit.php?latex=ln(%5Chat%7B%5Cmu%7D)%3DI_Y%2B%7B%5Cbeta%7DM%2B%7B%5Ctau%7D%5E%7B'%7DX#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%5Cbeta%7B%20%7C%20%7D%20X%20%3D%5Calpha%20%5Ctimes%20(%5Cbeta%20e%5E%7BI_Y%20%2B%20%5Cbeta%20M%20%2B%20%7B%5Ctau%7D%5E%7B'%7DX%7D)#0
https://dl.dropboxusercontent.com/scl/fi/bxdta872q4i3joj8mjh6h/Ex5.5.imp?rlkey=g7yv1gi7nc00tosxlg73hz39t&dl=1
https://dl.dropboxusercontent.com/s/deqpqq2otxk55yo/data22.dat?dl=1
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DATA: data22.dat;

VARIABLES: id x vi:v4 m y v5 v6;
ORDINAL: x;

COUNT: vy;

MISSING: 999;

MODEL:

m ~ 1@m_icept x@alpha;

y ~ 1@y_icept m@beta x@tau;
PARAMETERS:

X0 = 0;
x1 = 1;
ab_at_x0
ab_at_x1
SEED: 90291;
BURN: 5000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data22.rda')

mymodel <- rblimp(
data = data22,

ordinal = 'x',
count = 'y',
model = '

m ~ 1@m_icept x@alpha;

y ~ 1@Qy_icept m@beta x@tau',
parameters = 'x0 = 0;

x1 =1;
ab_at_x0

alpha * (beta*exp(y_icept + beta*m_1icept

alpha * (beta*exp(y_icept + beta*m_1icept + tau*x0));
alpha * (beta*exp(y_icept + beta*m_icept + tau*x1));

+ tau*x0));

ab_at _x1 = alpha * (beta*exp(y_icept + beta*m_icept + tau*x1))'

seed
burn
iter

90291,
5000,
10000

)
output(mymodel)
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5.6: Mediation With a Zero-Inflated Count Qutcome

This example illustrates a single-mediator model with a count outcome with
excessive zeros. The procedure for the example is described in O’'Rourke and Han
(2023). Additional details about Blimp's count (negative binomial) modeling

procedure is found in Examples 4.15 and 4.16.

A two-part model like that from Olsen and Schafer (2001) is used for the zero
inflation. The two-part model features a binary indicator Y, that equals zero if the
count variable Y equals zero and one if Yis greater than zero. The binary indicator is
the dependent variable in a probit regression model predicting whether the count is
non-zero. In probit regression, the binary indicator appears as a normally distributed
latent response variable. In the model below, the latent response (denoted by an
asterisk superscript) is regressed on a pair of binary dummy codes and continuous

predictors.

Yo, =7%+nX +7M+e
The probit model includes a single threshold value that is automatically fixed at zero

for identification. The residual variance is similarly fixed at one.

The second part of the model considers only the non-zero counts. The outcome

variable in the mediation model is a recoded version of Y that is missing whenever Y

(or Yuin) €equals zero. The mediation model equations are shown below, where X'is

binary and M is a continuous mediator.
M=1Iy+aX +cy
In(it) = Iy + M + 7 X

The term inside the natural log is the predicted count given the constellation of
predictors on the right side of the equation. The g and and 7' coefficients reflect

changes on the natural log of the count.


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bbin%7D%5E%5Cast%3D%5Cgamma_0%2B%5Cgamma_1%20X%20%2B%5Cgamma_2%20M%20%2B%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=M%3DI_M%2B%7B%5Calpha%7DX%2B%5Cvarepsilon_M#0
https://www.codecogs.com/eqnedit.php?latex=ln(%5Chat%7B%5Cmu%7D)%3DI_Y%2B%7B%5Cbeta%7DM%2B%7B%5Ctau%7D%5E%7B'%7DX#0
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Geldhof et al. (2018) show that indirect effects that reflect changes to Y on the count
metric are conditional on the values of X. In this example, X is binary, so there are two
conditional indirect effects. They define the conditional indirect effect at a given

value of X as follows

Ozﬂ|X — ax (ﬁely-i—BM-l—TlX)

The PARAMETERS command in the script below computes these conditional indirect

effects at each value of X.

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.6.imp dataz2.dat

The syntax highlights are as follows.

«  ORDINAL command identifies binary predictors and the binary outcome
indicating whether the count was greater than zero

«  COUNT command identifies a count outcome
«  TRANSFORM command creates the variables for the two-part model
+  MODEL command labels the indirect effect’'s component pathways

+  PARAMETERS command uses labeled quantities to compute conditional indirect
effects

DATA: data22.dat;

VARIABLES: id x v1:v4 m ycnt v5 v6;
MISSING: 999;

TRANSFORM:

y = missing(ycnt == 0, ycnt);

ybin = ifelse(ycnt == 0, 0, 1);
ORDINAL: x ybin;

COUNT: vy;

MODEL :

mediation.model:


https://www.codecogs.com/eqnedit.php?latex=%5Calpha%5Cbeta%7B%20%7C%20%7D%20X%20%3D%5Calpha%20%5Ctimes%20(%5Cbeta%20e%5E%7BI_Y%20%2B%20%5Cbeta%20M%20%2B%20%7B%5Ctau%7D%5E%7B'%7DX%7D)#0
https://dl.dropboxusercontent.com/scl/fi/nv17dlzh5zctetdtb7skb/Ex5.6.imp?rlkey=6i0pr3xc3olrx3ot24esi3rzg&dl=1
https://dl.dropboxusercontent.com/s/deqpqq2otxk55yo/data22.dat?dl=1
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m ~ 1@m_1icept x@alpha;

y ~ 1Qy_icept m@beta x@tau;
binary.model:

ybin ~ x m;

PARAMETERS:

X0 = 0;

x1l = 1;

ab_at_x0
ab_at_x1
SEED: 90291;
BURN: 5000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data22.rda')

mymodel <- rblimp(
data = data22,

transform = 'y = missing(ycnt == 0, ycnt);
ybin = ifelse(ycnt == 0, 0, 1)',

ordinal = 'x ybin',

count = 'y',

model = '

mediation.model:

m ~ 1@m_icept x@alpha;

y ~ 1Q@y_icept m@beta x@tau;
binary.model:
ybin ~ x m',
parameters = 'x0
x1 = 1;

0;

ab_at_x0 = alpha * (beta*exp(y_icept + beta*m_icept

alpha * (beta*exp(y_icept + beta*m_icept + tau*x0));
alpha * (beta*exp(y_icept + beta*m_icept + tau*x1));

+ tau*x0));

ab_at x1 = alpha * (beta*exp(y_icept + beta*m_icept + tau*x1))'

seed = 90291,
burn = 5000,
iter = 10000

)
output(mymodel)
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5.7: CFA With Continuous Indicators

This example illustrates a two-factor measurement model with correlated latent
variables, each measured by six continuous indicators. A path diagram of the analysis

model is shown below.

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.7.imp data4.dat

The syntax highlights are as follows.

& LATENT command defines two latent variables

#  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output


https://dl.dropboxusercontent.com/s/am5oggxlmxudoa0/Ex5.5.imp?dl=1
https://www.dropbox.com/s/i5ispelsk3dl118/data4.dat?dl=1
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% MODEL command fixes variances and residual variances to one for identification

+  PARAMETERS command specifies a truncated prior over positive values, and the
prior is attached to each factor’s first loading in the MODEL command

DATA: data4.dat;

VARIABLES: id v1:v9 y1:y6 v10:v16 x1:x6;
MISSING: 999;

LATENT: latenty latentx;

MODEL :

latent.model:

latentx ~~ latentx@l;

latenty ~~ latenty@1;

latentx ~~ latenty;
measurement.models:

latentx -> x1@xload_prior x2:x6;
latenty -> yl@yload prior y2:y6;
PARAMETERS:

xload_prior ~ truncate(0, Inf);
yload_prior ~ truncate(0, Inf);
SEED: 90291;

BURN: 10000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,
latent = 'latenty latentx',
model = '
latent.model:
latentx ~~ latentx@1;
latenty ~~ latenty@i;
latentx ~~ latenty;
measurement.models:
latentx -> x1@xload_prior x2:x6;
latenty -> y1@yload prior y2:y6',
parameters = 'xload _prior ~ truncate(0,Inf);
yload_prior ~ truncate(0,Inf)',
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seed = 90291,

burn = 10000,

iter = 10000
)
output(mymodel)

5.8: CFA With Binary Indicators (Two-Parameter IRT Model)

This example illustrates a unidimensional measurement model with binary
indicators and IRT scaling. Clicking the links below downloads the Blimp scripts and
data for this example, and the full set of User Guide examples is available from a

pull-down menu in the graphical interface.

Ex5.6a.imp Ex5.8b.imp data4.dat

A path diagram of the analysis model is shown below, with ellipses denoting latent

response variables, the residual variances of which are fixed scaling constants.

PPOPDT

Blimp can use either a logit or probit link. The syntax highlights for the logistic link

are as follows.

+  ORDINAL command identifies binary variables
+  LATENT command defines a latent (ability) variable

%  MODEL command fixes the mean and variance of the latent variable to zero and
one, respectively


https://dl.dropboxusercontent.com/s/0oqi24rop555smi/Ex5.6a.imp?dl=1
https://dl.dropboxusercontent.com/s/s10cblg1x6bpwwe/Ex5.6b.imp?dl=1
https://www.dropbox.com/s/i5ispelsk3dl118/data4.dat?dl=1
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+  MODEL command labels measurement intercepts and factor loadings

«  Applying the logit function to the dependent variable on the MODEL line
requests a logit rather than probit link

+  PARAMETERS command uses labeled quantities to compute item discrimination
and difficulty indices for 2-parameter IRT scaling

DATA: datal4.dat;

VARIABLES: id y1:y6;

ORDINAL: y1:y6;

MISSING: 999;

LATENT: ability;

MODEL:

ability ~ 1@0;

ability ~~ ability@1;

logit(yl) ~ 1@iceptl ability@loadi;

logit(y2) ~ 1@icept2 ability@load?;
logit(y3) ~ 1@icept3 ability@load3;
logit(y4) ~ 1@iceptd4 ability@load4;
logit(y5) ~ 1@icept5 ability@load5;
logit(y6) ~ 1@icept6 ability@load6;
PARAMETERS:

discriml = loadi;

discrim2 = load?2;

discrim3 = load3;

discrim4 = load4;

discrim5 = load5;

discrimé = load6;

difficultyl = - iceptl / loadi;
difficulty2 = - icept2 / load2;
difficulty3 = - icept3 / load3;
difficulty4 = - iceptd4 / load4;
difficulty5 = - icept5 / load5;
difficulty6 = - icept6 / load6;

SEED: 90291;
BURN: 2000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datald.rda')
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mymodel <- rblimp(

data = datai4,
ordinal = 'yi1:y6',
latent = 'ability',
model = '

ability ~ 1@0;
ability ~~ ability@1;

logit(yl) ~ 1@iceptl ability@loadi;
logit(y2) ~ 1@icept2 ability@load?2;
logit(y3) ~ 1@icept3 ability@load3;
logit(y4) ~ 1@icept4 ability@load4;
logit(y5) ~ 1@icept5 ability@load5;

logit(y6) ~ 1@icept6

parameters =

'discriml = loadi;

discrim2 = load2;
discrim3 = load3;

discrim4
discrim5

load4;
load5;

discrimé = load6;

difficultyl =
difficulty2 =
difficulty3 =
difficulty4 =
difficulty5 =
difficultyé =
seed = 90291,
burn = 2000,

iter = 10000

)
output(mymodel)

The script below is identical but uses a probit rather than logit link (i.e., a normal

- iceptl / loadi;
- i1cept2 / load?;
- 1cept3 / load3;
- i1cept4 / load4;
- 1cept5 / load5;
- icept6 / loadé6'

ability@load6',

3
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ogive model specification). The logistic coefficients differ by a factor of approximately

1.7.

DATA: datal4.dat
VARIABLES: id y1
ORDINAL: y1:y6;
MISSING: 999;
LATENT: ability;
MODEL :

.
3

:y6;
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ability ~ 1@0;

ability ~~ ability@1;

yl ~ 1@iceptl ability@loadi;

y2 ~ 1@icept2 ability@load2;

y3 ~ 1@icept3 ability@load3;

y4 ~ 1Q@icept4 ability@load4;

y5 ~ 1@icept5 ability@load5;

y6 ~ 1@icept6 ability@loadé6;
PARAMETERS:

discriml = loadi;

discrim2 = load?;

discrim3 = load3;

discrim4 = load4;

discrim5 = load5;

discrimé = loadé6;

difficultyl = - iceptl / loadi;
difficulty2 = - icept2 / load2;
difficulty3 = - icept3 / load3;
difficulty4 = - iceptd / load4;
difficulty5 = - icept5 / load5;
difficulty6 = - icept6 / load6;
SEED: 90291;

BURN: 3000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datald.rda')

mymodel <- rblimp(
data = datai4,
ordinal = 'y1l:y6',
latent = 'ability',
model = '
ability ~ 1@0;
ability ~~ ability@i1;
yl ~ 1@iceptl ability@loadi;
y2 ~ 1@icept2 ability@load?2;
y3 ~ 1@icept3 ability@load3;
y4 ~ 1@icept4 ability@load4;
y5 ~ 1@icept5 ability@load5;
y6 ~ 1@icept6 ability@loadé6',
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parameters = 'discriml = loadi;
discrim2 = load2;
discrim3 = load3;
discrim4 = load4;
discrim5 = load5;
discrimé = load6;
difficultyl = - iceptl / loadi;
difficulty2 = - icept2 / load2;
difficulty3 = - icept3 / load3;
difficulty4 = - iceptd4 / load4;
difficulty5 = - icept5 / load5;
difficulty6 = - icept6 / load6',
seed = 90291,
burn = 3000,
iter = 10000

)

output(mymodel)

5.9: CFA With Ordinal Indicators

This example illustrates a two-factor measurement model with correlated latent
variables, each measured by six ordinal indicators. A path diagram of the analysis
model is shown below, with ellipses denoting latent response variables, the residua

variances of which are fixed at one.
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Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

ExXS9.imp data4.dat
The syntax highlights are as follows.

% ORDINAL command identifies ordinal variables
Automatic threshold specification for binary and ordinal variables
& LATENT command defines two latent variables

%  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

% MODEL command fixes variances and residual variances to one for identification


https://dl.dropboxusercontent.com/s/p1x8g75nt5qpqy6/Ex5.7.imp?dl=1
https://www.dropbox.com/s/i5ispelsk3dl118/data4.dat?dl=1
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+  PARAMETERS command specifies a truncated prior over positive values, and the
prior is attached to each factor’s first loading in the MODEL command

Longer burn-in period for ordered categorical variables

DATA: data4.dat;

VARIABLES: id v1:v9 y1:y6 v10:v16 x1:x6;
ORDINAL: x1:x6 yl:y6;

MISSING: 999;

LATENT: latenty latentx;

MODEL :

latent.model:

latentx ~~ latentx@1;

latenty ~~ latenty@i;

latentx ~~ latenty;
measurement.models:

latentx -> x1@xload_prior x2:x6;
latenty -> y1@yload prior y2:y6;
PARAMETERS:

xload_prior ~ truncate(0, Inf);
yload_prior ~ truncate(@, Inf);
SEED: 90291;

BURN: 50000;

ITER: 50000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,
ordinal = 'x1:x6 yi:y6',
latent = 'latenty latentx',
model = '
latent.model:
latentx ~~ latentx@1;
latenty ~~ latenty@i;
latentx ~~ latenty;
measurement.model:
latentx -> x1@xload_prior x2:x6;
latenty -> y1@yload prior y2:y6',
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parameters = 'xload_prior ~ truncate(0, Inf);
yload_prior ~ truncate(0, Inf)',
seed = 90291,

burn = 50000,

iter = 50000
)
output(mymodel)

5.10: Imputing Latent Response Scores for Iltem-Level Factor Analysis

Examples 5.8 and 5.9 illustrated item-level factor analyses that imposed a
measurement model on latent response variables. This example illustrates a latent
variable imputation scheme from Enders (2022) that creates multiple imputation
data sets containing categorical items as well as their underlying latent response
variables (i.e., plausible values). The goal is to convert a categorical factor analysis
problem into a normal-theory multiple imputation analysis that uses the latent
response scores as indicators in lieu of discrete items. Clicking the links below
downloads the Blimp scripts and data for this example, and the full set of User Guide

examples is available from a pull-down menu in the graphical interface.

Ex510.imp Ex510.R data4.dat

The syntax highlights are as follows.

ORDINAL command identifies ordinal variables

3
<

Automatic threshold specification for binary and ordinal variables
+  FCS command specifies fully conditional specification multiple imputation
+ savelatent keyword on the OPTIONS line saves latent response scores
+ NIMPS command specifies 20 imputed data sets

Longer burn-in period for ordered categorical variables

+  Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

Imputations are stacked in a single file with an index variable added in the first
column


https://dl.dropboxusercontent.com/s/xv5rnk7ils551r9/Ex5.8.imp?dl=1
https://dl.dropboxusercontent.com/s/7kqhkd7rp3so9cx/Ex5.8.R?dl=1
https://www.dropbox.com/s/i5ispelsk3dl118/data4.dat?dl=1
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DATA: data4.dat;
VARIABLES: id v1:v9 y1:y6 v10:v16 x1:Xx6;
ORDINAL: x1:x6 yl:y6;
MISSING: 999;

FCS: x1:x6 yl:y6;

SEED: 90291;

BURN: 25000;

ITER: 10000;

CHAINS: 100;

NIMPS: 100;

OPTIONS: savelatent;
SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the
output file, and all variables in the input file appear in the output file regardless of
whether they were imputed. The latent response variables have a .latent suffix

appended to the discrete variable's name.

VARIABLE ORDER IN IMPUTED DATA:
stacked = 'imps.dat'

imp# i1d v1 v2 v3 v4 v5 v6 v7 v8 v9 y1 y2 y3 y4 y5 y6 v10
vll v12 v13 v14 v15 v16 x1 x2 x3 x4 x5 x6

yl.latent y2.latent y3.latent

y4.latent y5.latent y6.latent

x1.latent x2.latent x3.latent

x4.latent x5.latent x6.latent

In the analysis phase, a normal-theory item-level confirmatory factor analysis is fit to
the imputed latent response scores using other software packages. A path diagram

is as follows.
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R provides an easy platform for analyzing multiple imputations. To illustrate, R script
below uses rblimp_fcs to create multiple imputations, and it uses lavaan (Rosseel,
Jorgensen, & Rockwood, 2021) and lavaan.mi (Jorgensen, 2024) to fit a two-factor
measurement model to the latent normal imputations. Note that the MISSING and
FCS commands are no longer necessary.. The former is omitted because that
information is contained in the R data file. The FCS command is replaced by a
variables parameter that lists the variables to be included in the imputation model.
Additionally, the SAVE commmand and savelatent keyword on the OPTIONS line are no
longer necessary because imputations and latent variable scores are automatically
stored in an rblimp list object called mymodel@imputations. The resulting estimates are
numerically equivalent to applying full information maximum likelihood analysis
(FIML) with a probit link to the categorical data, but the FIML analysis often doesn't

provide fit indices because the saturated model is too complex to estimate.
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library(fdir)
library(rblimp)
library(lavaan.mi)
load(file = 'data4.rda')

mymodel <- rblimp_fcs(
data = data4,
ordinal = 'x1:x6 y1:y6',
variables = 'x1:x6 yl:y6',
seed = 90291,

burn = 25000,
iter = 10000,
chains = 20,
nimps = 20
)
output(mymodel)

# inspect variable names
names (mymodel@imputations[[1]])

# mitml list
implist <- as.mitml(mymodel)

# specify cfa model with latent response imputations

lavaan_model <- c(
paste('ylatent =~', pasted('y', 1:6, '.latent', collapse = ' + ")),
paste('xlatent =~', pasted('x', 1:6, '.latent', collapse "+ '),
'ylatent ~~ xlatent', 'ylatent ~~ 1*ylatent', 'xlatent ~~ 1*xlatent')

# fit model with lavaan.mi
results <- cfa.mi(lavaan_model, data = implist, estimator = "ml")
summary(results, standardized = T, fit = T)

# imputation-based modification indices
modindices.mi(results, op = c("~~","=~"), minimum.value = 3, sort. = T)

5.11: Skewed Indicators With a Yeo-Johnson Transformation

This example illustrates a two-factor model with correlated latent variables, each
measured by three continuous indicators. One indicator from each latent factor is
skewed, and a Yeo-Johnson (Yeo & Johnson, 2000) normalizing transformation is

applied to these indicators. A path diagram of the analysis model is shown below.
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o Il Iy

The ellipses indicate normalized indicators, which are essentially latent normal

variables that have a nonlinear mapping to the nonnormal manifest variables.
Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex51l.imp Ex5.11.R datal2.dat

The syntax highlights are as follows.

& LATENT command defines two latent variables

+ Applying yjt function to skewed indicators on the MODEL line requests a
Yeo-Johnson transformation

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

%  MODEL command fixes variances and residual variances to one for identification

DATA: datal2.dat;
VARIABLES: x1:x3 yl:y3;
MISSING: 999;

LATENT: latentx latenty;


https://dl.dropboxusercontent.com/s/df78g3ckwn1yiw7/Ex5.9.imp?dl=1
https://dl.dropboxusercontent.com/s/8zs5cgn9prtg5bg/Ex5.9.R?dl=1
https://www.dropbox.com/s/781kec9izwyu37t/data12.dat?dl=1
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MODEL :
structural.model:
latentx ~~ latentx@1;
latenty ~~ latenty@1;
latentx ~~ latenty;
measurement.models:
latentx -> x1 x3;
yjt(x2) ~ latentx;
yjt(yl) ~ latenty;
latenty -> y2 y3;
SEED: 90291;

BURN: 10000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal2.rda')

mymodel <- rblimp(
data = datai2,
latent = 'latentx latenty',
model = '
structural.model:
latentx ~~ latentx@l;
latenty ~~ latenty@1;
latentx ~~ latenty;
measurement.models:
latentx -> x1 x3;
yjt(x2) ~ latentx;
yjt(yl) ~ latenty;
latenty -> y2 y3',
seed = 90291,

burn = 10000,

iter = 10000
)
output(mymodel)

Blimp can save multiple imputations from any model it estimates. Adding the NIMPS
and SAVE commands generates model-based multiple imputations for a frequentist
analysis, and listing the savelatent keyword on the OPTIONS command saves the

normalized imputes from the Yeo-Johnson transformation alongside the skewed
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imputes on the raw score metric (this keyword also saves the latent response scores

for the binary predictor).

DATA: datal2.dat;
VARIABLES: x1:x3 yl:y3;
MISSING: 999;

LATENT: latentx latenty;
MODEL :
structural.model:
latentx ~~ latentx@1;
latenty ~~ latenty@i;
latentx ~~ latenty;
measurement.models:
latentx -> x1 x3;
yjt(x2) ~ latentx;
yjt(yl) ~ latenty;
latenty -> y2 y3;

SEED: 90291;

BURN: 10000;

ITER: 10000;

OPTIONS: savelatent;
CHAINS: 20;

NIMPS: 20;

SAVE: stacked = imps.dat;

In addition to producing Bayesian estimates of the factor model parameters, the
previous code block saves normalized imputations for a frequentist analysis. Blimp
lists the order of the variables in the imputed data sets at the bottom of the output
file, and all variables in the input file appear in the output file regardless of whether
they were imputed. The variables yjt(yjt(x2)) and yjt(yjt(y1)) are the normalized

variables.
VARIABLE ORDER IN IMPUTED DATA:

stacked = 'imps.dat'

imp# x1 x2 x3 y1 y2 y3 latentx.latent latenty.latent
yit(yit(x2)) yit(yit(y1))
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In the analysis phase, a normal-theory item-level confirmatory factor analysis is fit to

the original and normalized variables using other software packages.

R provides an easy platform for analyzing multiple imputations. To illustrate, R script
below uses rblimp_fcs to create multiple imputations, and it uses lavaan (Rosseel,
Jorgensen, & Rockwood, 2021) and lavaan.mi (Jorgensen, 2024) to fit a two-factor
measurement model to the latent normal imputations. Note that the MISSING and
FCS commands are no longer necessary.. The former is omitted because that
information is contained in the R data file. The FCS command is replaced by a
variables parameter that lists the variables to be included in the imputation model.
Additionally, the SAVE commmand and savelatent keyword on the OPTIONS line are no
longer necessary because imputations and latent variable scores are automatically
stored in an rblimp list object called mymodel@imputations. The resulting estimates are
numerically equivalent to applying full information maximum likelihood analysis
(FIML) with a probit link to the categorical data, but the FIML analysis often doesn't

provide fit indices because the saturated model is too complex to estimate.

library(fdir)
library(rblimp)
library(lavaan.mi)
load(file = 'data4.rda')

mymodel <- rblimp_fcs(
data = datai2,
latent = 'latentx latenty',
model = '
structural.model:
latentx ~~ latentx@l;
latenty ~~ latenty@1;
latentx ~~ latenty;
measurement.models:
latentx -> x1 x3;
yjt(x2) ~ latentx;
yjt(yl) ~ latenty;
latenty -> y2 y3',
seed = 90291,
burn = 10000,
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iter = 10000,
chains = 20,
nimps = 20
)
output(mymodel)

# inspect variable names
names (mymodel@imputations[[1]])

# mitml list
implist <- as.mitml(mymodel)

# plot raw and transformed scores
dat2plot <- do.call(rbind, implist)
hist(dat2plot$yl,breaks = 20)
hist(dat2plotSyjt.yjt.yl..,breaks = 20)

# specify cfa model with latent response imputations
lavaan_model <- c('ylatent x1 + yjt.yjt.x2.. + x3',

'xlatent =~ yjt.yjt.yl.. + y2 + y3',

'ylatent xlatent',

'ylatent 1*ylatent', 'xlatent ~~ 1*xlatent')

R

14
13

?
?

# fit model with lavaan.mi
results <- cfa.mi(lavaan_model, data = implist, estimator = "ml")
summary(results, standardized = T, fit = T)

# imputation-based modification indices

modindices.mi(results, op = c("~~","=~"), minimum.value = 3, sort.

5.12: Latent Variable Regression Model

188

This example illustrates a latent variable mediation model where both the mediator

and outcome are latent variables, each with six ordinal indicators. The structural

regression equations are as follows

Ny = Bor + BuiX + B D + &4
Ny = Boz + Bianm + BoX + B2D + &

and a path diagram for the full model is shown below.


https://www.codecogs.com/eqnedit.php?latex=%5Ceta_M%3D%5Cbeta_%7B01%7D%2B%5Cbeta_%7B11%7DX%2B%5Cbeta_%7B21%7DD%2B%5Cvarepsilon_1#0
https://www.codecogs.com/eqnedit.php?latex=%5Ceta_Y%3D%5Cbeta_%7B02%7D%2B%5Cbeta_%7B12%7D%5Ceta_M%2B%5Cbeta_%7B22%7DX%2B%5Cbeta_%7B32%7DD%2B%5Cvarepsilon_2#0
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The residual variances of all latent response variances are fixed at values of one, and
mediated pathways can be computed following Example 5.1. Clicking the links below
downloads the Blimp scripts and data for this example, and the full set of User Guide

examples is available from a pull-down menu in the graphical interface.

Ex5.12.imp data4.dat

The syntax highlights are as follows.

