
 
 

NISTIR 8090 

 
 

Measuring and Representing the 

Performance of Manufacturing 

Assembly Robots 

  
Michael Shneier 

Elena Messina 

Craig Schlenoff 

Frederick Proctor 

Thomas Kramer 

Joseph Falco 

 
 

 

This publication is available free of charge from: 

http://dx.doi.org/10.6028/NIST.IR.8090 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

NISTIR 8090  

 

Measuring and Representing the 

Performance of Manufacturing Assembly 

Robots 
 

 

Michael Shneier 

Elena Messina 

Craig Schlenoff 

Frederick Proctor 

Thomas Kramer 

Joseph Falco  

Intelligent Systems Division 

Engineering Laboratory 
 

 

 

This publication is available free of charge from: 

http://dx.doi.org/10.6028/NIST.IR.8090 

 
 

 

 

November 2015 

 
 

 

 

 

 

 

 

 

 

 

 

U.S. Department of Commerce  
Penny Pritzker, Secretary 

 

National Institute of Standards and Technology  

Willie May, Under Secretary of Commerce for Standards and Technology and Director  



i 
 

Abstract 

 

With the growth of robotic technology, there is a need for performance measures to characterize 

and compare robots and to help determine which features are most suited to a particular 

application. Robot systems are complex and involve a wide range of features and performance 

characteristics whose importance differs depending on the application domain. This paper 

describes a set of assembly performance measures associated with the different features along with 

an exploration of how one could represent this information. It organizes the assembly measures in 

reference to a taxonomy of assembly skills and tasks. Arranging the performance measures in this 

way will simplify the task of selecting a particular robot system for an assembly task by helping 

focus on those aspects of the task that are most critical. 

 

 

Keywords: Manufacturing System; Performance Evaluation; Performance Measures; Robotics; 

Taxonomy 
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1. Introduction 

According to the International Federation of Robotics [1], there is a strong and increasing demand 

for industrial robots. The market is expected to expand from the traditional automotive and heavy 

industry sectors to include general manufacturing, and the purchasers are expected to include not 

only large organizations but also small and medium-sized manufacturers. As the use of robots 

increases and as the people who are using them include more non-experts, there will be a parallel 

increase in the need for well-defined ways of selecting which robotic components will be most 

suitable for a given application domain. Robotic systems are typically complex, including robots, 

their controllers, end-effectors, sensors, safety systems, and programming environments. These 

components are supplied by different vendors resulting in the practice of companies to employ 

expert integrators to design and install their robot systems and to ensure that all the parts work 

together.  

The user community of robotic systems is expanding to include smaller organizations that do not 

have sufficient resources to employ integrators. This group needs a principled way of determining 

which components are best for their environment, how well the components will work together, 

and the level of effort that will be needed to build and program the complete system. Providing a 

set of performance measures for the individual components of a robot system will allow users to 

select and measure only those features that are important to them. Vendors of subcomponents can 

use the measures to characterize their equipment and advertise its features. Organizing the 

performance measures according to the different aspects of a typical robot system will make it 

easier for users to select the appropriate measures and clearer for the users to understand the 

interactions between those measures and the need to explore particular interfaces between 

components. 

Defining the key performance parameters is a crucial first step in developing and organizing 

performance measures.  The National Institute of Standards and Technology (NIST) has adopted 

a use-case or task-based approach for this.    The idea is to characterize the performance of a 

technology with respect to a domain-specific operation rather than targeting design-specific tests 

or measures.  This approach leaves the design and solution space unconstrained while providing 

data about how well a given solution meets the task requirements.  Hierarchical task decomposition 

to derive performance requirements has been applied to many domains, including autonomous 

vehicles [2] and urban search and rescue robots [2]. The urban search and rescue robots work is 

the most fully-developed instance of this methodology, resulting in over 100 user-defined task-

based performance requirements which are being used to guide development of standard test 

methods.  The methodology is being applied to other categories of response robots, including 

bomb-disposal and military applications.   A similar approach – SCORE (System, Component, 

and Operationally-Relevant Evaluation) has been developed by NIST and used for measuring 

performance of emerging intelligent systems technologies (not necessarily robotics) [3].   
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Examples of new technologies to which SCORE has been successfully used include soldier-worn 

sensor systems and automated translation tools [4, 5]. 

This document adopts a taxonomy of assembly tasks to guide the development of metrics for 

evaluating the performance of robotic systems.  Assembly is the area of focus since it is currently 

one of the manufacturing tasks that is least supported by robotics.  The taxonomy builds upon a 

variety of prior work, melding semantic, geometric, and constraint-based approaches.   The 

document also includes an exploration of how one could capture these metrics and measures in a 

formal knowledge representation. This report is organized as follows:   Section 2 provides an 

overview of the assembly process and explains some of the reasons why it is difficult. Section 3 

addresses knowledge representations that have been use in the assembly domain including 

taxonomies for assembly. Section 4 discusses performance metrics, while Section 5 relates them 

to the taxonomies. Section 6 explores the information requirements necessary to represent these 

robots “capabilities” and ways that this information has been represented in the literature.  Sections 

7 and 8 provide some discussion and conclusions. 

2. Overview of Assembly  

Assembly is an essential and complex step in the manufacturing process. It is one area where 

automation, especially robotics, has not seen wide adoption. At its most elemental, assembly 

consists of a series of operations that join together individual parts or subassemblies.   However, 

due to tight tolerances, difficult orientation requirements or access, and the extensive use of a 

variety of tools and assistive devices to achieve the join operation, much of assembly has been 

beyond the abilities of current robotic systems.   Put another way, “robots for assembly and 

machining are perhaps the most difficult case due to uncertainties in combination with force 

interaction.” [6] 

Boothroyd et al. [7] and others claim that assembly accounts for 30-50 % of all manufacturing 

costs, hence it is an important area that could benefit U. S. competitiveness if robotic systems were 

able to assist in more of the operations.    According to Shi and Menassa [8],  “While robotic 

automation has played a key role in the automotive industry and specifically in stamping, welding, 

material handling and painting over the last 30 years, currently there are no robotic assembly 

applications in the final assembly of a vehicle on a moving line in domestic automotive 

manufacturing plants.“  The International Federation of Robotics states that, although assembly 

applications account for about half of the production schedule in automotive manufacturing, it 

accounts for only 7.3 % of robot sales. [1] 

Focusing specifically on the decomposition of tasks that comprise assembly operations, we will 

look at analyses and knowledge representations for assembly in this document.   In his book 

“Mechanical assemblies: their design, manufacture, and role in product development” [9], 

Whitney takes an in-depth look at the design and manufacture of assemblies.    His definition of 

assembly is constraint-oriented: 
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An assembly is a chain of coordinate frames on parts designed to achieve certain dimensional 

relationships, called key characteristics, between some of the parts or between features on 

those parts. 

Some key concepts that have applicability to our derivation of task-based performance metrics are 

summarized in the sections below.  

Since we are interested in assembly from a performance metrics perspective, it is useful to include 

another quote from Whitney on the conditions for a successful assembly: 

 

The mechanics of part mating are governed by the geometry of the parts, the compliance of 

the parts and supports, the friction between parts as they move past each other during 

assembly, and the amount of lateral and angular error between the parts as the mating begins.  

The interplay of these factors determines whether assembly will be successful and how large 

will be the forces exerted on the parts by the tooling and each other. 

2.1.  Motion Aspects of Assembly 

We specifically call out the motion aspects of assembly since they are a major component of the 

overall process and therefore are relevant to the performance requirements for robotic systems 

performing assembly operations.  The range of spatial scales encountered in assembly operations 

and associated uncertainties are shown in Figure 1. 

Two main motion types are involved during assembly operations.   Gross motions are used to move 

the part over distances that are large compared to the part size.   According to Whitney, about half 

of all assembly time is consumed by this type of motion.   Gross motions are fast and do not 

typically require high accuracy, except as the part approaches its destination.    The second type is 

fine motion, which is small compared to the size of a part and occurs when parts are touching 

during the mating stage itself.   Errors in fine motions are typically too small to see, but can be 

detected with force sensors.    As the allowed magnitude of the errors decreases, the cost of 

carefully positioning parts and designing special fixtures or features, such as chamfers, to reduce 

them rises dramatically.    Types of fine motion errors are classified as  

- Lateral Position 

- Angular Orientation 

- Jamming 

- Wedging 

- Screw thread mating:  angular, threads being out of phase, and incorrect tightening 

- Gear mating errors, both during side approach and spin-axis approach of mating 

Whitney did not discuss a special case that requires fine manipulation prior to mating, a process 

that requires constrained gross motions.   This could be required by having to insert a part to be 
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mated to another part that is difficult to access. Whitney does summarize different ways that a part 

may be brought to its final state of assembly, along with the degree of uncertainty in location 

relative to the part size.     Understanding the magnitudes of position uncertainties for different 

categories of parts and assembly sub-tasks is useful in devising the performance metrics. 

 

Figure 1: Location uncertainty relative to part size   (Figure © Mechanical Assemblies:  Their Design, 

Manufacture, and Role in Product Development by Whitney (2004, Figure 17-1).  By permission of 

Oxford University Press, USA 

 

For fine motion, an older census of assembly operations by Kondoleon [10]  cited by Whitney, 

finds that peg-in-hole and screw operations account for over half of assembly joins.   For this 

reason, peg-in-hole in particular (accounting for over 35 % of operations) has been closely 

analyzed.     

A key dimension for this type of insertion is the Clearance ratio, c = (hole diameter – peg 

diameter)/ (hole diameter). According to a survey of dimensioning practice for rigid parts cited in 

Whitney [9], the clearance ratio varies only slightly (by a decade or less), and can be estimated by 

knowing the type of the part.  This is an important consideration for setting performance 

expectations with respect to what tolerances robots may need to deal with in performing joining 

tasks.  
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Another important consideration is the fact that many general assembly operations use a moving 

line.   Shi and Menassa [8] emphasize that ”new robotic technologies have to be advanced to enable 

the installation of parts on a moving assembly line.”  This is an additional requirement for fully 

successful and robust robotic assembly solutions.   For many applications, the robot systems’ 

ability to track the parts on a moving line must be overlaid on the evaluation of the robot’s 

performance of the individual assembly tasks.    Some have addressed this challenge by researching 

and implementing mobile manipulators. [11]   

2.2.  Assembly Difficulty Measures 

The Design for Assembly discipline was developed, starting in the 1970s, to address the large 

proportion of manufacturing cost attributable to the assembly process [7].   Design for Assembly 

(DFA) includes measures of assembly difficulty, as well as guidelines for product design that 

facilitate the assembly processes.   Classification schemes from this discipline could be used to 

guide robotic assembly metrics.  Indeed, DFA considerations include whether it will be possible 

to use humans, fixed automation, or flexible automation (robots).   This area of study is relevant 

for our purposes, as the assembly operations or factors that create barriers to adopting robotics are 

enumerated.  

