

NISTIR 8090

Measuring and Representing the

Performance of Manufacturing

Assembly Robots

Michael Shneier

Elena Messina

Craig Schlenoff

Frederick Proctor

Thomas Kramer

Joseph Falco

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.IR.8090

NISTIR 8090

Measuring and Representing the

Performance of Manufacturing Assembly

Robots

Michael Shneier

Elena Messina

Craig Schlenoff

Frederick Proctor

Thomas Kramer

Joseph Falco

Intelligent Systems Division

Engineering Laboratory

This publication is available free of charge from:

http://dx.doi.org/10.6028/NIST.IR.8090

November 2015

U.S. Department of Commerce
Penny Pritzker, Secretary

National Institute of Standards and Technology

Willie May, Under Secretary of Commerce for Standards and Technology and Director

i

Abstract

With the growth of robotic technology, there is a need for performance measures to characterize

and compare robots and to help determine which features are most suited to a particular

application. Robot systems are complex and involve a wide range of features and performance

characteristics whose importance differs depending on the application domain. This paper

describes a set of assembly performance measures associated with the different features along with

an exploration of how one could represent this information. It organizes the assembly measures in

reference to a taxonomy of assembly skills and tasks. Arranging the performance measures in this

way will simplify the task of selecting a particular robot system for an assembly task by helping

focus on those aspects of the task that are most critical.

Keywords: Manufacturing System; Performance Evaluation; Performance Measures; Robotics;

Taxonomy

Disclaimer: Commercial equipment and materials are identified in order to adequately specify

certain procedures. In no case does such identification imply recommendation or endorsement

by the National Institute of Standards and Technology, nor does it imply that the materials or

equipment identified are necessarily the best available for the purpose.

ii

1. Introduction ... 1

2. Overview of Assembly.. 2

2.1. Motion Aspects of Assembly .. 3

2.2. Assembly Difficulty Measures .. 5

3. Knowledge Representations for Assembly ... 8

3.1. Taxonomies ... 8

3.2. Other Representations for Assemblies .. 14

4. Relevant Prior Work in Performance Metrics ... 17

5. Performance Metrics Based on a Taxonomy of Assembly Tasks ... 19

5.1. Actions .. 20

5.1.1. Detect .. 20

5.1.2. Align ... 22

5.1.3. Pick up .. 23

5.1.4. Reposition Object (in Gripper) ... 23

5.1.5. Insert ... 23

5.1.6. Slide .. 23

5.1.7. Retract ... 23

5.1.8. Transport ... 24

5.1.9. Place .. 24

5.1.10. Tool Action ... 24

5.1.11. Hold ... 24

5.1.12. Fasten .. 24

5.1.13. Coordinate ... 25

1.1.1. Navigation ... 25

1.1.2. Track ... 26

iii

1.1.3. Communications ... 26

1.1.4. Performance Metrics Summary for Key Actions .. 26

1.1.5. Global Task Metrics .. 32

2. Representing Robot Capabilities ... 33

2.1. Robot Capability Model Information Requirements ... 34

2.2. Representing Robot Composition ... 34

2.2.1. Related Efforts .. 35

2.2.2. Comparison of Robot Composition Methods ... 36

2.3. Representing Robot Actions (and associated constraints) .. 40

2.3.1. Representation of Assembly Actions and Relevant Attributes ... 41

2.3.2. Representation of Action Decomposition ... 41

2.3.3. Representation of Assembly Constraints .. 42

2.4. Representing Objects/Environments and Their Characteristics .. 42

3. Discussion ... 45

4. Conclusions ... 46

Bibliography ... 46

1

1. Introduction

According to the International Federation of Robotics [1], there is a strong and increasing demand

for industrial robots. The market is expected to expand from the traditional automotive and heavy

industry sectors to include general manufacturing, and the purchasers are expected to include not

only large organizations but also small and medium-sized manufacturers. As the use of robots

increases and as the people who are using them include more non-experts, there will be a parallel

increase in the need for well-defined ways of selecting which robotic components will be most

suitable for a given application domain. Robotic systems are typically complex, including robots,

their controllers, end-effectors, sensors, safety systems, and programming environments. These

components are supplied by different vendors resulting in the practice of companies to employ

expert integrators to design and install their robot systems and to ensure that all the parts work

together.

The user community of robotic systems is expanding to include smaller organizations that do not

have sufficient resources to employ integrators. This group needs a principled way of determining

which components are best for their environment, how well the components will work together,

and the level of effort that will be needed to build and program the complete system. Providing a

set of performance measures for the individual components of a robot system will allow users to

select and measure only those features that are important to them. Vendors of subcomponents can

use the measures to characterize their equipment and advertise its features. Organizing the

performance measures according to the different aspects of a typical robot system will make it

easier for users to select the appropriate measures and clearer for the users to understand the

interactions between those measures and the need to explore particular interfaces between

components.

Defining the key performance parameters is a crucial first step in developing and organizing

performance measures. The National Institute of Standards and Technology (NIST) has adopted

a use-case or task-based approach for this. The idea is to characterize the performance of a

technology with respect to a domain-specific operation rather than targeting design-specific tests

or measures. This approach leaves the design and solution space unconstrained while providing

data about how well a given solution meets the task requirements. Hierarchical task decomposition

to derive performance requirements has been applied to many domains, including autonomous

vehicles [2] and urban search and rescue robots [2]. The urban search and rescue robots work is

the most fully-developed instance of this methodology, resulting in over 100 user-defined task-

based performance requirements which are being used to guide development of standard test

methods. The methodology is being applied to other categories of response robots, including

bomb-disposal and military applications. A similar approach – SCORE (System, Component,

and Operationally-Relevant Evaluation) has been developed by NIST and used for measuring

performance of emerging intelligent systems technologies (not necessarily robotics) [3].

2

Examples of new technologies to which SCORE has been successfully used include soldier-worn

sensor systems and automated translation tools [4, 5].

This document adopts a taxonomy of assembly tasks to guide the development of metrics for

evaluating the performance of robotic systems. Assembly is the area of focus since it is currently

one of the manufacturing tasks that is least supported by robotics. The taxonomy builds upon a

variety of prior work, melding semantic, geometric, and constraint-based approaches. The

document also includes an exploration of how one could capture these metrics and measures in a

formal knowledge representation. This report is organized as follows: Section 2 provides an

overview of the assembly process and explains some of the reasons why it is difficult. Section 3

addresses knowledge representations that have been use in the assembly domain including

taxonomies for assembly. Section 4 discusses performance metrics, while Section 5 relates them

to the taxonomies. Section 6 explores the information requirements necessary to represent these

robots “capabilities” and ways that this information has been represented in the literature. Sections

7 and 8 provide some discussion and conclusions.

2. Overview of Assembly

Assembly is an essential and complex step in the manufacturing process. It is one area where

automation, especially robotics, has not seen wide adoption. At its most elemental, assembly

consists of a series of operations that join together individual parts or subassemblies. However,

due to tight tolerances, difficult orientation requirements or access, and the extensive use of a

variety of tools and assistive devices to achieve the join operation, much of assembly has been

beyond the abilities of current robotic systems. Put another way, “robots for assembly and

machining are perhaps the most difficult case due to uncertainties in combination with force

interaction.” [6]

Boothroyd et al. [7] and others claim that assembly accounts for 30-50 % of all manufacturing

costs, hence it is an important area that could benefit U. S. competitiveness if robotic systems were

able to assist in more of the operations. According to Shi and Menassa [8], “While robotic

automation has played a key role in the automotive industry and specifically in stamping, welding,

material handling and painting over the last 30 years, currently there are no robotic assembly

applications in the final assembly of a vehicle on a moving line in domestic automotive

manufacturing plants.“ The International Federation of Robotics states that, although assembly

applications account for about half of the production schedule in automotive manufacturing, it

accounts for only 7.3 % of robot sales. [1]

Focusing specifically on the decomposition of tasks that comprise assembly operations, we will

look at analyses and knowledge representations for assembly in this document. In his book

“Mechanical assemblies: their design, manufacture, and role in product development” [9],

Whitney takes an in-depth look at the design and manufacture of assemblies. His definition of

assembly is constraint-oriented:

3

An assembly is a chain of coordinate frames on parts designed to achieve certain dimensional

relationships, called key characteristics, between some of the parts or between features on

those parts.

Some key concepts that have applicability to our derivation of task-based performance metrics are

summarized in the sections below.

Since we are interested in assembly from a performance metrics perspective, it is useful to include

another quote from Whitney on the conditions for a successful assembly:

The mechanics of part mating are governed by the geometry of the parts, the compliance of

the parts and supports, the friction between parts as they move past each other during

assembly, and the amount of lateral and angular error between the parts as the mating begins.

The interplay of these factors determines whether assembly will be successful and how large

will be the forces exerted on the parts by the tooling and each other.

2.1. Motion Aspects of Assembly

We specifically call out the motion aspects of assembly since they are a major component of the

overall process and therefore are relevant to the performance requirements for robotic systems

performing assembly operations. The range of spatial scales encountered in assembly operations

and associated uncertainties are shown in Figure 1.

Two main motion types are involved during assembly operations. Gross motions are used to move

the part over distances that are large compared to the part size. According to Whitney, about half

of all assembly time is consumed by this type of motion. Gross motions are fast and do not

typically require high accuracy, except as the part approaches its destination. The second type is

fine motion, which is small compared to the size of a part and occurs when parts are touching

during the mating stage itself. Errors in fine motions are typically too small to see, but can be

detected with force sensors. As the allowed magnitude of the errors decreases, the cost of

carefully positioning parts and designing special fixtures or features, such as chamfers, to reduce

them rises dramatically. Types of fine motion errors are classified as

- Lateral Position

- Angular Orientation

- Jamming

- Wedging

- Screw thread mating: angular, threads being out of phase, and incorrect tightening

- Gear mating errors, both during side approach and spin-axis approach of mating

Whitney did not discuss a special case that requires fine manipulation prior to mating, a process

that requires constrained gross motions. This could be required by having to insert a part to be

4

mated to another part that is difficult to access. Whitney does summarize different ways that a part

may be brought to its final state of assembly, along with the degree of uncertainty in location

relative to the part size. Understanding the magnitudes of position uncertainties for different

categories of parts and assembly sub-tasks is useful in devising the performance metrics.

Figure 1: Location uncertainty relative to part size (Figure © Mechanical Assemblies: Their Design,

Manufacture, and Role in Product Development by Whitney (2004, Figure 17-1). By permission of

Oxford University Press, USA

For fine motion, an older census of assembly operations by Kondoleon [10] cited by Whitney,

finds that peg-in-hole and screw operations account for over half of assembly joins. For this

reason, peg-in-hole in particular (accounting for over 35 % of operations) has been closely

analyzed.

A key dimension for this type of insertion is the Clearance ratio, c = (hole diameter – peg

diameter)/ (hole diameter). According to a survey of dimensioning practice for rigid parts cited in

Whitney [9], the clearance ratio varies only slightly (by a decade or less), and can be estimated by

knowing the type of the part. This is an important consideration for setting performance

expectations with respect to what tolerances robots may need to deal with in performing joining

tasks.

5

Another important consideration is the fact that many general assembly operations use a moving

line. Shi and Menassa [8] emphasize that ”new robotic technologies have to be advanced to enable

the installation of parts on a moving assembly line.” This is an additional requirement for fully

successful and robust robotic assembly solutions. For many applications, the robot systems’

ability to track the parts on a moving line must be overlaid on the evaluation of the robot’s

performance of the individual assembly tasks. Some have addressed this challenge by researching

and implementing mobile manipulators. [11]

2.2. Assembly Difficulty Measures

The Design for Assembly discipline was developed, starting in the 1970s, to address the large

proportion of manufacturing cost attributable to the assembly process [7]. Design for Assembly

(DFA) includes measures of assembly difficulty, as well as guidelines for product design that

facilitate the assembly processes. Classification schemes from this discipline could be used to

guide robotic assembly metrics. Indeed, DFA considerations include whether it will be possible

to use humans, fixed automation, or flexible automation (robots). This area of study is relevant

for our purposes, as the assembly operations or factors that create barriers to adopting robotics are

enumerated.

