-	_	-	-	
ı		_	П	
п			П	
и	_	-	ч	

SECTION - A (Marks 17)

Time allowed: 25 Minutes

Section - A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent.

Deleting/overwriting is not allowed.

Do not use lead pencil.

حدداول اوی ہے۔ اس کے جوابات ای مفیر دے کرنام مرکزے حوالے کریں۔ کاٹ کرووبارہ العن كااجازت فين ب-ليذ بنسل كااستعال منوع ب-

١	/ersi	on No) .
4	0	8	2
0	•	0	0
D	1	1	1
2)	2	2	•
3)	3	3	3
	4	4	4
0	(5)	(5)	(5)
6	6	6	6
7	7	7	7
8	8	•	8
9	9	9	9

Answer Sheet	No.
---------------------	-----

_ Invigilator Sign بر سوال کے سامنے دیے گئے، کر یکو لم کے مطابق درست دائرہ کو پر کریں۔

Fill the relevant bubble against each question according to curriculum:

Candidate Sign.

			Taning to cur	1	Candidate Sign.						
	Question	Α	В	С	D	Α	В	С	D		
1.	Sum of the masses of constituent nucleons as compared to the mass of the resultant nucleus is:	Negligible	Smaller	Greater	Same	0	0	0	0		
2.	In the time constant of RC circuit, how much charge is stored, out of maximum charge $q_{\scriptscriptstyle o}$?	$0.90q_o$	$0.37q_{o}$	0.51q _o	$0.63q_{o}$	0	0	0	0		
3.	The electric field at a distance of $20 cm$ from $4\mu c$ charge is:	9×10 ⁵ N / C	4.5×10 ⁵ N / C	$3\times10^3N/C$	$9\times10^3N/C$	0	0	0	0		
4.	For a closed circuit:	$E = V_t - Ir$	$E = V_t$	$E > V_t$	$E < V_t$	0	0	0	0		
5.	Resistance of a wire is $'r'$ ohms. The wire is stretched to four times its length, then its resistance in ohms is:	<i>r</i> / ₄	1/2	8 <i>r</i>	4 <i>r</i>	0	0	0	0		
6.	If a charge is at rest in a magnetic field, then the magnetic force on charge is:	Zero	qvB	$qvB\cos\theta$	$qvB\sin\theta$	0	0	0	0		
7.	A $2m$ wire carrying current $5A$ is at right angle to uniform magnetic field of 0.2 web / m^2 . The force on wire will be:	1.5 <i>N</i>	2 <i>N</i>	4 <i>N</i>	5 <i>N</i>	0	0	0	0		
8.	The Component in generator which consumes energy is called:	Capacitor	Commutator	Split rings	Load	0	0	0	0		
9.	The circuit in which current and voltage are in phase, the power factor is:	2	Zero	1	-1	0	0	0	0		
10.	An alternating voltage is given by $30\sin 157t$ the frequency of alternating voltage is:	75 <i>Hz</i>	50 <i>Hz</i>	25 <i>Hz</i>	100 <i>Hz</i>	0	0	0	0		
11.	Which of the following is the Young Modulus of steel?	$1.5 \times 10^9 N / m^2$	$2\times10^{11}N/m^2$	$3.9 \times 10^{-9} N / m^2$	$2\times10^9 N/m^2$	0	0	0	0		
12.	A wire is stretched to four times of its length its strain is:	0.5	4	3	1	0	0	0	0		
13.	A potential barrier of 0.7 volt exists across P- N junction made from:	Gallium	Silicon	Germinium	Indium	0	0	0	0		
14.	The minimum energy required by a photon to create an electron-positron pair is:	0.051MeV	0.52MeV	1.51 <i>MeV</i>	1.02 MeV	0	0	0	$\overline{\bigcirc}$		
15.	According to de-Broglie equation has the smallest wavelength associated with it.	Electron	Proton	Neutron	Alpha particle	0	0	0	0		
16.	If an atom exists in excited state $n=3$, the number of transitions that take place is:	25	3	5	10	0	0	0	0		
17.	The duration of meta stable state is approximately:	10 ⁻¹⁰ S	10 ⁻³ S	10 ⁻⁶ S	10 ⁻⁸ S	0	0	0	0		

