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Preface 1

PREFACE

Welcome to University Physics, an OpenStax resource. This textbook was written to increase student access to high-quality
learning materials, maintaining highest standards of academic rigor at little to no cost.

About OpenStax

OpenStax is a nonprofit based at Rice University, and it’s our mission to improve student access to education. Our first
openly licensed college textbook was published in 2012 and our library has since scaled to over 25 books used by hundreds
of thousands of students across the globe. OpenStax Tutor, our low-cost personalized learning tool, is being used in college
courses throughout the country. The OpenStax mission is made possible through the generous support of philanthropic
foundations. Through these partnerships and with the help of additional low-cost resources from our OpenStax partners,
OpenStax is breaking down the most common barriers to learning and empowering students and instructors to succeed.

About OpenStax's resources
Customization

University Physics is licensed under a Creative Commons Attribution 4.0 International (CC BY) license, which means
that you can distribute, remix, and build upon the content, as long as you provide attribution to OpenStax and its content
contributors.

Because our books are openly licensed, you are free to use the entire book or pick and choose the sections that are most
relevant to the needs of your course. Feel free to remix the content by assigning your students certain chapters and sections
in your syllabus in the order that you prefer. You can even provide a direct link in your syllabus to the sections in the web
view of your book.

Instructors also have the option of creating a customized version of their OpenStax book. The custom version can be made
available to students in low-cost print or digital form through their campus bookstore. Visit your book page on OpenStax.org
for more information.

Errata

All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook, errors
sometimes occur. Since our books are web based, we can make updates periodically when deemed pedagogically necessary.
If you have a correction to suggest, submit it through the link on your book page on OpenStax.org. Subject matter experts
review all errata suggestions. OpenStax is committed to remaining transparent about all updates, so you will also find a list
of past errata changes on your book page on OpenStax.org.

Format

You can access this textbook for free in web view or PDF through OpenStax.org, and for a low cost in print.

About University Physics

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed
to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics,
science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and
understand how those concepts apply to their lives and to the world around them.

Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency.
Coverage and scope

Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses
nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical
rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged
to provide a logical progression from fundamental to more advanced concepts, building upon what students have already
learned and emphasizing connections between topics and between theory and applications. The goal of each section is
to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and
future careers. The organization and pedagogical features were developed and vetted with feedback from science educators
dedicated to the project.
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Chapter 2: Geometric Optics and Image Formation
Chapter 3: Interference
Chapter 4: Diffraction
Unit 2: Modern Physics
Chapter 5: Relativity
Chapter 6: Photons and Matter Waves
Chapter 7: Quantum Mechanics
Chapter 8: Atomic Structure
Chapter 9: Condensed Matter Physics
Chapter 10: Nuclear Physics
Chapter 11: Particle Physics and Cosmology
Pedagogical foundation

Throughout University Physics you will find derivations of concepts that present classical ideas and techniques, as well
as modern applications and methods. Most chapters start with observations or experiments that place the material in a
context of physical experience. Presentations and explanations rely on years of classroom experience on the part of long-
time physics professors, striving for a balance of clarity and rigor that has proven successful with their students. Throughout
the text, links enable students to review earlier material and then return to the present discussion, reinforcing connections
between topics. Key historical figures and experiments are discussed in the main text (rather than in boxes or sidebars),
maintaining a focus on the development of physical intuition. Key ideas, definitions, and equations are highlighted in
the text and listed in summary form at the end of each chapter. Examples and chapter-opening images often include
contemporary applications from daily life or modern science and engineering that students can relate to, from smart phones
to the internet to GPS devices.

Assessments that reinforce key concepts

In-chapter Examples generally follow a three-part format of Strategy, Solution, and Significance to emphasize how to
approach a problem, how to work with the equations, and how to check and generalize the result. Examples are often
followed by Check Your Understanding questions and answers to help reinforce for students the important ideas of the
examples. Problem-Solving Strategies in each chapter break down methods of approaching various types of problems into
steps students can follow for guidance. The book also includes exercises at the end of each chapter so students can practice
what they’ve learned.

Conceptual questions do not require calculation but test student learning of the key concepts.

Problems categorized by section test student problem-solving skills and the ability to apply ideas to practical
situations.

Additional Problems apply knowledge across the chapter, forcing students to identify what concepts and equations
are appropriate for solving given problems. Randomly located throughout the problems are Unreasonable Results
exercises that ask students to evaluate the answer to a problem and explain why it is not reasonable and what
assumptions made might not be correct.

Challenge Problems extend text ideas to interesting but difficult situations.

Answers for selected exercises are available in an Answer Key at the end of the book.

Additional resources
Student and instructor resources

We’ve compiled additional resources for both students and instructors, including Getting Started Guides, PowerPoint slides,
and answer and solution guides for instructors and students. Instructor resources require a verified instructor account, which
you can apply for when you log in or create your account on OpenStax.org. Take advantage of these resources to supplement
your OpenStax book.

Community Hubs

OpenStax partners with the Institute for the Study of Knowledge Management in Education (ISKME) to offer Community
Hubs on OER Commons — a platform for instructors to share community-created resources that support OpenStax books,
free of charge. Through our Community Hubs, instructors can upload their own materials or download resources to use
in their own courses, including additional ancillaries, teaching material, multimedia, and relevant course content. We
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encourage instructors to join the hubs for the subjects most relevant to your teaching and research as an opportunity both to
enrich your courses and to engage with other faculty.

To reach the Community Hubs, visit www.oercommons.org/hubs/OpenStax (https://lwww.oercommons.org/
hubs/OpenStax) .

Partner resources

OpenStax partners are our allies in the mission to make high-quality learning materials affordable and accessible to students
and instructors everywhere. Their tools integrate seamlessly with our OpenStax titles at a low cost. To access the partner
resources for your text, visit your book page on OpenStax.org.

About the authors

Senior contributing authors

Samuel J. Ling, Truman State University

Dr. Samuel Ling has taught introductory and advanced physics for over 25 years at Truman State University, where he is
currently Professor of Physics and the Department Chair. Dr. Ling has two PhDs from Boston University, one in Chemistry
and the other in Physics, and he was a Research Fellow at the Indian Institute of Science, Bangalore, before joining Truman.
Dr. Ling is also an author of A First Course in Vibrations and Waves, published by Oxford University Press. Dr. Ling has
considerable experience with research in Physics Education and has published research on collaborative learning methods in
physics teaching. He was awarded a Truman Fellow and a Jepson fellow in recognition of his innovative teaching methods.
Dr. Ling’s research publications have spanned Cosmology, Solid State Physics, and Nonlinear Optics.

Jeff Sanny, Loyola Marymount University

Dr. Jeff Sanny earned a BS in Physics from Harvey Mudd College in 1974 and a PhD in Solid State Physics from the
University of California—Los Angeles in 1980. He joined the faculty at Loyola Marymount University in the fall of 1980.
During his tenure, he has served as department Chair as well as Associate Dean. Dr. Sanny enjoys teaching introductory
physics in particular. He is also passionate about providing students with research experience and has directed an active
undergraduate student research group in space physics for many years.

William Moebs, Formerly of Loyola Marymount University

Dr. William Moebs earned a BS and PhD (1959 and 1965) from the University of Michigan. He then joined their staff
as a Research Associate for one year, where he continued his doctoral research in particle physics. In 1966, he accepted
an appointment to the Physics Department of Indiana Purdue Fort Wayne (IPFW), where he served as Department Chair
from 1971 to 1979. In 1979, he moved to Loyola Marymount University (LMU), where he served as Chair of the Physics
Department from 1979 to 1986. He retired from LMU in 2000. He has published research in particle physics, chemical
kinetics, cell division, atomic physics, and physics teaching.
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1| TEMPERATURE AND
HEAT

Figure 1.1 These snowshoers on Mount Hood in Oregon are enjoyin the heat flow and light caused by high temperature. All
three mechanisms of heat transfer are relevant to this picture. The heat flowing out of the fire also turns the solid snow to liquid
water and vapor. (credit: modification of work by “Mt. Hood Territory”/Flickr)

Chapter Outline

1.1 Temperature and Thermal Equilibrium

1.2 Thermometers and Temperature Scales

1.3 Thermal Expansion

1.4 Heat Transfer, Specific Heat, and Calorimetry
1.5 Phase Changes

1.6 Mechanisms of Heat Transfer

Introduction

Heat and temperature are important concepts for each of us, every day. How we dress in the morning depends on whether
the day is hot or cold, and most of what we do requires energy that ultimately comes from the Sun. The study of heat
and temperature is part of an area of physics known as thermodynamics. The laws of thermodynamics govern the flow
of energy throughout the universe. They are studied in all areas of science and engineering, from chemistry to biology to
environmental science.

In this chapter, we explore heat and temperature. It is not always easy to distinguish these terms. Heat is the flow of energy
from one object to another. This flow of energy is caused by a difference in temperature. The transfer of heat can change
temperature, as can work, another kind of energy transfer that is central to thermodynamics. We return to these basic ideas
several times throughout the next four chapters, and you will see that they affect everything from the behavior of atoms and
molecules to cooking to our weather on Earth to the life cycles of stars.
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1.1 | Temperature and Thermal Equilibrium

Learning Objectives

By the end of this section, you will be able to:

* Define temperature and describe it qualitatively
* Explain thermal equilibrium
* Explain the zeroth law of thermodynamics

Heat is familiar to all of us. We can feel heat entering our bodies from the summer Sun or from hot coffee or tea after
a winter stroll. We can also feel heat leaving our bodies as we feel the chill of night or the cooling effect of sweat after
exercise.

What is heat? How do we define it and how is it related to temperature? What are the effects of heat and how does it
flow from place to place? We will find that, in spite of the richness of the phenomena, a small set of underlying physical
principles unites these subjects and ties them to other fields. We start by examining temperature and how to define and
measure it.

Temperature

The concept of temperature has evolved from the common concepts of hot and cold. The scientific definition of temperature
explains more than our senses of hot and cold. As you may have already learned, many physical quantities are defined
solely in terms of how they are observed or measured, that is, they are defined operationally. Temperature is operationally
defined as the quantity of what we measure with a thermometer. As we will see in detail in a later chapter on the kinetic
theory of gases, temperature is proportional to the average kinetic energy of translation, a fact that provides a more physical
definition. Differences in temperature maintain the transfer of heat, or heat transfer, throughout the universe. Heat transfer
is the movement of energy from one place or material to another as a result of a difference in temperature. (You will learn
more about heat transfer later in this chapter.)

Thermal Equilibrium

An important concept related to temperature is thermal equilibrium. Two objects are in thermal equilibrium if they are in
close contact that allows either to gain energy from the other, but nevertheless, no net energy is transferred between them.
Even when not in contact, they are in thermal equilibrium if, when they are placed in contact, no net energy is transferred
between them. If two objects remain in contact for a long time, they typically come to equilibrium. In other words, two
objects in thermal equilibrium do not exchange energy.

Experimentally, if object A is in equilibrium with object B, and object B is in equilibrium with object C, then (as you may
have already guessed) object A is in equilibrium with object C. That statement of transitivity is called the zeroth law of
thermodynamics. (The number “zeroth” was suggested by British physicist Ralph Fowler in the 1930s. The first, second,
and third laws of thermodynamics were already named and numbered then. The zeroth law had seldom been stated, but it
needs to be discussed before the others, so Fowler gave it a smaller number.) Consider the case where A is a thermometer.
The zeroth law tells us that if A reads a certain temperature when in equilibrium with B, and it is then placed in contact with
C, it will not exchange energy with C; therefore, its temperature reading will remain the same (Figure 1.2). In other words,
if two objects are in thermal equilibrium, they have the same temperature.

i / Same temperature reading \ :

B c : B c

Figure 1.2 If thermometer A is in thermal equilibrium with
object B, and B is in thermal equilibrium with C, then A is in
thermal equilibrium with C. Therefore, the reading on A stays
the same when A is moved over to make contact with C.

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9
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A thermometer measures its own temperature. It is through the concepts of thermal equilibrium and the zeroth law of
thermodynamics that we can say that a thermometer measures the temperature of something else, and to make sense of the
statement that two objects are at the same temperature.

In the rest of this chapter, we will often refer to “systems” instead of “objects.” As in the chapter on linear momentum and
collisions, a system consists of one or more objects—but in thermodynamics, we require a system to be macroscopic, that

023

is, to consist of a huge number (such as 10“” ) of molecules. Then we can say that a system is in thermal equilibrium with

itself if all parts of it are at the same temperature. (We will return to the definition of a thermodynamic system in the chapter
on the first law of thermodynamics.)

1.2 | Thermometers and Temperature Scales

Learning Objectives

By the end of this section, you will be able to:

» Describe several different types of thermometers
* Convert temperatures between the Celsius, Fahrenheit, and Kelvin scales

Any physical property that depends consistently and reproducibly on temperature can be used as the basis of a thermometer.
For example, volume increases with temperature for most substances. This property is the basis for the common alcohol
thermometer and the original mercury thermometers. Other properties used to measure temperature include electrical
resistance, color, and the emission of infrared radiation (Figure 1.3).
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i~

(b)
Figure 1.3 Because many physical properties depend on temperature, the variety of thermometers is remarkable. (a) In this
common type of thermometer, the alcohol, containing a red dye, expands more rapidly than the glass encasing it. When the
thermometer’s temperature increases, the liquid from the bulb is forced into the narrow tube, producing a large change in the
length of the column for a small change in temperature. (b) Each of the six squares on this plastic (liquid crystal) thermometer
contains a film of a different heat-sensitive liquid crystal material. Below 95 °F, all six squares are black. When the plastic

thermometer is exposed to a temperature of 95 °F , the first liquid crystal square changes color. When the temperature reaches
above 96.8 °F, the second liquid crystal square also changes color, and so forth. (c) A firefighter uses a pyrometer to check the
temperature of an aircraft carrier’s ventilation system. The pyrometer measures infrared radiation (whose emission varies with
temperature) from the vent and quickly produces a temperature readout. Infrared thermometers are also frequently used to
measure body temperature by gently placing them in the ear canal. Such thermometers are more accurate than the alcohol
thermometers placed under the tongue or in the armpit. (credit b: modification of work by Tess Watson; credit c: modification of
work by Lamel J. Hinton, U.S. Navy)

Thermometers measure temperature according to well-defined scales of measurement. The three most common temperature
scales are Fahrenheit, Celsius, and Kelvin. Temperature scales are created by identifying two reproducible temperatures.
The freezing and boiling temperatures of water at standard atmospheric pressure are commonly used.

On the Celsius scale, the freezing point of water is 0 °C and the boiling point is 100 °C. The unit of temperature on this
scale is the degree Celsius (°C) . The Fahrenheit scale (still the most frequently used for common purposes in the United
States) has the freezing point of water at 32 °F and the boiling point at 212 °F. Its unit is the degree Fahrenheit ( °F ).
You can see that 100 Celsius degrees span the same range as 180 Fahrenheit degrees. Thus, a temperature difference of one

degree on the Celsius scale is 1.8 times as large as a difference of one degree on the Fahrenheit scale, or AT = %ATC.
The definition of temperature in terms of molecular motion suggests that there should be a lowest possible temperature,
where the average kinetic energy of molecules is zero (or the minimum allowed by quantum mechanics). Experiments
confirm the existence of such a temperature, called absolute zero. An absolute temperature scale is one whose zero point
is absolute zero. Such scales are convenient in science because several physical quantities, such as the volume of an ideal
gas, are directly related to absolute temperature.

The Kelvin scale is the absolute temperature scale that is commonly used in science. The SI temperature unit is the kelvin,
which is abbreviated K (not accompanied by a degree sign). Thus 0 K is absolute zero. The freezing and boiling points
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of water are 273.15 K and 373.15 K, respectively. Therefore, temperature differences are the same in units of kelvins and

degrees Celsius, or AT~ = AT.

The relationships between the three common temperature scales are shown in Figure 1.4. Temperatures on these scales

can be converted using the equations in Table 1.1.

Freezing point  Normal body Boiling point
Absolute zero of water temperature of water
/
| {§ p—rt : —
—459.67 = 0 32 98.6 212 °F
5°C
| {§ — | —
-273.15 °C -178 0 37 100 °C
i 255.25 310.15 - 5K -
: S v : — A
0 K 273.15 373.15 K

Figure 1.4 Relationships between the Fahrenheit, Celsius, and Kelvin temperature scales are shown. The relative sizes

of the scales are also shown.

To convert from...

Use this equation...

Celsius to Fahrenheit

Fahrenheit to Celsius

Celsius to Kelvin
Kelvin to Celsius

Fahrenheit to Kelvin

Kelvin to Fahrenheit

Tp = %TC +32

Tc = Tx —273.15

Tx = g(TF —32)+273.15

Tp = %(TK —273.15)+ 32

Table 1.1 Temperature Conversions

To convert between Fahrenheit and Kelvin, convert to Celsius as an intermediate step.

Example 1.1

is it in K?
Strategy
values.

Solution

To convert from °C to °F, use the equation

Converting between Temperature Scales: Room Temperature

“Room temperature” is generally defined in physics to be 25 °C. (a) What is room temperature in °F ? (b) What

To answer these questions, all we need to do is choose the correct conversion equations and substitute the known
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Tp=3Tc+32

Substitute the known value into the equation and solve:

Tp = %(25 °C) +32 = 77 °F.

Similarly, we find that Ty = T+ 273.15 = 298 K.

The Kelvin scale is part of the SI system of units, so its actual definition is more complicated than the one given above.
First, it is not defined in terms of the freezing and boiling points of water, but in terms of the triple point. The triple point
is the unique combination of temperature and pressure at which ice, liquid water, and water vapor can coexist stably. As
will be discussed in the section on phase changes, the coexistence is achieved by lowering the pressure and consequently
the boiling point to reach the freezing point. The triple-point temperature is defined as 273.16 K. This definition has the
advantage that although the freezing temperature and boiling temperature of water depend on pressure, there is only one
triple-point temperature.

Second, even with two points on the scale defined, different thermometers give somewhat different results for other
temperatures. Therefore, a standard thermometer is required. Metrologists (experts in the science of measurement) have
chosen the constant-volume gas thermometer for this purpose. A vessel of constant volume filled with gas is subjected to
temperature changes, and the measured temperature is proportional to the change in pressure. Using “TP” to represent the
triple point,

__D
T'=prplTe

The results depend somewhat on the choice of gas, but the less dense the gas in the bulb, the better the results for different
gases agree. If the results are extrapolated to zero density, the results agree quite well, with zero pressure corresponding to
a temperature of absolute zero.

Constant-volume gas thermometers are big and come to equilibrium slowly, so they are used mostly as standards to calibrate
other thermometers.

Visit this site (https:/lopenstaxcollege.org/l/21consvolgasth) to learn more about the constant-volume gas
thermometer.

1.3 | Thermal Expansion

Learning Objectives

By the end of this section, you will be able to:

* Answer qualitative questions about the effects of thermal expansion
* Solve problems involving thermal expansion, including those involving thermal stress

The expansion of alcohol in a thermometer is one of many commonly encountered examples of thermal expansion, which
is the change in size or volume of a given system as its temperature changes. The most visible example is the expansion of
hot air. When air is heated, it expands and becomes less dense than the surrounding air, which then exerts an (upward) force
on the hot air and makes steam and smoke rise, hot air balloons float, and so forth. The same behavior happens in all liquids
and gases, driving natural heat transfer upward in homes, oceans, and weather systems, as we will discuss in an upcoming
section. Solids also undergo thermal expansion. Railroad tracks and bridges, for example, have expansion joints to allow
them to freely expand and contract with temperature changes, as shown in Figure 1.5.

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9
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(a) (b)
Figure 1.5 (a) Thermal expansion joints like these in the (b) Auckland Harbour Bridge in New Zealand allow bridges to
change length without buckling. (credit: modification of works by “SJ&”/Wikimedia Commons)

What is the underlying cause of thermal expansion? As previously mentioned, an increase in temperature means an
increase in the kinetic energy of individual atoms. In a solid, unlike in a gas, the molecules are held in place by forces
from neighboring molecules; as we saw in Oscillations (http://cnx.org/content/m58360/latest/) , the forces can
be modeled as in harmonic springs described by the Lennard-Jones potential. Energy in Simple Harmonic Motion
(http:/lcnx.org/content/m58362/latest/#CNX_UPhysics_15 02_LennaJones) shows that such potentials are
asymmetrical in that the potential energy increases more steeply when the molecules get closer to each other than when they
get farther away. Thus, at a given kinetic energy, the distance moved is greater when neighbors move away from each other
than when they move toward each other. The result is that increased kinetic energy (increased temperature) increases the
average distance between molecules—the substance expands.

For most substances under ordinary conditions, it is an excellent approximation that there is no preferred direction (that is,
the solid is “isotropic”), and an increase in temperature increases the solid’s size by a certain fraction in each dimension.
Therefore, if the solid is free to expand or contract, its proportions stay the same; only its overall size changes.

Linear Thermal Expansion

According to experiments, the dependence of thermal expansion on temperature, substance, and original length is
summarized in the equation

dL _ (11)
dT aL

where AL is the change in length L, AT is the change in temperature, and « is the coefficient of linear expansion,

a material property that varies slightly with temperature. As « is nearly constant and also very small, for practical

purposes, we use the linear approximation:

AL = aLAT. (1.2)

Table 1.2 lists representative values of the coefficient of linear expansion. As noted earlier, AT is the same whether it
is expressed in units of degrees Celsius or kelvins; thus, @ may have units of 1/°C or 1/K with the same value in either
case. Approximating o as a constant is quite accurate for small changes in temperature and sufficient for most practical
purposes, even for large changes in temperature. We examine this approximation more closely in the next example.


http://cnx.org/content/m58360/latest/
http://cnx.org/content/m58362/latest/#CNX_UPhysics_15_02_LennaJones
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Material Coefficient of Linear Coefficient of Volume
Expansion «(1/°C) Expansion g(1/°C)
Solids
Aluminum 25% 107° 75%107°
Brass 19% 1070 56 x 107°
Copper 17x 1076 51x107°
Gold 14% 1076 42x107°
Iron or steel 12x107° 35% 1076
Invar (nickel-iron alloy) 09x 107 2.7x%107°
Lead 29% 1076 87x107°
Silver 18x 1076 54%107°
Glass (ordinary) 9% 100 27x107°
Glass (Pyrex®) 3% 10°6 9% 1076
Quartz 0.4%107° 1x107°
Concrete, brick ~12% 107 ~36x 1070
Marble (average) 25%107° 75%107°
Liquids
Ether 1650 x 107°
Ethyl alcohol 1100 x 1076
Gasoline 950 1076
Glycerin 500 x 107°
Mercury 180 % 107°
Water 210x 1076
Gases
Air and most other gases at 3400 x 107°

atmospheric pressure

Table 1.2 Thermal Expansion Coefficients

Thermal expansion is exploited in the bimetallic strip (Figure 1.6). This device can be used as a thermometer if the curving
strip is attached to a pointer on a scale. It can also be used to automatically close or open a switch at a certain temperature,
as in older or analog thermostats.

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9
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@ (b)
Figure 1.6 The curvature of a bimetallic strip depends on
temperature. (a) The strip is straight at the starting temperature,
where its two components have the same length. (b) At a higher
temperature, this strip bends to the right, because the metal on
the left has expanded more than the metal on the right. At a
lower temperature, the strip would bend to the left.

Example 1.2

Calculating Linear Thermal Expansion

The main span of San Francisco’s Golden Gate Bridge is 1275 m long at its coldest. The bridge is exposed to
temperatures ranging from — 15 °C to 40 °C . What is its change in length between these temperatures? Assume

that the bridge is made entirely of steel.

Strategy

Use the equation for linear thermal expansion AL = aLAT to calculate the change in length, AL . Use the
coefficient of linear expansion a for steel from Table 1.2, and note that the change in temperature AT is
55°C.

Solution

Substitute all of the known values into the equation to solve for AL :

-6
AL = alAT = (%)(1275 m)(55 °C) = 0.84 m.
Significance

Although not large compared with the length of the bridge, this change in length is observable. It is generally
spread over many expansion joints so that the expansion at each joint is small.

Thermal Expansion in Two and Three Dimensions

Unconstrained objects expand in all dimensions, as illustrated in Figure 1.7. That is, their areas and volumes, as well as
their lengths, increase with temperature. Because the proportions stay the same, holes and container volumes also get larger
with temperature. If you cut a hole in a metal plate, the remaining material will expand exactly as it would if the piece you
removed were still in place. The piece would get bigger, so the hole must get bigger too.

Thermal Expansion in Two Dimensions

For small temperature changes, the change in area AA is given by
AA = 2aAAT (1.3)

where AA is the change in area A, AT is the change in temperature, and « is the coefficient of linear expansion,
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which varies slightly with temperature. (The derivation of this equation is analogous to that of the more important
equation for three dimensions, below.)
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Figure 1.7 In general, objects expand in all directions as temperature increases. In these drawings, the original
boundaries of the objects are shown with solid lines, and the expanded boundaries with dashed lines. (a) Area increases
because both length and width increase. The area of a circular plug also increases. (b) If the plug is removed, the hole it
leaves becomes larger with increasing temperature, just as if the expanding plug were still in place. (c) Volume also
increases, because all three dimensions increase.

Thermal Expansion in Three Dimensions

The relationship between volume and temperature 4V g given by % = VAT , where S is the coefficient of

dar
volume expansion. As you can show in Exercise 1.60, f = 3« . This equation is usually written as

AV = BVAT. (1.4)

Note that the values of £ in Table 1.2 are equal to 3a except for rounding.

Volume expansion is defined for liquids, but linear and area expansion are not, as a liquid’s changes in linear dimensions
and area depend on the shape of its container. Thus, Table 1.2 shows liquids’ values of # butnot .

In general, objects expand with increasing temperature. Water is the most important exception to this rule. Water does
expand with increasing temperature (its density decreases) at temperatures greater than 4 °C (40 °F) . However, it is densest
at +4 °C and expands with decreasing temperature between +4 °C and 0 °C (40 °Fto 32 °F), as shown in Figure 1.8.
A striking effect of this phenomenon is the freezing of water in a pond. When water near the surface cools down to 4 °C,

it is denser than the remaining water and thus sinks to the bottom. This “turnover” leaves a layer of warmer water near the
surface, which is then cooled. However, if the temperature in the surface layer drops below 4 °C, that water is less dense

than the water below, and thus stays near the top. As a result, the pond surface can freeze over. The layer of ice insulates the
liquid water below it from low air temperatures. Fish and other aquatic life can survive in 4 °C water beneath ice, due to

this unusual characteristic of water.
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Figure 1.8 This curve shows the density of water as a function of temperature. Note that the
thermal expansion at low temperatures is very small. The maximum density at 4 °C is only
0.0075% greater than the density at 2 °C, and 0.012% greater than that at 0 °C . The

decrease of density below 4 °C occurs because the liquid water approachs the solid crystal

T
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form of ice, which contains more empty space than the liquid.

Example 1.3

Calculating Thermal Expansion

Suppose your 60.0-L (15.9 -gal -gal) steel gasoline tank is full of gas that is cool because it has just been pumped

from an underground reservoir. Now, both the tank and the gasoline have a temperature of 15.0 °C. How much
gasoline has spilled by the time they warm to 35.0 °C?

Strategy

The tank and gasoline increase in volume, but the gasoline increases more, so the amount spilled is the difference
in their volume changes. We can use the equation for volume expansion to calculate the change in volume of the
gasoline and of the tank. (The gasoline tank can be treated as solid steel.)

Solution
1. Use the equation for volume expansion to calculate the increase in volume of the steel tank:

AVy= sV AT.
2. The increase in volume of the gasoline is given by this equation:
AVgas = Bgas Vaas AT
3. Find the difference in volume to determine the amount spilled as
Vepill = AVgys — AV

Alternatively, we can combine these three equations into a single equation. (Note that the original volumes are
equal.)

Vipitl = (Beas — Bs)VAT
=[(950 - 35) x 107°/°C](60.0 L)(20.0 °C)
=1.10L.
Significance

This amount is significant, particularly for a 60.0-L tank. The effect is so striking because the gasoline and steel
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expand quickly. The rate of change in thermal properties is discussed later in this chapter.

If you try to cap the tank tightly to prevent overflow, you will find that it leaks anyway, either around the cap or
by bursting the tank. Tightly constricting the expanding gas is equivalent to compressing it, and both liquids and
solids resist compression with extremely large forces. To avoid rupturing rigid containers, these containers have
air gaps, which allow them to expand and contract without stressing them.

1.1 Check Your Understanding Does a given reading on a gasoline gauge indicate more gasoline in cold
weather or in hot weather, or does the temperature not matter?

Thermal Stress

If you change the temperature of an object while preventing it from expanding or contracting, the object is subjected to
stress that is compressive if the object would expand in the absence of constraint and tensile if it would contract. This stress
resulting from temperature changes is known as thermal stress. It can be quite large and can cause damage.

To avoid this stress, engineers may design components so they can expand and contract freely. For instance, in highways,
gaps are deliberately left between blocks to prevent thermal stress from developing. When no gaps can be left, engineers
must consider thermal stress in their designs. Thus, the reinforcing rods in concrete are made of steel because steel’s
coefficient of linear expansion is nearly equal to that of concrete.

To calculate the thermal stress in a rod whose ends are both fixed rigidly, we can think of the stress as developing in two
steps. First, let the ends be free to expand (or contract) and find the expansion (or contraction). Second, find the stress
necessary to compress (or extend) the rod to its original length by the methods you studied in Static Equilibrium and
Elasticity (http:/lcnx.org/content/m58339/latest/) on static equilibrium and elasticity. In other words, the AL of the

thermal expansion equals the AL of the elastic distortion (except that the signs are opposite).

Example 1.4

Calculating Thermal Stress

Concrete blocks are laid out next to each other on a highway without any space between them, so they cannot
expand. The construction crew did the work on a winter day when the temperature was 5 °C . Find the stress in

the blocks on a hot summer day when the temperature is 38 °C . The compressive Young’s modulus of concrete
is ¥ =20x 10° N/m? .

Strategy

According to the chapter on static equilibrium and elasticity, the stress F/A is given by
F _ yAL
A~ r Ly’

where Y is the Young’s modulus of the material—concrete, in this case. In thermal expansion, AL = aLyAT.

We combine these two equations by noting that the two AL’s are equal, as stated above. Because we are not
given L or A, we can obtain a numerical answer only if they both cancel out.

Solution

We substitute the thermal-expansion equation into the elasticity equation to get

F _ yalgAT _
A= Y—Lo = YaAT,
and as we hoped, L has canceled and A appears only in F/A, the notation for the quantity we are calculating.

Now we need only insert the numbers:

£ =(20% 10° N/m?)(12x 107%/°C)(38 °C - 5 °C) = 7.9 x 10° N/m?.
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Significance
The ultimate compressive strength of concrete is 20 X 10% N/m?, so the blocks are unlikely to break. However,

the ultimate shear strength of concrete is only 2 X 10% N/m2, so some might chip off.

1.2 Check Your Understanding Two objects A and B have the same dimensions and are constrained
identically. A is made of a material with a higher thermal expansion coefficient than B. If the objects are heated
identically, will A feel a greater stress than B?

1.4 | Heat Transfer, Specific Heat, and Calorimetry

Learning Objectives

By the end of this section, you will be able to:

* Explain phenomena involving heat as a form of energy transfer
* Solve problems involving heat transfer

We have seen in previous chapters that energy is one of the fundamental concepts of physics. Heat is a type of energy
transfer that is caused by a temperature difference, and it can change the temperature of an object. As we learned earlier
in this chapter, heat transfer is the movement of energy from one place or material to another as a result of a difference
in temperature. Heat transfer is fundamental to such everyday activities as home heating and cooking, as well as many
industrial processes. It also forms a basis for the topics in the remainder of this chapter.

We also introduce the concept of internal energy, which can be increased or decreased by heat transfer. We discuss
another way to change the internal energy of a system, namely doing work on it. Thus, we are beginning the study of the
relationship of heat and work, which is the basis of engines and refrigerators and the central topic (and origin of the name)
of thermodynamics.

Internal Energy and Heat

A thermal system has internal energy (also called thermal energy), which is the sum of the mechanical energies of its
molecules. A system’s internal energy is proportional to its temperature. As we saw earlier in this chapter, if two objects at
different temperatures are brought into contact with each other, energy is transferred from the hotter to the colder object until
the bodies reach thermal equilibrium (that is, they are at the same temperature). No work is done by either object because
no force acts through a distance (as we discussed in Work and Kinetic Energy (http://cnx.org/content/m58307/
latest/) ). These observations reveal that heat is energy transferred spontaneously due to a temperature difference. Figure
1.9 shows an example of heat transfer.

@ (b)
Figure 1.9 (a) Here, the soft drink has a higher temperature than the ice, so they are not in thermal equilibrium. (b) When the
soft drink and ice are allowed to interact, heat is transferred from the drink to the ice due to the difference in temperatures until
they reach the same temperature, 7", achieving equilibrium. In fact, since the soft drink and ice are both in contact with the

surrounding air and the bench, the ultimate equilibrium temperature will be the same as that of the surroundings.


http://cnx.org/content/m58307/latest/
http://cnx.org/content/m58307/latest/
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The meaning of “heat” in physics is different from its ordinary meaning. For example, in conversation, we may say “the
heat was unbearable,” but in physics, we would say that the temperature was high. Heat is a form of energy flow, whereas
temperature is not. Incidentally, humans are sensitive to heat flow rather than to temperature.

Since heat is a form of energy, its SI unit is the joule (J). Another common unit of energy often used for heat is the calorie
(cal), defined as the energy needed to change the temperature of 1.00 g of water by 1.00 °C —specifically, between

14.5°C and 15.5 °C, since there is a slight temperature dependence. Also commonly used is the kilocalorie (kcal), which
is the energy needed to change the temperature of 1.00 kg of water by 1.00 °C. Since mass is most often specified in

kilograms, the kilocalorie is convenient. Confusingly, food calories (sometimes called “big calories,” abbreviated Cal) are
actually kilocalories, a fact not easily determined from package labeling.

Mechanical Equivalent of Heat

It is also possible to change the temperature of a substance by doing work, which transfers energy into or out of a
system. This realization helped establish that heat is a form of energy. James Prescott Joule (1818-1889) performed many
experiments to establish the mechanical equivalent of heat—the work needed to produce the same effects as heat transfer.
In the units used for these two quantities, the value for this equivalence is

1.000 kcal = 4186 1.

We consider this equation to represent the conversion between two units of energy. (Other numbers that you may see refer
to calories defined for temperature ranges other than 14.5°C to 15.5°C.)

Figure 1.10 shows one of Joule’s most famous experimental setups for demonstrating that work and heat can produce the
same effects and measuring the mechanical equivalent of heat. It helped establish the principle of conservation of energy.
Gravitational potential energy (U) was converted into kinetic energy (K), and then randomized by viscosity and turbulence
into increased average kinetic energy of atoms and molecules in the system, producing a temperature increase. Joule’s
contributions to thermodynamics were so significant that the ST unit of energy was named after him.

Thermometer

m h
Measured | Ik w
height of ;
descent v ! T S —— X

a—__— Insulated, known
volume of water

___________ ales

Figure 1.10 Joule’s.experiment established the equivalence of heat and
work. As the masses descended, they caused the paddles to do work,
W = mgh , on the water. The result was a temperature increase, AT,

measured by the thermometer. Joule found that AT was proportional to W
and thus determined the mechanical equivalent of heat.

Increasing internal energy by heat transfer gives the same result as increasing it by doing work. Therefore, although a
system has a well-defined internal energy, we cannot say that it has a certain “heat content” or “work content.” A well-
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defined quantity that depends only on the current state of the system, rather than on the history of that system, is known as
a state variable. Temperature and internal energy are state variables. To sum up this paragraph, heat and work are not state
variables.

Incidentally, increasing the internal energy of a system does not necessarily increase its temperature. As we’ll see in the next
section, the temperature does not change when a substance changes from one phase to another. An example is the melting
of ice, which can be accomplished by adding heat or by doing frictional work, as when an ice cube is rubbed against a rough
surface.

Temperature Change and Heat Capacity

We have noted that heat transfer often causes temperature change. Experiments show that with no phase change and no
work done on or by the system, the transferred heat is typically directly proportional to the change in temperature and to
the mass of the system, to a good approximation. (Below we show how to handle situations where the approximation is
not valid.) The constant of proportionality depends on the substance and its phase, which may be gas, liquid, or solid. We
omit discussion of the fourth phase, plasma, because although it is the most common phase in the universe, it is rare and
short-lived on Earth.

We can understand the experimental facts by noting that the transferred heat is the change in the internal energy, which

is the total energy of the molecules. Under typical conditions, the total kinetic energy of the molecules K, is a

constant fraction of the internal energy (for reasons and with exceptions that we’ll see in the next chapter). The average
kinetic energy of a molecule K,y is proportional to the absolute temperature. Therefore, the change in internal energy

of a system is typically proportional to the change in temperature and to the number of molecules, N. Mathematically,
AU x AK,q) = NKgye < NAT The dependence on the substance results in large part from the different masses of atoms

and molecules. We are considering its heat capacity in terms of its mass, but as we will see in the next chapter, in some
cases, heat capacities per molecule are similar for different substances. The dependence on substance and phase also results
from differences in the potential energy associated with interactions between atoms and molecules.

tota

Heat Transfer and Temperature Change

A practical approximation for the relationship between heat transfer and temperature change is:
0 = mcAT, (1.5)

where Q is the symbol for heat transfer (“quantity of heat”), m is the mass of the substance, and AT is the change

in temperature. The symbol c stands for the specific heat (also called “specific heat capacity”) and depends on the
material and phase. The specific heat is numerically equal to the amount of heat necessary to change the temperature of
1.00 kg of mass by 1.00 °C . The SI unit for specific heat is J/(kg X K) or J/(kg X °C) . (Recall that the temperature

change AT is the same in units of kelvin and degrees Celsius.)

Values of specific heat must generally be measured, because there is no simple way to calculate them precisely. Table 1.3
lists representative values of specific heat for various substances. We see from this table that the specific heat of water is
five times that of glass and 10 times that of iron, which means that it takes five times as much heat to raise the temperature
of water a given amount as for glass, and 10 times as much as for iron. In fact, water has one of the largest specific heats of
any material, which is important for sustaining life on Earth.

The specific heats of gases depend on what is maintained constant during the heating—typically either the volume or
the pressure. In the table, the first specific heat value for each gas is measured at constant volume, and the second (in
parentheses) is measured at constant pressure. We will return to this topic in the chapter on the kinetic theory of gases.
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Substances Specific Heat (c)

Solids Jkg-°C ical/kg o1
Aluminum 900 0.215
Asbestos 800 0.19
Concrete, granite (average) 840 0.20

Copper 387 0.0924
Glass 840 0.20

Gold 129 0.0308
Human body (average at 37 °C) 3500 0.83

Ice (average, —50°Cto0°C) 2090 0.50

Iron, steel 452 0.108

Lead 128 0.0305

Silver 235 0.0562
Wood 1700 0.40

Liquids

Benzene 1740 0.415
Ethanol 2450 0.586
Glycerin 2410 0.576
Mercury 139 0.0333
Water (15.0 °C) 4186  1.000
Gasesl]

Air (dry) 721(1015)  0.172(0.242)
Ammonia 1670 (2190)  0.399 (0.523)
Carbon dioxide 638 (833) 0.152 (0.199)
Nitrogen 739 (1040) 0.177 (0.248)
Oxygen 651 (913)  0.156 (0.218)

Steam (100 °C)

1520 (2020)

0.363 (0.482)

Table 1.3 Specific Heats of Various Substances*! IThe values for
solids and liquids are at constant volume and 25 °C, except as noted.

PlThese values are identical in units of cal/g - °C. BlSpecific heats at

constant volume and at 20.0 °C except as noted, and at 1.00 atm

pressure. Values in parentheses are specific heats at a constant
pressure of 1.00 atm.

In general, specific heat also depends on temperature. Thus, a precise definition of ¢ for a substance must be given in terms

of an infinitesimal change in temperature. To do this, we note that ¢ = %% and replace A with d:

~14d0

C‘mﬁ‘

Except for gases, the temperature and volume dependence of the specific heat of most substances is weak at normal
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temperatures. Therefore, we will generally take specific heats to be constant at the values given in the table.

Example 1.5

Calculating the Required Heat

A 0.500-kg aluminum pan on a stove and 0.250 L of water in it are heated from 20.0 °C to 80.0°C. (a) How

much heat is required? What percentage of the heat is used to raise the temperature of (b) the pan and (c) the
water?

Strategy

We can assume that the pan and the water are always at the same temperature. When you put the pan on the stove,
the temperature of the water and that of the pan are increased by the same amount. We use the equation for the
heat transfer for the given temperature change and mass of water and aluminum. The specific heat values for
water and aluminum are given in Table 1.3.

Solution
1. Calculate the temperature difference:

AT =T;—T; = 60.0 °C.
2. Calculate the mass of water. Because the density of water is 1000 kg/m3 , 1 L of water has a mass of 1
kg, and the mass of 0.250 L of water is m,, = 0.250kg .

3. Calculate the heat transferred to the water. Use the specific heat of water in Table 1.3:
Qw = mycw AT =(0.250 kg)4186 J/kg °C)(60.0 °C) = 62.8 KJ.
4. Calculate the heat transferred to the aluminum. Use the specific heat for aluminum in Table 1.3:
Qap=mppcar AT = (0.500 kg)900 J/kg °C)(60.0 °C) = 27.0 kJ.
5. Find the total transferred heat:
Orotal = Qw + Qa1 = 89.8kJ.

Significance

In this example, the heat transferred to the container is a significant fraction of the total transferred heat. Although
the mass of the pan is twice that of the water, the specific heat of water is over four times that of aluminum.
Therefore, it takes a bit more than twice as much heat to achieve the given temperature change for the water as
for the aluminum pan.

Example 1.6 illustrates a temperature rise caused by doing work. (The result is the same as if the same amount of energy
had been added with a blowtorch instead of mechanically.)

Example 1.6

Calculating the Temperature Increase from the Work Done on a Substance

Truck brakes used to control speed on a downhill run do work, converting gravitational potential energy into
increased internal energy (higher temperature) of the brake material (Figure 1.11). This conversion prevents the
gravitational potential energy from being converted into kinetic energy of the truck. Since the mass of the truck
is much greater than that of the brake material absorbing the energy, the temperature increase may occur too fast
for sufficient heat to transfer from the brakes to the environment; in other words, the brakes may overheat.
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Figure 1.11 The smoking brakes on a braking truck are visible evidence of the mechanical equivalent of heat.

Calculate the temperature increase of 10 kg of brake material with an average specific heat of 800J/kg-°C if

the material retains 10% of the energy from a 10,000-kg truck descending 75.0 m (in vertical displacement) at a
constant speed.

Strategy

We calculate the gravitational potential energy (Mgh) that the entire truck loses in its descent, equate it to the
increase in the brakes’ internal energy, and then find the temperature increase produced in the brake material
alone.

Solution

First we calculate the change in gravitational potential energy as the truck goes downhill:

Mgh = (10,000 kg)(9.80 m/s?)(75.0 m) = 7.35 x 10° J.

Because the kinetic energy of the truck does not change, conservation of energy tells us the lost potential energy
is dissipated, and we assume that 10% of it is transferred to internal energy of the brakes, so take Q = Mgh/10.

Then we calculate the temperature change from the heat transferred, using

-0
AT = 7%,

where m is the mass of the brake material. Insert the given values to find

__735%10°T  _gno
AT = {0k 300 kg ) ~ 22 ¢

Significance

If the truck had been traveling for some time, then just before the descent, the brake temperature would
probably be higher than the ambient temperature. The temperature increase in the descent would likely raise the
temperature of the brake material very high, so this technique is not practical. Instead, the truck would use the
technique of engine braking. A different idea underlies the recent technology of hybrid and electric cars, where
mechanical energy (kinetic and gravitational potential energy) is converted by the brakes into electrical energy in
the battery, a process called regenerative braking.

In a common kind of problem, objects at different temperatures are placed in contact with each other but isolated from
everything else, and they are allowed to come into equilibrium. A container that prevents heat transfer in or out is called
a calorimeter, and the use of a calorimeter to make measurements (typically of heat or specific heat capacity) is called
calorimetry.

We will use the term “calorimetry problem” to refer to any problem in which the objects concerned are thermally isolated
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from their surroundings. An important idea in solving calorimetry problems is that during a heat transfer between objects
isolated from their surroundings, the heat gained by the colder object must equal the heat lost by the hotter object, due to
conservation of energy:

Qcold + Chot = 0 (1.6)

We express this idea by writing that the sum of the heats equals zero because the heat gained is usually considered positive;
the heat lost, negative.

Example 1.7

Calculating the Final Temperature in Calorimetry
Suppose you pour 0.250 kg of 20.0-°C water (about a cup) into a 0.500-kg aluminum pan off the stove with a

temperature of 150 °C . Assume no heat transfer takes place to anything else: The pan is placed on an insulated
pad, and heat transfer to the air is neglected in the short time needed to reach equilibrium. Thus, this is a
calorimetry problem, even though no isolating container is specified. Also assume that a negligible amount of
water boils off. What is the temperature when the water and pan reach thermal equilibrium?

Strategy

Originally, the pan and water are not in thermal equilibrium: The pan is at a higher temperature than the water.
Heat transfer restores thermal equilibrium once the water and pan are in contact; it stops once thermal equilibrium
between the pan and the water is achieved. The heat lost by the pan is equal to the heat gained by the water—that
is the basic principle of calorimetry.

Solution
1. Use the equation for heat transfer Q = mcAT to express the heat lost by the aluminum pan in terms

of the mass of the pan, the specific heat of aluminum, the initial temperature of the pan, and the final
temperature:

Ohot =M a1 € a1 (T = 150°C).
2. Express the heat gained by the water in terms of the mass of the water, the specific heat of water, the
initial temperature of the water, and the final temperature:

QCOld =My Cw (Tf —20.0 OC).
3. Note that O <0 and Q.4 > 0 and that as stated above, they must sum to zero:

Qcold + Qhot =0
OQcold = —Chot
My Cw (Tf - 200 OC) = —mAl CA] (Tf - 150 OC).

4. This a linear equation for the unknown final temperature, 7. Solving for T,

_ magca; (150°C) + my ¢y, (20.0 °C)

Ty Mp|CAl + My Cy

>

and insert the numerical values:

7. _ (0,500 kg[900 J/kg °C(150 °C) + (0.250 ke)4186 J/kg °CY20.0°C) _ g | oc:
£= (0.500 kg)900 J/kg °C) + (0.250 kg)4186 J/kg °C) DRt

Significance

Why is the final temperature so much closer to 20.0 °C than to 150 °C ? The reason is that water has a greater

specific heat than most common substances and thus undergoes a smaller temperature change for a given heat
transfer. A large body of water, such as a lake, requires a large amount of heat to increase its temperature
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appreciably. This explains why the temperature of a lake stays relatively constant during the day even when
the temperature change of the air is large. However, the water temperature does change over longer times (e.g.,
summer to winter).

1.3 Check Your Understanding If 25 kJ is necessary to raise the temperature of a rock from
25 °Cto 30 °C, how much heat is necessary to heat the rock from 45 °Cto 50 °C?

Example 1.8

Temperature-Dependent Heat Capacity

At low temperatures, the specific heats of solids are typically proportional to T3 . The first understanding of this

behavior was due to the Dutch physicist Peter Debye, who in 1912, treated atomic oscillations with the quantum
theory that Max Planck had recently used for radiation. For instance, a good approximation for the specific heat

3
o 4_17J T :
of salt, NaCl, is ¢ =3.33x 10 Ke- k(321 K) . The constant 321 K is called the Debye temperature of NaCl,

Op, and the formula works well when 7 < 0.040p. Using this formula, how much heat is required to raise
the temperature of 24.0 g of NaCl from 5 K to 15 K?
Solution

Because the heat capacity depends on the temperature, we need to use the equation

CcC =

Iy
We solve this equation for Q by integrating both sides: Q = m f cdT.
T

Then we substitute the given values in and evaluate the integral:

3 15K
) ar = (6.04 X 10‘4#)#"5[( =3021J.

)
_ Y| T __
0 =(0.024 kg)le 333x10 kg-K(321 K

Significance
If we had used the equation Q = mcAT and the room-temperature specific heat of salt, 880 J/kg - K, we would

have gotten a very different value.

1.5 | Phase Changes

Learning Objectives

By the end of this section, you will be able to:

* Describe phase transitions and equilibrium between phases
* Solve problems involving latent heat
* Solve calorimetry problems involving phase changes

Phase transitions play an important theoretical and practical role in the study of heat flow. In melting (or “fusion”), a
solid turns into a liquid; the opposite process is freezing. In evaporation, a liquid turns into a gas; the opposite process is
condensation.

A substance melts or freezes at a temperature called its melting point, and boils (evaporates rapidly) or condenses at its
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boiling point. These temperatures depend on pressure. High pressure favors the denser form, so typically, high pressure
raises the melting point and boiling point, and low pressure lowers them. For example, the boiling point of water is 100 °C
at 1.00 atm. At higher pressure, the boiling point is higher, and at lower pressure, it is lower. The main exception is the
melting and freezing of water, discussed in the next section.

Phase Diagrams

The phase of a given substance depends on the pressure and temperature. Thus, plots of pressure versus temperature
showing the phase in each region provide considerable insight into thermal properties of substances. Such a pT graph is
called a phase diagram.

Figure 1.12 shows the phase diagram for water. Using the graph, if you know the pressure and temperature, you
can determine the phase of water. The solid curves—boundaries between phases—indicate phase transitions, that is,
temperatures and pressures at which the phases coexist. For example, the boiling point of water is 100 °C at 1.00 atm.
As the pressure increases, the boiling temperature rises gradually to 374 °C at a pressure of 218 atm. A pressure cooker
(or even a covered pot) cooks food faster than an open pot, because the water can exist as a liquid at temperatures greater
than 100 °C without all boiling away. (As we’ll see in the next section, liquid water conducts heat better than steam or
hot air.) The boiling point curve ends at a certain point called the critical point—that is, a critical temperature, above
which the liquid and gas phases cannot be distinguished; the substance is called a supercritical fluid. At sufficiently high
pressure above the critical point, the gas has the density of a liquid but does not condense. Carbon dioxide, for example, is
supercritical at all temperatures above 31.0 °C . Critical pressure is the pressure of the critical point.

H,0
ritical point
218 f———— _____________C_E(ial e
|
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E I
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o | Triple | |
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Figure 1.12 The phase diagram (pT graph) for water shows
solid (s), liquid (1), and vapor (v) phases. At temperatures and
pressure above those of the critical point, there is no distinction
between liquid and vapor. Note that the axes are nonlinear and
the graph is not to scale. This graph is simplified—it omits
several exotic phases of ice at higher pressures. The phase
diagram of water is unusual because the melting-point curve has
a negative slope, showing that you can melt ice by increasing
the pressure.

Similarly, the curve between the solid and liquid regions in Figure 1.12 gives the melting temperature at various pressures.
For example, the melting point is 0 °C at 1.00 atm, as expected. Water has the unusual property that ice is less dense than
liquid water at the melting point, so at a fixed temperature, you can change the phase from solid (ice) to liquid (water) by
increasing the pressure. That is, the melting temperature of ice falls with increased pressure, as the phase diagram shows.
For example, when a car is driven over snow, the increased pressure from the tires melts the snowflakes; afterwards, the
water refreezes and forms an ice layer.

As you learned in the earlier section on thermometers and temperature scales, the triple point is the combination of
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temperature and pressure at which ice, liquid water, and water vapor can coexist stably—that is, all three phases exist in
equilibrium. For water, the triple point occurs at 273.16 K (0.01 °C) and 611.2 Pa; that is a more accurate calibration

temperature than the melting point of water at 1.00 atm, or 273.15 K (0.0 °C).

@ View this video (https://lopenstaxcollege.org/l/21triplepoint) to see a substance at its triple point.

At pressures below that of the triple point, there is no liquid phase; the substance can exist as either gas or solid. For water,
there is no liquid phase at pressures below 0.00600 atm. The phase change from solid to gas is called sublimation. You may
have noticed that snow can disappear into thin air without a trace of liquid water, or that ice cubes can disappear in a freezer.
Both are examples of sublimation. The reverse also happens: Frost can form on very cold windows without going through
the liquid stage. Figure 1.13 shows the result, as well as showing a familiar example of sublimation. Carbon dioxide
has no liquid phase at atmospheric pressure. Solid CO, is known as dry ice because instead of melting, it sublimes. Its

sublimation temperature at atmospheric pressure is —78 °C . Certain air fresheners use the sublimation of a solid to spread

a perfume around a room. Some solids, such as osmium tetroxide, are so toxic that they must be kept in sealed containers to
prevent human exposure to their sublimation-produced vapors.

Figure 1.13 Direct transitions between solid and vapor are common, sometimes useful, and even beautiful. (a) Dry ice
sublimes directly to carbon dioxide gas. The visible “smoke” consists of water droplets that condensed in the air cooled by the
dry ice. (b) Frost forms patterns on a very cold window, an example of a solid formed directly from a vapor. (credit a:
modification of work by Windell Oskay; credit b: modification of work by Liz West)

Equilibrium

At the melting temperature, the solid and liquid phases are in equilibrium. If heat is added, some of the solid will melt,
and if heat is removed, some of the liquid will freeze. The situation is somewhat more complex for liquid-gas equilibrium.
Generally, liquid and gas are in equilibrium at any temperature. We call the gas phase a vapor when it exists at a temperature
below the boiling temperature, as it does for water at 20.0 °C. Liquid in a closed container at a fixed temperature

evaporates until the pressure of the gas reaches a certain value, called the vapor pressure, which depends on the gas and
the temperature. At this equilibrium, if heat is added, some of the liquid will evaporate, and if heat is removed, some of the
gas will condense; molecules either join the liquid or form suspended droplets. If there is not enough liquid for the gas to
reach the vapor pressure in the container, all the liquid eventually evaporates.

If the vapor pressure of the liquid is greater than the total ambient pressure, including that of any air (or other gas), the liquid
evaporates rapidly; in other words, it boils. Thus, the boiling point of a liquid at a given pressure is the temperature at which
its vapor pressure equals the ambient pressure. Liquid and gas phases are in equilibrium at the boiling temperature (Figure
1.14). If a substance is in a closed container at the boiling point, then the liquid is boiling and the gas is condensing at the
same rate without net change in their amounts.
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Figure 1.14 Equilibrium between liquid and gas at two different boiling points inside a
closed container. (a) The rates of boiling and condensation are equal at this combination of
temperature and pressure, so the liquid and gas phases are in equilibrium. (b) At a higher
temperature, the boiling rate is faster, that is, the rate at which molecules leave the liquid and
enter the gas is faster. This increases the number of molecules in the gas, which increases the
gas pressure, which in turn increases the rate at which gas molecules condense and enter the
liquid. The pressure stops increasing when it reaches the point where the boiling rate and the
condensation rate are equal. The gas and liquid are in equilibrium again at this higher
temperature and pressure.

For water, 100 °C is the boiling point at 1.00 atm, so water and steam should exist in equilibrium under these conditions.
Why does an open pot of water at 100 °C boil completely away? The gas surrounding an open pot is not pure water: it is
mixed with air. If pure water and steam are in a closed container at 100 °C and 1.00 atm, they will coexist—but with air
over the pot, there are fewer water molecules to condense, and water boils away. Another way to see this is that at the boiling
point, the vapor pressure equals the ambient pressure. However, part of the ambient pressure is due to air, so the pressure of
the steam is less than the vapor pressure at that temperature, and evaporation continues. Incidentally, the equilibrium vapor
pressure of solids is not zero, a fact that accounts for sublimation.
1.4 Check Your Understanding Explain why a cup of water (or soda) with ice cubes stays at 0 °C, even on

a hot summer day.

Phase Change and Latent Heat

So far, we have discussed heat transfers that cause temperature change. However, in a phase transition, heat transfer does
not cause any temperature change.

For an example of phase changes, consider the addition of heat to a sample of ice at —20°C (Figure 1.15) and
atmospheric pressure. The temperature of the ice rises linearly, absorbing heat at a constant rate of 2090 J/kg - °C until it
reaches 0 °C. Once at this temperature, the ice begins to melt and continues until it has all melted, absorbing 333 kJ/kg
of heat. The temperature remains constant at 0 °C during this phase change. Once all the ice has melted, the temperature
of the liquid water rises, absorbing heat at a new constant rate of 4186 J/kg-°C. At 100 °C, the water begins to boil.

The temperature again remains constant during this phase change while the water absorbs 2256 kJ/kg of heat and turns into
steam. When all the liquid has become steam, the temperature rises again, absorbing heat at a rate of 2020 J/kg - °C . If we

started with steam and cooled it to make it condense into liquid water and freeze into ice, the process would exactly reverse,
with the temperature again constant during each phase transition.
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Figure 1.15 Temperature versus heat. The system is constructed so that no vapor evaporates while ice
warms to become liquid water, and so that, when vaporization occurs, the vapor remains in the system. The
long stretches of constant temperatures at 0 °C and 100 °C reflect the large amounts of heat needed to

cause melting and vaporization, respectively.

Where does the heat added during melting or boiling go, considering that the temperature does not change until the transition
is complete? Energy is required to melt a solid, because the attractive forces between the molecules in the solid must be
broken apart, so that in the liquid, the molecules can move around at comparable kinetic energies; thus, there is no rise in
temperature. Energy is needed to vaporize a liquid for similar reasons. Conversely, work is done by attractive forces when
molecules are brought together during freezing and condensation. That energy must be transferred out of the system, usually
in the form of heat, to allow the molecules to stay together (Figure 1.18). Thus, condensation occurs in association with
cold objects—the glass in Figure 1.16, for example.

 —
Figure 1.16 Condensation forms on this glass of iced tea
because the temperature of the nearby air is reduced. The air
cannot hold as much water as it did at room temperature, so
water condenses. Energy is released when the water condenses,
speeding the melting of the ice in the glass. (credit: Jenny
Downing)
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The energy released when a liquid freezes is used by orange growers when the temperature approaches 0 °C. Growers

spray water on the trees so that the water freezes and heat is released to the growing oranges. This prevents the temperature
inside the orange from dropping below freezing, which would damage the fruit (Figure 1.17).

"~ Sy n

Figure 1.17 The ice on these tres released large aounts of
energy when it froze, helping to prevent the temperature of the
trees from dropping below 0 °C . Water is intentionally sprayed

on orchards to help prevent hard frosts. (credit: Hermann
Hammer)

The energy involved in a phase change depends on the number of bonds or force pairs and their strength. The number of
bonds is proportional to the number of molecules and thus to the mass of the sample. The energy per unit mass required to
change a substance from the solid phase to the liquid phase, or released when the substance changes from liquid to solid, is
known as the heat of fusion. The energy per unit mass required to change a substance from the liquid phase to the vapor
phase is known as the heat of vaporization. The strength of the forces depends on the type of molecules. The heat Q
absorbed or released in a phase change in a sample of mass m is given by

0 = mLgmelting/freezing) 1.7)

0O = mL(vaporization/condensation) (1.8)

where the latent heat of fusion L; and latent heat of vaporization L, are material constants that are determined

experimentally. (Latent heats are also called latent heat coefficients and heats of transformation.) These constants are

“latent,” or hidden, because in phase changes, energy enters or leaves a system without causing a temperature change in the
system, so in effect, the energy is hidden.
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Figure 1.18 (a) Energy is required to partially overcome the attractive forces (modeled as springs) between molecules in a
solid to form a liquid. That same energy must be removed from the liquid for freezing to take place. (b) Molecules become
separated by large distances when going from liquid to vapor, requiring significant energy to completely overcome molecular
attraction. The same energy must be removed from the vapor for condensation to take place.