The traditional view of how to allocate tasks to either mechanized or manual assembly is that it is

determined by the volume and variety entailed by the task. High-volume, low variety is

considered suitable for automation, whereas either low volume or high variety is still the province

of manual assembly. See for example Figure 2 for a comparison of the relative cost profiles for

manual versus fixed automation versus flexible automation by volume. In [9], the divide between

low and high volume is set at around 100 000 units per year. The unit costs for different types of

assembly methods are shown below. An additional consideration in the cost and flexibility

equation, which thus far has not been discussed in depth in the literature, is material transport: hard

automation, such as fixed conveyors, versus somewhat flexible approaches, such as automatic

guided vehicles, or fully flexible mobile manipulators.

6

Figure 2: Comparison of assembly costs by different methods (Figure © Mechanical Assemblies: Their

Design, Manufacture, and Role in Product Development by Whitney (2004, Figure 16-5). By permission

of Oxford University Press, USA

Boothroyd found that certain factors contribute to the difficulty – and ultimately the cost – of

performing an assembly operation. These include part feeding, orienting, handling, and inserting.

Part attributes also contribute to the difficulty score. Others have also developed methods of

scoring the difficulty of an assembly. The Hitachi Assembleability Evaluation Method [12] scored

direction of insertion, number of non-insertion extra operations, and others in the cost function.

Westinghouse developed an assembly difficulty calculator, which was modified by Ishii [13].

Others have focused on the costs of robotic assembly, taking into consideration challenges such as

that robot manipulators typically lack a second arm or hand to hold a part during a join operation

or have insufficient arm or gripper dexterity to orient a part, particularly if it is not accessed from

the top down [14].

A brief summary of factors to be taken into account when calculating the difficulty of a given

assembly task or the time required to complete it is presented in Table 1. For more details, see the

above references.

7

Table 1: Factors influencing manual assembly difficulty or cost

Part handling difficulty - Size

- Thickness

- Weight

- Fragility

- Flexibility

- Slipperiness

- Stickiness

- Degree of symmetry, measured as  + ,

where

-  is the angle required to rotate the

part about an axis normal to the

insertion axis in order to return it to its

starting configuration

-  is the same with respect to an axis

about the insertion axis.

Acquisition difficulty based on

shape
- Sphere

- Cylinder

- Hexagon

- Cube

- Rivet

- Hex face peg

- Square face peg

- 180 peg (mirror symmetry: can be inserted 2

ways correctly)

- 360 peg (non-symmetric; can only be

inserted 1 way)

Necessity for using additional

assistance or tools
- Two hands

- Optical magnification

- Mechanical assistance

Conditions that affect manual

insertion time
- Part is secured immediately or after other

operations

- Insertion region is accessible

- Insertion region is visible

- Part can be easily aligned and positioned

- A tool is needed

- Part must be held after placement until other

parts or fasteners are installed

- Insertion operation is difficult

8

Fastener Type (in order of

increasing difficulty)
- Washer

- Pin

- Retaining ring

- Screw

- Nut

- Rivet

Fastening process time (in order of

increasing difficulty for manual

operation)

- Snap or press fit

- Bending or crimping

- Screwing

- Polymer weld

- Solder

- Weld or braze

- Adhesive

Insertion Direction (increasing

difficulty/cost)
- Down from top

- From the side

- Angled or Twist

- Up from below

There are many sources of errors within a robotic workcell that contribute to the cost or difficulty

of performing the assembly actions and hence should be considered when developing performance

metrics and test methods. These must either be dealt with through the robot’s agility, including

sensors and/or adaptive end-of-arm tooling or they must be controlled by external means. Whitney

summarizes sources of robot assembly errors within a workcell as follows:

- Part Construction

- Part Jigging

- Jig Location

- Robot Accuracy and Calibration

- Tool Socket

- Part Grip

- Offline Model

3. Knowledge Representations for Assembly

We examine a range of knowledge representations that have been developed for assembly. These

are useful for helping determine the decomposition of assembly into its constituent elements,

which will then drive the taxonomy for the performance measures. The representations include

semantic approaches, such as taxonomies, as well as geometric and constraint-based ones.

3.1. Taxonomies

There have been a number of attempts to develop taxonomies of robot operations. Some of these

are reviewed below. Criteria for a good taxonomy for the purposes of this paper include coverage

of all the robotic components, an indication of how they fit together, and the ability to adjust the

granularity of the representation to focus on the critical aspects while still getting a measure of the

9

expected performance of the whole system. It is also desirable that the taxonomy be able to expand

as the capabilities of robots change and that the taxonomy not incorporate preferred methods or

kinds of equipment that may not be universally applicable.

 A taxonomy developed by Seabra Lopes and Camarinha-Matos [15] is divided into operational

resources (robots, grippers, fixtures, etc.), sensor resources (force and torque, presence, etc.), and

resource storage units (e.g., tool changers). The resources manipulate artifacts which include parts,

assembled objects, and unexpected items. The functionality of resources is described in terms of

operators, such as approach, insert peg in hole, feed part, etc. The knowledge is encoded in a

logical framework and reasoning and machine learning (programming by demonstration) are used

to develop plans and to detect failures and re-plan.

In [16], Fiorentini et. al. describe an ontology for representing assemblies. This is more focused

on the structure of mechanical assemblies and how to exchange this information between

stakeholders than on the representation of the assembly operations. They use a combination of

Web Ontology Language (OWL) and the Unified Modeling Language (UML). In addition to

developing a semantic assembly information model, they incorporate reasoning capabilities.

In [17], Tenorth and Beetz describe KnowRob, which is a first-order knowledge representation

based on description logics that provides specific mechanisms and tools for action-centered

representations. Like the above, their knowledge is represented in OWL and uses the inherit

classes, instances, and property constructs that are included in OWL. Their higher-level concepts

are inspired by the Cyc ontology [18]. They have a general class called “ActionOnObject” which

contains attributes such as objActed On and doneBy, and can be specialized into specific actions

such as PutDown or PickUp.

In [19], Stipancic et al. present a context-aware system used within industrial environments. Of

interest to this paper is the way that they represent their knowledge about assembly tasks. They

use an ontology represented in OWL and leverage the work performed in the MASON [20] and

OMTOMAS [21] projects. These projects attempted to build an ontology describing the field of

production activities. Their ontology includes actions such as Checking, Feeding, Composing,

Handling, Adjusting, and other Special Processes. They decompose these higher-level actions into

sub-actions such as inspection, joining, and picking up. The authors extend these ontologies to

include probabilistic information, basing their work on Bayesian Networks.

More recent work by Huckaby and Christensen [22] takes a similar approach to Seabra Lopes and

Camarinha-Matos [15]. The authors define a taxonomy of tasks and skills as well as skill

primitives, which are lower-level actions that are combined to achieve a skill. The taxonomy is

more completely defined in their paper than in the Seabra Lopes work, although it is not clear that

the earlier work did not include an equivalent set of tasks and skills. One thing that appears new is

the use of constraints, such as required poses or durations in which a task must be accomplished.

The taxonomy also explicitly includes primitives for coordination and sequencing of actions when

10

more than one robot is executing a task. The taxonomy can be extended or specialized as needed

for a particular domain. It does not specify how actions should be executed, only the results that

are expected. The taxonomy includes links to perception and control to enable verification that the

task is executed properly. It does not appear to include error recovery. The taxonomy is illustrated

in Figure 3.

Other work has taken a similar approach. For example, Pfrommer, et al. [23], break the production

process into products, processes, and resources. Processes are broken further into tasks and skills,

which are similar to those used by Huckaby and Christensen. Tasks have pre- and post-conditions

as well as a duration. Skills are associated with machines that can execute parts of a process, such

as being able to weld or transport parts. Processes include such actions as cutting, bending,

movement, and fastening. Resources are machine tools, robots, conveyors, etc. Products are the

intermediate or final results of the activity. Skills are the combination of an action and the machine

that carries out the action so can, for example, include a robot’s ability to move a part. Tasks are

the steps needed to complete the activity.

Also focused on skills is the European Union funded project investigating “Skill-based Inspection

and Assembly for Reconfigurable Automation Systems” (SIARAS) [24]. This project seeks to

develop a complete representation of a production system’s devices and associated skills to enable

the automatic reconfiguration of the production system. To investigate skill representation, they

begin with a taxonomy of tasks, the top levels of which are shown in Figure 4:

– Skill: A Skill represents an action that might be performed by a device as part of a

production process. The SIARAS skill hierarchy is divided into six subcategories, the main

one being called MainFunction. This subhierarchy is further broken out in Figure 4 and

includes the definitions of manipulation, manufacturing, handling, and sensor functions.

– Property: Properties are aspects of devices and skills that the Skill Server can reason about.

This subtree contains parameters for devices like sensors as well as physical parameters,

communications interfaces, and quality criteria. As a result, the subtree is highly branched.

– Physical Object: Objects are the components of workcells. They include Devices, which

are active and have skills, and Workpieces, which are passive and are manipulated by

Devices. The device hierarchy is both deep and highly-branched to reflect the range of

actual devices used in automation systems.

11

Figure 3: The taxonomy for the robot assembly domain defined by Huckaby and Christensen

12

Figure 4. Part of the SIARAS hierarchy. In the full hierarchy, the nodes are further expanded

13

– Operation: Operations describe the tasks performed by a device. An operation can be the

direct application of a single skill (called an Atomic operation), the invocation or two or

more skills carried out at the same time (called a Parallel operation), or can involve two or

more operations performed one after the other (called a Sequence operation).

– Object Base: The Object Base node provides a way to model Physical Objects. Each object

is either a simple part or an assembly (a set of parts or other assemblies). It stores

geometrical relations and dependencies of objects.

A task description is needed that describes the principal steps of the task and requirements,

boundary conditions, or tolerances. Therefore, the SIARAS consortium developed a Flow Chart

based approach, where the user can describe and parameterize the process description step by step.

Tallinen, Osuna, et al. [25] match a particular product’s requirements for assembly processes to

equipment process capabilities. In addition to the geometric and attribute information that is

defined in other representations, they include information on handling, such as for feeding,

picking, gripping, and positioning tasks. Information on insertion paths, positions, contact areas,

and required tolerances are specified. They also include knowledge about precedence relations

and tooling information.

Gerky and Matarić [26] define a taxonomy of multi-robot task allocation problems and use it to

explore the complexity of possible solutions using methods from operations research, economics,

scheduling, network flows, and combinatorial optimization. The taxonomy divides the kinds of

problems using three axes: single-task robots vs. multi-task robots, single-robot tasks vs. multi-

robot tasks, and instantaneous assignment vs. time-extended assignment. An analysis of existing

algorithms that fit into the simpler of these classes shows that they are mostly equivalent within

classes. The taxonomy can be used to select optimal or near-optimal algorithms for a given

problem and architecture.

Drawing on a number of previous taxonomies for human-computer interaction and computer-

supported cooperative work, Yanco and Drury [27] define a taxonomy for human-robot

interaction. It is comprised of multiple axes in an attempt to cover the range of possibilities that

can arise and is mostly focused on mobile robots. The factors included are: level of autonomy,

ratio of number of people to number of robots, the amount and type of shared interaction, the

kinds of decision support provided to the operators (humans), a measure of how critical completion

of the task is, whether the robots used are homogeneous or heterogeneous, and a time-space (sub-

) taxonomy. The time axis of the time-space taxonomy can be either synchronous or asynchronous,

while the space axis can be either collocated or non-collocated. No specific measures are provided

for quantitatively measuring where a particular system fits within the taxonomy.

Bloomfield, et al. [28] define a taxonomy of haptic actions for disassembly tasks. They explore

the use of instrumented gloves to provide feedback to workers on representative tasks and use their

results to develop the taxonomy. The classification has two major dimensions: the general type of

14

action performed and the type of force or torque required. Their taxonomy includes actions that

discriminate amongst those requiring fine motor control, significant arm strength, tactile friction,

cooperative two-handed tasks, braced two-handed tasks, manipulating a deformable object, tool-

assisted tasks, and multiple finger tasks. The type of force required is divided into two types of

force-only actions (e.g., pushing a button vs sanding a surface), two types of torque-only actions

(e.g., turning a dial vs. using a wrench), and actions that require force and torque simultaneously

(e.g., pulling and twisting to extract a piston from a cylinder.)