«  ORDINAL command identifies binary and ordinal variables
+  FIXED command defines a complete predictor

Automatic threshold specification for binary and ordinal variables
«  LATENT command defines two latent variables

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output


https://dl.dropboxusercontent.com/s/5tckkh0pq11vcub/Ex5.10.imp?dl=1
https://www.dropbox.com/s/zn4i8jocmhetf0r/data4.dat?dl=1

Blimp User’s Guide (Version 3) 190

% MODEL command fixes variances and residual variances to one for identification

Longer burn-in period for estimating latent variables and threshold parameters

DATA: data4.dat;

VARIABLES: id v1:v5 x v6 v7 d y1l:y6 ml:m7 v8:v13;
ORDINAL: d y1:y6 ml:m7;

MISSING: 999;

FIXED: d;
LATENT: latenty latentm;
MODEL:

structural.model:

latentm ~ x d;

latenty ~ latentm x d;

latentm ~~ latentm@1;

latenty ~~ latenty@1;
measurement.models:

latentm -> mi@xload_prior m2:m6;
latenty -> y1@yload prior y2:y6;
PARAMETERS:

xload_prior ~ truncate(0, Inf);
yload_prior ~ truncate(0, Inf);
SEED: 90291;

BURN: 50000;

ITER: 50000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,
ordinal = 'd yl:y6 ml:m7',

fixed = 'd',
latent = 'latenty latentm',
model = '

structural.model:
latentm ~ x d;

latenty ~ latentm x d;
latentm ~~ latentm@i;
latenty ~~ latenty@1;



Blimp User’s Guide (Version 3) 191

measurement.models:

latentm -> mi1@xload prior m2:m6;

latenty -> y1@yload _prior y2:y6',

parameters = 'xload_prior ~ truncate(0, Inf);
yload_prior ~ truncate(0, Inf)',

seed = 90291,

burn = 50000,

iter = 50000
)
output(mymodel)

5.13: Latent-by-Manifest Variable Interaction

This example adds moderated paths to the latent variable mediation model from the
previous example. The structural regression equations feature an interaction
between two manifest variables and an interaction between a manifest and latent

variable.

v = Por + Pun X + Pa1D + B51(X)(D) + &1
ny = Bo + Binx + PoD + B3 (nx)(D) + €2

The path diagram of the full model is shown below.


https://www.codecogs.com/eqnedit.php?latex=%5Ceta_M%3D%5Cbeta_%7B01%7D%2B%5Cbeta_%7B11%7DX%2B%5Cbeta_%7B21%7DD%2B%5Cbeta_%7B31%7D(X)(D)%2B%5Cvarepsilon_1#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Ceta_Y%3D%5Cbeta_0%2B%5Cbeta_1%5Ceta_X%2B%5Cbeta_2D%2B%5Cbeta_3%5Cleft(%5Ceta_X)%20(D)%2B%5Cvarepsilon_2#0
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The dashed lines pointing from D to the directed arrows convey that D moderates

the association between X and the latent mediator as well as the association
between the latent mediator and the outcome. The residual variances of all latent
response variances are fixed at values of one, and mediated pathways can be
computed following Example 5.2. Clicking the links below downloads the Blimp
scripts and data for this example, and the full set of User Guide examples is available

from a pull-down menu in the graphical interface.

Ex513.imp data4.dat

The syntax highlights are as follows.

«  ORDINAL command identifies binary and ordinal variables

+  FIXED command defines a complete predictor


https://dl.dropboxusercontent.com/s/u0mhshevxx9hdwt/Ex5.11.imp?dl=1
https://www.dropbox.com/s/6uvm2mw5lgtgbj7/data4.dat?dl=1
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Automatic threshold specification for binary and ordinal variables
+  LATENT command defines two latent variables

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

% MODEL command fixes variances and residual variances to one for identification
+ MODEL command features product terms

Longer burn-in period for ordered categorical variables

DATA: data4.dat;

VARIABLES: id v1:v5 x v6 v7 d yl:y6 mi:m7 v8:v13;
ORDINAL: d yl:y6 ml:m7;

MISSING: 999;

FIXED: d;
LATENT: latenty latentm;
MODEL :

structural.model:

latentm ~ x d x*d;

latenty ~ latentm x d latentm*d;
latentm ~~ latentm@l;

latenty ~~ latenty@i;
measurement.models:

latentm -> mi1@xload _prior m2:m6;
latenty -> y1@yload_prior y2:y6;
PARAMETERS:

xload_prior ~ truncate(0, Inf);
yload_prior ~ truncate(0, Inf);
SEED: 90291;

BURN: 50000;

ITER: 50000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,
ordinal = 'd y1:y6 ml1:m7',
fixed = 'd',
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latent = 'latenty latentm',

model = '

structural.model:

latentm ~ x d x*d;

latenty ~ latentm x d latentm*d;
latentm ~~ latentm@i;

latenty ~~ latenty@i;
measurement.models:

latentm -> mi@xload_prior m2:m6;
latenty -> y1@yload prior y2:y6',
parameters = 'xload_prior ~ truncate(0, Inf);
yload_prior ~ truncate(0, Inf)',
seed = 90291,

burn = 50000,

iter = 50000

)
output(mymodel)

5.14: Moderated Nonlinear Factor Analysis (MNLFA)

This example illustrates a moderated factor analysis for measurement invariance
testing. The method is conceptually similar to nonlinear moderated factor analysis
(Bauer, 2017) but does not require complicated constraints. Instead, the model
represents differential loadings as an interaction between a latent variable and a
manifest variable. In this example, the manifest variable is a grouping variable, but it
could be any metric that Blimp supports. The latent variable’s variance and the
indicator variances can also be modeled as a function of the background variable,
which does not need to be categorical. Enders, Vera, Keller, Lenartowicz, Loo (2024)
describe the model in detail and provide a real-data analysis example involving an

integrative data analysis. The data analysis scripts for this more thorough illustration

are available at https:/osf.io/gfusm/.

The measurement model equation for a manifest indicator k is as follows.

Yi = vk + Nty + 716G + Y26 (G) (ny) + €k

The y, slope is the effect of the covariate on the indicator's mean, and the y,

interaction coefficient captures loading changes as a function of G. In this example,


https://osf.io/gfu5m/
https://www.codecogs.com/eqnedit.php?latex=Y_k%3D%5Cnu_%7Bk%7D%2B%5Clambda_%7Bk%7D%5Ceta_Y%2B%5Cgamma_%7B1k%7DG%2B%5Cgamma_%7B2k%7D(G)(%5Ceta_Y)%2B%5Cvarepsilon_k#0
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the indicators are continuous, but they could be any metric that Blimp supports. A

path diagram of the model is shown below.

Y1 Yz Y3 Y4 Y5 YG

The straight lines from G to the indicators introduce group differences in
measurement intercepts, and the dashed lines from G to the directed arrows reflect
manifest-by-latent interaction terms (factor loading differences). Unlike a
conventional multiple-group model, G could be a continuous dimension, although it
is binary in this example. Finally, the model includes a log linear equation that relates

the variance of the latent factor to the background variable.
In(0) = wo + w1 G

For identification, the intercept w, is fixed at zero on the logarithmic metric, which

sets the factor variance of the G = O group to one.


https://www.codecogs.com/eqnedit.php?latex=ln(%5Csigma_%7B%5Czeta%7D%5E2)%3D%5Comega_%7B0%7D%2B%5Comega_1G#0
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Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.14.imp data4.dat

The syntax highlights are as follows.

ORDINAL command identifies a binary predictor
FIXED commmand identifies a complete predictor
LATENT command defines a latent variable

Individual regression equations specified for each indicator (instead of the ->
convention for latent factors)

MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

MODEL command labels intercept group differences and loading group
differences

MODEL command features product terms

MODEL command uses an @ and a label to assign a positive-valued prior
distribution to the first factor loading

MODEL command features a regression equation with the natural logarithm of
the factor variance as the outcome

PARAMETER command defines a positive-valued uniform prior distribution

WALDTEST commands specify Bayesian Wald tests that evaluate the null
hypothesis that intercept and loading differences equal O

SIMPLE command produces conditional effects (group-specific intercepts and
loadings) at each level of the binary moderator

Longer burn-in period for estimating latent variables

DATA: data4.dat;

VARIABLES: id v1:v8 g y1:y6 v9:v21;
ORDINAL: g;

MISSING: 999;

FIXED: g;

LATENT: latenty;


https://dl.dropboxusercontent.com/s/5ics1hkjlrvf951/Ex5.13.imp?dl=1
https://www.dropbox.com/s/4mm4us6obmzzx1z/data4.dat?dl=1
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MODEL :

structural.model:

latenty ~ 1@0 g;
var(latenty) ~ 1@0 g;
measurement.model:

yl ~ 1 latenty@load prior;

y2 ~ g@difficeptl latenty g*latenty@diffloadi;
y3 ~ g@difficept2 latenty g*latenty@diffload2;
y4 ~ g@difficept3 latenty g*latenty@diffload3;
y5 ~ g@difficept4 latenty g*latenty@diffload4;
y6 ~ g@difficept5 latenty g*latenty@diffload5;

WALDTEST: diffloadi:diffload5 = 0;
WALDTEST: difficeptil:difficept5 = 0;
PARAMETERS:

load_prior ~ truncate(0, Inf);
SIMPLE: latenty | g;

SEED: 90291;

BURN: 20000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,

ordinal = 'g',
fixed = 'qg',

latent = 'latenty',
model = '

structural.model:

latenty ~ 1@0 g;
var(latenty) ~ 1@0 g;
measurement.model:

yl ~ 1 latenty@load prior;

y2 ~ g@difficeptl latenty g*latenty@diffloadi;
y3 ~ g@difficept2 latenty g*latenty@diffload2;
y4 ~ g@difficept3 latenty g*latenty@diffload3;
y5 ~ g@difficept4 latenty g*latenty@diffload4;
y6 ~ g@difficept5 latenty g*latenty@diffload5',

waldtest = list('diffloadi:diffload5 = 0',
'difficeptl:difficept5 = 07)

197
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parameters = 'load_prior ~ truncate(®, Inf)',
simple = 'latenty | g',
seed = 90291,

burn = 20000,

iter = 10000
)
output(mymodel)

5.15: Latent-hy-Latent Variable Interaction

This example illustrates a latent variable regression model with two latent predictors
and their interaction influencing a latent outcome variable. The structural regression

equation is as follows.

Ny = Bo + Binx + Banar + Bz (nx) () + €

A path diagram of the full model is shown below.

Yz D



https://www.codecogs.com/eqnedit.php?latex=%5Ceta_Y%3D%5Cbeta_0%2B%5Cbeta_1%5Ceta_X%2B%5Cbeta_2%5Ceta_M%2B%5Cbeta_3%5Cleft(%5Ceta_X)(%5Ceta_M%5Cright)%2B%5Cvarepsilon#0
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The dashed line pointing from the latent variable to the directed arrow conveys that
one latent predictor is moderating the influence of the other. Clicking the links
below downloads the Blimp scripts and data for this example, and the full set of User

Guide examples is available from a pull-down menu in the graphical interface.

Ex5.15.imp datal3.dat

The syntax highlights are as follows.

% ORDINAL command identifies ordinal variables
Automatic threshold specification for binary and ordinal variables
& LATENT command defines three latent variables

#  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command features a two-way latent product term
+  MODEL command labels the structural regression slopes
«  MODEL command fixes variances and residual variances to one for identification

«  PARAMETERS command specifies a truncated prior over positive values, and the
prior is attached to each factor’s first loading in the MODEL command

+  PARAMETERS command uses labeled quantities to compute conditional effects
(simple slopes) at plus and minus one standard deviation above the latent
moderator's mean

DATA: datal3.dat;

VARIABLES: x1:x3 ml:m3 yl:y3;
MISSING: 999;

LATENT: latentx latentm latenty;
MODEL :

structural.model:

latenty ~ latentx@b1 latentm@b2 latentx*latentm@b3;
latenty ~~ latenty@i;
predictor.model:

latentx ~~ latentx@1;

latentm ~~ latentm@l;

latentx ~~ latentm;
measurement.models:

latentx -> x1@xload prior x2:x3;


https://dl.dropboxusercontent.com/s/7e8fnfmy301zshs/Ex5.12.imp?dl=1
https://www.dropbox.com/s/q6fldc8mqdzr288/data13.dat?dl=1
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latentm -> mi@mload_prior m2:m3;
latenty -> y1@yload prior y2:y3;
PARAMETERS:

xload_prior ~ truncate(@, Inf);
mload_prior ~ truncate(0, Inf);
yload_prior ~ truncate(@, Inf);
xslope_mlow = bl - b3 * (-1);
xslope_mmean = bl * (0);
xslope_mhigh = bl + b3 * (-1);
SEED: 90291;

BURN: 10000,

ITER: 10000;

?

14

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal3.rda')

mymodel <- rblimp(
data = datail3,
latent = 'latentx latentm latenty',
model = '
structural.model:
latenty ~ latentx@b1 latentm@b2 latentx*latentm@b3;
latenty ~~ latenty@i;
predictor.model:
latentx ~~ latentx@i;
latentm ~~ latentm@i;
latentx ~~ latentm;
measurement.models:
latentx -> x1@xload_prior x2:x3;
latentm -> mi@mload_prior m2:m3;
latenty -> y1@yload_prior y2:y3',
parameters = 'xload_prior ~ truncate(0, Inf);
mload_prior ~ truncate(0, Inf);
yload _prior ~ truncate(0, Inf);
xslope_mlow = bl - b3 * (-1);
xslope_mmean = bl * (0);
xslope_mhigh = b1 + b3 * (-1)',
seed = 90291,
burn = 10000,
iter = 10000
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output(mymodel)

5.16: Three-Way Latent Variable Interaction

This example illustrates a latent variable regression model with three latent
predictors and all possible interactions among the latent variables. The procedure for
the example is described in Keller (2024). A preprint of the paper can be downloaded
here. The structural model below corresponds to Equation 28 from the paper. We

use established generic notation in lieu of the original variable names.

Ny = Bo + Pinx + Banz + Banu+
Ba(nx)(nz) + Bs(nx)(nar) + Bs(nz) () + Br(nz)(nz)(nur) + €

The latent variables have 10 indicators each, and the indicators use 5-point rating
scales. Following Example 5.9, the measurement models feature latent response

variables regressed on the latent factors (probit regression).

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.16.imp keller2024.dat

The syntax highlights are as follows.

ORDINAL command identifies ordinal variables

K3
<

Automatic threshold specification for binary and ordinal variables
+  LATENT command defines four latent variables

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command features two-way product terms and a three-way product
+ MODEL command labels the structural regression slopes
+  MODEL command fixes variances and residual variances to one for identification

+  PARAMETERS command specifies a truncated prior over positive values, and the
prior is attached to each factor’s first loading in the MODEL command


https://osf.io/preprints/psyarxiv/w3bxh
https://www.codecogs.com/eqnedit.php?latex=%5Ceta_Y%3D%5Cbeta_0%2B%5Cbeta_1%5Ceta_X%2B%5Cbeta_2%5Ceta_Z%2B%5Cbeta_3%5Ceta_M%2B#0
https://dl.dropboxusercontent.com/scl/fi/ns141aofftlus07s3ejug/Ex5.16.imp?rlkey=vkcsea4977qz8zdezopxc6xkg&dl=1
https://dl.dropboxusercontent.com/scl/fi/i0jon3fugdvc3osb318bj/keller2024.dat?rlkey=aerbi2a7kdcn52jr7yntcwgsu&dl=1
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+  PARAMETERS command uses labeled quantities to compute conditional two-way
effects (simple interactions) at plus and minus one standard deviation above the
latent moderator's mean

Longer burn-in period and post-burn in iterations with ordinal variables

DATA: keller2024.dat;

VARIABLES: x1:x10 m1:m10 z1:z10 y1:y23 d1 d2;

ORDINAL: x1:x10 z1:z10 m1:m10 yl:y23;

LATENT: latentx latentm latentz latenty;

MODEL :

structural.model:

latenty ~ latentx@1 latentz@b2 latentm@b3
latentx*latentz@4 latentx*latentm@5 latentz*latentm@bé
latentx*latentz*latentm@b7;

latenty ~~ latenty@i;

predictor.model:

latentx latentz latentm ~~ latentx latentz latentm;

latentx ~~ latentx@1;

latentz ~~ latentz@1;

latentm ~~ latentm@1;

measurement.models:

latentx -> x1@xload prior x2:x10;

latentz -> z1@zload_prior z2:z10;

latentm -> mi@mload prior m2:m10;

latenty -> yl@yload_prior y2:y10;

PARAMETERS:

xload_prior

zload_prior

14

truncate(0, Inf);
truncate(0, Inf);
mload_prior ~ truncate(0, Inf);
yload_prior ~ truncate(@, Inf);
xbyz _mlow = b4 + b7 * (-1);
xbyz_mmean = b4 + b7 * ( 0);
xbyz_mhigh = b4 + b7 * (+1);
SEED: 90291;

BURN: 20000,

ITER: 50000;

?

14

4

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'keller2024.rda')
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mymodel <- rblimp(

data = keller2024,

ordinal = 'x1:x10 z1:z10 m1:m10 y1:y23',

latent = 'latentx latentm latentz latenty',

model = '

y.model:

latenty ~ latentx@1 latentz@b2 latentm@b3
latentx*latentz@4 latentx*latentm@5 latentz*latentm@b6
latentx*latentz*latentm@b7;

latenty ~~ latenty@i;

predictor.model:

latentx latentz latentm ~~ latentx latentz latentm;

latentx ~~ latentx@1;

latentz ~~ latentz@1;

latentm ~~ latentm@l;

measurement.models:

latentx -> x1@xload_prior x2:x10;

latentz -> z1@zload_prior z2:z10;

latentm -> mi@mload prior m2:m10;

latenty -> yi@yload_prior y2:y10',

parameters = 'xload_prior ~ truncate(0, Inf);

zload_prior ~ truncate(0, Inf);

mload_prior ~ truncate(@, Inf);

yload_prior ~ truncate(0, Inf);

xbyz mlow = b4 + b7 * (-1);

xbyz_mmean = b4 + b7 * ( 0);

xbyz_mhigh = b4 + b7 * (+1)',

seed = 90291,

burn = 20000,

iter = 50000
)
output(mymodel)

5.17: Latent Growth Curve Model

This example illustrates a two-factor latent growth curve model with unequally

spaced repeated measurements and a binary predictor of the random intercepts

and slopes. A path diagram of the model is shown below.
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Y1 Y2 Y3 Y

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex517.imp data3.dat

The syntax highlights are as follows.

+  ORDINAL command identifies a binary predictor
+ FIXED command identifies complete predictors
+  LATENT command defines two latent variables

¢  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+ Individual regression equations specified for each indicator (instead of the ->
convention for latent factors)

+  MODEL command estimates the latent variable means, fixes the intercept factor
loadings to one, fixes the growth factor loadings to the time scores (0, 1, 3, and 6),
and fixes the measurement intercepts to zero

+ MODEL command uses a label to impose equality constraint on residual variance


https://dl.dropboxusercontent.com/s/15kpz2mmkse5ldq/Ex5.14.imp?dl=1
https://www.dropbox.com/s/vi1bfec8sn94g8g/data3.dat?dl=1
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DATA: data3.dat;

VARIABLES: id y0 y1 y3 y6 d v1:v5;
ORDINAL: d;

MISSING: 999;

FIXED: d;

LATENT: icept slope;
MODEL :
structural.model:
icept ~ 1 d;

slope ~ 1 d;

icept ~~ slope;

measurement.model:

yO0 ~ 1@0 icept@1 slope@O;
yl ~ 1@0 icept@1 slope@i;
y3 ~ 1@0 icept@1 slope@3;
y6 ~ 1@0 icept@1 slope@6;
# common residual variance
yO ~~ yO@resvar;

yl ~~ yl@resvar;

y3 ~~ y3@resvar;

y6 ~~ y6@resvar;

SEED: 90291;

BURN: 10000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data3.rda')

mymodel <- rblimp(
data = data3,

ordinal = 'd',

fixed = 'd’',

latent = 'icept slope',
model = '
structural.model:

icept ~ 1 d;

slope ~ 1 d;

icept ~~ slope;
measurement.model:
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yo
vyl
y3
y6
yo
vyl
y3
y6

~ 1@0 icept@1
~ 1@0 icept@1
~ 1@0 icept@1
~ 1@0 icept@1
~~ y0@resvar;
~~ yl@resvar;
~~ y3@resvar;
~~ y6@resvar',

seed = 90291,
burn = 10000,
iter = 10000

)

output(mymodel)

slope@O;
slope@1;
slope@3;
slope@6;

b.18: Residual SEM: AR1 Growth Model

This example illustrates a residual SEM that specifies an AR1 structure on the

residuals in a latent growth curve model. The model features the residuals at each

time point predicting the outcome at the next measurement occasion. The path

diagram below shows a growth model with six waves of data. The diagram uses an

asterisk to denote time-specific residuals computed by subtracting the predicted

value from the observed value.

RY{ =Yy, — (ICEPT, + 0xSLOPE;)

RY;, = Yy — ICEPT; + 1xSLOPE;)

RY;, = Ys; — (ICEPT; + 4xSLOPE;)

Note that the residuals with an asterisk are not themselves random variables. Rather,

they are simply functions defined by centering each repeated measures variable at

its predicted value using the estimated random intercepts and slopes.


https://www.codecogs.com/eqnedit.php?latex=RY_%7B1i%7D%5E%7B*%7D%20%3D%20Y_%7B1i%7D%20-%20(ICEPT_i%20%2B%200%7B%5Ctimes%7DSLOPE_i)#0
https://www.codecogs.com/eqnedit.php?latex=RY_%7B2i%7D%5E%7B*%7D%20%3D%20Y_%7B2i%7D%20-%20(ICEPT_i%20%2B%201%7B%5Ctimes%7DSLOPE_i)#0
https://www.codecogs.com/eqnedit.php?latex=RY_%7B5i%7D%5E%7B*%7D%20%3D%20Y_%7B5i%7D%20-%20(ICEPT_i%20%2B%204%7B%5Ctimes%7DSLOPE_i)#0
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Ye

D

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex518a.imp Ex518b.imp data?7.dat

The syntax highlights are as follows.

+  LATENT command defines two latent variables that represent person-specific
random intercepts and slopes

+  MODEL command defines the computations that create the residuals, and it uses
those aliases as predictors in the measurement models

#  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command uses the -> convention to add random slopes as a predictor to
each measurement model

+ MODEL command estimates the latent variable means, fixes the intercept factor
loadings to one, fixes the growth factor loadings to integer values between zero
and six


https://dl.dropboxusercontent.com/scl/fi/rnpyll8sdythx7n309ljv/Ex5.18a.imp?rlkey=dhgfz3jdl4i8yxz12rtjqz0d2&dl=1
https://dl.dropboxusercontent.com/scl/fi/ias2x06vk1q3nq2elbi18/Ex5.18b.imp?rlkey=hy5t29b1afe2i5irdzg5y797v&dl=1
https://dl.dropboxusercontent.com/scl/fi/1eoppvpwj1otbp498c2py/data27.dat?rlkey=qmdpl0lilhcih84oeyxwv5c2g&dl=1

Blimp User’s Guide (Version 3)

+  WALDTEST command invokes a Bayesian Wald test that evaluates the null

hypothesis that the autocorrelations are equal

DATA: data27.dat;

VARIABLES: yl:y6 z;

MISSING: 999;

LATENT: icept slope;

MODEL :

# define residuals for embedded functions in measurement models

ryl
ry2
ry3
ry4
rys

yl - (icept + (0*slope));
y2 - (icept + (1*slope));
y3 - (icept + (2*slope));
y4 - (icept + (3*slope));
y5 - (icept + (4*slope));

structural.model:

icept ~~ slope;

1 -> icept slope;

measurement.model:

{ y1:y6 } ~ 1@icept;

slope -> y1@0 y2@1 y3@2 y4@3 y5@4 y6@5;
# autocorrelations

y2 ~
y3 ~
y4 ~
y5 ~
y6 ~

ryl@aci;
ry2@ac2;
ry3@ac3;
ry4@ac4;
ry5@acs;

WALDTEST: acl = ac2:ac5;
SEED: 90291;
BURN: 30000;
ITER: 20000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data27.rda')

mymodel <- rblimp(
data = data27,
latent = 'icept slope',

model =

ryl = y1 - (icept + (0*slope));
ry2 = y2 - (icept + (1*slope));

208
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ry3 = y3 - (icept + (2*slope));
ryd = y4 - (icept + (3*slope));
ry5 = y5 - (icept + (4*slope));
structural.model:

icept ~~ slope;

1 -> icept slope;
measurement.model:

{ yl:y6 } ~ 1@icept;

slope -> y1@0 y2@1 y3@2 y4@3 y5@4 y6@5;
y2 ~ ryl@aci;

y3 ~ ry2@ac2;

y4 ~ ry3@ac3;

y5 ~ ry4Q@ac4;

y6 ~ ry5@ac5s',

waldtest = 'acl = ac2:ac5',
seed = 90291,
burn = 30000,
iter = 20000
)
output(mymodel)

The MCMC Wald test was not significant, indicating that a simpler model where all
autocorrelation paths are equal is preferable. The code block below illustrates

equality constraints on the residual associations.

DATA: data27.dat;
VARIABLES: yl:y6 z;
MISSING: 999;
LATENT: icept slope;

MODEL :

# define residuals for embedded functions in measurement models
ryl = y1 - (icept + (0*slope));

ry2 = y2 - (icept + (1*slope));

ry3 = y3 - (icept + (2*slope));

ry4 = y4 - (icept + (3*slope));

ry5 = y5 - (icept + (4*slope));

structural.model:

icept ~~ slope;

1 -> icept slope;

measurement.model:

{ y1:y6 } ~ 1@icept;

slope -> y1@0 y2@1 y3@2 y4@3 y5@4 y6@5;
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# autocorrelations

y2 ~ ryl@ac;
y3 ~ ry2@ac;
y4 ~ ry3@ac;
y5 ~ ry4@ac;
y6 ~ ry5@ac;

SEED: 90291;
BURN: 20000;
ITER: 20000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data27.rda')

mymodel <- rblimp(
data = data27,

latent = 'icept slope',

model = '

ryl = y1 - (icept + (0*slope));
ry2 = y2 - (icept + (1*slope));
ry3 = y3 - (icept + (2*slope));
ryd = y4 - (icept + (3*slope));
ry5 = y5 - (icept + (4*slope));

structural.model:
icept ~~ slope;

1 -> icept slope;
measurement.model:

{ y1:y6 } ~ 1@icept;
slope -> y1@0 y2@1 y3@2 y4@3 y5@4 y6@5;
y2 ~ ryl@ac;

y3 ~ ry2@ac;

y4 ~ ry3@ac;

y5 ~ ry4Q@ac;

y6 ~ ry5@ac',

seed = 90291,

burn = 20000,

iter = 20000

)
output(mymodel)
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5.19: Random Intercept Cross-Lagged Panel Model (RI-CLPM)

This example illustrates a random intercept cross-lagged panel model. The analysis
and the data are from Mulder and Hamaker (2021). The simulated data were
obtained from the paper’s website. The basic RI-CLPM is described in Hamaker,
Kuipers, and Grasman (2015). The model features a random intercept latent variable
that removes stable individual differences from the lagged processes, which
represent pure within-person effects. The path diagram below shows a three-wave

version of the model.

O\ 7o\ 7N

/
| S = ([ Xow ) « | Xaw | «
N N /
O\ O &
x| \ x| \|x

Y5 &

NN

NGNS NG

The W subscripts denote within-person effects and sources of variation. The

cross-lagged paths are defined as within-person slopes because the manifest

variables are centered at the random intercepts, thus removing stable


https://jeroendmulder.github.io/RI-CLPM/#ref-mulder_three_2021
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between-person variation. Specifically, the residuals denoted with an asterisk in the

diagram are computed as follows.

w=X1—RIx ow = Xo — RIx

iw=Yi—RIy Y =Y Rl

Note that the residuals with an asterisk are not themselves random variables. Rather,
they are simply functions defined by centering each repeated measures variable at
the estimated random intercept. Finally, the residual variances and covariances are
within-person effects by virtue of the random intercept latent variable removing

stable between-person variation.

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.19a.imp Ex519b.imp Ex5.19c.imp Ex519d.imp Ex5.19d.imp RICLPM.dat

The syntax highlights are as follows.

