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®  12. Path models.imp*

DATA: mathachievement.dat;

VARIABLES: id condition male frlunch atrisk stanread
efficacy anxiety mathpre mathpost;

MISSING: 999;

ORDINAL: condition;]

MODEL :

efficacy -~ condition;

mathpost -~ efficacy condition;

SEED: 90291;

BURN: 10000;

ITERATIONS: 10000;
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‘ Modern Missing Data Methods



MODERN MISSING DATA METHODS

Maximum likelihood

the
Big
Three

Bayesian estimation

Multiple imputation



KEY ADVANTAGES OF BIG THREE

® Achieve unbiasedness with more a realistic assumption about
the missing data process

® Allow for alternate assumptions about nonresponse process
® Maximize power

@ Use all available data, no wasted resources



CHOOSING A MISSING DATA METHOD

@ All things being equal—same data, same variables, same
assumptions—the Big Three rarely produce different results

® Missing data analyses require distributional assumptions

® How we represent those distributions—multivariate versus
factored specifications—Is what matters



MODELING FRAMEWORKS

Multivariate modeling
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® (lassic approaches often assume
multivariate normality
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® Most applications of maximum likelihood
and multiple imputation



MODELING FRAMEWORKS

Multivariate modeling
Factored regression specification

© Factored regression invokes a unique
model and distribution for each variable

® Each model can include terms that are at
odds with multivariate normality (e.g.,
Interactions, random slopes)




MISSING DATA DECISION TREE

1. Analysis features a nonlinear
effect (interaction, curvilinear,
random slope)

-3

Big 3 with a factored
regression specification

!

2. Analysis Is restricted to
normal variables.

3. Analysis features zero-order
or additive effects with mixed
variable types.

Big 3 with
multivariate normality

FCS/MICE multiple imputation




a Missing Data Mechanisms



HOW MUCH MISSING DATA IS TOO MUCH?

@ The Big Three can tolerate substantial amounts of missing data

@ The Big Three are increasingly better than ad hoc methods
(e.g., deleting iIncomplete cases) as missingness increases

® The amount of missing data is less important than why the
data are missing (the missingness process or mechanism)



MISSING DATA MECHANISMS

® Missing data mechanisms (processes) describe different ways
in which the data relate to nonresponse

® Missingness may be completely random or systematically
related to different parts of the data

® Mechanisms function as statistical assumptions



PARTITIONING THE DATA

Indicators

+ Missing

Observed

Complete

NA

NA

NA

NA

NA




MISSING COMPLETELY AT RANDOM

Missingness | Predictors of nonresponse

Indicators Observed  Missing

My My Ms
0 0O

® The probability of missing values is
completely unrelated to the data

® MCAR Is purely random missingness

X

X

® We don't care about this process or
testing for it (e.g,, Little's MCAR test)
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RESEARCH SCENARIO

® Study Investigating association between
learning problems in 1st grade and
reading performance in 9th grade

® Learning problems ratings are complete
and reading scores are incomplete

40

9th Grade Reading Performance
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Learning Problems in 1st Grade




MCAR EXAMPLE

® Missingness Is unrelated to the observed learning problems
measure and unrelated to the unseen reading scores

® Planned missing data design where 9th grade reading scores
are collected from a random subset of the original sample in
order to reduce data collection costs

@ Unplanned missingness Is unrelated to the data (e.g., scheduling
conflicts, administrative or logistical errors, family relocation)



(CONDITIONALLY) MISSING AT RANDOM

Missingness | Predictors of nonresponse

Indicators Observed  Missing
© Systematic missingness related to the |\31 l\gz I\gs \2 Yj Y;
observed scores 001 0 INA 5
0 0 0 7 1 6

@ The probability of missing values is 10 0 NA 1 6 0
unrelated to the unseen (latent) data 0 0 0 5 9 3
0 1 1 3 NA NA
® Most Big Three applications assume CMAR 0 0 O 1 6 7
0 0 0 9 4 9
0 1 0 2 NA 6




CONDITIONALLY MAR EXAMPLE

® Missingness is related to the observed learning problems
measure but unrelated to the unseen reading scores

@ Students with high levels of learnings problems are more likely
to have missing data due to increased dropout risk, disciplinary
actions, or family or situational instability

