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Chapter 1

What is Physics?

Physics is the most fundamental of the sciences. Its god is to learn how the Universe works at the most
fundamental level—and to discover the basic laws by which it operates. Theoretical physics concentrates
on developing the theory and mathematics of these laws, while applied physics focuses attention on the
application of the principles of physics to practical problems. Experimental physics lies at the intersection
of physics and engineering; experimental physicists have the theoretical knowledge of theoretical physicists,
and they know how to build and work with scientific equipment.

Physicsis divided into a number of sub-fields, and physicists are trained to have some expertise in all of

them.

This variety is what makes physics one of the most interesting of the sciences—and it makes people

with physicstraining very versatilein their ability to do work in many different technical fields.
The major fields of physicsare:

Classical mechanics is the study the motion of bodies according to Newton's laws of motion, and is
the subject of this course.

Electricity and magnetism are two closely related phenomenathat are together considered asinglefield
of physics.

Quantum mechanics describes the peculiar motion of very small bodies (atomic sizes and smaller).
Optics is the study of light.

Acoustics is the study of sound.

Thermodynamics and statistical mechanics are closely related fields that study the nature of heat.
Solid-state physics is the study of solids—most often crystalline metals.

Plasma physics isthe study of plasmas (ionized gases).

Atomic, nuclear, and particle physics study of the atom, the atomic nucleus, and the particles that make
up the atom.

Relativity includes Albert Einstein’'s theories of special and general relativity. Special relativity de-
scribes the motion of bodies moving at very high speeds (near the speed of light), while general rela-
tivity is Einstein’s theory of gravity.

The fields of cross-disciplinary physics combine physics with other sciences. These include astrophysics
(physics of astronomy), geophysics (physics of geology), biophysics (physics of biology), chemical physics
(physics of chemistry), and mathematical physics (mathematical theories related to physics).

12
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Besides acquiring aknowledge of physicsfor itsown sake, the study of physicswill give you abroad tech-
nical background and set of problem-solving skills that you can apply to wide variety of other fields. Some
students of physics go on to study more advanced physics, while others find ways to apply their knowledge
of physicsto such diverse subjects as mathematics, engineering, biology, medicine, and finance.

Another benefit of learning physics is that, unlike courses in technology, everything you learn in this
course will never be obsolete. Although theories at the cutting edge of physics research may change, the
basic physics you'll learn in these courses will not. You will be able to use what you learn in this course
throughout your life.

Deductive Logic

Solving physicsproblems makes extensive use of deductive logic. One beginswith a set of known facts (given
inthe problem) and a set of rel evant equations and definitions (which you select, based on the problem). Using
logic and mathematics, you then deduce the conclusion (the solution to the problem).

Asasimple example, suppose you are given that abody travels 700 metersin 10 seconds, and are asked to
find itsaverage speed. You must search your knowledge of physics to decide what additional facts are needed
to solve this problem. In this case, you decide to use the definition of “average speed”: the total distance
divided by the total time. Putting the given information together with this definition, you find the solution to
be 700 meters divided by 10 seconds, or 70 meter per second.

If you enjoy solving logic problems, cryptograms, and similar puzzles, then you' Il enjoy solving physics
problems. Solving physics problems is the primary skill you'll be developing in this course. Professional
physicists solve similar types of problems— often more complex problems. They aso do experimentsto try
to deduce the correct laws of Nature. In this course we'll present some of the laws of Nature that have been
deduced so far, along with some of the important results and consequences of those laws.

13



Chapter 2

Units

The phenomena of Nature have been found to obey certain physical laws; one of the primary goals of physics
research is to discover those laws. It has been known for several centuries that the laws of physics are
appropriately expressed in the language of mathematics, so physics and mathematics have enjoyed a close
connection for quite along time.

In order to connect the physical world to the mathematical world, we need to make measurements of the
real world. In making a measurement, we compare a physical quantity with some agreed-upon standard, and
determine how many such standard units are present. For example, we have a precise definition of a unit of
length called amile, and have determined that there are about 92,000,000 such miles between the Earth and
the Sun.

Itisimportant that we have very precise definitionsof physical units— not only for scientific use, but also
for trade and commerce. In practice, we define afew base units, and derive other units from combinations of
those base units. For example, if we define units for length and time, then we can define a unit for speed as
the length divided by time (e.g. miles/hour).

How many base units do we need to define? There is no magic number; in fact it is possible to define
a system of units using only one base unit (and thisis in fact done for so-called natural units). For most
systems of units, it is convenient to define base units for length, mass, and time; a base electrical unit may
also be defined, along with afew lesser-used base units.

2.1 Systems of Units

Several different systems of unitsare in common use. For everyday civil use, most of the world uses metric
units. The United Kingdom uses both metric units and an imperial system. Here in the United States, U.S.
customary units are most common for everyday use.!

There are actually several “metric” systems in use. They can be broadly grouped into two categories:
those that use the meter, kilogram, and second as base units (MK S systems), and those that use the centimeter,
gram, and second as base units (CGS systems). Thereisonly one MK S system, called Sl units. Wewill mostly
use Sl unitsin this course, but we will use other systems from time to time so that you get some experience
with using them.

1In the mid-1970sthe U.S. government attempted to switch the United States to the metric system, but the ideawas abandoned after
strong public opposition. One remnant from that erais the two-liter bottle of soda pop.

14



Prince George's Community College Genera Physics| Simpson & Simpson

2.2 Sl Units

S| units (which stands for Systeme International d’ unités) are based on the meter as the base unit of length,
the kilogram as the base unit of mass, and the second as the base unit of time. S| unitsalso define four other
base units (the ampere, kelvin, candela, and mole, to be described later). Any physical quantity that can be
measured can be expressed in terms of these seven base units or some combination of them. S| units are
summarized in Appendix H.

Sl units were originally based mostly on the properties of the Earth and of water. Under the original
definitions:

» The meter was defined to be one ten-millionth the distance from the equator to the North Pole, along a
line of longitude passing through Paris.

» The kilogram was defined as the mass of 0.001 m* of water.
» The second was defined as 1/86,400 the length of aday (one rotation of the Earth).

» Thedefinition of theampere isrelated to electrical properties, ultimately relating to the meter, kilogram,
and second.

» The kelvin was defined in terms of the thermodynamic properties of water, as well as absolute zero.

» The candela was defined by the luminous properties of molten tungsten and the behavior of the human
gye.

» The mole was defined by the density of the carbon-12 nucleus.

Many of these original definitionshave been replaced over time with more precise definitions, as the need for
increased precision has arisen. Most recently, on May 20, 2019, there was a major re-definition of Sl units,
inwhich the definitions of the kilogram, ampere, kelvin, and mole were all changed. S| unitsnow really have
only one unit that is determined experimentally: the unit of time, which isthe second. The other base units
are now defined by defining exact, unchanging values for several of the physical constants.

Length (Meter)

The Sl base unit of length, the meter (m), has been re-defined more times than any other unit, due to the need
for increasing accuracy. Originally (1793) the meter was defined to be 1,/10,000,000 the distance from the
North Pole to the equator, along aline going through Paris. ? Then, in 1889, the meter was re-defined to be the
distance between two lines engraved on a prototype meter bar kept in Paris. Then in 1960 it was re-defined
again: the meter was defined as the distance of 1,650,763.73 wavelengths of the orange-red emission linein
the krypton-86 atomic spectrum. Still more stringent accuracy requirements led to the the current definition
of the meter, which was implemented in 1983: the meter is now defined to be the distance light in vacuum
travelsin 1/299,792,458 second. Because of this definition, the speed of light is now exactly 299,792,458
m/s.

U.S. Customary unitsare legally defined in terms of metric equivalents. For length, the foot (ft) is defined
to be exactly 0.3048 meter.

2If you remember this original definition, then you can remember the circumference of the Earth: about 40,000,000 meters.
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Mass (Kilogram)

Originally the kilogram (kg) was defined to be the mass of 1 liter (0.001 m3) of water. The need for more
accuracy required the kilogram to be re-defined to be the mass of a standard mass called the International
Prototype Kilogram whichiskept in avault at the Bureau International des Poids et Mesures (BIPM) in Paris.

Each country was given its own copy of the IPK to use as its own national standard.

In 2019, the kilogram was re-defined (somewhat indirectly) by defining Planck’s constant (used in quan-
tum mechanics) to be exactly equal to 7 = 6.62607015 x 1073* kg m? s~!. Since the meter and second
are given precise experimental definitions, fixing the value of & has the effect of defining the value for the
kilogram.

Another common metric (but non-Sl) unit of mass isthe metric ton, which is 1000 kg (alittle over 1 short
ton).

In U.S. customary units, the pound-mass (Ibm) is defined to be exactly 0.45359237 kg.

Mass vs. Weight

Mass is not the same thing as weight, so it's important not to confuse the two. The mass of a body is a
measure of the total amount of matter it contains; the weight of a body is the gravitational force on it dueto
the Earth’s gravity. At the surface of the Earth, mass m and weight W are proportional to each other:

W = mg, (2.1)

where g is the acceleration due to the Earth’s gravity, equal to 9.80 m/s?. Remember: mass ismass, and is
measured in kilograms; weight is aforce, and is measured in force units of newtons.

Time (Second)

Originally the base S| unit of time, the second (s), was defined to be 1/60 of 1/60 of 1/24 of the length of
a day, so that 60 seconds = 1 minute, 60 minutes = 1 hour, and 24 hours = 1 day. High-precision time
measurements have shown that the Earth’s rotation rate has short-term irregul arities, along with along-term
slowing due to tidal forces. So for a more accurate definition, in 1967 the second was re-defined to be based
on a definition using atomic clocks. The second is now defined to be the time required for 9,192,631,770
oscillations of a certain type of radiation emitted from a cesium-133 atom.

Although officially the symbol for the second is “s’, you will also often see people use “sec” to avoid
confusing lowercase “s’ with the number “5”.

The Ampere, Kelvin, and Candela

For this course, most quantities will be defined entirely in terms of meters, kilograms, and seconds. There
are four other Sl base units, though: the ampere (A) (the base unit of electric current); the kelvin (K) (the
base unit of temperature); the candela (cd) (the base unit of luminous intensity, or light brightness); and the

mole (mol) (the base unit of amount of substance). With the 2019 re-definition of Sl units, the ampere is now

defined by fixing the value of the elementary charge to exactly e = 1.602176634 x 10~!° A s. The kelvin is
now defined by fixing the value of Boltzmann’s constant to exactly k 5 = 1.380649 x 10723 JK. The candela
is a unit that measures the brightness of light, and has a somewhat complex defintion that includes a model

of the response of the human eye to light of different wavelengths.

Amount of Substance (Mole)

Since we may have a use for the molein this course, let’slook at its definition in detail. The simplest way to
think of it is as the name for a number. Just as “thousand” means 1,000, “million” means 1,000,000, and “bil-
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lion” means 1,000,000,000, inthe same way “mole” refers to the number® 602,214,076,000,000,000,000,000,
or 6.02214076 x 1023. You could have a mole of grains of sand or a mole of Volkswagens, but most often
the moleisused to count atoms or molecules. There isareason thisnumber is particularly useful: since each
nucleon (proton and neutron) in an atomic nucleus has an average mass of 1.66053906660 x 10~24 grams
(called an atomic mass unit, or amu), then there are 1/(1.66053906660 x 10724), or 6.02214076 x 10?3
nucleons per gram. In other words, one mole of nucleons has a mass of 1 gram. Therefore, if A isthe atomic
weight of an atom, then A moles of nucleons has amass of A grams. But A moles of nucleonsisthe same as
1 mole of atoms, so one mole of atoms has a mass (in grams) equal to the atomic weight. In other words,

rams
moles of atoms = — 1> __ (2.2)
atomic weight
Similarly, when counting molecules,
rams
moles of molecules = g (2.3)

molecular weight

In short, the mole is useful when you need to convert between the mass of a material and the number of
atoms or moleculesit contains.

It'simportant to be clear about what exactly you're counting (atoms or molecules) when using moles. It
doesn’t really make sense to talk about “a mole of oxygen”, any more than it would be to talk about “ 100 of
oxygen”. It'seither a“mole of oxygen atoms’ or a“mole of oxygen molecules’.*

For convenience, sometimes the word entity is used to mean “atom or molecule” Then the formula for
determining the number of moles from the mass becomes

grams
entity weight
where entity weight means either atomic weight or molecular weight, depending on whether it's atoms or
molecules that are being discussed.

Note that although the base Sl unit of mass is the kilogram, the mole is defined by having the number of
grams equal to the entity weight. Other kinds of “moles’ have been defined, such as the pound-mole, ounce-
mole, and kilogram-mole, in which the indicated unit of mass is numerically equal to the entity weight. For
example, 1 kilogram-mole of carbon-12 atomsis 12 kilograms of carbon-12, and contains 6.02214076 x 102°
carbon atoms. The S| moleis the same things as a gram-mole.

With the 2019 Sl units re-definition, the mole is defined by setting Avogadro’s constant equal to exactly
N4 = 6.02214076 x 1023 mol 1.

Interesting fact: it's estimated that there is roughly one mole of stars in the observable Universe.

moles of entities = (24)

SI Derived Units

In addition to the seven base units (m, kg, s, A, K, cd, mol), there are a number of so-called SI derived units
with special names. We' Il introduce these as needed, but a summary of all of them is shown in Appendix H
(Table H-2). These are just combinations of base units that occur often enough that it's convenient to give
them special names.

Plane Angle (Radian)

Onederived Sl unit that we will encounter frequently isthe Sl unit of planeangle. Plane anglesare commonly
measured in one of two units: degrees or radians.® You're probably familiar with degrees already: one full

3Six hundred two sextillion, two hundred fourteen quintillion, seventy-six quadrillion.