Table 1.4 lists representative values of L; and L, in kJ/kg, together with melting and boiling points. Note that in general,
Ly > L;. The table shows that the amounts of energy involved in phase changes can easily be comparable to or greater

than those involved in temperature changes, as Figure 1.15 and the accompanying discussion also showed.

L¢ Ly
Substance Melting Point kJl kcall Boiling Point kJlkg kcall
O kg kg §®) kg

Helium!? —272.2(0.95 K) 5.23 1.25 —268.9(4.2K) 20.9 4.99
Hydrogen —259.3(13.9K) 58.6 14.0 —252.9(20.2 K) 452 108
Nitrogen —210.0(63.2 K) 25.5 6.09 —195.8(77.4K) 201 48.0
Oxygen —218.8(54.4K) 13.8 3.30 —183.0(90.2 K) 213 50.9
Ethanol -114 104 24.9 78.3 854 204
Ammonia -75 332 79.3 -334 1370 327
Mercury -38.9 11.8 2.82 357 272 65.0
Water 0.00 334 79.8 100.0 22568 5390l
Sulfur 119 38.1 9.10 444.6 326 77.9
Lead 327 245 5.85 1750 871 208
Antimony 631 165 39.4 1440 561 134
Aluminum 660 380 90 2450 11400 2720
Silver 961 88.3 21.1 2193 2336 558

Table 1.4 Heats of Fusion and Vaporization*! Mvalues quoted at the normal melting and boiling
temperatures at standard atmospheric pressure ( 1 atm ). Z!Helium has no solid phase at atmospheric pressure.

The melting point given is at a pressure of 2.5 MPa. BIAt 37.0 °C (body temperature), the heat of vaporization
L, for water is 2430 kJ/kg or 580 kcallkg. At 37.0 °C (body temperature), the heat of vaporization, L, for
water is 2430 kJ/kg or 580 kcal/kg.
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L; L,
Gold 1063 64.5 15.4 2660 1578 377
Copper 1083 134 32.0 2595 5069 1211
Uranium 1133 84 20 3900 1900 454
Tungsten 3410 184 44 5900 4810 1150

Table 1.4 Heats of Fusion and Vaporization™! Mvalues quoted at the normal melting and boiling
temperatures at standard atmospheric pressure ( 1 atm ). ?IHelium has no solid phase at atmospheric pressure.

The melting point given is at a pressure of 2.5 MPa. BIAt 37.0 °C (body temperature), the heat of vaporization
L, for water is 2430 kJ/kg or 580 kcal/kg. /At 37.0 °C (body temperature), the heat of vaporization, L, for

water is 2430 kJ/kg or 580 kcal/kg.

Phase changes can have a strong stabilizing effect on temperatures that are not near the melting and boiling points, since
evaporation and condensation occur even at temperatures below the boiling point. For example, air temperatures in humid
climates rarely go above approximately 38.0 °C because most heat transfer goes into evaporating water into the air.

Similarly, temperatures in humid weather rarely fall below the dew point—the temperature where condensation occurs
given the concentration of water vapor in the air—because so much heat is released when water vapor condenses.

More energy is required to evaporate water below the boiling point than at the boiling point, because the kinetic energy of
water molecules at temperatures below 100 °C is less than that at 100 °C, so less energy is available from random thermal

motions. For example, at body temperature, evaporation of sweat from the skin requires a heat input of 2428 kJ/kg, which
is about 10% higher than the latent heat of vaporization at 100 °C. This heat comes from the skin, and this evaporative

cooling effect of sweating helps reduce the body temperature in hot weather. However, high humidity inhibits evaporation,
so that body temperature might rise, while unevaporated sweat might be left on your brow.

Example 1.9

Calculating Final Temperature from Phase Change

Three ice cubes are used to chill a soda at 20 °C with mass m = 0.25kg . The ice is at 0°C and each ice

soda

cube has a mass of 6.0 g. Assume that the soda is kept in a foam container so that heat loss can be ignored and
that the soda has the same specific heat as water. Find the final temperature when all ice has melted.

Strategy

The ice cubes are at the melting temperature of 0 °C. Heat is transferred from the soda to the ice for melting.
Melting yields water at 0 °C, so more heat is transferred from the soda to this water until the water plus soda

system reaches thermal equilibrium.
The heat transferred to the ice is
Qice = Mice L + Mice cyy (T — 0 °C).
The heat given off by the soda is
Qsoda = Msoda Cw (T — 20 °C).

Since no heat is lost, Q;.c = —Qgoda» as in Example 1.7, so that

Mice L + Mice yy (T — 0 °C) = —mgoq, ey (Tg — 20 °C).

Solve for the unknown quantity 7 :

— msodacw(zo O - miceLf

T
f (m soda T mice)cw
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Solution
First we identify the known quantities. The mass of ice is m;,, =3 X 6.0 g = 0.018 kg and the mass of soda is

Mgoqa = 0.25 kg. Then we calculate the final temperature:

_20,930J -60121J

Ty="Tzrc - 13°C

Significance

This example illustrates the large energies involved during a phase change. The mass of ice is about 7% of the
mass of the soda but leads to a noticeable change in the temperature of the soda. Although we assumed that the
ice was at the freezing temperature, this is unrealistic for ice straight out of a freezer: The typical temperature is
—6 °C . However, this correction makes no significant change from the result we found. Can you explain why?

Like solid-liquid and and liquid-vapor transitions, direct solid-vapor transitions or sublimations involve heat. The energy
transferred is given by the equation Q = mLg, where L is the heat of sublimation, analogous to Ly and Ly . The heat

of sublimation at a given temperature is equal to the heat of fusion plus the heat of vaporization at that temperature.

We can now calculate any number of effects related to temperature and phase change. In each case, it is necessary to identify
which temperature and phase changes are taking place. Keep in mind that heat transfer and work can cause both temperature
and phase changes.

Problem-Solving Strategy: The Effects of Heat Transfer

1. Examine the situation to determine that there is a change in the temperature or phase. Is there heat transfer into
or out of the system? When it is not obvious whether a phase change occurs or not, you may wish to first solve
the problem as if there were no phase changes, and examine the temperature change obtained. If it is sufficient
to take you past a boiling or melting point, you should then go back and do the problem in steps—temperature
change, phase change, subsequent temperature change, and so on.

Identify and list all objects that change temperature or phase.
Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.

Make a list of what is given or what can be inferred from the problem as stated (identify the knowns). If there
is a temperature change, the transferred heat depends on the specific heat of the substance (Heat Transfer,
Specific Heat, and Calorimetry), and if there is a phase change, the transferred heat depends on the latent
heat of the substance (Table 1.4).

Solve the appropriate equation for the quantity to be determined (the unknown).

Substitute the knowns along with their units into the appropriate equation and obtain numerical solutions
complete with units. You may need to do this in steps if there is more than one state to the process, such as a
temperature change followed by a phase change. However, in a calorimetry problem, each step corresponds to
a term in the single equation Q.+ Qco1q = 0.

7. Check the answer to see if it is reasonable. Does it make sense? As an example, be certain that any temperature
change does not also cause a phase change that you have not taken into account.

1.5 Check Your Understanding Why does snow often remain even when daytime temperatures are higher
than the freezing temperature?
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1.6 | Mechanisms of Heat Transfer

Learning Objectives

By the end of this section, you will be able to:

* Explain some phenomena that involve conductive, convective, and radiative heat transfer
* Solve problems on the relationships between heat transfer, time, and rate of heat transfer
* Solve problems using the formulas for conduction and radiation

Just as interesting as the effects of heat transfer on a system are the methods by which it occurs. Whenever there is a
temperature difference, heat transfer occurs. It may occur rapidly, as through a cooking pan, or slowly, as through the walls
of a picnic ice chest. So many processes involve heat transfer that it is hard to imagine a situation where no heat transfer
occurs. Yet every heat transfer takes place by only three methods:

1. Conduction is heat transfer through stationary matter by physical contact. (The matter is stationary on a
macroscopic scale—we know that thermal motion of the atoms and molecules occurs at any temperature above
absolute zero.) Heat transferred from the burner of a stove through the bottom of a pan to food in the pan is
transferred by conduction.

2. Convection is the heat transfer by the macroscopic movement of a fluid. This type of transfer takes place in a
forced-air furnace and in weather systems, for example.

3. Heat transfer by radiation occurs when microwaves, infrared radiation, visible light, or another form of
electromagnetic radiation is emitted or absorbed. An obvious example is the warming of Earth by the Sun. A less
obvious example is thermal radiation from the human body.

In the illustration at the beginning of this chapter, the fire warms the snowshoers’ faces largely by radiation. Convection
carries some heat to them, but most of the air flow from the fire is upward (creating the familiar shape of flames), carrying
heat to the food being cooked and into the sky. The snowshoers wear clothes designed with low conductivity to prevent heat
flow out of their bodies.

In this section, we examine these methods in some detail. Each method has unique and interesting characteristics, but
all three have two things in common: They transfer heat solely because of a temperature difference, and the greater the
temperature difference, the faster the heat transfer (Figure 1.19).
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Figure 1.19 In a fireplace, heat transfer occurs by all three methods:
conduction, convection, and radiation. Radiation is responsible for most of
the heat transferred into the room. Heat transfer also occurs through
conduction into the room, but much slower. Heat transfer by convection
also occurs through cold air entering the room around windows and hot air
leaving the room by rising up the chimney.

@ 1.6 Check Your Understanding Name an example from daily life (different from the text) for each
mechanism of heat transfer.

Conduction

As you walk barefoot across the living room carpet in a cold house and then step onto the kitchen tile floor, your feet feel
colder on the tile. This result is intriguing, since the carpet and tile floor are both at the same temperature. The different
sensation is explained by the different rates of heat transfer: The heat loss is faster for skin in contact with the tiles than with
the carpet, so the sensation of cold is more intense.

Some materials conduct thermal energy faster than others. Figure 1.20 shows a material that conducts heat slowly—it is a
good thermal insulator, or poor heat conductor—used to reduce heat flow into and out of a house.
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Figure 1.20 Insulation is used to limit the conduction of heat
from the inside to the outside (in winter) and from the outside to
the inside (in summer). (credit: Giles Douglas)

A molecular picture of heat conduction will help justify the equation that describes it. Figure 1.21 shows molecules in
two bodies at different temperatures, 7}, and 7T, for “hot” and “cold.” The average kinetic energy of a molecule in

the hot body is higher than in the colder body. If two molecules collide, energy transfers from the high-energy to the
low-energy molecule. In a metal, the picture would also include free valence electrons colliding with each other and with
atoms, likewise transferring energy. The cumulative effect of all collisions is a net flux of heat from the hotter body to
the colder body. Thus, the rate of heat transfer increases with increasing temperature difference AT = T} — T. If the

temperatures are the same, the net heat transfer rate is zero. Because the number of collisions increases with increasing area,
heat conduction is proportional to the cross-sectional area—a second factor in the equation.
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Figure 1.21 Molecules in two bodies at different temperatures
have different average kinetic energies. Collisions occurring at
the contact surface tend to transfer energy from high-
temperature regions to low-temperature regions. In this
illustration, a molecule in the lower-temperature region (right
side) has low energy before collision, but its energy increases
after colliding with a high-energy molecule at the contact
surface. In contrast, a molecule in the higher-temperature region
(left side) has high energy before collision, but its energy

decreases after colliding with a low-energy molecule at the
contact surface.

A third quantity that affects the conduction rate is the thickness of the material through which heat transfers. Figure 1.22
shows a slab of material with a higher temperature on the left than on the right. Heat transfers from the left to the right by
a series of molecular collisions. The greater the distance between hot and cold, the more time the material takes to transfer
the same amount of heat.

Material having
thermal conductivity k

Area A

T, =T,
Figure 1.22 Heat conduction occurs through any material, represented here by a
rectangular bar, whether window glass or walrus blubber.

All four of these quantities appear in a simple equation deduced from and confirmed by experiments. The rate of
conductive heat transfer through a slab of material, such as the one in Figure 1.22, is given by

_d0 _ ATy =T )

P=ar=— 4
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where P is the power or rate of heat transfer in watts or in kilocalories per second, A and d are its surface area and thickness,
as shown in Figure 1.22, T} — T, is the temperature difference across the slab, and k is the thermal conductivity of the

material. Table 1.5 gives representative values of thermal conductivity.

More generally, we can write

= —kAdl
P = —kASE,

where x is the coordinate in the direction of heat flow. Since in Figure 1.22, the power and area are constant, dT/dx is
constant, and the temperature decreases linearly from T3, to T..

Substance Thermal Conductivity kK (W/m-°C)
Diamond 2000
Silver 420
Copper 390
Gold 318
Aluminum 220
Steel iron 80
Steel (stainless) 14
Ice 2.2
Glass (average) 0.84
Concrete brick 0.84
Water 0.6
Fatty tissue (without blood) 0.2
Asbestos 0.16
Plasterboard 0.16
Wood 0.08-0.16
Snow (dry) 0.10
Cork 0.042
Glass wool 0.042
Wool 0.04
Down feathers 0.025
Air 0.023
Polystyrene foam 0.010

Table 1.5 Thermal Conductivities of Common Substances Values are
given for temperatures near 0 °C.

Example 1.10

Calculating Heat Transfer through Conduction

A polystyrene foam icebox has a total area of 0.950 m? and walls with an average thickness of 2.50 cm. The
box contains ice, water, and canned beverages at 0 °C. The inside of the box is kept cold by melting ice. How
much ice melts in one day if the icebox is kept in the trunk of a car at 35.0°C?
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Strategy

This question involves both heat for a phase change (melting of ice) and the transfer of heat by conduction. To
find the amount of ice melted, we must find the net heat transferred. This value can be obtained by calculating the
rate of heat transfer by conduction and multiplying by time.

Solution

First we identify the knowns.

k=0.010W/m-°C for polystyrene foam; A =0.950 mz; d=250cm =0.0250m;; T. = 0°C;
T,,=35.0°C; t = 1 day = 24 hours - 84,400 s.

Then we identify the unknowns. We need to solve for the mass of the ice, m. We also need to solve for the net
heat transferred to melt the ice, Q. The rate of heat transfer by conduction is given by

P — d_Q — kA(Th — TC)
dT d ’

The heat used to melt the ice is Q = mL; .We insert the known values:

p_ (0010 W/m- °0)(0.950 m*)(35.0 °C — 0°C)

0.0250m =133W.

Multiplying the rate of heat transfer by the time ( 1 day = 86,400 s ), we obtain

Q= Pr=(133W)(86.400s) = 1.15x 10° J.

We set this equal to the heat transferred to melt the ice, Q = mL, and solve for the mass m:

6
m=L o LISXI0°T _ 344y
Ly 334% 103 J/kg

Significance

The result of 3.44 kg, or about 7.6 1b, seems about right, based on experience. You might expect to use about a 4
kg (7-10 1b) bag of ice per day. A little extra ice is required if you add any warm food or beverages.

Table 1.5 shows that polystyrene foam is a very poor conductor and thus a good insulator. Other good insulators
include fiberglass, wool, and goosedown feathers. Like polystyrene foam, these all contain many small pockets
of air, taking advantage of air’s poor thermal conductivity.

In developing insulation, the smaller the conductivity k and the larger the thickness d, the better. Thus, the ratio d/k, called
the R factor, is large for a good insulator. The rate of conductive heat transfer is inversely proportional to R. R factors are
most commonly quoted for household insulation, refrigerators, and the like. Unfortunately, in the United States, R is still

in non-metric units of ft>-°F-h/Btu, although the unit usually goes unstated [1 British thermal unit (Btu) is the amount

of energy needed to change the temperature of 1.0 Ib of water by 1.0 °F, which is 1055.1 J]. A couple of representative

values are an R factor of 11 for 3.5-inch-thick fiberglass batts (pieces) of insulation and an R factor of 19 for 6.5-inch-
thick fiberglass batts (Figure 1.23). In the US, walls are usually insulated with 3.5-inch batts, whereas ceilings are usually
insulated with 6.5-inch batts. In cold climates, thicker batts may be used.
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Ll & oy < . i
Figure 1.23 The fiberglass batt is used for insulation of walls
and ceilings to prevent heat transfer between the inside of the
building and the outside environment. (credit: Tracey Nicholls)

\

Note that in Table 1.5, most of the best thermal conductors—silver, copper, gold, and aluminum—are also the best
electrical conductors, because they contain many free electrons that can transport thermal energy. (Diamond, an electrical
insulator, conducts heat by atomic vibrations.) Cooking utensils are typically made from good conductors, but the handles
of those used on the stove are made from good insulators (bad conductors).

Example 1.11

Two Conductors End to End

A steel rod and an aluminum rod, each of diameter 1.00 cm and length 25.0 cm, are welded end to end. One end
of the steel rod is placed in a large tank of boiling water at 100 °C, while the far end of the aluminum rod is
placed in a large tank of water at 20 °C . The rods are insulated so that no heat escapes from their surfaces. What
is the temperature at the joint, and what is the rate of heat conduction through this composite rod?

Strategy

The heat that enters the steel rod from the boiling water has no place to go but through the steel rod, then through
the aluminum rod, to the cold water. Therefore, we can equate the rate of conduction through the steel to the rate
of conduction through the aluminum.

We repeat the calculation with a second method, in which we use the thermal resistance R of the rod, since it
simply adds when two rods are joined end to end. (We will use a similar method in the chapter on direct-current
circuits.)

Solution
1. Identify the knowns and convert them to SI units.

The length of each rod is Ln; =L 0.25m, the cross-sectional area of each rod is

steel =
thermal conductivity of steel is kg.; = 80 W/m - °C, the temperature at the hot end is 7' = 100 °C, and

steel = 7185 % 1073 m?, the thermal conductivity of aluminum is k Al =220 W/m-°C, the

the temperature at the cold end is 7 = 20 °C.
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2. Calculate the heat-conduction rate through the steel rod and the heat-conduction rate through the
aluminum rod in terms of the unknown temperature T at the joint:

_ k steelAsteel AT
steel — L

steel

P

steel

(80 W/m - °C)(7.85 x 107> m?)(100°C — T)
- 0.25m
= (0.0251 W/°C)(100 °C — T);

_ kalAa1 AT
Lay
(220 W/m -°C)(7.85 x 1075 m?)(T' — 20 °C)
- 0.25m
= (0.0691 W/°C)(T — 20 °C).
3. Set the two rates equal and solve for the unknown temperature:
(0.0691 W/°C)(T — 20 °C) (0.0251 W/°C)(100°C - T)
T = 41.3°C.

Pay

4. Calculate either rate:
P ee1 = (0.0251 W/°C)(100 °C - 41.3°C) = 1.47W.
5. 1If desired, check your answer by calculating the other rate.

Solution
1. Recall that R = L/k.Now P = AAT/R, or AT = PR/A.

2. We know that AT .o+ AT 5; = 100 °C — 20 °C = 80 °C . We also know that Pg.. = P,;, and we
denote that rate of heat flow by P. Combine the equations:

PRsteel PRA]_ o
T+T—80 C.

80 °C

Thus, we can simply add R factors. Now, P = —2—~——
A(R steel T R Al)

3. Find the R from the known quantities:

Reel = 3.13% 10> m?- °C/W

and
Ra=1.14%x 1073 m?-°C/W.
4. Substitute these values in to find P = 1.47 W as before.
5. Determine AT for the aluminum rod (or for the steel rod) and use it to find T at the joint.
PRy (147W)(1.14x 107> m?-°C/W)
AT 7.85% 107> m?

ATy = =21.3°C,
so T=20°C+21.3°C=41.3°C, as in Solution 1.
6. If desired, check by determining AT for the other rod.
Significance

In practice, adding R values is common, as in calculating the R value of an insulated wall. In the analogous
situation in electronics, the resistance corresponds to AR in this problem and is additive even when the areas are
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unequal, as is common in electronics. Our equation for heat conduction can be used only when the areas are equal;
otherwise, we would have a problem in three-dimensional heat flow, which is beyond our scope.

1.7 Check Your Understanding How does the rate of heat transfer by conduction change when all spatial
dimensions are doubled?

Conduction is caused by the random motion of atoms and molecules. As such, it is an ineffective mechanism for heat
transport over macroscopic distances and short times. For example, the temperature on Earth would be unbearably cold
during the night and extremely hot during the day if heat transport in the atmosphere were only through conduction. Also,
car engines would overheat unless there was a more efficient way to remove excess heat from the pistons. The next module
discusses the important heat-transfer mechanism in such situations.

Convection

In convection, thermal energy is carried by the large-scale flow of matter. It can be divided into two types. In forced
convection, the flow is driven by fans, pumps, and the like. A simple example is a fan that blows air past you in hot
surroundings and cools you by replacing the air heated by your body with cooler air. A more complicated example is the
cooling system of a typical car, in which a pump moves coolant through the radiator and engine to cool the engine and a fan
blows air to cool the radiator.

In free or natural convection, the flow is driven by buoyant forces: hot fluid rises and cold fluid sinks because density
decreases as temperature increases. The house in Figure 1.24 is kept warm by natural convection, as is the pot of water
on the stove in Figure 1.25. Ocean currents and large-scale atmospheric circulation, which result from the buoyancy of
warm air and water, transfer hot air from the tropics toward the poles and cold air from the poles toward the tropics. (Earth’s
rotation interacts with those flows, causing the observed eastward flow of air in the temperate zones.)

Air cooled
by room
sinks

Figure 1.24 Air heated by a so-called gravity furnace expands and
rises, forming a convective loop that transfers energy to other parts of
the room. As the air is cooled at the ceiling and outside walls, it
contracts, eventually becoming denser than room air and sinking to the
floor. A properly designed heating system using natural convection,
like this one, can heat a home quite efficiently.



44 Chapter 1 | Temperature and Heat

Hot water rises

Cooler
water sinks

Figure 1.25 Natural convection plays an important role in
heat transfer inside this pot of water. Once conducted to the
inside, heat transfer to other parts of the pot is mostly by
convection. The hotter water expands, decreases in density, and
rises to transfer heat to other regions of the water, while colder
water sinks to the bottom. This process keeps repeating.

Natural convection like that of Figure 1.24 and Figure 1.25, but acting on rock in Earth’s mantle, drives plate
tectonics (https:/lopenstaxcollege.orgl/l/i21platetecton) that are the motions that have shaped Earth’s
surface.

Convection is usually more complicated than conduction. Beyond noting that the convection rate is often approximately
proportional to the temperature difference, we will not do any quantitative work comparable to the formula for conduction.
However, we can describe convection qualitatively and relate convection rates to heat and time. However, air is a poor
conductor. Therefore, convection dominates heat transfer by air, and the amount of available space for airflow determines
whether air transfers heat rapidly or slowly. There is little heat transfer in a space filled with air with a small amount of other
material that prevents flow. The space between the inside and outside walls of a typical American house, for example, is
about 9 cm (3.5 in.)—large enough for convection to work effectively. The addition of wall insulation prevents airflow, so
heat loss (or gain) is decreased. On the other hand, the gap between the two panes of a double-paned window is about 1 cm,
which largely prevents convection and takes advantage of air’s low conductivity reduce heat loss. Fur, cloth, and fiberglass
also take advantage of the low conductivity of air by trapping it in spaces too small to support convection (Figure 1.26).
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Figure 1.26 Furis fﬂlEd with air, breaking it up into many
small pockets. Convection is very slow here, because the loops
are so small. The low conductivity of air makes fur a very good
lightweight insulator.

Some interesting phenomena happen when convection is accompanied by a phase change. The combination allows us to
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cool off by sweating even if the temperature of the surrounding air exceeds body temperature. Heat from the skin is required
for sweat to evaporate from the skin, but without air flow, the air becomes saturated and evaporation stops. Air flow caused
by convection replaces the saturated air by dry air and evaporation continues.

Example 1.12

Calculating the Flow of Mass during Convection

The average person produces heat at the rate of about 120 W when at rest. At what rate must water evaporate
from the body to get rid of all this energy? (For simplicity, we assume this evaporation occurs when a person is
sitting in the shade and surrounding temperatures are the same as skin temperature, eliminating heat transfer by
other methods.)

Strategy

Energy is needed for this phase change ( Q = mL, ). Thus, the energy loss per unit time is

%J"TLV: 120 W = 120 J/s.

We divide both sides of the equation by L, to find that the mass evaporated per unit time is

m _ 1201/
—

! v

Solution
Insert the value of the latent heat from Table 1.4, L, = 2430kJ/kg = 24301J/g . This yields

m _ _120J/s _ _ ;
= 243008 0.0494 g/s = 2.96 g/min.
Significance

Evaporating about 3 g/min seems reasonable. This would be about 180 g (about 7 0z.) per hour. If the air is very
dry, the sweat may evaporate without even being noticed. A significant amount of evaporation also takes place in
the lungs and breathing passages.

Another important example of the combination of phase change and convection occurs when water evaporates from the
oceans. Heat is removed from the ocean when water evaporates. If the water vapor condenses in liquid droplets as clouds
form, possibly far from the ocean, heat is released in the atmosphere. Thus, there is an overall transfer of heat from the ocean
to the atmosphere. This process is the driving power behind thunderheads, those great cumulus clouds that rise as much
as 20.0 km into the stratosphere (Figure 1.27). Water vapor carried in by convection condenses, releasing tremendous
amounts of energy. This energy causes the air to expand and rise to colder altitudes. More condensation occurs in these
regions, which in turn drives the cloud even higher. This mechanism is an example of positive feedback, since the process
reinforces and accelerates itself. It sometimes produces violent storms, with lightning and hail. The same mechanism drives
hurricanes.

@ This time-lapse video (https:/lopenstaxcollege.org/l/21convthuncurr) shows convection currents in a
thunderstorm, including “rolling” motion similar to that of boiling water.
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Figure 1.27 Cumulus clouds are caused by water vapor that
rises because of convection. The rise of clouds is driven by a
positive feedback mechanism. (credit: “Amada44”/Wikimedia
Commons)

@ 18 Check Your Understanding Explain why using a fan in the summer feels refreshing.

Radiation

You can feel the heat transfer from the Sun. The space between Earth and the Sun is largely empty, so the Sun warms
us without any possibility of heat transfer by convection or conduction. Similarly, you can sometimes tell that the oven
is hot without touching its door or looking inside—it may just warm you as you walk by. In these examples, heat is
transferred by radiation (Figure 1.28). That is, the hot body emits electromagnetic waves that are absorbed by the skin.
No medium is required for electromagnetic waves to propagate. Different names are used for electromagnetic waves of
different wavelengths: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma
rays.

Figure 1.28 Most of the heat transfer from this fire to the
observers occurs through infrared radiation. The visible light,
although dramatic, transfers relatively little thermal energy.
Convection transfers energy away from the observers as hot air
rises, while conduction is negligibly slow here. Skin is very
sensitive to infrared radiation, so you can sense the presence of a
fire without looking at it directly. (credit: Daniel O’Neil)

The energy of electromagnetic radiation varies over a wide range, depending on the wavelength: A shorter wavelength (or
higher frequency) corresponds to a higher energy. Because more heat is radiated at higher temperatures, higher temperatures
produce more intensity at every wavelength but especially at shorter wavelengths. In visible light, wavelength determines
color—red has the longest wavelength and violet the shortest—so a temperature change is accompanied by a color change.
For example, an electric heating element on a stove glows from red to orange, while the higher-temperature steel in a
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blast furnace glows from yellow to white. Infrared radiation is the predominant form radiated by objects cooler than the
electric element and the steel. The radiated energy as a function of wavelength depends on its intensity, which is represented
in Figure 1.29 by the height of the distribution. (Electromagnetic Waves explains more about the electromagnetic
spectrum, and Photons and Matter Waves (http://cnx.org/content/m58757/latest/) discusses why the decrease in
wavelength corresponds to an increase in energy.)

6000 K (white hot)

4000 K

3000 K (red hot)

I I R | I
0 1000 2000 3000
A (nm)

UV  Visible range
(violet —red)

EM radiation intensity

(@) (b)
Figure 1.29 (a) A graph of the spectrum of electromagnetic waves emitted from an ideal
radiator at three different temperatures. The intensity or rate of radiation emission increases
dramatically with temperature, and the spectrum shifts down in wavelength toward the visible
and ultraviolet parts of the spectrum. The shaded portion denotes the visible part of the spectrum.
It is apparent that the shift toward the ultraviolet with temperature makes the visible appearance
shift from red to white to blue as temperature increases. (b) Note the variations in color
corresponding to variations in flame temperature.

The rate of heat transfer by radiation also depends on the object’s color. Black is the most effective, and white is the least
effective. On a clear summer day, black asphalt in a parking lot is hotter than adjacent gray sidewalk, because black absorbs
better than gray (Figure 1.30). The reverse is also true—black radiates better than gray. Thus, on a clear summer night,
the asphalt is colder than the gray sidewalk, because black radiates the energy more rapidly than gray. A perfectly black
object would be an ideal radiator and an ideal absorber, as it would capture all the radiation that falls on it. In contrast,
a perfectly white object or a perfect mirror would reflect all radiation, and a perfectly transparent object would transmit it
all (Figure 1.31). Such objects would not emit any radiation. Mathematically, the color is represented by the emissivity
e. A “blackbody” radiator would have an e = 1, whereas a perfect reflector or transmitter would have e = 0. For real

examples, tungsten light bulb filaments have an e of about 0.5, and carbon black (a material used in printer toner) has an
emissivity of about 0.95.
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Figure 1.30 The darker pavement is hotter than the lighter pavement (much more of the ice on the right has
melted), although both have been in the sunlight for the same time. The thermal conductivities of the pavements are

the same.
Absorb Radiate Absorb Radiate
Incident Incident
radiant ; radiant :
energy Reflected Emitted energy Reflected Emitted

A

Absorbed Retained

L Absorbed

Black Black Silver coated Silver coated
Figure 1.31 A black object is a good absorber and a good radiator, whereas a white, clear, or silver object is a
poor absorber and a poor radiator.

To see that, consider a silver object and a black object that can exchange heat by radiation and are in thermal equilibrium.
We know from experience that they will stay in equilibrium (the result of a principle that will be discussed at length in
Second Law of Thermodynamics). For the black object’s temperature to stay constant, it must emit as much radiation
as it absorbs, so it must be as good at radiating as absorbing. Similar considerations show that the silver object must radiate
as little as it absorbs. Thus, one property, emissivity, controls both radiation and absorption.

Finally, the radiated heat is proportional to the object’s surface area, since every part of the surface radiates. If you knock
apart the coals of a fire, the radiation increases noticeably due to an increase in radiating surface area.

The rate of heat transfer by emitted radiation is described by the Stefan-Boltzmann law of radiation:

P = O'A€T4,

where ¢ = 5.67 x 1078 J/s- m?2-K* is the Stefan-Boltzmann constant, a combination of fundamental constants of nature;
A is the surface area of the object; and T is its temperature in kelvins.

The proportionality to the fourth power of the absolute temperature is a remarkably strong temperature dependence. It
allows the detection of even small temperature variations. Images called thermographs can be used medically to detect
regions of abnormally high temperature in the body, perhaps indicative of disease. Similar techniques can be used to detect
heat leaks in homes (Figure 1.32), optimize performance of blast furnaces, improve comfort levels in work environments,
and even remotely map Earth’s temperature profile.
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Figure 1.32 A thermograph of part of a building shows temperature variations,
indicating where heat transfer to the outside is most severe. Windows are a major
region of heat transfer to the outside of homes. (credit: US Army)

The Stefan-Boltzmann equation needs only slight refinement to deal with a simple case of an object’s absorption of radiation
from its surroundings. Assuming that an object with a temperature 7' is surrounded by an environment with uniform

temperature 7', , the net rate of heat transfer by radiation is
Pnet = 0'eA(T2 4 — Tl 4), (1'10)

where e is the emissivity of the object alone. In other words, it does not matter whether the surroundings are white, gray,
or black: The balance of radiation into and out of the object depends on how well it emits and absorbs radiation. When
T, >T,, thequantity P, is positive, that is, the net heat transfer is from hot to cold.

Before doing an example, we have a complication to discuss: different emissivities at different wavelengths. If the fraction
of incident radiation an object reflects is the same at all visible wavelengths, the object is gray; if the fraction depends on
the wavelength, the object has some other color. For instance, a red or reddish object reflects red light more strongly than
other visible wavelengths. Because it absorbs less red, it radiates less red when hot. Differential reflection and absorption of
wavelengths outside the visible range have no effect on what we see, but they may have physically important effects. Skin is
a very good absorber and emitter of infrared radiation, having an emissivity of 0.97 in the infrared spectrum. Thus, in spite
of the obvious variations in skin color, we are all nearly black in the infrared. This high infrared emissivity is why we can
so easily feel radiation on our skin. It is also the basis for the effectiveness of night-vision scopes used by law enforcement
and the military to detect human beings.

Example 1.13

Calculating the Net Heat Transfer of a Person

What is the rate of heat transfer by radiation of an unclothed person standing in a dark room whose ambient
temperature is 22.0 °C ? The person has a normal skin temperature of 33.0 °C and a surface area of 1.50 m?2.
The emissivity of skin is 0.97 in the infrared, the part of the spectrum where the radiation takes place.

Strategy

We can solve this by using the equation for the rate of radiative heat transfer.
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Solution
Insert the temperature values 7 = 295K and 7| = 306 K, so that

(5.67% 107 J/s-m?- K*)0.97)(1.50 m*)| (295 K)* — (306 K)*|
=-99J/s = —99 W.

Significance

This value is a significant rate of heat transfer to the environment (note the minus sign), considering that a person
at rest may produce energy at the rate of 125 W and that conduction and convection are also transferring energy to
the environment. Indeed, we would probably expect this person to feel cold. Clothing significantly reduces heat
transfer to the environment by all mechanisms, because clothing slows down both conduction and convection,
and has a lower emissivity (especially if it is light-colored) than skin.

The average temperature of Earth is the subject of much current discussion. Earth is in radiative contact with both the Sun
and dark space, so we cannot use the equation for an environment at a uniform temperature. Earth receives almost all its
energy from radiation of the Sun and reflects some of it back into outer space. Conversely, dark space is very cold, about 3
K, so that Earth radiates energy into the dark sky. The rate of heat transfer from soil and grasses can be so rapid that frost
may occur on clear summer evenings, even in warm latitudes.

The average temperature of Earth is determined by its energy balance. To a first approximation, it is the temperature at
which Earth radiates heat to space as fast as it receives energy from the Sun.

An important parameter in calculating the temperature of Earth is its emissivity (e). On average, it is about 0.65, but
calculation of this value is complicated by the great day-to-day variation in the highly reflective cloud coverage. Because
clouds have lower emissivity than either oceans or land masses, they reflect some of the radiation back to the surface, greatly
reducing heat transfer into dark space, just as they greatly reduce heat transfer into the atmosphere during the day. There
is negative feedback (in which a change produces an effect that opposes that change) between clouds and heat transfer;
higher temperatures evaporate more water to form more clouds, which reflect more radiation back into space, reducing the
temperature.

The often-mentioned greenhouse effect is directly related to the variation of Earth’s emissivity with wavelength (Figure
1.33). The greenhouse effect is a natural phenomenon responsible for providing temperatures suitable for life on Earth and
for making Venus unsuitable for human life. Most of the infrared radiation emitted from Earth is absorbed by carbon dioxide
(CO,) and water (H,O) in the atmosphere and then re-radiated into outer space or back to Earth. Re-radiation back to
Earth maintains its surface temperature about 40 °C higher than it would be if there were no atmosphere. (The glass walls
and roof of a greenhouse increase the temperature inside by blocking convective heat losses, not radiative losses.)
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Figure 1.33 The greenhouse effect is the name given to the increase of Earth’s
temperature due to absorption of radiation in the atmosphere. The atmosphere is
transparent to incoming visible radiation and most of the Sun’s infrared. The Earth
absorbs that energy and re-emits it. Since Earth’s temperature is much lower than the
Sun’s, it re-emits the energy at much longer wavelengths, in the infrared. The
atmosphere absorbs much of that infrared radiation and radiates about half of the
energy back down, keeping Earth warmer than it would otherwise be. The amount of
trapping depends on concentrations of trace gases such as carbon dioxide, and an
increase in the concentration of these gases increases Earth’s surface temperature.

The greenhouse effect is central to the discussion of global warming due to emission of carbon dioxide and methane (and
other greenhouse gases) into Earth’s atmosphere from industry, transportation, and farming. Changes in global climate could
lead to more intense storms, precipitation changes (affecting agriculture), reduction in rain forest biodiversity, and rising sea
levels.

You can explore a simulation of the greenhouse effect (https://openstaxcollege.org/l/21simgreeneff)
that takes the point of view that the atmosphere scatters (redirects) infrared radiation rather than absorbing it and
reradiating it. You may want to run the simulation first with no greenhouse gases in the atmosphere and then look
at how adding greenhouse gases affects the infrared radiation from the Earth and the Earth’s temperature.

Problem-Solving Strategy: Effects of Heat Transfer

Examine the situation to determine what type of heat transfer is involved.

Identify the type(s) of heat transfe—conduction, convection, or radiation.

Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.
Make a list of what is given or what can be inferred from the problem as stated (identify the knowns).

Solve the appropriate equation for the quantity to be determined (the unknown).

@ @ & @M=

For conduction, use the equation P = % Table 1.5 lists thermal conductivities. For convection,

determine the amount of matter moved and the equation Q = mcAT , along with Q = mL; or Q = mLy, ifa


https://openstaxcollege.org/l/21simgreeneff
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substance changes phase. For radiation, the equation P = aeA(T2 £ T, 4) gives the net heat transfer rate.

7. Substitute the knowns along with their units into the appropriate equation and obtain numerical solutions
complete with units.

8. Check the answer to see if it is reasonable. Does it make sense?

1.9 Check Your Understanding How much greater is the rate of heat radiation when a body is at the
temperature 40 °C than when it is at the temperature 20 °C ?
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CHAPTER 1 REVIEW

KEY TERMS

absolute temperature scale scale, such as Kelvin, with a zero point that is absolute zero
absolute zero temperature at which the average kinetic energy of molecules is zero

calorie (cal) energy needed to change the temperature of 1.00 g of water by 1.00 °C

calorimeter container that prevents heat transfer in or out
calorimetry study of heat transfer inside a container impervious to heat

Celsius scale temperature scale in which the freezing point of water is 0 °C and the boiling point of water is 100 °C

coefficient of linear expansion () material property that gives the change in length, per unit length, per 1-°C

change in temperature; a constant used in the calculation of linear expansion; the coefficient of linear expansion
depends to some degree on the temperature of the material

coefficient of volume expansion ($) similar to a but gives the change in volume, per unit volume, per 1-°C

change in temperature
conduction heat transfer through stationary matter by physical contact
convection heat transfer by the macroscopic movement of fluid

critical point for a given substance, the combination of temperature and pressure above which the liquid and gas phases
are indistinguishable

critical pressure pressure at the critical point
critical temperature temperature at the critical point

degree Celsius ( °C) unit on the Celsius temperature scale
degree Fahrenheit ( °F) unit on the Fahrenheit temperature scale

emissivity measure of how well an object radiates
Fahrenheit scale temperature scale in which the freezing point of water is 32 °F and the boiling point of water is
212°F

greenhouse effect warming of the earth that is due to gases such as carbon dioxide and methane that absorb infrared
radiation from Earth’s surface and reradiate it in all directions, thus sending some of it back toward Earth

heat energy transferred solely due to a temperature difference

heat of fusion energy per unit mass required to change a substance from the solid phase to the liquid phase, or released
when the substance changes from liquid to solid

heat of sublimation energy per unit mass required to change a substance from the solid phase to the vapor phase
heat of vaporization energy per unit mass required to change a substance from the liquid phase to the vapor phase
heat transfer movement of energy from one place or material to another as a result of a difference in temperature
Kelvin scale (K) temperature scale in which 0 K is the lowest possible temperature, representing absolute zero

kilocalorie (kcal) energy needed to change the temperature of 1.00 kg of water between 14.5°C and 15.5 °C
latent heat coefficient general term for the heats of fusion, vaporization, and sublimation

mechanical equivalent of heat work needed to produce the same effects as heat transfer

net rate of heat transfer by radiation P ey = o€ A(T2 4_ T, 4)

phase diagram graph of pressure vs. temperature of a particular substance, showing at which pressures and
temperatures the phases of the substance occur
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radiation energy transferred by electromagnetic waves directly as a result of a temperature difference

rate of conductive heat transfer rate of heat transfer from one material to another

specific heat amount of heat necessary to change the temperature of 1.00 kg of a substance by 1.00 °C; also called
“specific heat capacity”

Stefan-Boltzmann law of radiation p — 54¢74, where o =5.67x 1078 J/s-m?-K* is the Stefan-Boltzmann
constant, A is the surface area of the object, T is the absolute temperature, and e is the emissivity

sublimation phase change from solid to gas

temperature quantity measured by a thermometer, which reflects the mechanical energy of molecules in a system

thermal conductivity property of a material describing its ability to conduct heat

thermal equilibrium condition in which heat no longer flows between two objects that are in contact; the two objects
have the same temperature

thermal expansion change in size or volume of an object with change in temperature

thermal stress stress caused by thermal expansion or contraction

triple point pressure and temperature at which a substance exists in equilibrium as a solid, liquid, and gas
vapor gas at a temperature below the boiling temperature

vapor pressure pressure at which a gas coexists with its solid or liquid phase

zeroth law of thermodynamics law that states that if two objects are in thermal equilibrium, and a third object is in
thermal equilibrium with one of those objects, it is also in thermal equilibrium with the other object

KEY EQUATIONS

Linear thermal expansion AL = aLAT
Thermal expansion in two dimensions AA = 2aAAT
Thermal expansion in three dimensions AV = VAT
Heat transfer 0 = mcAT
Transfer of heat in a calorimeter Qcold + Cpot =0
Heat due to phase change (melting and freezing) Q =mLy¢
Heat due to phase change (evaporation and condensation) Q=mLy

. kAT, — T
Rate of conductive heat transfer P= ( ’cli J
Net rate of heat transfer by radiation Pret = aeA(T2 e 4)

SUMMARY

1.1 Temperature and Thermal Equilibrium

¢ Temperature is operationally defined as the quantity measured by a thermometer. It is proportional to the average
kinetic energy of atoms and molecules in a system.

¢ Thermal equilibrium occurs when two bodies are in contact with each other and can freely exchange energy.
Systems are in thermal equilibrium when they have the same temperature.

e The zeroth law of thermodynamics states that when two systems, A and B, are in thermal equilibrium with each
other, and B is in thermal equilibrium with a third system C, then A is also in thermal equilibrium with C.
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1.2 Thermometers and Temperature Scales

Three types of thermometers are alcohol, liquid crystal, and infrared radiation (pyrometer).

The three main temperature scales are Celsius, Fahrenheit, and Kelvin. Temperatures can be converted from one
scale to another using temperature conversion equations.

The three phases of water (ice, liquid water, and water vapor) can coexist at a single pressure and temperature known
as the triple point.

1.3 Thermal Expansion

Thermal expansion is the increase of the size (length, area, or volume) of a body due to a change in temperature,
usually a rise. Thermal contraction is the decrease in size due to a change in temperature, usually a fall in
temperature.

Thermal stress is created when thermal expansion or contraction is constrained.

1.4 Heat Transfer, Specific Heat, and Calorimetry

Heat and work are the two distinct methods of energy transfer.
Heat transfer to an object when its temperature changes is often approximated well by QO = mcAT, where m is the

object’s mass and c is the specific heat of the substance.

1.5 Phase Changes

Most substances have three distinct phases (under ordinary conditions on Earth), and they depend on temperature
and pressure.

Two phases coexist (i.e., they are in thermal equilibrium) at a set of pressures and temperatures.

Phase changes occur at fixed temperatures for a given substance at a given pressure, and these temperatures are
called boiling, freezing (or melting), and sublimation points.

1.6 Mechanisms of Heat Transfer

Heat is transferred by three different methods: conduction, convection, and radiation.

Heat conduction is the transfer of heat between two objects in direct contact with each other.

The rate of heat transfer P (energy per unit time) is proportional to the temperature difference 7}, — 7. and the
contact area A and inversely proportional to the distance d between the objects.

Convection is heat transfer by the macroscopic movement of mass. Convection can be natural or forced, and
generally transfers thermal energy faster than conduction. Convection that occurs along with a phase change can
transfer energy from cold regions to warm ones.

Radiation is heat transfer through the emission or absorption of electromagnetic waves.

The rate of radiative heat transfer is proportional to the emissivity e. For a perfect blackbody, ¢ = 1, whereas a
perfectly white, clear, or reflective body has e = 0, with real objects having values of e between 1 and 0.

The rate of heat transfer depends on the surface area and the fourth power of the absolute temperature:

P = ceAT?,

where ¢ = 5.67x 1078 J/s-m?-K* is the Stefan-Boltzmann constant and e is the emissivity of the body. The net
rate of heat transfer from an object by radiation is

—Q;let = 0eA(T2 o1, 4),

where T is the temperature of the object surrounded by an environment with uniform temperature 7, and e is the
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emissivity of the object.

CONCEPTUAL QUESTIONS

1.1 Temperature and Thermal Equilibrium

1. What does it mean to say that two systems are in
thermal equilibrium?

2. Give an example in which A has some kind of non-
thermal equilibrium relationship with B, and B has the same
relationship with C, but A does not have that relationship
with C.

1.2 Thermometers and Temperature Scales

3. If a thermometer is allowed to come to equilibrium with
the air, and a glass of water is not in equilibrium with the
air, what will happen to the thermometer reading when it is
placed in the water?

4. Give an example of a physical property that varies
with temperature and describe how it is used to measure
temperature.

1.3 Thermal Expansion

5. Pouring cold water into hot glass or ceramic cookware
can easily break it. What causes the breaking? Explain
why Pyrex®, a glass with a small coefficient of linear
expansion, is less susceptible.

6. One method of getting a tight fit, say of a metal peg in
a hole in a metal block, is to manufacture the peg slightly
larger than the hole. The peg is then inserted when at a
different temperature than the block. Should the block be
hotter or colder than the peg during insertion? Explain your
answer.

7. Does it really help to run hot water over a tight metal lid
on a glass jar before trying to open it? Explain your answer.

8. When a cold alcohol thermometer is placed in a hot
liquid, the column of alcohol goes down slightly before
going up. Explain why.

9. Calculate the length of a 1-meter rod of a material with
thermal expansion coefficient @ when the temperature is
raised from 300 K to 600 K. Taking your answer as the new
initial length, find the length after the rod is cooled back
down to 300 K. Is your answer 1 meter? Should it be? How
can you account for the result you got?

10. Noting the large stresses that can be caused by thermal
expansion, an amateur weapon inventor decides to use it to
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make a new kind of gun. He plans to jam a bullet against
an aluminum rod inside a closed invar tube. When he heats
the tube, the rod will expand more than the tube and a very
strong force will build up. Then, by a method yet to be
determined, he will open the tube in a split second and let
the force of the rod launch the bullet at very high speed.
What is he overlooking?

1.4 Heat Transfer, Specific Heat, and

Calorimetry

11. How is heat transfer related to temperature?
12. Describe a situation in which heat transfer occurs.

13. When heat transfers into a system, is the energy stored
as heat? Explain briefly.

14. The brakes in a car increase in temperature by AT
when bringing the car to rest from a speed v. How much
greater would AT be if the car initially had twice the
speed? You may assume the car stops fast enough that no
heat transfers out of the brakes.

1.5 Phase Changes

15. A pressure cooker contains water and steam in
equilibrium at a pressure greater than atmospheric pressure.
How does this greater pressure increase cooking speed?

16. As shown below, which is the phase diagram for
carbon dioxide, what is the vapor pressure of solid carbon
dioxide (dry ice) at —78.5 °C? (Note that the axes in the

figure are nonlinear and the graph is not to scale.)
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17. Can carbon dioxide be liquefied at room temperature
(20°C)? If so, how? If not, why not? (See the phase

diagram in the preceding problem.)
18. What is the distinction between gas and vapor?

19. Heat transfer can cause temperature and phase
changes. What else can cause these changes?

20. How does the latent heat of fusion of water help
slow the decrease of air temperatures, perhaps preventing
temperatures from falling significantly below 0 °C, in the

vicinity of large bodies of water?

21. What is the temperature of ice right after it is formed
by freezing water?

22. If you place 0 °C ice into 0 °C water in an insulated
container, what will the net result be? Will there be less ice
and more liquid water, or more ice and less liquid water, or
will the amounts stay the same?

23. What effect does condensation on a glass of ice water
have on the rate at which the ice melts? Will the
condensation speed up the melting process or slow it
down?

24. In Miami, Florida, which has a very humid climate
and numerous bodies of water nearby, it is unusual for
temperatures to rise above about 38 °C (100 °F). In the

desert climate of Phoenix, Arizona, however, temperatures
rise above that almost every day in July and August.
Explain how the evaporation of water helps limit high
temperatures in humid climates.
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25. In winter, it is often warmer in San Francisco than
in Sacramento, 150 km inland. In summer, it is nearly
always hotter in Sacramento. Explain how the bodies of
water surrounding San Francisco moderate its extreme
temperatures.

26. Freeze-dried foods have been dehydrated in a vacuum.
During the process, the food freezes and must be heated to
facilitate dehydration. Explain both how the vacuum speeds
up dehydration and why the food freezes as a result.

27. In a physics classroom demonstration, an instructor
inflates a balloon by mouth and then cools it in liquid
nitrogen. When cold, the shrunken balloon has a small
amount of light blue liquid in it, as well as some snow-like
crystals. As it warms up, the liquid boils, and part of the
crystals sublime, with some crystals lingering for a while
and then producing a liquid. Identify the blue liquid and the
two solids in the cold balloon. Justify your identifications
using data from Table 1.4.

1.6 Mechanisms of Heat Transfer

28. What are the main methods of heat transfer from the
hot core of Earth to its surface? From Earth’s surface to
outer space?

29. When our bodies get too warm, they respond by
sweating and increasing blood circulation to the surface to
transfer thermal energy away from the core. What effect
will those processes have on a person in a 40.0-°C hot

tub?

30. Shown below is a cut-away drawing of a thermos
bottle (also known as a Dewar flask), which is a device
designed specifically to slow down all forms of heat
transfer. Explain the functions of the various parts, such as
the vacuum, the silvering of the walls, the thin-walled long
glass neck, the rubber support, the air layer, and the stopper.



58

Glass walls
with silvered
surfaces

Air layer Spring

centering
device
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Hot or cold

liquid

Vacuum

Rubber support

31. Some electric stoves have a flat ceramic surface with
heating elements hidden beneath. A pot placed over a
heating element will be heated, while the surface only a few
centimeters away is safe to touch. Why is ceramic, with a
conductivity less than that of a metal but greater than that
of a good insulator, an ideal choice for the stove top?

32. Loose-fitting white clothing covering most of the
body, shown below, is ideal for desert dwellers, both in
the hot Sun and during cold evenings. Explain how such
clothing is advantageous during both day and night.
™4 v i
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33. One way to make a fireplace more energy-efficient is
to have room air circulate around the outside of the fire box
and back into the room. Detail the methods of heat transfer
involved.

34. On cold, clear nights horses will sleep under the cover
of large trees. How does this help them keep warm?

35. When watching a circus during the day in a large,
dark-colored tent, you sense significant heat transfer from
the tent. Explain why this occurs.

36. Satellites designed to observe the radiation from cold
(3 K) dark space have sensors that are shaded from the
Sun, Earth, and the Moon and are cooled to very low
temperatures. Why must the sensors be at low
temperature?

37. Why are thermometers that are used in weather
stations shielded from the sunshine? What does a
thermometer measure if it is shielded from the sunshine?
What does it measure if it is not?

38. Putting a lid on a boiling pot greatly reduces the heat
transfer necessary to keep it boiling. Explain why.

39. Your house will be empty for a while in cold weather,
and you want to save energy and money. Should you turn
the thermostat down to the lowest level that will protect the
house from damage such as freezing pipes, or leave it at
the normal temperature? (If you don’t like coming back to a
cold house, imagine that a timer controls the heating system
so the house will be warm when you get back.) Explain
your answer.

40. You pour coffee into an unlidded cup, intending to
drink it 5 minutes later. You can add cream when you pour
the cup or right before you drink it. (The cream is at the
same temperature either way. Assume that the cream and
coffee come into thermal equilibrium with each other very
quickly.) Which way will give you hotter coffee? What
feature of this question is different from the previous one?

41. Broiling is a method of cooking by radiation, which
produces somewhat different results from cooking by
conduction or convection. A gas flame or electric heating
element produces a very high temperature close to the food
and above it. Why is radiation the dominant heat-transfer
method in this situation?

42. On a cold winter morning, why does the metal of a
bike feel colder than the wood of a porch?
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PROBLEMS

1.2 Thermometers and Temperature Scales

43. While traveling outside the United States, you feel
sick. A companion gets you a thermometer, which says
your temperature is 39. What scale is that on? What is your
Fahrenheit temperature? Should you seek medical help?

44. What are the following temperatures on the Kelvin
scale?

(@ 68.0°F, an

recommended for energy conservation in winter

indoor temperature sometimes

(b) 134 °F, one of the highest atmospheric temperatures
ever recorded on Earth (Death Valley, California, 1913)
(c) 9890 °F, the temperature of the surface of the Sun

45. (a) Suppose a cold front blows into your locale and
drops the temperature by 40.0 Fahrenheit degrees. How
many degrees Celsius does the temperature decrease when
it decreases by 40.0°F? (b) Show that any change in
temperature in Fahrenheit degrees is nine-fifths the change
in Celsius degrees

46. An Associated Press article on climate change said,
“Some of the ice shelf’s disappearance was probably during
times when the planet was 36 degrees Fahrenheit (2 degrees
Celsius) to 37 degrees Fahrenheit (3 degrees Celsius)
warmer than it is today.” What mistake did the reporter
make?

47. (a) At what temperature do the Fahrenheit and Celsius
scales have the same numerical value? (b) At what
temperature do the Fahrenheit and Kelvin scales have the
same numerical value?

48. A person taking a reading of the temperature in a
freezer in Celsius makes two mistakes: first omitting the
negative sign and then thinking the temperature is
Fahrenheit. That is, the person reads —x°C as x°F.
Oddly enough, the result is the correct Fahrenheit
temperature. What is the original Celsius reading? Round
your answer to three significant figures.

1.3 Thermal Expansion

49. The height of the Washington Monument is measured
to be 170.00 m on a day when the temperature is 35.0 °C.
What will its height be on a day when the temperature
falls to —10.0°C? Although the monument is made of

limestone, assume that its coefficient of thermal expansion

is the same as that of marble. Give your answer to five
significant figures.
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50. How much taller does the Eiffel Tower become at
the end of a day when the temperature has increased by
15 °C? Its original height is 321 m and you can assume it

is made of steel.

51. What is the change in length of a 3.00-cm-long
column of mercury if its temperature changes from
37.0 °C to 40.0 °C, assuming the mercury is constrained
to a cylinder but unconstrained in length? Your answer
will show why thermometers contain bulbs at the bottom
instead of simple columns of liquid.

52. How large an expansion gap should be left between
steel railroad rails if they may reach a maximum
temperature 35.0 °C greater than when they were laid?

Their original length is 10.0 m.

53. You are looking to buy a small piece of land in Hong
Kong. The price is “only” $60,000 per square meter. The
land title says the dimensions are 20 m X 30 m. By how

much would the total price change if you measured the
parcel with a steel tape measure on a day when the
temperature was 20 °C above the temperature that the tape

measure was designed for? The dimensions of the land do
not change.

54. Global warming will produce rising sea levels partly
due to melting ice caps and partly due to the expansion of
water as average ocean temperatures rise. To get some idea
of the size of this effect, calculate the change in length of
a column of water 1.00 km high for a temperature increase
of 1.00°C. Assume the column is not free to expand
sideways. As a model of the ocean, that is a reasonable
approximation, as only parts of the ocean very close to
the surface can expand sideways onto land, and only to a
limited degree. As another approximation, neglect the fact
that ocean warming is not uniform with depth.

55. (a) Suppose a meter stick made of steel and one made
of aluminum are the same length at 0 °C. What is their

difference in length at 22.0 °C ? (b) Repeat the calculation
for two 30.0-m-long surveyor’s tapes.

56. (a) If a 500-mL glass beaker is filled to the brim with
ethyl alcohol at a temperature of 5.00 °C, how much will
overflow when the alcohol’s temperature reaches the room
temperature of 22.0 °C? (b) How much less water would

overflow under the same conditions?

57. Most cars have a coolant reservoir to catch radiator
fluid that may overflow when the engine is hot. A radiator
is made of copper and is filled to its 16.0-L capacity when
at 10.0 °C. What volume of radiator fluid will overflow
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when the radiator and fluid reach a temperature of
95.0°C, given that the fluid’s volume coefficient of

expansion is £ = 400 X 107%/°C? (Your answer will be a

conservative estimate, as most car radiators have operating
temperatures greater than 95.0 °C).

58. A physicist makes a cup of instant coffee and notices
that, as the coffee cools, its level drops 3.00 mm in the
glass cup. Show that this decrease cannot be due to thermal
contraction by calculating the decrease in level if the

350cm® of coffee is in a 7.00-cm-diameter cup and
decreases in temperature from 95.0 °C to 45.0 °C. (Most

of the drop in level is actually due to escaping bubbles of
air.)

59. The density of water at 0°C
1000 kg/m3 (it is actually 999.84 kg/m3 ), whereas the

is very nearly

density of ice at 0°C is 917 kg/m3. Calculate the

pressure necessary to keep ice from expanding when it
freezes, neglecting the effect such a large pressure would
have on the freezing temperature. (This problem gives you
only an indication of how large the forces associated with
freezing water might be.)

60. Show that f# =3a, by calculating the infinitesimal

change in volume dV of a cube with sides of length L when
the temperature changes by dT.

1.4 Heat Transfer, Specific Heat, and
Calorimetry

61. On a hot day, the temperature of an 80,000-L
swimming pool increases by 1.50 °C. What is the net

heat transfer during this heating? Ignore any complications,
such as loss of water by evaporation.

62. To sterilize a 50.0-g glass baby bottle, we must raise
its temperature from 22.0 °C to 95.0 °C . How much heat

transfer is required?

63. The same heat transfer into identical masses of
different substances produces different temperature
changes. Calculate the final temperature when 1.00 kcal
of heat transfers into 1.00 kg of the following, originally
at 20.0°C: (a) water; (b) concrete; (c) steel; and (d)

mercury.

