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Basic Concept

Biomagnetism

study of magnetic fields originating from biological systems

Magneto-biology

study of effects of magnetic fields on an organism (e.g. orientation of birds
guided by the magnetic field of the earth)

Organism (e.g. human body) emits magnetic fields B (often only
measurable with highly sensitive devices such as SQUIDS (→ talk F.
Bismarck))

Organism produces also electric fields E, which can be calculated by
the measurement of potential differences, such as
Electroencephalography (EEG) → not part of this talk

The B-fields originate from currents or contaminants in the tissue
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The measurement of the magnetic and electric fields can convey
information about how the organism works: For example, certain
active-areas of tissue in the cerebral cortex (outer-part of the brain)
can be localised by the measurement technique of
Magnetoencephalography (MEG) (description of MEG is not part of
this talk)

MEG measures fields, but this gives a problem: How to reconstruct
the currents, which give rise to the measured fields, and their location
in the tissue uniquely from the data of the MEG? (inverse Problem →
talk A. Shani)

In this talk we deal with the calculation of the B-fields, given the
currents in the tissue
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Magnetic Fields in the Human Body

Occurrences of magnetic fields

Magnetic constituents in the body (e.g. contaminants in the lung)

Magnetic moments of molecules

Ion currents in tissue

The magnetic fields, emitted by
the human body, range approxi-
mately from nano- to femto-Tesla

Values of table taken from Hämäläinen et al, RevModPhys,
1993 and S.J. Williamson, L. Kaufman, Journal of Magnetism
and Magnetic Materials, 1981

contaminants in the lung ∼ 1 nT
heart-muscle ∼ 50 pT
ion currents in the eyes ∼ 10 pT
brain activity fT-pT
optical brain stimulus ∼ 20 fT
thermic magnetic noise
(created by the thermic
motion of atoms)

∼ 1 fT

Physics 656 Medical Imaging Biomagnetism Introduction 5 / 46



Currents

E- and B-fields are produced by currents. We introduce two types of
currents:

Primary current ji

Current-flow in active tissue (in intracellular-region also called ’impressed
current’, because ji gets ’impressed’ by biological activity)

Return current jV

Is evoked by the primary current: It ’neutralises’ the primary current by
transporting back the charge, which builds up through the primary current
(also called ’volume current’, because it transports back the charge through
the surrounding volume (tissue), in which the primary current is embedded)
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Exact locations of the ’real’ currents are not known → primary current
and return current serve as theoretical models, representing the ’real’
currents in the tissue

In our calculations, the total current is represented by the sum of
primary current and return current
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Ion Mechanism in a Cell

Cells are surrounded by a membrane, dividing the space into
intracellular- and extracellular-space

Ion-pump mechanism: Receptor molecules pump selected ions against
concentration gradient of intra- and extracellular-space (e.g.
Na+-K+-pump: 3 Na+ out, 2 K+ into the cell). Details of this or other
pump-mechanism are not discussed in this talk

According to the concentration gradient we get a potential difference
Vin − Vext across the cell membrane → for an equilibrium state,
currents (for each type of ion) must be balanced

Equilibrium: Concentration of certain ion-type Cion determined by
thermodynamics (Boltzmann-distribution)

Cion ∼ exp(−∣e∣Vion

kBT
) ⇒ Vion,in − Vion,ext =

kBT

∣e∣
ln(

Cion,ext

Cion,in
)
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Ion Mechanism
Goldman’s Equation

Vion,in − Vion,ext

K+ −89 mV
Cl− −48 mV
Na+ 52 mV

(Values of the table taken from S.J. Williamson, L. Kaufman,
Journal of Magnetism and Magnetic Materials, 1981)

Take K+, Cl−, Na+ for the total
membrane-potential V
simultaneously into account
(Goldman’s equation):

V = kBT
∣e∣

ln(
P (K+)Cext,K+ + P (Na+)Cext,Na+ + P (Cl−)Cin,Cl−

P (K+)Cin,K+ + P (Na+)Cin,Na+ + P (Cl−)Cext,Cl−
)

with P (ion) = permeability of the membrane with respect to that type of
ion

This yields with typical values for humans and animals: V ≈ −70 mV

(Value taken from Hämäläinen et al, RevModPhys, 1993)
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Example: Pyramidal Neurons

(picture taken from Hämäläinen et al, RevModPhys,
1993)

structure

soma Cell-body (processes
signals)

dendrites Thread-like endings
(receive stimuli from
other cells)

axon Long fibre (carries
nerve impulses)

synapses Connections to other
neurons (release
neurotransmitter for
action potential (→
explained on the next
slide))
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Action Potential (Pyramidal Neuron)