Tan, et al. [29] use hierarchical task analysis to decompose a task (electrical connector assembly)

into subtasks. The decomposition uses primitive operations that are similar to the skills in the other

taxonomies. They include retrieve, assemble, arrange, check, secure, hold, insert, temporarily fix,

locate, release, place, etc. A human works in collaboration with robots to accomplish the tasks. A

qualitative analysis is used to assign tasks to either the robot, the person, or to both collaboratively.

The assignment is based on the perceived capabilities of each operator and the perceived

requirements of the task. This may be followed by a quantitative procedure if the qualitative one

does not provide a clear solution. They use productivity (assembly duration), quality (assembly

error), human fatigue (human operator tiredness), and safety (human operation safety) as the

criteria in the analysis. They also study the necessary motor and perception skills for the person

for each step of the assembly and the safety aspects of the tasks. Human studies showed

improvement in performance using a real human-robot system.

3.2. Other Representations for Assemblies

Beyond taxonomies, there is extensive literature defining different ways of representing assembly

geometry and constraints, much of it to enable reasoning and automated plan generation. We

review some representative approaches in this section. These representations capture feasible

configurations of sub-assemblies and assemblies, hence can guide the further detailing of assembly

operations as well as inform the performance metrics development process.

Homem de Mello and Sanderson [30] classify assembly representations as either explicit or

implicit. Explicit ones establish a mapping from the assembly tasks into the elements of the

representation. These include directed graphs and AND/OR graphs. Implicit representations are

based on contact establishment conditions and on precedence relationships and consist of

conditions that must be satisfied by the assembly sequences. They represent an assembly task as

a directed graph of feasible assembly sequences comprised of a set of parts as nodes with edges

representing the assembly actions that join nodes together. An assembly task is geometrically

feasible if there is a collision-free path to bring the two subassemblies into contact. An assembly

task is mechanically feasible if it is possible to establish the attachments that act on the contacts

between the two subassemblies.

Lyons et al. [31] present an overview of representations and propose enhancements and extensions

to the ISO 10303 standard for exchange of product model information (informally referred to as

STEP) to support assembly modeling, analysis, and planning (Figure 5). The Lyons research is

15

not specifically aimed at robotic assembly, but their work addresses some of the key knowledge

required to implement robotic assembly. They determine insertion difficulties by analyzing the

mating constraints satisfied by the assembly of a component. Issues include access, motion

trajectory, presence of locating features, and the characteristics of the joining process. In

particular, their work proposes representation of assembly tolerances as attributes linked to the

surface mating constraints. The basis for specifying acceptable tolerances is derived from the

functionality of the joint. The Open Assembly Model [32] builds on Lyons et al. to provide a

standard representation and exchange protocol for assembly and system-level tolerance

information.

Balakirsky et al. [33] describe a knowledge representation for kitting, which is a subset of

assembly. In kitting, a set of parts is placed into a container for delivery to the assembly workcell.

Kits usually consist of all the parts needed for a subassembly, often presented in an easy-to-

manipulate fashion. The kitting representation makes use of an OWL ontology to represent the

robots, kit trays, parts, etc., and the actions that are required to construct a kit. The ontology is

augmented by a reasoning engine that can construct plans for creating instances of kits and can

generate generic commands for robots and sensors to actually construct a set of kits. These

researchers have also developed a set of performance metrics for the kitting domain [34]. Metrics

include the number of parts correctly put in the kit, the number incorrectly placed, the total distance

moved in building the kit, the total number of errors of all kinds, and a score based on the time,

distance, correctness of placement, and the number of unnecessary commands carried out.

Morris and Haynes [35, 36] developed a formal language to define how parts are to fit together

and to guide assembly by a robot. Their assembly by constraint (ABC) approach defines

assemblies based on the concept of degrees of freedom (DOF) of components and the reduction of

degrees of freedom as components are assembled. The authors derived a component constraint

status, based on the degrees of freedom of one component with respect to its mate (three

translational and three rotational). The degree of freedom is Boolean, i.e., it either exists or

doesn’t. Out of a total of 64 possible combinations, they determined that twenty are unique, three

are unrealizable, fifteen are applicable to assembly, and the final two represent totally constrained

and unconstrained states. Their intention was to use the constraint-based information to provide

sufficient data for the robot to generate its own action plan based on its capabilities and the

environment.

16

Figure 5. Hierarchical representation of assembly constraints from [32]

Morrow and Khosla [37] extended the work of Morris and Haynes by incorporating specific

geometry information when considering robotic manipulation for assembly. Their research

17

defines MTP (manipulation task primitives), which include a specific geometric interpretation of

the relative motion constraints. Rather than list each DOF with a 1 or 0, they combine the

translation and rotation DOF for an axis into one symbol which encodes the translation/rotation

classification. A resulting 3-tuple represents the DOF of the task frame (permutations of the same

three symbols have the same meaning). Morrow and Khosla also developed a set of sensorimotor

primitives [37], which are an encapsulation of sensor processing and action (in this case, executing

a trajectory) that can form the foundational capabilities for task planning and execution. For

example, force primitives are able to utilize the degrees of freedom information to guide their

control scheme.

Wu and Kim [38] also propose a variant of constraint-based mating classification. They include

geometry considerations (e.g., inserting a round peg has different symmetries than inserting a

prismatic peg) for their Structured Assembly Coding System (SACS). This coding system

provides an additional geometric constraint definition with the intent of supporting synthesis of

compliant control strategies for robot fine assembly motions.

Related to constraint-based representations is the adoption of screw theory for assembly mating.

The motions that a rigid body can undergo, or the forces and moments that are exerted upon it can

be represented by a screw. Twists represent motion through angular velocities and translational

velocities, while wrenches capture the forces and moments that a joint can resist. Konkar [39]

developed a representation of assembly mating features based on screw theory and used this

approach to determine the relative degrees of freedom between parts in an assembly.

4. Relevant Prior Work in Performance Metrics

Performance metrics for robots have been developed both formally through standards and

informally by researchers who needed to evaluate their systems. The formal performance standards

for industrial robots (ISO 9283 [40], ANSI/RIA R15.05 [41-43]) are old and cover only limited

aspects of performance, mainly relating to point-to-point repeatability. In the area of response

robots, however, there has been a concerted effort to develop performance standards [44]. Some

of these may be of value for manufacturing applications as well.

Ceballos, et al. [45] define a number of metrics for evaluating navigation algorithms for mobile

robots. They include security metrics that measure how well the vehicle keeps a safe distance from

obstacles, dimension metrics that measure the length of the chosen path, and smoothness metrics

that take into account changes in direction due to re-planning as well as the desire to reduce energy

use. The metrics are demonstrated in simulation by showing the results of two control algorithms

driving a robot through a maze.

Frommberger, et al. [46] define performance measures for mobile surveillance robots operating in

a warehouse. They describe two types of metrics, relating to optimizing the logistics aspects of the

tasks and to the efficiency of the surveillance robots. Logistics efficiency is a function of delivery

18

times, storage efficiency, stock turnover, etc. Robot efficiency depends on mapping and

localization, collaboration between robots to cover the area, etc. Since both problems have multiple

criteria, the optimal solution is dependent on the needs of the operator of the warehouse. The

authors suggest using histories of the observation of the goods flowing through the warehouse to

provide a good estimate of how well the task is executed.

Marvel and Falco [47] define a set of force control metrics and a set of force-based assembly

metrics. Force control metrics include settle stability, which measures how long the system takes

to stop moving when it impacts a surface, obstruction stability, which measures the system’s

performance when trying to push past an obstacle in its path, control switch stability, which is a

measure of how smoothly the system switches from one type of force control to another, surface

cohesion, which evaluates how well the system is able to maintain a constant force as it moves

across a surface, and incurred force limitations, which measures how well the system deals with

extraneous forces while not exceeding its force limits. The force-based assembly metrics are

specifically oriented towards measuring how well the system completes a range of assembly tasks.

They include the time to complete the assembly, the success rate when attempting a set of

assemblies, and the average amount of force needed to complete the assemblies. A set of

components, all of which fit into a base, was proposed for computing the metrics in a standard

way. The base includes force measurement sensors to provide an independent ground truth

measurement.

Singer and Akin [48] provide a survey and categorization of performance metrics for human-robot

teams. The metrics are first presented in isolation and then a number of suggestions are made as

to how to combine metrics to provide an overall evaluation of a given human-robot task. Individual

metrics are divided into task-specific metrics, offline versus real-time metrics, metrics for the level

of autonomy of the robots, situation awareness metrics, and communication metrics. Combining

the metrics may be done by a simple or weighted summation or by a more structured approach

such as using state transition networks. The authors caution that there is a lot of subjectivity in

selecting the metrics to use and the way to combine them and this can greatly affect the resulting

measures. Errors in measurement can also have significant influence on the final results.

A paper by Burke, et al. [49] describes a method of evaluating the performance of human-robot

teams in a search and rescue environment. It involves an intensive analysis of videotaped records

of operator-robot teams engaged in typical activities. The analysis addresses a range of issues

including communications, developing situation awareness, and the ways in which the humans

interact with the robot. No performance measures extracted from this data are described.

Steinfeld, et al. [50] define a set of factors that need to be considered when evaluating a human-

robot task and suggest metrics for each factor. The factors include navigation, perception,

managing the task and human-robot interaction, manipulation, and social factors (how well the

human and robot interact). Other factors that influence the results include communications, robot

response times, and human task load. The individual metrics for the different areas also have to be

19

integrated into a task-level measure. This integration includes some quantitative measures, but also

requires subjective evaluation.

For human-robot interaction applications, Fässberg, et al. [51] stress the need to address both the

medium of presentation used for communicating information, such as paper or a computer monitor,

and the content of the information (i.e., what is selected to be conveyed and when). Each should

be optimized for the task and level of experience of the human participants.

Patel and Sobh [52], present a literature review of performance measures for manipulators. They

discuss the definition, classification, scope, and limitations of many performance measures for

manipulation and include an extensive bibliography. Manufacturing manipulation and grasping

dexterity measures based on an industry-focused workshop are detailed in [53, 54].

Shi and Menassa [8] discuss requirements for flexible robotic assembly for a wheel and tire load

moving assembly line. They specify three key performance evaluation areas:

– Manipulation skills: peg-in-a-hole assembly in 3D space; Contour match assembly in 3D

space; Surface match assembly in 3D space.

– Perception Skills

– Robustness

Design for Assembly and other approaches related to assigning relative costs to assembly

operations, which were summarized above in Section 2.2 can also be considered proto-

performance metrics for robotic assembly.

5. Performance Metrics Based on a Taxonomy of Assembly Tasks

The previous work indicates that there is a need for a taxonomy that includes the actions and

capabilities required for robotic assembly, and that other areas must also be included. These

include communications, coordination, time and space considerations, and human factors for

applications where humans and robots collaborate. This is a large domain to cover and emphasizes

the need, also evident from previous work, for both individual performance metrics for each

component of the taxonomy and measures that give an overall estimate of how well the entire

system will function.

From the above summary, it can be seen that there are a lot of similarities between the various

taxonomies that have been defined for robotic assembly. In this paper we adapt one of the more

recent taxonomies, that defined by Huckaby and Christensen [22], with additions from several of

the other taxonomies defined in Section 3.1. Because it was designed for manufacturing assembly

operations, the Huckaby and Christensen taxonomy is well suited for organizing the performance

metrics for subcomponents of assembly. For each element of the taxonomy, we select specific

metrics and we also adopt metrics for larger components of the taxonomy (sub-trees) and for the

20

application as a whole. We assume that each individual assembly action is binary: i.e., it entails

joining two distinct parts or subassemblies.