The traditional view of how to allocate tasks to either mechanized or manual assembly is that it is 

determined by the volume and variety entailed by the task.   High-volume, low variety is 

considered suitable for automation, whereas either low volume or high variety is still the province 

of manual assembly.  See for example Figure 2 for a comparison of the relative cost profiles for 

manual versus fixed automation versus flexible automation by volume.  In [9], the divide between 

low and high volume is set at around 100 000 units per year.    The unit costs for different types of 

assembly methods are shown below.   An additional consideration in the cost and flexibility 

equation, which thus far has not been discussed in depth in the literature, is material transport: hard 

automation, such as fixed conveyors, versus somewhat flexible approaches, such as automatic 

guided vehicles, or fully flexible mobile manipulators.  
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Figure 2:  Comparison of assembly costs by different methods (Figure © Mechanical Assemblies:  Their 

Design, Manufacture, and Role in Product Development by Whitney (2004, Figure 16-5).  By permission 

of Oxford University Press, USA 

Boothroyd found that certain factors contribute to the difficulty – and ultimately the cost – of 

performing an assembly operation.   These include part feeding, orienting, handling, and inserting.  

Part attributes also contribute to the difficulty score.  Others have also developed methods of 

scoring the difficulty of an assembly.  The Hitachi Assembleability Evaluation Method [12] scored 

direction of insertion, number of non-insertion extra operations, and others in the cost function.   

Westinghouse developed an assembly difficulty calculator, which was modified by Ishii [13].   

Others have focused on the costs of robotic assembly, taking into consideration challenges such as 

that robot manipulators typically lack a second arm or hand to hold a part during a join operation 

or have insufficient arm or gripper dexterity to orient a part, particularly if it is not accessed from 

the top down [14].  

A brief summary of factors to be taken into account when calculating the difficulty of a given 

assembly task or the time required to complete it is presented in Table 1.  For more details, see the 

above references. 
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Table 1: Factors influencing manual assembly difficulty or cost 

Part handling difficulty - Size 

- Thickness 

- Weight 

- Fragility 

- Flexibility 

- Slipperiness 

- Stickiness 

- Degree of symmetry, measured as  + , 

where 

-  is the angle required to rotate the 

part about an axis normal to the 

insertion axis in order to return it to its 

starting configuration 

-  is the same with respect to an axis 

about the insertion axis. 

Acquisition difficulty based on 

shape 
- Sphere 

- Cylinder 

- Hexagon 

- Cube 

- Rivet 

- Hex face peg 

- Square face peg 

- 180 peg (mirror symmetry:  can be inserted 2 

ways correctly)  

- 360 peg (non-symmetric; can only be 

inserted 1 way) 

Necessity for using additional 

assistance or tools 
- Two hands 

- Optical magnification 

- Mechanical assistance 

Conditions that affect manual 

insertion time 
- Part is secured immediately or after other 

operations 

- Insertion region is accessible 

- Insertion region is visible 

- Part can be easily aligned and positioned 

- A tool is needed 

- Part must be held after placement until other 

parts or fasteners are installed 

- Insertion operation is difficult 
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Fastener Type (in order of 

increasing difficulty) 
- Washer 

- Pin 

- Retaining ring 

- Screw 

- Nut 

- Rivet 

Fastening process time (in order of 

increasing difficulty for manual 

operation) 

- Snap or press fit 

- Bending or crimping 

- Screwing 

- Polymer weld 

- Solder 

- Weld or braze 

- Adhesive 

Insertion Direction (increasing 

difficulty/cost) 
- Down from top 

- From the side 

- Angled or Twist 

- Up from below 

 

There are many sources of errors within a robotic workcell that contribute to the cost or difficulty 

of performing the assembly actions and hence should be considered when developing performance 

metrics and test methods.  These must either be dealt with through the robot’s agility, including 

sensors and/or adaptive end-of-arm tooling or they must be controlled by external means.  Whitney 

summarizes sources of robot assembly errors within a workcell as follows: 

- Part Construction 

- Part Jigging 

- Jig Location 

- Robot Accuracy and Calibration 

- Tool Socket 

- Part Grip 

- Offline Model 

3. Knowledge Representations for Assembly 

We examine a range of knowledge representations that have been developed for assembly.   These 

are useful for helping determine the decomposition of assembly into its constituent elements, 

which will then drive the taxonomy for the performance measures.   The representations include 

semantic approaches, such as taxonomies, as well as geometric and constraint-based ones.  

3.1.  Taxonomies 

There have been a number of attempts to develop taxonomies of robot operations. Some of these 

are reviewed below. Criteria for a good taxonomy for the purposes of this paper include coverage 

of all the robotic components, an indication of how they fit together, and the ability to adjust the 

granularity of the representation to focus on the critical aspects while still getting a measure of the 
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expected performance of the whole system. It is also desirable that the taxonomy be able to expand 

as the capabilities of robots change and that the taxonomy not incorporate preferred methods or 

kinds of equipment that may not be universally applicable. 

 A taxonomy developed by Seabra Lopes and Camarinha-Matos [15] is divided into operational 

resources (robots, grippers, fixtures, etc.), sensor resources (force and torque, presence, etc.), and 

resource storage units (e.g., tool changers).  The resources manipulate artifacts which include parts, 

assembled objects, and unexpected items. The functionality of resources is described in terms of 

operators, such as approach, insert peg in hole, feed part, etc. The knowledge is encoded in a 

logical framework and reasoning and machine learning (programming by demonstration) are used 

to develop plans and to detect failures and re-plan. 

In [16], Fiorentini et. al. describe an ontology for representing assemblies. This is more focused 

on the structure of mechanical assemblies and how to exchange this information between 

stakeholders than on the representation of the assembly operations. They use a combination of 

Web Ontology Language (OWL) and the Unified Modeling Language (UML). In addition to 

developing a semantic assembly information model, they incorporate reasoning capabilities.  

In [17], Tenorth and Beetz describe KnowRob, which is a first-order knowledge representation 

based on description logics that provides specific mechanisms and tools for action-centered 

representations.  Like the above, their knowledge is represented in OWL and uses the inherit 

classes, instances, and property constructs that are included in OWL. Their higher-level concepts 

are inspired by the Cyc ontology [18]. They have a general class called “ActionOnObject” which 

contains attributes such as objActed On and doneBy, and can be specialized into specific actions 

such as PutDown or PickUp. 

In [19], Stipancic et al. present a context-aware  system used within industrial environments. Of 

interest to this paper is the way that they represent their knowledge about assembly tasks. They 

use an ontology represented in OWL and leverage the work performed in the MASON [20] and 

OMTOMAS [21] projects. These projects attempted to build an ontology describing the field of 

production activities. Their ontology includes actions such as Checking, Feeding, Composing, 

Handling, Adjusting, and other Special Processes. They decompose these higher-level actions into 

sub-actions such as inspection, joining, and picking up. The authors extend these ontologies to 

include probabilistic information, basing their work on Bayesian Networks.  

More recent work by Huckaby and Christensen [22] takes a similar approach to Seabra Lopes and 

Camarinha-Matos [15]. The authors define a taxonomy of tasks and skills as well as skill 

primitives, which are lower-level actions that are combined to achieve a skill. The taxonomy is 

more completely defined in their paper than in the Seabra Lopes work, although it is not clear that 

the earlier work did not include an equivalent set of tasks and skills. One thing that appears new is 

the use of constraints, such as required poses or durations in which a task must be accomplished. 

The taxonomy also explicitly includes primitives for coordination and sequencing of actions when 
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more than one robot is executing a task. The taxonomy can be extended or specialized as needed 

for a particular domain. It does not specify how actions should be executed, only the results that 

are expected. The taxonomy includes links to perception and control to enable verification that the 

task is executed properly. It does not appear to include error recovery.  The taxonomy is illustrated 

in Figure 3. 

Other work has taken a similar approach. For example, Pfrommer, et al. [23], break the production 

process into products, processes, and resources. Processes are broken further into tasks and skills, 

which are similar to those used by Huckaby and Christensen.  Tasks have pre- and post-conditions 

as well as a duration. Skills are associated with machines that can execute parts of a process, such 

as being able to weld or transport parts. Processes include such actions as cutting, bending, 

movement, and fastening. Resources are machine tools, robots, conveyors, etc. Products are the 

intermediate or final results of the activity. Skills are the combination of an action and the machine 

that carries out the action so can, for example, include a robot’s ability to move a part. Tasks are 

the steps needed to complete the activity. 

Also focused on skills is the European Union funded project investigating “Skill-based Inspection 

and Assembly for Reconfigurable Automation Systems” (SIARAS) [24].  This project seeks to 

develop a complete representation of a production system’s devices and associated skills to enable 

the automatic reconfiguration of the production system.   To investigate skill representation, they 

begin with a taxonomy of tasks, the top levels of which are shown in Figure 4:   

– Skill: A Skill represents an action that might be performed by a device as part of a 

production process. The SIARAS skill hierarchy is divided into six subcategories, the main 

one being called MainFunction. This subhierarchy is further broken out in Figure 4 and 

includes the definitions of manipulation, manufacturing, handling, and sensor functions. 

– Property:  Properties are aspects of devices and skills that the Skill Server can reason about.  

This subtree contains parameters for devices like sensors as well as physical parameters, 

communications interfaces, and quality criteria. As a result, the subtree is highly branched. 

