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Why do I get dizzy? Am I really spinning, or is the world going around me?
Humans are naturally curious about the universe they live in.

Chapter 1

The Rules of the Rules

Since birth, you’ve wanted to discover things. You started out by putting
every available object in your mouth. Later you began asking the grownups
all those “why” questions. None of this makes you unique — humans are
naturally curious animals. What’s unusual is that you’ve decided to take
a physics course. There are easier ways to satisfy a science requirement,
so evidently you’re one of those uncommon people who has retained the
habit of curiosity into adulthood, and you’re willing to tackle a subject
that requires sustained intellectual effort. Bravo!

A reward of curiosity is that as you learn more, things get simpler.
“Mommy, why do you have to go to work?” “Daddy, why do you need
keys to make the car go?” “Grandma, why can’t I have that toy?” Even-
tually you learned that questions like these, which as a child you thought
to be unrelated, were actually closely connected: they all had to do with
capitalism and property. As a scientific example, William Jones announced
in 1786 the discovery that many languages previously thought to be un-
related were actually connected. Jones realized, for example, that there
was a relationship between the words “bhratar,” “phrater,” “frater,” and
“brother,” which mean the same thing in Sanskrit, Greek, Latin, and En-
glish. Many apparently unrelated languages of Europe and India could
thus be brought under the same roof and understood in a simple way. For
an even more dramatic example, imagine trying to learn chemistry hun-
dreds of years ago, before anyone had discovered the periodic table or even
the existence of atoms. Chemistry has gotten a lot simpler since then!
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Sometimes the subject gets simpler, but it takes a while for the text-
books to catch up. For hundreds of years after Hindu mathematicians
incorporated negative numbers into algebra, European texts still avoided
them, which meant that students had to endure a lot of confusing mumbo
jumbo when it came to solving an equation like x + 7 = 0. Physics has
been getting simpler, but most physics books still haven’t caught up. (Can
you detect the sales pitch here?) The newer, simpler way of understanding
physics involves symmetry.

8 Chapter 1 The Rules of the Rules



1.1 Symmetry

a / Emmy Noether (1882-1935).
The daughter of a prominent
German mathematician, she did
not show any early precocity at
mathematics — as a teenager
she was more interested in music
and dancing. She received her
doctorate in 1907 and rapidly
built a world-wide reputation,
but the University of Göttingen
refused to let her teach, and her
colleague Hilbert had to advertise
her courses in the university’s
catalog under his own name. A
long controversy ensued, with
her opponents asking what the
country’s soldiers would think
when they returned home and
were expected to learn at the
feet of a woman. Allowing her
on the faculty would also mean
letting her vote in the academic
senate. Said Hilbert, “I do not
see that the sex of the candidate
is against her admission as a
privatdozent [instructor]. After
all, the university senate is not
a bathhouse.” She was finally
admitted to the faculty in 1919.
A Jew, Noether fled Germany in
1933 and joined the faculty at
Bryn Mawr in the U.S.

The concept of symmetry goes back to ancient times, but the deep link
between physics and symmetry was discovered by Emmy Noether. What
do we mean by symmetry? Figure b shows two examples. The galaxy has a
symmetry because it looks the same when you turn your book upside-down.
The orchid has a different type of symmetry: it looks the same in a mirror.
Reflection and 180-degree rotation are examples of transformations, i.e.,
changes in which every point in space is systematically relocated to some
other place. We say that a thing has symmetry when transforming it
doesn’t change it. As shown in figure c, some objects have more than one
symmetry, although most have none.

symmetry under
180-degree rotation

symmetry under
right-left reflection

b / Two types of symmetries.

Self-check A
What symmetry is possessed by most of the designs in a deck of cards?
Why are they designed that way? . Answer, p. 20

Palindromes example 1
A palindrome is a sentence that is the same when you reverse it:
I maim nine men in Saginaw; wan, I gas nine men in Miami.

Section 1.1 Symmetry 9



no symmetry

both rotation and reflection

c / Most object have no symmetries. Some have more than one.

Discussion Questions

A What symmetries does a human have? Consider internal features,
external features, and behavior. If you woke up one morning after having
been reflected, would you be able to tell? Would you die? What if the rest
of the world had been reflected as well?

10 Chapter 1 The Rules of the Rules



1.2 A Preview of Noether’s Theorem
How does symmetry relate to physics? Long before Noether’s work,
it had been recognized that some physical systems had symmetry,
and their symmetries could be helpful for predicting their behavior.
If the skaters in figure d have equal masses, symmetry tells us that
they will move away from each other at equal speeds after they push
off. The one on the right looks bigger, however, so the symmetry
argument doesn’t quite work. If you look at the world around you,
you will see many approximate examples of symmetry, but none that
are perfect. Most things have no symmetry at all. Until Noether’s
work, that was the whole story. Symmetry was on the sidelines of
physics.

Noether’s approach was different. The universe is made out of
particles, and these particles are like the players on a soccer field or
the pieces on a checkerboard. The arrangement of the players on
the soccer field normally has no symmetry at all. The symmetry
is in the rules: the rules apply equally to both sides. Likewise, the
physical arrangement of the checkers on the board in figure e has
180-degree rotation symmetry, but this is spoiled in figure f after a
couple of moves. We don’t care about the asymmetry of the pieces.
In Noether’s approach, what’s important is the symmetry of the
rules. If we think of the checkerboard as a little universe, then
these rules are like the laws of physics, and their symmetry allows
us to predict certain things about how the universe will behave. For
instance, suppose we balanced the board carefully on a knife edge
running from left to right below its centerline. The position in figure
e balances, and so does the one in figure f. The rules required both
red and black to move one piece diagonally forward one step, so we
were guaranteed that after each side had made one move, the setup
would balance again.1

d / What will happen when
the two ice skaters push off from
each other?

e / The starting position in
checkers.

f / The board after two moves.

Noether’s greatest achievement was a principle known as
Noether’s theorem. We are not yet ready to state Noether’s the-
orem exactly, but roughly speaking, here’s what it says: The laws
of physics have to be the way they are because of symmetry.

1This symmetry won’t continue indefinitely, because at some point one player
will jump one of the other player’s pieces, or get a king and make a backwards
move. That just shows that a game like checkers is an imperfect metaphor for
the laws of physics. The particles in the universe don’t take turns moving, so we
don’t have situations where one particle sits still while another one “jumps” it.
It is possible for a particle of matter and a particle of antimatter to annihilate
one another — the process is probably occurring in the room you’re in right
now, due to natural radioactivity — but neither particle exists afterwards, so
the symmetry is more perfect than in checkers. The laws of physics are also
deterministic; there is no choice involved, as in a game.

Section 1.2 A Preview of Noether’s Theorem 11



1.3 What Are The Symmetries?
What are the actual symmetries of the laws of physics? It’s tempting
to try to determine them by pure reason, or by aesthetic arguments.
Why, for example, would God have chosen laws of physics that didn’t
treat right and left the same way? That would seem ugly. The
trouble with this approach is that it doesn’t work.

For example, prehistoric peoples observed the rising and setting
of the sun, the moon, the stars, and the four naked-eye planets.
They all appeared to be going in circles, and a circle is a very sym-
metric shape: it remains the same under rotation through any angle
at all. It became accepted dogma among the ancient astronomers
that these heavenly bodies were attached to spinning crystal spheres.
When careful observations showed that the motion of the planets
wasn’t quite circular, they patched things up by imagining smaller
crystal spheres riding on the big ones. This bias toward spheres and
circles was hard to shake because the symmetry of the shapes was
so appealing. The astronomer Johannes Kepler (1571-1630) inher-
ited from his predecessor Tycho Brahe (1546-1601) a set of the best
observations ever made of the motions of the planets. Kepler la-
bored for years trying to make up a set of spheres riding on spheres
that would fit the data, but because the data were so accurate, he
finally realized what nobody could have known based on the older,
less precise observations: it simply wasn’t possible. Reluctantly,
Kepler gave up his mystical reverence for the symmetry of the cir-
cle. He eventually realized that the planets’ orbits were ovals of a
specific mathematical type called an ellipse. The new observations
showed that the laws of physics were less symmetric than everyone
had believed.

g / Due to the earth’s rota-
tion, the stars appear to go in
circles. In this time-exposure
photograph, each star makes an
arc.

h / A chess board has a kind
of translational symmetry: it looks
the same if we slide it one square
over and one square up.

i / The soda straw has trans-
lational symmetry. The flea
exploring along its length doesn’t
see anything different from one
location to another.

Sometimes experiments show that physics is more symmetric
than expected. One good example of this is translational symme-
try. A translation is a type of transformation in which we slide
everything without rotating it, as in figure h, where we can slide
the chess board so that the black squares are again in the places
previously occupied by black squares.2 The ancient Greek philoso-
pher Aristotle believed that the rules were different in some parts
of the universe than in others. In modern terminology, we say that
he didn’t believe in translational symmetry. When you drop a rock,
it falls. Aristotle explained this by saying that the rock was trying
to go back to its “natural” place, which is the surface of the earth.

2The chess board lacks complete translational symmetry because it has edges.
As far as we know, the laws of physics don’t specify that there are edges to
the universe beyond which nothing can go. However, this is different from the
question of whether the universe has infinite volume. We can easily make a
chessboard that is finite but has no edges. We simply wrap the right and left
edges around to form a tube, and then bend the tube into a doughnut. We still
don’t know with certainty whether the universe is finite or infinite, although
the latest data seem to show it’s infinite. Einstein’s theory of general relativity
allows either possibility.

12 Chapter 1 The Rules of the Rules



He applied the same kind of explanation to rising smoke: it rises
because it wants to go to its own natural place, which is higher up.
In Aristotle’s theory, different parts of the universe had their own
special characteristics. Only after an interval of two thousand years
was the true translational symmetry of the laws of physics uncovered
by Isaac Newton. In Newton’s theory of gravity, a rock falls because
every atom in the universe is attracted to every other atom. The
rock’s atoms are attracted to the planet earth’s atoms. We don’t
prefer Newton’s version just because it sounds better. Aristotle was
proved wrong by experiments. The original evidence was indirect,
but we have more straightforward proof now. If Aristotle had been
right, the huge boulder in figure j would long since have fallen to
its “natural” place on the surface of our planet (and so would the
astronaut!).

j / Astronaut Harrison Schmidt on
the moon in 1972.

Translational symmetry is also deeply embedded in the way we
practice the scientific method. One of the assumptions of the sci-
entific method is that experiments should be reproducible. For
example, a group at Berkeley recently claimed to have produced
three atoms of a new element, with atomic number 118. Other labs,
however, were unable to reproduce the experiment, and eventually
suspicious members of the Berkeley team checked and found that
one of their own scientists had fabricated the data. Although the
episode (and another case of fraud at Bell Laboratories around the
same time) caused considerable editorializing about what might be
wrong with the scientific profession, I see it as a textbook example
of how the scientific method is supposed to work, since the fraud
was eventually discovered. A basic assumption here is that scientists
in different places should be able to get the same results. If trans-
lational symmetry was violated, then the results might be different
because the laws of physics were different in different places. The
assumption of translational symmetry is so deeply ingrained that
normally it doesn’t even occur to us that we were making it. When
engineers design a space probe to go to Mars, they don’t even stop
to ask themselves whether the laws of physics are the same on Mars

Section 1.3 What Are The Symmetries? 13



as on earth.

Discussion Questions

B Imagine that you establish two-way radio communication with aliens.
You laboriously teach each other your languages, e.g., by sending two
beeps followed by the word “two.” However, neither of you is able to figure
out exactly where the other’s planet is, and you can’t come up with any
celestial landmarks that you both recognize. Can you communicate the
definition of the terms “right” and “left” to them? The wonderful popular
science writer Martin Gardner proposes calling this the “Ozma problem.”
(The name comes from the Ozma project, which was the first serious
attempt to detect signals from aliens using radio telescopes. The Ozma
project was in turn named after a character in one of L. Frank Baum’s Oz
stories.) In general, every symmetry of the laws of physics can be stated
as an Ozma problem.

14 Chapter 1 The Rules of the Rules



These flowers are referred to in
homework problems 1 and 2.

4 poppy

1 thunbergia

3 African
tulip tree2 adenium

5 hibiscus

7 lily6 begonia

Section 1.3 What Are The Symmetries? 15



Problems
Problems 1 and 2 refer to the photos of flowers on page 15. Since the
flowers are living things, they don’t have exact, perfect mathematical
symmetry. Just think in terms of approximate symmetries.

1 (a) Which of the flowers shown in the photos have reflection
symmetry but not 180-degree rotation symmetry?
(b) Which have 180-degree rotation symmetry but not reflection
symmetry?
(c) Which have both
(d) Which have neither?
Note that in flowers 1 and 2, the lobes of the petals overlap in a
clockwise or counterclockwise screw pattern. You can tell from the
photo that flower 1 has a curved tube. Flower 2 doesn’t have a
curved tube.

2 In the text, I’ve only discussed rotational symmetry with an an-
gle of 180 degrees. Some of the flowers in the photos have symmetry
with respect to other angles. Discuss these.

3* The following are questions about the symmetries of plants
that you can try to answer by collecting data at an arboretum,
nursery, botanical garden, or florist. (You could also websurf, but it
wouldn’t be as enjoyable.) You probably won’t be able to answer all
of them. You can’t do this problem without actually going out and
collecting detailed data; you’ll have to turn in the data (drawings,
notes on which plants you looked at, etc.) and then base your
conclusions on your data.

Symmetry of flowers is an easy way to classify plants. Is it
also a good way? To be a good way, it should correspond
to evolutionary relationships, and it should therefore correlate
with other features of plants. Another feature that’s easy to
check is leaf structure: are the fibers in the leaves all parallel
(e.g., grass), or do they branch out (e.g., a maple). Does leaf
structure seem to correlate at all with flower symmetry?

The photos on page 15 include some flowers whose petals or
petal-lobes overlap in a pattern like a clockwise or counter-
clockwise screw. When this happens, how systematic is the
pattern of overlapping? Do you observe right-handed and left-
handed screw-patterns in different flowers on the same plant?
In different plants that are genetically identical (e.g., grown
from cuttings from the same parent) but have been exposed
to different environments? In genetically different plants of
the same species?

Can you find any plants in which the arrangement of the leaves
follows a definite pattern, but lacks reflection symmetry?

16 Chapter 1 The Rules of the Rules



4 Noether’s theorem refers to symmetries of the laws of physics,
not symmetries of objects. Which of the following do you think
could qualify as a law of physics, and which are mere facts about
objects? In other words, which ones are not true in some situations,
at some times, on different planets, etc? They are all true where I
live!

1. The sun rises in the east and sets in the west.

2. High tide occurs when the moon is overhead or underfoot, and
low tide when it’s on the horizon.

3. Inheritance works through genes, so an acquired trait can’t be
inherited.

4. In a chemical reaction, if you weigh all the products, the total
is the same as what you started with.

5. A gas compressed to half its original volume will have twice
its original pressure (assuming the temperature is the same).

In each case, explain your reasoning.

5 If an object has 90-degree rotation symmetry, what other sym-
metries must it have as well?

6 Someone describes an object that has symmetry under 135-
degree rotation (3/8 of a circle). What’s a simpler way to describe
the same symmetry? (Hint: Draw a design on a piece of paper, then
trace it onto another piece of paper. Rotate the top piece of paper,
then copy the new design. Keep going. What happens?)

7 (a) Give an example of an object that has 180-degree rotation
symmetry, and also has reflection symmetry.
(b) Give an example with symmetry under 180-degree rotation, but
not under reflection.

8 Suppose someone tells you that the reason the Ozma problem
for left and right is difficult is because you can’t get together with
the aliens and show them what you’re referring to. Is this correct?
How is this different from trying to describe an elephant over the
radio to someone who’s never seen an elephant or a picture of one?

Problems 17



Lab 1a: Scaling
Apparatus
paper and card stock
ruler
scissors

Goal
Find out whether the laws of physics have scaling
symmetry.

Introduction
From Gulliver to Godzilla, people have always been
fascinated with scaling. Gulliver’s large size rela-
tive to the Lilliputians obviously had some strong
implications for the story. But is it only relative
size that matters? In other words, if you woke up
tomorrow, and both you and your house had been
shrunk to half their previous size, would you be
able to tell before stepping out the door? Galileo
was the first to realize that this type of ques-
tion was important, and that the answer could
only be found by experiments, not by looking in
dusty old books. In his book The Two New Sci-
ences, he illustrated the question using the idea
of a long wooden plank, supported at one end,
that was just barely strong enough to keep from
breaking due to gravity. The testable question he
then posed was whether this just-barely-strong-
enough plank would still have the just-barely-
strong-enough property if you scaled it up or down,
i.e., if you multiplied all its dimensions — length,
width, and height — by the same number.

You’re going to test the same thing in lab, us-
ing the slightly less picturesque apparatus shown
in the photo: strips of paper. The paper bends
rather than breaking, but by looking at how much
it droops, you can see how able it is to support its
own weight. The idea is to cut out different strips
of paper that have the same proportions, but differ-
ent sizes. If the laws of physics are symmetric with
respect to scaling, then they should all droop the
same amount. Note that it’s important to scale
all three dimensions consistently, so you have to
use thicker paper for your bigger strips and thin-
ner paper for the smaller ones. Paper only comes
in certain thicknesses, so you’ll have to determine
the widths and lengths of your strips based on the
thicknesses of the different types of paper you have
to work with. In the U.S., some common thick-
nesses of paper and card-stock are 78, 90, 145, and

Galileo’s illustration of his idea.

200 grams per square meter.3 We’ll assume that
these numbers also correspond to thicknesses. For
instance, 200 is about 2.56 times greater than 78,
so the strip you cut from the heaviest card stock
should have a length and width that are 2.56 times
greater than the corresponding dimensions of the
strip you make from the lightest paper.

To Think About Before Lab
1. If the laws of physics are symmetric with re-
spect to scaling, would each strip droop by the

3A student at Ohlone College, using the same brand
of paper I use at Fullerton College, noticed that the
numbers given on the packaging in units of pounds do
not correspond at all closely to the thickness or weight
of the paper. The densities are also a little different,
but not too different, so it’s not such a bad assumption
to assume that weight relates directly to thickness.

18 Chapter 1 The Rules of the Rules



same number of centimeters, or by the same an-
gle? In other words, how should you choose to
define and measure the “droop?”

2. If you find that all the strips have the same
droop, that’s evidence for scaling symmetry, and
if you find that they droop different amounts,
that’s evidence against it. Would either observa-
tion amount to a proof? What if some experiments
showed scaling symmetry and others didn’t?

Lab 1a: Scaling 19



Answers to Self-Checks for Chapter 1

Page 9, self-check A: They have 180-degree rotation symmetry.
They’re designed that way so that when you pick up your hand, it
doesn’t matter which way each card is turned.

20 Chapter 1 The Rules of the Rules



Chapter 2

The Ray Model of Light

2.1 Rays Don’t Rust
If you look at the winter night sky on a clear, moonless night far from
any city lights, something strange will soon catch your eye. Near
the constellation of Andromeda is a little white smudge. What is
it? You can easily convince yourself that it’s not a cloud, because
it moves along with the stars as they rise and set. What you’re
seeing is the Andromeda galaxy, a fantastically distant group of
stars very similar to our own Milky Way.1 We can see individual
stars within the Milky Way galaxy because we’re inside it, but the
Andromeda galaxy looks like a fuzzy patch because we can’t make
out its individual stars. The vast distance to the Andromeda galaxy
is hard to fathom, and it won’t help you to imagine it if I tell you
the number of kilometers is 2 followed by 19 zeroes. Think of it like
this: if the stars in our own galaxy were as close together as the
hairs on your skin, the Andromeda galaxy would be thousands of
kilometers away.

Perseus
Cassiopeia

Andromeda

Andromeda
galaxy

a / How to locate the Andromeda
galaxy.

The light had a long journey to get to your eyeball! A well-
maintained car might survive long enough to accumulate a million
kilometers on its odometer, but by that time it would be a rickety
old rust-bucket, and the distance it had covered would still only
amount to a fraction of a billionth of a billionth of the distance
we’re talking about. Light doesn’t rust. A car’s tracks can’t go on
forever, but the trail of a light beam can. We call this trail a “ray.”

2.2 Time-Reversal Symmetry
The neverending motion of a light ray is surprising compared with
the behavior of everyday objects, but in a way it makes sense. A
car is a complex system with hundreds of moving parts. Those
parts can break, or wear down due to friction. Each part is itself
made of atoms, which can do chemical reactions such as rusting.
Light, however, is fundamental: as far as we know, it isn’t made
of anything else. My wife’s car has a dent in it that preserves the
record of the time she got rear-ended last year. As time goes on,

1If you’re in the southern hemisphere, you have a more scenic sky than we
in the north do, but unfortunately you can’t see any naked-eye objects that are
as distant as the Andromeda galaxy. You can enjoy the Magellanic Clouds and
the Omega Centauri cluster, but they’re an order of magnitude closer.
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a car accumulates more and more history. Not so with a light ray.
Since a light ray carries no history, there is no way to distinguish
its past from its future. Similarly, some brain-injured people are
unable to form long-term memories. To you and me, yesterday is
different from tomorrow because we can’t remember tomorrow, but
to them there is no such distinction.

Experiments — including some of the experiments you’re going
to do in this course — show that the laws of physics governing light
rays are perfectly symmetric with respect to past and future. If a
light ray can go from A to B, then it’s also possible for a ray to go
from B to A. I remember as a child thinking that if I covered my
eyes, my mommy couldn’t see me. I was almost right: if I couldn’t
see her eyes, she couldn’t see mine.

Why light rays don’t stop example 1
Once the experimental evidence convinces us of time-reversal symme-
try, it’s easy to prove that light rays never get tired and stop moving.
Suppose some light was headed our way from the Andromeda galaxy,
but it stopped somewhere along the way and never went any farther. Its
trail, which we call the “ray,” would be a straight line ending at that point
in empty space. Now suppose we send a film crew along in a space
ship to document the voyage, and we ask them to play back the video
for us, but backwards. Time is reversed. The narration is backwards.
Clocks on the wall go counterclockwise. In the reversed documentary,
how does the light ray behave? At the beginning (which is really the
end), the light ray doesn’t exist. Then, at some random moment in time,
the ray springs into existence, and starts heading back towards the An-
dromeda galaxy. In this backwards version of the documentary, the light
ray is not behaving the way light rays are supposed to. Light doesn’t just
appear out of nowhere in the middle of empty space for no reason. (If
it did, it would violate rotational symmetry, because there would be no
physical reason why this out-of-nowhere light ray would be moving in
one direction rather than another.) Since the backwards video is im-
possible, and all our accumulated data have shown that light’s behavior
has time-reversal symmetry, we conclude that the forward video is also
impossible. Thus, it is not possible for a light ray to stop in the middle of
empty space.

b / The mirror left on the moon by
the Apollo 11 astronauts.

The Apollo lunar ranging experiment example 2
In 1969, the Apollo 11 astronauts made the first crewed landing on the
moon, and while they were there they placed a mirror on the lunar sur-
face. Astronomers on earth then directed a laser beam at the landing
site. The beam was reflected by the mirror, and retraced its own path
back to the earth, allowing the distance to the moon to be measured
extremely accurately (which turns out to provide important information
about the earth-moon system). Based on time-reversal symmetry, we
know that if the reflection is a 180-degree turn, the reflected ray will be-
have in the same way as the outgoing one, and retrace the same path.
(Figure p on page 31 explains the clever trick used to make sure the
reflection would be a 180-degree turn, without having to align the mirror
perfectly.)

22 Chapter 2 The Ray Model of Light



Looking the wrong way through your glasses example 3
If you take off your glasses, turn them around, and look through them
the other way, they still work. This is essentially a demonstration of time-
reversal symmetry, although an imperfect one. It’s imperfect because
you’re not time-reversing the entire path of the rays. Instead of passing
first through the front surface of the lenses, then through the back sur-
face, and then through the surface of your eye, the rays are now going
through the three surfaces in a different order. For this reason, you’ll
notice that things look a little distorted with your glasses reversed. To
make a perfect example of time-reversal, you’d have to have a little lamp
inside your eyeball!

If light never gets tired, why is it that I usually can’t see the
mountains from my home in Southern California? They’re far away,
but if light never stops, why should that matter? It’s not that light
just naturally stops after traveling a certain distance, because I can
easily see the sun, moon, and stars from my house, and they’re much
farther away than the mountains. The difference is that my line of
sight to the mountains cuts through many miles of pollution and
natural haze. The time-reversal argument in example 1 depended
on the assumption that the light ray was traveling through empty
space. If a light ray starts toward me from the mountains, but hits
a particle of soot in the air, then the time-reversed story is perfectly
reasonable: a particle of soot emitted a ray of light, which hit the
mountains.

Discussion Questions

C If you watch a time-reversed soccer game, are the players still
obeying the rules?
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2.3 Applications

The inverse-square law

Yet another objection is that a distant candle appears dim. Why
is this, if not because the light is getting tired on the way to us?
Likewise, our sun is just a star like any other star, but it appears
much brighter because it’s so much closer to us. Why are the other
stars so dim if not because their light wears out? It’s not that the
light rays are stopping, it’s that they’re getting spread out more
thinly. The light comes out of the source in all directions, and if
you’re very far away, only a tiny percentage of the light will go into
your eye. (If all the light from a star went into your eye, you’d be
in trouble.)

c / The light is four times dimmer
at twice the distance.

Figure c shows what happens if you double your distance from
the source. The light from the flame spreads out in all directions.
We pick four representative rays from among those that happen
to pass through the nearer square. Of these four, only one passes
through the square of equal area at twice the distance. If the two
equal-area squares were people’s eyes, then only one fourth of the
light would go into the more distant person’s eye.

Another way of thinking about it is that the light that passed
through the first square spreads out and makes a bigger square; at
double the distance, the square is twice as wide and twice as tall, so
its area is 2 × 2 = 4 times greater. The same light has been spread
out over four times the area.

In general, the rule works like this:

distance × 2 ⇒ brightness × 1
4

distance × 3 ⇒ brightness × 1
9

distance × 4 ⇒ brightness × 1
16

To get the 4, we multiplied 2 by itself, 9 came from multiplying 3 by
itself, and so on. Multiplying a number by itself is called squaring
it, and dividing one by a number is called inverting it, so a rela-
tionship like this is known as an inverse square law. Inverse square
laws are very common in physics: they occur whenever something
is spreading out in all directions from a point.
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Self-check A
Alice is one meter from the candle, while Bob is at a distance of five me-
ters. How many times dimmer is the light at Bob’s location? . Answer,
p. 44

An example with sound example 4
. Four castaways are adrift in an open boat, and are yelling to try to
attract the attention of passing ships. If all four of them yell at once, how
much is their range increased compared to the range they would have
if they took turns yelling one at a time?
. This is an example involving sound. Although sound isn’t the same
as light, it does spread out in all directions from a source, so it obeys
the inverse-square law. In the previous examples, we knew the distance
and wanted to find the intensity (brightness). Here, we know about the
intensity (loudness), and we want to find out about the distance. Rather
than taking a number and multiplying it by itself to find the answer, we
need to reverse the process, and find the number that, when multiplied
by itself, gives four. In other words, we’re computing the square root of
four, which is two. They will double their range, not quadruple it.

Astronomical distance scales example 5
The nearest star, Alpha Centauri,2 is about 10,000,000,000,000,000
times dimmer than our sun when viewed from our planet. If we assume
that Alpha Centauri’s true brightness is roughly the same as that of our
own sun, then we can find the distance to Alpha Centauri by taking the
square root of this number. Alpha Centauri’s distance from us is equal
to about 100,000,000 times our distance from the sun.

d / The same lens is shown
with its diaphragm set to three
different apertures.

Pupils and camera diaphragms example 6
In bright sunlight, your pupils contract to admit less light. At night they
dilate, becoming bigger “light buckets.” Your perception of brightness
depends not only on the true brightness of the source and your dis-
tance from it, but also on how much area your pupils present to the
light. Cameras have a similar mechanism, which is easy to see if you
detach the lens and its housing from the body of the camera, as shown
in the figure. Here, the diameter of the largest aperture is about ten
times greater than that of the smallest aperture. Making a circle ten
times greater in radius increases its area by a factor of 100, so the
light-gathering power of the camera becomes 100 times greater. (Many
people expect that the area would only be ten times greater, but if you
start drawing copies of the small circle inside the large circle, you’ll see
that ten are not nearly enough to fill in the entire area of the larger circle.
Both the width and the height of the bigger circle are ten times greater,
so its area is 100 times greater.)

Parallax

Example 5 on page 25 showed how we can use brightness to de-
termine distance, but your eye-brain system has a different method.
Right now, you can tell how far away this page is from your eyes.
This sense of depth perception comes from the fact that your two
eyes show you the same scene from two different perspectives. If

2Sticklers will note that the nearest star is really our own sun, and the second
nearest is the burned-out cinder known as Proxima Centauri, which is Alpha
Centauri’s close companion.
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you wink one eye and then the other, the page will appear to shift
back and forth a little.

e / At double the distance, the parallax angle is approximately halved.

If you were looking at a fly on the bridge of your nose, there
would be an angle of nearly 180 ◦ between the ray that went into
your left eye and the one that went into your right. Your brain
would know that this large angle implied a very small distance.
This is called the parallax angle. Objects at greater distances have
smaller parallax angles, and when the angles are small, it’s a good
approximation to say that the angle is inversely proportional to the
distance. In figure e, the parallax angle is almost exactly cut in half
when the person moves twice as far away.

Parallax can be observed in other ways than with a pair of eye-
balls. As a child, you noticed that when you walked around on a
moonlit evening, the moon seemed to follow you. The moon wasn’t
really following you, and this isn’t even a special property of the
moon. It’s just that as you walk, you expect to observe a paral-
lax angle between the same scene viewed from different positions
of your whole head. Very distant objects, including those on the
Earth’s surface, have parallax angles too small to notice by walking
back and forth. In general, rays coming from a very distant object
are nearly parallel.

If your baseline is long enough, however, the small parallaxes
of even very distant objects may be detectable. In the nineteenth
century, nobody knew how tall the Himalayas were, or exactly where
their peaks were on a map, and the Andes were generally believed
to be the tallest mountains in the world. The Himalayas had never
been climbed, and could only be viewed from a distance. From down
on the plains of India, there was no way to tell whether they were
very tall mountains very far away, or relatively low ones that were
much closer. British surveyor George Everest finally established
their true distance, and astounding height, by observing the same
peaks through a telescope from different locations far apart.

An even more spectacular feat of measurement was carried out
by Hipparchus over twenty-one centuries ago. By measuring the
parallax of the moon as observed from Alexandria and the Helle-
spont, he determined its distance to be about 90 times the radius
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of the earth.3

The earth circles the sun, f, and we can therefore determine
the distances to a few hundred of the nearest stars by making ob-
servations six months apart, so that the baseline for the parallax
measurement is the diameter of the earth’s orbit. For these stars,
the distances derived from parallax can be checked against the ones
found by the method of example 5 on page 25. They do check out,
which verifies the assumption that the stars are objects analogous
to our sun.

earth orbiting
our sunnearer star

more
distant
star

f / The nearer star has a larger
parallax angle. By measuring the
parallax angles, we can deter-
mine the distances to both stars.
(The scale on this drawing is
not realistic. If the earth’s orbit
was really this size, the nearest
stars would be several kilometers
away.)

3The reason this was a hard measurement was that accurate clocks hadn’t
been invented, so there was no easy way to synchronize the two observations,
and the desired effect would be masked by the apparent motion of the moon
across the sky as it rose and set. Hipparchus’s trick was to do the measurement
during a solar eclipse, so that people at both locations would know they were in
sync.
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2.4 The Speed of Light
How fast does light travel? Does it even take any time to go from one
place to another? If so, is the speed different for light with different
colors, or for light with different brightnesses? Can a particular ray
of light speed up or slow down?

The principle of inertia

We can answer the last question based on fundamental princi-
ples. All the experimental evidence supports time-reversal symme-
try for light rays. Suppose that a beam of light traveling through a
vacuum slowed down. After all, a rolling soccer ball starts to slow
down immediately after you kick it. Even a rifle bullet slows down
between the muzzle and the target. Why shouldn’t light slow down
gradually? It can’t slow down, because of time-reversal symmetry.
If the laws of physics said that a ray of light slowed down while
traveling through a vacuum, then the time-reversed motion of the
ray would violate the laws of physics. In the time-reversed version,
the ray is moving the opposite direction and speeding up. Since
all the experimental evidence shows that time-reversal symmetry is
valid for light rays, we conclude that a ray will never speed up or
slow down while traveling through a vacuum.

g / The soccer ball will never
slow down.

h / Galileo Galilei (1564-1642)

Why, then, do the ball and the bullet slow down? They wouldn’t
slow down at all if they were traveling through interstellar space. It’s
only due to friction that they lose speed. The ball slows down be-
cause of friction with the grass, and air friction is what decelerates
the bullet. The laws of physics are not complicated, and in many
ways they’re not even different for light rays than for material ob-
jects. The laws of physics are simple and consistent. We can now
state the following important principle, first proposed by Florentine
physicist Galileo Galilei:

The principle of inertia
A ray of light or a material object continues moving in the same

direction and at the same speed if it is not interacting with anything
else.

Measuring the speed of light

Observations also show that in a vacuum, all light moves at the
same speed, regardless of its color, its brightness, or the manner in
which it was emitted. The best evidence comes from supernovae,
which are exploding stars. Supernovae are so bright that we can see
them even when they occur in distant galaxies whose normal stars
are too dim to resolve individually. When we observe a supernova,
all the light gets to us at the same time, so it must all have traveled
at the same speed.

Galileo made the first serious attempt to measure the speed of
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light. In his experiment, two people with lanterns stood a mile apart.
The first person opened the shutter of his lantern, and the second
person opened the shutter on his as soon as he saw the light from the
first person’s. A third observer stood at an equal distance from both
of them, and tried to measure the time lag between the two. No such
time lag was observed, so you could say that the experiment failed,
but in science a failure can still be important. This is known as a
negative experiment. Galileo’s results showed that the speed of light
must be at least ten times the speed of sound. It was important that
he published his negative result, both because it convinced people
that the problem was scientifically interesting and because it told
later workers that the speed of light must be very fast, which would
help them to design experiments that might actually work.

i / A modern image of Jupiter
and its moon Io (right) from the
Voyager 1 probe.

sun

earth

Jupiter Io

j / The earth is moving to-
wards Jupiter and Io. Since the
distance is shrinking, it’s taking
less and less time for light to get
to us from Io. Io appears to circle
Jupiter more quickly than normal.
Six months later, the earth will be
on the opposite side of the sun,
and receding from Jupiter and Io,
so Io will appear to go around
more slowly.

The first person to prove that light’s speed was finite, and to de-
termine it numerically, was Ole Roemer, in a series of measurements
around the year 1675. Roemer observed Io, one of Jupiter’s moons,
over a long period. Since Io presumably took the same amount
of time to complete each orbit of Jupiter, it could be thought of
as a very distant, very accurate clock. A practical and accurate
pendulum clock had recently been invented, so Roemer could check
whether the ratio of the two clocks’ cycles, about 42.5 hours to one
orbit, stayed exactly constant or changed a little. If the process of
seeing the distant moon was instantaneous, there would be no rea-
son for the two to get out of step. Even if the speed of light was
finite, you might expect that the result would be only to offset one
cycle relative to the other. The earth does not, however, stay at a
constant distance from Jupiter and its moons. Since the distance is
changing gradually due to the two planets’ orbital motions, a finite
speed of light would make the “Io clock” appear to run faster as the
planets drew near each other, and more slowly as their separation
increased. Roemer did find a variation in the apparent speed of Io’s
orbits, which caused Io’s eclipses by Jupiter (the moments when Io
passed in front of or behind Jupiter) to occur about 7 minutes early
when the earth was closest to Jupiter, and 7 minutes late when it
was farthest. Based on these measurements, Roemer estimated the
speed of light to be approximately 200,000 kilometers per second,
which is in the right ballpark compared to modern measurements of
300,000 km/s.

Discussion Questions

A When phenomena like X-rays and cosmic rays were first discovered,
nobody knew what they were. Suggest one way of testing the hypothesis
that they were forms of light.
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2.5 Reflection

Seeing by reflection

So far we’ve only talked about how you see things that emit
light: stars, candles, and so on. If you’re reading this book on a
computer screen, that’s how you’re seeing it right now. But what
if you’re reading this book on paper? The paper doesn’t emit light,
and it would be invisible if you turned out the lights in the room.
The light from the lamp is hitting the paper and being reflected to
your eyes.

k / Two self-portraits of the
author, one taken in a mirror and
one with a piece of aluminum
foil.

l / The incident and reflected
rays are both perpendicular to
the surface.

i r

m / This doesn’t happen.

Most people only think of reflection as something that happens
with mirrors or other shiny, smooth surfaces, but it happens with
all surfaces. Consider figure k. The aluminum foil isn’t as smooth
as the mirror, so my reflection is blurry and jumbled. If I hadn’t
told you, you probably wouldn’t have known that it was a reflection
of a person at all. If the paper you’re reading from was as smooth
as a mirror, you would see a reflection of the room in it, and the
brightest object in the reflection would probably be the lamp that’s
lighting the room. Paper, however, is not that smooth. It’s made
of wood pulp. The reflection of the room is so blurry and jumbled
that it all looks like one big, washed-out, white blur. That white
blur is what you see when you see the paper. This is called diffuse
reflection. In diffuse reflection, the reflected rays come back out at
random angles.

Specular reflection

Reflection from a smooth surface is called specular reflection,
from the Latin word for mirror. (The root, a verb meaning “to look
at,” is the same as the root of “spectacular” and “spectacle.”) When
a light ray is reflected, we get a new ray at some new angle, which
depends on the angle at which the incident (original) ray came in.
What’s the rule that determines the direction of the reflected ray?
We can determine the answer by symmetry.

First, if the incident ray comes in perpendicular to the surface, l,
then there is perfect left-right reflection symmetry. (It’s just a coin-
cidence that we have reflection symmetry occurring in our analysis
of reflection.) If the reflected ray came back at some angle to the
left or right, it would violate this symmetry. Therefore the reflected
ray must be right on top of the incident ray, straight back up. Be-
cause this is the simplest possible specular reflection, we define these
angles as zero: all rays have their angles measured with respect to
perpendicular, not with respect to the surface itself. Typically the
rays themselves will not be perpendicular to the surface, but we still
measure their angles with respect to an imaginary line perpendicu-
lar to the surface, which we call the normal. (“Normal” is simply
another word for perpendicular.)

Now what if the incident angle isn’t zero? Figure m shows what
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doesn’t happen. It’s not possible for the reflected angle r to be
unequal to the incident angle i, because of symmetry. Suppose we
lived in a goofy universe, where the laws of physics gave the result
shown in the figure: r is always less than i. What would happen if
we did a time-reversal on the diagram? Oops — then we’d have r
greater than i ! Since experiments support time-reversal symmetry
for light rays, we conclude that this is impossible.4 The actual laws
of physics give equal angles of incidence and reflection,

r = i . i r

n / This does happen.

o / example 7

p / A corner reflector

q / example 8

Reflecting a pool ball example 7
The proof of r = i for light rays works equally well for pool balls, pro-
vided that the effects that violate symmetry are small. For instance, we
assume that the ball doesn’t have lots of spin put on it, because that
would break the left-right reflection symmetry.

Self-check B
Continue the ray in figure p through its second reflection. In what direc-
tion is the returning ray? How does this relate to example 2 on page
22? . Answer, p. 44

An image example 8
Figure q shows some representative rays spreading out from one point
on the flame. These rays strike the mirror and are reflected. To the
observer on the left, the reflected rays are indistinguishable from the
ones that would have originated from an actual flame on the far side of
the mirror. Rays don’t carry any history, so there is no way for the eye to
know that the rays underwent reflection along the way. (The rays shown
in the diagram form an image of one point on the flame, but every other
point on the flame sends out a similar bundle of rays, and has its own
image formed.)

Self-check C
What happens in figure q if you replace the flame with an object that
doesn’t emit light, and can only be seen by diffuse reflection? . Answer,
p. 44

Discussion Questions

A Laser beams are made of light. In science fiction movies, laser
beams are often shown as bright lines shooting out of a laser gun on a
spaceship. Why is this scientifically incorrect?

4There are a couple of oversimplifications in this argument, which shows how
debased a physicist’s conception of mathematical proof can be. First, we could
imagine a rule like r = 90 ◦−i, which would satisfy time-reversal symmetry, since
i = 90 ◦ − r; however, such a rule would not give r = 0 when i = 0, which we
require based on reflection symmetry. Another grotesque possibility is r = i, but
with the reflected ray on the same side of the normal as the incident ray. This
satisfies both time-reversal symmetry and reflection symmetry, but experiments
show that it isn’t what really happens in our universe. It can also be ruled out
based on another type of symmetry which we haven’t discussed yet (section 5.2).
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Problems
1 The natives of planet Wumpus play pool using light rays on
an eleven-sided table with mirrors for bumpers. Trace this shot
accurately with a ruler and protractor to reveal the hidden message.

b

o

n
k

Problem 1.

2 Sketch a copy of figure q on page 31. There are some places
from which the image is visible, and some from which it isn’t. Show
these regions on your sketch by outlining their borders and filling
them with two different kinds of shading.

Problem 3.

Problem 4a.

Problem 4b.

3 (a) Draw a ray diagram showing why a small light source (a
candle, say) produces sharper shadows than a large one (e.g. a
long fluorescent bulb). Draw a cross-section — don’t try to draw
in three dimensions. Your diagram needs to show rays spreading in
many directions from each point on the light source, and you need
to track the rays until they hit the surface on which the shadow is
being cast.
(b) Astronaut Mary goes to Mercury, while Gary visits Jupiter’s
moon Ganymede. Unfortunately it’s hard to tell whose vacation
pictures are whose, because everybody looks the same in a space
suit. Which picture is which? (Note that the brightness of the
light is irrelevant. As you can see, the pictures look equally bright,
because they took longer or shorter exposures to compensate for the
amount of sunlight.)

4 (a) The first figure shows a surface that is mostly smooth,
but has a few irregularities in it. Use a ray diagram to show how
reflection from this surface would work.
(b) The second figure shows an onion on an old chair. What evidence
do you see in this picture that there are surfaces like the one in part
a?

5 Many astronomers made attempts to detect the parallax of
the stars before anyone finally measured their very small parallax
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angles. The early results were used as an argument against models
of the universe in which the earth orbited the sun. Were all these
efforts a waste? Should we criticize the astronomers who made
them for producing incorrect results? How does this resemble the
story of Galileo’s attempt to measure the speed of light? Galileo’s
result could be stated as a lower limit on the speed of light, i.e.,
a mathematical inequality rather than an equality; could you do
something similar with the early parallax measurements?

6 If a mirror on a wall is only big enough for you to see yourself
from your head down to your waist, can you see your entire body
by backing up? Test this experimentally and come up with an ex-
planation for your observations using ray diagrams. Note that it’s
easy to confuse yourself if the mirror is even a tiny bit off of vertical;
check whether you are able to see more of yourself both above and
below. (To make this test work, you may need to lower the mirror
so that you can’t see the top of your head, or put a piece of tape on
the mirror, and pretend that’s the top of it.)

Problem 6

Problem 7.

7 The diagram shows the moon orbiting the earth (not to scale)
with sunlight coming in from the right.
(a) Why are the sun’s rays shown coming in parallel? Explain.
(b) Figure out the phase of the moon when the moon is at each
point in its orbit. In other words, when is it a new moon, when is
it a crescent, when is it a half moon, when is it gibbous, and when
is it full?

8 (a) You’re photographing some people around a campfire. If
you step back three times farther from the fire to frame the shot
differently, how many times longer will the exposure have to be?
Explain.
(b) You’re worried that with the longer exposure, the dancing flames
will look blurry. Rather than compensating for the greater distance
with a longer exposure, you decide to open the diaphragm of the
camera wider. How many times greater will the diameter of the
aperture have to be? Explain.

9 Why did Roemer only need to know the radius of the earth’s
orbit, not Jupiter’s?

10 Suggest a simple experiment or observation, without any spe-
cial equipment, to show that light isn’t a form of sound. (Note that
there are invisible forms of light such as ultraviolet and infrared, so
the invisibility of sound doesn’t prove anything. Likewise, you can’t
conclude anything from the inaudibility of light.)

In problems 11 and 12, you need to know that radio waves are fun-
damentally the same phenomenon as light, and travel at the same
speed.

11 The Stealth bomber is designed with flat, smooth surfaces.
Why would this make it difficult to detect via radar? Explain using
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a ray diagram.

