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MODERN MISSING DATA METHODS

the 
Big 

Three

Maximum likelihood

Bayesian estimation

Multiple imputation



KEY ADVANTAGES OF BIG THREE

๏ Achieve unbiasedness with more a realistic assumption about 
the missing data process 

๏ Allow for alternate assumptions about nonresponse process 

๏ Maximize power 

๏ Use all available data, no wasted resources



CHOOSING A MISSING DATA METHOD

๏ All things being equal—same data, same variables, same 
assumptions—the Big Three rarely produce different results 

๏ Missing data analyses require distributional assumptions 

๏ How we represent those distributions—multivariate versus 
factored specifications—is what matters



MODELING FRAMEWORKS

Multivariate modeling

๏ Classic approaches often assume 
multivariate normality 

๏ Most applications of maximum likelihood 
and multiple imputation



MODELING FRAMEWORKS

Multivariate modeling
Factored regression specification

๏ Factored regression invokes a unique 
model and distribution for each variable 

๏ Each model can include terms that are at 
odds with multivariate normality (e.g., 
interactions, random slopes)

X2

Y

X1



MISSING DATA DECISION TREE

1. Analysis features a nonlinear 
effect (interaction, curvilinear, 

random slope)

2. Analysis is restricted to  
normal variables.NO

YES

Big 3 with a factored  
regression specification

Big 3 with  
multivariate normality

YES

NO

FCS/MICE multiple imputation

YES

3. Analysis features zero-order 
or additive effects with mixed 

variable types.



OU
TL

IN
E

1

2

3

4

5

6

7

Maximum Likelihood Estimation

Bayesian MCMC Estimation

Multiple Imputation

Missing Data Software

Analysis Example

Missing Data Mechanisms

Modern Missing Data Methods



HOW MUCH MISSING DATA IS TOO MUCH?

๏ The Big Three can tolerate substantial amounts of missing data 

๏ The Big Three are increasingly better than ad hoc methods 
(e.g., deleting incomplete cases) as missingness increases 

๏ The amount of missing data is less important than why the 
data are missing (the missingness process or mechanism)



MISSING DATA MECHANISMS

๏ Missing data mechanisms (processes) describe different ways 
in which the data relate to nonresponse 

๏ Missingness may be completely random or systematically 
related to different parts of the data 

๏ Mechanisms function as statistical assumptions 



PARTITIONING THE DATA

Y1 Y2 Y3

4 4 3
3 3 5
7 1 6
2 1 6
5 9 3
3 2 2
1 6 7
9 4 9
2 5 6

Y1 Y2 Y3

4 4 3
3 NA 5
7 1 6

NA 1 6
5 9 3
3 NA NA
1 6 7
9 4 9
2 NA 6

Y1 Y2 Y3

3

2

2 2

5

M1 M2 M3

0 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 1 1
0 0 0
0 0 0
0 1 0

= +

Complete = Observed + Missing Indicators



MISSING COMPLETELY AT RANDOM

๏ The probability of missing values is 
completely unrelated to the data 

๏ MCAR is purely random missingness 

๏ We don’t care about this process or 
testing for it (e.g., Little’s MCAR test)

M1 M2 M3

0 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 1 1
0 0 0
0 0 0
0 1 0

Y1 Y2 Y3

4 4 3
3 NA 5
7 1 6

NA 1 6
5 9 3
3 NA NA
1 6 7
9 4 9
2 NA 6

Y1 Y2 Y3

3

2

2 2

5

Observed Missing

× ×

Indicators

Predictors of nonresponseMissingness



RESEARCH SCENARIO

๏ Study investigating association between  
learning problems in 1st grade and 
reading performance in 9th grade  

๏ Learning problems ratings are complete 
and reading scores are incomplete 9t
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๏ Missingness is unrelated to the observed learning problems 
measure and unrelated to the unseen reading scores 