– Physical Object:   Objects are the components of workcells.  They include Devices, which 

are active and have skills, and Workpieces, which are passive and are manipulated by 

Devices.   The device hierarchy is both deep and highly-branched to reflect the range of 

actual devices used in automation systems. 
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Figure 3: The taxonomy for the robot assembly domain defined by Huckaby and Christensen 
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Figure 4. Part of the SIARAS hierarchy. In the full hierarchy, the nodes are further expanded 
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– Operation:   Operations describe the tasks performed by a device. An operation can be the 

direct application of a single skill (called an Atomic operation), the invocation or two or 

more skills carried out at the same time (called a Parallel operation), or can involve two or 

more operations performed one after the other (called a Sequence operation). 

– Object Base: The Object Base node provides a way to model Physical Objects. Each object 

is either a simple part or an assembly (a set of parts or other assemblies). It stores 

geometrical relations and dependencies of objects. 

A task description is needed that describes the principal steps of the task and requirements, 

boundary conditions, or tolerances. Therefore, the SIARAS consortium developed a Flow Chart 

based approach, where the user can describe and parameterize the process description step by step. 

Tallinen, Osuna, et al. [25] match a particular product’s requirements for assembly processes to 

equipment process capabilities.  In addition to the geometric and attribute information that is 

defined in other representations, they include information on handling, such as for feeding, 

picking, gripping, and positioning tasks.   Information on insertion paths, positions, contact areas, 

and required tolerances are specified.   They also include knowledge about precedence relations 

and tooling information. 

Gerky and Matarić [26] define a taxonomy of multi-robot task allocation problems and use it to 

explore the complexity of possible solutions using methods from operations research, economics, 

scheduling, network flows, and combinatorial optimization. The taxonomy divides the kinds of 

problems using three axes: single-task robots vs. multi-task robots, single-robot tasks vs. multi-

robot tasks, and instantaneous assignment vs. time-extended assignment. An analysis of existing 

algorithms that fit into the simpler of these classes shows that they are mostly equivalent within 

classes. The taxonomy can be used to select optimal or near-optimal algorithms for a given 

problem and architecture. 

 

Drawing on a number of previous taxonomies for human-computer interaction and computer-

supported cooperative work, Yanco and Drury [27] define a taxonomy for human-robot 

interaction. It is comprised of multiple axes in an attempt to cover the range of possibilities that 

can arise and is mostly focused on mobile robots. The factors included are: level of autonomy, 

ratio of number of people to number of robots,  the amount and type of shared interaction, the 

kinds of decision support provided to the operators (humans), a measure of how critical completion 

of the task is, whether the robots used are homogeneous or heterogeneous, and a time-space (sub-

) taxonomy. The time axis of the time-space taxonomy can be either synchronous or asynchronous, 

while the space axis can be either collocated or non-collocated. No specific measures are provided 

for quantitatively measuring where a particular system fits within the taxonomy. 

 

Bloomfield, et al. [28] define a taxonomy of haptic actions for disassembly tasks. They explore 

the use of instrumented gloves to provide feedback to workers on representative tasks and use their 

results to develop the taxonomy. The classification has two major dimensions: the general type of 
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action performed and the type of force or torque required. Their taxonomy includes actions that 

discriminate amongst those requiring fine motor control, significant arm strength, tactile friction, 

cooperative two-handed tasks, braced two-handed tasks, manipulating a deformable object, tool-

assisted tasks, and multiple finger tasks. The type of force required is divided into two types of 

force-only actions (e.g., pushing a button vs sanding a surface), two types of torque-only actions 

(e.g., turning a dial vs. using a wrench), and actions that require force and torque simultaneously 

(e.g., pulling and twisting to extract a piston from a cylinder.) 

Tan, et al. [29] use hierarchical task analysis to decompose a task (electrical connector assembly) 

into subtasks. The decomposition uses primitive operations that are similar to the skills in the other 

taxonomies. They include retrieve, assemble, arrange, check, secure, hold, insert, temporarily fix, 

locate, release, place, etc.  A human works in collaboration with robots to accomplish the tasks. A 

qualitative analysis is used to assign tasks to either the robot, the person, or to both collaboratively.  

The assignment is based on the perceived capabilities of each operator and the perceived 

requirements of the task. This may be followed by a quantitative procedure if the qualitative one 

does not provide a clear solution. They use productivity (assembly duration), quality (assembly 

error), human fatigue (human operator tiredness), and safety (human operation safety) as the 

criteria in the analysis. They also study the necessary motor and perception skills for the person 

for each step of the assembly and the safety aspects of the tasks. Human studies showed 

improvement in performance using a real human-robot system. 

3.2.  Other Representations for Assemblies 

Beyond taxonomies, there is extensive literature defining different ways of representing assembly 

geometry and constraints, much of it to enable reasoning and automated plan generation.    We 

review some representative approaches in this section.   These representations capture feasible 

configurations of sub-assemblies and assemblies, hence can guide the further detailing of assembly 

operations as well as inform the performance metrics development process. 

Homem de Mello and Sanderson  [30] classify assembly representations as either explicit or 

implicit.  Explicit ones establish a mapping from the assembly tasks into the elements of the 

representation.  These include directed graphs and AND/OR graphs.   Implicit representations are 

based on contact establishment conditions and on precedence relationships and consist of 

conditions that must be satisfied by the assembly sequences.    They represent an assembly task as 

a directed graph of feasible assembly sequences comprised of a set of parts as nodes with edges 

representing the assembly actions that join nodes together.    An assembly task is geometrically 

feasible if there is a collision-free path to bring the two subassemblies into contact.    An assembly 

task is mechanically feasible if it is possible to establish the attachments that act on the contacts 

between the two subassemblies. 

Lyons  et al. [31] present an overview of representations and propose enhancements and extensions 

to the ISO 10303 standard for exchange of product model information (informally referred to as 

STEP) to support assembly modeling, analysis, and planning (Figure 5).  The Lyons research is 
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not specifically aimed at robotic assembly, but their work addresses some of the key knowledge 

required to implement robotic assembly.    They determine insertion difficulties by analyzing the 

mating constraints satisfied by the assembly of a component.  Issues include access, motion 

trajectory, presence of locating features, and the characteristics of the joining process.  In 

particular, their work proposes representation of assembly tolerances as attributes linked to the 

surface mating constraints.   The basis for specifying acceptable tolerances is derived from the 

functionality of the joint. The Open Assembly Model  [32] builds on Lyons et al. to provide a 

standard representation and exchange protocol for assembly and system-level tolerance 

information.  

Balakirsky et al. [33] describe a knowledge representation for kitting, which is a subset of 

assembly. In kitting, a set of parts is placed into a container for delivery to the assembly workcell. 

Kits usually consist of all the parts needed for a subassembly, often presented in an easy-to-

manipulate fashion. The kitting representation makes use of an OWL ontology to represent the 

robots, kit trays, parts, etc., and the actions that are required to construct a kit. The ontology is 

augmented by a reasoning engine that can construct plans for creating instances of kits and can 

generate generic commands for robots and sensors to actually construct a set of kits. These 

researchers have also developed a set of performance metrics for the kitting domain [34]. Metrics 

include the number of parts correctly put in the kit, the number incorrectly placed, the total distance 

moved in building the kit, the total number of errors of all kinds, and a score based on the time, 

distance, correctness of placement, and the number of unnecessary commands carried out. 

Morris and Haynes [35, 36] developed a formal language to define how parts are to fit together 

and to guide assembly by a robot.   Their assembly by constraint (ABC) approach defines 

assemblies based on the concept of degrees of freedom (DOF) of components and the reduction of 

degrees of freedom as components are assembled.   The authors derived a component constraint 

status, based on the degrees of freedom of one component with respect to its mate (three 

translational and three rotational).  The degree of freedom is Boolean, i.e., it either exists or 

doesn’t.  Out of a total of 64 possible combinations, they determined that twenty are unique, three 

are unrealizable, fifteen are applicable to assembly, and the final two represent totally constrained 

and unconstrained states.    Their intention was to use the constraint-based information to provide 

sufficient data for the robot to generate its own action plan based on its capabilities and the 

environment.    
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Figure 5. Hierarchical representation of assembly constraints from [32] 

 

Morrow and Khosla [37] extended the work of Morris and Haynes by incorporating specific 

geometry information when considering robotic manipulation for assembly.    Their research 
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defines MTP (manipulation task primitives), which include a specific geometric interpretation of 

the relative motion constraints.   Rather than list each DOF with a 1 or 0, they combine the 

translation and rotation DOF for an axis into one symbol which encodes the translation/rotation 

classification. A resulting 3-tuple represents the DOF of the task frame (permutations of the same 

three symbols have the same meaning).  Morrow and Khosla also developed a set of sensorimotor 

primitives [37], which are an encapsulation of sensor processing and action (in this case, executing 

a trajectory) that can form the foundational capabilities for task planning and execution.   For 

example, force primitives are able to utilize the degrees of freedom information to guide their 

control scheme.  

Wu and Kim [38] also propose a variant of constraint-based mating classification.  They include 

geometry considerations (e.g., inserting a round peg has different symmetries than inserting a 

prismatic peg) for their Structured Assembly Coding System (SACS).   This coding system 

provides an additional geometric constraint definition with the intent of supporting synthesis of 

compliant control strategies for robot fine assembly motions.   

Related to constraint-based representations is the adoption of screw theory for assembly mating.    

The motions that a rigid body can undergo, or the forces and moments that are exerted upon it can 

be represented by a screw.  Twists represent motion through angular velocities and translational 

velocities, while wrenches capture the forces and moments that a joint can resist.   Konkar [39] 

developed a representation of assembly mating features based on screw theory and used this 

approach to determine the relative degrees of freedom between parts in an assembly.  

4. Relevant Prior Work in Performance Metrics 

Performance metrics for robots have been developed both formally through standards and 

informally by researchers who needed to evaluate their systems. The formal performance standards 

for industrial robots (ISO 9283 [40], ANSI/RIA R15.05 [41-43]) are old and cover only limited 

aspects of performance, mainly relating to point-to-point repeatability. In the area of response 

robots, however, there has been a concerted effort to develop performance standards [44].  Some 

of these may be of value for manufacturing applications as well. 

Ceballos, et al. [45] define a number of metrics for evaluating navigation algorithms for mobile 

robots. They include security metrics that measure how well the vehicle keeps a safe distance from 

obstacles, dimension metrics that measure the length of the chosen path, and smoothness metrics 

that take into account changes in direction due to re-planning as well as the desire to reduce energy 

use. The metrics are demonstrated in simulation by showing the results of two control algorithms 

driving a robot through a maze. 