+  LATENT command defines two latent variables that represent person-specific
random intercepts for the two variables

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+ MODEL command leverages Blimp's default, which is to set latent variable means
equal to zero

#  MODEL command sets the random intercept latent variable’s factor loadings to
one

+  MODEL command creates pure within-person predictors by centering each
person’'s scores at their random intercept estimates

+  MODEL command defines the computations for the centering procedure that
creates the residuals, and it uses those aliases as predictors in the regressions


https://www.codecogs.com/eqnedit.php?latex=X_%7B1W%7D%5E%7B*%7D%20%3D%20X_%7B1%7D%20-%20RI_X#0
https://www.codecogs.com/eqnedit.php?latex=X_%7B2W%7D%5E%7B*%7D%20%3D%20X_%7B2%7D%20-%20RI_X#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7B1W%7D%5E%7B*%7D%20%3D%20Y_%7B1%7D%20-%20RI_Y#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7B2W%7D%5E%7B*%7D%20%3D%20Y_%7B2%7D%20-%20RI_Y#0
https://dl.dropboxusercontent.com/scl/fi/g9x5621374x83yr489v9z/Ex5.18a.imp?rlkey=fbpx9f9jmspakfvnd0p3dy2ma&dl=1
https://dl.dropboxusercontent.com/scl/fi/en0scx939olhtibx5uaoj/Ex5.18b.imp?rlkey=pvenxiw0iub2f91giqyb6td0i&dl=1
https://dl.dropboxusercontent.com/scl/fi/utn24htj7gus8gxw6sy6q/Ex5.18c.imp?rlkey=uiobpm2afop7okajj0ya3co3d&dl=1
https://dl.dropboxusercontent.com/scl/fi/p5nrjo0nha26wdna1k6kp/Ex5.18d.imp?rlkey=shtjw6g06qhqzheljrf0wufsj&dl=1
https://dl.dropboxusercontent.com/scl/fi/ivpoi2i9l00t3110ylb62/Ex5.18e.imp?rlkey=1gfj98oi9waqcx5435sgo5by8&dl=1
https://dl.dropboxusercontent.com/scl/fi/rz7wgy1dvitoym8c0vfk2/RICLPM-Z.dat?rlkey=fhw7d71bpv0y22gxsw1u4504w&dl=1
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DATA: RICLPM.dat;

VARIABLES: x1:x5 yl:y5 z2 z1;
LATENT: RIx RIy;

MODEL :

xir = x1 - (mux1 + RIX);
X2r = x2 - (mux2 + RIX);
x3r = x3 - (mux3 + RIX);
x4r = x4 - (mux4 + RIX);
ylr = y1 - (muyl + RIy);
y2r = y2 - (muy2 + RIy);
y3r = y3 - (muy3 + RIy);
y4r = y4 - (muy4 + RIy);

random. intercepts:
RIX ~~ Rly;
x.models:

x1 ~ 1@mux1 RIx@1;

X2 ~ 1@mux2 RIx@1 x1r yir;
x3 ~ 1@mux3 RIx@1 x2r y2r;
x4 ~ 1@mux4 RIx@1 x3r y3r;
x5 ~ 1@mux5 RIx@1 x4r y4r;

y.models:
yl ~ 1@muyl RIy@1;

y2 ~ 1@muy2 RIy@1 yilr x1r;
y3 ~ 1@muy3 RIy@1 y2r x2r;
y4 ~ 1@muy4 RIy@1 y3r x3r;
y5 ~ 1@muy5 RIy@1 y4r x4r;
covariances:

X1 ~~ yi;

X2 ~~ y2;

X3 ~~ y3;

X4 ~~ y4;

X5 ~~ y5;

SEED: 90291;

BURN: 5000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'RICLPM.rda')

mymodel <- rblimp(
data = RICLPM,
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latent = 'RIx RIy',

model =
xir = x1 - (mux1 + RIX);
X2r = x2 - (mux2 + RIx);
X3r = x3 - (mux3 + RIX);
x4r = x4 - (mux4 + RIX);
ylr = y1 - (muyl + RIy);
y2r = y2 - (muy2 + RIy);
y3r = y3 - (muy3 + RIy);
y4r = y4 - (muy4 + RIy);
random.intercept:
RIXx ~~ Rly;
x.models:
x1 ~ 1@mux1 RIx@1;
X2 ~ 1@mux2 RIx@1 x1r yir;
x3 ~ 1@mux3 RIx@1 x2r y2r;
X4 ~ 1@mux4 RIx@1 x3r y3r;
x5 ~ 1@mux5 RIx@1 x4r vy4r;
y.models:
yl ~ 1@muyl RIy@1;
y2 ~ 1@muy2 RIy@1 yilr x1r;
y3 ~ 1@muy3 RIy@1 y2r x2r;
y4 ~ 1@muy4 RIy@1 y3r x3r;
y5 ~ 1@muy5 RIy@1 y4r x4r;
covariances:
X1 ~~ yi;
X2 ~~ y2;
X3 ~~ y3;
X4 ~~ y4;
X5 ~~ y5',
seed = 90291,
burn = 5000,
iter = 10000

)

output(mymodel)

Mulder and Hamaker (2021) describe four extensions of the RI-CLPM. The first

introduces a time-invariant covariate predicting the repeated measures variables.

214

The residual variables that appear as predictors in the models are now computed by

subtracting out the random intercept plus the effect of Z; as follows.

Xikw = X1 — [RIX + Oél(Zl)]

X;W = Xg — [RIX + Oég(Zl)]


https://www.codecogs.com/eqnedit.php?latex=X_%7B1W%7D%5E%7B*%7D%20%3D%20X_%7B1%7D%20-%20%5BRI_X%2B%5Calpha_1(Z_1)%5D#0
https://www.codecogs.com/eqnedit.php?latex=X_%7B2W%7D%5E%7B*%7D%20%3D%20X_%7B2%7D%20-%20%5BRI_X%2B%5Calpha_2(Z_1)%5D#0
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Yiyw = Y1 — [Rly + 1(Z1)]

* p—
Yow =

Ys — [Rly + B2(Z4)]
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The Blimp script for this five-wave analysis is shown below. The binary covariate Z, is

identified on the ORDINAL line to invoke probit regression in the event of missing data.

DATA: RICLPM.dat;
VARIABLES: x1:x5 y1:y5
ORDINAL: z1;

LATENT: RIx RIy;
MODEL :

x1ir =
X2r =
xX3r =
X4r =
ylr =
y2r =
y3r =
var =

x1 -
X2 -
X3 -
x4 -
yl -
y2 -
y3 -
ya4 -

(mux1
(mux2
(mux3
(mux4
(muy1
(muy?2
(muy3
(muy4

+ 4+ + + + + + +

random. intercepts:
RIx ~~ Rly;
x.models:

X1l ~
x2
x3
x4
x5

14

14

14

14

1@mux1
1@mux?2
1@mux3
1@mux4
1@mux5

y.models:

yl ~
y2 ~
y3 ~
y4 ~
ys ~

1@muyl
1@muy?2
1@muy3
1@muy4
1@muy5

RIx@1
RIx@1
RIx@1
RIx@1
RIx@1

RIy@1
RIy@1
RIy@1
RIy@1
RIy@1

covariances:

X1 ~~
X2 ~~
X3 ~~
X4 ~~
X5 ~~
SEED:
BURN:
ITER:

yl;
y2;
y3;
y4;
y5;
90291
5000;
10000

.
L

.
L]

RIXx
RIx
RIXx
RIx
RIy
RIy
RIy
RIy

z1@a
x1ir
X2r
x3r
X4r

z1@b
yir
y2r
y3r
var

z2

+ 4+ + + + + + +

1;

yir
y2r
y3r
var

1;

x1ir
X2r
x3r
X4r

z1;

z1*al);
z1*a2);
z1*a3);
z1*a4);
z1*b1);
z1*b2);
z1*b3);
z1*b4);

z1@a2;
z1@a3;
z1@a4;
z1@a5;

z1@b2;
z1@b3;
z1@b4;
z1@b5;


https://www.codecogs.com/eqnedit.php?latex=Y_%7B1W%7D%5E%7B*%7D%20%3D%20Y_%7B1%7D%20-%20%5BRI_Y%2B%5Cbeta_1(Z_1)%5D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7B2W%7D%5E%7B*%7D%20%3D%20Y_%7B2%7D%20-%20%5BRI_Y%2B%5Cbeta_2(Z_1)%5D#0
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The corresponding rblimp script is as follows.

library(rblimp)

load(file = 'RICLPM.rda'")

mymodel <- rblimp(
data = RICLPM,
ordinal = 'z1',

latent = 'RIx RIy',

model =
x1ir = x1 - (mux1
X2r = x2 - (mux2
x3r = x3 - (mux3
x4r = x4 - (mux4
ylr = y1 - (muy1l
y2r = y2 - (muy2
y3r = y3 - (muy3
y4r = y4 - (muy4d
random.intercept:
RIX ~~ Rly;
x.models:

x1 ~ 1@mux1 RIx@1

X2 ~ 1@mux2 RIx@1
X3 ~ 1@mux3 RIx@1
x4 ~ 1@mux4 RIx@1
X5 ~ 1@mux5 RIx@1

y.models:

yl ~ 1@muyl RIy@1
y2 ~ 1@muy2 RIy@1
y3 1@muy3 RIy@1
y4 ~ 1@muy4 RIy@1
y5 1@muy5 RIy@1
covariances:

X1 ~~ yi;

X2 ~~ y2;

X3 ~~ y3;

X4 ~~ y4;

X5 ~~ y5',

seed = 90291,
burn = 5000,

iter = 10000

14

?

14

14

)
output(mymodel)

+ 4+ + + + + + +

RIx
RIXx
RIx
RIXx
RIy
RIy
RIy
RIy

z1@a
x1r
X2r
x3r
X4r

z1@b
ylr
y2r
y3r
var

+ 4+ + + + + + +

1;

yir
y2r
y3r
var

1;

x1lr
X2r
x3r
X4r

z1*al);
z1*a2);
z1*a3);
z1*a4d);
z1*b1);
z1*b2);
z1*b3);
z1*b4);

z1@az2;
z1@a3;
z1@a4;
z1@a5;

z1@b2;
z1@b3;
z1@b4;
z1@b5;

216
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The second extension introduces a time-invariant covariate predicting the
random intercept latent variables. Mulder and Hamaker (2021) note that this
model is statistically equivalent to one that places equality constraints on the
Z, slopes from the previous example. The Blimp script for this analysis is

shown below.

DATA: RICLPM.dat;

VARIABLES: x1:x5 yl:y5 z2 z1;
ORDINAL: z1;

LATENT: RIx RIy;

MODEL :

xlr = x1 - (mux1 + RIX);
X2r = x2 - (mux2 + RIX);
X3r = x3 - (mux3 + RIX);
x4r = x4 - (mux4 + RIX);
yir = y1 - (muyl + RIy);
y2r = y2 - (muy2 + RIy);
y3r = y3 - (muy3 + RIy);
y4r = y4 - (muy4 + RIy);

random. intercepts:

RIX ~ z1;
RIy ~ z1;
RIX ~~ Rly;
Xx.models:

x1 ~ 1@mux1 RIx@1;

x2 ~ 1@mux2 RIx@1 x1r yir;
x3 ~ 1@mux3 RIx@1 x2r y2r;
x4 ~ 1@mux4 RIx@1 x3r y3r;
x5 ~ 1@mux5 RIx@1 x4r yér;

y.models:
yl ~ 1@muyl RIy@1;

y2 ~ 1@muy2 RIy@1 ylr x1r;
y3 ~ 1@muy3 RIy@1 y2r x2r;
v4 ~ 1@muy4 RIy@1 y3r x3r;
y5 ~ 1@muy5 RIy@1 y4r x4r;
covariances:

X1l ~~ yi;

X2 ~~ y2;

X3 ~~ y3;

X4 ~~ y4;

X5 ~~ y5;
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SEED: 90291;
BURN: 5000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'RICLPM.rda'")

mymodel <- rblimp(
data = RICLPM,
latent = 'RIX RIy',

ordinal = 'z1',

model = '

xlr = x1 - (mux1 + RIX);
X2r = x2 - (mux2 + RIX);
x3r = x3 - (mux3 + RIX);
x4r = x4 - (mux4 + RIX);
yir = y1 - (muyl + RIy);
y2r = y2 - (muy2 + RIy);
y3r = y3 - (muy3 + RIy);
y4r = y4 - (muy4 + RIy);

random.intercepts:
RIX ~ z1;

RIy ~ z1;

RIX ~~ Rly;
x.models:

x1 ~ 1@mux1 RIx@1;

X2 ~ 1@mux2 RIx@1 x1r yir;
x3 ~ 1@mux3 RIx@1 x2r y2r;
x4 ~ 1@mux4 RIx@1 x3r y3r;
x5 ~ 1@mux5 RIx@1 x4r y4r;

y.models:
yl ~ 1@muyl RIy@1;

y2 ~ 1@muy2 RIy@1 yilr x1r;
y3 ~ 1@muy3 RIy@1 y2r x2r;
y4 ~ 1@muy4 RIy@1 y3r x3r;
y5 ~ 1@muy5 RIy@1 y4r Xx4r;
covariances:

X1l ~~ yi1;

X2 ~~ y2;

X3 ~~ y3;

X4 ~~ y4;
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)

X5 ~~ y5',
seed = 90291,
burn = 5000,

iter

10000

output(mymodel)

The third and fourth extensions feature a distal outcome, Z,. This outcome
can be regressed on the random intercepts and/or the within-person

predictors. The script below features the random intercepts predicting the

distal outcome.

DATA: RICLPM.dat;

VARIABLES: x1:x5 yl:y5 z2 z1;

LATENT: RIx RIy;
MODEL :

xir
X2r

X3r =
X4ar =
ylr =
y2r =

y3r
var

x1 -
X2 -
X3 -
x4 -
yl -
y2 -
y3 -
y4 -

(mux1
(mux2
(mux3
(mux4
(muy1
(muy?2
(muy3
(muy4

+ + + + + 4+ + +

random. intercepts:
RIX ~~ Rly;
x.models:

x1 ~ 1@mux1
X2 ~ 1@mux2
X3 ~ 1@mux3
x4 ~ 1@mux4
X5 ~ 1@mux5
y.models:

yl ~ 1@muy1l

y2
y3
v4
y5

?

14

?

14

1@muy?2
1@muy3
1@muy4
1@muy5

RIx@1;

RIx@1 x1r
RIx@1 x2r
RIXx@1 x3r
RIx@1 x4r

RIy@1;

RIy@1l yir
RIy@1l y2r
RIy@1 y3r
RIy@1l y4r

distal.outcome:
z2 ~ RIx Rly;
SEED: 90291;

RIX);
RIX);
RIX);
RIX);
RIy);
RIy);
RIy);
RIy);

yir;
y2r;
y3r;
yar;

x1ir;
X2r;
x3r;
X4r;
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BURN: 5000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp

load(file = 'RICLPM.rda')

)

mymodel <- rblimp(
data = RICLPM,

latent = 'R
model = '
xlr = x1 -
X2r = X2 -
x3r = x3 -
X4r = x4 -
ylr = y1 -
y2r = y2 -
y3r = y3 -
var = y4 -
random.inte
RIX ~~ Rly;
x.models:
x1 ~ 1@mux1
X2 1@mux2
x3 1@mux3
x4 1@mux4
x5 1@mux5
y.models:
yl ~ 1@muyl
y2 ~ 1@muy?2
y3 ~ 1@muy3
y4 ~ 1@muy4
y5 ~ 1@muy5

14

14

?

?

Ix RIy',

(mux1
(mux2
(mux3
(mux4
(muy1l
(muy?2
(muy3
(muy4
rcepts:

+ 4+ + + + + + +

RIx@1;

RIx@1 x1ir
RIx@1 x2r
RIx@1 x3r
RIx@1 x4r

RIy@1;

RIy@1l yir
RIy@1 y2r
RIy@1 y3r
RIy@1 y4r

distal.outcome:
z2 ~ RIX RIy',

seed = 90291,
burn = 5000,
iter = 10000

)
output(mymodel

)

RIX);
RIX);
RIX);
RIX);
RIy);
RIy);
RIy);
RIy);

yir;
y2r;
y3r;
yar;

x1r;
X2r;
x3r;
X4r;
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The script below instead shows the within-person variables predicting the

distal outcome.

DATA: RICLPM.dat;

VARIABLES: x1:x5 y1:y5 z2 z1;

LATENT: RIx RIy;

MODEL :

xlr = x1 - (mux1 + RIX);
X2r = x2 - (mux2 + RIX);
Xx3r = x3 - (mux3 + RIX);
x4r = x4 - (mux4 + RIX);
X5r = x5 - (mux5 + RIX);
ylr = y1 - (muyl + RIy);
y2r = y2 - (muy2 + RIy);
y3r = y3 - (muy3 + RIy);
yar = y4 - (muy4 + RIy);
y5r = y5 - (muy5 + RIy);
random. intercepts:

RIX ~~ Rly;

x.models:

x1 ~ 1@mux1 RIx@1;

X2 ~ 1@mux2 RIx@1 x1r yir;
x3 ~ 1@mux3 RIx@1 x2r y2r;
x4 ~ 1@mux4 RIx@1 x3r y3r;
x5 ~ 1@mux5 RIx@1 x4r yér;
y.models:

yl ~ 1@muyl RIy@1;

y2 ~ 1@muy2 RIy@1 yilr x1ir;
y3 ~ 1@muy3 RIy@1 y2r x2r;
y4 ~ 1@muy4 RIy@1 y3r x3r;
y5 ~ 1@muy5 RIy@1 y4r Xx4r;
covariances:

X1 ~~ yi;

X2 ~~ y2;

X3 ~~ y3;

X4 ~~ y4;

X5 ~~ y5;

distal.outcome:

z2 ~ x1r y1r x2r y2r x3r y3r x4r y4r x5r yb5r;

SEED: 90291;
BURN: 5000;
ITER: 10000;
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The corresponding rblimp script is as follows.

library(rblimp

load(file = 'RICLPM.rda'")

)

mymodel <- rblimp(
data = RICLPM,

latent = 'R
model = '
x1lr = x1 -
X2r = X2 -
x3r = x3 -
X4r = x4 -
x5r = x5 -
ylir = y1 -
y2r = y2 -
y3r = y3 -
var = y4 -
y5r = y5 -
random.inte
RIXx ~~ Rly;
x.models:
x1 ~ 1@mux1
X2 ~ 1@mux?2
x3 ~ 1@mux3
x4 ~ 1@mux4
x5 ~ 1@mux5
y.models:
yl ~ 1@muy1l
y2 1@muy?2
y3 ~ 1@muy3
v4 1@muy4
y5 1@muy5

14

?

14

14

14

Ix RIy',

(mux1
(mux2
(mux3
(mux4
(mux5
(muy1
(muy2
(muy3
(muy4
(muy5
rcepts:

+ + + + + + + + + +

RIx@1;

RIx@1 x1r
RIx@1 x2r
RIx@1 x3r
RIx@1 x4r

RIy@1;

RIy@1l yir
RIy@1 y2r
RIy@1l y3r
RIy@1 vy4r

covariances:

X1l ~~ yi;
X2 ~~ y2;
X3 ~~ y3;
X4 ~~ y4;
X5 ~~ y5;

distal.outcome:

z2 ~ x1r yir x2r y2r x3r y3r x4r y4r x5r y5r',

seed = 90291,

burn = 5000

L]

RIX);
RIX);
RIX);
RIX);
RIX);
RIy);
RIy);
RIy);
RIy);
RIy);

yir;
y2r;
y3r;
yar;

x1r;
X2r;
x3r;
X4r;
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iter = 10000

)
output(mymodel)
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6 Multilevel Model Analysis Examples

This section illustrates multilevel models in Blimp. In general, it is possible to mix and
match features from any examples to create complex analysis models that honor
features of the data. Following previous chapters, the examples in this section use a
generic notation system where variable names usually consist of an alphanumeric
prefix and a numeric suffix (e.g., Y, X;, X;,N;, D, D,). The letter Y designates a
dependent variable, a D prefix denotes a binary dummy variable, an O prefix
indicates an ordinal variable, and an N prefix indicates a multicategorical nominal
variable. Additionally, the multilevel examples use a “_1" suffix to denote level-1
variables, “_j" for level-2 variables, and “_k” for level-3 variables (e.g., d_j is a level-2
dummy variable, x_1 is a continuous predictor measured at level-1). Blimp
determines the levels automatically, so the suffixes are meant as a visual aid for
understanding the scripts. Finally, the model equations use “cgm” and “cwc”
superscripts to indicate grand and group mean centering, respectively. The following

list outlines the examples in this section.

6.1: Random Intercept Model

6.2: Two-Level Fully Conditional Specification Multiple Imputation
6.3: Random Coefficient Model

6.4: Multilevel SEM With Random Coefficients

6.5: Alternate Prior Distributions

6.6 Inspecting Residuals

6.7: Heterogeneous) Within-Cluster Variances

6.8: Location-Scale Model With Heterogeneous Within-Cluster Variation
6.9: Random Effects Predicting a Level-2 Outcome

6.10: Latent Contextual Effect

6.11: Cross-Level Interaction Effect

6.12: 1-1-1 Mediation With Random Slopes

6.13: 1-1-1 Moderated Mediation

6.14: Within- and Between-Level Mediation
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6.15: Two-Level Growth Model

6.16: Three-Level Growth Model

6.17: Three-Level SEM Growth Model

6.18: Two-Level MIMIC Measurement Model

6.19: Sampling Weights

6.20: Partially Nested Designs (Singleton Clusters)

6.21: Discrete-Time Survival Model
6.1: Random Intercept Model

This example illustrates a two-level regression model with random intercepts. The

regression model is shown below.

Yij = (ﬁO + bOj) + 51chz'ggm + 52X262'g]m + 53D$‘;'T + 54X§§m + 55D2j + €45

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.l.imp data7.dat

The syntax highlights are as follows.

«  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all incomplete level-1 variables

«  ORDINAL command identifies binary predictors
+  FIXED command defines complete predictors
+  CENTER command applies grand mean centering to predictors

Unspecified associations for predictor variables

DATA: data7.dat;

VARIABLES: levellid level2id vi_ i1 v2 i1 d1_i1 v3 1 x1_1 v4_1
v 1 x2_1 y 1d2_j x3_j v6_j;

CLUSTERID: level2id;

ORDINAL: d1_i d2_j;


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cbeta_1X_%7B1ij%7D%5E%7Bcgm%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3D_%7B1ij%7D%5E%7Bcgm%7D%2B%5Cbeta_4X_%7B3j%7D%5E%7Bcgm%7D%2B%5Cbeta_5D_%7B2j%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/ljdf9ri7du9ar0m/Ex6.1.imp?dl=1
https://www.dropbox.com/s/4y5qjpszk2r7o40/data7.dat?dl=1
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MISSING: 999;

FIXED: x2_1 d2_j;

CENTER: grandmean = x1_1 x2_1 d1_1 x3_j;
MODEL: v 1 ~ x1_1 x2_1 d1_1 x3_j d2_j;
SEED: 90291;

BURN: 2000;

ITER: 10000,

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data7.rda')

mymodel <- rblimp(
data = data7,
clusterid = 'level2id',
ordinal = 'd1_1 d2_j',
fixed = 'x2_1 d2_j',

center = 'grandmean = x1_1 x2_1 d1_1 x3_j',
model = "y 1 ~x1 1 x2_1d1 1 x3_j d2_j',
seed = 90291,
burn = 2000,
iter = 10000

)

output(mymodel)

6.2: Two-Level Fully Conditional Specification Multiple Imputation

This example illustrates multilevel fully conditional specification multiple imputation
as an approach to getting frequentist inference for the analysis from Example 6.1. The

analysis model is shown below.

Yij = (Bo + boj) + ﬁ1chfjm + 52)(2;9]?" =+ 53D§‘3;1 + 54X§§m + B5D3; + €35

Fully conditional specification should be reserved for random intercept analyses, as
applying the procedure to models with random coefficients or interaction terms is
known to induce bias (Enders et al., 2020; Grund, Ludke, & Robitzsch, 2016).
Model-based multiple imputation is recommended for such analyses (see Example

6.3). Clicking the links below downloads the Blimp scripts and data for this example,


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cbeta_1X_%7B1ij%7D%5E%7Bcgm%7D%2B%5Cbeta_2X_%7B4ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3D_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_4X_%7B5j%7D%5E%7Bcgm%7D%2B%5Cbeta_5D_%7B3j%7D%2B%5Cvarepsilon_%7Bij%7D#0
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and the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex62.imp Ex6.2.R data7dat

The syntax highlights are as follows.

+  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts (latent group means) for all level-1 variables

+ ORDINAL command identifies binary predictors
+  FIXED command defines complete predictors

+ FCS command specifies fully conditional specification multiple imputation with
a saturated model at level-1 and level-2 (unstructured within- and
between-cluster covariance matrices)

+ FCS command includes all analysis variables
«  NIMPS command specifies 20 imputed data sets

+  Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

Imputations are stacked in a single file with an index variable added in the first
column

DATA: data7.dat;

VARIABLES: levellid level2id v1 i1 v2_ 1 d1_1 v3 1 x1_1 v4 1
v 1 x2_1y 1d2_j x3_j v6_j;

CLUSTERID: level2id;

ORDINAL: di1_ i d2_j;

MISSING: 999;

FIXED: x2_1 d2_j;

FCS: y_ 1 x1_1 x2_1 d1_1i1 x3_j d2_j;

SEED: 90291;

BURN: 2000;

ITER: 10000;

CHAINS: 20;

NIMPS: 20;

SAVE: stacked = imps.dat;


https://www.dropbox.com/s/94vlkxtntyxrvv9/Ex6.2.imp?dl=1
https://www.dropbox.com/s/0f4ytseozwul7tw/Ex6.2.R?dl=1
https://www.dropbox.com/s/q26ewp0lw9yn9xl/data7.dat?dl=1
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Blimp lists the order of the variables in the imputed data sets at the bottom of the
output file, and all variables in the input file appear in the output file regardless of

whether they were imputed.

VARIABLE ORDER IN IMPUTED DATA:
stacked = 'imps.dat'

imp# levellid level2id v1 i1 v2_1 d1 1 v3 1 x1_1
vd 1 v5 1 x2_ 1y 1d2_j x3_j v6_j

The imputed data sets can be analyzed in other software packages.

R provides an easy platform for analyzing multiple imputations. To illustrate, R script
below uses rblimp_fcs to create multiple imputations and the mitml package
(Grund, Robitzsch, & Ludke, 2021) for analysis and pooling. Note that the MISSING and
FCS commands are no longer necessary.. The former is omitted because that
information is contained in the R data file. The FCS command is replaced by a
variables parameter that lists the variables to be included in the imputation model.
Additionally, the SAVE command is no longer necessary because imputations are

automatically stored in an rblimp list object called mymodel@imputations.

library(rblimp)
load(file = 'data7.rda')

mymodel <- rblimp_fcs(
data = data7,
clusterid = 'level2id',
ordinal = 'd1_1 d2_j',
fixed = 'x2_1 d2_j"',
variables = 'y 1 x1_1 x2_1 d1_1 x3_j d2_j',
seed = 90291,
burn = 2000,
iter = 10000,
chains = 20,
nimps = 20

)

output(mymodel)
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# mitml list
implist <- as.mitml(mymodel)

# analysis and pooling with mitml
results <- with(implist,

Imer('y_ i1 ~ x1_1 + x2_1 + d1_1 + x3_j + d2_j + (1|level2id)', REML = T))
testEstimates(results, extra.pars = T)

6.3: Random Coefficient Model

This example illustrates a two-level regression model with random intercepts and

random slopes. The analysis model is shown below.
Y;j = (60 + bOj) + (61 + blj) ch;“jc + ﬁ2X2619jm + ﬁngjgm + 54D§gm + €45

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.3a.imp Ex6.3b.imp Ex6.3.R data8.dat

The syntax highlights are as follows.