64. Rubbing your hands together warms them by
converting work into thermal energy. If a woman rubs her
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hands back and forth for a total of 20 rubs, at a distance
of 7.50 cm per rub, and with an average frictional force
of 40.0 N, what is the temperature increase? The mass of
tissues warmed is only 0.100 kg, mostly in the palms and
fingers.

65. A 0.250-kg block of a pure material is heated from

20.0°C to 65.0°C by the addition of 4.35 kJ of energy.

Calculate its specific heat and identify the substance of
which it is most likely composed.

66. Suppose identical amounts of heat transfer into
different masses of copper and water, causing identical
changes in temperature. What is the ratio of the mass of
copper to water?

67. (a) The number of kilocalories in food is determined
by calorimetry techniques in which the food is burned and
the amount of heat transfer is measured. How many
kilocalories per gram are there in a 5.00-g peanut if the
energy from burning it is transferred to 0.500 kg of water
held in a 0.100-kg aluminum cup, causing a 54.9-°C

temperature increase? Assume the process takes place in
an ideal calorimeter, in other words a perfectly insulated
container. (b) Compare your answer to the following
labeling information found on a package of dry roasted
peanuts: a serving of 33 g contains 200 calories. Comment
on whether the values are consistent.

68. Following vigorous exercise, the body temperature
of an 80.0 kg person is 40.0 °C. At what rate in watts

must the person transfer thermal energy to reduce the body
temperature to 37.0 °C in 30.0 min, assuming the body
continues to produce energy at the rate of 150 W?
(1 watt = 1 joule/secondor 1 W = 11J/s)

69. In a study of healthy young men[l], doing 20 push-
ups in 1 minute burned an amount of energy per kg that
for a 70.0-kg man corresponds to 8.06 calories (kcal). How
much would a 70.0-kg man’s temperature rise if he did not
lose any heat during that time?

70. A 1.28-kg sample of water at 10.0°C is in a

calorimeter. You drop a piece of steel with a mass of 0.385
kg at 215 °C into it. After the sizzling subsides, what is

the final equilibrium temperature? (Make the reasonable
assumptions that any steam produced condenses into liquid
water during the process of equilibration and that the
evaporation and condensation don’t affect the outcome, as
we’ll see in the next section.)

71. Repeat the preceding problem, assuming the water

1. JW Vezina, “An examination of the differences between two methods of estimating energy expenditure in resistance
training activities,” Journal of Strength and Conditioning Research, April 28, 2014, http://www.ncbi.nlm.nih.gov/pubmed/

24402448
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is in a glass beaker with a mass of 0.200 kg, which in
turn is in a calorimeter. The beaker is initially at the same
temperature as the water. Before doing the problem, should
the answer be higher or lower than the preceding answer?
Comparing the mass and specific heat of the beaker to
those of the water, do you think the beaker will make much
difference?

1.5 Phase Changes

72. How much heat transfer (in kilocalories) is required to
thaw a 0.450-kg package of frozen vegetables originally at
0 °C if their heat of fusion is the same as that of water?

73. A bag containing 0 °C ice is much more effective in
absorbing energy than one containing the same amount of
0°C water. (a) How much heat transfer is necessary to
raise the temperature of 0.800 kg of water from 0 °C to
30.0 °C? (b) How much heat transfer is required to first
melt 0.800 kg of 0°C ice and then raise its temperature?

(c) Explain how your answer supports the contention that
the ice is more effective.

74. (a) How much heat transfer is required to raise the
temperature of a 0.750-kg aluminum pot containing 2.50 kg
of water from 30.0 °C to the boiling point and then boil

away 0.750 kg of water? (b) How long does this take if the
rate of heat transfer is 500 W?

75. Condensation on a glass of ice water causes the ice
to melt faster than it would otherwise. If 8.00 g of vapor
condense on a glass containing both water and 200 g of ice,
how many grams of the ice will melt as a result? Assume
no other heat transfer occurs. Use L, for water at 37 °C

as a better approximation than L, for water at 100 °C.)

76. On a trip, you notice that a 3.50-kg bag of ice lasts
an average of one day in your cooler. What is the average
power in watts entering the ice if it starts at 0°C and

completely melts to 0 °C water in exactly one day?

77. On a certain dry sunny day, a swimming pool’s
temperature would rise by 1.50 °C if not for evaporation.

What fraction of the water must evaporate to carry away
precisely enough energy to keep the temperature constant?

78. (a) How much heat transfer is necessary to raise the
temperature of a 0.200-kg piece of ice from —20.0 °C to

130.0 °C, including the energy needed for phase changes?

(b) How much time is required for each stage, assuming a
constant 20.0 kJ/s rate of heat transfer? (c) Make a graph of
temperature versus time for this process.

79. In 1986, an enormous iceberg broke away from the
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Ross Ice Shelf in Antarctica. It was an approximately
rectangular prism 160 km long, 40.0 km wide, and 250 m
thick. (a) What is the mass of this iceberg, given that the

density of ice is 917 kg/m3 ? (b) How much heat transfer

(in joules) is needed to melt it? (c) How many years would
it take sunlight alone to melt ice this thick, if the ice absorbs

an average of 100 W/m?, 12.00 h per day?

80. How many grams of coffee must evaporate from 350
g of coffee in a 100-g glass cup to cool the coffee and the
cup from 95.0 °C to 45.0 °C ? Assume the coffee has the

same thermal properties as water and that the average heat
of vaporization is 2340 kJ/kg (560 kcal/g). Neglect heat
losses through processes other than evaporation, as well as
the change in mass of the coffee as it cools. Do the latter
two assumptions cause your answer to be higher or lower
than the true answer?

81. (a) It is difficult to extinguish a fire on a crude oil
tanker, because each liter of crude oil releases
2.80% 107 J of energy when burned. To illustrate this
difficulty, calculate the number of liters of water that must
be expended to absorb the energy released by burning 1.00
L of crude oil, if the water’s temperature rises from
20.0°C to 100°C, it boils, and the resulting steam’s
temperature rises to 300 °C at constant pressure. (b)
Discuss additional complications caused by the fact that
crude oil is less dense than water.

82. The energy released from condensation in
thunderstorms can be very large. Calculate the energy
released into the atmosphere for a small storm of radius 1
km, assuming that 1.0 cm of rain is precipitated uniformly
over this area.

83. To help prevent frost damage, 4.00 kg of water at
0°C is sprayed onto a fruit tree. (a) How much heat

transfer occurs as the water freezes? (b) How much would
the temperature of the 200-kg tree decrease if this amount
of heat transferred from the tree? Take the specific heat
to be 3.35kJ/kg-°C, and assume that no phase change

occurs in the tree.

84. A 0.250-kg aluminum bowl holding 0.800 kg of soup

at 25.0°C is placed in a freezer. What is the final

temperature if 388 kJ of energy is transferred from the bowl
and soup, assuming the soup’s thermal properties are the
same as that of water?

85. A 0.0500-kg ice cube at —30.0 °C is placed in 0.400
kg of 35.0-°C water in a very well-insulated container.
What is the final temperature?
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86. If you pour 0.0100 kg of 20.0°C water onto a
1.20-kg block of ice (which is initially at —15.0 °C), what

is the final temperature? You may assume that the water
cools so rapidly that effects of the surroundings are
negligible.

87. Indigenous people sometimes cook in watertight
baskets by placing hot rocks into water to bring it to a boil.
What mass of 500-°C granite must be placed in 4.00 kg

of 15.0-°C water to bring its temperature to 100 °C, if

0.0250 kg of water escapes as vapor from the initial sizzle?
You may neglect the effects of the surroundings.

88. What would the final temperature of the pan and water
be in Example 1.7 if 0.260 kg of water were placed in
the pan and 0.0100 kg of the water evaporated immediately,
leaving the remainder to come to a common temperature
with the pan?

1.6 Mechanisms of Heat Transfer

89. (a) Calculate the rate of heat conduction through house
walls that are 13.0 cm thick and have an average thermal
conductivity twice that of glass wool. Assume there are

no windows or doors. The walls’ surface area is 120 m?>
and their inside surface is at 18.0 °C, while their outside
surface is at 5.00 °C. (b) How many 1-kW room heaters

would be needed to balance the heat transfer due to
conduction?

90. The rate of heat conduction out of a window on a
winter day is rapid enough to chill the air next to it. To see
just how rapidly the windows transfer heat by conduction,
calculate the rate of conduction in watts through a

3.00-m? window that is 0.634 cm thick (1/4 in.) if the
temperatures of the inner and outer surfaces are 5.00 °C
and —10.0°C, respectively. (This rapid rate will not be

maintained—the inner surface will cool, even to the point
of frost formation.)

91. Calculate the rate of heat conduction out of the human
body, assuming that the core internal temperature is
37.0 °C, the skin temperature is 34.0 °C, the thickness of

the fatty tissues between the core and the skin averages 1.00
cm, and the surface area is 1.40 m2.

92. Suppose you stand with one foot on ceramic flooring
and one foot on a wool carpet, making contact over an

area of 80.0 cm? with each foot. Both the ceramic and the
carpet are 2.00 cm thick and are 10.0 °C on their bottom

sides. At what rate must heat transfer occur from each foot
to keep the top of the ceramic and carpet at 33.0 °C?

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9

Chapter 1 | Temperature and Heat

93. A man consumes 3000 kcal of food in one day,
converting most of it to thermal energy to maintain body
temperature. If he loses half this energy by evaporating
water (through breathing and sweating), how many
kilograms of water evaporate?

94. A firewalker runs across a bed of hot coals without
sustaining burns. Calculate the heat transferred by
conduction into the sole of one foot of a firewalker given
that the bottom of the foot is a 3.00-mm-thick callus with
a conductivity at the low end of the range for wood and its

density is 300 kg/m3 . The area of contact is 25.0 cmz,

the temperature of the coals is 700 °C, and the time in
contact is 1.00 s. Ignore the evaporative cooling of sweat.

95. (a) What is the rate of heat conduction through the
3.00-cm-thick fur of a large animal having a 1.40-m>
surface area? Assume that the animal’s skin temperature is
32.0 °C, that the air temperature is —5.00 °C, and that
fur has the same thermal conductivity as air. (b) What food
intake will the animal need in one day to replace this heat
transfer?

96. A walrus transfers energy by conduction through its
blubber at the rate of 150 W when immersed in —1.00 °C

water. The walrus’s internal core temperature is 37.0 °C,

and it has a surface area of 2.00 m”. What is the average

thickness of its blubber, which has the conductivity of fatty
tissues without blood?

97. Compare the rate of heat conduction through a
13.0-cm-thick wall that has an area of 10.0m? and a

thermal conductivity twice that of glass wool with the rate
of heat conduction through a 0.750-cm-thick window that

has an area of 2.00 m? , assuming the same temperature
difference across each.

98. Suppose a person is covered head to foot by wool
clothing with average thickness of 2.00 c¢cm and is
transferring energy by conduction through the clothing at
the rate of 50.0 W. What is the temperature difference

across the clothing, given the surface area is 1.40 m?2?

99. Some stove tops are smooth ceramic for easy cleaning.
If the ceramic is 0.600 cm thick and heat conduction occurs
through the same area and at the same rate as computed in
Example 1.11, what is the temperature difference across
it? Ceramic has the same thermal conductivity as glass and
brick.

100. One easy way to reduce heating (and cooling) costs
is to add extra insulation in the attic of a house. Suppose a
single-story cubical house already had 15 cm of fiberglass
insulation in the attic and in all the exterior surfaces. If
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you added an extra 8.0 cm of fiberglass to the attic, by
what percentage would the heating cost of the house drop?
Take the house to have dimensions 10 m by 15 m by 3.0
m. Ignore air infiltration and heat loss through windows
and doors, and assume that the interior is uniformly at one
temperature and the exterior is uniformly at another.

101. Many decisions are made on the basis of the payback
period: the time it will take through savings to equal the

ADDITIONAL PROBLEMS

102. In 1701, the Danish astronomer Ole Rgmer proposed
a temperature scale with two fixed points, freezing water at
7.5 degrees, and boiling water at 60.0 degrees. What is the
boiling point of oxygen, 90.2 K, on the Rgmer scale?

103. What is the percent error of thinking the melting
point of tungsten is 3695 °C instead of the correct value of

3695 K?

104. An engineer wants to design a structure in which the
difference in length between a steel beam and an aluminum
beam remains at 0.500 m regardless of temperature, for
ordinary temperatures. What must the lengths of the beams
be?

105. How much stress is created in a steel beam if its
temperature changes from —15 °C to 40 °C but it cannot

expand? For steel, the Young’s
Y =210x 10° N/m?  from Stress, Strain, and

Elastic Modulus (http://lcnx.org/content/m58342/
latest/#fs-id1163713086230) . (Ignore the change in
area resulting from the expansion.)

modulus

106. A brass rod (Y =90x 10° N/mz), with a diameter

of 0.800 cm and a length of 1.20 m when the temperature
is 25 °C, is fixed at both ends. At what temperature is the

force in it at 36,000 N?

107. A mercury thermometer still in use for meteorology
has a bulb with a volume of 0.780 cm?> and a tube for the

mercury to expand into of inside diameter 0.130 mm. (a)
Neglecting the thermal expansion of the glass, what is the
spacing between marks 1 °C apart? (b) If the thermometer

is made of ordinary glass (not a good idea), what is the
spacing?

108. Even when shut down after a period of normal use,
a large commercial nuclear reactor transfers thermal energy
at the rate of 150 MW by the radioactive decay of fission
products. This heat transfer causes a rapid increase in
temperature if the cooling system fails
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capital cost of an investment. Acceptable payback times
depend upon the business or philosophy one has. (For some
industries, a payback period is as small as 2 years.) Suppose
you wish to install the extra insulation in the preceding
problem. If energy cost $1.00 per million joules and the

insulation was $4.00 per square meter, then calculate the
simple payback time. Take the average AT for the 120-day

heating season to be 15.0 °C.

(I watt = 1 joule/second or 1 W = 1J/s and

1 MW = 1 megawatt). (a) Calculate the rate of

temperature increase in degrees Celsius per second (°C/s)

if the mass of the reactor core is 1.60 x 10° kg and it
has an average specific heat of 0.3349 kl/kg - °C . (b) How

long would it take to obtain a temperature increase of
2000 °C, which could cause some metals holding the
radioactive materials to melt? (The initial rate of
temperature increase would be greater than that calculated
here because the heat transfer is concentrated in a smaller
mass. Later, however, the temperature increase would slow
down because the 500,000-kg steel containment vessel
would also begin to heat up.)

109. You leave a pastry in the refrigerator on a plate and
ask your roommate to take it out before you get home
SO you can eat it at room temperature, the way you like
it. Instead, your roommate plays video games for hours.
When you return, you notice that the pastry is still cold, but
the game console has become hot. Annoyed, and knowing
that the pastry will not be good if it is microwaved, you
warm up the pastry by unplugging the console and putting
it in a clean trash bag (which acts as a perfect calorimeter)
with the pastry on the plate. After a while, you find that
the equilibrium temperature is a nice, warm 38.3 °C. You
know that the game console has a mass of 2.1 kg.
Approximate it as having a uniform initial temperature of
45 °C . The pastry has a mass of 0.16 kg and a specific heat

of 3.0kJ/(kg-°C), and is at a uniform initial temperature

of 4.0°C. The plate is at the same temperature and has
a mass of 0.24 kg and a specific heat of 0.90J/(kg-°C).

What is the specific heat of the console?

110. Two solid spheres, A and B, made of the same
material, are at temperatures of 0°C and 100 °C,
respectively. The spheres are placed in thermal contact in
an ideal calorimeter, and they reach an equilibrium
temperature of 20 °C . Which is the bigger sphere? What is
the ratio of their diameters?
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111. In some countries, liquid nitrogen is used on dairy
trucks instead of mechanical refrigerators. A 3.00-hour
delivery trip requires 200 L of liquid nitrogen, which has

a density of 808 kg/m3. (a) Calculate the heat transfer

necessary to evaporate this amount of liquid nitrogen and
raise its temperature to 3.00 °C. (Use cp and assume it

is constant over the temperature range.) This value is the
amount of cooling the liquid nitrogen supplies. (b) What is
this heat transfer rate in kilowatt-hours? (c) Compare the
amount of cooling obtained from melting an identical mass
of 0-°C ice with that from evaporating the liquid nitrogen.

112. Some gun fanciers make their own bullets, which
involves melting lead and casting it into lead slugs. How
much heat transfer is needed to raise the temperature and
melt 0.500 kg of lead, starting from 25.0 °C?

113. A 0.800-kg iron cylinder at a temperature of
1.00 X 10> °C is dropped into an insulated chest of 1.00

kg of ice at its melting point. What is the final temperature,
and how much ice has melted?

114. Repeat the preceding problem with 2.00 kg of ice
instead of 1.00 kg.

115. Repeat the preceding problem with 0.500 kg of ice,
assuming that the ice is initially in a copper container of
mass 1.50 kg in equilibrium with the ice.

116. A 30.0-g ice cube at its melting point is dropped into
an aluminum calorimeter of mass 100.0 g in equilibrium
at 24.0 °C with 300.0 g of an unknown liquid. The final

temperature is 4.0 °C. What is the heat capacity of the
liquid?

117. (a) Calculate the rate of heat conduction through
a double-paned window that has a 1.50-m? area and is

made of two panes of 0.800-cm-thick glass separated by
a 1.00-cm air gap. The inside surface temperature is
15.0°C, while that on the outside is —10.0 °C. (Hint:

There are identical temperature drops across the two glass
panes. First find these and then the temperature drop across
the air gap. This problem ignores the increased heat transfer
in the air gap due to convection.) (b) Calculate the rate
of heat conduction through a 1.60-cm-thick window of the
same area and with the same temperatures. Compare your
answer with that for part (a).

118. (a) An exterior wall of a house is 3 m tall and 10
m wide. It consists of a layer of drywall with an R factor
of 0.56, a layer 3.5 inches thick filled with fiberglass batts,
and a layer of insulated siding with an R factor of 2.6. The
wall is built so well that there are no leaks of air through it.
When the inside of the wall is at 22 °C and the outside is at
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—2°C, what is the rate of heat flow through the wall? (b)

More realistically, the 3.5-inch space also contains 2-by-4
studs—wooden boards 1.5 inches by 3.5 inches oriented
so that 3.5-inch dimension extends from the drywall to the
siding. They are “on 16-inch centers,” that is, the centers of
the studs are 16 inches apart. What is the heat current in this
situation? Don’t worry about one stud more or less.

119. For the human body, what is the rate of heat transfer
by conduction through the body’s tissue with the following
conditions: the tissue thickness is 3.00 cm, the difference

in temperature is 2.00 °C, and the skin area is 1.50 mZ.
How does this compare with the average heat transfer rate

to the body resulting from an energy intake of about 2400
kcal per day? (No exercise is included.)

120. You have a Dewar flask (a laboratory vacuum flask)
that has an open top and straight sides, as shown below. You
fill it with water and put it into the freezer. It is effectively
a perfect insulator, blocking all heat transfer, except on the
top. After a time, ice forms on the surface of the water. The
liquid water and the bottom surface of the ice, in contact
with the liquid water, are at 0 °C . The top surface of the ice

is at the same temperature as the air in the freezer, —18 °C.

Set the rate of heat flow through the ice equal to the rate
of loss of heat of fusion as the water freezes. When the ice
layer is 0.700 cm thick, find the rate in m/s at which the ice
is thickening.

s £f
N

0°C—L»
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121. An infrared heater for a sauna has a surface area

of 0.050 m? and an emissivity of 0.84. What temperature

must it run at if the required power is 360 W? Neglect the
temperature of the environment.

122. (a) Determine the power of radiation from the Sun
by noting that the intensity of the radiation at the distance
of Earth is 1370 W/m? . Hint: That intensity will be found

everywhere on a spherical surface with radius equal to that
of Earth’s orbit. (b) Assuming that the Sun’s temperature is
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5780 K and that its emissivity is 1, find its radius.

CHALLENGE PROBLEMS

123. A pendulum is made of a rod of length L and
negligible mass, but capable of thermal expansion, and
a weight of negligible size. (a) Show that when the
temperature increases by dT, the period of the pendulum
increases by a fraction aLdT/2. (b) A clock controlled

by a brass pendulum keeps time correctly at 10 °C. If the
room temperature is 30 °C, does the clock run faster or
slower? What is its error in seconds per day?

124. At temperatures of a few hundred kelvins the specific
heat capacity of copper approximately follows the

empirical c=a+ pT + T2,
a =349J/kg-K, p=0.107J/kg- K2, and
6=4.58x% 105J-kg~K. How much heat is needed to

raise the temperature of a 2.00-kg piece of copper from
20°C to 250°C?

formula where

125. In a calorimeter of negligible heat capacity, 200 g of
steam at 150 °C and 100 g of ice at —40 °C are mixed.
The pressure is maintained at 1 atm. What is the final
temperature, and how much steam, ice, and water are
present?

126. An astronaut performing an extra-vehicular activity
(space walk) shaded from the Sun is wearing a spacesuit
that can be approximated as perfectly white (e = 0) except

for a Scm X 8 cm patch in the form of the astronaut’s

national flag. The patch has emissivity 0.300. The spacesuit
under the patch is 0.500 cm thick, with a thermal
conductivity k = 0.0600 W/m °C, and its inner surface is

at a temperature of 20.0 °C . What is the temperature of the

patch, and what is the rate of heat loss through it? Assume
the patch is so thin that its outer surface is at the same
temperature as the outer surface of the spacesuit under it.
Also assume the temperature of outer space is 0 K. You will
get an equation that is very hard to solve in closed form,
so you can solve it numerically with a graphing calculator,
with software, or even by trial and error with a calculator.

127. The goal in this problem is to find the growth of
an ice layer as a function of time. Call the thickness of
the ice layer L. (a) Derive an equation for dL/dt in terms
of L , the temperature T above the ice, and the properties
of ice (which you can leave in symbolic form instead of
substituting the numbers). (b) Solve this differential
equation assuming that at # = 0, you have L = 0. If you
have studied differential equations, you will know a
technique for solving equations of this type: manipulate the
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equation to get dL/dt multiplied by a (very simple) function
of L on one side, and integrate both sides with respect to
time. Alternatively, you may be able to use your knowledge
of the derivatives of various functions to guess the solution,
which has a simple dependence on t. (c) Will the water
eventually freeze to the bottom of the flask?

128. As the very first rudiment of climatology, estimate
the temperature of Earth. Assume it is a perfect sphere and
its temperature is uniform. Ignore the greenhouse effect.
Thermal radiation from the Sun has an intensity (the “solar

constant” S) of about 1370 W/m? at the radius of Earth’s

orbit. (a) Assuming the Sun’s rays are parallel, what area
must S be multiplied by to get the total radiation intercepted
by Earth? It will be easiest to answer in terms of Earth’s
radius, R. (b) Assume that Earth reflects about 30% of
the solar energy it intercepts. In other words, Earth has
an albedo with a value of A =0.3. In terms of S, A,

and R, what is the rate at which Earth absorbs energy
from the Sun? (c) Find the temperature at which Earth
radiates energy at the same rate. Assume that at the infrared
wavelengths where it radiates, the emissivity e is 1. Does
your result show that the greenhouse effect is important?
(d) How does your answer depend on the the area of Earth?

129. Let’s stop ignoring the greenhouse effect and
incorporate it into the previous problem in a very rough
way. Assume the atmosphere is a single layer, a spherical
shell around Earth, with an emissivity e = 0.77 (chosen

simply to give the right answer) at infrared wavelengths
emitted by Earth and by the atmosphere. However, the
atmosphere is transparent to the Sun’s radiation (that is,
assume the radiation is at visible wavelengths with no
infrared), so the Sun’s radiation reaches the surface. The
greenhouse effect comes from the difference between the
atmosphere’s transmission of visible light and its rather
strong absorption of infrared. Note that the atmosphere’s
radius is not significantly different from Earth’s, but since
the atmosphere is a layer above Earth, it emits radiation
both upward and downward, so it has twice Earth’s area.
There are three radiative energy transfers in this problem:
solar radiation absorbed by Earth’s surface; infrared
radiation from the surface, which is absorbed by the
atmosphere according to its emissivity; and infrared
radiation from the atmosphere, half of which is absorbed
by Earth and half of which goes out into space. Apply
the method of the previous problem to get an equation for
Earth’s surface and one for the atmosphere, and solve them
for the two unknown temperatures, surface and atmosphere.
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a. In terms of Earth’s radius, the constant ¢, and
the unknown temperature 7’5 of the surface, what

is the power of the infrared radiation from the
surface?

b. What is the power of Earth’s radiation absorbed
by the atmosphere?

c. Interms of the unknown temperature 7, of the

atmosphere, what is the power radiated from the
atmosphere?

d. Write an equation that says the power of the
radiation the atmosphere absorbs from Earth equals
the power of the radiation it emits.

e. Half of the power radiated by the atmosphere
hits Earth. Write an equation that says that the
power Earth absorbs from the atmosphere and the
Sun equals the power that it emits.

f. Solve your two equations for the unknown
temperature of Earth.

For steps that make this model less crude, see for
example the lectures
(https:/lopenstaxcollege.orgl/l/
21paulgormlec) by Paul O’Gorman.
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2 | THE KINETIC THEORY OF
GASES

Figure 2.1 A volcanic eruption releases tons of gas and dust into the atmosphere. Most of the gas is water vapor, but several
other gases are common, including greenhouse gases such as carbon dioxide and acidic pollutants such as sulfur dioxide.
However, the emission of volcanic gas is not all bad: Many geologists believe that in the earliest stages of Earth’s formation,
volcanic emissions formed the early atmosphere. (credit: modification of work by “Boaworm”/Wikimedia Commons)

Chapter Outline

2.1 Molecular Model of an Ideal Gas

2.2 Pressure, Temperature, and RMS Speed
2.3 Heat Capacity and Equipartition of Energy
2.4 Distribution of Molecular Speeds

Introduction

Gases are literally all around us—the air that we breathe is a mixture of gases. Other gases include those that make breads
and cakes soft, those that make drinks fizzy, and those that burn to heat many homes. Engines and refrigerators depend on
the behaviors of gases, as we will see in later chapters.

As we discussed in the preceding chapter, the study of heat and temperature is part of an area of physics known as
thermodynamics, in which we require a system to be macroscopic, that is, to consist of a huge number (such as 1023 ) of

molecules. We begin by considering some macroscopic properties of gases: volume, pressure, and temperature. The simple
model of a hypothetical “ideal gas” describes these properties of a gas very accurately under many conditions. We move
from the ideal gas model to a more widely applicable approximation, called the Van der Waals model.

To understand gases even better, we must also look at them on the microscopic scale of molecules. In gases, the molecules
interact weakly, so the microscopic behavior of gases is relatively simple, and they serve as a good introduction to systems
of many molecules. The molecular model of gases is called the kinetic theory of gases and is one of the classic examples of
a molecular model that explains everyday behavior.



68 Chapter 2 | The Kinetic Theory of Gases

2.1 | Molecular Model of an Ideal Gas

Learning Objectives

By the end of this section, you will be able to:

* Apply the ideal gas law to situations involving the pressure, volume, temperature, and the
number of molecules of a gas

* Use the unit of moles in relation to numbers of molecules, and molecular and macroscopic
masses

* Explain the ideal gas law in terms of moles rather than numbers of molecules
* Apply the van der Waals gas law to situations where the ideal gas law is inadequate

In this section, we explore the thermal behavior of gases. Our word “gas” comes from the Flemish word meaning “chaos,”
first used for vapors by the seventeenth-century chemist J. B. van Helmont. The term was more appropriate than he knew,
because gases consist of molecules moving and colliding with each other at random. This randomness makes the connection
between the microscopic and macroscopic domains simpler for gases than for liquids or solids.

How do gases differ from solids and liquids? Under ordinary conditions, such as those of the air around us, the difference
is that the molecules of gases are much farther apart than those of solids and liquids. Because the typical distances between
molecules are large compared to the size of a molecule, as illustrated in Figure 2.2, the forces between them are considered
negligible, except when they come into contact with each other during collisions. Also, at temperatures well above the
boiling temperature, the motion of molecules is fast, and the gases expand rapidly to occupy all of the accessible volume.
In contrast, in liquids and solids, molecules are closer together, and the behavior of molecules in liquids and solids is highly
constrained by the molecules’ interactions with one another. The macroscopic properties of such substances depend strongly
on the forces between the molecules, and since many molecules are interacting, the resulting “many-body problems” can be
extremely complicated (see Condensed Matter Physics (http:/lcnx.org/content/m58591/latest/) ).
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Figure 2.2 Atoms and molecules in a gas are typically widely
separated. Because the forces between them are quite weak at
these distances, the properties of a gas depend more on the
number of atoms per unit volume and on temperature than on
the type of atom.

The Gas Laws

In the previous chapter, we saw one consequence of the large intermolecular spacing in gases: Gases are easily compressed.
Table 1.2 shows that gases have larger coefficients of volume expansion than either solids or liquids. These large
coefficients mean that gases expand and contract very rapidly with temperature changes. We also saw (in the section on
thermal expansion) that most gases expand at the same rate or have the same coefficient of volume expansion, £ . This

raises a question: Why do all gases act in nearly the same way, when all the various liquids and solids have widely varying
expansion rates?

To study how the pressure, temperature, and volume of a gas relate to one another, consider what happens when you pump
air into a deflated car tire. The tire’s volume first increases in direct proportion to the amount of air injected, without much
increase in the tire pressure. Once the tire has expanded to nearly its full size, the tire’s walls limit its volume expansion.
If we continue to pump air into the tire, the pressure increases. When the car is driven and the tires flex, their temperature
increases, and therefore the pressure increases even further (Figure 2.3).
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Increase
temperature

(@) (b)

Figure 2.3 (a) When air is pumped into a deflated tire, its volume first increases without much increase in pressure. (b) When
the tire is filled to a certain point, the tire walls resist further expansion, and the pressure increases with more air. (c) Once the
tire is inflated, its pressure increases with temperature.

Figure 2.4 shows data from the experiments of Robert Boyle (1627-1691), illustrating what is now called Boyle’s law:
At constant temperature and number of molecules, the absolute pressure of a gas and its volume are inversely proportional.
(Recall from Fluid Mechanics (http://chx.org/content/m58624/latest/) that the absolute pressure is the true pressure
and the gauge pressure is the absolute pressure minus the ambient pressure, typically atmospheric pressure.) The graph in
Figure 2.4 displays this relationship as an inverse proportionality of volume to pressure.
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Figure 2.4 Robert Boyle and his assistant found that volume and pressure are
inversely proportional. Here their data are plotted as V versus 1/p; the linearity of the
graph shows the inverse proportionality. The number shown as the volume is actually
the height in inches of air in a cylindrical glass tube. The actual volume was that
height multiplied by the cross-sectional area of the tube, which Boyle did not publish.
The data are from Boyle’s book A Defence of the Doctrine Touching the Spring and
Weight of the Air..., p. 60.111

Figure 2.5 shows experimental data illustrating what is called Charles’s law, after Jacques Charles (1746-1823). Charles’s
law states that at constant pressure and number of molecules, the volume of a gas is proportional to its absolute temperature.

1. http://bvpb.mcu.es/en/consulta/registro.cmd?id=406806
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Figure 2.5 Experimental data showing that at constant pressure, volume is

approximately pro?ortional to temperature. The best-fit line passes approximately

through the origin. 2]

Similar is Amonton’s or Gay-Lussac’s law, which states that at constant volume and number of molecules, the pressure is
proportional to the temperature. That law is the basis of the constant-volume gas thermometer, discussed in the previous
chapter. (The histories of these laws and the appropriate credit for them are more complicated than can be discussed here.)

It is known experimentally that for gases at low density (such that their molecules occupy a negligible fraction of the
total volume) and at temperatures well above the boiling point, these proportionalities hold to a good approximation. Not
surprisingly, with the other quantities held constant, either pressure or volume is proportional to the number of molecules.
More surprisingly, when the proportionalities are combined into a single equation, the constant of proportionality is
independent of the composition of the gas. The resulting equation for all gases applies in the limit of low density and high
temperature; it’s the same for oxygen as for helium or uranium hexafluoride. A gas at that limit is called an ideal gas; it
obeys the ideal gas law, which is also called the equation of state of an ideal gas.

Ideal Gas Law

The ideal gas law states that
pV = NkgT, (2.1)

where p is the absolute pressure of a gas, V is the volume it occupies, N is the number of molecules in the gas, and T is
its absolute temperature.

The constant kg is called the Boltzmann constant in honor of the Austrian physicist Ludwig Boltzmann (1844-1906) and

has the value

kg =138 x 1072 J/K.

The ideal gas law describes the behavior of any real gas when its density is low enough or its temperature high enough that
it is far from liquefaction. This encompasses many practical situations. In the next section, we’ll see why it’s independent
of the type of gas.

In many situations, the ideal gas law is applied to a sample of gas with a constant number of molecules; for instance, the
gas may be in a sealed container. If N is constant, then solving for N shows that pV /T is constant. We can write that fact in
a convenient form:

2. http://chemed.chem.purdue.edu/genchem/history/charles.html
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PiVi _p2Vs (2.2)

where the subscripts 1 and 2 refer to any two states of the gas at different times. Again, the temperature must be expressed
in kelvin and the pressure must be absolute pressure, which is the sum of gauge pressure and atmospheric pressure.

Example 2.1

Calculating Pressure Changes Due to Temperature Changes

Suppose your bicycle tire is fully inflated, with an absolute pressure of 7.00 X 10° Pa (a gauge pressure of just

under 90.0 lb/in.z) at a temperature of 18.0 °C. What is the pressure after its temperature has risen to 35.0 °C
on a hot day? Assume there are no appreciable leaks or changes in volume.

Strategy

The pressure in the tire is changing only because of changes in temperature. We know the initial pressure
po="7.00x 10° Pa, the initial temperature 7y = 18.0 °C, and the final temperature 7; = 35.0°C. We

must find the final pressure p;. Since the number of molecules is constant, we can use the equation

peVe _ poVo
Ty Ty -

Since the volume is constant, V; and V|, are the same and they divide out. Therefore,

Pt _ Po
Ty Ty
We can then rearrange this to solve for py :
pe = pod
f 0 TO’

where the temperature must be in kelvin.

Solution
1. Convert temperatures from degrees Celsius to kelvin

To = (18.0+ 273)K = 291 K,

Ty =(35.0+273)K = 308 K.

2. Substitute the known values into the equation,

pr= pO;—g =7.00x 10° Pa (38K) = 7.41 x 10° Pa.

Significance

The final temperature is about 6% greater than the original temperature, so the final pressure is about 6% greater

as well. Note that absolute pressure (see Fluid Mechanics (http://cnx.org/content/m58624/latest/) ) and
absolute temperature (see Temperature and Heat) must be used in the ideal gas law.
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Example 2.2

Calculating the Number of Molecules in a Cubic Meter of Gas

How many molecules are in a typical object, such as gas in a tire or water in a glass? This calculation can give
us an idea of how large N typically is. Let’s calculate the number of molecules in the air that a typical healthy
young adult inhales in one breath, with a volume of 500 mL, at standard temperature and pressure (STP), which
is defined as 0 °C and atmospheric pressure. (Our young adult is apparently outside in winter.)

Strategy
Because pressure, volume, and temperature are all specified, we can use the ideal gas law, pV = Nkg T, to find
N.

Solution
1. Identify the knowns.

T=0°C=273K, p=101x10°Pa, V=500mL =5x10"* m?, kg =1.38x10"2 JK
2. Substitute the known values into the equation and solve for N.

_pV _ (1.01x10° Pa)(5x 10~* m?)

= 3 = 1.34 x 1022 molecules
kg T (1.38 x 107~ J/K) (273 K)

Significance

N is huge, even in small volumes. For example, 1 cm® of a gas at STP contains 2.68 X 10" molecules. Once
again, note that our result for N is the same for all types of gases, including mixtures.

As we observed in the chapter on fluid mechanics, pascals are N/m? ,so Pa- m>=N-m=1J. Thus, our result
for N is dimensionless, a pure number that could be obtained by counting (in principle) rather than measuring.
As it is the number of molecules, we put “molecules” after the number, keeping in mind that it is an aid to
communication rather than a unit.

Moles and Avogadro’s Number

It is often convenient to measure the amount of substance with a unit on a more human scale than molecules. The SI unit for
this purpose was developed by the Italian scientist Amedeo Avogadro (1776-1856). (He worked from the hypothesis that
equal volumes of gas at equal pressure and temperature contain equal numbers of molecules, independent of the type of gas.
As mentioned above, this hypothesis has been confirmed when the ideal gas approximation applies.) A meole (abbreviated
mol) is defined as the amount of any substance that contains as many molecules as there are atoms in exactly 12 grams
(0.012 kg) of carbon-12. (Technically, we should say “formula units,” not “molecules,” but this distinction is irrelevant for
our purposes.) The number of molecules in one mole is called Avogadro’s number (N ,), and the value of Avogadro’s

number is now known to be
Np =6.02x 102 mol L.
We can now write N = N, n, where n represents the number of moles of a substance.

Avogadro’s number relates the mass of an amount of substance in grams to the number of protons and neutrons in an atom
or molecule (12 for a carbon-12 atom), which roughly determine its mass. It’s natural to define a unit of mass such that the
mass of an atom is approximately equal to its number of neutrons and protons. The unit of that kind accepted for use with
the SI is the unified atomic mass unit (u), also called the dalton. Specifically, a carbon-12 atom has a mass of exactly 12
U, so that its molar mass M in grams per mole is numerically equal to the mass of one carbon-12 atom in u. That equality
holds for any substance. In other words, N, is not only the conversion from numbers of molecules to moles, but it is also

023

the conversion from u to grams: 6.02 X 1 u=1g. SeeFigure 2.6.
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Mt. Everest
(for scale)

Table tennis balls

Figure 2.6 How big is a mole? On a macroscopic level, Avogadro’s number of table tennis balls
would cover Earth to a depth of about 40 km.

Now letting mg stand for the mass of a sample of a substance, we have mg = nM. Letting m stand for the mass of a

molecule, we have M = N m.

2.1 Check Your Understanding The recommended daily amount of vitamin Bj or niacin, CqNH5O,,

for women who are not pregnant or nursing, is 14 mg. Find the number of molecules of niacin in that amount.

2.2 Check Your Understanding The density of air in a classroom (p =1.00atm and 7 =20°C) is

1.28 kg/m3 . At what pressure is the density 0.600 kg/m3 if the temperature is kept constant?

The Ideal Gas Law Restated using Moles

A very common expression of the ideal gas law uses the number of moles in a sample, n, rather than the number of
molecules, N. We start from the ideal gas law,

and multiply and divide the right-hand side of the equation by Avogadro’s number N ,. This gives us

N
V= N kpT.
p NA A "B

Note that n = N/N is the number of moles. We define the universal gas constant as R = N, kg, and obtain the ideal

gas law in terms of moles.

Ideal Gas Law (in terms of moles)

In terms of number of moles n, the ideal gas law is written as

pV =nRT. (2.3)

In SI units,

R=Nkp =(602x10% mol~')1.38x 1072 L) =831 L.

In other units,

- _cal _ L-atm
R= 1.99mo1‘K = 0'0821mol-K'

You can use whichever value of R is most convenient for a particular problem.
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Example 2.3

Density of Air at STP and in a Hot Air Balloon

Calculate the density of dry air (a) under standard conditions and (b) in a hot air balloon at a temperature of
120°C. Dry air is approximately 78% N,, 21% O,, and 1% Ar.

Strategy and Solution
a. We are asked to find the density, or mass per cubic meter. We can begin by finding the molar mass. If we
have a hundred molecules, of which 78 are nitrogen, 21 are oxygen, and 1 is argon, the average molecular
78 mN2 +21 m02 '|‘l"’lAr
100
same applies to the molar mass, which therefore is

M =0.78 My +0.21 Mg, +0.01 M 5, = 29.0 g/mol.

mass is , or the mass of each constituent multiplied by its percentage. The

Now we can find the number of moles per cubic meter. We use the ideal gas law in terms of moles,
pV =nRT, with p=100atm, T=273K, V=1 m3, and R =8.31J/mol-K. The most

convenient choice for R in this case is R = 8.31 J/mol - K because the known quantities are in SI units:

pV _ (1.01x 10° Pa) (1 m?)

"= RT = (831 1/mol - K) 23 K) — 4> mol.

Then, the mass m of that air is

mg = nM = (44.5 mol)(29.0 g/mol) = 1290 g = 1.29 kg.

Finally the density of air at STP is

_ms _

1.29kg 3
=V =0 = 1.29kg/m".

b. The air pressure inside the balloon is still 1 atm because the bottom of the balloon is open to the
atmosphere. The calculation is the same except that we use a temperature of 120 °C, which is 393 K.

We can repeat the calculation in (a), or simply observe that the density is proportional to the number of
moles, which is inversely proportional to the temperature. Then using the subscripts 1 for air at STP and
2 for the hot air, we have

I _ 213K 3 _ 3
Py = T2p1 =393 K(1.29 kg/m~) = 0.896 kg/m".

Significance
Using the methods of Archimedes’ Principle and Buoyancy (http:/icnx.org/content/m58356/latest/)
, we can find that the net force on 2200 m? of air at 120°C is

Fy = F¢ = pamosphere V& — Phot air V& = 8:49 X 103 N, or enough to lift about 867 kg. The mass density and

molar density of air at STP, found above, are often useful numbers. From the molar density, we can easily
determine another useful number, the volume of a mole of any ideal gas at STP, which is 22.4 L.

2.3 Check Your Understanding Liquids and solids have densities on the order of 1000 times greater than
gases. Explain how this implies that the distances between molecules in gases are on the order of 10 times
greater than the size of their molecules.

The ideal gas law is closely related to energy: The units on both sides of the equation are joules. The right-hand side of
the ideal gas law equation is Nkg 7. This term is roughly the total translational kinetic energy (which, when discussing

gases, refers to the energy of translation of a molecule, not that of vibration of its atoms or rotation) of N molecules at
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an absolute temperature T, as we will see formally in the next section. The left-hand side of the ideal gas law equation is
pV. As mentioned in the example on the number of molecules in an ideal gas, pressure multiplied by volume has units of
energy. The energy of a gas can be changed when the gas does work as it increases in volume, something we explored in
the preceding chapter, and the amount of work is related to the pressure. This is the process that occurs in gasoline or steam
engines and turbines, as we’ll see in the next chapter.

Problem-Solving Strategy: The Ideal Gas Law

Step 1. Examine the situation to determine that an ideal gas is involved. Most gases are nearly ideal unless they are
close to the boiling point or at pressures far above atmospheric pressure.

Step 2. Make a list of what quantities are given or can be inferred from the problem as stated (identify the known
quantities).

Step 3. Identify exactly what needs to be determined in the problem (identify the unknown quantities). A written list
is useful.

Step 4. Determine whether the number of molecules or the number of moles is known or asked for to decide whether to
use the ideal gas law as pV = Nkg 7T, where N is the number of molecules, or pV = nRT, where n is the number

of moles.

Step 5. Convert known values into proper SI units (K for temperature, Pa for pressure, m? for volume, molecules for
N, and moles for n). If the units of the knowns are consistent with one of the non-SI values of R, you can leave them in
those units. Be sure to use absolute temperature and absolute pressure.

Step 6. Solve the ideal gas law for the quantity to be determined (the unknown quantity). You may need to take a ratio
of final states to initial states to eliminate the unknown quantities that are kept fixed.

Step 7. Substitute the known quantities, along with their units, into the appropriate equation and obtain numerical
solutions complete with units.

Step 8. Check the answer to see if it is reasonable: Does it make sense?

The Van der Waals Equation of State

We have repeatedly noted that the ideal gas law is an approximation. How can it be improved upon? The van der Waals
equation of state (named after the Dutch physicist Johannes van der Waals, 1837—-1923) improves it by taking into account
two factors. First, the attractive forces between molecules, which are stronger at higher density and reduce the pressure,
are taken into account by adding to the pressure a term equal to the square of the molar density multiplied by a positive
coefficient a. Second, the volume of the molecules is represented by a positive constant b, which can be thought of as the
volume of a mole of molecules. This is subtracted from the total volume to give the remaining volume that the molecules
can move in. The constants a and b are determined experimentally for each gas. The resulting equation is

2 .
[p +a(2) ](v — nb) = nRT. 24)

In the limit of low density (small n), the a and b terms are negligible, and we have the ideal gas law, as we should for low
density. On the other hand, if V —nb is small, meaning that the molecules are very close together, the pressure must be

higher to give the same nRT, as we would expect in the situation of a highly compressed gas. However, the increase in
pressure is less than that argument would suggest, because at high density the (n/ V)2 term is significant. Since it’s positive,
it causes a lower pressure to give the same nRT.

The van der Waals equation of state works well for most gases under a wide variety of conditions. As we’ll see in the next
module, it even predicts the gas-liquid transition.

pV Diagrams

We can examine aspects of the behavior of a substance by plotting a pV diagram, which is a graph of pressure versus
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volume. When the substance behaves like an ideal gas, the ideal gas law pV = nRT describes the relationship between its

pressure and volume. On a pV diagram, it’s common to plot an isotherm, which is a curve showing p as a function of V with
the number of molecules and the temperature fixed. Then, for an ideal gas, pV = constant. For example, the volume of

the gas decreases as the pressure increases. The resulting graph is a hyperbola.

However, if we assume the van der Waals equation of state, the isotherms become more interesting, as shown in Figure 2.7.
At high temperatures, the curves are approximately hyperbolas, representing approximately ideal behavior at various fixed
temperatures. At lower temperatures, the curves look less and less like hyperbolas—that is, the gas is not behaving ideally.
There is a critical temperature 7. at which the curve has a point with zero slope. Below that temperature, the curves do

not decrease monotonically; instead, they each have a “hump,” meaning that for a certain range of volume, increasing the
volume increases the pressure.
\

Pressure, p

Volume, V
Figure 2.7 pV diagram for a Van der Waals gas at various temperatures. The red curves
are calculated at temperatures above the critical temperature and the blue curves at
temperatures below it. The blue curves have an oscillation in which volume (V) increases
with increasing temperature (T), an impossible situation, so they must be corrected as in
Figure 2.8. (credit: “Eman”/Wikimedia Commons)

Such behavior would be completely unphysical. Instead, the curves are understood as describing a liquid-gas phase
transition. The oscillating part of the curve is replaced by a horizontal line, showing that as the volume increases at constant
temperature, the pressure stays constant. That behavior corresponds to boiling and condensation; when a substance is at its
boiling temperature for a particular pressure, it can increase in volume as some of the liquid turns to gas, or decrease as
some of the gas turns to liquid, without any change in temperature or pressure.

Figure 2.8 shows similar isotherms that are more realistic than those based on the van der Waals equation. The steep parts
of the curves to the left of the transition region show the liquid phase, which is almost incompressible—a slight decrease in
volume requires a large increase in pressure. The flat parts show the liquid-gas transition; the blue regions that they define
represent combinations of pressure and volume where liquid and gas can coexist.
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Figure 2.8 pV diagrams. (a) Each curve (isotherm) represents the relationship between p and V at a fixed temperature; the
upper curves are at higher temperatures. The lower curves are not hyperbolas because the gas is no longer an ideal gas. (b) An
expanded portion of the pV diagram for low temperatures, where the phase can change from a gas to a liquid. The term “vapor”
refers to the gas phase when it exists at a temperature below the boiling temperature.

The isotherms above 7' do not go through the liquid-gas transition. Therefore, liquid cannot exist above that temperature,

which is the critical temperature (described in the chapter on temperature and heat). At sufficiently low pressure above that
temperature, the gas has the density of a liquid but will not condense; the gas is said to be supercritical. At higher pressure,
it is solid. Carbon dioxide, for example, has no liquid phase at a temperature above 31.0°C. The critical pressure is the
maximum pressure at which the liquid can exist. The point on the pV diagram at the critical pressure and temperature is
the critical point (which you learned about in the chapter on temperature and heat). Table 2.1 lists representative critical
temperatures and pressures.

Substance Critical temperature Critical pressure
K °C Pa atm

Water 647.4 374.3 22.12 % 10° 219.0
Sulfur dioxide 430.7 157.6 7.88 % 100 78.0
Ammonia 405.5 132.4 1128 % 106 1117
Carbon dioxide 304.2 31.1 7.39 % 10° 73.2
Oxygen 154.8 -118.4 5.08 x 10° 50.3
Nitrogen 126.2 -146.9 339 % 10° 33.6
Hydrogen 33.3 -239.9 1.30x 10° 12.9
Helium 5.3 —267.9 0.229 x 10° 2.27

Table 2.1 Critical Temperatures and Pressures for Various
Substances
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2.2 | Pressure, Temperature, and RMS Speed

Learning Objectives

By the end of this section, you will be able to:

* Explain the relations between microscopic and macroscopic quantities in a gas
* Solve problems involving mixtures of gases
* Solve problems involving the distance and time between a gas molecule’s collisions

We have examined pressure and temperature based on their macroscopic definitions. Pressure is the force divided by the
area on which the force is exerted, and temperature is measured with a thermometer. We can gain a better understanding of
pressure and temperature from the kinetic theory of gases, the theory that relates the macroscopic properties of gases to the
motion of the molecules they consist of. First, we make two assumptions about molecules in an ideal gas.

1. There is a very large number N of molecules, all identical and each having mass m.

2. The molecules obey Newton’s laws and are in continuous motion, which is random and isotropic, that is, the same
in all directions.

To derive the ideal gas law and the connection between microscopic quantities such as the energy of a typical molecule and
macroscopic quantities such as temperature, we analyze a sample of an ideal gas in a rigid container, about which we make
two further assumptions:

3. The molecules are much smaller than the average distance between them, so their total volume is much less than
that of their container (which has volume V). In other words, we take the Van der Waals constant b, the volume of a
mole of gas molecules, to be negligible compared to the volume of a mole of gas in the container.

4. The molecules make perfectly elastic collisions with the walls of the container and with each other. Other forces
on them, including gravity and the attractions represented by the Van der Waals constant a, are negligible (as is
necessary for the assumption of isotropy).

The collisions between molecules do not appear in the derivation of the ideal gas law. They do not disturb the derivation
either, since collisions between molecules moving with random velocities give new random velocities. Furthermore, if the
velocities of gas molecules in a container are initially not random and isotropic, molecular collisions are what make them
random and isotropic.

We make still further assumptions that simplify the calculations but do not affect the result. First, we let the container be a
rectangular box. Second, we begin by considering monatomic gases, those whose molecules consist of single atoms, such
as helium. Then, we can assume that the atoms have no energy except their translational kinetic energy; for instance, they
have neither rotational nor vibrational energy. (Later, we discuss the validity of this assumption for real monatomic gases
and dispense with it to consider diatomic and polyatomic gases.)

Figure 2.9 shows a collision of a gas molecule with the wall of a container, so that it exerts a force on the wall (by
Newton’s third law). These collisions are the source of pressure in a gas. As the number of molecules increases, the number
of collisions, and thus the pressure, increases. Similarly, if the average velocity of the molecules is higher, the gas pressure
is higher.
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Figure 2.9 When a molecule collides with a rigid wall, the
component of its momentum perpendicular to the wall is
reversed. A force is thus exerted on the wall, creating pressure.

In a sample of gas in a container, the randomness of the molecular motion causes the number of collisions of molecules
with any part of the wall in a given time to fluctuate. However, because a huge number of molecules collide with the wall
in a short time, the number of collisions on the scales of time and space we measure fluctuates by only a tiny, usually
unobservable fraction from the average. We can compare this situation to that of a casino, where the outcomes of the bets
are random and the casino’s takings fluctuate by the minute and the hour. However, over long times such as a year, the
casino’s takings are very close to the averages expected from the odds. A tank of gas has enormously more molecules than
a casino has bettors in a year, and the molecules make enormously more collisions in a second than a casino has bets.

A calculation of the average force exerted by molecules on the walls of the box leads us to the ideal gas law and to the
connection between temperature and molecular kinetic energy. (In fact, we will take two averages: one over time to get
the average force exerted by one molecule with a given velocity, and then another average over molecules with different
velocities.) This approach was developed by Daniel Bernoulli (1700-1782), who is best known in physics for his work on
fluid flow (hydrodynamics). Remarkably, Bernoulli did this work before Dalton established the view of matter as consisting
of atoms.

Figure 2.10 shows a container full of gas and an expanded view of an elastic collision of a gas molecule with a wall of
the container, broken down into components. We have assumed that a molecule is small compared with the separation of
molecules in the gas, and that its interaction with other molecules can be ignored. Under these conditions, the ideal gas law
is experimentally valid. Because we have also assumed the wall is rigid and the particles are points, the collision is elastic
(by conservation of energy—there’s nowhere for a particle’s kinetic energy to go). Therefore, the molecule’s kinetic energy
remains constant, and hence, its speed and the magnitude of its momentum remain constant as well. This assumption is not
always valid, but the results in the rest of this module are also obtained in models that let the molecules exchange energy
and momentum with the wall.
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Figure 2.10 Gas in a box exerts an outward pressure on its
walls. A molecule colliding with a rigid wall has its velocity and
momentum in the x-direction reversed. This direction is
perpendicular to the wall. The components of its velocity
momentum in the y- and z-directions are not changed, which
means there is no force parallel to the wall.

If the molecule’s velocity changes in the x-direction, its momentum changes from —mv, to +mv,. Thus, its change in
momentum is Amy = + mvy — (—mvy) = 2mv,. According to the impulse-momentum theorem given in the chapter on
linear momentum and collisions, the force exerted on the ith molecule, where i labels the molecules from 1 to N, is given by

F.ooApi_ 2myi
At At

(In this equation alone, p represents momentum, not pressure.) There is no force between the wall and the molecule except

while the molecule is touching the wall. During the short time of the collision, the force between the molecule and wall

is relatively large, but that is not the force we are looking for. We are looking for the average force, so we take Ar to be

the average time between collisions of the given molecule with this wall, which is the time in which we expect to find one

collision. Let I represent the length of the box in the x-direction. Then At is the time the molecule would take to go across

the box and back, a distance 21, at a speed of v,. Thus At = 2I/v,, and the expression for the force becomes
_ 2mvy, mv?

, = — X
Fi= o, =7

This force is due to one molecule. To find the total force on the wall, F, we need to add the contributions of all N molecules:

N N my2 N
i 2
F=2Fi=z llx=% 1Vix'

i=1 i=1 i=

We now use the definition of the average, which we denote with a bar, to find the force:

N

2
F=NoLY o2 |= N2

1=
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We want the force in terms of the speed v, rather than the x-component of the velocity. Note that the total velocity squared
is the sum of the squares of its components, so that

v2=v§+v§+v§.

With the assumption of isotropy, the three averages on the right side are equal, so

2_12
ve=3vj.
Substituting this into the expression for F gives
2
F =NIW_
3]

The pressure is F/A, so we obtain
p=F = yow? _ N
A 3Al 3v >’

where we used V = Al for the volume. This gives the important result

pV = %vaz. L83
Combining this equation with pV = NkgT gives
%vaz = NkgT.
We can get the average kinetic energy of a molecule, %mv2 , from the left-hand side of the equation by dividing out N and
multiplying by 3/2.
Average Kinetic Energy per Molecule
The average kinetic energy of a molecule is directly proportional to its absolute temperature:
K=1m?= %kB T. (2.6)

2

The equation K= %kB T is the average kinetic energy per molecule. Note in particular that nothing in this equation

depends on the molecular mass (or any other property) of the gas, the pressure, or anything but the temperature. If samples
of helium and xenon gas, with very different molecular masses, are at the same temperature, the molecules have the same
average kinetic energy.

The internal energy of a thermodynamic system is the sum of the mechanical energies of all of the molecules in it. We can
now give an equation for the internal energy of a monatomic ideal gas. In such a gas, the molecules’ only energy is their

translational kinetic energy. Therefore, denoting the internal energy by E;., we simply have E; ;=N K, or

Eip =3 NkgT. (2.7)

Often we would like to use this equation in terms of moles:

3 nRT.

Eiy = 2
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We can solve K = %mv2 = %kB T for a typical speed of a molecule in an ideal gas in terms of temperature to determine

what is known as the root-mean-square (rms) speed of a molecule.

RMS Speed of a Molecule

The root-mean-square (rms) speed of a molecule, or the square root of the average of the square of the speed V2 , s
o 3kgT (2.8)
Vrms = V\; = 71731 .

The rms speed is not the average or the most likely speed of molecules, as we will see in Distribution of Molecular
Speeds, but it provides an easily calculated estimate of the molecules’ speed that is related to their kinetic energy. Again
we can write this equation in terms of the gas constant R and the molar mass M in kg/mol:

2.9
Ve = 4/31‘1;1 (2.9)

We digress for a moment to answer a question that may have occurred to you: When we apply the model to atoms instead of
theoretical point particles, does rotational kinetic energy change our results? To answer this question, we have to appeal to
quantum mechanics. In quantum mechanics, rotational kinetic energy cannot take on just any value; it’s limited to a discrete

set of values, and the smallest value is inversely proportional to the rotational inertia. The rotational inertia of an atom is

0-14

tiny because almost all of its mass is in the nucleus, which typically has a radius less than 1 m . Thus the minimum

rotational energy of an atom is much more than %kB T for any attainable temperature, and the energy available is not

enough to make an atom rotate. We will return to this point when discussing diatomic and polyatomic gases in the next
section.

Example 2.4

Calculating Kinetic Energy and Speed of a Gas Molecule

(a) What is the average kinetic energy of a gas molecule at 20.0 °C (room temperature)? (b) Find the rms speed

of a nitrogen molecule (N,) at this temperature.

Strategy

(a) The known in the equation for the average kinetic energy is the temperature:

g=l2_3
K—zmv —2kBT.

Before substituting values into this equation, we must convert the given temperature into kelvin:
T = (20.0 +273) K = 293 K. We can find the rms speed of a nitrogen molecule by using the equation

> 4/3kgT
Vrms=,\/V72: ,],31 >

but we must first find the mass of a nitrogen molecule. Obtaining the molar mass of nitrogen N, from the

periodic table, we find

M _ 2(14.0067) x 10~ kg/mol)
Ny 6.02 % 1023 mol™!

m=

=4.65x 10720 kg.

Solution
a. The temperature alone is sufficient for us to find the average translational kinetic energy. Substituting the
temperature into the translational kinetic energy equation gives
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K= %kB T = %(1.38 x 1072 J/K)(293 K) = 6.07 x 10721 J.

b. Substituting this mass and the value for kg into the equation for v p yields

. Wz 30138 x 10723 JK)293K) _ 511 mls
s = \/ 4.65x 10726 kg '

Significance

Note that the average kinetic energy of the molecule is independent of the type of molecule. The average
translational kinetic energy depends only on absolute temperature. The kinetic energy is very small compared to
macroscopic energies, so that we do not feel when an air molecule is hitting our skin. On the other hand, it is
much greater than the typical difference in gravitational potential energy when a molecule moves from, say, the
top to the bottom of a room, so our neglect of gravitation is justified in typical real-world situations. The rms
speed of the nitrogen molecule is surprisingly large. These large molecular velocities do not yield macroscopic
movement of air, since the molecules move in all directions with equal likelihood. The mean free path (the
distance a molecule moves on average between collisions, discussed a bit later in this section) of molecules in air
is very small, so the molecules move rapidly but do not get very far in a second. The high value for rms speed
is reflected in the speed of sound, which is about 340 m/s at room temperature. The higher the rms speed of
air molecules, the faster sound vibrations can be transferred through the air. The speed of sound increases with
temperature and is greater in gases with small molecular masses, such as helium (see Figure 2.11).