12 A Global Positioning System (GPS) receiver is a device that
lets you figure out where you are by receiving radio signals from
satellites. It’s accurate to within a few meters. The details are
a little complicated, but for our present purposes, let’s imagine a
simplified version of the system in which the satellite sends a signal
at a known time, and your handheld unit receives it at a time that is
also very accurately measured. The time delay indicates how far you
are from the satellite. As a further simplification, let’s assume that
everything is one-dimensional: the satellite is low on the eastern
horizon, and we’re only interested in determining your east-west
position (longitude).5 How accurate does the measurement of the
time delay have to be, to determine your position to this accuracy
of a few meters?

5If you’re curious, here’s a brief explanation of how the real system works,
without the oversimplifications. There are currently about 24 GPS satellites
in orbit, and to get your location, you need to get signals from four of them
simultaneously. The basic idea is that by knowing your distance from three
points in space, you can find your location in three dimensions. Why, then, do
you need to get four signals? The satellites all have atomic clocks on board, but
it’s not practical to put an atomic clock in your handheld unit. You can think
of the fourth satellite as a replacement for the atomic clock you wish you had in
your receiver.
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Lab 2a: Time-Reversal and Reflection
Symmetry
Apparatus
laser
plastic box
protractor

Goals
Observe the phenomenon of refraction.

Test whether refraction obeys time-reversal
and reflection symmetry.

A Refraction
Put water in the box, and shine the laser into it at
an angle. You should be able to see that there is a
beam that is reflected back from the surface of the
box — although the beam is invisible in air, you
can see a dot where it hits things like your hand
or the box.

So far you’re just seeing things that you’ve already
read about in the book. But now look inside the
water. Part of the light is reflected, but part of it is
transmitted, i.e., passes into the water rather than
bouncing back. We now have three rays: incident,
reflected, and transmitted, which form the angles
i, r, and t with respect to the normal. It’s easiest if
you keep everything in a horizontal plane, because
angles in three dimensions are hard to measure.
You may want to put a piece of paper under the
box to mark the rays.

i

rt

The angles of the three rays are measured with
respect to the normal.

Note that the direction of the transmitted ray
isn’t the same as the direction of the incident ray;
it’s been knocked off course. This bending phe-
nomenon is called refraction. (Think “fracture,”

like a broken bone.)

Two simplifications: (1) From now on I’ll stop
drawing all the reflected rays. (2) Let’s think of
the plastic box as if it didn’t exist. In other words,
the light is cruising through air when suddenly it
hits some water. A justification for this is that
none of the observations you’re going to make de-
pend on the thickness of the plastic, so we could
get the same results even with a box that was in-
finitely thin, i.e., nonexistent.

B Time-reversal symmetry
Try sending the beam through a corner as sug-
gested by the figure. Make sure that the incident
angle of the incoming ray, marked with the dashed
arc in the figure, is nice and big. If it’s less than
about 60 degrees, you won’t get a ray emerging on
the other side of the corner at all.6

You can now test whether refraction obeys time-
reversal symmetry. Measure the angles with a pro-
tractor, and then redo the experiment with the
ray coming back toward the box along the origi-
nal ray’s exit line. Are your results time-reversal
symmetric, or not?

6This is a phenomenon known as total internal re-
flection. When a ray in a denser medium hits a bound-
ary with a less dense medium, it may be 100% reflected,
depending on the angles. You can think of it as hap-
pening when the angle of the emerging ray with re-
spect to the normal would have been greater than 90
degrees. Total internal reflection is the basis for fiber
optics, the technology used in modern long-distance
telephone lines.

36 Chapter 2 The Ray Model of Light



Incidentally, you may have been wondering why
time-reversal symmetry seems to be violated in
everyday life. For instance, if you see a video of
Humpty Dumpty assembling himself out of pieces
and levitating back to the top of the wall, you know
the video has been reversed. Actually this isn’t
evidence that the laws of physics are asymmetric;
it’s just that it would be extremely difficult to start
all of Humpty Dumpty’s pieces moving in precisely
the right direction at the the right speed so that
he would reassemble himself. Similarly, there are
many reflected rays left out of the figure above. If
every possible reflection and refraction had been
included, it would have looked like a pitchfork or
a complicated bush. To time-reverse the diagram
exactly is difficult — you’d have to arrange many
different lasers so that their beams came together
perfectly and joined into one beam. Again, it’s a
practical issue, not an asymmetry in the laws of
physics.

C Reflection symmetry
Now we want to see if refraction obeys reflection
symmetry. That sounds confusing, doesn’t it? The
word “reflection” here refers to the type of symme-
try (i.e., mirror symmetry), not to the thing that’s
happening to the light ray. In other words, suppose
you do a bunch of experiments and measurements
involving refraction. Someone videotapes you, and
then alters the videotape so that left and right
are reversed. If the laws of physics are reflection-
symmetric, then there is no way to tell that there’s
anything wrong with the video.

i
t

Remember, this whole lab is about refraction.
That means you’re looking at the ray that is pass-
ing on into the water, not the ray that comes back
out into the air.

One very simple test is to measure the angle t of
the transmitted ray in the case where the incident
angle i is zero. In this situation, what value of t is
required by reflection symmetry? Try it.

Now try a few measurements of i and t where i isn’t
zero, and then redo the measurents with i on the
other side of the normal. Do the results support
reflection symmetry?
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To Think About Before Lab
Criticize the following statements:

“The angle of refraction equals the angle of inci-
dence.”

“In part C, we found that there was symmetry,
because in every case, the ray bounced back at the
same angle it came in at.”
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Lab 2b: Models of Light
Apparatus
laser
plastic box
protractor

Goal
Test a particle model and a wave model of light.

Introduction
This chapter is called “The Ray Model of Light,”
but the ray model is obviously a very simplified
one. What is a light ray, really? We know it
bounces off of mirrors, which is like a pool ball
bouncing off of a bumper. It might therefore be
natural to guess that a beam of light really consists
of a stream of tiny particles, just as the water com-
ing out of a fire hose is really made out of atoms.
On the other hand, waves can also bounce off of
things — that’s what an echo is. Let’s see if we
can figure out anything about this, while keeping
in mind that the particle and wave explanations
are only models.

1. A particle model of refraction. As the ball slows
down, it turns to the right.

It’s not hard to construct a mechanical model of
refraction using particles, as shown in figure 1. The
ball goes straight when it’s in the first flat area,
curves and decelerates as it goes up the ramp, and
then goes straight again when it’s in the other flat
area. Note that the ball has different speeds in the
two regions: fast on the right and slow on the left.
One of these regions represents air, one water —
we haven’t yet established which is which.

However, a wave model is also capable of explain-
ing refraction, as in figure 2. Water waves have
different speeds in shallow and deep water. The
waves in the figure come up from the bottom, and

2. Water waves are refracted at the boundary be-
tween regions having two different depths. As the
waves move toward the top of the page, they en-
counter the boundary, speed up, and turn to the
right.

encounter the diagonal boundary between the two
regions. Note that the distance between one crest
and the next, called the wavelength, changes when
the wave speed changes. This is similar to the way
that the spacing in a stream of traffic would get
farther apart when the road changed from dirt to
pavement: the cars in the front are the first to
speed up, so they pull away a little before the cars
following them speed up, too.

The waves hit the boundary at an angle. The only
way the waves in the two regions can connect up
with each other is if the crests twist around. This
is just like the change of direction we observe when
light rays are refracted.

As with the particle model, the wave model in-
volves two regions in which the speeds are different.
It’s only a coincidence that the photo in figure 2
was created using water waves. One of the two re-
gions does represent the water you’ll use in the lab,
but the other region represents the air! The photo
could have been made using waves in some other
medium, e.g., the two regions could have been two
sheets of rubber. We can also easily establish that
light is not a mechanical vibration of matter. For
instance, we know that sunlight gets to us through
the vacuum of outer space.
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Models of Refraction
Before we start worrying about which model is cor-
rect, let’s just see what consequences each one has
for refraction. This part of the lab is just thinking,
not observing. You’re not taking any data yet.

In figure 1, the incident “ray” is on the near side
of the normal, and the result is that the ray makes
a right turn. Suppose instead that the incident
ray was on the far side of the normal. Which way
would it turn? Also, the incident ray could have
come to the ramp from the high side, and then
moved down the ramp to the lower area. If you
imagine dividing the diagram into four quadrants,
like a pizza cut into four slices, we have a total of
four possibilities for the incident ray.

Predict the results for all four possibilities, using
the particle model:

?

??

Can you come up with a simple rule that describes
all four results?

Now do the same for the wave model. Remember

that the crests will always be closer together in the
region where the wave’s speed is lower.

If you have a hard time visualizing this, try making
a model using four rulers. First lay down two rulers
to represent two of the parallel wave crests of the
incoming wave. Although the rulers are parallel,
they form a parallelogram rather than a rectangle.
Now lay down two more rulers to represent the
wave crests on the other side of the boundary that
connect onto these. Swivel them in order to make
the distance between crests correct in relation to
the distance between the two original crests.

?

? ?

A Observing Refraction With the Laser
Now observe the refraction of the laser beam as it
passes into and out of the tub of water, and observe
how it bends when the incident ray is in each of the
four possible quadrants. Can your observations be
interpreted successfully with the particle model?
If so, does the particle model require that light go
faster in air, or in water? Similarly, see if you can
interpret your results with the wave model.

B Reflection
Now repeat part A, but observe the reflected ray
instead of the refracted one. The main issue here
is simply whether reflection can occur at all in the
different cases. The wave model allows both types
of reflection (back into the fast medium, and back
into the slow medium). You should be able to fig-
ure out which types of reflection exist in the par-
ticle model.

Analysis
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You should now have data from a total of eight
different setups: four with refraction, and four with
reflection. Is one model more successful than the
other in describing all these data? You need to
compare all eight observations with each model.
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Lab 2c: The Speed of Light in Matter
Apparatus
laser
plastic box
protractor

Goal
Measure the speed of light in a substance such as
water, glass, or plastic.

A picture like figure 2 on page 40 has two types
of information on it. First, we can tell that the
incident and transmitted angles are about i = 30 ◦

and t = 60 ◦. We can also tell that the wave’s speed
in the upper-left region is about double what it is in
the lower-right region, since the wavelength (crest-
to-crest distance) is about twice as long. However,
we can only tell the ratio of the two speeds, not
the absolute speeds in units of meters per second.

There’s speed information and angle information,
and the two are related. If we knew either one, we
could find the other. For instance, if I gave you
only the angle information, and asked you to make
a diagram like the figure, you’d be forced to draw
the wavelength of the transmitted wave twice as
long as that of the incident wave.

Your goal in this lab is to use this technique to
measure the speed of light in some substance. Your
answer will be a number: the ratio of light’s speed
in your substance to its speed in air. All you have
to do is measure a pair of angles i and t, and then
draw an accurate diagram. Because of the inherent
limitations of the technique, you can only find the
speed of light in this substance relative to the speed
of light in air, not its absolute speed in units of
meters per second. For instance, you might find
that speed of light in weasel sweat is 0.71 times
the speed of light in air.

It’s up to you to decide what substance you want
to use. You can bring something from home if you
like. If you’re adventurous, one interesting possi-
bility is to measure the speed of light of a solution,
like salt in water, and you change the concentra-
tion. Another challenge would be to measure the
speed of light in a vacuum — we have a vacuum
pump and some vacuum flasks.

Make sure to use the largest possible angles with
respect to the normal. When the angles are small,
you get a low-precision result. In the extreme case,
measuring i = 0 ◦ and t = 0 ◦ tells you absolutely

nothing about the speed of light.
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Answers to Self-Checks for Chapter 2

Page 25, self-check A: He’s five times farther away than she is,
so the light he sees is 1/25 the brightness. Page 31, self-check
B: After the second reflection, the ray is going back parallel to
the original incident ray. This is how the lunar ranging reflector in
example 2 on page 22 worked, except in three dimensions rather than
two. Can you imagine how to make it work in three dimensions?
Page 31, self-check C: It wouldn’t matter. The rough surface
sends rays out in all directions, which is no different from what
happens with the flame.
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Breakfast table, by Willem Clasz. de Heda, 1631. A variety of images
occur in the painting, some distorted, as a result of both reflection and
refraction.

Chapter 3

Images

Images are the main reason you care about light rays: you want rays
to paint images on your retina. It might seem as though this business
of images was very complicated, and to understand them you’d have to
memorize lots of facts about different image-producing devices — cameras,
telescopes, microscopes, fun-house mirrors — but all these devices work
according to a few simple principles, which you already know. You just
need the rules from chapter 2 governing specular reflection, and the rules
of refraction which you discovered in lab.

The eye of the octopus is a striking example of the subject’s underlying
simplicity. The last ancestor you had in common with an octopus was
an animal having only primitive vision, so your eye and the octopus’s
developed by parallel evolution. Even though they evolved independently,
they are remarkably similar, because the structure of an eye is dictated by
the laws of physics.1

1Fundamentalists who perceive a conflict between evolution and their religion
have claimed that the eye is such a perfect device that it could never have arisen
through a process as helter-skelter as evolution, or that it could not have evolved
because half of an eye would be useless. Actually the evolution of the eye is well
understood. We humans have a version of the eye that can be traced back to the
evolution of a light-sensitive “eye spot” on the head of an ancient invertebrate.
A sunken pit then developed so that the eye would only receive light from one
direction, allowing the organism to tell where the light was coming from. (Mod-
ern flatworms have this type of eye.) The top of the pit then became partially
covered, leaving a hole, for even greater directionality (as in the nautilus). At
some point the cavity became filled with jelly, and this jelly finally became a lens,
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3.1 Location and Magnification

A flat mirror
The ray diagram in figure a implies something strange and subtle,

which you probably didn’t fully absorb when you first saw it on page 31.
To appreciate it, try this experiment. First, bring this page so close to your
face that it touches your nose. You can’t focus your eyes on it, because it’s
too close. Now go in the bathroom and touch your nose against the mirror.
Surprisingly, you can easily see your own eyes in focus. The experiment
demonstrates that the image was not on the surface of the mirror. It was
behind the mirror, as implied by the ray diagram. The reason you were
able to focus on it was that it was twice as far away as the mirror’s surface.

a / The flame’s image is be-
hind the mirror.

b / The image is underground.

c / My nose reflects light rather
than emitting it, but the ray
diagram is just like figure a.

Of course there wasn’t really any stuff behind the mirror: no light,
and certainly no face. Nevertheless, we say that the image is at a definite
point in space, behind the mirror. It’s useful to say this, because the only
way you can see things is if light rays go into your eyes, and when you
catch those rays, they don’t carry any history. We know the rays in figure
a came from a point on the actual flame on the left, but they form exactly
the same spreading pattern that would have been produced by a flame
behind the mirror. It doesn’t matter whether the object emits light or
merely reflects it, as in figure c. The tip of my nose reflects light diffusely,
so light rays move away from it in every direction, just as they do from a
point on the flame.

Summarizing, we can define an image like this:

An image is where rays originating from the same point on the object
either cross again or appear to have crossed.

Figure c shows the case where the rays only appear to have crossed at the
image’s location. Burning ants with a magnifying glass is an example of
the other case: rays that originated from the same point on the sun are
actually reunited on the ground.

An image’s location is important, as exemplified by the famous warning
message on cars’ rear-view mirrors, “objects are closer than they appear.”
From the ray diagrams in figures a and c, it’s clear that a flat mirror
produces an image whose distance behind the mirror is equal to the object’s
distance in front of it. Therefore, when we increase an object’s distance
from a flat mirror, the image’s distance from the mirror increases as well.
We represent this with the shorthand symbol ++. (This is what high
school geometry teachers refer to disparagingly as proof by drawing, but
proof by drawing works, and we’re going to do a lot of it.) Although
it was easy to see that a flat mirror would be ++, the images made by
lenses and curved mirrors are sometimes ++ and sometimes +−, and we
need to discuss a couple of techniques that are more generally useful for
determining this.

resulting in the general type of eye that we share with the bony fishes and other
vertebrates. Far from being a perfect device, the vertebrate eye is marred by a
serious design flaw due to the lack of planning or intelligent design in evolution:
the nerve cells of the retina and the blood vessels that serve them are all in front
of the light-sensitive cells, blocking part of the light. Octopi and other mollusks
have a more sensible arrangement, with the light-sensitive cells out in front.
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1 2 3

d / Another way of determining that the image is ++. 1. Find a ray
that can get to the observer’s eye without being blocked. 2. Rays from
the paper airplane’s tail are not blocked, so the tail is visible, not the
nose. Therefore the image must be pointed away from the observer. 3. If
the plane got farther from the mirror, the image would too, so the image
is ++.

One method is simply to draw ray diagrams for two different object
distances. In the ray diagrams up to now, I’ve been drawing several rays,
all of which appeared to come from the image point. There is really no
need to do more than two such rays. We can also make life easy by choosing
one ray to be the one that happens to head straight towards the mirror;
this ray is reflected right back on itself. The full technique is demonstrated
in figure e. This method is straightforward for images made by flat and
curved mirrors, but somewhat more cumbersome with lenses, both because
refraction is more complicated than reflection and because a ray passing
through a lens undergoes two refractions, one at each surface. Figure d is
an alternative.

A curved mirror
There are only a few uses for a flat mirror. Figure f shows the more

interesting case: an image made by a curved mirror. (The figure only
shows a section through one plane, not all three dimensions; we’ll assume
throughout this book that our mirrors are symmetric with respect to ro-
tation about a central axis, like a dish, not a saddle or a potato chip.)
Because the mirror is curved, the reflected rays are bent back inward a
little, and are not diverging as strongly as the incident ones were.

normal
i

r

e / The object is moved from
its original position (heavy lines)
to a new position farther from
the mirror (light lines). For the
ray that strikes the mirror at an
angle, it’s helpful to draw in the
normal (perpendicular) to the
mirror’s surface. Since r = i , the
new rays must fan in closer to the
normal. As the object’s distance
increases, so does the image’s,
++.

f / A curved mirror.

The ray diagram in figure f shows that the image is farther from the
mirror than the object. The techniques described above show that the
image is still ++, as with a flat mirror, but if we increase the object’s
distance from the mirror by, say, 1 cm, then the image’s distance will
increase not just by 1 cm but by some greater amount. All the front-back
distances in Image-Land behind the mirror have been magnified. What
about up-down distances, and distances into and out of the page? If you
try drawing rays and locating the images of other points on the face, you’ll
find that all the distances are enlarged consistently, which means that the
image-face has all the same proportions. In this particular example, the
magnification is about two: all distances are doubled.
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3.2 Real and Virtual Images
The image in figure f is ++, but if we keep increasing the object dis-
tance, an increase in the image distance isn’t the only effect we’ll ever
see. Eventually we’ll get the completely different situation shown in figure
g. In figure f, the cone of rays intercepted by the mirror was spreading
out strongly, and although the mirror bent them back in somewhat, the
reflected rays were still spreading. In figure g, the rays coming out at the
biggest angles miss the mirror entirely, and those that do reach the mirror
form a cone that isn’t diverging so strongly. The mirror is able to bend
them enough so that they reconverge. This switch in behavior occurs when
the object is at a certain distance from the mirror, called the mirror’s focal
length.2

g / A new kind of image.

The image point in figure f is one where the rays only appear to have
crossed; this is called a virtual image. In figure g the rays really do cross at
the image point, and such an image is referred to as a real image. Only a
real image can be projected onto a screen. A movie projector, an overhead
projector, and the human eye all form real images. (The eye’s “screen” is
the retina, a layer of light-sensitive cells connected to the brain by nerves.)

Self-check A
Starting with the object distance shown in figure f, suppose we gradu-
ally move the object farther and farther away from the mirror. At some
special object distance, the image changes from virtual to real. What
do the reflected rays look like in this special case? . Answer, p. 60

Self-check B
Use the methods shown in figures d and e to determine whether the
image in figure g is ++ or +−. . Answer, p. 60

Self-check C
The image in figure g is smaller than the original object. Why smaller,
and not bigger as in figure f on page 47? . Answer, p. 60

2The interpretation of the focal length is elaborated on in homework problem
8 and lab 3d.
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3.3 Angular Magnification
Figure h shows a real-life application of these concepts: a telescope. The
curved mirror at the bottom of the tube forms a real image. Some profes-
sional telescopes are so large that a camera or even an astronomer’s body
can fit inside the tube. That’s not possible with a smaller telescope like
this, so a small second mirror is used. This flat diagonal mirror makes
an image of the image, outside the tube where we can see it. (The setup
shown in the figure will work, and is what amateur astronomers use for
astronomical photography. When observing by eye, however, one usually
includes a third optical element, an eyepiece lens, for greater magnifica-
tion.)

h / The images formed by the
telescope are smaller than the
moon itself.

What’s interesting about this example is that although we think of
a telescope as a device for magnifying astronomical objects, the images
are smaller than the actual moon: a few centimeters across, compared to
thousands of kilometers for the original object. The magnification is there-
fore a number much smaller than one, perhaps on the order of 0.000001.
Rather than magnifying the moon, the telescope shrinks or “minifies” it.
Why, then, do our eyes tell us that the image is bigger than the moon? It’s
because closer objects appear larger. The actual moon is much larger than
the image, but it’s also millions of times farther away. Because the image
is outside the telescope, you can move your head as close to the image as
you like. The only limitation is that your eye can’t focus on objects that
are less than a few centimeters away.

This shows that in many situations, it isn’t magnification that we care
about but angular magnification:

magnification =
size of image
size of object

angular magnification =
angular size of image
angular size of object

The reason a distant mountain looks smaller than a nearby tree is that
your eye can only tell you the angular size of an object, not its actual size.
The telescope gives a magnification much less than one (extreme “minifi-
cation”), but an angular magnification much greater than one (typically
from 20 to 500).

Section 3.3 Angular Magnification 49



Problems
1 The figure shows the cross-section of a funhouse mirror. Some of the
normals are correct, and some are incorrect. Print out a copy of the figure,
and mark the correct and incorrect ones. Fix the ones that are incorrect.

Problem 1.

1

2

3

Problem 2.

(a)

(b)

Problem 7.

2 Which reflections are correct, and which are incorrect? Correct the
ones that are wrong.

3 In figure g on page 48, only the image of my lips was located by
drawing rays. Print out a copy of the figure, and trace a new set of rays
coming from my forehead. By comparing the locations of the image of the
lips and the image of the forehead, demonstrate that the image is in fact
upside-down as suggested by the figure.

4 A woman is walking directly toward a flat mirror at 1.0 m/s. At what
rate is her distance from her image decreasing?

5 Walking down a long corridor at 1.0 m/s, you notice that the shiny
floor is forming a reflection of a light fixture that is mounted on the ceiling
ahead of you.
(a) Does the image move? If so, at what speed is it moving?
(b) What is the closest you ever get to this image? Draw a ray diagram
to locate the image at the point where the rays cross or appear to have
crossed. Does this make you change your mind about your answer to part
a?

6 People say that mirrors switch left and right. Is this really true? The
following are some suggestions for definite, specific examples that you may
find it helpful to think about. If you face south into a mirror, and point
your finger to the east, consider whether your image points east or west,
and likewise think about the case where you’re pointing in other directions,
such as up, or south. What would a mirror on the ceiling over your head
do? What about a mirror that was on your left, catching your profile?
State a general rule.

7 The figure shows two mysterious devices that do something to light
rays that pass through them. You don’t know what kinds of mirrors or
lenses might be inside these two black boxes, but you are able to observe
what they do to the rays, as shown in the drawings. Copy the drawings
onto your paper. Locate the images, and classify them as real or virtual.
Which device could be used in the same manner as the kind of overhead
projector used in classrooms?

8 Does a more strongly curved mirror have a shorter focal length, or a
longer one? Explain using a ray diagram, making explicit use of either the
definition on page 48 or the one on page 59.

9 Consider a converging mirror, i.e., one whose hollowed-out side is
silvered. (a) Can the magnification of a real image formed by such a
mirror ever be greater than one?
(b) Can the magnification of a virtual image formed by such a mirror ever
be a number greater than zero but less than one?
If you answer yes to one of these questions, give an example with a ray
diagram to prove that you’re right. If you answer no, explain why it’s not
possible.
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10 All of the curved mirrors shown in this chapter were hollowed out,
like a dish, but it’s also possible to have a mirror that bulges outward.
(a) Draw a ray diagram to show how an image is formed by such a mirror.
Your answers to the rest of the questions should be explained by referring
to this ray diagram. (You may want to add to it or draw additional ones.)
(b) Is the image real, or virtual?
(c) Is the magnification less than one or greater than one? Explain how
you can tell from the ray diagram.
(d) If you increase the object distance, what happens to the image dis-
tance? Make explicit use of one of the two methods discussed in section
3.1, and show your work.

Problems 12-15 are to be done after you’ve completed all the labs, and know
about refraction and lenses. A converging lens is one that tends to bend
light rays closer together. A typical converging lens is a piece of glass or
plastic that’s thickest in the middle, like an M&M. A diverging lens tends
to spread rays apart, and is thinnest in the middle.

11 Based on the rules you’ve learned for refraction, explain why light
rays passing through the edges of a converging lens are bent more than
ones that pass through parts closer to the center. It might seem like it
should be the other way arond, since the rays at the edge pass through
less glass — shouldn’t they be affected less? As part of your explanation,
draw a big close-up ray diagram showing the cross-section of the lens.

12 Suppose a converging lens is made out of a material in which the
speed of light is less than in air, but greater than in water. How will the
lens’s behavior be different if it’s placed underwater?

13 When you focus your camera on something farther away, does the
lens have to move farther from the film, or closer to it? Explain.

14 In your answers to both part a and part b, give full explanations,
making explicit use of either the definition of focal length given on page
48, or the one on page 59.
(a) Is the focal length of a lens a fixed property that could be permanently
stamped on it, or does it depend on how you use it?
(b) In a camera, does the distance from the lens to the film equal the lens’s
focal length?

pupil

lens

sclera

iris

cornea

retina

optic
nerve

Problem 15.

15 When you’re swimming underwater, why is it that you can see much
more clearly when you’re wearing goggles consisting of flat pieces of plastic
that trap air in front of your eyes? Give an explanation that includes a
ray diagram. For simplicity, consider the case where the object you’re
looking at is very far away, and lies along the optical axis (i.e., the line
perpendicular to the goggles).

The figure may help you to understand how the human eye works under
normal conditions. The first drawing is a realistic cross-section of the eye.
For our purposes, however, it will be sufficient to consider the simplified
version shown below: a ball of clear jelly with a bump on it. Light passes
into the eye through the bump, and almost all the refraction happens
at that point. (The small interior “lens” is really only a secondary fine-
adjustment device — it doesn’t bend the rays of light very much, because
the speed of light in it is not very different from the speed of light in the
other jellylike substances that surround it.)
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Lab 3a: Images
Apparatus
plastic box with water in it
laser
ruler
protractor
paperclips

Goal
Locate an image in a tub of water by ray tracing,
and compare with its location as measured by eye
using parallax.

A Parallax
The figures show the basic idea of the lab. When
you view the setup from the side, you’re seeing an
image of the submerged pointer, not the pointer
itself. This is an example of an image formed by
refraction rather than reflection. By closing one
eye and then the other, you can see the parallax of
each pointer. By moving the top pointer, you can
get it to have the same parallax as the image of
the submerged one, which means it’s at the same
distance as the image of the submerged one. Par-
allax is strongest when you’re as close as possible
to the object, so put the tub of water at the edge
of the desk, and crouch down with your face very
close to it.

Make two pointers of different heights out of pa-
perclips. The taller pointer’s tip is above the water,
while the shorter one’s is submerged.

Measure the object and image distaces from the
front surface of the tub. When I did this, I was

The same setup viewed from the side. One
pointer is directly above the other.

able to locate the image’s position to within about
a millimeter, and I got good agreement between
the parallax method, opening one eye at a time,
and depth perception, with both eyes open.

B Changing the location
Make a ray diagram, showing how each ray moves
through the water, is refracted, and goes off
through the air. Use one of the two methods de-
scribed in section 3.1 to predict whether the im-
age should be ++ or +−. If you have time, do
the other method too, and verify that you get the
same answer.

Light rays spread out from the finger by diffuse
reflection. The emerging rays all appear to have
come from a point inside the box.

Now check your prediction by taking data at a dif-
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ferent object distance. It will be convenient if you
do this by substituting your finger, pressed against
the back of the tub, for the submerged pointer.
Your data should now consist of two object dis-
tances and two image distances.

C Ray tracing
Now you’re going to see if you can reproduce the
image location from part B by ray tracing. Trace
the outline of the box on a piece of paper, remove
the box, mark the location of the image, and put
the box back on the paper. Shine the laser at the
point where your finger was originally touching the
box, observe the refracted beam, and draw it in.
Repeat this whole procedure several times, with
the laser at a variety of angles. Finally, extrap-
olate the rays leaving the box back into the box.
They should all appear to have come from the same
point, where you saw the image.

laser

Simulating one of the rays using the laser.
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Lab 3b: A Real Image
Apparatus
concave mirror and holder
pointer
illuminated object
optical bench

Goals
Observe a real image formed by a curved
mirror.

Make qualitative observations of the image
and explain them using ray diagrams.

A Initial observations
Put the mirror in the holder and put the holder in
the clamp that holds it on the optical bench. Right
now you’re just using the hardware as a hands-free
way to hold the mirror in position. Your mirror
may be silvered on both sides; you’re going to be
using the hollowed-out (concave) side.

Standing a couple of meters away, look at the re-
flection of your own face in the mirror. Now move
your face closer and closer to the mirror, and ob-
serve the changes that occur.

B Distant, fixed object
Part A was a quick and dirty way to get acquainted
with what’s going on, but it’s a little complicated
to understand, because as you move closer to the
mirror, you’re moving both the object (your face)
and your point of view. Let’s now try some obser-
vations in which you leave an object in one place,
and observe it from different points of view. Posi-
tion yourself and the optical bench so that, from a
distance of a couple of meters, you can look at the
mirror and see the reflection of something that’s
behind you, over your shoulder and far behind you.
Move closer and closer, while observing the image
of the stationary object behind you. You’ll see var-
ious changes in the image, but let’s concentrate on
one thing: when the image is clearly visible and
when it’s impossible to focus on it.

Draw a ray diagram to show how this image is
being formed:

Use your ray diagram to explain your observations.
Don’t go on to the next part until you understand
the observations you’ve made. Ask your instructor
for help if necessary.

C Close, fixed object
Now repeat part B, but with an object only 5 or 10
cm from the mirror. The most convenient way to
do this is to stick the upright pointer in the optical
bench, so your hands are free.

Again make sure you can explain your observations
in terms of your ray diagram. You’ll have found
that there’s a difference between parts B and C
in terms of the eye positions from which you can’t
see the image, or can’t see it clearly; make sure you
understand why this is.

D Moving object
Replace the pointer with the illuminated object,
and slide it all the way to the far end of the opti-
cal bench, so it’s as far from the mirror as it can
be. By putting a small piece of paper at the right
point in space, you should be able to get the mirror
to project an image of the object onto the paper.
Note that although you want everything located
approximately along the line of the optical bench,
you don’t want the paper to block all the light from
getting from the object to the mirror. To avoid
this, you may want to angle the mirror a tiny bit,
and put the paper a tiny bit off to the side. Draw
a ray diagram, and indicate on the diagram the
special point in space where you can put the paper
in order to see a clear image.
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Now move the object closer to the mirror. What
do you have to do to get a clear image again? Move
the object closer and closer to the mirror, and keep
going as far as you can with this setup.

Is your image ++ or +−? Explain this observation
with a ray diagram similar to figure e on page 47.

E You’re in my light!
Imagine — but don’t do it yet! — that with the
setup from part D, you cover half of the mirror with
your hand. What effect do you think this would
have on the image? To make your prediction, use
your ray diagram.

prediction:

Now try it. If your prediction was wrong, figure
out what happened.

Now what do you think would happen if you cov-
ered half of the object?

prediction:

Again, try it, and, if necessary, back up and think
again.

F Magnification (optional)
With a setup like the one in part D, measure the
magnification of the image produced at three dif-
ferent object distances: the two extreme ones plus
one in the middle. What trend do you observe,
and why does it occur?
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Lab 3c: Lenses
Apparatus
converging and diverging lenses
illuminated object
optical bench

Goals
Find all the types of images that can be
made with lenses, and explain each type us-
ing a ray diagram.

Use ray diagrams to predict whether a real
image made by a lens is ++ or +−, and test
your prediction.

Like mirrors, lenses come in two types: a converg-
ing type that brings rays together and a diverg-
ing type that spreads them apart. By convention,
converging lenses are described with positive focal
lengths and diverging lenses with negative ones. As
with mirrors, it’s also sometimes possible for the
same lens to make either a virtual or a real image,
depending on the object distance.

The basic setup for this lab is like the one used
in lab 3b. However, some of your images will be
virtual, which means you can’t project them onto
a piece of paper. When you get a real image, take
numerical measurements to show how the chang-
ing the object distance affects the image distance
(++ or +−), and check this against what you find
by drawing ray diagrams with different object dis-
tances. When you get a virtual image, just draw a
ray diagram showing what’s going on.

You should get a total of three qualitatively differ-
ent types of image formation. That is, in principle
you could use either a converging lens or a diverg-
ing one, and you could use either one to make ei-
ther a real or a virtual image, resulting in a total
of four possibilities. However, one of these turns
out not to be possible, so you’ll end up with only
three cases.
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Lab 3d: The Telescope
Apparatus
optical bench
lens, longest available focal length
lens, 50 mm focal length

Goals
Construct a telescope.

Measure its angular magnification, and com-
pare with theory.

Introduction
The credit for invention of the telescope is dis-
puted, but Galileo was probably the first person
to use one for astronomy. He first heard of the
new invention when a foreigner visited the court
of his royal patrons and attempted to sell it for an
exorbitant price. Hearing through second-hand re-
ports that it consisted of two lenses, Galileo sent
an urgent message to his benefactors not to buy
it, and proceeded to reproduce the device himself.
An early advocate of simple scientific terminology,
he wanted the instrument to be called the “oc-
chialini,” Italian for “eye-thing,” rather than the
Greek “telescope.”

His astronomical observations soon poked some
gaping holes in the accepted Aristotelian view of
the heavens. Contrary to Aristotle’s assertion
that the heavenly bodies were perfect and without
blemishes, he found that the moon had mountains
and the sun had spots (the marks on the moon
visible to the naked eye had been explained as at-
mospheric phenomena). This put the heavens on
an equal footing with earthly objects, paving the
way for physical theories that would apply to the
whole universe, and specifically for Newton’s law of
gravity. He also discovered the four largest moons
of Jupiter, and demonstrated his political savvy
by naming them the “Medicean satellites” after
the powerful Medici family. That they revolved
around Jupiter rather than the earth helped make
more plausible Copernicus’ theory that the plan-
ets did not revolve around the earth but around
the sun. Galileo’s ideas were considered subver-
sive, and many people refused to look through his
telescope, either because they thought its images
were illusions or simply because it was supposed to
show things that were contrary to Aristotle.

objective eyepiece
real
image

fo fe

small angle

big angle

A refracting telescope. The rays coming from
the object first encounter a relatively weak lens,
called the objective. An intermediate real image is
formed, but what your eye sees is an image of the
image, created by the eyepiece lens. The solid
lines are two rays that are both coming from the
same point in the sky; because the celestial ob-
ject is so far away, they’re essentially parallel. The
dashed lines are coming from some other point.
The angles are exaggerated in order to demon-
strate the angular magnification, and because of
this, the solid-line rays aren’t even going to get into
the person’s eye.

Why It Works
The figure above shows the simplest refracting tele-
scope. The point of the whole arrangement is an-
gular magnification. The small angles on the left
are converted to large angles on the right, because
the eyepiece is more strongly curved, and there-
fore bends the rays more. The strength of a lens is
measured by its focal length (homework problem
8). For example, if the ratio of the two lenses’ fo-
cal lengths is eight, then the eyepiece bend the rays
eight times as much, and the angular magnification
will theoretically equal eight. To get the maximum
angular magnification, you want the eyepiece to be
as strong as possible, and the objective as weak as
possible! (Remember, dividing by a small number
gives a big result.)

Here’s a second, alternative way of thinking about
it. The objective creates a real image. This image
is located near you, where you can increase its ap-
parent size simply by getting close to it. In fact, it’s
possible to use the telescope without an eyepiece at
all! However, now that you’ve got this nice conve-
nient nearby image, you can also magnify it some
more by looking at it through a magnifying glass,
just like any other small, nearby thing. The eye-
piece is the magnifying glass. This makes it clear
why a strong eyepiece lens gives a greater magnifi-
cation, but why does a weaker objective lens give a
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greater magnification as well? Well, the size of an
image is always proportional to its distance from
the lens making it. The longer the focal length of
the objective, the greater the distance from it to
the real image, so we conclude that a longer fo-
cal length for the objective (a weaker lens) gives a
bigger image, which will appear even bigger when
viewed through the eyepiece.

Observations
A The focal lengths
To start with, let’s try to get a feel for the phys-
ical meaning of the focal length. Use one of the
lenses to project an image of the overhead lights
onto the floor. If we make the approximation that
the overhead lights are infinitely far above, then
the distance from the lens to the image equals the
lens’s focal length. This is different from the defi-
nition of the focal length given on page 48. To see
that they’re equivalent definitions, take a look at
the figure below.

If we interpret the point on the right where the rays
cross as the object, then the image is infinitely far
off to the left. This corresponds to the original
definition of the focal length: the cross-over point
between real and virtual images. If the object was
a little closer, then the rays on the left would be di-
verging slightly, and the image would be a virtual
one far off to the right. If the object was a little
farther, then the rays on the left would be converg-
ing a little, and there would be a real image very
far to the left.

However, the laws of physics have time-reversal
symmetry, so if the diagram is valid for rays trav-
eling from right to left, it’s also valid for rays going
left to right. In this case, the object (think of the
overhead lights) is infinitely far off to the left, and
the point on the right where the rays cross is the
location of the real image (projected on the floor
in our case).

By projecting the image of the overhead lights onto
the floor, verify the focal lengths printed on their

plastic housings.

B The telescope’s magnification
Use your optical bench and your two lenses to build
a telescope. Take the data you will need for a rough
determination of its angular magnification. One
easy method is to observe the same object with
both eyes open, with one eye looking through the
telescope and one seeing the object without the
telescope.

If you find that you can’t focus on both things at
once, try making small adjustments to the distance
between the lenses. The reason this problem can
occur is that neither the focal lengths printed on
the lenses nor the focal lengths you measured in
part A are terribly accurate, so the distance be-
tween the lenses isn’t quite what it should be. The
rays coming to your eye are therefore not quite
parallel, which means that the image they form is
not at infinity. Your body is not capable of simul-
taneously focusing one eye at infinity and one at a
short distance.
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Answers to Self-Checks for Chapter 3

Page 48, self-check A: The reflected rays are parallel. This can
be interpreted by saying that the image is at infinity: as you make
two lines closer and closer to being parallel, the point at which
they cross gets farther and farther away, and eventually becomes
infinitely distant. Page 48, self-check B: First let’s use the front-
back method. The reflected rays are going to the left, so an observer
would have to be standing on the left in order to see the image. Rays
from the face can get to the mirror, but the rays from the back of the
head are blocked by the head. If the image-face is visible from the
left, then the image-head must be facing to the left, which is the way
it’s shown in figure g. The nose on the real face is the face’s closest
point to the mirror, but on the image-face it’s the farthest from the
mirror. Therefore the image is +−: greater object distances result
in smaller image distances. You can also easily verify this result
using a ray diagram. As the object moves farther from the mirror,
the incident and reflected rays fan out from the normal. Page 48,
self-check C: From the ray diagram, we can see that the distance
from the image to the mirror is less than the distance from the object
to the mirror. The other distances are in the same proportion.
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The pool skater trades two forms of energy back and forth: kinetic and
gravitational. More photos of this insane pastime are at the web site
www.sonic.net/∼shawn. When I first came across it in 1998, I assumed
these guys weren’t likely to stay alive for long, but they seem to have
survived — or at least their web site has.

Chapter 4

Conservation of Mass and
Energy

In chapter 1, I promised that as you learned more and more about physics,
you would see it becoming more and more simple. The unifying principle
that brings order and sanity to all of physics is Noether’s theorem, which
so far you’ve only seen stated in a very rough form: the laws of physics
have to be the way they are because of symmetry. This book’s presentation
of physics so far has been suffused with symmetry arguments, but much of
what you’ve learned has consisted of specific, practical applications, like
the formation of images by lenses and mirrors. What have you learned
so far that deserves to be called a fundamental law of physics? The only
law of physics you’ve learned is the principle of inertia: a ray of light or
a material object continues moving in the same direction and at the same
speed if it is not interacting with anything else.

That’s all very well, but the universe would be dull if it consisted only
of individual atoms and rays of light crisscrossing space and never coming
close enough to interact with each other — it would be like a game of pool
played on an infinite table, with only one ball in sight. Your everyday life,
to which we’d like to apply physics, involves vast numbers of particles.
Your own body, for instance, contains something like 1030 atoms (that’s
scientific notation for one followed by thirty zeroes). How can we make
sense out of such incredible complexity?
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4.1 Conservation of Mass
What makes our complex world comprehensible to the human mind is that
the fundamental laws of physics are all conservation laws: laws stating that
the total amount of something stays the same. You’ve already discovered
some evidence in lab for such a law: the law of conservation of mass.
Even when you carried out complex operations involving huge numbers of
atoms, the total mass of the atoms never changed. The wonderful thing
about conservation laws is that they allow us to make sense out of complex
processes.

The law of conservation of mass probably didn’t surprise you very
much, since you’ve known about atoms since an early age, and in every-
day life we don’t encounter processes in which atoms change their masses
noticeably, or in which atoms are created or destroyed. That argument
wasn’t obvious to your ancestors, however. It’s not even hard to think of
examples that would raise doubts in the minds of modern people. A log
weighs more than its ashes. Did some mass simply disappear? It seems to
be an exception to the rule.

The French chemist Antoine-Laurent Lavoisier was the first scientist
to realize that there were no such exceptions. Lavoisier hypothesized that
when wood burns, for example, the supposed loss of mass is actually ac-
counted for by the escaping hot gases that the flames are made of. Before
Lavoisier, chemists had almost never weighed their chemicals to quantify
the amount of each substance that was undergoing reactions.1 They also
didn’t completely understand that gases were just another state of matter,
and hadn’t tried performing reactions in sealed chambers to determine
whether gases were being consumed from or released into the air. For
this they had at least one practical excuse, which is that if you perform
a gas-releasing reaction in a sealed chamber with no room for expansion,
you get an explosion! Lavoisier invented a balance that was capable of
measuring milligram masses, and figured out how to do reactions in an
upside-down bowl in a basin of water, so that the gases could expand by
pushing out some of the water. In one crucial experiment, Lavoisier heated
a red mercury compound, which we would now describe as mercury oxide
(HgO), in such a sealed chamber. A gas was produced (Lavoisier later
named it “oxygen”), driving out some of the water, and the red compound
was transformed into silvery liquid mercury metal. The crucial point was
that the total mass of the entire apparatus was exactly the same before
and after the reaction. Based on many observations of this type, Lavoisier
proposed a general law of nature, that mass is always conserved.

Self-check A
In ordinary speech, we say that you should “conserve” something, be-
cause if you don’t, pretty soon it will all be gone. How is this different
from the meaning of the term “conservation” in physics? . Answer, p.
88

a / Portrait of Monsieur Lavoisier
and His Wife, by Jacques-Louis
David, 1788. Lavoisier invented
the concept of conservation of
mass. The husband is depicted
with his scientific apparatus,
while in the background on the
left is the portfolio belonging
to Madame Lavoisier, who is
thought to have been a student of
David’s.

Although Lavoisier was an honest and energetic public official, he was
caught up in the Terror and sentenced to death in 1794. He requested a
fifteen-day delay of his execution so that he could complete some exper-
iments that he thought might be of value to the Republic. The judge,
Coffinhal, infamously replied that “the state has no need of scientists.”
As a scientific experiment, Lavoisier decided to try to determine how long

1Isaac Newton was a notable exception.
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his consciousness would continue after he was guillotined, by blinking his
eyes for as long as possible. He blinked twelve times after his head was
chopped off. Ironically, Judge Coffinhal was himself executed only three
months later, falling victim to the same chaos.

b / Example 1.

c / The earth keeps spinning
without slowing down. Energy is
conserved.

d / The spinning coin slows
down. It seems as though energy
isn’t conserved, but it is.