«  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

+  ORDINAL command identifies a binary predictor
+  FIXED command identifies a complete predictor

«  CENTER command applies grand mean and latent group mean centering to
predictors

+  MODEL command features a random coefficient listed after the vertical pipe

Unspecified associations for predictor variables

DATA: data8.dat;

VARIABLES: levellid level2id x1_ 1 x2. 1y 1 vl 1 v2 1 d j
v3_j v4_j v5_3j x3_j v6_3j Vv7_3;

CLUSTERID: level2id;


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B3j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7Bj%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/964oumru4xiwwjk/Ex6.3a.imp?dl=1
https://www.dropbox.com/s/gcjhijvgu4upxrk/Ex6.3b.imp?dl=1
https://www.dropbox.com/s/p002amuy7gzo2xl/Ex6.3.R?dl=1
https://www.dropbox.com/s/z6ptj3wovx5eg3v/data8.dat?dl=1
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ORDINAL: d_j;

MISSING: 999;

FIXED: d_j;

CENTER: groupmean = x1_1; grandmean = x2_1 x3_j d_j;
MODEL: v 1 ~ x1_1 x2_1 x3_j d_j | x1_1;

SEED: 90291;

BURN: 5000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = data8,
clusterid = 'level2id',
ordinal = 'd_j',
fixed = 'd_j',
center = 'groupmean = x1_1i;
grandmean = x2_1 x3_j d_j',

model = 'y 1 ~ x1_1 x2_1 x3_j d_j | x1_1i',
seed = 90291,
burn = 5000,
iter = 10000
)
output(mymodel)

Blimp can save multiple imputations from any model it estimates. Model-based
multiple imputations can be saved for a frequentist analysis by adding the SAVE and

NIMPS commands. The additional syntax highlights are as follows.

+  CENTER command grand mean centers predictors in the Bayesian output, but
saved imputations are on the original metric

+  NIMPS command specifies 20 imputed data sets

«  Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

+ savelatent keyword on the OPTIONS line saves the latent group means of the
level-1 predictors and the analysis model’'s random intercept and random slope
residuals
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Imputations are stacked in a single file with an index variable added in the first
column

DATA: data8.dat;

VARIABLES: levellid level2id x1_1 x2_ 1 y 1 vl i1 v2 1 d_j
v3_j v4_j v5_j x3_j v6_j v7_j;

CLUSTERID: level2id;

ORDINAL: d_j;

MISSING: 999;

FIXED: d_j;

CENTER: groupmean = x1_1; grandmean = x2_1 x3_j d_j;

MODEL: vy 1 ~ x1_1 x2_1 x3_j d_j | x1_1;

SEED: 90291;

BURN: 5000;

ITER: 10000;

CHAINS: 20;

NIMPS: 20;

OPTIONS: savelatent;

SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the
output file, and all variables in the input file appear in the output file regardless of
whether they were imputed. The savelatent keyword also saves the latent group

means of any level-1 predictors, and these can be used to center variables prior to
analyzing the imputations. This example uses X;'s latent group means, which are

referred to by the name x1_1i.mean[level2id].

VARIABLE ORDER IN IMPUTED DATA:
stacked = 'imps.dat'
imp# levellid level2id x1_i1 x2_1 y 1 vl i1 v2 1 d_j v3_j

vd j v5 3 x3_j ve_j v7_j y i[level2id] y_i$x1_1i[level2id]
x1_i.mean[level2id] x2_1i.mean[level2id]

The imputed data sets can be analyzed in other software packages.

R provides an easy platform for analyzing multiple imputations. To illustrate, R script

below uses rblimp to create multiple imputations and the mitml package (Grund,
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Robitzsch, & Ludke, 2021) for analysis and pooling. Note that the SAVE command and
savelatent keyword on the OPTIONS line are no longer necessary because
imputations and latent variable scores are automatically stored in an rblimp list
object called mymodel@imputations. The pooled estimates are numerically equivalent

to the Bayesian results.

library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = datas8,
clusterid = 'level2id',
ordinal = 'd_j',
fixed = 'd_j',
center = 'groupmean = x1_1i;
grandmean = x2_1 x3_j d_j',
model = 'y 1 ~ x1_1 x2_1 x3_j d_j | x1_1',
seed = 90291,
burn = 5000,
iter = 10000,
chains = 20,
nimps = 20

)

output(mymodel)

# inspect variable names
names(mymodel@imputations[[1]])

# mitml list
implist <- as.mitml(mymodel)

# pooled grand means

mean_x2 <- mean(unlist(lapply(implist, function(data) mean(datas$x2_1))))
mean_x3 <- mean(unlist(lapply(implist, function(data) mean(data$x3_3j))))
mean_d <- mean(unlist(lapply(implist, function(data) mean(data$d_j))))

# center at latent cluster means
for (1 in 1:length(implist)) {

implist[[1]]$x1cwe_1 <- implist[[1]]Sx1_1 - implist[[1]]$x1_i.mean.level2id.
}

# analysis and pooling with mitml
results <- with(implist, lmer('y_1 ~ xlcwc_i1 + I(x2_1 - mean_x2)

+ I(x3_j - mean_x3) + I(d_j - mean_d) + (1 + xlcwc_1i]|level2id)', REML = T)
)
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testEstimates(results, extra.pars = T)

6.4: Multilevel SEM With Random Coefficients

This example illustrates a two-level regression model with random intercepts and
random slopes. The analysis model is the same as Example 6.3, which is shown

below.

Yij = (Bo + boy) + (81 + byj) Xii5° 4 Bo X8 + B X5!™ + BuDF™" + &35

The model is cast as a multilevel structural equation model with a pair of normally
distributed level-2 latent variables representing the random intercepts and slopes.

The level-1 and level-2 models are as follows.
Yij = Boj + B Xii;" + B Xoi) " +€ij
Boj = Bo + B3 X3 + BaD™ + by

Brj = B+ by

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.4.imp data8.dat

The syntax highlights are as follows.

«  CLUSTERID command identifies level-2 and level-3 identifiers (order doesn't
matter), automatically inducing random intercepts for all level-1 and level-2
variables

+  ORDINAL command identifies binary predictors
+  FIXED command defines complete predictors

«  CENTER command applies grand mean and latent group mean centering to
predictors

+  LATENT command defines two between-cluster latent variables representing the
random intercepts and slopes


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B3j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7Bj%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1j%7DX_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0j%7D%3D%5Cbeta_%7B0%7D%2B%5Cbeta_3X_%7B3j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7Bj%7D%5E%7Bcgm%7D%2Bb_%7B0j%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B1j%7D%3D%5Cbeta_%7B1%7D%2Bb_%7B1j%7D#0
https://dl.dropboxusercontent.com/scl/fi/1vxl9fld6pjsebvy3z2hn/Ex6.4.imp?rlkey=132xy2jnvyr89go1a9lbu93yx&dl=1
https://www.dropbox.com/s/z6ptj3wovx5eg3v/data8.dat?dl=1
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+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command estimates the random intercept and slope means

+ MODEL command sets the intercept of the regression equation equal to the
level-2 latent mean (i.e., 1@betad_j)

¢  MODEL command omits the random coefficient listed after the vertical pipe

#  MODEL command sets the random predictor’s slope equal to the random
coefficient (i.e., x1_1i@betal_j)

+  MODEL command specifies correlation between random intercepts and random
slopes (level-2 latent variables)

DATA: data8.dat;

VARIABLES: levellid level2id x1_1 x2_1 y_1 vl i1 v2_1 d_j
v3_j v4_j v5_3j x3_j v6_3j Vv7_3;

CLUSTERID: level2id;

ORDINAL: d_j;

MISSING: 999;

LATENT: level2id = beta®_j betal j;

FIXED: d_j;

CENTER: groupmean = x1_1; grandmean = x2_1 x3_j d_j;

MODEL :

level2.model:

beta®_j ~ 1 x3_j d_j;

betal j ~ 1;

betad®_j ~~ betal_j;

levell.model:

y_ 1 ~ 1@betad_j x1_i@betal_j x2_1i;

SEED: 90291;

BURN: 5000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = datas8,
clusterid = 'level2id',
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ordinal = 'd_j',
latent = 'level2id = beta®_j betal j',

fixed = 'd_j',

center = 'groupmean = x1_1i;
grandmean = x2_1 x3_j d_j',
model = '

level2.model:

beta® j ~ 1 x3_3j d_j;

betal_j ~ 1;

betad® j ~~ betal j;

levell.model:

y 1 ~ 1@beta®_j x1 i@betal j x2_1i',

seed = 90291,

burn = 5000,

iter = 10000
)
output(mymodel)

The random effect parameter estimates no longer appear on the same table when
using the multilevel SEM specification. Rather, each equation has its own summary

table. For example, the latent variable summary tables are shown below.

OUTCOME MODEL ESTIMATES:
Summaries based on 10000 iterations using 2 chains.
level2.model block:

Latent Variable: betaO_j

Grand Mean Centered: dl_j x7_j

Parameters Median StdDev 2.5% 97.5%

Variances:
Residual Var. 0.617 0.082 0.482 0.807

Coefficients:

Intercept 4.167 0.072 4.024 4.309
X7_j 0.050 0.068 -0.082 0.184
dl_j -0.077 0.140 -0.350 0.201

Standardized Coefficients:



Blimp User’s Guide (Version 3)

X7_j 0.065
di_j -0.048

Proportion Variance Explained
by Coefficients 0.016
by Residual Variation 0.984

0.087
0.086

0.020
0.020

-0.105
-0.215

0.001
0.926
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0.233
0.124

0.074
0.999

Latent Variable: betal_j

Parameters Median

Variances:
Residual Var. 0.020

Coefficients:
Intercept -0.094

Proportion Variance Explained
by Coefficients 0.000
by Residual Variation 1.000

0.020

0.000
0.000

-0.133

0.000
1.000

-0.055

0.000
1.000

Covariance Matrix: beta0®_j betal_j

Parameters Median

StdDev

Covariances:
Cov (beta0d_j,betal_j) 0.013

Correlations:
Cor(beta0®_j,betal_j) 0.122

6.5: Alternate Prior Distributions for Random Effect Covariance Matrix

This example illustrates how to examine the influence of different prior distributions

on the level-2 covariance matrix of the random effects. The analysis model is the

following two-level regression with random intercepts and random slopes.
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Y;j = (60 + bOj) + (51 + b1j> Xf;gc + ﬁQXQnym + €ij

The between-cluster covariance matrix of the random effects is a 2 by 2 matrix in this
example. Blimp offers three “off-the-shelf” inverse Wishart priors for the covariance
matrix, and it is also possible to use a so-called separation strategy that applies
distinct priors to variances and the intercept-slope correlation. Clicking the links
below downloads the Blimp scripts and data for this example, and the full set of User

Guide examples is available from a pull-down menu in the graphical interface.

Ex6.5a.prior2.imp Ex6.5b.priorl.imp Ex6.5c.prior3.imp

Ex6.5d.separation.imp data8.dat

Considering the inverse Wishart options, the default prior2 setting is less informative
because it subtracts the number of dimensions plus 1 from the degrees of freedom,
and it adds nothing to the sum of squares and cross-products; priorlis more
informative because it adds the number of dimensions plus 1to the degrees of
freedom, and it adds an identity matrix to the sum of squares and cross-products;
prior3 adds zero degrees of freedom and adds zero to the sums of squares. The code
block below shows the default specification, the syntax highlights for which are as

follows.

«  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

«  CENTER command applies grand mean and latent group mean centering
+ MODEL command features a random coefficient listed after the vertical pipe
Unspecified associations for predictor variables

« prior2 keyword on the OPTIONS line (optional) specifies the default inverse
Wishart prior

DATA: data8.dat;

VARIABLES: levellid level2id x1_1 x2_ 1 y_ 1 vl i1 v2_1 d_j
v3_ j v4 j v5_ 3 x3_j v6_3j Vv7_3;

CLUSTERID: level2id;

MISSING: 999;


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/bjawmqcg80dtqkp/Ex6.4a.prior2.imp?dl=1
https://www.dropbox.com/s/1izcaig71xz7lnt/Ex6.4b.prior1.imp?dl=1
https://www.dropbox.com/s/uuzxka1qe2l0teg/Ex6.4c.prior3.imp?dl=1
https://www.dropbox.com/s/lg41uh3ihmoencs/Ex6.4d.separation.imp?dl=1
https://www.dropbox.com/s/iu7eib1ukcjhly3/data8.dat?dl=1
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CENTER: groupmean = x1_1; grandmean = x2_1;
MODEL: v 1 ~ x1_1 x2_1 | x1_1;

SEED: 90291;

BURN: 10000;

ITER: 10000;

OPTIONS: prior2;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = datas,

clusterid = 'level2id',
center = 'groupmean = x1_1i;
grandmean = x2_1i',
model = 'y 1 ~ x1_1 x2_1 | x1_1',
seed = 90291,
burn = 10000,
iter = 10000,
options = 'prior2'
)
output(mymodel)

Similarly, the code block below shows the specification for the more informative

priorlinverse Wishart option.

DATA: data8.dat;

VARIABLES: levellid level2id x1_1 x2_ 1 y_1 vl i1 v2_1 d_j
v3_j v4_j v5_3j x3_j v6_3j Vv7_3;

CLUSTERID: level2id;

MISSING: 999;

CENTER: groupmean = x1_1i; grandmean = x2_1;

MODEL: v 1 ~ x1_1 x2_1 | x1_1;

SEED: 90291;

BURN: 10000;

ITER: 10000;

OPTIONS: priori;

The corresponding rblimp script is as follows.
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library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = data8,

clusterid = 'level2id',
center = 'groupmean = x1_1i;
grandmean = x2_1i',
model = 'y 1 ~ x1_1 x2_1 | x1_1'
seed = 90291,
burn = 10000,
iter = 10000,
options = 'prioril'
)
output(mymodel)
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Comparing the magnitude of the point estimates provides a gauge about the prior

distribution’s impact. The output table for the default prior2 specification is shown

immediately below, and the second output table shows the results from the more

informative priori1 specification.

# prior2

Parameters

Variances:
L2 : Var(Intercept)
L2 : Cov(xl.i,Intercept)
L2 : Var(xl.1)
Residual Var.

Proportion Variance Explained
by Fixed Effects
by Level-2 Random Intercepts
by Level-2 Random Slopes
by Level-1 Residual Variation

Median

[ol ol olNo)

[ol ol olNo)

.613
.016
.020
.358

.048
.587
.021
.343

StdDev

[ol ol olNo)

[ol ol olNo)

.083
.016
.006
.011

.009
.033
.006
.027

[cl ol oo}

2.5%

.478
.014
.010
.337

.032
.524
.011
.288

97 .5%

[cl o oo}

[cl ol oo}

.804
. 048
.034
.381

.065
.653
.036
.395
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# priorl

Parameters Median StdDev 2.5% 97.5%

Variances:

L2 : Var(Intercept) 0.591 0.078 0.464 0.771
L2 : Cov(xl.i,Intercept) 0.017 0.018 -0.017 0.053
L2 : Var(x1l.1) 0.039 0.007 0.028 0.056
Residual Var. 0.354 0.011 0.333 0.377
Proportion Variance Explained
by Fixed Effects 0.048 0.009 0.033 0.068
by Level-2 Random Intercepts 0.569 0.033 0.505 0.635
by Level-2 Random Slopes 0.041 0.008 0.028 0.059
by Level-1 Residual Variation 0.341 0.026 0.289 0.392

The default prior 2's random slope variance is roughly half as large as that of the
more informative prior (0.020 vs. 0.039), and the two estimates differed by about 2.7

posterior standard deviation units (a very large difference). As a proportion of the

total variance, the R? effect sizes attributable to the random slopes (Rights & Sterba,

2019) were also quite different (2.1% vs. 4.1%).

The separation strategy (Barnard, McCulloch, & Meng, 2000; Liu, Zhang, & Grimm,
2016) assigns distinct priors to the diagonal and off-diagonal elements of the
covariance matrix. An analogous strategy can be implemented in Blimp by
specifying the random intercepts and slopes as a pair of level-2 latent variables. The
focal model is cast as a multilevel structural equation model with a pair of normally
distributed level-2 latent variables representing the random intercepts and slopes.

The focal model features these latent variables as predictors, as shown below.

Boj = Bo + bo;


https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0j%7D%3D%5Cbeta_%7B0%7D%2Bb_%7B0j%7D#0
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B = B+ by
Yij = Boj + B X1 + B Xol "+ €ij

Note that the coefficient of the random slope predictor is implicitly fixed to one in

this specification.

This specification assigns separate inverse gamma priors to the random intercept
and slope variances, and it specifies a beta prior distribution to their correlation.
Blimp uses a multilevel extension of the procedure described in Merkle and Rosseel
(2018). Computer simulation studies suggest that the separation strategy gives more
accurate estimates of the variance components, although the correlation estimate
may be attenuated when the number of level-2 units is small (Keller & Enders, 2021).

The unique syntax highlights for the code block are as follows.

«  LATENT command defines two between-cluster latent variables representing the
random intercepts and slopes

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command estimates the random intercept and slope means

+  MODEL command sets the intercept of the regression equation equal to the
level-2 latent mean (1@beta0. j)

+  MODEL command omits the random coefficient listed after the vertical pipe

+  MODEL command sets the random predictor’s slope equal to the random
coefficient (x1_i@betal_j)

+ MODEL command specifies correlation between random intercepts and random
slopes (level-2 latent variables)

%  OPTIONS command lists the use_phantom keyword to invoke a phantom variable
specification that assigns distinct priors to latent variable variances and their
correlation

DATA: data8.dat;

VARIABLES: levelilid level2id x1_1 x2_ 1 y_ 1 vl i1 v2_1 d_j
v3_j v4d j v5 j x3_j v6_j v7_j;

CLUSTERID: level2id;

MISSING: 999;


https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B1j%7D%3D%5Cbeta_%7B1%7D%2Bb_%7B1j%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1j%7DX_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
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LATENT: level2id = beta®_j betal_j;
CENTER: groupmean = x1_1; grandmean = x2_1;
MODEL :

latent.variables:

betad_j ~ 1;

betal j ~ 1;

beta®_j ~~ betal_j;

focal.model:

y 1 ~ 1@beta0®_j x1_i@betal_j x2_1i;
SEED: 90291;

BURN: 10000,

ITER: 10000;

OPTIONS: use_phantom;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = datas,

clusterid = 'level2id',

latent = 'level2id = beta®_j betal_j',
center = 'groupmean = x1_1i;

grandmean = x2_1i',

model = '

betal_j ~ 1;

beta® j ~~ betal j;

focal.model:

y_1 ~ 1@beta®_j x1_1i@betal_j x2_1i',
seed = 90291,

burn = 10000,

iter = 10000,

options = 'use_phantom'
)
output(mymodel)
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The random effect parameter estimates no longer appear on the same table when

employing the separation strategy because the random intercepts and slopes are

latent variables with their own equations and summary tables. The analysis model
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table shows the random intercept variance, and the level-2 latent variable's (random

slope) variance and correlation appear in separate tables.

# separation strategy
Latent Vardiable: beta0d_j

Parameters Median StdDev 2.5% 97.5%

Variances:
Residual Var. 0.605 0.081 0.472 0.792

Coefficients:
Intercept 4.170 0.071 4.031 4.309

Proportion Variance Explained
by Coefficients 0.000 0.000 0.000 0.000
by Residual Variation 1.000 0.000 1.000 1.000

Latent Variable: betal_j

Parameters Median StdDev 2.5% 97.5%

Variances:
Residual Var. 0.019 0.005 0.011 0.031

Coefficients:
Intercept -0.094 0.020 -0.132 -0.055

Proportion Variance Explained
by Coefficients 0.000 0.000 0.000 0.000
by Residual Variation 1.000 0.000 1.000 1.000

Phantom Variable Correlations:

Parameters Median StdDev 2.5% 97.5%

betad_j ~~ betal j 0.112 0.123 -0.127 0.348
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Outcome Variable: vy i
Grand Mean Centered: x2_ i
Group Mean Centered: x1.i

Parameters

Median

StdDev

Variances:
Residual Var.

Coefficients:
betad_j
x2_1
x1.i*betal_j

Standardized Coefficients:
x2_1i
x1.i*betal_ j

Proportion Variance Explained
by Coefficients
by Residual Variation

@1.
.087

@1.

000

000

.291
.284

6.6: Inspecting Residuals

This example illustrates how to inspect the level-1 and level-2 residuals (random

effects) from a two-level regression model with random intercepts and random
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slopes. The analysis model, shown below, is the same as the one from Example 6.4.

Yij = (Bo + boj) + (B1 + buj)

cwc
14j

+ B2

+ 62']'

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.6.imp Ex6.6.R data8.dat

The syntax highlights are as follows.


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/v6wlujtu467i6q7/Ex6.5.imp?dl=1
https://www.dropbox.com/s/bbl791le4riyupl/Ex6.5.R?dl=1
https://www.dropbox.com/s/ji6xi9rykr17ktf/data8.dat?dl=1
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+  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

«  CENTER command applies grand mean and latent group mean centering to
predictors in the Bayesian output, but saved imputations are on the original
metric

+  MODEL command features a random coefficient listed after the vertical pipe
Unspecified associations for predictor variables

+ savelatent keyword on the OPTIONS line saves the latent group means of the
level-1 predictors and the analysis model’'s random intercept and random slope
residuals

+« saveresidual keyword on the OPTIONS line saves level-1 residuals
+  NIMPS command specifies 20 imputed data sets

«  Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

Imputations are stacked in a single file with an index variable added in the first
column

DATA: data8.dat;

VARIABLES: levellid level2id x1_ 1 x2_ 1 y 1 vl i1 v2 1 d j
v3_j v4_j v5_j x3_j v6_]j v7_j;

CLUSTERID: level2id;

MISSING: 999;

CENTER: groupmean = x1_1; grandmean = x2_1;

MODEL: y_1 ~ x1_1 x2_1 | x1_1;

SEED: 90291;

BURN: 5000;

ITER: 10000;

CHAINS: 20;

NIMPS: 20;

OPTIONS: savelatent saveresidual;

SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the
output file, and all variables in the input file appear in the output file regardless of
whether they were imputed. The latent group means, random effects, and level-1
residuals are appended to the end of the file. Latent group means are designated by

appending the level-2 identifier in square brackets to the end of a predictor variable’s



Blimp User’s Guide (Version 3) 246

name (e.g., x1_1i.mean[level2id] and x2_1i_mean[level2id]). The analysis model’s
random intercepts are denoted by appending the level-2 identifier in square
brackets to the end of an outcome variable's name (e.g. y_1i[level2id]). Random
slope residuals are indicated by joining the outcome and random predictor variables
with a $ sign (e.g., y_i$x1_i[level2id]). Finally, level-1 residuals are indicated by

appending .residual to the end of the outcome variable's name (e.g. y_1i.residual).

VARIABLE ORDER IN IMPUTED DATA:
stacked = 'imps.dat'

imp# levellid level2id x1_i1 x2_1 y_1 vl i v2_ 1 d_j v3_j
vd j v5_ j x3_j ve_j v7_j y i[level2id] y_i$x1_1i[level2id]
x1_1i.mean[level2id] x2_1i.mean[level2id] y_1i.residual

The imputed data sets can be analyzed in other software packages.

R provides an easy platform for analyzing multiple imputations. To illustrate, R script
below uses rblimp to create multiple imputations for graphing. Note that the SAVE
command and savelatent keyword on the OPTIONS line are no longer necessary
because imputations and latent variable scores are automatically stored in an rblimp

list object called mymodel@imputations.

library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = datas8,
clusterid = 'level2id',
ordinal = 'd_j',
fixed = 'd_j',
center = 'groupmean = x1_1i;
grandmean = x2_1 x3_j d_j',
model = 'y 1 ~ x1_1 x2_1 x3_j d_j | x1_i'",
seed = 90291,
burn = 5000,
iter = 10000,
chains = 20,
nimps = 20
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)
output(mymodel)

# inspect variable names in imputed data
names(mymodel@imputations[[1]])

# stack list of imputed data sets

dat2plot <- do.call(rbind, mymodel@imputations)
# plot random intercepts
hist(dat2plotSy_1i.level2id.,breaks = 50)
plot(density(dat2plotSy_1i.level2id.))

# plot random slopes
hist(dat2plot$Sy_1.x1_1i.level2id.,breaks = 50)
plot(density(dat2plotSy_1i.x1_1i.level2id.))

6.7: Heterogeneous Within-Cluster Variation

This example illustrates a two-level regression model with random intercepts and
slopes and heterogeneous within-cluster variances. The analysis model below is the
same one as Example 6.3, but the variance of the within-cluster residuals differs

across clusters.
Yij = (Bo + boy) + (81 + byj) XT3 4 Bo X5l 4 BsX5!™ + BuDF" + &35

Blimp provides two methods for modeling heterogeneous within-cluster variation.
The first is an approach described by Kasim and Raudenbush (1998). Their model
views cluster-specific variances as a level-2 variable. Unlike the location-scale model
in Example 6.8, the Kasim and Raudenbush method does not allow random variation
to correlate with or link to other level-2 variables and random effects. Thus, the intent
of this model is to simply adjust for heteroscedasticity in the same spirit as robust

standard errors.

Clicking the links below downloads the Blimp scripts and data for these examples,
and the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.7imp data8.dat


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B3j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7Bj%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://dl.dropboxusercontent.com/s/pminkzzqfk8606h/Ex6.6b.imp?dl=1
https://www.dropbox.com/s/kh7dorg3r03ds4k/data8.dat?dl=1
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The code block below shows the setup for the Kasim and Raudenbush (1998)
approach to modeling heterogeneous variation. The syntax highlights are listed
below. Adding the NIMPS and SAVE commands generates model-based multiple

imputations for a frequentist analysis (see Example 6.3).

+  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

+  ORDINAL command identifies a binary predictor
+  FIXED command identifies a complete predictor

+  CENTER command applies grand mean and latent group mean centering to
predictors

+ MODEL command features a random coefficient listed after the vertical pipe
Unspecified associations for predictor variables

+ hev keyword on OPTIONS line specifies heterogeneous within-cluster variances
(Kasim & Raudenbush, 1998)

DATA: data8.dat;

VARIABLES: levellid level2id x1_1 x2_ 1 y_ 1 vl i1 v2_1 d_j
v3_ j v4 j v5_ 3 x3_j v6_3j Vv7_3;

CLUSTERID: level2id;

ORDINAL: d_j;

MISSING: 999;

FIXED: d_j;

CENTER: groupmean = x1_1; grandmean = x2_1 x3_j d_j;

MODEL: v 1 ~ x1_1 x2 1 x3_j d j | x1_1;

SEED: 90291;

BURN: 5000;

ITER: 10000;

OPTIONS: hev;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = datas8,
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clusterid = 'level2id',
ordinal = 'd_j',

fixed = 'd_j',

center = 'groupmean = x1_1i;

grandmean = x2_1 x3_j d_j',
model = 'y 1 ~ x1_ 1 x2_1 x3_jd j| x1_1',

seed = 90291,
burn = 5000,
iter = 10000,
options = 'hev'
)
output(mymodel)

MCMC estimation yields an estimate of the variation within each cluster. To convey
the magnitude of the variational differences, Blimp computes the mean and
guartiles of the variance distribution and includes these summaries on the output.

The output excerpt below shows part of the main summary table from the example.

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 -iterations using 2 chains.