4Sometimes chemists will refer to a“mole of oxygen” when it’s understood whether the oxygenin question is in the atomic (O) or
molecular (O5) state.

5A third unit implementedin many calculatorsisthegrad: aright angleis 100 gradsand afull circleis400 grads. You may encounter
gradsin some older literature, such as Laplace’'s Mécanique Céleste. Almost nobody uses grads today, though.
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circleis360°, asemicircleis 180°, and aright angle is 90°.

The SI unit of plane angle is the radian, which is defined to be that plane angle whose arc length is equal
toitsradius. This means that a full circle is 2z radians, a semicircle is = radians, and aright angle is 7/2
radians. To convert between degrees and radians, then, we have:

1
degrees = radians x 180 (2.5)
/]
and
/]
adians = d — 2.6
ragians = degrees x - (2.6)

The easy way to remember these formulaeis to think in terms of units; 180 has units of degrees and = has
units of radians, so in the first equation units of radians cancel on the right-hand side to leave degrees, and in
the second equation units of degrees cancel on the right-hand side to leave radians.

Occasionally youwill seeaformulathat involvesa“ bare” anglethat isnot the argument of atrigonometric
function like the sine, cosine, or tangent. In such cases it is understood that the angle must be in radians. For
example, theradius of acircle r, angle 6, and arc length s are related by

s =rb, (27)

whereitis understood that 6 isin radians.
See Appendix O for afurther discussion of plane and solid angles.

SI Prefixes

It's often convenient to define both large and small unitsthat measure the same thing. For example, in English
units, it's convenient to measure small lengthsin inches and large lengthsin miles.

In Sl units, larger and smaller units are defined in a systematic way by the use of prefixes to the S| base
or derived units. For example, the base S| unit of length is the meter (m), but small lengths may also be
measured in centimeters (cm, 0.01 m), and large lengths may be measured in kilometers (km, 1000 m). Table
H-3 in Appendix H shows all the Sl prefixes and the powers of 10 they represent. You should memorize the
powers of 10 for al the SI prefixesin thistable.

To use the Sl prefixes, smply add the prefix to the front of the name of the Sl base or derived unit. The
symbol for the prefixed unit is the symbol for the prefix written in front of the symbol for the unit. For
example, kilometer (km) = 103 meter, microsecond (uS) = 10~° s. But put the prefix on the gram (g), not
the kilogram: for example, 1 microgram (ug) = 10~¢ g. For historical reasons, the kilogram is the only Sl
base or derived unit with a prefix.®

The 2019 Re-definition of SI Units

On May 20, 2019, a major re-definition of Sl units went into effect. With this re-definition, experimental

definitionsof severa of the Sl units have been replaced by defining the values of several fundamental physical
constants, so that these values become fixed and unchanging, no matter how many future experiments are
performed. The defined constants are shown in Table 2-1.

60riginally, the metric standard of masswas a unit called the grave (GRAH-veh), equal to 1000 grams. When the metric system was
first established by Louis X V1 following the French Revolution, the name grave was considered politically incorrect, since it resembled
the German word Graf, or “Count” — artitle of nobility, at atime when titles of nobility were shunned. The grave was retained as the
unit of mass, but under the more acceptable namekilogram. The gram itself was too small to be practical as a mass standard.
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Table 2-1. New S| base quantities, defining constants, and definitions.

Base quantity Defining constant Definition Defines Sl unit

Frequency Av(133C)pss The unperturbed ground-state hyperfine splitting frequency of

the cesium-133 atom is exactly 9,192,631,770Hz. S
Velocity c The speed of light in vacuum ¢ is exactly 299,792,458 m/s. m
Action h The Planck constant / is exactly 6.62607015 x 1034 Js, kg
Electric charge e The elementary chargee isexactly 1.602176634 x 10 ™12 C. A
Heat capacity ks The Boltzmann constant k 5 isexactly 1.380649 x 10723 JK. K
Amount of substance N4 The Avogadro constant N 4 isexactly 6.02214076 x 1023 mol— 1. mol
Luminousintensity Ky The luminous efficacy K g of monochromatic radiation of

frequency 540 x 1012 Hz isexactly 683 Im/W. cd

2.3 CGS Systems of Units

In somefields of physics (e.g. solid-state physics, plasma physics, and astrophysics), it has been customary to
use CGS unitsrather than Sl units, so you may encounter them occasionally. There are several different CGS
systemsin use: electrostatic, electromagnetic, Gaussian, and Heaviside-Lorentz units. These systems differ
in how they define their electric and magnetic units. Unlike Sl units, none of these CGS systems defines a
base electrical unit, so electric and magnetic units are al derived units. The most common of these CGS
systems is Gaussian units, which are summarized in Appendix I.

Sl prefixes are used with CGS unitsin the same way they're used with Sl units.

2.4 British Engineering Units

Another system of units that is common in some fields of engineering is British engineering units. In this
system, the base unit of length is the foot (ft), and the base unit of time is the second (s). The base unit
of force is called the pound-force (Ibf), and mass is measured units of slugs, where 1 slug has a weight of
32.17404855 I bf.

A related unit of mass (not part of the British engineering system) is called the pound-mass (Ibm). At
the surface of the Earth, a mass of 1 Ibm has a weight of 1 Ibf, so sometimes the two are loosely used
interchangeably and called the pound (Ib), as we do every day when we speak of weights in pounds.

S| prefixes are not used in the British engineering system.

2.5 Units as an Error-Checking Technique

Checking units can be used as an important error-checking technique called dimensional analysis. If you
derive an equation and find that the units don't work out properly, then you can be certain you made a
mistake somewhere. If the unitsare correct, it doesn’t necessarily mean your derivation is correct (since you
could be off by a factor of 2, for example), but it does give you some confidence that you at least haven't
made a units error. So checking units doesn't tell you for certain whether or not you've made a mistake, but
it does help.

Here are some basic principlesto keep in mind when working with units:

1. Unitson both sides of an equation must match.
2. When adding or subtracting two quantities, they must have the same units.
3. Quantitiesthat appear in exponents must be dimensionless.

1

4. The argument for functionslike sin, cos, tan, sin~!, cos™!, tan™!, log, and exp must be dimensionless.
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5. When checking units, radians and steradians can be considered dimensionless.

6. When checking complicated units, it may be useful to break down all derived unitsinto base units(e.g.
replace newtons with kg m s=2).

Sometimes it's not clear whether or not the units match on both sides of the equation, for example when
both sides involve derived Sl units. In that case, it may be useful to break al the derived unitsdown in terms
of base Sl units(m, kg, s, A, K, mol, cd). Table H-2in Appendix H shows each of the derived SI unitsbroken
down in terms of base Sl units.

2.6 Unit Conversions

Itisvery common to have to work with quantitiesthat are given in unitsother than the unitsyou'd liketo work
with. Converting from one set of units to another involves a straightforward, virtually foolproof technique
that’s very simple to double-check. We'll illustrate the method here with some examples.

Appendix N gives a number of important conversion factors. More conversion factors are available from
sources such as the CRC Handbook of Chemistry and Physics.

1. Write down the unit conversion factor as aratio, and fill in the unitsin the numerator and denominator
s0 that the units cancel out as needed.

2. Now fill inthe numbers so that the numerator and denominator contain the same length, time, etc. (This
isbecause you want each factor to be amultiplicationby 1, so that you don’t change the quantity—only
its units.)

Simple Conversions
A simple unit conversion involves only one conversion factor. The method for doing the conversion is best
illustrated with an example.

Example. Convert 7 feet toinches.

Solution. First write down the unit conversion factor as aratio, filling in the units as needed:

(7 x — 1

(2.8)

Notice that the units of feet cancel out, leaving units of inches. The next step isto fill in numbers so that the
same length isin the numerator and denominator:

12in

Now do the arithmetic:
12i
(7 1) x 1—f't” — 84 inches. (2.10)

More Complex Conversions

More complex conversions may involve more than one conversion factor. You'll need to think about what
conversion factors you know, then put together a chain of them to get to the units you want.

Example. Convert 60 miles per hour to feet per second.
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Solution. First, write down a chain of conversion factor ratios, filling in units so that they cancel out
correctly:

mile ft hr
60 — x — X
hr mile SEC

(2.12)

Units cancel out to leave ft/sec. Now fill in the numbers, putting the same length in the numerator and
denominator in the first factor, and the same time in the numerator and denominator in the second factor:

mile 5280 ft 1 hr

2.12
80 > Tmile * 3600 sec (212)
Finally, do the arithmetic:
ﬂle 9 5289 ft » 1 hr _ f_t (2.13)
hr 1 mile 3600 sec Sec

Example. Convert 250,000 furlongs per fortnight to meters per second.

Solution. We don’t know how to convert furlongs per fortnight directly to meters per second, so we'll have
to come up with a chain of conversion factors to do the conversion. We do know how to convert: furlongs
to miles, milesto kilometers, kilometersto meters, fortnightsto weeks, weeks to days, days to hours, hours
to minutes, and minutes to seconds. So we start by writing conversion factor ratios, putting units where they
need to be so that the result will have the desired target units (m/s):

furlong mile km m fortnight week day hr min

250,000 X X X X X X X X

fortnight furlong mile km week day hr min Sec

If you check the units here, you'll see that almost everything cancels out; the only units|eft are m/s, whichis
what we want to convert to. Now fill in the numbers: we want to put either the same length or the same time
in both the numerator and denominator:

furlong 1 mile 1.609344 km 1000 m 1 fortnight 1 week 1 day 1hr 1 min
250,000 X X X X X X — X X

fortnight 8 furlongs 1 mile 1km 2 weeks 7 days 24 hr 60 min 60 sec
= 41.58 m/s

Conversions Involving Powers

Occasionally we need to do something like convert an area or volume when we know only the length conver-
sion factor.

Example. Convert 2000 cubic feet to gallons.

Solution. Let’s think about what conversion factors we know. We know the conversion factor between
galons and cubic inches. We don’t know the conversion factor between cubic feet and cubic inches, but we
can convert between feet and inches. The conversion factors will look like this:

S\ 3

in a

2000 ft3 x x — 9 (2.14)
ft in®

With these units, the whole expression reducesto unitsof gallons. Now fill inthe same lengthin the numerator

and denominator of the first factor, and the same volume in the numerator and denominator of the second

factor:

(2.15)

2000 ft3 x (12 in)3 1gd

X
1 ft 231in?
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Now do the arithmetic:

12in)3 1 gal

5 = 14,961 galons (2.16)

2000 ft3 x ( x ,
1 ft 231in

2.7 Currency Units

Money has units that can be treated like any other units, using the same techniques we've just seen. Two
things are unique about units of currency:

» Each country hasits own currency units. Examples are United States dollars ($), British poundssterling
(£), European euros (€), and Japanese yen (¥).

» The conversion factors from one country’s currency to another’sis a function of time, and even varies
minute to minute during the day. These conversion factorsare called exchange rates, and may be found,
for example, on the Internet at

http://www.xe.com/currencyconverter/

Example. You're shopping in Reykjavik, Iceland, and see an Icelandic wool scarf you'd like to buy. The
price tag says 6990 kr. What isthe pricein U.S. dollars?

Solution. The unit of currency in lceland isthe Icelandic krona (kr). Looking up the exchange rate on the
Internet, you find it is currently $1 = 119.050 kr. Then

$1.00
ko x —2 __ _ $58.71 217
6990k > 115 550 k. — 2087 217

2.8 0Odds and Ends

WEe Il end this chapter with afew miscellaneous notes about Sl units:

* Inafew special cases, we customarily drop the ending vowel of a prefix when combining with a unit
that begins with a vowel: it's megohm (not “megaohm™); kilohm (not “kiloohm”); and hectare (not
“hectoare”). In al other cases, keep both vowels (e.g. microohm, kiloare, etc.). There's no particular
reason for this—it’sjust customary.

* In pharmacology (on bottles of vitamins or prescription medicine, for example), it is usual to indicate
micrograms with “mcg” rather than “ ug”. While thisistechnically incorrect, it is done to avoid mis-
reading the units. Using “mc” for “micro” isnot done outside pharmacology, and you should not use it
in physics. Alwaysuse u for “micro”.

» Sometimes in electronics work the Sl prefix symbol may be used in place of the decimal point. For
example, 24.9 M2 may be written “24M9”. This saves space on electronic diagrams and when print-
ing values on electronic components, and also avoids problems with the decimal point being nearly
invisiblewhen the print istiny. Thisis unofficial use, and is only encountered in electronics.

 One sometimes encounters older metric units of length called the micron (i, now properly called the
micrometer, 10~ meter) and the millimicron (mg, now properly called the nanometer, 10 ~° meter).
The micron and millimicron are now obsol ete.

+ At one time there was a metric prefix myria- (my) that meant 104, This prefix is obsolete and is no
longer used.
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* In computer work, the Sl prefixes are often used with units of bytes, but may refer to powers of 2 that
are near the Sl values. For example, theterm “1 kB” may mean 1000 bytes, or it may mean 2!° = 1024
bytes. Similarly, a 100 GB hard drive may have a capacity of 100,000,000,000 bytes, or it may mean
100 x 23° = 107,374,182,400 bytes. To help resolve these ambiguities, a set of binary prefixes has

been introduced (Table H-4 of Appendix H). These prefixes have not yet entirely caught on in the
computing industry, though.
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Chapter 3

Problem-Solving Strategies

Much of this course will focus on developing your ability to solve physics problems. If you enjoy solving
puzzles, you'll find solving physics problemsis similar in many ways. Here we'll look at a few general tips
on how to approach solving problems.

At the beginning of a problem stated in Sl units, immediately convert the units of all the quantities
you're given to base Sl units. In other words, convert all lengths to meters, all masses to kilograms, al
times to seconds, etc.: al quantities should be in un-prefixed Sl units, except for masses in kilograms.
When you do this, you're guaranteed that the final result will also be in base Sl units, and this will
minimize your problemswith units. Asyou gain more experience in problem solving, you’ || sometimes
see shortcutsthat let you get around this suggestion, but for now converting all unitsto base Sl unitsis
the safest approach.