These proposed performance metrics are augmented by consideration of the specific types of

assembly join operations, constraints, and associated difficulty scales discussed in the previous

sections. These additional relevant conditions and constraints should be taken into account during

the design of methods (including test artifacts and procedures) of capturing performance with

respect to the metrics. Initially, a static environment is assumed; the metrics and test methods can

be extended to cover motion and tracking of an assembly line. Other considerations, such as ease

of programming the robot to perform a new assembly, or general human-robot interaction concerns

are not covered in this analysis.

5.1. Actions

Figure 6 shows the set of assembly actions defined in the taxonomy. They include actions that

accomplish sensing, motion, positioning, component modification, and coordination. Metrics and

performance measures can be defined for each of the actions, although some of the actions, such

as detect, fasten, and coordinate, are the roots of subtrees whose nodes also need performance

measures.

5.1.1. Detect

The Detect subtree (Figure 7) deals with identifying and locating objects that will be manipulated

during the assembly. Typically, image-based sensing systems locate features in the world that

may be objects, parts of objects, or fixed elements such as fiducial markings. This sensing is also

used for visual servoing (guiding the robot to its destination using vision) and to check that each

step in the assembly process is carried out correctly. The metrics in Steinfeld, et al. [50] that are

relevant to assembly are of value for visual detection. They include measures for passive

perception and for active perception. Passive perception interprets the sensor data without active

control of the sensors. It is the most common form of perception for manufacturing. Placing a

camera on the robot or on a pan-tilt head enables active pointing and searching for objects, which

is called active perception.

21

Figure 6: The actions defined in the expanded Huckaby-Christensen taxonomy

22

Figure 7. The detection subtree from Huckaby and Christensen

Metrics for passive perception include detection measures such as the number of objects correctly

detected and the poses of the objects detected as compared with their true poses. In manufacturing,

sensing is often used for in-process inspection, so detection of incorrect objects or defective parts

should also be included in the measures. Other measures include how well the system can deal

with clutter and occluded parts. For systems that expect parts to be in known locations, the amount

of variation that the system can handle can also be used as a performance measure.

For active perception, the goal is usually to find an object that is not in the field of view of the

sensors or to guide the robot to complete some action, such as mating two parts or inserting a peg

in a hole. Performance metrics include the amount of search needed to find a part and how

accurately the position of the part is determined (especially when the sensor is moving). The update

rate of the sensors may also be of interest in these cases.

While vision-based sensing covers the object and pose aspects of the Detect taxonomy, force-

torque sensing is used for the contact and force/torque aspects. Sensing of force and torque for

insertion, part manipulation, or surface following tends to be more ad hoc, with specialized

algorithms being implemented for different actions. This makes it harder to evaluate how well

force-torque mediated actions are accomplished. The metrics in Marvel and Falco, [47], are useful

for these actions. The more general metrics in Patel and Sobh [52] are also relevant. Metrics for

force-based assembly include the time taken, the success rate, and the maximum and average force

used as compared with the desired force. For operations like applying adhesives, spray painting,

or welding, surface-following metrics are important. These include the average distance from the

surface, the average force applied to the surface, and how well the required area was covered.

5.1.2. Align

This is a compound action, comprised of detect and transport. The Align action requires the robot

to detect the object that is the focus of the command and to (visually) servo to the required pose

relative to the object. Metrics for this action include how well the robot reaches the required pose

(measured in comparison to ground truth) and how long it takes to settle at the required pose.

23

Parameters that would influence test method design include what object(s) are to be aligned, how

many degrees of freedom are involved (i.e., what are the constraints in the goal configuration), and

what the required alignment tolerances are. Another aspect to consider is how accessible the align

target is, both for the robot’s sensors and for its manipulator.

5.1.3. Pick up

Similar to Align, Pick up is also a compound action and requires detecting the object to be

acquired, servoing to it, using the same metrics for success, as well as grasping it. The Pickup

action requires the ability to detect that the object is in the gripper, perhaps the capability to

measure the grip force and the pose of the object in the gripper, and to determine if the object is

held firmly or may slip. Settling time may also be an issue if the object must be stationary before

being moved.

Variables that influence the test method design are the properties of the object to be picked up

(including geometric features, size, material properties, etc.) as summarized in Table 1.

5.1.4. Reposition Object (in Gripper)

There are instances where, after being picked up, an object must be reoriented in preparation for

the next task while in the gripper or hand. This requires in-hand manipulation by the robot or the

use of external jigs or fixtures to assist in the re-positioning. Metrics include the successful

completion rate, time to complete, and whether or not additional hardware is required.

5.1.5. Insert

Assuming the object to be inserted is in the gripper and is aligned with the hole, the Insert action

is typically primarily force-mediated. Metrics include the minimum clearance ratio that can be

achieved, time to achieve the insertion (which may require a search), the maximum and average

forces applied, and the success rate. Variables include the types of geometries involved for both

the target part (e.g., hole, slot, with and without chamfer) and the inserted part (cylinder, prismatic

part, …), insertion direction, and accessibility of the insertion location, as summarized in Table

1.

5.1.6. Slide

Slide actions also typically make use of force sensing to maintain contact and to ensure that not

too much force is applied to the surface. Metrics include the accuracy of the path compared to the

commanded path, the average and maximum forces applied, the accuracy of start and stop

positions, and the percentage of time that the surfaces are in contact during the Slide motion.

Variables include the types of geometries and properties of both objects, as well as the number of

constraints on the sliding motion (single or multiple surfaces).

5.1.7. Retract

Retract can be considered the complement of Place. Metrics for Retract include the accuracy of

the path taken and of the stopping point, and the time required for execution. Factors influencing

test method design include the tolerance associated with the path, how obstructed the retract path

24

may be, whether intermediate points must be specified explicitly, or the robotic system can

autonomously calculate a collision-free path.

5.1.8. Transport

Transport may include actions carried out by a robot within its work volume or by a vehicle moving

between workstations. Metrics include the accuracy or repeatability with which the robot moves

to the start position, the maximum deviation from the planned path between the start and end

positions, and the accuracy or repeatability with which it reaches the goal position. Transport

actions can also include obstacle recognition and avoidance, for which metrics include the

accuracy of determining the position and size of the obstacle, the success rate of planning paths

around it, and the success rate of executing the planned path without hitting the obstacle or other

objects. The time taken for the Transport action can also be used as a metric.

Transport in this taxonomy implies larger distances, and hence corresponds to the Gross Motion

described in Section 2.1.

5.1.9. Place

The Place action has similar metrics to Transport, but may include tighter constraints on the final

pose. Place corresponds to the Fine Motion discussed in Section 2.1. This may require visual or

force servoing as in Insert. Metrics would therefore include maximum allowable forces, as well

as positioning and velocity tolerances. Factors to be considered include the direction of approach,

accessibility of the goal location, and the number and type of geometric constraints to be achieved

(e.g., placing a planar surface onto a planar surface versus having to ensure multiple surfaces are

in contact). The Place action is one that does not involve insertion of one part into another.

5.1.10. Tool Action

A tool in this context could either be an end effector that is attached to the robot or a separate tool,

such as a screwdriver, that is picked up by the robot’s gripper or hand. The ability to use a tool

requires that a tool frame be defined and that the robot be able to pick up and activate the tool.

Picking up the tool may require Align and Pickup actions, which have their own metrics. Using

the tool requires ensuring the offset and pose of the tool are maintained correctly and the action is

carried out correctly.

5.1.11. Hold

Hold requires the robot to maintain a specific pose for a specified amount of time. Metrics include

the accuracy with which the pose is acquired, the maximum and average deviations for the

specified pose, and the length of time the pose is held relative to the specified time.

5.1.12. Fasten

Fasten is a class of actions including those shown in Figure 8. In addition to the ones in the

Huckaby taxonomy, snap or press fitting and nut-and-bolt fastening are key methods that must be

considered. Other fastening actions might be defined for special cases, such as applying adhesive

tape, wrapping, stitching, etc. Each may have its own metrics, but in general they will be similar

25

to those for previously-described situations such as Sliding, Tool Actions, etc. Fastening is central

to assembly and has its own taxonomies (e.g., Ziout and Azab [55]).

Figure 8. The Fasten subtree from Huckaby and Christensen

5.1.13. Coordinate

The Coordinate action refers to a class of constraints, shown in Figure 9. Metrics clearly are time-

related: Did one action start before another if that was the intent? Did the actions occur

simultaneously?

Figure 9. The Coordinate subtree from Huckaby and Christensen

All the actions are subject to constraints, some of which are shown in Figure 10. The constraints

usually set the parameters for the metrics. For example, an action may have to take place within a

given duration. In this case, the metric should use this duration in determining how well the action

was completed. Similarly, the motions, poses, speeds, etc., provide the bounds within which

successful actions can be completed and their performance measured.

1.1.1. Navigation

Navigation is a significant task within a factory that uses mobile robots and corresponds to the

Gross motion discussed above in Section 2.1. Metrics include percentage of navigation tasks

successfully completed, amount of deviation from the planned route (e.g., distance traveled

compared to length of planned path), percentage of obstacles successfully avoided, and time to

complete the action.

26

Figure 10. The Constraint subtree from Huckaby and Christensen

1.1.2. Track

Related to coordination and navigation is the tracking task. This is relevant when the assembly

operations are occurring on a moving line. The robot has to detect, align, pick up, insert, fasten,

and perform other tasks while the line is moving. The metrics for this are speed and accuracy.

1.1.3. Communications

There are two kinds of Communications metrics for robotic assembly. One has to do with the

medium used, such as wireless Ethernet, while the other has to do with what is actually

communicated. For the medium, standard metrics include bandwidth, latency, and jitter (variance

in latency). The data sent over the medium can vary widely depending on whether the application

is run using a centralized or distributed architecture. Measurements for what is sent over the

medium include numbers of messages of different types per task, total number of bytes per task,

average and maximum data rate during the task, and perhaps saturation measures such as delays

due to unavailability of the network.

1.1.4. Performance Metrics Summary for Key Actions

Table 2 through Table 11 summarize the parameters and metrics for a subset of the actions

discussed above. The actions selected for detailing are those that are likelier to be implemented in

the near-term, and for which there exists a set of performance expectations. For example, the

“Collaboration” action requires further research and definition of what the metrics and parameters

should be. Some of these are discussed in the next section. As can be seen in the tables below,

there are recurring requirements, such as the need to evaluate the pose accuracy for a part. For

this, an existing standard from ASTM may be used [56]. Time to accomplish a task is also a

universal metric. For any performance metric, measurements must be repeated a sufficient number

of times to achieve statistical significance.

27

Table 2: Detect action

Action Property/Parameters Metric/Test Method

Detect Object or Feature (e.g.,

hole)
- Object ID is Correct

- Context: occluded (Y/N); in

bin (mixed parts (Y/N)

- Distance at which initial

detection occurs

- Minimum object or feature

size detected

 Object/Feature Pose - Pose accuracy (ASTM

E2919-14)

 Contact - Touch sensitivity

- Stability

 Force-Torque - Settle stability

 Cycle Time - Time to detection

Table 3: Align action

Action Property/Parameters Metric/Test Method

Align Object;

Target Feature to

Which to Align

- Object ID is correct

- Target feature ID is correct

 Target Object Pose (see

Fig. 3 for list of

potential constraints),

Degrees of Freedom

(e.g. Radially

symmetric or not);

Tolerance

- Accuracy of object pose with

respect to target

 Accessibility of Target

Pose

(constrained/unconstrai

ned)

- Ability to achieve;

- Number of degrees of

freedom constrained;

- % of access volume

constrained.