----2HA-I 2308 ---

$$\bullet E = \frac{q}{4\pi\varepsilon_o r^2}$$

•
$$R = \frac{\rho L}{A}$$

$$F = qvB\sin\theta$$

$$F = BIL \operatorname{Sin} \theta$$

$$P = VI \cos \theta$$

•
$$E = \frac{q}{4\pi\varepsilon_o r^2}$$
 • $R = \frac{\rho L}{A}$ • $F = qvB\sin\theta$
• $N = \frac{n(n-1)}{2}$ • $E_o = m_o c^2$ • $\lambda = \frac{h}{mv}$

$$E = m c^2$$

$$\lambda = \frac{h}{m}$$

•
$$V = V_o \sin \omega t$$

$$\bullet \qquad \frac{\Delta L}{L} = \frac{4}{1} = 4$$

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE: Answer any fourteen parts from Section 'B' and any two questions from Section 'C'. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Attempt any FOURTEEN parts. All parts carry equal marks. Q. 2

 $(14 \times 3 = 42)$

- Show that 'electric field' is 'potential gradient' $\left(E = \frac{\Delta V}{d}\right)$. (i)
- What is "electron volt"? Show its relationship with joule. (ii)
- How can a rheostat be used as potential divider? (iii)
- (iv) A heating coil has a resistance of 10Ω , It is designed to operate on 220V, what electric energy in joules is supplied to heater in 20 seconds?
- Why low resistance in an ammeter is called shunt resistance? Why is this 'shunt' connected parallel to (v) galvanometer?
- (vi) Is it possible to accelerate a neutron in cyclotron (Magnetic field)? Justify your answer.
- (vii) Briefly explain the need of laminated iron cores in transformers.
- (viii) In a coil, current changes from 6A to 8A in 0.05S. If the average E.M.F is 10V, then find the coefficient of self-inductance.
- How can radiowaves be produced? Describe that information can be transmitted by radiowaves. (ix)
- An inductor with an inductance of $100\mu H$, passes a current of 5mA when its terminal potential is 8V(x) Calculate the frequency of A.C supply.
- Highlight the importance of super conductors in MRI machine. (xi)
- Differentiate 'elastic deformation' and 'plastic deformation'. (xii)
- (xiii) Under what conditions a transistor acts as open and a closed switch?
- Briefly explain how electrons and holes flow across a P-N junction. (xiv)
- (xv) Should the rest mass of photon be zero? Justify your answer.
- (xvi) Briefly explain the following terms:
 - Unified Mass Scale
- (b) Mass Defect
- (xvii) Differentiate between excitation potential and ionization energy?
- (xviii) The inner shell transitions in heavy elements result into emission of characteristic X-Rays. How do these X-Rays differ from visible light?
- (xix)Describe any two basic forces of nature.
- (xx) Does fusion reaction release more energy per nucleon than fission reaction? Explain briefly.

SECTION - C (Marks 26)

Attempt any TWO questions. All questions carry equal marks.

 $(2 \times 13 = 26)$

- Q. 3 a. Derive an expression for energy stored in capacitor.
 - The full-scale deflection of galvanometer is 10mA; its resistance is 50Ω . How can it be converted into an b. ammeter of range 200A?
- Q. 4 a. What is meant by motional emf? Also derive an expression for motional emf.
 - An A.C circuit consists of a pure resistance of 10Ω and is connected across an A.C supply of 220V, b. 100Hz. Calculate:
 - (i) Current
- (ii) Power consumed
- (iii) Equation for voltage.
- Q. 5 What is de Broglie's hypothesis? Describe an experiment to show that a particle can have wave characteristics.
 - Find the wave length associated with an electron in the state n=3 of the hydrogen atom.