Similarly, if the problem is stated in CGS unitsimmediately convert all given quantitiesto base CGS
units (lengthsin centimeters, masses in grams, and timesin seconds). If the problem is stated in British
engineering units, immediately convert all given quantities to base units (lengths in feet, masses in
slugs, and times in seconds).

Look at the information you're given, and what you're being asked to find. Then think about what
equations you know that might et you get from what you're given to what you're trying to find.

Be sure you understand under what conditions each equation is valid. For example, we'll shortly see
a set of equations that are derived by assuming constant acceleration. It would be inappropriate to use
those equations for a mass on a spring, since the acceleration of a mass under a spring force is not
constant. For each equation you're using, you should be clear what each variabl e represents, and under
what conditionsthe equation isvalid.

As a generd rule, it's best to derive an algebraic expression for the solution to a problem first, then
substitute numbers to compute a numerical answer as the very last step. This approach has a number of
advantages: it allows you to check unitsin your algebraic expression, helps minimize roundoff error,
and allows you to easily repeat the calculation for different numbersif needed.

If you've derived an algebraic equation, check the units of your answer. Make sure your equation has
the correct units, and doesn’t do something like add quantities with different units.

If you've derived an algebraic equation, you can check that it has the proper behavior for extreme
values of the variables. For example, does the answer make sense if time ¢t — oco? If the equation
contains an angle, doesit reduce to a sensible answer when the angleis 0° or 90°?
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» Check your answer for reasonableness—don't just write down whatever your calculator says. For
example, suppose you're computing the speed of a pendulum bob in the laboratory, and find the answer
is 14,000 miles per hour. That doesn’t seem reasonable, so you should go back and check your work.

* You can avoid rounding errors by carrying as many significant digits as possible throughout your cal-
culations; don’'t round off until you get to the final result.

» Write down a reasonable number of significant digits in the final answer—don’'t write down all the
digitsin your calculator’s display. Nor should you round too much and use too few significant digits.
There are rules for determining the correct number of significant digits, but for most problemsin this
course, 3 or 4 significant digitswill be about right.

» Don't forget to put the correct units on the final answer! You will have points deducted for forgetting
to do this.

» The best way to get good at problem solving (and to prepare for exams for this course) is practice—
practice working as many problemsas you have timefor. Working physics problemsis a skill much like
learning to play a sport or musical instrument. You can't learn by watching someone else do it—you
can only learn it by doing it yourself.
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Chapter 4

Density

Asan example of a quantity involving mixed units, consider the important quantity called density. Density is
defined to be mass per unit volume:

pP= (4.1)
Here p isthe density of a body, M isitsmass, and V isitsvolume. The Sl unitsof density are kg/m?3; mass
has S| units of kg, and volume has Sl units of m3.

Density isameasure of how heavy somethingisfor afixed volume. For example, lead has ahigh density;
styrofoam has alow density.

It is common to find densities of materials listed in handbooks in units of g/cm3. Since the density of
water is 1 g/cm3, this makes it easy to compare a material’s density with water. But in doing calculations
involving density, you'll need to use Sl units, kg/m3. A useful conversion factor to remember to convert
between these unitsis the density of water: it's1 g/cm?® = 1000 kg/m>.

Occasionally we'll run into other definitions of density. For two-dimensional bodies, for example, we
define an area density o (mass per unit area) by o = M/ A. For one-dimensional bodies, we define a linear
density A (mass per unit length) by A = M/L. And sometimes we may need to define something like a
charge density (electric charge per unit volume) or a number density (number of particles per unit volume).
Unless otherwise indicated, though, the word “density” usually refers to mass density.

Often the density of a material is a useful clue to determining its composition. For example, suppose
you're handed a gold-colored brick. Isthe brick solid gold, or isit just a block of lead covered with gold
paint? Of course, you could just scratch the brick to see if the gold isjust painted on, but suppose you don’t
want to damage the brick? One test you might do is determine the brick’sdensity. First, determine the volume
of the block (either by measuring the brick or by immersing it in a calibrated beaker of water). Then place
the brick on a scale to find its mass. Now divide the mass by the volume to find the density, and compare
with the densities of gold (19.3 g/cm?3) and lead (11.3 g/cm3).!

Densities of some common materials are shown in Table 4-1.

1|t happensthat tungsten also has a density of 19.3 g/cm 3, so the density test alone would not be sufficient to distinguish asolid gold
brick from a gold-painted tungsten brick. In that case, some other test would be required, such as measuring the brick’s hardness or
electrical resistivity.
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4.1

Table 4-1. Densities of some materias.

Material  Density (g/cm?)
Air (STP)  0.001275

Ice 0.9169
Water 1.000
Aluminum 2.6989
Iron 7.874
Silver 10.50
Lead 11.35
Mercury 13.55
Gold 19.3

Osmium 22.59

Specific Gravity

A concept closely related to density is specific gravity, which is defined to be the ratio of the density of a
substance to the density of water. Since the density of water is 1.00 g/lcm3, the specific gravity is numerically
equal to the density in units of g/cm3. Note, though, that specific gravity is dimensionless (i.e. has no units).
For example, the density of goldis 19.3 g/cm3, and so its specific gravity is 19.3 (with no units).

4.2

Density Trivia
Anything with a density less than 1 g/cm? will float on water; anything with a greater density will sink.

Most substances are more dense in the solid state than they arein the liquid state, so that as they freeze,
the frozen parts sink. An important exception is water, which has its maximum density at 4°C in the
liquid state. Frozen water (ice) is less dense that liquid water, so the frozen parts float. This has been
important for life on Earth: aquatic life is able to survive freezing temperatures because ice floats to
thetop of bodies of water, forming alayer of ice that insulates the water below. If ice were more dense
than water, lakes and rivers would freeze solid and destroy most aquatic life.

The chemical element with the lowest density is hydrogen, with a density of 0.0899 g/cm 3 at standard
temperature and pressure. But excluding gases, the lightest element islithium, with a density of 0.534
g/cm3. Lithium and potassium are the only two solid elements light enough to float on water (although
they will aso chemically react with water).

The chemical element with the highest density is osmium. There has been some debate over the years
about whether osmium or iridium is the densest element, and the densities of the two are very close.
But calculations show that for a perfect crystalline sample of each element, the density of osmium is
22.59 g/cm3, while that of iridium is 22.56 g/lcm?, making osmium the winner by a small margin.?
Either element istwice as dense as lead.

Among the planets, Earth has the largest average density (5.515 g/lcm3). The least dense planet is
Saturn, with a density of 0.687 g/lcm?. Saturnisthe only planet in the Solar System that would float on
water (given alarge enough ocean).

2Arblaster, J. W. “Densities of osmium and iridium: recal culations based upon areview of the latest crystallographic data’. Platinum
Metals Review, 33, 1, 14-16 (1989).
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» Why was the International Prototype Kilogram made of a 90/10 platinum-iridium alloy? Platinum was
chosen because of its high density. Making the standard kilogram from a high-density material mini-
mizes its size, which minimizes the surface area that is subject to contamination, and also minimizes
the buoyant force of the surrounding air. Osmium and iridium are denser but much more difficult to
machine; platinum is dense, yet fairly easy to work with. The addition of 10% iridium hardens the
platinum somewhat to minimize wear (which would alter the mass).

» The lightest solids around are called aerogels. These are artificial materials that are essentially very
light solid silica foams, and have the appearance of “solid smoke’. They are excellent thermal insu-
lators, and have been used by NASA to capture small dust particles from a comet (because they can
gradually decelerate the particles with minimal damage). Aerogels have been made with densities as
low as 0.001 g/cm3. If held up in the air and released, such an aerogel will remain almost stationary in
theair, falling very slowly to the earth.

» Except for ablack hole (which has, in asense, infinitedensity), the densest object in Natureis aneutron
star. Normally a star isin a state of equilibrium, with outward radiation pressure balancing the inward
gravitational pressure. But when the star runs out of fuel, the outward radiation pressure is gone, and
the star collapses under its own gravity. If the star is large enough, gravity can be strong enough to
push the electrons of the atoms into the nucleus, forming a “neutron star”, which is essentially a giant
ball of neutrons. A typical neutron star has a density of ~ 1014 g/cm3. To get an idea of how dense
thisis:

— One pound of neutron star material would be about the size of a speck of dust.

— A bit of neutron star material the size of agrain of sand would weigh as much as two fully fueled
Saturn V Moon rockets.

— 1/4 teaspoon of neutron star material would weigh as much as the borough of Manhattan.

— 1 teaspoon of neutron star material would weigh as much as 5000 Gerald R. Ford-class aircraft
carriers.

— 1 cup of neutron star material would weigh as much as Mt. Everest.

— A cube of neutron star material occupying 1/2 the college campus would weigh more than the
entire Earth.
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Chapter 5

Kinematics in One Dimension

Kinematics is the study of motion, without regard to the forces responsible for the motion. In kinematics, we
describe the motion of an object by analyzing its position, vel ocity and acceleration.

Dynamics is the study of motion which includes kinematics along with the forces present that influence
the motion. With dynamics, we introduce the ideas of force and mass. A special case of dynamicsis called
statics, and is the study of those problemsin which the forces balance and there is no motion in the system.

WEe Il begin our study of kinematics in one dimension; the generalization to two or three dimensions is
fairly straightforward. Studies of dynamics and statics will come later.

5.1 Position

Let's consider the motion of a particle—that is, a point mass. In one dimension, a particle is constrained to
move back and forth along the x axis. At any given time ¢, we can specify the position of the particle by
giving its x coordinate. Giving the x coordinate for all times ¢ provides all the information we need for a
complete description of the motion.

We are free to define the coordinate system however we want; the coordinate system is a mathematical
construction that we define for our own convenience, and it won't affect the physics. For one-dimensional
motion, we align the x axiswith the direction of the motion, and we are free to choose the origin at any place
that’s convenient. Also, wewill generally be free to choose the zero time¢ = 0 to be whenever is convenient.

Related to position is the concept of displacement. If aparticleis at at position x ; at sometime ¢1, then
at position x, at some later time ¢, , then the particle has undergone a displacement

Ax = x5 — Xx1. (5.1

Note that the displacement depends only on the beginning and ending positions of the particle, not on what

happens in between. For example, if the particle starts out at position x; = 3 m, then moves to 50 m, then
back to x, = 3 m again, the displacement Ax = 0. The displacement is not the same as the total distance
traveled—it is the net distance traveled.

5.2 Velocity

The velocity of a particle is a measure of how much distance it covers in a given time.! Sl units of velocity
are meters per second (m/s, or m s1). There are two ways we can talk about velocity: the average velocity
over some finite time interval At, or the instantaneous velocity at an instant intime z.

1The magnitude (absolute value) of velocity is called speed.
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Average Velocity

Suppose a particleis at position x; at time 71, and it'sat position x, at timez,. Then over the time interval
At = t, — 11, the particle undergoes a displacement Ax = x, — x;. The average velocity vae Of the particle
over timeinterval Az isdefined to be

Ax X2 — X1

_8X _ iy 5.2
Vave At h—1 ( )

Example. If a particle travels 400 meters in 5 seconds, then its average velocity iS vae = Ax/At =
(400 m)/(5 s) = 80 m/s. Remember that Ax = 400 m means that the particle’s position at the end of the
time interval is 400 meters beyond its position at the start of the interval. It might have traveled millions of
meters in between, but we don’t care about that: al that mattersis the starting position and ending position.

Instantaneous Velocity

Suppose we want to know the instantaneous velocity at asingle instant intime ¢, rather than an average over
atime interval Ar. The calculus gives us a method to do that: we just use Eg. (5.2) to find the average
velocity over atimeinterval Az, then make thetime interval arbitrarily small. Mathematically, thisisjust the
derivative:
. Ax  dx
v= lim =

AMAr S dr (53

Example. Suppose we have aformulafor the position x of a particle at any time t—for example, x(t) =
5t2 + 7 m. Then we can get a formula for the velocity v at any time ¢ by taking the derivative: v(t) =
dx/dt = 10t m/s.

5.3 Acceleration

In a similar way, we can take the derivative velocity with respect to time to get acceleration, which is the
second derivative of x with respect to¢:

dv  d?x
a=—=—7 (5.4)

Sl units of acceleration are meters per second squared (m/s?).

Example. In the previous example, we found a formulafor the velocity of a particleas v(z) = 10z. The
acceleration of the particle in thisexampleisa(t) = 10 m/s?, a constant.

Aswe'll seelater when we discuss gravity, all objectsat the surface of the Earth will accelerate downward
with the same acceleration, 9.80 m/s?. Thisimportant constant is called the acceleration due to gravity, and
is given the symbol g:

g=980m/s (= 32ft/s). (5.5)
Thisvalueis an average for the Earth; for a more exact value of g, you can use Helmert's equation (Section

51.4).
The acceleration due to gravity gives rise to acommon (non-Sl) unit of acceleration, also called the g:

1g=9.80665 m/s*. (5.6)

This number is a standardized conventional value that has been adopted by international agreement.
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5.4 Higher Derivatives

Occasionally one may have ause for higher derivatives of position with respect to time. The time derivative of
acceleration is called jerk, and the time derivative of jerk iscalled jounce. One published paper? whimsically
named the fourth, fifth, and sixth derivatives of x “snap”, “crackle’, and “pop” after the cartoon characters
on boxes of Rice Krispies® breakfast cereal.

We will seldom, if ever, have need of these higher-order derivatives of x for thiscourse, but for reference,
they are summarized in Table 5-1.

Table 5-1. Time derivatives of position.