๏ Planned missing data design where 9th grade reading scores 
are collected from a random subset of the original sample in 
order to reduce data collection costs 

๏ Unplanned missingness is unrelated to the data (e.g., scheduling 
conflicts, administrative or logistical errors, family relocation)

MCAR EXAMPLE



(CONDITIONALLY) MISSING AT RANDOM

๏ Systematic missingness related to the 
observed scores 

๏ The probability of missing values is 
unrelated to the unseen (latent) data 

๏ Most Big Three applications assume CMAR

M1 M2 M3

0 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 1 1
0 0 0
0 0 0
0 1 0

Y1 Y2 Y3

4 4 3
3 NA 5
7 1 6

NA 1 6
5 9 3
3 NA NA
1 6 7
9 4 9
2 NA 6

Y1 Y2 Y3

3

2

2 2

5

Indicators

×

Observed Missing

Predictors of nonresponseMissingness



๏ Missingness is related to the observed learning problems 
measure but unrelated to the unseen reading scores 

๏ Students with high levels of learnings problems are more likely 
to have missing data due to increased dropout risk, disciplinary 
actions, or family or situational instability 

๏ The Big Three assume a CMAR process by default

CONDITIONALLY MAR EXAMPLE



MISSING NOT AT RANDOM

๏ Systematic missingness 

๏ The probability of missing values is 
related to the unseen (latent) data 

๏ The Big Three also allow MNAR processes 
(selection and pattern mixture models)

M1 M2 M3

0 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 1 1
0 0 0
0 0 0
0 1 0

Y1 Y2 Y3

4 4 3
3 NA 5
7 1 6

NA 1 6
5 9 3
3 NA NA
1 6 7
9 4 9
2 NA 6

Y1 Y2 Y3

3

2

2 2

5

Indicators Observed Missing

Predictors of nonresponseMissingness



๏ Missingness is related to the observed learning problems 
measure and also related to the unseen reading scores 

๏ Individuals with the low reading levels opt out because they 
feel discouraged or anxious about testing or because they 
were moved to specialized programs or alternative educational 
settings where standardized testing protocols differ

MNAR EXAMPLE



MNAR MODELING

๏ Missing not at random processes require an explicit model that 
incorporates the missing data indicator (M)

LPROB

READ

M

LPROB

READ

M

Selection Model Pattern Mixture Model



TESTING THE CMAR ASSUMPTION

๏ The Big Three achieve unbiasedness if the process is 
conditionally MAR 

๏ The CMAR assumption is untestable because it stipulates no 
relation between missingness and the unseen scores 

๏ When in doubt, conduct sensitivity analyses that compare the 
estimates from CMAR and MNAR assumptions



OU
TL

IN
E

1

2

3

4

5

6

7

Maximum Likelihood Estimation

Bayesian MCMC Estimation

Multiple Imputation

Missing Data Software

Analysis Example

Missing Data Mechanisms

Modern Missing Data Methods



MAXIMUM LIKELIHOOD

๏ ML identifies parameter estimates that minimize the distances 
between the model’s predicted values and the observed data 

๏ Each observation’s contribution to estimation is restricted to 
the subset of parameters for which there is data 

๏ Estimation uses incomplete data, no imputation performed



IMPLICIT IMPUTATION

๏ Each participant contributes their observed data 

๏ Data are not filled in, but the multivariate normal 
distribution acts like an imputation machine 

๏ The location of the observed data implies the 
probable position of the unseen data, and 
estimates are adjusted accordingly

Observed  
variable

Incomplete  
variable



READING ILLUSTRATION

๏ Students with high learning problems 
ratings are more likely to have missing 
reading scores (conditionally MAR) 

๏ The true means are both 20
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DELETING INCOMPLETE DATA

๏ Deleting cases with missing reading 
scores gives a non-representative sample 

๏ Scores are systematically missing from 
one side of each distribution 

๏ The reading mean is too high and the 
learning problems mean is too low
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PARTIAL DATA RECORDS