Wave front of sound
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Figure 2.11 (a) In an ordinary gas, so many molecules move so fast that they collide
billions of times every second. (b) Individual molecules do not move very far in a
small amount of time, but disturbances like sound waves are transmitted at speeds
related to the molecular speeds.

Example 2.5

Calculating Temperature: Escape Velocity of Helium Atoms

To escape Earth’s gravity, an object near the top of the atmosphere (at an altitude of 100 km) must travel away
from Earth at 11.1 km/s. This speed is called the escape velocity. At what temperature would helium atoms have
an rms speed equal to the escape velocity?

Strategy

Identify the knowns and unknowns and determine which equations to use to solve the problem.

Solution
1. Identify the knowns: v is the escape velocity, 11.1 km/s.
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2. Identify the unknowns: We need to solve for temperature, T. We also need to solve for the mass m of the
helium atom.

3. Determine which equations are needed.

o To get the mass m of the helium atom, we can use information from the periodic table:

_M
m= N,
o To solve for temperature T, we can rearrange
1,.2_3
> my* = 5 kg T
to yield
2
_ my
T= T k'

4. Substitute the known values into the equations and solve for the unknowns,

-3
M _ 40026 X107 kgfmol _ o oo -7 1

“Ns T 6.02% 1023 mol

and

2
. (6.65% 1077 kg (11.1 x 10° m/s)

=1.98x 104 K.
3(1.38x 10723 J/K)

Significance

This temperature is much higher than atmospheric temperature, which is approximately 250 K
(=25°Cor — 10 °F) at high elevation. Very few helium atoms are left in the atmosphere, but many were present

when the atmosphere was formed, and more are always being created by radioactive decay (see the chapter on
nuclear physics). The reason for the loss of helium atoms is that a small number of helium atoms have speeds
higher than Earth’s escape velocity even at normal temperatures. The speed of a helium atom changes from one
collision to the next, so that at any instant, there is a small but nonzero chance that the atom’s speed is greater than
the escape velocity. The chance is high enough that over the lifetime of Earth, almost all the helium atoms that
have been in the atmosphere have reached escape velocity at high altitudes and escaped from Earth’s gravitational
pull. Heavier molecules, such as oxygen, nitrogen, and water, have smaller rms speeds, and so it is much less
likely that any of them will have speeds greater than the escape velocity. In fact, the likelihood is so small that
billions of years are required to lose significant amounts of heavier molecules from the atmosphere. Figure 2.12
shows the effect of a lack of an atmosphere on the Moon. Because the gravitational pull of the Moon is much
weaker, it has lost almost its entire atmosphere. The atmospheres of Earth and other bodies are compared in this
chapter’s exercises.
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Figure 2.12 This photograph of Apollo 17 Commander
Eugene Cernan driving the lunar rover on the Moon in 1972
looks as though it was taken at night with a large spotlight. In
fact, the light is coming from the Sun. Because the acceleration
due to gravity on the Moon is so low (about 1/6 that of Earth),
the Moon’s escape velocity is much smaller. As a result, gas
molecules escape very easily from the Moon, leaving it with
virtually no atmosphere. Even during the daytime, the sky is
black because there is no gas to scatter sunlight. (credit:
Harrison H. Schmitt/NASA)

2.4 Check Your Understanding If you consider a very small object, such as a grain of pollen, in a gas, then
the number of molecules striking its surface would also be relatively small. Would you expect the grain of
pollen to experience any fluctuations in pressure due to statistical fluctuations in the number of gas molecules
striking it in a given amount of time?

Vapor Pressure, Partial Pressure, and Dalton’s Law

The pressure a gas would create if it occupied the total volume available is called the gas’s partial pressure. If two or more
gases are mixed, they will come to thermal equilibrium as a result of collisions between molecules; the process is analogous
to heat conduction as described in the chapter on temperature and heat. As we have seen from kinetic theory, when the
gases have the same temperature, their molecules have the same average kinetic energy. Thus, each gas obeys the ideal
gas law separately and exerts the same pressure on the walls of a container that it would if it were alone. Therefore, in a
mixture of gases, the total pressure is the sum of partial pressures of the component gases, assuming ideal gas behavior and
no chemical reactions between the components. This law is known as Dalton’s law of partial pressures, after the English
scientist John Dalton (1766—1844) who proposed it. Dalton’s law is consistent with the fact that pressures add according to
Pascal’s principle.

In a mixture of ideal gases in thermal equilibrium, the number of molecules of each gas is proportional to its partial pressure.
This result follows from applying the ideal gas law to each in the form p/n = RT/V. Because the right-hand side is the

same for any gas at a given temperature in a container of a given volume, the left-hand side is the same as well.
¢ Partial pressure is the pressure a gas would create if it existed alone.
¢ Dalton’s law states that the total pressure is the sum of the partial pressures of all of the gases present.

* For any two gases (labeled 1 and 2) in equilibrium in a container, ‘z—ll = %
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An important application of partial pressure is that, in chemistry, it functions as the concentration of a gas in determining the
rate of a reaction. Here, we mention only that the partial pressure of oxygen in a person’s lungs is crucial to life and health.
Breathing air that has a partial pressure of oxygen below 0.16 atm can impair coordination and judgment, particularly in
people not acclimated to a high elevation. Lower partial pressures of O, have more serious effects; partial pressures below

0.06 atm can be quickly fatal, and permanent damage is likely even if the person is rescued. However, the sensation of
needing to breathe, as when holding one’s breath, is caused much more by high concentrations of carbon dioxide in the
blood than by low concentrations of oxygen. Thus, if a small room or closet is filled with air having a low concentration of
oxygen, perhaps because a leaking cylinder of some compressed gas is stored there, a person will not feel any “choking”
sensation and may go into convulsions or lose consciousness without noticing anything wrong. Safety engineers give
considerable attention to this danger.

Another important application of partial pressure is vapor pressure, which is the partial pressure of a vapor at which it is
in equilibrium with the liquid (or solid, in the case of sublimation) phase of the same substance. At any temperature, the
partial pressure of the water in the air cannot exceed the vapor pressure of the water at that temperature, because whenever
the partial pressure reaches the vapor pressure, water condenses out of the air. Dew is an example of this condensation. The
temperature at which condensation occurs for a sample of air is called the dew point. It is easily measured by slowly cooling
a metal ball; the dew point is the temperature at which condensation first appears on the ball.

The vapor pressures of water at some temperatures of interest for meteorology are given in Table 2.2.

T (°C) Vapor Pressure (Pa)

0 610.5
3 757.9
5 872.3
8 1073
10 1228
13 1497
15 1705
18 2063
20 2338
23 2809
25 3167
30 4243
35 5623
40 7376

Table 2.2 Vapor Pressure of Water at
Various Temperatures

The relative humidity (R.H.) at a temperature T is defined by

RH = Partial pressure of water vapor at 7 % 100%.
Vapor pressure of water at 7'

A relative humidity of 100% means that the partial pressure of water is equal to the vapor pressure; in other words, the air
is saturated with water.

Example 2.6

Calculating Relative Humidity

What is the relative humidity when the air temperature is 25 °C and the dew point is 15°C?
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Strategy
We simply look up the vapor pressure at the given temperature and that at the dew point and find the ratio.
Solution
_ Partial pressure of water vapor at 15 °C _ 1705 Pa _
RH. = 5 rtal pressure of water vapor at 25 °C X 100% = 3167 Pa 100% = 53.8%.
Significance

R.H. is important to our comfort. The value of 53.8% is within the range of 40% to 60% recommended for
comfort indoors.
As noted in the chapter on temperature and heat, the temperature seldom falls below the dew point, because when

it reaches the dew point or frost point, water condenses and releases a relatively large amount of latent heat of
vaporization.

Mean Free Path and Mean Free Time

We now consider collisions explicitly. The usual first step (which is all we’ll take) is to calculate the mean free path, 4,
the average distance a molecule travels between collisions with other molecules, and the mean free time 7, the average

time between the collisions of a molecule. If we assume all the molecules are spheres with a radius r, then a molecule will
collide with another if their centers are within a distance 2r of each other. For a given particle, we say that the area of a

circle with that radius, drr? , is the “cross-section” for collisions. As the particle moves, it traces a cylinder with that cross-
sectional area. The mean free path is the length A such that the expected number of other molecules in a cylinder of length

2 and cross-section 4zr? is 1. If we temporarily ignore the motion of the molecules other than the one we’re looking at,
the expected number is the number density of molecules, N/V, times the volume, and the volume is drr? ) , SO we have
(NIVYazr? ) =1, or

A=—Y
dnr’ N

Taking the motion of all the molecules into account makes the calculation much harder, but the only change is a factor of
V2. The result is

1= \% ) (2.10)
M2zri N

In an ideal gas, we can substitute V/N = kg T/p to obtain

_ kgT (2.11)
4\/571’7‘2]7'

The mean free time 7 is simply the mean free path divided by a typical speed, and the usual choice is the rms speed. Then

L= kg T (2.12)
272 pvrms.
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Example 2.7

Calculating Mean Free Time

Find the mean free time for argon atoms (M = 39.9 g/mol) at a temperature of 0 °C and a pressure of 1.00 atm.
Take the radius of an argon atom to be 1.70 X 10719 m.

Solution
1. Identify the knowns and convert into SI units. We know the molar mass is 0.0399 kg/mol, the temperature

is 273 K, the pressure is 1.01 X 10° Pa, and the radiusis 1.70 X 10710 m,

3RT _ 413 m

2. Find the rms speed: vimg = M

3. Substitute into the equation for the mean free time:

kg T (1.38 x 10723 J/K) (273 K)

= = =176x 107105,
4272 pvems  4V27(1.70 x 10710 m)2(1.01 x 10° Pa)(413 m/s)

Significance

We can hardly compare this result with our intuition about gas molecules, but it gives us a picture of molecules
colliding with extremely high frequency.

@ 2.5 Check Your Understanding Which has a longer mean free path, liquid water or water vapor in the air?

2.3 | Heat Capacity and Equipartition of Energy

Learning Objectives

By the end of this section, you will be able to:

* Solve problems involving heat transfer to and from ideal monatomic gases whose volumes are
held constant

* Solve similar problems for non-monatomic ideal gases based on the number of degrees of
freedom of a molecule

* Estimate the heat capacities of metals using a model based on degrees of freedom

In the chapter on temperature and heat, we defined the specific heat capacity with the equation Q = mcAT, or
¢ = (1/m)Q/AT . However, the properties of an ideal gas depend directly on the number of moles in a sample, so here we

define specific heat capacity in terms of the number of moles, not the mass. Furthermore, when talking about solids and
liquids, we ignored any changes in volume and pressure with changes in temperature—a good approximation for solids and
liquids, but for gases, we have to make some condition on volume or pressure changes. Here, we focus on the heat capacity
with the volume held constant. We can calculate it for an ideal gas.

Heat Capacity of an Ideal Monatomic Gas at Constant Volume

We define the molar heat capacity at constant volume Cy, as
Cy= 10 with V held constant
VT AT )

This is often expressed in the form

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9
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Q =nCyAT. (2.13)

If the volume does not change, there is no overall displacement, so no work is done, and the only change in internal

energy is due to the heat flow AFE; = Q. (This statement is discussed further in the next chapter.) We use the equation

E;,. = 3nRT/2 to write AE;,, = 3nRAT/2 and substitute AE for Q to find Q = 3nRAT/2, which gives the following

simple result for an ideal monatomic gas:

It is independent of temperature, which justifies our use of finite differences instead of a derivative. This formula agrees
well with experimental results.

In the next chapter we discuss the molar specific heat at constant pressure C ), which is always greater than Cy,.

Example 2.8

Calculating Temperature

A sample of 0.125 kg of xenon is contained in a rigid metal cylinder, big enough that the xenon can be modeled
as an ideal gas, at a temperature of 20.0 °C . The cylinder is moved outside on a hot summer day. As the xenon

comes into equilibrium by reaching the temperature of its surroundings, 180 J of heat are conducted to it through
the cylinder walls. What is the equilibrium temperature? Ignore the expansion of the metal cylinder.

Solution
1. Identify the knowns: We know the initial temperature 7| is 20.0 °C, the heat Q is 180 J, and the mass

m of the xenon is 0.125 kg.
2. Identify the unknown. We need the final temperature, so we’ll need AT .

3. Determine which equations are needed. Because xenon gas is monatomic, we can use Q = 3nRAT/2.

Then we need the number of moles, n = m/M.

4. Substitute the known values into the equations and solve for the unknowns.
The molar mass of xenon is 131.3 g, so we obtain

125¢g

"=1373 o/mol g/mol = 0.952 mol,

_20 _ 2(1807) eno
AT =%k = 300952 moD3.31 mol °C) — 1>27°C

Therefore, the final temperature is 35.2 °C . The problem could equally well be solved in kelvin; as a
kelvin is the same size as a degree Celsius of temperature change, you would get AT = 15.2 K.
Significance

The heating of an ideal or almost ideal gas at constant volume is important in car engines and many other practical
systems.

2.6 Check Your Understanding Suppose 2 moles of helium gas at 200 K are mixed with 2 moles of krypton
gas at 400 K in a calorimeter. What is the final temperature?

We would like to generalize our results to ideal gases with more than one atom per molecule. In such systems, the molecules
can have other forms of energy beside translational kinetic energy, such as rotational kinetic energy and vibrational kinetic
and potential energies. We will see that a simple rule lets us determine the average energies present in these forms and solve
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problems in much the same way as we have for monatomic gases.

Degrees of Freedom

In the previous section, we found that %mv2 = %kB T and vZ = 3v)26 , from which it follows that %mv% = %kB T . The
same equation holds for v% and for v% . Thus, we can look at our energy of %kB T as the sum of contributions of %kB T

from each of the three dimensions of translational motion. Shifting to the gas as a whole, we see that the 3 in the formula

Cy= %R also reflects those three dimensions. We define a degree of freedom as an independent possible motion of a

molecule, such as each of the three dimensions of translation. Then, letting d represent the number of degrees of freedom,

the molar heat capacity at constant volume of a monatomic ideal gas is Cy = %R, where d =3.

The branch of physics called statistical mechanics tells us, and experiment confirms, that Cy, of any ideal gas is given

by this equation, regardless of the number of degrees of freedom. This fact follows from a more general result, the
equipartition theorem, which holds in classical (non-quantum) thermodynamics for systems in thermal equilibrium under
technical conditions that are beyond our scope. Here, we mention only that in a system, the energy is shared among the
degrees of freedom by collisions.

Equipartition Theorem

The energy of a thermodynamic system in equilibrium is partitioned equally among its degrees of freedom.
Accordingly, the molar heat capacity of an ideal gas is proportional to its number of degrees of freedom, d:

cy =4R. (2.14)

This result is due to the Scottish physicist James Clerk Maxwell (1831-1871), whose name will appear several more times
in this book.

For example, consider a diatomic ideal gas (a good model for nitrogen, N,, and oxygen, O,). Such a gas has more

degrees of freedom than a monatomic gas. In addition to the three degrees of freedom for translation, it has two degrees
of freedom for rotation perpendicular to its axis. Furthermore, the molecule can vibrate along its axis. This motion is often
modeled by imagining a spring connecting the two atoms, and we know from simple harmonic motion that such motion has
both kinetic and potential energy. Each of these forms of energy corresponds to a degree of freedom, giving two more.

We might expect that for a diatomic gas, we should use 7 as the number of degrees of freedom; classically, if the molecules
of a gas had only translational kinetic energy, collisions between molecules would soon make them rotate and vibrate.
However, as explained in the previous module, quantum mechanics controls which degrees of freedom are active. The
result is shown in Figure 2.13. Both rotational and vibrational energies are limited to discrete values. For temperatures
below about 60 K, the energies of hydrogen molecules are too low for a collision to bring the rotational state or vibrational
state of a molecule from the lowest energy to the second lowest, so the only form of energy is translational kinetic energy,
and d =3 or Cy =3R/2 as in a monatomic gas. Above that temperature, the two rotational degrees of freedom begin

to contribute, that is, some molecules are excited to the rotational state with the second-lowest energy. (This temperature
is much lower than that where rotations of monatomic gases contribute, because diatomic molecules have much higher
rotational inertias and hence much lower rotational energies.) From about room temperature (a bit less than 300 K) to about
600 K, the rotational degrees of freedom are fully active, but the vibrational ones are not, and d = 5. Then, finally, above

about 3000 K, the vibrational degrees of freedom are fully active, and d = 7 as the classical theory predicted.
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Figure 2.13 The molar heat capacity of hydrogen as a function of temperature (on a logarithmic
scale). The three “steps” or “plateaus” show different numbers of degrees of freedom that the
typical energies of molecules must achieve to activate. Translational kinetic energy corresponds to
three degrees of freedom, rotational to another two, and vibrational to yet another two.

Polyatomic molecules typically have one additional rotational degree of freedom at room temperature, since they have
comparable moments of inertia around any axis. Thus, at room temperature, they have d = 6, and at high temperature,

d = 8. We usually assume that gases have the theoretical room-temperature values of d.

As shown in Table 2.3, the results agree well with experiments for many monatomic and diatomic gases, but the agreement
for triatomic gases is only fair. The differences arise from interactions that we have ignored between and within molecules.

Gas Cy/R at 25°C and 1 atm
Ar 1.50
He 1.50
Ne 1.50
Co 2.50
H, 2.47
N, 2.50
0, 2.53
F, 2.8
CO, 3.48
H,S 3.13
N,O 3.66

Table 2.3 Cy /R for Various Monatomic,

Diatomic, and Triatomic Gases

What about internal energy for diatomic and polyatomic gases? For such gases, Cy, is a function of temperature (Figure

2.13), so we do not have the kind of simple result we have for monatomic ideal gases.
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Molar Heat Capacity of Solid Elements

The idea of equipartition leads to an estimate of the molar heat capacity of solid elements at ordinary temperatures. We can
model the atoms of a solid as attached to neighboring atoms by springs (Figure 2.14).
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Figure 2.14 In a simple moel of a solid element, each atom

is attached to others by six springs, two for each possible
motion: x, y, and z. Each of the three motions corresponds to two

degrees of freedom, one for kinetic energy and one for potential

energy. Thus d = 6.

Analogously to the discussion of vibration in the previous module, each atom has six degrees of freedom: one kinetic and
one potential for each of the x-, y-, and z-directions. Accordingly, the molar specific heat of a metal should be 3R. This
result, known as the Law of Dulong and Petit, works fairly well experimentally at room temperature. (For every element,
it fails at low temperatures for quantum-mechanical reasons. Since quantum effects are particularly important for low-mass

particles, the Law of Dulong and Petit already fails at room temperature for some light elements, such as beryllium and
carbon. It also fails for some heavier elements for various reasons beyond what we can cover.)

Problem-Solving Strategy: Heat Capacity and Equipartition

The strategy for solving these problems is the same as the one in Phase Changes for the effects of heat transfer.
The only new feature is that you should determine whether the case just presented—ideal gases at constant
volume—applies to the problem. (For solid elements, looking up the specific heat capacity is generally better than
estimating it from the Law of Dulong and Petit.) In the case of an ideal gas, determine the number d of degrees of
freedom from the number of atoms in the gas molecule and use it to calculate Cy, (oruse Cy, to solve for d).

Example 2.9

Calculating Temperature: Calorimetry with an Ideal Gas

A 300-g piece of solid gallium (a metal used in semiconductor devices) at its melting point of only 30.0 °C is
in contact with 12.0 moles of air (assumed diatomic) at 95.0 °C in an insulated container. When the air reaches
equilibrium with the gallium, 202 g of the gallium have melted. Based on those data, what is the heat of fusion of
gallium? Assume the volume of the air does not change and there are no other heat transfers.

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9



Chapter 2 | The Kinetic Theory of Gases 93

Strategy

We’ll use the equation Q4 + Q.o1q = 0. As some of the gallium doesn’t melt, we know the final temperature
is still the melting point. Then the only Q. is the heat lost as the air cools, Qy =n,,Cy AT, where
Cy =5R/2. Theonly Q.4 is the latent heat of fusion of the gallium, Q ;4 = mg,L¢. It is positive because
heat flows into the gallium.

Solution
1. Set up the equation:

nair CV AT + mGa Lf =0.

2. Substitute the known values and solve:

(12.0mob(3)(831—L-)30.0°C - 95.0°C) + (0202 kg)L; = 0.

We solve to find that the heat of fusion of gallium is 80.2 kJ/kg.

2.4 | Distribution of Molecular Speeds

Learning Objectives

By the end of this section, you will be able to:

* Describe the distribution of molecular speeds in an ideal gas
* Find the average and most probable molecular speeds in an ideal gas

Particles in an ideal gas all travel at relatively high speeds, but they do not travel at the same speed. The rms speed is
one kind of average, but many particles move faster and many move slower. The actual distribution of speeds has several
interesting implications for other areas of physics, as we will see in later chapters.

The Maxwell-Boltzmann Distribution

The motion of molecules in a gas is random in magnitude and direction for individual molecules, but a gas of many
molecules has a predictable distribution of molecular speeds. This predictable distribution of molecular speeds is known as
the Maxwell-Boltzmann distribution, after its originators, who calculated it based on kinetic theory, and it has since been
confirmed experimentally (Figure 2.15).

To understand this figure, we must define a distribution function of molecular speeds, since with a finite number of
molecules, the probability that a molecule will have exactly a given speed is 0.
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Figure 2.15 The Maxwell-Boltzmann distribution of molecular speeds in an
ideal gas. The most likely speed vp is less than the rms speed vy . Although

very high speeds are possible, only a tiny fraction of the molecules have speeds
that are an order of magnitude greater than V.

We define the distribution function f(v) by saying that the expected number N(v{, v,) of particles with speeds between

v, and v, is given by

V2
Ny vp) =N f ).
V1

[Since N is dimensionless, the unit of f(v) is seconds per meter.] We can write this equation conveniently in differential
form:

dN = Nf(v)dv.

In this form, we can understand the equation as saying that the number of molecules with speeds between v and v + dv is

the total number of molecules in the sample times f(v) times dv. That is, the probability that a molecule’s speed is between
vand v+ dv is f(v)dv.

We can now quote Maxwell’s result, although the proof is beyond our scope.

Maxwell-Boltzmann Distribution of Speeds

The distribution function for speeds of particles in an ideal gas at temperature T is

il V2 (2.15)
f (V)=ﬁ(2kBT)

2 —mv2/2kB T

The factors before the v are a normalization constant; they make sure that N(0, co) = N by making sure that

(o]
/ f(v)dv = 1. Let’s focus on the dependence on v. The factor of v2 means that f(0) =0 and for small v, the curve
0

—mv22kg T

looks like a parabola. The factor of e means that Vlem f(v) = 0 and the graph has an exponential tail, which

indicates that a few molecules may move at several times the rms speed. The interaction of these factors gives the function
the single-peaked shape shown in the figure.
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Example 2.10

Calculating the Ratio of Numbers of Molecules Near Given Speeds
In a sample of nitrogen (N,, with a molar mass of 28.0 g/mol) at a temperature of 273 °C, find the ratio of the
number of molecules with a speed very close to 300 m/s to the number with a speed very close to 100 m/s.
Strategy

Since we’re looking at a small range, we can approximate the number of molecules near 100 m/s as

dN 9o = f(100 m/s)dv. Then the ratio we want is

dNsgy _ £(300m/s)dv _ (300 m/s)
dNyoo  FI00m/s)dy  f(100 m/s)’

All we have to do is take the ratio of the two f values.
Solution
1. Identify the knowns and convert to SI units if necessary.

T =300K, kg =1.38x10"2 J/K

M = 0.0280 kg/mol som = 4.65 x 10720 kg
2. Substitute the values and solve.
3/2
f300ms %(Zk’"?) (300 m/s)? exp[—m(300 m/s)? 2k T

faoomssy 32
%(ﬁ) (100 m/s)? exp[—m(100 m/s)? /2kg T}

(300 m/s)? exp[—(4.65 x 10726 kg)(300 m/s)%/2(1.38 x 10~23 J/K)(300 K)]
(100 m/s)? exp[—(4.65 x 10720 kg)(100 m/s)2/2(1.38 x 10~23 J/K)(300 K)]
_ 32 exp[ (4.65 x 10726 kg)[(300 m/s)? — (100 ms)?]

2(1.38 x 10723 J/K)(300 K)

=5.74

Figure 2.16 shows that the curve is shifted to higher speeds at higher temperatures, with a broader range of speeds.
1)

T,=T;

Probability
-
)

Speed v (m/s)
Figure 2.16 The Maxwell-Boltzmann distribution is shifted to
higher speeds and broadened at higher temperatures.
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With only a relatively small number of molecules, the distribution of speeds fluctuates around the Maxwell-
Boltzmann distribution. However, you can view this simulation (https:/lopenstaxcollege.orgl/l/
21maxboltzdisim) to see the essential features that more massive molecules move slower and have a narrower
distribution. Use the set-up “2 Gases, Random Speeds”. Note the display at the bottom comparing histograms of
the speed distributions with the theoretical curves.

We can use a probability distribution to calculate average values by multiplying the distribution function by the quantity
to be averaged and integrating the product over all possible speeds. (This is analogous to calculating averages of discrete
distributions, where you multiply each value by the number of times it occurs, add the results, and divide by the number
of values. The integral is analogous to the first two steps, and the normalization is analogous to dividing by the number of
values.) Thus the average velocity is

- oo (2.16)
= J viw)dv = \/%kBTT: \%R_A;
0

Similarly,

Vrms = \/vTZZ \/‘/Ooovzf(v)dv = \/%%T — \/%

as in Pressure, Temperature, and RMS Speed. The most probable speed, also called the peak speed v, is the

speed at the peak of the velocity distribution. (In statistics it would be called the mode.) It is less than the rms speed V.

The most probable speed can be calculated by the more familiar method of setting the derivative of the distribution function,
with respect to v, equal to 0. The result is

2kg T 2RT (2.17)
vp= VT =

which is less than v, In fact, the rms speed is greater than both the most probable speed and the average speed.

The peak speed provides a sometimes more convenient way to write the Maxwell-Boltzmann distribution function:

2,2
f(v) _ 4V2 e—v /vp (2-18)
ﬁv%

2
—mv 12kp T
In the factor e B

—KlkgT
e B

, it is easy to recognize the translational kinetic energy. Thus, that expression is equal to

. The distribution f(v) can be transformed into a kinetic energy distribution by requiring that f(K)dK = f(v)dv.

Boltzmann showed that the resulting formula is much more generally applicable if we replace the kinetic energy of
translation with the total mechanical energy E. Boltzmann’s result is

_2 32, —EkgT _ 2 VE
f(E) - ﬁ(kB T) VEE = ﬁ(kB T)3/2 eE/kBT.

The first part of this equation, with the negative exponential, is the usual way to write it. We give the second part only to

ElkgT

remark that e in the denominator is ubiquitous in quantum as well as classical statistical mechanics.

Problem-Solving Strategy: Speed Distribution

Step 1. Examine the situation to determine that it relates to the distribution of molecular speeds.

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9
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Step 2. Make a list of what quantities are given or can be inferred from the problem as stated (identify the known
quantities).

Step 3. Identify exactly what needs to be determined in the problem (identify the unknown quantities). A written list
is useful.

Step 4. Convert known values into proper SI units (K for temperature, Pa for pressure, m?> for volume, molecules for
N, and moles for n). In many cases, though, using R and the molar mass will be more convenient than using kg and

the molecular mass.

Step 5. Determine whether you need the distribution function for velocity or the one for energy, and whether you are
using a formula for one of the characteristic speeds (average, most probably, or rms), finding a ratio of values of the
distribution function, or approximating an integral.

Step 6. Solve the appropriate equation for the ideal gas law for the quantity to be determined (the unknown quantity).
Note that if you are taking a ratio of values of the distribution function, the normalization factors divide out. Or if
approximating an integral, use the method asked for in the problem.

Step 7. Substitute the known quantities, along with their units, into the appropriate equation and obtain numerical
solutions complete with units.

We can now gain a qualitative understanding of a puzzle about the composition of Earth’s atmosphere. Hydrogen is by far
the most common element in the universe, and helium is by far the second-most common. Moreover, helium is constantly
produced on Earth by radioactive decay. Why are those elements so rare in our atmosphere? The answer is that gas
molecules that reach speeds above Earth’s escape velocity, about 11 km/s, can escape from the atmosphere into space.
Because of the lower mass of hydrogen and helium molecules, they move at higher speeds than other gas molecules, such as
nitrogen and oxygen. Only a few exceed escape velocity, but far fewer heavier molecules do. Thus, over the billions of years
that Earth has existed, far more hydrogen and helium molecules have escaped from the atmosphere than other molecules,
and hardly any of either is now present.

We can also now take another look at evaporative cooling, which we discussed in the chapter on temperature and heat.
Liquids, like gases, have a distribution of molecular energies. The highest-energy molecules are those that can escape from
the intermolecular attractions of the liquid. Thus, when some liquid evaporates, the molecules left behind have a lower
average energy, and the liquid has a lower temperature.
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CHAPTER 2 REVIEW

KEY TERMS

Avogadro’s number - the number of molecules in one mole of a substance; N, = 6.02 x 10> particles/mole

Boltzmann constant kp, a physical constant that relates energy to temperature and appears in the ideal gas law;

kg =138x 1072 J/K
critical temperature 7. at which the isotherm has a point with zero slope

Dalton’s law of partial pressures physical law that states that the total pressure of a gas is the sum of partial
pressures of the component gases

degree of freedom independent kind of motion possessing energy, such as the kinetic energy of motion in one of the
three orthogonal spatial directions

equipartition theorem theorem that the energy of a classical thermodynamic system is shared equally among its
degrees of freedom

ideal gas gas at the limit of low density and high temperature

ideal gas law physical law that relates the pressure and volume of a gas, far from liquefaction, to the number of gas
molecules or number of moles of gas and the temperature of the gas

internal energy sum of the mechanical energies of all of the molecules in it

kinetic theory of gases theory that derives the macroscopic properties of gases from the motion of the molecules they
consist of

Maxwell-Boltzmann distribution function that can be integrated to give the probability of finding ideal gas molecules
with speeds in the range between the limits of integration

mean free path average distance between collisions of a particle
mean free time average time between collisions of a particle
mole quantity of a substance whose mass (in grams) is equal to its molecular mass

most probable speed speed near which the speeds of most molecules are found, the peak of the speed distribution
function

partial pressure pressure a gas would create if it occupied the total volume of space available

peak speed same as “most probable speed”

pV diagram graph of pressure vs. volume

root-mean-square (rms) speed square root of the average of the square (of a quantity)

supercritical condition of a fluid being at such a high temperature and pressure that the liquid phase cannot exist

universal gas constant R, the constant that appears in the ideal gas law expressed in terms of moles, given by
R=N_,kg

van der Waals equation of state equation, typically approximate, which relates the pressure and volume of a gas to
the number of gas molecules or number of moles of gas and the temperature of the gas

vapor pressure partial pressure of a vapor at which it is in equilibrium with the liquid (or solid, in the case of
sublimation) phase of the same substance

KEY EQUATIONS

Ideal gas law in terms of molecules pV =NkgT
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Ideal gas law ratios if the amount of gas is constant piVi_paVp
T, T,
Ideal gas law in terms of moles pV =nRT

Van der Waals equation 2
P+ a(%) (V—nb) = nRT

Pressure, volume, and molecular speed V= %vaz

Root-mean-square speed [BRRT _ 13kgT
Vims = M =\V—m

Mean free path B Vv __ kgT

427N 4\/571'1’217

Mean free time L= kg T
4271 pvims

The following two equations apply only to a monatomic ideal gas:

Average kinetic energy of a molecule K= ikB T
2
Internal energy E. —3NkaT
int — 9 B+
Heat in terms of molar heat capacity at constant volume 0 =nCyAT
Molar heat capacity at constant volume for an ideal gas with d Cy= dp
2

degrees of freedom

32

Maxwell-Boltzmann speed distribution ) 5 —mv2/2kBT
v-e

_4
fm = ﬁ(zkrg T

Average velocity of a molecule - 8 kT _ [ RT
VEVo—m = \7

Peak velocity of a molecule 2kgT _ ,PRT
Vp = m_ M

SUMMARY

2.1 Molecular Model of an Ideal Gas

¢ The ideal gas law relates the pressure and volume of a gas to the number of gas molecules and the temperature of
the gas.

¢ A mole of any substance has a number of molecules equal to the number of atoms in a 12-g sample of carbon-12.
The number of molecules in a mole is called Avogadro’s number N 4,

N, =6.02x% 10% mol L.

¢ A mole of any substance has a mass in grams numerically equal to its molecular mass in unified mass units, which
can be determined from the periodic table of elements. The ideal gas law can also be written and solved in terms of
the number of moles of gas:

pV =nRT,
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where n is the number of moles and R is the universal gas constant,

R =8.31J/mol- K.
The ideal gas law is generally valid at temperatures well above the boiling temperature.

The van der Waals equation of state for gases is valid closer to the boiling point than the ideal gas law.

Above the critical temperature and pressure for a given substance, the liquid phase does not exist, and the sample is
“supercritical.”

2.2 Pressure, Temperature, and RMS Speed

Kinetic theory is the atomic description of gases as well as liquids and solids. It models the properties of matter in
terms of continuous random motion of molecules.

The ideal gas law can be expressed in terms of the mass of the gas’s molecules and v, the average of the
molecular speed squared, instead of the temperature.

The temperature of gases is proportional to the average translational kinetic energy of molecules. Hence, the typical
speed of gas molecules vy, is proportional to the square root of the temperature and inversely proportional to the

square root of the molecular mass.

In a mixture of gases, each gas exerts a pressure equal to the total pressure times the fraction of the mixture that the
gas makes up.

The mean free path (the average distance between collisions) and the mean free time of gas molecules are
proportional to the temperature and inversely proportional to the molar density and the molecules’ cross-sectional
area.

2.3 Heat Capacity and Equipartition of Energy

Every degree of freedom of an ideal gas contributes lI’cB T per atom or molecule to its changes in internal energy.

2

Every degree of freedom contributes 1R 1o its molar heat capacity at constant volume Cy,.

2

Degrees of freedom do not contribute if the temperature is too low to excite the minimum energy of the degree of
freedom as given by quantum mechanics. Therefore, at ordinary temperatures, d = 3 for monatomic gases, d = 5

for diatomic gases, and d =~ 6 for polyatomic gases.

2.4 Distribution of Molecular Speeds

The motion of individual molecules in a gas is random in magnitude and direction. However, a gas of many
molecules has a predictable distribution of molecular speeds, known as the Maxwell-Boltzmann distribution.

The average and most probable velocities of molecules having the Maxwell-Boltzmann speed distribution, as well
as the rms velocity, can be calculated from the temperature and molecular mass.

CONCEPTUAL QUESTIONS

2.1 Molecular Model of an Ideal Gas

3. A constant-volume gas thermometer contains a fixed
amount of gas. What property of the gas is measured to
indicate its temperature?

1. Two H, molecules can react with one O, molecule
to produce two H,O molecules. How many moles of

hydrogen molecules are needed to react with one mole of
oxygen molecules?

2. Under what circumstances would you expect a gas to
behave significantly differently than predicted by the ideal
gas law?
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4. Inflate a balloon at room temperature. Leave the
inflated balloon in the refrigerator overnight. What happens
to the balloon, and why?

5. In the last chapter, free convection was explained as the
result of buoyant forces on hot fluids. Explain the upward
motion of air in flames based on the ideal gas law.
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2.2 Pressure, Temperature, and RMS Speed

6. How is momentum related to the pressure exerted by
a gas? Explain on the molecular level, considering the
behavior of molecules.

7. If one kind of molecule has double the radius of another
and eight times the mass, how do their mean free paths
under the same conditions compare? How do their mean
free times compare?

8. What is the average velocity of the air molecules in the
room where you are right now?

9. Why do the atmospheres of Jupiter, Saturn, Uranus, and
Neptune, which are much more massive and farther from
the Sun than Earth is, contain large amounts of hydrogen
and helium?

10. Statistical mechanics says that in a gas maintained at a
constant temperature through thermal contact with a bigger
system (a “reservoir”) at that temperature, the fluctuations
in internal energy are typically a fraction 1/VN of the

internal energy. As a fraction of the total internal energy of
a mole of gas, how big are the fluctuations in the internal
energy? Are we justified in ignoring them?

11. Which is more dangerous, a closet where tanks of
nitrogen are stored, or one where tanks of carbon dioxide
are stored?

2.3 Heat Capacity and Equipartition of Energy

12. Experimentally it appears that many polyatomic

PROBLEMS

2.1 Molecular Model of an Ideal Gas

18. The gauge
2.50 x 10° N/m? at a temperature of 35.0 °C when you

drive it onto a ship in Los Angeles to be sent to Alaska.
What is their gauge pressure on a night in Alaska when
their temperature has dropped to —40.0 °C ? Assume the

pressure in your car tires is

tires have not gained or lost any air.

19. Suppose a gas-filled incandescent light bulb is
manufactured so that the gas inside the bulb is at
atmospheric pressure when the bulb has a temperature of
20.0 °C. (a) Find the gauge pressure inside such a bulb
when it is hot, assuming its average temperature is 60.0 °C
(an approximation) and neglecting any change in volume
due to thermal expansion or gas leaks. (b) The actual final
pressure for the light bulb will be less than calculated in
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molecules’ vibrational degrees of freedom can contribute
to some extent to their energy at room temperature. Would
you expect that fact to increase or decrease their heat
capacity from the value R? Explain.

13. One might think that the internal energy of diatomic
gases is given by E;, = SRT/2. Do diatomic gases near

room temperature have more or less internal energy than
that? Hint: Their internal energy includes the total energy
added in raising the temperature from the boiling point
(very low) to room temperature.

14. You mix 5 moles of H, at 300 K with 5 moles of

He at 360 K in a perfectly insulated calorimeter. Is the final
temperature higher or lower than 330 K?

2.4 Distribution of Molecular Speeds

15. One cylinder contains helium gas and another contains
krypton gas at the same temperature. Mark each of these
statements true, false, or impossible to determine from the
given information. (a) The rms speeds of atoms in the
two gases are the same. (b) The average kinetic energies
of atoms in the two gases are the same. (c) The internal
energies of 1 mole of gas in each cylinder are the same. (d)
The pressures in the two cylinders are the same.

16. Repeat the previous question if one gas is still helium
but the other is changed to fluorine, F, .

17. An ideal gas is at a temperature of 300 K. To double
the average speed of its molecules, what does the
temperature need to be changed to?

part (a) because the glass bulb will expand. Is this effect
significant?

20. People buying food in sealed bags at high elevations
often notice that the bags are puffed up because the air
inside has expanded. A bag of pretzels was packed at a
pressure of 1.00 atm and a temperature of 22.0 °C. When

opened at a summer picnic in Santa Fe, New Mexico, at a
temperature of 32.0 °C, the volume of the air in the bag is

1.38 times its original volume. What is the pressure of the
air?

21. How many moles are there in (a) 0.0500 g of N,
gas (M =28.0g/mol)? (b) 100 g of CO, gas

(M = 44.0 g/mol)? (c) How many molecules are present

in each case?
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22. A cubic container of volume 2.00 L holds 0.500 mol
of nitrogen gas at a temperature of 25.0 °C. What is the

net force due to the nitrogen on one wall of the container?
Compare that force to the sample’s weight.

23. Calculate the number of moles in the 2.00-L volume
of air in the lungs of the average person. Note that the air
isat 37.0 °C (body temperature) and that the total volume

in the lungs is several times the amount inhaled in a typical
breath as given in Example 2.2.

24. An airplane passenger has 100 cm® of air in his

stomach just before the plane takes off from a sea-level
airport. What volume will the air have at cruising altitude if

cabin pressure drops to 7.50 X 104 N/m? ?

25. A company advertises that it delivers helium at a
gauge pressure of 1.72 X 107 Pa ina cylinder of volume

43.8 L. How many balloons can be inflated to a volume of
4.00 L with that amount of helium? Assume the pressure

inside the balloons is 1.01 x 10° Pa and the temperature
in the cylinder and the balloons is 25.0 °C.

26. According to http://hyperphysics.phy-astr.gsu.edu/
hbase/solar/venusenv.html, the atmosphere of Venus is
approximately 96.5% CO, and 3.5% N, by volume. On

the surface, where the temperature is about 750 K and
the pressure is about 90 atm, what is the density of the
atmosphere?

27. An expensive vacuum system can achieve a pressure
as low as 1.00x 1077 N/m? at 20.0°C. How many

molecules are there in a cubic centimeter at this pressure
and temperature?

28. The number density N/V of gas molecules at a certain
location in the space above our planet is about

1.00x 10! m_3, and the pressure is

2.75x 1071% N/m? in this space. What is the temperature
there?

29. A bicycle tire contains 2.00 L of gas at an absolute
pressure of 7.00 X 10° N/m? and a temperature of
18.0 °C . What will its pressure be if you let out an amount

of air that has a volume of 100cm? at atmospheric

pressure? Assume tire temperature and volume remain
constant.

30. In a common demonstration, a bottle is heated and
stoppered with a hard-boiled egg that’s a little bigger than
the bottle’s neck. When the bottle is cooled, the pressure
difference between inside and outside forces the egg into
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the bottle. Suppose the bottle has a volume of 0.500 L and
the temperature inside it is raised to 80.0 °C while the
pressure remains constant at 1.00 atm because the bottle
is open. (a) How many moles of air are inside? (b) Now
the egg is put in place, sealing the bottle. What is the
gauge pressure inside after the air cools back to the ambient
temperature of 25 °C but before the egg is forced into the

bottle?

31. A high-pressure gas cylinder contains 50.0 L of toxic
gas at a pressure of 1.40 x 107 N/m? and a temperature
of 25.0 °C. The cylinder is cooled to dry ice temperature
(=78.5°C) to reduce the leak rate and pressure so that
it can be safely repaired. (a) What is the final pressure in
the tank, assuming a negligible amount of gas leaks while
being cooled and that there is no phase change? (b) What
is the final pressure if one-tenth of the gas escapes? (c) To
what temperature must the tank be cooled to reduce the
pressure to 1.00 atm (assuming the gas does not change
phase and that there is no leakage during cooling)? (d)

Does cooling the tank as in part (c) appear to be a practical
solution?

32. Find the number of moles in 2.00 L of gas at 35.0 °C
and under 7.41 x 107 N/m? of pressure.

33. Calculate the depth to which Avogadro’s number of
table tennis balls would cover Earth. Each ball has a
diameter of 3.75 cm. Assume the space between balls adds
an extra 25.0% to their volume and assume they are not

crushed by their own weight.

34. (a) What is the gauge pressure in a 25.0 °C car tire

containing 3.60 mol of gas in a 30.0-L volume? (b) What
will its gauge pressure be if you add 1.00 L of gas originally
at atmospheric pressure and 25.0°C ? Assume the

temperature remains at 25.0 °C and the volume remains
constant.

2.2 Pressure, Temperature, and RMS Speed

In the problems in this section, assume all gases are ideal.

35. A person hits a tennis ball with a mass of 0.058 kg
against a wall. The average component of the ball’s velocity
perpendicular to the wall is 11 m/s, and the ball hits the
wall every 2.1 s on average, rebounding with the opposite
perpendicular velocity component. (a) What is the average
force exerted on the wall? (b) If the part of the wall the

person hits has an area of 3.0 m?, what is the average

pressure on that area?

36. A person is in a closed room (a racquetball court)
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with V =453 m> hitting a ball (m = 42.0 g) around at
random without any pauses. The average kinetic energy
of the ball is 2.30 J. (a) What is the average value of
v%? Does it matter which direction you take to be x?
(b) Applying the methods of this chapter, find the average
pressure on the walls? (c) Aside from the presence of only
one “molecule” in this problem, what is the main

assumption in Pressure, Temperature, and RMS
Speed that does not apply here?

37. Five bicyclists are riding at the following speeds: 5.4
m/s, 5.7 m/s, 5.8 m/s, 6.0 m/s, and 6.5 m/s. (a) What is their
average speed? (b) What is their rms speed?

38. Some incandescent light bulbs are filled with argon
gas. What is v;pg for argon atoms near the filament,

assuming their temperature is 2500 K?

39. Typical molecular speeds (v;ng) are large, even at
low temperatures. What is v, for helium atoms at 5.00

K, less than one degree above helium’s liquefaction
temperature?

40. What is the average kinetic energy in joules of
hydrogen atoms on the 5500 °C surface of the Sun? (b)

What is the average kinetic energy of helium atoms in
a region of the solar corona where the temperature is

6.00 % 10° K ?

41. What is the ratio of the average translational kinetic
energy of a nitrogen molecule at a temperature of 300
K to the gravitational potential energy of a nitrogen-
molecule—Earth system at the ceiling of a 3-m-tall room
with respect to the same system with the molecule at the
floor?

42. What is the total translational kinetic energy of the air
molecules in a room of volume 23 m? if the pressure is

9.5% 10* Pa (the room is at fairly high elevation) and the
temperature is 21 °C ? Is any item of data unnecessary for
the solution?

43. The product of the pressure and volume of a sample of
hydrogen gas at 0.00 °C is 80.0 J. (a) How many moles of

hydrogen are present? (b) What is the average translational
kinetic energy of the hydrogen molecules? (c) What is the
value of the product of pressure and volume at 200 °C?

44. What is the gauge pressure inside a tank of
4.86 x 10* mol of compressed nitrogen with a volume of

6.56 m? if the rms speed is 514 m/s?
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45. If the rms speed of oxygen molecules inside a
refrigerator of volume 22.0 ft.3 is 465 m/s, what is the

partial pressure of the oxygen? There are 5.71 moles of
oxygen in the refrigerator, and the molar mass of oxygen is
32.0 g/mol.

46. The escape velocity of any object from Earth is 11.1
km/s. At what temperature would oxygen molecules (molar
mass is equal to 32.0 g/mol) have root-mean-square
velocity vims equal to Earth’s escape velocity of 11.1 km/

s?

47. The escape velocity from the Moon is much smaller
than that from the Earth, only 2.38 km/s. At what
temperature would hydrogen molecules (molar mass is
equal to 2.016 g/mol) have a root-mean-square velocity
vims €qual to the Moon’s escape velocity?

48. Nuclear fusion, the energy source of the Sun,
hydrogen bombs, and fusion reactors, occurs much more
readily when the average kinetic energy of the atoms is
high—that is, at high temperatures. Suppose you want the
atoms in your fusion experiment to have average kinetic

energies of 6.40 X 1071% J. What temperature is needed?

49. Suppose that the typical speed (vipg) of carbon

dioxide molecules (molar mass is 44.0 g/mol) in a flame is
found to be 1350 m/s. What temperature does this indicate?

50. (a) Hydrogen molecules (molar mass is equal to 2.016
g/mol) have v,s equal to 193 m/s. What is the

temperature? (b) Much of the gas near the Sun is atomic
hydrogen (H rather than H,). Its temperature would have
tobe 1.5x 107 K for the rms speed Vims to equal the

escape velocity from the Sun. What is that velocity?

51. There are two important isotopes of uranium, 2y

and 2 8U; these isotopes are nearly identical chemically

but have different atomic masses. Only 23U s very

useful in nuclear reactors. Separating the isotopes is called
uranium enrichment (and is often in the news as of this
writing, because of concerns that some countries are
enriching uranium with the goal of making nuclear
weapons.) One of the techniques for enrichment, gas
diffusion, is based on the different molecular speeds of
uranium hexafluoride gas, UF. (a) The molar masses of

25U and 238UF6 are 349.0 g/mol and 352.0 g/mol,
respectively. What is the ratio of their typical speeds Vimg?

(b) At what temperature would their typical speeds differ by
1.00 m/s? (c) Do your answers in this problem imply that
this technique may be difficult?
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52. The partial pressure of carbon dioxide in the lungs is
about 470 Pa when the total pressure in the lungs is 1.0 atm.
What percentage of the air molecules in the lungs is carbon
dioxide? Compare your result to the percentage of carbon
dioxide in the atmosphere, about 0.033%.

53. Dry air consists of approximately
78% nitrogen, 21% oxygen, and 1% argon by mole, with

trace amounts of other gases. A tank of compressed dry air
has a volume of 1.76 cubic feet at a gauge pressure of 2200
pounds per square inch and a temperature of 293 K. How
much oxygen does it contain in moles?

54. (a) Using data from the previous problem, find the
mass of nitrogen, oxygen, and argon in 1 mol of dry air. The
molar mass of N, is 28.0 g/mol, that of O, is 32.0 g/mol,

and that of argon is 39.9 g/mol. (b) Dry air is mixed with
pentane (C5H;,, molar mass 72.2 g/mol), an important

constituent of gasoline, in an air-fuel ratio of 15:1 by mass
(roughly typical for car engines). Find the partial pressure
of pentane in this mixture at an overall pressure of 1.00
atm.

55. (a) Given that air is 21% oxygen, find the minimum
atmospheric pressure that gives a relatively safe partial
pressure of oxygen of 0.16 atm. (b) What is the minimum
pressure that gives a partial pressure of oxygen above the
quickly fatal level of 0.06 atm? (c) The air pressure at the
summit of Mount Everest (8848 m) is 0.334 atm. Why have
a few people climbed it without oxygen, while some who
have tried, even though they had trained at high elevation,
had to turn back?

56. (a) If the partial pressure of water vapor is 8.05 torr,
what is the dew point? (760 torr = 1 atm = 101, 325 Pa)
(b) On a warm day when the air temperature is 35 °C and
the dew point is 25 °C, what are the partial pressure of the
water in the air and the relative humidity?

2.3 Heat Capacity and Equipartition of Energy

57. To give a helium atom nonzero angular momentum
requires about 21.2 eV of energy (that is, 21.2 eV is the
difference between the energies of the lowest-energy or
ground state and the lowest-energy state with angular
momentum). The electron-volt or eV is defined as

1.60x 107! J. Find the temperature T where this
amount of energy equals kg 7/2. Does this explain why
we can ignore the rotational energy of helium for most
purposes? (The results for other monatomic gases, and for

diatomic gases rotating around the axis connecting the two
atoms, have comparable orders of magnitude.)

58. (a) How much heat must be added to raise the
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temperature of 1.5 mol of air from 25.0 °C to 33.0°C at

constant volume? Assume air is completely diatomic. (b)
Repeat the problem for the same number of moles of xenon,
Xe.

59. A sealed, rigid container of 0.560 mol of an unknown
ideal gas at a temperature of 30.0°C is cooled to

—40.0 °C.. In the process, 980 J of heat are removed from
the gas. Is the gas monatomic, diatomic, or polyatomic?

60. A sample of neon gas (Ne, molar mass
M = 20.2 g/mol) at a temperature of 13.0 °C is put into

a steel container of mass 47.2 g that’s at a temperature of
—40.0 °C . The final temperature is —28.0 °C . (No heat is

exchanged with the surroundings, and you can neglect any
change in the volume of the container.) What is the mass of
the sample of neon?

61. A steel container of mass 135 g contains 24.0 g of
ammonia, NH3, which has a molar mass of 17.0 g/mol.
The container and gas are in equilibrium at 12.0 °C . How

much heat has to be removed to reach a temperature of
—20.0 °C ? Ignore the change in volume of the steel.

62. A sealed room has a volume of 24 m? . It’s filled with
air, which may be assumed to be diatomic, at a temperature
of 24°C and a pressure of 9.83 x 104 Pa. A 1.00-kg

block of ice at its melting point is placed in the room.
Assume the walls of the room transfer no heat. What is the
equilibrium temperature?

63. Heliox, a mixture of helium and oxygen, is sometimes
given to hospital patients who have trouble breathing,
because the low mass of helium makes it easier to breathe
than air. Suppose helium at 25 °C is mixed with oxygen
at 35°C to make a mixture that is 70% helium by mole.
What is the final temperature? Ignore any heat flow to or
from the surroundings, and assume the final volume is the
sum of the initial volumes.

64. Professional divers sometimes use heliox, consisting
of 79% helium and 21% oxygen by mole. Suppose a

perfectly rigid scuba tank with a volume of 11 L contains
heliox at an absolute pressure of 2.1 X 10’ Pa at a
temperature of 31 °C. (a) How many moles of helium and

how many moles of oxygen are in the tank? (b) The diver
goes down to a point where the sea temperature is 27 °C
while using a negligible amount of the mixture. As the gas
in the tank reaches this new temperature, how much heat is
removed from it?

65. In car racing, one advantage of mixing liquid nitrous
oxide (N,O) with air is that the boiling of the “nitrous”
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absorbs latent heat of vaporization and thus cools the air
and ultimately the fuel-air mixture, allowing more fuel-air
mixture to go into each cylinder. As a very rough look
at this process, suppose 1.0 mol of nitrous oxide gas at
its boiling point, —88 °C, is mixed with 4.0 mol of air

30°C. What is the final

temperature of the mixture? Use the measured heat capacity
of N,O at 25 °C, which is 30.4 J/mol °C. (The primary

advantage of nitrous oxide is that it consists of 1/3 oxygen,
which is more than air contains, so it supplies more oxygen
to burn the fuel. Another advantage is that its
decomposition into nitrogen and oxygen releases energy in
the cylinder.)

(assumed diatomic) at

2.4 Distribution of Molecular Speeds
66. In asample of hydrogen sulfide (M = 34.1 g/mol) at

a temperature of 3.00 X 102 K, estimate the ratio of the
number of molecules that have speeds very close t0 Vyms

to the number that have speeds very close to 2V .

67. Using the
vy +Av
fdv = f(v)Av for small Ay, estimate the

approximation

V1
fraction of nitrogen molecules at a temperature of

3.00 x 10% K that have speeds between 290 m/s and 291
m/s.

68. Using the method of the preceding problem, estimate
the fraction of nitric oxide (NO) molecules at a temperature

of 250 K that have energies between 3.45 X 10721 J and
3.50x 10721 ).

69. By counting squares in the following figure, estimate
the fraction of argon atoms at 7" = 300 K that have speeds

between 600 m/s and 800 m/s. The curve is correctly
normalized. The value of a square is its length as measured
on the x-axis times its height as measured on the y-axis,

ADDITIONAL PROBLEMS

76. In the deep space between galaxies, the density of
molecules (which are mostly single atoms) can be as low

as 10° atoms/m>, and the temperature is a frigid 2.7

K. What is the pressure? (b) What volume (in m3) is

occupied by 1 mol of gas? (c) If this volume is a cube, what
is the length of its sides in kilometers?

77. () Find the density in SI units of air at a pressure
of 1.00 atm and a temperature of 20 °C, assuming that
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with the units given on those axes.
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70. Using a numerical integration method such as
Simpson’s rule, find the fraction of molecules in a sample
of oxygen gas at a temperature of 250 K that have speeds
between 100 m/s and 150 m/s. The molar mass of oxygen
(O,) is 32.0 g/mol. A precision to two significant digits is

enough.

71. Find (a) the most probable speed, (b) the average
speed, and (c) the rms speed for nitrogen molecules at 295
K.

72. Repeat the preceding problem for nitrogen molecules
at 2950 K.

73. At what temperature is the average speed of carbon
dioxide molecules (M = 44.0 g/mol) 510 m/s?

74. The most probable speed for molecules of a gas at 296
K is 263 m/s. What is the molar mass of the gas? (You
might like to figure out what the gas is likely to be.)

75. a) At what temperature do oxygen molecules have the
same average speed as helium atoms (M = 4.00 g/mol)

have at 300 K? b) What is the answer to the same question
about most probable speeds? c) What is the answer to the
same question about rms speeds?

airis 78% N,, 21% O,, and 1% Ar, (b) Find the density

of the atmosphere on Venus, assuming that it’s
96% CO, and 4% N, , with a temperature of 737 K and a

pressure of 92.0 atm.

78. The air inside a hot-air balloon has a temperature
of 370 K and a pressure of 101.3 kPa, the same as that
of the air outside. Using the composition of air as
78% N5, 21%0,, and 1% Ar, find the density of the air
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inside the balloon.

79. When an air bubble rises from the bottom to the top
of a freshwater lake, its volume increases by 80% . If the

temperatures at the bottom and the top of the lake are 4.0
and 10 °C, respectively, how deep is the lake?

80. (a) Use the ideal gas equation to estimate the
temperature at which 1.00 kg of steam (molar mass

M =18.0g/mol) at a pressure of 1.50X 10% Pa

occupies a volume of 0.220 m’. (b) The van der Waals
constants for water are a = 0.5537 Pa-m®/mol? and

bh=3.049% 107> m>/mol. Use the Van der Waals

equation of state to estimate the temperature under the same
conditions. (c) The actual temperature is 779 K. Which
estimate is better?

81. One process for decaffeinating coffee uses carbon
dioxide (M =44.0 g/mol) at a molar density of about

14,600 mol/m> and a temperature of about 60 °C. (a) Is
CO; a solid, liquid, gas, or supercritical fluid under those
conditions? (b) The van der Waals constants for carbon
dioxide are a = 0.3658 Pa- m®/mol? and

b =4.286x 10> m>/mol. Using the van der Waals
equation, estimate the pressure of CO, at that temperature

and density.

82. On a winter day when the air temperature is 0 °C,
the relative humidity is 50% . Outside air comes inside
and is heated to a room temperature of 20 °C. What is

the relative humidity of the air inside the room. (Does this
problem show why inside air is so dry in winter?)

83. On a warm day when the air temperature is 30 °C, a

metal can is slowly cooled by adding bits of ice to liquid
water in it. Condensation first appears when the can reaches
15 °C . What is the relative humidity of the air?

84. (a) People often think of humid air as “heavy.”
Compare the densities of air with 0% relative humidity
and 100% relative humidity when both are at 1 atm and
30 °C. Assume that the dry air is an ideal gas composed
of molecules with a molar mass of 29.0 g/mol and the
moist air is the same gas mixed with water vapor. (b) As
discussed in the chapter on the applications of Newton’s
laws, the air resistance felt by projectiles such as baseballs

and golf balls is approximately Fp = C, pAv2/2 , where p

is the mass density of the air, A is the cross-sectional area of
the projectile, and C is the projectile’s drag coefficient. For
a fixed air pressure, describe qualitatively how the range of
a projectile changes with the relative humidity. (c) When
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a thunderstorm is coming, usually the humidity is high
and the air pressure is low. Do those conditions give an
advantage or disadvantage to home-run hitters?

85. The mean free path for helium at a certain temperature
and pressure is 2.10 X 10~7 m. The radius of a helium
atom can be taken as 1.10x 10™'! m. What is the

measure of the density of helium under those conditions (a)
in molecules per cubic meter and (b) in moles per cubic
meter?