Derivative  Symbol Name

0 X position

1 dx/dt  velocity

2 d?x/dt* acceleration
3 d3x/dr?  jerk

4 d*x/dt* jounce, snap
5 d>x/dt> crackle

6 d®x/dt® pop

5.5 Dot Notation

Derivatives of quantities with respect to time are so common in mechanics that physicists often use a specia
shorthand notation for them. The derivative with respect to time is indicated with a dot over the quantity; a
second derivative isindicated with two dots, etc. You can think of thisas similar to the “prime” notation for
derivatives encountered in calculus, except that the “dot” over a variable aways indicates a derivative with
respect to time. This dot notationis especially common in more advanced mechanics courses.

For example, velocity and acceleration in one dimension may be written in dot notation as follows:

= dx/dt (velocity) (5.7

d?x/dt*>  (acceleration) (5.8)

This dot notation for derivatives (x, X, etc.) is dueto Sir Isaac Newton. The notation dx /dt, d 2x /dt?,
etc. was originated by the German mathematician Gottfried Leibniz, who is believed to have been an in-

dependent co-discoverer of the calculus, along with Newton. The “prime notation” sometimes used (x'(¢),
x" (1), etc.) isdue to Italian mathematician Joseph-L ouis Lagrange.

5.6 Inverse Relations

Given the definition of (instantaneous) velocity

dx
dt’
2Visser, Matt. Jerk, Snap, and the Cosmological Equation of State. Classical and Quantum Gravity, 21 (11): 2603-2616.

vV =

(5.9)
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we can invert this by multiplying both sides by d¢ and integrating to get an expression for x (¢): it is the
integral of velocity v with respect to time¢:

x(t) = /v(l) dt. (5.10
Similarly, we can invert the definition of acceleration
dv
= 511
P (5.11)
to get
v(t) = /a(l) dt. (5.12)

5.7 Constant Acceleration

The definitions of velocity and acceleration we've seen sofar (v = dx/dt, a = dv/dt) are always true. But
now let’slook at an important special case: constant acceleration. First, assume that the acceleration a is a
constant. Then by Eq. (5.12),

v(t) = /a dt (5.13)
= a/dt (5.14)
=at + C, (5.15)

where C is a constant. The assumption of constant acceleration comes in Eq. (5.14), where we use that
assumption to bring a outside the integral.

What is the physical significance of the integration constant C? Let's look at what Eg. (5.15) gives us
whent = 0:

v(O0)=a-0+C =C. (5.16)

So C isjust the velocity of the particle at time ¢ = 0 (the initial velocity), which we' Il write® as v(0) = vy.
Then Eq. (5.15) iswritten

[v(0) = at + vo. | (5.17)

Now let’s substitute Eq. (5.17) for v(z) into Eq. (5.10) to get an expression for x (¢) for constant acceler-
ation:

x(t) = /(at + vo) dt (5.18)

:/at dl+/vo dt (5.19)

:a/tdt+v0/dt (5.20)
= Zat® + vot + C'. (5.21)

3The quantity vo is customarily pronounced“v-nought”, nought being an ol d-fashioned term for zero. Similarly, x ¢ is pronounced
“x-nought”.
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Wheat isthe physical significance of the integration constant C '? We do the same trick we did before, and
look at what happenswhen ¢ = 0:

x(0)=32a-0>+vy-0+C" =C". (5.22)

So C’ isthe position of the particle at time = 0 (theinitial position), which we'll writeas x (0) = x ¢. Then
Eqg. (5.21) becomes

x(t) = 2at* + vot + xo. (5.23)

Example. Supposeyou're standing on a bridge, and want to know how high you are above theriver below.
You can do this by dropping a rock from the bridge and counting how many seconds it takes to hit the river.

We begin solving this problem by defining a coordinate system with +x pointing downward, and the
origin at the bridge. Thisis an arbitrary choice; we could just as easily define the x axis pointing up instead
of down, and in either case we could put the origin at the bridge or at the river (or anywhere else, for that
matter), and you' |l get the same answer at the end. But putting the origin at the bridge simplifiesthe equations
somewhat, and pointing the +x axis downward makes the acceleration and velocity positive. The coordinate
system is an artificial mathematical construction that we introduce into the problem; the choice of origin and
direction will not affect the physics or the final answer, so we're free to choose whatever is convenient.

The acceleration is constant in this case (and equal to the acceleration due to gravity), so we can use the
constant-acceleration expression for x, Eq. (5.23). Since the acceleration is aways downward and we've
defined +x downward, we have a = +g. WE'll definetime ¢ = 0 as the instant the rock is released; then
vp = 0 since the rock is released from rest, and xp = 0 because we defined the origin to be at the point of
release. Then Eq. (5.23) becomes

x = 1g1% (5.24)

Let's say it takes 4 seconds for the rock to hit the water. Then the height of the bridge above the river is
x = gt2/2 = (9.80 m/s*)(4 5)2/2 = 78.4 m.

Sometimes we'll find a problem involving position and velocity, but not time. For such problems with
constant acceleration, it is useful to have an expression for velocity v in terms of position x, i.e. v(x). We
begin by solving Eq. (5.17) for timet:

UV — Vo

t = . (5.25)
a

Now substitute this expression for z into Eq. (5.23):

x:la(v_avo)z—i—vo(v_avo)—i—xo. (5.26)

We've eliminated time ¢; now we just need to solve thisfor v:

1 (w—vp)? | vvg—v§

x = + + Xxo (5.27)
2 a a
2ax = (v* = 2vvg + v3) + 2(vve — v3) + 2axg (5.28)
2a(x — xo) = v2 —2vvy + v% + 2vvg — 2113 (5.29)
2a(x — xo) = v* — v} (5.30)
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and so

v? = v + 2a(x — xo) (5.31)

This says that under constant acceleration, if the particle has velocity vy at position xq, then it will have
velocity v at position x.

Example—impact velocity. Suppose we drop arock from a bridge that we know to be 2 = 125 m above
water. What istheimpact velocity of the rock, i.e. the velocity of therock just before it hitsthe water?

Notice that there is no time involved in this problem: only a distance and a velocity. This suggests using
Eqg. (5.31) to find the impact vel ocity. Asin the previous example, we begin by defining a coordinate system,
and we'll use the same system as before: with the origin at the bridge, and +x pointing downward. Then
xo = 0 (because of where we defined the origin), vo = 0 (because the rock is released from rest), and
a = +g (because we defined +x as downward). Then Eqg. (5.31) becomes

v? =2gh (5.32)

Solving for v gives the velocity at position x = 4 (at the water). We'll use only the positive square root of
this equation, which gives the magnitude of the velocity, i.e. the speed:

v = /2gh (5.33)
= \/2(9.8 m/s?)(125 m) (5.34)
=49.5m/s (5.39)

Just to show that the definition of coordinate system doesn’t affect the final answer, let’'s re-work the
problem using a coordinate system that has the origin at the water instead of at the bridge, and let’s construct
the x axis so that +x points upward. In this case the rock will have velocity vy = 0 at position xo = #,
a = —g (because the x axis now points upward), and we wish to find the velocity v at x = 0. Then Eq.
(5.31) becomes

v? =2(—g)(0 —h) (5.36)
v = +/2gh, (5.37)

where we have again used only the positive square root, and we get the same result as before—the result is
independent of how we define the coordinate system.

5.8 Summary
Let's summarize the results so far:

Always True

These equations are definitions, and are always true:

v = fl—f = x(t) = /v(l) dt (5.38)
a= % = % = v(t) = /a(l) dt (5.39)
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Constant Acceleration

These equations are valid only for constant acceleration a:

x(t) = 3at? + vot + xo (5.40)
v(t) = at + vo (5.41)
v? = v2 + 2a(x — xo) (5.42)

5.9 Geometric Interpretations

Recall these ideas from your study of the calculus:

» The derivative of afunction f(¢) with respect to¢ at any time isthe slope of the tangent to the curve
az.

» Theintegra of afunction f(¢) with respect to 7 isthe area under the curve (with negative f* counting
as negative area).

Now if you're given aformula for x (¢), you can use v = dx/dt tofind aformulafor the velocity v. But
suppose that instead of aformula, you're given a data table or plot of x vs. £.# Then you can find the vel ocity
at any time by finding the slope of the curve at that point—which is geometrically the same thing as finding
the derivative.

Similarly, if you're given aformulafor v(r), youcan usex = [ v dr tofind aformulafor the position x.
Suppose, though, that instead of aformula, you have a data table or plot of v vs. ¢. Then you can find the net
distance traveled between times ¢, and 1, by finding the area under the v vs. ¢ curve between times¢; and 1,.

For example, consider the motion of a particles that moves in one dimension according to x (t) = 5¢2 +
3t + 7 (where x isin meters and ¢ isin seconds), as illustrated in Figure 5.1. The position x at any time: is
shown by the parabolic curve in Figure 5.1(a); you can read off the position of the particle at any time just
by looking at the graph. The slope of the graph at any time gives the velocity at that time. For example, at
t = 30 sec, we can draw a straight line tangent to the curve, as shownin Fig. 5.1(a); measuring the slope of
that line (as the “rise” divided by the “run”), we find v(30 sec) = 33 m/s.

(a) Position vs. Time (b) Velocity vs. Time (c) Acceleration vs. Time

15000

)

o]  Slope = acceleration at t=30 sec

£ 1om0]

Velocity (m/s)

Acceleration (m/s’)

5000

o] Area = velocity change
between 20 and 50 sec

\ 100

Slope = velocity at t=30 sec

0 10 20 20 40 50 60 0 10 20 Ed 40 50 60 0 10 20 Ed 40 50 60
Time (sec) Time (sec) Time (sec)

Figure 5.1: Plots of position, velocity, and acceleration vs. time for a particle moving according to x(t) =
5t2 + 3t + 7 m. From the calculus, we find (b) v(z) = dx/dt = 10t + 3 m/s, and (C) a(t) = dv/dt = 10
m/s?. The same results are found geometrically, as described in the text.

4The word versus (vs.) has a specific meaning in plots: it's alwaysthe ordinate vs. the abscissa(e.g. y vs. x).
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Figure 5.1(b) showsvelocity vs. timefor the same particle. In this case, you can read off the velocity v at
any timet by inspection of the plot. The slope of the plot at any time ¢ givesthe acceleration at that time. In
this case, the plot of v vs. ¢ is a straight line with constant slope, so the acceleration is the same at al times:
a = 10 m/s?. The area under the curve gives the change in position between two times. For example, again
in Fig. 5.1(b), the area under the v vs. ¢ curvefrom ¢ = 20 sec tor = 50 sec (the area of a trapezoid in this
case) givesthe change in position during that time interval: 10,590 m.

Figure 5.1(c) shows acceleration vs. time for the same particle. As before, you can read off the accelera-
tiona at any time by inspection of the plot. In this case, the acceleration is a constant 10 m/s? for all times.
The slope of the plot at any time ¢ gives the jerk at that time. In this case, since the line is horizontal with
zero dope, the jerk is zero at al times. The area under the curve in Fig. 5.1(c) gives the change in velocity
between two times. For example, the area under the curve between r+ = 20 sec and ¢t = 50 sec gives the
velocity change during that interval, 300 m/s. This may be confirmed in Fig. 5.1(b): the velocity changes
from 203 m/satt = 20 sec to 503 m/sat t = 50 sec.
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Chapter 6

\Vectors

We will next want to extend our knowledge of kinematics from one dimension to two and three dimensions.
However, the equations will be expressed in the mathematical language of vectors, so we'll need to examine
the mathematics of vectors first.

6.1 Introduction

Some quantitieswe measure in physics have only a magnitude; such quantities are called scalars. Examples
of scalars are mass and temperature. Other quantities have both a magnitude and a direction; such quantities
are called vectors. Examples of vectors are velocity, acceleration, and electric field.

You can represent a vector graphically by drawing an arrow. The direction of the arrow indicates the
direction of the vector, while the length of the arrow represents the magnitude of the vector on some chosen
scale. By convention, we write vector names in boldface type in typeset text (e.g. A); when writing vectors
by hand, it is customary to draw asmall arrow over the name (e.g. A).

Besides drawing a vector in the plane of the page, occasionally you may want to draw a vector diagram
in which you want to indicate a vector pointing directly into or out of the page. You can do this using these
symbols:

Symbol Meaning
— Vector in plane of page

X Vector into page
©) Vector out of page

The symbol ) is supposed to look like the tail feathers of an arrow flying away from you, while the symbol
(© is supposed to resemble the head of an arrow flying directly toward you. Of course, if you use these
two symbols, you can only indicate the direction of the vector, not its magnitude—but thisis often al that’s
needed.

Itis possibleto do arithmetic on vectors: for example, you can add or subtract two vectors, or multiply a
vector by a scalar. These operations may be done either graphically or algebraically. Both methods will be
described here.
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6.2 Vector Arithmetic: Graphical Methods

Vector arithmetic can be done graphically, by drawing the vectors as arrows on graph paper, and measuring
the results with a ruler and protractor. The advantage of the graphical methods are that they give a good
intuitive picture of what’s going on to help you visualize what you're trying to do. The disadvantages are that
the graphical methods can be time-consuming, and not very accurate.

In practice, the graphical methods are usually used to make a quick sketch, to help organize and clarify
your thinking, so you can be clear that you're doing things correctly. The algebraic methods are then used for
the actua calculations.

When drawing vectors, you are free to move the vector around the page however you want, aslong as you
don’t change the direction or magnitude.

Addition

WEe Il begin with addition. There are two methods available to add two vectors together: thefirst is called the
parallelogram method. In this method, you draw the two vectors to be added with their tail end points at the
same point. Thisfigure forms half a parallelogram; draw two additional lines to compl ete the parallelogram.
Now draw a vector from the tail endpoint across the diagonal of the parallelogram. This diagonal vector is
the sum of the two original vectors (Fig. 6.1(8)).