A stream of water example 1
The stream of water is fatter near the mouth of the faucet, and skinnier
lower down. This can be understood using conservation of mass. Since
water is being neither created nor destroyed, the mass of the water that
leaves the faucet in one second must be the same as the amount that
flows past a lower point in the same time interval. The water speeds up
as it falls, so the two quantities of water can only be equal if the stream
is narrower at the bottom.

4.2 Conservation of Energy
Noether’s theorem says that conservation laws result from symmetries, but
the connection between symmetry and conservation of mass won’t be clear
until the end of the chapter. As our first full-fledged example of Noether’s
theorem in action, we’ll instead use conservation of energy. Energy means
something specific and technical in physics, but let’s start by appealing to
your everyday knowledge. Energy is what you’re buying at the gas station,
and you also pay for it in your electric bill. Energy is why we need food.2

These forms of energy can be converted into others, such as the energy
your car has when it’s moving, the light from a lamp, or the body heat
that we mammals must continuously produce. We’ll first develop a real
scientific definition of energy, and then relate it to symmetry in section
4.4.

Kinetic energy
Symmetry arguments led us to the conclusion that an isolated object

or ray of light can never slow down, change direction or disappear entirely.
But that falls short of being a conservation law. A full-fledged conserva-
tion law says that even when we have many objects interacting, the total
amount of something stays constant. Is there any reason to believe that
energy is conserved in general? The planet earth, c, is a large, complex
system consisting of a huge number of atoms. It keeps on spinning with-
out slowing down, which is evidence in favor of energy conservation. What
about the spinning coin in figure d, however? Does its energy disappear
gradually?

Scientists would have thought so until the nineteenth century, when
physicist James Joule (1818-1889) had an important insight. Joule was the
wealthy heir to a Scottish brewery, and funded his own scientific research.
As an industrialist, he had a practical interest in replacing steam engines
with electric ones that would be more efficient, and cost less money to
run. Scientists already knew that friction would cause a spinning coin to
slow down, and that friction made engines less efficient. They also knew
that friction heated things up, as when you rub your hands together on
a cold day. Joule, however, realized that it went deeper than this: there
was a conserved quantity, which ended up being called energy. When we
first start the coin spinning, its energy is in the form of motion, with its

2Growing children also need to eat more than they excrete because conserva-
tion of mass would otherwise make it impossible for them to grow.
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atoms all going in circles. As it slows down, the energy isn’t disappearing,
it’s being converted into another form: heat. We now know that heat
is the random motion of atoms. As the coin rubs against the ground,
the atoms in the two surfaces bump into each other, and the amount of
random atomic motion increases. The organized motion of the atoms in
the spinning coin is being converted into a disorganized form of motion,
heat.

e / James Joule

Energy of motion is called kinetic energy. The simplest situations for
calculating kinetic energy are those in which an object is moving through
space without spinning or moving internally, e.g., a hockey puck sliding
across the ice. All the atoms in the object are moving at the same speed,
so the object’s kinetic energy just depends on two numbers, its mass and
its speed. The actual equation can’t be proved based on logic; it can only
be determined from experiments. Such experiments were first done by
English physicist Thomas Young, and in lab 4b you’re going to reproduce
Young’s work and discover his equation for yourself.

When energy is being transferred or changed from one form to another,
we use the term “power” to mean the amount of energy transferred per
unit time. The metric unit of power is the watt (W), defined as one joule
per second.

Power of a lightbulb example 2
Every second, a 100 W lightbulb takes 100 J of energy from the wall
socket. (Some of that energy is turned into light, and the rest just heats
your house.)

Gravitational energy
If you toss a ball up in the air, it slows to a stop and then speeds up

again on the way back down. As in the example of the spinning coin, it
seems as though conservation of energy is being violated, but really we’re
just seeing evidence that there is a new form of energy coming into play,
gravitational energy. This form of energy depends on distance, not motion:
the farther apart the earth and the ball are, the more gravitational energy
there is.

Self-check B
We’ve discussed three kinds of energy so far: kinetic energy, heat en-
ergy (which is really kinetic energy at the atomic level), and gravitational
energy. Energy can be converted from any of these forms into any other.
Suppose a firefighter slides down the pole at the fire station, using her
grip to control her motion so that she neither speeds up nor slows down.
How would you describe this in terms of energy? . Answer, p. 88

f / The water help up high behind
Hoover Dam has gravitational
energy.

The metric unit of energy is the joule (J), and we’ll define it as the
amount of energy needed to raise the temperature of 0.24 grams of water
by 1 ◦ Celsius. (Don’t memorize that number!) Gravity is a universal
attraction between things that have mass. Here where we live on the
earth’s surface, the atoms in the earth attract the atoms in all the objects
around us, and measurements show that as a result of all that attraction,
an energy of about 10 J is needed in order to lift a one-kilogram mass
by one meter.3 We say that the strength of the gravitational field, g, at
the earth’s surface is 10 joules per kilogram per meter, or, in abbreviated

3A more precise value is 9.8 J, but that’s close to 10, so we’ll usually round off
to 10 to simplify numerical examples. In any case, don’t memorize the numbers.
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form, g = 10 J/kg/m.

GE=3000 J KE=0

GE=2000 J KE=1000 J

GE=1000 J KE=2000 J

GE=0 KE=3000 J

g / example 3

h / example 4

i / example 5

The pool skater example 3
On the way up the side of the pool, the skater on page 61 has con-
verted all of his kinetic energy into gravitational energy. Figure g shows
schematically how the two types of energy are traded off. (The numbers
are just my estimates.)

The birth of stars example 4
Orion is the easiest constellation to find. You can see it in the winter,

even if you live under the light-polluted skies of a big city. Figure h shows
an interesting feature of this part of the sky that you can easily pick
out with an ordinary camera (that’s how I took the picture) or a pair of
binoculars. The three stars at the top are Orion’s belt, and the stuff near
the lower left corner of the picture is known as his sword — to the naked
eye, it just looks like three more stars that aren’t as bright as the stars
in the belt. The middle “star” of the sword, however, isn’t a star at all.
It’s a cloud of gas, known as the Orion Nebula, that’s in the process of
collapsing due to gravity. Like the pool skater on his way down, the gas
is losing gravitational energy. The results are very different, however.
The skateboard is designed to be a low-friction device, so nearly all
of the lost gravitational energy is converted to kinetic energy, and very
little to heat. The gases in the nebula flow and rub against each other,
however, so most of the gravitational energy is converted to heat. This
is the process by which stars are born: eventually the core of the gas
cloud gets hot enough to ignite nuclear reactions.

A lever example 5
Figure i shows two sisters on a seesaw. The one on the left has twice

as much mass, but she’s at half the distance from the center. No energy
input is needed in order to tip the seesaw. If the girl on the left goes up
a certain distance, her gravitational energy will increase. At the same
time, her sister on the right will drop twice the distance, which results in
an equal decrease in energy, since her mass is half as much.

Lifting a weight example 6
. At the gym, you lift a mass of 40 kg through a height of 0.5 m. How
much gravitational energy is required? Where does this energy come
from?

. The strength of the gravitational field is 10 joules per kilogram per
meter, so after you lift the weight, its gravitational energy will be greater
by 10 × 40 × 0.5 = 200 joules.

Energy is conserved, so if the weight gains gravitational energy,
something else somewhere in the universe must have lost some. The
energy that was used up was the energy in your body, which came from
the food you’d eaten. This is what we refer to as “burning calories,”
since calories are the units normally used to describe the energy in
food, rather than metric units of joules.

In fact, your body uses up even more than 200 J of food energy, be-
cause it’s not very efficient. The rest of the energy goes into heat, which
is why you’ll need a shower after you work out. We can summarize this
as

food energy → gravitational energy + heat .
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Lowering a weight example 7
. After lifting the weight, you need to lower it again. What’s happening
in terms of energy?

. Your body isn’t capable of accepting the energy and putting it back into
storage. The gravitational energy all goes into heat. (There’s nothing
fundamental in the laws of physics that forbids this. Electric cars can do
it — when you stop at a stop sign, the car’s kinetic energy is absorbed
back into the battery, through a generator.)

Heavy objects don’t fall faster example 8
Stand up now, take off your shoe, and drop it alongside a much less
massive object such as a coin or the cap from your pen.

Did that surprise you? You found that they both hit the ground at the
same time. The Greek philosopher Aristotle wrote that heavier objects
fall faster than lighter ones. He was wrong, but Europeans believed him
for thousands of years, partly because experiments weren’t an accepted
way of learning the truth, and partly because the Catholic Church gave
him its posthumous seal of approval as its official philosopher.

Heavy objects and light objects have to fall the same way, because
conservation laws are additive — we find the total energy of an object
by adding up the energies of all its atoms. If a single atom falls through
a height of one meter, it loses a certain amount of gravitational energy
and gains a corresponding amount of kinetic energy. Kinetic energy
relates to speed, so that determines how fast it’s moving at the end of
its one-meter drop. (The same reasoning could be applied to any point
along the way between zero meters and one.)

Now what if we stick two atoms together? The pair has double the
mass, so the amount of gravitational energy transformed into kinetic
energy is twice as much. But twice as much kinetic energy is exactly
what we need if the pair of atoms is to have the same speed as the
single atom did. Continuing this train of thought, it doesn’t matter how
many atoms an object contains; it will have the same speed as any
other object after dropping through the same height.

Self-check C
Part of the Aristotelian confusion was probably because of examples
like dropping a feather. A feather won’t fall as quickly as a rock. Why is
this? Our unspoken assumption was that the only energy transforma-
tion going on was

gravitational energy → kinetic energy .

Evidently this assumption fails — most of the feather’s gravitational en-
ergy is being converted into something else besides kinetic energy.
What other form of energy is there? . Answer, p. 88

j / This photo was made with
a special camera that records
infrared light. The man’s warm
skin emits quite a bit of infrared
light energy, while his hair, at a
lower temperature, emits less.

k / An infrared camera distin-
guishes hot and cold areas. As
the bike skids to a stop with its
brakes locked, the kinetic energy
of the bike and rider is converted
into heat in both the floor (top)
and the tire (bottom).

Emission and absorption of light
The example of the falling feather shows how tricky this can get. Of-

ten we miss something vital because it’s invisible. When a guitar string
gradually stops vibrating, it may seem as though its energy was just dis-
appearing; sound has energy, but we may forget that because sound is
invisible. When the feather drops, the heating of the feather and the air
are not only invisible but nearly undetectable without heroic measures.
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Imagine how difficult it was for Joule to figure out all of this for the
first time! One challenge in his experiments is demonstrated in figure j.
In general, light can heat matter (sunlight on your skin) and matter can
also get rid of its heat energy by emitting light (a candle flame):

heat ↔ light

Light, however, includes more than just the spectrum of visible colors
extending from red to violet on the rainbow. Hot objects, like the sun or a
lightbulb filament, do emit visible light, but matter at lower temperatures
gives off infrared light, a color of light that lies beyond the red end of the
visible rainbow.

l / A squash ball before and
after several minutes of play.

Although the emission and absorption of infrared light was just a
source of trouble and confusion for Joule, we can also use infrared pho-
tography to gain insight into phenomena in which other types of energy
are converted into heat. The heating of the tire and floor in figure k is
something that the average person might have predicted in advance, but
there are other situations where it’s not so obvious. When a ball slams
into a wall, it doesn’t rebound with the same amount of kinetic energy.
Was some energy destroyed? No. The ball and the wall heat up. Figure
l shows a squash ball at room temperature (top), and after it has been
played with for several minutes (bottom), causing it to heat up detectably.

How many forms of energy?
How many different types of energy are there? At this point, you might

worry that you were going to have to memorize a long list of them. The
good news is that there aren’t really that many at all.
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m / At the atomic level, the energy
in the bow is really electrical en-
ergy

In figure m, the bow evidently contains some stored energy, since we
observe that the arrow gets kinetic energy from it. What kind of energy
is this? Is it some new and mysterious “bow energy?” No. At the atomic
level, things get a lot simpler. The energy in the bow is electrical energy of
the interacting atoms. Just as a rock can have more or less gravitational
energy depending on its distance from the earth, an atom can have more
or less electrical energy depending on its distance from another atom.
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Many other forms of energy turn out to be electrical energy in dis-
guise, n. In particular, chemical reactions are based on electrical energy:
in a reaction, atoms are rearranged like tinker toys, which changes their
distances from one another. Food and gasoline are both fuels that store
electrical energy.

Every type of energy you encounter in your day-to-day life is really
just something from the following short list:

kinetic energy (including heat)

gravitational energy

electrical and magnetic energy (including light, which is an
electrical and magnetic wave)

We’ll discuss electricity and magnetism in more detail in chapter 7. Two
forms of nuclear energy can also be added to the list. One of the main
goals of physics is to classify all the interactions: gravitational, electrical,
and so on.

boiling

bending

breaking

chemical
reactions

n / All of these energy trans-
formations turn out at the atomic
level to be changes in electrical
energy resulting from changes in
the distances between atoms.

Physicists generally believe that there is an underlying simplicity to
the laws of physics, and consider it a triumph when they can reveal part
of it. You might wonder, for instance, why electrical and magnetic energy
are shown as a single item on the list above. Well, just as we learned that
“bow energy” and “food energy” are really both just types of electrical
energy, we’ll see in chapter 7 that electricity and magnetism are really just
two sides of the same coin.

Discussion Questions

A In figure o, a small amount of hot water is poured into the empty can,
which rapidly fills up with hot steam. The can is then sealed tightly, and
soon crumples. How can this be explained based on the idea that heat is
a form of random motion of atoms?

o / Discussion question A.
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4.3 Newton’s Law of Gravity
Why does the gravitational field on our planet have the particular
value it does? For insight, let’s compare with the strength of gravity
elsewhere in the universe:

location g (joules per kg per m)
asteroid Vesta (surface) 0.3
earth’s moon (surface) 1.6
Mars (surface) 3.7
earth (surface) 9.8
Jupiter (cloud-tops) 26
sun (visible surface) 270
typical neutron star (surface) 1012

black hole (center) infinite according to some
theories, on the order of
1052 according to others

A good comparison is Vesta versus a neutron star. They’re
roughly the same size, but they have vastly different masses — a
teaspoonful of neutron star matter would weigh a million tons! The
different mass must be the reason for the vastly different gravita-
tional fields. (The notation 1012 means 1 followed by 12 zeroes.)
This makes sense, because gravity is an attraction between things
that have mass.

The mass of an object, however, isn’t the only thing that deter-
mines the strength of its gravitational field, as demonstrated by the
difference between the fields of the sun and a neutron star, despite
their similar masses. The other variable that matters is distance.
Because a neutron star’s mass is compressed into such a small space
(comparable to the size of a city), a point on its surface is within a
fairly short distance from every atom in the star. If you visited the
surface of the sun, however, you’d be millions of miles away from
most of its atoms.

As a less exotic example, if you travel from the seaport of Guaya-
quil, Ecuador, to the top of nearby Mt. Cotopaxi, you’ll experience
a slight reduction in gravity, from 9.7806 to 9.7624 J/kg/m. This is
because you’ve gotten a little farther from the planet’s mass. Such
differences in the strength of gravity between one location and an-
other on the earth’s surface were first discovered because pendulum
clocks that were correctly calibrated in one country were found to
run too fast or too slow when they were shipped to another location.
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The general equation for an object’s gravitational field was dis-
covered by Isaac Newton, by working backwards from the observed
motion of the planets:4

g =
GM

d2
,

where M is the mass of the object, d is the distance from the ob-
ject, and G is a constant that is the same everywhere in the universe.
This is known as Newton’s law of gravity.5 It’s an inverse square
law, which is reasonable since an object’s gravitational field is an
effect that spreads outward from it in all directions. Newton’s law
of gravity really gives the field of an individual atom, and the field
of a many-atom object is the sum of the fields of the atoms. New-
ton was able to prove mathematically that this scary sum has an
unexpectedly simple result in the case of a spherical object such as
a planet: the result is the same as if all the object’s mass had been
concentrated at its center.

p / Isaac Newton (1642-1727)
Newton showed that his theory of gravity could explain the or-

bits of the planets, and also finished the project begun by Galileo
of driving a stake through the heart of Aristotelian physics. His
book on the motion of material objects, the Mathematical Princi-
ples of Natural Philosophy, was uncontradicted by experiment for
200 years, but his other main work, Optics, was on the wrong track
due to his conviction that light was composed of particles rather
than waves. He was an avid alchemist, an embarrassing fact that
modern scientists would like to forget. Newton was on the winning
side of the revolution that replaced King James II with William and
Mary of Orange, which led to a lucrative post running the English
royal mint; he worked hard at what could have been a sinecure, and
took great satisfaction from catching and executing counterfeitors.
Newton’s personal life was less happy. Rejected by his mother at
an early age, he never married or formed any close attachments,
except for one intense emotional relationship with a younger man;
around the time when this liaison ended, Newton experienced what
we would today probably describe as a nervous breakdown.6

1

60q / example 9

4Example 14 on page 104 shows the type of reasoning that Newton had to go
through.

5This is not the form in which Newton originally wrote the equation.
6The historical record can’t be decoded with certainty. Seventeenth-century

England didn’t conceive of mental illness in the same way we do now. Homosexu-
ality was a capital offense, not a personal preference. If Newton was homosexual,
he had a strong motivation not to record the fact.
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Newton’s apple example 9
A charming legend attested to by Newton’s niece is that he first con-

ceived of gravity as a universal attraction after seeing an apple fall from
a tree. He wondered whether the force that made the apple fall was
the same one that made the moon circle the earth rather than flying
off straight. Newton had astronomical data that allowed him to calcu-
late that the gravitational field the moon experienced from the earth was
1/3600 as strong as the field on the surface of the earth.7 (The moon
has its own gravitational field, but that’s not what we’re talking about.)
The moon’s distance from the earth is 60 times greater than the earth’s
radius, so this fit perfectly with an inverse-square law: 60 × 60 = 3600.

7See example 14 on page 104.
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4.4 Noether’s Theorem for Energy
Now we’re ready for our first full-fledged example of Noether’s theorem.
Conservation of energy is a law of physics, and Noether’s theorem says that
the laws of physics come from symmetry. Specifically, Noether’s theorem
says that every symmetry implies a conservation law. Conservation of
energy comes from a symmetry that we haven’t even discussed yet, but
one that is simple and intuitively appealing: as time goes by, the universe
doesn’t change the way it works. This is a kind of translation symmetry,
but in time, not space.

We have strong evidence for time translation symmetry, because when
we see a distant galaxy through a telescope, we’re seeing light that has
taken billions of years to get here. A telescope, then, is like a time ma-
chine. For all we know, alien astronomers with advanced technology may
be observing our planet right now,8 but if so, they’re seeing it not as it is
now but as it was in the distant past, perhaps in the age of the dinosaurs,
or before life even evolved here. As we observe a particularly distant, and
therefore ancient, supernova, we see that its explosion plays out in exactly
the same way as those that are closer, and therefore more recent.

Now suppose physics really does change from year to year, like politics,
pop music, and hemlines. Imagine, for example, that the “constant” G in
Newton’s law of gravity isn’t quite so constant. One day you might wake
up and find that you’ve lost a lot of weight without dieting or exercise,
simply because gravity has gotten weaker since the day before.

If you know about such changes in G over time, it’s the ultimate insider
information. You can use it to get as rich as Croesus, or even Bill Gates.
On a day when G is low, you pay for the energy needed to lift a large mass
up high. Then, on a day when gravity is stronger, you lower the mass back
down, extracting its gravitational energy. The key is that the energy you
get back out is greater than what you originally had to put in. You can
run the cycle over and over again, always raising the weight when gravity
is weak, and lowering it when gravity is strong. Each time, you make a
profit in energy. Everyone else thinks energy is conserved, but your secret
technique allows you to keep on increasing and increasing the amount of
energy in the universe (and the amount of money in your bank account).

The scheme can be made to work if anything about physics changes
over time, not just gravity. For instance, suppose that the mass of an elec-
tron had one value today, and a slightly different value tomorrow. Elec-
trons are one of the basic particles from which atoms are built, so on a
day when the mass of electrons is low, every physical object has a slightly
lower mass. In problem 7 on page 77, you’ll work out a way that this could
be used to manufacture energy out of nowhere.

Sorry, but it won’t work. Experiments show that G doesn’t change
measurably over time, nor does there seem to be any time variation in any
of the other rules by which the universe works.9 The rules of the game

8Our present technology isn’t good enough to let us pick the planets of other
solar systems out from the glare of their suns, except in a few exceptional cases.

9In 2002, there have been some reports that the properties of atoms as ob-
served in distant galaxies are slightly different than those of atoms here and
now. If so, then time translation symmetry is weakly violated, and so is con-
servation of energy. However, this is a revolutionary claim, and it needs to be
examined carefully. The change being claimed is large enough that, if it’s real, it
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are symmetric under time translation. If archaeologists find a copy of this
book thousands of years from now, they’ll be able to reproduce all the
experiments you’re doing in this course.

I’ve probably convinced you that if time-translation symmetry was
violated, then conservation of energy wouldn’t hold. But does it work the
other way around? If time-translation symmetry is valid, must there be a
law of conservation of energy? Logically, that’s a different question. We
may be able to prove that if A is false, then B must be false, but that
doesn’t mean that if A is true, B must be true as well. For instance, if
you’re not a criminal, then you’re presumably not in jail, but just because
someone is a criminal, that doesn’t mean he is in jail — some criminals
never get caught.

Noether’s theorem does work the other way around as well: if physics
has a certain symmetry, then there must be a certain corresponding con-
servation law. This is a stronger statement. The full-strength version of
Noether’s theorem can’t be proved without a model of light and matter
more detailed than the one currently at our disposal.

should be detectable from one year to the next in ultra-high-precision laboratory
experiments here on earth.
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4.5 Equivalence of Mass and Energy

Mass-energy
You’ve encountered two conservation laws so far: conservation of mass

and conservation of energy. If conservation of energy is a consequence of
symmetry, is there a deeper reason for conservation of mass?

Actually they’re not even separate conservation laws. Albert Einstein
found, as a consequence of his theory of relativity, that mass and energy
are equivalent, and are not separately conserved — one can be converted
into the other. Imagine that a magician waves his wand, and changes
a bowl of dirt into a bowl of lettuce. You’d be impressed, because you
were expecting that both dirt and lettuce would be conserved quantities.
Neither one can be made to vanish, or to appear out of thin air. However,
there are processes that can change one into the other. A farmer changes
dirt into lettuce, and a compost heap changes lettuce into dirt. At the
most fundamental level, lettuce and dirt aren’t really different things at
all; they’re just collections of the same kinds of atoms — carbon, hydrogen,
and so on.

We won’t examine relativity in detail until chapter 6, but mass-energy
equivalence is an inevitable implication of the theory, and it’s the only
part of the theory that most people have heard of, via the famous equation
E = mc2. This equation tells us how much energy is equivalent to how
much mass: the conversion factor is the square of the speed of light, c.
Since c a big number, you get a really really big number when you multiply
it by itself to get c2. This means that even a small amount of mass is
equivalent to a very large amount of energy.

Gravity bending light example 10
Gravity is a universal attraction between things that have mass, and
since the energy in a beam of light is equivalent to a some very small
amount of mass, we expect that light will be affected by gravity, although
the effect should be very small. The first experimental confirmation of
relativity came in 1919 when stars next to the sun during a solar eclipse
were observed to have shifted a little from their ordinary position. (If
there was no eclipse, the glare of the sun would prevent the stars from
being observed.) Starlight had been deflected by the sun’s gravity. Fig-
ure r is a photographic negative, so the circle that appears bright is
actually the dark face of the moon, and the dark area is really the bright
corona of the sun. The stars, marked by lines above and below then,
appeared at positions slightly different than their normal ones.

Black holes example 11
A star with sufficiently strong gravity can prevent light from leaving.
Quite a few black holes have been detected via their gravitational forces
on neighboring stars or clouds of gas and dust.

Because mass and energy are like two different sides of the same coin,
we may speak of mass-energy, a single conserved quantity, found by adding
up all the mass and energy, with the appropriate conversion factor: E +
mc2.

A rusting nail example 12
. An iron nail is left in a cup of water until it turns entirely to rust. The
energy released is about 500,000 joules. In theory, would a sufficiently
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r / example 10

precise scale register a change in mass? If so, how much?

. The energy will appear as heat, which will be lost to the environment.
The total mass-energy of the cup, water, and iron will indeed be less-
ened by 500,000 joules. (If it had been perfectly insulated, there would
have been no change, since the heat energy would have been trapped
in the cup.) The speed of light in metric units is c = 3 × 108 meters per
second (scientific notation for 3 followed by 8 zeroes), so converting to
mass units, we have

m =
E
c2

=
500, 000(
3 × 108

)2

= 0.000000000006 kilograms .

(The design of the metric system is based on the meter, the kilogram,
and the second. The joule is designed to fit into this system, so the
result comes out in units of kilograms.) The change in mass is too small
to measure with any practical technique. This is because the square of
the speed of light is such a large number in metric units.

The correspondence principle
The realization that mass and energy are not separately conserved is

our first example of a general idea called the correspondence principle.
When Einstein came up with relativity, conservation of energy had been
accepted by physicists for decades, and conservation of mass for over a
hundred years.

Does an example like this mean that physicists don’t know what they’re
talking about? There is a recent tendency among social scientists to deny
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that the scientific method even exists, claiming that science is no more than
a social system that determines what ideas to accept based on an in-group’s
criteria. If science is an arbitrary social ritual, it would seem difficult to
explain its effectiveness in building such useful items as airplanes, CD
players and sewers. If voodoo and astrology were no less scientific in their
methods than chemistry and physics, what was it that kept them from
producing anything useful? This silly attitude was effectively skewered
by a famous hoax carried out in 1996 by New York University physicist
Alan Sokal. Sokal wrote an article titled “Transgressing the Boundaries:
Toward a Transformative Hermeneutics of Quantum Gravity,” and got it
accepted by a cultural studies journal called Social Text.10 The scientific
content of the paper is a carefully constructed soup of mumbo jumbo,
using technical terms to create maximum confusion; I can’t make heads
or tails of it, and I assume the editors and peer reviewers at Social Text
understood even less. The physics, however, is mixed in with cultural
relativist statements designed to appeal to them — “. . . the truth claims
of science are inherently theory-laden and self-referential” — and footnoted
references to academic articles such as “Irigaray’s and Hayles’ exegeses of
gender encoding in fluid mechanics . . . and . . . Harding’s comprehensive
critique of the gender ideology underlying the natural sciences in general
and physics in particular. . . ” On the day the article came out, Sokal
published a letter explaining that the whole thing had been a parody —
one that apparently went over the heads of the editors of Social Text.

What keeps physics from being merely a matter of fashion is that
it has to agree with experiments and observations. If a theory such as
conservation of mass or conservation of energy became accepted in physics,
it was because it was supported by a vast number of experiments. It’s
just that experiments never have perfect accuracy, so a discrepancy such
as the tiny change in the mass of the rusting nail in example 12 was
undetectable. The old experiments weren’t all wrong. They were right,
within their limitations. If someone comes along with a new theory he
claims is better, it must still be consistent with all the same experiments.
In computer jargon, it must be backward-compatible. This is called the
correspondence principle: new theories must be compatible with old ones
in situations where they are both applicable. The correspondence principle
tells us that we can still use an old theory within the realm where it works,
so for instance I’ll typically refer to conservation of mass and conservation
of energy in this book rather than conservation of mass-energy, except in
cases where the new theory is actually necessary.

Ironically, the extreme cultural relativists want to attack what they
see as physical scientists’ arrogant claims to absolute truth, but what they
fail to understand is that science only claims to be able to find partial,
provisional truth. The correspondence principle tells us that each of to-
day’s scientific truth can be superseded tomorrow by another truth that
is more accurate and more broadly applicable. It also tells us that today’s
truth will not lose any value when that happens.

10The paper appeared in Social Text #46/47 (1996) pp. 217-
252. The full text is available on professor Sokal’s web page at
www.physics.nyu.edu/faculty/sokal/.
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Problems
1 You jump up straight up in the air. When do you have the greatest
gravitational energy? The greatest kinetic energy? (Based on a problem
by Serway and Faughn.)

2 Anya and Ivan lean over a balcony side by side. Anya throws a penny
downward with an initial speed of 5 m/s. Ivan throws a penny upward
with the same speed. Both pennies end up on the ground below. Compare
their kinetic energies and velocities on impact.

A
B

Problem 3.

3 (a) If weight B moves down by a certain amount, how much does
weight A move up or down?
(b) What should the ratio of the two weights be if they are to balance?
Explain in terms of conservation of energy.

4 How high above the surface of the earth should a rocket be in order
to have 1/100 of its normal weight? Express your answer in units of earth
radii.

5 (a) You release a magnet on a tabletop near a big piece of iron, and
the magnet leaps across the table to the iron. Does the magnetic energy
increase or decrease? Explain.
(b) Suppose instead that you have two repelling magnets. You give them
an initial push towards each other, so they decelerate while approaching
each other. Does the magnetic energy increase or decrease? Explain.

6 A closed system can be a bad thing — for an astronaut sealed inside
a space suit, getting rid of body heat can be difficult. Suppose a 60-kg
astronaut is performing vigorous physical activity, expending 200 watts
of power. If none of the heat can escape from her space suit, how long
will it take before her body temperature rises by 6 ◦C (11 ◦F), an amount
sufficient to kill her? Assume that the amount of heat required to raise
her body temperature by 1 ◦C is the same as it would be for an equal mass
of water. Express your answer in units of minutes.

7 As suggested on page 72, imagine that the mass of the electron rises
and falls over time. (Since all electrons are identical, physicists generally
talk about “the electron” collectively, as in “the modern man wants more
than just beer and sports.”) The idea is that all electrons are increasing
and decreasing their masses in unison, and at any given time, they’re all
identical. They’re like a litter of puppies whose weights are all identical
on any given day, but who all change their weights in unison from one
month to the next. Suppose you were the only person who knew about
these small day-to-day changes in the mass of the electron. Find a plan
for violating conservation of energy and getting rich.

8 A typical balance like the ones used in school classes can be read to
an accuracy of about plus or minus 0.1 grams, or 10−4 kg. What if the
laws of physics had been designed around a different value of the speed of
light? To make mass-energy equivalence detectable in example 12 on page
74 using an ordinary balance, would c have to be smaller than it is in our
universe, or bigger? Find the value of c for which the effect would be just
barely detectable.

9* Physics in the modern sense of the word began in the seventeenth
century, with Galileo and Newton, but conservation of energy wasn’t dis-
covered until the nineteenth century. In the intervening period, there was
no scientific reason to think that it was impossible to make a perpetual
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motion machine, which today we would describe as a machine that creates
more energy than it takes in. For instance, people tried to make cars that
would run forever without requiring fuel. We now know this is impossible
because of conservation of energy; as a car rolls, a great deal of frictional
heating occurs, and the amount of heat created must be the same as the
amount of energy consumed by burning the fuel. Even so, people still try
to make perpetual motion machines. The U.S. patent office long ago elim-
inated its general requirement that a working model accompany a patent
application, but the requirement still applies to attempts to patent a per-
petual motion machine; since a working model is forbidden by the laws of
physics, this has the effect of making it impossible to patent a perpetual
motion machine. Nowadays, enthusiasts tend to talk about “free energy”
or “vacuum energy” rather than “perpetual motion.” (Vacuum energy is
legitimate physics, but these people are trying to say it can be used to
violate conservation of energy, which is wrong.) Websurf, and try to find
some examples of people promoting or selling perpetual motion machines
or designs for them. Is it clear where the border lies between science and
pseudoscience? If you form opinions about which people’s web pages are
scams, would you be able to convince someone who hadn’t taken a physics
course? Can you find any free-energy nuts within otherwise respectable
organizations such as NASA? — in Google (google.com), for instance, you
can do an advanced search in which you ask only for results from a spe-
cific domain like nasa.gov. What about category-based guides to the Web,
such as Open Directory (dmoz.org) or Yahoo (yahoo.com)? How do their
editors seem to treat pseudoscience sites? Do you agree with their deci-
sions? Back up all your statements with specific descriptions of the data
you collected by websurfing.

Problem 10 is to be done after you’ve completed lab 4b, and know the
equation for an object’s kinetic energy in terms of its mass and speed.

Problem 10.

10 The multiflash photograph below shows a collision between two
pool balls. The ball that was initially at rest shows up as a dark image
in its initial position, because its image was exposed several times before
it was struck and began moving. By making measurements on the figure,
determine whether or not energy appears to have been conserved in the
collision. What systematic effects would limit the accuracy of your test?
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(From an example in PSSC Physics.)
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Lab 4a: Conservation Laws
Apparatus
Part A:
vacuum pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
electronic balance (large capacity) . . . . . . . . . . . . . 1
plastic-coated flask . . . . . . . . . . . . . . . . . . . . . .1/group
Part B:
propyl alcohol . . . . . . . . . . . . . . . . . . . . 200 mL/group
canola oil . . . . . . . . . . . . . . . . . . . . . . . . . 200 mL/group
funnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/group
100-mL volumetric flask . . . . . . . . . . . . . . . . .1/group
rubber stopper, fitting in
volumetric flask . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
1-ml pipette and bulb . . . . . . . . . . . . . . . . . . . 1/group
magnetic stirrer . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
triple-beam balance . . . . . . . . . . . . . . . . . . . . . 1/group

Introduction
Styles in physics come and go, and once-hallowed
principles get modified as more accurate data come
along, but some of the most durable features of the
science are its conservation laws. A conservation
law is a statement that something always remains
constant when you add it all up. Most people have
a general intuitive idea that the amount of a sub-
stance is conserved. That objects do not simply
appear or disappear is a conceptual achievement of
babies around the age of 9-12 months. Beginning
at this age, they will for instance try to retrieve a
toy that they have seen being placed under a blan-
ket, rather than just assuming that it no longer
exists. Conservation laws in physics have the fol-
lowing general features:

Physicists trying to find new conservation
laws will try to find a measurable, numerical
quantity, so that they can check quantita-
tively whether it is conserved. One needs an
operational definition of the quantity, mean-
ing a definition that spells out the operations
required to measure it.

Conservation laws are only true for closed
systems. For instance, the amount of water
in a bottle will remain constant as long as no
water is poured in or out. But if water can
get in or out, we say that the bottle is not
a closed system, and conservation of matter
cannot be applied to it.

The quantity should be additive. For in-
stance, the amount of energy contained in

two gallons of gasoline is twice as much as
the amount of energy contained in one gal-
lon; energy is additive. An example of a
non-additive quantity is temperature. Two
cups of coffee do not have twice as high a
temperature as one cup.

Conservation laws always refer to the total
amount of the quantity when you add it all
up. If you add it all up at one point in time,
and then come back at a later point in time
and add it all up, it will be the same.

How can we pin down more accurately the concept
of the “amount of a substance”? Should a gallon
of shaving cream be considered “more substantial”
than a brick? At least two possible quantities come
to mind: mass and volume. Is either conserved?
Both? Neither? To find out, we will have to make
measurements.

We can measure mass by the “see-saw method”
— when two children are sitting on the opposite
sides of a see-saw, the more massive one has to
move closer in to the fulcrum to make it balance.
If we enslave some particular child as our perma-
nent mass standard, then any other child’s mass
can simply be measured by balancing them on the
other side and measuring their distance from the
fulcrum. A more practical version of the same ba-
sic principle that does not involve human rights
violations is the familiar pan balance with sliding
weights.

Volume is not necessarily so easy to measure. For
instance, shaving cream is mostly air, so should we
find a way to measure just the volume of the bub-
bly film itself? Precise measurements of volume
can most easily be done with liquids and gases,
which conform to a vessel in which they are placed.

Should a gas, such as air, be counted as having any
substance at all? Empedocles of Acragas (born ca.
492 BC) was the originator of the doctrine that all
material substances are composed of mixtures of
four elements: earth, fire, water and air. The idea
seems amusingly naive now that we know about
the chemical elements and the periodic table, but
it was accepted in Europe for two thousand years,
and the inclusion of air as a material substance
was actually a nontrivial concept. Air, after all,
was invisible, seemed weightless, and had no defi-
nite shape. Empedocles decided air was a form of
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matter based on experimental evidence: air could
be trapped under water in an inverted cup, and
bubbles would be released if the cup was tilted.
It is interesting to note that in China around 300
BC, Zou Yan came up with a similar theory, and
his five elements did not include air.

Does air have weight? Most people would probably
say no, since they do not feel any physical sensa-
tion of the atmosphere pushing down on them. A
delicate house of cards remains standing, and is
not crushed to the floor by the weight of the atmo-
sphere.

Compare that to the experience of a dolphin,
though. A dolphin might contemplate a tasty her-
ring suspended in front of it and conjecture that
water had no weight, because the herring did not
involuntarily shoot down to the sea floor because
of the weight of the water overhead. Water does
have weight, however, which a sufficiently skepti-
cal dolphin physicist might be able to prove with a
simple experiment. One could weigh a 1-liter metal
box full of water and then replace the water with
air and weigh it again. The difference in weight
would be the difference in weight between 1 liter
of water of and 1 liter of air. Since air is much less
dense than water, this would approximately equal
the weight of 1 liter of water.

Our situation is similar to the dolphin’s, as was
first appreciated by Torricelli, whose experiments
led him to conclude that “we live immersed at the
bottom of a sea of...air.” A human physicist, living
her life immersed in air, could do a similar experi-
ment to find out whether air has weight. She could
weigh a container full of air, then pump all the air
out and weigh it again. When all the matter in a
container has been removed, including the air, we
say that there is a vacuum in the container. In
reality, a perfect vacuum is very difficult to create.
A small fraction of the air is likely to remain in the
container even after it has been pumped on with a
vacuum pump. The amount of remaining air will
depend on how good the pump is and on the rate
at which air leaks back in to the container through
holes or cracks.

Galileo gave the first experimental proof that air
had weight by the opposite method of compressing
the air in a glass bulb to stuff more air than normal
into it, and comparing its weight to what it had
been when ordinary, uncompressed air was in it.

Cautions

Please do not break the glassware! The vacuum
flasks and volumetric flasks are expensive.

The alcohol you will be using in this lab is chemi-
cally different from the alcohol in alcoholic bever-
ages. It is poisonous, and can cause blindness or
death if you drink it. It is not hazardous as long
as you do not drink it.

Observations
A Density of air
You can remove the air from the flask by attach-
ing the vacuum pump to the vacuum flask with
the rubber and glass tubing, then turning on the
pump. You can use the scale to determine how
much mass was lost when the air was evacuated.

Make any other observations you need in order to
find out the density of air.

B Is volume and/or mass conserved
when two fluids are mixed?
The idea here is to find out whether volume and/or
mass is conserved when water and alcohol are
mixed. The obvious way to attempt this would
be to measure the volume and mass of a sample of
water, the volume and mass of a sample of alcohol,
and their volume and mass when mixed. There are
two problems with the obvious method: (1) when
you pour one of the liquids into the other, droplets
of liquid will be left inside the original vessel; and
(2) the most accurate way to measure the volume
of a liquid is with a volumetric flask, which only
allows one specific, calibrated volume to be mea-
sured.

water

oil

alcohol
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Here’s a way to get around those problems. Put
the magnetic stirrer inside the flask. Pour wa-
ter through a funnel into a volumetric flask, filling
it less than half-way. (Do not use the pipette to
transfer the water.) A common mistake is to fill the
flask more than half-way. Now pour a thin layer of
cooking oil on top. Cooking oil does not mix with
water, so it forms a layer on top of the water. (Set
aside one funnel that you will use only for the oil,
since the oil tends to form a film on the sides.) Fi-
nally, gently pour the alcohol on top. Alcohol does
not mix with cooking oil either, so it forms a third
layer. By making the alcohol come exactly up to
the mark on the calibrated flask, you can make the
total volume very accurately equal to 100 mL. In
practice, it is hard to avoid putting in too much
alcohol through the funnel, so if necessary you can
take some back out with the pipette.

If you put the whole thing on the balance now, you
know both the volume (100 mL) and the mass of
the whole thing when the alcohol and water have
been kept separate. Now, mix everything up with
the magnetic stirrer. The water and alcohol form
a mixture. You can now test whether the volume
or mass has changed.

If the mixture does not turn out to have a volume
that looks like exactly 100 mL, you can use the
following tricks to measure accurately the excess
or deficit with respect to 100 mL. If it is less than
100 mL, weigh the flask, pipette in enough water to
bring it up to 100 mL, weigh it again, and then fig-
ure out what mass and volume of water you added
based on the change in mass. If it is more than 100
mL, weigh the flask, pipette out enough of the mix-
ture to bring the volume down to 100 mL, weigh
it again, and make a similar calculation using the
change in mass and the density of the oil. If you
need to pipette out some oil, make sure to wash
and rinse the pipette thoroughly afterwards.

Writeup
A. If your results show that air has weight, de-
termine the (nonzero) density of air, taking into
account the accuracy of your data.

B. Decide whether volume and/or mass is con-
served when alcohol and water are mixed, taking
into account the accuracy of your data.
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Lab 4b: Conservation of Energy
Apparatus
air track
carts, large and small
photogate (PASCO) (under lab benches in rm.
418)
computer
air blowers
string
cylindrical pendulum bobs
hook
meter sticks and rulers
wood blocks

Goals

Learn how a new form of energy is discovered
and analyzed.

Discover the equation that relates an ob-
ject’s kinetic energy to its mass m and speed
v.

Introduction
What is energy? It’s hard to give a pithy, clear def-
inition. In a published lecture, physicist Richard
Feynman wrote, “It is important to realize that in
physics today, we have no knowledge of what en-
ergy is.” Conservation of energy, he wrote, “states
that there is a certain quantity, which we call en-
ergy, that does not change in the manifold changes
which nature undergoes... It is not a description
of a mechanism, or anything concrete; it is just a
strange fact that we can calculate some number
and when we finish watching nature go through
her tricks and calculate the number again, it is the
same. (Something like the bishop on a red square,
and after a number of moves — details unknown
— it is still on some red square...)”

In fact, all the conserved quantities have this elu-
sive quality, but it’s just more obvious when it
comes to energy. Nineteenth-century physicists
thought they knew what momentum was, but they
found out later that there was a less obvious form
of it, which they had left out of their definition:
light carries momentum, just not enough to no-
tice in everyday life. Twentieth-century physicists
thought they knew what mass was, but recent as-
tronomical observations have shown that 95% of
the universe’s mass is in the form of “dark mat-
ter,” which isn’t really matter at all, in the usual
sense of protons, neutrons, and electrons.

Mass, momentum, and energy are not things that
were revealed to physicists centuries ago on stone
tablets. Physicists had to determine by experi-
ment what forms they took, and what mathemati-
cal rules to use for calculating each of these forms.
To see how this open-ended process works, we’re
going to pretend that we only know about gravi-
tational energy, and see how we can extend energy
to include a new form, kinetic energy.

We already know about gravitational energy,
which is useful all by itself. For instance, if two
children are balanced on a see-saw, the total grav-
itational energy remains the same as one goes up
and the other goes down. What if they’re unbal-
anced? If the heavier child sits down first, the
lighter one will not be able to budge the see-saw by
sitting down on the other end. Again, our theory
works: motion is impossible in this situation, be-
cause energy would not be conserved: if the heavier
child went up and the lighter child went down, the
total energy would not stay the same.

But nothing is as sad as a beautiful theory con-
fronted with an ugly fact. If the lighter child gets
on first, and then the heavier one, we do get mo-
tion. Since gravitational energy is the only form
of energy we know about, our theory is violated.
As the heavy child falls, and the light one rises an
equal distance, we are losing total gravitational en-
ergy. The only way to fix our broken theory is to
notice that in this new process, unlike the previ-
ous ones, there is a change in speed. We therefore
hypothesize that there is some new form of energy,
which is possessed by objects in motion. The net
loss in gravitational is, we guess, canceled by a gain
in total motion-of-energy, which we decide to call
kinetic energy.

cart

air track

photogate
vane
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Observations
A Speed dependence

Setting up the photogate

This new form of energy depends on motion, but
how exactly? To find out, you’ll use the air track
apparatus shown in the figure. The speed of the
cart at any given point can be measured as follows.
The photogate consists of a light and a sensor on
opposite sides of the track. When the cart passes
by, the cardboard vane on top blocks the light mo-
mentarily, keeping light from getting to the sensor.
The computer detects the electric signal from the
sensor, and records the amount of time for which
the photogate was blocked. Given the time, you
can determine the speed that cart had when it
passed through the photogate.