 Cycle Time - Time to Align

Table 4: Pick Up action

Action Property/Parameters Metric/Test Method

Pick Up Object - Object ID is correct

 Object Properties

(friction, rigid/non-

rigid, geometric

features of relevance)

- Ability to acquire object

- Maximum weight

- Minimum and maximum

dimensions

28

- Minimum friction

- Grasp stability

 Constraints (e.g.,

required grasp points)
- Correct grasp points

 Settling Time - Settle stability

 Cycle Time - Time to acquire object

Table 5: Transport action

Action Property/Parameters Metric/Test Method

Transport Object - Object ID is correct

 Start and End Poses - Pose accuracy (ASTM

E2919-14)

- Robot accuracy (ISO 9283)

- Robot repeatability (ISO

9283)

 Contact - Touch sensitivity

- Stability

 Force-Torque - Settle Stability

 Object Properties

(friction, rigid/non-

rigid, geometric

features of relevance)

- Ability to hold object in

transit

- Maximum weight

- Minimum/Maximum

dimensions

- Minimum Friction

- Grasp stability

 Path Properties

(velocity, distance,

occluded, constrained)

- Max velocity, max

acceleration

- Obstacle detection and

avoidance; Accuracy of:

o Obstacle classification or

identification

o Obstacle pose

o Path replanning to avoid

obstacle

- Do intermediate points have

to be specified?

- Maximum deviation from

programmed path

- Success rate for achieving

path

 Cycle Time - Time to transport

29

Table 6: Reposition action

Action Property/Parameters Metric/Test Method

Reposition Object - Object ID is correct

 In-hand Target Pose - Object pose accuracy

 Object Properties

(friction, rigid/non-

rigid, geometric

features of relevance)

- Ability to reorient Object

- Maximum weight

- Minimum and maximum

dimensions

- Minimum friction

- Grasp stability

- Additional hardware required

(intermediate fixture for re-

orienting)

 Contact - Touch sensitivity

- stability

 Force-Torque - Settle stability

 Cycle Time - Time to reposition object

Table 7: Place/Retract action

Action Property/Parameters Metric/Test Method

Place and

Retract

Object

Target Feature (Plane)
- Object ID is correct

- Target feature ID is correct

 Target Pose; Degrees

of Freedom
- Object placement pose

accuracy (ASTM E2919-14)

 Contact detection;

Max allowable forces
- Touch sensitivity

- Stability

 Force-Torque - Maximum force exerted

during placement

- Settle stability

 Placement Path

Parameters (distance,

velocity)

- Maximum velocity,

maximum acceleration

- Obstacle detection and

avoidance

- Obstacle classification or

identification

- Obstacle pose

- Path replanning to avoid

obstacle

- Max deviation for

programmed path

- Success rate for achieving

path

30

 Direction of approach - Difficulty of approach

direction (typically, top-down

is easiest; bottom-up is

generally hardest)

 Cycle Time - Time to complete placement

Table 8: Slide action

Action Property/Parameters Metric/Test Method

Slide Object to Slide

Surface to Slide Upon
- Object ID is correct

- Surface ID is correct

 Start and End Poses - Pose accuracy (ASTM

E2919-14)

 Slide Trajectory;

Degrees of Freedom

(see Fig. 3 for list of

potential constraints,

e.g., anywhere along

plane or constrained to

follow a line on plane)

- Accuracy of path

 Contact - Touch Sensitivity

- Stability

- Percentage of Time that

Surfaces are in Contact

 Forces - Minimum and Maximum

Forces

 Cycle Time - Time to Complete Sliding

Action

Table 9: Insert action

Action Property/Parameters Metric/Test Method

Insert Object To Insert

Destination Feature in

which to insert

- Object ID is correct

- Feature ID is correct

 Object and Destination

Receptacle Properties

(friction, rigid/non-

rigid, geometric

features of relevance

such as chamfers)

- Grasp stability

- Minimum clearance ratio

 Contact - Touch Sensitivity

- Stability

 Insertion Forces - Minimum force

31

- Maximum force

 Direction of approach - Difficulty of approach

direction (typically, top-

down is easiest; bottom-up is

generally hardest)

 Cycle Time - Time to complete Insertion

Table 10: Hold action

Action Property/Parameters Metric/Test Method

Hold Object - Object ID is correct

 Object Properties - Maximum weight

 Hold Pose - Pose accuracy (ASTM

E2919-14)

 Hold Time - Length of time pose is held

versus required time

 Contact (if required) - Touch sensitivity

- Stability

 Force-Torque - Settle stability

Table 11: Tool action

Action Property/Parameters Metric/Test Method

Tool Action

(may require

Align, Pickup,

Retract, or

other Actions);

Includes

Drilling

Tool Type

- Tool identification is correct

 Position - Position accuracy (ASTM

E2919-14)

 Tool Command

(Attach, Detach, Start

Tool, Stop Tool, etc.

- Command completed

correctly

 Contact - Touch sensitivity

- Stability

 Force-Torque - Settle stability

 Cycle Time - Time to complete individual

tool action(s)

- Total time to complete series

of tool actions(s), e.g.,

including move to tool

32

changer, attach, detach, and

perform operations with tool

1.1.5. Global Task Metrics

Global task-level metrics include time to completion, percentage of assemblies correctly

completed, percentage of errors corrected, percentage of bad parts correctly found and rejected,

and amount of slack time (for example, in switching from one task to another or waiting for parts

to arrive). Some measure the Process Capability Index. Process Capability indices relate the

process mean and standard deviations to the Upper and Lower tolerance limits defined for an

assembly. Typically, a given process is compared to 3 of a normal distribution.

For tasks in which humans and robots collaborate, another set of global metrics can be defined.

They include measures of the task load on the human and robot, how well the human and robot

share the tasks (e.g., how long each spends waiting for the other as a percentage of total task time

or total number of task elements), amount of explicit communication required to accomplish the

task, and how well the task allocation takes advantage of the capabilities of each of the participants.

Kitting is a specialized subset of assembly, wherein parts are delivered to the assembly station in

kits that contain the exact parts necessary for the completion of one assembly object. The kit itself

must be assembled, although the constraints on the insertion of the parts into the tray are typically

much looser than for the assembly join operations themselves. Nevertheless, it has been identified

as a fruitful area to begin robotic integration into assembly operations. Balakirsky et al. have

defined metrics for kit building [57]. The static kitting metrics range from tallies, such as number

of commands executed and the execution time, total distance moved, and total objects moved, to

errors of various sorts, such as asking the robot to move a part that is too heavy or outside its work

volume. The authors introduce additional execution metrics, such as manipulation robustness,

transporting ability (how well a part is moved by the robot), contact errors (number of collisions

between the robot and objects), failures during planning, and during execution, including how well

the system is able to recover from failures during execution. This latter set, along with some of

the static kitting metrics, can be adopted for assembly operations beyond kitting.

Robots must function in the presence of uncertainty, so robustness is a key global metric. An

assembly operation is called robust if its performance or execution is substantially insensitive to

variations that might occur, for example, in the sizes, shapes, and locations of parts, external loads,

or operating conditions, so long as the variations are within the specified tolerances (adapted from

Whitney). The robustness of each individual assembly operation discussed above can be

evaluated by configuring the test method to present parts with size variations at the extrema of the

tolerance zones and locations, and by stressing other environmental factors, such as the lighting

conditions if visual sensing is being used, or the speed of the assembly. Donald [58] examines

error detection and recovery abilities in the presence of uncertainty from sensing errors, control

errors, and errors in the geometric models of the robot and the environment. The robustness of the

33

robotic system to the accumulation of variations in the individual assembly operations can

therefore also be assessed.

2. Representing Robot Capabilities

Once the performance of a robot executing an assembly task is determined, the performance needs

to be represented in such a way that it could be of use to the end user. In the simple case, a

spreadsheet or database could be put together to allow the end user to look up whether a robot can

or cannot perform a given task. However, these robot capabilities could also play a role in planning

the assembly of a product when multiple tasks are needed to perform the assembly operation. There

may also be multiple robots that could perform a given task, and it is important to know which

robots are available and have the capability to perform the needed operations. If this information

were encoded in a computer-interpretable knowledge representation that could be fed into a

planning system, the planning process could be partially, if not fully, automated.

In this context, we refer to a robot capability as the ability of a robot to perform a specific action

on a specific object or set of objects. Therefore, the robot capability is specific to the individual

object(s) and the individual action. This is different than the type of information that one would

find on a robot specification sheet, which could include general characteristics such as how much

a robot can lift or the reach of a robot. While such information is important and could be included

in a robot capability model, it is not the focus of this paper.

One of the challenges of defining capabilities in this way is that there are an almost infinite number

of combinations among robots, actions, and objects, and it would be impossible to test all of these

combinations. The hope and expectation is that the test methods that are being developed will

provide a strong representative set that could be used to extrapolate to other similar manufacturing

assembly situations. The design of these test methods is a science in itself to ensure that they are

both representative of the manufacturing assembly domain and allow the performance of the robot

to be predicted in similar situations.

To better understand the use of the robot capability model, one can imagine the following scenario.

A company has a new product that they want to assemble. They have a large number of robots

available to them on the shop floor, and need to determine how to assign robots that have the

required capabilities to individual tasks in the assembly process. Each assembly process is

comprised of a large number of tasks, so they need to optimize the sequence of operations and

associated resources (the process plan) to accomplish the assembly. To do this, we will assume

that they have a software tool that imports the following information:

 Robots that are available

 The capabilities of those robots

 The desired end state (i.e., the final assembly)

 The objects that compose the final assembly and their pertinent characteristics

34

The output of this tool would be a process plan that assigns robots to the tasks needed to accomplish

the assembly.

In this rest of this section, we will explore the information requirements necessary to represent

robot capabilities in a computer-interpretable format.

2.1. Robot Capability Model Information Requirements

As described above, we define a robot capability by the intersection of a robot, an action, and

objects in the environment. Therefore, we need a way of representing each of these items, including

a way that we can put them together into an instance of a robot capability.

It is envisioned that both the action and the robot will need to be represented at various levels of

abstraction. In the case of a robot, one may want to associate capabilities with the robot as a whole,

the arm of the robot, or maybe only the gripper of the robot. As such, we will need a way to

represent the composition of the robot and have the ability to represent the capabilities at each

level.

Similarly, actions will need to be modeled at various levels of abstraction, as described in the

taxonomy. For example, one may want to associate a robot capability with an overall assembly

action, or perhaps to only one step in an assembly action (e.g., attach Part A to Part B), or even to

a sub-step in the “attach” step (e.g., pick up Part A).

In general, we envision a construct such as the following to bring the various pieces together to

model the robot capabilities:

o Robot Capability:

 Robot Composition: pointer to a robot concept at an appropriate level of

abstraction

 Activity: pointer to an action concept at an appropriate level of abstraction

 Object(s): pointer to one or more objects (and their associated

characteristics) that the action affects

 Capability: a representation of how well the robot can perform the action on

the object. This could be a Boolean (yes/no), a probability, or some other

form of representation.

The next sections provide a literature review of the top three bullets above and describe in more

detail the information requirements for each.

2.2. Representing Robot Composition

An important role of representations of robot capabilities and performance is their support for

composing a complete robotic system from individual components. This composability, or ease

with which a system can be put together with components to meet functional requirements,

requires that each component provide documented interfaces that enable them to be identified,

configured, and used without resorting to trial-and-error procedures. If standards for these

35

interfaces are widely implemented, those components display a high degree of interoperability,

making it much easier to compose a system from them.

Understanding the behavior of a system of components, given an understanding of their behavior

and the rules by which they are put together, is compositionality. Qualitative system behavior can

be determined from the descriptions of nominal component behavior, but quantitative prediction

of system behavior of actual components requires that measures of their performance be included.

Performance measures could include the results of tests, calibrations, or statistical distributions of

observations over time. Analytical prediction of behavior is difficult, and simulation is often used

as a method for understanding the functional behavior and performance of a system under relevant

scenarios. Developing a convincing simulation framework is also a difficult task, but recent

advances in computing have made it possible to simulate systems at even the physics level in close

to real time [59].

2.2.1. Related Efforts

Many systems and standards for robot component interfaces have been developed. The Robot

Independent Programming Environment (RIPE) and Language (RIPL) [60] formed an object-

oriented distributed robot control system developed in the early 1990s that employed programming

concepts such as inheritance and polymorphism to achieve software application code portability

and reuse. Researchers from Sandia National Laboratories implemented RIPE/RIPL in a series of

applications focused on robotic nuclear waste handling and remediation. Although not currently

supported, RIPE and RIPL influenced later robot software efforts with its distributed

heterogeneous architecture and application of modern object-oriented design principles.