๏ ML uses the partial data for students with 
learning problems data and missing 
reading scores 

๏ The partial data records primarily have 
elevated learning problems ratings 9t
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ADJUSTING LEARNING PROBLEMS MEAN

๏ Adding higher learning problems scores 
increases the variable’s variability 

๏ The variable’s mean receives a upward 
adjustment to accommodate the influx of 
high scores 9t
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IMPLICIT IMPUTATION

๏ Maximum likelihood assumes 
multivariate normality 

๏ In a normal distribution with a negative 
correlation, higher learning problems 
scores should pair with lower reading

Missing reading scores 
should fall in this region
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ADJUSTING THE READING DISTRIBUTION

๏ From the negative correlation, maximum 
likelihood intuits the presence of the lower 
but unseen reading scores 

๏ The variance of the reading distribution 
increases, and the unseen reading scores 
in the lower tail adjust the mean down 9t
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ESTIMATION SUMMARY

Biased! Accurate!
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MAXIMUM LIKELIHOOD PROS AND CONS

๏ Direct estimation for a wide range of 
analysis models 

๏ Widely available in software packages 
(any SEM program) 

๏ Easy to use, missing data handling occurs 
behind the scenes

๏ Generally limited to normal data, options 
for mixed metrics are less common 

๏ Normal-theory methods are biased with 
interactions and non-linear terms 

๏ MLM software usually discards 
observations with missing predictors

Pros Cons
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THINGS MCMC ESTIMATION IS GOOD AT

๏ Direct estimation for complex models with missing data 

๏ Mixed metrics (normal, ordinal, nominal, skewed, count, latent) 

๏ Nonlinear effects (interactions, curvilinear effects) 

๏ Multilevel data (random coefficients, interactions) 

๏ Latent variable modeling (interactions)



FACTORED REGRESSION SPECIFICATIONS

๏ Factored regression specifications invoke 
a unique distribution for each variable 

๏ The analysis consists of a collection of 
univariate regression models 

๏ Each model can include terms that are at 
odds with multivariate normality

X2

Y

X1



FREQUENTIST VS. BAYESIAN PARADIGMS

๏ The parameter is a fixed quantity, 
estimates vary across different samples 

๏ Statements about probability, precision, 
and confidence refer to estimates 

๏ Probability = long run frequency of 
outcomes across many samples

๏ Parameters are random variables with a 
distribution of plausible realizations 

๏ Statements about probability, precision, 
and intervals refer to the parameter 

๏ Probability = our degree of certainty 
about a parameter after analyzing data

Frequentist Bayesian



BAYES’ THEOREM

Likelihood = data (B) given the parameters (A)

Posterior = parameters (A) given the data (B)

Prior = a priori belief about parameters (A)



MCMC ESTIMATION

Do for t = 1 to 10,000 iterations 

Estimate model parameters, 
conditional on the filled-in data 

Impute missing values, conditional 
on the model parameters 

Repeat 

Summarize model parameters

Estimate regression models

Impute missing values



PARAMETERS FROM 200 MCMC CYCLES
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SUMMARIZING MCMC ESTIMATES

๏ Bayesian estimation yields a distribution of parameters—a 
posterior—that averages over thousands of filled-in data sets 

๏ The posterior is a distribution of plausible parameter values 
that could have produced our particular data 

๏ Some parameter values are more likely to have produced the 
observed data than others



POSTERIOR MEDIAN AND STD. DEV.

๏ The posterior median and standard 
deviation quantify the most likely 
parameter value and uncertainty 

๏ Analogous to a point estimate and 
standard error but no repeated sampling

Parameter Value
1 2 3 4 5 6 7 8 9

Median = 5       
Std. Dev. = 1



95% CREDIBLE INTERVALS

๏ The 95% credible interval gives limits 
spanning 95% of the parameter’s range 

๏ Akin to a confidence interval, but 
references a range of highly plausible 
parameter values

Parameter Value

1 2 3 4 5 6 7 8 9

95% CI = (3, 7)



PHILOSOPHICAL SPECTRUM

Bayesian Inference Computational frequentism

Computational frequentism: A researcher employs Bayesian MCMC estimation 
because their model is too complex for ML or OLS. The MCMC results are surrogates 
for unobtainable ML/OLS estimates (Levy & McNeish, 2021, Psychological Methods).