Outcome Variable: y_i

Grand Mean Centered: dl_j x2_1i x7_j
Group Mean Centered: x1_i

Parameters Median StdDev 2.5% 97.5%

Variances:

L2 : Var(Intercept) 0.648 0.088 0.507 0.851
L2 : Cov(x1l_i,Intercept) 0.026 0.014 -0.000 0.056
L2 : Var(x1_1) 0.014 0.006 0.006 0.028
Heterogeneity Index 0.207 0.036 0.149 0.288
Q25% Residual Var. 0.188 0.011 0.168 0.211
Q50% Residual Var. 0.296 0.016 0.267 0.328
Mean Residual Var. 0.373 0.016 0.345 0.406
Q75% Residual Var. 0.476 0.028 0.426 0.534
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6.8: Location—Scale Model With Heterogeneous Within-Cluster Variation

This example illustrates a two-level location-scale model with random intercepts,
random slopes, and random heterogeneous within-cluster variances. Hedeker,
Mermelstein, and Demirtas (2008) and more recently McNeish (2021) describe the
model in detail. The analysis model below is the same one as Example 6.4, but the

variance of the within-cluster residuals differs across clusters.
The analysis model is the same as Example 6.3, which is shown below.
Yij = (Bo +boj) + (81 + biy) X755 4 Bo X37™ + B3 X5!™ + BaDP™ + €45

Following Example 6.4, the model is cast as a multilevel structural equation model
with a pair of normally distributed level-2 latent variables representing the random

intercepts and slopes. The level-1 and level-2 models are as follows.
Yij = Boj + By X1 + B Xo " + €ij
BOj == 50 + Bngfm + B4D;gm + boj

B = B+ by

A location-scale model expresses the natural log of the within-cluster variance as a
level-2 latent variable (random effect). The mean and variance of this latent variable
encode the typical amount of variation and between-cluster differences in the
within-cluster variation (on the logarithmic metric). The scale model has both a
within-cluster and between-cluster component, and predictors can be added at

each level. The equations below add a predictor at each level.

Yoj = Yo + 72D + goj

ln(a’?ﬁ_) = Y, + ’Ylec;g-C


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B3j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7Bj%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1j%7DX_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0j%7D%3D%5Cbeta_%7B0%7D%2B%5Cbeta_3X_%7B3j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7Bj%7D%5E%7Bcgm%7D%2Bb_%7B0j%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B1j%7D%3D%5Cbeta_%7B1%7D%2Bb_%7B1j%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma_%7B0j%7D%3D%5Cgamma_%7B0%7D%2B%5Cgamma_2D_%7Bj%7D%5E%7Bcgm%7D%2Bg_%7B0j%7D#0
https://www.codecogs.com/eqnedit.php?latex=ln(%5Csigma_%7B%5Cvarepsilon_%7Bij%7D%7D%5E2)%3D%5Cgamma_%7B0j%7D%2B%5Cgamma_1X_%7B1ij%7D%5E%7Bcwc%7D#0
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This approach allows within-cluster variation to function as both an outcome and a
predictor of distal level-2 outcomes. It is typical to allow the logarithmic latent

variable to correlate with the random intercepts and slopes from the focal model.

Clicking the links below downloads the Blimp scripts and data for these examples,
and the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.8.imp data8.dat

The code block below shows the basic setup for a location-scale model where
observation-level variation is a function of a level-1 and level-2 predictor and a level-2
random effect. The syntax highlights are listed below. Adding the NIMPS and SAVE
commands generates model-based multiple imputations for a frequentist analysis

(see Example 6.3).

«  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

+  ORDINAL command identifies a binary predictor
+  FIXED command defines a complete predictor

+ LATENT command initializes three level-2 latent variables that represent the
random intercepts, random slopes, and random within-cluster variances on the
logarithmic scale

«  CENTER command applies grand mean and latent group mean centering to
predictors

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

%  MODEL command estimates the latent variable means

+  MODEL command sets the intercept of the regression equation equal to the
level-2 latent mean (1@beta0_j)

+  MODEL command omits the random coefficient listed after the vertical pipe

+ MODEL command sets the random predictor’s slope equal to the random
coefficient (x1_i@betal_j)

#  MODEL command includes a variance model for the outcome using the var(y1_1)
function


https://dl.dropboxusercontent.com/scl/fi/zbjgyifids4whg773q8a8/Ex6.7.imp?rlkey=jkcmbhpujwua5my9698ay4jw8&dl=1
https://www.dropbox.com/s/kh7dorg3r03ds4k/data8.dat?dl=1
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+  MODEL command sets the intercept of the log-variance model equal to the level-2
latent mean (e.g., var(yl1_1i) ~ 1@logvar_j)

+  MODEL command specifies correlations among all random effects

DATA: data8.dat;

VARIABLES: levellid level2id x1_1 x2_ 1 y_1 vl i1 v2_1 d_j
v3_j v4_j v5_3j x3_j v6_3j Vv7_3;

CLUSTERID: level2id;

ORDINAL: d_j;

MISSING: 999;

LATENT: level2id = beta®_j betal j logvar_j;

FIXED: d_j;

CENTER: groupmean = x1_1; grandmean = x2_1 x3_j d_j;

MODEL :

level2.model:

beta®_j ~ 1 x3_j d_j;

betal j ~ 1;

betad®_j ~~ betal_j;

levell.model:

y_ 1 ~ 1@betad_j x1_i@betal_j x2_1i;

variance.model :

logvar_j ~ 1 d_j;

var(y_1) ~ 1@logvar_j x1_1i;

logvar_j ~~ beta®_j betal_j;

SEED: 90291;

BURN: 10000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = datas,
clusterid = 'level2id',
ordinal = 'd_j',
latent = 'level2id = beta®_j betal_j logvar_j',
fixed = 'd_j',
center = 'groupmean = x1_1i;
grandmean = x2_1 x3_j d_j',
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model =
level2.model:

beta®_j ~ 1 x3_j d_j;

betal j ~ 1;

betad®_j ~~ betal_j;

levell.model:

y 1 ~ 1@beta0®_j x1_i@betal_j x2_1i;
variance.model:

logvar_j ~ 1 d_j;

var(y_1) ~ 1@logvar_j x1_1i;
logvar_j ~~ beta®_j betal j',

seed = 90291,

burn = 10000,

iter = 10000
)
output(mymodel)

MCMC estimation yields a model-predicted variance for each observation (on the
natural log scale). To convey the magnitude of the variational differences, Blimp
converts the mean and quartiles of the log-variance distribution to the variance
metric and includes these summaries on the output. The output excerpt below

shows part of the main summary table from the example.

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 2 chains.

Outcome Variable: y1_i

Grand Mean Centered: x2_i
Group Mean Centered: x1_i

Parameters Median StdDev 2.5% 97.5%

Variances:

Q25% Residual Var. 0.190 0.011 0.171 0.212
Q50% Residual Var. 0.307 0.015 0.280 0.339
Mean Residual Var. 0.371 0.014 0.344 0.401

Q75% Residual Var. 0.486 0.025 0.440 0.538
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Coefficients:

betad_j @1.000 — - _—
x2_1 0.082 0.008 0.066 0.096
x1_ixbetal_j @1.000 - —— ——-

Standardized Coefficients:

x2_1 0.273 0.024 0.224 0.321

x1_ixbetal_j 0.257 0.031 0.196 0.318
Proportion Variance Explained

by Coefficients 0.150 0.021 0.113 0.193

by Residual Variation 0.850 0.021 0.807 0.887

6.9: Random Effects Predicting a Level-2 Outcome

This example illustrates a two-level regression model with random intercepts and

random slopes. The focal analysis model is shown below.
Y;j = (BO + bOj) + (61 + blj) ch;“jc + ﬁzchlgjm + 53X§]gm + 64D§gm + €45

The random intercepts and random slopes in turn predict a distal outcome, as

follows.

Y2 = Yo + 71boj + 2015 + 1

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.9a.imp Ex69b.imp data8.dat

The syntax highlights are as follows.

«  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

+  ORDINAL command identifies a binary predictor


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B3j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7Bj%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7B2j%7D%3D%5Cgamma_0%2B%5Cgamma_1b_%7B0j%7D%2B%5Cgamma_2b_%7B1j%7D%2Br_i#0
https://dl.dropboxusercontent.com/s/inp43fu2u2f3c77/Ex6.7a.imp?dl=1
https://dl.dropboxusercontent.com/s/382fyw3dbfjv59b/Ex6.7b.imp?dl=1
https://dl.dropboxusercontent.com/s/sj7z5g99yy4eb31/data8.dat?dl=1
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+ RANDOMEFFECT command defines random intercepts and slopes as level-2 latent
variables

+  FIXED command identifies a complete predictor

+ CENTER command applies grand mean and latent group mean centering to
predictors

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+ MODEL command features a random coefficient listed after the vertical pipe

Unspecified associations for predictor variables

DATA: data8.dat;

VARIABLES: levellid level2id x1_ 1 x2_ 1 y 1 vl i1 v2 1 d j
v3_j v4_j v5_j x3_j v6_] y2_j;

CLUSTERID: level2id;

ORDINAL: d_j;

MISSING: 999;

RANDOMEFFECT:

beta®_j =y 1 | 1 [level2id];

betal_j =y 1 | x1_1 [level2id];

FIXED: d_j;

CENTER: groupmean = x1_1; grandmean = x2_1 x3_j d_j;

MODEL:

focal.model:

y 1 ~x1. 1 x2_1x3_jdj| x1_1;

distal.outcome:

y2_j ~ beta®_j betal j x3_3j;

SEED: 90291;

BURN: 10000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = data8,
clusterid = 'level2id',
ordinal = 'd_j',
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randomeffect = 'beta®_j =y 1 | 1 [level2id];
betal j =y 1 | x1_1 [level2id]',
fixed = 'd_j',

center = 'groupmean = x1_1i;
grandmean = x2_1 x3_j d_j',
model = '

focal.model:

y 1 ~x1_1 x2_1 x3_j d_j| x1_1i;
distal.outcome:

y2_j ~ beta@_j betal_j x3_j',

seed = 90291,

burn = 10000,

iter = 10000
)
output(mymodel)

An alternate approach defines a pair of level-2 latent variables that represent the
random intercepts and slopes. The setup of this model is identical to the multilevel
SEM in Example 6.4.

DATA: data8.dat;

VARIABLES: levellid level2id x1_1 x2_ 1 y 1 vl i1 v2_1 d_j
v3_j v4_j v5_j x3_j v6_j y2_j;

CLUSTERID: level2id;

ORDINAL: d_j;

MISSING: 999;

LATENT: level2id = beta@_j betal_j;

FIXED: d_j;

CENTER: groupmean = x1_1; grandmean = x2_1 x3_j d_j;

MODEL :

level2.model :

beta®_j ~ 1 x3_j d_j;

betal j ~ 1;

beta®_j ~~ betal j;

levell.model:

y 1 ~ 1@beta0®_j x1_i@betal j x2_1;

distal.outcome:

y2_j ~ beta®_j betal j x3_j;

SEED: 90291;

BURN: 10000;

ITER: 10000;
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The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = data8,
clusterid = 'level2id',
ordinal = 'd_j',
latent = 'level2id = beta®_j betal j',
fixed = 'd_j',

center = 'groupmean = x1_1i;
grandmean = x2_1 x3_j d_j',
model = '

level2.model:

beta®_j ~ 1 x3_j d_j;

betal _j ~ 1;

betad®_j ~~ betal j;

levell.model:

y 1 ~ 1@beta®_j x1_i@betal j x2_1;
distal.outcome:

y2_j ~ beta®_j betal_j x3_j',

seed = 90291,

burn = 10000,

iter = 10000
)
output(mymodel)

6.10: Latent Contextual Effect Model

This example illustrates a two-level regression model that includes within- and
between-cluster slopes for a level-1 predictor and a latent contextual effect (Ludtke

et al., 2008).

Y;j - (BO + bOj) + (ﬂl + blj)(Xi;Uc) + Bg(ﬂgg]m) + 5ij

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.10.imp data8.dat



https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B(%5Cbeta_1%2Bb_%7B1j%7D)(X_%7Bij%7D%5E%7Bcwc%7D)%2B%5Cbeta_2(%5Cmu_%7BX_j%7D%5E%7Bcgm%7D)%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/qeo7iuov049suuz/Ex6.8.imp?dl=1
https://www.dropbox.com/s/sj7z5g99yy4eb31/data8.dat?dl=1
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The syntax highlights are listed below. Adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example
6.3).

«  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

«  CENTER command applies grand mean and latent group mean centering to
predictors

+  MODEL command features a random coefficient listed after the vertical pipe

+ MODEL command specifies latent group means as a level-2 predictor with the
.mean suffix on a level-1 predictor

+  MODEL command labels within- and between-cluster slopes

+  PARAMETERS command uses labeled quantities to compute latent contextual
effect (between- vs. within-cluster slope difference)

DATA: data8.dat;

VARIABLES: levellid level2id vi_i1 x_ i1 y_ 1 v2_1i:v10_1;
CLUSTERID: level2id;

MISSING: 999;

CENTER: groupmean = x_1; grandmean = x_1i.mean;
MODEL :

y 1 ~ x_i@beta_w x_i.mean@beta b | x_ 1i;
PARAMETERS:

contextual = beta b - beta w;

SEED: 90291;

BURN: 5000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data8.rda')

mymodel <- rblimp(
data = datas,
clusterid = 'level2id',
center = 'groupmean = x_1i;
grandmean = x_i.mean',
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model = 'y_1 ~ x_i@beta_w x_1i.mean@beta b | x_1',
parameters = 'contextual = beta b - beta w',
seed = 90291,
burn = 5000,
iter = 10000
)
output(mymodel)

6.11: Cross-Level Interaction Effect

This example illustrates a two-level regression model that includes a cross-level
interaction involving a continuous level-1 predictor and a continuous level-2

moderator. The regression model is as follows.

Yij = (Bo 4 boy) + (B1 + byy) (Xi57) + Ba(MT™) + B3 (X3°)(MT™) + &4

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Exella.imp Ex6llb.imp datal.dat

The syntax highlights are listed below. Adding the NIMPS and SAVE commands
generates model-based multiple imputations for a frequentist analysis (see Example
6.3).

«  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

+  CENTER command applies grand mean and latent group mean centering to
predictors

+  MODEL command features a random coefficient listed after the vertical pipe
+ MODEL command features a product term

+  SIMPLE command produces conditional effects (simple slopes) at different
standard deviation units of the continuous moderator

Unspecified associations for predictor variables


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)(X_%7Bij%7D%5E%7Bcwc%7D)%2B%5Cbeta_2(M_%7Bj%7D%5E%7Bcgm%7D)%2B%5Cbeta_3%5Cleft(X_%7Bij%7D%5E%7Bcwc%7D)(M_%7Bj%7D%5E%7Bcgm%7D%5Cright)%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/0j4jtmplpqy0nqp/Ex6.9.imp?dl=1
https://dl.dropboxusercontent.com/scl/fi/xxd9j3jbncwpewlx51twa/Ex6.11b.imp?rlkey=awehhe3zaxajbct3z7zpenmuh&dl=1
https://www.dropbox.com/s/6kkdf73lw34y51p/data1.dat?dl=1
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DATA: datal.dat;

VARIABLES: levellid level2id vi_i v2_ 1y 1 x_1 v3_1 m_j v4_j;
CLUSTERID: level2id;

MISSING: 999;

CENTER: groupmean = X_1i; grandmean = m_j;
MODEL:

y 1 ~x1mjxi1*m_j | x_i;

SIMPLE: x_ 1 | m_j;

SEED: 90291;

BURN: 10000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = datail,
clusterid = 'level2id',
center = 'groupmean = Xx_1;
grandmean = m_j',
model = 'y 1 ~ x_ 1 m_j x_i*m_j | x_1i',
simple = 'x 1 | m_j',
seed = 90291,
burn = 10000,
iter = 10000

)
output(mymodel)

Alternatively, the analysis can be cast as a multilevel structural equation model. The
model setup is similar to Example 6.4. This model does not include an explicit
product term. Rather, the cross-level product is represented as a level-2 predictor in
the random slope latent variable’'s equation. The level-1 and level-2 models are as

follows.
Yij = Boj + 1, X557 + €3

Boj = Bo + BaM™ + by,


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1j%7DX_%7Bij%7D%5E%7Bcwc%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0j%7D%3D%5Cbeta_%7B0%7D%2B%5Cbeta_2M_%7Bj%7D%5E%7Bcgm%7D%2Bb_%7B0j%7D#0
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Bij = B+ Bs M + by
The script for the multilevel SEM is shown below.

DATA: datal.dat;

VARIABLES: levellid level2id vi_i v2_ 1y 1 x_1 v3_1 m_j v4_j;
CLUSTERID: level2id;

MISSING: 999;

LATENT: level2id = beta®_j betal_j;
CENTER: groupmean = X_1i; grandmean = m_j;
MODEL :

level2.model:

beta®_j ~ 1 m_j;

betal j ~ 1 m_j;

beta®_j ~~ betal_j;

levell.model:

y_1 ~ 1@betad®_j x_i@betal j;

SEED: 90291;

BURN: 10000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = datail,

clusterid = 'level2id',

latent = 'level2id = beta®_j betal_j',
center = 'groupmean = x_1i;

grandmean = m_j',

model = '

level2.model:

beta®_j ~ 1 m_j;

betal_ j ~ 1 m_j;

betal®_j ~~ betal j;
levell.model:

y 1 ~ 1@beta®_j x_i@betal j',
seed = 90291,

burn = 10000,

iter = 10000


https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B1j%7D%3D%5Cbeta_%7B1%7D%2B%5Cbeta_3M_%7Bj%7D%5E%7Bcgm%7D%2Bb_%7B1j%7D#0
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output(mymodel)

6.12: 1-1-1 Mediation With Random Slopes

This example illustrates a two-level path model that features an indirect effect of two
level-1 predictors, both of which are within-cluster centered at their latent group

means. The regression models are as follows.
Xij = px; +ex,
Mij = pa; + o (Xi5 — px;) + e
Yy =ty + Bi(Mij — puag,) + 7(Xij — pix,) + e,
Hx; = Hx + Uux;
fivg; = pr Ui
Hy; = fy + Uy,
O = [ha + Uq,
Bj = mp + ug,
TJI- = + uTJ/_

The random slopes are pure within-cluster effects because the predictors are

centered at their latent cluster means. The path diagram below shows the model.


https://www.codecogs.com/eqnedit.php?latex=X_%7Bij%7D%3D%5Cmu_%7BX_j%7D%2B%5Cvarepsilon_%7BX_%7Bij%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7Bij%7D%3D%5Cmu_%7BM_j%7D%2B%5Calpha_j(X_%7Bij%7D%20-%20%5Cmu_%7BX_j%7D)%2B%5Cvarepsilon_%7BM_%7Bij%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cmu_%7BY_j%7D%2B%5Cbeta_j(M_%7Bij%7D%20-%20%5Cmu_%7BM_j%7D)%2B%5Ctau%5E%7B'%7D_%7Bj%7D(X_%7Bij%7D%20-%20%5Cmu_%7BX_j%7D)%2B%5Cvarepsilon_%7BY_%7Bij%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu_%7BX_j%7D%3D%5Cmu_X%2Bu_%7BX_%7Bj%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu_%7BM_j%7D%3D%5Cmu_M%2Bu_%7BM_%7Bj%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu_%7BY_j%7D%3D%5Cmu_Y%2Bu_%7BY_%7Bj%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_j%3D%5Cmu_%7B%5Calpha%7D%2Bu_%7B%5Calpha_%7Bj%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_j%3D%5Cmu_%7B%5Cbeta%7D%2Bu_%7B%5Cbeta_%7Bj%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau_j%5E%7B'%7D%3D%5Cmu_%7B%5Ctau%5E%7B'%7D%7D%2Bu_%7B%5Ctau_%7Bj%7D%5E%7B'%7D%7D#0
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The ellipses in the between-cluster model represent the latent group means (i.e,,
random intercepts) and random slopes. Note that the a and g random slopes are
correlated and all other random effects are independent. This model specification

follows Yuan and MacKinnon (2009).

The latent variable definitions are the same as those from the multilevel SEM
analyses in Example 6.4. Clicking the links below downloads the Blimp scripts and
data for this example, and the full set of User Guide examples is available from a

pull-down menu in the graphical interface.

Ex6.12.imp datal.dat

The syntax highlights are listed below. Adding the NIMPS and SAVE commands

263

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

+  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables


https://www.dropbox.com/s/oorulcr33bez82e/Ex6.10.imp?dl=1
https://www.dropbox.com/s/fe43gweu2g56j55/data1.dat?dl=1
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»  LATENT commmand defines between-cluster latent variables representing the
random intercepts and slopes

#  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

%  MODEL command estimates the random intercept and slope means, using the ->
operator to specify means for all variables that do not require labels

+  MODEL command sets the intercept of the regression equation equal to the
level-2 latent mean (e.g.,, x_1 ~ 1@xmean_j)

+  MODEL command centers predictors at their latent group means to obtain pure
within-cluster variables (e.g., x_1 - xmean_j)

+ MODEL command omits the random coefficient listed after the vertical pipe

#  MODEL command sets the random predictor’s slope equal to the random
coefficient (e.g., (x_1 - xmean_j)@alpha_j)

#  MODEL command specifies the correlation between random slopes

+  PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

% PARAMETERS commmand uses the .totalvar function to access the variance of the
random effects

DATA: datal.dat;
VARIABLES: levelilid level2id vi_i1 y i m_1 x_i1 v2_1 v3_j v4_j;
CLUSTERID: Tlevel2id;
MISSING: 999;
LATENT: level2id = xmean_j mmean_j ymean_j
alpha_j beta_j tau_j;
MODEL :
level2.models:
1 -> xmean_j mmean_j ymean_j tau_j;
alpha_j ~ 1@alpha_mean;
beta_j ~ 1@beta_mean;
alpha_j ~~ beta_j@ab_cor;
levell.models:
x_1 ~ 1@xmean_j;
m_i1 ~ 1@mmean_j (x_i1 - xmean_j)@alpha_j;
y_1 ~ 1@ymean_j (m_1 - mmean_j)@beta_j (x_1 - xmean_j)@tau_j;
PARAMETERS:
ab_cov = ab_cor * sqrt(alpha_j.totalvar * beta_j.totalvar);
ab = alpha_mean * beta_mean + ab_cov;
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SEED: 90291;
BURN: 10000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(

data = datail,

clusterid = 'level2id',
latent = 'level2id = xmean_j mmean_j ymean_j alpha_j beta_j tau_j',
model = '

level2.models:

1 -> xmean_j mmean_j ymean_j tau_j;

alpha_j ~ 1@alpha_mean;

beta_j ~ 1@beta_mean;

alpha_j ~~ beta_j@ab_cor;

levell.models:

x_1 ~ 1@xmean_j;

m_i1 ~ 1@mmean_j (x_i1 - xmean_j)@alpha_j;

y_1 ~ 1@ymean_j (m_1 - mmean_j)@beta_j (x_1 - xmean_j)@tau_j',
parameters = 'ab_cov = ab_cor * sqrt(alpha_j.totalvar * beta_j.totalvar);
ab = alpha_mean * beta_mean + ab_cov',

seed = 90291,

burn = 10000,

iter = 10000
)
output(mymodel)

6.13: 1-1-1 Moderated Mediation

This example illustrates a two-level path model that features an indirect effect of two

level-1 predictors, both of which are within-cluster centered at their latent group

means. A level-2 predictor moderates the a path. Any path can be moderated

following the procedures from this example. The model equations are identical to

Example 6.12 with two exceptions: the level-2 moderator W appears in M's random

intercept equation and a's random slope equation, as follows.
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pn; = poar + 1 (W) + un,
Q= [q + ’72(Wj) + U

The y, coefficient captures the cross-level moderation of W on the a slope.

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.13.imp datal.dat

The syntax highlights are listed below. Adding the NIMPS and SAVE commands
generates model-based multiple imputations for a frequentist analysis (see Example
6.3).

«  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

+  LATENT command defines between-cluster latent variables representing the
random intercepts and slopes

#  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

#  MODEL command estimates the random intercept and slope means, using the ->
operator to specify means for all variables that do not require labels

+  MODEL command sets the intercept of the regression equation equal to the
level-2 latent mean (e.g., x_1 ~ 1@xmean_j)

+ MODEL command centers predictors at their latent group means to obtain pure
within-cluster variables (e.g., x_1 - xmean_j)

+  MODEL command omits the random coefficient listed after the vertical pipe

¢  MODEL command sets the random predictor’s slope equal to the random
coefficient (e.g., (x_1 - xmean_j)@alpha_j)

+ MODEL command specifies the correlation between random slopes

«  PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

%  PARAMETERS command uses the .totalvar function to access the variance of the
random effects


https://www.codecogs.com/eqnedit.php?latex=%5Cmu_%7BM_j%7D%3D%5Cmu_M%2B%5Cgamma_1%20(W_j)%2B%20u_%7BM_%7Bj%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_j%3D%5Cmu_%7B%5Calpha%7D%2B%5Cgamma_2%20(W_j)%2Bu_%7B%5Calpha_%7Bj%7D%7D#0
https://www.dropbox.com/s/x09jwcf0vsj28fu/Ex6.11.imp?dl=1
https://www.dropbox.com/s/fe43gweu2g56j55/data1.dat?dl=1
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+  PARAMETERS command computes the conditional mediated effect at three values

of the moderator

DATA: datal.dat;
VARIABLES: levelilid level2id vi_ i y i m 1 x 1 v2_1 w_j v3_j;
CLUSTERID: level2id;
MISSING: 999;
LATENT: level2id = xmean_j mmean_j ymean_j
alpha_j beta_j tau_j;
CENTER: grandmean = w_j;
MODEL :
level2.models:
1 -> xmean_j mmean_j ymean_j tau_j w_j;
mmean_j ~ w_j;
alpha_j ~ 1@alpha_mean w_j@product;
beta_j ~ 1@beta_mean;
alpha_j ~~ beta_j@ab_cor;
levell.models:
x_1 ~ 1@xmean_j;
m_i1 ~ 1@mmean_j (x_1 - xmean_j)@alpha_j;
y 1 ~ 1Q@ymean_j (m_1 - mmean_j)@beta_j (x_i1 - xmean_j)@tau_j;
PARAMETERS:
w_stddev = sqrt(w_j.totalvar);
ab_cov = ab_cor * sqrt(alpha_j.totalvar * beta_j.totalvar);
ab_low = (alpha_mean - (product * w_stddev)) *
beta_mean + ab_cov;
ab_med = alpha_mean * beta_mean + ab_cov;
ab_high = (alpha_mean + (product * w_stddev)) *
beta_mean + ab_cov;
SEED: 90291;
BURN: 10000;
ITER: 10000,

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = datal,
clusterid = 'level2id',

latent = 'level2id = xmean_j mmean_j ymean_j alpha_j beta_j tau_j',
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center = 'grandmean = w_j',
model = '
level2.models:
1 -> xmean_j mmean_j ymean_j tau_j w_j;
mmean_j ~ w_j;
alpha_j ~ 1@alpha_mean w_j@product;
beta_j ~ 1@beta_mean;
alpha_j ~~ beta_j@ab_cor;
levell.models:
x_1 ~ 1@xmean_j;
m_i1 ~ 1@mmean_j (x_i1 - xmean_j)@alpha_j;
y_1 ~ 1@ymean_j (m_1 - mmean_j)@beta_j (x_1 - xmean_j)@tau_j',
parameters = 'w_stddev = sqrt(w_j.totalvar);
ab_cov = ab_cor * sqrt(alpha_j.totalvar * beta_j.totalvar);
ab_low = (alpha_mean - (product * w_stddev)) *
beta_mean + ab_cov;
ab_med = alpha_mean * beta_mean + ab_cov;
ab_high = (alpha_mean + (product * w_stddev)) *
beta_mean + ab_cov',
seed = 90291,

burn = 10000,

iter = 10000
)
output(mymodel)

6.14: Within- and Between-Level Mediation

This example illustrates a two-level path model that features a within-cluster indirect
effect involving centered level-1 variables and a between-cluster indirect effect
involving latent group means. The analysis expands on Example 6.12 by specifying

directed pathways at level-2. The primary regression models are as follows.
Xij = px; +€x,,
M;j = pg, + o (Xig — px;) + em,
Y%==ﬁh3*—ﬂﬂﬁﬂj—-ﬂhg)4‘fx)gj_‘NXJ'+€EJ
Hx; = Bx + Ux;

par; = Inr + ap(px;) + un,


https://www.codecogs.com/eqnedit.php?latex=X_%7Bij%7D%3D%5Cmu_%7BX_j%7D%2B%5Cvarepsilon_%7BX_%7Bij%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7Bij%7D%3D%5Cmu_%7BM_j%7D%2B%5Calpha_j(X_%7Bij%7D%20-%20%5Cmu_%7BX_j%7D)%2B%5Cvarepsilon_%7BM_%7Bij%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cmu_%7BY_j%7D%2B%5Cbeta_j(M_%7Bij%7D%20-%20%5Cmu_%7BM_j%7D)%2B%5Ctau%5E%7B'%7D_%7Bj%7D(X_%7Bij%7D%20-%20%5Cmu_%7BX_j%7D)%2B%5Cvarepsilon_%7BY_%7Bij%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu_%7BX_j%7D%3D%5Cmu_X%2Bu_%7BX_%7Bj%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu_%7BM_j%7D%3DI_M%2B%5Calpha_B(%5Cmu_%7BX_j%7D)%2Bu_%7BM_%7Bj%7D%7D#0
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py, = Iy + B(par,) + mp(px,) + uy,
Qj = Ha + Uq;
By = mp + ug
T = iy Ty

The model features distinct within-cluster and between-cluster mediation processes,

as depicted in the path diagram below.