Action potential is an electric pulse, which travels from the axon-hill at the
cell body along the axon to other neurons or cells

Action potentials are triggered by excitatory synaptic inputs. These are
increasing the membrane potential

Triggering mechanism

1 Synapses: Release neurotransmitters (some acid like glutamate)

2 Neurotransmitters bind to receptor molecules on cell membrane →
change in membrane potential and permeability for a certain type of
ions

3 Positive feedback loop: Rise of membrane potential opens ion
channels, this in return increases the membrane potential

4 ’Excitatory potential’ propagates exponentially damped to the cell
body → combined signal of several synapses must reach the axon-hill

5 Threshold ∼ −55 mV at the axon-hill triggers an action potential
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Potential course (picture adopted from https://de.wikipedia.org/wiki/Aktionspotential

Threshold 
voltage

-70 
Equilibrium 
voltage

Membrane 
potential / 
mV

0 

Overshoot

Depolarisation

Repolarisation

Hyperpolarisation
2 ms

-50 
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Depolarisation and Repolarisation

1 Positive-feedback evokes a rapid raise in the membrane potential →
sodium and potassium channel becomes maximally opened

2 Sodium channel slowly closes, membrane permeability of sodium
becomes lower relative to the permeability of potassium → membrane
voltage falls

Overshoot and hyperpolarisation are inertial-phenomena, i.e. in case of the
overshoot, more ions are flooding into the intracellular-space than would
be necessary for a zero membrane-voltage

The signal of the action potential propagates along the axon to other
neurons, to trigger again an action potential
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Typical duration of an action potential of a neuron is 1 − 2 ms

Within the phases of repolarisation and hyperpolarisation it is not
possible to trigger an action potential anew (refractory period)

Amplitude of the action potential is independent of triggering-strength
(’all-or-non’ principle), but not so the frequency → the stronger the
synaptic input, the higher the frequency (limited by refractory period)

Up to now it is unknown, how the entire process of an action
potential conveys information
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Magnetic-Dipole

pair of poles

el. current (closed loop)

Magnetic-dipole can be represented by two
models:

Pair of (contrary charged) poles

Closed loop (perfect circle) of electric
current

Important field components:

Direct field: Represented by those field
line-pieces, which are orientated parallel
to the magnetic moment m (B ⋅m > 0)

Return field: Represented by those field
line-pieces, which are orientated
antiparallel to m (B ⋅m < 0)

(pictures taken from https://en.wikipedia.org/wiki/Magnetic_dipole)
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Magnetic fields in organic systems are often very complicated close to the
tissue. But in most cases the fields are measured outside of the body,

where the far-field approximation is sufficient. . .
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Far-Field Approximation for the Vector-Potential A

For a magnetic-dipole, the vector potential A(r) can be written as

A(r) = µ0

4π
∫

j(r′)
∣r − r′∣

dr′

Taylor-expansion of 1/∣r− r′∣ yields so called multipole-expansion for A(r):

1

∣r − r′∣
=

∞

∑
n=0

1

n!
(r′ ⋅ ∇r̄)n

1

∣r − r̄∣
∣
r̄=0

≈ 1

∣r∣
+ 1

∣r∣3
(r ⋅ r′) + 1

2∣r∣5
(3(r ⋅ r′)2 − ∣r∣2∣r′∣2) + . . .

⇒A(r) ≈ µ0

4π
∫ dr′ j(r′)( 1

∣r∣
+ 1

∣r∣3
(r ⋅ r′) +O( 1

∣r∣5
))

= µ0

4π∣r∣2 ∫
dr′ j(r′)(er ⋅ r′)
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Side Remark: Why No Magnetic Monopoles?