® The Big Three assume a CMAR process by default



MISSING NOT AT RANDOM

Missingness | Predictors of nonresponse

Indicators Observed  Missing
© Systematic missingness % T BAIRCR (O
0 0 O 4 4 3
. . . 0 1 0 3NA 5 3
® The probability of missing values IS "0 o .
related to the unseen (latent) data 100 NA 16 9
0 0 O 5 9 3
® The Big Three also allow MNAR processes 0 1 1 3 NA NA 9 9
(selection and pattern mixture models) 0 0 O 1 6 7
0 0 O 9 4 9
0 1 0 2 NA 6 5




MNAR EXAMPLE

® Missingness is related to the observed learning problems
measure and also related to the unseen reading scores

® Individuals with the low reading levels opt out because they
feel discouraged or anxious about testing or because they
were moved to specialized programs or alternative educational
settings where standardized testing protocols differ



MNAR MODELING

® Missing not at random processes require an explicit model that
Incorporates the missing data indicator (M)

Selection Model Pattern Mixture Model

READ R




TESTING THE CMAR ASSUMPTION

@ The Big Three achieve unbiasedness If the process IS
conditionally MAR

® The CMAR assumption Is untestable because It stipulates no
relation between missingness and the unseen scores

@ When in doubt, conduct sensitivity analyses that compare the
estimates from CMAR and MNAR assumptions



a Maximum Likelihood Estimation



MAXIMUM LIKELIHOOD

® ML identifies parameter estimates that minimize the distances
between the model's predicted values and the observed data

@ Each observation's contribution to estimation Is restricted to
the subset of parameters for which there Is data

@ Estimation uses incomplete data, no imputation performed



IMPLICIT IMPUTATION

® Each participant contributes their observed data

@ Data are not filled in, but the multivariate normal
istribution acts like an imputation machine
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@ The location of the observed data implies the
probable position of the unseen data, and
estimates are adjusted accordingly

Observed

variable
Incomplete

variable




READING ILLUSTRATION [ ] Cases with missing reading scores

] Cases with complete data

® Students with high learning problems
ratings are more likely to have missing
reading scores (conditionally MAR)

@ The true means are both 20

9th Grade Reading Performance

Learning Problems in 1st Grade



DELETING INCOMPLETE DATA

] Cases with complete data

® Deleting cases with missing reading 40 A

o
. . 8 O
scores gives a non-representative sample = o o0
E 30 7 o o°
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one side of each distribution & 58 00
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© The reading mean is too high and the p= oo
learning problems mean is too low 0 5
0 10 20 30 40
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PARTIAL DATA RECORDS [ ] Cases with learning problems data only

] Cases with complete data
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® ML uses the partial data for students with = o o
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ADJUSTING LEARNING PROBLEMS MEAN L] Cases with learning problems data only
- ] Cases with complete data

40 T
® O
® Adding higher learning problems scores S R
. . : . . = o OO q
increases the variable’s variability s 0 on 828 o
- o & 00°: O
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IMPLICIT IMPUTATION

Missing reading scores
should fall in this region

40 — iy
b O
® Maximum likelihood assumes = ’
: : : =
multivariate normality s 7
£
ST . £ 20
@ Inanormal distribution with a negative 8
o ;
correlation, higher learning problems S 1 w
. . S 5
scores should pair with lower reading = ;
0 5
0 10 20 30 40

Learning Problems in 1st Grade



ADJUSTING THE READING DISTRIBUTION ] Cases with learning problems data only
- ] Cases with complete data

@ From the negative correlation, maximum o " o :

likelthood intuits the presence of the lower § 20

but unseen reading scores E

S 20 0 R

@ The variance of the reading distribution % @

Increases, and the unseen reading scores g 10 AN

in the lower tail adjust the mean down 5 : .
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ESTIMATION SUMMARY

Bi% Accurate!
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MAXIMUM LIKELIHOOD PROS AND CONS

Pros Cons
@ Direct estimation for a wide range of ® Generally limited to normal data, options
analysis models for mixed metrics are less common
® Widely available in software packages ® Normal-theory methods are biased with
(any SEM program) Interactions and non-linear terms

® Easy to use, missing data handling occurs @ MLM software usually discards
behind the scenes observations with missing predictors



0 Bayesian MCMC Estimation



THINGS MCMC ESTIMATION IS GOOD AT

@ Direct estimation for complex models with missing data

@ Mixed metrics (normal, ordinal, nominal, skewed, count, latent)
@ Nonlinear effects (interactions, curvilinear effects)