The point of the air track is to eliminate friction,
and you need to check that friction has really been
eliminated. First, level the track by adjusting the
feet. When the track is level, the cart should not
accelerate in either direction when released from
rest. (The track may not be perfectly flat. For
instance, if it’s a little bowed in the middle, you
may find that even when the track is leveled as well
as possible, the cart always accelerates very gently
toward the center.) Once you’ve leveled the track,
you can check for friction by setting the cart in
motion at a very low speed. If there is friction, the
cart will tend to slow down perceptibly regardless
of which direction you start it going. If there’s no
friction, then the cart will only speed up or slow
down very gradually because of imperfections in
the leveling or straightness of the track, and the
results will depend on the direction of motion.

Here’s how to get the photogate running. Make
sure the interface box is turned on before you boot
up the computer. Plug the photogate into DG1
on the interface box. From the Start menu at the
lower left corner of the screen, run Logger Pro (in
Programs>Vernier Software). Make sure that the
interface box is plugged into COM1 (the first COM
port) at the back of the computer, not COM2. If
the computer presents you with a dialog box saying
“Set Up Interface,” choose COM1. (If it complains
that it can’t find the port, you may be able to
fix the problem if you quit Logger Pro, power the
interface off and on again, and then get back in
Logger Pro and try again.) From the File menu,
do Open, and locate the setup file you need:
Probes & Sensors > Photogate > One Gate Timer

If there is no button for collecting data, it’s be-
cause the interface box wasn’t turned on when you

booted up. Reboot.

At this point, you can test whether the photogate
is working by blocking it with your hand for a cer-
tain number of seconds. The time should read out
in the spreadsheet window under the Delta-T col-
umn. (“Delta,” the Greek uppercase letter ∆, is
a notation meaning “the change in,” i.e., you’re
measuring the change in time between one clock
reading and another.)

You may find that the software rounds off too
severely. If you want more than the three decimal
places it offers by default in the Delta-T column.
To fix this, double-click on the title of the Delta-T
column, and select a greater number of significant
figures.

The software will also give you a column in the
spreadsheet labeled V for velocity.11 This informa-
tion will be incorrect unless you’ve told the soft-
ware the width of the vane. In fact, it generally
won’t even be necessary to calculate speeds in this
lab, because you’ll be dealing only with ratios. For
instance, if it takes half as much time for the cart
to get through the gate, then the speed must have
been twice as great.

Measuring the speed dependence

Position the photogate near the bottom, and re-
lease the cart from a short distance (say 20 cm)
up the slope. You can read off the time from the
computer. Think for a second about the order of
magnitude of this time. Does it make sense if it’s
supposed to tell you how long the cart took to get
from the release point to the photogate, or is it
telling you how long the vane took to pass through
the photogate?

Since the cart accelerates on its way down the
slope, we expect that if we release it from higher up
the slope, it will pass through the photogate faster,
and the time measured on the computer will be
shorter. Now imagine — don’t do this yet — that
you release the cart from farther upslope, searching
by trial and error for a release point that will result
in double the speed, corresponding to half the time
on the computer. How many times farther upslope
do you think you will have to release it from? Dis-
cuss this with your group, form a hypothesis, and
write it down here: Discuss

11Velocity and speed are almost synonyms in physics,
and similar algebra notation, v or v, is used for both.
There is a technical distinction, which is that for mo-
tion in one dimension, a number giving a velocity in-
cludes a plus or minus sign giving direction informa-
tion, while a speed is always positive by definition.
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this with your instructor before going on.

A couple of hints: (1) If you air pump has a knob
that varies the speed of the air, make sure to put
it on its highest setting. (2) Don’t turn on the air
and just let the cart lift off and start moving by
itself. If you do this, the cart will be dragging at
first, and you’ll get bad data.

OK, now carry out the experiment. Once you
found the correct release point, how many times
greater was the gravitational energy consumed,
compared to what was consumed in your original
setup? What does this tell about the amount of
KE released? Summarizing, how does KE seem to
relate to speed? Discuss with your instructor how
to write this relationship as a proportionality.

B Mass dependence
Now explore the dependence of kinetic energy on
mass, by releasing the small cart and the large one
from the same distance upslope. The large cart
has double the mass, so how many times greater
is the gravitational energy it consumes and turns
into KE? Compare the two times on the photo-
gate, making sure that the vanes on the two carts
have the same width. How do the two velocities
compare? What does this tell you about how KE
depends on mass? Discuss with your instructor
how to write the dependence of KE on m and v as
a proportionality.

C Reversing the motion
Candles burn out. A bouncing ball eventually
stops bouncing. Everything seems to run down
naturally. By analogy, suppose you shove the cart
gently uphill, so that is passes through the photo-
gate, comes to a stop, and then slides back down
and passes through the photogate again on the
way down. Form a hypothesis about what you’ll
observe when you compare the two times mea-
sured on the computer. Write down your hypoth-
esis and show it to your instructor. Hypothesis:

Now try it. How does this relate to the way con-
servation laws work?

D Changing the path
Suppose you release the cart on the air track from
a certain height, h, and measure its speed as it
passes through the photogate. (Note that h is dif-
ferent from — is less than — the distance measured
along the slope.) Now imagine that you replace the
air track setup with a pendulum, flipping the pho-

togate upside-down to form a U. The pendulum
swings along an arc of a circle, not a straight line.
Imagine that you release the pendulum bob so that
its center will drop through the same height, h, as
the cart did. Because the bob is traveling along a
curved path, it will move farther — it isn’t trav-
eling “as the crow flies.” What do you think you
will observe about the velocity of the pendulum
bob compared to that of the cart? Does it matter
that they differ in mass? Try it.

h

Notes:

The bob’s diameter is same as the width of
the vane.

The point here is to compare two different
paths, but an arc of a circle that covers a
sufficiently small angle is nearly a straight
line. To get a good test, you’ll want to use
an arc covering the greatest possible angle.

Every atom of the cart moves an equal dis-
tance in an equal amount of time, but that’s
not true for the bob, so identical atoms in
different parts of the bob will contribute dif-
ferent amounts of kinetic energy. The parts
of the bob farthest from the center of the
circle are going faster than the parts nearer
the center. To minimize this ambiguity, you
want the string to be fairly long compared
to the size of the bob. Also, which point on
the bob is most representative of the whole
thing?

Similarly, not every atom loses the same
amount of gravitational energy, since they
don’t all drop through the same height. Sim-
ilar considerations apply.

For the reasons described above, you want a
fairly long string and a fairly long arc. The
result is that the bob will drop through a
big height. However, it may be awkward to
match this great height using the air track,
so you may need to compromise a little.

How do your results relate to the way conservation
laws work?
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E Are we done?
Now release the pendulum, and let it swing freely
back and forth many times, passing through the
photogate twice on each cycle. What do you ob-
serve over many cycles as you watch the computer
print out the list of numbers? What does this tell
you? Discuss this with your instructor.

Writeup
In your writeup, one of the most important re-
sults you’ll summarize is the outcome of parts A
and B: how kinetic energy depends on mass m and
speed v. Based only on this experiment, all you
could get would be a proportionality, not an actual
equation. The difference is that the actual equa-
tion would have some numerical factor out in front
that would make the equation consistent with the
system of units you’re using. Similarly, people in
different countries use different currencies, so al-
though they’d agree that the price of a gold bar
was directly proportional to its mass, one person
would say it was this many dollars per ounce, while
the other would state it as so many euros per gram.

In this book we’re using metric units, and I’ve
presented the energy scale as being based on the
amount of heat required to raise the temperature
of a certain amount of water by a certain amount.
In fact, the metric system was designed so that
the relationship between kinetic energy, mass, and
speed would have a nice simple numerical factor
out in front, and I want you to find that numerical
factor. To find it, use the fact that a one-kilogram
object moving at a speed of one meter per second
has a kinetic energy of exactly 1/2 of a joule.
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Answers to Self-Checks for Chapter 4

Page 62, self-check A: A conservation law in physics says that the
total amount of something always remains the same. You can’t get
rid of it even if you want to. Page 64, self-check B: Her gravita-
tional energy is being transformed into heat energy. Friction heats
up her body and the pole. Page 66, self-check C: The feather
experiences air resistance, which is a form of friction. Friction pro-
duces heat, and that’s the missing form of energy. In a vacuum
chamber, the feather will not fall any more slowly than any other
object.
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Pool balls exchange momentum.

Chapter 5

Conservation of Momentum

Physicist Murray Gell-Mann invented a wonderful phrase that has since
entered into popular culture: “Everything not forbidden is compulsory.”
Although people now use it as a sarcastic political statement, Gell-Mann
was just employing politics as a metaphor for physics. What he meant
was that the laws of physics forbid all the impossible things, and what’s
left over is what really happens. Conservation of mass and energy prevent
many things from happening. Objects can’t disappear into thin air, and
you can’t run your car forever without putting gas in it.

Some other processes are impossible, but not forbidden by these two
conservation laws. In the martial arts movie Crouching Tiger, Hidden
Dragon, those who have received mystical enlightenment are able to violate
the laws of physics. Some of the violations are obvious, such as their
ability to fly, but others are a little more subtle. The rebellious young
heroine/antiheroine Jen Yu gets into an argument while sitting at a table
in a restaurant. A young tough, Iron Arm Lu, comes running toward
her at full speed, and she puts up one arm and effortlessly makes him
bounce back, without even getting out of her seat or bracing herself against
anything. She does all this between bites. It’s impossible, but how do we
know it’s impossible? It doesn’t violate conservation of mass, because
neither character’s mass changes. It conserves energy as well, since the
rebounding Lu has the same energy he started with.

Suppose you live in a country where the only laws are prohibitions
against murder and robbery. One day someone covers your house with
graffiti, and the authorities refuse to prosecute, because no crime was
committed. You’re convinced of the need for a new law against vandalism.
Similarly, the story of Jen Yu and Iron Arm Lu shows that we need a new
conservation law.
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5.1 Translation Symmetry
The most fundamental laws of physics are conservation laws, and Noether’s
theorem tells us that conservation laws are the way they are because of
symmetry. Time-translation symmetry is responsible for conservation of
energy, but time is like a river with only two directions, past and future.
What’s impossible about Lu’s motion is the abrupt reversal in the direction
of his motion in space, but neither time-translation symmetry nor energy
conservation tell us anything about directions in space. When you put gas
in your car, you don’t have to decide whether you want to buy north gas
or south gas, east, west, up or down gas. Energy has no direction. What
we need is a new conserved quantity that has a direction in space, and
such a conservation law can only come from a symmetry that relates to
space. Since we’ve already had some luck with time-translation symmetry,
it seems reasonable to turn now to space-translation symmetry, which I
introduced on page 13 but haven’t mentioned since.

Space-translation symmetry would seem reasonable to most people,
but you’ll see that it ends up producing some very surprising results. To
see how, it will be helpful to imagine the consequences of a violation of
space-translation symmetry. What if, like the laws of nations, the laws
of physics were different in different places? What would happen, and
how would we detect it? We could try doing the same experiment in two
different places and comparing the results, but it’s even easier than that.
Tap your finger on this spot on the page

×

and then wait a second and do it again. Did both taps occur at the same
point in space? You’re probably thinking that’s a silly question; am I
just checking whether you followed my directions? Not at all. Consider
the whole scene from the point of view of a Martian who is observing it
through a powerful telescope from her home planet. (You didn’t draw the
curtains, did you?) From her point of view, the earth is spinning on its
axis and orbiting the sun, at speeds measured in thousands of kilometers
per hour. According to her, your second finger tap happened at a point
in space about 30 kilometers from the first. If you want to impress the
Martians and win the Martian version of the Nobel Prize for detecting a
violation of space-translation symmetry, all you have to do is perform a
physics experiment twice in the same laboratory, and show that the result
comes out different.

But who’s to say that the Martian point of view is the right one?
It gets a little thorny now. How do you know that what you detected
was a violation of space-translation symmetry at all? Maybe it was just
a violation of time-translation symmetry. The Martian Nobel committee
isn’t going to give you the prize based on an experiment this ambiguous.
A possible scheme for resolving the ambiguity would be to wait a year and
do the same experiment a third time. After a year, the earth will have
completed one full orbit around the sun, and your lab will be back in the
same spot in space. If the third experiment comes out the same as the
first one, then you can make a strong argument that what you’ve detected
is an asymmetry of space, not time. There’s a problem, however. You
and the Martians agree that the earth is back in the same place after a
year, but what about an observer from another solar system, whose planet
orbits a different star? This observer says that our whole solar system is
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in motion. To him, the earth’s motion around our sun looks like a spiral
or a corkscrew, since the sun is itself moving.

5.2 The Strong Principle of Inertia

Symmetry and inertia
This story shows that space-translation symmetry is closely related to

the relative nature of motion. Riding in a train on a long, straight track at
constant speed, how can you even tell you’re in motion? You can look at
the scenery outside, but that’s irrelevant, because we could argue that the
trees and cows are moving while you stand still. (The Martians say both
train and scenery are moving.) The real point is whether you can detect
your motion without reference to any external object. You can hear the
repetitive thunk-thunk-thunk as the train passes from one piece of track
to the next, but again this is just a reference to an external object —
all that proves is that you’re moving relative to the tracks, but is there
any way to tell that you’re moving in some absolute sense? Assuming no
interaction with the outside world, is there any experiment you can do
that will come out different when the train is in motion than when it’s at
rest? You could if space-translation symmetry was violated. If the laws of
physics were different in different places, then as the train moved it would
pass through them. “Riding over” these regions would be like riding over
the pieces of track, but you would be able to detect the transition from
one region to the next simply because experiments inside the train came
out different, without referring to any external objects. Rather than the
thunk-thunk-thunk of the rails, you would detect increases and decreases
in some quantity such as the gravitational constant G, or the speed of
light, or the mass of the electron.

We can therefore conclude that the following two hypotheses are closely
related.

The principle of inertia (strong version)
Experiments don’t come out different due to the straight-line, constant-
speed motion of the apparatus.

Space-translation symmetry
The laws of physics are the same at every point in space. Specifically, ex-
periments don’t come out different just because you set up your apparatus
in a different place.

A state of absolute rest example 1
Suppose that space-translation symmetry is violated. The laws of phys-
ics are different in one region of space than in another. Cruising in our
spaceship, we monitor the fluctuations in the laws of physics by watch-
ing the needle on a meter that measures some fundamental quantity
such as the gravitational constant. We make a short blast with the
ship’s engines and turn them off again. Now we see that the needle
is wavering more slowly, so evidently it’s taking us more time to move
from one region to the next. We keep on blasting with the ship’s engines
until the fluctuations stop entirely. Now we know that we’re in a state of
absolute rest. The violation of translation symmetry logically resulted in
a violation of the principle of inertia.
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Self-check A
Suppose you do an experiment to see how long it takes for a rock to
drop one meter. This experiment comes out different if you do it on the
moon. Does this violate space-translation symmetry? . Answer, p. 120

People have a strong intuitive belief that there is a state of absolute
rest, and that the earth’s surface defines it. But Copernicus proposed as
a mathematical assumption, and Galileo argued as a matter of physical
reality, that the earth spins on its axis, and also circles the sun. Galileo’s
opponents objected that this was impossible, because we would observe
the effects of the motion. They said, for example, that if the earth was
moving, then you would never be able to jump up in the air and land
in the same place again — the earth would have moved out from under
you. Galileo realized that this wasn’t really an argument about the earth’s
motion but about physics. In one of his books, which were written in the
form of dialogues, he has the three characters debate what would happen if
a ship was cruising smoothly across a calm harbor and a sailor climbed up
to the top of its mast and dropped a rock. Would it hit the deck at the base
of the mast, or behind it because the ship had moved out from under it?
This is the kind of experiment referred to in the strong principle of inertia,
and Galileo knew that it would come out the same regardless of the ship’s
motion. His opponents’ reasoning, as represented by the dialog’s stupid
character Simplicio, was based on the assumption that once the rock lost
contact with the sailor’s hand, it would naturally start to lose its forward
motion. In other words, they didn’t even believe in the weak principle of
inertia (page 28), which states that motion doesn’t naturally slow down.

The strong principle of inertia says more than that. It says that motion
isn’t even real: to a sailor standing on the deck of the ship, the deck and
the masts and the rigging are not even moving. People on the shore can
tell him that the ship and his own body are moving in a straight line at
constant speed. He can reply, “No, that’s an illusion. I’m at rest. The only
reason you think I’m moving is because you and the sand and the water
are moving in the opposite direction.” The strong principle of inertia says
that straight-line, constant-speed motion is a matter of opinion. The weak
principle of inertia is then a logical byproduct: things can’t “naturally”
slow down and stop moving, because we can’t even agree on which things
are moving and which are at rest.

If observers in different frames of reference disagree on velocities, it’s
natural to want to be able to convert back and forth. For motion in one
dimension, this can be done by simple addition.

A sailor running on the deck example 2
. A sailor is running toward the front of a ship, and the other sailors say
that in their frame of reference, fixed to the deck, his velocity is 7.0 m/s.
The ship is moving at 1.3 m/s relative to the shore. How fast does an
observer on the beach say the sailor is moving?

. They see the ship moving at 7.0 m/s, and the sailor moving even
faster than that because he’s running from the stern to the bow. In one
second, the ship moves 1.3 meters, but he moves 1.3 + 7.0 m, so his
velocity relative to the beach is 8.3 m/s.

The only way to make this rule come out consistent is if we define
velocities in one direction as positive and velocities in the opposite direction
as negative.
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Running back toward the stern example 3
. The sailor of example 2 turns around and runs back toward the stern at
the same speed relative to the deck. How do the other sailors describe
this velocity mathematically, and what do observers on the beach say?

. Since the other sailors described his original velocity as positive, they
have to call this negative. They say his velocity is now −7.0 m/s. A
person on the shore says his velocity is 1.3 + (−7.0) = −5.7 m/s.

Inertial and noninertial frames
Let’s not overstate this. Is all motion a matter of opinion? No — try

telling that to the brave man in figure a! He’s the one who feels the effects
of the motion, not the observers standing by the track. Even if he can pull
his face together enough to speak, he won’t have much luck convincing
them that his motion is an illusion, and that they’re the ones who are really
moving backward while his rocket sled is standing still. Only straight-
line, constant-speed motion is a matter of opinion. His speed is changing,
and the change in speed produces real effects. Experiments do come out
different if your apparatus is changing its speed. A frame of reference
whose motion is changing is called a noninertial frame of reference, because
the principle of inertia doesn’t apply to it.

a / This Air Force doctor volun-
teered to ride a rocket sled as a
medical experiment. The obvious
effects on his head and face are
not because of the sled’s speed
but because of its rapid changes
in speed: increasing in 2 and 3,
and decreasing in 5 and 6. In
4 his speed is greatest, but be-
cause his speed is not increasing
or decreasing very much at this
moment, there is little effect on
him.

Experiments also come out different if your apparatus is changing its
direction of motion. The landscape around you is moving in a circle right
now due to the rotation of the Earth, and is therefore changing the direc-
tion of its motion continuously on a 24-hour cycle. However, the curve of
the motion is so gentle that under ordinary conditions we don’t notice that
the local dirt’s frame of reference isn’t quite inertial. The first demonstra-
tion of the noninertial nature of the earth-fixed frame of reference was by
Foucault using a very massive pendulum whose oscillations would persist
for many hours. Although Foucault did his demonstration in Paris, it’s
easier to imagine what would happen at the north pole: the pendulum
would keep swinging in the same plane, but the earth would spin under-
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neath it once every 24 hours. To someone standing in the snow, it would
appear that the pendulum’s plane of motion was twisting. The effect at
latitudes less than 90 degrees turns out to be slower, but otherwise sim-
ilar. The Foucault pendulum was the first definitive experimental proof
that the earth really did spin on its axis, although scientists had been con-
vinced of its rotation for a century based on more indirect evidence about
the structure of the solar system.

b / Foucault demonstrates his
pendulum to an audience at a
lecture in 1851.

Often when we adopt a noninertial frame of reference, there is a vivid
illusion that the laws of physics are being violated. It might seem like the
Foucault pendulum was being influenced by evil spirits, if you forgot that
it was actually the ground that was twisting around, not the pendulum.
A simpler example is shown in figure c. A bowling ball is in the back
of a pickup truck, and the driver steps on the brakes. Because the truck
is changing its speed, a frame of reference that moves with the truck is
noninertial. For the driver, there is a strong psychological tendency to
adopt this bad frame of reference, c/1, but then the bowling ball seems to
be violating the laws of physics: according to the weak principle of inertia,
the ball has no reason to start rolling toward the front of the truck. It’s
not interacting with any other object that would cause it to do this. In
figure c/2, we watch the motion in an (approximately) inertial frame of
reference fixed to the sidewalk, and everything makes sense. The ball
obeys the weak principle of inertia, and moves equal distances in equal
time intervals. In this frame, it’s the truck that changes its speed, which
makes sense, because the truck’s wheels are interacting with the pavement.

1 2
c / A bowling ball in the back of a
pickup truck is viewed in a non-
inertial frame, 1, and an inertial
one, 2.

d / Galileo on trial before the
Inquisition.

Popular belief has Galileo being prosecuted by the Catholic Church for
saying the earth rotated on its axis and also orbited the sun, but Foucault’s
pendulum was still centuries in the future, so Galileo had no hard proof;
his insights into relative versus absolute motion simply made it more plau-
sible that the world could be spinning without producing dramatic effects,
but didn’t disprove the contrary hypothesis that the sun, moon, and stars
went around the earth every 24 hours. Furthermore, the Church was much
more liberal and enlightened than most people believe. It didn’t (and still
doesn’t) require a literal interpretation of the Bible, and one of the Church
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officials involved in the Galileo affair wrote that “the Bible tells us how to
go to heaven, not how the heavens go.” In other words, religion and science
should be separate. The actual reason Galileo got in trouble is shrouded in
mystery, since Italy in the age of the Medicis was a secretive place where
unscrupulous people might settle a score with poison or a false accusation
of heresy. What is certain is that Galileo’s satirical style of scientific writ-
ing made many enemies among the powerful Jesuit scholars who were his
intellectual opponents — he compared one to a snake that doesn’t know its
own back is broken. Galileo and the Pope were old friends, but someone
started a rumor that the stupid character Simplicio in Galileo’s dialogs
was really meant to represent the Pope. It’s also possible that the Church
was far less upset by his astronomical work than by his support for atom-
ism, the idea that matter is made of atoms. Some theologians perceived
atomism as contradicting transubstantiation, the Church’s doctrine that
the holy bread and wine are literally transformed into the flesh and blood
of Christ by the priest’s blessing.
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5.3 Momentum

Conservation of momentum
Let’s return to the impossible story of Jen Yu and Iron Arm Lu on

page 89. For simplicity, we’ll model them as two identical, featureless pool
balls, e. This may seem like a drastic simplification, but even a collision
between two human bodies is really just a series of many collisions between
atoms. The film shows a series of instants in time, viewed from overhead.
The light-colored ball comes in, hits the darker ball, and rebounds. It
seems strange that the dark ball has such a big effect on the light ball
without experiencing any consequences itself, but how can we show that
this is really impossible?

e / How can we prove that this col-
lision is impossible?

We can show it’s impossible by looking at it in a different frame of
reference, f. This camera follows the light ball on its way in, so in this
frame the incoming light ball appears motionless. (If you ever get hauled
into court on an assault charge for hitting someone, try this defense: “Your
honor, in my fist’s frame of reference, it was his face that assaulted my
knuckles!”) After the collision, the camera keeps moving in the same
direction, because if it didn’t, it wouldn’t be showing us an inertial frame
of reference. To help convince yourself that figures e and f represent the
same motion seen in two different frames, note that both films agree on
the distances between the balls at each instant. After the collision, frame
f shows the light ball moving twice as fast as the dark ball; an observer
who prefers frame e explains this by saying that the camera that produced
film f was moving one way, while the ball was moving the opposite way.

f / The collision of figure e is
viewed in a different frame of ref-
erence.

Figures e and f record the same events, so if one is impossible, the other
is too. But figure f is definitely impossible, because it violates conservation
of energy. Before the collision, the only kinetic energy is the dark ball’s.
After the collision, light ball suddenly has some energy, but where did that
energy come from? It can only have come from the dark ball. The dark
ball should then have lost some energy, which it hasn’t, since it’s moving
at the same speed as before.
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Figure g shows what really does happen. This kind of behavior is
familiar to anyone who plays pool. In a head-on collision, the incoming
ball stops dead, and the target ball takes all its energy and flies away. In
g/1, the light ball hits the dark ball. In g/2, the camera is initially following
the light ball; in this frame of reference, the dark ball hits the light one
(“Judge, his face hit my knuckles!”). The frame of reference shown in g/3
is particularly interesting. Here the camera always stays at the midpoint
between the two balls. This is called the center-of-mass frame of reference.

g / This is what really happens.
Three films represent the same
collision viewed in three different
frames of reference. Energy is
conserved in all three frames.

Self-check B
In each picture in figure g/1, mark an x at the point half-way in between
the two balls. This series of five x’s represents the motion of the camera
that was used to make the bottom film. How fast is the camera moving?
Does it represent an inertial frame of reference? . Answer, p. 120

What’s special about the center-of-mass frame is its symmetry. In this
frame, both balls have the same initial speed. Since they start out with
the same speed, and they have the same mass, there’s no reason for them
to behave differently from each other after the collision. By symmetry, if
the light ball feels a certain effect from the dark ball, the dark ball must
feel the same effect from the light ball.

This is exactly like the rules of accounting. Let’s say two big corpora-
tions are doing business with each other. If Glutcorp pays a million dollars
to Slushco, two things happen: Glutcorp’s bank account goes down by a
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million dollars, and Slushco’s rises by the same amount. The two compa-
nies’ books have to show transactions on the same date that are equal in
size, but one is positive (a payment) and one is negative. What if Glut-
corp records −1, 000, 000 dollars, but Slushco’s books say +920, 000? This
indicates that a law has been broken; the accountants are going to call the
police and start looking for the employee who’s driving a new 80,000-dollar
Jaguar. Money is supposed to be conserved.

In figure g, let’s define velocities as positive if the motion is toward the
top of the page. In figure g/1 let’s say the incoming light ball’s velocity is
1 m/s.

velocity (meters per second)
before the collision after the collision change
0 1 +1
1 0 −1

The books balance. The light ball’s payment, −1, matches the dark ball’s
receipt, +1. Everything also works out fine in the center of mass frame,
g/3:

velocity (meters per second)
before the collision after the collision change
−0.5 +0.5 +1
+0.5 −0.5 −1

Self-check C
Make a similar table for figure g/2. What do you notice about the change
in velocity when you compare the three tables? . Answer, p. 120

Accounting works because money is conserved. Apparently, something
is also conserved when the balls collide. We call it momentum. Momen-
tum is not the same as velocity, because conserved quantities have to be
additive. Our pool balls are like identical atoms, but atoms can be stuck
together to form molecules, people, and planets. Because conservation
laws work by addition, two atoms stuck together and moving at a certain
velocity must have double the momentum that a single atom would have
had. We therefore define momentum as velocity multiplied by mass.

Conservation of momentum
The quantity defined by

momentum = mv

is conserved.

This is our second example of Noether’s theorem:

symmetry conserved quantity
time translation ⇒ mass-energy
space translation ⇒ momentum
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Conservation of momentum for pool balls example 4
. Is momentum conserved in figure g/1?

. We have to check whether the total initial momentum is the same as
the total final momentum.

dark ball’s initial momentum + light ball’s initial momentum

=?

dark ball’s final momentum + light ball’s final momentum

Yes, momentum was conserved:

0 + mv = mv + 0

h / example 5

Figure skaters push off from each other example 5
Let’s revisit the figure skaters from the example on page 11. I argued
there that if they had equal masses, then mirror symmetry would imply
that they moved off with equal speeds in opposite directions. Let’s check
that this is consistent with conservation of momentum:

left skater’s initial momentum + right skater’s initial momentum

=?

left skater’s final momentum + right skater’s final momentum

Momentum was conserved:

0 + 0 = m × (−v ) + mv

This is an interesting example, because if these had been pool balls in-
stead of people, we would have accused them of violating conservation
of energy. Initially there was zero kinetic energy, and at the end there
wasn’t zero. (Note that the energies at the end don’t cancel, because
kinetic energy is always positive, regardless of direction.) The mystery
is resolved because they’re people, not pool balls. They both ate food,
and they therefore have chemical energy inside their bodies:

food energy → kinetic energy + kinetic energy + heat

Unequal masses example 6
. Suppose the skaters have unequal masses: 50 kg for the one on the
left, and 55 kg for the other. The more massive skater, on the right,
moves off at 1.0 m/s. How fast does the less massive skater go?

. Their momenta (plural of momentum) have to be the same amount,
but with opposite signs. The less massive skater must have a greater
velocity if her momentum is going to be as much as the more massive
one’s.

0 + 0 = (50 kg)(−v ) + (55 kg)(1.0 m/s)

(50 kg)(v ) = (55 kg)(1.0 m/s)

v =
(55 kg)
50 kg

(1.0 m/s)

= 1.1 m/s
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Momentum compared to kinetic energy
Momentum and kinetic energy are both measures of the amount of mo-

tion, and a sideshow in the Newton-Leibniz controversy over who invented
calculus was an argument over which quantity was the “true” measure of
motion. The modern student can certainly be excused for wondering why
we need both quantities, when their complementary nature was not evi-
dent to the greatest minds of the 1700’s. The following table highlights
their differences.

Kinetic energy. . . Momentum. . .
has no direction in space. has a direction in space.
is always positive, and cannot can-
cel out.

cancels with momentum in the op-
posite direction.

can be traded for forms of energy
that do not involve motion. KE is
not a conserved quantity by itself.

is always conserved.

is quadrupled if the velocity is
doubled (lab 4b).

is doubled if the velocity is dou-
bled.

Here are some examples that show the different behaviors of the two
quantities.

i / example 7

j / example 10

A spinning coin example 7
A spinning coin has zero total momentum, because for every moving
point, there is another point on the opposite side that cancels its mo-
mentum. It does, however, have kinetic energy.

Momentum and kinetic energy in firing a rifle example 8
The rifle and bullet have zero momentum and zero kinetic energy to
start with. When the trigger is pulled, the bullet gains some momen-
tum in the forward direction, but this is canceled by the rifle’s backward
momentum, so the total momentum is still zero. The kinetic energies
of the gun and bullet are both positive numbers, however, and do not
cancel. The total kinetic energy is allowed to increase, because both ob-
jects’ kinetic energies are destined to be dissipated as heat — the gun’s
“backward” kinetic energy does not refrigerate the shooter’s shoulder!

The wobbly earth example 9
As the moon completes half a circle around the earth, its motion re-
verses direction. This does not involve any change in kinetic energy,
because the moon doesn’t speed up or slow down, nor is there any
change in gravitational energy, because the moon stays at the same
distance from the earth.1 The reversed velocity does, however, imply
a reversed momentum, so conservation of momentum tells us that the
earth must also change its momentum. In fact, the earth wobbles in a
little “orbit” about a point below its surface on the line connecting it and
the moon. The two bodies’ momenta always point in opposite directions
and cancel each other out.

The earth and moon get a divorce example 10
Why can’t the moon suddenly decide to fly off one way and the earth the
other way? It is not forbidden by conservation of momentum, because
the moon’s newly acquired momentum in one direction could be can-
celed out by the change in the momentum of the earth, supposing the

1Actually these statements are both only approximately true. The moon’s
orbit isn’t exactly a circle.
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earth headed the opposite direction at the appropriate, slower speed.
The catastrophe is forbidden by conservation of energy, because both
their kinetic energies would have increased greatly.

Momentum and kinetic energy of a glacier example 11
A cubic-kilometer glacier would have a mass of about 1012 kg — 1 fol-
lowed by 12 zeroes. If it moves at a speed of 0.00001 m/s, then its
momentum2 is 10, 000, 000. This is the kind of heroic-scale result we
expect, perhaps the equivalent of the space shuttle taking off, or all the
cars in LA driving in the same direction at freeway speed. Its kinetic
energy, however, is only 50 joules, the equivalent of the calories con-
tained in a poppy seed or the energy in a drop of gasoline too small to
be seen without a microscope. The surprisingly small kinetic energy is
because kinetic energy is proportional to the square of the velocity, and
the square of a small number is an even smaller number.

Force

Definition of force

When momentum is being transferred, we refer to the rate of transfer
as the force.3 The metric unit of force is the newton (N). The relationship
between force and momentum is like the relationship between power and
energy, or the one between your cash flow and your bank balance:

conserved quantity rate of transfer
name units name units
energy joules (J) power watts (W)
momentum kg·m/s force newtons (N)

A bullet example 12
. A bullet emerges from a gun with a momentum of 1.0 units,4 after
having been acted on for 0.01 seconds by the force of the gases from
the explosion of the gunpowder. What was the force on the bullet?

. The force is5

1.0
0.01

= 100 newtons .

There’s no new physics happening here, just a definition of the word
“force.” Definitions are neither right nor wrong, and just because the
Chinese call it instead, that doesn’t mean they’re incorrect. But when
Isaac Newton first started using the term “force” according to this techni-
cal definition, people already had some definite ideas about what the word
meant.

Forces occur in equal-strength pairs

In some cases Newton’s definition matches our intuition. In example
12, we divided by a small time, and the result was a big force; this is
intuitively reasonable, since we expect the force on the bullet to be strong.
In other situations, however, our intuition rebels against reality.

2The units of this number are kilograms times meters per second, or kg·m/s.
3This definition is known as Newton’s second law of motion. Don’t memorize

that!
4metric units of kg·m/s
5This is really only an estimate of the average force over the time it takes for

the bullet to move down the barrel. The force probably starts out stronger than
this, and then gets weaker because the gases expand and cool.
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Extra protein example 13
. While riding my bike fast down a steep hill, I pass through a cloud of
gnats, and one of them goes into my mouth. Compare my force on the
gnat to the gnat’s force on me.

. Momentum is conserved, so the momentum gained by the gnat equals
the momentum lost by me. Momentum conservation holds true at every
instant over the fraction of a second that it takes for the collision to
happen. The rate of transfer of momentum out of me must equal the
rate of transfer into the gnat. Our forces on each other have the same
strength, but they’re in opposite directions.

Most people would be willing to believe that the momentum gained by the
gnat is the same as the momentum lost by me, but they would not believe
that the forces are the same strength. Nevertheless, the second statement
follows from the first merely as a matter of definition. Whenever two
objects, A and B, interact, A’s force on B is the same strength as B’s force
on A, and the forces are in opposite directions.6

(A on B) = −(B on A)

Using the metaphor of money, suppose Alice and Bob are adrift in a life
raft, and pass the time by playing poker. Money is conserved, so if they
count all the money in the boat every night, they should always come up
with the same total. A completely equivalent statement is that their cash
flows are equal and opposite. If Alice is winning five dollars per hour, then
Bob must be losing at the same rate.

Excuse me, ma'am, but it
appears that the money in your

purse would exactly cancel
out my bar tab.

k / It doesn’t make sense to
add his debts to her assets.

l / I squeeze the bathroom
scale. It does make sense to add
my fingers’ force to my thumbs’,
because they both act on the
same object — the scale.

This statement about equal forces in opposite directions implies to
many students a kind of mystical principle of equilibrium that explains
why things don’t move. That would be a useless principle, since it would
be violated every time something moved.7 The ice skaters of figure h on
page 99 make forces on each other, and their forces are equal in strength
and opposite in direction. That doesn’t mean they won’t move. They’ll
both move — in opposite directions.

The fallacy comes from trying to add things that it doesn’t make sense
to add, as suggested by the cartoon in figure k. We only add forces that are
acting on the same object. It doesn’t make sense to say that the skaters’
forces on each other add up to zero, because it doesn’t make sense to add
them. One is a force on the left-hand skater, and the other is a force on
the right-hand skater.

In figure l, my fingers’ force and my thumbs’ force are both acting on
the bathroom scale. It does make sense to add these forces, and they may
possibly add up to zero, but that’s not guaranteed by the laws of physics.
If I throw the scale at you, my thumbs’ force is stronger that my fingers’,
and the forces no longer cancel:

(fingers on scale) 6= −(thumbs on scale) .

What’s guaranteed by conservation of momentum is a whole different re-

6This is called Newton’s third law. Don’t memorize that name!
7During the Scopes monkey trial, William Jennings Bryan claimed that every

time he picked his foot up off the ground, he was violating the law of gravity.
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lationship:

(fingers on scale) = −(scale on fingers)
(thumbs on scale) = −(scale on thumbs)

The force of gravity

How much force does gravity make on an object? From everyday
experience, we know that this force is proportional to the object’s mass.8

Let’s find the force on a one-kilogram object. If we release this object
from rest, then after it has fallen one meter, its kinetic energy equals the
strength of the gravitational field,

10 joules per kilogram per meter × 1 kilogram × 1 meter = 10 joules .

Using the equation for kinetic energy from lab 4b and doing a little simple
algebra, we find that its final velocity is 4.4 m/s. It starts from 0 m/s, and
ends at 4.4 m/s, so its average velocity is 2.2 m/s, and the time takes to fall
one meter is therefore (1 m)/(2.2 m/s)=0.44 seconds. Its final momentum
is 4.4 units, so the force on it was evidently

4.4
0.44

= 10 newtons .

This is like one of those card tricks where the magician makes you go
through a bunch of steps so that you end up revealing the card you had
chosen — the result is just equal to the gravitational field, 10, but in units
of newtons! If algebra makes you feel warm and fuzzy, you may want to
replay the derivation using symbols and convince yourself that it had to
come out that way. If not, then I hope the numerical result is enough
to convince you of the general fact that the force of gravity on a one-
kilogram mass equals g. For masses other than one kilogram, we have the
handy-dandy result that

(force of gravity on a mass m) = mg .

In other words, g can be interpreted not just as the gravitational energy
per kilogram per meter of height, but also as the gravitational force per
kilogram.

Motion in two dimensions

Projectile motion

Galileo was an innovator in more than one way. He was arguably
the inventor of open-source software: he invented a mechanical calculating
device for certain engineering applications, and rather than keeping the
device’s design secret as his competitors did, he made it public, but charged
students for lessons in how to use it. Not only that, but he was the first
physicist to make money as a military consultant. Galileo understood
projectiles better than anyone else, because he understood the principle
of inertia. Even if you’re not planning on a career involving artillery,
projectile motion is a good thing to learn about because it’s an example
of how to handle motion in two or three dimensions.

8This follows from the additivity of forces.
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m / A ball is falling (or rising).

n / The same ball is viewed
in a frame of reference that is
moving horizontally.

o / The drops of water travel
in parabolic arcs.

Figure m shows a ball in the process of falling — or rising, it really
doesn’t matter which. Let’s say the ball has a mass of one kilogram, each
square in the grid is 10 meters on a side, and the positions of the ball are
shown at time intervals of one second. The earth’s gravitational force on
the ball is 10 newtons, so with each second, the ball’s momentum increases
by 10 units, and its speed also increases by 10 m/s. The ball falls 10 m in
the first second, 20 m in the next second, and so on.

Self-check D
What would happen if the ball’s mass was 2 kilograms? . Answer, p.
120

Now let’s look at the ball’s motion in a new frame of reference, n,
which is moving at 10 meters per second to the left compared to the frame
of reference used in figure m. An observer in this frame of reference sees
the ball as moving to the right by 10 meters every second. The ball traces
an arc of a specific mathematical type called a parabola:

1 step over and 1 step down
1 step over and 2 steps down
1 step over and 3 steps down
1 step over and 4 steps down
. . .

It doesn’t matter which frame of reference is the “real” one. Both
diagrams show the possible motion of a projectile. The interesting point
here is that the vertical force of gravity has no effect on the horizontal
motion, and the horizontal motion also has no effect on what happens in
the vertical motion. The two are completely independent. If the sun is
directly overhead, the motion of the ball’s shadow on the ground seems
perfectly natural: there are no horizontal forces, so it either sits still or
moves at constant velocity. (Zero force means zero rate of transfer of
momentum.) The same is true if we shine a light from one side and cast
the ball’s shadow on the wall. Both shadows obey the laws of physics.

The moon example 14
In example 9 on page 71, I promised an explanation of how Newton
knew that the gravitational field experienced by the moon due to the
earth was 1/3600 of the one we feel here on the earth’s surface. The
radius of the moon’s orbit had been known since ancient times (see
page 27), so Newton knew its speed to be 1,100 m/s (expressed in
modern units). If the earth’s gravity wasn’t acting on the moon, the
moon would fly off straight, along the straight line shown in figure p, and
it would cover 1,100 meters in one second. We observe instead that it
travels the arc of a circle centered on the earth. Straightforward geom-
etry shows that the amount by which the arc drops below the straight
line is 1.6 millimeters. Near the surface of the earth, an object falls 5
meters in one second,9 which is indeed about 3600 times greater than
1.6 millimeters.

9Its initial speed is 0, and its final speed is 10 m/s, so its average speed is 5
m/s over the first second of falling.
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The tricky part about this argument is that although I said the path of
a projectile was a parabola, in this example it’s a circle. What’s going on
here? What’s different here is that as the moon moves 1,100 meters,
it changes its position relative to the earth, so down is now in a new
direction. We’ll discuss circular motion more carefully soon, but in this
example, it really doesn’t matter. The curvature of the arc is so gentle
that a parabola and a circle would appear almost identical. (Actually
the curvature is so gentle — 1.6 millimeters over a distance of 1,100
meters! — that if I had drawn the figure to scale, you wouldn’t have
even been able to tell that it wasn’t straight.)

As an interesting historical note, Newton claimed that he first did this
calculation while confined to his family’s farm during the plague of 1666,
and found the results to “answer pretty nearly.” His notebooks, however,
show that although he did the calculation on that date, the result didn’t
quite come out quite right, and he became uncertain about whether
his theory of gravity was correct as it stood or needed to be modified.
Not until 1675 did he learn of more accurate astronomical data, which
convinced him that his theory didn’t need to be tinkered with. It appears
that he rewrote his own life story a little bit in order to make it appear
that his work was more advanced at an earlier date, which would have
helped him in his dispute with Leibniz over priority in the invention of
calculus.

to earth to earth

1100 m
1.6 mm

p / example 14

q / The memory of motion:
the default would be for the ball
to continue doing what it was
already doing. The force of grav-
ity makes it deviate downward,
ending up one square below the
default.

The memory of motion

There’s another useful way of thinking about motion along a curve.
The weak principle of inertia tells us that in the absence of a force, an
object will continue moving in the same speed and in the same direction.
One of my students invented a wonderful phrase for this: the memory of
motion. Over the first second of its motion, the ball in figure q moved 1
square over and 1 square down, which is 10 meters and 10 meters. The
default for the next one-second interval would be to repeat this, ending up
at the location marked with the first dashed circle. The earth’s 10-newton
gravitational force on the ball, however, changes the vertical part of the
ball’s momentum by 10 units. The ball actually ends up 10 meters (1
square) below the default.
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Circular motion

Figure r shows how to apply the memory-of-motion idea to circular
motion. It should convince you that only an inward force is needed to
produce circular motion. One of the reasons Newton was the first to make
any progress in analyzing the motion of the planets around the sun was
that his contemporaries were confused on this point. Most of them thought
that in addition to an attraction from the sun, a second, forward force must
exist on the planets, to keep them from slowing down. This is incorrect
Aristotelian thinking; objects don’t naturally slow down. Car 1 in figure
s only needs a forward force in order to cancel out the backward force of
friction; the total force on it is zero. Similarly, the forward and backward
forces on car 2 are canceling out, and the only force left over is the inward
one. There’s no friction in the vacuum of outer space, so if car 2 was a
planet, the backward force wouldn’t exist; the forward force wouldn’t exist
either, because the only force would be the force of the sun’s gravity.

r / A large number of gentle taps
gives a good approximation to cir-
cular motion. A steady inward
force would give exactly circular
motion.

1
2

s / The forces on car 1 can-
cel, and the total force on it is
zero. The forward and backward
forces on car 2 also cancel. Only
the inward force remains.

On page 94 we saw that when we tried to visualize motion in a non-
inertial frame of reference, we experienced the vivid illusion of a violation
of the laws of physics. In circular motion, this temptation is especially
strong. Frame t/1, attached to the turning truck, is noninertial, because
it changes the direction of its motion. The ball violates the weak principle
of inertia by accelerating from rest for no apparent reason. Is there some
mysterious outward force that is slamming the ball into the side of the
truck’s bed? No. By analyzing everything in a proper inertial frame of
reference, t/2, we see that it’s the truck that swerves and hits the ball.
That makes sense, because the truck is interacting with the asphalt.
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1

2

t / A bowling ball is in the back of a pickup truck turning left. The
motion is viewed first in a frame that turns along with the truck, 1, and
then in an inertial frame, 2.