MISSING DATA IMPUTATION

๏ Missing scores are imputed by drawing replacement scores at 
random from a distribution of plausible values 

๏ The model parameters combine to define the center and 
spread of the missing data imputations 

๏ Each iteration yields unique model parameters and unique 
imputations based on those parameters



REGRESSION FROM FILLED-IN DATA
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PREDICTED VALUES
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RESIDUAL VARIATION
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DISTRIBUTIONS OF IMPUTATIONS
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IMPUTATION FOR LOW LEARNING PROBLEMS 
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DRAW AN IMPUTATION AT RANDOM
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IMPUTATION = PREDICTION + NOISE
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FILLED-IN DATA AT ITERATION T
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BAYESIAN ESTIMATION PROS AND CONS

๏ Direct estimation competitor to maximum 
likelihood, but more flexible 

๏ Suited for interactions, non-linear terms, 
and random coefficients (MLMs) 

๏ Good for mixed metrics (normal, binary, 
ordinal, multicategorical, count, skewed)

๏ Fewer simple software options (Blimp), 
most are difficult to use (JAGS) 

๏ MCMC is not fully autonomous, requires 
some input and oversight 

๏ Literature on factored regression 
specifications is less mature

Pros Cons
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MULTIPLE IMPUTATION

๏ MCMC estimation creates a filled-in data set at every iteration, 
and estimates average over thousands of imputations 

๏ Multiple imputation saves a small number of data sets (e.g., 20 
is common) for reanalysis using frequentist methods 

๏ MCMC is co-opted for the purpose of creating imputations, but 
the Bayesian parameter estimates are not of interest



MCMC ESTIMATION

Estimate imputation model

Impute missing values

MCMC Chain

1 2

Iteration

1

250

1000

500

750

… 20

Save data



STEP 1: SAVE IMPUTED DATA SETS

Y X1 X2

4 4 3
3 NA 5
7 1 6

NA 1 6
5 9 3
3 NA NA
1 6 7
9 4 9
2 NA 6

Y X1 X2

4 4 3
3 3.2 5
7 1 6

5.3 1 6
5 9 3
3 8.7 10.1
1 6 7
9 4 9
2 6.5 6

Y X1 X2

4 4 3
3 5.4 5
7 1 6

6.2 1 6
5 9 3
3 7.1 8.5
1 6 7
9 4 9
2 6.9 6

Y X1 X2

4 4 3
3 5.1 5
7 1 6

4.6 1 6
5 9 3
3 10.3 6.9
1 6 7
9 4 9
2 7.2 6

✓1✓2✓3
✓̂ = (✓1 + ✓2 + ...+ ✓M ) /M

1

Original data Imputed data set 1 Imputed data set 2 Imputed data set 20



STEP 2: ANALYZE EACH DATA SET

Y X1 X2

4 4 3
3 3.2 5
7 1 6

5.3 1 6
5 9 3
3 8.7 10.1
1 6 7
9 4 9
2 6.5 6

Y X1 X2

4 4 3
3 5.4 5
7 1 6

6.2 1 6
5 9 3
3 7.1 8.5
1 6 7
9 4 9
2 6.9 6

Y X1 X2

4 4 3
3 5.1 5
7 1 6

4.6 1 6
5 9 3
3 10.3 6.9
1 6 7
9 4 9
2 7.2 6

Analyze data set 1 Analyze data set 2 Analyze data set 20

YX YX YX

✓1✓2✓3
✓̂ = (✓1 + ✓2 + ...+ ✓M ) /M

1



STEP 3: POOL RESULTS

YX

YX

YX

…

Pooled estimates, 
SEs, and tests

Estimate set 1

Estimate set 2

Estimate set 20

…



AGNOSTIC VS. MODEL-BASED IMPUTATION

๏ Step 1 (imputation) uses MCMC to fit a model, the parameters of 
which define distributions of imputations 