Important formulae

- $X_L = 2\pi f L$

Note:

- $I = \frac{V}{X_L}$ $\frac{1}{\lambda_n} = \frac{1}{R_H} \left(\frac{1}{p^2} \frac{1}{n^2} \right)$ $\lambda_{\text{max}} = \frac{\text{Constant}}{T}$
- Wein's Constant = $0.2898 \times 10^{-2} mk$

- $W = \frac{1}{2}QV$ $W = \frac{1}{2}CV^2$ $R_s = \frac{I_g R_g}{\left(I I_g\right)}$

	_
_	11

SECTION - A (Marks 17)

Time allowed: 25 Minutes

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

حتہ اول اور ی ہے۔اس کے جوابات ای سٹی پر دے کرنا عم مرکزے حوالے کریں۔ کاٹ کرودیارہ العنى كا المائت فيس م- ليذ بنل كاستعال منوع --

١	/ersio	on No	Э.		RO	DLL N	UMB	ER	
8	0	8	4						
0	•	0	0	0	0	0	0	0	
	1	1	①	1	1	1	1	1	
	2	2	2	2	2	2	2	2	
	3	3	3	3	3	3	3	3	
(1	4		4	4	4	4	4	
	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	
	6	6	6	6	6	6	6	6	
	7	7	7	7	7	7	7	7	
	8	•	8	8	8	8	8	8	
	9	9	9	9	9	9	9	9	

Answer Sheet No. _____

______ Invigilator Sign. ہر سوال کے سامنے دیے گئے، کر یکو کم کے مطابق درست دائرہ کو پر کریں۔

	Question	Α	В	С	D	Α	В	С	D
1.	According to de-Broglie equation which one has smallest wavelength associated with it?		α - Particle	Electron	Proton	0	0	0	0
2.	The energy of electron in the excited state $n=3$ in hydrogen atom is:	-3.4 <i>eV</i>	-0.85eV	-1.5eV	-13.6 <i>eV</i>	0	0	0	0
3.	Unit of decay constant λ' is:	m^{-1}	S	S^{-1}	m	\bigcirc	\bigcirc	\bigcirc	
4.	A $2\mu F$ capacitor of a television is subjected to $4000V$ potential difference. The energy stored in capacitor is:	16 <i>J</i>	$4 \times 10^{-3} J$	2×10 ⁻³ J	8 <i>J</i>	0	0	0	0
5.	Electric field at a distance of $20cm$ from a $4\mu c$ charge is:	$3\times10^3N/C$	9×10 ⁵ N/C	4.5×10 ⁵ N / C	3×10 ⁵ N / C	0	0		0
6.	The unit of product of resistance and capacitance is equal to unit of:	Time	Potential difference	Current	Work	0	0	0	0
7.	concertation of.	Momentum	Charge	Angular momentum	Energy	0	0	0	0
8.	Two long straight wires have current flowing in them in the opposite direction, the force between the wires is:	Repulsive	Zero	Undefined	Attractive	0	0	0	0
9.	Galvanometer can be made more sensitive if $\frac{C}{BAN}$ is made:	Infinite	Zero	Smaller	Larger	0	0	0	0
10.	Which of the following quantities DO NOT change in a step-up transformer?	Voltage	Power	Heat	Current	0	0	0	0
11. 【	When the current in a coil changes from $^{'0'}$ to $5A$ in $0.025S$, an average E.M.F induced in a neighboring coil is $600V$, the mutual inductance for two coils is:	12.5 henry	6 henry	7.5 henry	3 henry	0	0	0	0
12.	The phase difference between the current and voltage at resonance is:	π	$-\pi$	$\frac{\pi}{2}$	0	0	0	0	0
13.	If the peak value of alternating current is $7\sqrt{2}A$, then the mean square value of current will be?	251	7√21	49 <i>A</i>	7 <i>A</i>	0	0	0	0
14.	is NOT a ferromagnetic material.	Nickel	Cobalt	Wood	Iron	\bigcirc	\bigcirc	\bigcirc	\cap
15.	If a wire is stretched to four times of its length. The strain is:	3	1	0.5	4	0	Ö	0	O
16.	If in a transistor both collector-base and base-emitter junctions are reversed biased then it is:	Cut-off region	Saturation region	Q-point	Active region	0	0	0	0
17.	By reducing the absolute temperature of a black body to half, the total energy radiated will change by a factor:	4	16	1/16	1 4	0	0	0	0