Section 5.3 Momentum 107



Problems
1 The beer bottle shown in the figure is resting on a table in the dining
car of a train. The tracks are straight and level. What can you tell about
the motion of the train? Can you tell whether the train is currently moving
forward, moving backward, or standing still? Can you tell what the train’s
speed is?

2 You’re a passenger in the open basket hanging under a hot-air balloon.
The balloon is being carried along by the wind at a constant velocity. If
you’re holding a flag in your hand, will the flag wave? If so, which way?
(Based on a question from PSSC Physics.)

Problem 1.

Problem 2

3 Driving along in your car, you take your foot off the gas, and your
speedometer shows a reduction in speed. Describe an inertial frame in
which your car was speeding up during that same period of time.

4 If all the air molecules in the room settled down in a thin film on the
floor, would that violate conservation of momentum as well as conservation
of energy?

5 A bullet flies through the air, passes through a paperback book, and
then continues to fly through the air beyond the book. When is there a
force? When is there energy?

6 (a) Continue figure n farther to the left, and do the same for the
numerical table in the text.
(b) Sketch a smooth curve (a parabola) through all the points on the figure,
including all the ones from the original figure and all the ones you added.
Identify the very top of its arc.
(c) Now consider figure m. Is the highest point shown in the figure the top
of the ball’s up-down path? Explain by comparing with your results from
parts a and b.

7 Criticize the following statement about the top panel of figure g on
page 97: In the first few pictures, the light ball is moving up and to the
right, while the dark ball moves directly to the right.

8 The figure on page 109 shows a ball dropping to the surface of the
earth. Energy is conserved: over the whole course of the film, the gravi-
tational energy between the ball and the earth decreases by 1 joule, while
the ball’s kinetic energy increases by 1 joule.
(a) How can you tell directly from the figure that the ball’s speed isn’t
staying the same?
(b) Draw what the film would look like if the camera was following the
ball.
(c) Explain how you can tell that in this new frame of reference, energy is
not conserved.
(d) Does this violate the strong principle of inertia? Isn’t every frame of
reference supposed to be equally valid?
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Lab 5a: Interactions
Apparatus
single neodymium magnet . . . . . . . . . . . . . . 1/group
triple neodymium magnet . . . . . . . . . . . . . . . 1/group
compass
triple-arm balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
clamp and 50-cm rod for holding balance up
string
tape
scissors
heavy-duty spring scales
rubber stoppers

Goal
Form hypotheses about forces and test them.

Introduction
Why does a rock fall if you drop it? The ancient
Greek philosopher Aristotle theorized that it was
because the rock was trying to get to its natural
place, in contact with the earth. Why does a ball
roll if you push it? Aristotle would say that only
living things have the ability to move of their own
volition, so the ball can only move if you give mo-
tion to it. Aristotle’s explanations were accepted
by Arabs and Europeans for two thousand years,
but beginning in the Renaissance, his ideas be-
gan to be modified drastically. Today, Aristotelian
physics is discussed mainly by physics teachers,
who often find that their students intuitively be-
lieve the Aristotelian world-view and strongly re-
sist the completely different version of physics that
is now considered correct. It is not uncommon for
a student to begin a physics exam and then pause
to ask the instructor, “Do you want us to answer
these questions the way you told us was true, or
the way we really think it works?” The idea of
this lab is to make observations of objects, mostly
magnets, pushing and pulling on each other, and
to figure out some of the corrections that need to
be made to Aristotelian physics.

Some people might say that it’s just a matter of
definitions or semantics whether Aristotle is cor-
rect or not. Is Aristotle’s theory even testable?
One testable feature of the theory is its asymme-
try. The Aristotelian description of the rock falling
and the ball being pushed outlines two relation-
ships involving four objects:

According to Aristotle, there are asymmetries in-
volved in both situations.

earth
The earth is the rock's natural place.

rock

hand
The hand gives motion to the ball.

ball

(1) The earth’s role is not interchangeable with
that of the rock. The earth functions only as a
place where the rock tends to go, while the rock is
an object that moves from one place to another.

(2) The hand’s role is not analogous to the ball’s.
The hand is capable of motion all by itself, but
the ball can’t move without receiving the ability
to move from the hand.

If we do an experiment that shows these types of
asymmetries, then Aristotle’s theory is supported.
If we find a more symmetric situation, then there’s
something wrong with Aristotle’s theory.

Observations
A Comparing magnets’ strengths
To make an interesting hypothesis about what
will happen in part C, the main event of the lab,
you’ll need to know how the top (single) and bot-
tom (triple) magnets’ strengths compare. It would
seem logical that the triple magnet would be three
times stronger than the single, but in this part of
the lab you’re going to find out for sure.

compass

Orient your magnet this way, as if it’s rolling to-
ward the compass from the north. With no mag-
net nearby, the compass points to magnetic north
(dashed arrow). The magnet deflects the com-
pass to a new direction.

One way of measuring the strength of a magnet is
to place the magnet to the north or south of the
compass and see how much it deflects (twists) the
needle of a compass. You need to test the mag-
nets at equal distances from the compass, which
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will produce two different angles.10 It’s also im-
portant to get everything oriented properly, as in
the figure.11

Make sure to take your data with the magnets far
enough from the compass that the deflection angle
is fairly small (say 5 to 30 ◦). If the magnet is close
enough to the compass to deflect it by a large angle,
then the ratio of the angles does not accurately
represent the ratio of the magnets’ strengths. After
all, just about any magnet is capable of deflecting
the compass in any direction if you bring it close
enough, but that doesn’t mean that all magnets
are equally strong.

B Qualitative observations of the inter-
action of two magnets
Play around with the two magnets and see how
they interact with each other. Can one attract the
other? Can one repel the other? Can they act on
each other simultaneously? Do they need to be
touching in order to do anything to each other?
Can A act on B while at the same time B does not
act on A at all? Can A pull B toward itself at the
same time that B pushes A away? When holding
one of the heavier magnets, it may be difficult to
feel when there is any push or pull on it; you may
wish to have one person hold the magnet with her
eyes closed while the other person moves the other
magnet closer and farther.

C Measurement of interactions between
two magnets
Once you have your data from parts A and B, you
are ready to form a hypothesis about the follow-
ing situation. Suppose we set up two balances as
shown in the figure. The magnets are not touch-
ing. The top magnet is hanging from a hook un-
derneath the pan, giving the same result as if it was
on top of the pan. Make sure it is hanging under

10There are two reasons why it wouldn’t make sense
to find different distances that produced the same an-
gle. First, you don’t know how the strengths of the
effect falls off with distance; it’s not necessarily true,
for instance, that the magnetic field is half as strong
at twice the distance. Second, the point of this is to
help you interpret part C, and in part C, the triple
magnet’s distance from the single magnet is the same
as the single magnet’s distance from the first magnet.

11Although you don’t yet know enough about mag-
netism to be able to see from first principles why it
should be this way, you can easily convince yourself
empirically that other setups (e.g. rotating the magnet
90 degrees) give results that are inaccurate and hard
to reproduce, because the compass acts “fidgety.”

the center of the pan. You will want to make sure
the magnets are pulling on each other, not pushing
each other away, so that the top magnet will stay
in one place.

pencil

single disk magnet
taped to pencil

three disk magnets
taped to a
rubber stopper

The balances will not show the magnets’ true
masses, because the magnets are exerting forces
on each other. The top balance will read a higher
number than it would without any magnetic forces,
and the bottom balance will have a lower than nor-
mal reading. The difference between each mag-
net’s true mass and the reading on the balance
gives a measure of how strongly the magnet is be-
ing pushed or pulled by the other magnet.

How do you think the amount of pushing or pulling
experienced by the two magnets will compare? In
other words, which reading will change more, or
will they change by the same amount? Write down
a hypothesis; you’ll test this hypothesis in part C
of the lab. If you think the forces will be unequal
predict their ratio.

Discuss with your instructor your results from
parts A and B, your hypothesis about what will
happen with the two balances, and your plan for
how you do error analysis.

Now set up the experiment described above with
two balances. Since we are interested in the
changes in the scale readings caused by the mag-
netic forces, you will need to take a total of four
scale readings: one pair with the balances sepa-
rated and one pair with the magnets close together
as shown in the figure above.

Lab 5a: Interactions 111



When the balances are together and the magnetic
forces are acting, it is not possible to get both bal-
ances to reach equilibrium at the same time, be-
cause sliding the weights on one balance can cause
its magnet to move up or down, tipping the other
balance. Therefore, while you take a reading from
one balance, you need to immobilize the other in
the horizontal position by taping its tip so it points
exactly at the zero mark.

You will also probably find that as you slide the
weights, the pointer swings suddenly to the op-
posite side, but you can never get it to be stable
in the middle (zero) position. Try bringing the
pointer manually to the zero position and then re-
leasing it. If it swings up, you’re too low, and if
it swings down, you’re too high. Search for the
dividing line between the too-low region and the
too-high region.

If the changes in the scale readings are very small
(say a few grams or less), you need to get the mag-
nets closer together. It should be possible to get
the scale readings to change by large amounts (up
to 10 or 20 g).

D Measurement of interactions involving
objects in contact
You’ll recall that Aristotle gave completely differ-
ent interpretations for situations where one object
was in contact with another, like the hand push-
ing the ball, and situations involving objects not
in contact with each other, such as the rock falling
down to the earth. Your magnets were not in con-
tact with each other. Now suppose we try the sit-
uation shown above, with one person’s hand exert-
ing a force on the other’s. All the forces involved
are forces between objects in contact, although the
two people’s hands cannot be in direct contact be-
cause the spring scales have to be inserted to mea-
sure how strongly each person is pulling. Suppose
the two people do not make any special arrange-
ment in advance about how hard to pull. How do
you think the readings on the two scales will com-
pare? Write down a hypothesis, and discuss it with
your instructor before continuing.

Now carry out the measurement shown in the fig-
ure.
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Lab 5b: Frames of Reference
Apparatus
track and 2 carts
2-meter piece of butcher paper
wood blocks with hooks and felt pads
string
1-kg masses
spring scales calibrated in newtons

Introduction
The little girl in the photo on page 7 spins around,
but to her, it seems like the world is spinning
around her. She has her own frame of reference,
which is different from that of someone standing
on the ground. Likewise, you may have had the
experience of sitting in a train in a station when
you suddenly notice that the station has started to
move! The idea of this lab is to perform the same
experiments in different frames of reference, and
see if the results come out different.

Collisions
First you’ll do some experiments involving colli-
sions between two carts rolling on a track.

Try gently pressing the two carts together on the
track. As they come close to each other, you’ll feel
them repelling each other! That’s because they
have magnets built into the ends. The magnets
act like perfect springs. For instance, if you hold
one cart firmly in place and let the other one roll
at it, the incoming cart will bounce back at almost
exactly the same speed. It’s like a perfect super-
ball. This is called an elastic collision.

You can also make collisions in which the carts will
stick together rather than rebounding. You can
do this by letting the velcro ends hit each other
instead of the magnet ends. This is known as an
inelastic collision.

A Elastic collision, projectile’s frame
Set the carts up so that their magnet sides are
facing each other. Roll one cart, A, toward the
other, B, coming from the left. Cart B is initially
at rest. Observe the results.

Now imagine the whole thing from a frame of ref-
erence that is initially moving with cart A. In this
frame, A is initially at rest, and B is hitting A.

The question now arises of how to define this frame
of reference after the collision. We could define it
as the frame of reference of a bug holding on tight

to cart A the whole time. In this frame of reference,
cart A is always at rest, both before and after the
collision. Think about the results of the collision
you just did, and imagine what it would look like
to the bug. Write down the bug’s description:

On the other hand, we could imagine that the scene
is being viewed by a video camera moving along
another track parallel to the real track. The cam-
era keeps on moving after the collision — let’s call
this the coasting frame of reference, because the
camera keeps on coasting along. In this frame of
reference, cart A is not at rest after the collsion.
Write down a description of the collision as viewed
in the coasting frame:

OK, now observers using the bug’s frame and the
coasting frame agree on what carts A and B are
doing before the collision, but they disagree after
the collision. Let’s start the whole thing going so
that to you, standing on the floor, the motion of
the carts looks just like the descriptions you wrote
above. This means that you have to do different
physical motions than you did before.

Do the actual results agree with the bug’s descrip-
tion, or with the coasting camera’s description?

B Inelastic collision, center of mass
frame
Now turn the carts around so their velcro sides are
toward each other. Send cart A toward cart B,
with B initially at rest. After the collision, the two
carts move off together to the right. Estimating by
eye, how do you think their speed after the collision
compares with cart A’s speed before it hit B?

Now imagine a coasting frame of reference that
moves along with the two carts after the collision.
After the collision it’s moving at the speed you de-
scribed, and because it’s a coasting frame of refer-
ence, it was also moving at that same speed before
the collision. What would the collision have looked
like in this frame of reference?
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This frame of reference is called the center of mass
frame. It’s a frame of reference in which the colli-
sion has mirror symmetry.

Now act out the collision so that what you see
before the collision, from your frame of reference
standing on the lab’s floor, matches what you
wrote above.

Do the results after the collision agree with the
description in the coasting frame of reference?

C Elastic collision, center of mass frame
What would the collision from part A have looked
like in the center of mass frame?

Act this out so that the center of mass frame cor-
responds to the frame of the lab’s floor. Do the
results match?

Stop and Think
Let’s think about what you’ve learned so far about
frames of reference. Discuss the following ques-
tions with your partners.

1. Based on what you’ve done so far, does it seem
like all frames are equally valid, or are there some
frames in which the laws of physics don’t seem to
be functioning normally?

2. Here’s a way to get some more evidence about
whether all frames are equally valid. So far we’ve
only been discussing how the motion of the carts
looks in various frames of reference. But in many
of these frames of reference, the track, the room,
the table, and your body are moving as well. Go
back and consider the motion of these external ob-
jects in all the frames of reference you’ve tried out.
In each one, consider whether the external objects
obey the weak principle of inertia (page 28).

Force and Motion
We haven’t yet defined force formally. For now,
think of it on an intuitive basis as a push or a pull.
A force can be relatively steady, like a person push-
ing a crate across the floor, or jerky, like the forces
in the collisions between the carts. The metric unit
of force is the newton, and we can measure forces
using spring scales.

Suppose a person pushes a crate, sliding it across
the floor at a certain speed, and then repeats the
same thing but at a higher speed. This is essen-
tially the situation you will act out in this exercise.

What do you think is different about her force on
the crate in the two situations? Discuss this with
your group and write down your hypothesis:

D Measurement of friction
First you’ll measure the amount of friction between
the wood block and the butcher paper when the
wood and paper surfaces are slipping over each
other. It isn’t the point of this lab to measure
things about friction, but you’ll need this informa-
tion in order to interpret your later results. The
idea is to attach a spring scale to the block and
then slide the butcher paper under the block while
using the scale to keep the block from moving with
it. Put the block on the paper with the felt side
down. You’ll need to put an extra two-kilogram
mass on top of the block in order to increase the
amount of friction. It’s a good idea to use long
piece of string to attach the block to the spring
scale, since otherwise one tends to pull at an angle
instead of directly horizontally.

First measure the amount of friction force when
sliding the butcher paper as slowly as possible:

Now measure the amount of friction force at a sig-
nificantly higher speed, say 1 meter per second.
(If you try to go too fast, the motion is jerky,
and it is impossible to get an accurate reading.)

Discuss your results. Why are we justified in as-
suming that the string’s force on the block (i.e., the
scale reading) is the same amount as the paper’s
frictional force on the block?

E Motion
Now try the same thing, but with the block mov-
ing and the paper standing still. Try two different
speeds.

Do your results agree with your original hypothe-
sis? If not, discuss what’s going on. How does the
block “know” how fast to go? How does all of this
relate to the main idea of this lab?
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Lab 5c: Conservation of Momentum
Apparatus
computer with Logger Pro software
track and 2 carts
1-kg weight
masking tape
2 force sensors with rubber corks

Qualitative Observations
First you’re going to observe some collisions be-
tween two carts and see how conservation of mo-
mentum plays out. If you really wanted to take nu-
merical data, it would be a hassle, because momen-
tum depends on mass and velocity, and there would
be four different velocity numbers you’d have to
measure: cart 1 before the collision, cart 1 after
the collision, cart 2 before, and cart 2 after. To
avoid all this complication, the first part of the lab
will use only visual observations.

A Equal masses, target at rest, elastic
collision
Roll one cart toward the other. The target cart is
initially at rest. Conservation of momentum reads
like this,

M x + M x =? M x + M x ,

where the two blanks on the left stand for the two
carts’ velocities before the collision, and the two
blanks on the right are for their velocities after
the collision. All conservation laws work like this:
the total amount of something remains the same.
You don’t have any real numbers, but just from
eyeballing the collision, what seems to have hap-
pened? Let’s just arbitrarily say that the mass of a
cart is one unit, so that wherever it says “M x” in
the equation, you’re just multiplying by one. You
also don’t have any numerical values for the veloc-
ities, but suppose we say that the initial velocity
of the incoming cart is one unit. Does it look like
conservation of momentum was satisfied?

B Mirror symmetry
Now reenact the collision from part A, but do ev-
erything as a mirror image. The roles of the target
cart and incoming cart are reversed, and the direc-
tion of motion is also reversed.

M x + M x =? M x + M x

What happens now? Note that mathematically,
we use positive and negative signs to indicate the
direction of a velocity in one dimension.

C An explosion
Now start with the carts held together, with their
magnets repelling. As soon as you release them,
they’ll break contact and fly apart due to the re-
pulsion of the magnets.

M x + M x =? M x + M x

Does momentum appear to have been conserved?

D Head-on collision
Now try a collision in which the two carts head to-
wards each other at equal speeds (meaning that
one cart’s initial velocity is positive, while the
other’s is negative).

M x + M x =? M x + M x

E Sticking
Arrange a collision in which the carts will stick
together rather than rebounding. You can do this
by letting the velcro ends hit each other instead
of the magnet ends. Make a collision in which the
target is initially stationary.

M x + M x =? M x + M x

The collision is no longer perfectly springy. Did it
seem to matter, or was conservation of momentum
still valid?

F Hitting the end of the track
One end of the track has magnets in it. Take one
cart off the track entirely, and let the other cart
roll all the way to the end of the track, where it
will experience a repulsion from the fixed magnets
built into the track. Was momentum conserved?
Discuss this with your instructor.

G Unequal masses, elastic collision
Now put a one kilogram mass on one of the carts,
but leave the other cart the way it was. Attach the
mass to it securely using masking tape. Use the
magnets to make the collision elastic, as in part
A. A bare cart has a mass of half a kilogram, so
you’ve now tripled the mass of one cart. In terms
of our silly (but convenient) mass units, we now
have masses of one unit and three units for the two
carts. Make the triple-mass cart hit the initially
stationary one-mass-unit cart.

3M x + M x =? 3M x + M x

These velocities are harder to estimate by eye, but
if you estimate numbers roughly, does it seem pos-
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sible that momentum was conserved?

Quantitative Observations
Now we’re going to explore the reasons why mo-
mentum always seems to be conserved.

Attach the force sensors to the carts, and put on
the rubber stoppers. Make sure that the rubber
stoppers are positioned sufficiently far out from
the body of the cart so that they will not rub
against the edge of the cart. Put the switch
on the sensor in the +10 N position. Plug the
sensors into the DIN1 and DIN2 ports on the
interface box. Start up the Logger Pro soft-
ware, and do File>Open>Probes & Sensors>Force
Sensors>Dual Range Forrce>2-10 N Dual Range.
(Refer back to lab lab 4b on page 84 for more
detailed instructions and troubleshooting informa-
tion.)

Try collecting data while pushing and pulling on
the rubber stopper. You should get a graph show-
ing how the force went up and down over time.
The sensor uses negative numbers (bottom half of
the graph) for forces that squish the sensor, and
positive numbers (top half) for forces that stretch
it. Try both sensors, and make sure you under-
stand what the red and blue traces on the graph
are showing you.

H Slow acceleration
Put the extra 1-kilogram weight on one of the
carts. Put the cart on the track by itself, with-
out the other cart. Try accelerating it from rest
with a gentle, steady force from your finger. You’ll
want to set the collection time to a longer period
than the default. Position the track so that you can
walk all the way along its length (not diagonally
across the bench). Even after you hit the Collect
button in Logger Pro, the software won’t actually
start collecting data until it’s triggered by a suffi-
ciently strong force; squeeze on one of the sensors
to trigger the computer, and then go ahead and do
the real experiment with the steady, gently force.

What does the graph on the computer look like?

I Rapid acceleration
Now repeat H, but use a more rapid acceleration to
bring the cart up to the same momentum. Sketch
a comparison of the graphs from parts H and I:

Discuss with your instructor how this relates to
momentum.

J Measuring the forces
You are now going to reenact collision A, but don’t

do it yet! You’ll let the carts’ rubber corks bump
into each other, and record the forces on the sen-
sors. The carts will have equal mass, and both
forces will be recorded simultaneously. Before you
do it, predict what you think the graphs will look
like, and show your sketch to your instructor.

This relatively violent collision will produce large
forces for short periods of time, so the 10-newton
scale is no longer appropriate. Switch the switches
on the sensors to 50 N, and open the file 2-50 N
Dual Range.

Now try it. You will notice by eye that the mo-
tion after the collision is a tiny bit different than it
was with the magnets, but it’s still pretty similar.
Looking at the graphs, how do you explain the fact
that one cart lost exactly as much momentum as
the other one gained? Discuss this with your in-
structor before going on. In order to see the graph
clearly, you’ll need to zoom in by clicking and drag-
ging diagonally to draw a rectangular box around
it, and then clicking on the magnifying glass icon
with a plus sign in it.

K Forces with unequal masses
Now imagine – but don’t do it yet – that you
are going to reenact part G, with unequal masses.
Sketch your prediction for the two graphs, and
show your sketch to your instructor before you go
on.

Now try it.

The Wrap-Up
Now let’s try to wrap all of this up in a nice package
with a bow on it.

What was the basic point of parts A-G?

Parts H and I?

Parts J and K?

How do parts A-G relate to parts J-K?

Discuss this with your instructor.
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Lab 5d: Conservation of Angular
Momentum
Apparatus
meter stick with a hole in the center
fulcrum
sliding weight holders
weights with hooks

Introduction
Why can’t the coin in the figure spontaneously re-
verse the direction it’s spinning? We don’t observe
this to happen, and since everything not forbidden
is mandatory, we expect that there must be some
conservation law that forbids it. But what is this
conservation law? It’s not conservation of energy,
because the coin would have the same energy re-
gardless of which way it was spinning. It’s not con-
servation of momentum, either, because whichever
way it’s spinning, its total momentum is zero. This
is evidence that there is some new conservation
law, which we call conservation of angular momen-
tum. A mass moving in a straight line has momen-
tum. A spinning mass has angular momentum. A
frisbee has both, since it spins as it sails through
the air.

Noether’s theorem tells us that conservation laws
come from symmetry. What symmetry does con-
servation of angular momentum come from? Think
of a gyroscope. Suppose you initially started a
gyroscope spinning, but then it spontaneously de-
cided to twist around and spin along some other
axis, pointing in some mysterious direction in
space. What’s so special about that direction in
space, and why do gyroscopes want to point that
way? This doesn’t happen, because no direction in
space is special; the laws of physics are symmetric
with respect to rotation. Experiments don’t come
out any different if you turn the laboratory build-
ing around to face a different way. Here’s a sum-

mary of all the conservation laws we know about
so far:
symmetry conserved

quantity
rate of trans-
fer

time transla-
tion

energy power

space trans-
lation

momentum force

rotation angular mo-
mentum

torque

You’ve probably noticed that force is usually eas-
ier to measure than momentum. The same is true
with torque and angular momentum: it’s easier
to measure the rate of transfer than it is to mea-
sure the accumulated amount that’s been trans-
ferred. Logically, it doesn’t really matter which
end you approach it from. For instance, you can
look at your bank statement and see how the bal-
ance changes, or you can look at the list of deposits
and withdrawals; either one has all the information
you need in order to find out about the other. In
this lab, you’re actually going to figure out a work-
able definition of torque, which logically is enough
to pin down the definition of angular momentum
as well.

As shown in the figure, the apparatus is a kind of
seesaw, which you’ll be balancing in various ways.

Observations
As a preliminary, we’d like the meter-stick to bal-
ance all by itself, with no weights or weight hold-
ers at all. Unfortunately, it’s not possible to drill
the hole exactly at the center of the stick, and the
stick may also be asymmetric, e.g., there may be a
piece of brass on one end. To deal with this prob-
lem, you can put two extra, empty weight holders
on the stick, close to the center, and move them
around so that the stick balances as well as possi-
ble. Even so, you may not be able to get the stick
to be perfectly stable, and that’s OK. If the hole is
a little bit below the center of the stick, then it’s an
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unstable equilibrium, like trying to balance a pen-
cil on its tip. Just try to get as close as possible to
balancing.

A Plus and minus signs
Let’s start out by putting equal weights at equal
distances from the fulcrum, one on each side. You
will now have a total of four weight holders on the
stick, including the two empty ones used for the
initial balancing.

What rate of transfer of angular momentum do you
seem to have? This tells you what the total torque
is. If the two torques add up to this value, what
does that tell you about the individual torques?

B Additivity
Conservation laws are supposed to be additive,
and we’ve already implicitly assumed this in part
A. Let’s now test that assumption. In addition
to equal weights #1 and #2 that are already on
the seesaw, add two more weights, #3 and #4.
Weights #3 and #4 should be equal to each other,
but unequal to weights #1 and #2. Weights #3
and #4 should also be placed symmetrically on
either side of the fulcrum, but not at the same dis-
tance from the fulcrum as #1 and #2.

Is the result what you’d expect if torque is addi-
tive?

C Distance from the axis
Now change to two weights, one of which is differ-
ent from the other. What do you have to do in
order to make them balance? 12

Let F be the force the weight is making, and d the
distance from the axis. What have you learned
about how torque depends on F and d?

D Does it really work?
Now put on four or five different weights, all un-
equal, and all at different distances from the axis.
Once you get them balanced, compute the total
torque. Does your definition of torque work cor-
rectly here?

12Note that in this setup, the effects of the weight
holders themselves will not automatically cancel out.
You should weigh the holders themselves and add them
into your weights.
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Answers to Self-Checks for Chapter 5

Page 92, self-check A: No, it doesn’t violate symmetry. Space-
translation symmetry only says that space itself has the same prop-
erties everywhere. It doesn’t say that all regions of space have the
same stuff in them. The experiment on the earth comes out a certain
way because that region of space has a planet in it. The experiment
on the moon comes out different because that region of space has
the moon in it. of the apparatus, which you forgot to take with you.

Page 97, self-check B: The camera is moving at half the speed at
which the light ball is initially moving. After the collision, it keeps
on moving at the same speed — your five x’s all line on a straight
line. Since the camera moves in a straight line with constant speed,
it is showing an inertial frame of reference.

Page 98, self-check C: The table looks like this:

velocity (meters per second)
before the colli-
sion

after the collision change

−1 0 +1
0 −1 −1

Observers in all three frames agree on the changes in velocity, even
though they disagree on the velocities themselves.

Page 104, self-check D: The motion would be the same. The force
on the ball would be 20 newtons, so with each second it would gain
20 units of momentum. But 20 units of momentum for a 2-kilogram
ball is still just 10 m/s of velocity.
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Chapter 6

Relativity

Complaining about the educational system is a national sport among
professors in the U.S., and I, like my colleagues, am often tempted
to imagine a golden age of education in our country’s past, or to
compare our system unfavorably with foreign ones. Reality intrudes,
however, when my immigrant students recount the overemphasis on
rote memorization in their native countries, and the philosophy that
what the teacher says is always right, even when it’s wrong.

a / Albert Einstein.

Albert Einstein’s education in late-nineteenth-century Germany
was neither modern nor liberal. He did well in the early grades,1

but in high school and college he began to get in trouble for what
today’s edspeak calls “critical thinking.”

Indeed, there was much that deserved criticism in the state of
physics at that time. There was a subtle contradiction between the
theory of light as a wave and Galileo’s principle that all motion
is relative. As a teenager, Einstein began thinking about this on
an intuitive basis, trying to imagine what a light beam would look
like if you could ride along beside it on a motorcycle at the speed
of light. Today we remember him most of all for his radical and
far-reaching solution to this contradiction, his theory of relativity,
but in his student years his insights were greeted with derision from
his professors. One called him a “lazy dog.” Einstein’s distaste
for authority was typified by his decision as a teenager to renounce
his German citizenship and become a stateless person, based purely
on his opposition to the militarism and repressiveness of German
society. He spent his most productive scientific years in Switzerland
and Berlin, first as a patent clerk but later as a university professor.
He was an outspoken pacifist and a stubborn opponent of World
War I, shielded from retribution by his eventual acquisition of Swiss
citizenship.

As the epochal nature of his work became evident, some liberal
Germans began to point to him as a model of the “new German,”
but after the Nazi coup d’etat, staged public meetings began, at
which Nazi scientists criticized the work of this ethnically Jewish
(but spiritually nonconformist) giant of science. When Hitler was
appointed chancellor, Einstein was on a stint as a visiting professor
at Caltech, and he never returned to the Nazi state. World War

1The myth that he failed his elementary-school classes comes from a misun-
derstanding based on a reversal of the German numerical grading scale.
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II convinced Einstein to soften his strict pacifist stance, and he
signed a secret letter to President Roosevelt urging research into
the building of a nuclear bomb, a device that could not have been
imagined without his theory of relativity. He later wrote, however,
that when Hiroshima and Nagasaki were bombed, it made him wish
he could burn off his own fingers for having signed the letter.

Einstein has become a kind of scientific Santa Claus figure in
popular culture, which is presumably why the public is always so tit-
illated by his well-documented career as a skirt-chaser and unfaithful
husband. Many are also surprised by his lifelong commitment to so-
cialism. A favorite target of J. Edgar Hoover’s paranoia, Einstein
had his phone tapped, his garbage searched, and his mail illegally
opened. A censored version of his 1800-page FBI file was obtained
in 1983 under the Freedom of Information Act, and a more complete
version was disclosed recently.2. It includes comments solicited from
anti-Semitic and pro-Nazi informants, as well as statements, from
sources who turned out to be mental patients, that Einstein had
invented a death ray and a robot that could control the human
mind. Even today, an FBI web page3 accuses him of working for
or belonging to 34 “communist-front” organizations, apparently in-
cluding the American Crusade Against Lynching. At the height of
the McCarthy witch hunt, Einstein bravely denounced McCarthy,
and publicly urged its targets to refuse to testify before the House
Unamerican Activities Committee. Belying his other-worldly and
absent-minded image, his political positions seem in retrospect not
to have been at all clouded by naivete or the more fuzzy-minded
variety of idealism. He worked against racism in the U.S. long be-
fore the civil rights movement got under way. In an era when many
leftists were only too eager to apologize for Stalinism, he opposed it
consistently.

This chapter is specifically about Einstein’s theory of relativ-
ity, but Einstein also began a second, parallel revolution in physics
known as the quantum theory, which stated, among other things,
that certain processes in nature are inescapably random. Ironically,
Einstein was an outspoken doubter of the new quantum ideas that
were built on his foundations, being convinced that “the Old One
[God] does not play dice with the universe,” but quantum and rel-
ativistic concepts are now thoroughly intertwined in physics.

2Fred Jerome, The Einstein File, St. Martin’s Press, 2002
3foia.fbi.gov/einstein.htm
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6.1 The Principle of Relativity
By the time Einstein was born, Galileo’s principle of inertia had been
accepted for two centuries. The teenage Einstein was suspicious
because his professors said light waves obeyed an entirely different
set of rules than material objects, and in particular that light did not
obey the principle of inertia. They believed that light waves were
a vibration of a mysterious substance called the aether, and that
the speed of light should be interpreted as a speed relative to this
aether. Thus although the cornerstone of the study of matter had
for two centuries been the idea that motion is relative, the science of
light seemed to contain a concept that a certain frame of reference
was in an absolute state of rest with respect to the aether, and was
therefore to be preferred over moving frames.

Experiments, however, failed to detect this mysterious aether.
Apparently it surrounded everything, and even penetrated inside
physical objects; if light was a wave vibrating through the aether,
then apparently there was aether inside window glass or the human
eye. It was also surprisingly difficult to get a grip on this aether.
Light can also travel through a vacuum (as when sunlight comes to
the earth through outer space), so aether, it seemed, was immune
to vacuum pumps.

Einstein decided that none of this made sense. If the aether
was impossible to detect or manipulate, one might as well say it
didn’t exist at all. If the aether doesn’t exist, then what does it
mean when our experiments show that light has a certain speed,
3 × 108 meters per second? What is this speed relative to? Could
we, at least in theory, get on the motorcycle of Einstein’s teenage
daydreams, and travel alongside a beam of light? In this frame
of reference, the beam’s speed would be zero, but all experiments
seemed to show that the speed of light always came out the same,
3×108 m/s. Einstein decided that the speed of light was dictated by
a fundamental law of physics, so it must be the same in all frames of
reference. This put both light and matter on the same footing: both
obeyed laws of physics that were the same in all frames of reference.

The principle of relativity
Experiments don’t come out different due to the straight-line,
constant-speed motion of the apparatus. This includes both light
and matter.

This is almost the same as Galileo’s principle of inertia, except that
we explicitly state that it applies to light.

This is hard to swallow. If a dog is running away from me at 5
m/s relative to the sidewalk, and I run after it at 3 m/s, the dog’s
velocity in my frame of reference is 2 m/s. According to everything
we have learned about motion, the dog must have different speeds
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in the two frames: 5 m/s in the sidewalk’s frame and 2 m/s in mine.
How, then, can a beam of light have the same speed as seen by
someone who is chasing the beam?

In fact the strange constancy of the speed of light had already
shown up in the now-famous Michelson-Morley experiment of 1887.
Michelson and Morley set up a clever apparatus to measure any
difference in the speed of light beams traveling east-west and north-
south. The motion of the earth around the sun at 110,000 km/hour
(about 0.01% of the speed of light) is to our west during the day.
Michelson and Morley believed in the aether hypothesis, so they
expected that the speed of light would be a fixed value relative to the
aether. As the earth moved through the aether, they thought they
would observe an effect on the velocity of light along an east-west
line. For instance, if they released a beam of light in a westward
direction during the day, they expected that it would move away
from them at less than the normal speed because the earth was
chasing it through the aether. They were surprised when they found
that the expected 0.01% change in the speed of light did not occur.

Although the Michelson-Morley experiment was nearly two dec-
ades in the past by the time Einstein published his first paper on
relativity in 1905, he did not even know of the experiment until
after submitting the paper.4 At this time he was still working at
the Swiss patent office, and was isolated from the mainstream of
physics.

How did Einstein explain this strange refusal of light waves to
obey the usual rules of addition and subtraction of velocities due to
relative motion? He had the originality and bravery to suggest a
radical solution. He decided that space and time must be stretched
and compressed as seen by observers in different frames of reference.
Since velocity equals distance divided by time, an appropriate dis-
tortion of time and space could cause the speed of light to come
out the same in a moving frame. This conclusion could have been
reached by the physicists of two generations before, but the attitudes
about absolute space and time stated by Newton were so strongly
ingrained that such a radical approach didn’t occur to anyone before
Einstein.

4Actually there is some controversy on this historical point.
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6.2 Distortion of Time and Space

Time

Consider the situation shown in figure b. Aboard a rocket ship we
have a tube with mirrors at the ends. If we let off a flash of light at
the bottom of the tube, it will be reflected back and forth between
the top and bottom. It can be used as a clock; by counting the
number of times the light goes back and forth we get an indication
of how much time has passed: up-down up-down, tick-tock tick-tock.
(This may not seem very practical, but a real atomic clock works
on essentially the same principle.) Now imagine that the rocket is
cruising at a significant fraction of the speed of light relative to the
earth. Motion is relative, so for a person inside the rocket, b/1, there
is no detectable change in the behavior of the clock, just as a person
on a jet plane can toss a ball up and down without noticing anything
unusual. But to an observer in the earth’s frame of reference, the
light appears to take a zigzag path through space, b/2, increasing
the distance the light has to travel.

1

2

b / A light beam bounces between
two mirrors in a spaceship.

If we didn’t believe in the principle of relativity, we could say
that the light just goes faster according to the earthbound observer.
Indeed, this would be correct if the speeds were much less than the
speed of light, and if the thing traveling back and forth was, say,
a ping-pong ball. But according to the principle of relativity, the
speed of light must be the same in both frames of reference. We are
forced to conclude that time is distorted, and the light-clock appears
to run more slowly than normal as seen by the earthbound observer.
In general, a clock appears to run most quickly for observers who
are in the same state of motion as the clock, and runs more slowly
as perceived by observers who are moving relative to the clock.

We can easily calculate the size of this time-distortion effect. In
the frame of reference shown in figure b/1, moving with the space-
ship, let t be the time required for the beam of light to move from the
bottom to the top. An observer on the earth, who sees the situation
shown in figure b/2, disagrees, and says this motion took a longer
time T (a bigger letter for the bigger time). Let v be the velocity
of the spaceship relative to the earth. In frame 2, the light beam
travels along the hypotenuse of a right triangle, figure c, whose base
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has length
base = vT .

Observers in the two frames of reference agree on the vertical dis-
tance traveled by the beam, i.e. the height of the triangle perceived
in frame 2, and an observer in frame 1 says that this height is the
distance covered by a light beam in time t, so the height is

height = ct ,

where c is the speed of light. The hypotenuse of this triangle is the
distance the light travels in frame 2,

hypotenuse = cT .

Using the Pythagorean theorem, we can relate these three quanti-
ties,

(cT )2 = (vT )2 + (ct)2 ,

and solving for T , we find

T =
t√

1 − (v/c)2
.

vT

cT
ct

c / One observer says the
light went a distance cT , while
the other says it only had to travel
ct .

The amount of distortion is given by the factor 1/
√

1 − (v/c)2,
and this quantity appears so often that we give it a special name, γ
(Greek letter gamma),

γ =
1√

1 − (v/c)2
.

Self-check A
What is γ when v=0? What does this mean? . Answer, p. 141

Space

The speed of light is supposed to be the same in all frames of ref-
erence, and a speed is a distance divided by a time. We can’t change
time without changing distance, since then the speed couldn’t come
out the same. If time is distorted by a factor of γ, then lengths must
also be distorted according to the same ratio. An object in motion
appears longest to someone who is at rest with respect to it, and is
shortened along the direction of motion as seen by other observers.

No simultaneity

Part of the concept of absolute time was the assumption that it
was valid to say things like, “I wonder what my uncle in Beijing is
doing right now.” In the nonrelativistic world-view, clocks in Los
Angeles and Beijing could be synchronized and stay synchronized,
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d / The behavior of the γ factor.

so we could unambiguously define the concept of things happening
simultaneously in different places. It is easy to find examples, how-
ever, where events that seem to be simultaneous in one frame of
reference are not simultaneous in another frame. In figure e, a flash
of light is set off in the center of the rocket’s cargo hold. According
to a passenger on the rocket, the flashes have equal distances to
travel to reach the front and back walls, so they get there simulta-
neously. But an outside observer who sees the rocket cruising by at
high speed will see the flash hit the back wall first, because the wall
is rushing up to meet it, and the forward-going part of the flash hit
the front wall later, because the wall was running away from it.

e / Different observers don’t
agree that the flashes of light hit
the front and back of the ship
simultaneously.

We saw on page 90 that points in space have no identity of their
own: you may think that two events happened at the same point
in space, but anyone else in a differently moving frame of reference
says they happened at different points in space. Relativity says that
time is the same way — both simultaneity and “simulplaceity” are
meaningless concepts. Only when the relative velocity of two frames
is small compared to the speed of light will observers in those frames
agree on the simultaneity of events.
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The garage paradox

One of the most famous of all the so-called relativity paradoxes
has to do with our incorrect feeling that simultaneity is well defined.
The idea is that one could take a schoolbus and drive it at relativistic
speeds into a garage of ordinary size, in which it normally would not
fit. Because of the length contraction, the bus would supposedly fit
in the garage. The paradox arises when we shut the door and then
quickly slam on the brakes of the bus. An observer in the garage’s
frame of reference will claim that the bus fit in the garage because of
its contracted length. The driver, however, will perceive the garage
as being contracted and thus even less able to contain the bus. The
paradox is resolved when we recognize that the concept of fitting the
bus in the garage “all at once” contains a hidden assumption, the
assumption that it makes sense to ask whether the front and back of
the bus can simultaneously be in the garage. Observers in different
frames of reference moving at high relative speeds do not necessarily
agree on whether things happen simultaneously. The person in the
garage’s frame can shut the door at an instant he perceives to be
simultaneous with the front bumper’s arrival at the opposite wall of
the garage, but the driver would not agree about the simultaneity of
these two events, and would perceive the door as having shut long
after she plowed through the back wall.

GRAND UNIFIED SCHOOL DISTRICT

GRAND UNIFIED SCHOOL DISTRICT

1

2

f / In the garage’s frame of refer-
ence, 1, the bus is moving, and
can fit in the garage. In the bus’s
frame of reference, the garage is
moving, and can’t hold the bus.

Applications

Nothing can go faster than the speed of light.

What happens if we want to send a rocket ship off at, say, twice
the speed of light, v = 2c? Then γ will be 1/

√
−3. But your

math teacher has always cautioned you about the severe penalties
for taking the square root of a negative number. The result would
be physically meaningless, so we conclude that no object can travel
faster than the speed of light. Even travel exactly at the speed of
light appears to be ruled out for material objects, since γ would
then be infinite.

Einstein had therefore found a solution to his original paradox
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about riding on a motorcycle alongside a beam of light. The paradox
is resolved because it is impossible for the motorcycle to travel at
the speed of light.

Most people, when told that nothing can go faster than the speed
of light, immediately begin to imagine methods of violating the rule.
For instance, it would seem that by applying a constant force to an
object for a long time, we would give it a constant acceleration which
would eventually result in its traveling faster than the speed of light.
We’ll take up these issues in section 6.3.

Cosmic-ray muons

A classic experiment to demonstrate time distortion uses obser-
vations of cosmic rays. Cosmic rays are protons and other atomic nu-
clei from outer space. When a cosmic ray happens to come the way
of our planet, the first earth-matter it encounters is an air molecule
in the upper atmosphere. This collision then creates a shower of
particles that cascade downward and can often be detected at the
earth’s surface. One of the more exotic particles created in these cos-
mic ray showers is the muon (named after the Greek letter mu, µ).
The reason muons are not a normal part of our environment is that
a muon is radioactive, lasting only 2.2 microseconds on the average
before changing itself into an electron and two neutrinos. A muon
can therefore be used as a sort of clock, albeit a self-destructing and
somewhat random one! Figures g and h show the average rate at
which a sample of muons decays, first for muons created at rest and
then for high-velocity muons created in cosmic-ray showers. The
second graph is found experimentally to be stretched out by a fac-
tor of about ten, which matches well with the prediction of relativity
theory:

γ = 1/
√

1 − (v/c)2

= 1/
√

1 − (0.995)2

≈ 10

Since a muon takes many microseconds to pass through the atmo-
sphere, the result is a marked increase in the number of muons that
reach the surface.
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h / Decay of muons moving
at a speed of 0.995c with respect
to the observer.

Time dilation for objects larger than the atomic scale

Our world is (fortunately) not full of human-scale objects mov-
ing at significant speeds compared to the speed of light. For this
reason, it took over 80 years after Einstein’s theory was published
before anyone could come up with a conclusive example of drastic
time dilation that wasn’t confined to cosmic rays or particle accel-
erators. Recently, however, astronomers have found definitive proof
that entire stars undergo time dilation. The universe is expanding
in the aftermath of the Big Bang, so in general everything in the
universe is getting farther away from everything else. One need only
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find an astronomical process that takes a standard amount of time,
and then observe how long it appears to take when it occurs in a
part of the universe that is receding from us rapidly. A type of ex-
ploding star called a type Ia supernova fills the bill, and technology
is now sufficiently advanced to allow them to be detected across vast
distances. Figure i shows convincing evidence for time dilation in
the brightening and dimming of two distant supernovae.
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supernova 1994H, receding from us at
69% of the speed of light (Goldhaber et al.)

supernova 1997ap, receding from us at
84% of the speed of light (Perlmutter et al.)

i / Light curves of supernovae,
showing a time-dilation effect for
supernovae that are in motion rel-
ative to us.

The twin paradox

A natural source of confusion in understanding the time-dilation
effect is summed up in the so-called twin paradox, which is not really
a paradox. Suppose there are two teenaged twins, and one stays at
home on earth while the other goes on a round trip in a spaceship at
relativistic speeds (i.e., speeds comparable to the speed of light, for
which the effects predicted by the theory of relativity are important).
When the traveling twin gets home, he has aged only a few years,
while his brother is now old and gray. (Robert Heinlein even wrote
a science fiction novel on this topic, although it is not one of his
better stories.)