Frommberger, et al. [46] define performance measures for mobile surveillance robots operating in 

a warehouse. They describe two types of metrics, relating to optimizing the logistics aspects of the 

tasks and to the efficiency of the surveillance robots. Logistics efficiency is a function of delivery 
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times, storage efficiency, stock turnover, etc. Robot efficiency depends on mapping and 

localization, collaboration between robots to cover the area, etc. Since both problems have multiple 

criteria, the optimal solution is dependent on the needs of the operator of the warehouse. The 

authors suggest using histories of the observation of the goods flowing through the warehouse to 

provide a good estimate of how well the task is executed. 

Marvel and Falco [47] define a set of force control metrics and a set of force-based assembly 

metrics. Force control metrics include settle stability, which measures how long the system takes 

to stop moving when it impacts a surface, obstruction stability, which measures the system’s 

performance when trying to push past an obstacle in its path, control switch stability, which is a 

measure of how smoothly the system switches from one type of force control to another, surface 

cohesion, which evaluates how well the system is able to maintain a constant force as it moves 

across a surface, and incurred force limitations, which measures how well the system deals with 

extraneous forces while not exceeding its force limits. The force-based assembly metrics are 

specifically oriented towards measuring how well the system completes a range of assembly tasks. 

They include the time to complete the assembly, the success rate when attempting a set of 

assemblies, and the average amount of force needed to complete the assemblies.  A set of 

components, all of which fit into a base, was proposed for computing the metrics in a standard 

way. The base includes force measurement sensors to provide an independent ground truth 

measurement. 

Singer and Akin [48] provide a survey and categorization of performance metrics for human-robot 

teams. The metrics are first presented in isolation and then a number of suggestions are made as 

to how to combine metrics to provide an overall evaluation of a given human-robot task. Individual 

metrics are divided into task-specific metrics, offline versus real-time metrics, metrics for the level 

of autonomy of the robots, situation awareness metrics, and communication metrics. Combining 

the metrics may be done by a simple or weighted summation or by a more structured approach 

such as using state transition networks. The authors caution that there is a lot of subjectivity in 

selecting the metrics to use and the way to combine them and this can greatly affect the resulting 

measures. Errors in measurement can also have significant influence on the final results. 

A paper by Burke, et al. [49] describes a method of evaluating the performance of human-robot 

teams in a search and rescue environment. It involves an intensive analysis of videotaped records 

of operator-robot teams engaged in typical activities. The analysis addresses a range of issues 

including communications, developing situation awareness, and the ways in which the humans 

interact with the robot. No performance measures extracted from this data are described. 

Steinfeld, et al. [50] define a set of factors that need to be considered when evaluating a human-

robot task and suggest metrics for each factor. The factors include navigation, perception, 

managing the task and human-robot interaction, manipulation, and social factors (how well the 

human and robot interact). Other factors that influence the results include communications, robot 

response times, and human task load. The individual metrics for the different areas also have to be 
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integrated into a task-level measure. This integration includes some quantitative measures, but also 

requires subjective evaluation. 

For human-robot interaction applications, Fässberg, et al. [51] stress the need to address both the 

medium of presentation used for communicating information, such as paper or a computer monitor, 

and the content of the information (i.e., what is selected to be conveyed and when). Each should 

be optimized for the task and level of experience of the human participants. 

Patel and Sobh [52], present a literature review of performance measures for manipulators. They 

discuss the definition, classification, scope, and limitations of many performance measures for 

manipulation and include an extensive bibliography.    Manufacturing manipulation and grasping 

dexterity measures based on an industry-focused workshop are detailed in [53, 54]. 

Shi and Menassa [8]  discuss requirements for flexible robotic assembly for a wheel and tire load 

moving assembly line.    They specify three key performance evaluation areas:    

– Manipulation skills:  peg-in-a-hole assembly in 3D space; Contour match assembly in 3D 

space; Surface match assembly in 3D space.  

– Perception Skills 

– Robustness 

Design for Assembly and other approaches related to assigning relative costs to assembly 

operations, which were summarized above in Section 2.2 can also be considered proto-

performance metrics for robotic assembly. 

5. Performance Metrics Based on a Taxonomy of Assembly Tasks 

The previous work indicates that there is a need for a taxonomy that includes the actions and 

capabilities required for robotic assembly, and that other areas must also be included. These 

include communications, coordination, time and space considerations, and human factors for 

applications where humans and robots collaborate. This is a large domain to cover and emphasizes 

the need, also evident from previous work, for both individual performance metrics for each 

component of the taxonomy and measures that give an overall estimate of how well the entire 

system will function. 

From the above summary, it can be seen that there are a lot of similarities between the various 

taxonomies that have been defined for robotic assembly. In this paper we adapt one of the more 

recent taxonomies, that defined by Huckaby and Christensen [22], with additions from several of 

the other taxonomies defined in Section 3.1. Because it was designed for manufacturing assembly 

operations, the Huckaby and Christensen taxonomy is well suited for organizing the performance 

metrics for subcomponents of assembly. For each element of the taxonomy, we select specific 

metrics and we also adopt metrics for larger components of the taxonomy (sub-trees) and for the 
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application as a whole. We assume that each individual assembly action is binary: i.e., it entails 

joining two distinct parts or subassemblies.   

These proposed performance metrics are augmented by consideration of the specific types of 

assembly join operations, constraints, and associated difficulty scales discussed in the previous 

sections.  These additional relevant conditions and constraints should be taken into account during 

the design of methods (including test artifacts and procedures) of capturing performance with 

respect to the metrics. Initially, a static environment is assumed; the metrics and test methods can 

be extended to cover motion and tracking of an assembly line.  Other considerations, such as ease 

of programming the robot to perform a new assembly, or general human-robot interaction concerns 

are not covered in this analysis. 

5.1.  Actions 

Figure 6 shows the set of assembly actions defined in the taxonomy. They include actions that 

accomplish sensing, motion, positioning, component modification, and coordination. Metrics and 

performance measures can be defined for each of the actions, although some of the actions, such 

as detect, fasten, and coordinate, are the roots of subtrees whose nodes also need performance 

measures.   

5.1.1. Detect 

The Detect subtree (Figure 7) deals with identifying and locating objects that will be manipulated 

during the assembly.  Typically, image-based sensing systems locate features in the world that 

may be objects, parts of objects, or fixed elements such as fiducial markings. This sensing is also 

used for visual servoing (guiding the robot to its destination using vision) and to check that each 

step in the assembly process is carried out correctly. The metrics in Steinfeld, et al. [50] that are 

relevant to assembly are of value for visual detection. They include measures for passive 

perception and for active perception. Passive perception interprets the sensor data without active 

control of the sensors. It is the most common form of perception for manufacturing. Placing a 

camera on the robot or on a pan-tilt head enables active pointing and searching for objects, which 

is called active perception. 
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Figure 6: The actions defined in the expanded Huckaby-Christensen taxonomy 
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Figure 7. The detection subtree from Huckaby and Christensen 

Metrics for passive perception include detection measures such as the number of objects correctly 

detected and the poses of the objects detected as compared with their true poses. In manufacturing, 

sensing is often used for in-process inspection, so detection of incorrect objects or defective parts 

should also be included in the measures. Other measures include how well the system can deal 

with clutter and occluded parts. For systems that expect parts to be in known locations, the amount 

of variation that the system can handle can also be used as a performance measure. 

For active perception, the goal is usually to find an object that is not in the field of view of the 

sensors or to guide the robot to complete some action, such as mating two parts or inserting a peg 

in a hole. Performance metrics include the amount of search needed to find a part and how 

accurately the position of the part is determined (especially when the sensor is moving). The update 

rate of the sensors may also be of interest in these cases. 

While vision-based sensing covers the object and pose aspects of the Detect taxonomy, force-

torque sensing is used for the contact and force/torque aspects.  Sensing of force and torque for 

insertion, part manipulation, or surface following tends to be more ad hoc, with specialized 

algorithms being implemented for different actions. This makes it harder to evaluate how well 

force-torque mediated actions are accomplished. The metrics in Marvel and Falco, [47], are useful 

for these actions. The more general metrics in Patel and Sobh [52] are also relevant. Metrics for 

force-based assembly include the time taken, the success rate, and the maximum and average force 

used as compared with the desired force. For operations like applying adhesives, spray painting, 

or welding, surface-following metrics are important. These include the average distance from the 

surface, the average force applied to the surface, and how well the required area was covered. 

5.1.2.  Align 

This is a compound action, comprised of detect and transport.  The Align action requires the robot 

to detect the object that is the focus of the command and to (visually) servo to the required pose 

relative to the object. Metrics for this action include how well the robot reaches the required pose 

(measured in comparison to ground truth) and how long it takes to settle at the required pose.   
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Parameters that would influence test method design include what object(s) are to be aligned, how 

many degrees of freedom are involved (i.e., what are the constraints in the goal configuration), and 

what the required alignment tolerances are.  Another aspect to consider is how accessible the align 

target is, both for the robot’s sensors and for its manipulator.   

5.1.3. Pick up 

Similar to Align, Pick up is also a compound action and requires detecting the object to be 

acquired, servoing to it, using the same metrics for success, as well as grasping it.  The Pickup 

action requires the ability to detect that the object is in the gripper, perhaps the capability to 

measure the grip force and the pose of the object in the gripper, and to determine if the object is 

held firmly or may slip. Settling time may also be an issue if the object must be stationary before 

being moved. 

Variables that influence the test method design are the properties of the object to be picked up 

(including geometric features, size, material properties, etc.) as summarized in Table 1. 

5.1.4.  Reposition Object (in Gripper) 

There are instances where, after being picked up, an object must be reoriented in preparation for 

the next task while in the gripper or hand.   This requires in-hand manipulation by the robot or the 

use of external jigs or fixtures to assist in the re-positioning.   Metrics include the successful 

completion rate, time to complete, and whether or not additional hardware is required. 