Define vector field (vanishing at infinity) Vk = r′kj(r
′), k = 1,2,3

∇(Vk(r′)) = ∇(r′kj(r
′))

=
3

∑
l=1

∂

∂r′l
(r′kjl(r

′))

=
3

∑
l=1

[δkljl(r′) + r′k
∂

∂rl
jl(r′)]

= jk(r′) + r′k∇j(r
′)

Continuity equation (∂ρ/∂t +∇j(r′) = 0) for static charge-distribution:

∇j(r′) = 0

↪ ∫
Ω=R3

dr′ jk(r′) = ∫
Ω
dr′∇(Vk(r′)) = ∮

∂Ω
Vk(r′)dS′ = 0
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Impressed & Volume Current (ji & jV )

Impressed current ji

Arise from biological activity, especially from diffusion of ions

Establishes imbalance in Cion → evokes return current

Volume current jV

Is evoked by ji, prevents ionizing of the surrounding tissue

Is dictated by distribution of conductivity σ and E, where E arises
from the charge-transport of ji

Follows Ohm’s law jV = σ(r) ⋅E(r)

For jV we need to know σ, but σ is unknown → hint: From
animal-experiments, it is known, that σ is likely to be highly anisotropic

Total current → j = ji + jV
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ji and jV can be combined to establish a ’current-dipole’. . .
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Current-Dipole Q

Movement of localised charge over a short distance

↪ Q = current ⋅ distance

Current-dipoles represent an unknown
current pattern in terms of ji and jV

Battery: Biochemical processes impress
flow of charge (= ji) between ±-terminals

Back-flow (= jV ) prevents ionizing of tissue

jV = radially symmetric in- & out-flow.
Pattern has same form as B of a
magnetic-dipole

Orientation of the dipole in the direction of
impressed current: Q∣∣ji

Also possible: Fixed charges as ±-pole
(picture taken from S.J. Williamson and L. Kaufman, Journal of Magnetism and
Magnetic Materials, 1981)
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Quasi-Static Limit

Low-frequency limit (< 1 kHz): All currents change in time
synchronously → situation can be viewed quasi-static, i.e. B = B(r)
for each moment in time

In quasi-static limit: Magnetic field described by Biot-Savart:
(integration over unbounded, homogeneous medium, j vanishes at
infinity)

B(r) = µ0

4π
∫ dr′

j(r′) × (r − r′)
∣r − r′∣3

Use the Maxwell-equations

∇×B = µ0(j + ε0∂E/∂t)
∇ ×E = −∂B/∂t

and the time-dependency of E in the form E(r, t) = E0(r)eiωt to justify
quasi-static approximation:
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Side remark: Why is Quasi-Static Approximation Justified?

Insert j = σE + ∂P/∂t and P = (ε − ε0)E into

∇×B = µ0(j + ε0∂E/∂t)

⇒ ∇×B = µ0 (σE + ε∂E/∂t)

Constraint: Temporal part ε∂E/∂t must be smaller than σE
with E = E0(r)eiωt and ω = 2πf

⇒ ∣ε∂E/∂t∣ ≪ ∣σE∣ ⇔ ωε/σ ≪ 1

with f ∼ 100 Hz, σ = 0.3 Ω−1m−1, ε = 105ε0 → ωε/σ = 2 ⋅ 10−3 ≪ 1

∇×E = −∂B
∂t
⇔∇×∇×E = −µ0

∂

∂t
(σ + iωε)E = −iωµ0σ(1 + ıωε/σ)E

Spatial changes of solution ∼ ∣ωµ0σ(1 + iωε/σ)∣−1/2 ≈ 65 m
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Integral Formulas for V and B

B(r) = µ0

4π
∫

j(r′) ×R

R3
dr′ R = r − r′

Rewrite integrand with (∇ = Nabla-operator with respect to r, ∇′ =
Nabla-operator with respect to r′)

R/R3 = −∇(1/R) = ∇′(1/R)

j ×∇′(1/R) = (∇′ × j)/R −∇′ × (j/R)

↪ B(r) = µ0

4π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
∇′ × j(r′)

R
dr′ − ∫ ∇′ × ( j(r

′)
R

)dr′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Stokes→0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= µ0

4π
∫

∇′ × j(r′)
R

dr′
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Because ∇×E = −∂B/∂t ≈ 0⇒ E = −∇V ⇒ j = ji +Eσ = ji − σ∇V
Use

∇′ × j = ∇ × ji −∇ × σ∇V = ∇ × ji −∇σ ×∇V = ∇ × ji +∇ × (V∇σ)

B(r) = µ0

4π
∫

∇′ × (ji(r′) + V∇′σ)
R

dr′

= µ0

4π
∫ (ji(r′) + V∇′σ) × R

R3
dr′

We still need an eq.
to determine V !