The second graphical method of vector addition is called the triangle method. In this method, you first
draw one vector, then draw the second so that itstail is at the head of the first vector. To find the sum of the
two vectors, draw a vector from thetail of the first vector to the head of the second (Fig. 6.1(b)).

The triangle method can be extended to add any number of vectors together. Just draw the vectors one by
one, with the tail of each vector at the head of the previous one. The sum of all the vectors is then found by
drawing a vector from the tail of the first vector in the chain to the head of the last one (Fig. 6.1(c)). Thisis
called the polygon method.

Subtraction

To subtract two vectors graphically, draw the two vectors so that their tail endpointsare at the same point. To
draw the difference vector, draw a vector from the head of the subtrahend vector to the head of the minuend
vector (Fig. 6.1(d)).

Scalar Multiplication

Multiplying a vector by a scalar will change the length of the vector. Multiplying by a scalar greater than 1
(in absolute value) will lengthen the vector; multiplying by a scalar less than 1 in absolute value will shrink
the vector. If the scalar is positive, the product vector will have the same direction asthe origina; if the scalar
is negative, the product vector will be opposite the direction of the original (Fig. 6.1(€)).

6.3 Vector Arithmetic: Algebraic Methods

Although the graphical methods just described give a good intuitive picture of the mathematical operations,
they can be a bit tedious to draw. A much more convenient and accurate alternative is the set of algebraic
methods, which involve working with numbersinstead of graphs. Before we can do that, though, we need to
find away to quantify a vector—to change it from a graph of an arrow to a set of numbers we can work with.
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(a) (b) (c)

(d) (e) oA

Y. AB A -A

Y,

Figure 6.1: Graphical methods for vector arithmetic. (a) Addition of vectors A and B using the parallelogram
method. (b) Addition of the same vectors A and B using the triangle method. (c) Addition of vectors A, B,
and C using a generalization of the triangle method called the polygon method. The sum vector pointsfrom
the tail of the first vector to the head of the last. (d) Vector subtraction: A — B points from the head of B
to the head of A. (€) Multiplication of a vector A by various scalars. Multiplying by a scalar greater than 1
makes the vector longer; multiplying by a scalar less than 1 makes it shorter. The resulting vector will be in
the same direction as A unlessthe scalar is negative, in which case the result will point opposite the direction
of A.
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4]

Figure 6.2: Cartesian components of a vector.

Rectangular Form

One idea would be to keep track of the coordinates of the head and tail of the vector. But remember that
we are free to move a vector around whereever we want, as long as the direction and magnitude remain
unchanged. So let’s choose to always put the tail of the vector at the origin—that way, we only have to keep
track of the head of the vector, and we cut our work in half. A vector can then be completely specified by just
giving the coordinates of its head.

There's a little bit of a different way of writing this, though. We begin by defining two unit vectors
(vectors with magnitude 1): i is a unit vector in the x direction, and j is a unit vector in the y direction. (In
three dimensions, we add a third unit vector k in the z direction.)

Referring to Fig. 6.2, let A, be the projection of vector A onto the x-axis, and let A, by its projection
onto the y-axis. Then, recalling the rules for the multiplicationof avector by ascalar, A i isavector pointing
in the x-direction, and whose length is equal to the projection 4 .. Similarly, A, j is a vector pointingin the
y-direction, and whose length is equal to the projection 4 ,,. Then by the parallelogram rule for adding two
vectors, vector A is the sum of vectors A i and A4, (Fig. 6.2). This means we can write avector A as

A= A+ Ay, (6.1)
or, if we're working in three dimensions,
A= Axi+ Ayj+ Ak (6.2)

Eq. (6.1) or (6.2) is called the rectangular or cartesian® form of vector A.

1The name cartesian is from Cartesius, the Latin form of the name of the French mathematician René Descartes, the founder of
analytic geometry.
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Magnitude

The magnitude of avector isameasure of itstotal “length.” It isindicated with absolute value signs around
the vector (JA| intype, or | A | in handwriting), or more simply by just writing the name of the vector in regular
type (4; no boldface or arrow). Interms of rectangular components, the magnitude of a vector issimply given
by the Pythagorean theorem:

Al =A= /A2 + A2+ A2. (6.3)

Example. The magnitude of vector A = 2i + 5j is

Al = A = V22 452 = V29 = [5.3852]

Polar Form

Instead of givingthe x and y coordinates of the head of the vector, an alternative form isto give the magnitude
and direction of the vector. This is called the polar form of avector, and isindicated by the notation

A= A0, (6.4)

where A isthe magnitude of the vector, and 6 is the direction, measured counterclockwise from the +x axis.
By convention, in polar form, we always take the magnitude of a vector as positive. If the magnitude
comes out negative (as the result of a calculation, for example), then we can make it positive by changing its
sign and adding 180° to the direction.
Converting between the rectangular and polar forms of a vector isfairly straightforward. To convert from
polar to rectangular form, we use the definitions of the sine and cosineto get sinf = opp/hyp = 4, /A4, and
cos® = adj/hyp = A, /A. Therefore to convert from polar to rectangular form, we use

Ay = Acosé (6.5)
A, = Asind (6.6)

To go the other way (rectangular to polar form), we just invert these equationsto solve for A and 6. To solve
for A4, take the sum of the squares of both equationsand add; to solve for 8, dividethe A , equation by the A .
equation. The results are

A= [A2 + 42 (6.7)

Ay
tan6 = 1. (6.8)
To find 6, you must take the arctangent of the right-hand side if Eq. (6.8). But be careful: to get the angle
in the correct quadrant, you first compute the right-hand side of Eq. (6.8), then use the arctangent (TAN ")
function on your calculator. If A, > 0, then the calculator shows 6. But if A, < 0, you must remember to
add 180° ( rad) to the calculator’s answer to get 6 in the correct quadrant.
It isalso possible to write three-dimensional vectors in polar form, but this requires a magnitude and two
angles. We won't have any need to write three-dimensional vectorsin polar form for this course.
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Example: Polar to rectangular. Convert the vector A = 7.£40° from polar form to rectangular form:

Ay = Acos6 = 7c0s40° = 5.3623 (6.9)
Ay = AsSnf = 7sin40° = 4.4995 (6.10)

so the rectangular form isA = 5.3623 i + 4.4995j

Example: Rectangular to polar. Convert the vector B = —4 i + 8 j from rectangular form to polar form:

Bl = /B2 + B2 = /(—4)> + 82 = V16 + 64 = /80 = 8.9443 (6.11)
B 8

tand = 2L = — =2 = 6 = 116.565° (6.12)
B, —4

so the polar form is8.9443./116.565°.

Noticethat to find 0, we take the inverse tangent of —2 and the calculator returns —63.435°. But because
the denominator (—4) isnegative, we add 180° to the calculator’s answer: —63.435° 4+ 180° = 116.565°. If
the denominator had been positive, we would not have added this 180°. For example, the rectangular vector
C =4i—8jwouldbe8.9443 2 — 64.435° in polar form.

Vector Equality

In order for two vectorsto be equal, they must have the same magnitude and point in the same direction. This
means that each of their components must be equal. For example, if A = B, then all of the following must
be true:

A, = By (6.13)

A, = By (6.14)

A, = B, (6.15)
Addition

Now we're ready to describe the algebraic method for the addition of two vectors. First, both vectors must be
in rectangular (cartesian) form—you cannot add vectors in polar form. If you're given two vector in polar
form and must add them, you must first convert them to rectangular form using Eqg. (6.5-6.6).

Once the vectors are in rectangular form, you simply add the two vectors component by component: the
x-component of the sum isthe sum of the x components, etc.:

A = Ayi+ Ayj+ Ak
+B = Byi+ Byj+ Bk
A+B = (Ax + By)i+ (A, + By)j + (A; + Bo)k

Subtraction

Just as with addition, vectors must be in rectangular (cartesian) form before they can be subtracted. Vector
subtraction is similar to vector addition: you simply subtract the two vectors component by component:

A=A+ Aj+ Ak
—-B = B,i+B)j+ Bk
A-B = (Ax - Bx)i + (Ay - By)j + (Az - Bz)k
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Scalar Multiplication

Multiplication of a vector by a scalar may be done in either rectangular or polar form. In rectangular form,
you multiply each component of the vector by the scalar. For example, given the vector A and scalar c:

cA=c(Axi+ A)j+ AK) (6.16)
=cAxi+ cAyj+cAzk (6.17)

It'seven simpler in polar form: if the vector A = AZ6, then
cA = (cA)L0. (6.18)
It's conventional to keep the vector magnitude positive, so if c4 < 0, you should change the sign of the
magnitude ¢ A, then add 180° (= radians) tothe angle 6.
Example: Addition. Add thevectorsA =6i—9jandB = 2i + 12]:
A =6i—9j

+B =20+ 12j
A+B =8i+3]

Example: Subtraction. Subtract thevectorsA = 6i—9jand B = 2i + 12]:

A =6i-9j
B =2i+12j
A—B =4i-21]

Example: Scalar multiplication. Multiply the vector A = 6i— 9] by 5:

5x (6i—9j) =30i—45]

6.4 The Zero \ector

The zero vector isthevector 0 = 0i 4+ 0j + Ok. It has zero magnitude, and its direction is undefined. The
zero vector is not the same thing as the scalar 0: 0 # 0. Oneisavector, and the other isa scalar.

6.5 Derivatives

You can take the derivative of avector component-by-component. For example, if avector A(z) isafunction
of timet, then A(¢) = Ax(t)i + A, (¢)j + A (t)k, and
dA(t) dAx(t). dA,(t). dA;(1)

= k.
dt dt ' dt I+ dt

It's possible to take other kinds of derivatives of vectors, known as the divergence (V-) and curl (V).
You'll learn about these in a course on vector calculus.

(6.19)
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6.6 Integrals

Integrating a vector is similarly done term-by-term. If a vector A(z) is a function of time ¢, then A(z) =
Ax ()i + Ay (1)) + Az ()k, and

/A(l) dt = /Ax(t) dti+/Ay(t) dlj—l—/AZ(l) dt k. (6.20)

6.7 Other Vector Operations

Other mathematical operations with vectors are possible. For example, is it possible to add a vector and a
scalar together? The answer is: sort of. You get something similar to a quaternion, which is a hypercomplex
number of the form a + bi + ¢j + dk (wherei? = j? = k? = —1). Quaternions are sometimes used in
aeronautical and astronautical engineering to describe the rotation of one coordinate system with respect to
another.

What about multiplying a vector by another vector? Yes, thisis possible. In fact, there are three different
kinds of multiplication that can be used to multiply two vectors together, as described in the next chapter.

How about division—can you divide by a vector? No; division by avector is not defined. A vector may be
adividend, but not a divisor. But you can divide a vector by a scalar by simply multiplying by the reciprocal
of the scalar:

A

1 . .
= z(Axl + Ayj + AZK) (6.21)

Ay. A,. A
=i+ 2j+ 2k (6.22)
C C C



Chapter 7

The Dot Product

7.1 Definition

In the arithmetic you're accustomed to (involving scalars), thereis only one type of multiplication defined—
for example, 2 x 3 = 6. But with vectors, there are three different kinds of multiplication:

» Thedot product A - B, in which you multiply two vectors together and get a scalar result.

» The cross product A x B, in which you multiply two vectors together and get another vector as the
result.

» Thedirect product AB, in which you multiply two vectors together and get a tensor resullt.

In this chapter we' [l ook at the dot product, which is sometimes called the scalar product.
The dot product of two vectors A and B (written A - B, and pronounced “A dot B") is defined to be the
product of their magnitudes, times the cosine of the angle between them:

A-B = ABcosH. (7.1)

Why do we define it thisway? It turns out that this combination occurs frequently in physics; the dot product
isrelated to the projection of one vector onto the the other.

7.2 Component Form

Suppose we have two vectors in rectangular form. What is the dot product of the two in terms of their
components? To answer this, we begin with the definition of the dot product, Eq. (7.1):

A-B = ABcos(f — ), (7.2)

where o isthe angle vector A makes with respect to the x axis, and 8 isthe angle vector B makes with respect
tothex axis, sothat § —« isthe angle between the two vectors (Fig. 7.1). We now use atrigonometricidentity
to expand the argument of the cosine:

A-B = AB(cosp cosa +sinfsina) (7.3)
Now making use of therelationscosf = adj/hypand sinf = opp/hyp, we have

A, B, , A, , B,
cosa = —; cosp = —; sing = —2; snf =2 7.4
*=7 b= *= 7 =73 (74)

45



Prince George's Community College Genera Physics| Simpson & Simpson

Figure 7.1: The two vectors A and B are to be multiplied using the dot product to get A - B.

Making these substitutionsinto Eq. 7.3, we have

By A B, A
AB=AB| =>4+ 22 75
( B A B A ) (7.9)
= AxBx + Ay B, (7.6)
Thisresult can be generalized from two to three dimensions to get
A-B=A,B, + A,By + A, B, (7.7)
Example. SupposevectorsA = 3i+ 4j—2k and B = i—5j + 2k. Then the dot product of the two vectors
is
A-B=@3)(1) + @)(=5) + (-2)(2) =
Notice that the final result isascalar, not a vector.
7.3 Properties
Commutativity
Let'slook at a few properties of the dot product. First of all, the dot product is commutative:
A-B=B-A (7.8)

The proof of this property should be obvious from Egs. (7.1) and (7.7). Thisisn't atrivial property; in fact,
the other two types of vector multiplication are non-commutative.
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Projections

The dot product is defined as it is because it gives the projection of one vector onto the direction of another.
For example, dotting a vector A with any of the cartesian unit vectors gives the projection of A in that
direction:

Ai= A, (7.9)
A-j=4, (7.10)
A-k=4, (7.12)

In general, the projection of vector A in the direction of unit vector 0 isA - Q.