5.1.5.  Insert 

Assuming the object to be inserted is in the gripper and is aligned with the hole, the Insert action 

is typically primarily force-mediated. Metrics include the minimum clearance ratio that can be 

achieved, time to achieve the insertion (which may require a search), the maximum and average 

forces applied, and the success rate.    Variables include the types of geometries involved for both 

the target part (e.g., hole, slot, with and without chamfer) and the inserted part (cylinder, prismatic 

part, …), insertion direction, and  accessibility of the insertion location, as summarized in Table 

1. 

5.1.6. Slide  

Slide actions also typically make use of force sensing to maintain contact and to ensure that not 

too much force is applied to the surface. Metrics include the accuracy of the path compared to the 

commanded path, the average and maximum forces applied, the accuracy of start and stop 

positions, and the percentage of time that the surfaces are in contact during the Slide motion.   

Variables include the types of geometries and properties of both objects, as well as the number of 

constraints on the sliding motion (single or multiple surfaces). 

5.1.7. Retract 

Retract can be considered the complement of Place.  Metrics for Retract include the accuracy of 

the path taken and of the stopping point, and the time required for execution.  Factors influencing 

test method design include the tolerance associated with the path, how obstructed the retract path 
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may be, whether intermediate points must be specified explicitly, or the robotic system can 

autonomously calculate a collision-free path. 

5.1.8.  Transport 

Transport may include actions carried out by a robot within its work volume or by a vehicle moving 

between workstations. Metrics include the accuracy or repeatability with which the robot moves 

to the start position, the maximum deviation from the planned path between the start and end 

positions, and the accuracy or repeatability with which it reaches the goal position. Transport 

actions can also include obstacle recognition and avoidance, for which metrics include the 

accuracy of determining the position and size of the obstacle, the success rate of planning paths 

around it, and the success rate of executing the planned path without hitting the obstacle or other 

objects. The time taken for the Transport action can also be used as a metric. 

Transport in this taxonomy implies larger distances, and hence corresponds to the Gross Motion 

described in Section 2.1. 

5.1.9. Place 

The Place action has similar metrics to Transport, but may include tighter constraints on the final 

pose.   Place corresponds to the Fine Motion discussed in Section 2.1.  This may require visual or 

force servoing as in Insert.   Metrics would therefore include maximum allowable forces, as well 

as positioning and velocity tolerances.   Factors to be considered include the direction of approach, 

accessibility of the goal location, and the number and type of geometric constraints to be achieved 

(e.g., placing a planar surface onto a planar surface versus having to ensure multiple surfaces are 

in contact). The Place action is one that does not involve insertion of one part into another. 

5.1.10.  Tool Action 

A tool in this context could either be an end effector that is attached to the robot or a separate tool, 

such as a screwdriver, that is picked up by the robot’s gripper or hand.  The ability to use a tool 

requires that a tool frame be defined and that the robot be able to pick up and activate the tool. 

Picking up the tool may require Align and Pickup actions, which have their own metrics. Using 

the tool requires ensuring the offset and pose of the tool are maintained correctly and the action is 

carried out correctly.  

5.1.11.  Hold 

Hold requires the robot to maintain a specific pose for a specified amount of time. Metrics include 

the accuracy with which the pose is acquired, the maximum and average deviations for the 

specified pose, and the length of time the pose is held relative to the specified time. 

5.1.12.  Fasten 

Fasten is a class of actions including those shown in Figure 8.  In addition to the ones in the 

Huckaby taxonomy, snap or press fitting and nut-and-bolt fastening are key methods that must be 

considered.   Other fastening actions might be defined for special cases, such as applying adhesive 

tape, wrapping, stitching, etc. Each may have its own metrics, but in general they will be similar 
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to those for previously-described situations such as Sliding, Tool Actions, etc. Fastening is central 

to assembly and has its own taxonomies (e.g., Ziout and Azab [55]). 

 

Figure 8. The Fasten subtree from Huckaby and Christensen 

5.1.13.  Coordinate 

The Coordinate action refers to a class of constraints, shown in Figure 9. Metrics clearly are time-

related: Did one action start before another if that was the intent? Did the actions occur 

simultaneously? 

 

Figure 9. The Coordinate subtree from Huckaby and Christensen 

All the actions are subject to constraints, some of which are shown in Figure 10. The constraints 

usually set the parameters for the metrics. For example, an action may have to take place within a 

given duration. In this case, the metric should use this duration in determining how well the action 

was completed. Similarly, the motions, poses, speeds, etc., provide the bounds within which 

successful actions can be completed and their performance measured. 

1.1.1. Navigation 

Navigation is a significant task within a factory that uses mobile robots and corresponds to the 

Gross motion discussed above in Section 2.1.  Metrics include percentage of navigation tasks 

successfully completed, amount of deviation from the planned route (e.g., distance traveled 

compared to length of planned path), percentage of obstacles successfully avoided, and time to 

complete the action. 
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Figure 10. The Constraint subtree from Huckaby and Christensen 

1.1.2. Track 

Related to coordination and navigation is the tracking task.  This is relevant when the assembly 

operations are occurring on a moving line.  The robot has to detect, align, pick up, insert, fasten, 

and perform other tasks while the line is moving.   The metrics for this are speed and accuracy. 

1.1.3.  Communications 

There are two kinds of Communications metrics for robotic assembly. One has to do with the 

medium used, such as wireless Ethernet, while the other has to do with what is actually 

communicated. For the medium, standard metrics include bandwidth, latency, and jitter (variance 

in latency). The data sent over the medium can vary widely depending on whether the application 

is run using a centralized or distributed architecture. Measurements for what is sent over the 

medium include numbers of messages of different types per task, total number of bytes per task, 

average and maximum data rate during the task, and perhaps saturation measures such as delays 

due to unavailability of the network. 

1.1.4.  Performance Metrics Summary for Key Actions  

Table 2 through Table 11 summarize the parameters and metrics for a subset of the actions 

discussed above. The actions selected for detailing are those that are likelier to be implemented in 

the near-term, and for which there exists a set of performance expectations. For example, the 

“Collaboration” action requires further research and definition of what the metrics and parameters 

should be.  Some of these are discussed in the next section. As can be seen in the tables below, 

there are recurring requirements, such as the need to evaluate the pose accuracy for a part.  For 

this, an existing standard from ASTM may be used [56].  Time to accomplish a task is also a 

universal metric. For any performance metric, measurements must be repeated a sufficient number 

of times to achieve statistical significance.    
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Table 2: Detect action 

Action Property/Parameters Metric/Test Method 

Detect Object or Feature (e.g., 

hole) 
- Object ID is Correct 

- Context: occluded (Y/N); in 

bin (mixed parts (Y/N) 

- Distance at which initial 

detection occurs 

- Minimum object or feature 

size detected 

 Object/Feature Pose  - Pose accuracy (ASTM 

E2919-14) 

 Contact - Touch sensitivity 

- Stability 

 Force-Torque - Settle stability 

 Cycle Time - Time to detection 

 

Table 3: Align action 

Action Property/Parameters Metric/Test Method 

Align Object; 

Target Feature to 

Which to Align 

- Object ID is correct 

- Target feature ID is correct 

 Target Object Pose (see 

Fig. 3 for list of 

potential constraints),  

Degrees of Freedom 

(e.g. Radially 

symmetric or not); 

Tolerance 

- Accuracy of object pose with 

respect to target 

 

 Accessibility of Target 

Pose 

(constrained/unconstrai

ned) 

- Ability to achieve; 

- Number of degrees of 

freedom constrained;  

- % of access volume 

constrained. 

 Cycle Time - Time to Align 

 

Table 4: Pick Up action 

Action Property/Parameters Metric/Test Method 

Pick Up Object - Object ID is correct 

 Object Properties 

(friction, rigid/non-

rigid, geometric 

features of relevance) 

- Ability to acquire object 

- Maximum weight 

- Minimum and maximum 

dimensions 
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- Minimum friction 

- Grasp stability 

 Constraints (e.g., 

required grasp points) 
- Correct grasp points  

 Settling Time - Settle stability 

 Cycle Time - Time to acquire object 

 

Table 5: Transport action 

Action Property/Parameters Metric/Test Method 

Transport Object - Object ID is correct 

 Start and End Poses - Pose accuracy (ASTM 

E2919-14) 

- Robot accuracy (ISO 9283) 

- Robot repeatability (ISO 

9283) 

 Contact - Touch sensitivity 

- Stability 

 Force-Torque - Settle Stability 

 Object Properties 

(friction, rigid/non-

rigid, geometric 

features of relevance) 

- Ability to hold object in 

transit 

- Maximum weight 

- Minimum/Maximum 

dimensions 

- Minimum Friction 

- Grasp stability 

 Path Properties 

(velocity, distance, 

occluded, constrained) 

 

- Max velocity, max 

acceleration 

- Obstacle detection and 

avoidance; Accuracy of: 

o Obstacle classification or 

identification 

o Obstacle pose  

o Path replanning to avoid 

obstacle 

- Do intermediate points have 

to be specified? 