86. The mean free path for methane at a temperature
1.11x 10° Pa is

4.81 x 108 m. Find the effective radius r of the methane
molecule.

of 269 K and a pressure of

87. In the chapter on fluid mechanics, Bernoulli’s equation
for the flow of incompressible fluids was explained in
terms of changes affecting a small volume dV of fluid.
Such volumes are a fundamental idea in the study of the
flow of compressible fluids such as gases as well. For the
equations of hydrodynamics to apply, the mean free path
must be much less than the linear size of such a volume,

a~dV'3. For air in the stratosphere at a temperature of
220 K and a pressure of 5.8 kPa, how big should a be for
it to be 100 times the mean free path? Take the effective
radius of air molecules to be 1.88 x 101! m, which is

roughly correct for N, .

88. Find the total number of collisions between molecules
in 1.00 s in 1.00 L of nitrogen gas at standard temperature

and pressure (0 °C, 1.00 atm). Use 1.88 X 107%m as

the effective radius of a nitrogen molecule. (The number of
collisions per second is the reciprocal of the collision time.)
Keep in mind that each collision involves two molecules,
so if one molecule collides once in a certain period of time,
the collision of the molecule it hit cannot be counted.

89. (a) Estimate the specific heat capacity of sodium from
the Law of Dulong and Petit. The molar mass of sodium is
23.0 g/mol. (b) What is the percent error of your estimate
from the known value, 1230J/kg -°C?

90. A sealed, perfectly insulated container contains 0.630
mol of air at 20.0 °C and an iron stirring bar of mass 40.0

g. The stirring bar is magnetically driven to a kinetic energy
of 50.0 J and allowed to slow down by air resistance. What
is the equilibrium temperature?

91. Find the ratio f(vp)/f(vims) for hydrogen gas
(M = 2.02 g/mol) at a temperature of 77.0 K.
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92. Unreasonable results. (a) Find the temperature of
0.360 kg of water, modeled as an ideal gas, at a pressure of

1.01 x 10° Pa if it has a volume of 0.615 m>. (b) What

is unreasonable about this answer? How could you get a
better answer?

CHALLENGE PROBLEMS

94. An airtight dispenser for drinking water is
25 cm X 10 cm in horizontal dimensions and 20 cm tall.

It has a tap of negligible volume that opens at the level of
the bottom of the dispenser. Initially, it contains water to a
level 3.0 cm from the top and air at the ambient pressure,
1.00 atm, from there to the top. When the tap is opened,
water will flow out until the gauge pressure at the bottom
of the dispenser, and thus at the opening of the tap, is 0.
What volume of water flows out? Assume the temperature
is constant, the dispenser is perfectly rigid, and the water

has a constant density of 1000 kg/m3 .

95. Eight bumper cars, each with a mass of 322 kg, are
running in a room 21.0 m long and 13.0 m wide. They have
no drivers, so they just bounce around on their own. The
rms speed of the cars is 2.50 m/s. Repeating the arguments
of Pressure, Temperature, and RMS Speed, find the
average force per unit length (analogous to pressure) that
the cars exert on the walls.

2k T

96. Verify that v, = |—

107

93. Unreasonable results. (a) Find the average speed of
hydrogen sulfide, H, S, molecules at a temperature of 250

K. Its molar mass is 31.4 g/mol (b) The result isn’t very
unreasonable, but why is it less reliable than those for, say,
neon or nitrogen?

oo
97. Verify the normalization equation f fdv = 1.
0

In doing the integral, first make the substitution
m v T . ) . .

u= v = ——. This “scaling” transformation gives
kT~ p & &

you all features of the answer except for the integral, which
is a dimensionless numerical factor. You’ll need the
formula

L 2
/ xZe ™ dx =V
O 4

to find the numerical factor and verify the normalization.

98. Verify that Vv = %kBTT Make the same scaling

transformation as in the preceding problem.

99. Verify that vy = \/vf2 = F%TBT
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3| THE FIRST LAW OF
THERMODYNAMICS

g

- & -.-— 2, 7 2 3 j - = i
Figure 3.1 A weak cold front of air pushes all the smog in northeastern China into a giant smog blanket over the Yellow Sea,
as captured by NASA’s Terra satellite in 2012. To understand changes in weather and climate, such as the event shown here, you
need a thorough knowledge of thermodynamics. (credit: modification of work by NASA)

Chapter Outline

3.1 Thermodynamic Systems

3.2 Work, Heat, and Internal Energy

3.3 First Law of Thermodynamics

3.4 Thermodynamic Processes

3.5 Heat Capacities of an Ideal Gas

3.6 Adiabatic Processes for an Ideal Gas

Introduction

Heat is the transfer of energy due to a temperature difference between two systems. Heat describes the process of converting
from one form of energy into another. A car engine, for example, burns gasoline. Heat is produced when the burned fuel is
chemically transformed into mostly CO, and H, O, which are gases at the combustion temperature. These gases exert

a force on a piston through a displacement, doing work and converting the piston’s kinetic energy into a variety of other
forms—into the car’s kinetic energy; into electrical energy to run the spark plugs, radio, and lights; and back into stored
energy in the car’s battery.

Energy is conserved in all processes, including those associated with thermodynamic systems. The roles of heat transfer and
internal energy change vary from process to process and affect how work is done by the system in that process. We will
see that the first law of thermodynamics explains that a change in the internal energy of a system comes from changes in
heat or work. Understanding the laws that govern thermodynamic processes and the relationship between the system and its
surroundings is therefore paramount in gaining scientific knowledge of energy and energy consumption.
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3.1 | Thermodynamic Systems

Learning Objectives

By the end of this section, you will be able to:

» Define a thermodynamic system, its boundary, and its surroundings
» Explain the roles of all the components involved in thermodynamics
* Define thermal equilibrium and thermodynamic temperature

* Link an equation of state to a system

A thermodynamic system includes anything whose thermodynamic properties are of interest. It is embedded in its
surroundings or environment; it can exchange heat with, and do work on, its environment through a boundary, which
is the imagined wall that separates the system and the environment (Figure 3.2). In reality, the immediate surroundings
of the system are interacting with it directly and therefore have a much stronger influence on its behavior and properties.
For example, if we are studying a car engine, the burning gasoline inside the cylinder of the engine is the thermodynamic
system; the piston, exhaust system, radiator, and air outside form the surroundings of the system. The boundary then consists
of the inner surfaces of the cylinder and piston.

Surroundings

Piston —_ T ™ ‘_/7 Boundary
:.::.....:: ... :.-. ,
Surroundings <. System ... .
AR A e Surroundings
Surroundings Boundary Surroundings
(@) (b)

Figure 3.2 (a) A system, which can include any relevant process or value, is self-contained in an area.
The surroundings may also have relevant information; however, the surroundings are important to study
only if the situation is an open system. (b) The burning gasoline in the cylinder of a car engine is an
example of a thermodynamic system.

Normally, a system must have some interactions with its surroundings. A system is called an isolated or closed system if it
is completely separated from its environment—for example, a gas that is surrounded by immovable and thermally insulating
walls. In reality, a closed system does not exist unless the entire universe is treated as the system, or it is used as a model
for an actual system that has minimal interactions with its environment. Most systems are known as an open system, which
can exchange energy and/or matter with its surroundings (Figure 3.3).
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(b)

Figure 3.3 (a) This boiling tea kettle is an open thermodynamic system. It transfers
heat and matter (steam) to its surroundings. (b) A pressure cooker is a good
approximation to a closed system. A little steam escapes through the top valve to prevent
explosion. (credit a: modification of work by Gina Hamilton; credit b: modification of
work by Jane Whitney)

When we examine a thermodynamic system, we ignore the difference in behavior from place to place inside the system for
a given moment. In other words, we concentrate on the macroscopic properties of the system, which are the averages of
the microscopic properties of all the molecules or entities in the system. Any thermodynamic system is therefore treated as
a continuum that has the same behavior everywhere inside. We assume the system is in equilibrium. You could have, for
example, a temperature gradient across the system. However, when we discuss a thermodynamic system in this chapter, we
study those that have uniform properties throughout the system.

Before we can carry out any study on a thermodynamic system, we need a fundamental characterization of the system.
When we studied a mechanical system, we focused on the forces and torques on the system, and their balances dictated
the mechanical equilibrium of the system. In a similar way, we should examine the heat transfer between a thermodynamic
system and its environment or between the different parts of the system, and its balance should dictate the thermal
equilibrium of the system. Intuitively, such a balance is reached if the temperature becomes the same for different objects
or parts of the system in thermal contact, and the net heat transfer over time becomes zero.

Thus, when we say two objects (a thermodynamic system and its environment, for example) are in thermal equilibrium, we
mean that they are at the same temperature, as we discussed in Temperature and Heat. Let us consider three objects at
temperatures 7, T,, and T3, respectively. How do we know whether they are in thermal equilibrium? The governing

principle here is the zeroth law of thermodynamics, as described in Temperature and Heat on temperature and heat:

If object 1 is in thermal equilibrium with objects 2 and 3, respectively, then objects 2 and 3 must also be in thermal
equilibrium.

Mathematically, we can simply write the zeroth law of thermodynamics as

IfT)=T,andT| =T, thenT, = T 3.2)

This is the most fundamental way of defining temperature: Two objects must be at the same temperature thermodynamically
if the net heat transfer between them is zero when they are put in thermal contact and have reached a thermal equilibrium.

The zeroth law of thermodynamics is equally applicable to the different parts of a closed system and requires that the
temperature everywhere inside the system be the same if the system has reached a thermal equilibrium. To simplify our
discussion, we assume the system is uniform with only one type of material—for example, water in a tank. The measurable
properties of the system at least include its volume, pressure, and temperature. The range of specific relevant variables
depends upon the system. For example, for a stretched rubber band, the relevant variables would be length, tension, and
temperature. The relationship between these three basic properties of the system is called the equation of state of the system
and is written symbolically for a closed system as
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fp, V, T) =0, (3.2)

where V, p, and T are the volume, pressure, and temperature of the system at a given condition.

In principle, this equation of state exists for any thermodynamic system but is not always readily available. The forms of
f(p, V, T) =0 for many materials have been determined either experimentally or theoretically. In the preceding chapter,

we saw an example of an equation of state for an ideal gas, f(p, V, T) = pV —nRT = 0.

We have so far introduced several physical properties that are relevant to the thermodynamics of a thermodynamic system,
such as its volume, pressure, and temperature. We can separate these quantities into two generic categories. The quantity
associated with an amount of matter is an extensive variable, such as the volume and the number of moles. The other
properties of a system are intensive variables, such as the pressure and temperature. An extensive variable doubles its value
if the amount of matter in the system doubles, provided all the intensive variables remain the same. For example, the volume
or total energy of the system doubles if we double the amount of matter in the system while holding the temperature and
pressure of the system unchanged.

3.2 | Work, Heat, and Internal Energy

Learning Objectives

By the end of this section, you will be able to:

* Describe the work done by a system, heat transfer between objects, and internal energy
change of a system

e Calculate the work, heat transfer, and internal energy change in a simple process

We discussed the concepts of work and energy earlier in mechanics. Examples and related issues of heat transfer between
different objects have also been discussed in the preceding chapters. Here, we want to expand these concepts to a
thermodynamic system and its environment. Specifically, we elaborated on the concepts of heat and heat transfer in the
previous two chapters. Here, we want to understand how work is done by or to a thermodynamic system; how heat is
transferred between a system and its environment; and how the total energy of the system changes under the influence of
the work done and heat transfer.

Work Done by a System

A force created from any source can do work by moving an object through a displacement. Then how does a thermodynamic
system do work? Figure 3.4 shows a gas confined to a cylinder that has a movable piston at one end. If the gas expands
against the piston, it exerts a force through a distance and does work on the piston. If the piston compresses the gas as
it is moved inward, work is also done—in this case, on the gas. The work associated with such volume changes can be
determined as follows: Let the gas pressure on the piston face be p. Then the force on the piston due to the gas is pA, where
A is the area of the face. When the piston is pushed outward an infinitesimal distance dx, the magnitude of the work done
by the gas is

dW = Fdx = pAdx.
Since the change in volume of the gas is dV = A dx, this becomes
dW = pdV. (3.3)

For a finite change in volume from V| to V,, we can integrate this equation from V; to V, to find the net work:

1Z) (3.4)
W= pdV.
V1
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—ax—
Figure 3.4 The work done by a confined gas in moving a
piston a distance dx is given by dW = Fdx = pdV.

This integral is only meaningful for a quasi-static process, which means a process that takes place in infinitesimally small
steps, keeping the system at thermal equilibrium. (We examine this idea in more detail later in this chapter.) Only then does
a well-defined mathematical relationship (the equation of state) exist between the pressure and volume. This relationship
can be plotted on a pV diagram of pressure versus volume, where the curve is the change of state. We can approximate
such a process as one that occurs slowly, through a series of equilibrium states. The integral is interpreted graphically as the

area under the pV curve (the shaded area of Figure 3.5). Work done by the gas is positive for expansion and negative for
compression.

Py
Py, V1)
L

(pzr V2)

v
Figure 3.5 When a gas expands slowly from V; to V,, the

work done by the system is represented by the shaded area under
the pV curve.

Consider the two processes involving an ideal gas that are represented by paths AC and ABC in Figure 3.6. The first
process is an isothermal expansion, with the volume of the gas changing its volume from V| to V, . This isothermal process

is represented by the curve between points A and C. The gas is kept at a constant temperature T by keeping it in thermal
equilibrium with a heat reservoir at that temperature. From Equation 3.4 and the ideal gas law,

Vo Vo BT
W= . pdV = jVI(”T)dV.
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Pi
Py A = B
| Y
Py D - c
v v, v

Figure 3.6 The paths ABC, AC, and ADC represent three
different quasi-static transitions between the equilibrium states A
and C.

The expansion is isothermal, so T remains constant over the entire process. Since n and R are also constant, the only variable
in the integrand is V, so the work done by an ideal gas in an isothermal process is

Vs

W= nRTj 4V _ uRTInY2.
v,V Vi

Notice that if V, > V| (expansion), W is positive, as expected.

The straight lines from A to B and then from B to C represent a different process. Here, a gas at a pressure p; first expands
isobarically (constant pressure) and quasi-statically from V, to V,, after which it cools quasi-statically at the constant
volume V), until its pressure drops to p, . From A to B, the pressure is constant at p, so the work over this part of the path

is
Vs Vs
W= [ pav=p, [ dv=pv,-V).
Vi Vi

From B to C, there is no change in volume and therefore no work is done. The net work over the path ABC is then

W = pl(V2 - Vl) + 0 = pl(VZ - Vl)
A comparison of the expressions for the work done by the gas in the two processes of Figure 3.6 shows that they are quite
different. This illustrates a very important property of thermodynamic work: It is path dependent. We cannot determine the

work done by a system as it goes from one equilibrium state to another unless we know its thermodynamic path. Different
values of the work are associated with different paths.

Example 3.1

Isothermal Expansion of a van der Waals Gas

Studies of a van der Waals gas require an adjustment to the ideal gas law that takes into consideration that gas
molecules have a definite volume (see The Kinetic Theory of Gases). One mole of a van der Waals gas has
an equation of state

(p + &)(v —b) =RT,

where a and b are two parameters for a specific gas. Suppose the gas expands isothermally and quasi-statically
from volume V| to volume V,. How much work is done by the gas during the expansion?
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Strategy

Because the equation of state is given, we can use Equation 3.4 to express the pressure in terms of V and T.
Furthermore, temperature T is a constant under the isothermal condition, so V becomes the only changing variable
under the integral.

Solution

To evaluate this integral, we must express p as a function of V. From the given equation of state, the gas pressure
is

P=m‘ﬁ-

Because T is constant under the isothermal condition, the work done by 1 mol of a van der Waals gas in expanding
from a volume V; to a volume V, is thus

Vo vy
- RT _ _a)_ - a
W o= J(V_b V2) [RTIn(V - b) + 4],
Vi

— Vo—b 1 _ 1
= RTln(V1 — b)+ a(V2 Vi)
Significance

By taking into account the volume of molecules, the expression for work is much more complex. If, however,
weset a =0 and b =0, we see that the expression for work matches exactly the work done by an isothermal

process for one mole of an ideal gas.

3.1 Check Your Understanding How much work is done by the gas, as given in Figure 3.6, when it
expands quasi-statically along the path ADC?

Internal Energy

The internal energy £, of a thermodynamic system is, by definition, the sum of the mechanical energies of all the
molecules or entities in the system. If the kinetic and potential energies of molecule i are K; and U;, respectively, then

the internal energy of the system is the average of the total mechanical energy of all the entities:

Eip = Z (K;+U), (3.5)

where the summation is over all the molecules of the system, and the bars over K and U indicate average values. The kinetic
energy K; of an individual molecule includes contributions due to its rotation and vibration, as well as its translational

energy mivl-2/2, where v; is the molecule’s speed measured relative to the center of mass of the system. The potential
energy U, is associated only with the interactions between molecule i and the other molecules of the system. In fact, neither

the system’s location nor its motion is of any consequence as far as the internal energy is concerned. The internal energy of
the system is not affected by moving it from the basement to the roof of a 100-story building or by placing it on a moving
train.

In an ideal monatomic gas, each molecule is a single atom. Consequently, there is no rotational or vibrational kinetic energy
and K; = mivl-2/2. Furthermore, there are no interatomic interactions (collisions notwithstanding), so U; = constant,

which we set to zero. The internal energy is therefore due to translational kinetic energy only and
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From the discussion in the preceding chapter, we know that the average kinetic energy of a molecule in an ideal monatomic
gas is

L,v2=3

2mivi =3k
where T is the Kelvin temperature of the gas. Consequently, the average mechanical energy per molecule of an ideal
monatomic gas is also 3kg 7/2, thatis,

Ki+ Ui=12i=%kBT

The internal energy is just the number of molecules multiplied by the average mechanical energy per molecule. Thus for n
moles of an ideal monatomic gas,

3.6
Eine=nNa(3kpT) = 3nRT. (3.6)

Notice that the internal energy of a given quantity of an ideal monatomic gas depends on just the temperature and is
completely independent of the pressure and volume of the gas. For other systems, the internal energy cannot be expressed
so simply. However, an increase in internal energy can often be associated with an increase in temperature.

We know from the zeroth law of thermodynamics that when two systems are placed in thermal contact, they eventually
reach thermal equilibrium, at which point they are at the same temperature. As an example, suppose we mix two monatomic
ideal gases. Now, the energy per molecule of an ideal monatomic gas is proportional to its temperature. Thus, when the two
gases are mixed, the molecules of the hotter gas must lose energy and the molecules of the colder gas must gain energy.
This continues until thermal equilibrium is reached, at which point, the temperature, and therefore the average translational
kinetic energy per molecule, is the same for both gases. The approach to equilibrium for real systems is somewhat more
complicated than for an ideal monatomic gas. Nevertheless, we can still say that energy is exchanged between the systems
until their temperatures are the same.

3.3 | First Law of Thermodynamics

Learning Objectives

By the end of this section, you will be able to:

* State the first law of thermodynamics and explain how it is applied

* Explain how heat transfer, work done, and internal energy change are related in any
thermodynamic process

Now that we have seen how to calculate internal energy, heat, and work done for a thermodynamic system undergoing
change during some process, we can see how these quantities interact to affect the amount of change that can occur. This
interaction is given by the first law of thermodynamics. British scientist and novelist C. P. Snow (1905-1980) is credited
with a joke about the four laws of thermodynamics. His humorous statement of the first law of thermodynamics is stated
“you can’t win,” or in other words, you cannot get more energy out of a system than you put into it. We will see in this
chapter how internal energy, heat, and work all play a role in the first law of thermodynamics.

Suppose Q represents the heat exchanged between a system and the environment, and W is the work done by or on the
system. The first law states that the change in internal energy of that system is given by Q — W . Since added heat increases

the internal energy of a system, Q is positive when it is added to the system and negative when it is removed from the
system.

When a gas expands, it does work and its internal energy decreases. Thus, W is positive when work is done by the system
and negative when work is done on the system. This sign convention is summarized in Table 3.1. The first law of
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thermodynamics is stated as follows:

First Law of Thermodynamics

Associated with every equilibrium state of a system is its internal energy E;,. The change in E;,, for any transition

between two equilibrium states is
AE, = 0-W (3.7)

where Q and W represent, respectively, the heat exchanged by the system and the work done by or on the system.

Thermodynamic Sigh Conventions for Heat and Work

Process Convention

Heat added to system 0>0

Heat removed from system 0<0

Work done by system wW>0

Work done on system W<0
Table 3.1

The first law is a statement of energy conservation. It tells us that a system can exchange energy with its surroundings
by the transmission of heat and by the performance of work. The net energy exchanged is then equal to the change in the
total mechanical energy of the molecules of the system (i.e., the system’s internal energy). Thus, if a system is isolated, its
internal energy must remain constant.

Although Q and W both depend on the thermodynamic path taken between two equilibrium states, their difference Q — W
does not. Figure 3.7 shows the pV diagram of a system that is making the transition from A to B repeatedly along different
thermodynamic paths. Along path 1, the system absorbs heat O and does work W,; along path 2, it absorbs heat O,

and does work W,, and so on. The values of Q; and W; may vary from path to path, but we have
Q1-W,=0r—Wy=o=Q, = W;= -,

or
AEint] = AEintZ ] AEinti = ...,

That is, the change in the internal energy of the system between A and B is path independent. In the chapter on potential
energy and the conservation of energy, we encountered another path-independent quantity: the change in potential energy
between two arbitrary points in space. This change represents the negative of the work done by a conservative force
between the two points. The potential energy is a function of spatial coordinates, whereas the internal energy is a function
of thermodynamic variables. For example, we might write E, (T, p) for the internal energy. Functions such as internal

energy and potential energy are known as state functions because their values depend solely on the state of the system.
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Figure 3.7 Different thermodynamic paths taken by a system
in going from state A to state B. For all transitions, the change in

the internal energy of the system AE; = Q — W is the same.

Often the first law is used in its differential form, which is
dE;,=dQ —dW. (3.8)

Here dE;, is an infinitesimal change in internal energy when an infinitesimal amount of heat dQ is exchanged with the

system and an infinitesimal amount of work dW is done by (positive in sign) or on (negative in sign) the system.

Example 3.2

Changes of State and the First Law

During a thermodynamic process, a system moves from state A to state B, it is supplied with 400 J of heat and
does 100 J of work. (a) For this transition, what is the system’s change in internal energy? (b) If the system then
moves from state B back to state A, what is its change in internal energy? (c) If in moving from A to B along a
different path, W’ 45 =400] of work is done on the system, how much heat does it absorb?

Strategy

The first law of thermodynamics relates the internal energy change, work done by the system, and the heat
transferred to the system in a simple equation. The internal energy is a function of state and is therefore fixed at
any given point regardless of how the system reaches the state.

Solution
a. From the first law, the change in the system’s internal energy is

AE; up=0ap— Wap=400J-100J = 3001.

b. Consider a closed path that passes through the states A and B. Internal energy is a state function, so AE;;,

is zero for a closed path. Thus
AEjy = AEjgap + AEiyps = 0,

and

AEiyap = —AEjppa-

This yields
AE; s = —3001J.

C. The change in internal energy is the same for any path, so
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AEinap = AE'spiap =0 ap— W ap
3000 = Q' 45— (—4001),

and the heat exchanged is

The negative sign indicates that the system loses heat in this transition.
Significance

When a closed cycle is considered for the first law of thermodynamics, the change in internal energy around the
whole path is equal to zero. If friction were to play a role in this example, less work would result from this heat
added. Example 3.3 takes into consideration what happens if friction plays a role.

Notice that in Example 3.2, we did not assume that the transitions were quasi-static. This is because the first law is not
subject to such a restriction. It describes transitions between equilibrium states but is not concerned with the intermediate
states. The system does not have to pass through only equilibrium states. For example, if a gas in a steel container at a
well-defined temperature and pressure is made to explode by means of a spark, some of the gas may condense, different gas
molecules may combine to form new compounds, and there may be all sorts of turbulence in the container—but eventually,
the system will settle down to a new equilibrium state. This system is clearly not in equilibrium during its transition;
however, its behavior is still governed by the first law because the process starts and ends with the system in equilibrium
states.

Example 3.3

Polishing a Fitting

A machinist polishes a 0.50-kg copper fitting with a piece of emery cloth for 2.0 min. He moves the cloth across
the fitting at a constant speed of 1.0 m/s by applying a force of 20 N, tangent to the surface of the fitting. (a) What
is the total work done on the fitting by the machinist? (b) What is the increase in the internal energy of the fitting?
Assume that the change in the internal energy of the cloth is negligible and that no heat is exchanged between the
fitting and its environment. (c) What is the increase in the temperature of the fitting?

Strategy

The machinist’s force over a distance that can be calculated from the speed and time given is the work done on
the system. The work, in turn, increases the internal energy of the system. This energy can be interpreted as the
heat that raises the temperature of the system via its heat capacity. Be careful with the sign of each quantity.

Solution
a. The power created by a force on an object or the rate at which the machinist does frictional work on the

fitting is i‘) -V =—Fv.Thus, in an elapsed time Afr (2.0 min), the work done on the fitting is
W = —FvAt = —(20N)(0.1 m/s)(1.2 X 102 s)
=-24x10%1J.

b. By assumption, no heat is exchanged between the fitting and its environment, so the first law gives for
the change in the internal energy of the fitting:

AE, =-W=24x10%1J.

c. Since AE,, is path independent, the effect of the 2.4 X 103 J of work is the same as if it were supplied

at atmospheric pressure by a transfer of heat. Thus,

2.4% 103 T = meAT = (0.50kg)(3.9 x 102 J/kg - °C)AT,

and the increase in the temperature of the fitting is
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AT =12°C,

where we have used the value for the specific heat of copper, ¢ = 3.9 X 102 J/kg-°C.

Significance

If heat were released, the change in internal energy would be less and cause less of a temperature change than
what was calculated in the problem.

3.2 Check Your Understanding The quantities below represent four different transitions between the same
initial and final state. Fill in the blanks.

QM) W@  AE,()

-80 -120
90
40
—40
Table 3.2

Example 3.4

An Ideal Gas Making Transitions between Two States

Consider the quasi-static expansions of an ideal gas between the equilibrium states A and C of Figure 3.6. If
515 J of heat are added to the gas as it traverses the path ABC, how much heat is required for the transition

along ADC? Assume that p;=2.10x 10° N/m?, p, = 1.05x 10° N/m?,V; =2.25x 107> m>, and
V,=450x 1072 m?,

Strategy

The difference in work done between process ABC and process ADC is the area enclosed by ABCD. Because the
change of the internal energy (a function of state) is the same for both processes, the difference in work is thus
the same as the difference in heat transferred to the system.

Solution
For path ABC, the heat added is Q 4g- = 515] and the work done by the gas is the area under the path on the
pV diagram, which is

Wapc=p1(V, = V) =4731].
Along ADC, the work done by the gas is again the area under the path:

Wapc=pr(Vo—=V)=2361.
Then using the strategy we just described, we have

Qapc = Qasc = Wapc — Wagc

which leads to

QADC = QABC+ WADC_ WABC = (515 + 236 — 473)] =2781.

Significance

The work calculations in this problem are made simple since no work is done along AD and BC and along AB and
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\%
also have been used, as we have derived the work for an isothermal process as W = nRTIn—2

DC; the pressure is constant over the volume change, so the work done is simply pAV . An isothermal line could

4B

Example 3.5

Isothermal Expansion of an Ideal Gas

Heat is added to 1 mol of an ideal monatomic gas confined to a cylinder with a movable piston at one end. The
gas expands quasi-statically at a constant temperature of 300 K until its volume increases from V to 3V. (a) What
is the change in internal energy of the gas? (b) How much work does the gas do? (c) How much heat is added to
the gas?

Strategy

(a) Because the system is an ideal gas, the internal energy only changes when the temperature changes. (b) The
heat added to the system is therefore purely used to do work that has been calculated in Work, Heat, and
Internal Energy. (c) Lastly, the first law of thermodynamics can be used to calculate the heat added to the gas.

Solution
a.

We saw in the preceding section that the internal energy of an ideal monatomic gas is a function only of
temperature. Since AT = 0, for this process, AE;,, = 0.

The quasi-static isothermal expansion of an ideal gas was considered in the preceding section and was
found to be

_ Vo _ 3V
W = nRTan—1 = nRTln7

= (1.00 mol)(8.314 J/K - mol)(300 K)(In3) = 2.74 x 103 1.
With the results of parts (a) and (b), we can use the first law to determine the heat added:

AE,,=Q-W=0,

which leads to

0=W=274%10°1I.

Significance

An isothermal process has no change in the internal energy. Based on that, the first law of thermodynamics
reducesto Q = W.

3.3 Check Your Understanding Why was it necessary to state that the process of Example 3.5 is quasi-
static?

Example 3.6

Vaporizing Water
When 1.00 g of water at 100 °C changes from the liquid to the gas phase at atmospheric pressure, its change in

volume is 1.67 % 107> m?>. (a) How much heat must be added to vaporize the water? (b) How much work is

done by the water against the atmosphere in its expansion? (c) What is the change in the internal energy of the
water?
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Strategy

We can first figure out how much heat is needed from the latent heat of vaporization of the water. From the
volume change, we can calculate the work done from W = pAV because the pressure is constant. Then, the first

law of thermodynamics provides us with the change in the internal energy.
Solution
a. With L, representing the latent heat of vaporization, the heat required to vaporize the water is

0 =mL, = (1.00 g)(2.26 x 10> J/g) = 2.26 x 10> J.

b. Since the pressure on the system is constant at 1.00 atm = 1.01 X 10° N/m?, the work done by the
water as it is vaporized is

W = pAV = (1.01 X 10° N/m?)(1.67x 1073 m?) = 169 1.
C. From the first law, the thermal energy of the water during its vaporization changes by

AE, =0—-W=226x1037—-169] =2.09% 10> J.

int —

Significance

We note that in part (c), we see a change in internal energy, yet there is no change in temperature. Ideal gases that
are not undergoing phase changes have the internal energy proportional to temperature. Internal energy in general
is the sum of all energy in the system.

3.4 Check Your Understanding When 1.00 g of ammonia boils at atmospheric pressure and —33.0 °C, its

volume changes from 1.47 to 1130 cm? . Tts heat of vaporization at this pressure is 1.37 X 108 J/kg. What is

the change in the internal energy of the ammonia when it vaporizes?

View this site (https:/lopenstaxcollege.org/l/211stlawthermo) to learn about how the first law of
thermodynamics. First, pump some heavy species molecules into the chamber. Then, play around by doing work
(pushing the wall to the right where the person is located) to see how the internal energy changes (as seen by
temperature). Then, look at how heat added changes the internal energy. Finally, you can set a parameter constant
such as temperature and see what happens when you do work to keep the temperature constant (Note: You might
see a change in these variables initially if you are moving around quickly in the simulation, but ultimately, this
value will return to its equilibrium value).

3.4 | Thermodynamic Processes

Learning Objectives

By the end of this section, you will be able to:

* Define a thermodynamic process
* Distinguish between quasi-static and non-quasi-static processes

* Calculate physical quantities, such as the heat transferred, work done, and internal energy
change for isothermal, adiabatic, and cyclical thermodynamic processes

In solving mechanics problems, we isolate the body under consideration, analyze the external forces acting on it, and then
use Newton’s laws to predict its behavior. In thermodynamics, we take a similar approach. We start by identifying the part
of the universe we wish to studys; it is also known as our system. (We defined a system at the beginning of this chapter as
anything whose properties are of interest to us; it can be a single atom or the entire Earth.) Once our system is selected,
we determine how the environment, or surroundings, interact with the system. Finally, with the interaction understood, we
study the thermal behavior of the system with the help of the laws of thermodynamics.
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The thermal behavior of a system is described in terms of thermodynamic variables. For an ideal gas, these variables are
pressure, volume, temperature, and the number of molecules or moles of the gas. Different types of systems are generally
characterized by different sets of variables. For example, the thermodynamic variables for a stretched rubber band are
tension, length, temperature, and mass.

The state of a system can change as a result of its interaction with the environment. The change in a system can be fast or
slow and large or small. The manner in which a state of a system can change from an initial state to a final state is called
a thermodynamic process. For analytical purposes in thermodynamics, it is helpful to divide up processes as either quasi-
static or non-quasi-static, as we now explain.

Quasi-static and Non-quasi-static Processes

A quasi-static process refers to an idealized or imagined process where the change in state is made infinitesimally slowly so
that at each instant, the system can be assumed to be at a thermodynamic equilibrium with itself and with the environment.
For instance, imagine heating 1 kg of water from a temperature 20 °C to 21 °C at a constant pressure of 1 atmosphere. To

heat the water very slowly, we may imagine placing the container with water in a large bath that can be slowly heated such
that the temperature of the bath can rise infinitesimally slowly from 20 °C to 21 °C. If we put 1 kg of water at 20 °C

directly into a bath at 21 °C, the temperature of the water will rise rapidly to 21 °C in a non-quasi-static way.

Quasi-static processes are done slowly enough that the system remains at thermodynamic equilibrium at each instant,
despite the fact that the system changes over time. The thermodynamic equilibrium of the system is necessary for the system
to have well-defined values of macroscopic properties such as the temperature and the pressure of the system at each instant
of the process. Therefore, quasi-static processes can be shown as well-defined paths in state space of the system.

Since quasi-static processes cannot be completely realized for any finite change of the system, all processes in nature
are non-quasi-static. Examples of quasi-static and non-quasi-static processes are shown in Figure 3.8. Despite the fact
that all finite changes must occur essentially non-quasi-statically at some stage of the change, we can imagine performing
infinitely many quasi-static process corresponding to every quasi-static process. Since quasi-static processes can be
analyzed analytically, we mostly study quasi-static processes in this book. We have already seen that in a quasi-static process
the work by a gas is given by pdV.

P
Nonquasi-static
process - ——~-_
Fd ~
” Y
T Y
Pi A N
! A
{ \
] i
| i
i |
P Al = B
Quasi-static process
T | ]
Vi Vq

I
Figure 3.8 Quasi-static and non-quasi-static processes
between states A and B of a gas. In a quasi-static process, the
path of the process between A and B can be drawn in a state
diagram since all the states that the system goes through are
known. In a non-quasi-static process, the states between A and B
are not known, and hence no path can be drawn. It may follow
the dashed line as shown in the figure or take a very different
path.

Isothermal Processes

An isothermal process is a change in the state of the system at a constant temperature. This process is accomplished by
keeping the system in thermal equilibrium with a large heat bath during the process. Recall that a heat bath is an idealized
“infinitely” large system whose temperature does not change. In practice, the temperature of a finite bath is controlled by
either adding or removing a finite amount of energy as the case may be.

As an illustration of an isothermal process, consider a cylinder of gas with a movable piston immersed in a large water tank
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whose temperature is maintained constant. Since the piston is freely movable, the pressure inside P;, is balanced by the

pressure outside P, by some weights on the piston, as in Figure 3.9.

Constant T
heat bath

Figure 3.9 Expanding a system at a constant temperature. Removing weights on
the piston leads to an imbalance of forces on the piston, which causes the piston to
move up. As the piston moves up, the temperature is lowered momentarily, which
causes heat to flow from the heat bath to the system. The energy to move the piston
eventually comes from the heat bath.

As weights on the piston are removed, an imbalance of forces on the piston develops. The net nonzero force on the piston
would cause the piston to accelerate, resulting in an increase in volume. The expansion of the gas cools the gas to a lower
temperature, which makes it possible for the heat to enter from the heat bath into the system until the temperature of the
gas is reset to the temperature of the heat bath. If weights are removed in infinitesimal steps, the pressure in the system
decreases infinitesimally slowly. This way, an isothermal process can be conducted quasi-statically. An isothermal line on
a (p, V) diagram is represented by a curved line from starting point A to finishing point B, as seen in Figure 3.10. For an

ideal gas, an isothermal process is hyperbolic, since for an ideal gas at constant temperature, p o« % .
P
Py~ A
P | B
T T ;,
Vi Vi

Figure 3.10 An isothermal expansion from a state labeled A
to another state labeled B on a pV diagram. The curve represents
the relation between pressure and volume in an ideal gas at
constant temperature.

An isothermal process studied in this chapter is quasi-statically performed, since to be isothermal throughout the change
of volume, you must be able to state the temperature of the system at each step, which is possible only if the system is
in thermal equilibrium continuously. The system must go out of equilibrium for the state to change, but for quasi-static
processes, we imagine that the process is conducted in infinitesimal steps such that these departures from equilibrium can
be made as brief and as small as we like.

Other quasi-static processes of interest for gases are isobaric and isochoric processes. An isobaric process is a process
where the pressure of the system does not change, whereas an isochoric process is a process where the volume of the
system does not change.

Adiabatic Processes

In an adiabatic process, the system is insulated from its environment so that although the state of the system changes,
no heat is allowed to enter or leave the system, as seen in Figure 3.11. An adiabatic process can be conducted either
quasi-statically or non-quasi-statically. When a system expands adiabatically, it must do work against the outside world, and

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9



Chapter 3 | The First Law of Thermodynamics 125

therefore its energy goes down, which is reflected in the lowering of the temperature of the system. An adiabatic expansion
leads to a lowering of temperature, and an adiabatic compression leads to an increase of temperature. We discuss adiabatic
expansion again in Adiabatic Processes for an ideal Gas.

o

System

‘/ Insulation

Figure 3.11 An insulated piston with a hot, compressed gas is
released. The piston moves up, the volume expands, and the
pressure and temperature decrease. The internal energy goes into
work. If the expansion occurs within a time frame in which
negligible heat can enter the system, then the process is called
adiabatic. Ideally, during an adiabatic process no heat enters or
exits the system.

Cyclic Processes

We say that a system goes through a cyclic process if the state of the system at the end is same as the state at the beginning.
Therefore, state properties such as temperature, pressure, volume, and internal energy of the system do not change over a
complete cycle:

AE int = O
When the first law of thermodynamics is applied to a cyclic process, we obtain a simple relation between heat into the
system and the work done by the system over the cycle:
Q = W (cyclic process).
Thermodynamic processes are also distinguished by whether or not they are reversible. A reversible process is one that can
be made to retrace its path by differential changes in the environment. Such a process must therefore also be quasi-static.
Note, however, that a quasi-static process is not necessarily reversible, since there may be dissipative forces involved. For

example, if friction occurred between the piston and the walls of the cylinder containing the gas, the energy lost to friction
would prevent us from reproducing the original states of the system.

We considered several thermodynamic processes:
1. An isothermal process, during which the system’s temperature remains constant
2. An adiabatic process, during which no heat is transferred to or from the system
3. Anisobaric process, during which the system’s pressure does not change
4. An isochoric process, during which the system’s volume does not change
Many other processes also occur that do not fit into any of these four categories.

View this site (https:/lopenstaxcollege.org/l/21lidegaspvdiag) to set up your own process in a pV diagram.
See if you can calculate the values predicted by the simulation for heat, work, and change in internal energy.


https://openstaxcollege.org/l/21idegaspvdiag
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3.5 | Heat Capacities of an Ideal Gas

Learning Objectives

By the end of this section, you will be able to:

* Define heat capacity of an ideal gas for a specific process

* Calculate the specific heat of an ideal gas for either an isobaric or isochoric process
* Explain the difference between the heat capacities of an ideal gas and a real gas

* Estimate the change in specific heat of a gas over temperature ranges

We learned about specific heat and molar heat capacity in Temperature and Heat; however, we have not considered a
process in which heat is added. We do that in this section. First, we examine a process where the system has a constant
volume, then contrast it with a system at constant pressure and show how their specific heats are related.

Let’s start with looking at Figure 3.12, which shows two vessels A and B, each containing 1 mol of the same type of ideal
gas at a temperature T and a volume V. The only difference between the two vessels is that the piston at the top of A is fixed,
whereas the one at the top of B is free to move against a constant external pressure p. We now consider what happens when
the temperature of the gas in each vessel is slowly increased to 7 + dT with the addition of heat.

Vessel A Vessel B
Figure 3.12 Two vessels are identical except that the piston at
the top of A is fixed, whereas that atop B is free to move against
a constant external pressure p.

Since the piston of vessel A is fixed, the volume of the enclosed gas does not change. Consequently, the gas does no work,
and we have from the first law

dE;, = dQ — dW = dQ.

We represent the fact that the heat is exchanged at constant volume by writing
dQ = CydT,

where Cy, is the molar heat capacity at constant volume of the gas. In addition, since dE;, = dQ for this particular
process,

dE; = CydT. (3.9)
We obtained this equation assuming the volume of the gas was fixed. However, internal energy is a state function that
depends on only the temperature of an ideal gas. Therefore, dE;, = C\, dT gives the change in internal energy of an ideal
gas for any process involving a temperature change dT.
When the gas in vessel B is heated, it expands against the movable piston and does work dW = pdV. In this case, the heat
is added at constant pressure, and we write

dQ = C,dT,
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where C, is the molar heat capacity at constant pressure of the gas. Furthermore, since the ideal gas expands against a
constant pressure,

d(pV) = d(RT)
becomes

pdV = RdT.

Finally, inserting the expressions for dQ and pdV into the first law, we obtain

dE;y = dQ — pdV = (C, — R)dT.

We have found dE;,; for both an isochoric and an isobaric process. Because the internal energy of an ideal gas depends
only on the temperature, dE;,, must be the same for both processes. Thus,

CydT = (C, - R)dT,

and

Cp=Cy+R. (3.10)

The derivation of Equation 3.10 was based only on the ideal gas law. Consequently, this relationship is approximately
valid for all dilute gases, whether monatomic like He, diatomic like O,, or polyatomic like CO, or NH5.

In the preceding chapter, we found the molar heat capacity of an ideal gas under constant volume to be

CV=%R,

where d is the number of degrees of freedom of a molecule in the system. Table 3.3 shows the molar heat capacities of
some dilute ideal gases at room temperature. The heat capacities of real gases are somewhat higher than those predicted by
the expressions of Cy and C), given in Equation 3.10. This indicates that vibrational motion in polyatomic molecules

is significant, even at room temperature. Nevertheless, the difference in the molar heat capacities, Cj, — Cy, is very close

to R, even for the polyatomic gases.

Molar Heat Capacities of Dilute Ideal Gases at Room Temperature

Type of Molecule  Gas Cp Cy C,-Cy
(J/mol K) (JImol K) (J/mol K)
Monatomic Ideal %R —20.79 %R — 1247 R =28.31
Diatomic Ideal %R =29.10 %R —20.79 R=1831
Polyatomic Ideal 4R = 33.26 3R =24.94 R =8.31

Table 3.3
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3.6 | Adiabatic Processes for an Ideal Gas

Learning Objectives

By the end of this section, you will be able to:

* Define adiabatic expansion of an ideal gas
» Demonstrate the qualitative difference between adiabatic and isothermal expansions

When an ideal gas is compressed adiabatically (Q = 0), work is done on it and its temperature increases; in an adiabatic

expansion, the gas does work and its temperature drops. Adiabatic compressions actually occur in the cylinders of a car,
where the compressions of the gas-air mixture take place so quickly that there is no time for the mixture to exchange heat
with its environment. Nevertheless, because work is done on the mixture during the compression, its temperature does rise
significantly. In fact, the temperature increases can be so large that the mixture can explode without the addition of a spark.
Such explosions, since they are not timed, make a car run poorly—it usually “knocks.” Because ignition temperature rises
with the octane of gasoline, one way to overcome this problem is to use a higher-octane gasoline.

Another interesting adiabatic process is the free expansion of a gas. Figure 3.13 shows a gas confined by a membrane to
one side of a two-compartment, thermally insulated container. When the membrane is punctured, gas rushes into the empty
side of the container, thereby expanding freely. Because the gas expands “against a vacuum” (p = 0), it does no work, and

because the vessel is thermally insulated, the expansion is adiabatic. With Q =0 and W = 0 in the first law, AE;,, =0,
so E.

inti = Eint f for the free expansion.

Vacuum 7 2 R . - .

Initial equilibrium state Final equilibrium state
Figure 3.13 The gas in the left chamber expands freely into the right chamber when the membrane is punctured.

If the gas is ideal, the internal energy depends only on the temperature. Therefore, when an ideal gas expands freely, its
temperature does not change.

A quasi-static, adiabatic expansion of an ideal gas is represented in Figure 3.14, which shows an insulated cylinder that
contains 1 mol of an ideal gas. The gas is made to expand quasi-statically by removing one grain of sand at a time from
the top of the piston. When the gas expands by dV, the change in its temperature is dT. The work done by the gas in the
expansion is dW = pdV; dQ = 0 because the cylinder is insulated; and the change in the internal energy of the gas is,

from Equation 3.9, dE;,, = Cy dT. Therefore, from the first law,
CydT =0—pdV = —pdV,

SO
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Insulation

Figure 3.14 When sand is removed from the piston one grain
at a time, the gas expands adiabatically and quasi-statically in
the insulated vessel.

Also, for 1 mol of an ideal gas,
d(pV) = d(RT),

SO

pdV +Vdp = RdT

and

dT = pdV +Vd P
R
We now have two equations for dT. Upon equating them, we find that
CyVdp+ (Cy+ R)pdV =0.

Now, we divide this equation by pV'and use Cj, = Cy + R. We are then left with

dp dv _
CVT +C Py = 0,
which becomes
dp . 4V _
p Ty =0
where we define y as the ratio of the molar heat capacities:
C, (3.11)
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Thus,

and

In p 4+ yIn V = constant.

Finally, using In(A”) = xInA and In AB = In A + In B, we can write this in the form

pV? = constant. (3.12)

This equation is the condition that must be obeyed by an ideal gas in a quasi-static adiabatic process. For example, if an
ideal gas makes a quasi-static adiabatic transition from a state with pressure and volume p; and V; to a state with p,

and V,, then it must be true that p, V] = p, V1.

The adiabatic condition of Equation 3.12 can be written in terms of other pairs of thermodynamic variables by combining
it with the ideal gas law. In doing this, we find that

1

p 'TY = constant (3.13)

and

7v? ~ 1 = constant. (3.14)

A reversible adiabatic expansion of an ideal gas is represented on the pV diagram of Figure 3.15. The slope of the curve
at any point is

dap _ d (constant) __.D
VY

av ~ dv A%

p

Adiabatic

Figure 3.15 Quasi-static adiabatic and isothermal expansions
of an ideal gas.

The dashed curve shown on this pV diagram represents an isothermal expansion where T (and therefore pV) is constant. The
slope of this curve is useful when we consider the second law of thermodynamics in the next chapter. This slope is

dp _ d nRT _ _ P

dv = dv Vv Vv

Because y > 1, the isothermal curve is not as steep as that for the adiabatic expansion.
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Example 3.7

Compression of an Ideal Gas in an Automobile Engine

Gasoline vapor is injected into the cylinder of an automobile engine when the piston is in its expanded position.
The temperature, pressure, and volume of the resulting gas-air mixture are 20°C, 1.00 X 10° N/m?, and

240 cm?, respectively. The mixture is then compressed adiabatically to a volume of 40 cm?. Note that in

the actual operation of an automobile engine, the compression is not quasi-static, although we are making that
assumption here. (a) What are the pressure and temperature of the mixture after the compression? (b) How much
work is done by the mixture during the compression?

Strategy

Because we are modeling the process as a quasi-static adiabatic compression of an ideal gas, we have

V2
pV7? = constant and pV = nRT . The work needed can then be evaluated with W = f pdV.
Vi

Solution
a. For an adiabatic compression we have

VY
P2=DP1 72 s

so after the compression, the pressure of the mixture is
1.40

-6 .3
py=(1.00x 10° N/mz)(%) =123 x 10° N/m?.
X m

From the ideal gas law, the temperature of the mixture after the compression is
P2 Vz)
T, =|=+|T
2 (P1 Vi)t
_ (123 10° N/m»40 x 10~ m%) UBK
(1.00 x 10° N/m?%)(240 x 10~ m?)
= 600K =328 °C.

b. The work done by the mixture during the compression is

Vo
W= /V1 pdv.

With the adiabatic condition of Equation 3.12, we may write p as K/V?, where K = p; V{ = p, V],

The work is therefore
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1| r2VE iV ]
-y V27—1 Vl}’—l
= %_},(Pz Vo—p1V)
m[(l.m x 10® N/m?)(40 x 1076 m?)
—(1.00 x 10° N/m?)(240 x 10~%m>)]
=-631.

Significance
The negative sign on the work done indicates that the piston does work on the gas-air mixture. The engine would
not work if the gas-air mixture did work on the piston.
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CHAPTER 3 REVIEW

KEY TERMS

adiabatic process process during which no heat is transferred to or from the system

boundary imagined walls that separate the system and its surroundings

closed system system that is mechanically and thermally isolated from its environment

cyclic process process in which the state of the system at the end is same as the state at the beginning

environment outside of the system being studied

equation of state describes properties of matter under given physical conditions

equilibrium thermal balance established between two objects or parts within a system

extensive variable variable that is proportional to the amount of matter in the system

first law of thermodynamics the change in internal energy for any transition between two equilibrium states is
AE=0-W

intensive variable variable that is independent of the amount of matter in the system

internal energy average of the total mechanical energy of all the molecules or entities in the system

isobaric process process during which the system’s pressure does not change

isochoric process process during which the system’s volume does not change

isothermal process process during which the system’s temperature remains constant

molar heat capacity at constant pressure quantifies the ratio of the amount of heat added removed to the
temperature while measuring at constant pressure

molar heat capacity at constant volume quantifies the ratio of the amount of heat added removed to the
temperature while measuring at constant volume

open system system that can exchange energy and/or matter with its surroundings

quasi-static process evolution of a system that goes so slowly that the system involved is always in thermodynamic
equilibrium

reversible process process that can be reverted to restore both the system and its environment back to their original
states together

surroundings environment that interacts with an open system
thermodynamic process manner in which a state of a system can change from initial state to final state

thermodynamic system object and focus of thermodynamic study

KEY EQUATIONS

Equation of state for a closed system f(p,V, T)=0

Net work for a finite change in volume Va
W= pdV
Vi

Internal energy of a system (average total energy) E = Z ( I_( + l_J )
int = i i)

1

Internal energy of a monatomic ideal gas Ej =nNy (ng T) — ;nRT

First law of thermodynamics AE,,=0-W
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Molar heat capacity at constant pressure Cp,=Cy+R
Ratio of molar heat capacities y=Cp/Cy
Condition for an ideal gas in a quasi-static adiabatic process pV" = constant

SUMMARY

3.1 Thermodynamic Systems

¢ A thermodynamic system, its boundary, and its surroundings must be defined with all the roles of the components
fully explained before we can analyze a situation.

e Thermal equilibrium is reached with two objects if a third object is in thermal equilibrium with the other two
separately.

¢ A general equation of state for a closed system has the form f(p, V, T) =0, with an ideal gas as an illustrative

example.

3.2 Work, Heat, and Internal Energy
¢ Positive (negative) work is done by a thermodynamic system when it expands (contracts) under an external pressure.
¢ Heat is the energy transferred between two objects (or two parts of a system) because of a temperature difference.

 Internal energy of a thermodynamic system is its total mechanical energy.

3.3 First Law of Thermodynamics

¢ The internal energy of a thermodynamic system is a function of state and thus is unique for every equilibrium state
of the system.

¢ The increase in the internal energy of the thermodynamic system is given by the heat added to the system less the
work done by the system in any thermodynamics process.

3.4 Thermodynamic Processes

¢ The thermal behavior of a system is described in terms of thermodynamic variables. For an ideal gas, these variables
are pressure, volume, temperature, and number of molecules or moles of the gas.

¢ For systems in thermodynamic equilibrium, the thermodynamic variables are related by an equation of state.
* A heat reservoir is so large that when it exchanges heat with other systems, its temperature does not change.
¢ A quasi-static process takes place so slowly that the system involved is always in thermodynamic equilibrium.

¢ A reversible process is one that can be made to retrace its path and both the temperature and pressure are uniform
throughout the system.

¢ There are several types of thermodynamic processes, including (a) isothermal, where the system’s temperature is
constant; (b) adiabatic, where no heat is exchanged by the system; (c) isobaric, where the system’s pressure is
constant; and (d) isochoric, where the system’s volume is constant.

¢ As a consequence of the first law of thermodymanics, here is a summary of the thermodymaic processes: (a)
isothermal: AE; =0, Q=W; (b) adiabatic: Q =0, AE;,, =—W; (c) isobaric: AE; Q—W,; and (d)

1 int =
isochoric: W =0, AE;, = O.

3.5 Heat Capacities of an Ideal Gas
* For an ideal gas, the molar capacity at constant pressure C, is given by C, = Cy + R =dR/2+ R, where d is

the number of degrees of freedom of each molecule/entity in the system.

¢ A real gas has a specific heat close to but a little bit higher than that of the corresponding ideal gas with

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9



Chapter 3 | The First Law of Thermodynamics

CpﬁCV‘l'R.

3.6 Adiabatic Processes for an Ideal Gas

135

e A quasi-static adiabatic expansion of an ideal gas produces a steeper pV curve than that of the corresponding

isotherm.

* A realistic expansion can be adiabatic but rarely quasi-static.

CONCEPTUAL QUESTIONS

3.1 Thermodynamic Systems

1. Consider these scenarios and state whether work is
done by the system on the environment (SE) or by the
environment on the system (ES): (a) opening a carbonated
beverage; (b) filling a flat tire; (c) a sealed empty gas can
expands on a hot day, bowing out the walls.

3.2 Work, Heat, and Internal Energy

2. Is it possible to determine whether a change in internal
energy is caused by heat transferred, by work performed, or
by a combination of the two?

3. When aliquid is vaporized, its change in internal energy
is not equal to the heat added. Why?

4. Why does a bicycle pump feel warm as you inflate your
tire?

5. Is it possible for the temperature of a system to remain
constant when heat flows into or out of it? If so, give
examples.

3.3 First Law of Thermodynamics

6. What does the first law of thermodynamics tell us about
the energy of the universe?

7. Does adding heat to a system always increase its
internal energy?

8. A great deal of effort, time, and money has been spent
in the quest for a so-called perpetual-motion machine,
which is defined as a hypothetical machine that operates
or produces useful work indefinitely and/or a hypothetical
machine that produces more work or energy than it
consumes. Explain, in terms of the first law of
thermodynamics, why or why not such a machine is likely
to be constructed.

3.4 Thermodynamic Processes
9. When a gas expands isothermally, it does work. What is

the source of energy needed to do this work?

10. If the pressure and volume of a system are given, is the
temperature always uniquely determined?

11. It is unlikely that a process can be isothermal unless
it is a very slow process. Explain why. Is the same true for
isobaric and isochoric processes? Explain your answer.

3.5 Heat Capacities of an Ideal Gas

12. How can an object transfer heat if the object does not
possess a discrete quantity of heat?

13. Most materials expand when heated. One notable
exception is water between 0 °C and 4 °C, which actually

decreases in volume with the increase in temperature.
Which is greater for water in this temperature region, C,

or Cy ?

14. Why are there two specific heats for gases C), and

Cy , yet only one given for solid?

3.6 Adiabatic Processes for an Ideal Gas

15. Isit possible for y to be smaller than unity?

16. Would you expect y to be larger for a gas or a solid?

Explain.

17. There is no change in the internal energy of an ideal
gas undergoing an isothermal process since the internal
energy depends only on the temperature. Is it therefore
correct to say that an isothermal process is the same as an
adiabatic process for an ideal gas? Explain your answer.

18. Does a gas do any work when it expands
adiabatically? If so, what is the source of the energy needed
to do this work?
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PROBLEMS

3.1 Thermodynamic Systems
19. A gasfollows pV = bp + ¢y on an isothermal curve,

where p is the pressure, V is the volume, b is a constant,
and c is a function of temperature. Show that a temperature
scale under an isochoric process can be established with
this gas and is identical to that of an ideal gas.

20. A mole of gas has isobaric expansion coefficient
dVldT = R/p and isochoric  pressure-temperature

coefficient dp/dT = p/T . Find the equation of state of the

gas.

21. Find the equation of state of a solid that has an isobaric
expansion  coefficientdV/dT =2cT —bp and an

isothermal pressure-volume coefficient dV/dp = —bT.

3.2 Work, Heat, and Internal Energy

22. A gas at a pressure of 2.00 atm undergoes a quasi-
static isobaric expansion from 3.00 to 5.00 L. How much
work is done by the gas?

23. It takes 500 J of work to compress quasi-statically
0.50 mol of an ideal gas to one-fifth its original volume.
Calculate the temperature of the gas, assuming it remains
constant during the compression.

24. 1t is found that, when a dilute gas expands quasi-
statically from 0.50 to 4.0 L, it does 250 J of work.
Assuming that the gas temperature remains constant at 300
K, how many moles of gas are present?

25. In a quasi-static isobaric expansion, 500 J of work are
done by the gas. If the gas pressure is 0.80 atm, what is
the fractional increase in the volume of the gas, assuming it
was originally at 20.0 L?

26. When a gas undergoes a quasi-static isobaric change
in volume from 10.0 to 2.0 L, 15 J of work from an external
source are required. What is the pressure of the gas?

27. Anideal gas expands quasi-statically and isothermally
from a state with pressure p and volume V to a state with
volume 4V. Show that the work done by the gas in the
expansion is pV(In 4).

28. As shown below, calculate the work done by the gas in
the quasi-static processes represented by the paths (a) AB;
(b) ADB; (c) ACB; and (d) ADCB.
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29. (a) Calculate the work done by the gas along the
closed path shown below. The curved section between R
and S is semicircular. (b) If the process is carried out in the

opposite direction, what is the work done by the gas?
p (atm) &

4.0

3.0+

2.0- Q

1.0 H R o
————

10 20 30 40

50 V(L)

30. An ideal gas expands quasi-statically to three times
its original volume. Which process requires more work
from the gas, an isothermal process or an isobaric one?
Determine the ratio of the work done in these processes.

31. A dilute gas at a pressure of 2.0 atm and a volume
of 4.0 L is taken through the following quasi-static steps:
(a) an isobaric expansion to a volume of 10.0 L, (b) an
isochoric change to a pressure of 0.50 atm, (c) an isobaric
compression to a volume of 4.0 L, and (d) an isochoric
change to a pressure of 2.0 atm. Show these steps on a pV
diagram and determine from your graph the net work done
by the gas.

32. What is the average mechanical energy of the atoms of
an ideal monatomic gas at 300 K?

33. What is the internal energy of 6.00 mol of an ideal
monatomic gas at 200 °C ?

34. Calculate the internal energy of 15 mg of helium at a
temperature of 0 °C.

35. Two monatomic ideal gases A and B are at the same
temperature. If 1.0 g of gas A has the same internal energy
as 0.10 g of gas B, what are (a) the ratio of the number of
moles of each gas and (b) the ration of the atomic masses
of the two gases?
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36. The van der Waals coefficients for oxygen are
a=0.138J-m*/mol? and b=3.18x 107> m?/mol.

Use these values to draw a van der Waals isotherm of
oxygen at 100 K. On the same graph, draw isotherms of one
mole of an ideal gas.