@ Multilevel data (random coefficients, interactions)

® Latent variable modeling (interactions)



FACTORED REGRESSION SPECIFICATIONS

® Factored regression specifications invoke
a unique distribution for each variable

® The analysis consists of a collection of
univariate regression models

@ Each model can include terms that are at
odds with multivariate normality




FREQUENTIST VS. BAYESIAN PARADIGMS

Frequentist Bayesian
® The parameter Is a fixed quantity, ® Parameters are random variables with a
estimates vary across different samples distribution of plausible realizations
® Statements about probability, precision, ® Statements about probability, precision,
and confidence refer to estimates and Intervals refer to the parameter
® Probability = long run frequency of ® Probability = our degree of certainty

outcomes across many samples about a parameter after analyzing data



BAYES' THEOREM

Posterior = parameters (A) given the data (B)

Likelihood = data (B) given the parameters (A)

Prior = a priori belief about parameters (A)



MCMC ESTIMATION

Estimate regression models

Impute missing values

Do fort=11010,000 iterations

» Estimate model parameters,
conditional on the filled-in data

» |Impute missing values, conditional
on the model parameters

Repeat

Summarize model parameters



PARAMETERS FROM 200 MCMC CYCLES
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SUMMARIZING MCMC ESTIMATES

® Bayesian estimation yields a distribution of parameters—a
posterior—that averages over thousands of filled-in data sets

® The posterior Is a distribution of plausible parameter values
that could have produced our particular data

® Some parameter values are more likely to have produced the
observed data than others



POSTERIOR MEDIAN AND STD. DEV.

® The posterior median and standard
deviation quantify the most likely Median = 5
parameter value and uncertainty otd. Dev. =1

® Analogous to a point estimate and

standard error but no repeated sampling 9 2 a4 5 & 7 8 g

Parameter Value



95% CREDIBLE INTERVALS

® The 95% credible interval gives limits

spanning 95% of the parameter’s range 95% Cl = (3,7)

® Akin to a confidence interval, but
references a range of highly plausible

parameter values 1 2 3 4 5 6§ 7 8 9

Parameter Value



PHILOSOPHICAL SPECTRUM

Bayesian Inference Computational frequentism

Computational frequentism: A researcher employs Bayesian MCMC estimation
because their model is too complex for ML or OLS. The MCMC results are surrogates
for unobtainable ML/OLS estimates (Levy & McNeish, 2021, Psychological Methods).



MISSING DATA IMPUTATION

® Missing scores are imputed by drawing replacement scores at
random from a distribution of plausible values

® The model parameters combine to define the center and
spread of the missing data imputations

® Each Iteration yields unique model parameters and unique
iImputations based on those parameters



REGRESSION FROM FILLED-IN DATA
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PREDICTED VALUES

40 Predicted read scores (conditional means)
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RESIDUAL VARIATION

40 Unexplained reading variation
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DISTRIBUTIONS OF IMPUTATIONS

40 o = plausible reading imputations
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IMPUTATION FOR LOW LEARNING PROBLEMS
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DRAW AN IMPUTATION AT RANDOM
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IMPUTATION = PREDICTION + NOISE
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IMPUTATION FOR HIGH LEARNING PROBLEMS
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DRAW AN IMPUTATION AT RANDOM
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DRAW AN IMPUTATION AT RANDOM
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[ ] Cases with imputed reading scores

FILLED-IN DATA AT ITERATION T

] Cases with complete data
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BAYESIAN ESTIMATION PROS AND CONS

Pros Cons

@ Direct estimation competitor to maximum @ Fewer simple software options (Blimp),

likelihood, but more flexible most are difficult to use (JAGS)

® Suited for interactions, non-linear terms, ® MCMC is not fully autonomous, requires
and random coefficients (MLMs) some input and oversight

® (Good for mixed metrics (normal, binary, ® Literature on factored regression

ordinal, multicategorical, count, skewed) specifications is less mature



e Multiple Imputation



MULTIPLE IMPUTATION

@ MCMC estimation creates a filled-in data set at every iteration,
and estimates average over thousands of imputations

@ Multiple imputation saves a small number of data sets (e.g., 20
IS common) for reanalysis using frequentist methods

@ MCMC Is co-opted for the purpose of creating imputations, but
the Bayesian parameter estimates are not of interest