- Maximum deviation from 

programmed path 

- Success rate for achieving 

path 

 Cycle Time - Time to transport 
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Table 6:  Reposition action 

Action Property/Parameters Metric/Test Method 

Reposition  Object - Object ID is correct 

 In-hand Target Pose - Object pose accuracy 

 Object Properties 

(friction, rigid/non-

rigid, geometric 

features of relevance) 

- Ability to reorient Object 

- Maximum weight 

- Minimum and maximum 

dimensions 

- Minimum friction 

- Grasp stability 

- Additional hardware required 

(intermediate fixture for re-

orienting) 

 Contact - Touch sensitivity 

- stability 

 Force-Torque - Settle stability 

 Cycle Time - Time to reposition object 

 

Table 7:  Place/Retract action 

Action Property/Parameters Metric/Test Method 

Place and 

Retract 

Object 

Target Feature (Plane) 
- Object ID is correct 

- Target feature ID is correct 

 Target Pose; Degrees 

of Freedom 
- Object placement pose 

accuracy (ASTM E2919-14) 

 Contact detection;  

Max allowable forces 
- Touch sensitivity 

- Stability 

 Force-Torque - Maximum force exerted 

during placement 

- Settle stability 

 Placement Path 

Parameters (distance, 

velocity) 

- Maximum velocity, 

maximum acceleration 

- Obstacle detection and 

avoidance 

- Obstacle classification or 

identification 

- Obstacle pose  

- Path replanning to avoid 

obstacle 

- Max deviation for 

programmed path 

- Success rate for achieving 

path 
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 Direction of approach - Difficulty of approach 

direction (typically, top-down 

is easiest; bottom-up is 

generally hardest) 

 Cycle Time - Time to complete placement 

 

Table 8:  Slide action 

Action Property/Parameters Metric/Test Method 

Slide Object to Slide 

Surface to Slide Upon 
- Object ID is correct 

- Surface ID is correct 

 Start and End Poses - Pose accuracy (ASTM 

E2919-14) 

 Slide Trajectory; 

Degrees of Freedom 

(see Fig. 3 for list of 

potential constraints, 

e.g., anywhere along 

plane or constrained to 

follow a line on plane) 

- Accuracy of path 

 

 Contact - Touch Sensitivity 

- Stability 

- Percentage of Time that 

Surfaces are in Contact 

 Forces - Minimum and Maximum 

Forces 

 Cycle Time - Time to Complete Sliding 

Action 

 

Table 9:  Insert action 

Action Property/Parameters Metric/Test Method 

Insert  Object To Insert 

Destination Feature in 

which to insert  

- Object ID is correct 

- Feature ID is correct 

 Object  and Destination 

Receptacle Properties 

(friction, rigid/non-

rigid, geometric 

features of relevance 

such as chamfers) 

- Grasp stability 

- Minimum clearance ratio 

 Contact - Touch Sensitivity 

- Stability 

 Insertion Forces - Minimum force 
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- Maximum force 

 Direction of approach - Difficulty of approach 

direction (typically, top-

down is easiest; bottom-up is 

generally hardest) 

 Cycle Time - Time to complete Insertion 

 

Table 10:  Hold action 

Action Property/Parameters Metric/Test Method 

Hold Object - Object ID is correct 

 Object Properties  - Maximum weight 

 Hold Pose - Pose accuracy (ASTM 

E2919-14) 

 Hold Time - Length of time pose is held 

versus required time 

 Contact (if required) - Touch sensitivity 

- Stability 

 Force-Torque - Settle stability 

 

Table 11:  Tool action 

Action Property/Parameters Metric/Test Method 

Tool Action 

(may require 

Align, Pickup, 

Retract, or 

other Actions); 

Includes 

Drilling 

Tool Type 

 
- Tool identification is correct 

 Position - Position accuracy (ASTM 

E2919-14) 

 Tool Command 

(Attach, Detach, Start 

Tool, Stop Tool, etc. 

- Command completed 

correctly 

 

 Contact - Touch sensitivity 

- Stability 

 Force-Torque - Settle stability 

 Cycle Time - Time to complete individual 

tool action(s) 

- Total time to complete series 

of tool actions(s), e.g., 

including move to tool 



32 
 

changer, attach, detach, and 

perform operations with tool 

 

1.1.5.  Global Task Metrics 

Global task-level metrics include time to completion, percentage of assemblies correctly 

completed, percentage of errors corrected, percentage of bad parts correctly found and rejected, 

and amount of slack time (for example, in switching from one task to another or waiting for parts 

to arrive).  Some measure the Process Capability Index.  Process Capability indices relate the 

process mean and standard deviations to the Upper and Lower tolerance limits defined for an 

assembly. Typically, a given process is compared to 3 of a normal distribution.    

For tasks in which humans and robots collaborate, another set of global metrics can be defined. 

They include measures of the task load on the human and robot, how well the human and robot 

share the tasks (e.g., how long each spends waiting for the other as a percentage of total task time 

or total number of task elements), amount of explicit communication required to accomplish the 

task, and how well the task allocation takes advantage of the capabilities of each of the participants. 

Kitting is a specialized subset of assembly, wherein parts are delivered to the assembly station in 

kits that contain the exact parts necessary for the completion of one assembly object.   The kit itself 

must be assembled, although the constraints on the insertion of the parts into the tray are typically 

much looser than for the assembly join operations themselves.  Nevertheless, it has been identified 

as a fruitful area to begin robotic integration into assembly operations.  Balakirsky et al. have 

defined metrics for kit building [57].  The static kitting metrics range from tallies, such as number 

of commands executed and the execution time, total distance moved, and total objects moved, to 

errors of various sorts, such as asking the robot to move a part that is too heavy or outside its work 

volume.   The authors introduce additional execution metrics, such as manipulation robustness, 

transporting ability (how well a part is moved by the robot), contact errors (number of collisions 

between the robot and objects), failures during planning, and during execution, including how well 

the system is able to recover from failures during execution.   This latter set, along with some of 

the static kitting metrics, can be adopted for assembly operations beyond kitting. 

Robots must function in the presence of uncertainty, so robustness is a key global metric.  An 

assembly operation is called robust if its performance or execution is substantially insensitive to 

variations that might occur, for example, in the sizes, shapes, and locations of parts, external loads, 

or operating conditions, so long as the variations are within the specified tolerances (adapted from 

Whitney).    The robustness of each individual assembly operation discussed above can be 

evaluated by configuring the test method to present parts with size variations at the extrema of the 

tolerance zones and locations, and by stressing other environmental factors, such as the lighting 

conditions if visual sensing is being used, or the speed of the assembly.  Donald [58]  examines 

error detection and recovery abilities in the presence of uncertainty from sensing errors, control 

errors, and errors in the geometric models of the robot and the environment. The robustness of the 
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robotic system to the accumulation of variations in the individual assembly operations can 

therefore also be assessed.    

2. Representing Robot Capabilities 

Once the performance of a robot executing an assembly task is determined, the performance needs 

to be represented in such a way that it could be of use to the end user.  In the simple case, a 

spreadsheet or database could be put together to allow the end user to look up whether a robot can 

or cannot perform a given task. However, these robot capabilities could also play a role in planning 

the assembly of a product when multiple tasks are needed to perform the assembly operation. There 

may also be multiple robots that could perform a given task, and it is important to know which 

robots are available and have the capability to perform the needed operations. If this information 

were encoded in a computer-interpretable knowledge representation that could be fed into a 

planning system, the planning process could be partially, if not fully, automated. 

In this context, we refer to a robot capability as the ability of a robot to perform a specific action 

on a specific object or set of objects. Therefore, the robot capability is specific to the individual 

object(s) and the individual action. This is different than the type of information that one would 

find on a robot specification sheet, which could include general characteristics  such as how much 

a robot can lift or the reach of a robot. While such information is important and could be included 

in a robot capability model, it is not the focus of this paper. 

One of the challenges of defining capabilities in this way is that there are an almost infinite number 

of combinations among robots, actions, and objects, and it would be impossible to test all of these 

combinations. The hope and expectation is that the test methods that are being developed will 

provide a strong representative set that could be used to extrapolate to other similar manufacturing 

assembly situations. The design of these test methods is a science in itself to ensure that they are 

both representative of the manufacturing assembly domain and allow the performance of the robot 

to be predicted in similar situations. 

To better understand the use of the robot capability model, one can imagine the following scenario. 

A company has a new product that they want to assemble. They have a large number of robots 

available to them on the shop floor, and need to determine how to assign robots that have the 

required capabilities to individual tasks in the assembly process.  Each assembly process is 

comprised of a large number of tasks, so they need to optimize the sequence of operations and 

associated resources (the process plan) to accomplish the assembly. To do this, we will assume 

that they have a software tool that imports the following information: 

 Robots that are available 

 The capabilities of those robots 

 The desired end state  (i.e., the final assembly) 

 The objects that compose the final assembly and their pertinent characteristics 
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The output of this tool would be a process plan that assigns robots to the tasks needed to accomplish 

the assembly. 

In this rest of this section, we will explore the information requirements necessary to represent 

robot capabilities in a computer-interpretable format. 

2.1.  Robot Capability Model Information Requirements 

As described above, we define a robot capability by the intersection of a robot, an action, and 

objects in the environment. Therefore, we need a way of representing each of these items, including 

a way that we can put them together into an instance of a robot capability.  

It is envisioned that both the action and the robot will need to be represented at various levels of 

abstraction. In the case of a robot, one may want to associate capabilities with the robot as a whole, 

the arm of the robot, or maybe only the gripper of the robot. As such, we will need a way to 

represent the composition of the robot and have the ability to represent the capabilities at each 

level. 

Similarly, actions will need to be modeled at various levels of abstraction, as described in the 

taxonomy. For example, one may want to associate a robot capability with an overall assembly 

action, or perhaps to only one step in an assembly action (e.g., attach Part A to Part B), or even to 

a sub-step in the “attach” step (e.g., pick up Part A).  

In general, we envision a construct such as the following to bring the various pieces together to 

model the robot capabilities: 

o Robot Capability: 

 Robot Composition: pointer to a robot concept at an appropriate level of 

abstraction 

 Activity: pointer to an action concept at an appropriate level of abstraction 

 Object(s): pointer to one or more objects (and their associated 

characteristics) that the action affects 

 Capability: a representation of how well the robot can perform the action on 

the object. This could be a Boolean (yes/no), a probability, or some other 

form of representation. 

 

The next sections provide a literature review of the top three bullets above and describe in more 

detail the information requirements for each. 

2.2.  Representing Robot Composition  

An important role of representations of robot capabilities and performance is their support for 

composing a complete robotic system from individual components. This composability, or ease 

with which a system can be put together with components to meet functional requirements, 

requires that each component provide documented interfaces that enable them to be identified, 

configured, and used without resorting to trial-and-error procedures. If standards for these 
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interfaces are widely implemented, those components display a high degree of interoperability, 

making it much easier to compose a system from them.  

Understanding the behavior of a system of components, given an understanding of their behavior 

and the rules by which they are put together, is compositionality. Qualitative system behavior can 

be determined from the descriptions of nominal component behavior, but quantitative prediction 

of system behavior of actual components requires that measures of their performance be included. 

Performance measures could include the results of tests, calibrations, or statistical distributions of 

observations over time. Analytical prediction of behavior is difficult, and simulation is often used 

as a method for understanding the functional behavior and performance of a system under relevant 

scenarios. Developing a convincing simulation framework is also a difficult task, but recent 

advances in computing have made it possible to simulate systems at even the physics level in close 

to real time [59]. 