The “paradox” arises from an incorrect application of the prin-
ciple of relativity to a description of the story from the traveling
twin’s point of view. From his point of view, the argument goes, his
homebody brother is the one who travels backward on the receding
earth, and then returns as the earth approaches the spaceship again,
while in the frame of reference fixed to the spaceship, the astronaut
twin is not moving at all. It would then seem that the twin on earth
is the one whose biological clock should tick more slowly, not the
one on the spaceship. The flaw in the reasoning is that the principle
of relativity only applies to frames that are in motion at constant
velocity relative to one another, i.e., inertial frames of reference.
The astronaut twin’s frame of reference, however, is noninertial, be-
cause his spaceship must accelerate when it leaves, decelerate when
it reaches its destination, and then repeat the whole process again

130 Chapter 6 Relativity



on the way home. Their experiences are not equivalent, because
the astronaut twin feels accelerations and decelerations. A correct
treatment requires some mathematical complication to deal with the
changing velocity of the astronaut twin, but the result is indeed that
it’s the traveling twin who is younger when they are reunited.

The twin “paradox” really isn’t a paradox at all. It may even be
a part of your ordinary life. The effect was first verified experimen-
tally by synchronizing two atomic clocks in the same room, and then
sending one for a round trip on a passenger jet. (They bought the
clock its own ticket and put it in its own seat.) The clocks disagreed
when the traveling one got back, and the discrepancy was exactly
the amount predicted by relativity. The effects are strong enough
to be important for making the global positioning system (GPS)
work correctly. If you’ve ever taken a GPS receiver with you on a
hiking trip, then you’ve used a device that has the twin “paradox”
programmed into its calculations. Your handheld GPS box gets sig-
nals from a satellite, and the satellite is moving fast enough that its
time dilation is an important effect. So far no astronauts have gone
fast enough to make time dilation a dramatic effect in terms of the
human lifetime. The effect on the Apollo astronauts, for instance,
was only a fraction of a second, since their speeds were still fairly
small compared to the speed of light. (As far as I know, none of the
astronauts had twin siblings back on earth!)

j / Colliding nuclei show relativistic
length contraction.

An example of length contraction

Figure j shows an artist’s rendering of the length contraction for
the collision of two gold nuclei at relativistic speeds in the RHIC ac-
celerator in Long Island, New York, which went on line in 2000. The
gold nuclei would appear nearly spherical (or just slightly lengthened
like an American football) in frames moving along with them, but in
the laboratory’s frame, they both appear drastically foreshortened
as they approach the point of collision. The later pictures show the
nuclei merging to form a hot soup, in which experimenters hope to
observe a new form of matter.
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Discussion Questions

A A person in a spaceship moving at 99.99999999% of the speed
of light relative to Earth shines a flashlight forward through dusty air, so
the beam is visible. What does she see? What would it look like to an
observer on Earth?

B A question that students often struggle with is whether time and
space can really be distorted, or whether it just seems that way. Compare
with optical illusions or magic tricks. How could you verify, for instance,
that the lines in the figure are actually parallel? Are relativistic effects the
same or not?

C On a spaceship moving at relativistic speeds, would a lecture seem
even longer and more boring than normal?

k / Discussion question B

D Mechanical clocks can be affected by motion. For example, it was
a significant technological achievement to build a clock that could sail
aboard a ship and still keep accurate time, allowing longitude to be deter-
mined. How is this similar to or different from relativistic time dilation?

E What would the shapes of the two nuclei in figure j on page 131
look like to a microscopic observer riding on the left-hand nucleus? To
an observer riding on the right-hand one? Can they agree on what is
happening? If not, why not — after all, shouldn’t they see the same thing
if they both compare the two nuclei side-by-side at the same instant in
time?

F If you stick a piece of foam rubber out the window of your car while
driving down the freeway, the wind may compress it a little. Does it make
sense to interpret the relativistic length contraction as a type of strain that
pushes an object’s atoms together like this? How does this relate to the
previous discussion question?
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6.3 Dynamics
So far we have said nothing about how to predict motion in relativ-
ity. Do Newton’s laws still work? Do conservation laws still apply?
The answer is yes, but many of the definitions need to be modified,
and certain entirely new phenomena occur, such as the conversion
of mass to energy and energy to mass, as described by the famous
equation E = mc2, which was discussed in section 4.5.

Combination of velocities

The impossibility of motion faster than light is a radical differ-
ence between relativistic and nonrelativistic physics, and we can get
at most of the issues in this section by considering the flaws in vari-
ous plans for going faster than light. The simplest argument of this
kind is as follows. Suppose Janet takes a trip in a spaceship, and
accelerates until she is moving at 0.8c (80% of the speed of light)
relative to the earth. She then launches a space probe in the forward
direction at a speed relative to her ship of 0.4c. Isn’t the probe then
moving at a velocity of 1.2 times the speed of light relative to the
earth?

The problem with this line of reasoning is that although Janet
says the probe is moving at 0.4c relative to her, earthbound observers
disagree with her perception of time and space. Velocities therefore
don’t add the same way they do in Galilean relativity. Suppose we
express all velocities as fractions of the speed of light. The Galilean
addition of velocities can be summarized in this addition table:

      -1.00 -0.80 -0.60 -0.40 -0.20 -0.00  0.20  0.40  0.60  0.80  1.00 
-1.00 -2.00 -1.80 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20  0.00 
-0.80 -1.80 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20  0.00  0.20 
-0.60 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 -0.00  0.20  0.40 
-0.40 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 -0.00  0.20  0.40  0.60 
-0.20 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 -0.00  0.20  0.40  0.60  0.80 
-0.00 -1.00 -0.80 -0.60 -0.40 -0.20 -0.00  0.20  0.40  0.60  0.80  1.00 
0.20 -0.80 -0.60 -0.40 -0.20 -0.00  0.20  0.40  0.60  0.80  1.00  1.20 
 0.40 -0.60 -0.40 -0.20 -0.00  0.20  0.40  0.60  0.80  1.00  1.20  1.40 
 0.60 -0.40 -0.20 -0.00  0.20  0.40  0.60  0.80  1.00  1.20  1.40  1.60 
 0.80 -0.20  0.00  0.20  0.40  0.60  0.80  1.00  1.20  1.40  1.60  1.80 
 1.00  0.00  0.20  0.40  0.60  0.80  1.00  1.20  1.40  1.60  1.80  2.00 

l / Galilean addition of velocities.

The derivation of the correct relativistic result requires some tedious
algebra, which you can find in my book Simple Nature if you’re
curious. I’ll just state the numerical results here:

      -1.00 -0.80 -0.60 -0.40 -0.20 -0.00  0.20  0.40  0.60  0.80  1.00 
-1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00       
-0.80 -1.00 -0.98 -0.95 -0.91 -0.86 -0.80 -0.71 -0.59 -0.38  0.00  1.00 
-0.60 -1.00 -0.95 -0.88 -0.81 -0.71 -0.60 -0.45 -0.26 -0.00  0.38  1.00 
-0.40 -1.00 -0.91 -0.81 -0.69 -0.56 -0.40 -0.22 -0.00  0.26  0.59  1.00 
-0.20 -1.00 -0.86 -0.71 -0.56 -0.38 -0.20 -0.00  0.22  0.45  0.71  1.00 
-0.00 -1.00 -0.80 -0.60 -0.40 -0.20 -0.00  0.20  0.40  0.60  0.80  1.00 
0.20 -1.00 -0.71 -0.45 -0.22 -0.00  0.20  0.38  0.56  0.71  0.86  1.00 
 0.40 -1.00 -0.59 -0.26 -0.00  0.22  0.40  0.56  0.69  0.81  0.91  1.00 
 0.60 -1.00 -0.38 -0.00  0.26  0.45  0.60  0.71  0.81  0.88  0.95  1.00 
 0.80 -1.00  0.00  0.38  0.59  0.71  0.80  0.86  0.91  0.95  0.98  1.00 
 1.00        1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00 

m / Relativistic addition of veloci-
ties. The green oval near the cen-
ter of the table describes veloci-
ties that are relatively small com-
pared to the speed of light, and
the results are approximately the
same as the Galilean ones. The
edges of the table, highlighted in
blue, show that everyone agrees
on the speed of light.
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Janet’s probe, for example, is moving not at 1.2c but at 0.91c,
which is a drastically different result. The difference between the
two tables is most evident around the edges, where all the results
are equal to the speed of light. This is required by the principle of
relativity. For example, if Janet sends out a beam of light instead
of a probe, both she and the earthbound observers must agree that
it moves at 1.00 times the speed of light, not 0.8 + 1 = 1.8. On
the other hand, the correspondence principle requires that the rela-
tivistic result should correspond to ordinary addition for low enough
velocities, and you can see that the tables are nearly identical in the
center.

Momentum

Here’s another flawed scheme for traveling faster than the speed
of light. The basic idea can be demonstrated by dropping a ping-
pong ball and a baseball stacked on top of each other like a snowman.
They separate slightly in mid-air, and the baseball therefore has time
to hit the floor and rebound before it collides with the ping-pong
ball, which is still on the way down. The result is a surprise if you
haven’t seen it before: the ping-pong ball flies off at high speed and
hits the ceiling! A similar fact is known to people who investigate
the scenes of accidents involving pedestrians. If a car moving at
90 kilometers per hour hits a pedestrian, the pedestrian flies off at
nearly double that speed, 180 kilometers per hour. Now suppose
the car was moving at 90 percent of the speed of light. Would the
pedestrian fly off at 180% of c?

To see why not, we have to back up a little and think about
where this speed-doubling result comes from. The introduction of
momentum in chapter 5 depended on the idea of finding a frame
of reference, the center-of-mass frame, in which the two colliding
objects (assumed to be equal in mass) approached each other sym-
metrically, collided, and rebounded with their velocities reversed.
In the center-of-mass frame, the total momentum of the objects was
zero both before and after the collision.
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(1)

(2)

n / An unequal collision, viewed in
the center-of-mass frame, 1, and
in the frame where the small ball
is initially at rest, 2.

Figure n/1 shows a similar frame of reference for objects of un-
equal mass. Before the collision, the large ball is moving relatively
slowly toward the top of the page, but because of its greater mass,
its momentum cancels the momentum of the smaller ball, which is
moving rapidly in the opposite direction. The total momentum is
zero. After the collision, the two balls just reverse their directions of
motion. We know that this is the right result for the outcome of the
collision because it conserves both momentum and kinetic energy,
and everything not forbidden is mandatory.

Self-check B
How do we know that momentum and kinetic energy are conserved in
figure n/1? . Answer, p. 141

Let’s make up some numbers as an example. Say the small ball
has a mass of 1 kg, the big one 8 kg. In frame 1, let’s make the
velocities as follows:

before the collision after the collision
-0.8 0.8
0.1 -0.1

Figure n/2 shows the same collision in a frame of reference where
the small ball was initially at rest. To find all the velocities in this
frame, we just add 0.8 to all the ones in the previous table.

before the collision after the collision
0 1.6
0.9 0.7

In this frame, as expected, the small ball flies off with a velocity,
1.6, that is almost twice the initial velocity of the big ball, 0.9.

If all those velocities were in meters per second, then that’s ex-
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actly what happened. But what if all these velocities were in units
of the speed of light? Now it’s no longer a good approximation
just to add velocities. We need to combine them according to the
relativistic rules. For instance, the table on page 133 tells us that
combining a velocity of 0.8 times the speed of light with another
velocity of 0.8 results in 0.98, not 1.6. The results are very different:

before the collision after the collision
0 0.98
0.83 0.76

o / An 8-kg ball moving at 83%
of the speed of light hits a 1-kg
ball. The balls appear foreshort-
ened due to the relativistic distor-
tion of space.

We can interpret this as follows. Figure n/1 is one in which the
big ball is moving fairly slowly. This is very nearly the way the
scene would be seen by an ant standing on the big ball. According
to an observer in frame o, however, both balls are moving at nearly
the speed of light after the collision. Because of this, the balls
appear foreshortened, but the distance between the two balls is also
shortened. To this observer, it seems that the small ball isn’t pulling
away from the big ball very fast.

Now here’s what’s interesting about all this. The outcome shown
in figure n/2 was supposed to be the only one possible, the only
one that satisfied both conservation of energy and conservation of
momentum. So how can the different result shown in figure o be
possible? The answer is that relativistically, momentum must not
equal mv. The old, familiar definition is only an approximation
that’s valid at low speeds. If we observe the behavior of the small
ball in figure o, it looks as though it somehow had some extra inertia.
It’s as though a football player tried to knock another player down
without realizing that the other guy had a three-hundred-pound bag
full of lead shot hidden under his uniform — he just doesn’t seem
to react to the collision as much as he should. This extra inertia is
described by redefining momentum as

momentum = mγv .

At very low velocities, γ is close to 1, and the result is very nearly
mv, as demanded by the correspondence principle. But at very high
velocities, γ gets very big — the small ball in figure o has a γ of
5.0, and therefore has five times more inertia than we would expect
nonrelativistically.
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This also explains the answer to another paradox often posed
by beginners at relativity. Suppose you keep on applying a steady
force to an object that’s already moving at 0.9999c. Why doesn’t
it just keep on speeding up past c? The answer is that force is the
rate of change of momentum. At 0.9999c, an object already has a γ
of 71, and therefore has already sucked up 71 times the momentum
you’d expect at that speed. As its velocity gets closer and closer to
c, its γ approaches infinity. To move at c, it would need an infinite
momentum, which could only be caused by an infinite force.

Equivalence of mass and energy

Now we’re ready to see why mass and energy must be equivalent
as claimed in section 4.5. So far we’ve only considered collisions in
which none of the kinetic energy is converted into any other form
of energy, such as heat or sound. Let’s consider what happens if a
blob of putty moving at velocity v hits another blob that is initially
at rest, sticking to it. The nonrelativistic result is that to obey
conservation of momentum the two blobs must fly off together at
v/2. Half of the initial kinetic energy has been converted to heat.5

Relativistically, however, an interesting thing happens. A hot
object has more momentum than a cold object! This is because
the relativistically correct expression for momentum is mγv, and
the more rapidly moving atoms in the hot object have higher values
of γ. In our collision, the final combined blob must therefore be
moving a little more slowly than the expected v/2, since otherwise
the final momentum would have been a little greater than the initial
momentum. To an observer who believes in conservation of momen-
tum and knows only about the overall motion of the objects and not
about their heat content, the low velocity after the collision would
seem to be the result of a magical change in the mass, as if the mass
of two combined, hot blobs of putty was more than the sum of their
individual masses.

Now we know that the masses of all the atoms in the blobs must
be the same as they always were. The change is due to the change in
γ with heating, not to a change in mass. The heat energy, however,
seems to be acting as if it was equivalent to some extra mass.

But this whole argument was based on the fact that heat is a
form of kinetic energy at the atomic level. Would E = mc2 apply to
other forms of energy as well? Suppose a rocket ship contains some
electrical energy stored in a battery. If we believed that E = mc2

applied to forms of kinetic energy but not to electrical energy, then
we would have to believe that the pilot of the rocket could slow
the ship down by using the battery to run a heater! This would

5A double-mass object moving at half the speed does not have the same
kinetic energy. Kinetic energy depends on the square of the velocity, so cutting
the velocity in half reduces the energy by a factor of 1/4, which, multiplied by
the doubled mass, makes 1/2 the original energy.
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not only be strange, but it would violate the principle of relativity,
because the result of the experiment would be different depending
on whether the ship was at rest or not. The only logical conclusion is
that all forms of energy are equivalent to mass. Running the heater
then has no effect on the motion of the ship, because the total
energy in the ship was unchanged; one form of energy (electrical)
was simply converted to another (heat).
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Problems
1 Astronauts in three different spaceships are communicating
with each other. Those aboard ships A and B agree on the rate at
which time is passing, but they disagree with the ones on ship C.
(a) Describe the motion of the other two ships according to Alice,
who is aboard ship A.
(b) Give the description according to Betty, whose frame of reference
is ship B.
(c) Do the same for Cathy, aboard ship C.

2 (a) Figure c on page 126 is based on a light clock moving at a
certain speed, v. By measuring with a ruler on the figure, determine
v/c.
(b) By similar measurements, find the time contraction factor γ,
which equals T/t.
(c) Locate your numbers from parts a and b as a point on the graph
in figure d on page 127, and check that it actually lies on the curve.
Make a sketch showing where the point is on the curve.

3 This problem is a continuation of problem 2. Now imagine that
the spaceship speeds up to twice the velocity. Draw a new triangle,
using a ruler to make the lengths of the sides accurate. Repeat parts
b and c for this new diagram.

4 What happens in the equation for γ when you put in a negative
number for v? Explain what this means physically, and why it makes
sense.

5 (a) By measuring with a ruler on the graph in figure i on page
130, estimate the γ values of the two supernovae.
(b) Figure i gives the values of v/c. From these, compute γ values
and compare with the results from part a.
(c) Locate these two points on the graph in figure d, and make a
sketch showing where they lie.

6 The Voyager 1 space probe, launched in 1977, is moving faster
relative to the earth than any other human-made object, at 17,000
meters per second.
(a) Calculate the probe’s γ.
(b) Over the course of one year on earth, slightly less than one year
passes on the probe. How much less? (There are 31 million seconds
in a year.)

7 (a) A free neutron (as opposed to a neutron bound into an
atomic nucleus) is unstable, and decays radioactively into a proton,
an electron, and a particle called an antineutrino, which fly off in
three different directions. The masses are as follows:

neutron 1.67495 × 10−27 kg
proton 1.67265 × 10−27 kg
electron 0.00091 × 10−27 kg
antineutrino negligible
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Find the energy released in the decay of a free neutron.
(b) Neutrons and protons make up essentially all of the mass of the
ordinary matter around us. We observe that the universe around us
has no free neutrons, but lots of free protons (the nuclei of hydrogen,
which is the element that 90% of the universe is made of). We find
neutrons only inside nuclei along with other neutrons and protons,
not on their own.

If there are processes that can convert neutrons into protons,
we might imagine that there could also be proton-to-neutron con-
versions, and indeed such a process does occur sometimes in nuclei
that contain both neutrons and protons: a proton can decay into a
neutron, a positron, and a neutrino. A positron is a particle with
the same properties as an electron, except that its electrical charge
is positive (see chapter 7). A neutrino, like an antineutrino, has
negligible mass.

Although such a process can occur within a nucleus, explain why
it cannot happen to a free proton. (If it could, hydrogen would be
radioactive, and you wouldn’t exist!)

8* (a) Find a relativistic equation for the velocity of an object in
terms of its mass and momentum (eliminating γ). For momentum,
use the symbol p, which is standard notation.
(b) Show that your result is approximately the same as the classical
value, p/m, at low velocities.
(c) Show that very large momenta result in speeds close to the speed
of light.

9 (a) Show that for v = (3/5)c, γ comes out to be a simple
fraction.
(b) Find another value of v for which γ is a simple fraction.

10 In Slowlightland, the speed of light is 20 mi/hr = 32 km/hr =
9 m/s. Think of an example of how relativistic effects would work
in sports. Things can get very complex very quickly, so try to think
of a simple example that focuses on just one of the following effects:

relativistic momentum

relativistic addition of velocities

time dilation and length contraction

equivalence of mass and energy

time it takes for light to get to an athlete
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Answers to Self-Checks for Chapter 6

Page 126, self-check A: At v = 0, we get γ = 1, so t = T . There
is no time distortion unless the two frames of reference are in relative
motion.

Page 135, self-check B: The total momentum is zero before the
collision. After the collision, the two momenta have reversed their
directions, but they still cancel. Neither object has changed its
kinetic energy, so the total energy before and after the collision is
also the same.
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This sunspot is a product of the sun’s magnetic fields. The darkest region
in the center is about the size of our planet.

Chapter 7

Electricity and Magnetism

7.1 Electrical Interactions
Newton was not the first of the age of reason. He was the last of the
magicians. John Maynard Keynes

Keynes’ language isn’t as figurative as you might think. Newton had
a lifelong obsession with alchemy, a pseudoscience that bears the same re-
lationship to chemistry that astrology has to astronomy. 1 To the modern

1There’s an urban folktale that Newton also practiced astrology. Wrong!
Newton wrote that as a young student, he had read a book on astrology, and
was “soon convinced of the vanity & emptiness of the pretended science of Ju-
dicial astrology” (Whiteside, Hoskin, and Prag, eds., The Mathematical Pa-
pers of Isaac Newton Cambridge University Press, Cambridge, 1967-81, vol.
1, pp. 15-19). Galileo did calculate horoscopes for money, and Newton was
born the same year Galileo died, 1642, so this year represents a dividing line
in the history of the astrological supersition — since Newton’s lifetime, belief
in astrology has become essentially extinct among physicists and astronomers.
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science educator, this may seem an embarrassment, a distraction from his
main achievement, which was the creation the modern science of mechan-
ics. To Newton, however, his alchemical researches were naturally related
to his investigations of force and motion. What was radical about New-
ton’s analysis of motion was its universality: it succeeded in describing
both the heavens and the earth with the same equations, whereas previ-
ously it had been assumed that the sun, moon, stars, and planets were
fundamentally different from earthly objects. But Newton realized that if
science was to describe all of nature in a unified way, it was not enough
to unite the human scale with the scale of the cosmos: he would not be
satisfied until he fit the microscopic universe into the picture as well.

Newton’s quest
It shouldn’t surprise us that Newton failed. Although he was a firm

believer in the existence of atoms, there was no more experimental evi-
dence for their existence than there had been when the ancient Greeks first
posited them on purely philosophical grounds. Alchemy labored under a
tradition of secrecy and mysticism. Newton had already almost single-
handedly transformed the fuzzyheaded field of “natural philosophy” into
something we would recognize as the modern science of physics, and it
would be unjust to criticize him for failing to change alchemy into modern
chemistry as well. The time was not ripe. The microscope was a new
invention, and it was cutting-edge science when Newton’s contemporary
Hooke discovered that living things were made out of cells.

Nevertheless it will be instructive to pick up Newton’s train of thought
and see where it leads us with the benefit of modern hindsight. In uniting
the human and cosmic scales of existence, he had reimagined both as stages
on which the actors were objects (trees and houses, planets and stars) that
interacted through attractions and repulsions. He was already convinced
that the objects inhabiting the microworld were atoms, so it remained only
to determine what kinds of forces they exerted on each other.

His next insight was no less brilliant for his inability to bring it to
fruition. He realized that the many human-scale forces — friction, sticky
forces, the forces that keep objects from occupying the same space, and so
on — must all simply be expressions of a more fundamental force acting
between atoms. Tape sticks to paper because the atoms in the tape attract
the atoms in the paper. My house doesn’t fall to the center of the earth
because its atoms repel the atoms of the dirt under it.

Here he got stuck. It was tempting to think that the atomic force
was a form of gravity, which he knew to be universal, fundamental, and
mathematically simple. Gravity, however, is always attractive, so how
could he use it to explain the existence of both attractive and repulsive
atomic forces? The gravitational force between objects of ordinary size
is also extremely small, which is why we never notice cars and houses

It’s no coincidence that the dividing line is represented by Galileo and New-
ton. Galileo had pioneered the use of the scientific method to study the heav-
ens, while Newton’s greatest achievement was to show that the motion of the
planets could be explained using his law of gravity. The success of this natu-
ralistic description made it clear that it was silly to look for supernatural links
between the skies and human concerns. Astrology has also failed every empiri-
cal test; a particularly well-constructed study by Rob Nanninga is described at
http://home.planet.nl/∼skepsis/astrot.html.
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attracting us gravitationally. It would be hard to understand how gravity
could be responsible for anything as vigorous as the beating of a heart or
the explosion of gunpowder. Newton went on to write a million words of
alchemical notes filled with speculation about some other force, perhaps a
“divine force” or “vegetative force” that would for example be carried by
the sperm to the egg.

Luckily, we now know enough to investigate a different suspect as
a candidate for the atomic force: electricity. Electrical forces are often
observed between objects that have been prepared by rubbing (or other
surface interactions), for instance when clothes rub against each other in
the dryer. Electrical forces are similar in certain ways to gravity, the other
force that we already know to be fundamental:

• Electrical forces are universal. Although some substances, such as
fur, rubber, and plastic, respond more strongly to electrical prepara-
tion than others, all matter participates in electrical forces to some
degree. There is no such thing as a “nonelectric” substance. Matter
is both inherently gravitational and inherently electrical.

• Experiments show that the electrical force, like the gravitational
force, is an inverse square force. That is, the electrical force between
two spheres is proportional to 1/r2, where r is the center-to-center
distance between them.

Charge and electric field
“Charge” is the technical term used to indicate that an object has been

prepared so as to participate in electrical forces. This is to be distinguished
from the common usage, in which the term is used indiscriminately for any-
thing electrical. For example, although we speak colloquially of “charging”
a battery, you may easily verify that a battery has no charge in the tech-
nical sense, e.g., it does not exert any electrical force on a piece of tape
that has been prepared as described in the previous section. The metric
unit of charge is the coulomb (rhymes with “drool on”), defined as follows:
one coulomb (C) is the amount of charge such that a force of 9.0 × 109

newtons2 occurs between two pointlike objects with charges of 1 coulomb
separated by a distance of 1 meter. Nine billion newtons is a tremendous
amount of force, so we can see that the amount of charge on your socks
when they come out of the dryer must be a tiny fraction of a coulomb.

Just as we think of a planet as being surrounded by a gravitational
field, we can imagine an electric field surrounding your sock. When the air
crackles and your hair stands on end in an electrical storm, you’re experi-
encing an electric field. Charge plays the role in electrical interactions that
is played by mass in gravitational interactions. The gravitational field has
units of energy per meter per kilogram, so by analogy the electric field has
units of energy per meter per coulomb.

You’ve already investigated charge in lab, so I won’t bore you by reca-
pitulating the relevant facts normally presented in textbooks: the number
of types of charge, the rules for attraction or repulsion, and the question
of whether charge is conserved.

2Don’t memorize this number.
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Quantization of charge and a charged particle model

One fact about charge that is not immediately apparent in ordinary
electrical experiments is that it is quantized. When we say something
is quantized, we mean that it comes in a certain minimum unit. For
instance, the U.S. currency is quantized in units of pennies; you can’t
write a check for half a penny. The quantization of charge makes sense if
we imagine a model in which charge is carried by microscopic, identical
particles. In the same way, a person who studied accounting but had never
seen actual currency might hypothesize that people actually carried out
monetary transactions by exchanging some physical object as a token —
the penny.

a / A young Robert Millikan.

charge
/(1.64

charge (C) ×10−19 C)
1.970 × 10−18 12.02
0.987 × 10−18 6.02
2.773 × 10−18 16.93

b / A few samples of Millikan’s
data. The letter C stands for units
of coulombs.

c / Millikan’s oil drop experiment.

Strong support for the charged-particle model came from a 1911 exper-
iment by physicist Robert Millikan at the University of Chicago. Consider
a jet of droplets of perfume or some other liquid made by blowing it through
a tiny pinhole. The droplets emerging from the pinhole must be smaller
than the pinhole, and in fact most of them are even more microscopic
than that, since the turbulent flow of air tends to break them up. Millikan
reasoned that the droplets would acquire a little bit of electric charge as
they rubbed against the channel through which they emerged, and if the
charged-particle model of electricity was right, the charge might be split
up among so many minuscule liquid drops that a single drop might have
a total charge amounting to only a few charged particles.

Millikan’s ingenious apparatus was a small box with metal plates for
its ceiling and floor. These plates could be electrically charged as needed.
He sprayed a cloud of oil droplets into the space between the plates, and
selected one drop through a microscope for study. First, with no charge on
the plates, he would determine the drop’s mass by letting it fall through
the air and measuring its terminal velocity, i.e., the velocity at which the
force of air friction canceled out the force of gravity. The force of air drag
on a slowly moving sphere had already been found by experiment, so he
could determine the force of gravity on the drop, and therefore its mass.

Next Millikan charged the metal plates, adjusting the amount of charge
so as to exactly counteract gravity and levitate the drop. He then knew
that the electric field and the magnetic field were making forces on the
drop in equal directions, and canceling out; the gravitational energy the
drop would lose by dropping one millimeter would be exactly canceled
by the electrical energy it would gain. Since he knew the strengths of the
fields, and also the mass of the drop, he could determine the drop’s charge.

Table b shows a few of the results from Millikan’s 1911 paper. Even a
quick look at the data leads to the suspicion that the charges are not sim-
ply a series of random numbers. For instance, the second charge is almost
exactly equal to half the first one. Millikan explained the observed charges
as all being integer multiples of a single number, 1.64 × 10−19 coulombs.
(The modern value is 1.60 × 10−19 coulombs. Don’t memorize it!) In the
second column, dividing by this constant gives numbers that are essen-
tially integers, allowing for the random errors present in the experiment.
Millikan states in his paper that these results were a

. . . direct and tangible demonstration . . . of the correctness of
the view advanced many years ago and supported by evidence
from many sources that all electrical charges, however pro-
duced, are exact multiples of one definite, elementary electri-
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cal charge, or in other words, that an electrical charge instead
of being spread uniformly over the charged surface has a def-
inite granular structure, consisting, in fact, of . . . specks, or
atoms of electricity, all precisely alike, peppered over the sur-
face of the charged body.

In other words, he had provided direct evidence for the charged-particle
model of electricity and against models in which electricity was described
as some sort of fluid.

A historical note on Millikan’s fraud

Very few undergraduate physics textbooks mention the well-documented
fact that although Millikan’s conclusions were correct, he was guilty of sci-
entific fraud. His technique was difficult and painstaking to perform, and
his original notebooks, which have been preserved, show that the data
were far less perfect than he claimed in his published scientific papers.
In his publications, he stated categorically that every single oil drop ob-
served had had a charge that was a multiple of the same basic unit, with
no exceptions or omissions. But his notebooks are replete with notations
such as “beautiful data, keep,” and “bad run, throw out.” Millikan, then,
appears to have earned his Nobel Prize by advocating a correct position
with dishonest descriptions of his data.

Why do textbook authors fail to mention Millikan’s fraud? It may
be that they think students are too unsophisticated to correctly evaluate
the implications of the fact that scientific fraud has sometimes existed and
even been rewarded by the scientific establishment. Maybe they’re afraid
students will reason that fudging data is OK, since Millikan got the Nobel
Prize for it. But falsifying history in the name of encouraging truthfulness
is a little ironic. English teachers don’t edit Shakespeare’s tragedies so that
the bad characters are always punished and the good ones never suffer!

Agnosticism about the specific particles

One of the themes of this book has been the concept of a scientific
model, and the idea that science never really deals with reality, only with
models of it. The charged particle model of electricity does a good job of
explaining quantization of charge, and it’s natural to ask next what kinds
of particles they are. This is the attitude known as reductionism: take
everything apart until you get down to the building blocks. Many of the
greatest accomplishment of physics have been due to reductionism, and
for example if you take a look at the chapters of this book on energy and
momentum, you’ll see that their logical structure depends heavily on a
reductionist theory, the theory that matter is made of atoms. However, it
can also be beneficial sometimes to adopt an attitude that is the opposite
of reductionism. That’s what we’ll do throughout this chapter when it
comes to the question of what the charged particles really are. It turns
out that we can understand all the important facts about electricity and
magnetism without worrying at all about this issue.

Discussion Questions

A In lab, you determined how many types of electrical charge there
were, and it’s natural to want to invent names for the different “flavors.”
Imagine, as in the discussion question on page 14 that you establish two-
way radio communication with aliens but you can’t come up with any ce-
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lestial landmarks that you both recognize. Can you communicate the def-
initions of the terms you’ve invented for the flavors of charge? Could you
tell if the aliens had gotten your English labels switched around? This is
another example of an Ozma problem, introduced in discussion question
B on page 14.
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7.2 Circuits

Current

Unity of all types of electricity

We’re surrounded by things we’ve been told are “electrical,” but
it’s far from obvious what they have in common to justify being
grouped together. What relationship is there between the way socks
cling together and the way a battery lights a lightbulb? We have
been told that both an electric eel and our own brains are somehow
electrical in nature, but what do they have in common?

British physicist Michael Faraday (1791-1867) set out to address
this problem. He investigated electricity from a variety of sources —
including electric eels! — to see whether they could all produce the
same effects, such as shocks and sparks, attraction and repulsion.
“Heating” refers, for example, to the way a lightbulb filament gets
hot enough to glow and emit light. Magnetic induction is an effect
discovered by Faraday himself that connects electricity and mag-
netism. We’ll study this effect, which is the basis for the electric
generator, later in this chapter.

source of
electricity

shocks sparks attraction
and re-
pulsion

heating

rubbing X X X X
battery X X X X
animal X X (X) X
magnetically
induced

X X X X

The table shows a summary of some of Faraday’s results. Check
marks indicate that Faraday or his close contemporaries were able to
verify that a particular source of electricity was capable of producing
a certain effect. (They evidently failed to demonstrate attraction
and repulsion between objects charged by electric eels, although
modern workers have studied these species in detail and been able
to understand all their electrical characteristics on the same footing
as other forms of electricity.)

Faraday’s results indicate that there is nothing fundamentally
different about the types of electricity supplied by the various sources.
They are all able to produce a wide variety of identical effects. Wrote
Faraday, “The general conclusion which must be drawn from this
collection of facts is that electricity, whatever may be its source, is
identical in its nature.”

If the types of electricity are the same thing, what thing is that?
The answer is provided by the fact that all the sources of electricity
can cause objects to repel or attract each other. We use the word
“charge” to describe the property of an object that allows it to
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participate in such electrical forces, and we have learned that charge
is present in matter in the form of nuclei and electrons. Evidently
all these electrical phenomena boil down to the motion of charged
particles in matter.

Electric current

If the fundamental phenomenon is the motion of charged parti-
cles, then how can we define a useful numerical measurement of it?
We might describe the flow of a river simply by the velocity of the
water, but velocity will not be appropriate for electrical purposes
because we need to take into account how much charge the moving
particles have, and in any case there are no practical devices sold
at Radio Shack that can tell us the velocity of charged particles.
Experiments show that the intensity of various electrical effects is
related to a different quantity: the number of coulombs of charge
that pass by a certain point per second. By analogy with the flow
of water, this quantity is called the electric current:

current =
charge
time

Its units of coulombs/second are more conveniently abbreviated as
amperes, 1 A=1 C/s. (In informal speech, one usually says “amps.”)

d / The same current can be
created by a large amount of
charge flowing slowly (top) or
a small amount flowing quickly
(bottom).

Self-check A
How does figure d relate mathematically to the definition of current as
charge divided by time? . Answer, p. 206

Number of electrons flowing through a lightbulb example 1
. Suppose a certain lightbulb has one amp flowing through it. In a
metal, like the filament of a lightbulb, the moving charged particles are
particles called electrons, and the size of the charge on each electron is
equal to the fundamental unit of charge found by Millikan, 1.60 × 10−19

coulombs. How many electrons will pass through the filament in one
second?

. An amp is one coulomb per second, so this boils down to finding how
many electrons there are in a coulomb.

The number of coulombs per electron is 1.60×10−19, so the number
of electrons per coulomb is one over that:

1
1.60 × 10−19 = 6.2 × 1018 ,

or about six quadrillion. That’s a lot of electrons! This is a good example
of the correspondence principle at work. Before Millikan’s discovery of
quantization of charge, many people had accomplished many useful
things with electricity while thinking of it as a nice smooth fluid. Their
lightbulbs didn’t suddenly stop working just because Millikan published
his paper. The number of electrons flowing through a lightbulb is so
great that we don’t even need to know that there’s a certain granularity
to it.

In lab, you determined how many types of charge there were,
and the question naturally arises of how to incorporate the different
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types of charge into the definition of current. Discussion question A
on page 158 addresses this point.

Circuits

How can we put electric currents to work? The only method
of controlling electric charge we have studied so far is to charge
different substances, e.g. rubber and fur, by rubbing them against
each other. Figure e/1 shows an attempt to use this technique
to light a lightbulb. This method is unsatisfactory. True, current
will flow through the bulb, since electrons can move through metal
wires, and the excess electrons on the rubber rod will therefore come
through the wires and bulb due to the attraction of the positively
charged fur and the repulsion of the other electrons. The problem
is that after a zillionth of a second of current, the rod and fur will
both have run out of charge. No more current will flow, and the
lightbulb will go out.

ammeter

1

2

3

4

e / In a practical circuit, charge
has to be recycled, as in figures
2 and 4.

Figure e/2 shows a setup that works. The battery pushes charge
through the circuit, and recycles it over and over again. (We’ll have
more to say later in this chapter about how batteries work.) This
is called a complete circuit. Today, the electrical use of the word
“circuit” is the only one that springs to mind for most people, but
the original meaning was to travel around and make a round trip,
as when a circuit court judge would ride around the boondocks,
dispensing justice in each town on a certain date.

Note that an example like e/3 doesn’t work. The wire will
quickly begin acquiring a charge, because it has no way to get rid
of the charge flowing into it. The repulsion of this charge will make
it more and more difficult to send any more charge in, and soon the
electrical forces exerted by the battery will be canceled out com-
pletely. The whole process would be over so quickly that the fila-
ment wouldn’t even have enough time to get hot and glow. This is
known as an open circuit. Exactly the same thing would happen if
the complete circuit of figure e/2 was cut somewhere with a pair of
scissors, and that’s essentially how an ordinary light switch works:
by opening up a gap in the circuit.

The water company has a meter that measures the rate of flow
of water into your house. Imagine trying to use such a meter to
measure the flow of water when you spit on the sidewalk — it
would be impossible, because the flow wouldn’t last long enough,
and wouldn’t be steady. In electrical terms, a meter that measures
current is called an ammeter,3 and it only works if you have the kind
of steady flow that exists in a complete circuit, e/4 To use an amme-
ter, we break into the path of the electric current and interpose the
meter like a tollbooth on a road. There is still a complete circuit,
and as far as the battery and bulb are concerned, the ammeter is

3presumably because “ampmeter” is hard to pronounce
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just another segment of wire.

Voltage

Electrical circuits can be used for sending signals, storing in-
formation, or doing calculations, but their most common purpose
by far is to manipulate energy, as in the battery-and-bulb example.
We know that lightbulbs are rated in units of watts, i.e. how many
joules per second of energy they can convert into heat and light, but
how would this relate to the flow of charge as measured in amperes?
By way of analogy, suppose your friend, who didn’t take physics,
can’t find any job better than pitching bales of hay. The number of
calories he burns per hour will certainly depend on how many bales
he pitches per minute, but it will also be proportional to how much
energy he has to expend on each bale. If his job is to toss them up
into a hayloft, he’ll got tired a lot more quickly than someone who
merely tips bales off a loading dock into trucks. In metric units,

joules
second

=
haybales
second

× joules
haybale

.

Similarly, the rate of energy transformation by a battery will not
just depend on how many coulombs per second it pushes through a
circuit but also on how much energy it expends on each coulomb of
charge:

joules
second

=
coulombs
second

× joules
coulomb

or
power = current × energy per unit charge .

Units of joules per coulomb are abbreviated as volts, 1 V=1 J/C,
named after the Italian physicist Count Volta.

To summarize, we have the definition of voltage

voltage =
energy
charge

and the equation for electric power

power = current × voltage .

1

2 3f / In these drawings, heights rep-
resent voltages. The currents in
figures 1 and 2 are the same,
but more power can be ex-
tracted from waterwheel 2, be-
cause of the greater voltage dif-
ference. Only differences in volt-
age are physically meaningful;
waterwheels 1 and 3 extract the
same amount of power.
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Your electric bill example 2
To charge you for the right amount of electricity, the electric company
has to know how much energy you used. For instance, if you use a
power of 1000 watts for one hour, the energy you use is

energy = power × time

= (1000 watts)(3600 seconds)

= 3600000 joules .

This is just the definition of power — so far we haven’t even used any
knowledge about electricity.

But how do they know you’re using 1000 watts on a particular after-
noon? The only direct way to find out would be an energy measurement.
For instance, they could send someone to stand next to you while you
heated a pot of water, monitoring the rate at which the water heated up.
Not very practical!

Instead, they exploit the equation for electric power,

power = current × voltage .

At an electrical outlet, the voltage difference between one hole and the
other is 110 volts; for every coulomb of charge that flows out of one
hole, through your stove, and back in the other hole, 110 joules worth of
heat energy are deposited in your house.4 Since they know the voltage,
they just have to monitor the current flowing into your house, and they
can then determine how much power you’re using.

Resistance

g / The voltage (height) dif-
ference is the same in both
cases, but the shallower river has
less current, because there is
less water in it that is available to
flow.

What’s the physical difference between a 100-watt lightbulb and
a 200-watt one? They both plug into a 110-volt outlet, so according
to the equation power = current × voltage, the only way to explain
the double power of the 200-watt bulb is that it must pull in, or
“draw,” twice as much current. By analogy, a fire hose and a garden
hose might be served by pumps that give the same pressure (volt-
age), but more water will flow through the fire hose, because there’s
simply more water in the hose that can flow. Likewise, a wide, deep
river could flow down the same slope as a tiny creek, but the number
of liters of water flowing through the big river is greater. If you look
at the filaments of a 100-watt bulb and a 200-watt bulb, you’ll see
that the 200-watt bulb’s filament is thicker. In the charged-particle
model of electricity, we expect that the thicker filament will contain
more charged particles that are available to flow. We say that the
thicker filament has a lower electrical resistance than the thinner
one.

4In the U.S., most outlets are 110 volts, but washers and dryers use special
220-volt outlets. I’m also ignoring the fact that household circuits use alternating
current (AC): the flow of electricity is first in one direction and then in the other,
switching back and forth 60 times a second.
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h / A fat pipe has less resistance
than a skinny pipe.

Although it’s harder to pump water rapidly through a garden
hose than through a fire hose, we could always compensate by using
a higher-pressure pump. Similarly, the amount of current that will
flow through a lightbulb depends not just on its resistance but also
on how much of a voltage difference is applied across it. For many
substances, including the tungsten metal that lightbulb filaments
are made of, we find that the amount of current that flows is pro-
portional to the voltage difference applied to it, so that the ratio
of voltage to current stays the same. We then use this ratio as a
numerical definition of resistance,

resistance =
voltage difference

current
,

which is known as Ohm’s law. The units of resistance are ohms,
symbolized with an uppercase Greek letter Omega, Ω. Physically,
when a current flows through a resistance, the result is to transform
electrical energy into heat. In a lightbulb filament, for example, the
heat is what causes the bulb to glow.

Ohm’s law states that many substances, including many solids
and some liquids, display this kind of behavior, at least for voltages
that are not too large. The fact that Ohm’s law is called a “law”
should not be taken to mean that all materials obey it, or that it
has the same fundamental importance as the conservation laws, for
example. Materials are called ohmic or nonohmic, depending on
whether they obey Ohm’s law.

On an intuitive level, we can understand the idea of resistance
by making the sounds “hhhhhh” and “ffffff.” To make air flow out
of your mouth, you use your diaphragm to compress the air in your
chest. The pressure difference between your chest and the air out-
side your mouth is analogous to a voltage difference. When you
make the “h” sound, you form your mouth and throat in a way that
allows air to flow easily. The large flow of air is like a large current.
Dividing by a large current in the definition of resistance means that
we get a small resistance. We say that the small resistance of your
mouth and throat allows a large current to flow. When you make
the “f” sound, you increase the resistance and cause a smaller cur-
rent to flow. In this mechanical analogy, resistance is like friction:
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the air rubs against your lips. Mechanical friction converts mechan-
ical forms of energy to heat, as when you rub your hands together.
Electrical friction — resistance — converts electrical energy to heat.

If objects of the same size and shape made from two different
ohmic materials have different resistances, we can say that one ma-
terial is more resistive than the other, or equivalently that it is less
conductive. Materials, such as metals, that are very conductive are
said to be good conductors. Those that are extremely poor conduc-
tors, for example wood or rubber, are classified as insulators. There
is no sharp distinction between the two classes of materials. Some,
such as silicon, lie midway between the two extremes, and are called
semiconductors.

Applications

Superconductors

All materials display some variation in resistance according to
temperature (a fact that is used in thermostats to make a ther-
mometer that can be easily interfaced to an electric circuit). More
spectacularly, most metals have been found to exhibit a sudden
change to zero resistance when cooled to a certain critical tempera-
ture. They are then said to be superconductors. A current flowing
through a superconductor doesn’t create any heat at all.