In the late 1990s, the U. S. Department of Defense sponsored a joint program that brought together

its major customers of autonomous mobility systems to define an architecture for interoperability

among platform components and software applications. This effort was originally known as the

Joint Architecture for Unmanned Ground Systems (JAUGS), later shortened to JAUS to reflect its

expansion beyond purely ground-based systems [61]. Although focused on mobile robots, parts of

the JAUS specification applied to manipulators used for applications such as explosive device

neutralization. JAUS has been standardized through the Society of Automotive Engineers (SAE)

in a series of numbered standards from the AS4 Unmanned Systems Technical Committee. An

open source implementation, OpenJAUS, is available [62].

In 2000, robotics researchers at the University of Southern California developed an open-source

robotics framework, Player, that implemented a client-server software framework that allows

distributed control of robots in a networked environment [63, 64]. Player is a set of software

application programming interfaces (APIs) with bindings to many popular languages such as C,

C++, Java, and Python, and a collection of implementations for robots, sensors, and other devices

that support plug-and-play connectivity and portable programming. The Player project also

includes simulators for a 2-D world, Stage, and a 3-D version, Gazebo.

36

Also in early 2000, the European Union sponsored a project proposed by the European Robotics

Network EURON to develop an open robot control software framework, called OROCOS [65,

66]. Championed by Herman Bruyninckx of the Katholik University Belgium, the project has

grown to include the original core robot control functionality, as well as toolkits for kinematics

and dynamics analysis, Bayesian filtering, and general real-time control.

In 2007, the technology incubator Willow Garage sponsored a project to build well-tested

implementations of robot control software written at nearby Stanford University. The project,

known as the Robot Operating System (ROS) [67, 68], follows a distributed open source model

with core facilities for defining messages and services and establishing distributed networked

communication among components of a complete robotic system. Contributors are encouraged to

provide packages back to the ROS community, ranging from device drivers for sensors to complete

applications.

Around the same time, in 2008, the Association for Manufacturing Technology sponsored a project

at the University of California Berkeley to develop a standard interface to manufacturing

equipment. This project, MTConnect, was built upon an Internet web framework using the

hypertext transfer protocol (HTTP) and the extensible markup language (XML) to exchange

machine-readable information about the properties and operating condition of manufacturing

equipment [69]. Similar to a related and popular standard for industrial automation connectivity,

Open Platform Connectivity (OPC), MTConnect took the additional step of standardizing the so-

called ‘tags” or names for specific information items. This level of standardization permitted

portable client applications to connect to any MTConnect server (called agents) independent of

vendor. Typical client applications include mobile human-machine interfaces for observing

machine tool operating status, or historical data loggers to identify trends [70].

The Institute for Electronics and Electrical Engineers (IEEE) published a standard, IEEE 1872-

2015, Ontologies for Robotics and Automation, that provides a core ontology for robotics and

automation (CORA) that specifies general concepts, relations and axioms, together with other

ontologies that support the CORA information model [71].

2.2.2. Comparison of Robot Composition Methods

These specifications and standards are all logically divided into information about robot system

components (the “what”), and the format of information exchanged between the components (the

“how”). Typically, information about the components is needed when they are procured and

configured into the larger system, while the information exchange mechanisms are used during

operation. For example, information about components may be loaded into a simulation system

that does not otherwise employ the communication mechanisms used by the actual components

during operation. Likewise, information about the component characteristics may never be

exchanged during steady-state operation, only messages for control and status that are focused on

the activity rather than the parts that make up the system. However, in more sophisticated use

cases, all this information may be used continually in order to dynamically schedule tasks, bring

37

in mobile assets, and optimize production around the strengths and limitations of manufacturing

resources, including people.

It is helpful to compare different methods of representing robot composition in order to understand

how they can coexist in a common manufacturing environment. Three of the standards described

earlier will be compared: ROS, MTConnect, and IEEE 1872.

ROS provides both a model of devices, primarily robots, and a messaging interface to robots,

sensors, and other components in a robotic system. The robot model uses the Unified Robot

Description Format (URDF) defined in XML Schema [72]. Robots are composed of links and

joints, each with properties that support kinematic and dynamic analysis and control, visual

representations for simulation and animation, and determining the potential for collisions. Figure

11 shows a representative sample of a link from [72] indicating the inertial properties needed for

dynamic analyses, a simple visual representation, and a bounding region for collisions. More

complex links can be defined with references to geometry meshes, such as STL (originally

stereolithography) files. These more detailed definitions provide improved visualization and

collision avoidance, at the expense of computation time. URDF joints are described similarly, with

properties such as friction, damping, and joint limits.

<link name="my_link">

 <inertial>

 <origin xyz="0 0 0.5" rpy="0 0 0"/>

 <mass value="1"/>

 <inertia ixx="100" ixy="0" ixz="0" iyy="100" iyz="0" izz="100" />

 </inertial>

 <visual>

 <origin xyz="0 0 0" rpy="0 0 0" />

 <geometry>

 <box size="1 1 1" />

 </geometry>

 <material name="Cyan">

 <color rgba="0 1.0 1.0 1.0"/>

 </material>

 </visual>

 <collision>

 <origin xyz="0 0 0" rpy="0 0 0"/>

 <geometry>

 <cylinder radius="1" length="0.5"/>

 </geometry>

 </collision>

 </link>

Figure 11: ROS Unified Robot Description Language (URDF) instance for a robot link. [72]

38

MT Connect provides a schema for a Device Model, shown graphically in Figure 12, that can be

queried using standard HTTP web requests using the unified resource locator (URL) of the device

and the well-known path “/probe”. A reference implementation is publicly available and

continually running at agent.mtconnect.org/probe, and will return an XML-formatted description

of the actual device. A sample of this output is shown in Figure 13.

Figure 12: MTConnect Device Model, a graphical depiction showing the
hierarchy of component modeling information that is formally expressed in
XML Schema. [70]

Figure 13: Sample output of a web query for a running machine, using the /probe path. This output shows
the spindle speed and speed override capabilities of the machine (a machine tool). [70]

39

The current operating condition of machines is available via the counterpart path /current. In this

case, actual values of current operating conditions are reported, timestamped by the local system.

An advantage of the MTConnect specification is that it defines the required names for each data

item. This allows for application and device interoperability, but only around the concepts defined

in the specification. Figure 14 shows a list of the terms in the most recent version of the schema.

New technologies can be incorporated by extending the schema, with these extensions being

shared among the community that is developing the new technology. Once the extensions have

been validated, change requests are submitted for the next version of the specification.

AssetCountsType

AssetCountType

HeaderType

MTConnectDevicesType

DevicesType

ComponentType

ComponentDescriptionType

AbstractConfigurationType

ComponentConfigurationType

CommonComponentType

ComponentsType

DeviceType

ControllerType

PowerType

SensorType

PathType

ActuatorType

DoorType

SensorConfigurationType

ChannelsType

ChannelType

AxesType

AxisType

LinearType

RotaryType

SpindleType

SystemsType

SystemType

PneumaticType

HydraulicType

LubricationType

CoolantType

ElectricType

DataItemsType

DataItemType

DataItemConstraintsType

DataItemValueElementType

DataItemFilterType

SourceType

InterfacesType

ReferenceType

ReferencesType

InterfaceType

BarFeederType

MaterialHandlerType

DoorInterfaceType

ChuckInterfaceType

Figure 14: MTConnect component listing, showing the formal names associated with component

definitions. Conforming MTConnect client and server applications share this common understanding of

components. A revision process is in place to expand this list as new technologies are supported. [70]

IEEE 1872 provides a high-level model of concepts and relationships in the domain of robotic

systems. Higher-level concepts that apply to all domains, such as “quantity,” “proposition,”

”device,” and “group,” are referenced from the Suggested Upper Merged Ontology [73].

Definitions of terms include “robot,” “coordinate system,” “pose,” “robot interface,” and many

other terms in the domain of robotics. Relationships between concepts are expressed in the SUMO

40

knowledge interchange format (KIF). For example, a robot is both a device and an agent, shown

graphically in Figure 15.

2.3. Representing Robot Actions (and associated constraints)

In this section, we will explore the information required to represent robot assembly actions for

the purpose of characterizing robot capabilities, as well as provide a brief literature review focusing

on how these requirements have been addressed by others. We will focus on three classes of

requirements:

 The representation of the action itself with relevant attributes

 The ability to decompose the action into its sub-components to allow one to associate robot

capabilities at various levels of abstraction

 The ability to associate constraints with the action

Each of these requirements is described in more detail below along with a review of how they have

been addressed in the literature.

Figure 15: IEEE 1872 ontology, a graphical depiction that shows the relationships
between concepts. Here, a robot is both a device and an agent. [71]

41

2.3.1. Representation of Assembly Actions and Relevant Attributes

The literature review related to the representation of assembly actions and attributes was discussed

in Section 3.1 of this paper.

2.3.2. Representation of Action Decomposition

Action decomposition involves breaking down a higher-level action into its constituent sub-

actions, which could be further decomposed to multiple levels of detail.

In [29] (referenced earlier), Tan uses a hierarchical task tree to decompose a cable harness

assembly. In the tree, the highest level represents the main goal that is meant to be accomplished.

This can be broken down into lower level sub-goals that, when combined, achieve the higher level

goal. The ordering of these sub-goals is specified using natural language phrases such as “Do 1,

then 2, then 3” or “Repeat 1 then 2 for three parts,” These sub-goals are further decomposed until

they reach primitives that can be directly executed by the system.

In [74], Mosemann and Wahl analyze hyper-arcs of an AND/OR graph that represents an

automatically-generated assembly plan. They then use the Unified Modeling Language (UML) to

model the robot’s tasks and the corresponding skill primitives. The skill primitives are the lowest

level commands that are available to the robot to control robot movement (e.g., “MoveTo”),

control the gripper (e.g., “OpenGripper”), or task the sensors (e.g., “LocateObject”).

In [75], Rosell explores the use of Petri Nets to represent a hierarchy of assembly operations.

Specifically, he mentions the use of Hierarchical High Level Petri Nets (HHPN) to allow a system

modeler to describe a set of submodels that can all contribute to a larger model by interacting with

each other in a well-defined way. This allows a larger assembly plan to be represented as a set of

lower-level assembly plans. In this context, a Petri Net place or transition can have a submodel

associated with it.

OWL-S [76] (Web Ontology Language – Services) is an ontology of services that allows Semantic

Web applications to discover, invoke, compose, and monitor Web resources that offer particular

services and have particular properties. While not specifically focused on robots or robotic

assembly, it does offer a set of general constructions that could be directly applicable to modeling

assembly action decomposition. It has a structure in which high level processes (composite

processes) are composed of lower-level processes (simple processes) which are composed of

atomic processes. Composite processes correspond to actions that require multi-step actions;

simple processes provide an abstraction mechanism to provide multiple views of the same atomic

process; and atomic processes correspond to the actions that can be performed in a single

interaction. Also of interest in OWL-S is the way that actions can be ordered. A rich set of control

constructs is defined, consisting of sequence, split, split-join, any-order, and choice, which allow

one to order actions to show how they contribute to the higher level process.

Although the four approaches listed above employ different representation mechanisms (i.e.,

hierarchical task trees, UML, Petri Nets, and OWL), they all fundamentally contain the same core

42

set of information. This includes a mechanism to break down a large task into smaller tasks, the

concept of the lowest level task being something that can be executed, and a mechanism to order

the tasks to address the higher level goal. These concepts will serve as the basis for the

development of the future robot capability model.

2.3.3. Representation of Assembly Constraints

The third aspect of robot actions involves representing the constraints that go along with assembly

actions. In addition to representing the actions that the robot can perform, we must also represent

the bounds and limits in which that action can be performed. As a simple example, a robot may

only be able to pick up a certain type of object as a function of how far that object is from the robot

arm and the orientation of that object. Constraint-based representation are discussed in Section 3.2

of this paper, and include publications such as Haynes and Morris [35] and Morrow and Khosla

[37], which have explored using constraints as a basis for assembly operations.