MCMC ESTIMATION
MCMC Chain

20

Estimate imputation model

250

500 Iteration

750

Impute missing values

Save data 1000



STEP 1: SAVE IMPUTED DATA SETS

Original data Imputed data set1 Imputed data set 2 Imputed data set 20
Y X X Y X X Y X X Y X X
4 4 3 4 4 3 4 4 3 4 4 3
3 NA 5 3 32 5 3 54 5 3 51 5
7 1 6 7 1 6 7 1 6 7 1 6
NA 6 5.3 6 62 1 6 4.6 6
9 3 9 3 9 3 9 3
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STEP 2: ANALYZE EACH DATA SET

Analyze data set 1 Analyze data set 2 Analyze data set 20
Y X% X Y XX Y XX
4 4 3 4 4 3 4 4 3
3 32 5 3 54 5 3 51 5
7 6 7 6 7 6

5.3 6 6.2 6 4.6 6
5 9 3 5 9 3 5 9 3
3 87 101 3 71 85 3 103 6.9
1 6 7 1 6 7 1 6 7
9 4 9 9 4 9 4 9
2 65 6 2 69 6 2 72 6

\
H
0\




STEP 3. POOL RESULTS

— “—> <« Estimate set 1
— “—> P Estimate set 2
i Pooled estimates,

SEs, and tests

N, I ap—



AGNOSTIC VS. MODEL-BASED IMPUTATION

® Step 1 (imputation) uses MCMC to fit a model, the parameters of
which define distributions of imputations

® Step 2 (analysis) fits the focal models to the filled-in data

® Agnostic imputation deploys an imputation model that differs
from the analysis model, whereas model-based imputation
deploys the same model in both steps



JOINT MODEL IMPUTATION

® Joint Imputation invokes a multivariate
distribution for the incomplete variables

® Usually a multivariate normal model with @ mean
vector and covariance matrix as parameters




FULLY CONDITIONAL SPECIFICATION

® FCS (also called the MICE algorithm) uses
regression models to fill in data

® Each MCMC cycle uses a round-robin scheme
with each variable predicted by others

® Each regression model can invoke a different
metric and distribution




AGNOSTIC IMPUTATION PROS AND CONS

Pros Cons
® Widely available in statistical software ® Biased with interactions, non-linear terms,
(SPSS, SAS, Stata, Mplus, R) and random slope MLMs
® Accommodates mixed metrics (normal, ® (Capabilities vary dramatically across
binary, ordinal, multicategorical) software packages
® (Can generate imputations for several ® Algorithms for MLMs are limited and

purposes or analyses restricted to random intercepts



MODEL-BASED IMPUTATION

Imputation model

B

® The step Timputation model exactly
matches the step 2 analysis model

I

® |mputations are tailored to one analysis, Analysis model
cannot be used for other purposes
“—

I



MODEL-BASED IMPUTATION PROS AND CONS

Pros Cons
® Suited for interactions, non-linear terms, ® Fewer simple software options (Blimp),
and random coefficients (MLMs) some are difficult to use (JAGS)
® Accommodates mixed metrics (normal, ® Each analysis requires a unique set of
binary, ordinal, multicategorical) tallored imputations
® [mputation and analysis models cannot ® Literature on factored regression

conflict or contradict each other specifications is less mature



e Missing Data Software



SOFTWARE SUMMARY

Method  Program Specification Features
Mplus . MVN | categorical outcomes / normal .predict(.)rs/
imited FRS robust corrections / some MLMs / latent by latent interactions

Maximum | |
ikelihood lavaan (R) MVN normal variables only / robust corrections
mdmb (R) FRS binary, ordinal, normal variables / manifest variable interactions

binary, ordinal, multicategorical, skewed, count, latent variables /

MEME Blimp o MLMs / latent by latent or latent by manifest interactions
Multiple alire model-based FRS model-based features are the same as MCMC
Imputation P agnostic FCS/MICE FCS with normal, binary, ordinal, and multicategorical
Imputation Mplus NA multiple imputation analysis and
analysis mitml (R) pooling suites with test statistics

Note. MVN = multivariate normal, FRS = factored regression specification, FCS = fully conditional specification
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BLIMP 3.0

Blimp 3 offers powerful latent variable modeling and imputation
for incomplete data sets with up to three levels. Blimp's unique
Bayesian computational architecture allows easy specification
of complex analyses that are difficult or impossible to fit in

other software packages.
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BLIMP VIDEQ SERIES