Theoretically, superconductors should make a great many excit-
ing devices possible, for example coiled-wire magnets that could be
used to levitate trains. In practice, the critical temperatures of all
metals are very low, and the resulting need for extreme refrigera-
tion has made their use uneconomical except for such specialized
applications as particle accelerators for physics research.

But scientists have recently made the surprising discovery that
certain ceramics are superconductors at less extreme temperatures.
The technological barrier is now in finding practical methods for
making wire out of these brittle materials. Wall Street is currently
investing billions of dollars in developing superconducting devices
for cellular phone relay stations based on these materials. In 2001,
the city of Copenhagen replaced a short section of its electrical power
trunks with superconducing cables, and they are now in operation
and supplying power to customers.

There is currently no satisfactory theory of superconductivity in
general, although superconductivity in metals is understood fairly
well. Unfortunately I have yet to find a fundamental explanation of
superconductivity in metals that works at the introductory level.

Constant voltage throughout a conductor

The idea of a superconductor leads us to the question of how
we should expect an object to behave if it is made of a very good
conductor. Superconductors are an extreme case, but often a metal
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wire can be thought of as a perfect conductor, for example if the
parts of the circuit other than the wire are made of much less con-
ductive materials. What happens if the resistance equals zero in the
equation

resistance =
voltage difference

current
?

The result of dividing two numbers can only be zero if the number
on top equals zero. This tells us that if we pick any two points
in a perfect conductor, the voltage difference between them must
be zero. In other words, the entire conductor must be at the same
voltage. Using the water metaphor, a perfect conductor is like a
perfectly calm lake or canal, whose surface is flat. If you take an
eyedropper and deposit a drop of water anywhere on the surface, it
doesn’t flow away, because the water is still. In electrical terms, a
charge located anywhere in the interior of a perfect conductor will
always feel a total electrical force of zero.

Suppose, for example, that you build up a static charge by scuff-
ing your feet on a carpet, and then you deposit some of that charge
onto a doorknob, which is a good conductor. How can all that charge
be in the doorknob without creating any electrical force at any point
inside it? The only possible answer is that the charge moves around
until it has spread itself into just the right configuration. In this
configuration, the forces exerted by all the charge on any charged
particle within the doorknob exactly cancel out.

We can explain this behavior if we assume that the charge placed
on the doorknob eventually settles down into a stable equilibrium.
Since the doorknob is a conductor, the charge is free to move through
it. If it was free to move and any part of it did experience a nonzero
total force from the rest of the charge, then it would move, and we
would not have an equilibrium.

It also turns out that charge placed on a conductor, once it
reaches its equilibrium configuration, is entirely on the surface, not
on the interior. We will not prove this fact formally, but it is intu-
itively reasonable (see discussion question C).

Short circuits

So far we have been assuming a perfect conductor. What if it’s
a good conductor, but not a perfect one? Then we can solve for

voltage difference = (current) × (resistance) .

An ordinary-sized current will make a very small result when we
multiply it by the resistance of a good conductor such as a metal
wire. The voltage throughout the wire will then be nearly con-
stant. If, on the other hand, the current is extremely large, we
can have a significant voltage difference. This is what happens in
a short-circuit: a circuit in which a low-resistance pathway con-
nects the two sides of a voltage source. Note that this is much
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more specific than the popular use of the term to indicate any
electrical malfunction at all. If, for example, you short-circuit a
9-volt battery as shown in the figure, you will produce perhaps
a thousand amperes of current, leading to a very large value of
power = (current) × (voltage difference). The wire gets hot!

The voltmeter

A voltmeter is nothing more than an ammeter with an addi-
tional high-value resistor through which the current is also forced
to flow, i. Ohm’s law relates the current through the resistor is re-
lated directly to the voltage difference across it, so the meter can
be calibrated in units of volts based on the known value of the re-
sistor. The voltmeter’s two probes are touched to the two locations
in a circuit between which we wish to measure the voltage differ-
ence, j. Note how cumbersome this type of drawing is, and how
difficult it can be to tell what is connected to what. This is why
electrical drawing are usually shown in schematic form. Figure k is
a schematic representation of figure j.

ammeter

resistor

voltmeter

i / Under the hood, a voltmeter is
really an ammeter combined with
a high-value resistor.

voltmeter

j / Measuring the voltage dif-
ference across a lightbulb.

V

k / The same setup drawn in
schematic form.

A

l / The setup for measuring
current is different.

The setups for measuring current and voltage are different.
When we’re measuring current, we’re finding “how much stuff goes
through,” so we place the ammeter where all the current is forced
to go through it. Voltage, however, is not “stuff that goes through,”
it is a measure of electrical energy. If an ammeter is like the meter
that measures your water use, a voltmeter is like a measuring stick
that tells you how high a waterfall is, so that you can determine
how much energy will be released by each kilogram of falling water.
We don’t want to force the water to go through the measuring stick!
The arrangement in figure k is a parallel circuit: one in there are
“forks in the road” where some of the current will flow one way and
some will flow the other. Figure l is said to be wired in series: all
the current will visit all the circuit elements one after the other.

If you inserted a voltmeter incorrectly, in series with the bulb and
battery, its large internal resistance would cut the current down so
low that the bulb would go out. You would have severely disturbed
the behavior of the circuit by trying to measure something about it.

Incorrectly placing an ammeter in parallel is likely to be even
more disconcerting. The ammeter has nothing but wire inside it to
provide resistance, so given the choice, most of the current will flow
through it rather than through the bulb. So much current will flow
through the ammeter, in fact, that there is a danger of burning out
the battery or the meter or both! For this reason, most ammeters
have fuses or circuit breakers inside. Some models will trip their
circuit breakers and make an audible alarm in this situation, while
others will simply blow a fuse and stop working until you replace
it.
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Discussion Questions

A In lab, you determined how many types of charge there were, and
the question naturally arises of how to incorporate the different types of
charge into the definition of current. Fundamentally, charge measures the
ability of an object to make electrical forces. If you start with an uncharged
object, and then start letting more than one type of charge flow into it
simultaneously, what happens? Discuss some examples and decide how
these ideas should be incorporated into the definition of current.

B In figure e/4 on page 151, what would happen if you had the ammeter
on the left rather than on the right?

C Imagine a charged doorknob, as described on page 156. Why is
it intuitively reasonable to believe that all the charge will end up on the
surface of the doorknob, rather than on the interior?
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7.3 Electromagnetism
Think not that I am come to destroy the law, or the prophets: I am
not come to destroy, but to fulfill. Matthew 5:17

Magnetic interactions

At this stage, you understand roughly as much about the clas-
sification of interactions as physicists understood around the year
1800. There appear to be three fundamentally different types of
interactions: gravitational, electrical, and magnetic. As discussed
on page 68, many types of interactions that appear superficially to
be distinct — stickiness, chemical interactions, the energy an archer
stores in a bow — are really the same: they’re manifestations of
electrical interactions between atoms. Is there any way to shorten
the list any further? The prospects seem dim at first. For instance,
we find that if we rub a piece of fur on a rubber rod, the fur does
not attract or repel a magnet. The fur has an electric field, and the
magnet has a magnetic field. The two are completely separate, and
don’t seem to affect one another. Likewise we can test whether mag-
netizing a piece of iron changes its weight. The weight doesn’t seem
to change by any measurable amount, so magnetism and gravity
seem to be unrelated.

That was where things stood until 1820, when the Danish physi-
cist Hans Christian Oersted was delivering a lecture at the Univer-
sity of Copenhagen, and he wanted to give his students a demonstra-
tion that would illustrate the cutting edge of research. He generated
a current in a wire by making a short circuit across a battery, and
held the wire near a magnetic compass. The ideas was to give an
example of how one could search for a previously undiscovered link
between electricity (the electric current in the wire) and magnetism.
One never knows how much to believe from these dramatic legends,
but the story is5 that the experiment he’d expected to turn out neg-
ative instead turned out positive: when he held the wire near the
compass, the current in the wire caused the compass to twist!

1

2

m / 1. When the circuit is in-
complete, no current flows
through the wire, and the magnet
is unaffected. It points in the
direction of the Earth’s magnetic
field. 2. The circuit is completed,
and current flows through the
wire. The wire has a strong
effect on the magnet, which turns
almost perpendicular to it. If the
earth’s field could be removed
entirely, the compass would point
exactly perpendicular to the wire;
this is the direction of the wire’s
field.

1

2

n / A schematic representa-
tion of an unmagnetized material,
1, and a magnetized one, 2.

People had tried similar experiments before, but only with static
electricity, not with a moving electric current. For instance, they had
hung batteries so that they were free to rotate in the earth’s mag-
netic field, and found no effect; since the battery was not connected
to a complete circuit, there was no current flowing. With Oersted’s
own setup, m, the effect was only produced when the “circuit was
closed, but not when open, as certain very celebrated physicists in
vain attempted several years ago.”6

5Oersted’s paper describing the phenomenon says that “The first experiments
on the subject . . . were set on foot in the classes for electricity, galvanism, and
magnetism, which were held by me in the winter just past,” but that doesn’t tell
us whether the result was really a surprise that occurred in front of his students.

6All quotes are from the 1876 translation are by J.E. Kempe.
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Oersted was eventually led to the conclusion that magnetism was
an interaction between moving charges and other moving charges,
i.e., between one current and another. A permanent magnet, he in-
ferred, contained currents on a microscopic scale that simply weren’t
practical to measure with an ammeter. Today this seems natural
to us, since we’re accustomed to picturing an atom as a tiny solar
system, with the electrons whizzing around the nucleus in circles.
As shown in figure n, a magnetized piece of iron is different from an
unmagnetized piece because the atoms in the unmagnetized piece
are jumbled in random orientations, whereas the atoms in the mag-
netized piece are at least partially organized to face in a certain
direction.

o / Magnetism is an interac-
tion between moving charges
and moving charges. The moving
charges in the wire attract the
moving charges in the beam of
charged particles in the vacuum
tube.

electric field

electric and
magnetic fields

1

2

p / One observer sees an electric
field, while the other sees both an
electric field and a magnetic one.

Figure o shows an example that is conceptually simple, but not
very practical. If you try this with a typical vacuum tube, like a
TV or computer monitor, the current in the wire probably won’t be
enough to produce a visible effect. A more practical method is to
hold a magnet near the screen. We still have an interaction between
moving charges and moving charges, but the swirling electrons in
the atoms in the magnet are now playing the role played by the
moving charges in the wire in figure o. Warning: if you do this,
make sure your monitor has a demagnetizing button! If not, then
your monitor may be permanently ruined.

Relativity requires magnetism

So magnetism is an interaction between moving charges and
moving charges. But how can that be? Relativity tells us that
motion is a matter of opinion. Consider figure p. In this figure and
in figure q, the dark and light coloring of the particles represents the
fact that one particle has one type of charge and the other particle
has the other type. Observer p/2 sees the two particles as flying
through space side by side, so they would interact both electrically
(simply because they’re charged) and magnetically (because they’re
charges in motion). But an observer moving along with them, p/1,
would say they were both at rest, and would expect only an elec-
trical interaction. This seems like a paradox. Magnetism, however,
comes not to destroy relativity but to fulfill it. Magnetic interac-
tions must exist according to the theory of relativity. To understand
how this can be, consider how time and space behave in relativity.
Observers in different frames of reference disagree about the lengths
of measuring sticks and the speeds of clocks, but the laws of physics
are valid and self-consistent in either frame of reference. Similarly,
observers in different frames of reference disagree about what elec-
tric and magnetic fields there are, but they agree about concrete
physical events. An observer in frame of reference p/1 says there
are electric fields around the particles, and predicts that as time
goes on, the particles will begin to accelerate towards one another,
eventually colliding. She explains the collision as being due to the
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electrical attraction between the particles. A different observer, p/2,
says the particles are moving. This observer also predicts that the
particles will collide, but explains their motion in terms of both an
electric field and a magnetic field. As we’ll see shortly, the mag-
netic field is required in order to maintain consistency between the
predictions made in the two frames of reference.

1

2

q / A model of a charged particle
and a current-carrying wire,
seen in two different frames of
reference. The relativistic length
contraction is highly exaggerated.
The force on the lone particle is
purely magnetic in 1, and purely
electric in 2.

To see how this really works out, we need to find a nice simple
example. An example like figure p is not easy to handle, because in
the second frame of reference, the moving charges create fields that
change over time at any given location, like when the V-shaped wake
of a speedboat washes over a buoy. Examples like figure o are easier,
because there is a steady flow of charges, and all the fields stay the
same over time. Figure q/1 shows a simplified and idealized model
of figure o. The charge by itself is like one of the charged particles in
the vacuum tube beam of figure o, and instead of the wire, we have
two long lines of charges moving in opposite directions. Note that,
as discussed in discussion question A on page 158, the currents of
the two lines of charges do not cancel out. The dark balls represent
particles with one type of charge, and the light balls have the other
type. Because of this, the total current in the “wire” is double what
it would be if we took away one line.

As a model of figure o, figure q/1 is partly realistic and partly
unrealistic. In a real piece of copper wire, there are indeed charged
particles of both types, but it turns out that the particles of one
type (the protons) are locked in place, while only some of the other
type (the electrons) are free to move. The model also shows the
particles moving in a simple and orderly way, like cars on a two-
lane road, whereas in reality most of the particles are organized
into copper atoms, and there is also a great deal of random thermal
motion. The model’s unrealistic features aren’t a problem, because
the point of this exercise is only to find one particular situation that
shows magnetic effects must exist based on relativity.

What electrical force does the lone particle in figure q/1 feel?
Since the density of “traffic” on the two sides of the “road” is equal,
there is zero overall electrical force on the lone particle. Each “car”
that attracts the lone particle is paired with a partner on the other
side of the road that repels it. If we didn’t know about magnetism,
we’d think this was the whole story: the lone particle feels no force
at all from the wire.

Figure q/2 shows what we’d see if we were observing all this from
a frame of reference moving along with the lone charge. Here’s where
the relativity comes in. Relativity tells us that moving objects ap-
pear contracted to an observer who is not moving along with them.
Both lines of charge are in motion in both frames of reference, but
in frame 1 they were moving at equal speeds, so their contractions
were equal. In frame 2, however, their speeds are unequal. The
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dark charges are moving more slowly than in frame 1, so in frame 2
they are less contracted. The light-colored charges are moving more
quickly, so their contraction is greater now. The “cars” on the two
sides of the “road” are no longer paired off, so the electrical forces
on the lone particle no longer cancel out as they did in q/1. The
lone particle is attracted to the wire, because the particles attract-
ing it are more dense than the ones repelling it. Furthermore, the
attraction felt by the lone charge must be purely electrical, since the
lone charge is at rest in this frame of reference, and magnetic effects
occur only between moving charges and other moving charges.

Now observers in frames 1 and 2 disagree about many things,
but they do agree on concrete events. Observer 2 is going to see
the lone particle drift toward the wire due to the wire’s electrical
attraction, gradually speeding up, and eventually hit the wire. If
2 sees this collision, then 1 must as well. But 1 knows that the
total electrical force on the lone particle is exactly zero. There
must be some new type of force. She invents a name for this new
type of force: magnetism. This was a particularly simple example,
because the fields were purely magnetic in one frame of reference,
and purely electrical in another. In general, an observer in a certain
frame of reference will measure a mixture of electric and magnetic
fields, while an observer in another frame, in motion with respect
to the first, says that the same volume of space contains a different
mixture.

1 2

magnetic
attraction

magnetic
attraction

3 4

magnetic
repulsion

magnetic
repulsion

r / Magnetic interactions in-
volving only two particles at a
time. In these figures, unlike
figure q/1, there are electrical
forces as well as magnetic ones.
The electrical forces are not
shown here. Don’t memorize
these rules!

s / Example 3

We therefore arrive at the conclusion that electric and magnetic
phenomena aren’t separate. They’re different sides of the same coin.
We refer to electric and magnetic interactions collectively as elec-
tromagnetic interactions. Our list of the fundamental interactions
of nature now has two items on it instead of three: gravity and
electromagnetism.

The basic rules for magnetic attractions and repulsions, shown
in figure r, aren’t quite as simple as the ones for gravity and elec-
tricity. Rules r/1 and r/2 follow directly from our previous analysis
of figure q. Rules 3 and 4 are obtained by flipping the type of charge
that the bottom particle has. For instance, rule 3 is like rule 1, ex-
cept that the bottom charge is now the opposite type. This turns
the attraction into a repulsion. (We know that flipping the charge
reverses the interaction, because that’s the way it works for elec-
tric forces, and magnetic forces are just electric forces viewed in a
different frame of reference.)

A magnetic weathervane placed near a current. example 3
Figure s shows a magnetic weathervane, consisting of two charges that
spin in circles around the axis of the arrow. (The magnetic field doesn’t
cause them to spin; a motor is needed to get them to spin in the first
place.) Just like the magnetic compass in figure m, the weathervane’s
arrow tends to align itself in the direction perpendicular to the wire. This
is its preferred orientation because the charge close to the wire is at-
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tracted to the wire, while the charge far from the wire is repelled by it.

Magnetic fields

How should we define the magnetic field? When two objects at-
tract each other gravitationally, their gravitational energy depends
only on the distance between them, and it seems intuitively reason-
able that we define the gravitational field arrows like a street sign
that says “this way to lower gravitational energy.” The same idea
works fine for the electric field. But what if two charged particles
are interacting magnetically? Their interaction doesn’t just depend
on the distance, but also on their motions.

current

t / The magnetic field curls
around the wire in circles. At
each point in space, the magnetic
compass shows the direction of
the field.

We need some way to pick out some direction in space, so we
can say, “this is the direction of the magnetic field around here.” A
natural and simple method is to define the magnetic field’s direction
according to the direction a compass points. Starting from this
definition we can, for example, do experiments to show that the
magnetic field of a current-carrying wire forms a circular pattern, t.

But is this the right definition? Unlike the definitions of the
gravitational and electric fields’ directions, it involves a particular
human-constructed tool. However, compare figure m on page 159
with figure s on page 162. Note that both of these tools line them-
selves up along a line that’s perpendicular to the wire. In fact, no
matter how hard you try, you will never be able to invent any other
electromagnetic device that will align itself with any other line. All
you can do is make one that points in exactly the opposite direction,
but along the same line. For instance, you could use paint to reverse
the colors that label the ends of the magnetic compass needle, or
you could build a weathervane just like figure s, but spinning like a
left-handed screw instead of a right-handed one. The weathervane
and the compass aren’t even as different as they appear. Figure u
shows their hidden similarities.

NS

N

S

1 2
u / 1. The needle of a magnetic
compass is nothing more than a
bar magnet that is free to rotate in
response to the earth’s magnetic
field. 2. A cartoon of the bar mag-
net’s structure at the atomic level.
Each atom is very much like the
weathervane of figure s.

Nature is trying to tell us something: there really is something
special about the direction the compass points. Defining the direc-
tion of the magnetic field in terms of this particular device isn’t as
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arbitrary as it seems. The only arbitrariness is that we could have
built up a whole self-consistent set of definitions that started by
defining the magnetic field as being in the opposite direction.

Head-to-tail alignment of bar magnets example 4
. If you let two bar magnets like the one in figure u interact, which way
do they want to line up, head-to-head or head-to-tail?

. Each bar magnet contains a huge number of atoms, but that won’t
matter for our result; we can imagine this as an interaction between two
individual atoms. For that matter, let’s model the atoms as weather-
vanes like the one in figure s. Suppose we put two such weather vanes
side by side, with their arrows both pointing away from us. From our
point of view, they’re both spinning clockwise. As one of the charges
in the left-hand weather vane comes down on the right side, one of the
charges in the right-hand vane comes up on the left side. These two
charges are close together, so their magnetic interaction is very strong
at this moment. Their interaction is repulsive, so this is an unstable
arrangement of the two weathervanes.

On the other hand, suppose the left-hand weathervane is pointing
away from is, while its partner on the right is pointing toward us. From
our point of view, we see the one on the right spinning counterclockwise.
At the moment when their charges come as close as possible, they’re
both on the way up. Their interaction is attractive, so this is a stable
arrangement.

Translating back from our model to the original question about bar
magnets, we find that bar magnets will tend to align themselves head-
to-tail. This is easily verified by experiment.

force on
the particle

particle's
direction of
motion

direction of
the magnetic
field

right hand

force on
the particle

particle's
direction of
motion

direction of
the magnetic
field

left hand

v / The force on a charged par-
ticle moving through a magnetic
field is perpendicular to both the
field and its direction of motion.
The relationship is right-handed
for one type of charge, and left-
handed for the other type.

If you go back and apply this definition to all the examples we’ve
encountered so far, you’ll find that there’s a general rule: the force on
a charged particle moving through a magnetic field is perpendicular
to both the field and its direction of motion. A force perpendicular
to the direction of motion is exactly what is required for circular
motion, so we find that a charged particle in a vacuum will go in
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a circle around the magnetic field arrows (or perhaps a corkscrew
pattern, if it also has some motion along the direction of the field).
That means that magnetic fields tend to trap charged particles.

w / A beam of electrons cir-
cles around the magnetic field
arrows.

Figure w shows this principle in action. A beam of electrons
is created in a vacuum tube, in which a small amount of hydrogen
gas has been left. A few of the electrons strike hydrogen molecules,
creating light and letting us see the path of the beam. A magnetic
field is produced by passing a current (meter) through the circular
coils of wire in front of and behind the tube. In the bottom figure,
with the magnetic field turned on, the force perpendicular to the
electrons’ direction of motion causes them to move in a circle.

Sunspots example 5
Sunspots, like the one shown in the photo on page 143, are places
where the sun’s magnetic field is unusually strong. Charged particles
are trapped there for months at a time. This is enough time for the
sunspot to cool down significantly, and it doesn’t get heated back up
because the hotter surrounding material is kept out by the same mag-
netic forces.

The aurora and life on earth’s surface example 6
A strong magnetic field seems to be one of the prerequisites for the

existence of life on the surface of a planet. Energetic charged particles
from the sun are trapped by our planet’s magnetic field, and harmlessly
spiral down to the earth’s surface at the poles. In addition to protecting
us, this creates the aurora, or “northern lights.”

The astronauts who went to the moon were outside of the earth’s
protective field for about a week, and suffered significant doses of ra-
diation during that time. The problem would be much more serious for
astronauts on a voyage to Mars, which would take at least a couple of
years. They would be subjected to intense radiation while in interplane-
tary space, and also while on Mars’s surface, since Mars lacks a strong
magnetic field.

Features in one Martian rock have been interpreted by some scien-
tists as fossilized bacteria. If single-celled life evolved on Mars, it has
presumably been forced to stay below the surface. (Life on Earth prob-
ably evolved deep in the oceans, and most of the Earth’s biomass con-
sists of single-celled organisms in the oceans and deep underground.)
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7.4 Induction

Electromagnetic signals

You may have noticed that as we’ve progressed in our discussion
of electromagnetism, I’ve been referring to the electric and magnetic
fields more and more as if they were real things permeating all of
space. When I first introduced the concept of a field — the gravi-
tational field — it played a minor role. It was nothing more than
a convenient way of calculating the energy required to bring a rock
farther away from the earth. Newton never even felt the need to
invent such a concept. To him, the only real actors on the stage
were atoms. Like Romeo and Juliet, they were real, material ob-
jects. Like Romeo and Juliet’s love, the gravitational interactions
were just a way of describing the relationship between the atoms.

N
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3x / An impractical, but conceptu-
ally simple, scheme for sending
signals with magnets.

Suppose Romeo and Juliet, separated by a paper-thin wall, use a
pair of bar magnets to signal to each other. As discussed in example
4 on page 164, the magnets want to line up head-to-tail, x/1. Each
person feels his or her own magnet trying to twist around in response
to any rotation performed by the other person’s magnet. If the
person on the right flips her magnet, x/2, the person on the left can
feel the signal. The practical range of communication would be very
short for this setup, but a sensitive detector could pick up magnetic
signals from much farther away.

A question now naturally arises as to whether there is any time
delay in this kind of electromagnetic communication. Newton would
have thought not, since he conceived of physics in terms of instanta-
neous action at a distance. If, on the other hand, there is such a time
delay, then what is it that is traveling across the space between the
two magnets? It would presumably be a disturbance in the electric
and magnetic fields that rippled out from the twisting magnet, like
ripples made by a wriggling bug on the surface of a pond. We would
then be more inclined to grant the electric and magnetic fields “real
thing status.”

There is such a time delay. Relativity says that not only is there
an upper limit on the speed of a material object — the speed of light,
3× 108 m/s — but the same limit applies to signals as well. Here’s
why. Imagine that we could send a signal without any time delay
at all. Alice sends a signal from planet A to Bob, on planet B. Alice
and Bob agree that events A and B are simultaneous. But as shown
in figure e on page 127, observers in different frames of reference
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disagree about simultaneity. An observer moving in the direction
from B to A says B happens after A, but an observer moving in
the opposite direction says B happens before A. According to this
observer, Bob might get the signal before Alice had even made up
her mind to send it! This is just like a time machine, and it results
in all the same paradoxes that time machines cause. Bob could,
for instance, send a signal back in time to Alice, telling her to hire
gangsters to come and smash his radio transmitter. If the gangsters
smashed the radio before Bob sent the signal to Alice, then it wasn’t
possible for the gangsters to get hired in the first place. Since in-
stantaneous transmission of signals leads to these crazy paradoxes,
we conclude that instantaneous signaling isn’t possible.7

This may all sound like pure science fiction, but it’s not. If you
make a long-distance phone call that is routed through a communi-
cations satellite, you should easily be able to detect a delay of about
half a second over the signal’s round trip of 50,000 miles. Radar,
which was arguably the technology that won World War II, is based
on measuring the time delay for a radio “echo” to come back. As
we’ll soon see, the radio waves used in these signaling methods are
actually disturbances in the electric and magnetic fields, but the
relativistic argument applies regardless of the method used for sig-
naling.

An even stronger reason to think of fields as real things comes
from the fact that field-ripples carry energy. First suppose that the
person holding the bar magnet on the right decides to reverse hers,
resulting in configuration x/2. To twist it, she has to convert some of
her body’s chemical energy into magnetic energy. If she then releases
the magnet, this magnetic energy will be released as it flips back to
position x/1. She has apparently stored energy by going from 1 to 2.
So far everything is easily explained without the concept of a field of
force: the distances between the poles are simply different in figures
1 and 2. In figure 2, for instance, the distances between the two
north poles are shorter than in figure 1. This is like a description
of gravity where we speak only of the changing distance between a
rock and the earth, without referring to a gravitational field at all.

But now imagine that the two people start in position 1 and
then, at a prearranged time, flip their magnets extremely quickly to

7This isn’t quite as ironclad an argument as it appears. We’ve only discussed
the special theory of relativity, not the general theory, which incorporates gravity.
The general theory leads to some apparently reasonable recipes by which an
advanced civilization, with the ability to manipulate vast amounts of matter,
could build a time machine. Careful investigation, however, shows that there
are some effects, which physicists are presently unable to calculate accurately,
that might cause such a gateway in time to be useless for sending either material
objects or signals back in time. This has led physicist Stephen Hawking to
postulate that the laws of physics conspire to strictly forbid backward time
travel. He refers to this as the principle of chronology protection, and jokes that
it will “keep the world safe for historians.”
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position 3, keeping them lined up with each other the whole time.
Imagine, for the sake of argument, that they can do this so quickly
that each magnet is reversed while the force signal from the other
is still in transit. (For a more realistic example, we’d have to have
two radio antennas, not two magnets, but the magnets are easier to
visualize.) During the flipping, each magnet is still feeling the forces
arising from the way the other magnet used to be oriented. Even
though the two magnets stay aligned during the flip, the time delay
causes each person to feel resistance as she twists her magnet around.
How can this be? Both of them are using up the chemical energy in
their bodies. Conservation of energy says that if this form of energy
decreases, then some other form of energy must increase. They
must be storing magnetic energy somehow. But in the traditional
Newtonian conception of matter interacting via instantaneous forces
at a distance, magnetic energy could only arise from the relative
positions of objects that are interacting via magnetic forces. If the
magnets never changed their orientations relative to each other, how
can any magnetic energy have been stored?

The only possible answer is that the energy must have gone
into the magnetic force ripples crisscrossing the space between the
magnets. Fields of force apparently carry energy across space, which
is strong evidence that they are real things.

This is perhaps not as radical an idea to us as it was to our
ancestors. We’re used to the idea that a radio transmitting antenna
consumes a great deal of power, and somehow spews it out into the
universe. A person working around such an antenna needs to be
careful not to get too close to it, since all that energy can easily
cook flesh (a painful phenomenon known as an “RF burn”).8

By the way, if you retrace the logic of this section, you can verify
that in my argument that field-ripples must take time to get from
one place to another, I never used any facts that were specific to
electromagnetic fields. You could take a pen, cross out “electro-
magnetic” everywhere, and replace it with “gravitational” or “nu-
clear,” and it would still be a valid argument. Thus the thing we’ve
been referring to as “the speed of light” could instead be thought of
as “the maximum speed of anything.” In 2002, astronomers Sergei
Kopeikin and Edward Fomalont verified that as Jupiter circles the
sun, its gravitational field travels outward from it at the speed of
light. If the result had been to the contrary, it would have disproved

8Many people are also needlessly concerned that they’ll get brain cancer from
their cell phones. We know enough about the physics of how these electromag-
netic signals interact with matter to be certain that they’re incapable of altering
a cell’s DNA to produce a cancerous mutation. Furthermore, people who work
near radio transmitters are exposed to signals that are similar, but many orders
of magnitude stronger, and they do not experience any increased incidence of
cancer. One of the most telling characteristics of pseudoscience is that it doesn’t
scale properly. If the signals caused cancer, then making them much stronger
should have a much higher probability of causing cancer.
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relativity! (There is some controversy about their analysis, although
the result is what everyone expected based on relativity.)

Induction

Now that I’ve made the case for the reality of the electric and
magnetic fields, let’s consider an example of their relationship to
each other, one which will have some very practical applications.

You’re loafing around your apartment one afternoon, munching
potato chips and idly watching the needle on your magnetic field
meter. Suddenly, the needle starts to go up. The magnetic field in
your apartment is getting stronger. You hypothesize that someone
is driving toward you with a big magnet in the back of her pickup
truck. As the magnet gets closer, you feel its field more and more
strongly. Your roommate, however, pauses her video game for long
enough to offer an alternative explanation: maybe the junkyard
down the street has a big electromagnet they use for picking up
cars. According to her theory, the magnetic field is getting stronger
because they’re slowly turning the knob up; the magnet isn’t getting
any closer at all. Your roommate offers to bet you some take-out
Chinese food that her explanation is right.

Without walking around town and investigating, how can you
settle the bet? Well, according to your explanation, the truck is
coming your way. In the driver’s frame of reference, the magnet is
at rest, so there’s only a magnetic field, no electric field. But the
frames of reference of her truck and your couch are not at rest rela-
tive to one another, so you know what what she perceives as a pure
magnetic field, you should see as a mixture of magnetic and electric
fields. Your theory makes a definite prediction: if you fire up your
electric field meter, you should detect something. You offer to use
such a measurement to settle the bet, but your roomate has taken
physics already, and wisely refuses. “Look,” she says, “the electric
and magnetic fields are just different sides of the same coin. Doesn’t
it seem a little goofy to you that there would be one relationship
between the electric and magnetic fields inside our apartment if they
were from a certain kind of distant source, but a different relation-
ship if they came from a different type of source? No matter which
of us is right, there’s going to be an electric field in this room.” She
then turns on the electric field meter, shows you that there is an
electric field, goes to the window, opens the shades, shows you the
electromagnet at the junkyard (which she already knew about), and
informs you that she’ll be having kung pao chicken and ma po dofu.

There was no pickup truck with a big magnet in the back. There
was nothing moving at all. The person at the junkyard turning up
the knob on the electromagnet is in the same frame of reference as
you and your roommate. What you’ve just bought for the price of
some Chinese food is a lesson in the principle of induction:
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the principle of induction
Any magnetic field that changes over time will create an electric
field. The induced electric field is perpendicular to the magnetic
field, and forms a curly pattern around it.
Any electric field that changes over time will create a magnetic field.
The induced magnetic field is perpendicular to the electric field, and
forms a curly pattern around it.

The first part was discovered experimentally by Michael Faraday
in 1831. Relativity was still 70 years in the future, so the argument
made by your roommate wasn’t available to Faraday — to him, it
was just a surprising empirical fact. Since relativity tells us that
electricity and magnetism aren’t really separate things, it’s also not
so surprising that the second part is true.

The generator example 7
A basic generator, y, consists of a permanent magnet that rotates within
a coil of wire. The magnet is turned by a motor or crank, (not shown).
As it spins, the nearby magnetic field changes. This changing magnetic
field results in an electric field, which has a curly pattern. This electric
field pattern creates a current that whips around the coils of wire, and
we can tap this current to light the lightbulb.

If the magnet was on a frictionless bearing, could we light the bulb
for free indefinitely, thus violating conservation of energy? No. It’s hard
work to crank the magnet, and that’s where the energy comes from.
If we break the light-bulb circuit, it suddenly gets easier to crank the
magnet! This is because the current in the coil sets up its own mag-
netic field, and that field exerts a torque on the magnet. If we stopped
cranking, this torque would quickly make the magnet stop turning.

y / A generator.

Self-check B
When you’re driving your car, the engine recharges the battery continu-
ously using a device called an alternator, which is really just a generator.
Why can’t you use the alternator to start the engine if your car’s battery
is dead? . Answer, p. 206

input —
high voltage
low current

output —
low voltage
high current

z / A transformer.

The transformer example 8
It’s more efficient for the electric company to transmit power over electri-
cal lines using high voltages and low currents. However, we don’t want
our wall sockets to operate at 10000 volts! For this reason, the electric
company uses a device called a transformer, z, to convert everything to
lower voltages and higher currents inside your house. The coil on the
input side creates a magnetic field. Transformers work with alternating
current (currents that reverses its direction many times a second), so
the magnetic field surrounding the input coil is always changing. This
induces an electric field, which drives a current around the output coil.

Since the electric field is curly, an electron can keep gaining more
and more energy by circling through it again and again. Thus the output
voltage can be controlled by changing the number of turns of wire on
the output side. In any case, conservation of energy guarantees that
the amount of power on the output side must equal the amount put in
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originally,

(input current) × (input voltage) = (output current) × (output voltage)

so no matter what factor the voltage is reduced by, the current is in-
creased by the same factor. This is analogous to a lever. A crowbar
allows you to lift a heavy boulder, but to move the boulder a centimeter,
you may have to move your end of the lever a meter. The advantage in
force comes with a disadvantage in distance. It’s as though you were
allowed to lift a small weight through a large height rather than a large
weight through a small height. Either way, the energy you expend is the
same.

Fun with sparks example 9
Unplug a lamp while it’s turned on, and watch the area around the wall
outlet. You should see a blue spark in the air at the moment when the
prongs of the plug lose contact with the electrical contacts inside the
socket.

This is evidence that, as discussed on page 167, fields contain en-
ergy. Somewhere on your street is a transformer, one side of which
is connected to the lamp’s circuit. When the lamp is plugged in and
turned on, there’s a complete circuit, and current flows. as current flows
through the coils in the transformer, a magnetic field is formed — re-
member, any time there’s moving charge, there will be magnetic fields.
Because there is a large number turns in the coils, these fields are fairly
strong, and store quite a bit of energy.

When you pull the plug, the circuit is no longer complete, and the
current stops. Once the current has disappeared, there’s no more mag-
netic field, which means that some energy has disappeared. Conserva-
tion of energy tells us that if a certain amount of energy disappears, an
equal amount must reappear somewhere else. That energy goes into
making the spark. (Once the spark is gone, its energy remains in the
form of heat in the air.)

Electromagnetic waves

Theorist James Clerk Maxwell was the first to work out the prin-
ciple of induction (including the detailed numerical and geometric
relationships, which we won’t go into here). Legend has it that it
was on a starry night that he first realized the most important im-
plication of his equations: light itself is an electromagnetic wave,
a ripple spreading outward from a disturbance in the electric and
magnetic fields. He went for a walk with his wife, and told her
she was the only other person in the world who really knew what
starlight was.

aa / James Clerk Maxwell
(1831-1879)

The principle of induction tells us that there can be no such
thing as a purely electric or purely magnetic wave. As an electric
wave washes over you, you feel an electric field that changes over
time. By the principle of induction, there must also be a magnetic
field accompanying it. It works the other way, too. It may seem a
little spooky that the electric field causes the magnetic field while
the magnetic field causes the electric field, but the waves themselves
don’t seem to worry about it.
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The distance from one ripple to the next is called the wavelength
of the light. Light with a certain wavelength (about quarter a mil-
lionth of a meter) is at the violet end of the rainbow spectrum, while
light with a somewhat longer wavelength (about twice as long) is red.
Figure ab/1 shows the complete spectrum of light waves. Maxwell’s
equations predict that all light waves have the same structure, re-
gardless of wavelength and frequency, so even though radio and x-
rays, for example, hadn’t been discovered, Maxwell predicted that
such waves would have to exist. Maxwell’s 1865 prediction passed
an important test in 1888, when Heinrich Hertz published the re-
sults of experiments in which he showed that radio waves could be
manipulated in the same ways as visible light waves. Hertz showed,
for example, that radio waves could be reflected from a flat surface,
and that the directions of the reflected and incoming waves were
related in the same way as with light waves, forming equal angles
with the normal. Likewise, light waves can be focused with a curved,
dish-shaped mirror, and Hertz demonstrated the same thing with a
dish-shaped radio antenna.

direction of motion of wave
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ab / Panel 1 shows the electro-
magnetic spectrum. Panel
2 shows how an electromagnetic
wave is put together. Imagine that
this is a radio wave, with a wave-
length of a few meters. If you
were standing inside the wave
as it passed through you, you
could theoretically hold a com-
pass in your hand, and it would
wiggle back and forth as the mag-
netic field pattern (white arrows)
washed over you. (The vibra-
tion would actually be much to
rapid to detect this way.) Sim-
ilarly, you’d experience an elec-
tric field alternating between up
and down. Panel 3 shows
how this relates to the principle of
induction. The changing electric
field (black arrows) should create
a curly magnetic field (white). Is it
really curly? Yes, because if we
inserted a paddlewheel that re-
sponded to electric fields, the field
would make the paddlewheel spin
counterclockwise as seen from
above. Similarly, the changing
magnetic field (white) makes an
electric field (black) that curls in
the clockwise direction as seen
from the front.
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7.5 What’s Left?
One mark of wisdom is to know what it is that you don’t know. Now
that you’re at the end of this book, what you don’t know is, roughly
speaking, what physicists didn’t know in 1905. Here’s a bare-bones
outline of what’s missing from your education so far — just enough
of a taste, I hope, to convince you to take another physics course!

First of all, I’ve already warned you on page 147 that this book
basically ignores one main current in physics, which is reductionism.
I’ve frequently made use of the fact that matter is built out of atoms,
but that’s about it. Around 1905, physicists learned that atoms
were made out of nuclei and electrons. Shortly thereafter, they
found out that the nuclei were made out of protons and neutrons,
and not long after that they found out that neutrons and protons
were themselves not fundamental: they’re made of triplets of tinier
particles called quarks. If we keep breaking things into smaller and
smaller pieces, will we ever bottom out? We don’t know.9 By the
way, the astronomers now tell us that 90% of the matter in the
universe isn’t even atoms, so we have more mysteries to solve even
without breaking ordinary atomic matter down into smaller and
smaller pieces!

Physicists also learned that there was a new type of force, the
strong nuclear force, holding the quarks together to form the protons
and neutrons, and holding the neutrons and protons together to
form nuclei. Another type, the weak nuclear force, is responsible
for certain types of radioactive decay. At this stage, the list of
fundamental forces was like this: gravity, electromagnetism, strong
nuclear, weak nuclear. However, later investigations showed that
the weak nuclear force could be unified with electromagnetism in
the same way that electricity was unified with magnetism, resulting
in a single thing referred to as the electroweak force. The list is
therefore down to three interactions: gravitational, electroweak, and
strong nuclear. Many physicists would dearly love to get the three
down to one.

It might seem like everything was getting pretty tidy, but there
was this one crazy experimental fact that wouldn’t go away: some-
times, it seemed, physics was random. For instance, take two atoms
of the element uranium 238, which occurs naturally in the earth’s
crust. (The number 238 means that the number of protons plus the
number of neutrons equals 238.) This element undergoes radioac-
tive decay, but which atom will decay first? The answer is that we
can’t tell. It’s random. At first, physicists assumed that this ap-
parent randomness was just caused by some complicated unknown

9There’s a story about a wise sage who was asked what held up the earth.
“Elephants,” he replied, “it’s held up by elephants.” When he was interrogated
about what held up the elephants, he replied, “Ah, you’re tricky, very tricky,
but the answer is quite simple. It’s elephants all the way down!”
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mechanism inside the nucleus. Once the mechanism was under-
stood, everything would be perfectly predictable. Physicists wanted
to preserve their determinism, which they’d been cherishing ever
since Laplace’s famous claim in 1776 that “Given for one instant
an intelligence which could comprehend all the forces by which na-
ture is animated and the respective positions of the things which
compose it...nothing would be uncertain, and the future as the past
would be laid out before its eyes.”

As they dug deeper, however, they uncovered more randomness,
not less (much to the discomfort of Einstein, who kibitzed that he
could never believe God would “play dice”). Eventually they real-
ized that the randomness was not evidence of something distasteful
and complicated, but rather of something simple and beautiful. In
this chapter, we’ve developed a picture in which there are two types
of actors on the stage: particles and fields. Both can have energy,
and both can travel from place to place, but they seem fundamen-
tally different in many ways. Isn’t this a little ugly? The deeper,
more beautiful truth is that the particles are also fields, and the
fields are also particles. Just as light is a ripple, so is an electron!
(A ripple in what? Don’t ask — you won’t get a satisfying answer.)
You yourself are a wave, but your wave properties aren’t ordinar-
ily evident because you’re so big. A wave, for instance, has fuzzy
edges. Your body has fuzzy edges, but the fuzziness is on a micro-
scopic scale, so you don’t notice it. All the basic building blocks of
the universe are like this: they’re both waves and particles, at the
same time. It’s a little like Christian theology: Jesus is both fully
human and fully divine.

Here’s how this wave-particle dualism relates to randomness.
Suppose you’re sitting inside at night, next to a window with the
curtains open. People outside can see you, which means that their
eyes are getting light from your body. But you can also see your
own reflection in the window, which means that while a certain per-
centage of the light energy gets out, there’s also a certain percentage
that’s reflected back in. Waves always behave this way. For simplic-
ity, let’s imagine that 50% of the light is being reflected, while the
other 50% gets out.

But everything is both a wave and a particle, right? So a light
wave coming from your body to the window has a certain granularity
to it. It’s made out of little chunks, like a stream of bullets from a
machine gun. Now what if we send out a single light-particle all by
itself? Remember, it’s both fully waveish and fully particleful. Since
it’s a wave, it behaves like every law-abiding wave: when it hits the
window, it splits up into two weaker waves, each one carrying half
the energy. But wait — it’s also a particle. How can you have half
a particle? You can’t. This is where the randomness comes from.
The half-strength reflected wave represents a 50% probability that
the particle will be reflected, and likewise for the half-strength wave
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that gets through.

Now that I’ve told you what I’d known that you hadn’t, let me
finish up by telling you a question that nobody knows the answer
to. The wave-particle theory works great, and forms the theoretical
basis for such practical devices as the laser that makes your CD
player work. Relativity is also a highly successful theory. Special
relativity passed a vast number of experimental tests, and in recent
decades, so has general relativity, the version of the theory that
includes gravity. General relativity is programmed into GPS (the
global positioning system) for example. Now here’s the problem: as
far as we can tell, the wave-particle theory (called quantum mechan-
ics) is logically inconsistent with relativity. Nobody knows how to
reconcile them. This presumably means that they’re both only ap-
proximations to some deeper, underlying theory, but we don’t know
what that theory is. If we can find it, we’ll probably also learn the
answers to some intriguing questions. What did the universe look
like a gazillionth of a second after the big bang, and how did that
give rise to the universe we inhabit today, with its clusters of galax-
ies separated by vast oceans of emptiness? Is time travel possible?
What happens if you fall into a black hole?
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Problems
1 A hydrogen atom consists of an electron and a proton. For our
present purposes, we’ll think of the electron as orbiting in a circle
around the proton.

The subatomic particles called muons behave exactly like elec-
trons, except that a muon’s mass is greater by a factor of 206.77.
Muons are continually bombarding the Earth as part of the stream
of particles from space known as cosmic rays. When a muon strikes
an atom, it can displace one of its electrons. If the atom happens
to be a hydrogen atom, then the muon takes up an orbit that is
on the average 206.77 times closer to the proton than the orbit of
the ejected electron. How many times greater is the electric force
experienced by the muon than that previously felt by the electron?