B
o e
BB
Level-2
Level-1
. Xw
Tj
lod] { % L
* B
. MW

The ellipses in the between-cluster model represent latent group means (i.e., random
intercepts). Clicking the links below downloads the Blimp scripts and data for this

example, and the full set of User Guide examples is available from a pull-down menu
in the graphical interface.

Ex6.14.imp datal.dat



https://www.codecogs.com/eqnedit.php?latex=%5Cmu_%7BY_j%7D%3DI_Y%2B%5Cbeta_B(%5Cmu_%7BM_j%7D)%2B%5Ctau_B%5E%7B'%7D(%5Cmu_%7BX_j%7D)%2Bu_%7BY_%7Bj%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_j%3D%5Cmu_%7B%5Calpha%7D%2Bu_%7B%5Calpha_%7Bj%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_j%3D%5Cmu_%7B%5Cbeta%7D%2Bu_%7B%5Cbeta_%7Bj%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctau_j%5E%7B'%7D%3D%5Cmu_%7B%5Ctau%5E%7B'%7D%7D%2Bu_%7B%5Ctau_%7Bj%7D%5E%7B'%7D%7D#0
https://www.dropbox.com/s/5rpdvn3ez706taw/Ex6.12.imp?dl=1
https://www.dropbox.com/s/77tz9qekj8i1fzl/data1.dat?dl=1
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The syntax highlights are listed below. Adding the NIMPS and SAVE commands
generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

+  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

«  LATENT command defines between-cluster latent variables representing the
random intercepts and slopes

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command estimates the random intercept and slope means, using the ->
operator to specify means for all variables that do not require labels

+  MODEL command sets the intercept of the regression equation equal to the
level-2 latent mean (e.g., x_1 ~ 1@xmean_j)

+  MODEL command centers predictors at their latent group means to obtain pure
within-cluster variables (e.g., x_1 - xmean_j)

+ MODEL command omits the random coefficient listed after the vertical pipe

#  MODEL command sets the random predictor’s slope equal to the random
coefficient (e.g., (x_1 - xmean_j)@alpha_j)

+  MODEL command specifies the correlation between random slopes

+  PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

% PARAMETERS commmand uses the .totalvar function to access the variance of the
random effects

DATA: datal.dat;

VARIABLES: levellid level2id vi_i1 y i m_1 x_ i1 v2_1 v3_j v4_j;

CLUSTERID: Tlevel2id;

MISSING: 999;

LATENT: level2id = xmean_j mmean_j ymean_j
alpha_j beta_j tau_j;

MODEL :

level2.mediation:

mmean_j ~ xmean_j@alpha_b;

ymean_j ~ mmean_j@beta_b xmean_j@tau_b;

levell.mediation:
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m_i1 ~ 1@mmean_j (x_i1 - xmean_j)@alpha_j;

y 1 ~ 1Q@ymean_j (m_1 - mmean_j)@beta_j (x_i1 - xmean_j)@tau_j;
level2.models:

1 -> xmean_j mmean_]j ymean_j tau_j;

alpha_j ~ 1@alpha_mean;

beta_j ~ 1@beta_mean;

alpha_j ~~ beta_j@ab_cor;

levell.models:

x_1 ~ 1@xmean_j;

PARAMETERS:

ab_cov = ab_cor * sqrt(alpha_j.totalvar * beta_j.totalvar);
ab_w = alpha_mean * beta_mean + ab_cov;

ab_b = alpha_b * beta_b;

SEED: 90291;

BURN: 10000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal.rda')

mymodel <- rblimp(
data = datal,
clusterid = 'level2id',

latent = 'level2id = xmean_j mmean_j ymean_j alpha_j beta_j tau_j',

model =
level2.mediation:

mmean_j ~ xmean_j@alpha_b;

ymean_j ~ mmean_j@beta b xmean_j@tau_b;
levell.mediation:

m_i1 ~ 1@mmean_j (x_i1 - xmean_j)@alpha_j;

y 1 ~ 1@ymean_j (m_1 - mmean_j)@beta_j (x_i1 - xmean_j)@tau_j;

level2.models:

1 -> xmean_j mmean_j ymean_j tau_j;
alpha_j ~ 1@alpha_mean;

beta_j ~ 1@beta_mean;

alpha_j ~~ beta_j@ab_cor;
levell.models:

x_1 ~ 1@xmean_j',
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parameters = 'ab_cov = ab_cor * sqrt(alpha_j.totalvar * beta_j.totalvar);

ab_w = alpha_mean * beta_mean + ab_cov;
ab_b = alpha_b * beta_b',
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seed = 90291,

burn = 10000,

iter = 10000
)
output(mymodel)

6.15: Two-Level Growth Model

This example illustrates a two-level linear growth model that includes a cross-level
group-by-time interaction involving the temporal predictor (TIME =0, 1,3,6) and a
binary moderator. The regression model, which is the two-level version of the latent
growth model from Example 5.17. The multilevel model features a cross-level
(group-by-time) interaction effect involving a level-2 dummy code D (e.g., a

treatment assignment indicator) and the level-1 time scores, as follows.

Yij = (Bo + boj) + (B1 + byy) (TIM Eyj) + Ba(D;) + B3 (TIM Ey5)(Dj) + €35

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.15.imp data9.dat

The syntax highlights are listed below. Adding the NIMPS and SAVE commands
generates model-based multiple imputations for a frequentist analysis (see Example
6.3).

«  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

+  FIXED command identifies complete predictors

+  NOMINAL command identifies a binary predictor

+  MODEL command features a random coefficient listed after the vertical pipe
+  MODEL command features a product term

+  SIMPLE command produces conditional effects (simple slopes) at each level of
the nominal moderator


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)(%7BTIME%7D_%7Bij%7D)%2B%5Cbeta_2(D_%7Bj%7D)%2B%5Cbeta_3%5Cleft(%7BTIME%7D_%7Bij%7D)(D_%7Bj%7D%5Cright)%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/5qcow5n5d6awoqd/Ex6.14.imp?dl=1
https://www.dropbox.com/s/3yd34w3efjnscrf/data9.dat?dl=1
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DATA: data9.dat;

VARIABLES: level2id y 1 time i1 vi_i1 v2 1 v3 1 d_ j v4 j;
CLUSTERID: level2id;

NOMINAL: d_j;

MISSING: 999;

FIXED: time_1 d_j;

MODEL: y 1 ~ time_1i1 d_j time_i*d_j | time_1i;
SIMPLE: time_1 | d_j;

SEED: 90291;

BURN: 2000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data9.rda')

mymodel <- rblimp(
data = data9,

clusterid = 'level2id',
nominal = 'd_j',
fixed = '"time_ 1 d_j',
model = 'y 1 ~ time_1 d_j time_i*d_j | time_1i',
simple = '"time 1 | d_j',
seed = 90291,
burn = 2000,
iter = 10000
)
output(mymodel)

6.16: Three-Level Growth Model

This example illustrates a three-level linear growth model that includes a cross-level
group-by-time interaction involving the temporal predictor (TIME =0, 1, ..., 5,6) and a

level-2 binary moderator. The regression model is as follows.

Yij = (Bo + bojr + bor) + (81 + bujr + bux) (TIMEj;,)+

B2(Dy) + B3 (TIM Eiji.)(Dy) + €iji


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bijk%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0jk%7D%2Bb_%7B0k%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1jk%7D%2Bb_%7B1k%7D%5Cright)(%7BTIME%7D_%7Bijk%7D)%2B#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbeta_2(D_%7Bk%7D)%2B%5Cbeta_3%5Cleft(%7BTIME%7D_%7Bijk%7D)(D_%7Bk%7D%5Cright)%2B%5Cvarepsilon_%7Bijk%7D#0
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Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.16a.imp Ex6.16b.imp datalO.dat

The syntax highlights are listed below. Adding the NIMPS and SAVE commands
generates model-based multiple imputations for a frequentist analysis (see Example
6.3).

«  CLUSTERID command identifies level-2 and level-3 identifiers (order doesn't
matter), automatically inducing random intercepts for all level-1 and level-2
variables

+  FIXED command identifies complete predictors

+  CENTER command applies grand mean centering to predictors

+  NOMINAL command identifies a binary predictor

+  MODEL command features a random coefficient listed after the vertical pipe
%  MODEL command features a product term

+  SIMPLE command produces conditional effects (simple slopes) at each level of
the nominal moderator

DATA: datal0.dat;

VARIABLES: levellid level2id level3id y_1 time_ 1 vi_i
v2_j:v5_3j v6_j d_k v7_k v8_k;

NOMINAL: d_k;

CLUSTERID: level2id level3id;

MISSING: 999;

FIXED: time i d k;

MODEL:

y 1 ~ time_1 d_k time_i*d_k | time_i;

SIMPLE: time_1 | d_k;

SEED: 90291;

BURN: 15000;

ITER: 10000;

The corresponding rblimp script is as follows.


https://www.dropbox.com/s/cn8vgj7fdbix9vm/Ex6.15a.imp?dl=1
https://www.dropbox.com/s/bwlxgcyxa0pe5bz/Ex6.15b.imp?dl=1
https://www.dropbox.com/s/mqbyg3d6h0a2ii7/data10.dat?dl=1
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library(rblimp)
load(file = 'datal@.rda')

mymodel <- rblimp(

data = datalo0,

nominal = 'd_k',
clusterid = 'level2id level3id',
fixed = '"time_1 d_k',
model = 'y 1 ~ time_1 d_k time_i*d_k | time_1i',
simple = 'time_ i1 | d_k',
seed = 90291,
burn = 15000,
iter = 10000
)
output(mymodel)

By default, Blimp estimates random intercepts and random slopes (when specified)

at all levels of the data hierarchy. For example, the previous analysis produces a 2 x 2

covariance matrix of random effects at level-2 and level-3. In some situations, it may

be desirable or necessary to override Blimp's default behavior and fix certain variance

components to zero (or alternatively, select which variances get estimated). This is

achieved by listing the desired random effects on the right side of the vertical pipe

and appending to the effect’'s name a cluster-level identifier in square brackets. To

illustrate, the following code block illustrates a three-level model with random

intercepts at both levels and a random coefficient for the temporal predictor at the

second level only

DATA: datal0.dat;
VARIABLES: levellid level2id level3id y_1 time_1i vi_i

v2_j:v5_j v6_j d_k v7_k v8 k;

NOMINAL: d k;

CLUSTERID: level2id level3id;
MISSING: 999;

FIXED: time_1 d_k;

MODEL :

y 1 ~ time_1 d_k time_1i*d _k |

1[level2id] 1[level3id] time_i[level2id];

SIMPLE: time_1 | d_k;
SEED: 90291;
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BURN: 15000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal0.rda')

mymodel <- rblimp(
data = datail0,

nominal = 'd_k',

clusterid = 'level2id level3id',

fixed = 'time_1i d_k',

model = 'y 1 ~ time_1 d_k time_1i*d k |
1[level2id] 1[level3id] time_i[level2id]',

simple = 'time_ i1 | d_k',

seed = 90291,
burn = 15000,
iter 10000

)
output(mymodel)

6.17: Three-Level SEM Growth Model

This example illustrates a three-level linear growth model that includes a cross-level
group-by-time interaction involving the temporal predictor (TIME =0, 1, ..., 5,6) and a

level-2 binary moderator. The regression model from Example 6.16 is as follows.

Yij = (Bo + bojr + bor) + (51 + bujr + bux) (TIMEj1,)+
B2(Dy) + B3 (TIME;;1,)(Dy) + €ijk

This example casts the analysis as a three-level structural equation model. The

level-specific equations are as follows.
Yijk = Bojk + Bijk(TIM Ejji) + €ij
Bojk = Bor + bojk

Bijk = Bk + bijk


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bijk%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0jk%7D%2Bb_%7B0k%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1jk%7D%2Bb_%7B1k%7D%5Cright)(%7BTIME%7D_%7Bijk%7D)%2B#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbeta_2(D_%7Bk%7D)%2B%5Cbeta_3%5Cleft(%7BTIME%7D_%7Bijk%7D)(D_%7Bk%7D%5Cright)%2B%5Cvarepsilon_%7Bijk%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bijk%7D%3D%5Cbeta_%7B0jk%7D%2B%5Cbeta_%7B1jk%7D(TIME_%7Bijk%7D)%2B%5Cvarepsilon_%7Bijk%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0jk%7D%3D%5Cbeta_%7B0k%7D%2Bb_%7B0jk%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B1jk%7D%3D%5Cbeta_%7B1k%7D%2Bb_%7B1jk%7D#0
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Bok = Bo + B2(Dr) + box
Bk = Br + B3(Dy) + b

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Exe.]7.imp datalO.dat

The syntax highlights are listed below. Adding the NIMPS and SAVE commands
generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

+  CLUSTERID command identifies level-2 and level-3 identifiers (order doesn't
matter), automatically inducing random intercepts for all level-1 and level-2
variables

+  ORDINAL command identifies binary predictor
+  FIXED command defines complete predictors

«  CENTER command applies grand mean and latent group mean centering to
predictors

+  LATENT command defines two between-cluster latent variables representing the
random intercepts and slopes

#  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command estimates the random intercept and slope means

+  MODEL command sets the intercept of the regression equation equal to the
level-2 latent mean (i.e., 1@beta0d_j)

+  MODEL command omits the random coefficient listed after the vertical pipe

#  MODEL command sets the random predictor’s slope equal to the random
coefficient (i.e., x1_i@betal_j)

+ MODEL command specifies correlation between random intercepts and random
slopes (level-2 latent variables)

DATA: datal0.dat;


https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0k%7D%3D%5Cbeta_%7B0%7D%2B%5Cbeta_2(D_k)%2Bb_%7B0k%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B1k%7D%3D%5Cbeta_%7B1%7D%2B%5Cbeta_3(D_k)%2Bb_%7B1k%7D#0
https://dl.dropboxusercontent.com/scl/fi/4f3xzgnt766n3ydon1sik/Ex6.17.imp?rlkey=mgc3qkzdpivjd4tq9utnpdryc&dl=1
https://www.dropbox.com/s/mqbyg3d6h0a2ii7/data10.dat?dl=1
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VARIABLES: levellid level2id level3id y_1 time_i vi_i
v2_j:v5_j v6_j d_k v7_k v8_k;

NOMINAL: d_k;

CLUSTERID: level2id level3id;

MISSING: 999;

LATENT: level2id = beta@_j betal_j; level3id = beta®_k betal_k;

MODEL :

level3.model:

beta®_k ~ 1 d_k;

betal k ~ 1 d_k;

betad®_k ~~ betal k;

level2.model:

betad®_j ~ 1@betad _k;

betal_j ~ 1@betal_k;

betad®_j ~~ betal_j;

levell.model:

y_ 1 ~ 1@beta0®_j time_1i@betal_j;

SEED: 90291;

BURN: 30000,

ITER: 30000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal@.rda')

mymodel <- rblimp(
data = datail0,
nominal = 'd_k',
clusterid = 'level2id level3id',
latent = 'level2id = beta®_j betal_j;
level3id = beta®_k betal_k',
model = '
level3.model:
beta® _k ~ 1 d_k;
betal k ~ 1 d_k;
beta®_k ~~ betal k;
level2.model:
beta®_j ~ 1@betad k;
betal j ~ 1@betal k;
betad®_j ~~ betal_j;
levell.model:
y_1 ~ 1@beta®_j time_1i@betal_j',
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seed = 90291,

burn = 30000,

iter = 30000
)
output(mymodel)

6.18: Two-Level MIMIC Measurement Model

This example illustrates a two-level factor analysis model that features a
measurement model for the within-cluster scores at level-1 and the between-cluster
latent group means at level-2. The model also features predictor variables at each

level, as shown in the path diagram below.

/\ Level-1 Level-2

I

X1 X2

X3

The ellipses in the between-cluster model are latent group means (i.e., random
intercepts that load on a level-2 latent variable. Clicking the links below downloads
the Blimp scripts and data for this example, and the full set of User Guide examples

is available from a pull-down menu in the graphical interface.

Ex6.18.imp datall.dat



https://www.dropbox.com/s/udw1igrnr6d8ldy/Ex6.16.imp?dl=1
https://www.dropbox.com/s/353gozov5a8qmr5/data11.dat?dl=1
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The syntax highlights are listed below. Adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example
6.3).

«  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

%  LATENT command defines within- and between-cluster latent variables

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+ Individual regression equations specified for each indicator (instead of the ->
convention for latent factors)

+  MODEL command fixes the within- and between-cluster loading of the first
indicator to one

Default specification fixes the latent means equal to zero

DATA: datall.dat;

VARIABLES: level2id y1 _i:y4 1 x1_1 x2_1 x3_j;
MISSING: 999;

CLUSTERID: level2id;

LATENT: laty_levl; level2id = laty_lev2;
CENTER: grandmean = x1_1 x2_1 x3_j;
MODEL:

structural.model:

laty_levl ~ x1_1 x2_1;

laty_lev2 ~ x3_j;

measurement.model:

yl 1 ~ laty_lev1@l laty_lev2@i;

y2 i1 ~ laty_levl laty lev2;

y3_ 1 ~ laty_levl laty_lev2;

v4 i1 ~ laty_levl laty lev2;

SEED: 90291;

BURN: 10000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datall.rda')
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mymodel <- rblimp(
data = datall,
clusterid = 'level2id',
latent = 'laty_levi;
level2id = laty lev2',
center = 'grandmean = x1_1 x2_1 x3_j',
model = '
structural.model:
laty_levl ~ x1_1 x2_1;
laty_lev2 ~ x3_j;
measurement.model:
yl 1 ~ laty_lev1@l laty_lev2@i;
y2_i1 ~ laty_levl laty lev2;

y3_1 ~ laty_levl laty_lev2;
v4 i1 ~ laty_levl laty lev2',
seed = 90291,
burn = 10000,
iter = 10000

)

output(mymodel)

6.19: Sampling Weights

This example illustrates a two-level regression model with random intercepts and
sampling (inverse probability) weights at each level. The regression model is shown

below.

Yij = (Bo + boj) + B1X1ij + B2 Xoij + B3 Xaij + €35

Goldstein (2011, Section 3.4.2) describes MCMC estimation for multilevel models with
sampling weights. Level-1 and level-2 sampling weights are rescaled following
Goldstein (2011, Section 3.4.1). At level-1, the rescaled weights within a given cluster
sum to the cluster size. This is the same as the so-called “cluster” method from
Asparouhov (2006). Clicking the links below downloads the Blimp scripts and data
for this example, and the full set of User Guide examples is available from a

pull-down menu in the graphical interface.

Ex6.19.imp data2l.dat


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cbeta_1X_%7B1ij%7D%2B%5Cbeta_2X_%7B2ij%7D%2B%5Cbeta_3X_%7B3ij%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://dl.dropboxusercontent.com/s/fopfo4hx0k6rx5u/Ex6.17.imp?dl=1
https://dl.dropboxusercontent.com/s/wnj36mej6z3bmbg/data21.dat?dl=1
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The syntax highlights are as follows.

«  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all incomplete level-1 variables

+ WEIGHTS command identifies level-1 and level-2 weights (order does not matter)

Unspecified associations for predictor variables

DATA: data21.dat;

VARIABLES: level2id levellwgt level2wgt vl y i1 x1_1 x2_1 x3_1i
x4 1 x5_1;

CLUSTERID: level2id;

WEIGHT: leveliwgt level2wgt;

MISSING: 999;

MODEL: y 1 ~ x1_1 x2_1 x3_1;

SEED: 90291;

BURN: 2000;

ITER: 10000;

Note that some data sets may not include level-2 sampling weights, in which case

the weight command simplifies as follows.

CLUSTERID: level2id;
WEIGHT: levellwgt;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data2l.rda')

mymodel <- rblimp(
data = data21,

clusterid = 'level2id',

weights = 'levellwgt level2wgt',
model = 'y 1 ~ x1_1 x2_1 x3_1',
seed = 90291,

burn = 2000,

iter = 10000

)
output(mymodel)
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6.20: Partially Nested Design (Singleton Clusters)

This example illustrates a two-level regression model from a partially nested design.
The example below considers a level-2 binary predictor (e.g., a treatment assignment
indicator) where participants in group D =1 (e.g., treatment participants) are
clustered in level-2 units but observations in group D = O are not nested (i.e., are
singleton clusters). The regression model below features an interaction between the
binary indicator and the random intercept, such that the random effect term drops

from the equation if D = 0.
Yij = Bo+ B1D; + Djbgj + €5

More generally, the variable D does not need to have a fixed effect. Outside of an
intervention context, D could simply be an indicator that differentiates clustered
versus singleton observations (e.g., D = O is a singleton cluster with a single member,
D =1is an observation that shares cluster membership with other observations). The

following random intercept model illustrates this idea.

Yij = Bo + 51X + Djboj + €45

Blimp estimates this model by defining a level-2 latent variable that interacts with D.
Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.20.imp datal9.dat

The syntax highlights are as follows.

«  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all incomplete level-1 variables

+  LATENT command defines a level-2 latent variable (random intercept), the mean
of which is fixed to zero in the MODEL section

+  MODEL command eliminates the default random intercept by fixing it to zero (1@0
after the vertical pipe)


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_0%2B%5Cbeta_1D_%7Bj%7D%2BD_%7Bj%7Db_%7B0j%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_0%2B%5Cbeta_1X_%7Bij%7D%2BD_%7Bj%7Db_%7B0j%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://dl.dropboxusercontent.com/s/jxgbpq0hu12w7cy/Ex6.18.imp?dl=1
https://dl.dropboxusercontent.com/s/v9zxgu5ersj52h0/data19.dat?dl=1
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+ MODEL command sets the effect of D equal to the the level-2 random intercept

DATA: datal9.dat;

VARIABLES: level2id y_1 d_j;
MISSING: 999;

CLUSTERID: level2id;

LATENT: level2id = beta0O_j;
MODEL :

betad®_j ~ 1@0;

y 1 ~d_j d_j@ebetad_j | 1@0;
SEED: 90291;

BURN: 1000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal9.rda')

mymodel <- rblimp(
data = datail9,

clusterid = 'level2id',
latent = 'level2id = beta®_j',
model = '

betad®_j ~ 1@0;
y 1 ~d_j d_j@betad_j | 1@0',

seed = 90291,

burn = 1000,

iter = 10000
)
output(mymodel)

Alternatively, the model can be fit as a mixed model by fixing the default random
intercept variance to zero and adding the multiple membership dummy indicator as

a random slope predictor, as follows.

DATA: datal9.dat;

VARIABLES: level2id y i d_j;
MISSING: 999;

CLUSTERID: level2id;

MODEL: vy 1 ~d_j | 1@ d_j;
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SEED: 90291;
BURN: 1000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal9.rda')

mymodel <- rblimp(
data = datail9,

clusterid = 'level2id',
model = 'y 1 ~d_j | 1@0 d_j',
seed = 90291,
burn = 1000,
iter = 10000
)
output(mymodel)

6.21: Discrete-Time Survival Model

This example illustrates a discrete-time survival model using Blimp's multilevel
modeling features. Clicking the links below downloads the Blimp scripts and data for
this example, and the full set of User Guide examples is available from a pull-down

menu in the graphical interface.

Exe.2la.imp Ex6.2lb.imp data26.dat

The input data set is in stacked (i.e., “person-period”) format with each row
representing a time interval nested within an individual. The data also include a set
of time indicators that dummy code each measurement interval. The example below
illustrates a model with six intervals and thus six dummy codes. The outcome
variable is an event indicator that equals O if the event did not happen in the interval
and a 1if the event did happen in the interval. Figure 1.5 from Singer and Willett
(2003) illustrates the data structure.

The basic model is a logistic regression with the binary event indicator regressed on

the time dummy codes.


https://dl.dropboxusercontent.com/scl/fi/um4iq5epvgk983c68im5m/Ex6.20a.imp?rlkey=cpu17afww7x0hyntq6eaoymx3&dl=1
https://dl.dropboxusercontent.com/scl/fi/c9nloweu2yljnq8ax4atx/Ex6.20b.imp?rlkey=hkj9715kq6j1j1pzmutavjomz&dl=1
https://dl.dropboxusercontent.com/scl/fi/ig8hnjsome4qldjzk3wfh/data26.dat?rlkey=47v7phkqlqpehsu2rakaqoo7j&dl=1
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Pr (Fvent = 1)
" (1 — Pr (Event = 1)) = on(tiy) + aaltay) + aslta) + caltyy)+

as(ts;) + as(te;)

Note that the model omits the usual regression intercept. The syntax highlights are
listed below. Adding the NIMPS and SAVE commands generates imputed data sets,
and adding the savepredicted keyword to the OPTIONS command saves predicted
probabilities (see Example 4.21).

«  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all incomplete level-1 variables

+  ORDINAL command identifies a binary outcome
+  FIXED command identifies a complete predictor
«  CENTER command applies grand mean centering to predictors

+ Applying the logit function to the dependent variable on the MODEL line
requests a logit rather than probit link

#  MODEL command eliminates the default fixed and random intercepts by fixing
both to zero (the 1@0 after the tilde and vertical pipe)

+  MODEL command includes Boolean functions that create time-specific dummy
codes (e.g., time_i==1)

+  PARAMETERS command computes predicted probability of the event at each time
point (i.e., hazard probabilities)

DATA: data26.dat;

VARIABLES: level2id time_i1 y_ 1 d_j x_j;

ORDINAL: y 1i;

CLUSTERID: level2id;

MISSING: 999;

FIXED: time 1i;

MODEL :

logit(y_1) ~ 1@0 (time_i==1)@alphal (time_1i==2)@alpha2
(time_1==3)@alpha3 (time_i==4)@alpha4 (time_i==5)@alpha5
(time_1i==6)@alpha6 | 1@0;

PARAMETERS:

hazard.1 = exp(alphal) / (1 + exp(alphal));
hazard.2 = exp(alpha2) / (1 + exp(alpha2));
hazard.3 = exp(alpha3) / (1 + exp(alpha3));
hazard.4 = exp(alpha4) / (1 + exp(alpha4));


https://www.codecogs.com/eqnedit.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(Event%3D1%5Cright)%7D%7B1-Pr%5Cleft(Event%3D1%5Cright)%7D%5Cright)%3D%5Calpha_1(t_%7B1j%7D)%2B%5Calpha_2(t_%7B2j%7D)%2B%5Calpha_3(t_%7B3j%7D)%2B%5Calpha_4(t_%7B4j%7D)%2B#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_5(t_%7B5j%7D)%2B%5Calpha_6(t_%7B6j%7D)#0
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hazard.5

exp(alpha5) / (1 + exp(alpha5));

hazard.6 = exp(alpha6) / (1 + exp(alpha6));

SEED: 90291;
BURN: 2000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data26.rda')

mymodel <- rblimp(
data = dataz26,

ordinal = 'y_1i',
clusterid = 'level2id',
fixed = '"time_1i',

model = '

287

logit(y_1) ~ 1@0 (time_i==1)@alphal (time_i==2)@alpha2 (time_1i==3)@alpha3

(time_1i==4)@alpha4 (time_1i==5)@alpha5 (time_i==6)@alpha6 | 1@0',
parameters = 'hazard.1 = exp(alphal) / (1 + exp(alphal));

hazard.2 = exp(alpha2) / (1
hazard.3 = exp(alpha3) / (1
hazard.4 = exp(alpha4) / (1
hazard.5 = exp(alpha5) / (1
hazard.6 = exp(alpha6) / (1
seed = 90291,

burn = 2000,

iter = 10000
)
output(mymodel)

+

+ + + +

exp(alpha2));
exp(alpha3));
exp(alpha4));
exp(alpha5));
exp(alpha6))'

s

The next example expands the model by incorporating a person-level dummy code

and continuous covariate as predictors of the hazard function.