๏ Step 2 (analysis) fits the focal models to the filled-in data 

๏ Agnostic imputation deploys an imputation model that differs 
from the analysis model, whereas model-based imputation 
deploys the same model in both steps



JOINT MODEL IMPUTATION

๏ Joint imputation invokes a multivariate 
distribution for the incomplete variables 

๏ Usually a multivariate normal model with a mean 
vector and covariance matrix as parameters

Y

X

Z



FULLY CONDITIONAL SPECIFICATION

๏ FCS (also called the MICE algorithm) uses 
regression models to fill in data 

๏ Each MCMC cycle uses a round-robin scheme 
with each variable predicted by others 

๏ Each regression model can invoke a different 
metric and distribution

Y
X

Z

Z
Y

X

X
Z

Y



AGNOSTIC IMPUTATION PROS AND CONS

๏ Widely available in statistical software 
(SPSS, SAS, Stata, Mplus, R) 

๏ Accommodates mixed metrics (normal, 
binary, ordinal, multicategorical) 

๏ Can generate imputations for several 
purposes or analyses

๏ Biased with interactions, non-linear terms, 
and random slope MLMs 

๏ Capabilities vary dramatically across 
software packages 

๏ Algorithms for MLMs are limited and 
restricted to random intercepts

Pros Cons



MODEL-BASED IMPUTATION

X
Y

M

๏ The step 1 imputation model exactly 
matches the step 2 analysis model 

๏ Imputations are tailored to one analysis, 
cannot be used for other purposes

X
Y

M

Imputation model

Analysis model



MODEL-BASED IMPUTATION PROS AND CONS

๏ Suited for interactions, non-linear terms, 
and random coefficients (MLMs) 

๏ Accommodates mixed metrics (normal, 
binary, ordinal, multicategorical) 

๏ Imputation and analysis models cannot 
conflict or contradict each other

๏ Fewer simple software options (Blimp), 
some are difficult to use (JAGS) 

๏ Each analysis requires a unique set of 
tailored imputations 

๏ Literature on factored regression 
specifications is less mature

Pros Cons
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SOFTWARE SUMMARY

Method Program Specification Features

Maximum 
likelihood

Mplus MVN  
limited FRS

categorical outcomes / normal predictors /  
robust corrections / some MLMs / latent by latent interactions

lavaan (R) MVN normal variables only / robust corrections 

mdmb (R) FRS binary, ordinal, normal variables / manifest variable interactions

MCMC Blimp FRS binary, ordinal, multicategorical, skewed, count, latent variables / 
MLMs / latent by latent or latent by manifest interactions

Multiple 
imputation Blimp model-based FRS 

agnostic FCS/MICE
 model-based features are the same as MCMC  

FCS with normal, binary, ordinal, and multicategorical

Imputation 
analysis

Mplus 
mitml (R) NA multiple imputation analysis and  

pooling suites with test statistics

Note. MVN = multivariate normal, FRS = factored regression specification, FCS = fully conditional specification



WWW.APPLIEDMISSINGDATA.COM/BLIMP



WWW.APPLIEDMISSINGDATA.COM/VIDEOS

http://www.appliedmissingdata.com/
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ANALYSIS 1

 Variable Definition Missing % Scale
atrisk Emotional/behavioral risk code 2.2 0 = Low, 1 = Medium/high

lrnprob1 1st grade learning problems 2.2 Numeric (31 to 88)
read1 1st grade broad reading composite 6.5 Numeric (39 to 153)
read9 9th grade broad reading composite 17.4 Numeric (41 to 123)



MISSING DATA DECISION TREE

1. Analysis features a nonlinear 
effect (interaction, curvilinear, 

random slope)
NO

YES

Big 3 with a factored  
regression specification

NO

FCS/MICE multiple imputation

YES

3. Analysis features zero-order 
or additive effects with mixed 

variable types.