37. Find the work done in the quasi-static processes shown
below. The states are given as (p, V) values for the points
in the pV plane: 1 (3 atm, 4 L), 2 (3 atm, 6 L), 3 (5 atm, 4
L), 4(2atm,6L),5(4atm,2L),6(5atm,5L),and 7 (2

atm, 5 L).
P P
3
v v
@ (b)
P P
3
5 <
1
\ 1
4
v v
(©) (d)
P P
6
1 2
1 2
- 7 -
v v
(e) (f

3.3 First Law of Thermodynamics

38. When a dilute gas expands quasi-statically from 0.50
to 4.0 L, it does 250 J of work. Assuming that the gas
temperature remains constant at 300 K, (a) what is the
change in the internal energy of the gas? (b) How much
heat is absorbed by the gas in this process?

39. In a quasi-static isobaric expansion, 500 J of work
are done by the gas. The gas pressure is 0.80 atm and it
was originally at 20.0 L. If the internal energy of the gas
increased by 80 J in the expansion, how much heat does the
gas absorb?

40. An ideal gas expands quasi-statically and isothermally
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from a state with pressure p and volume V to a state with
volume 4V. How much heat is added to the expanding gas?

41. As shown below, if the heat absorbed by the gas along
AB is 400 J, determine the quantities of heat absorbed
along (a) ADB; (b) ACB; and (c) ADCB.

p (atm) &
4.0~
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2.0 @ y
104 A -~ B

|
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42. During the isobaric expansion from A to B represented
below, 130 J of heat are removed from the gas. What is the
change in its internal energy?
p (NIm?)

1.0 x 104 A———B

T -
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43. (a) What is the change in internal energy for the
process represented by the closed path shown below? (b)
How much heat is exchanged? (c) If the path is traversed in

the opposite direction, how much heat is exchanged?
p (atm) &
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44. When a gas expands along path AC shown below,
it does 400 J of work and absorbs either 200 or 400 J of
heat. (a) Suppose you are told that along path ABC, the gas
absorbs either 200 or 400 J of heat. Which of these values
is correct? (b) Give the correct answer from part (a), how
much work is done by the gas along ABC? (c) Along CD,
the internal energy of the gas decreases by 50 J. How much
heat is exchanged by the gas along this path?
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45. When a gas expands along AB (see below), it does 500
J of work and absorbs 250 J of heat. When the gas expands
along AC, it does 700 J of work and absorbs 300 J of heat.
(a) How much heat does the gas exchange along BC? (b)
When the gas makes the transmission from C to A along
CDA, 800 J of work are done on it from C to D. How much
heat does it exchange along CDA?

Py

D

4
@]

v

46. A dilute gas is stored in the left chamber of a container
whose walls are perfectly insulating (see below), and the
right chamber is evacuated. When the partition is removed,
the gas expands and fills the entire container. Calculate the
work done by the gas. Does the internal energy of the gas
change in this process?

47. Ideal gases A and B are stored in the left and right
chambers of an insulated container, as shown below. The
partition is removed and the gases mix. Is any work done
in this process? If the temperatures of A and B are initially
equal, what happens to their common temperature after
they are mixed?
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48. An ideal monatomic gas at
2.0x 10° N/m? and a temperature of 300 K undergoes
a quasi-static isobaric expansion from
2.0x 103 t04.0x 103 cm?. (a) What is the work done

by the gas? (b) What is the temperature of the gas after the
expansion? (c) How many moles of gas are there? (d) What
is the change in internal energy of the gas? (e) How much
heat is added to the gas?

a pressure of

49. Consider the process for steam in a cylinder shown
below. Suppose the change in the internal energy in this
process is 30 kJ. Find the heat entering the system.

p (atm) |

50

20

5 L Vo)

50. The state of 30 moles of steam in a cylinder is changed
in a cyclic manner from a-b-c-a, where the pressure and
volume of the states are: a (30 atm, 20 L), b (50 atm, 20
L), and c (50 atm, 45 L). Assume each change takes place
along the line connecting the initial and final states in the
pV plane. (a) Display the cycle in the pV plane. (b) Find
the net work done by the steam in one cycle. (c) Find the
net amount of heat flow in the steam over the course of one
cycle.

51. A monatomic ideal gas undergoes a quasi-static
process that is  described by the function
p(V)=p;+3(V-V,), where the starting state is

(py, V) and the final state (p,, V). Assume the system

consists of n moles of the gas in a container that can
exchange heat with the environment and whose volume can
change freely. (a) Evaluate the work done by the gas during
the change in the state. (b) Find the change in internal
energy of the gas. (c) Find the heat input to the gas during
the change. (d) What are initial and final temperatures?
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52. A metallic
2.5% 107> m® immersed in a large tank of temperature

container of fixed volume of

27 °C contains two compartments separated by a freely

movable wall. Initially, the wall is kept in place by a stopper
so that there are 0.02 mol of the nitrogen gas on one side
and 0.03 mol of the oxygen gas on the other side, each
occupying half the volume. When the stopper is removed,
the wall moves and comes to a final position. The
movement of the wall is controlled so that the wall moves
in infinitesimal quasi-static steps. (a) Find the final
volumes of the two sides assuming the ideal gas behavior
for the two gases. (b) How much work does each gas do on
the other? (c) What is the change in the internal energy of
each gas? (d) Find the amount of heat that enters or leaves
each gas.

53. A gas in a cylindrical closed container is adiabatically
and quasi-statically expanded from a state A (3 MPa, 2
L) to a state B with volume of 6 L along the path
1.8 pV = constant. (a) Plot the path in the pV plane. (b)

Find the amount of work done by the gas and the change in
the internal energy of the gas during the process.

3.4 Thermodynamic Processes

54. Two moles of a monatomic ideal gas at (5 MPa, 5 L) is
expanded isothermally until the volume is doubled (step 1).
Then it is cooled isochorically until the pressure is 1 MPa
(step 2). The temperature drops in this process. The gas is
now compressed isothermally until its volume is back to 5
L, but its pressure is now 2 MPa (step 3). Finally, the gas is
heated isochorically to return to the initial state (step 4). (a)
Draw the four processes in the pV plane. (b) Find the total
work done by the gas.

55. Consider a transformation from point A to B in a two-
step process. First, the pressure is lowered from 3 MPa at
point A to a pressure of 1 MPa, while keeping the volume
at 2 L by cooling the system. The state reached is labeled
C. Then the system is heated at a constant pressure to
reach a volume of 6 L in the state B. (a) Find the amount
of work done on the ACB path. (b) Find the amount of
heat exchanged by the system when it goes from A to B
on the ACB path. (c) Compare the change in the internal
energy when the AB process occurs adiabatically with the
AB change through the two-step process on the ACB path.

56. Consider a cylinder with a movable piston containing
n moles of an ideal gas. The entire apparatus is immersed
in a constant temperature bath of temperature T kelvin. The
piston is then pushed slowly so that the pressure of the
gas changes quasi-statically from p; to p, at constant

temperature T. Find the work done by the gas in terms of n,
R, T, p;, and p,.
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57. An ideal gas expands isothermally along AB and does
700 J of work (see below). (a) How much heat does the gas
exchange along AB? (b) The gas then expands adiabatically
along BC and does 400 J of work. When the gas returns to
A along CA, it exhausts 100 J of heat to its surroundings.
How much work is done on the gas along this path?

Py

A

v

58. Consider the processes shown below. In the processes
AB and BC, 3600 J and 2400 J of heat are added to the
system, respectively. (a) Find the work done in each of
the processes AB, BC, AD, and DC. (b) Find the internal
energy change in processes AB and BC. (c) Find the
internal energy difference between states C and A. (d) Find
the total heat added in the ADC process. (e) From the
information give, can you find the heat added in process

AD? Why or why not?
p (atm) |
5+ B t=- c
A A
2 A - D
T T 75
3 7 V(L)

59. Two moles of helium gas are placed in a cylindrical
container with a piston. The gas is at room temperature

25°C and under a pressure of 3.0 X 10° Pa. When the

pressure from the outside is decreased while keeping the
temperature the same as the room temperature, the volume
of the gas doubles. (a) Find the work the external agent
does on the gas in the process. (b) Find the heat exchanged
by the gas and indicate whether the gas takes in or gives up
heat. Assume ideal gas behavior.

60. An amount of n moles of a monatomic ideal gas in
a conducting container with a movable piston is placed in
a large thermal heat bath at temperature 7'y and the gas

is allowed to come to equilibrium. After the equilibrium
is reached, the pressure on the piston is lowered so that
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the gas expands at constant temperature. The process is
continued quasi-statically until the final pressure is 4/3 of
the initial pressure p;. (a) Find the change in the internal

energy of the gas. (b) Find the work done by the gas. (c)
Find the heat exchanged by the gas, and indicate, whether
the gas takes in or gives up heat.

3.5 Heat Capacities of an Ideal Gas

61. The temperature of an ideal monatomic gas rises by
8.0 K. What is the change in the internal energy of 1 mol of
the gas at constant volume?

62. For a temperature increase of 10°C at constant

volume, what is the heat absorbed by (a) 3.0 mol of a dilute
monatomic gas; (b) 0.50 mol of a dilute diatomic gas; and
(c) 15 mol of a dilute polyatomic gas?

63. If the gases of the preceding problem are initially at
300 K, what are their internal energies after they absorb the
heat?

64. Consider 0.40 mol of dilute carbon dioxide at a
pressure of 0.50 atm and a volume of 50 L. What is the
internal energy of the gas?

65. When 400 J of heat are slowly added to 10 mol of an
ideal monatomic gas, its temperature rises by 10 °C . What

is the work done on the gas?

66. One mole of a dilute diatomic gas occupying a volume
of 10.00 L expands against a constant pressure of 2.000 atm
when it is slowly heated. If the temperature of the gas rises
by 10.00 K and 400.0 J of heat are added in the process,
what is its final volume?

3.6 Adiabatic Processes for an Ideal Gas

67. A monatomic ideal gas undergoes a quasi-static
adiabatic expansion in which its volume is doubled. How is
the pressure of the gas changed?

68. An ideal gas has a pressure of 0.50 atm and a volume
of 10 L. It is compressed adiabatically and quasi-statically
until its pressure is 3.0 atm and its volume is 2.8 L. Is the
gas monatomic, diatomic, or polyatomic?

69. Pressure and volume measurements of a dilute gas
undergoing a quasi-static adiabatic expansion are shown
below. Plot In p vs. V and determine 7y for this gas from

your graph.
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P (atm) V(L)
20.0 1.0
17.0 1.1
14.0 1.3
11.0 1.5
8.0 2.0
5.0 2.6
2.0 5.2
1.0 8.4

70. An ideal monatomic gas at 300 K expands
adiabatically and reversibly to twice its volume. What is its
final temperature?

71. An ideal diatomic gas at 80 K is slowly compressed
adiabatically and reversibly to twice its volume. What is its
final temperature?

72. An ideal diatomic gas at 80 K is slowly compressed
adiabatically to one-third its original volume. What is its
final temperature?

73. Compare the charge in internal energy of an ideal
gas for a quasi-static adiabatic expansion with that for a
quasi-static isothermal expansion. What happens to the
temperature of an ideal gas in an adiabatic expansion?

74. The temperature of n moles of an ideal gas changes
from T to T, in a quasi-static adiabatic transition. Show

that the work done by the gas is given by

W = y”_l'?l(T1 —T,).

75. A dilute gas expands quasi-statically to three times
its initial volume. Is the final gas pressure greater for an
isothermal or an adiabatic expansion? Does your answer
depend on whether the gas is monatomic, diatomic, or
polyatomic?

76. (a) An ideal gas expands adiabatically from a volume
of 20x102m? to 25x1073 m>. If the initial

pressure and temperature were 5.0 X 10° Pa and 300 K,

respectively, what are the final pressure and temperature
of the gas? Use y = 5/3 for the gas. (b) In an isothermal

process, an ideal gas expands from a volume of
2.0x 1072 m? to 2.5% 107> m>. If the initial pressure

50x10° Pa and 300 K,
respectively, what are the final pressure and temperature of

and temperature were
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the gas?

77. On an adiabatic process of an ideal gas pressure,
volume and temperature change such that pV? is constant

with y =5/3 for monatomic gas such as helium and
y="7/5 for diatomic gas such as hydrogen at room

temperature. Use numerical values to plot two isotherms of
1 mol of helium gas using ideal gas law and two adiabatic
processes mediating between them. Use

ADDITIONAL PROBLEMS

79. Consider the process shown below. During steps AB
and BC, 3600 J and 2400 J of heat, respectively, are added
to the system. (a) Find the work done in each of the
processes AB, BC, AD, and DC. (b) Find the internal energy
change in processes AB and BC. (c) Find the internal energy
difference between states C and A. (d) Find the total heat
added in the ADC process. (e) From the information given,
can you find the heat added in process AD? Why or why
not?

p (atm)
5 - B = C
A A
2 A = D
T T i
3 - V()

80. A car tire contains 0.0380 m> of air at a pressure of

2.20% 10° Pa (about 32 psi). How much more internal

energy does this gas have than the same volume has at zero
gauge pressure (which is equivalent to normal atmospheric
pressure)?

81. A helium-filled toy balloon has a gauge pressure of
0.200 atm and a volume of 10.0 L. How much greater is the
internal energy of the helium in the balloon than it would
be at zero gauge pressure?

82. Steam to drive an old-fashioned steam locomotive is
supplied at a constant gauge pressure of 1.75 X 106 N/m?

(about 250 psi) to a piston with a 0.200-m radius. (a) By
calculating pAV, find the work done by the steam when

the piston moves 0.800 m. Note that this is the net work
output, since gauge pressure is used. (b) Now find the
amount of work by calculating the force exerted times the
distance traveled. Is the answer the same as in part (a)?
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T,=500K, V=1L, and T, = 300K for your plot.

78. Two moles of a monatomic ideal gas such as helium
is compressed adiabatically and reversibly from a state (3
atm, 5 L) to a state with pressure 4 atm. (a) Find the volume
and temperature of the final state. (b) Find the temperature
of the initial state of the gas. (c) Find the work done by the
gas in the process. (d) Find the change in internal energy of
the gas in the process.

83. A hand-driven tire pump has a piston with a 2.50-cm
diameter and a maximum stroke of 30.0 cm. (a) How much
work do you do in one stroke if the average gauge pressure

is 2.4 x 10° N/m? (about 35 psi)? (b) What average force

do you exert on the piston, neglecting friction and
gravitational force?

84. Calculate the net work output of a heat engine
following path ABCDA as shown below.
p (108 N/m?2) |

c
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85. What is the net work output of a heat engine that
follows path ABDA in the preceding problem with a straight
line from B to D? Why is the work output less than for path
ABCDA?

86. Five moles of a monatomic ideal gas in a cylinder at
27 °C is expanded isothermally from a volume of 5 L to
10 L. (a) What is the change in internal energy? (b) How
much work was done on the gas in the process? (c) How
much heat was transferred to the gas?

87. Four moles of a monatomic ideal gas in a cylinder
at 27 °C is expanded at constant pressure equal to 1 atm

until its volume doubles. (a) What is the change in internal
energy? (b) How much work was done by the gas in the
process? (c) How much heat was transferred to the gas?

88. Helium gas is cooled from 20°C to 10°C by
expanding from 40 atm to 1 atm. If there is 1.4 mol of
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helium, (a) What is the final volume of helium? (b) What is
the change in internal energy?

89. In an adiabatic process, oxygen gas in a container
is compressed along a path that can be described by the
following pressure in atm as a function of volume V, with

Vo=1L: p = (3.0atm)(V/V,)~". The initial and final

volumes during the process were 2 L and 1.5 L,
respectively. Find the amount of work done on the gas.

90. A cylinder containing three moles of a monatomic
ideal gas is heated at a constant pressure of 2 atm. The
temperature of the gas changes from 300 K to 350 K as a
result of the expansion. Find work done (a) on the gas; and
(b) by the gas.

91. A cylinder containing three moles of nitrogen gas is
heated at a constant pressure of 2 atm. The temperature of
the gas changes from 300 K to 350 K as a result of the
expansion. Find work done (a) on the gas, and (b) by the

CHALLENGE PROBLEMS

94. One mole of an ideal monatomic gas occupies a
1.0x1072m? at a

2.0% 10° N/m?. (a) What is the temperature of the gas?
(b) The gas undergoes a quasi-static adiabatic compression

volume of pressure  of

until its volume is decreased to 5.0 X 107> m>. What is

the new gas temperature? (c) How much work is done on
the gas during the compression? (d) What is the change in
the internal energy of the gas?

95. One mole of an ideal gas is initially in a chamber of
volume 1.0x 1072 m> and at a temperature of 27 °C.

(a) How much heat is absorbed by the gas when it slowly
expands isothermally to twice its initial volume? (b)
Suppose the gas is slowly transformed to the same final
state by first decreasing the pressure at constant volume and
then expanding it isobarically. What is the heat transferred
for this case? (c) Calculate the heat transferred when the
gas is transformed quasi-statically to the same final state
by expanding it isobarically, then decreasing its pressure at
constant volume.

96. A bullet of mass 10 g is traveling horizontally at 200
m/s when it strikes and embeds in a pendulum bob of mass
2.0 kg. (a) How much mechanical energy is dissipated in
the collision? (b) Assuming that C,, for the bob plus bullet

is 3R, calculate the temperature increase of the system due
to the collision. Take the molecular mass of the system to
be 200 g/mol.

97. The insulated cylinder shown below is closed at both

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9

Chapter 3 | The First Law of Thermodynamics

gas by using van der Waals equation of state instead of ideal
gas law.

92. Two moles of a monatomic ideal gas such as oxygen
is compressed adiabatically and reversibly from a state (3
atm, 5 L) to a state with a pressure of 4 atm. (a) Find
the volume and temperature of the final state. (b) Find the
temperature of the initial state. (c) Find work done by the
gas in the process. (d) Find the change in internal energy in
the process. Assume Cy = 5R and C,, = Cy + R for the

diatomic ideal gas in the conditions given.

93. An insulated vessel contains 1.5 moles of argon at 2
atm. The gas initially occupies a volume of 5 L. As a result
of the adiabatic expansion the pressure of the gas is reduced
to 1 atm. (a) Find the volume and temperature of the final
state. (b) Find the temperature of the gas in the initial state.
(c) Find the work done by the gas in the process. (d) Find
the change in the internal energy of the gas in the process.

ends and contains an insulating piston that is free to move
on frictionless bearings. The piston divides the chamber
into two compartments containing gases A and B.
Originally, each compartment has a volume of
5.0 1072 m> and contains a monatomic ideal gas at a
temperature of 0°C and a pressure of 1.0 atm. (a) How
many moles of gas are in each compartment? (b) Heat Q is
slowly added to A so that it expands and B is compressed
until the pressure of both gases is 3.0 atm. Use the fact
that the compression of B is adiabatic to determine the final

volume of both gases. (c) What are their final temperatures?
(d) What is the value of Q?

98. In a diesel engine, the fuel is ignited without a spark
plug. Instead, air in a cylinder is compressed adiabatically
to a temperature above the ignition temperature of the fuel;
at the point of maximum compression, the fuel is injected
into the cylinder. Suppose that air at 20 °C is taken into the

cylinder at a volume V| and then compressed adiabatically

and quasi-statically to a temperature of 600 °C and a
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volume V,. If y = 1.4, whatis theratio V;/V,? (Note: static.)

In an operating diesel engine, the compression is not quasi-
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4| THE SECOND LAW OF
THERMODYNAMICS

Figure 4.1 A xenon ion engine from the Jet Propulsion Laboratory shows the faint blue glow of charged atoms emitted from
the engine. The ion propulsion engine is the first nonchemical propulsion to be used as the primary means of propelling a
spacecraft. (credit: modification of work by NASA/JPL)
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4.7 Entropy on a Microscopic Scale

Introduction

According to the first law of thermodynamics, the only processes that can occur are those that conserve energy. But this
cannot be the only restriction imposed by nature, because many seemingly possible thermodynamic processes that would
conserve energy do not occur. For example, when two bodies are in thermal contact, heat never flows from the colder body
to the warmer one, even though this is not forbidden by the first law. So some other thermodynamic principles must be
controlling the behavior of physical systems.

One such principle is the second law of thermodynamics, which limits the use of energy within a source. Energy cannot
arbitrarily pass from one object to another, just as we cannot transfer heat from a cold object to a hot one without doing
any work. We cannot unmix cream from coffee without a chemical process that changes the physical characteristics of the
system or its environment. We cannot use internal energy stored in the air to propel a car, or use the energy of the ocean to
run a ship, without disturbing something around that object.

In the chapter covering the first law of thermodynamics, we started our discussion with a joke by C. P. Snow stating that
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the first law means “you can’t win.” He paraphrased the second law as “you can’t break even, except on a very cold day.”
Unless you are at zero kelvin, you cannot convert 100% of thermal energy into work. We start by discussing spontaneous
processes and explain why some processes require work to occur even if energy would have been conserved.

4.1 | Reversible and Irreversible Processes

Learning Objectives

By the end of this section, you will be able to:

* Define reversible and irreversible processes
» State the second law of thermodynamics via an irreversible process

Consider an ideal gas that is held in half of a thermally insulated container by a wall in the middle of the container. The
other half of the container is under vacuum with no molecules inside. Now, if we remove the wall in the middle quickly, the
gas expands and fills up the entire container immediately, as shown in Figure 4.2.
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Figure 4.2 A gas expanding from half of a container to the entire container (a) before and (b) after the wall in the middle is
removed.

Because half of the container is under vacuum before the gas expands there, we do not expect any work to be done by the
system—that is, W = 0 —because no force from the vacuum is exerted on the gas during the expansion. If the container

is thermally insulated from the rest of the environment, we do not expect any heat transfer to the system either, so Q =0.
Then the first law of thermodynamics leads to the change of the internal energy of the system,

AE, =Q-W=0.

For an ideal gas, if the internal energy doesn’t change, then the temperature stays the same. Thus, the equation of state of
the ideal gas gives us the final pressure of the gas, p = nRT/V = p,/2, where p is the pressure of the gas before the

expansion. The volume is doubled and the pressure is halved, but nothing else seems to have changed during the expansion.

All of this discussion is based on what we have learned so far and makes sense. Here is what puzzles us: Can all the
molecules go backward to the original half of the container in some future time? Our intuition tells us that this is going to be
very unlikely, even though nothing we have learned so far prevents such an event from happening, regardless of how small
the probability is. What we are really asking is whether the expansion into the vacuum half of the container is reversible.

A reversible process is a process in which the system and environment can be restored to exactly the same initial states that
they were in before the process occurred, if we go backward along the path of the process. The necessary condition for a
reversible process is therefore the quasi-static requirement. Note that it is quite easy to restore a system to its original state;
the hard part is to have its environment restored to its original state at the same time. For example, in the example of an ideal
gas expanding into vacuum to twice its original volume, we can easily push it back with a piston and restore its temperature
and pressure by removing some heat from the gas. The problem is that we cannot do it without changing something in its
surroundings, such as dumping some heat there.

A reversible process is truly an ideal process that rarely happens. We can make certain processes close to reversible and
therefore use the consequences of the corresponding reversible processes as a starting point or reference. In reality, almost
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all processes are irreversible, and some properties of the environment are altered when the properties of the system are
restored. The expansion of an ideal gas, as we have just outlined, is irreversible because the process is not even quasi-static,
that is, not in an equilibrium state at any moment of the expansion.

From the microscopic point of view, a particle described by Newton’s second law can go backward if we flip the direction

023

of time. But this is not the case, in practical terms, in a macroscopic system with more than 1 particles or molecules,

where numerous collisions between these molecules tend to erase any trace of memory of the initial trajectory of each of
the particles. For example, we can actually estimate the chance for all the particles in the expanded gas to go back to the
original half of the container, but the current age of the universe is still not long enough for it to happen even once.

An irreversible process is what we encounter in reality almost all the time. The system and its environment cannot be
restored to their original states at the same time. Because this is what happens in nature, it is also called a natural process.
The sign of an irreversible process comes from the finite gradient between the states occurring in the actual process. For
example, when heat flows from one object to another, there is a finite temperature difference (gradient) between the two
objects. More importantly, at any given moment of the process, the system most likely is not at equilibrium or in a well-
defined state. This phenomenon is called irreversibility.

Let us see another example of irreversibility in thermal processes. Consider two objects in thermal contact: one at
temperature 7'; and the other at temperature 7, > T, as shown in Figure 4.3.

T, we—— T Tz,
2 1 g2 g
Q

Figure 4.3 Spontaneous heat flow from an object at higher
temperature 7 to another at lower temperature 7.

We know from common personal experience that heat flows from a hotter object to a colder one. For example, when we
hold a few pieces of ice in our hands, we feel cold because heat has left our hands into the ice. The opposite is true when
we hold one end of a metal rod while keeping the other end over a fire. Based on all of the experiments that have been done
on spontaneous heat transfer, the following statement summarizes the governing principle:

Second Law of Thermodynamics (Clausius statement)

Heat never flows spontaneously from a colder object to a hotter object.

This statement turns out to be one of several different ways of stating the second law of thermodynamics. The form of this
statement is credited to German physicist Rudolf Clausius (1822—-1888) and is referred to as the Clausius statement of the
second law of thermodynamics. The word “spontaneously” here means no other effort has been made by a third party, or
one that is neither the hotter nor colder object. We will introduce some other major statements of the second law and show
that they imply each other. In fact, all the different statements of the second law of thermodynamics can be shown to be
equivalent, and all lead to the irreversibility of spontaneous heat flow between macroscopic objects of a very large number
of molecules or particles.

Both isothermal and adiabatic processes sketched on a pV graph (discussed in The First Law of Thermodynamics) are
reversible in principle because the system is always at an equilibrium state at any point of the processes and can go forward
or backward along the given curves. Other idealized processes can be represented by pV curves; Table 4.1 summarizes the
most common reversible processes.

Process Constant Quantity and Resulting Fact
Isobaric Constant pressure W = pAV
Isochoric Constant volume W =0

Table 4.1 Summary of Simple Thermodynamic Processes
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Process Constant Quantity and Resulting Fact

Isothermal Constant temperature AT =0

Adiabatic No heat transfer Q =0

Table 4.1 Summary of Simple Thermodynamic Processes

4.2 | Heat Engines

Learning Objectives

By the end of this section, you will be able to:

* Describe the function and components of a heat engine
» Explain the efficiency of an engine
* Calculate the efficiency of an engine for a given cycle of an ideal gas

A heat engine is a device used to extract heat from a source and then convert it into mechanical work that is used for
all sorts of applications. For example, a steam engine on an old-style train can produce the work needed for driving the
train. Several questions emerge from the construction and application of heat engines. For example, what is the maximum
percentage of the heat extracted that can be used to do work? This turns out to be a question that can only be answered
through the second law of thermodynamics.

The second law of thermodynamics can be formally stated in several ways. One statement presented so far is about the
direction of spontaneous heat flow, known as the Clausius statement. A couple of other statements are based on heat engines.
Whenever we consider heat engines and associated devices such as refrigerators and heat pumps, we do not use the normal
sign convention for heat and work. For convenience, we assume that the symbols Qy, O., and W represent only the

amounts of heat transferred and work delivered, regardless what the givers or receivers are. Whether heat is entering or
leaving a system and work is done to or by a system are indicated by proper signs in front of the symbols and by the
directions of arrows in diagrams.

It turns out that we need more than one heat source/sink to construct a heat engine. We will come back to this point later
in the chapter, when we compare different statements of the second law of thermodynamics. For the moment, we assume
that a heat engine is constructed between a heat source (high-temperature reservoir or hot reservoir) and a heat sink (low-
temperature reservoir or cold reservoir), represented schematically in Figure 4.4. The engine absorbs heat O}, from a heat

source ( hot reservoir) of Kelvin temperature 77, uses some of that energy to produce useful work W, and then discards
the remaining energy as heat Q. into a heat sink ( cold reserveir) of Kelvin temperature 7. Power plants and internal

combustion engines are examples of heat engines. Power plants use steam produced at high temperature to drive electric
generators, while exhausting heat to the atmosphere or a nearby body of water in the role of the heat sink. In an internal
combustion engine, a hot gas-air mixture is used to push a piston, and heat is exhausted to the nearby atmosphere in a similar
manner.
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Vv
Te
Figure 4.4 A schematic representation of a heat engine.

Energy flows from the hot reservoir to the cold reservoir while
doing work.

Actual heat engines have many different designs. Examples include internal combustion engines, such as those used in most
cars today, and external combustion engines, such as the steam engines used in old steam-engine trains. Figure 4.5 shows
a photo of a nuclear power plant in operation. The atmosphere around the reactors acts as the cold reservoir, and the heat
generated from the nuclear reaction provides the heat from the hot reservoir.

Figure 4.5 The heat exhausted from a nuclear power plant
goes to the cooling towers, where it is released into the
atmosphere.

Heat engines operate by carrying a working substance through a cycle. In a steam power plant, the working substance is
water, which starts as a liquid, becomes vaporized, is then used to drive a turbine, and is finally condensed back into the
liquid state. As is the case for all working substances in cyclic processes, once the water returns to its initial state, it repeats
the same sequence.

For now, we assume that the cycles of heat engines are reversible, so there is no energy loss to friction or other irreversible
effects. Suppose that the engine of Figure 4.4 goes through one complete cycle and that Qy,, O, and W represent the

heats exchanged and the work done for that cycle. Since the initial and final states of the system are the same, AE;, =0

for the cycle. We therefore have from the first law of thermodynamics,
W=0-AE, =(Qph—0Qc—0,

so that

W =0 - 0. (4.1)

The most important measure of a heat engine is its efficiency (e), which is simply “what we get out” divided by “what we
put in” during each cycle, as defined by e = W, /Q;,.



150 Chapter 4 | The Second Law of Thermodynamics

With a heat engine working between two heat reservoirs, we get out W and put in Qy,, so the efficiency of the engine is

0. (42)

Here, we used Equation 4.1, W = Q;, — O, in the final step of this expression for the efficiency.

Example 4.1

A Lawn Mower

A lawn mower is rated to have an efficiency of 25.0% and an average power of 3.00 kW. What are (a) the
average work and (b) the minimum heat discharge into the air by the lawn mower in one minute of use?

Strategy

From the average power—that is, the rate of work production—we can figure out the work done in the given
elapsed time. Then, from the efficiency given, we can figure out the minimum heat discharge Q. = Q (1 —e)

with Qh = QC +W.

Solution
a. The average work delivered by the lawn mower is

W = PAr =3.00% 103 x 60x 1.00J = 180 kJ.
b. The minimum heat discharged into the air is given by

Qc=0p(l —e) = (Qc + W) —e),

which leads to
O.=W(/e—1)=180x (1/0.25 — 1) kJ = 540 kJ.

Significance

As the efficiency rises, the minimum heat discharged falls. This helps our environment and atmosphere by not
having as much waste heat expelled.

4.3 | Refrigerators and Heat Pumps

Learning Objectives

By the end of this section, you will be able to:

* Describe a refrigerator and a heat pump and list their differences
* Calculate the performance coefficients of simple refrigerators and heat pumps

The cycles we used to describe the engine in the preceding section are all reversible, so each sequence of steps can just as
easily be performed in the opposite direction. In this case, the engine is known as a refrigerator or a heat pump, depending
on what is the focus: the heat removed from the cold reservoir or the heat dumped to the hot reservoir. Either a refrigerator
or a heat pump is an engine running in reverse. For a refrigerator, the focus is on removing heat from a specific area. For
a heat pump, the focus is on dumping heat to a specific area.

We first consider a refrigerator (Figure 4.6). The purpose of this engine is to remove heat from the cold reservoir, which
is the space inside the refrigerator for an actual household refrigerator or the space inside a building for an air-conditioning
unit.
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Refrigerator Qn
or heat pump

[
[ % ]
Figure 4.6 A schematic representation of a refrigerator (or a

heat pump). The arrow next to work (W) indicates work being
put into the system.

A refrigerator (or heat pump) absorbs heat Q. from the cold reservoir at Kelvin temperature 7. and discards heat Oy
to the hot reservoir at Kelvin temperature 7}, while work W is done on the engine’s working substance, as shown by

the arrow pointing toward the system in the figure. A household refrigerator removes heat from the food within it while
exhausting heat to the surrounding air. The required work, for which we pay in our electricity bill, is performed by the motor
that moves a coolant through the coils. A schematic sketch of a household refrigerator is given in Figure 4.7.
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Figure 4.7 A schematic diagram of a household refrigerator. A coolant with a
boiling temperature below the freezing point of water is sent through the cycle
(clockwise in this diagram). The coolant extracts heat from the refrigerator at the
evaporator, causing coolant to vaporize. It is then compressed and sent through the
condenser, where it exhausts heat to the outside.

The effectiveness or coefficient of performance Ky of a refrigerator is measured by the heat removed from the cold

reservoir divided by the work done by the working substance cycle by cycle:

Ke=Qeo O (43)

On—0c¢

Note that we have used the condition of energy conservation, W = Q}, — Q, in the final step of this expression.

The effectiveness or coefficient of performance Kp of a heat pump is measured by the heat dumped to the hot reservoir

divided by the work done to the engine on the working substance cycle by cycle:

Oh On (4.4)

=W To,-o0
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Once again, we use the energy conservation condition W = Qp — Q. to obtain the final step of this expression.

4.4 | Statements of the Second Law of Thermodynamics

Learning Objectives

By the end of this section, you will be able to:

* Contrast the second law of thermodynamics statements according to Kelvin and Clausius
formulations

* Interpret the second of thermodynamics via irreversibility

Earlier in this chapter, we introduced the Clausius statement of the second law of thermodynamics, which is based on
the irreversibility of spontaneous heat flow. As we remarked then, the second law of thermodynamics can be stated in
several different ways, and all of them can be shown to imply the others. In terms of heat engines, the second law of
thermodynamics may be stated as follows:

Second Law of Thermodynamics (Kelvin statement)

It is impossible to convert the heat from a single source into work without any other effect.

This is known as the Kelvin statement of the second law of thermodynamics. This statement describes an unattainable
“ perfect engine,” as represented schematically in Figure 4.8(a). Note that “without any other effect” is a very strong
restriction. For example, an engine can absorb heat and turn it all into work, but not if it completes a cycle. Without
completing a cycle, the substance in the engine is not in its original state and therefore an “other effect” has occurred.
Another example is a chamber of gas that can absorb heat from a heat reservoir and do work isothermally against a piston
as it expands. However, if the gas were returned to its initial state (that is, made to complete a cycle), it would have to be
compressed and heat would have to be extracted from it.

The Kelvin statement is a manifestation of a well-known engineering problem. Despite advancing technology, we are not
able to build a heat engine that is 100% efficient. The first law does not exclude the possibility of constructing a perfect
engine, but the second law forbids it.

A R

Perfect Q\/ Perfect QLI [
heat engine refrigerator

@) (b)
Figure 4.8 (a) A “perfect heat engine” converts all input heat into work. (b) A “perfect
refrigerator” transports heat from a cold reservoir to a hot reservoir without work input. Neither
of these devices is achievable in reality.

We can show that the Kelvin statement is equivalent to the Clausius statement if we view the two objects in the Clausius
statement as a cold reservoir and a hot reservoir. Thus, the Clausius statement becomes: It is impossible to construct a
refrigerator that transfers heat from a cold reservoir to a hot reservoir without aid from an external source. The Clausius
statement is related to the everyday observation that heat never flows spontaneously from a cold object to a hot object. Heat
transfer in the direction of increasing temperature always requires some energy input. A “ perfect refrigerator,” shown in
Figure 4.8(b), which works without such external aid, is impossible to construct.
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To prove the equivalence of the Kelvin and Clausius statements, we show that if one statement is false, it necessarily follows
that the other statement is also false. Let us first assume that the Clausius statement is false, so that the perfect refrigerator
of Figure 4.8(b) does exist. The refrigerator removes heat Q from a cold reservoir at a temperature 7. and transfers all

of it to a hot reservoir at a temperature 7},. Now consider a real heat engine working in the same temperature range. It
extracts heat Q + AQ from the hot reservoir, does work W, and discards heat Q to the cold reservoir. From the first law,
these quantities are related by W = (Q + AQ) — 0 = AQ.

Suppose these two devices are combined as shown in Figure 4.9. The net heat removed from the hot reservoir is AQ,
no net heat transfer occurs to or from the cold reservoir, and work W is done on some external body. Since W = AQ, the

combination of a perfect refrigerator and a real heat engine is itself a perfect heat engine, thereby contradicting the Kelvin
statement. Thus, if the Clausius statement is false, the Kelvin statement must also be false.

S

Figure 4.9 Combining a perfect refrigerator and a real heat
engine yields a perfect heat engine because W = AQ.

Using the second law of thermodynamics, we now prove two important properties of heat engines operating between two
heat reservoirs. The first property is that any reversible engine operating between two reservoirs has a greater efficiency
than any irreversible engine operating between the same two reservoirs.

The second property to be demonstrated is that all reversible engines operating between the same two reservoirs have the
same efficiency. To show this, we start with the two engines D and E of Figure 4.10(a), which are operating between
two common heat reservoirs at temperatures 77, and 7. First, we assume that D is a reversible engine and that E is a

hypothetical irreversible engine that has a higher efficiency than D. If both engines perform the same amount of work W
per cycle, it follows from Equation 4.2 that Qy, > @} . It then follows from the first law that Q. > Qc.

Ty us

S
2

(@) (b)
Figure 4.10 (a) Two uncoupled engines D and E working between the same reservoirs. (b) The coupled engines, with D
working in reverse.

Suppose the cycle of D is reversed so that it operates as a refrigerator, and the two engines are coupled such that the work
output of E is used to drive D, as shown in Figure 4.10(b). Since Q}, > O}, and Q. > O, the net result of each cycle is

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9



Chapter 4 | The Second Law of Thermodynamics 155

equivalent to a spontaneous transfer of heat from the cold reservoir to the hot reservoir, a process the second law does not
allow. The original assumption must therefore be wrong, and it is impossible to construct an irreversible engine such that E
is more efficient than the reversible engine D.

Now it is quite easy to demonstrate that the efficiencies of all reversible engines operating between the same reservoirs are
equal. Suppose that D and E are both reversible engines. If they are coupled as shown in Figure 4.10(b), the efficiency
of E cannot be greater than the efficiency of D, or the second law would be violated. If both engines are then reversed, the
same reasoning implies that the efficiency of D cannot be greater than the efficiency of E. Combining these results leads to
the conclusion that all reversible engines working between the same two reservoirs have the same efficiency.

4.1 Check Your Understanding What is the efficiency of a perfect heat engine? What is the coefficient of
performance of a perfect refrigerator?

@ 4.2 Check Your Understanding Show that Qp — Q} = Q. — Q¢ for the hypothetical engine of Figure
4.10(b).

4.5 | The Carnot Cycle

Learning Objectives

* Describe the Carnot cycle with the roles of all four processes involved
* Outline the Carnot principle and its implications
* Demonstrate the equivalence of the Carnot principle and the second law of thermodynamics

In the early 1820s, Sadi Carnot (1786-1832), a French engineer, became interested in improving the efficiencies of practical
heat engines. In 1824, his studies led him to propose a hypothetical working cycle with the highest possible efficiency
between the same two reservoirs, known now as the Carneot cycle. An engine operating in this cycle is called a Carnot
engine. The Carnot cycle is of special importance for a variety of reasons. At a practical level, this cycle represents a
reversible model for the steam power plant and the refrigerator or heat pump. Yet, it is also very important theoretically,
for it plays a major role in the development of another important statement of the second law of thermodynamics. Finally,
because only two reservoirs are involved in its operation, it can be used along with the second law of thermodynamics to
define an absolute temperature scale that is truly independent of any substance used for temperature measurement.

With an ideal gas as the working substance, the steps of the Carnot cycle, as represented by Figure 4.11, are as follows.
1. Isothermal expansion. The gas is placed in thermal contact with a heat reservoir at a temperature 7},. The gas
absorbs heat QO from the heat reservoir and is allowed to expand isothermally, doing work W,. Because the
internal energy E;.. of an ideal gas is a function of the temperature only, the change of the internal energy is zero,
thatis, AF;,; =0 during this isothermal expansion. With the first law of thermodynamics, AE, ;= Q0 — W, we
find that the heat absorbed by the gas is

Qh = Wl = I’lRTh lnﬁ
Vu
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Qh Qc
Reservoir Insulation Reservoir Insulation
(Temperature T,) (Temperature T_)

Step 1: Step 2: Step 3: Step 4:
Isothermal Adiabatic Isothermal Adiabatic
expansion expansion compression compression

(M—=N) (N—=0) (O—P) (P—~M)

Figure 4.11 The four processes of the Carnot cycle. The working substance is assumed to be an
ideal gas whose thermodynamic path MNOP is represented in Figure 4.12.

Pi

;
.

v
Figure 4.12 The total work done by the gas in the Carnot cycle
is shown and given by the area enclosed by the loop MNOPM.

2. Adiabatic expansion. The gas is thermally isolated and allowed to expand further, doing work W,. Because this
expansion is adiabatic, the temperature of the gas falls—in this case, from T}, to T¢. From pV’ = constant and

the equation of state for an ideal gas, pV = nRT , we have
-1
TV'™ " = constant,

so that
r=1 r—1
Th \%4 N = TC VO .
3. Isothermal compression. The gas is placed in thermal contact with a cold reservoir at temperature 7, and
compressed isothermally. During this process, work W3 is done on the gas and it gives up heat Q. to the cold

reservoir. The reasoning used in step 1 now yields

Oe = nRT, 22,
Vp
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where Q. is the heat dumped to the cold reservoir by the gas.
4. Adiabatic compression. The gas is thermally isolated and returned to its initial state by compression. In this process,
work W, is done on the gas. Because the compression is adiabatic, the temperature of the gas rises—from

T to Ty, in this particular case. The reasoning of step 2 now gives
-1 -1
TC VP ’ = Th VM r .

The total work done by the gas in the Carnot cycle is given by
W=W1+W2—W3—W4.
This work is equal to the area enclosed by the loop shown in the pV diagram of Figure 4.12. Because the initial and final
states of the system are the same, the change of the internal energy of the gas in the cycle must be zero, that is, AE;,; = 0.

The first law of thermodynamics then gives
W=0-AE, =(Qp— 0o -0,
and
W =0, -0..

To find the efficiency of this engine, we first divide Q. by Oy, :

& _ & IHVO/VP
O, T, nVpIVy,

When the adiabatic constant from step 2 is divided by that of step 4, we find
Vo _Vn
Vp Vi
Substituting this into the equation for Q./Q;,, we obtain

O _T¢
Oy Ty

Finally, with Equation 4.2, we find that the efficiency of this ideal gas Carnot engine is given by

T. (4.5)

€=1—T—h.

An engine does not necessarily have to follow a Carnot engine cycle. All engines, however, have the same net effect,
namely the absorption of heat from a hot reservoir, the production of work, and the discarding of heat to a cold reservoir.
This leads us to ask: Do all reversible cycles operating between the same two reservoirs have the same efficiency? The
answer to this question comes from the second law of thermodynamics discussed earlier: All reversible engine cycles
produce exactly the same efficiency. Also, as you might expect, all real engines operating between two reservoirs are less
efficient than reversible engines operating between the same two reservoirs. This too is a consequence of the second law of
thermodynamics shown earlier.

The cycle of an ideal gas Carnot refrigerator is represented by the pV diagram of Figure 4.13. It is a Carnot engine
operating in reverse. The refrigerator extracts heat Q. from a cold-temperature reservoir at 7. when the ideal gas

expands isothermally. The gas is then compressed adiabatically until its temperature reaches T}, after which an isothermal
compression of the gas results in heat Q) being discarded to a high-temperature reservoir at T3,. Finally, the cycle is

completed by an adiabatic expansion of the gas, causing its temperature to drop to 7.
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Qh Qh A

P Qo
0. © 4/\
[ = |

v
Figure 4.13 The work done on the gas in one cycle of the
Carnot refrigerator is shown and given by the area enclosed by
the loop MPONM.

The work done on the ideal gas is equal to the area enclosed by the path of the pV diagram. From the first law, this work is
given by

W=0,-0..
An analysis just like the analysis done for the Carnot engine gives
Qc_on
T. Ty’
When combined with Equation 4.3, this yields
Kg = ﬁ (4.6)

for the coefficient of performance of the ideal-gas Carnot refrigerator. Similarly, we can work out the coefficient of
performance for a Carnot heat pump as

__On __ Ty (4.7)
O, —0Qc Ty,-T¢

Kp

We have just found equations representing the efficiency of a Carnot engine and the coefficient of performance of a Carnot
refrigerator or a Carnot heat pump, assuming an ideal gas for the working substance in both devices. However, these
equations are more general than their derivations imply. We will soon show that they are both valid no matter what the
working substance is.

Carnot summarized his study of the Carnot engine and Carnot cycle into what is now known as Carnet’s principle:

Carnot’s Principle

No engine working between two reservoirs at constant temperatures can have a greater efficiency than a reversible
engine.

This principle can be viewed as another statement of the second law of thermodynamics and can be shown to be equivalent
to the Kelvin statement and the Clausius statement.
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Example 4.2

The Carnot Engine

A Carnot engine has an efficiency of 0.60 and the temperature of its cold reservoir is 300 K. (a) What is the
temperature of the hot reservoir? (b) If the engine does 300 J of work per cycle, how much heat is removed from
the high-temperature reservoir per cycle? (c) How much heat is exhausted to the low-temperature reservoir per
cycle?

Strategy

From the temperature dependence of the thermal efficiency of the Carnot engine, we can find the temperature
of the hot reservoir. Then, from the definition of the efficiency, we can find the heat removed when the work
done by the engine is given. Finally, energy conservation will lead to how much heat must be dumped to the cold
reservoir.

Solution
a. From e =1—T./T} we have

—1_300K
0.60 =1 Ty

so that the temperature of the hot reservoir is

_ 300K _
Ty = 7208 = 750 k.

b. By definition, the efficiency of the engine is e¢ = W/Q, so that the heat removed from the high-

temperature reservoir per cycle is

_ W _300J _
0y =W =30 — 5005,

c. From the first law, the heat exhausted to the low-temperature reservoir per cycle by the engine is
Qc=0,—W=500J-300J=2001.

Significance

A Carnot engine has the maximum possible efficiency of converting heat into work between two reservoirs, but
this does not necessarily mean itis 100% efficient. As the difference in temperatures of the hot and cold reservoir

increases, the efficiency of a Carnot engine increases.

Example 4.3

A Carnot Heat Pump

Imagine a Carnot heat pump operates between an outside temperature of 0 °C and an inside temperature of
20.0 °C . What is the work needed if the heat delivered to the inside of the house is 30.0 kJ?

Strategy

Because the heat pump is assumed to be a Carnot pump, its performance coefficient is given by
Kp = 0/W =T, /(T},— T;). Thus, we can find the work W from the heat delivered Q.

Solution
The work needed is obtained from

W =0, /Kp = Q(Ty, — TITy = 30kI x (293K — 273 K)/293 K = 2 kJ.

Significance

We note that this work depends not only on the heat delivered to the house but also on the temperatures
outside and inside. The dependence on the temperature outside makes them impractical to use in areas where the
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temperature is much colder outside than room temperature.

In terms of energy costs, the heat pump is a very economical means for heating buildings (Figure 4.14). Contrast this
method with turning electrical energy directly into heat with resistive heating elements. In this case, one unit of electrical
energy furnishes at most only one unit of heat. Unfortunately, heat pumps have problems that do limit their usefulness. They
are quite expensive to purchase compared to resistive heating elements, and, as the performance coefficient for a Carnot
heat pump shows, they become less effective as the outside temperature decreases. In fact, below about —10 °C, the heat

they furnish is less than the energy used to operate them.

Figure 4.14 A photograph of a heat pump (large box) located
outside a house. This heat pump is located in a warm climate
area, like the southern United States, since it would be far too
inefficient located in the northern half of the United States.
(credit: modification of work by Peter Stevens)

@’ 4.3 Check Your Understanding A Carnot engine operates between reservoirs at 400 °C and 30 °C. (a)
What is the efficiency of the engine? (b) If the engine does 5.0 J of work per cycle, how much heat per cycle
does it absorb from the high-temperature reservoir? (c) How much heat per cycle does it exhaust to the cold-
temperature reservoir? (d) What temperatures at the cold reservoir would give the minimum and maximum
efficiency?

@ 4.4 Check Your Understanding A Carnot refrigerator operates between two heat reservoirs whose
temperatures are 0 °C and 25 °C. (a) What is the coefficient of performance of the refrigerator? (b) If 200 J of

work are done on the working substance per cycle, how much heat per cycle is extracted from the cold
reservoir? (c) How much heat per cycle is discarded to the hot reservoir?

4.6 | Entropy

Learning Objectives

By the end of this section you will be able to:

* Describe the meaning of entropy
* Calculate the change of entropy for some simple processes

The second law of thermodynamics is best expressed in terms of a change in the thermodynamic variable known as entropy,
which is represented by the symbol S. Entropy, like internal energy, is a state function. This means that when a system
makes a transition from one state into another, the change in entropy AS is independent of path and depends only on the
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thermodynamic variables of the two states.

We first consider AS for a system undergoing a reversible process at a constant temperature. In this case, the change in
entropy of the system is given by

_0 (4.8)
AS = T

where Q is the heat exchanged by the system kept at a temperature T (in kelvin). If the system absorbs heat—that is, with
QO > 0 —the entropy of the system increases. As an example, suppose a gas is kept at a constant temperature of 300 K

while it absorbs 10 J of heat in a reversible process. Then from Equation 4.8, the entropy change of the gas is

__10J _
AS = 300K = 0.033 J/K.

Similarly, if the gas loses 5.0 J of heat; that is, O = —5.01J, at temperature 7" = 200 K, we have the entropy change of the

system given by

AS =30 _ 025K,

Example 4.4

Entropy Change of Melting Ice

Heat is slowly added to a 50-g chunk of ice at 0 °C until it completely melts into water at the same temperature.
What is the entropy change of the ice?

Strategy

Because the process is slow, we can approximate it as a reversible process. The temperature is a constant, and we
can therefore use Equation 4.8 in the calculation.

Solution
The ice is melted by the addition of heat:
QO =mL;=50gx335]/g =16.8KkI.

In this reversible process, the temperature of the ice-water mixture is fixed at 0°C or 273 K. Now from
AS = Q/T , the entropy change of the ice is

_168KkJ _
AS = 773K =61.5J/K

when it melts to water at 0 °C.
Significance

During a phase change, the temperature is constant, allowing us to use Equation 4.8 to solve this problem. The
same equation could also be used if we changed from a liquid to a gas phase, since the temperature does not
change during that process either.

The change in entropy of a system for an arbitrary, reversible transition for which the temperature is not necessarily constant
is defined by modifying AS = Q/T . Imagine a system making a transition from state A to B in small, discrete steps. The

temperatures associated with these states are 74 and T, respectively. During each step of the transition, the system
exchanges heat AQ); reversibly at a temperature 7';. This can be accomplished experimentally by placing the system in
thermal contact with a large number of heat reservoirs of varying temperatures 7, as illustrated in Figure 4.15. The

change in entropy for each step is AS; = Q;/T;. The net change in entropy of the system for the transition is
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AQ; (4.9)
AS=Sp—S,= D, AS;= D T
l

1

We now take the limit as AQ; — 0, and the number of steps approaches infinity. Then, replacing the summation by an

integral, we obtain

B (4.10)
As:sB—sA=J %,
A

where the integral is taken between the initial state A and the final state B. This equation is valid only if the transition from
Ato B is reversible.

v

T T+AT T + 2AT T+ nAT

Figure 4.15 The gas expands at constant pressure as its temperature is increased in small steps through the
use of a series of heat reservoirs.

As an example, let us determine the net entropy change of a reversible engine while it undergoes a single Carnot cycle. In the

adiabatic steps 2 and 4 of the cycle shown in Figure 4.11, no heat exchange takes place, so AS, = AS, = / dQIT = 0.

In step 1, the engine absorbs heat Q, at a temperature 7}, so its entropy change is AS; = Q,/T},. Similarly, in step 3,

AS5 = —Q./T. The net entropy change of the engine in one cycle of operation is then

ASp= AS) +AS, +AS; +AS, = 20 e
h c

However, we know that for a Carnot engine,

On _ Q¢
T, To
SO

There is no net change in the entropy of the Carnot engine over a complete cycle. Although this result was obtained for
a particular case, its validity can be shown to be far more general: There is no net change in the entropy of a system
undergoing any complete reversible cyclic process. Mathematically, we write this statement as

¢-dS _ §£dTQ -0 (4.11)

where 55 represents the integral over a closed reversible path.
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We can use Equation 4.11 to show that the entropy change of a system undergoing a reversible process between two given
states is path independent. An arbitrary, closed path for a reversible cycle that passes through the states A and B is shown

in Figure 4.16. From Equation 4.11, %dS = 0 for this closed path. We may split this integral into two segments, one

along I, which leads from A to B, the other along II, which leads from B to A. Then

[ fABdS]I + [ /BAdS] =0

Since the process is reversible,

[ fABdS]I = [ fABdS]H.

v
Figure 4.16 The closed loop passing through states A and B
represents a reversible cycle.

Hence, the entropy change in going from A to B is the same for paths I and II. Since paths I and II are arbitrary, reversible
paths, the entropy change in a transition between two equilibrium states is the same for all the reversible processes joining
these states. Entropy, like internal energy, is therefore a state function.

What happens if the process is irreversible? When the process is irreversible, we expect the entropy of a closed system, or
the system and its environment (the universe), to increase. Therefore we can rewrite this expression as

AS >0, (4.12)

where S is the total entropy of the closed system or the entire universe, and the equal sign is for a reversible process. The
fact is the entropy statement of the second law of thermodynamics:

Second Law of Thermodynamics (Entropy statement)

The entropy of a closed system and the entire universe never decreases.

We can show that this statement is consistent with the Kelvin statement, the Clausius statement, and the Carnot principle.

Example 4.5

Entropy Change of a System during an Isobaric Process

Determine the entropy change of an object of mass m and specific heat c that is cooled rapidly (and irreversibly)
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at constant pressure from T}, to T¢.

Strategy

The process is clearly stated as an irreversible process; therefore, we cannot simply calculate the entropy change
from the actual process. However, because entropy of a system is a function of state, we can imagine a reversible
process that starts from the same initial state and ends at the given final state. Then, the entropy change of the

B
system is given by Equation 4.10, AS = / doIT.
A

Solution

To replace this rapid cooling with a process that proceeds reversibly, we imagine that the hot object is put into
thermal contact with successively cooler heat reservoirs whose temperatures range from 7}, to T.. Throughout

the substitute transition, the object loses infinitesimal amounts of heat dQ, so we have

Tcd
AS = J @
Ty

From the definition of heat capacity, an infinitesimal exchange dQ for the object is related to its temperature
change dT by
dQ = mcdT.

Substituting this dQ into the expression for AS, we obtain the entropy change of the object as it is cooled at
constant pressure from 7}, to 7 :

T
‘medl _ o Te

AS:JTh T T,

Note that AS < 0 here because T < T}. In other words, the object has lost some entropy. But if we count

whatever is used to remove the heat from the object, we would still end up with AS > 0 because the

universe
process is irreversible.
Significance

If the temperature changes during the heat flow, you must keep it inside the integral to solve for the change in
entropy. If, however, the temperature is constant, you can simply calculate the entropy change as the heat flow
divided by the temperature.

Example 4.6

Stirling Engine
The steps of a reversible Stirling engine are as follows. For this problem, we will use 0.0010 mol of a monatomic

gas that starts at a temperature of 133 °C and a volume of 0.10 m?, which will be called point A. Then it goes
through the following steps:

1. Step AB: isothermal expansion at 133 °C from 0.10 m? to 0.20m?
2. Step BC: isochoric cooling to 33 °C
3. Step CD: isothermal compression at 33 °C from 0.20 m? to 0.10 m?

4. Step DA: isochoric heating back to 133 °C and 0.10 m?

(a) Draw the pV diagram for the Stirling engine with proper labels.
(b) Fill in the following table.
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Step W@ Q@)  AS (IIK)

Step AB
Step BC
Step CD
Step DA

Complete cycle

(c) How does the efficiency of the Stirling engine compare to the Carnot engine working within the same two
heat reservoirs?

Strategy

Using the ideal gas law, calculate the pressure at each point so that they can be labeled on the pV diagram.
1%

Isothermal work is calculated using W = nRT ln(V—Q), and an isochoric process has no work done. The

heat flow is calculated from the first law of thermodynamics, Q = AE;,,— W where AE;, = %nRAT for

monatomic gasses. Isothermal steps have a change in entropy of Q/T, whereas isochoric steps have

T
AS = %nR ln(T—z). The efficiency of a heat engine is calculated by using eg;. = W/Qy,.
1
Solution
a. The graph is shown below.
p (atm) 4
34 e
26 D
14 8
134 c
T T 3'
0.10 0.20 v (m?)
b. The completed table is shown below.
Step w (J) QJ) AS (JIK)
Step AB Isotherm 2.3 2.3 0.0057
Step BC Isochoric 0 -1.2 0.0035
Step CD Isotherm -1.8 -1.8 —0.0059
Step DA Isochoric 0 1.2 —-0.0035
Complete cycle 0.5 0.5 ~0

C. The efficiency of the Stirling heat engine is
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€Stir = W/Qh = (QAB + QCD)/(QAB + QDA) =0.5/45=0.11.
If this were a Carnot engine operating between the same heat reservoirs, its efficiency would be

ey =1— (;—;) = 0.25.

Therefore, the Carnot engine would have a greater efficiency than the Stirling engine.
Significance

In the early days of steam engines, accidents would occur due to the high pressure of the steam in the boiler.
Robert Stirling developed an engine in 1816 that did not use steam and therefore was safer. The Stirling engine
was commonly used in the nineteenth century, but developments in steam and internal combustion engines have
made it difficult to broaden the use of the Stirling engine.

The Stirling engine uses compressed air as the working substance, which passes back and forth between two
chambers with a porous plug, called the regenerator, which is made of material that does not conduct heat as well.
In two of the steps, pistons in the two chambers move in phase.

4.7 | Entropy on a Microscopic Scale

Learning Objectives

By the end of this section you will be able to:

* Interpret the meaning of entropy at a microscopic scale

* Calculate a change in entropy for an irreversible process of a system and contrast with the
change in entropy of the universe

* Explain the third law of thermodynamics

We have seen how entropy is related to heat exchange at a particular temperature. In this section, we consider entropy from a
statistical viewpoint. Although the details of the argument are beyond the scope of this textbook, it turns out that entropy can
be related to how disordered or randomized a system is—the more it is disordered, the higher is its entropy. For example, a
new deck of cards is very ordered, as the cards are arranged numerically by suit. In shuffling this new deck, we randomize
the arrangement of the cards and therefore increase its entropy (Figure 4.17). Thus, by picking one card off the top of the
deck, there would be no indication of what the next selected card will be.