The Blimp video series and corresponding YouTube channel provide researchers with training for using
the Blimp software.Each video provides a short, step-by-step tutorial that walks viewers through a
particular aspect of a missing data analysis. Check back for updates, as new videos are
continually added.
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ANALYSIS 1

readd = B, + P, (read1) + B, (Improbl) + &

Variable Definition Missing % Scale
atrisk Emotional/behavioral risk code 2.2 0 = Low, 1= Medium/high
Irprob] 1st grade learning problems 2.2 Numeric (31to 88)
read] 1st grade broad reading composite 6.5 Numeric (39 to 153)
read9 9th grade broad reading composite 174 Numeric (41to 123)




MISSING DATA DECISION TREE

1. Analysis features a nonlinear L .
. . . 2. Analysis Is restricted to
effect (interaction, curvilinear, .
normal variables.
random slope)

Big 3 with a factored Big 3 with
regression specification multivariate normality

1




BIG THREE COMPARISON

The Big Three are numerically equivalent!!!

MCMC (FRS) ML (MVN) FCS/MICE Ml

Parameter Est. SD Est. SE Est. SE

Intercept 65.18 6.75 65.13 6.50 64.61 6.64

1st grade reading slope 0.51 0.05 0.51 0.05 0.51 0.05
1st grade problems slope -0.40 0.10 -0.40 0.10 -0.40 0.09
R2 56 — 57 — 57 —

Note. FRS = factored regresson specification, MVN = multivariate normal model.



ANALYSIS 2

readd = B, + B, (readl) + ﬁz(lrnprom) + [33(atrisk) +€

Variable Definition Missing % Scale
atrisk Emotional/behavioral risk code 2.2 0 = Low, 1= Medium/high
Irprob] 1st grade learning problems 2.2 Numeric (31to 88)
read] 1st grade broad reading composite 6.5 Numeric (39 to 153)

read9 9th grade broad reading composite 174 Numeric (41to 123)




MISSING DATA DECISION TREE

3. Analysis features zero-order
or additive effects with mixed
variable types.

1. Analysis features a nonlinear L .
. . . 2. Analysis Is restricted to
effect (interaction, curvilinear, .
normal variables.
random slope)

Big 3 with a factored

. e FCS/MICE multiple imputation
regression specification

!




BIG THREE COMPARISON

The Big Three are numerically equivalent!!!

MCMC (FRS) ML (FRS) FCS/MICE MI

Parameter Est. SD Est. SE Est. SE

Intercept 68.4/ 125 638.43 6.96 66.8/ 112

1st grade reading slope 0.49 0.05 0.49 0.05 0.50 0.05
1st grade problems slope -0.42 0.10 -0.42 0.09 -0.40 0.09
At risk indicator slope -2.29 1.99 -2.27 1.93 -2.15 1.97

R2 57 — 58 — 58 —

Note. FRS = factored regresson specification.



ANALYSIS 3

readd =3, + B, (read1) + 3, (Improbi) + B, (read1) (Improb1)+ B, (atrisk) + €

Variable Definition Missing % Scale
atrisk Emotional/behavioral risk code 2.2 0 = Low, 1= Medium/high
Irprob] 1st grade learning problems 2.2 Numeric (31to 88)
read] 1st grade broad reading composite 6.5 Numeric (39 to 153)

read9 9th grade broad reading composite 174 Numeric (41to 123)




MISSING DATA DECISION TREE

1. Analysis features a nonlinear
effect (interaction, curvilinear,
random slope)

Big 3 with a factored
regression specification




BIG THREE COMPARISON

The Big Three are numerically equivalent!!!

MCMC (FRS) ML (FRS) Model-Based MI (FRS)
Parameter Est. SD Est. SE Est. SE
Intercept 142.29 2345 142,61 23.51 139.21 23.58
1st grade reading slope -0.36 0.26 -0.36 0.26 -0.33 0.26
1st grade problems slope -1.88 0.46 -1.89 0.46 -1.82 0.45
Reading x problems slope 0.02 0.01 0.02 0.01 0.02 0.01
At risk indicator slope -2.05 191 -2.06 1.94 -1.92 1.98

R2 63 - 064 - 63

Note. FRS = factored regresson specification.
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