In addition to the above, Pramanik et al. [77] use a tolerance synthesis scheme to minimize the

total cost of manufacturing by considering constraints related to the assembly of a planetary

gearbox part as well as constraints related to the functional requirements of the part. Assembly

constraints are considered restrictions on the variability of the geometry of the features that would

block assembly of the part. The authors construct an assembly graph (connectivity diagram) to

determine the assembly constraints. Functional requirement constraints show the parameters that

should be optimized to accomplish the function of the part (i.e., converting a set of inputs to a set

of outputs). They might include constraints such as reducing friction or maximizing power. The

cost functions and assembly and functional requirement constraint equations are generated and are

optimized using non-linear minimization tools to find the optimal plan.

2.4. Representing Objects/Environments and Their Characteristics

For the construction of a knowledge representation to be more than an academic exercise, its

contents must be constructed so as to serve specific applications. An initial description of an

application is needed to develop an initial knowledge representation for the application, but the

initial representation must not be regarded as fixed. During the development of an application, it

is necessary for two reasons to modify the knowledge repeatedly. First, it commonly occurs that

new knowledge requirements are discovered in the course of implementing the application to

support the planned functionality. Second, the functionality of the application may change,

requiring new knowledge. After an application is mature, changes to the internal structure of the

implementation or further changes in functionality (often enabled by new technology) may require

further changes in the knowledge representation.

There has been an environment model developed for one sub-domain of assembly [33], so we will

focus this section on that sub-domain. For the kitting domain described previously in Section 3.2,

the primary application being pursued jointly by NIST and Georgia Tech Research Institute is a

fully automated kitting workstation in which a single one-armed robot constructs kits of parts to

be used elsewhere in an assembly operation. The knowledge representation for the kitting

43

workstation is built in XML Schema Definition Language (XSDL) [78, 79] and translated

automatically into Web Ontology Language (OWL) [80, 81]. A MySQL database [82] is derived

automatically from the OWL representation. The top level structure of the kitting workstation

knowledge base is shown in Figure 16.

One requirement of the automated kitting application is that the data objects and solid objects with

which the workstation deals must be represented. Data objects include designs of parts, designs of

kits, locations, etc.—anything not made of matter. Solid objects are made of matter and include

items such as the robot, actual parts, and actual kits. All solid objects have a location. Non-solid

matter plays no role in kitting and is not represented. The distinction between data objects and

solid objects is similar to the distinction between Abstract and Object made in SUMO [73] and the

recently approved IEEE Standard for Ontologies for Robotics and Automation [83].

Solid objects in the kitting workstation model are required to have a location that is referenced to

another solid object. For convenience, the workstation is located relative to itself; no other solid

object may be located with respect to itself. Locations may be qualitative relative locations,

specifying only that one object is “in” or “on” another object. Alternatively, locations may be

quantitative, with a mathematical description of the location of the coordinate system of one object

in the coordinate system of another – or simultaneously qualitative and quantitative. Each solid

object must have a native coordinate system. Solid objects must have one primary location and

may have multiple secondary locations. This is convenient, for example, in a simulation system,

where the primary location is usually relative to a containing or holding object (e.g., a part in a

parts tray) and the secondary location is with respect to the kitting workstation for the benefit of a

graphic display system.

Solid objects are of two types, those called SkuObjects that are instances of stock keeping units

(SKUs) and those called NoSkuObjects that are not. As shown in Figure 17, most of the

information about a SkuObject is kept in the SKU it references. This includes the shape of the

object, which may be expressed either or both as an internal stereotyped parametric shape or as an

external shape described in some known shape format. NoSkuObjects may also have internal

and/or external shapes. Parts, KitTrays, PartsTrays, etc. are SkuObjects. The robot, worktable(s),

grippers, gripper changing station, etc. are NoSkuObjects.

44

Figure 16: Kitting workstation knowledge base

45

Figure 17: Stock keeping unit knowledge base

3. Discussion

While the taxonomy and performance metrics are focused on assembly tasks, many of the

components are more generic, covering activities needed in many applications, such as placing,

inserting, or aligning objects. Thus, developing a framework for evaluating assembly operations

will have much wider benefits. This might provide an incentive to develop the performance metrics

in an order that maximizes their utility across domains. On the other hand, some of the required

activities, such as coordination and communication, will depend on the particular configuration of

robots and associated equipment in the work cell, which would make the resulting performance

evaluation specific to that single application.

When applying multiple performance measures, care needs to be taken to ensure that the results

do not conflict. That is, measurement of components in isolation must be done in such a way that

the results can be combined meaningfully, without “edge effect” in which the assumptions behind

the individual performance measures do not match those for other components. For example, if

one performance test results in an uncertainty in the position of the part that is greater than the

tolerance of the subsequent step, then the global performance of the entire task is jeopardized. A

real-world robotic application is likely to be complex and the interactions between task steps may

not always be obvious. Rigorous statistical testing may be required to uncover some of the

problems and to ensure that the evaluation is valid. In some sense, the task is similar to debugging

code, in that all possible paths through the task should be evaluated.

46

One item that was not discussed in detail in the paper but is very important is how the combination

of the performance of various tasks can be composed to predict the performance of a higher-level

task. For example, if the performance of a “detect”, “pick up”, “align”, and “screw” task can be

determined with individual test methods, how can the performance of the overall “pick up and

screw” operation (which is composed of a sequential combination of these four tasks) be

determined? Much of this is a function of how dependent one task is on the previous tasks, or if

the two tasks can be seen as independent. This will be the focus of future research.

Representation of the robot capabilities also poses some interesting research challenges. In the

paper, we describe how various aspects of the representation have been handled by different

efforts, but we have not found any research efforts that have tried to pull these aspects together

into a single representation. On top of this, the compositionality issue described in the previous

paragraph provides another aspect in which no relevant literature was found. In addition to

representing the core concepts, we also need to ensure that the knowledge representation is usable

by applications such as process planning systems so automated plans can be developed that

leverage the capabilities of the robots and ensure the maximum probability that the plan executes

properly.

4. Conclusions

We have proposed an initial set of performance metrics for robotic assembly, organized according

to a taxonomy of assembly tasks. The performance considerations must include the range of

environmental conditions. These include a geometric constraint perspective, the part properties,

the difficulty of the assembly operations, and the starting and ending part positions and

orientations. This organized way of presenting the different activities that comprise assembly,

along with performance metrics serves as a way to guide and structure the development of a

performance evaluation framework.1 NIST has begun developing draft test methods for robotic

assembly capabilities and expects to build on these efforts, based on the taxonomy initially defined

in this document. Expanding the capabilities of robotic assembly holds great potential for gains

in productivity and quality, not to mention reduction in ergonomic challenges. We have also

explored the information requirements needed to represent these robot capabilities in a way that

the knowledge can be directly used by manufacturing software systems. This assessment will serve

as the basis for the development of such a knowledge representation. This document is intended

to serve as a starting point for developing concepts and prototypes for test methods and artifacts

that measure robotic system assembly capabilities with respect to the metrics described herein.

Bibliography

[1] International Federation of Robotics. (2012, Industrial Robot Statistics.

http://www.ifr.org/industrial-robots/statistics/.

1 See for example, http://www.nist.gov/el/isd/grasp.cfm for some preliminary grasping tests

http://www.ifr.org/industrial-robots/statistics/
http://www.nist.gov/el/isd/grasp.cfm

47

[2] E. Messina, "Performance Standards for Urban Search & Rescue Robots: Enabling

Deployment of New Tools for Responders," Defense Standardization Program Office

Journal, pp. 43-48, 2007.

[3] B. Weiss and C. Schlenoff, "Evolution of the SCORE Framework to Enhance Field-

Based Performance Evaluations of Emerging Technologies," Gaithersburg, MD.

[4] C. Schlenoff, M. Steves, B. Weiss, M. Shneier, and A. Virts, "Applying SCORE to Field-

Based Performance Evaluations of Soldier Worn Sensor Technologies," Journal of Field

Robotics, vol. 24, pp. 671-698, 2007.

[5] B. A. Weiss and C. Schlenoff, "Evolution of the SCORE framework to enhance field-

based performance evaluations of emerging technologies," in Proceedings of the 8th

Workshop on Performance Metrics for Intelligent Systems, 2008, pp. 1-8.

[6] C. Schlenoff, G. Sanders, B. Weiss, F. Proctor, M. P. Steves, and A. Virts, "Evaluating

speech translation systems: Applying SCORE to TRANSTAC technologies," in

Proceedings of the 9th Workshop on Performance Metrics for Intelligent Systems, 2009,

pp. 223-230.

[7] G. Boothroyd, P. Dewhurst, and W. Knight, Product design for manufacture and

assembly. 1994: Marcel Dekker, New York, 1998.

[8] J. Shi and R. Menassa, "Flexible robotic assembly in dynamic environments," presented

at the Proceedings of the 10th Performance Metrics for Intelligent Systems Workshop,

Baltimore, Maryland, 2010.

[9] D. E. Whitney, Mechanical assemblies: their design, manufacture, and role in product

development vol. 1: Oxford university press, 2004.

[10] A. S. Kondoleon, Cycle time analysis of robot assembly systems: Society of

Manufacturing Engineers, 1979.

[11] B. Hamner, S. Koterba, J. Shi, R. Simmons, and S. Singh, "An autonomous mobile

manipulator for assembly tasks," Autonomous Robots, vol. 28, pp. 131-149, 2010.

[12] T. Suzuki, T. Ohashi, M. Asano, and S. Miyakawa, "Assembly reliability evaluation

method (AREM)," in Assembly and Task Planning, 2001, Proceedings of the IEEE

International Symposium on, 2001, pp. 294-299.

[13] S. Kmenta, B. Cheldelin, and K. Ishii, "Assembly FMEA: a simplified method for

identifying assembly errors," in ASME 2003 International Mechanical Engineering

Congress and Exposition, 2003, pp. 315-323.

[14] J. Sprovieri. (2004, May, 2004) Design for Robotic Assembly. Assembly. Available:

http://www.assemblymag.com/articles/82786-design-for-robotic-assembly

[15] L. Seabra Lopes and L. M. Camarinha-Matos, "Towards intelligent execution supervision

for flexible assembly systems," in Systems, Man, and Cybernetics, 1996., IEEE

International Conference on, 1996, pp. 1225-1230 vol.2.

[16] X. Fiorentini, I. Gambino, V.-C. Liang, S. Rachuri, M. Mani, and C. Bock, "An Ontology

for Assembly Representation, NIST Interagency/Internal Report (NISTIR) - 7436,"

Gaithersburg, MD 2007.

[17] M. Tenorth and M. Beetz, "KnowRob - Knowledge Processing for Autonomous Personal

Robots," presented at the IEEE/RSJ International Conference on Intelligent Robots and

Systems, St Louis, MO, 2009.

[18] D. Lenat, R. Guha, K. Pittman, D. Pratt, and M. Shephard, "CYC: Toward Programs with

Common Sense," Communications of the ACM, vol. 33, pp. 30-49, 1990.

http://www.assemblymag.com/articles/82786-design-for-robotic-assembly

48

[19] T. Stipancic, B. Jerbic, and P. Curkovic, "Context-aware system applied in industrial

assembly environment," International Journal of Advanced Robotic Systems, Antonio

Visioli (Ed.), vol. 9, 2012.

[20] S. Lemaignan, A. Siadat, J.-Y. Dantan, and A. Semenenko, "MASON: A proposal for an

ontology of manufacturing domain," in Distributed Intelligent Systems: Collective

Intelligence and Its Applications, 2006. DIS 2006. IEEE Workshop on, 2006, pp. 195-

200.

[21] N. Lohse, "Towards an ontology framework for the integrated design of modular

assembly systems," University of Nottingham, 2006.

[22] J. Huckaby and H. Christensen, "A Taxonomic Framework for Task Modeling and

Knowledge Transfer in Manufacturing Robotics," presented at the Eighth International

Cognitive Robotics Workshop, Toronto, Canada, 2012.