Figure 4.17 The entropy of a new deck of cards goes up after
the dealer shuffles them. (credit: “Rommel SK”/YouTube)

The second law of thermodynamics requires that the entropy of the universe increase in any irreversible process. Thus, in
terms of order, the second law may be stated as follows:

In any irreversible process, the universe becomes more disordered. For example, the irreversible free expansion of an ideal
gas, shown in Figure 4.2, results in a larger volume for the gas molecules to occupy. A larger volume means more possible
arrangements for the same number of atoms, so disorder is also increased. As a result, the entropy of the gas has gone
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up. The gas in this case is a closed system, and the process is irreversible. Changes in phase also illustrate the connection
between entropy and disorder.

Example 4.7

Entropy Change of the Universe

Suppose we place 50 g of ice at 0 °C in contact with a heat reservoir at 20 °C . Heat spontaneously flows from
the reservoir to the ice, which melts and eventually reaches a temperature of 20 °C . Find the change in entropy
of (a) the ice and (b) the universe.

Strategy

Because the entropy of a system is a function of its state, we can imagine two reversible processes for the ice:
(1) ice is melted at 0 °C(T ); and (2) melted ice (water) is warmed up from 0 °C to 20 °C(T'g) under constant

pressure. Then, we add the change in entropy of the reservoir when we calculate the change in entropy of the

universe.
Solution
a. From Equation 4.10, the increase in entropy of the ice is
ASice = ASI + ASZ
mL ¢ B
-t ar
=T, + mC[A T
— (50x335 293
= (30335 4 50x 4.19 x 11293} /K
=763J/K.

b. During this transition, the reservoir gives the ice an amount of heat equal to
Q =mLy+mc(Tg—Ty)
=50x%x(335+4.19%x20)J
=2.10x 10* J.

This leads to a change (decrease) in entropy of the reservoir:

-2 _ _71171K

reservoir — TB

AS

The increase in entropy of the universe is therefore
AS =763J/K-T71.7J/K=4.6J/K > 0.

universe

Significance

The entropy of the universe therefore is greater than zero since the ice gains more entropy than the reservoir loses.
If we considered only the phase change of the ice into water and not the temperature increase, the entropy change
of the ice and reservoir would be the same, resulting in the universe gaining no entropy.

This process also results in a more disordered universe. The ice changes from a solid with molecules located at specific sites
to a liquid whose molecules are much freer to move. The molecular arrangement has therefore become more randomized.
Although the change in average kinetic energy of the molecules of the heat reservoir is negligible, there is nevertheless a
significant decrease in the entropy of the reservoir because it has many more molecules than the melted ice cube. However,
the reservoir’s decrease in entropy is still not as large as the increase in entropy of the ice. The increased disorder of the ice
more than compensates for the increased order of the reservoir, and the entropy of the universe increases by 4.6 J/K.

You might suspect that the growth of different forms of life might be a net ordering process and therefore a violation of the
second law. After all, a single cell gathers molecules and eventually becomes a highly structured organism, such as a human
being. However, this ordering process is more than compensated for by the disordering of the rest of the universe. The net
result is an increase in entropy and an increase in the disorder of the universe.
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4.5 Check Your Understanding In Example 4.7, the spontaneous flow of heat from a hot object to a cold
object results in a net increase in entropy of the universe. Discuss how this result can be related to an increase in
disorder of the system.

The second law of thermodynamics makes clear that the entropy of the universe never decreases during any thermodynamic
process. For any other thermodynamic system, when the process is reversible, the change of the entropy is given by
AS = Q/T . But what happens if the temperature goes to zero, 7 — 0? It turns out this is not a question that can be

answered by the second law.

A fundamental issue still remains: Is it possible to cool a system all the way down to zero kelvin? We understand that
the system must be at its lowest energy state because lowering temperature reduces the kinetic energy of the constituents
in the system. What happens to the entropy of a system at the absolute zero temperature? It turns out the absolute zero
temperature is not reachable—at least, not though a finite number of cooling steps. This is a statement of the third law of
thermodynamics, whose proof requires quantum mechanics that we do not present here. In actual experiments, physicists

have continuously pushed that limit downward, with the lowest temperature achieved at about 1 X 107'9K in a low-
temperature lab at the Helsinki University of Technology in 2008.

Like the second law of thermodynamics, the third law of thermodynamics can be stated in different ways. One of the
common statements of the third law of thermodynamics is: The absolute zero temperature cannot be reached through any
finite number of cooling steps.

In other words, the temperature of any given physical system must be finite, that is, 7 > 0 . This produces a very interesting
question in physics: Do we know how a system would behave if it were at the absolute zero temperature?

The reason a system is unable to reach 0 K is fundamental and requires quantum mechanics to fully understand its origin.
But we can certainly ask what happens to the entropy of a system when we try to cool it down to 0 K. Because the amount

of heat that can be removed from the system becomes vanishingly small, we expect that the change in entropy of the system
along an isotherm approaches zero, that is,

im (A8)7 =0. (4.13)

This can be viewed as another statement of the third law, with all the isotherms becoming isentropic, or into a reversible
ideal adiabat. We can put this expression in words: A system becomes perfectly ordered when its temperature approaches
absolute zero and its entropy approaches its absolute minimum.

The third law of thermodynamics puts another limit on what can be done when we look for energy resources. If there could
be a reservoir at the absolute zero temperature, we could have engines with efficiency of 100% , which would, of course,

violate the second law of thermodynamics.

Example 4.8

Entropy Change of an Ideal Gas in Free Expansion
An ideal gas occupies a partitioned volume V| inside a box whose walls are thermally insulating, as shown in
Figure 4.18(a). When the partition is removed, the gas expands and fills the entire volume V, of the box, as

shown in part (b). What is the entropy change of the universe (the system plus its environment)?
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(@) (b)

Figure 4.18 The adiabatic free expansion of an ideal gas from volume V; to volume V,.

Strategy

The adiabatic free expansion of an ideal gas is an irreversible process. There is no change in the internal energy
(and hence temperature) of the gas in such an expansion because no work or heat transfer has happened. Thus, a
convenient reversible path connecting the same two equilibrium states is a slow, isothermal expansion from V

to V. In this process, the gas could be expanding against a piston while in thermal contact with a heat reservoir,
as in step 1 of the Carnot cycle.
Solution
Since the temperature is constant, the entropy change is given by AS = Q/T, where
Va

o=W=[ pdv
Vi

because AE;, = 0. Now, with the help of the ideal gas law, we have
Vs v
0= nRTI dV _ uRT In2

v vy
Vi

so the change in entropy of the gas is

Because V, > V|, AS is positive, and the entropy of the gas has gone up during the free expansion.

Significance

What about the environment? The walls of the container are thermally insulating, so no heat exchange takes place
between the gas and its surroundings. The entropy of the environment is therefore constant during the expansion.
The net entropy change of the universe is then simply the entropy change of the gas. Since this is positive, the
entropy of the universe increases in the free expansion of the gas.

Example 4.9

Entropy Change during Heat Transfer

Heat flows from a steel object of mass 4.00 kg whose temperature is 400 K to an identical object at 300 K.
Assuming that the objects are thermally isolated from the environment, what is the net entropy change of the
universe after thermal equilibrium has been reached?
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Strategy

Since the objects are identical, their common temperature at equilibrium is 350 K. To calculate the entropy
changes associated with their transitions, we substitute the irreversible process of the heat transfer by two isobaric,
reversible processes, one for each of the two objects. The entropy change for each object is then given by
AS = mc ln(TB/TA)

Solution
Using ¢ = 4501J/kg - K, the specific heat of steel, we have for the hotter object
T
_ mcdT _ &
AS, = JTI—T =mc lnT1

_ 350K _
= (4.00kg)(450 J/kg - K)In3208 = ~240 J/K.

Similarly, the entropy change of the cooler object is

_ 350K _
AS. = (400 kg)(450 kg - K) In320K — 277 y/k.

The net entropy change of the two objects during the heat transfer is then
AS, + AS. =37J/K.

Significance

The objects are thermally isolated from the environment, so its entropy must remain constant. Thus, the entropy
of the universe also increases by 37 J/K.

@ 4.6 Check Your Understanding A quantity of heat Q is absorbed from a reservoir at a temperature 7}, by a
cooler reservoir at a temperature 7.. What is the entropy change of the hot reservoir, the cold reservoir, and the

universe?

@ 4.7 Check Your Understanding A 50-g copper piece at a temperature of 20 °C is placed into a large
insulated vat of water at 100 °C . (a) What is the entropy change of the copper piece when it reaches thermal

equilibrium with the water? (b) What is the entropy change of the water? (c) What is the entropy change of the
universe?

r’w View this site (https:/lopenstaxcollege.org/l/21reversereact) to learn about entropy and microstates. Start

with a large barrier in the middle and 1000 molecules in only the left chamber. What is the total entropy of the
system? Now remove the barrier and let the molecules travel from the left to the right hand side? What is the total
entropy of the system now? Lastly, add heat and note what happens to the temperature. Did this increase entropy
of the system?
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CHAPTER 4 REVIEW

KEY TERMS

Carnot cycle cycle that consists of two isotherms at the temperatures of two reservoirs and two adiabatic processes
connecting the isotherms

Carnot engine Carnot heat engine, refrigerator, or heat pump that operates on a Carnot cycle

Carnot principle principle governing the efficiency or performance of a heat device operating on a Carnot cycle: any
reversible heat device working between two reservoirs must have the same efficiency or performance coefficient,
greater than that of an irreversible heat device operating between the same two reservoirs

Clausius statement of the second law of thermodynamics heat never flows spontaneously from a colder object
to a hotter object

coefficient of performance measure of effectiveness of a refrigerator or heat pump

cold reservoir sink of heat used by a heat engine

disorder measure of order in a system; the greater the disorder is, the higher the entropy

efficiency (e) output work from the engine over the input heat to the engine from the hot reservoir

entropy state function of the system that changes when heat is transferred between the system and the environment

entropy statement of the second law of thermodynamics entropy of a closed system or the entire universe
never decreases

heat engine device that converts heat into work

heat pump device that delivers heat to a hot reservoir

hot reservoir source of heat used by a heat engine
irreversibility phenomenon associated with a natural process

irreversible process process in which neither the system nor its environment can be restored to their original states at
the same time

isentropic reversible adiabatic process where the process is frictionless and no heat is transferred

Kelvin statement of the second law of thermodynamics it is impossible to convert the heat from a single source
into work without any other effect

perfect engine engine that can convert heat into work with 100% efficiency

perfect refrigerator (heat pump) refrigerator (heat pump) that can remove (dump) heat without any input of work
refrigerator device that removes heat from a cold reservoir

reversible process process in which both the system and the external environment theoretically can be returned to their
original states

third law of thermodynamics absolute zero temperature cannot be reached through any finite number of cooling steps

KEY EQUATIONS

Result of energy conservation W=0,-0
Efficiency of a heat engine _ W _ Oc
e=t-=1-=¢
Oy Oy
Coefficient of performance of a refrigerator _Qc__ 0O
=W =g,-0.
h C
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Coefficient of performance of a heat pump Ko — On_ 0Oy
PoW ™ 0,-0¢
Resulting efficiency of a Carnot cycle e=1 T
= T,
Performance coefficient of a reversible refrigerator Ko = T
RT=T, -T
h C
Performance coefficient of a reversible heat pump Ty,
KP = ﬁ
h— fc
Entropy of a system undergoing a reversible process at a constant AS = 0o
temperature T
Change of entropy of a system under a reversible process B
9 pyotasy P AS=Sp-S,= [ dorr
A
Entropy of a system undergoing any complete reversible cyclic process _ggdS _ 55@ -0
= =% =
Change of entropy of a closed system under an irreversible process AS>0
Change in entropy of the system along an isotherm TlimO(AS)T =0

SUMMARY

4.1 Reversible and Irreversible Processes

¢ A reversible process is one in which both the system and its environment can return to exactly the states they were
in by following the reverse path.

¢ An irreversible process is one in which the system and its environment cannot return together to exactly the states
that they were in.

¢ The irreversibility of any natural process results from the second law of thermodynamics.

4.2 Heat Engines
¢ The work done by a heat engine is the difference between the heat absorbed from the hot reservoir and the heat
discharged to the cold reservoir, thatis, W = Qy, — Q..

¢ The ratio of the work done by the engine and the heat absorbed from the hot reservoir provides the efficiency of the
engine, thatis, e = W/Q, =1 — Q./0Qy,.

4.3 Refrigerators and Heat Pumps
* A refrigerator or a heat pump is a heat engine run in reverse.

» The focus of a refrigerator is on removing heat from the cold reservoir with a coefficient of performance Kg.

» The focus of a heat pump is on dumping heat to the hot reservoir with a coefficient of performance Kp.

4.4 Statements of the Second Law of Thermodynamics

¢ The Kelvin statement of the second law of thermodynamics: It is impossible to convert the heat from a single source
into work without any other effect.

¢ The Kelvin statement and Clausius statement of the second law of thermodynamics are equivalent.
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4.5 The Carnot Cycle
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¢ The Carnot cycle is the most efficient engine for a reversible cycle designed between two reservoirs.

¢ The Carnot principle is another way of stating the second law of thermodynamics.

4.6 Entropy

¢ The change in entropy for a reversible process at constant temperature is equal to the heat divided by the

B
temperature. The entropy change of a system under a reversible process is given by AS = f doiT .
A

¢ A system’s change in entropy between two states is independent of the reversible thermodynamic path taken by the

system when it makes a transition between the states.

4.7 Entropy on a Microscopic Scale

* Entropy can be related to how disordered a system is—the more it is disordered, the higher is its entropy. In any
irreversible process, the universe becomes more disordered.

¢ According to the third law of thermodynamics, absolute zero temperature is unreachable.

CONCEPTUAL QUESTIONS

4.1 Reversible and Irreversible Processes

1. State an example of a process that occurs in nature that
is as close to reversible as it can be.

4.2 Heat Engines

2. Explain in practical terms why efficiency is defined as
WiQy.

4.3 Refrigerators and Heat Pumps

3. If the refrigerator door is left open, what happens to the
temperature of the kitchen?

4. TIs it possible for the efficiency of a reversible engine
to be greater than 1.0? Is it possible for the coefficient of
performance of a reversible refrigerator to be less than 1.0?

4.4 Statements of the Second Law of
Thermodynamics

5. In the text, we showed that if the Clausius statement is
false, the Kelvin statement must also be false. Now show
the reverse, such that if the Kelvin statement is false, it
follows that the Clausius statement is false.

6. Why don’t we operate ocean liners by extracting heat
from the ocean or operate airplanes by extracting heat from
the atmosphere?

7. Discuss the practical advantages and disadvantages of

heat pumps and electric heating.

8. The energy output of a heat pump is greater than the
energy used to operate the pump. Why doesn’t this
statement violate the first law of thermodynamics?

9. Speculate as to why nuclear power plants are less
efficient than fossil-fuel plants based on temperature
arguments.

10. An ideal gas goes from state (p;, V;) to state
(pg, Vi) when it is allowed to expand freely. Is it possible

to represent the actual process on a pV diagram? Explain.

4.5 The Carnot Cycle

11. To increase the efficiency of a Carnot engine, should
the temperature of the hot reservoir be raised or lowered?
What about the cold reservoir?

12. How could you design a Carnot engine with 100%
efficiency?

13. What type of processes occur in a Carnot cycle?

4.6 Entropy

14. Does the entropy increase for a Carnot engine for each
cycle?

15. Is it possible for a system to have an entropy change
if it neither absorbs nor emits heat during a reversible
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transition? What happens if the process is irreversible?

4.7 Entropy on a Microscopic Scale

16. Are the entropy changes of the systems in the
following processes positive or negative? (a) water vapor
that condenses on a cold surface; (b) gas in a container that

PROBLEMS

4.1 Reversible and Irreversible Processes

18. A tank contains 111.0 g chlorine gas (Cl,), which
82.0°C
5.70x 10° Pa. The temperature of the air outside the tank
is 20.0 °C. The molar mass of Cl, is 70.9 g/mol. (a)

What is the volume of the tank? (b) What is the internal
energy of the gas? (c) What is the work done by the gas
if the temperature and pressure inside the tank drop to

31.0°C and 3.80 x 10° Pa, respectively, due to a leak?

is at temperature and absolute pressure

19. A mole of ideal monatomic gas at 0 °C and 1.00 atm

is warmed up to expand isobarically to triple its volume.
How much heat is transferred during the process?

20. A mole of an ideal gas at pressure 4.00 atm and
temperature 298 K expands isothermally to double its
volume. What is the work done by the gas?

21. After a free expansion to quadruple its volume, a mole
of ideal diatomic gas is compressed back to its original
volume isobarically and then cooled down to its original
temperature. What is the minimum heat removed from the
gas in the final step to restoring its state?

4.2 Heat Engines

22. An engine is found to have an efficiency of 0.40. If it
does 200 J of work per cycle, what are the corresponding
quantities of heat absorbed and discharged?

23. 1In performing 100.0 J of work, an engine discharges
50.0 J of heat. What is the efficiency of the engine?

24. An engine with an efficiency of 0.30 absorbs 500 J
of heat per cycle. (a) How much work does it perform per
cycle? (b) How much heat does it discharge per cycle?

25. It is found that an engine discharges 100.0 J while
absorbing 125.0 J each cycle of operation. (a) What is
the efficiency of the engine? (b) How much work does it
perform per cycle?
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leaks into the surrounding atmosphere; (c) an ice cube that
melts in a glass of lukewarm water; (d) the lukewarm water
of part (c); (e) a real heat engine performing a cycle; (f)
food cooled in a refrigerator.

17. Discuss the entropy changes in the systems of
Question 21.10 in terms of disorder.

26. The temperature of the cold reservoir of the engine is
300 K. It has an efficiency of 0.30 and absorbs 500 J of heat
per cycle. (a) How much work does it perform per cycle?
(b) How much heat does it discharge per cycle?

27. An engine absorbs three times as much heat as it
discharges. The work done by the engine per cycle is 50
J. Calculate (a) the efficiency of the engine, (b) the heat
absorbed per cycle, and (c) the heat discharged per cycle.

28. A coal power plant consumes 100,000 kg of coal
per hour and produces 500 MW of power. If the heat of
combustion of coal is 30 MJ/kg, what is the efficiency of
the power plant?

4.3 Refrigerators and Heat Pumps

29. A refrigerator has a coefficient of performance of 3.0.
(a) If it requires 200 J of work per cycle, how much heat
per cycle does it remove the cold reservoir? (b) How much
heat per cycle is discarded to the hot reservoir?

30. During one cycle, a refrigerator removes 500 J from a
cold reservoir and discharges 800 J to its hot reservoir. (a)
What is its coefficient of performance? (b) How much work
per cycle does it require to operate?

31. If a refrigerator discards 80 J of heat per cycle and its
coefficient of performance is 6.0, what are (a) the quantity
off heat it removes per cycle from a cold reservoir and (b)
the amount of work per cycle required for its operation?

32. A refrigerator has a coefficient of performance of 3.0.
(a) If it requires 200 J of work per cycle, how much heat
per cycle does it remove the cold reservoir? (b) How much
heat per cycle is discarded to the hot reservoir?

4.5 The Carnot Cycle

33. The temperature of the cold and hot reservoirs
between which a Carnot refrigerator operates are —73 °C
and 270°C, respectively. Which is its coefficient of
performance?
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34. Suppose a Carnot refrigerator operates between
T; and T}. Calculate the amount of work required to

extract 1.0 J of heat from the cold reservoir if (a)
T.=7°C, T, =27°C; (b) T.=-73°C,

T, =27°C; (¢) Te=-173°C, T, =27°C; and (d)
T.=-273°C, T, =27°C.

35. A Carnot engine operates between reservoirs at 600
and 300 K. If the engine absorbs 100 J per cycle at the hot
reservoir, what is its work output per cycle?

36. A 500-W motor operates a Carnot refrigerator
between —5 °C and 30 °C. (a) What is the amount of heat

per second extracted from the inside of the refrigerator? (b)
How much heat is exhausted to the outside air per second?

37. Sketch a Carnot cycle on a temperature-volume
diagram.

38. A Carnot heat pump operates between 0°C and
20 °C . How much heat is exhausted into the interior of a
house for every 1.0 J of work done by the pump?

39. An engine operating between heat reservoirs at 20 °C
and 200°C extracts 1000 J per cycle from the hot

reservoir. (a) What is the maximum possible work that
engine can do per cycle? (b) For this maximum work, how
much heat is exhausted to the cold reservoir per cycle?

40. Suppose a Carnot engine can be operated between two
reservoirs as either a heat engine or a refrigerator. How is
the coefficient of performance of the refrigerator related to
the efficiency of the heat engine?

41. A Carnot engine is used to measure the temperature
of a heat reservoir. The engine operates between the heat
reservoir and a reservoir consisting of water at its triple
point. (a) If 400 J per cycle are removed from the heat
reservoir while 200 J per cycle are deposited in the triple-
point reservoir, what is the temperature of the heat
reservoir? (b) If 400 J per cycle are removed from the
triple-point reservoir while 200 J per cycle are deposited
in the heat reservoir, what is the temperature of the heat
reservoir?

42. What is the minimum work required of a refrigerator
if it is to extract 50 J per cycle from the inside of a freezer
at —10 °C and exhaust heat to the air at 25 °C?

4.6 Entropy

43. Two hundred joules of heat are removed from a heat
reservoir at a temperature of 200 K. What is the entropy
change of the reservoir?

175

44. In an isothermal reversible expansion at 27 °C, an

ideal gas does 20 J of work. What is the entropy change of
the gas?

45. An ideal gas at 300 K is compressed isothermally to
one-fifth its original volume. Determine the entropy change
per mole of the gas.

46. What is the entropy change of 10 g of steam at
100°C when it condenses to water at the same

temperature?

47. A metal rod is used to conduct heat between two
reservoirs at temperatures 7} and T, respectively. When

an amount of heat Q flows through the rod from the hot to
the cold reservoir, what is the net entropy change of the rod,
the hot reservoir, the cold reservoir, and the universe?

48. For the Carnot cycle of Figure 4.12, what is the
entropy change of the hot reservoir, the cold reservoir, and
the universe?

49. A 5.0-kg piece of lead at a temperature of 600 °C is
placed in a lake whose temperature is 15 °C. Determine

the entropy change of (a) the lead piece, (b) the lake, and
(c) the universe.

50. One mole of an ideal gas doubles its volume in a
reversible isothermal expansion. (a) What is the change in
entropy of the gas? (b) If 1500 J of heat are added in this
process, what is the temperature of the gas?

51. One mole of an ideal monatomic gas is confined to a
rigid container. When heat is added reversibly to the gas, its
temperature changes from 7; to T,. (a) How much heat is

added? (b) What is the change in entropy of the gas?

52. (a) A 5.0-kg rock at a temperature of 20°C is
dropped into a shallow lake also at 20 °C from a height of

1.0 10° m. What is the resulting change in entropy of
the universe? (b) If the temperature of the rock is 100 °C

when it is dropped, what is the change of entropy of the
universe? Assume that air friction is negligible (not a good
assumption) and that ¢ = 860 J/kg - K is the specific heat

of the rock.

4.7 Entropy on a Microscopic Scale

53. A copper rod of cross-sectional area 5.0 cm? and
length 5.0 m conducts heat from a heat reservoir at 373 K
to one at 273 K. What is the time rate of change of the
universe’s entropy for this process?
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54. Fifty grams of water at 20 °C is heated until it
becomes vapor at 100 °C . Calculate the change in entropy
of the water in this process.

55. Fifty grams of water at 0 °C are changed into vapor
at 100 °C. What is the change in entropy of the water in
this process?

56. In an isochoric process, heat is added to 10 mol of
monoatomic ideal gas whose temperature increases from
273 to 373 K. What is the entropy change of the gas?

57. Two hundred grams of water at 0 °C is brought into
contact with a heat reservoir at 80 °C. After thermal

equilibrium is reached, what is the temperature of the
water? Of the reservoir? How much heat has been
transferred in the process? What is the entropy change of
the water? Of the reservoir? What is the entropy change of
the universe?

58. Suppose that the temperature of the water in the
previous problem is raised by first bringing it to thermal
equilibrium with a reservoir at a temperature of 40 °C

and then with a reservoir at 80 °C. Calculate the entropy

changes of (a) each reservoir, (b) of the water, and (c) of the
universe.

59. Two hundred grams of water at 0 °C is brought into

contact into thermal equilibrium successively with
reservoirs at 20 °C, 40°C, 60 °C, and 80 °C. (a) What

is the entropy change of the water? (b) Of the reservoir? (c)
What is the entropy change of the universe?

60. (a) Ten grams of H, O starts as ice at 0 °C. The ice

absorbs heat from the air (just above 0 °C) until all of it
melts. Calculate the entropy change of the H, O, of the air,

and of the universe. (b) Suppose that the air in part (a) is at
20 °C rather than 0 °C and that the ice absorbs heat until

it becomes water at 20 °C. Calculate the entropy change
of the H, O, of the air, and of the universe. (c) Is either of

these processes reversible?

61. The Carnot cycle is represented by the temperature-
entropy diagram shown below. (a) How much heat is
absorbed per cycle at the high-temperature reservoir? (b)
How much heat is exhausted per cycle at the low-
temperature reservoir? (c) How much work is done per
cycle by the engine? (d) What is the efficiency of the
engine?
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62. A Carnot engine operating between heat reservoirs
at 500 and 300 K absorbs 1500 J per cycle at the high-
temperature reservoir. (a) Represent the engine’s cycle on
a temperature-entropy diagram. (b) How much work per
cycle is done by the engine?

63. A monoatomic ideal gas (n moles) goes through a
cyclic process shown below. Find the change in entropy of
the gas in each step and the total entropy change over the
entire cycle.

Py

v

64. A Carnot engine has an efficiency of 0.60. When the
temperature of its cold reservoir changes, the efficiency
drops to 0.55. If initially 7. = 27 °C, determine (a) the

constant value of 7}, and (b) the final value of T .

65. A Carnot engine performs 100 J of work while
discharging 200 J of heat each cycle. After the temperature
of the hot reservoir only is adjusted, it is found that the
engine now does 130 J of work while discarding the same
quantity of heat. (a) What are the initial and final
efficiencies of the engine? (b) What is the fractional change
in the temperature of the hot reservoir?

66. A Carnot refrigerator exhausts heat to the air, which is
at a temperature of 25 °C . How much power is used by the
refrigerator if it freezes 1.5 g of water per second? Assume
the water is at 0 °C.
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ADDITIONAL PROBLEMS

67. A 300-W heat pump operates between the ground,
whose temperature is 0 °C, and the interior of a house at

22 °C . What is the maximum amount of heat per hour that
the heat pump can supply to the house?

68. An engineer must design a refrigerator that does 300
J of work per cycle to extract 2100 J of heat per cycle
from a freezer whose temperature is —10°C. What is

the maximum air temperature for which this condition can
be met? Is this a reasonable condition to impose on the
design?

69. A Carnot engine employs 1.5 mol of nitrogen gas
as a working substance, which is considered as an ideal
diatomic gas with y = 7.5 at the working temperatures of

the engine. The Carnot cycle goes in the cycle ABCDA
with AB being an isothermal expansion. The volume at

points A and C of the cycle are 5.0 X 107> m? and 0.15

L, respectively. The engine operates between two thermal
baths of temperature 500 K and 300 K. (a) Find the values
of volume at B and D. (b) How much heat is absorbed by
the gas in the AB isothermal expansion? (c) How much
work is done by the gas in the AB isothermal expansion? (d)
How much heat is given up by the gas in the CD isothermal
expansion? (e) How much work is done by the gas in the
CD isothermal compression? (f) How much work is done
by the gas in the BC adiabatic expansion? (g) How much
work is done by the gas in the DA adiabatic compression?
(h) Find the value of efficiency of the engine based on
the net work and heat input. Compare this value to the
efficiency of a Carnot engine based on the temperatures of
the two baths.

70. A 5.0-kg wood block starts with an initial speed of
8.0 m/s and slides across the floor until friction stops it.
Estimate the resulting change in entropy of the universe.
Assume that everything stays at a room temperature of
20°C.

71. A system consisting of 20.0 mol of a monoatomic
ideal gas is cooled at constant pressure from a volume of
50.0 L to 10.0 L. The initial temperature was 300 K. What
is the change in entropy of the gas?

72. A glass beaker of mass 400 g contains 500 g of water
at 27°C. The beaker is heated reversibly so that the

temperature of the beaker and water rise gradually to
57 °C. Find the change in entropy of the beaker and water

together.

73. A Carnot engine operates between 550°C and
20 °C baths and produces 300 kJ of energy in each cycle.
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Find the change in entropy of the (a) hot bath and (b) cold
bath, in each Carnot cycle?

74. An ideal gas at temperature T is stored in the left half
of an insulating container of volume V using a partition of
negligible volume (see below). What is the entropy change
per mole of the gas in each of the following cases? (a) The
partition is suddenly removed and the gas quickly fills the
entire container. (b) A tiny hole is punctured in the partition
and after a long period, the gas reaches an equilibrium state
such that there is no net flow through the hole. (c) The
partition is moved very slowly and adiabatically all the
way to the right wall so that the gas finally fills the entire
container.

75. A 0.50-kg piece of aluminum at 250 °C is dropped
into 1.0 kg of water at 20 °C . After equilibrium is reached,
what is the net entropy change of the system?

76. Suppose 20 g of ice at 0°C is added to 300 g of
water at 60 °C . What is the total change in entropy of the
mixture after it reaches thermal equilibrium?

77. A heat engine operates between two temperatures such
that the working substance of the engine absorbs 5000 J of
heat from the high-temperature bath and discharges 3000
J to the low-temperature bath. The rest of the energy is
converted into mechanical energy of the turbine. Find (a)
the amount of work produced by the engine and (b) the
efficiency of the engine.

78. A thermal engine produces 4 MJ of electrical energy
while operating between two thermal baths of different
temperatures. The working substance of the engine
discharges 5 MJ of heat to the cold temperature bath. What
is the efficiency of the engine?

79. A coal power plant consumes 100,000 kg of coal
per hour and produces 500 MW of power. If the heat of
combustion of coal is 30 MJ/kg, what is the efficiency of
the power plant?

80. A Carnot engine operates in a Carnot cycle between a
heat source at 550 °C and a heat sink at 20 °C. Find the
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efficiency of the Carnot engine.

81. A Carnot engine working between two heat baths of
temperatures 600 K and 273 K completes each cycle in 5
sec. In each cycle, the engine absorbs 10 kJ of heat. Find
the power of the engine.

CHALLENGE PROBLEMS

83. (a) An infinitesimal amount of heat is added reversibly
to a system. By combining the first and second laws, show
that dU = TdS — dW . (b) When heat is added to an ideal

gas, its temperature and volume change from
T, and V| to T, and V, . Show that the entropy change of

n moles of the gas is given by

_ Ty Vs
AS =nC, lnT—1+ nR lnvl.

84. Using the result of the preceding problem, show that

for an ideal gas undergoing an adiabatic process, TV ™ !

is constant.

85. With the help of the two preceding problems, show
that AS between states 1 and 2 of n moles an ideal gas is

given by
I _

AS=nCp lnT
1

Do
annpl.

86. A cylinder contains 500 g of helium at 120 atm and
20 °C. The valve is leaky, and all the gas slowly escapes
isothermally into the atmosphere. Use the results of the
preceding problem to determine the resulting change in
entropy of the universe.

87. A diatomic ideal gas is brought from an initial
equilibrium state at p; =0.50 atm and 7| = 300K to a

final stage with p, = 0.20 atm and 7 = 500 K. Use the

results of the previous problem to determine the entropy
change per mole of the gas.

88. The gasoline internal combustion engine operates in
a cycle consisting of six parts. Four of these parts involve,
among other things, friction, heat exchange through finite
temperature differences, and accelerations of the piston; it
is irreversible. Nevertheless, it is represented by the ideal
reversible Otto cycle, which is illustrated below. The
working substance of the cycle is assumed to be air. The six
steps of the Otto cycle are as follows:
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82. A Carnot cycle working between 100 °C and 30 °C
is used to drive a refrigerator between —10 °C and 30 °C.

How much energy must the Carnot engine produce per
second so that the refrigerator is able to discard 10 J of
energy per second?

i. Isobaric intake stroke (OA). A mixture of
gasoline and air is drawn into the combustion
chamber at atmospheric pressure p(, as the piston

expands, increasing the volume of the cylinder
from zeroto V4.

ii. Adiabatic compression stroke (AB). The
temperature of the mixture rises as the piston
compresses it adiabatically from a volume
\% A to VB .

iii. Ignition at constant volume (BC). The mixture
is ignited by a spark. The combustion happens so
fast that there is essentially no motion of the piston.
During this process, the added heat Q causes the

pressure to increase from pp to p at the constant
volume Vg(= V).

iv. Adiabatic expansion (CD). The heated mixture
of gasoline and air expands against the piston,
increasing the volume from V. toVp. This is

called the power stroke, as it is the part of the cycle
that delivers most of the power to the crankshaft.

v. Constant-volume exhaust (DA). When the
exhaust valve opens, some of the combustion
products escape. There is almost no movement of
the piston during this part of the cycle, so the
volume remains constant at V 4( = Vp). Most of

the available energy is lost here, as represented by
the heat exhaust Q, .

vi. Isobaric compression (AO). The exhaust valve
remains open, and the compression from V, to

zero drives out the remaining combustion products.

(a) Using (i) e=W/Qq; (i) W=01—0,; and (iii)
Q] = nCV(TC - TB) , Q2 = l’le(TD - TA) B show that

Tp—-T
e=1--L2__-A4,
Tc—Tg
(b) Use the fact that steps (ii) and (iv) are adiabatic to show
that

-1
—1°
,,,7

e=1-

where r=V,/Vp. The quantity r is called the

compression ratio of the engine.
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(c) In practice, r is kept less than around 7. For larger
values, the gasoline-air mixture is compressed to
temperatures so high that it explodes before the finely
timed spark is delivered. This preignition causes engine
knock and loss of power. Show that for » =6 and y = 1.4

(the value for air), ¢ =0.51, or an efficiency of 51%.
Because of the many irreversible processes, an actual
internal combustion engine has an efficiency much less
than this ideal value. A typical efficiency for a tuned engine
is about 25% to 30% .

Pi
C
Q, —> D
B
—l 02
O —— -
p(} = == A
T T =
Ve=Ve Va=V %

89. An ideal diesel cycle is shown below. This cycle
consists of five strokes. In this case, only air is drawn into
the chamber during the intake stroke OA. The air is then
compressed adiabatically from state A to state B, raising its
temperature high enough so that when fuel is added during
the power stroke BC, it ignites. After ignition ends at C,
there is a further adiabatic power stroke CD. Finally, there
is an exhaust at constant volume as the pressure drops from
pp to p 4, followed by a further exhaust when the piston

compresses the chamber volume to zero.

(@ Use W=Q,-0,, Q =nCyTc—-Tp), and
0,=nC(Tp—T,) to show that
e=W _1__Ip=Ta

0, rTc—Tp)

(b) Use the fact that A - B and C — D are adiabatic to

show that
veY  (vBY
VD Va
Ve Vp)
Vb VA
(c) Since there is no preignition (remember, the chamber
does not contain any fuel during the compression), the

compression ratio can be larger than that for a gasoline
engine. Typically, V 4/Vg=15and Vp/V = 5. For these

e=1-

1
/4

values and y = 1.4, show that £ = 0.56, or an efficiency

of 56% . Diesel engines actually operate at an efficiency
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of about 30% to35% compared with 25% to30% for
gasoline engines.

p
Q
B C
Pg = Pc
v
D
|
—_— Q
o 2
Po -5 = A
T T T Y
Vs Ve Va=VYp ¥

90. Consider an ideal gas Joule cycle, also called the
Brayton cycle, shown below. Find the formula for
efficiency of the engine using this cycle in terms of P,

Py,and y.
Py

Adiabat sigbat

v

91. Derive a formula for the coefficient of performance
of a refrigerator using an ideal gas as a working substance
operating in the cycle shown below in terms of the
properties of the three states labeled 1, 2, and 3.

Py

Y Adiabat

v

92. Two moles of nitrogen gas, with y =7/5 for ideal

3 in an

diatomic gases, occupies a volume of 102m
insulated cylinder at temperature 300 K. The gas is
adiabatically and reversibly compressed to a volume of 5

L. The piston of the cylinder is locked in its place, and
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the insulation around the cylinder is removed. The heat-
conducting cylinder is then placed in a 300-K bath. Heat
from the compressed gas leaves the gas, and the
temperature of the gas becomes 300 K again. The gas is
then slowly expanded at the fixed temperature 300 K until

the volume of the gas becomes 1072 m? , thus making a

complete cycle for the gas. For the entire cycle, calculate
(a) the work done by the gas, (b) the heat into or out of the
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gas, (c) the change in the internal energy of the gas, and (d)
the change in entropy of the gas.

93. A Carnot refrigerator, working between 0°C and
30°C is used to cool a bucket of water containing

1072 m3 of water at 30°C to 5°C in 2 hours. Find the
total amount of work needed.
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5| ELECTRIC CHARGES
AND FIELDS

x

Figure 5.1 Electric charges exist all around us. They can cause objects to be replled from each other or to be attracted to each
other. (credit: modification of work by Sean McGrath)

Chapter Outline

5.1 Electric Charge

5.2 Conductors, Insulators, and Charging by Induction
5.3 Coulomb's Law

5.4 Electric Field

5.5 Calculating Electric Fields of Charge Distributions
5.6 Electric Field Lines

5.7 Electric Dipoles

Introduction

Back when we were studying Newton’s laws, we identified several physical phenomena as forces. We did so based on the
effect they had on a physical object: Specifically, they caused the object to accelerate. Later, when we studied impulse and
momentum, we expanded this idea to identify a force as any physical phenomenon that changed the momentum of an object.
In either case, the result is the same: We recognize a force by the effect that it has on an object.

In Gravitation (http:/lcnx.org/content/m58344/latest/) , we examined the force of gravity, which acts on all objects
with mass. In this chapter, we begin the study of the electric force, which acts on all objects with a property called charge.
The electric force is much stronger than gravity (in most systems where both appear), but it can be a force of attraction or a
force of repulsion, which leads to very different effects on objects. The electric force helps keep atoms together, so it is of
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fundamental importance in matter. But it also governs most everyday interactions we deal with, from chemical interactions
to biological processes.

5.1 | Electric Charge

Learning Objectives

By the end of this section, you will be able to:

* Describe the concept of electric charge
* Explain qualitatively the force electric charge creates

You are certainly familiar with electronic devices that you activate with the click of a switch, from computers to cell phones
to television. And you have certainly seen electricity in a flash of lightning during a heavy thunderstorm. But you have also
most likely experienced electrical effects in other ways, maybe without realizing that an electric force was involved. Let’s
take a look at some of these activities and see what we can learn from them about electric charges and forces.

Discoveries

You have probably experienced the phenomenon of static electricity: When you first take clothes out of a dryer, many (not
all) of them tend to stick together; for some fabrics, they can be very difficult to separate. Another example occurs if you
take a woolen sweater off quickly—you can feel (and hear) the static electricity pulling on your clothes, and perhaps even
your hair. If you comb your hair on a dry day and then put the comb close to a thin stream of water coming out of a faucet,
you will find that the water stream bends toward (is attracted to) the comb (Figure 5.2).

|

Figure 5.2 An electrically charged comb attracts a stream of
water from a distance. Note that the water is not touching the
comb. (credit: Jane Whitney)

Suppose you bring the comb close to some small strips of paper; the strips of paper are attracted to the comb and even cling
to it (Figure 5.3). In the kitchen, quickly pull a length of plastic cling wrap off the roll; it will tend to cling to most any
nonmetallic material (such as plastic, glass, or food). If you rub a balloon on a wall for a few seconds, it will stick to the
wall. Probably the most annoying effect of static electricity is getting shocked by a doorknob (or a friend) after shuffling
your feet on some types of carpeting.
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Figure 5.3 After being used to comb hair, this comb attracts
small strips of paper from a distance, without physical contact.
Investigation of this behavior helped lead to the concept of the
electric force. (credit: Jane Whitney)

Many of these phenomena have been known for centuries. The ancient Greek philosopher Thales of Miletus (624-546 BCE)
recorded that when amber (a hard, translucent, fossilized resin from extinct trees) was vigorously rubbed with a piece of fur,
a force was created that caused the fur and the amber to be attracted to each other (Figure 5.4). Additionally, he found that
the rubbed amber would not only attract the fur, and the fur attract the amber, but they both could affect other (nonmetallic)
objects, even if not in contact with those objects (Figure 5.5).

Figure 5.4 Borneo amber is mined in Sabah, Malaysia, from shale-sandstone-mudstone veins.
When a piece of amber is rubbed with a piece of fur, the amber gains more electrons, giving it a
net negative charge. At the same time, the fur, having lost electrons, becomes positively charged.
(credit: “Sebakoamber”/Wikimedia Commons)
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Figure 5.5 When materials are rubbed together, charges can be separated, particularly if one material has a greater affinity for
electrons than another. (a) Both the amber and cloth are originally neutral, with equal positive and negative charges. Only a tiny
fraction of the charges are involved, and only a few of them are shown here. (b) When rubbed together, some negative charge is
transferred to the amber, leaving the cloth with a net positive charge. (c) When separated, the amber and cloth now have net
charges, but the absolute value of the net positive and negative charges will be equal.

The English physicist William Gilbert (1544-1603) also studied this attractive force, using various substances. He worked
with amber, and, in addition, he experimented with rock crystal and various precious and semi-precious gemstones. He also
experimented with several metals. He found that the metals never exhibited this force, whereas the minerals did. Moreover,
although an electrified amber rod would attract a piece of fur, it would repel another electrified amber rod; similarly, two
electrified pieces of fur would repel each other.

This suggested there were two types of an electric property; this property eventually came to be called electric charge. The
difference between the two types of electric charge is in the directions of the electric forces that each type of charge causes:
These forces are repulsive when the same type of charge exists on two interacting objects and attractive when the charges
are of opposite types. The SI unit of electric charge is the coulomb (C), after the French physicist Charles-Augustin de
Coulomb (1736-1806).

The most peculiar aspect of this new force is that it does not require physical contact between the two objects in order to
cause an acceleration. This is an example of a so-called “long-range” force. (Or, as Albert Einstein later phrased it, “action
at a distance.”) With the exception of gravity, all other forces we have discussed so far act only when the two interacting
objects actually touch.

The American physicist and statesman Benjamin Franklin found that he could concentrate charge in a “ Leyden jar,” which
was essentially a glass jar with two sheets of metal foil, one inside and one outside, with the glass between them (Figure
5.6). This created a large electric force between the two foil sheets.
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Figure 5.6 A Leyden jar (an early version of what is now
called a capacitor) allowed experimenters to store large amounts
of electric charge. Benjamin Franklin used such a jar to
demonstrate that lightning behaved exactly like the electricity he
got from the equipment in his laboratory.

Franklin pointed out that the observed behavior could be explained by supposing that one of the two types of charge
remained motionless, while the other type of charge flowed from one piece of foil to the other. He further suggested that
an excess of what he called this “electrical fluid” be called “positive electricity” and the deficiency of it be called “negative
electricity.” His suggestion, with some minor modifications, is the model we use today. (With the experiments that he was
able to do, this was a pure guess; he had no way of actually determining the sign of the moving charge. Unfortunately, he
guessed wrong; we now know that the charges that flow are the ones Franklin labeled negative, and the positive charges
remain largely motionless. Fortunately, as we’ll see, it makes no practical or theoretical difference which choice we make,
as long as we stay consistent with our choice.)

Let’s list the specific observations that we have of this electric force:
¢ The force acts without physical contact between the two objects.

¢ The force can be either attractive or repulsive: If two interacting objects carry the same sign of charge, the force is
repulsive; if the charges are of opposite sign, the force is attractive. These interactions are referred to as electrostatic
repulsion and electrostatic attraction, respectively.

¢ Not all objects are affected by this force.
¢ The magnitude of the force decreases (rapidly) with increasing separation distance between the objects.

To be more precise, we find experimentally that the magnitude of the force decreases as the square of the distance between
the two interacting objects increases. Thus, for example, when the distance between two interacting objects is doubled, the
force between them decreases to one fourth what it was in the original system. We can also observe that the surroundings of
the charged objects affect the magnitude of the force. However, we will explore this issue in a later chapter.

Properties of Electric Charge

In addition to the existence of two types of charge, several other properties of charge have been discovered.
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* Charge is quantized. This means that electric charge comes in discrete amounts, and there is a smallest possible
amount of charge that an object can have. In the SI system, this smallest amount is e = 1.602 X 107" C. No free

particle can have less charge than this, and, therefore, the charge on any object—the charge on all objects—must
be an integer multiple of this amount. All macroscopic, charged objects have charge because electrons have either
been added or taken away from them, resulting in a net charge.

¢ The magnitude of the charge is independent of the type. Phrased another way, the smallest possible positive
charge (to four significant figures) is +1.602 X 1071 C, and the smallest possible negative charge is

—1.602 x 1071° C; these values are exactly equal. This is simply how the laws of physics in our universe turned
out.

¢ Charge is conserved. Charge can neither be created nor destroyed; it can only be transferred from place to place,
from one object to another. Frequently, we speak of two charges “canceling”; this is verbal shorthand. It means that
if two objects that have equal and opposite charges are physically close to each other, then the (oppositely directed)
forces they apply on some other charged object cancel, for a net force of zero. It is important that you understand
that the charges on the objects by no means disappear, however. The net charge of the universe is constant.

¢ Charge is conserved in closed systems. In principle, if a negative charge disappeared from your lab bench and
reappeared on the Moon, conservation of charge would still hold. However, this never happens. If the total charge
you have in your local system on your lab bench is changing, there will be a measurable flow of charge into or out
of the system. Again, charges can and do move around, and their effects can and do cancel, but the net charge in
your local environment (if closed) is conserved. The last two items are both referred to as the law of conservation
of charge.

The Source of Charges: The Structure of the Atom

Once it became clear that all matter was composed of particles that came to be called atoms, it also quickly became clear that
the constituents of the atom included both positively charged particles and negatively charged particles. The next question
was, what are the physical properties of those electrically charged particles?

The negatively charged particle was the first one to be discovered. In 1897, the English physicist J. J. Thomson was studying
what was then known as cathode rays. Some years before, the English physicist William Crookes had shown that these
“rays” were negatively charged, but his experiments were unable to tell any more than that. (The fact that they carried a
negative electric charge was strong evidence that these were not rays at all, but particles.) Thomson prepared a pure beam of
these particles and sent them through crossed electric and magnetic fields, and adjusted the various field strengths until the
net deflection of the beam was zero. With this experiment, he was able to determine the charge-to-mass ratio of the particle.
This ratio showed that the mass of the particle was much smaller than that of any other previously known particle—1837
times smaller, in fact. Eventually, this particle came to be called the electron.

Since the atom as a whole is electrically neutral, the next question was to determine how the positive and negative charges
are distributed within the atom. Thomson himself imagined that his electrons were embedded within a sort of positively
charged paste, smeared out throughout the volume of the atom. However, in 1908, the New Zealand physicist Ernest
Rutherford showed that the positive charges of the atom existed within a tiny core—called a nucleus—that took up only
a very tiny fraction of the overall volume of the atom, but held over 99% of the mass. (See Linear Momentum and
Collisions (http:/lcnx.org/content/m58317/latest/) .) In addition, he showed that the negatively charged electrons
perpetually orbited about this nucleus, forming a sort of electrically charged cloud that surrounds the nucleus (Figure 5.7).
Rutherford concluded that the nucleus was constructed of small, massive particles that he named protons.
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f Electron cloud

Figure 5.7 This simplified model of a hydrogen atom shows a
positively charged nucleus (consisting, in the case of hydrogen, of a
single proton), surrounded by an electron “cloud.” The charge of the
electron cloud is equal (and opposite in sign) to the charge of the
nucleus, but the electron does not have a definite location in space;
hence, its representation here is as a cloud. Normal macroscopic
amounts of matter contain immense numbers of atoms and
molecules, and, hence, even greater numbers of individual negative
and positive charges.

Since it was known that different atoms have different masses, and that ordinarily atoms are electrically neutral, it was
natural to suppose that different atoms have different numbers of protons in their nucleus, with an equal number of
negatively charged electrons orbiting about the positively charged nucleus, thus making the atoms overall electrically
neutral. However, it was soon discovered that although the lightest atom, hydrogen, did indeed have a single proton as its
nucleus, the next heaviest atom—helium—has twice the number of protons (two), but four times the mass of hydrogen.

This mystery was resolved in 1932 by the English physicist James Chadwick, with the discovery of the neutron. The
neutron is, essentially, an electrically neutral twin of the proton, with no electric charge, but (nearly) identical mass to the
proton. The helium nucleus therefore has two neutrons along with its two protons. (Later experiments were to show that
although the neutron is electrically neutral overall, it does have an internal charge structure. Furthermore, although the
masses of the neutron and the proton are nearly equal, they aren’t exactly equal: The neutron’s mass is very slightly larger
than the mass of the proton. That slight mass excess turned out to be of great importance. That, however, is a story that will
have to wait until our study of modern physics in Nuclear Physics (http:/lcnx.org/content/m58606/latest/) .)

Thus, in 1932, the picture of the atom was of a small, massive nucleus constructed of a combination of protons and neutrons,
surrounded by a collection of electrons whose combined motion formed a sort of negatively charged “cloud” around the
nucleus (Figure 5.8). In an electrically neutral atom, the total negative charge of the collection of electrons is equal to the
total positive charge in the nucleus. The very low-mass electrons can be more or less easily removed or added to an atom,
changing the net charge on the atom (though without changing its type). An atom that has had the charge altered in this way
is called an ion. Positive ions have had electrons removed, whereas negative ions have had excess electrons added. We also
use this term to describe molecules that are not electrically neutral.


http://cnx.org/content/m58606/latest/

188 Chapter 5 | Electric Charges and Fields

f Electron cloud

Neutron

Proton

Figure 5.8 The nucleus of a carbon atom is composed of six
protons and six neutrons. As in hydrogen, the surrounding six
electrons do not have definite locations and so can be considered to
be a sort of cloud surrounding the nucleus.

The story of the atom does not stop there, however. In the latter part of the twentieth century, many more subatomic particles
were discovered in the nucleus of the atom: pions, neutrinos, and quarks, among others. With the exception of the photon,
none of these particles are directly relevant to the study of electromagnetism, so we defer further discussion of them until
the chapter on particle physics (Particle Physics and Cosmology (http:/lchx.org/content/m58767/latest/) ).

A Note on Terminology

As noted previously, electric charge is a property that an object can have. This is similar to how an object can have a
property that we call mass, a property that we call density, a property that we call temperature, and so on. Technically, we
should always say something like, “Suppose we have a particle that carries a charge of 3 uC.” However, it is very common

to say instead, “Suppose we have a 3-uC charge.” Similarly, we often say something like, “Six charges are located at the

vertices of a regular hexagon.” A charge is not a particle; rather, it is a property of a particle. Nevertheless, this terminology
is extremely common (and is frequently used in this book, as it is everywhere else). So, keep in the back of your mind what
we really mean when we refer to a “charge.”

5.2 | Conductors, Insulators, and Charging by Induction

Learning Objectives

By the end of this section, you will be able to:

* Explain what a conductor is

* Explain what an insulator is

* List the differences and similarities between conductors and insulators
* Describe the process of charging by induction

In the preceding section, we said that scientists were able to create electric charge only on nonmetallic materials and never
on metals. To understand why this is the case, you have to understand more about the nature and structure of atoms. In this
section, we discuss how and why electric charges do—or do not—move through materials (Figure 5.9). A more complete
description is given in a later chapter.
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Figure 5.9 This power adapter uses metal wires and connectors to conduct electricity from the
wall socket to a laptop computer. The conducting wires allow electrons to move freely through the
cables, which are shielded by rubber and plastic. These materials act as insulators that don’t allow
electric charge to escape outward. (credit: modification of work by “Evan-Amos”/Wikimedia
Commons)

Conductors and Insulators

As discussed in the previous section, electrons surround the tiny nucleus in the form of a (comparatively) vast cloud of
negative charge. However, this cloud does have a definite structure to it. Let’s consider an atom of the most commonly used
conductor, copper.

For reasons that will become clear in Atomic Structure (http:/lcnx.org/content/m58583/latest/) , there is an
outermost electron that is only loosely bound to the atom’s nucleus. It can be easily dislodged; it then moves to a
neighboring atom. In a large mass of copper atoms (such as a copper wire or a sheet of copper), these vast numbers
of outermost electrons (one per atom) wander from atom to atom, and are the electrons that do the moving when
electricity flows. These wandering, or “free,” electrons are called conduction electrons, and copper is therefore an excellent
conductor (of electric charge). All conducting elements have a similar arrangement of their electrons, with one or two
conduction electrons. This includes most metals.

Insulators, in contrast, are made from materials that lack conduction electrons; charge flows only with great difficulty, if
at all. Even if excess charge is added to an insulating material, it cannot move, remaining indefinitely in place. This is why
insulating materials exhibit the electrical attraction and repulsion forces described earlier, whereas conductors do not; any
excess charge placed on a conductor would instantly flow away (due to mutual repulsion from existing charges), leaving
no excess charge around to create forces. Charge cannot flow along or through an insulator, so its electric forces remain
for long periods of time. (Charge will dissipate from an insulator, given enough time.) As it happens, amber, fur, and most
semi-precious gems are insulators, as are materials like wood, glass, and plastic.

Charging by Induction

Let’s examine in more detail what happens in a conductor when an electrically charged object is brought close to it. As
mentioned, the conduction electrons in the conductor are able to move with nearly complete freedom. As a result, when a
charged insulator (such as a positively charged glass rod) is brought close to the conductor, the (total) charge on the insulator
exerts an electric force on the conduction electrons. Since the rod is positively charged, the conduction electrons (which
themselves are negatively charged) are attracted, flowing toward the insulator to the near side of the conductor (Figure
5.10).

Now, the conductor is still overall electrically neutral; the conduction electrons have changed position, but they are still in
the conducting material. However, the conductor now has a charge distribution; the near end (the portion of the conductor
closest to the insulator) now has more negative charge than positive charge, and the reverse is true of the end farthest from
the insulator. The relocation of negative charges to the near side of the conductor results in an overall positive charge in the
part of the conductor farthest from the insulator. We have thus created an electric charge distribution where one did not exist
before. This process is referred to as inducing polarization—in this case, polarizing the conductor. The resulting separation
of positive and negative charge is called polarization, and a material, or even a molecule, that exhibits polarization is said to
be polarized. A similar situation occurs with a negatively charged insulator, but the resulting polarization is in the opposite
direction.
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Figure 5.10 Induced polarization. A positively charged glass
rod is brought near the left side of the conducting sphere,
attracting negative charge and leaving the other side of the
sphere positively charged. Although the sphere is overall still
electrically neutral, it now has a charge distribution, so it can
exert an electric force on other nearby charges. Furthermore, the
distribution is such that it will be attracted to the glass rod.

The result is the formation of what is called an electric dipole, from a Latin phrase meaning “two ends.” The presence of
electric charges on the insulator—and the electric forces they apply to the conduction electrons—creates, or “induces,” the
dipole in the conductor.

Neutral objects can be attracted to any charged object. The pieces of straw attracted to polished amber are neutral, for
example. If you run a plastic comb through your hair, the charged comb can pick up neutral pieces of paper. Figure 5.11
shows how the polarization of atoms and molecules in neutral objects results in their attraction to a charged object.
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Figure 5.11 Both positive and negative objects attract a neutral object by polarizing its molecules. (a) A positive object
brought near a neutral insulator polarizes its molecules. There is a slight shift in the distribution of the electrons orbiting the
molecule, with unlike charges being brought nearer and like charges moved away. Since the electrostatic force decreases with
distance, there is a net attraction. (b) A negative object produces the opposite polarization, but again attracts the neutral object.
(c) The same effect occurs for a conductor; since the unlike charges are closer, there is a net attraction.

When a charged rod is brought near a neutral substance, an insulator in this case, the distribution of charge in atoms and
molecules is shifted slightly. Opposite charge is attracted nearer the external charged rod, while like charge is repelled. Since
the electrostatic force decreases with distance, the repulsion of like charges is weaker than the attraction of unlike charges,
and so there is a net attraction. Thus, a positively charged glass rod attracts neutral pieces of paper, as will a negatively
charged rubber rod. Some molecules, like water, are polar molecules. Polar molecules have a natural or inherent separation
of charge, although they are neutral overall. Polar molecules are particularly affected by other charged objects and show
greater polarization effects than molecules with naturally uniform charge distributions.

When the two ends of a dipole can be separated, this method of charging by induction may be used to create charged
objects without transferring charge. In Figure 5.12, we see two neutral metal spheres in contact with one another but
insulated from the rest of the world. A positively charged rod is brought near one of them, attracting negative charge to that
side, leaving the other sphere positively charged.
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Figure 5.12 Charging by induction. (a) Two uncharged or neutral metal spheres are in contact with each
other but insulated from the rest of the world. (b) A positively charged glass rod is brought near the sphere
on the left, attracting negative charge and leaving the other sphere positively charged. (c) The spheres are
separated before the rod is removed, thus separating negative and positive charges. (d) The spheres retain
net charges after the inducing rod is removed—without ever having been touched by a charged object.

Another method of charging by induction is shown in Figure 5.13. The neutral metal sphere is polarized when a charged
rod is brought near it. The sphere is then grounded, meaning that a conducting wire is run from the sphere to the ground.
Since Earth is large and most of the ground is a good conductor, it can supply or accept excess charge easily. In this case,
electrons are attracted to the sphere through a wire called the ground wire, because it supplies a conducting path to the
ground. The ground connection is broken before the charged rod is removed, leaving the sphere with an excess charge
opposite to that of the rod. Again, an opposite charge is achieved when charging by induction, and the charged rod loses
none of its excess charge.
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Figure 5.13 Charging by induction using a ground connection. (a) A positively charged rod is brought near a neutral metal
sphere, polarizing it. (b) The sphere is grounded, allowing electrons to be attracted from Earth’s ample supply. (c) The ground
connection is broken. (d) The positive rod is removed, leaving the sphere with an induced negative charge.

5.3 | Coulomb's Law

Learning Objectives

By the end of this section, you will be able to:

* Describe the electric force, both qualitatively and quantitatively

e Calculate the force that charges exert on each other

* Determine the direction of the electric force for different source charges

* Correctly describe and apply the superposition principle for multiple source charges

Experiments with electric charges have shown that if two objects each have electric charge, then they exert an electric force
on each other. The magnitude of the force is linearly proportional to the net charge on each object and inversely proportional
to the square of the distance between them. (Interestingly, the force does not depend on the mass of the objects.) The
direction of the force vector is along the imaginary line joining the two objects and is dictated by the signs of the charges
involved.

Let

* g4, g, = the net electric charges of the two objects;

e T 12 = the vector displacement from g; to g, .

—_
The electric force F on one of the charges is proportional to the magnitude of its own charge and the magnitude of the
other charge, and is inversely proportional to the square of the distance between them:
F 61120 2
r
12
This proportionality becomes an equality with the introduction of a proportionality constant. For reasons that will become

clear in a later chapter, the proportionality constant that we use is actually a collection of constants. (We discuss this constant
shortly.)