Pr(E =1
ln,( r (Event = 1)

1 — Pr(Event = 1)

as(ts;) + as(te;) + B1(Dij) + 52(Xffm)

) = Oq(tlj) + Ozg(tgj) + 043(t3j) + a4(t4j)+

As before, the model omits the usual regression intercept and includes a set of six

dummy codes that index the intervals. The code block below is identical to the


https://www.codecogs.com/eqnedit.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(Event%3D1%5Cright)%7D%7B1-Pr%5Cleft(Event%3D1%5Cright)%7D%5Cright)%3D%5Calpha_1(t_%7B1j%7D)%2B%5Calpha_2(t_%7B2j%7D)%2B%5Calpha_3(t_%7B3j%7D)%2B%5Calpha_4(t_%7B4j%7D)%2B#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_5(t_%7B5j%7D)%2B%5Calpha_6(t_%7B6j%7D)%2B%5Cbeta_1(D_%7Bij%7D)%2B%5Cbeta_2(X_%7Bij%7D%5E%7Bcgm%7D)#0
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previous example, but it defines the binary predictor as ordinal and grand mean

centers the continuous covariate.

DATA: data26.dat;

VARIABLES: level2id time_1 y_ 1 d_j x_j;

ORDINAL: y_1i;

CLUSTERID: level2id;

MISSING: 999;

FIXED: time_1i;

CENTER: grandmean = X_j;

MODEL :

logit(y_1) ~ 1@0 (time_i==1)@alphal (time_1i==2)Q@alpha2
(time_1==3)@alpha3 (time_i==4)@alpha4 (time_i==5)@alpha5
(time_1==6)@alpha6 d_j x_j | 1@0;

SEED: 90291;

BURN: 2000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data26.rda')

mymodel <- rblimp(
data = dataz26,

ordinal = 'y 1',

clusterid = 'level2id',
fixed = '"time_1i',

center = 'grandmean = x_j',
model = '

logit(y_1) ~ 1@0 (time_i==1)@alphal (time_1i==2)@alpha2
(time_1==3)@alpha3 (time_1i==4)@alpha4 (time_i==5)@alpha5
(time_1==6)@alphaé d_j x_j | 1@0',

seed = 90291,

burn = 2000,

iter = 10000

)
output(mymodel)

288
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1 Missing Not at Random Process Analysis Examples

This section illustrates missing not at random analysis models in Blimp. Following
previous chapters, the examples in this section use a generic notation system where
variable names usually consist of an alphanumeric prefix and a numeric suffix (e.g., Y,
X, XuN,, Dy, D,). The letter Y designates a dependent variable, a D prefix denotes a
binary dummy variable, an O prefix indicates an ordinal variable, and an N prefix
indicates a multicategorical nominal variable. Additionally, the multilevel examples
use a “_1" suffix to denote level-1 variables, “_j" for level-2 variables, and “_k" for
level-3 variables (e.g., d_j is a level-2 dummy variable, x_1 is a continuous predictor
measured at level-1). Blimp determines the levels automatically, so the suffixes are
meant as a visual aid for understanding the scripts. Finally, the model equations use
“cgm” and “cwc"” superscripts to indicate grand and group mean centering,

respectively. The following list outlines the examples in this section.

7.1: Selection Model for Linear Regression

7.2: Pattern Mixture Model for Linear Regression

7.3: Shared Parameter (Wu-Carroll) Latent Curve Model

7.4 Diggle—Kenward Latent Curve Model

7.5: Factor Analysis With a Selection Model

7.6: Mediation Analysis With a Selection Model

7.7: Two-Level Hedeker-Gibbons Pattern Mixture Growth Model

7.8: Selection Model for a Two-Level Regression With Random Coefficients

7.9: Two-Level Shared Parameter Growth Curve Model
1.1: Selection Model for Linear Regression

This example illustrates a selection model for a missing not at random process where
an incomplete outcome variable predicts its own missingness. The focal analysis

model is the linear regression below.

Y = Bo+ f1 D1+ BoDo + B3 X7 + €


https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1D_%7B1%7D%2B%5Cbeta_2D_2%2B%5Cbeta_3X_%7B1%7D%5E%7Bcgm%7D%2B%5Cvarepsilon#0
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The most basic selection model is one where the outcome alone predicts its
missingness indicator (M, = 0 if Yis observed and 1if it's missing); Gomer and Yuan

(2021) refer to this as a focused missing not at random process. The following
equation is a probit model where the missingness indicator’s latent response

variable (denoted by an asterisk superscript) is regressed on the outcome.

My =~ +mY +r

For identification, the residual variance is fixed at one, and the threshold parameter is

fixed at zero. A path diagram of the model is shown below.

. X

N D,

@%

The analysis model also incorporates three auxiliary variables using the sequential
specification from Example 4.7. Clicking the links below downloads the Blimp scripts
and data for this example, and the full set of User Guide examples is available from a

pull-down menu in the graphical interface.

Ex7la.imp Ex7lb.imp data3.dat

The syntax highlights are listed below. Adding the NIMPS and SAVE commands
generates model-based multiple imputations for a frequentist analysis that no

longer requires a missingness model.

«  ORDINAL command identifies binary predictors


https://www.codecogs.com/eqnedit.php?latex=M_%7BY%7D%5E%5Cast%3D%5Cgamma_0%2B%5Cgamma_1Y%2Br#0
https://www.dropbox.com/s/g75vhb4373yqr9q/Ex7.1a.imp?dl=1
https://www.dropbox.com/s/eqy396f0zlpbw1d/Ex7.1b.imp?dl=1
https://www.dropbox.com/s/9grg7s374nd3087/data3.dat?dl=1
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+  FIXED command identifies complete predictors
+  CENTER command applies grand mean centering to predictors

#  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

+ The .missing suffix references the dependent variable's missing data indicator,
which is automatically defined as ordinal

Unspecified associations for predictor variables

DATA: data3.dat;
VARIABLES: id x1 x2 x3 y d1 d2 vi:v4;
MISSING: 999;
ORDINAL: di1 d2;
FIXED: d1 d2;
CENTER: x1;

MODEL :

focal.model:

y ~ d1 d2 x1;
missingness.model:
y.missing ~ y;
auxiliary.model:

X2 X3 ~y dl d2 x1;
SEED: 90291;

BURN: 1000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data3.rda')

mymodel <- rblimp(
data = data3,
ordinal = 'd1 d2',
fixed = 'd1 d2',
center = 'x1',
model = '
focal.model:
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y ~ dl d2 x1;
missingness.model:
y.missing ~ y;
auxiliary.model:

X2 x3 ~y dl d2 x1',

seed = 90291,

burn = 1000,

iter = 10000
)
output(mymodel)

A more complex selection model features the outcome predicting its missingness

indicator along with other variables, in this case D;; Gomer and Yuan (2021) refer to

this as a diffuse missing not at random process. The following equation is a probit
model where the missingness indicator’s latent response variable is regressed the

outcome and D;.

My =v%+mY +7%D)+7r

A path diagram of the model is shown below.

\@_

Caution is warranted when including too many predictors from the analysis model in
the selection equation, as doing so weakens identification. Entering and selecting
predictors in a stepwise fashion using fit indices such as the DIC and WAIC is often a

good strategy. The code block for the analysis is shown below.


https://www.codecogs.com/eqnedit.php?latex=M_%7BY%7D%5E%5Cast%3D%5Cgamma_0%2B%5Cgamma_1Y%2B%5Cgamma_2D_%7B1%7D%2Br#0
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DATA: data3.dat;

VARIABLES: i1d x1 x2 x3 y d1 d2 vi:v4;
MISSING: 999;

ORDINAL: di d2;

FIXED: d1 d2;

CENTER: x1;

MODEL :

# focal analysis model

y ~ dl d2 x1;

# auxiliary variable models
X2 x3 ~y dl d2 x1;

# selection model

y.missing ~ y di;

SEED: 90291;

BURN: 2500;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data3.rda')

mymodel <- rblimp(
data = data3,
ordinal = 'd1 d2',
fixed = 'd1 d2',

center = 'x1',
model = '
y ~ dl d2 x1;

X2 x3 ~y dl d2 x1;
y.missing ~ y di',
seed = 90291,

burn = 2500,

iter = 10000
)
output(mymodel)

1.2: Pattern Mixture Model for Linear Regression

293

This example illustrates a pattern mixture model for a missing not at random process

where regression model parameters differ between cases with and without

dependent variable scores. Clicking the links below downloads the Blimp scripts and
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data for this example, and the full set of User Guide examples is available from a

pull-down menu in the graphical interface.

Ex72a.imp Ex72b.imp data3.dat

The focal analysis model is the linear regression below

Y = ﬁo + ﬁlDl + Bnggm + 53X1cgm + €

where D, is a dummy code representing a focal group comparison (e.g., a treatment
assignment indicator), and D, and X; are covariates. The most basic pattern mixture

model is one where the intercept (outcome variable mean) differs between people
with and without Y values; Gomer and Yuan (2021) characterize this as a focused

missing not at random process. The fitted model features a binary missing data

indicator (M, = 0 if Yis observed and M, =1if it's missing) as a predictor, as follows.

Y = Botobs) + Boaif )My + B1 D1 + Bo2DS7™" + B3 X179 + ¢

A path diagram of the model is shown below.

The overall population-level intercept estimate is a weighted average of the
pattern-specific intercepts, where the weights are the group proportions. The

marginal intercept estimate for this example is


https://www.dropbox.com/s/4a0vfp668u1aeas/Ex7.2a.imp?dl=1
https://www.dropbox.com/s/412e9rsxmza3qla/Ex7.2b.imp?dl=1
https://www.dropbox.com/s/9grg7s374nd3087/data3.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1D_%7B1%7D%2B%5Cbeta_2D_2%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B1%7D%5E%7Bcgm%7D%2B%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_%7B0(obs)%7D%2B%5Cbeta_%7B0(diff)%7DM_%7BY%7D%2B%5Cbeta_1D_%7B1%7D%2B%5Cbeta_2D_%7B2%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B1%7D%5E%7Bcgm%7D%2B%5Cvarepsilon#0
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60 = p(obs)ﬁo(obs) + p(mis)ﬁo(mis) = p(obs)ﬁo(obs) + P(mis) (ﬁo(obs) + 60(dlff))

where p .5 and p, are the proportions of completers and dropouts, respectively.

Importantly, the intercept difference (the dashed line pointing from M, to Y) is

inestimable because people in the My, =1group have no data on Y. This parameter

must be fixed to a value during estimation, and the magnitude and sign of the
coefficient controls the strength and direction of the missing not at random process.
Enders (2022, Section 9.7) illustrates a strategy that uses off-the-shelf effect size
benchmarks to determine this parameter. For example, if a researcher felt that the
unseen Y scores have a higher mean than the observed data, then the inestimable
intercept coefficient could be solved as a function of the standardized mean
difference effect size and the dependent variable's standard deviation (or residual

standard deviation).

Bowifs) = d X oy

A positive value of d sets the mean of the unseen scores to a higher value than the
observed data, and a negative value specifies a lower mean. The code block below
sets the effect size equal to +0.20 and uses the residual standard deviation to
estimate the spread of Y (Little, 2009, p. 428). This setting corresponds to a sensitivity
analysis where persons with incomplete data are hypothesized to have a mean
difference roughly equal to Cohen’s (1988) small effect size benchmark. The syntax
highlights are listed below. Adding the NIMPS and SAVE commmands generates
model-based multiple imputations for a frequentist analysis that no longer requires

the missing data indicator.

«  ORDINAL command identifies binary predictors
+  FIXED command identifies complete predictors
+  CENTER command applies grand mean centering to predictors

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output


https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_0%3Dp_%7B(obs)%7D%5Cbeta_%7B0(obs)%7D%2Bp_%7B(mis)%7D%5Cbeta_%7B0(mis)%7D%3Dp_%7B(obs)%7D%5Cbeta_%7B0(obs)%7D%2Bp_%7B(mis)%7D%5Cleft(%5Cbeta_%7B0(obs)%7D%2B%5Cbeta_%7B0(diff)%7D%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0(diff)%7D%3Dd%5Ctimes%5Csigma_Y#0

Blimp User’s Guide (Version 3) 296

MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for all predictor

MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

The TRANSFORM command creates the dependent variable’s missing data
indicator, m.y

MODEL command labels the missing data indicator’s latent response variable
mean and three parameters from the focal analysis model: the residual variance,
intercept coefficient, and intercept mean difference

PARAMETERS command passes the value of the residual standard deviation into
the formula that determines the intercept mean difference

PARAMETERS command uses labeled quantities to compute missing data group
proportions, pattern-specific intercept coefficients, and a marginal intercept
estimate that averages over the missing data patterns

DATA: data3.dat;

VARIABLES: id x1 x2 x3 y di1 d2 vi:v4;
MISSING: 999;

ORDINAL: di1 d2 ymis;

CENTER: x1 d2;

TRANSFORM: ymis = ismissing(y);
MODEL :

focal.model:

y ~ 1@b0Oobs ymis@bOdiff di1 d2 x1;

# label residual variance

y ~~ y@resvar;

predictor.model:

# sequential specification for predictors
ymis ~ 1@ymissmean;

x1 d1 d2 ~ ymis;

auxiliary.model:

X2 X3 ~y dl d2 x1;

PARAMETERS:

# set bOdiff equal to +.20 residual std. dev. units
cohensd = .20;

bodiff = cohensd * sqrt(resvar);

# missingness group proportions

p_mis = phi(ymissmean);

p_obs = 1 - p_mis;

# compute weighted average intercept
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bOobs;
bOobs + bodiff;
obs * p_obs) + (b0_mis * p_mis);
291;
00;
000;

The corresponding rblimp script is as follows.

library(
load(fil

mymodel
data
ordin
cente
trans
model
focal
y ~1
y~~
predi
ymis
x1 di1
auxil
X2 X3
param
bodif
p_mis
p_obs
bo_ob
bo_mi
bo =
seed
burn
iter

)

output(m

rblimp)

e = 'data3.rda')

<- rblimp(

= data3,

al = 'dl1 d2 ymis',
r="'x1d2',

form = 'ymis = ismissing(y)',
.model:

@bOobs ymis@bodiff di1 d2 x1 ;
y@resvar;

ctor.model:

~ 1@ymissmean;

d2 ~ ymis;

iary.model:

~ vy dl d2 x1',

eters = 'cohensd = .20;

f = cohensd * sqrt(resvar);
= phi(ymissmean);

=1 - p_mis;

s = bOobs;

s = bOobs + bOdiff;

(b0_obs * p_obs) + (b0_mis * p_mis)',
= 90291,
2000,
10000

ymodel)
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A more complex pattern mixture model is one where people with missing outcome

scores have different intercepts and slopes than people with data; Gomer and Yuan
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(2021) characterize this as a diffuse missing not at random process. The fitted model
features the missing data indicator and its interaction with the focal predictor, D,.
Y = Bocovs) + Botais )My + Bi(obs) D1 + Biaifry (D1 x My)
+52 D™ + B3 X7 4 €

A path diagram of the model is as follows.

My  |—+

The marginal slope that averages over the missing data patterns is a weighted

average of the pattern-specific slopes, with weights equal to the group proportions.

B1 = D(obs) Bi(obs) T Pimis) Bi(mis) = Plobs)B1(obs) + Pimis) (Bi(obs) + Buiaiss))
Importantly, both the intercept and slope difference for the incomplete cases (the
dashed lines pointing from M, to Y and M, to D,'s slope) are inestimable because

people in the M, =1group have no data on Y. As such, these parameters must be

fixed to a value during estimation, and their magnitude and sign control the
strength and direction of the missing not at random process. The same effect

size-based strategy can be applied to the slope difference. In this example, the focal

predictor D, is binary (e.g, intervention vs. control), in which case ;s is the group

mean difference for people with data on Y, and g, 4 is the additional group mean


https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_%7B0(obs)%7D%2B%5Cbeta_%7B0(diff)%7DM_%7BY%7D%2B%5Cbeta_%7B1(obs)%7DD_%7B1%7D%2B%5Cbeta_%7B1(diff)%7D%5C(D_%7B1%7D%5Ctimes%20M_%7BY%7D)#0
https://www.codecogs.com/eqnedit.php?latex=%2B%5Cbeta_2D_%7B2%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B1%7D%5E%7Bcgm%7D%2B%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_1%3Dp_%7B(obs)%7D%5Cbeta_%7B1(obs)%7D%2Bp_%7B(mis)%7D%5Cbeta_%7B1(mis)%7D%3Dp_%7B(obs)%7D%5Cbeta_%7B1(obs)%7D%2Bp_%7B(mis)%7D%5Cleft(%5Cbeta_%7B1(obs)%7D%2B%5Cbeta_%7B1(diff)%7D%5Cright)#0
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difference for persons with missing Y scores. Specifying the inestimable slope as a

standardized mean difference effect size gives the following solution.

Biirsy = d X oy

If the focal predictor is continuous, then the solution is

Braiss) = d X (oy + 0x)

in which case d can be viewed as the additional change in the dependent variable
(in standard deviation units) for every one standard deviation increase in the
predictor. Setting d to a positive value means that the missing data group’s slope is

more positive, and a negative value of d means their slope is more negative.

To illustrate, suppose that Yis scaled such that high scores reflect a negative

outcome (e.g., greater illness severity, a higher symptom count), and D, is a
treatment assignment dummy code (D, = O indicates the control group,and D, =1is

the intervention group). Further, consider a missing not at random process where
control group participants with the highest Y scores (e.g., most acute symptoms)
leave the study to seek treatment elsewhere, whereas intervention group
participants with the lowest Y scores (e.g., mildest symptoms) leave the study
because they no longer feel treatment is necessary. This scenario requires a positive
value of d for the inestimable intercept difference and a negative value of d for the
slope difference. The code block below sets both effect sizes equal to 0.20 (they need
not be the same) and uses the residual standard deviation to estimate the spread of
Y.

DATA: data3.dat;

VARIABLES: id x1 x2 x3 y d1 d2 vi:v4;
MISSING: 999;

ORDINAL: di1 d2 m.y;

TRANSFORM:

m.y = ismissing(y);

CENTER: x1 d2;

MODEL:


https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B1(diff)%7D%3Dd%5Ctimes%5Cleft(%5Csigma_Y%5Cdiv%5Csigma_X%5Cright)#0
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focal.model:

y ~ 1@0obs m.y@b0diff di@blobs di1*m.y@bidiff d2 x1;
# label residual variance

y ~~ y@resvar;

predictor.model:

m.y ~ 1@ymissmean;

x1 d1 d2 ~ m.y;

auxiliary.model:

X2 X3 ~y x1 d1 d2;

PARAMETERS:

# set bOdiff equal to +.20 residual std. dev. units
# set bildiff equal to -.20 residual std. dev. units
cohensd = .20;

bodiff = cohensd * sqrt(resvar);

bidiff = - cohensd * sqrt(resvar);

# missingness group proportions

p.mis = phi(ymissmean);

p.obs = 1 - p.mis;

# compute weighted average intercept and slope
b0.obs = bOobs;

b0.mis = bOobs + bOdiff;

bl.obs = bilobs;

bl.mis = blobs + bidiff;

b® = (b0.obs * p.obs) + (b0.mis * p.mis);

b1 = (bl.obs * p.obs) + (bl.mis * p.mis);
SEED: 90291;
BURN: 2000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data3.rda')

mymodel <- rblimp(
data = data3,
ordinal = 'd1 d2 m.y',

transform = 'm.y = ismissing(y)',
center = 'x1 d2',
model = '

focal.model:
y ~ 1@bOobs m.y@b0diff di@blobs di*m.y@bidiff d2

x1;

300



Blimp User’s Guide (Version 3) 301

y ~~ y@resvar;
predictor.model:

m.y ~ 1@ymissmean;
x1 d1 d2 ~ m.y;
auxiliary.model:

X2 X3 ~y x1 d1 d2',

parameters = 'cohensd = .20;
bodiff = cohensd * sqrt(resvar);
bidiff = - cohensd * sqrt(resvar);

p.mis = phi(ymissmean);
p.obs =1 - p.mis ;

b0.obs = bOobs;
b0.mis = bOobs + bOdiff;
bl.obs = bilobs;
bl.mis = blobs + bidiff;

bo® = (b0.obs * p.obs) + (b0.mis * p.mis);
b1 = (bl.obs * p.obs) + (bl.mis * p.mis)',
seed = 90291,

burn = 2000,

iter = 10000
)
output(mymodel)

Linking inestimable parameters to the standardized mean difference provides a
practical heuristic for specifying inestimable coefficients, but it is still incumbent on
the researcher to choose values that are reasonable for a given application. As
mentioned previously, the magnitude of the missing data group’s difference
parameters dictates the strength of the missing not at random process. It is incorrect
to view “small” values of d as unimportant, as standardized differences of this
magnitude could be very salient in many situations. For example, consider a
randomized intervention where the true effect size is d = 0.20 (i.e., a small effect size).
Setting the missing data group’s coefficient difference to d = .20 means that the
moderating impact of missing data is just as large as the intervention effect itself. A
medium effect size threshold is probably an upper bound for most practical
applications, and much smaller values of d could be realistic. A sensitivity analysis
strategy would examine the changes in the focal model parameters across a range of

d values (see Enders 2022, Section 9.8).
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1.3: Shared Parameter (Wu—Carroll) Latent Curve Model

This example illustrates a two-factor latent growth curve model with the Wu-Carroll
(1998) model for missing not at random dropout that depends on the growth

trajectories. A path diagram of the model is shown below.
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The model features binary dropout indicators regressed on the random intercepts
and slopes. Importantly, the missing data indicators code attrition or permanent
dropout rather than intermittent missingness. Accordingly, the D variables equal O

prior to dropout, 1 at the occasion participants leave the study, and 999 (missing) at

all post-dropout measurements. There is no missing data indicator for Y; because

this variable is complete. The path coefficients connecting dropout at occasion t to
the random intercepts are constrained to equality, as are the coefficients connecting
the random slopes to dropout. The dashed lines convey these constraints. Predictor

variables can be incorporated into either the outcome or dropout part of the model.
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Additional details about this model can be found in Enders (2011) and Muthén,

Asparouhov, Hunter, and Leuchter (2011).

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex7.3.imp data24.dat

The syntax highlights are as follows.

«  ORDINAL command identifies the binary dropout indicators
«  LATENT command defines two latent variables

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+ Individual regression equations specified for each indicator (instead of the ->
convention for latent factors)

+  MODEL command estimates the latent variable means, fixes the intercept factor
loadings to one, fixes the growth factor loadings to the time scores (0, 1, 2, 3, 4,
and 5), and fixes the measurement intercepts to zero

+  MODEL command uses a label to impose equality constraint on residual variance,
a label to constrain associations between the random intercepts and indicators,
and a label to constrain associations between the random slopes and indicators

DATA: data24.dat;
VARIABLES: id y1 y2 y3 y4 y5 y6 d1 d2 d3 d4 d5 d6;
ORDINAL: d2 d3 d4 d5 d6;

MISSING: 999;
LATENT: icept slope;

MODEL :
structural.model:
icept ~ 1;

slope ~ 1;

icept ~~ slope;

measurement.model:
yl ~ 1@0 icept@l slope@O;
y2 ~ 1@0 icept@l slope@l;


https://dl.dropboxusercontent.com/s/o9z00py58ytxta9/Ex7.3.imp?dl=1
https://dl.dropboxusercontent.com/s/c1rydwk1f9rxghm/data24.dat?dl=1
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14

y3
y4 ~
y5
y6
yl ~
y2 ~
y3 ~
y4 ~
y5 ~
y6 ~

14

?

?

R

13

13

?

R

d2 ~
d3 ~
d4 ~
ds ~
dé ~
SEED:
BURN:

ITER:

1@0
1@0
1@0
1@0

icept@l slope@2;

icept@l slope@3;

icept@l slope@4;

icept@l slope@5;
yl@vconstraint;
y2@vconstraint;
y3@vconstraint;
y4@vconstraint;
y5@vconstraint;
y6@vconstraint;
dropout.model:
icept@iconstraint slope@sconstraint;
icept@iconstraint slope@sconstraint;
icept@iconstraint slope@sconstraint;
icept@iconstraint slope@sconstraint;
icept@iconstraint slope@sconstraint;
90291;

100000;
10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data24.rda')

mymodel <- rblimp(
data = data24,
ordinal = 'd2 d3 d4 d5 d6',
latent = 'icept slope',
model =

structural.model:

icept ~ 1;
slope ~ 1;
icept <-> slope;
measurement.model:

yl
y2
y3
v4
y5
y6

~

~

~

~

~

~

1@0
1@0
1@0
1@0
1@0
1@0

icept@1
icept@1
icept@1
icept@1
icept@1
icept@1

slope@0;
slope@1;
slope@2;
slope@3;
slope@4;
slope@5;
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yl ~~ yl@vconstraint;
y2 ~~ y2@vconstraint;
y3 ~~ y3@vconstraint;
y4 ~~ yd@vconstraint;
y5 ~~ y5@vconstraint;
y6 ~~ y6@vconstraint;
dropout.model:
d2 ~ icept@iconstraint
d3 ~ icept@iconstraint
d4 ~ icept@iconstraint
d5 ~ icept@iconstraint
d6 ~ icept@iconstraint
seed = 90291,
burn = 100000,
iter = 10000

)

output(mymodel)

1.4: Diggle-Kenward Latent Curve Model

This example illustrates a two-factor latent growth curve model with the

slope@sconstraint;
slope@sconstraint;
slope@sconstraint;
slope@sconstraint;
slope@sconstraint'
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Diggle-Kenward (1998) model for missing not at random dropout that depends on

the unseen outcome score at time t. A path diagram of the model is shown below.
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Y1 Yz Y3 Y4 Y5 Y6

The model features binary dropout indicators regressed on the random intercepts

and slopes. Importantly, the missing data indicators code attrition or permanent
dropout rather than intermittent missingness. Accordingly, the D variables equal O
prior to dropout, 1 at the occasion participants leave the study, and 999 (missing) at

all post-dropout measurements. There is no missing data indicator for Y; because

this variable is complete. The path coefficients connecting dropout at occasion t to
the observed data from the previous occasion are constrained to equality, as are the
paths connecting dropout at occasion t with the concurrent (unseen) scores at
occasion t. The dashed lines convey these constraints. Predictor variables can be
incorporated into either the outcome or dropout part of the model. Additional details
about this model can be found in Enders (2011) and Muthén, Asparouhov, Hunter,

and Leuchter (2011).

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.
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Ex7.4.imp data23.dat

The syntax highlights are as follows.