Magnitude

From Eq. (7.7), it followsthat A- A = A% + A5 + A7 = A?; so the magnitude of a vector A is given in
terms of the dot product by

A2=A-A (7.12)
A=A A (7.13)

Angle between Two Vectors

The dot product is also useful for computing the separation angle between two vectors. From Eq. (7.1),

A-B
Cosf = —— 7.14
B (7.14)
Example. We wish to find the angle between the two vectors A = 3i + 4j — 2k and B = i — 5j + 2k. We

first find the dot product of the two vectors:
A-B=(3)1)+ @) (=5 + (-2)(2) = -21

The magnitudes of the two vectors are

A= /324424 (=22 =29
B =124 (=52 +22 =430

Therefore

-21
cosf) = ———— = —0.711967
v/294/30

and so the angle between A and B is

0 =[135.40°]

You do not need to worry about getting the angle 6 in the correct quadrant, because 6 will necessarily
always be between 0° and 180°, and the inverse cosine function will always returnitsresult in this range.
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Orthogonality

Another useful property of the dot product is: if two vectors are orthogonal, then their dot product is zero.
For example, for the cartesian unit vectors:

i-j=j-k=i-k=0. (7.15)

The converse isalso true: if the dot product is zero, then the two vectors are orthogonal.
The cartesian unit vectorsi, j, and k are orthonormal, so that

ifi=j-j=k-k=1. (7.16)

Derivative
The derivative of the dot product is similar to the familiar product rule for scalars:

d(A-B) dB dA
=A.— 4+ .
dt dt + dt

(7.17)

7.4 Matrix Formulation

The dot product can aso be written in matrix form. To begin, let’s represent vectors as column vectors—that
is, 3 x 1 matrices. We'll define the vectors A and B as the column vectors

Ax Bx
A= 4, |; B=| B (7.18)
Az B,

The dot product can then be written
A-B=A"B= (4. A, A; )| By | =(AxBx+ 4yB, + A;B). (7.19)
B

Thisthe the product of a1 x 3 row array witha 3 x 1 column array, which givesal x 1 result (i.e. ascalar).
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Chapter 8

Kinematics in Two or Three Dimensions

Armed with a knowledge of vector algebra, we are now in a position to examine kinematics in two and three
dimensions. The approach will be very similar to kinematics in one dimension, except that we replace the
position x, velocity v, and acceleration a with their vector counterparts: the position vector r, velocity vector
v, and acceleration vector a.

8.1 Position

Let’s begin with the position vector. First define atwo-dimensional coordinate system (or athree-dimensional
system for a three-dimensional problem), placing the origin and axis directionsin any way that’s convenient.
Then the position vector r of a particleis avector pointing from the origin to the particle.

8.2 Velocity

We define the velocity vector v in a way that's analogous to the definition of the scalar velocity, using the
vector version of the definition of a derivative:

. Ar dr
v= lim = —

— = 8.1
At—0 At dt’ ( )

where Ar = r, — ry isthe difference in the position vectors r; and r, at two closely spaced times¢; and ¢,,
respectively.

8.3 Acceleration

Similarly, the acceleration vector a is defined as

Av  dv  d*r
a= lim = =

— |lim = =2 — 2
At—>0 At dt dt?’ (82)

where Av = v, — vy isthe difference in the velocity vectorsv; and v, at two closely spaced times¢; and ¢,,
respectively.
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8.4 Inverse Relations

Equations (8.1) and (8.2) may be inverted, as was done in one dimension:
ri) = /V(t) dt (8.3
v(t) = f a(t) dt (84)

8.5 Constant Acceleration

As was done in one-dimensional kinematics, we may derive a set of equations for the motion of a particle
under a constant acceleration. In two or three dimensions, though, it's a constant acceleration vector a. If
the acceleration vector a is constant, we can bring it outside the integral sign of Eq. (8.4) just as we do with
constant scalars. We get

v(t) = /adt = a/ dt (8.5)
or
vit)=at +C (8.6)

where C isthe constant of integration. By settings = 0, we can see that physically, just asin one-dimensional
kinematics, C = vy = v(0) represents the velocity vector at timet = 0, so

e

Substituting thisresult into Eq. (8.3), we have

ri) = /(at + Vo) dt (8.8)
= /at dt +/v0 dt (8.9)
= a/tdl +v0/ dt (8.10)
or
r(t) = 3ar* + Vot + ro, (8.12)

where rp = r(0) isthe position vector at time? = 0.

The remaining constant-acceleration formula is a formula for v(r), in which we eliminate time ¢ to get
an expression for velocity in terms of position. We did this in one dimension by solving the equation for
v(t) for ¢, then substituting into the equation for x (¢) and solving for v. Unfortunately, that technique won't
work with vectors, because it would require dividing by a vector, whichis not defined. Instead, being guided
by the knowledge that the vector formula must reduce to the known scalar formula when the vectors are
one-dimensional, we proceed as follows. Start with Eq. (8.11) for r(¢) for constant acceleration:

r(r) = sar? + Vor + o (8.12)
r—ro = lar? + vot (8.13)
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Now take the dot product of both sides with the acceleration a:

a-(r—ro) =a- (zar? + vor) (8.14)
= 2a%* +a-Vol, (8.15)

and multiply both sides by 2:
2a- (r—ro) = a’t? +2a-vot. (8.16)

The left-hand side looks similar to the second term on the right-hand side of the one-dimensional Eqg. (5.31),
but we still need to eliminate ¢ on the right-hand side. To do that, let’s start by working on the first term on
the right-hand side of Eq. (8.16). Starting with Eq. (8.7), we have

V() =at + Vv (8.17)
V—Vy=at (8.18)

Now take the dot product of the left-hand side of Eq. (8.18) with itself, and dot the right-hand side with itself:

(V—Vp) - (V—Vpo) = (ar) - (ar) (8.19)
v? —2v-vo + v3 = a*t>. (8.20)

Next, let’swork on the second term on the right-hand side of Eq. (8.16). To do this, let’stake the dot product
of both sides of Eq. (8.18) withvy:

Vo (V—Vgo) =Vp- & (8.22)
2V -Vg — 2v5 = 2a- Vot (8.22)

Now we have all the pieces we need to eliminate . In Eq. (8.16), we use Eq. (8.20) to replace a?2, and we
use Eq. (8.22) to replace 2a - vyt:

2a-(r—ro) = (v —2v-vo + v3) + (2V- Vo — 2v3) (8.23)
=v? -], (8.24)

or
v? =2 +2a-(r—rp) (8.25)

8.6 Vertical vs. Horizontal Motion

Consider the experiment shown in Figure 8.1: two balls are initialy at the same height above the floor; both
are released at the same time, but one is alowed to fall vertically, while the other is given an initial velocity
vg inthe horizontal direction. Which ball hitsthe floor first?

You might be inclined to think that the ball that falls vertically would hit thefloor first, because it doesn’t
have as far to go. But the correct answer is that both balls land at the same time. The reason is that the
horizontal and vertical components of the motion are independent—the horizontal motion of the second ball
has no effect on itsvertical motion. Let’s set up a coordinate whose origin is at the release point, with +x to
the right and +y upward. Then for thefirst ball (the one falling vertically), wehavea = —gj, vy = 0, and
ro = 0; therefore

r(r) = sar? + Vot + Io (8.26)

— _lg2j (8.27)
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Figure 8.1: Vertical vs. horizontal motion. If two objects are released simultaneoudly (one falling vertically
and one given an initial horizontal velocity), then they both land on the floor at the same time. (Ref. [9])

or

x(1)=0 (8.28)
y(1) = —38t>. (8.29)

For the second ball (the one given an initial horizontal velocity v o), wehavea = —g j, vo = voi,andry = 0;
therefore

r(t) = ar> + Vot + o (8.30)
= vot i — 1g1?%] (8.31)
or
x(t) = vot (8.32
y(1) = —38t>. (8.33)

So both balls have the same vertical (y) component of motion. Both ballsfall together vertically, but the sec-
ond ball has a uniform horizontal motion superimposed on its vertical motion; the combination of horizontal
and vertical motions gives the second ball a parabolic path, as we' Il see in Chapter 9.

8.7 Summary
Let’s summarize the results so far for two- and three-dimensional kinematics:

Always True

These equations are definitions, and are always true:

V= % = rit) = /V(t) dt (8.34)
v d?
a— d—‘t’ - Wr - V() = / a(r) d (8.35)
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Constant Acceleration

These equations are valid only for constant acceleration a:

r(t) = 3ar? + Vot + Io
v(t) = at + Vo
v2 =2 +2a-(r—rp)

53

(8.36)
(8.37)
(8.38)



Chapter 9

Projectile Motion

An important example of two-dimensional motion under constant acceleration is the motion of a projectile
(e.g. acannonball fired from a cannon) at the surface of the Earth (Fig. 9.1). The acceleration inthiscaseis
the accel eration due to gravity, so the constant-accel eration equations apply. The position vector as afunction
of timeisgiven by Eq. (8.11):

r(t) = 3at? + Vot + ro, (9.1)

where vy istheinitial velocity of the cannonball, called the muzzle velocity. Let's taketimet = 0 to bethe
instant the cannonball leaves the cannon. Then if we choose the origin to be at the cannon (Fig. 9.1), then
ro = 0. The acceleration in thiscase isin the —y direction, so a = —gj, and Eq. (9.1) becomes

r(r) = —581%j + Vo, (9.2)

where theinitial velocity vo = vxo i + v,0j. Thisvector equation actually represents two scalar equations:
onefor x(¢) and onefor y(z):

x(t) = vxot (9.3)
y(t) = —581% + vyot (9.4)

Typically inreal life youwill not know the cartesian components of the velocity vector (v xo and vy); instead
you are more likely to know the magnitude of the muzzle velocity v, and the launch angle 6. Converting the
muzzle velocity vector from rectangular to polar form,

Vox = Vg COSH (9.5)
Voy = Vo sing (9.6)

Equations (9.3) and (9.4) then become

x(t) = (vo cosO)t (9.7)
y(1) = —38t* + (vo Sin)t (9.8)

These equations give the x and y coordinates of the projectileat any timez.
Now let’s consider afew questionswe can ask about the motion of a projectile.
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R

Figure 9.1: Parabolic path of a projectile launched with muzzle velocity v, at angle 6. Here the x axisis
along the ground, R istherange, and & isthe maximum altitude.
9.1 Range

The first question we'll look at is: how far will the projectile go? Thisis called the range, and is shown as
R in Fig. 9.1. How do we find this? We need to look at what conditions are unique to the problem we're
trying to solve; in this case, what's unique about the range R is that it's the x coordinate of the projectile
wheny = 0. Solet’'sset y = 0in Eq. (9.8) and see what happens:

0=—2g1> + (voSinB)r (9.9)

What we're after isthe value of x when y = 0, so let’stry solving thisfor time ¢, then plugging that into Eq.
(9.7). Solving Eq. (9.9) for ¢ by factoring out az, we have!

0= [—%gt + vosind] ¢. (9.20)

This means that for y = 0, either t = 0 (whichitisat launch), or else —gt/2 + vosiné = 0. The second
case isthe one we're interested in:

0= —%gt + vpsSiné (9.12)

or

2
= §U0 siné. (912)

Thisisthe total time the projectileisinthe air, and is called the time in flight (¢ ). Substituting thistime into
Eq. (9.7) gives the range:

R = x(tr) = (v cos0) (§v0 sin@) . (9.13)

INote that we cannot divide Eq. (9.9) by the variable without losing roots. The proper procedureis to factor out afactor of ¢, then
use the fact that if the product of two factors is zero, then one or both factors must be zero. It is OK to divide through by a nonzero
constant, though.
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Using the identity sin20 = 2 sinf cos6, this becomes

U2
R = 2 sin26. (9.14)
g

A related question is: at what launch angle 6 do you get the maximum range for a fixed muzzle velocity
vo? Examining Eq. (9.14), the largest value the sine can haveis 1, so

sn20 =1 (9.15)
20 = 90° (9.16)
6 = 45° (9.17)

So a projectile will go the farthest if launched at an angle of 45° from the horizontal. Another way to arrive
at the same result is to use the first derivative test: Eq. (9.14) gives R(6), so to find the value of 8 that gives
the maximum range R, we set dR/d6 = 0:

dR d (v} .
— =_—_|(-sn28} =0, 9.18
a6~ a0 ( g o ) (018)
or, using the chain rule,
2 2
% c0s26 =0 (9.19)
c0s26 =0 (9.20)

Now cos26 = 0 implies26 = 90° or 26 = 270°, and therefore § = 45° or § = 135°. We discard the
solution & = 135° on physical grounds: it corresponds to pointing the cannon backwards at 45 © from the
horizontal, which is a solution we're not interested in.

9.2 Maximum Altitude

Let's look at another question: what is the maximum altitude reached by the projectile? Let's think about
what is unique about the point where the projectileis at its maximum atitude: the y component of the vel ocity
is momentarily zero at that point. Eq. (8.7) gives the velocity vector of the projectile at any timez:

V() =at + Vo (9.22)
= —gtj + Vo, (922

which is equivalent to the two scalar equations

Vx (1) = vxo = Vo COSH (9.23)
vy (1) = —gt +vy0 = —gt + voSing (9.24)

To find the maximum dtitude, we want to set v, = 0:
0= —gt +vpsind. (9.25)

Solving for time ¢,
Vo

t = 2 sing. (9.26)
g
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Thisis the amount of time it takes the projectile to reach the point where v, = 0, which is the point of max-
imum atitude. Note that thisis half of the timein flight (Eq. (9.12)), so the projectile reaches its maximum
height half-way through its flight. (You could also arrive at this same result by using Eq. (9.8) for y(z), then
setting dy/dt = 0 by thefirst derivative test.)