[23] J. Pfrommer, M. Schleipen, and J. Beyerer, "PPRS: Production skills and their relation to

product, process, and resource," in Emerging Technologies & Factory Automation

(ETFA), 2013 IEEE 18th Conference on, 2013, pp. 1-4.

[24] M. A. Goodrich, E. R. Boer, J. W. Crandall, R. W. Ricks, and M. L. Quigley, "Behavioral

Entropy in Human-Robot Interaction," in Proceedings of the 2004 Performance Metrics

for Intelligent Systems (PerMIS) workshop, Gaithersburg, MD.

[25] T. Tallinen, R. V. Osuna, J. L. M. Lastra, and R. Tuokko, "Product model representation

concept for the purpose of assembly process modelling," in Assembly and Task Planning,

2003. Proceedings of the IEEE International Symposium on, 2003, pp. 222-227.

[26] B. P. Gerky and M. J. Matarić, "A formal analysis and taxonomy of task allocation in

multi-robot systems," International Journal of Robotics Research, vol. 23, pp. 939-954,

2004.

[27] H. A. Yanco and J. L. Drury, "A taxonomy for human-robot interaction," presented at the

Proceedings of the AAAI Fall Symposium on HUman-Robot Interaction, AAAI

Technical Report FS-02-03, 2002.

[28] A. Bloomfield, Y. Deng, J. Wampler, P. Rondot, D. Harth, M. McManus, et al., "A

taxonomy and comparison of haptic actions for disassembly tasks," presented at the

Proceedings of the 2004 IEEE Virtual Reality Conference (VR'03), 2003.

[29] J. T. C. Tan, F. Duan, R. Kato, and T. Arai, "Collaboration Planning by Task Analysis in

Human-Robot Collaborative Manufacturing System," in Advances in RObot

Manipulators, E. Hall, Ed., ed: InTech, 2010.

[30] L. S. Homem de Mello and A. C. Sanderson, "Representations of mechanical assembly

sequences," Robotics and Automation, IEEE Transactions on, vol. 7, pp. 211-227, 1991.

[31] K. W. Lyons, V. Rajan, and R. Sreerangam, "Representations and Methodologies for

Assembly Modeling," National Institute of Standards and Technology NISTIR 6059,

1997.

[32] M. M. Baysal, U. Roy, R. Sudarsan, R. D. Sriram, and K. Lyons, "The open assembly

model for the exchange of assembly and tolerance information: overview and example,"

in ASME 2004 International Design Engineering Technical Conferences and Computers

and Information in Engineering Conference, 2004, pp. 759-770.

[33] S. Balakirsky, Z. Kootbally, C. Schlenoff, T. Kramer, and S. Gupta, "An industrial

robotic knowledge representation for kit building applications," in Intelligent Robots and

Systems (IROS), 2012 IEEE/RSJ International Conference on, 2012, pp. 1365-1370.

49

[34] T. Kramer, Z. Kootbally, S. Balakirsky, C. Schlenoff, A. Pietromartire, and S. Gupta,

"Performance evaluation of knowledge-based kitting via simulation," in Automation

Science and Engineering (CASE), 2013 IEEE International Conference on, 2013, pp.

356-361.

[35] L. S. Haynes and G. H. Morris, "A formal approach to specifying assembly operations,"

International Journal of Machine Tools and Manufacture, vol. 28, pp. 281-298, 1988.

[36] G. Morris and L. S. Haynes, "Robotic assembly by constraints," in Robotics and

Automation. Proceedings. 1987 IEEE International Conference on, 1987, pp. 1507-1515.

[37] J. D. Morrow and P. K. Khosla, "Sensorimotor primitives for robotic assembly skills," in

Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on,

1995, pp. 1894-1899.

[38] C.-H. Wu and M. G. Kim, "Modeling of part-mating strategies for automating assembly

operations for robots," Systems, Man and Cybernetics, IEEE Transactions on, vol. 24, pp.

1065-1074, 1994.

[39] R. Konkar, "Incremental kinematic analysis and symbolic synthesis of mechanisms,"

Stanford University, 1993.

[40] International Organization for Standardization, "ISO 9283:1998 Manipulating industrial

robots -- Performance criteria and related test methods.," ed, 1998.

[41] American National Standards Institute and Robotics Industries Association, "ANSI/RIA

R15.05-2-1992 (R1999): Industrial Robots and Robot Systems - Path-Related and

Dynamic Performance Characteristics - Evaluation," ed, 1992.

[42] American National Standards Institute and Robotics Industries Association, "ANSI/RIA

R15.05-3-1992 (R1999): Industrial Robots and Robot Systems - Reliability Acceptance

Testing - Guidelines," 1992.

[43] American National Standards Institute and Robotics Industries Association, "R15.05-1-

1990 (R1999), Evaluation of Point-to-Point and Static Performance Characteristics of

Industrial Robots and Robot Systems," ed, 1990.

[44] A. Jacoff, H.-M. Huang, E. Messina, A. Virts, and A. Downs, "Comprehensive standard

test suites for the performance evaluation of mobile robots," in Proceedings of the 10th

Performance Metrics for Intelligent Systems Workshop, 2010, pp. 161-168.

[45] N. D. M. Ceballos, J. A. Valencia, and N. L. Ospina, "Quantitative Performance Metrics

for Mobile Robots Navigation," in Mobile Robots Navigation, A. Barrera, Ed., ed:

InTech, 2010.

[46] L. Frommberger, T. Hildebrandt, and B. Scholz-Reiter, "User-Specified Performance

Metrics for Autonomous Robots in Warehouse Logistics," in Proceedings of the IROS

2011 Workshop on Metrics and Methodologies for Autonomous Robot Teams in

Logistics, ed, 2011.

[47] J. Marvel and J. Falco, "Best Practices and Performance Metrics Using Force Control for

Robotic Assembly," NISTIR 7901, 2012.

[48] S. M. Singer and D. L. Akin, "A Survey of Quantitative Team Performance Metrics for

Human-Robot Collaboration," presented at the 41st International Conference on

Environmental Systems, Portland, Oregon, 2011.

[49] J. L. Burke, R. R. Murphy, D. R. Riddle, and T. Fincannon, "Task Performance Metrics

in Human-Robot Interaction: Taking a Systems Approach," presented at the Workshop

on Performance Metrics for Intelligent Systems, 2004.

50

[50] A. Steinfeld, T. Fong, D. Kaber, M. Lewis, J. Scholtz, A. Schultz, et al., "Common

metrics for human-robot interaction," presented at the Proceedings of the 1st ACM

SIGCHI/SIGART conference on Human-robot interaction, Salt Lake City, Utah, USA,

2006.

[51] T. Fässberg, Å. Fasth, and J. Stahre, "A classification of carrier and content of

information," presented at the CIRP International Conference on Assembly Technologies

and Systems (CATS), Ann Arbor, MI, 2012.

[52] S. Patel and T. Sobh, "Manipulator Performance Measures - A Comprehensive Literature

Survey," Journal of Intelligent & Robotic Systems, pp. 1-24, 2014/02/15 2014.

[53] J. Falco, J. Marvel, and E. Messina, "A Roadmap to Progress Measurement Science in

Robot Dexterity and Manipulation," Gaithersburg, MD 2014.

[54] J. Falco, J. Marvel, and E. Messina, "Dexterous Manipulation for Manufacturing

Applications Workshop," Gaithersburg, MD 2013.

[55] A. Ziout and A. Azab, "A cladistics approach to classification of joining and fastening

methods," presented at the CIRP International Conference on Assembly Technologies

and Systems (CATS) Ann Arbor, MI, 2012.

[56] "ASTM E2919-13: Standard Test Method for Evaluating the Performance of Systems

that Measure Static, Six Degrees of Freedom (6DOF) Pose.," ASTM International 2014.

[57] S. Balakirsky, T. Kramer, Z. Kootbally, and A. Pietromartire, "Metrics and test methods

for industrial kit building, National Institute of Standards and Technology, Gaithersburg,

MD, USA, NISTIR 7942," 2013.

[58] B. R. Donald, "Planning multi-step error detection and recovery strategies," The

International Journal of Robotics Research, vol. 9, pp. 3-60, 1990.

[59] A. Harris and J. M. Conrad, "Survey of popular robotics simulators, frameworks, and

toolkits," in Southeastcon, 2011 Proceedings of IEEE, 2011, pp. 243-249.

[60] D. J. Miller and R. C. Lennox, "RIPE: A robot independent programming environment,"

in Intelligent Robots and Computer Vision X: Algorithms and Techniques, 1992, pp. 518-

529.

[61] M. Clark, "JAUS Compliant Systems Offers Interoperability across Multiple and Diverse

Robot Platforms," in AUVSI Unmanned Systems North America Conference, Baltimore,

Maryland, 2005.

[62] OpenJAUS. Available: code.google.com/p/openjaus

[63] B. P. Gerkey, R. T. Vaughan, K. Stoy, A. Howard, G. Sukhatme, and M. J. Mataric,

"Most valuable player: A robot device server for distributed control," in Intelligent

Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on,

2001, pp. 1226-1231.

[64] The Player Project. Available: playerstage.sourceforge.net

[65] H. Bruyninckx, "Open robot control software: the OROCOS project," in Robotics and

Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 2001, pp.

2523-2528.

[66] The OROCOS Project. Available: www.orocos.org

[67] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, et al., "ROS: an open-

source Robot Operating System," in ICRA workshop on open source software, 2009, p. 5.

[68] The Robot Operating System (ROS). Available: www.ros.org

[69] D. Edstrom, MTConnect: To Measure Is To Know: Virtual Photons Electrons, LLC

Ashburn, VA.

http://www.orocos.org/
http://www.ros.org/

51

[70] K. B. Lee, E. Y. Song, and P. S. Gu, "Integration of MTConnect and Standard-based

Sensor Networks for Manufacturing Equipment Monitoring," in ASME 2012

International Manufacturing Science and Engineering Conference collocated with the

40th North American Manufacturing Research Conference and in participation with the

International Conference on Tribology Materials and Processing, 2012, pp. 841-848.

[71] C. Schlenoff, E. Prestes, R. Madhavan, P. Goncalves, H. Li, S. Balakirsky, et al., "An

IEEE Standard Ontology for Robotics and Automation," presented at the International

Conference on Intelligent Robots and Systems (IROS), Vilamoura, Algarve, 2012.

[72] ROS.org. (2015). Unified Robot Description Model. Available: wiki.ros.org/urdf/XML

[73] Standard Upper Merged Ontology (SUMO). Available: http://www.ontologyportal.org/

[74] H. Mosemann and F. Wahl, "Automatic Decomposition of Planned Assembly Sequences

Into Skill Primitives," IEEE Transactions on Robotics and Automation, vol. 17, 2001.

[75] J. Rosell, "Assembly and task planning using Petri nets: A Survey," Journal of

Engineering Manufacture, vol. 218, 2004.

[76] "OWL-S 1.0 Release," The OWL Services Coalition, 2003.

[77] N. Pramanik, U. Roy, R. Sudarsan, R. Sriram, and K. Lyons, "Synthesis of geometric

tolerances of a gearbox using a deviation-based tolerance synthesis scheme," in ASME

2003 International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, 2003, pp. 209-216.

[78] W3C. (October 2004). XML Schema Part 0: Primer Second Edition. Available:

www.w3.org/TR/xmlschema-0

[79] W3C. (October 2004). XML Schema Part 1: Structures Second Edition. Available:

www.w3.org/TR/xmlschema-1

[80] W3C. (December 2012). OWL 2 Web Ontology Language Primer (Second Edition).

Available: www.w3.org/TR/owl2-primer

[81] W3C. (December 2012). OWL 2 Web Ontology Language Structural Specification and

Functional-Style Syntax (Second Edition). Available: www.w3.org/TR/owl2-syntax.

[82] MySQL. MySQL Documentation: About MySQL Documentation. Available:

dev.mysql.com/doc/index-about.html

[83] IEEE, "Standard for Ontologies for Robotics and Automation (P1872-2015)," ed.

Piscataway, NJ, 2015.

http://www.ontologyportal.org/
http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/owl2-primer
http://www.w3.org/TR/owl2-syntax