Coulomb’s Law

The magnitude of the electric force (or Coulomb force) between two electrically charged particles is equal to
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We use absolute value signs around the product g g, because one of the charges may be negative, but the magnitude

of the force is always positive. The direction of the force vector depends on the sign of the charges. If the charges are
the same, the force points away from the other charge. If the charges have different signs, the force points toward the
other charge(Figure 5.14).
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Figure 5.14 The electrostatic force F between point charges ¢ and ¢,

separated by a distance r is given by Coulomb’s law. Note that Newton’s third law
(every force exerted creates an equal and opposite force) applies as usual—the force on
¢ is equal in magnitude and opposite in direction to the force it exerts on g, . (a)

Like charges; (b) unlike charges.

It is important to note that the electric force is not constant; it is a function of the separation distance between the two
charges. If either the test charge or the source charge (or both) move, then T changes, and therefore so does the force. An

immediate consequence of this is that direct application of Newton’s laws with this force can be mathematically difficult,
depending on the specific problem at hand. It can (usually) be done, but we almost always look for easier methods of
calculating whatever physical quantity we are interested in. (Conservation of energy is the most common choice.)

Finally, the new constant &, in Coulomb’s law is called the permittivity of free space, or (better) the permittivity of
\ 0 p D P y
vacuum. It has a very important physical meaning that we will discuss in a later chapter; for now, it is simply an empirical
proportionality constant. Its numerical value (to three significant figures) turns out to be
2
eg=885x 10712 L,
N-m

These units are required to give the force in Coulomb’s law the correct units of newtons. Note that in Coulomb’s law, the
permittivity of vacuum is only part of the proportionality constant. For convenience, we often define a Coulomb’s constant:

2
k, =8.99x 107 N
C

—_1
4mey

Example 5.1

The Force on the Electron in Hydrogen

A hydrogen atom consists of a single proton and a single electron. The proton has a charge of +e and the
electron has —e . In the “ground state” of the atom, the electron orbits the proton at most probable distance of

529% 10" 'm (Figure 5.15). Calculate the electric force on the electron due to the proton.
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Figure 5.15 A schematic depiction of a hydrogen atom,
showing the force on the electron. This depiction is only to
enable us to calculate the force; the hydrogen atom does not
really look like this. Recall Figure 5.7.

Strategy

For the purposes of this example, we are treating the electron and proton as two point particles, each with an
electric charge, and we are told the distance between them; we are asked to calculate the force on the electron.
We thus use Coulomb’s law.

Solution
Our two charges and the distance between them are,
g, = +e=+1.602x 10717 C
g, = —e=-1.602x10"" C
ro= 529%x107" m.

The magnitude of the force on the electron is

2 (1.602>< 1071 c)2
1 lel” _ 1 - =825x 1078 N.

dnco 47r(8.85>< 10712 C—Z) (529% 107" m)
N-m

As for the direction, since the charges on the two particles are opposite, the force is attractive; the force on the
electron points radially directly toward the proton, everywhere in the electron’s orbit. The force is thus expressed
as

F =(825x 1078 N)r.

Significance

This is a three-dimensional system, so the electron (and therefore the force on it) can be anywhere in an
imaginary spherical shell around the proton. In this “classical” model of the hydrogen atom, the electrostatic
force on the electron points in the inward centripetal direction, thus maintaining the electron’s orbit. But note that
the quantum mechanical model of hydrogen (discussed in Quantum Mechanics (http://cnx.org/content/
m58573/latest/) ) is utterly different.

@ 5.1 Check Your Understanding What would be different if the electron also had a positive charge?
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Multiple Source Charges

The analysis that we have done for two particles can be extended to an arbitrary number of particles; we simply repeat the
analysis, two charges at a time. Specifically, we ask the question: Given N charges (which we refer to as source charge),
what is the net electric force that they exert on some other point charge (which we call the test charge)? Note that we use
these terms because we can think of the test charge being used to test the strength of the force provided by the source
charges.

Like all forces that we have seen up to now, the net electric force on our test charge is simply the vector sum of each
individual electric force exerted on it by each of the individual test charges. Thus, we can calculate the net force on the test
charge Q by calculating the force on it from each source charge, taken one at a time, and then adding all those forces together
(as vectors). This ability to simply add up individual forces in this way is referred to as the principle of superposition, and
is one of the more important features of the electric force. In mathematical form, this becomes

(5.2)

—_
In this expression, Q represents the charge of the particle that is experiencing the electric force F , and is located at T

A
from the origin; the ¢;’s are the N source charges, and the vectors T ; =r; r; are the displacements from the position

of the ith charge to the position of Q. Each of the N unit vectors points directly from its associated source charge toward the
test charge. All of this is depicted in Figure 5.16. Please note that there is no physical difference between Q and ¢; ; the

difference in labels is merely to allow clear discussion, with Q being the charge we are determining the force on.

dg

X
Figure 5.16 The eight source charges each apply a force on the
single test charge Q. Each force can be calculated independently
of the other seven forces. This is the essence of the superposition
principle.

—_ A
(Note that the force vector F ; does not necessarily point in the same direction as the unit vector r;; it may point in

A
the opposite direction, —r ;. The signs of the source charge and test charge determine the direction of the force on the test
charge.)

There is a complication, however. Just as the source charges each exert a force on the test charge, so too (by Newton’s third
law) does the test charge exert an equal and opposite force on each of the source charges. As a consequence, each source
charge would change position. However, by Equation 5.2, the force on the test charge is a function of position; thus, as
the positions of the source charges change, the net force on the test charge necessarily changes, which changes the force,
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which again changes the positions. Thus, the entire mathematical analysis quickly becomes intractable. Later, we will learn
techniques for handling this situation, but for now, we make the simplifying assumption that the source charges are fixed
in place somehow, so that their positions are constant in time. (The test charge is allowed to move.) With this restriction in
place, the analysis of charges is known as electrostatics, where “statics” refers to the constant (that is, static) positions of
the source charges and the force is referred to as an electrostatic force.

Example 5.2

The Net Force from Two Source Charges
Three different, small charged objects are placed as shown in Figure 5.17. The charges ¢, and g5 are fixed
in place; ¢, is free to move. Given g; = 2e, g, = —3e, and g3 = —5e, and that d = 2.0 X 10~7 m, what is

the net force on the middle charge g, ?

y
F ;
F2l
q]_ T
- d
Fas 7} J
- 9 9 =
q; g3
- 2d -

Figure 5.17 Source charges ¢ and g3 each apply a force

on ¢g,.

Strategy

We use Coulomb’s law again. The way the question is phrased indicates that g, is our test charge, so that ¢; and
g3 are source charges. The principle of superposition says that the force on g, from each of the other charges
is unaffected by the presence of the other charge. Therefore, we write down the force on g, from each and add
them together as vectors.

Solution

We have two source charges (g, and g3), atestcharge (g,), distances (r,; and r,3), and we are asked to

find a force. This calls for Coulomb’s law and superposition of forces. There are two forces:

= _ 2 = 9291 9293 %
F:F21+F23=4]3€{221J+( 2 ||
Of r3; 3

—_
We can’t add these forces directly because they don’t point in the same direction: F |, points only in

—_
the —x-direction, while F {3 points only in the +y-direction. The net force is obtained from applying the

Pythagorean theorem to its x- and y-components:

F=\F{+F;

where
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1 49243

Fy ==Fp3=———
2
drey 13,

2\(4.806 x 107" ¢)8.01x 107" C)

= —(8.99 x 107 - .
C -7
(4.00x 1077 m)

=-216x 10714 N
and
1 49291
F =F, = 2221
y 21 4ﬂ,’80 r%]
21(4.806 x 10717 C)(3.204 x 10712 C
=(8.99><109N'gf1 )( X - )
¢ (2.00x 1077 m)
=3.46x 10714 N.
We find that

F=\F}+F;=408x 107N

at an angle of

“1(F ) - ( —-14 )
; Ly 1{ 346X 10" " N °
= tan — ] = tan —_— A S Y= _58 s
(1 x —216x 10714 N

that is, 58° above the —x-axis, as shown in the diagram.
Significance

Notice that when we substituted the numerical values of the charges, we did not include the negative sign of
either g, or g;. Recall that negative signs on vector quantities indicate a reversal of direction of the vector in

question. But for electric forces, the direction of the force is determined by the types (signs) of both interacting
charges; we determine the force directions by considering whether the signs of the two charges are the same or
are opposite. If you also include negative signs from negative charges when you substitute numbers, you run the
risk of mathematically reversing the direction of the force you are calculating. Thus, the safest thing to do is to
calculate just the magnitude of the force, using the absolute values of the charges, and determine the directions
physically.

It’s also worth noting that the only new concept in this example is how to calculate the electric forces; everything
else (getting the net force from its components, breaking the forces into their components, finding the direction
of the net force) is the same as force problems you have done earlier.

@ 5.2 Check Your Understanding What would be different if ¢; were negative?

5.4 | Electric Field

Learning Objectives

By the end of this section, you will be able to:

* Explain the purpose of the electric field concept
* Describe the properties of the electric field
» Calculate the field of a collection of source charges of either sign
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As we showed in the preceding section, the net electric force on a test charge is the vector sum of all the electric forces
acting on it, from all of the various source charges, located at their various positions. But what if we use a different test
charge, one with a different magnitude, or sign, or both? Or suppose we have a dozen different test charges we wish to try
at the same location? We would have to calculate the sum of the forces from scratch. Fortunately, it is possible to define a
quantity, called the electric field, which is independent of the test charge. It only depends on the configuration of the source
charges, and once found, allows us to calculate the force on any test charge.

Defining a Field

Suppose we have N source charges ¢, g, g3,..., g5 located at positions T 1> T 2 T Freees T ~ > applying N
electrostatic forces on a test charge Q. The net force on Q is (see Equation 5.2)
- - - - -
F=F1+F2+F3+"'+FN
A A A A
= 4;;18 {lerﬁ ng"2+ QZ3"3+ o quN"N
o\ r r5 3 ri
A A A A
= 41 q—2r1+q—§r2+q—§r3+ +q—]2vI'N
7o\ ry rs r3 r
We can rewrite this as
- -

where

7 q 42 43 qn "

E = 1 L r{+-—=ro+—5rs+ - + =T N

4z r% ! r% 2 r% 3 r%
or, more compactly,
5.4)
- q A (
E@=-LY Zr,
dre o= riz

This expression is called the electric field at position P = P(x, y, z) of the N source charges. Here, P is the location of the

point in space where you are calculating the field and is relative to the positions T ; of the source charges (Figure 5.18).

Note that we have to impose a coordinate system to solve actual problems.

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9
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Figure 5.18 Each of these eight source charges creates its own
electric field at every point in space; shown here are the field vectors
at an arbitrary point P. Like the electric force, the net electric field
obeys the superposition principle.

Notice that the calculation of the electric field makes no reference to the test charge. Thus, the physically useful approach is
to calculate the electric field and then use it to calculate the force on some test charge later, if needed. Different test charges
experience different forces Equation 5.3, but it is the same electric field Equation 5.4. That being said, recall that there
is no fundamental difference between a test charge and a source charge; these are merely convenient labels for the system of
interest. Any charge produces an electric field; however, just as Earth’s orbit is not affected by Earth’s own gravity, a charge
is not subject to a force due to the electric field it generates. Charges are only subject to forces from the electric fields of
other charges.

—
In this respect, the electric field E of a point charge is similar to the gravitational field _g) of Earth; once we have

calculated the gravitational field at some point in space, we can use it any time we want to calculate the resulting force
on any mass we choose to place at that point. In fact, this is exactly what we do when we say the gravitational field of

Earth (near Earth’s surface) has a value of 9.81 m/s?, and then we calculate the resulting force (i.e., weight) on different

masses. Also, the general expression for calculating at arbitrary distances from the center of Earth (i.e., not just near

-
g
-

E

A
Earth’s surface) is very similar to the expression for _g) = GMZI' , where G is a proportionality constant, playing
r

1

-
Ine does for E . The value of Tg) is calculated once and is then used in an endless number
0

the same role for Tg) as

of problems.
To push the analogy further, notice the units of the electric field: From F = QF, the units of E are newtons per coulomb,
N/C, that is, the electric field applies a force on each unit charge. Now notice the units of g: From w = mg, the units of

g are newtons per kilogram, N/kg, that is, the gravitational field applies a force on each unit mass. We could say that the
gravitational field of Earth, near Earth’s surface, has a value of 9.81 N/kg.

The Meaning of “Field”

Recall from your studies of gravity that the word “field” in this context has a precise meaning. A field, in physics, is a
physical quantity whose value depends on (is a function of) position, relative to the source of the field. In the case of the

electric field, Equation 5.4 shows that the value of E (both the magnitude and the direction) depends on where in space

the point P is located, measured from the locations T ; of the source charges g; .

In addition, since the electric field is a vector quantity, the electric field is referred to as a vector field. (The gravitational
field is also a vector field.) In contrast, a field that has only a magnitude at every point is a scalar field. The temperature in
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a room is an example of a scalar field. It is a field because the temperature, in general, is different at different locations in
the room, and it is a scalar field because temperature is a scalar quantity.

Also, as you did with the gravitational field of an object with mass, you should picture the electric field of a charge-bearing
object (the source charge) as a continuous, immaterial substance that surrounds the source charge, filling all of space—in
principle, to oo in all directions. The field exists at every physical point in space. To put it another way, the electric charge

on an object alters the space around the charged object in such a way that all other electrically charged objects in space
experience an electric force as a result of being in that field. The electric field, then, is the mechanism by which the electric
properties of the source charge are transmitted to and through the rest of the universe. (Again, the range of the electric force
is infinite.)

We will see in subsequent chapters that the speed at which electrical phenomena travel is the same as the speed of light.
There is a deep connection between the electric field and light.

Superposition

Yet another experimental fact about the field is that it obeys the superposition principle. In this context, that means that we
can (in principle) calculate the total electric field of many source charges by calculating the electric field of only g at
position P, then calculate the field of g, at P, while—and this is the crucial idea—ignoring the field of, and indeed even
the existence of, g;. We can repeat this process, calculating the field of each individual source charge, independently of

the existence of any of the other charges. The total electric field, then, is the vector sum of all these fields. That, in essence,
is what Equation 5.4 says.

In the next section, we describe how to determine the shape of an electric field of a source charge distribution and how to
sketch it.

The Direction of the Field

Equation 5.4 enables us to determine the magnitude of the electric field, but we need the direction also. We use the
convention that the direction of any electric field vector is the same as the direction of the electric force vector that the field
would apply to a positive test charge placed in that field. Such a charge would be repelled by positive source charges (the
force on it would point away from the positive source charge) but attracted to negative charges (the force points toward the
negative source).

Direction of the Electric Field

—_
By convention, all electric fields E point away from positive source charges and point toward negative source
charges.

Add charges to the Electric Field of Dreams (https://lopenstaxcollege.orgl/l/21elefiedream) and see how
they react to the electric field. Turn on a background electric field and adjust the direction and magnitude.

Example 5.3

The E-field of an Atom

In an ionized helium atom, the most probable distance between the nucleus and the electron is
r=26.5x 10712 m. What is the electric field due to the nucleus at the location of the electron?

Strategy

Note that although the electron is mentioned, it is not used in any calculation. The problem asks for an electric
field, not a force; hence, there is only one charge involved, and the problem specifically asks for the field due to
the nucleus. Thus, the electron is a red herring; only its distance matters. Also, since the distance between the two
protons in the nucleus is much, much smaller than the distance of the electron from the nucleus, we can treat the
two protons as a single charge +2e (Figure 5.19).
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Figure 5.19 A schematic representation of a helium atom.
Again, helium physically looks nothing like this, but this sort of
diagram is helpful for calculating the electric field of the
nucleus.

Solution

The electric field is calculated by

q;”"
—zrl-.
i

7 -1
- 47[80i

M=

~

1

Since there is only one source charge (the nucleus), this expression simplifies to
- A
S
dre 0 7'2

Here g = 2e = 2(1.6 x 1071 C) (since there are two protons) and r is given; substituting gives

2(1.6x 1077 C) A N2

E = 1 —41x1
2r—.><0 C

- 2
47z(8.85 X 10-12ﬁ) (26.5x 10712 m)
-m

—
The direction of E is radially away from the nucleus in all directions. Why? Because a positive test charge

placed in this field would accelerate radially away from the nucleus (since it is also positively charged), and again,
the convention is that the direction of the electric field vector is defined in terms of the direction of the force it
would apply to positive test charges.

Example 5.4

The E-Field above Two Equal Charges

(a) Find the electric field (magnitude and direction) a distance z above the midpoint between two equal charges
+¢ that are a distance d apart (Figure 5.20). Check that your result is consistent with what you’d expect when

z>d.

(b) The same as part (a), only this time make the right-hand charge —¢g instead of +¢q.
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@
|

|
Figure 5.20 Finding the field of two identical source charges
at the point P. Due to the symmetry, the net field at P is entirely
vertical. (Notice that this is not true away from the midline
between the charges.)

Strategy

We add the two fields as vectors, per Equation 5.4. Notice that the system (and therefore the field) is
symmetrical about the vertical axis; as a result, the horizontal components of the field vectors cancel. This
simplifies the math. Also, we take care to express our final answer in terms of only quantities that are given in the
original statement of the problem: g, z, d, and constants (7, &).

Solution
a. By symmetry, the horizontal (x)-components of E cancel (Figure 5.21);
Ex=Lisin6—Lisin9 =0.

4neg 2 4neg 2
E; E,,
|
—_— l —
Exr < ;T\P > Xl
/e
## | A
/ "ﬂ/\\
/ \
r/ S
! X
/ A\
! b3
S/ N
/ e N

Figure 5.21 Note that the horizontal components of the
electric fields from the two charges cancel each other out, while
the vertical components add together.
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The vertical (z)-component is given by

E =;icose+;icos€=L2—qcose.

LT dreg 42 dmeg 2 4req 2

A
Since none of the other components survive, this is the entire electric field, and it points in the k
direction. Notice that this calculation uses the principle of superposition; we calculate the fields of the
two charges independently and then add them together.
What we want to do now is replace the quantities in this expression that we don’t know (such as r), or
can’t easily measure (such as cos @) with quantities that we do know, or can measure. In this case, by

geometry,
2
oeefl
and
_Z_ Z
cosf =3 = i
2 d
|2+
Thus, substituting,
2 A
E (7) = -1 q L k.

Simplifying, the desired answer is

B @) = 1 2qz A (5.5)

4ze, [Zz . (%)2]

b. If the source charges are equal and opposite, the vertical components cancel because

I A T O
E,= Tneg )2 cos 6 Tneg )2 cos =0

—_
and we get, for the horizontal component of E ,

= I U R T BPTA
E (2) __477780 3 sin 6 i _4-71'80 2 sinf i
1 Z_q A
= dneg 2 sin @i
d
1 2q 4 ¢

]

This becomes
qd /1\ (5.6)
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Significance

It is a very common and very useful technique in physics to check whether your answer is reasonable by
evaluating it at extreme cases. In this example, we should evaluate the field expressions for the cases d =0,

7> d,and 7 — o0, and confirm that the resulting expressions match our physical expectations. Let’s do so:
Let’s start with Equation 5.5, the field of two identical charges. From far away (i.e., z> d), the two source
charges should “merge” and we should then “see” the field of just one charge, of size 2q. So, let z > d; then we

can neglect d? in Equation 5.5 to obtain

A

o= 2qz
s Sl P )
%]

A
129z

~ ey 3
A
1 gy

 dney 2

which is the correct expression for a field at a distance z away from a charge 2q.

Next, we consider the field of equal and opposite charges, Equation 5.6. It can be shown (via a Taylor
expansion) that for d < 7z < oo, this becomes

qd 3 (5.7)

which is the field of a dipole, a system that we will study in more detail later. (Note that the units of E) are still

correct in this expression, since the units of d in the numerator cancel the unit of the “extra” z in the denominator.)
If z is very large (z = o), then E — 0, as it should; the two charges “merge” and so cancel out.

@ 5.3 Check Your Understanding What is the electric field due to a single point particle?

@ Try this simulation of electric field hockey (https:/lopenstaxcollege.org/l/21elefielhocke) to get the
charge in the goal by placing other charges on the field.

5.5 | Calculating Electric Fields of Charge Distributions

Learning Objectives

By the end of this section, you will be able to:
* Explain what a continuous source charge distribution is and how it is related to the concept of
quantization of charge
» Describe line charges, surface charges, and volume charges
» Calculate the field of a continuous source charge distribution of either sign

The charge distributions we have seen so far have been discrete: made up of individual point particles. This is in contrast
with a continuous charge distribution, which has at least one nonzero dimension. If a charge distribution is continuous
rather than discrete, we can generalize the definition of the electric field. We simply divide the charge into infinitesimal
pieces and treat each piece as a point charge.

Note that because charge is quantized, there is no such thing as a “truly” continuous charge distribution. However, in most
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practical cases, the total charge creating the field involves such a huge number of discrete charges that we can safely ignore
the discrete nature of the charge and consider it to be continuous. This is exactly the kind of approximation we make when
we deal with a bucket of water as a continuous fluid, rather than a collection of H, O molecules.

Our first step is to define a charge density for a charge distribution along a line, across a surface, or within a volume, as
shown in Figure 5.22.

dA

@) (b)

av

(c) (d)
Figure 5.22 The configuration of charge differential elements for a (a) line charge, (b) sheet of
charge, and (c) a volume of charge. Also note that (d) some of the components of the total electric field
cancel out, with the remainder resulting in a net electric field.

Definitions of charge density:

¢ A= charge per unit length ( linear charge density); units are coulombs per meter (C/m)
e o = charge per unit area ( surface charge density); units are coulombs per square meter (C/mz)

e p = charge per unit volume ( volume charge density); units are coulombs per cubic meter (C/m3)

Then, for a line charge, a surface charge, and a volume charge, the summation in Equation 5.4 becomes an integral and
q; isreplaced by dg = Adl, odA , or pdV , respectively:

Point ch @l Y (qi)A (5.8)
oint charge: = 2y
& 47[801 =1 r2
5.9
Line charge: E (p) =1 J (i_%l)’lf (5.9)
4reg line ™ 7
1 5.10
Surface charge: E® = 1 1 J adzA);.‘ (5.10)
€0 surface * ¥
5.11
Volume charge: E (P) = 4;[ (psz)i) (5.11)
€0 volume *

The integrals are generalizations of the expression for the field of a point charge. They implicitly include and assume the
principle of superposition. The “trick” to using them is almost always in coming up with correct expressions for dI, dA, or
dV, as the case may be, expressed in terms of r, and also expressing the charge density function appropriately. It may be
constant; it might be dependent on location.

Note carefully the meaning of r in these equations: It is the distance from the charge element (g;, Adl, 6dA, pdV) to the

location of interest, P(x, y, z) (the point in space where you want to determine the field). However, don’t confuse this with
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A b g . .
the meaning of r ; we are using it and the vector notation E to write three integrals at once. That is, Equation 5.9 is

adl _ 1 [ (e _ [ (a
() 0=z, () =0=zg] (4):

Example 5.5

Electric Field of a Line Segment

actually

line

Find the electric field a distance z above the midpoint of a straight line segment of length L that carries a uniform
line charge density 4.

Strategy

Since this is a continuous charge distribution, we conceptually break the wire segment into differential pieces of
length dl, each of which carries a differential amount of charge dq = Adl. Then, we calculate the differential

field created by two symmetrically placed pieces of the wire, using the symmetry of the setup to simplify the
calculation (Figure 5.23). Finally, we integrate this differential field expression over the length of the wire (half
of it, actually, as we explain below) to obtain the complete electric field expression.

z)

Figure 5.23 A uniformly charged segment of wire. The
electric field at point P can be found by applying the
superposition principle to symmetrically placed charge elements
and integrating.

Solution

Before we jump into it, what do we expect the field to “look like” from far away? Since it is a finite line segment,
from far away, it should look like a point charge. We will check the expression we get to see if it meets this
expectation.

The electric field for a line charge is given by the general expression

E P =1 J iy
r

The symmetry of the situation (our choice of the two identical differential pieces of charge) implies the horizontal
(x)-components of the field cancel, so that the net field points in the z-direction. Let’s check this formally.

The total field ]_E) (P) is the vector sum of the fields from each of the two charge elements (call them ]_E) ; and
-
E ,, for now):

N A A

- b d A A
E (P)= E 1+ E 2=E1xi +Elzk+E2x(_i)+EZZk'
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Because the two charge elements are identical and are the same distance away from the point P where we want to
calculate the field, £, = E,,, so those components cancel. This leaves

— A A A} A
E(P)=E|,kK+E, k =E cosdk + E, cos Ok.
These components are also equal, so we have

A A
TE)(P) =L JMcosek I JMcosﬁk

4-77780 }"2 47780 7'2
L2 A
=L J 24dx ¢o5 gk
4-77780 0 r2

where our differential line element dl is dx, in this example, since we are integrating along a line of charge that

lies on the x-axis. (The limits of integration are 0 to L not —L t0 +L , because we have constructed the net

27 2 2’
field from two differential pieces of charge dq. If we integrated along the entire length, we would pick up an
erroneous factor of 2.)
In principle, this is complete. However, to actually calculate this integral, we need to eliminate all the variables
that are not given. In this case, both r and 6 change as we integrate outward to the end of the line charge, so those
are the variables to get rid of. We can do that the same way we did for the two point charges: by noticing that

12
r= (zz + xz)
and
— < _ Z
cosé’-r——2 N
(Z +x )
Substituting, we obtain
~L/2
= __1 2idx z %
S argg | (P +x?) 2, 2 T2
Jo (Z +x )
L2
1 22k
= Xk
drey (Zz + x2)3/2
L2 n
2Mz X K
Ameo| 21,2 4 2|°
which simplifies to
E @ = 1 L l,; (5.12)
dre 2
0 2 +LT

Significance

Notice, once again, the use of symmetry to simplify the problem. This is a very common strategy for calculating
electric fields. The fields of nonsymmetrical charge distributions have to be handled with multiple integrals and
may need to be calculated numerically by a computer.

5.4 Check Your Understanding How would the strategy used above change to calculate the electric field at
a point a distance z above one end of the finite line segment?
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Example 5.6

Electric Field of an Infinite Line of Charge

Find the electric field a distance z above the midpoint of an infinite line of charge that carries a uniform line
charge density 1.

Strategy

This is exactly like the preceding example, except the limits of integration will be —oco to +o0.

Solution

Again, the horizontal components cancel out, so we wind up with

= 1 [" 2 %
_ x
E (P)= 4”50J 2 cos Ok

-0

where our differential line element dI is dx, in this example, since we are integrating along a line of charge that
lies on the x-axis. Again,

Iz
' &2+xﬂ”2

cosf =

Substituting, we obtain
n 00

— A
E (P) — 1 Adx Z k
Az | _oo(zz+x2) (2 +x2)”2

r OO0

__1 Az o
= 5 3pdxk
+x )

which simplifies to

B o1 22
E (o) = dmeg £ k.
Significance

Our strategy for working with continuous charge distributions also gives useful results for charges with infinite
dimension.

In the case of a finite line of charge, note that for z > L, z2 dominates the L in the denominator, so that Equation 5.12

simplifies to

A
f ~-L ALk
dre 0 ZZ
If you recall that AL = g, the total charge on the wire, we have retrieved the expression for the field of a point charge, as
expected.

In the limit L — oo, on the other hand, we get the field of an infinite straight wire, which is a straight wire whose length

is much, much greater than either of its other dimensions, and also much, much greater than the distance at which the field
is to be calculated:
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2! (5.13)

An interesting artifact of this infinite limit is that we have lost the usual 1/r? dependence that we are used to. This will

become even more intriguing in the case of an infinite plane.

Example 5.7

Electric Field due to a Ring of Charge

A ring has a uniform charge density A, with units of coulomb per unit meter of arc. Find the electric potential at
a point on the axis passing through the center of the ring.

Strategy

We use the same procedure as for the charged wire. The difference here is that the charge is distributed on a circle.
We divide the circle into infinitesimal elements shaped as arcs on the circle and use polar coordinates shown in

Figure 5.24.
Z)
R y
0
dg = ARdf
X
Figure 5.24 The system and variable for calculating the
electric field due to a ring of charge.
Solution

The electric field for a line charge is given by the general expression

E’(P):LJ iy

A general element of the arc between € and 6 + d@ is of length RdO and therefore contains a charge equal to

ARdO. The element is at a distance of r = \z> + R? from P, the angle is cos ¢ = \/% , and therefore the
Z“+R

electric field is
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27
E’(P)zljﬂ’;_lJ/IRdG z 2
1

dmeg ) r? "~ Are o 2+ R ;2 4 2
2n
— 477}8 ARz 7 IZ\ f 4o = 47}8 ZHARZ:;/ZIZ\
0 (ZZ +R2) 0 0 (ZZ + RZ)
__1 dtotZ IZ\

Significance

As usual, symmetry simplified this problem, in this particular case resulting in a trivial integral. Also, when we
take the limit of z>>R , we find that

A
z,

T ~_1 4ot
EN47[8022

as we expect.

Example 5.8

The Field of a Disk

Find the electric field of a circular thin disk of radius R and uniform charge density at a distance z above the center
of the disk (Figure 5.25)

Figure 5.25 A uniformly charged disk. As in the line charge
example, the field above the center of this disk can be calculated
by taking advantage of the symmetry of the charge distribution.

Strategy
The electric field for a surface charge is given by

— A
E (P)=#J odA .

2
surface T

To solve surface charge problems, we break the surface into symmetrical differential “stripes” that match the
shape of the surface; here, we’ll use rings, as shown in the figure. Again, by symmetry, the horizontal components
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A
cancel and the field is entirely in the vertical (k) direction. The vertical component of the electric field is

extracted by multiplying by cos 8, so
A
E (P)= - J —UdzA cos @ k.

dre
0J surface ©

As before, we need to rewrite the unknown factors in the integrand in terms of the given quantities. In this case,

dA = 2zr dr
P2 = r’2+Z2
_ Z
cosf = SN2
(r2+2%)

(Please take note of the two different “r’s” here; r is the distance from the differential ring of charge to the point
P where we wish to determine the field, whereas 7’ is the distance from the center of the disk to the differential

ring of charge.) Also, we already performed the polar angle integral in writing down dA.
Solution

Substituting all this in, we get

R
E@ = F @=L | 22z
4reg (,2+ 2)3/2
r Z
0
A
—_1 1___ 1
= 4ﬂ€0(2naz)(z PN Zz)k
or, more simply,
E @) =270 __2moz _ ll; (5:14)
4mey VR? + 2

Significance
Again, it can be shown (via a Taylor expansion) that when z > R, this reduces to
A

=2 . 1 onR>
E @ gy 72 %

which is the expression for a point charge Q = onR>.

5.5 Check Your Understanding How would the above limit change with a uniformly charged rectangle
instead of a disk?

As R — o, Equation 5.14 reduces to the field of an infinite plane, which is a flat sheet whose area is much, much
greater than its thickness, and also much, much greater than the distance at which the field is to be calculated:

B =Lll; (5.15)
26‘0 ’

Note that this field is constant. This surprising result is, again, an artifact of our limit, although one that we will make use of
repeatedly in the future. To understand why this happens, imagine being placed above an infinite plane of constant charge.
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Does the plane look any different if you vary your altitude? No—you still see the plane going off to infinity, no matter how

far you are from it. It is important to note that Equation 5.15 is because we are above the plane. If we were below, the
A

field would point in the —k direction.

Example 5.9

The Field of Two Infinite Planes

Find the electric field everywhere resulting from two infinite planes with equal but opposite charge densities
(Figure 5.26).

— E o
+ - =
+ = -
+ = =
+ > o
+ = -
+ > -
+ - -
+| - -

Figure 5.26 Two_a'larged infinite planes_.T\Iote the direction of
the electric field.

Strategy

We already know the electric field resulting from a single infinite plane, so we may use the principle of
superposition to find the field from two.

Solution

The electric field points away from the positively charged plane and toward the negatively charged plane. Since
the o are equal and opposite, this means that in the region outside of the two planes, the electric fields cancel
each other out to zero.

However, in the region between the planes, the electric fields add, and we get

A

—
E =2

_8_0

A
for the electric field. The i is because in the figure, the field is pointing in the +x-direction.

Significance

Systems that may be approximated as two infinite planes of this sort provide a useful means of creating uniform
electric fields.

5.6 Check Your Understanding What would the electric field look like in a system with two parallel
positively charged planes with equal charge densities?
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5.6 | Electric Field Lines

Learning Objectives

By the end of this section, you will be able to:

» Explain the purpose of an electric field diagram

» Describe the relationship between a vector diagram and a field line diagram

» Explain the rules for creating a field diagram and why these rules make physical sense
* Sketch the field of an arbitrary source charge

Now that we have some experience calculating electric fields, let’s try to gain some insight into the geometry of electric
fields. As mentioned earlier, our model is that the charge on an object (the source charge) alters space in the region around it
in such a way that when another charged object (the test charge) is placed in that region of space, that test charge experiences
an electric force. The concept of electric field lines, and of electric field line diagrams, enables us to visualize the way in
which the space is altered, allowing us to visualize the field. The purpose of this section is to enable you to create sketches
of this geometry, so we will list the specific steps and rules involved in creating an accurate and useful sketch of an electric
field.

It is important to remember that electric fields are three-dimensional. Although in this book we include some pseudo-three-
dimensional images, several of the diagrams that you’ll see (both here, and in subsequent chapters) will be two-dimensional
projections, or cross-sections. Always keep in mind that in fact, you’re looking at a three-dimensional phenomenon.

Our starting point is the physical fact that the electric field of the source charge causes a test charge in that field to experience
a force. By definition, electric field vectors point in the same direction as the electric force that a (hypothetical) positive test
charge would experience, if placed in the field (Figure 5.27)

4 - z
2 e
EE T N T O A
.\\\f/,.
a -~ - -
0 e O
-,,;\\\-
S T T
2+ S
—4 -
T T T T T
-4 2 0 2 4
x (m)
(@) (b)

Figure 5.27 The electric field of a positive point charge. A large number of field vectors are shown. Like all vector
arrows, the length of each vector is proportional to the magnitude of the field at each point. (a) Field in two
dimensions; (b) field in three dimensions.

We’ve plotted many field vectors in the figure, which are distributed uniformly around the source charge. Since the electric
field is a vector, the arrows that we draw correspond at every point in space to both the magnitude and the direction of the
field at that point. As always, the length of the arrow that we draw corresponds to the magnitude of the field vector at that
point. For a point source charge, the length decreases by the square of the distance from the source charge. In addition, the
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direction of the field vector is radially away from the source charge, because the direction of the electric field is defined by
the direction of the force that a positive test charge would experience in that field. (Again, keep in mind that the actual field
is three-dimensional; there are also field lines pointing out of and into the page.)

This diagram is correct, but it becomes less useful as the source charge distribution becomes more complicated. For
example, consider the vector field diagram of a dipole (Figure 5.28).

2 -
1+ LU S T B ERE T R A
U T Y SR I T T (A
RY B AEERNT A
~ N //—-\\ il
’EO— -~ —_——-—— P
‘;: - —_— = -~ -
= A \\--// N~
A \\-—1! N
e Ay x| oww
14 L N T T AR N I T
-2
I T I | T I I
-2 -1 0 1 2 3 4

x (m)
Figure 5.28 The vector field of a dipole. Even with just two
identical charges, the vector field diagram becomes difficult to
understand.

There is a more useful way to present the same information. Rather than drawing a large number of increasingly smaller
vector arrows, we instead connect all of them together, forming continuous lines and curves, as shown in Figure 5.29.

.

b

A
Y
5

((1

(@) (b)
Figure 5.29 (a) The electric field line diagram of a positive point charge. (b) The field line diagram
of a dipole. In both diagrams, the magnitude of the field is indicated by the field line density. The
field vectors (not shown here) are everywhere tangent to the field lines.
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Although it may not be obvious at first glance, these field diagrams convey the same information about the electric field as
do the vector diagrams. First, the direction of the field at every point is simply the direction of the field vector at that same
point. In other words, at any point in space, the field vector at each point is tangent to the field line at that same point. The
arrowhead placed on a field line indicates its direction.

As for the magnitude of the field, that is indicated by the field line density—that is, the number of field lines per unit
area passing through a small cross-sectional area perpendicular to the electric field. This field line density is drawn to be
proportional to the magnitude of the field at that cross-section. As a result, if the field lines are close together (that is, the
field line density is greater), this indicates that the magnitude of the field is large at that point. If the field lines are far apart
at the cross-section, this indicates the magnitude of the field is small. Figure 5.30 shows the idea.

Figure 5.30 Electric field lines passing through imaginary areas. Since the number of
lines passing through each area is the same, but the areas themselves are different, the
field line density is different. This indicates different magnitudes of the electric field at
these points.

In Figure 5.30, the same number of field lines passes through both surfaces (S and S’), but the surface S is larger than

surface S’ . Therefore, the density of field lines (number of lines per unit area) is larger at the location of §’, indicating that
the electric field is stronger at the location of S’ than at S. The rules for creating an electric field diagram are as follows.

Problem-Solving Strategy: Drawing Electric Field Lines

1. Electric field lines either originate on positive charges or come in from infinity, and either terminate on
negative charges or extend out to infinity.

2. The number of field lines originating or terminating at a charge is proportional to the magnitude of that charge.
A charge of 2q will have twice as many lines as a charge of g.

3. At every point in space, the field vector at that point is tangent to the field line at that same point.
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4. The field line density at any point in space is proportional to (and therefore is representative of) the magnitude
of the field at that point in space.

5. Field lines can never cross. Since a field line represents the direction of the field at a given point, if two field
lines crossed at some point, that would imply that the electric field was pointing in two different directions at
a single point. This in turn would suggest that the (net) force on a test charge placed at that point would point
in two different directions. Since this is obviously impossible, it follows that field lines must never cross.

Always keep in mind that field lines serve only as a convenient way to visualize the electric field; they are not physical
entities. Although the direction and relative intensity of the electric field can be deduced from a set of field lines, the lines
can also be misleading. For example, the field lines drawn to represent the electric field in a region must, by necessity, be
discrete. However, the actual electric field in that region exists at every point in space.

Field lines for three groups of discrete charges are shown in Figure 5.31. Since the charges in parts (a) and (b) have the
same magnitude, the same number of field lines are shown starting from or terminating on each charge. In (c), however, we
draw three times as many field lines leaving the 43¢ charge as entering the —¢g . The field lines that do not terminate at

—¢g emanate outward from the charge configuration, to infinity.

=+ =
7, ANy N
()

(@) (b) (©
Figure 5.31 Three typical electric field diagrams. (a) A dipole. (b) Two identical charges. (c) Two charges with opposite
signs and different magnitudes. Can you tell from the diagram which charge has the larger magnitude?

The ability to construct an accurate electric field diagram is an important, useful skill; it makes it much easier to estimate,
predict, and therefore calculate the electric field of a source charge. The best way to develop this skill is with software
that allows you to place source charges and then will draw the net field upon request. We strongly urge you to search the
Internet for a program. Once you’ve found one you like, run several simulations to get the essential ideas of field diagram
construction. Then practice drawing field diagrams, and checking your predictions with the computer-drawn diagrams.

One example of a field-line drawing program (https:/lopenstaxcollege.org/li21fieldlindrapr) is from
the PhET “Charges and Fields” simulation.
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5.7 | Electric Dipoles

Learning Objectives

By the end of this section, you will be able to:

* Describe a permanent dipole

* Describe an induced dipole

* Define and calculate an electric dipole moment

* Explain the physical meaning of the dipole moment

Earlier we discussed, and calculated, the electric field of a dipole: two equal and opposite charges that are “close” to each
other. (In this context, “close” means that the distance d between the two charges is much, much less than the distance of
the field point P, the location where you are calculating the field.) Let’s now consider what happens to a dipole when it is

—_
placed in an external field E . We assume that the dipole is a permanent dipole; it exists without the field, and does not
break apart in the external field.

Rotation of a Dipole due to an Electric Field

For now, we deal with only the simplest case: The external field is uniform in space. Suppose we have the situation depicted
- . g . . .
in Figure 5.32, where we denote the distance between the charges as the vector d , pointing from the negative charge

to the positive charge. The forces on the two charges are equal and opposite, so there is no net force on the dipole. However,
there is a torque:

- -
2 =[Lx F)+]+(—Lx ﬁ]

3 |

RIS

—,

=

Figure 5.32 A dipole in an external electric field. (a) The net force on the dipole is zero, but the net torque is not. As a result,
the dipole rotates, becoming aligned with the external field. (b) The dipole moment is a convenient way to characterize this

effect. The d points in the same directionas p .

The quantity ¢ ?l) (the magnitude of each charge multiplied by the vector distance between them) is a property of the

dipole; its value, as you can see, determines the torque that the dipole experiences in the external field. It is useful, therefore,
to define this product as the so-called dipole moment of the dipole:

—
p

rl (5.16)

q
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We can therefore write

2 - T x E. (5.17)

Recall that a torque changes the angular velocity of an object, the dipole, in this case. In this situation, the effect is to rotate
the dipole (that is, align the direction of f)’ ) so that it is parallel to the direction of the external field.

Induced Dipoles

Neutral atoms are, by definition, electrically neutral; they have equal amounts of positive and negative charge. Furthermore,
since they are spherically symmetrical, they do not have a “built-in” dipole moment the way most asymmetrical molecules
do. They obtain one, however, when placed in an external electric field, because the external field causes oppositely directed
forces on the positive nucleus of the atom versus the negative electrons that surround the nucleus. The result is a new charge
distribution of the atom, and therefore, an induced dipole moment (Figure 5.33).

d
) 3
E
(a) Neutral atom (b) Induced dipole

Figure 5.33 A dipole is induced in a neutral atom by an external electric field. The induced
dipole moment is aligned with the external field.

An important fact here is that, just as for a rotated polar molecule, the result is that the dipole moment ends up aligned
parallel to the external electric field. Generally, the magnitude of an induced dipole is much smaller than that of an inherent
dipole. For both kinds of dipoles, notice that once the alignment of the dipole (rotated or induced) is complete, the net effect

g - — i
is to decrease the total electric field E (= E cyena+ E gipole In the regions inside the dipole charges (Figure

5.34). By “inside” we mean in between the charges. This effect is crucial for capacitors, as you will see in Capacitance.

external

Figure 5.34 The net electric field is the vector sum of the
field of the dipole plus the external field.

Recall that we found the electric field of a dipole in Equation 5.7. If we rewrite it in terms of the dipole moment we get:
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7 1
E@= 4re

el

The form of this field is shown in Figure 5.34. Notice that along the plane perpendicular to the axis of the dipole and
midway between the charges, the direction of the electric field is opposite that of the dipole and gets weaker the further from
the axis one goes. Similarly, on the axis of the dipole (but outside it), the field points in the same direction as the dipole,
again getting weaker the further one gets from the charges.
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CHAPTER 5 REVIEW

KEY TERMS

charging by induction process by which an electrically charged object brought near a neutral object creates a charge
separation in that object

conduction electron electron that is free to move away from its atomic orbit

conductor material that allows electrons to move separately from their atomic orbits; object with properties that allow
charges to move about freely within it

continuous charge distribution total source charge composed of so large a number of elementary charges that it must
be treated as continuous, rather than discrete

coulomb SI unit of electric charge

Coulomb force another term for the electrostatic force

Coulomb’s law mathematical equation calculating the electrostatic force vector between two charged particles
dipole two equal and opposite charges that are fixed close to each other

dipole moment property of a dipole; it characterizes the combination of distance between the opposite charges, and the
magnitude of the charges

electric charge physical property of an object that causes it to be attracted toward or repelled from another charged
object; each charged object generates and is influenced by a force called an electric force

electric field physical phenomenon created by a charge; it “transmits” a force between a two charges
electric force noncontact force observed between electrically charged objects

electron particle surrounding the nucleus of an atom and carrying the smallest unit of negative charge
electrostatic attraction phenomenon of two objects with opposite charges attracting each other

electrostatic force amount and direction of attraction or repulsion between two charged bodies; the assumption is that
the source charges remain motionless

electrostatic repulsion phenomenon of two objects with like charges repelling each other
electrostatics study of charged objects which are not in motion
field line smooth, usually curved line that indicates the direction of the electric field

field line density number of field lines per square meter passing through an imaginary area; its purpose is to indicate the
field strength at different points in space

induced dipole typically an atom, or a spherically symmetric molecule; a dipole created due to opposite forces
displacing the positive and negative charges

infinite plane flat sheet in which the dimensions making up the area are much, much greater than its thickness, and also
much, much greater than the distance at which the field is to be calculated; its field is constant

infinite straight wire straight wire whose length is much, much greater than either of its other dimensions, and also
much, much greater than the distance at which the field is to be calculated

insulator material that holds electrons securely within their atomic orbits
ion atom or molecule with more or fewer electrons than protons
law of conservation of charge net electric charge of a closed system is constant

linear charge density amount of charge in an element of a charge distribution that is essentially one-dimensional (the
width and height are much, much smaller than its length); its units are C/m

neutron neutral particle in the nucleus of an atom, with (nearly) the same mass as a proton

permanent dipole typically a molecule; a dipole created by the arrangement of the charged particles from which the
dipole is created
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permittivity of vacuum ¢, cajled the permittivity of free space, and constant describing the strength of the electric

force in a vacuum
polarization slight shifting of positive and negative charges to opposite sides of an object
principle of superposition useful fact that we can simply add up all of the forces due to charges acting on an object

proton particle in the nucleus of an atom and carrying a positive charge equal in magnitude to the amount of negative
charge carried by an electron

static electricity buildup of electric charge on the surface of an object; the arrangement of the charge remains constant
(“static”)

superposition concept that states that the net electric field of multiple source charges is the vector sum of the field of
each source charge calculated individually

surface charge density amount of charge in an element of a two-dimensional charge distribution (the thickness is
small); its units are C/m?

volume charge density 3mount of charge in an element of a three-dimensional charge distribution; its units are C/m?

KEY EQUATIONS

Coulomb’s law

Superposition of electric forces

Electric force due to an electric field F =0 E

Electric field at point P

dre = r12 !
Field of an infinite wire 7 @) = 4”180 22_,11’;
Field of an infinite plane 7 :L’\
2e
Dipole moment T =qd
Torque on dipole in external E-field 7 =7 x E

SUMMARY

5.1 Electric Charge

¢ There are only two types of charge, which we call positive and negative. Like charges repel, unlike charges attract,
and the force between charges decreases with the square of the distance.

¢ The vast majority of positive charge in nature is carried by protons, whereas the vast majority of negative charge is
carried by electrons. The electric charge of one electron is equal in magnitude and opposite in sign to the charge of
one proton.

¢ Anion is an atom or molecule that has nonzero total charge due to having unequal numbers of electrons and protons.

¢ The SI unit for charge is the coulomb (C), with protons and electrons having charges of opposite sign but equal
magnitude; the magnitude of this basic charge is e = 1.602 X 107 ¢
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Both positive and negative charges exist in neutral objects and can be separated by bringing the two objects into
physical contact; rubbing the objects together can remove electrons from the bonds in one object and place them on
the other object, increasing the charge separation.

For macroscopic objects, negatively charged means an excess of electrons and positively charged means a depletion
of electrons.

The law of conservation of charge states that the net charge of a closed system is constant.

5.2 Conductors, Insulators, and Charging by Induction

A conductor is a substance that allows charge to flow freely through its atomic structure.
An insulator holds charge fixed in place.

Polarization is the separation of positive and negative charges in a neutral object. Polarized objects have their
positive and negative charges concentrated in different areas, giving them a charge distribution.

5.3 Coulomb's Law

Coulomb’s law gives the magnitude of the force between point charges. It is

F —_1 41927
F o= —"5"Tnp
0 7

where g, and g, are two point charges separated by a distance r. This Coulomb force is extremely basic,

since most charges are due to point-like particles. It is responsible for all electrostatic effects and underlies most
macroscopic forces.

5.4 Electric Field

The electric field is an alteration of space caused by the presence of an electric charge. The electric field mediates
the electric force between a source charge and a test charge.

The electric field, like the electric force, obeys the superposition principle

The field is a vector; by definition, it points away from positive charges and toward negative charges.

5.5 Calculating Electric Fields of Charge Distributions

A very large number of charges can be treated as a continuous charge distribution, where the calculation of the field
requires integration. Common cases are:

o one-dimensional (like a wire); uses a line charge density A
o two-dimensional (metal plate); uses surface charge density o

o three-dimensional (metal sphere); uses volume charge density p
The “source charge” is a differential amount of charge dq. Calculating dq depends on the type of source charge
distribution:
dg = Adl; dq =o0dA; dq= pdV.
Symmetry of the charge distribution is usually key.

Important special cases are the field of an “infinite” wire and the field of an “infinite” plane.

5.6 Electric Field Lines

Electric field diagrams assist in visualizing the field of a source charge.
The magnitude of the field is proportional to the field line density.

Field vectors are everywhere tangent to field lines.
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5.7 Electric Dipoles

223

e If a permanent dipole is placed in an external electric field, it results in a torque that aligns it with the external field.

¢ If a nonpolar atom (or molecule) is placed in an external field, it gains an induced dipole that is aligned with the

external field.

¢ The net field is the vector sum of the external field plus the field of the dipole (physical or induced).

¢ The strength of the polarization is described by the dipole moment of the dipole,

CONCEPTUAL QUESTIONS

5.1 Electric Charge

1. There are very large numbers of charged particles in
most objects. Why, then, don’t most objects exhibit static
electricity?

2. Why do most objects tend to contain nearly equal
numbers of positive and negative charges?

3. A positively charged rod attracts a small piece of cork.
(a) Can we conclude that the cork is negatively charged?
(b) The rod repels another small piece of cork. Can we
conclude that this piece is positively charged?

4. Two bodies attract each other electrically. Do they both
have to be charged? Answer the same question if the bodies
repel one another.

5. How would you determine whether the charge on a
particular rod is positive or negative?

5.2 Conductors, Insulators, and Charging by
Induction

6. An eccentric inventor attempts to levitate a cork ball by
wrapping it with foil and placing a large negative charge
on the ball and then putting a large positive charge on
the ceiling of his workshop. Instead, while attempting to
place a large negative charge on the ball, the foil flies off.
Explain.

7. When a glass rod is rubbed with silk, it becomes
positive and the silk becomes negative—yet both attract
dust. Does the dust have a third type of charge that is
attracted to both positive and negative? Explain.

8. Why does a car always attract dust right after it is
polished? (Note that car wax and car tires are insulators.)

9. Does the uncharged conductor shown below experience
a net electric force?

-

P =qd.

A\
A

™

10. While walking on a rug, a person frequently becomes
charged because of the rubbing between his shoes and the
rug. This charge then causes a spark and a slight shock
when the person gets close to a metal object. Why are these
shocks so much more common on a dry day?

11. Compare charging by conduction to charging by
induction.

12. Small pieces of tissue are attracted to a charged comb.
Soon after sticking to the comb, the pieces of tissue are
repelled from it. Explain.

13. Trucks that carry gasoline often have chains dangling
from their undercarriages and brushing the ground. Why?

14. Why do electrostatic experiments work so poorly in
humid weather?

15. Why do some clothes cling together after being
removed from the clothes dryer? Does this happen if
they’re still damp?

16. Can induction be used to produce charge on an
insulator?
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17. Suppose someone tells you that rubbing quartz with
cotton cloth produces a third kind of charge on the quartz.
Describe what you might do to test this claim.

18. A handheld copper rod does not acquire a charge when
you rub it with a cloth. Explain why.

19. Suppose you place a charge g near a large metal plate.
(a) If q is attracted to the plate, is the plate necessarily
charged? (b) If q is repelled by the plate, is the plate
necessarily charged?

5.3 Coulomb's Law

20. Would defining the charge on an electron to be
positive have any effect on Coulomb’s law?

21. An atomic nucleus contains positively charged protons
and uncharged neutrons. Since nuclei do stay together, what
must we conclude about the forces between these nuclear
particles?

22. TIs the force between two fixed charges influenced by
the presence of other charges?

5.4 Electric Field

23. When measuring an electric field, could we use a
negative rather than a positive test charge?

24. During fair weather, the electric field due to the net
charge on Earth points downward. Is Earth charged
positively or negatively?

25. 1If the electric field at a point on the line between two
charges is zero, what do you know about the charges?

26. Two charges lie along the x-axis. Is it true that the
net electric field always vanishes at some point (other than
infinity) along the x-axis?

5.5 Calculating Electric Fields of Charge

PROBLEMS

5.1 Electric Charge

37. Common static electricity involves charges ranging
from nanocoulombs to microcoulombs. (a) How many
electrons are needed to form a charge of —2.00 nC? (b) How
many electrons must be removed from a neutral object to
leave a net charge of 0.500 uC?
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Distributions

27. Give a plausible argument as to why the electric field
outside an infinite charged sheet is constant.

28. Compare the electric fields of an infinite sheet of
charge, an infinite, charged conducting plate, and infinite,
oppositely charged parallel plates.

29. Describe the electric fields of an infinite charged plate
and of two infinite, charged parallel plates in terms of the
electric field of an infinite sheet of charge.

30. A negative charge is placed at the center of a ring of
uniform positive charge. What is the motion (if any) of the
charge? What if the charge were placed at a point on the
axis of the ring other than the center?

5.6 Electric Field Lines

31. If a point charge is released from rest in a uniform
electric field, will it follow a field line? Will it do so if the
electric field is not uniform?

32. Under what conditions, if any, will the trajectory of a
charged particle not follow a field line?

33. How would you experimentally distinguish an electric
field from a gravitational field?

34. A representation of an electric field shows 10 field
lines perpendicular to a square plate. How many field lines
should pass perpendicularly through the plate to depict a
field with twice the magnitude?

35. What is the ratio of the number of electric field lines
leaving a charge 10q and a charge q?

5.7 Electric Dipoles

36. What are the stable orientation(s) for a dipole in an
external electric field? What happens if the dipole is
slightly perturbed from these orientations?

38. If 1.80x 10%° electrons move through a pocket

calculator during a full day’s operation, how many
coulombs of charge moved through it?

39. To start a car engine, the car battery moves
3.75x 10%! electrons through the starter motor. How
many coulombs of charge were moved?
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40. A certain lightning bolt moves 40.0 C of charge. How
many fundamental units of charge is this?

41. A 2.5-g copper penny is given a charge of
-20x107° C. (a) How many excess electrons are on the

penny? (b) By what percent do the excess electrons change
the mass of the penny?

42. A 2.5-g copper penny is given a charge of
40%x107° C. (a) How many electrons are removed from

the penny? (b) If no more than one electron is removed
from an atom, what percent of the atoms are ionized by this
charging process?

5.2 Conductors, Insulators, and Charging by
Induction

43. Suppose a speck of dust in an electrostatic precipitator
has 1.0000 x 10'2 protons in it and has a net charge of

=5.00 nC (a very large charge for a small speck). How
many electrons does it have?

44. Anamoeba has 1.00 x 10'6 protons and a net charge

of 0.300 pC. (a) How many fewer electrons are there than
protons? (b) If you paired them up, what fraction of the
protons would have no electrons?

45. A 50.0-g ball of copper has a net charge of 2.00 uC.

What fraction of the copper’s electrons has been removed?
(Each copper atom has 29 protons, and copper has an
atomic mass of 63.5.)

46. What net charge would you place on a 100-g piece
of sulfur if you put an extra electron on 1 in 102 of its
atoms? (Sulfur has an atomic mass of 32.1 u.)

47. How many coulombs of positive charge are there in
4.00 kg of plutonium, given its atomic mass is 244 and that
each plutonium atom has 94 protons?

5.3 Coulomb's Law
48. Two point particles with charges +3 uC and +5 uC

are held in place by 3-N forces on each charge in
appropriate directions. (a) Draw a free-body diagram for
each particle. (b) Find the distance between the charges.

49. Two charges +3 uC and +12 uC are fixed 1 m

apart, with the second one to the right. Find the magnitude
and direction of the net force on a —2-nC charge when
placed at the following locations: (a) halfway between the
two (b) half a meter to the left of the +3 uC charge (c)

225

half a meter above the +12 uC charge in a direction

perpendicular to the line joining the two fixed charges

50. In a salt crystal, the distance between adjacent sodium
and chloride ions is 2.82 X 1071 m. What is the force of
attraction between the two singly charged ions?

51. Protons in an atomic nucleus are typically 107 m

apart. What is the electric force of repulsion between
nuclear protons?

52. Suppose Earth and the Moon each carried a net
negative charge —Q. Approximate both bodies as point
masses and point charges.

(a) What value of Q is required to balance the gravitational
attraction between Earth and the Moon?

(b) Does the distance between Earth and the Moon affect
your answer? Explain.

(c) How many electrons would be needed to produce this
charge?

53. Point charges g =50uC and g, =-25uC are

placed 1.0 m apart. What is the force on a third charge
g3 = 20 uC placed midway between g, and g, ?

54. Where must g5 of the preceding problem be placed

so that the net force on it is zero?

55. Two small balls, each of mass 5.0 g, are attached to
silk threads 50 cm long, which are in turn tied to the same
point on the ceiling, as shown below. When the balls are
given the same charge Q, the threads hang at 5.0° to the

vertical, as shown below. What is the magnitude of Q?
What are the signs of the two charges?
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5.0°
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56. Point charges Q| =2.0uC and Q, =4.0uC are

A A A
located at T ;=(40i —2.0j +50k)m and

A N A
T ,=(8.0i +50j —9.0k)m. What is the force of
O, on Q7

57. The net excess charge on two small spheres (small
enough to be treated as point charges) is Q. Show that the
force of repulsion between the spheres is greatest when
each sphere has an excess charge Q/2. Assume that the
distance between the spheres is so large compared with
their radii that the spheres can be treated as point charges.

58. Two small, identical conducting spheres repel each
other with a force of 0.050 N when they are 0.25 m apart.
After a conducting wire is connected between the spheres
and then removed, they repel each other with a force of
0.060 N. What is the original charge on each sphere?

59. A charge g = 2.0 uC is placed at the point P shown

below. What is the force on g?

0-— 20m ——04—1.0 m—=e

1.0 uC -3.0 uC P

60. What is the net electric force on the charge located at
the lower right-hand corner of the triangle shown here?

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9

Chapter 5 | Electric Charges and Fields

Yi -2q

¢———0—

61. Two fixed particles, each of charge 5.0 X 1076 C,
are 24 cm apart. What force do they exert on a third particle
of charge —2.5X% 1076 C that is 13 cm from each of
them?

62. The charges
g, =20x10""C,q,=-40x1077 C, and

g3 =-10x 1077 C are placed at the corners of the

triangle shown below. What is the force on g ?

4
30m 50m
.-
Gs 40m q,

63. What is the force on the charge g at the lower-right-
hand corner of the square shown here?

‘30 a

aq

q© a Qg

64. Point charges g =10uC and g, = -30uC are

A A
ry = (3.0i —4.0j)m and

A A
ry = (9.0i +6.0j )m What is the force of g, ong;?