Plugging thistimeinto Eq. (9.8) gives the maximum altitude /:

tr 1 Vo . 2 . Vo .
S I =2 .27
h y(z) 2g(gsm@) +(vosm9)(gsm9) (9.27)
2 cin2 2 i
_ _lvgsn 0 n vgsin“ 6 (9.28)
2 g g

s0 the maximum altitudeis

2 qin2
vy sin© 6

h = 2%

(9.29)

9.3 Shape of the Projectile Path

What is the shape of the projectile’s path in Fig. 9.1? To find out, we can solve Eqg. (9.7) for thetime ¢ and
plug the resulting expression into Eq. (9.8) to eliminate ¢ and get an equation for y(x). First solve Eq. (9.7)
for¢:

X
= . 9.30
! Vg COSO ( )

Now substitute thisinto Eg. (9.8):

1 X 2 X
=—— ing 9.31
Y 2 (vocose) + (vosin )(vocose) (031)

or

&
2v¢ cos? 6

y(x) = ( ) x? + (tan6)x. (9.32)

Thisisthe equation of aparabola passing through the origin, so the projectile follows a parabolic path.

Actually, thisis just an approximation, assuming the acceleration due to gravity is a constant downward
in the —y direction. A more careful calculation would have to allow for the curvature of the Earth, which
would show the actual path isthat of a highly eccentric ellipse. But over relatively short distances where the
curvature of the Earth is not important, the elliptical path can be approximated as a parabola.

9.4 Hitting a Target on the Ground
Now let's look at the problem of using a projectile to hit a target on the ground at range R. We could do

this by fixing the muzzle velocity and varying the launch angle, or by fixing the launch angle and varying the
muzzle velocity, or by varying both.
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Fixed Launch Angle

The less common situation is to fix the launch angle 6 and allow the muzzle velocity v to vary. Beginning
with Eq. (9.14),

U2
R = Y sin26, (9.33)
g

we solve for muzzle velocity:

gR
sin26°

(9.34)

Vg =

There will aways be a solution to this equation unless & > 90°, which corresponds to pointing the cannon
backwards. In this case v will be imaginary, and there is no muzzle velocity that will allow the projectile to
reach the target.

Example. Suppose we have a cannon fixed at an angle of 25° and wish to hit a target at a distance of
R = 250 m. What muzzle velocity v, isrequired?
Solution. By Eq. (9.34),

_ [ 8R _
vy = S0 = 56.55m/s. (9.35

Fixed Muzzle Velocity

The more common situationis trying to hit atarget when the muzzle velocity is fixed and the launch angleis
allowed to vary. In this case we solve Eq. (9.14) for 6:

_ L1 (8R
0= 2:sm (v%)' (9.36)

Example. Suppose the muzzle velocity isvy = 40 m/sand thetarget is at a distance of R = 75 m. What
launch angle is needed to hit the target?
Solution. The launch angleis given by

2

1 R
§ = —sn! (g—) = 13.67° and 76.33°. (9.37)
Yo

Recall that the arcsine of a number returns two angles in the range [ 0, 277), so there will generally be two
solutionsto Eq. (9.36). In this example, the “calculator” solutionis 13.67°, and other solutionis 76.33°. In
general, there will be two complementary launch angles that will both hit the target.

Example. Asasecond example, suppose the muzzle velocity isvy = 40 m/sand the target is at a distance
of R = 200 m. What launch angle is needed to hit the target?
Solution. The launch angleis given by

1 R 1
§ = —sn! (g—z) — s 1.225 = (9.38)
2 Vg 2
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The arcsine of a number greater than 1 is not defined?, so 6 cannot be found in this case. Physically, this
means that the target is out of range at this muzzle velocity. For a muzzle velocity of 40 m/s, the maximum
rangeisfor & = 45°, which by Eq. (9.14) is 163 m — so 200 m is out of range.

9.5 Hitting a Target on a Hill

In the previous section, we looked at how to aim a projectile so that it hits a target on the ground. Now let's
look at a more general case: suppose the target is not necessarily on the ground, but on a hill, so that it's
located at coordinates (x;, y;). How do we aim the projectileto hit the target in this case?

Fixed Launch Angle

Let'sfirst look at the case where the launch angle is fixed and we can vary the muzzle velocity. We require
that the projectile’ s parabolic path pass through both the origin and the target’s position (x ¢, y;), solet’sbegin
by substituting the point (x ,, y;) into Eq. (9.32):

e = (_21155%) X2 + (tanf)x,. (9.39)
We just need to solve thisfor the muzzle velocity vy:
(tanf)x, — y, = (%) X2 (9.40)
2vg cos?
tanf — )yc—i = zvé"cﬁ (9.42)
v2 = LAl (9.42)

2 (tan@ - )yc—j) cos? 0

or

Vo = §X1 , (9.43)
2 (tan@ — y’) cos?

Xt

Note that y,/x, istangent of the angle that the target makes with the horizontal, as seen from the origin;
we'll call thisangle 6,. Then Eq. (9.43) becomes

Xt
= . 44
v \/2 (tan® —tan 6;) cos? 6 (2:44)

If we aim directly at the target, then 6 = 6;, the denominator becomes zero, and we get vo = oo: thissays
that the muzzle vel ocity would have to be infinite to get it to follow a straight-line path directly to the target.
Fixed Muzzle Velocity

Now let’slook at the more common problem, where the muzzle velocity fixed and we're allowed to vary the
launch angle. As before, we substitute the point x,, y, into Eq. (9.32):

§ 2
=-— + (tan0)x;. 9.45
i ( 2v§c0329)x’ (tan6)x: (9.45)

2Actually, it's complex; in this case, sin™! 1.225 = 90° — 37.75°i.
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Now we solve this for the launch angle 6. Multiplying both sides by 2 cos? 6,

2y,0c08? 0 = (—%) x? 4+ (2sin6 cosf)x; (9.46)
Vo

Now using the identity sin20 = 2 sinf cos#,

gx7
x;Sin260 — 2y, cos® § = ==-. (9.47)
Vo

It turns out that thisis about the best we can do—we just can’t solve this equation for 6 in closed form. To
find 6, we must resort to anumerical method such as Newton's method, as described in the following chapter.

9.6 Exploding Projectiles

If aprojectileexplodesin mid-air, the force from the expl osion will cause the various fragments of the original
body to follow new trajectories—each of which will be a segment of a new parabola. However, the center of
mass of the fragments will continue along the original parabolic trajectory. (The center of mass is discussed
in Chapter 31.)

9.7 Other Considerations

In our study of projectile motion, we have made a number of approximations:

1. We have assumed the acceleration due to gravity is a constant, so we've ignored the curvature of the
Earth. If a projectile travels a long distances, then it would be important to take thisinto account, and
treat the motion as an ellipse.

2. We have assumed the projectile is in a vacuum—we did not account for air resistance. The results
we've derived will be approximately correct, but to get answers that match reality more closely we
would need to alow for the effects of air resistance (Chapter 19).

3. We have not allowed for the effects of wind. If a wind is blowing, it will ater the course of the
projectile.

4. If the projectile travels a long distance, then we would need to allow for the rotation of the Earth by
accounting for the Coriolis force (Chapter 43).

9.8 The Monkey and the Hunter Problem

A famous problem involving projectile motion is the “monkey and hunter problem” (Fig. 9.2). A hunter spots
amonkey hanging from a tree branch, aims hisrifle directly at the monkey, and fires. The monkey, hearing
the shot, lets go of the branch at the same instant the hunter fires the rifle, hoping to escape by falling to the
ground. Will the monkey escape? The unexpected answer is “no”: the bullet will always hit the monkey
anyway, regardless of the angle of the rifle, the speed of the bullet, or the distance to the monkey, aslong as
the monkey isin range.

To show that this is so, let’s first define a coordinate system. Let the origin be at the end of the rifle,
with the x axis pointing horizontally to the right, and y pointing verticaly upward. Let D be the horizontal
distance of the monkey from the origin, and H bethe initial height of the monkey (Fig. 9.2).
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Figure 9.2: The “monkey and hunter” problem. (Credit: The English School, Fahaheel, Kuwait.)

Now we'll show that at x = D, the monkey and the bullet will both be at the same height y. Let the
muzzle velocity of the rifle be vy, and let the angle of fire of therifle from the horizontal be 6. Let’s begin by
finding thetime ¢ needed for the bullet to travel the horizontal distance D from therifle. Since the horizontal
component of the velocity is a constant vg cos6 (Eg. 9.7), the x coordinate of the bullet at time ¢ is

xp(t) = (vo cosO)t. (9.48)
Setting x;, (1) = D and solving for thetime ¢, we find (calling thistime 7 )

D
tr = . 9.49
4 vg COS6 (949)

Next, let’sfind the y coordinate of the bullet at thistime ». By Eq. (9.8)
yp(t) = —1g1% + (vo SinO)1. (9.50)

Substitutings = ¢ty = D/ (v cos6), we have

1 D\’ D
__1I - 9.51
Vb 2 (vocose) +(Uosn9)(vocos(9) (951)
gh?
=———— + Dtanb. 9.52
2v3 cos? 0 * (952

But from trigonometry, tan6 = H/ D; making this substitution in the second term on the right, we have

gDh?

- bullet). 9.53
2v3 cos? 0 (tniled (953)

o =H

Finally, let’s find the y coordinate of the monkey at time ¢x. The monkey falls in one dimension; its y
coordinate at time ¢ is (using Eq. (5.23) with y instead of x, and witha = —g, vo = 0 and yo = H):

ym(t) = H — 3g1%. (9.54)
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Now substitutings = ¢t = D/ (v C0S6),

_y_8 ( D )2 (9.55)
Im = 2 \ vy cosh '
gD?
m=H — ——— monkey). 9.56
y 202 o2 0 (monkey) (9:56)

Comparing Egs. (9.53) and (9.56), you can see that the monkey and bullet will have the same y coordinate
when x = D, so the monkey will always get hit, regardless of the valuesof D, H, vg, or . Q.E.D.3

Essentially what's happening here is that the monkey and bullet are both accelerated by the same amount,
g = 9.8 m/s?, so for agiven amount of time, the monkey will fall the same distance as the bullet falls from
the straight-line path it would take if there were no gravity. Therefore, the bullet always hits the monkey.

9.9 Summary

This following table summarizes the formulaefor a projectileinitially at the origin, fired with initial velocity
vo a an angle 6 from the horizontal.

Table 9-1. Summary of formulaefor projectile motion.

Quantity Formula
x(t) x = (vo cOs0)t
y(1) y =—38t* + (vo SinO)z
y(x) y(x) = (—Zv%fm) x? + (tan6)x
Timeinflight tr = Zvosing
2

Range at angle 6 R = 0sin26

2
Max. range (at 6 = 45°) Rmax = %0

Angle needed to hit target at range R for fixed vy | 6 = 1 sin™! (%)

Speed needed to hit target at range R for fixed 0 | vo = /5%,

sin26
. v2sn? 6
Max. atitude h= Ozg
Speed needed to hit target at (x;, y,) for fixed8 | vo = £X1

z(tane—ﬁ—;) cos2 6

Angle needed to hit target at (x,, y;) for fixed vy | x;SiN20 — 2y, cos®> 4 = %’2
0

Note that thislast expression must be solved iteratively for 6.

3Q.E.D. is an abbreviation for the Latin phrase quod erat demonstrandum, meaning “which was to be demonstrated.”
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Chapter 10

Newton’s Method

10.1 Introduction

As we have seen in the study of projectile motion, some problems in physics result in equations that cannot
be solved in closed form, but must be solved numerically. The study of the methods of solving such problems
is the field of numerical analysis, and is a course in itself. Here we look at one very simple method for
numerically finding the roots of equations, called Newton’s method.

10.2 The Method

Newton’s method is a numerical method for finding the root(s) x of the the equation
fx)=0. (10.1)

The method requires that you first make an initial estimate x, of the root. From that initial estimate, you
calculate a better estimate using the formula

_ S (xn)
S (xn)

Applying thisformula (with n = 0) to theinitial estimate x ( gives a better estimate x;. This better estimate
x1 isthen run through the formulaagain (n = 1) to get an even better estimate x ,, etc. The process may be
repeated indefinitely to yield a solution to whatever accuracy is desired.

If the equation f(x) = 0 has more than one root, then the method will generally find the one closest to
theinitial estimate. Choosing different initial estimates closer to the other rootswill find those other roots.

If there is no root (for example, f(x) = x2 + 1 = 0), the method will tend to “blow up”: instead of
converging to a solution, you may just get bigger and bigger numbers, or you may get a series of different
numbers that show no sign of converging to a single value.