2.2.1. Related Efforts 

Many systems and standards for robot component interfaces have been developed. The Robot 

Independent Programming Environment (RIPE) and Language (RIPL) [60] formed an object-

oriented distributed robot control system developed in the early 1990s that employed programming 

concepts such as inheritance and polymorphism to achieve software application code portability 

and reuse. Researchers from Sandia National Laboratories implemented RIPE/RIPL in a series of 

applications focused on robotic nuclear waste handling and remediation. Although not currently 

supported, RIPE and RIPL influenced later robot software efforts with its distributed 

heterogeneous architecture and application of modern object-oriented design principles.  

In the late 1990s, the U. S. Department of Defense sponsored a joint program that brought together 

its major customers of autonomous mobility systems to define an architecture for interoperability 

among platform components and software applications. This effort was originally known as the 

Joint Architecture for Unmanned Ground Systems (JAUGS), later shortened to JAUS to reflect its 

expansion beyond purely ground-based systems [61]. Although focused on mobile robots, parts of 

the JAUS specification applied to manipulators used for applications such as explosive device 

neutralization. JAUS has been standardized through the Society of Automotive Engineers (SAE) 

in a series of numbered standards from the AS4 Unmanned Systems Technical Committee. An 

open source implementation, OpenJAUS, is available [62].  

In 2000, robotics researchers at the University of Southern California developed an open-source 

robotics framework, Player, that implemented a client-server software framework that allows 

distributed control of robots in a networked environment [63, 64]. Player is a set of software 

application programming interfaces (APIs) with bindings to many popular languages such as C, 

C++, Java, and Python, and a collection of implementations for robots, sensors, and other devices 

that support plug-and-play connectivity and portable programming. The Player project also 

includes simulators for a 2-D world, Stage, and a 3-D version, Gazebo.  
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Also in early 2000, the European Union sponsored a project proposed by the European Robotics 

Network EURON to develop an open robot control software framework, called OROCOS [65, 

66]. Championed by Herman Bruyninckx of the Katholik University Belgium, the project has 

grown to include the original core robot control functionality, as well as toolkits for kinematics 

and dynamics analysis, Bayesian filtering, and general real-time control.  

In 2007, the technology incubator Willow Garage sponsored a project to build well-tested 

implementations of robot control software written at nearby Stanford University. The project, 

known as the Robot Operating System (ROS) [67, 68], follows a distributed open source model 

with core facilities for defining messages and services and establishing distributed networked 

communication among components of a complete robotic system. Contributors are encouraged to 

provide packages back to the ROS community, ranging from device drivers for sensors to complete 

applications.  

Around the same time, in 2008, the Association for Manufacturing Technology sponsored a project 

at the University of California Berkeley to develop a standard interface to manufacturing 

equipment. This project, MTConnect, was built upon an Internet web framework using the 

hypertext transfer protocol (HTTP) and the extensible markup language (XML) to exchange 

machine-readable information about the properties and operating condition of manufacturing 

equipment [69]. Similar to a related and popular standard for industrial automation connectivity, 

Open Platform Connectivity (OPC), MTConnect took the additional step of standardizing the so-

called ‘tags” or names for specific information items. This level of standardization permitted 

portable client applications to connect to any MTConnect server (called agents) independent of 

vendor. Typical client applications include mobile human-machine interfaces for observing 

machine tool operating status, or historical data loggers to identify trends [70].  

The Institute for Electronics and Electrical Engineers (IEEE) published a standard, IEEE 1872-

2015, Ontologies for Robotics and Automation, that provides a core ontology for robotics and 

automation (CORA) that specifies general concepts, relations and axioms, together with other 

ontologies that support the CORA information model [71].  

2.2.2. Comparison of Robot Composition Methods 

These specifications and standards are all logically divided into information about robot system 

components (the “what”), and the format of information exchanged between the components (the 

“how”). Typically, information about the components is needed when they are procured and 

configured into the larger system, while the information exchange mechanisms are used during 

operation. For example, information about components may be loaded into a simulation system 

that does not otherwise employ the communication mechanisms used by the actual components 

during operation. Likewise, information about the component characteristics may never be 

exchanged during steady-state operation, only messages for control and status that are focused on 

the activity rather than the parts that make up the system. However, in more sophisticated use 

cases, all this information may be used continually in order to dynamically schedule tasks, bring 
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in mobile assets, and optimize production around the strengths and limitations of manufacturing 

resources, including people.  

It is helpful to compare different methods of representing robot composition in order to understand 

how they can coexist in a common manufacturing environment. Three of the standards described 

earlier will be compared: ROS, MTConnect, and IEEE 1872.  

ROS provides both a model of devices, primarily robots, and a messaging interface to robots, 

sensors, and other components in a robotic system. The robot model uses the Unified Robot 

Description Format (URDF) defined in  XML Schema [72]. Robots are composed of links and 

joints, each with properties that support kinematic and dynamic analysis and control, visual 

representations for simulation and animation, and determining the potential for collisions. Figure 

11 shows a representative sample of a link from [72] indicating the inertial properties needed for 

dynamic analyses, a simple visual representation, and a bounding region for collisions. More 

complex links can be defined with references to geometry meshes, such as STL (originally 

stereolithography) files. These more detailed definitions provide improved visualization and 

collision avoidance, at the expense of computation time. URDF joints are described similarly, with 

properties such as friction, damping, and joint limits.  

 

<link name="my_link"> 

   <inertial> 

     <origin xyz="0 0 0.5" rpy="0 0 0"/> 

     <mass value="1"/> 

     <inertia ixx="100"  ixy="0"  ixz="0" iyy="100" iyz="0" izz="100" /> 

   </inertial> 

 

   <visual> 

     <origin xyz="0 0 0" rpy="0 0 0" /> 

     <geometry> 

       <box size="1 1 1" /> 

     </geometry> 

     <material name="Cyan"> 

       <color rgba="0 1.0 1.0 1.0"/> 

     </material> 

   </visual> 

 

   <collision> 

     <origin xyz="0 0 0" rpy="0 0 0"/> 

     <geometry> 

       <cylinder radius="1" length="0.5"/> 

     </geometry> 

   </collision> 

 </link> 

 

Figure 11: ROS Unified Robot Description Language (URDF) instance for a robot link. [72] 



38 
 

MT Connect provides a schema for a Device Model, shown graphically in Figure 12, that can be 

queried using standard HTTP web requests using the unified resource locator (URL) of the device 

and the well-known path “/probe”. A reference implementation is publicly available and 

continually running at agent.mtconnect.org/probe, and will return an XML-formatted description 

of the actual device. A sample of this output is shown in Figure 13. 

 

 

 

 

 

 

Figure 12: MTConnect Device Model, a graphical depiction showing the 
hierarchy of component modeling information that is formally expressed in 
XML Schema. [70] 

Figure 13: Sample output of a web query for a running machine, using the /probe path. This output shows 
the spindle speed and speed override capabilities of the machine (a machine tool). [70] 
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The current operating condition of machines is available via the counterpart path /current. In this 

case, actual values of current operating conditions are reported, timestamped by the local system.  

An advantage of the MTConnect specification is that it defines the required names for each data 

item. This allows for application and device interoperability, but only around the concepts defined 

in the specification. Figure 14 shows a list of the terms in the most recent version of the schema. 

New technologies can be incorporated by extending the schema, with these extensions being 

shared among the community that is developing the new technology. Once the extensions have 

been validated, change requests are submitted for the next version of the specification.  

AssetCountsType 

AssetCountType 

HeaderType 

MTConnectDevicesType 

DevicesType 

ComponentType 

ComponentDescriptionType 

AbstractConfigurationType 

ComponentConfigurationType 

CommonComponentType 

ComponentsType 

DeviceType 

ControllerType 

PowerType 

SensorType 

PathType 

 

ActuatorType 

DoorType 

SensorConfigurationType 

ChannelsType 

ChannelType 

AxesType 

AxisType 

LinearType 

RotaryType 

SpindleType 

SystemsType 

SystemType 

PneumaticType 

HydraulicType 

LubricationType 

CoolantType 

 

ElectricType 

DataItemsType 

DataItemType 

DataItemConstraintsType 

DataItemValueElementType 

DataItemFilterType 

SourceType 

InterfacesType 

ReferenceType 

ReferencesType 

InterfaceType 

BarFeederType 

MaterialHandlerType 

DoorInterfaceType 

ChuckInterfaceType 

 

Figure 14: MTConnect component listing, showing the formal names associated with component 

definitions. Conforming MTConnect client and server applications share this common understanding of 

components. A revision process is in place to expand this list as new technologies are supported. [70] 

 

IEEE 1872 provides a high-level model of concepts and relationships in the domain of robotic 

systems. Higher-level concepts that apply to all domains, such as “quantity,” “proposition,” 

”device,” and “group,” are referenced from the Suggested Upper Merged Ontology [73]. 

Definitions of terms include “robot,” “coordinate system,” “pose,” “robot interface,” and many 

other terms in the domain of robotics. Relationships between concepts are expressed in the SUMO 
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knowledge interchange format (KIF). For example, a robot is both a device and an agent, shown 

graphically in Figure 15. 

 

 

 

2.3.  Representing Robot Actions (and associated constraints) 

In this section, we will explore the information required to represent robot assembly actions for 

the purpose of characterizing robot capabilities, as well as provide a brief literature review focusing 

on how these requirements have been addressed by others. We will focus on three classes of 

requirements: 

 The representation of the action itself with relevant attributes 

 The ability to decompose the action into its sub-components to allow one to associate robot 

capabilities at various levels of abstraction 

 The ability to associate constraints with the action  

 

Each of these requirements is described in more detail below along with a review of how they have 

been addressed in the literature. 

Figure 15: IEEE 1872 ontology, a graphical depiction that shows the relationships 
between concepts. Here, a robot is both a device and an agent. [71] 
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2.3.1. Representation of Assembly Actions and Relevant Attributes 

The literature review related to the representation of assembly actions and attributes was discussed 

in Section 3.1 of this paper.  

2.3.2. Representation of Action Decomposition 

Action decomposition involves breaking down a higher-level action into its constituent sub-

actions, which could be further decomposed to multiple levels of detail. 

In [29] (referenced earlier), Tan uses a hierarchical task tree to decompose a cable harness 

assembly. In the tree, the highest level represents the main goal that is meant to be accomplished.  