2. Analysis is restricted to  
normal variables.

YES

Big 3 with  
multivariate normality



BIG THREE COMPARISON

MCMC (FRS) ML (MVN) FCS/MICE MI

Parameter Est. SD Est. SE Est. SE

Intercept 65.18 6.75 65.13 6.50 64.61 6.64

1st grade reading slope 0.51 0.05 0.51 0.05 0.51 0.05

1st grade problems slope –0.40 0.10 –0.40 0.10 –0.40 0.09

R2 .56 — .57 — .57 —

The Big Three are numerically equivalent!!!

Note. FRS = factored regresson specification, MVN = multivariate normal model.



ANALYSIS 2

 Variable Definition Missing % Scale
atrisk Emotional/behavioral risk code 2.2 0 = Low, 1 = Medium/high

lrnprob1 1st grade learning problems 2.2 Numeric (31 to 88)
read1 1st grade broad reading composite 6.5 Numeric (39 to 153)
read9 9th grade broad reading composite 17.4 Numeric (41 to 123)



MISSING DATA DECISION TREE

1. Analysis features a nonlinear 
effect (interaction, curvilinear, 

random slope)

2. Analysis is restricted to  
normal variables.NO

YES

Big 3 with a factored  
regression specification

Big 3 with  
multivariate normality

YES

NO

FCS/MICE multiple imputation

YES

3. Analysis features zero-order 
or additive effects with mixed 

variable types.



BIG THREE COMPARISON

MCMC (FRS) ML (FRS) FCS/MICE MI

Parameter Est. SD Est. SE Est. SE

Intercept 68.47 7.25 68.43 6.96 66.87 7.12

1st grade reading slope 0.49 0.05 0.49 0.05 0.50 0.05

1st grade problems slope –0.42 0.10 –0.42 0.09 -0.40 0.09

At risk indicator slope –2.29 1.99 –2.27 1.93 –2.15 1.97

R2 .57 — .58 — .58 —

The Big Three are numerically equivalent!!!

Note. FRS = factored regresson specification.



ANALYSIS 3

 Variable Definition Missing % Scale
atrisk Emotional/behavioral risk code 2.2 0 = Low, 1 = Medium/high

lrnprob1 1st grade learning problems 2.2 Numeric (31 to 88)
read1 1st grade broad reading composite 6.5 Numeric (39 to 153)
read9 9th grade broad reading composite 17.4 Numeric (41 to 123)



MISSING DATA DECISION TREE

1. Analysis features a nonlinear 
effect (interaction, curvilinear, 

random slope)

2. Analysis is restricted to  
normal variables.NO

YES

Big 3 with a factored  
regression specification

Big 3 with  
multivariate normality

YES

NO

FCS/MICE multiple imputation

YES

3. Analysis features zero-order 
or additive effects with mixed 

variable types.



BIG THREE COMPARISON

MCMC (FRS) ML (FRS) Model-Based MI (FRS)

Parameter Est. SD Est. SE Est. SE

Intercept 142.29 23.45 142.61 23.51 139.21 23.58

1st grade reading slope –0.36 0.26 –0.36 0.26 –0.33 0.26

1st grade problems slope –1.88 0.46 –1.89 0.46 –1.82 0.45

Reading × problems slope 0.02 0.01 0.02 0.01 0.02 0.01

At risk indicator slope –2.05 1.91 –2.06 1.94 –1.92 1.98

R2 .63 — .64 — .63

The Big Three are numerically equivalent!!!

Note. FRS = factored regresson specification.



For more information go to

WWW.APPLIEDMISSINGDATA.COM 