Problems 2 and 3.

2 (a) Consider the waterfall metaphor introduced in figure f on
page 152, in which voltage differences are represented by height
differences. In this metaphor, how would you represent a piece of
wire?
(b) The figure shows a circuit containing five lightbulbs connected to
a battery. Suppose you’re going to connect one probe of a voltmeter
to the circuit at the point marked with a dot. How many unique,
nonzero voltage differences could you measure by connecting the
other probe to other wires in the circuit? Visualize the circuit using
the same waterfall metaphor.

Problem 3 is meant to be done after lab 7c.

3 The lightbulbs in the figure are all identical. If you were insert-
ing an ammeter at various places in the circuit, how many unique
currents could you measure? If you know that the current measure-
ment will give the same number in more than one place, only count
that as one unique current.

4 Albert Einstein wrote, “What really interests me is whether
God had any choice in the creation of the world.” What he meant by
this is that if you randomly try to imagine a set of rules — the laws of
physics — by which the universe works, you’ll almost certainly come
up with rules that don’t make sense. For instance, we’ve seen that
if you tried to omit magnetism from the laws of physics, electrical
interactions wouldn’t make sense as seen by observers in different
frames of reference; magnetism is required by relativity.

The magnetic interaction rules in figure r are consistent with the
time-reversal symmetry of the laws of physics. In other words, the
rules still work correctly if you reverse the particles’ directions of
motion. Now you get to play God (and fail). Suppose you’re going
to make an alternative version of the laws of physics by reversing
the direction of motion of only one of the eight particles. You have
eight choices, and each of these eight choices would result in a new
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set of physical laws. We can imagine eight alternate universes, each
governed by one of these eight sets. Prove that all of these mod-
ified sets of physical laws are impossible, either because the are
self-contradictory, or because they violate time-reversal symmetry.

5 Discussion question B on page 14 introduced the general concept
of an Ozma problem. Here is an Ozma problem for magnetism.
Suppose we establish communication with aliens, and we want to
tell them how we define the direction of the magnetic field. Can we
explain to them how to eliminate the ambiguities described on page
163? How is this related to the Ozma problems for charge and for
left and right?

6 The purpose of this problem is to show that the magnetic in-
teraction rules shown in figure r can be simplified by stating them
in terms of current. Recall that, as discussed in discussion question
A on page 158, one type of charge moving in a particular direction
produces the same current as the other type of charge moving in
the opposite direction. Let’s say arbitrarily that the current made
by the dark type of charged particle is in the direction it’s moving,
while a light-colored particle produces a current in the direction op-
posite to its motion. Redraw all four panels of figure r, replacing
each picture of a moving light or dark particle with an arrow show-
ing the direction of the current it makes. Show that the rules for
attraction and repulsion can now be made much simpler, and state
the simplified rules explicitly.

7 Physicist Richard Feynman originated a new way of thinking
about charge: a charge of a certain type is equivalent to a charge
of the opposite type that happens to be moving backward in time!
An electron moving backward in time is an antielectron — a par-
ticle that has the same mass as an electron, but whose charge is
opposite. Likewise we have antiprotons, and antimatter made from
antiprotons and antielectrons. Antielectrons occur naturally every-
where around you due to natural radiactive decay and radiation
from outer space. A small number of antihydrogen atoms has even
been created in particle accelerators!

Show that, for each rule for magnetic interactions shown in r, the
rule is still valid if you replace one of the charges with an opposite
charge moving in the opposite direction (i.e., backward in time).

8 Refer to figure w on page 165. Electrons have the type of charge
I’ve been representing with light-colored spheres.
(a) As the electrons in the beam pass over the top of the circle,
what is the direction of the force on them? Use what you know
about circular motion.
(b) From this information, use figure v on page 164 to determine the
direction of the magnetic field (left, right, up, down, into the page,
or out of the page).
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9 You can’t use a light wave to see things that are smaller than
the wavelength of the light.
(a) Referring to figure ab on page 172, what color of light do you
think would be the best to use for microscopy?
(b) The size of an atom is about 10−10 meters. Can visible light be
used to make images of individual atoms?

Stationary wave patterns on
a clothesline (problem 10).

10 You know how a microwave gets some parts of your food hot,
but leaves other parts cold? Suppose someone is trying to convince
you of the following explanation for this fact: The microwaves inside
the oven form a stationary wave pattern, like the vibrations of a
clothesline or a guitar string. The food is heated unevenly because
the wave crests are a certain distance apart, and the parts of the
food that get heated the most are the ones where there’s a crest in
the wave pattern. Use the wavelength scale in figure ab on page
172 as a way of checking numerically whether this is a reasonable
explanation.

11 This book begins and ends with the topic of light. Give an
example of how the correspondence principle applies here, referring
to a concrete observation from a lab.
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Lab 7a: Charge
Apparatus
scotch tape
rubber rod
heat lamp
fur
bits of paper

Goal
Determine the qualitative rules governing electrical
charge and forces.

Introduction
Newton’s law of gravity gave a mathematical for-
mula for the gravitational force, but his theory also
made several important non-mathematical state-
ments about gravity:

Every mass in the universe attracts every
other mass in the universe.

Gravity works the same for earthly objects
as for heavenly bodies.

The force acts at a distance, without any
need for physical contact.

Mass is always positive, and gravity is al-
ways attractive, not repulsive.

The last statement is interesting, especially be-
cause it would be fun and useful to have access to
some negative mass, which would fall up instead of
down (like the “upsydaisium” of Rocky and Bull-
winkle fame).

Although it has never been found, there is no theo-
retical reason why a second, negative type of mass
can’t exist. Indeed, it is believed that the nuclear
force, which holds quarks together to form protons
and neutrons, involves three qualities analogous to
mass. These are facetiously referred to as “red,”
“green,” and “blue,” although they have nothing
to do with the actual colors. The force between
two of the same “colors” is repulsive: red repels
red, green repels green, and blue repels blue. The
force between two different “colors” is attractive:
red and green attract each other, as do green and
blue, and red and blue.

When your freshly laundered socks cling together,
that is an example of an electrical force. If the
gravitational force involves one type of mass, and
the nuclear force involves three colors, how many
types of electrical “stuff” are there? In the days of

Benjamin Franklin, some scientists thought there
were two types of electrical “charge” or “fluid,”
while others thought there was only a single type.
In this lab, you will try to find out experimentally
how many types of electrical charge there are.

Observations
Stick a piece of scotch tape on a table, and then
lay another piece on top of it. Pull both pieces
off the table, and then separate them. If you now
bring them close together, you will observe them
exerting a force on each other. Electrical effects
can also be created by rubbing the fur against the
rubber rod.

Your job in this lab is to use these techniques
to test various hypotheses about electric charge.
The most common difficulty students encounter is
that the charge tends to leak off, especially if the
weather is humid. If you have charged an object
up, you should not wait any longer than necessary
before making your measurements. It helps if you
keep your hands dry.

A Repulsion and/or attraction
Test the following hypotheses. Note that they are
mutually exclusive, i.e. only one of them can be
true.

A1) Electrical forces are always attractive.

A2) Electrical forces are always repulsive.

A3) Electrical forces are sometimes attractive and
sometimes repulsive.

Interpretation: Once you think you have tested
these hypotheses fairly well, discuss with your in-
structor what this implies about how many differ-
ent types of charge there might be.

B Are there forces on objects that have
not been specially prepared?
So far, special preparations have been necessary
in order to get objects to exhibit electrical forces.
These preparations involved either rubbing objects
against each other (against resistance from fric-
tion) or pulling objects apart (e.g. overcoming the
sticky force that holds the tape together). In every-
day life, we do not seem to notice electrical forces
in objects that have not been prepared this way.

Now try to test the following hypotheses. Bits of
paper are a good thing to use as unprepared ob-
jects, since they are light and therefore would be
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easily moved by any force. Do not use tape as an
uncharged object, since it can become charged a
little bit just by pulling off the roll.

B1) Objects that have not been specially prepared
are immune to electrical forces.

B2) Unprepared objects can participate in electri-
cal forces with prepared objects, and the forces in-
volved are always attractive.

B3) Unprepared objects can participate in electri-
cal forces with prepared objects, and the forces in-
volved are always repulsive.

B4) Unprepared objects can participate in electri-
cal forces with prepared objects, and the forces in-
volved can be either repulsive of attractive.

Hypotheses B1 through B4 are mutually exclusive.

Interpretation: If you think your observations sup-
port a hypothesis other than B1, discuss with your
instructor whether the forces seem to obey the rule
given on page 102 about forces occurring in equal-
strength pairs, and discuss why an unprepared ob-
ject might participate in electrical forces.

C Rules of repulsion and/or attraction
and the number of types of charge
Test the following mutually exclusive hypotheses:

C1) There is only one type of electric charge, and
the force is always attractive.

C2) There is only one type of electric charge, and
the force is always repulsive.

C3) There are two types of electric charge, call
them X and Y. Like charges repel (X repels X and
Y repels Y) and opposite charges attract (X and
Y attract each other).

C4) There are two types of electric charge. Like
charges attract and opposite charges repel.

C5) There are three types of electric charge, X, Y
and Z. Like charges repel and unlike charges at-
tract.

The only way to keep all your observations straight
is to make a table, in which the rows and columns
correspond to the different objects you’re testing
against each other for attraction and repulsion. To
test C3 versus C5, you’ll need to see if you can
successfully explain your whole table by labeling
the objects with only two labels, X and Y.

Discuss your conclusions with your instructor.

D Creation, transfer, and/or conservation
of charge
Test the following mutually exclusive hypotheses:

D1) Charge can be created, destroyed, or trans-
ferred without any particular restrictions.

D2) Putting a certain type of charge on one object
always involves putting equal amounts of the other
type(s) of charge on some other object.

Discuss with your instructor whether your conclu-
sion can be put in the form of a conservation law.
Conservation laws in physics state that if you add
up how much there is of something in a closed sys-
tem, then that total amount can’t change as long
as the system stays closed.

You will revisit this issue, using a much more ac-
curate technique, in lab 7c.

Self-Check
The following are examples of incorrect reasoning
about this lab. As a self-check, it would be a very
good idea to figure out for yourself in each case why
the reasoning is logically incorrect or inconsistent
with Newton’s laws. You do not need to do this in
writing — it is just to help you understand what’s
going on. If you can’t figure some of them out, ask
your instructor before leaving lab.

(1) “The first piece of tape exerted a force on the
second, but the second did not exert a force on the
first.”

(2) “The first piece of tape repelled the second,
and the second attracted the first.”

(3) “I observed three types of charge: two that
exert forces, and a third, neutral type.”

(4) “The piece of tape that came from the top was
positive, and the piece from the bottom was nega-
tive.”

(5) “One piece of tape had electrons on it, and the
other had protons on it.”

(6) “I know there were two types of charge, not
three, because we observed two types of interac-
tions, attraction and repulsion.”

Writeup
Explain what you have concluded about electrical
charge and forces. Base your conclusions on your
data!
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Lab 7b: Electrical Measurements
Apparatus
banana-plug cables
alligator clips
DC power supplies
batteries
HP multimeters
2-amp fuses lightbulbs and sockets

Goal
Learn how to measure current and voltage.

Starting Out
Let’s start out by taking a battery, a lightbulb, and
two wires, and trying to make the bulb light up.
Note that the bulb has two metal contacts: one at
the tip, and another consisting of the metal screw
threads. Once you get it to work, draw a circuit
diagram.

See if you can get it to work by hooking things up
in different ways, and see if you can come up with
a statement about what conditions are necessary
in order to make it work:

In the rest of the lab, you’ll think about a circuit,
predict how it will behave, and then test your pre-
diction. Your prediction should say whether the
lightbulbs light up, and if you expect that a bulb
will be brighter or dimmer than normal, you should
also say that.

Measuring Voltage and Current

From now on, it will be more convenient to use the
DC power supply instead of the battery. While
you’re hooking up the circuit, turn the knob all the
way down. You can stick the banana-plug cables
directly into the top two terminals of the power
supply. (Don’t use the ground terminal at the bot-
tom, which isn’t meant to be a current-carrying
connection.) To connect them to the screw heads
on the lightbulb socket, use the alligator clips.

Turn up the power supply until you can just barely
see the lightbulb starting to glow. Use the volt-
meter to measure the voltage difference across the
lightbulb. A multimeter can be used to measure
either current or voltage. To measure voltage, put
the switch on a voltage scale, and connect wires
to the V and COM (common) plug. The common
plug is the one that’s always used for every type of
measurement, hence the name. Figure k on page
157 shows the right way to connect the meter to
the circuit. Record your data in the table on the
next page.

Does it make any difference if you touch the volt-
meter’s probes to the terminals of the power sup-
ply rather than the screwheads on the lightbulb
socket?

Now disconnect the multimeter from the circuit,
and change the switch so it’s on a current (amps)
scale. Use it to measure the current, as shown in
figure l on page 157. If you mess up, you may blow
a fuse in the meter. To avoid the hassle of replacing
the fuse, you may want to turn off the power sup-
ply while you set up for the measurement. When
you think you’re ready to go, look carefull at what
would happen to an electron that came out of the
power supply. Would it ever come to a fork in the
road and have a choice of whether to go through
the meter or the bulb? If so, then you’ve hooking
things in a way that won’t work, and that will blow
the fuse.

Now repeat the same set of measurements with the
voltage turned up higher, so the lightbulb glows
more brightly.
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voltage
(volts)

current
(amps)

resistance
(ohms)

Is it possible to find a single, consistent value for
the resistance of the lightbulb?
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Lab 7c: Is Charge Conserved?
Apparatus
wires
banana-plug cables
alligator clips
DC power supplies
multimeters
resistors

Goal
Find out whether charge is conserved.

In lab 7a, you made a crude test of whether charge
was conserved. In this lab, you’ll make an accurate
numerical test.

In the circuit diagram below, the zigzag lines rep-
resent resistors. Get two different resistors with
two different values, both in the kiloohm range,
and assemble the circuit.

a

b

At how many places in the circuit is it possible to
measure the current? Are any of the possibilities
redundant? Now go ahead and measure all these
currents.

Do your results support conservation of charge, or
not?

Notes: (1) The plus and minus signs of the current
readings on the meter are only meaningful if you
take into account which way the meter is hooked
into the circuit — if you reverse the meter’s two

connections, you’ll get the opposite sign. (2) Make
sure to record the units of the currents. Note that
the meter may read in units of µA (microamps),
mA (milliamps), or A (amps), depending on the
scale you’re using.
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Lab 7d: Circuits
This lab is based on one created by Virginia
Roundy.

Apparatus
batteries
lightbulbs and holders
wire
highlighting pens, 2 colors

Goal
Apply four methods of thinking about circuits.

Introduction
When you first glance at this lab, it may look scary
and intimidating — all those circuits! It’s not that
bad once you understand the symbols:

battery switch lightbulb

Also, all those wild-looking circuits can be ana-
lyzed using the following four guides to thinking:

1. A circuit has to be complete, i.e., it must be
possible for charge to get recycled as it goes around
the circuit. If it’s not complete, then charge will
build up at a dead end. This built-up charge will
repel any other charge that tries to get in, and
everything will rapidly grind to a stop.

2. There is constant voltage everywhere along a
piece of wire. To apply this rule during this lab,
I suggest you use the colored highlighting pens to
mark the circuit. For instance, if there’s one whole
piece of the circuit that’s all at the same voltage,
you could highlight it in yellow. A second piece of
the circuit, at some other voltage, could be high-
lighted in blue.

3. Charge is conserved, so charge can’t “get used
up.”

4. When in doubt, use a rollercoaster diagram, like
the one shown below. On this kind of diagram,
height corresponds to voltage — that’s why the
wires are drawn as horizontal tracks.

battery bulb

wire

wire

A Bulb and a Switch
Look at circuit 1, and try to predict what will hap-
pen when the switch is open, and what will happen
when it’s closed. Write both your predictions be-
low before you build the circuit. When you build
the circuit, you don’t need an actual switch like a
light switch; just connect and disconnect the ba-
nana plugs.

Circuit 1
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switch open
prediction
explanation

observation
explanation
(if different)

switch closed
prediction
explanation

observation
explanation
(if different)

Did it work the way you expected? If not, try
to figure it out with the benefit of hindsight, and
write your explanation in the table above.

Circuit 2 (Don’t leave the switched closed for a
long time!)

switch open
prediction
explanation

observation
explanation
(if different)

switch closed
prediction
explanation

observation
explanation
(if different)
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Circuit 3

switch open
prediction
explanation

observation
explanation
(if different)

switch closed
prediction
explanation

observation
explanation
(if different)

Circuit 4

switch open
prediction
explanation

observation
explanation
(if different)

switch closed
prediction
explanation

observation
explanation
(if different)
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Two Bulbs
Try a rollercoaster diagram on this one!

Circuit 5

bulb a
prediction
explanation

observation
explanation
(if different)

bulb b
prediction
explanation

observation
explanation
(if different)

Circuit 6

bulb a
prediction
explanation

observation
explanation
(if different)

bulb b
prediction
explanation

observation
explanation
(if different)

Lab 7d: Circuits 189



Two Batteries
Circuits 7 and 8 are both good candidates for
rollercoaster diagrams.

Circuit 7

prediction
explanation

observation
explanation
(if different)

Circuit 8

prediction
explanation

observation
explanation
(if different)

A Final Challenge

Circuit 9

bulb a
prediction
explanation

observation
explanation
(if different)
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bulb b
prediction
explanation

observation
explanation
(if different)
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Lab 7e: Electric Fields
Apparatus
board and U-shaped probe ruler
DC power supply (Thornton)
multimeter
scissors
stencils for drawing electrode shapes on paper

Goal
To be better able to visualize electric fields and
understand their meaning.

Introduction
The gravitational field is something we experience
every day, but the electric field isn’t usually quite
as dramatic, except if you happen to get caught
outside in a thunderstorm! Visualizing the electric
field is more of a challenge, because we don’t feel
it physically, and it’s also not usually uniform, as
the gravitational field approximately is.

Let’s imagine a method for measuring the gravita-
tional field. First you pick a certain point in space,
let’s say a point on the ceiling. Then you try to
locate all the other points where an object would
have the same gravitational energy. You’ll find out
that the all the other points on the ceiling have this
property; a mass can be moved from any point on
the ceiling to any other point without having to
work against gravity. We call this an equal-energy
surface.

Next, we drop a 1-kg mass from the ceiling, and
watch how far it has to fall before it’s converted
one joule worth of its gravitational energy into ki-
netic energy. Since the earth’s gravitational field
is about 10 (in units of joules per kilogram per
meter), this will happen when the mass has fallen
about 1/10 of a meter. This new point is part of
a new equal-energy surface 1/10 of a meter below
the ceiling. We could continue this way until we’d
constructed enough equal-energy surfaces to reach
the floor; they’d be like the layers of a cake.

Note how the field’s strength is related to the dis-
tance between the equal-energy surfaces. Since the
field’s strength is a relatively big number, 10, the
distance between the equal-energy surfaces is a rel-
atively small number, 1/10. In general, the greater
the field strength, the closer the spacing between
the surfaces. If you’ve ever gone hiking and used
a topographical map, the concept is similar: the

closer together the contour lines are, the steeper
the slope.

Each contour line on the map represents a set of
points that are all at the same elevation. Where
the contour lines are close together, the slope is
steep. Notice how the streams run perpendicular
to the contour lines. (19th century USGS map)

That tells us the strength of the field, but what
about the direction? As suggested by the streams
in the figure, the direction of the field is perpen-
dicular to the equal-energy surfaces.

This is essentially what you’re going to do in
this lab using electrical fields, with a few differ-
ences. One difference is that rather than releas-
ing a charged particle from point A and watch-
ing it accelerate to point B — not very practi-
cal! — you’ll send it from point A through a
voltmeter to point B. The other difference is that
the experiment will be two-dimensional, not three-
dimensional, so you’ll end up with a flat map very
much like the figure above.

Method
Turn your board upside down. Find the board
with pattern 1 on it, and screw it to the under-
side of the board, with the black side facing out-
ward. Now connect the voltage source (using the
provided wires) to the two large screws on either
side of the board. Adjust the voltage source to give
8 volts.

Once you turn this voltage on, charges flow be-
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1 2

3 4

You’ll use pattern 1 plus one other pattern. The
dark areas represent parts of the board that are
conductive.

tween the connections on the field plate under the
board. Two of the conductors in your pattern are
connected directly to the voltage source, so these
will be two of your constant-voltage curves, differ-
ing from each other by 8 volts. You can select one
of these as your reference voltage level, so it is by
definition at V = 0 V, and other is at V = 8 V.
One of the probes of your voltmeter can be con-
nected to the 0-V conductor indirectly, simply by
connecting it to the appropriate terminal of the
voltage supply.

Now look at your U-probe. It has a conductor
at the end of the bottom part and a wire go-
ing through the bottom part that connects to the
screw at the back end of it. It also has a hole in the
end of the top part that is directly above the end
conductor on the bottom. You will be connecting
one side of the voltmeter to the screw on the U-
probe and the other to a fixed reference point of
your choice.

Place a sheet of paper on the board. If you press
down on the board, you can slip the paper between
the board and the four buttons you see at the cor-
ners of the board. Now put the U-probe in place
so that the top is above the board and the bottom
of it is below the board. You will first be looking
for places on the pattern board where the voltage
is one volt — look for places where the meter reads
1.0 and mark them through the hole on the top of
your U-probe with a pencil or pen. You should find
a whole bunch of places there the voltage equals
one volt, so that you can draw a nice equal-energy
curve connecting them. (If the line goes very far or
curves strangely, you may have to do more.) You
can then repeat the procedure for 2 V, 3 V, and so

on. Label each constant-voltage curve.

Draw the electric field using arrows, with longer
arrows to represent stronger fields.

Repeat this procedure with another pattern.
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Lab 7f: Magnetic Fields
Apparatus
bar magnet
old computer monitor
coil of wire (solenoid)
DC power supply
magnetic compass
2 neodymium magnets
1 tiny neodymium magnet
index cards
vacuum tube (Nakamura EM-1N)

Goals
Observe magnetic field patterns.

Discover the laws of nature governing
sources and sinks in the magnetic field.

A Deflecting a beam of electrons
Position the bar magnet as suggested in the fig-
ure, to the left of some identifying point on the
monitor such as the mouse cursor. Use a monitor
that your instructor has designated — some types
of monitors may be permanently damaged by this
experiment! Mark the top end of the magnet with
some masking tape so you won’t forget which way
you held it.

The first thing you’ll notice is that the screen
breaks out in psychedelic colors. The moving
charges inside the magnet are interacting with the
moving charges in the beam of electrons shooting
from the back of the tube to the front. The phos-
phor coating inside a color monitor consists of red,
green, and blue dots, and the beam isn’t hitting
the dots it normally would. Once you get done
admiring the pretty colors, the point here is to ob-
serve the direction in which the beam is deflected.
Is it attracted to the magnet, repelled by it, or
deflected up or down?

Now think about — but don’t yet do! — the fol-
lowing experiment. What do you think will hap-
pen if you bring the magnet over to the right side?

OK, now try it. What really happened?

B Two more examples
The setup with the computer monitor can be a lit-
tle awkward, because you can’t stick your hand in-
side the tube, near the beam. I’ll keep on drawing
that setup, but there’s another one that you may
find more convenient. In this alternative setup,
we have a smaller bulb-shaped vacuum that isn’t
hidden inside a plastic box like the computer mon-
itor. The beam goes up rather than horizontally
as it comes out of the gun, but other than that it’s
very similar to the monitor. (You’ll have to imag-
ine all of the figures in the lab manual as views
from above the tube.) With this setup, you need
to be careful not to magnetize the metal parts in-
side the tube, so use one of the tiny neodymium
magnets, the size of a ladybug. Even though these
magnets are relatively small and weak, you can de-
flect the beam a lot with them, because the setup
allows you to place the magnet close to the beam.
Tape it on the end of a pencil like this:

Now bring the magnet in from above and below:
above:
below:

Confusing, isn’t it?

C The left-hand rule
Now let’s try to make some sense out of your data.
As suggested by the figure below, you’ve probed
the magnetic field in four regions near the magnet.
For instance, when you held the magnet to the
left of the beam, you were finding out about the
magnetic field to the magnet’s right.

Now a magnetic field, unlike an electric or grav-
itational field, doesn’t lie along the same line as
the force it creates. First, in the diagram above,
organize your information about the directions of
the forces.
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Record the directions of the forces you observed.

Infer the directions of the magnetic fields.

Now use figure v on page 164 to figure out the di-
rection of the bar magnet’s field in each of these
regions, and draw arrows in the boxes to represent
those directions. Note that there are two differ-
ent geometric rules, one for each type of charge.
For our purposes it doesn’t really matter which
type of charge we assume an electron has, but to
make life easier for your instructor, let’s all be con-
sistent: assume that the electrons have a charge
corresponding to the lighter-colored particle in the
diagram, so that you’re using the left-hand rule,
not the right-hand one.

Suppose someone tells you that this supposed mag-
net really isn’t a magnet at all — it’s simply a piece
of metal with some electric charge on it. This per-
son claims that the forces you’re observing are re-
ally electrical, not magnetic. Try to evaluate this
claim based on the data you already have:

D Checking with a compass
Use the magnetic compass to check the field pat-
tern you’ve inferred above. You may also be inter-
ested in finding out what the magnetic field does
in regions you haven’t mapped. For instance, what

do you think the field would be like in the region
diagonally above the magnet and to its right?

E Charge going in circles
If you believe figure u/2 on page 163, then the bar
magnet has little charges inside it going around in
circles. How do you know this isn’t just a fairy
tale? One good way to test this claim would be to
observe the magnetic field made by an electric cur-
rent going around a circular loop of wire, and see
if it resembles the field pattern of the bar magnet.
Another interesting possibility is to investigate the
field pattern inside the loop — there was no way
to probe the magnetic field inside the bar magnet!

It turns out that you need quite a large amount
of current to get a measurable field from a single
loop of wire. Rather than using large currents, and
risking killing off too many students, we’ll make a
stronger field by using a spool of wire with hun-
dreds of turns on it. This is known as a solenoid.
Hook up the solenoid to the power supply to form
a complete circuit. (Don’t use the ground plug at
the bottom of the power supply — it’s not meant to
be a current-carrying connection.) You can crank
up the current all the way. 10

The blank figure above is for you to record your
observations. Lay the coil on the desk so that it’s
oriented like a tunnel (not like a coffee mug). Note
that the compass can only respond to horizontal

10To start out with, you may enjoy playing with the
neodymium magnet in the space in and around the
solenoid. Fun!
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magnetic fields. Therefore you can only probe
the magnetic field in the horizontal plane cutting
through the center of the coil, where we know by
symmetry that the magnet’s field is purely hori-
zontal. (Since the coil has symmetry with respect
to rotation about its central axis, determining the
field in this plane also suffices to determine its field
everywhere in space.)

Map out the field. Does the field outside the coil
make the same kind of pattern as the one you ob-
served with the bar magnet?

F Sources and sinks?
An important feature of any field is its sources and
sinks. A sink is where all the field arrows converge
on one point, like water going down the drain —
the earth is a sink of the gravitational field. A
source is the same thing, but in reverse. The two
types of charge form the sources and sinks of the
electric field.

We can now imagine two possible hypotheses:

1. The magnetic field has sources and sinks. For
example, one pole of a bar magnet is a source, and
the other is a sink.

2. The magnetic field has no sources or sinks.

Think about how your data from the bar magnet
and the coil relate to this. You’ll see that there’s
a bit of ambiguity, since you can’t probe the field
inside the bar magnet, so we don’t know how anal-
ogous it is to the solenoid.

Here’s one way to get at this issue. Take two
neodymium magnets, and, being careful not to
pinch your skin or chip the magnets, let them come
together with a small scrap of cardboard between
them. The cardboard helps to avoid chipping the
magnets, and also makes it easier to get them apart
afterward. Use the compass to map the external
field of this double magnet. Does it look like the
field of the bar magnet? By separating them again,
do you get one sink and one source?

What do you think would happen if you broke the
bar magnet in half?

From these observations, what do you conclude
about the sources and sinks of the magnetic field?
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Lab 7g: Induction
Apparatus
solenoid (Heath) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
oscilloscope (HP1222A in rm. 418) . . . . . . . . . . . . .1
2-meter wire with banana plugs . . . . . . . . . . . . . . . . 1
neodymium magnets
masking tape

Goals
Observe electric fields induced by changing
magnetic fields.

Build a generator.

Discover Lenz’s law.

Introduction
Physicists hate complication, and when physicist
Michael Faraday was first learning physics in the
early 19th century, an embarrassingly complex as-
pect of the science was the multiplicity of types
of forces. Friction, normal forces, gravity, electric
forces, magnetic forces, surface tension — the list
went on and on. Today, 200 years later, ask a
physicist to enumerate the fundamental forces of
nature and the most likely response will be “four:
gravity, electromagnetism, the strong nuclear force
and the weak nuclear force.” Part of the sim-
plification came from the study of matter at the
atomic level, which showed that apparently unre-
lated forces such as friction, normal forces, and
surface tension were all manifestations of electri-
cal forces among atoms. The other big simpli-
fication came from Faraday’s experimental work
showing that electric and magnetic forces were in-
timately related in previously unexpected ways, so
intimately related in fact that we now refer to the
two sets of force-phenomena under a single term,
“electromagnetism.”

Even before Faraday, Oersted had shown that
there was at least some relationship between elec-
tric and magnetic forces. An electrical current cre-
ates a magnetic field, and magnetic fields exert
forces on an electrical current. In other words, elec-
tric forces are forces of charges acting on charges,
and magnetic forces are forces of moving charges
on moving charges. (Even the magnetic field of a
bar magnet is due to currents, the currents created
by the orbiting electrons in its atoms.)

Faraday took Oersted’s work a step further, and
showed that the relationship between electricity

and magnetism was even deeper. He showed that
a changing electric field produces a magnetic field,
and a changing magnetic field produces an electric
field. Faraday’s work forms the basis for such tech-
nologies as the transformer, the electric guitar, the
amplifier, and generator, and the electric motor.

Qualitative Observations
In this lab you will use a permanent magnet to pro-
duce changing magnetic fields. This causes an elec-
tric field to be induced, which you will detect using
a solenoid (spool of wire) connected to an oscillo-
scope. The electric field drives electrons around
the solenoid, producing a current which is detected
by the oscilloscope.

A A changing magnetic field
Do you detect any signal when you move the mag-
net or wiggle it inside the solenoid or near it? What
happens if you change the speed at which you move
the magnet?

B A constant magnetic field
Do you detect any signal on the oscilloscope when
the magnet is simply placed at rest inside the
solenoid? Try the most sensitive voltage scale.

C Moving the solenoid
What happens if you hold the magnet still and
move the solenoid?

D A generator
Tape the magnet securely to the eraser end of a
pencil so that its flat face (one of its two poles) is
like the head of a hammer. Spin the pencil near
the solenoid and observe the induced signal. You
have built a generator. (I have unfortunately not
had any luck lighting a lightbulb with the setup,
due to the relatively high internal resistance of the
solenoid.)

Trying Out Your Understanding
E Changing the speed of the generator
If you change the speed at which you spin the pen-
cil, you will of course cause the induced signal to
oscillate more rapidly (less time for each oscilla-
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tion). Does it also have any effect on the strength
of the effect?

F Dependence on distance
How does the signal picked up by your generator
change with distance?

Try to explain what you have observed, and discuss
your interpretations with your instructor.

G A solenoid with fewer loops
Use the two-meter cable to make a second solenoid
with the same diameter but fewer loops. Compare
the strength of the induced signals.
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Lab 7h: Light Waves
Apparatus
helium-neon laser1/group
optical bench with posts & holders . . . . . 1/group
double slits, 0.05 cm (Klinger) . . . . . . . . . . 1/group
rulers
meter sticks
tape measures

Goals
Observe evidence for the wave nature of
light.

Determine the wavelength of red light
(specifically, the color emitted by the laser),
by measuring a double-slit diffraction pat-
tern.

Isaac Newton’s epitaph, written by Alexander
Pope, reads:

Nature and Nature’s laws lay hid in night.

God said let Newton be, and all was light.

Notwithstanding Newton’s stature as the greatest
physical scientist who ever lived, it’s a little ironic
that Pope chose light as a metaphor, because it was
in the study of light that Newton made some of
his worst mistakes. Newton was a firm believer in
the dogma, then unsupported by observation, that
matter was composed of atoms, and it seemed logi-
cal to him that light as well should be composed of
tiny particles, or “corpuscles.” His opinions on the
subject were so strong that he influenced genera-
tions of his successors to discount the arguments
of Huygens and Grimaldi for the wave nature of
light. It was not until 150 years later that Thomas
Young demonstrated conclusively that light was a
wave.

In this lab, you’ll do an experiment similar to
Young’s, but with modern equipment to make
things easier. To understand how it works, let’s
consider an analogy with water waves. Figure ??
shows what happens when water waves encounter
a barrier with two gaps in it: beyond the barrier,
there are two overlapping sets of ripples, which
form a fan pattern. (This is a real photo, but doc-
tored slightly in order to make the fan pattern eas-
ier to see — in reality, most of the wave energy is
wasted when the wave pattern hits the barrier, and
the amount of energy that gets through the slit is
relatively small.) Along the center line, the crests
of the ripples from the left-hand hole coincide with

the crests of those coming from the one on the
right, making double-height waves. Similarly, the
troughs coincide with the troughs, making troughs
of double depth. A bug, standing on the surface of
the water along this center line, would experience
strong up and down motion. The reason that crests
reinforce crests and troughs reinforce troughs along
this line is that at any given point along the line,
the waves coming from the two holes have had to
travel an equal number of wavelengths. At the
point marked A, for example, we have a double-
height wave crest formed by coinciding waves that
have each had to travel 15 wavelengths from the
holes where they originated. It’s as though two sol-
diers set out marching from the holes, both heading
for this spot. Each one has performed the cycle of
“left-right” fifteen times, so they’re on the same
foot when they meet up.

This explains why there is strong wave motion
along the center line, but what about the lines of
strong wave motion coming out at other angles?
These are the ones where the soldiers have taken
a different number of steps, but are nevertheless
on the same foot. For instance, point C lies 16
wavelengths from the left-hand hole, and 15 wave-
lengths from the right one.

In between the wedge-shaped regions of strong
wave motion, we have lines along which the pic-
ture is a uniform gray. There is no up-and-down
vibration at a point along these lines. For instance,
point B lies 15.5 wavelengths from the left-hand
hole, and 14 wavelengths from the right one. Here,
the soldiers meet up, and one is on his left foot
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while the other is on his right. The crest of one
wave coincides with the trough of the other, and
they cancel out.

Now let’s think about how this would work with
light waves. It’s obvious that the water waves
are waves, because you can just look at them and
see the crests and troughs. As time goes on, you
see the crests and troughs travel across the water.
With light waves, however, this kind of direct ob-
servation won’t work, and that’s why it was pos-
sible for Newton and his successors to be misled
about the true wave nature of light. Not only is
the wavelength of a light wave microscopic in scale,
but the waves travel through space at hundreds of
thousands of kilometers per second. Not only that,
but we don’t normally see light traveling through
the air unless there’s something in the air to reflect
some of the light. For instance, you can see a car’s
headlight beams in a fog, but when the air is clear,
all you see is the spots where they hit the road,
because the road is the only thing that can reflect
light back to your eyes.

That’s why the overlapping-ripples type of experi-
ment is useful here. With light waves, one can for
example let the fan pattern hit a piece of paper; the
paper’s location would correspond to the top edge
of the picture of the water waves. A point, such as
the one at the center, that experiences strong wave
motion will be steadily illuminated, while the gaps
in between will be dark. This will not only con-
firm the wave nature of light, but it will also end
up giving you a way to determine the wavelength
of visible (red) light.

Observations
Set up your laser on your optical bench. Put the
double slit in the beam, and observe the pattern of
dark and bright spots on the wall across the room.
You should see something like the pattern shown
in the figure on page 201.

Measure the distance from the slits to the wall, and
measure the spacing of the light and dark pattern.
Also, write down the center-to-center distance be-
tween the slits, which is printed on them.

Analysis
In the photo of the water waves, the fan pattern
consisted of wedges, each of which made a certain
angle. Your first job is to figure out what that
angle was in the laser experiment. For instance, if
the spacing of the pattern on the wall was 1/100
of the diameter of the imaginary circle, then the
angle at the tip of the long, skinny pie slice would

laser and
slits

wall

be 1/100 of a full circle, or 3.60 degrees. In general,
you can set this up as a proportionality,

spacing of pattern
circumference of circle

=
angle
360 ◦ .

If you didn’t remember that the circumference of
a circle equals 2π times its radius, feel free to flag-
ellate yourself now.

Now we have three things that are related: (1) the
angle you’ve just calculated; (2) the distance be-
tween the slits, which you know; and (3) the wave-
length of the light, which you want to find out. As
shown in the figure above, a smaller spacing be-
tween the slits actually causes a bigger angle. Since
all the reasoning is purely geometric, the angle also
can’t change if we shrink or enlarge the whole dia-
gram uniformly. For example, if we doubled both
the distance between the slits and the wavelength,
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the result would be the same picture, just enlarged
to twice the scale. Since the angle decreases with
the slit distance, and depends only on the ratio
between the slit distance and the wavelength, we
must have a relationship of the form

angle = constant × wavelength
slit distance

,

where the constant out in front only has to be de-
termined once and for all from one example. If
you measure carefully with a ruler and protractor
on the second example in the diagram on page 201,
you’ll find that the angle is 26 ◦, the wavelength is
2 mm, and the slit distance is 5 mm, so we find that
the constant is about 60 (26 ≈ 60× 2/5). To solve
for the wavelength of the light, we multiply both
sides by the slit distance, and divide both sides by
the constant, 60, giving

wavelength ≈ angle × slit distance
60

.

You can now use this equation to determine the
wavelength of the red light from the laser.
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This spacing is the one you want to
measure.  It is related to the center-to-

center distance between the slits.

If your screen is  too close to the slits, the finer pattern may be
invisible, and this spacing may be all you see. This larger spacing 

is related to the width of the slits, not to the distance between them.
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Lab 7i: Electron Waves
Apparatus
(two setups available)
cathode ray tube (Leybold 555 626)
high-voltage power supply (new Leybold)
100-kΩ resistor with banana-plug connectors

Goals
Observe evidence for the wave nature of elec-
trons.

Determine whether an increase in an elec-
tron’s speed lengths its wavelength, or short-
ens it.

The most momentous discovery in physics during
the last century was that matter behaves as both
a particle and a wave. Electrons are one of the
basic particles that matter is made of, and in this
lab you’ll see evidence that they behave not just
as particles, but also as waves.

Conceptually, the experiment is very similar to lab
h. As shown in the figure on the following page,
what you are working with is basically the same
kind of vacuum tube as the picture tube in your
television. As in a TV, electrons are accelerated
through a voltage and shot in a beam to the front
(big end) of the tube, where they hit a phospho-
rescent coating and produce a glow. You cannot
see the electron beam itself. There is a very thin
carbon foil (it looks like a tiny piece of soap bub-
ble) near where the neck joins the spherical part
of the tube, and the electrons must pass through
the foil before crossing over to the phosphorescent
screen.

The purpose of the carbon foil is to act sort of
like the double slit in lab h. Because the wave-
lengths of the electrons are so short, we need a slit
spacing that is on the same order of magnitude as
the size of an atom. In this lab, the slits are the
gaps between the carbon atoms themselves! The
atoms in a graphite crystal are arranged in a com-
plicated hexagonal pattern, and the foil contains
many tiny graphite crystals, each with its hexago-
nal lattice oriented randomly in three dimensions.
The resulting pattern of light and dark is therefore
not quite the same as the one you got with a simple
double slit, but it’s conceptually similar. You’ll see
a bright spot at the center of the tube, which cor-
responds to the bright central spot you saw with
the laser. Surrounding it, you’ll see two somewhat

fainter rings; these correspond to the spots of light
on either side of the central spot made with the
laser. The angles of these two rings with respect
to the central axis of the tube are related to the
spacings between the atoms labeled d1 and d2 in
the figure.

d1=0.213 nm

d2=0.123 nm

The carbon atoms in the graphite crystal are ar-
ranged hexagonally. The distances between the
atoms can be measured in units of nanometers
(nm), one nanometer being a billionth of a meter.
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Answers to Self-Checks for Chapter 7

Page 150, self-check A: The second river is shallower, but is
flowing more rapidly. Although there is a smaller amount of water
in the second picture, it will take less time to flow “off stage,” so
the ratio of water divided by time is the same in the two pictures.
Similarly, 1

2 and 2
4 represent the same number. Page 170, self-

check B: Unless the engine is already turning over, the permanent
magnet isn’t spinning, so there is no change in the magnetic field.
Only a changing magnetic field creates an induced electric field.
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Appendix 1: Photo Credits

Except as specifically noted below or in a parenthetical credit in the
caption of a figure, all the illustrations in this book are under my
own copyright, and are copyleft licensed under the same license as
the rest of the book.

In some cases it’s clear from the date that the figure is public
domain, but I don’t know the name of the artist or photographer; I
would be grateful to anyone who could help me to give proper credit.
I have assumed that images that come from U.S. government web
pages are copyright-free, since products of federal agencies fall into
the public domain. When “PSSC Physics” is given as a credit, it
indicates that the figure is from the second edition of the textbook
entitled Physics, by the Physical Science Study Committee; these
are used according to a blanket permission given in the later PSSC
College Physics edition, which states on the copyright page that
“The materials taken from the original and second editions and the
Advanced Topics of PSSC PHYSICS included in this text will be
available to all publishers for use in English after December 31, 1970,
and in translations after December 31, 1975.”

In a few cases, I have made use of images under the fair use
doctrine. However, I am not a lawyer, and the laws on fair use are
vague, so you should not assume that it’s legal for you to use these
images. In particular, fair use law may give you less leeway than
it gives me, because I’m using the images for educational purposes,
and giving the book away for free. Likewise, if the photo credit says
“courtesy of ...,” that means the copyright owner gave me permission
to use it, but that doesn’t mean you have permission to use it.

9 Emmy Noether: I do not know who the photographer was. Based
on Noether’s apparent age, the portrait must have been taken
around 1900 or 1910, so it is presumably in the public domain.
9 Whirlpool galaxy: N. Scoville et al., NASA and The Hubble
Heritage Team (STScI/AURA). Not copyrighted. 10 Saturn:
French, Cuzzi, Dones, and Lissauer, NASA and The Hubble
Heritage Team (STScI/AURA). Not copyrighted. 12 Star trails:
GFDL licensed, Wikipedia user Manfreeed. 13 Harrison Schmidt
on the moon: NASA Photo ID: AS17-140-2149. Not copyrighted.
28 Portrait of Galileo Galilei: Justus Sustermans, 1636. 29
Io: Voyager 1 image, NASA. Not copyrighted. 32 Astronauts
on Mercury and Ganymede: Uncopyrighted Apollo 11 images,
doctored by the author. 40 Refraction of water waves: PSSC
Physics. 49 Telescope: Line art by the author. Image of the



moon from Apollo 13, NASA, not copyrighted. 61 Pool skater:
Courtesy of J.D. Rogge, from www.sonic.net/∼shawn. 62
Portrait of Monsieur Lavoisier and His Wife: Jacques-Louis David,
1788. 63 Earth seen from Apollo 11: Nasa photo ID AS11-
36-5355. Not copyrighted. 64 Hoover Dam: U.S. Department
of the Interior, Bureau of Reclamation, Lower Colorado Region.
66,66,67 Infrared photographs: Courtesy of M. Vollmer and K.P.
Möllmann, Univ. Appl. Sciences, Brandenburg, Germany, www.fh-
brandenburg.de/∼piweb/projekte/thermo galerie eng.html. 70
Isaac Newton: Portrait by Godfrey Kneller. 93 Rocket
sled: U.S. Air Force, not copyrighted. 94 Foucault pendu-
lum: Contemporary. 94 Trial of Galileo: Cristiano Banti,
1857. ?? Einstein: “Professor Einstein’s Visit to the United
States,” The Scientific Monthly 12:5 (1921), p. 483, public do-
main. 131 Colliding nuclei: Courtesy of RHIC. 143 Sunspot:
Royal Swedish Academy of Sciences. The astronomers’ web page at
http://www.solarphysics.kva.se/NatureNov2002/press images eng.html
states “All images are free for publication.”. 146 Millikan: con-
temporary. ?? Double-slit diffraction pattern of water waves:
Collage made from PSSC Physics photos.
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