This can be broken down into lower level sub-goals that, when combined, achieve the higher level 

goal. The ordering of these sub-goals is specified using natural language phrases such as “Do 1, 

then 2, then 3” or “Repeat 1 then 2 for three parts,” These sub-goals are further decomposed until 

they reach primitives that can be directly executed by the system.  

In [74], Mosemann and Wahl analyze hyper-arcs of an AND/OR graph that represents an 

automatically-generated assembly plan. They then use the Unified Modeling Language (UML) to 

model the robot’s tasks and the corresponding skill primitives. The skill primitives are the lowest 

level commands that are available to the robot to control robot movement (e.g., “MoveTo”), 

control the gripper (e.g., “OpenGripper”), or task the sensors (e.g., “LocateObject”). 

In [75], Rosell explores the use of Petri Nets to represent a hierarchy of assembly operations. 

Specifically, he mentions the use of Hierarchical High Level Petri Nets (HHPN) to allow a system 

modeler to describe a set of submodels that can all contribute to a larger model by interacting with 

each other in a well-defined way. This allows a larger assembly plan to be represented as a set of 

lower-level assembly plans. In this context, a Petri Net place or transition can have a submodel 

associated with it. 

OWL-S [76] (Web Ontology Language – Services) is an ontology of services that allows Semantic 

Web applications to discover, invoke, compose, and monitor Web resources that offer particular 

services and have particular properties. While not specifically focused on robots or robotic 

assembly, it does offer a set of general constructions that could be directly applicable to modeling 

assembly action decomposition. It has a structure in which high level processes (composite 

processes) are composed of lower-level processes (simple processes) which are composed of 

atomic processes. Composite processes correspond to actions that require multi-step actions; 

simple processes provide an abstraction mechanism to provide multiple views of the same atomic 

process; and atomic processes correspond to the actions that can be performed in a single 

interaction. Also of interest in OWL-S is the way that actions can be ordered. A rich set of control 

constructs is defined, consisting of sequence, split, split-join, any-order, and choice, which allow 

one to order actions to show how they contribute to the higher level process. 

Although the four approaches listed above employ different representation mechanisms (i.e., 

hierarchical task trees, UML, Petri Nets, and OWL), they all fundamentally contain the same core 
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set of information. This includes a mechanism to break down a large task into smaller tasks, the 

concept of the lowest level task being something that can be executed, and a mechanism to order 

the tasks to address the higher level goal. These concepts will serve as the basis for the 

development of the future robot capability model.  

2.3.3. Representation of Assembly Constraints 

The third aspect of robot actions involves representing the constraints that go along with assembly 

actions. In addition to representing the actions that the robot can perform, we must also represent 

the bounds and limits in which that action can be performed. As a simple example, a robot may 

only be able to pick up a certain type of object as a function of how far that object is from the robot 

arm and the orientation of that object. Constraint-based representation are discussed in Section 3.2 

of this paper, and include publications such as Haynes and Morris [35] and  Morrow and Khosla 

[37], which have explored using constraints as a basis for assembly operations.   

In addition to the above, Pramanik  et al. [77] use a tolerance synthesis scheme to minimize the 

total cost of manufacturing by considering constraints related to the assembly of a planetary 

gearbox part as well as constraints related to the functional requirements of the part. Assembly 

constraints are considered restrictions on the variability of the geometry of the features that would 

block assembly of the part.  The authors construct an assembly graph (connectivity diagram) to 

determine the assembly constraints. Functional requirement constraints show the parameters that 

should be optimized to accomplish the function of the part (i.e., converting a set of inputs to a set 

of outputs).  They might include constraints such as reducing friction or maximizing power. The 

cost functions and assembly and functional requirement constraint equations are generated and are 

optimized using non-linear minimization tools to find the optimal plan. 

2.4.  Representing Objects/Environments and Their Characteristics 

For the construction of a knowledge representation to be more than an academic exercise, its 

contents must be constructed so as to serve specific applications. An initial description of an 

application is needed to develop an initial knowledge representation for the application, but the 

initial representation must not be regarded as fixed. During the development of an application, it 

is necessary for two reasons to modify the knowledge repeatedly. First, it commonly occurs that 

new knowledge requirements are discovered in the course of implementing the application to 

support the planned functionality. Second, the functionality of the application may change, 

requiring new knowledge. After an application is mature, changes to the internal structure of the 

implementation or further changes in functionality (often enabled by new technology) may require 

further changes in the knowledge representation. 

There has been an environment model developed for one sub-domain of assembly [33], so we will 

focus this section on that sub-domain. For the kitting domain described previously in Section 3.2, 

the primary application being pursued jointly by NIST and Georgia Tech Research Institute is a 

fully automated kitting workstation in which a single one-armed robot constructs kits of parts to 

be used elsewhere in an assembly operation. The knowledge representation for the kitting 
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workstation is built in XML Schema Definition Language (XSDL) [78, 79] and translated 

automatically into Web Ontology Language (OWL) [80, 81]. A MySQL database [82] is derived 

automatically from the OWL representation. The top level structure of the kitting workstation 

knowledge base is shown in Figure 16. 

One requirement of the automated kitting application is that the data objects and solid objects with 

which the workstation deals must be represented. Data objects include designs of parts, designs of 

kits, locations, etc.—anything not made of matter. Solid objects are made of matter and include 

items such as the robot, actual parts, and actual kits. All solid objects have a location. Non-solid 

matter plays no role in kitting and is not represented. The distinction between data objects and 

solid objects is similar to the distinction between Abstract and Object made in SUMO [73] and the 

recently approved IEEE Standard for Ontologies for Robotics and Automation [83]. 

Solid objects in the kitting workstation model are required to have a location that is referenced to 

another solid object. For convenience, the workstation is located relative to itself; no other solid 

object may be located with respect to itself. Locations may be qualitative relative locations, 

specifying only that one object is “in” or “on” another object. Alternatively, locations may be 

quantitative, with a mathematical description of the location of the coordinate system of one object 

in the coordinate system of another – or simultaneously qualitative and quantitative. Each solid 

object must have a native coordinate system. Solid objects must have one primary location and 

may have multiple secondary locations. This is convenient, for example, in a simulation system, 

where the primary location is usually relative to a containing or holding object (e.g., a part in a 

parts tray) and the secondary location is with respect to the kitting workstation for the benefit of a 

graphic display system. 

Solid objects are of two types, those called SkuObjects that are instances of stock keeping units 

(SKUs) and those called NoSkuObjects that are not. As shown in Figure 17, most of the 

information about a SkuObject is kept in the SKU it references. This includes the shape of the 

object, which may be expressed either or both as an internal stereotyped parametric shape or as an 

external shape described in some known shape format. NoSkuObjects may also have internal 

and/or external shapes. Parts, KitTrays,  PartsTrays, etc.  are SkuObjects. The robot, worktable(s), 

grippers, gripper changing station, etc. are NoSkuObjects.  
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Figure 16: Kitting workstation knowledge base 



45 
 

 
Figure 17: Stock keeping unit knowledge base 

3. Discussion 

While the taxonomy and performance metrics are focused on assembly tasks, many of the 

components are more generic, covering activities needed in many applications, such as placing, 

inserting, or aligning objects. Thus, developing a framework for evaluating assembly operations 

will have much wider benefits. This might provide an incentive to develop the performance metrics 

in an order that maximizes their utility across domains. On the other hand, some of the required 

activities, such as coordination and communication, will depend on the particular configuration of 

robots and associated equipment in the work cell, which would make the resulting performance 

evaluation specific to that single application. 

When applying multiple performance measures, care needs to be taken to ensure that the results 

do not conflict. That is, measurement of components in isolation must be done in such a way that 

the results can be combined meaningfully, without “edge effect” in which the assumptions behind 

the individual performance measures do not match those for other components. For example, if 

one performance test results in an uncertainty in the position of the part that is greater than the 

tolerance of the subsequent step, then the global performance of the entire task is jeopardized. A 

real-world robotic application is likely to be complex and the interactions between task steps may 

not always be obvious. Rigorous statistical testing may be required to uncover some of the 

problems and to ensure that the evaluation is valid. In some sense, the task is similar to debugging 

code, in that all possible paths through the task should be evaluated. 
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One item that was not discussed in detail in the paper but is very important is how the combination 

of the performance of various tasks can be composed to predict the performance of a higher-level 

task. For example, if the performance of a “detect”,  “pick up”, “align”, and “screw” task can be 

determined with individual test methods, how can the performance of the overall “pick up and 

screw”  operation (which is composed of a sequential combination of these four tasks) be 

determined? Much of this is a function of how dependent one task is on the previous tasks, or if 

the two tasks can be seen as independent. This will be the focus of future research. 

Representation of the robot capabilities also poses some interesting research challenges. In the 

paper, we describe how various aspects of the representation have been handled by different 

efforts, but we have not found any research efforts that have tried to pull these aspects together 

into a single representation. On top of this, the compositionality issue described in the previous 

paragraph provides another aspect in which no relevant literature was found. In addition to 

representing the core concepts, we also need to ensure that the knowledge representation is usable 

by applications such as process planning systems so automated plans can be developed that 

leverage the capabilities of the robots and ensure the maximum probability that the plan executes 

properly. 

4. Conclusions 

We have proposed an initial set of performance metrics for robotic assembly, organized according 

to a taxonomy of assembly tasks.   The performance considerations must include the range of 

environmental conditions.  These include a geometric constraint perspective, the part properties, 

the difficulty of the assembly operations, and the starting and ending part positions and 

orientations.   This organized way of presenting the different activities that comprise assembly, 

along with performance metrics serves as a way to guide and structure the development of a 

performance evaluation framework.1  NIST has begun developing draft test methods for robotic 

assembly capabilities and expects to build on these efforts, based on the taxonomy initially defined 

in this document.      Expanding the capabilities of robotic assembly holds great potential for gains 

in productivity and quality, not to mention reduction in ergonomic challenges.   We have also 

explored the information requirements needed to represent these robot capabilities in a way that 

the knowledge can be directly used by manufacturing software systems. This assessment will serve 

as the basis for the development of such a knowledge representation. This document is intended 

to serve as a starting point for developing concepts and prototypes for test methods and artifacts 

that measure robotic system assembly capabilities with respect to the metrics described herein.   
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