-2HA-I 2308 HA -

•
$$W = \frac{1}{2}CV^2$$

•
$$W = \frac{1}{2}CV^2$$
 • $\varepsilon = -\frac{\Delta}{\Delta t}(MI)$

•
$$\varepsilon = \frac{\Delta L}{L}$$

•
$$\lambda = \frac{h}{m}$$

$$I_{rms} = 0.7071I_{rms}$$

•
$$\lambda = \frac{h}{mv}$$
 • $I_{rms} = 0.7071I_m$ • $E_n = -\frac{E_o}{n^2}$

•
$$RC = t$$

•
$$\sigma = 5.67 \times 10^{-8} Wm^{-2} K^{-4}$$

•
$$E_o = 2.17 \times 10^{-18} J$$

•
$$E = \sigma T^4$$

$$E = \frac{q}{4\pi\epsilon r^2}$$

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE: Answer any fourteen parts from Section 'B' and any two questions from Section 'C'. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Attempt any FOURTEEN parts. All parts carry equal marks. Q. 2

 $(14 \times 3 = 42)$

- Briefly explain the concept of electric dipole.
- (ii) Describe the factors affecting the force on a current carrying conductor in a magnetic field.
- When Wheatstone bridge is balanced, then no current flows through galvanometer. Explain briefly. (iii)
- Why rise in temperature of a conductor is accompanied by rise in the resistance? (iv)
- How is Lenz's law a consequence of law of conservation of energy? (v)
- Briefly explain the production of back EMF in electric motor. (vi)
- (vii) Two long parallel wires 8cm apart carry currents of 6A and 2A in the same direction. What is the magnitude of magnetic field mid-way between them?
- (viii) How is a 10mA, 50Ω galvanometer converted into 20V voltmeter?
- A pure inductor is connected across a 5V, 100 Hz supply, and current flowing through it is measured as (ix) 0.2 A Determine the value of its inductance.
- Describe impedance as vector sum of resistances and reactances. (x)
- (xi) Distinguish between brittle and ductile substances.
- Briefly explain any use of super conductors. (xii)
- Can a P-N Junction be also called potential barrier? Explain briefly. (xiii)
- Determine the wave length of electron that has been accecrated through a potential difference of 100V. (xiv)
- (xv) Describe uncertainty principle.
- (xvi) Briefly explain working of transistor as switch.
- (xvii) Describe the origion of different types of optical spectra.
- (xviii) Write down postulates of Bohr's model of hydrogen atom.
- Which of the 'Fission reaction' and 'Fusion reaction' is difficult to achieve? Give reason. (xix)
- The half life of Polonium-214 is 0.1643 seconds. Determine the decay constant (λ). (xx)

SECTION - C (Marks 26)

Note: Attempt any TWO questions. All questions carry equal marks.

 $(2 \times 13 = 26)$

- Q. 3 a. State Gauss's law. Also find electric field intensity due to an infinite sheet of charge.
 - A heating coil has a resistance of 10Ω . It is designed to operate on 220V. What energy in Joules is b. supplied to the heater in 5S?
- Discuss, the principle, construction and working of A.C generator. Also derive an expression for induced Q. 4 a. E.M.F and induced current.
 - A coil having resistance of 10Ω and inductance of 30mH is connected to 230V,50Hz supply. Calculate b.
 - (i) Circuit current
- (ii) Phase angle
- Power consumed

(iii)

- Q. 5 What is LASER? Explain the principle and operation of LASER. a.
 - Helium He_2^4 has an atomic mass of 4.002603u. Find: b.
 - Mass defect
- Binding energy
- (iii) Binding energy per nucleon for this nucleus.

Important formulae

$$B = \frac{u_o I}{2\pi r} \qquad \bullet \qquad R_s = \frac{I_g R_g}{\left(I - I_g\right)} \qquad \bullet \qquad L = \frac{X_L}{2\pi f}$$

•
$$B = \frac{u_o I}{2\pi r}$$
 • $R_s = \frac{I_g R_g}{\left(I - I_g\right)}$ • $L = \frac{X_L}{2\pi f}$ • $K.E = q\Delta V$ • $\lambda = \frac{h}{mv}$ • $M_{electron} = 9.1 \times 10^{-31} kg$ • $\lambda = \frac{0.693}{T_{V_2}}$ • $M_{neutron} = 1.008665u$ • $M_{proton} = 1.007825u$ • $W = I^2 Rt$

•
$$M_{proton} = 1.67 \times 10^{-27} kg$$
 • $E = \Delta mc^2$ • $F = ILB \sin \theta$ • $\lambda = \frac{h}{\sqrt{2m_e q_e \Delta V}}$

Binding energy per nucleon = $\frac{E_b}{h}$