«  ORDINAL command identifies the binary dropout indicators
«  LATENT command defines two latent variables

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+ Individual regression equations specified for each indicator (instead of the ->
convention for latent factors)

+ MODEL command estimates the latent variable means, fixes the intercept factor
loadings to one, fixes the growth factor loadings to the time scores (0, 1, 2, 3, 4,
and 5), and fixes the measurement intercepts to zero

+  MODEL command uses a label to impose equality constraint on residual variance,
a label to constrain lagged associations between the outcomes and indicators,
and a label to constrain concurrent associations between the outcomes and
indicators

Longer burn-in period for estimating latent variables

DATA: data23.dat;

VARIABLES: id y1 y2 y3 y4 y5 y6 d1 d2 d3 d4 d5 d6;
ORDINAL: d2 d3 d4 d5 d6;

MISSING: 999;

LATENT: icept slope;

MODEL :

structural.model:

icept ~ 1;

slope ~ 1;

icept ~~ slope;
measurement.model:

yl ~ 1@0 icept@l slope@O;
y2 ~ 1@0 icept@l slope@l;
y3 ~ 1@0 icept@l slope@2;
y4 ~ 1@0 icept@l slope@3;
y5 ~ 1@0 icept@l slope@4;
y6 ~ 1@0 icept@l slope@5;
yl ~~ yl@vconstraint;


https://dl.dropboxusercontent.com/s/4sumqxbmx6nblce/Ex7.4.imp?dl=1
https://dl.dropboxusercontent.com/s/2f8a6uxordnqrpg/data23.dat?dl=1
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13

y2 ~
y3 ~
y4 ~
yS ~~
y6 ~~

?

13

d3
d4
d5
dé6

SEED:
BURN:
ITER:

?

14

4

14

y2@vconstraint;
y3@vconstraint;
y4@vconstraint;
y5@vconstraint;
y6@vconstraint;
dropout.model:
d2 ~ yl@marconstraint y2@mnarconstraint;
y2@marconstraint y3@mnarconstraint;
y3@marconstraint y4@mnarconstraint;
y4@marconstraint y5@mnarconstraint;
y5@marconstraint y6@mnarconstraint;

90291;
100000;
10000;

The corresponding rblimp script is as follows.

library(rblimp)

load(

file =

'data23.

mymodel <- rblimp(
data = data23,
ordinal = 'd2 d3 d4 d5 dé6',
latent = 'icept slope',

mo

structural.model:

del =

icept ~ 1;
slope ~ 1;
icept <-> slope;
measurement.model:

vyl
y2
y3
v4
y5
y6
vyl
y2
y3
v4
y5
y6

~ 1@0
~ 1@0
~ 1@0
~ 1@0
~ 1@0
~ 1@0

icept@1
icept@1
icept@1
icept@1
icept@1
icept@1

rda')

slope@0;
slope@1;
slope@2;
slope@3;
slope@4;
slope@5;

~~ yl@vconstraint;
~~ y2@vconstraint;
~~ y3@vconstraint;
~~ y4@vconstraint;
~~ y5@vconstraint;
~~ y6@vconstraint;
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dropout.model:

d2 ~ yl@marconstraint y2@mnarconstraint;
d3 ~ y2@marconstraint y3@mnarconstraint;
d4 ~ y3@marconstraint y4@mnarconstraint;
d5 ~ y4@marconstraint y5@mnarconstraint;
d6 ~ y5@marconstraint yé6@mnarconstraint',
seed = 90291,
burn = 100000,
iter = 10000

)

output(mymodel)

1.5: Factor Analysis With a Selection Model

This example illustrates a two-factor measurement model with correlated latent

variables, each measured by six continuous indicators. A path diagram of the analysis

model is shown in Section 5.5. The main difference is that the analysis incorporates a

selection missingness model for the indicators of one latent factor. The selection

equations model a missing not at random process where missingness is explained

by an individual's standing on the latent trait. A path diagram of the model is shown

below.
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The M variables are binary missing data indicators coded O if a response is complete
and 1if missing. The path coefficients connecting the missingness indicators to the
latent factor are constrained to equality (i.e., one’s standing on the factor exerts the
same influence on the probability of missing not at random missingness). The

dashed lines convey these constraints.

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

ExX75.imp data4.dat

The syntax highlights are as follows.

& LATENT command defines two latent variables


https://dl.dropboxusercontent.com/s/yefykx3byte8csm/Ex7.5.imp?dl=1
https://dl.dropboxusercontent.com/s/otvxzodnupylmd7/data4.dat?dl=1
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K3
X3

indicators for the six Y items

TRANSFORM command uses the ismissing function to create missing data
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#  MODEL command uses labels ending in a colon to group models and order their

summary tables on the output

+  MODEL command uses a label to impose equality constraint on the associations

between the latent factor and the missingness indicators
% MODEL command fixes variances and residual variances to one for identification

+  PARAMETERS command specifies a truncated prior over positive values, and the
prior is attached to each factor’s first loading in the MODEL command

DATA: data4.dat;

VARIABLES: id v1:v9 y1:y6 v10:v16 x1:Xx6;

MISSING: 999;

ORDINAL: yimis y2mis y3mis y4mis y5mis yémis;

TRANSFORM:

yimis = ismissing(y1l);

y2mis = ismissing(y2);

y3mis = ismissing(y3);

yamis = ismissing(y4);

y5mis = ismissing(y5);

yémis = ismissing(y6);

LATENT: latenty latentx;

MODEL :

latent.model :

latentx ~~ latentx@1;

latenty ~~ latenty@1;

latentx ~~ latenty;
measurement.models:

latentx -> x1@xload prior x2:x6;
latenty -> y1@yload prior y2:y6;
missingness.model:

ylmis ~ latenty@misconstraint;

y2mis ~ latenty@misconstraint;
y3mis ~ latenty@misconstraint;
yamis ~ latenty@misconstraint;
y5mis ~ latenty@misconstraint;

yémis ~ latenty@misconstraint;
PARAMETERS:
xload prior ~ truncate(0, Inf);
yload_prior ~ truncate(@, Inf);
SEED: 90291;
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BURN: 20000;
ITER: 20000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,
ordinal = 'yimis y2mis y3mis y4mis y5mis yémis',
transform = 'yimis = ismissing(y1);
y2mis = ismissing(y2);
y3mis = ismissing(y3);
yamis = ismissing(y4);
y5mis = ismissing(y5);
yémis = ismissing(y6)',
latent = 'latenty latentx',
model = '
latent.model:
latentx ~~ latentx@i;
latenty ~~ latenty@i;
latentx ~~ latenty;
measurement.models:
latentx -> x1@xload_prior x2:x6;
latenty -> y1@yload prior y2:y6;
missingness.model:
yimis ~ latenty@misconstraint;

y2mis ~ latenty@misconstraint;
y3mis ~ latenty@misconstraint;
ydmis ~ latenty@misconstraint;
y5mis ~ latenty@misconstraint;
yémis ~ latenty@misconstraint',

parameters = 'xload _prior ~ truncate(0,Inf);
yload_prior ~ truncate(0,Inf)',

seed = 90291,

burn = 20000,

iter = 20000

)
output(mymodel)
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1.6: Mediation Analysis With a Selection Model

This example illustrates a single-mediator path model with selection models for a
missing not at random process on the mediator and outcome. The focal regression

models are shown below

M=1y+aX +epm
Y =Iy +8M+7X +ey

where a and 8 are slope coefficients that define the indirect effect or product of the
coefficients estimator, and 7’ is the direct effect of X on Y. A path diagram of the
analysis is shown in Section 5.1. The analysis additionally incorporates missingness

models for both M and .

M:nis = Y1 +y1uM + Y21 X + 1
Yois = Yoz +712Y 4 y22 M + 32X + &2

The asterisk superscripts on the binary missing data indicators represent latent
response variables from a probit regression. M's missingness model features M and X
as predictors, and Y's missingness model features Y, M, and X. Finally, the model also
incorporates three auxiliary variables following the procedure from Example 4.7. A

path diagram of the focal model is shown below.


https://www.codecogs.com/eqnedit.php?latex=M%3DI_M%2B%7B%5Calpha%7DX%2B%5Cvarepsilon_M#0
https://www.codecogs.com/eqnedit.php?latex=Y%3DI_Y%2B%7B%5Cbeta%7DM%2B%7B%5Ctau%7D%5E%7B'%7DX%2B%5Cvarepsilon_Y#0
https://www.codecogs.com/eqnedit.php?latex=M_%7Bmis%7D%5E%7B*%7D%3D%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DM%2B%5Cgamma_%7B21%7DX%2B%5Cvarepsilon_1#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bmis%7D%5E%7B*%7D%3D%5Cgamma_%7B02%7D%2B%5Cgamma_%7B12%7DY%2B%5Cgamma_%7B22%7DM%2B%5Cgamma_%7B32%7DX%2B%5Cvarepsilon_2#0
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— X
a
— M

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex7.6.imp data4.dat

The syntax highlights are as follows.

«  TRANSFORM command uses the ismissing function to create missing data
indicators for M and Y

+  MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command labels the indirect effect’'s component pathways

+  MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

«  PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

DATA: data4d.dat;

VARIABLES: id al1:a3 vl y m v2 X v3:v22;
MISSING: 999;

TRANSFORM:

m.mis = ismissing(m);


https://dl.dropboxusercontent.com/s/29ce0fr9eay6vyo/Ex7.6.imp?dl=1
https://dl.dropboxusercontent.com/s/t0uf294iu9u4xrv/data4.dat?dl=1
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y.mis = ismissing(y);
MODEL:

mediation.model:

m ~ x@alpha;

y ~ m@beta x;
missingness.model:

m.mis ~ m Xx;

y.mis ~y m x;
auxiliary.model:

# sequential specification for auxiliary variables
al:a3 ~y m Xx;
PARAMETERS:

indirect = alpha * beta;
SEED: 90291;

BURN: 2000;

ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data4.rda')

mymodel <- rblimp(
data = data4,

transform = 'm.mis = ismissing(m);
y.mis = ismissing(y)',

model = '

mediation.model:

m ~ x@alpha;

y ~ m@beta x;
missingness.model:
m.mis ~ m Xx;

y.mis ~y m X;
auxiliary.model:
al:a3 ~y m x',

parameters = 'indirect = alpha * beta',
seed = 90291,

burn = 2000,

iter = 10000

)
output(mymodel)
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1.7: Two-Level Hedeker-Gibbons Pattern Mixture Growth Model

This example illustrates the random coefficient pattern mixture model from Hedeker
and Gibbons (1997). The model is designed for a missing not at random process
where growth model parameters differ between cases who complete the study
versus those who dropout. Clicking the links below downloads the Blimp scripts and
data for this example, and the full set of User Guide examples is available from a

pull-down menu in the graphical interface.

Ex7.7.imp datal8.dat

The multilevel model features a cross-level (group-by-time) interaction effect
involving a level-2 dummy code D (e.g., a treatment assignment indicator) and the

level-1 time scores, as follows.

Yij = (Bo + boj) + (81 + bij) (TIME;;) + 52(D;) + 3 (TIME;;)(D;) + €

The pattern mixture model introduces a dropout indicator that differentiates
completers and dropouts, M = 0 and 1, respectively. The fitted model features the

dropout indicator and its interaction effects

Y;j = ﬁO(obs) + Bl(obs)T]MEij + BQ(obs) (D]) + /83(0175) (T]MEZJ) (Dj)
+Boair sy (Mj) + Bicais sy (TTM Eiz) (M;) + Baaigp) (D) (M)
+B3aip ) (TTM E;j)(Dj)(Mj) + boj + bij(TIMEj;) + €ij

where the “obs” subscript denotes the completer group’s (M = 0) parameters, and
the “diff” subscript denotes coefficient differences for the dropout group (M =1).
Following Example 7.2, the overall population-level estimates (i.e., the marginal
estimates that average over the distribution of missingness) are a weighted average

of the pattern-specific coefficients, where the weights are the group proportions. The

marginal estimates for this example are shown below, where p ., and p ., are the

proportions of completers and dropouts, respectively.


https://dl.dropboxusercontent.com/s/caxjk9wjqlr710j/Ex7.7.imp?dl=1
https://dl.dropboxusercontent.com/s/r9vi2aaun1278gb/data18.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)(%7BTIME%7D_%7Bij%7D)%2B%5Cbeta_2(D_%7Bj%7D)%2B%5Cbeta_3%5Cleft(%7BTIME%7D_%7Bij%7D)(D_%7Bj%7D%5Cright)%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0(obs)%7D%2B%5Cbeta_%7B1(obs)%7DTIME_%7Bij%7D%2B%5Cbeta_%7B2(obs)%7D(D_%7Bj%7D)%2B%5Cbeta_%7B3(obs)%7D(TIME_%7Bij%7D)(D_%7Bj%7D)#0
https://www.codecogs.com/eqnedit.php?latex=%2B%5Cbeta_%7B0(diff)%7D(M_j)%2B%5Cbeta_%7B1(diff)%7D(%7BTIME%7D_%7Bij%7D)(M_j)%2B%5Cbeta_%7B2(diff)%7D(D_%7Bj%7D)(M_j%20)#0
https://www.codecogs.com/eqnedit.php?latex=%2B%5Cbeta_%7B3(diff)%7D(TIME_%7Bij%7D)(D_%7Bj%7D)(M_j)%2Bb_%7B0j%7D%2Bb_%7B1j%7D(%7BTIME%7D_%7Bij%7D)%2B%5Cvarepsilon_ij#0
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60 = p(obs)ﬁo(obs) + p(mis)ﬂo(mis) obs)ﬁO obs) + P(mis) (ﬂo(obs) + 60(diff )
Bl = p(obs)ﬁl(obs) + p(mis)ﬁl(mis) = obs)ﬁl (obs) + P(mis) (Bl(obs) + ﬁl(diff )
ﬂZ = p(obs)ﬁ2(obs) + p(mzs)/BQ(mzs) obs)/BQ (obs) + P(mis) (/82(01)8) + 62(dsz))

53 - p(obs)ﬁ?)(obs) + p(mis)ﬁ?)(mz's) obs)BS (obs) + P(mis) (63(0bs) + 63 (dif f)

The syntax highlights are listed below. Adding the NIMPS and SAVE commands
generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

+  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

+ ORDINAL command identifies binary predictors

+  CENTER command applies grand mean and latent group mean centering to
predictors

+ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

+  MODEL command features a random coefficient listed after the vertical pipe
+ MODEL command labels each fixed effect coefficient

+  MODEL command features a factored regression (sequential) specification for the
binary predictors

+  PARAMETERS command uses labeled quantities to compute population-average
(marginal) coefficients that average over missing data patterns

DATA: datal8.dat;

VARIABLES: level2id vi1_j d_j y_ 1 time i1 v2_j m_j v3_1;

ORDINAL: d_j m_j;

CLUSTERID: level2id;

MISSING: 999;

FIXED: time_1i;

MODEL :

focal.model:

y_1 ~ 1@beta®_obs time_1i@betal_obs d_j@beta2_obs
(time_1*d_j)@beta3_obs m_j@beta®_dif (m_j*time_1i)@betal_dif
(m_j*d_j)@betaz2_dif (m_j*time_1i*d_j)@beta3 dif | time_i;


https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_0%3Dp_%7B(obs)%7D%5Cbeta_%7B0(obs)%7D%2Bp_%7B(mis)%7D%5Cbeta_%7B0(mis)%7D%3Dp_%7B(obs)%7D%5Cbeta_%7B0(obs)%7D%2Bp_%7B(mis)%7D%5Cleft(%5Cbeta_%7B0(obs)%7D%2B%5Cbeta_%7B0(diff)%7D%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_1%3Dp_%7B(obs)%7D%5Cbeta_%7B1(obs)%7D%2Bp_%7B(mis)%7D%5Cbeta_%7B1(mis)%7D%3Dp_%7B(obs)%7D%5Cbeta_%7B1(obs)%7D%2Bp_%7B(mis)%7D%5Cleft(%5Cbeta_%7B1(obs)%7D%2B%5Cbeta_%7B1(diff)%7D%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_2%3Dp_%7B(obs)%7D%5Cbeta_%7B2(obs)%7D%2Bp_%7B(mis)%7D%5Cbeta_%7B2(mis)%7D%3Dp_%7B(obs)%7D%5Cbeta_%7B2(obs)%7D%2Bp_%7B(mis)%7D%5Cleft(%5Cbeta_%7B2(obs)%7D%2B%5Cbeta_%7B2(diff)%7D%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_3%3Dp_%7B(obs)%7D%5Cbeta_%7B3(obs)%7D%2Bp_%7B(mis)%7D%5Cbeta_%7B3(mis)%7D%3Dp_%7B(obs)%7D%5Cbeta_%7B3(obs)%7D%2Bp_%7B(mis)%7D%5Cleft(%5Cbeta_%7B3(obs)%7D%2B%5Cbeta_%7B3(diff)%7D%5Cright)#0
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predictor.model:

m_j ~ 1@ymissmean;

d_j ~ m_j;

PARAMETERS:

p_mis = phi(ymissmean);
pobs =1 - p_mis ;

beta® = p_obs * beta®_obs + p_mis * (beta® obs + beta®_dif);
betal = p_obs * betal obs + p_mis * (betal obs + betal dif);
beta2 = p_obs * beta2_obs + p_mis * (beta2_obs + beta2_dif);
beta3 = p_obs * beta3_obs + p_mis * (beta3 obs + beta3 dif);

SEED: 90291;
BURN: 5000;
ITER: 10000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal8.rda')

mymodel <- rblimp(
data = datais,
ordinal = 'd_j m_j',

clusterid = 'level2id',
fixed = '"time_1i',
model = '

focal.model:

y_1 ~ 1@beta®_obs time_i@betal_obs d_j@beta2_obs
(time_1i*d_j)@beta3_obs m_j@betad dif (m_j*time_1i)@betal dif
(m_j*d_j)@beta2_dif (m_j*time_1i*d_j)@beta3_dif | time_i;

predictor.model:

m_j ~ 1@ymissmean;

d_j ~ m_j i

parameters = 'p_mis = phi(ymissmean);

pobs =1 - p mis ;

beta® = p_obs * beta®_obs + p_mis * (beta® obs + beta®_dif);
betal = p_obs * betal obs + p_mis * (betal obs + betal dif);
beta2 = p_obs * beta2_obs + p_mis * (beta2_obs + beta2_dif);
beta3 = p_obs * beta3_obs + p_mis * (beta3 obs + beta3 dif)',
seed = 90291,

burn = 5000,

iter = 10000

)
output(mymodel)
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1.8: Selection Model for a Two-Level Regression With Random Coefficients

This example illustrates a two-level regression model with random intercepts and

random slopes. The analysis model is shown below.
Yij = (Bo + boj) + (81 + byy) Xf;-f;-c + BQXQC»ZW + 53X§§m + 54ch~gm + €55
The analysis additionally incorporates a missingness model for Y.
My = v +nYij + 72X +

The asterisk superscript on the binary missing data indicator represents a latent
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response variable from a probit regression. Y's missingness model features Y and X;

as predictors. The M variable is a binary missing data indicator coded O if Yis
observed and 1if it is missing. This model would be appropriate for a multilevel
model that does not involve a time trend and permanent attrition (e.g., intensive

longitudinal data).

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex7.8.imp data8.dat

The syntax highlights are as follows.

+  CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

«  ORDINAL command identifies a binary predictor

+  TRANSFORM command uses the ismissing function to create a missing data
indicator for Y

+  FIXED command identifies a complete predictor

«  CENTER command applies grand mean and latent group mean centering to
predictors

¢  MODEL command uses labels ending in a colon to group models and order their

summary tables on the output


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B3j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7Bj%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7BYij%7D%5E%7B*%7D%3D%5Cgamma_%7B0%7D%2B%5Cgamma_%7B1%7DY_%7Bij%7D%2B%5Cgamma_%7B2%7DX_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cvarepsilon_%7B1ij%7D#0
https://dl.dropboxusercontent.com/s/ve5yuyymtdk1wbl/Ex7.8.imp?dl=1
https://dl.dropboxusercontent.com/s/drpq8y4ijfrjtei/data8.dat?dl=1
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+ MODEL command features a random coefficient listed after the vertical pipe

Unspecified associations for predictor variables

DATA: data8.dat;

VARIABLES: levellid level2id x1_1 x2_ 1 y 1 vl i1 v2 1 d_j

v3_j v4_j v5_3j x3_j v6_3j Vv7_3;

CLUSTERID: level2id;
ORDINAL: d_j ymis_1i;;
MISSING: 999;
TRANSFORM: ymis_i
FIXED: d_j;
CENTER: groupmean
MODEL :
focal.model:

ismissing(y_1);

x1_1; grandmean = x2_1 x3_j d_j;

y 1 ~x1_1x2_1x3_jdj| x1_1;

missingness.model:
ymis_ 1 ~ y 1 x1_1;
SEED: 90291;
BURN: 10000;
ITER: 20000;

The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'data8.rda')
mymodel <- rblimp(
data = data8,
clusterid = 'level2id',
ordinal = 'd_j ymis_1;',
transform = 'ymis_1 = ismissing(y_1)',
fixed = 'd_j',
center = 'groupmean = x1_1i;

grandmean = x2_1 x3_j d_j',

model =
focal.model:

y 1 ~x1_1 x2_1 x3_j d j| x1_1i;

missingness.model:
ymis_1 ~y 1 x1_1',
seed = 90291,

burn = 10000,

320
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iter = 20000

)
output(mymodel)

1.9: Two-Level Shared Parameter (Wu—Carroll) Growth Curve Model

This example illustrates how to estimate the Wu-Carroll (1998) model from Section
7.3 as a multilevel regression model. Consistent with that earlier example, the model
is for situations where missing not at random dropout depends on the growth
trajectories. The model features binary dropout indicators regressed on the random
intercepts and slopes. Importantly, the missing data indicators code attrition or
permanent dropout rather than intermittent missingness. Accordingly, the D
variables equal O prior to dropout, 1 at the occasion participants leave the study, and
999 (missing) at all post-dropout measurements. In the multilevel specification, the

dropout indicators are stacked in a single column like other time-varying variables.

The growth curve model is cast as a multilevel structural equation model with a pair
of normally distributed level-2 latent variables representing the random intercepts
and slopes. The focal model features these latent variables as predictors, as shown

below.
Yij = Boj + By (TIMEy;) + &3
Boj = Bo + boj

Bij = B+ by,

The latent curve model from the earlier example has features that require special
attention when specifying the analysis as a multilevel model. First, there is no
dropout indicator for the baseline assessment because this variable is complete. In
the multilevel framework, the indicator takes on constant values of zero in the first
row of each individual's missingness vector. Second, the random intercepts and
slopes cannot influence the omitted (and constant) baseline missingness indicator.

Third, each measurement occasion has a unique intercept that determines the


https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1j%7D(TIME_%7Bij%7D)%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0j%7D%3D%5Cbeta_%7B0%7D%2Bb_%7B0j%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B1j%7D%3D%5Cbeta_%7B1%7D%2Bb_%7B1j%7D#0
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occasion-specific missingness rate. The multilevel selection equation honors these

important features.
The multilevel missingness model is shown below.
M;ij =11 + T2 + 3135 + valu; + v5155 + Vel
+77BijBoj + V8 Bij b1y + i
To accommodate occasion-specific intercepts, the missingness model includes a

dummy code for each measurement occasion. The equation denotes the time codes

as T, through T, Note that the usual regression intercept is omitted from the
equation (alternatively, the intercept could be estimated if T, is omitted). Importantly,

the coefficient for the first (baseline) dummy code is fixed at y; = -3 to induce a
near-zero probability of missingness at baseline. In the latent curve model, this is
equivalent to omitting the first dropout indicator. Next, the variable B; is a dummy
code that equals O at the baseline assessment and 1in all other rows. Including the
product of this dummy code and the random effects acts like an on/off switch that
sets the influence of the random intercepts and slopes to zero at baseline. Recall that
this was an important feature of the latent curve model. The Blimp script below uses
Boolean functions in the selection equation to create the dummy codes, but these
could also be generated using the TRANSFORM function. See the TRANSFORM section in

Chapter 2 for a description of Boolean operators.

Clicking the links below downloads the Blimp scripts and data for this example, and
the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex79.imp datal7.dat

The syntax highlights are as follows.

+  ORDINAL command identifies the binary dropout indicator

+  FIXED command identifies a complete time score predictor


https://www.codecogs.com/eqnedit.php?latex=M_%7BYij%7D%5E%7B*%7D%3D%5Cgamma_1T_%7B1j%7D%2B%5Cgamma_2T_%7B2j%7D%2B%5Cgamma_3T_%7B3j%7D%2B%5Cgamma_4T_%7B4j%7D%2B%5Cgamma_5T_%7B5j%7D%2B%5Cgamma_6T_%7B6j%7D#0
https://www.codecogs.com/eqnedit.php?latex=%2B%20%5Cgamma_7B_%7Bij%7D%5Cbeta_%7B0j%7D%2B%5Cgamma_8B_%7Bij%7D%5Cbeta_%7B1j%7D%2Br_%7Bij%7D#0
https://dl.dropboxusercontent.com/s/p8lt5spia9aseur/Ex7.9.imp?dl=1
https://dl.dropboxusercontent.com/s/tf2foaqcsf66m21/data17.dat?dl=1
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LATENT command defines two between-cluster latent variables representing the
random intercepts and slopes

MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

MODEL command estimates the random intercept and slope means using the ->
operator

MODEL command sets the intercept of the regression equation equal to the
level-2 latent mean (1@beta0_j)

MODEL command omits the random coefficient listed after the vertical pipe

MODEL command sets the random predictor’s slope equal to the random
coefficient (time_1i@betal_j)

MODEL command specifies correlation between random intercepts and random
slopes (level-2 latent variables)

MODEL command includes Boolean functions that create time-specific dummy
codes (e.g., time_i==1)

MODEL command features product terms between the Boolean operators
(dummy codes) and the level-2 latent variables

DATA: datal7.dat;

VARIABLES: level2id time_1i1 y_1i dropout_1i;
ORDINAL: dropout_1i;

CLUSTERID: level2id;

MISSING: 999;

LATENT: level2id = beta®_j betal_j;
FIXED: time_1i;

MODEL :

latent.variables:

1

-> beta®_j betal_j;

betad®_j ~~ betal j;

growth.model:

y 1 ~ 1@beta0®_j time_1i@betal j;

missingness.model:

dropout_i1 ~ 1@0 (time_1 == 0)@-3 (time_1 == 1) (time_i == 2)

(time_1 == 3) (time_i1 == 4) (time_i == 5)
(time_1 > 0)*beta®_j (time_i > 0)*betal_j | 1@0;

SEED: 90291;
BURN: 10000;
ITER: 10000;
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The corresponding rblimp script is as follows.

library(rblimp)
load(file = 'datal7.rda')

mymodel <- rblimp(

data = datal7,

ordinal = 'dropout_i',

clusterid = 'level2id',

latent = 'level2id = beta®_j betal j',
fixed = 'time i',

model = '

betad®_j ~~ betal_j;

growth.model:

y_1 ~ 1@betad_j time_1i@betal_j;

missingness.model:

dropout_i ~ 1@0 (time_1 == 0)@-3 (time_1 == 1) (time i1 == 2)
(time_1 == 3) (time_i1 == 4) (time_1i == 5)
(time_1 > 0)*beta®_j (time_i > 0)*betal_j | 1@0',

seed = 90291,

burn = 10000,
iter = 10000
)
output(mymodel)
8 Monte Carlo Studies in Blimp

Blimp also includes a SIMULATE command for creating artificial data sets with Monte

Carlo computer simulation. This command creates a data set based on

user-specified population parameters, after which it fits the equations from the MODEL

command to the simulated data. The simulated data set can be saved by specifying

dataset = filename with the SAVE command. Parameter estimates from the fitted

model can also be saved following the procedure described in the SAVE section of

Chapter 2. Note that each Blimp script generates a single artificial data set. To

embed this functionality in a broader Monte Carlo computer simulation (e.g., inside a

loop function), see Section 1.7. This chapter is currently under construction, but the

Examples pull-down menu in Blimp Studio shows the following examples.
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8.1: Simulation With Linear Regression

8.2: Simulation With Bivariate Regression

8.3: Simulation With Bifactor Model

8.4: Simulation With Random Intercept Model

8.5: Simulation With Random Slopes

8.6: Simulation With Linear Growth Model

8.7: Simulation with Two-level Decomposed Effects Model

8.8: Simulation With Missing Data Generation
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