Use in quasi-static approximation:

∇ ⋅ [∇ ×B]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= µ0∇ ⋅ (j − ε0 ∂E/∂t
´¹¹¹¹¹¸¹¹¹¹¹¶
≈0

) ⇔ ∇j = 0

↪ ∇ ⋅ (σ∇V ) = ∇ ⋅ ji Choose proper boundary conditions,
solve for V and plug into eq. for B
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Piece-Wise Homogeneous Conductor

Gi: Area- or volume-part
of the conductor

σi: Conductivity of the
tissue in Gi (constant in
Gi)

Sij :
Boundary-line/-surface,
separating Gi from Gj

nij : Normal-vector of
Sij , pointing
(conventionally) from Gi
to Gj

Piece-wise homogeneous conductor

(picture taken from Hämäläinen et al, RevModPhys, 1993)
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Equation for B in Case of a Piece-wise Homogeneous
Conductor

∇′σ only non-zero at boundaries. Use (G = ∪iGi) and j = ji − σ∇V

B(r) = µ0

4π
∫
G

j(r′) ×R

R3
dr′ = B0(r) −

µ0

4π
∑
i

σi∫
Gi

∇′V × R

R3
dr′

with

B0(r) =
µ0

4π
∫
G
ji × R

R3
dr′

Let’s rewrite the second term: Take a look at the vector identities:

∇× [(1/R)∇V ] = [∇(1/R)] × ∇V +
���

���
���:0

(1/R) [∇ ×∇V ]
0 = ∇ ×∇(V /R) = ∇ × [(1/R)∇V + V∇(1/R)]

= ∇(1/R) × ∇V +∇ × V∇(1/R)

Therefore
∇V ×∇(1/R) = ∇ × V∇(1/R)
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With this we get

∫
Gi

∇′V × R

R3
dr′ = ∫

Gi

∇′V ×∇′(1/R)dr′ = ∫
Gi

∇′ × V∇′(1/R)dr′

Use the vector analysis relationship ∫G∇× adr = −∫∂G a × dS (see D. B.
Geselowitz, IEEE Transactions on Magnetics, Vol. Mag-6,No 2, 1970):

∫
Gi

∇′ × V∇′(1/R)dr′ = −∫
∂Gi

V∇′(1/R) × dSi

The integral is now taken over boundaries of neighbouring Gi,Gj (dSi = −dSj on
∂Gi ∩ ∂Gj)

∑
i

σi ∫
∂Gi

(. . .)dSi = . . . + σi ∫
∂Gi

(. . .)dSi + . . . + σj ∫
∂Gj

(. . .)dSj + . . .

= . . . + (σi − σj)∫
Sij=∂Gi∩∂Gj

(. . .)dSij + . . .

= ∑
<i,j>

(σi − σj)∫
Sij

(. . .)dSij + ext.boundary

⇒ B(r) = B0(r) + µ0

4π ∑ij(σi − σj) ∫Sij
V (r′) R

R3 × dS′ij
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Integral Equation for V

For B(r), we need again an expression for V . Use Green’s second identity

∫
G
(φ∇2ψ − ψ∇2φ)dr = ∫

S=∂G
(φ∇ψ − ψ∇φ)dS

which relates a volume-integral of an integrand involving two differentiable
scalar-functions ψ and φ and the ∇-operator to an integral over the
boundary-surface ↪ if we insert ψ = 1/R, R = ∣r − r′∣ and φ = V , we can
derive an integral-equation for V in order to determine V .

This adopted to our problem reads:

∑
i

σi∫
Gi

[ 1

R
∇′2V − V∇′2 1

R
] dr′ = ∑

ij
∫
Sij

[σi [
1

R
∇′Vi − Vi∇′ 1

R
]

−σj [
1

R
∇′Vj − Vj∇′ 1

R
]] ⋅ dS′ij
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Use continuity of current at boundaries (remember: jV = σ ⋅E = −σ ⋅ ∇V ):

Vi(dS′ij) = Vj(dS′ij)
σi∇′Vi ⋅ dS′ij = σj∇′Vj ⋅ dS′ij

as well as the Laplace-equation

∇′2(1/R) = −4πδ(3)(R)

which in general can be stated in terms of Green’s function G(a,b)

∇2G(a,b) = δ(3)(a − b)

with the solution

G(a,b) = −1

4π∣a − b∣
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↪∑
i

σi∫
Gi

V∇′2 1

R
dr′ = 4πσ0V (R = 0)

Therefore:

(∑
i

σi∫
Gi

1

R
∇′2V dr′)+4πσ0V (R = 0) = −∑

ij

(σi−σj)∫
Sij

V∇′(1/R)⋅dS′ij
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In quasi-static approximation:

∇ ⋅ j = 0⇔∇ ⋅ σ∇V = ∇ ⋅ ji

we get

4πσ0V (R = 0) = −∑
i
∫
Gi

1

R
∇′ ⋅ ji dr′ −∑

ij

(σi − σj)∫
Sij

(V∇′ 1

R
) ⋅ dS′ij

Rewrite the first term:

∑
i
∫
Gi

∇′ ⋅ ( j
i

R
) dr′ = ∑

ij
∫
Sij

1

R
ji ⋅ dSij = ∫

G
(ji ⋅ ∇ 1

R
+ 1

R
∇ ⋅ ji) dr′

Since ji vanishes on Sij , we get

∫
G

1

R
∇ ⋅ ji dr′ = −∫

G
ji ⋅ ∇ 1

R
dr′
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Therefore, we obtain

4πσ0V (R = 0) = ∫
G
ji ⋅ ∇ 1

R
dr′ −∑

ij

(σi − σj)∫
Sij

(V∇′ 1

R
) ⋅ dS′ij

= ∫
G
ji ⋅ R

R3
dr′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
4πσ0V0(r)

−∑
ij

(σi − σj)∫
Sij

V
R

R3
⋅ dS′ij

V (R = ∣r − r′∣ = 0) = V0(r) −
1

4πσ0
∑
ij

(σi − σj)∫
Sij

V
R

R3
⋅ dS′ij

↪ Integral equation for V (R = 0) → determines V in the integration-area,
which is exactly what we need in order to calculate B! B
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Spherically Symmetric Conductor

The axons of pyramidal neurons in the
cerebral cortex tissue are approximately
parallel to each other and perpendicular to
the scull-surface

(picture taken from https://en.wikipedia.org/wiki/Neuron)

→ approximate head by an
homogeneous spherically
symmetric conductor →
currents in the axons
represented by

radial-current pattern

Approximation not realistic,
but greatly simplifies solution
for B:
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B for a Spherically Symmetric Conductor

B(r) = B0(r) +
µ0

4π
∑
ij

(σi − σj)∫
Sij

V (r′) R
R3

× dS′ij

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

⇒ contribution of jV to the radial field component

Br = B(r) ⋅ er = B(r) ⋅ r/∣r∣

vanishes, since (dS = n(r) ⋅ dS, i.e. normal-vector of dS )

(r − r′) × n(r′) ⋅ er = (r − r′) × r′

∣r′∣
⋅ r
∣r∣

= 0

→ calculate Br with ji(r′) =Qδ(3)(r′ − rQ) (rQ = location of the
current-dipole Q)

Br =
µ0

4π
∫

ji(r′) ×R

R3
dr′ = µ0

4π

Q × rQ ⋅ er
∣r − rQ∣3
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Summary

Biomagnetism: Magnetic fields (and also electric fields) arise from
currents, impressed by biological activity

Primary- & return-current: Represent real current pattern. Total
current: j = ji + jV

Current-dipole: Represented by a battery. ji connects ±-terminals,
jV symbolizes radial symmetric inflow pattern (alternatively: two
charges, which evoke the same field pattern as a magnetic dipole)

Far-field approximation: B(r) can be approximated by the dipole
moment (multipole expansion)

Quasi-static limit: Basis for calculation of fields

all currents in tissue change synchronously
for each moment in time, neglect time-dependent parts in
Maxwell-equations
B described by Biot-Savart
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General conductor
Applying quasi-static limit & concept of ji and jV to Biot-Savart → get an
equation for B(r) and a differential equation for V :

B(r) = µ0

4π
∫ (ji(r′) + V∇′σ) × R

R3
dr′

∇ ⋅ (σ∇V ) = ∇ ⋅ ji
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Piece-Wise Homogeneous conductor
Split G into Gi with σi = const. Use vector identities and Stoke’s Theorem:

B(r) = B0(r) +
µ0

4π
∑
ij

(σi − σj)∫
Sij

V (r′) R
R3

× dS′ij

For V , we use a trick by applying Green’s second identity and exploit the
continuity of the currents at boundaries:

V (R = ∣r − r′∣ = 0) = σ0V0(r) −
1

4πσ0
∑
ij

(σi − σj)∫
Sij

V
R

R3
⋅ dS′ij
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Spherically symmetric conductor

jV does not contribute to B(r) → Choosing the limit of a point-like
current (ji =Qδ(3)(r − rQ), rQ = position of the current-dipole), B(r)
simplifies to

B(r) = µ0

4π
∫

ji(r′) ×R

R3
dr′ = µ0

4π

Q × rQ ⋅ er
∣r − rQ∣3
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