Xn+1 = Xn (102)

10.3 Example: Square Roots

When the first electronic calculators became available in the mid-1970s, many of them were simple “four-
function” calculators that could only add, subtract, multiply, and divide. The author’s father, L.L. Simpson
(Ref. [11]), showed him how he could calculate sguare roots on one of these calculators using Newton's
method, as described here.
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To calculate the square root of a number k, we wish to find the number x in the equation
x = vk. (10.3)
Squaring both sides then subtracting £ from both sides, we get a function of the form of Eq. (10.1):
f(x)=x*—k =0. (10.9)

The values of x that satisfy this equation are the desired square roots of k. Newton’'s method for finding
square rootsis then Eqg. (10.2) with this f(x) (and with f/(x) = 2x):

2
x;—k

e (10.5)

Xn+1 = Xp —

For example, to calculate /5, set k = 5. Make an initial estimate of the answer—say xo = 2. Then we
calculate several iterations of Newton’s method (Eq. 10.5) to get better and better estimates of +/5:

Xo=2 (10.6)
2 2
x5 —5 2¢ -5
= Xo— —2- =22 .
X1 = Xo 70 753 500 (10.7)
=5 o as00- 2205 (10.8)
X2 = X1 — = 2. _—— = Z. 5
2T oy 2 x 2.2500
2_5 2236125
X3=x— 2272 00361 - Z520 T2 _ 59361 (10.9)
2%, 2% 2.2361

After just afew iterations, the solution has converged to four decimal places: we have /5 = 2.2361.
There are actually two squarerootsof 5. To find the other solution, we choose a different initial estimate—
onethat is closer to the other root. If we take the initial estimate x o = —2, we get

Xo =2 (10.10)
2 2
X2 -5 (—2)? -5
= xo— =25 T2 5500 10.11
T 2% (=2) (10.11)
25 2250002 - 5
o =1 — L2 pospg— E2B00T S oa (10.12)
2 2 x (=2.2500)
2 2
X3 -5 (—2.2361)2 —5
= x2— — 22361 — 70D T2 50361 10.1
ST 2% (—2.2361) 36 (1013

So to four decimals, the other square root of 5is—2.2361.
L.L. Simpson notes that Eq. (10.5) for computing square roots was typically used in the equivalent form

1 k
Xn+1 = 3 (Xn + —) ) (10.149)

so that you repeatedly find the average of x,, and k /x,,. For the above example of finding /5, thisgives:

Initial est. = 2
lstiter.. Average of 2 and 5/2 = 225
2nditer..  Average of 2.25 and 5/2.25 = 22361
3rditer.. Averageof 2.2361 and 5/2.2361 = 2.2361 (converged)
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10.4 Projectile Problem

Recall the problem from Section 9.5 of directing a projectile to hit atarget on a hill at position (x ¢, y;), when
the muzzle velocity is fixed and we're allowed to vary the angle. We found that in order to hit the target, the
launch angle 6 is the solutionto Eq. (9.47),

gx?

Xt Sln29—2y, COSZQ = —2 (1015)
Vo

which cannot be solved in closed form and must be solved numerically. To solve thisfor 6 using Newton's
method, we must first put itintheform f(6) = 0:

2
£(6) = x;sin26 — 2y, cos* 6 — 5L = 0 (10.16)
Vo

Newton’s method also requires the derivative of f':

f'(0) = 2x, cos26 + 4y, cosh sind (10.17)
= 2x,€0S820 + 2y, sin20 (10.18)

Using these expressions for f(8) and f’(0) in Newton's method (Eg. (10.2)), we find an iterative expression
that lets us solve numerically for the launch angle 6:

x; SiN26, — 2y, cos? B, — gx? /v
2x;€0S26, + 2y, Sin26,

Ot = On — (10.19)

Here the target coordinates (x;, y;) are known, as are the muzzle velocity vy and accel eration due to gravity
g, o the only variable on the right-hand side is 6,,. To use this expression, we begin with an initial guess
for the launch angle, 6, (in radians). Then plug this 6, into the right-hand side, which returns 6; for the
next iteration, plug this 8, into the right-hand side, which returns 6,, etc. After afew iterations, you should
get approximately the same angle over and over again on successive iterations. If the target is out of range,
the method will “blow up” and not converge, typically by returning larger and larger values of 6,, for each
iteration.

For this type of iterative calculation, it is handy to program the iteration formula into a programmable
calculator, or write a computer program.
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Chapter 11

Mass

Mass isameasure of the amount of matter in abody. Asdiscussed earlier, itismeasured in unitsof kilograms
(kg) in Sl units. In CGS units, mass is measured in grams (g), and in British engineering units, mass is
measured in slugs.

Technically, there are two kinds of mass: inertial mass and gravitational mass. Inertial massisameasure
of a body’sresistance to being accelerated: you have to push harder on a high-mass body than on alow-mass
body to get it to accelerate by a given amount. Aswe'll see shortly, inertial mass m; is given by Newton's
second law of motion:

m; = E, (11.2)
a
where F istheforce on a body, and « isthe resulting acceleration.

Gravitational mass is a measure of how strong a gravitational field a body produces. For example, if two
identical bodies each have a gravitational mass m, and are separated by a distance r, then the gravitational
force between them is given by Newton'slaw of gravity: F = Gm , /r?. The gravitational mass isthen

F
= —. 11.2
mg =714z (112
Experiments have shown that, to the highest accuracy that we can measure, inertial and gravitational mass
are the same:

m; = mg. (11.3)

Because of this, we normally don’t bother to distinguish between the two, and just refer to the “mass’ m.

We really don’t understand why inertial and gravitational mass are the same; it just turns out that way
experimentally. This equivalence between inertial and gravitational mass, called the equivalence principle,
was established in a famous experiment that was conducted around 1900 by the Hungarian physicist Lorand
Eotvos (UT-vush). In the Edtvos experiment, two unegual masses were connected by a rod; the rod was
then connected at its balance point by a vertical wire to the ceiling, forming a torsional pendulum. The
instrument was set up in such away that if the gravitational and inertial masses were different, it would set
therod rotatingin a horizontal plane, but no such rotationwas observed. Today the validity of the equivalence
principle has been demonstrated to high accuracy.
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Chapter 12

Force

Intuitively, a force isa push or apull. In S| units, force is measured in units of newtons (N), named for the
English physicist Sir Isaac Newton. In terms of base units,

kgm
IN=1——. (12.1)
In CGS units, forceis measured in dynes (dyn):
cm
1 dyne = 1 gsz . (12.2)

In the British engineering system, force is measured in pounds (Ib). Thisis sometimes called pounds-force
(Ibf) when it’simportant to clearly distinguishit from pounds-mass (Ibm).

slug ft

2

11bf =1 (12.3)

12.1 The Four Forces of Nature

There are four fundamental forcesin Nature:

* Gravitational force. The gravitational force is a force between any two bodies due to their mass. The
gravitational force is the force responsible for keeping you attached to the floor at this moment: the
Earth’smassis pullingyou down toward its center, and your mass is attracting the Earth upward toward
you. Without the gravitational force, you would be floating freely around the room.

The gravitational forceisawaysattractive, and it isthe weakest of the four forces. Gravity isdescribed
in more detail in Chapter 51.

* Electromagnetic force. The electromagnetic force is responsible for the attraction and repulsion of
electric charges, and is also responsible for the magnetic force.

Most forces you encounter in everyday life (besides gravity) are electromagnetic in nature. When
you push on something with your hand, for example, you are not really in direct contact with it: the
outermost electrons of the atoms at the surface of the object are being electrically repelled by the
outermost electrons in the atoms at the surface of your hand. Similarly, when you're standing on the
floor, you're actually hovering a small distance above the floor: the outermost electrons at the bottom
of your shoes are electrically repelling the outermost electrons at the top of the floor.
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The classical theory of the electromagnetic force is given by Maxwell’s equations, which you'll study
in General Physics|l. The most modern and comprehensive theory of the electromagnetic force isthe
theory of quantum electrodynamics, which you can learn about in a graduate course in physics.

» Strong nuclear force. The strong nuclear force is the force that holds together protons and neutronsin
the atomic nucleus, and overpowers the el ectromagnetic mutual repulsion of the nuclear protons. Itis
also responsiblefor nuclear fusion, which isthe process that causes the Sun to shine and is a so present
in the detonation of a hydrogen bomb.

» Weak nuclear force. The weak nuclear force is responsible for a process called g decay, in which a
neutron in the atomic nucleus decays into a proton and an electron, and the electron escapes from the
atom.

Every force we encounter in Nature is ultimately due to one of these four forces.

12.2 Hooke’s Law

If amassis attached to a spring and the spring is extended or compressed, then the spring will exert aforceon
the mass that’s proportional to the distance that the mass ismoved from its“ natural” position (theequilibrium
position). This fact was discovered by English physicist Robert Hooke, and is known as Hooke’s law. It is
expressed mathematically as

F = —kx, (12.4)

where F istheforce, x is the distance the mass is moved away from the spring’s equilibrium position. The
constant k is called the spring constant, and is a measure of the stiffness of the spring. The spring constant
has units of N/m.

Hooke's law is an example of an empirical law: it's something that has been found, by experiment, to
be at least approximately true over some range of physical conditions. In the case of a spring, Hooke's law
applies over arange of positions x, but it breaks down if you compress the spring to the point that the turns
of the spring are touching, or if the spring is extended beyond its elastic limit.

Hooke's law may be used to describe not only forces due to springs, but can also describe the reaction
of elastic materials. It can also be used to approximately describe many other forces over a small range of
displacements x.

12.3  Weight

Another important force was mentioned earlier in Chapter 2: weight is the force on an object due to the
Earth’s gravity. If the object is near the surface of the Earth, then itsweight W is given by

W = mg, (12.5)

where m isthe massand g = 9.80 m/s? isthe acceleration due to gravity.

12.4 Normal Force
If an object isresting on atable, then there are two forces acting on it: a gravitational force (itsweight) acting

downward toward the center of the Earth, and an upward force of equal magnitude acting upward, due to the
mutual electromagnetic repul sion between the outermost electrons in the object and the outermost electrons
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in the table. This latter force is called the normal force. For an object sitting on a horizontal surface, the
normal force is given by n = mg o that it exactly balances the weight. Thisisn’t always the formula for
the normal force, though. For example, if an object is sitting on a surface that’sinclined by an angle 0 to the
horizontal, then the normal force will ben = mg cos6, and will exactly balance the component of the weight
normal to the surface, whichis W, = mg cosf.

12.5 Tension

If aforce is applied to both ends of a rope or wire in opposite directions (so as to stretch the rope or wire),
then we say it is under tension. Tension, like other forces, is measured in newtons, and is equal to the force
applied at either end.
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Chapter 13

Newton’s Laws of Motion

Classical mechanics (sometimes called Newtonian mechanics) is based on three laws of motion described by
physicist Sir Isaac Newton (1643-1727, Figure ?7?) in hismonumental work Philosophig Naturalis Principia
Mathematica (“Mathematical Principles of Natural Philosophy”) in 1687.

Newton's three laws of motion are, in modern language and notation: *

1. Law of Inertia. A body at rest will remain at rest, and a body moving with constant velocity will
continue moving with that velocity, unless acted upon by some outside force.

2. F = ma: If aforce F is applied to a body of massm, it will accelerate with accelerationa = F/m.

3. Forces aways come in pairs that act in opposite directions. If body 1 acts on body 2 with aforce F,
then body 2 will act back on body 1 withforce F (equal in magnitude and oppositein direction).

13.1 First Law of Motion

Newton’sfirst law states that bodies have a property called inertia, which means that once given a velocity,
they will travel at that same velocity forever, unless acted upon by some outside force. Nobody knows why
thisis; it'sjust the way the Universe works.

In retrospect, thiswas a brilliant deduction by Newton. In real life, if you push an object across the floor,
it will dide for a while, then come to a stop. This behavior caused Aristotle to believe a moving body was
filled with some sort of substance that was “used up” as the body moved. But in spite of observations like
this, Newton was able to deduce that this slowing of an object is due to an external force (friction), and that
if it weren't for friction, the body would travel at the same velocity forever.

Today we have alittle easier time of it than Newton did—we can imagine the behavior of bodiesin space,
where frictional forces are negligible.

13.2 Second Law of Motion

Newton’'s second law of motion states that the net force F on abody is proportional to its resulting accelera-
tiona:

F =ma. (13.2)

1Appendix R gives Newton'slaws of mation in their original form.
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Figure 13.1: Sir Isaac Newton.

When aforce F isapplied to abody, it will accelerate with acceleration a = F/m—the larger the mass, the
smaller the acceleration.

If the force F isafunction of position, and using acceleration a = d ?x/dt?, thisbecomes a differential
equation

d?x
Fx)=m PR (13.2)

Solving this differential equation for x (¢) gives a complete description of the motion.

As we'll see later when we discuss momentum, the most general form of Newton's second law is not
F =ma,but F = dp/dt, where p ismomentum. Thisreducesto F' = ma when massis constant.

In Newton's second law as given in Eq. (37.1) is only its simple scalar form, and suitable for one-
dimensiona problems. More generaly, both force and acceleration are vectors, so that Newton’s second
law takes the form

F =ma (13.3)

Here F is the net force on the body — that is, the vector sum of all the individual forces acting on it. We
might write this more explicitly as

Y Fi=ma (13.4)

In other words, the vector sum of all the forces acting on a body equals its mass times the resulting accel-
eration. This vector formulais really a shorthand for writing three scalar formulas. Taking the x, y, and z
components of both sides of Eq. (13.4), we get

X Z Fyi = may (13.5)
y: Z Fy; = ma, (13.6)
Z: Z F;i = mag, (13.7)

(Of course, we omit the z equation when working in only two dimensions.) We'll see some examples of the
use of these equations shortly.
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13.3 Third Law of Motion

Newton's third law of motion states that forces always come in pairs that act in opposite directions. For
example, the Earth exerts a gravitational force on the Moon, and the Moon in turn exerts a gravitational force
back on the Earth.

As amore complicated example, consider the forces present when you are standing on the floor:

1. There is a downward gravitational force acting on you due to your mass and the Earth’s mass (your
weight).

2. Thereisan upward gravitational force acting on the Earth due to your mass and the Earth’s mass.
3. Thereisan upward normal force acting on you due to the floor.
4. Thereisadownward force acting on the floor due to you.

Items 1 and 2 are action-reaction pairs, as are items 3 and 4. Two of these forces are acting on you: your
weight downward, and the normal force upward. These two forces must be equal, because you're not accel-
erating, and therefore the net force on you is zero.
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Chapter 14

The Inclined Plane

An inclined plane (Fig. 14.1) is one of the classical simple machines.® Let’s consider the motion of a block
sliding down africtionlessinclined plane.

n = mg cosb

Figure 14.1: An object sliding on an inclined plane.

First, let's define a coordinate system: let’s take the origin at the block’s initial position, +x pointing
down the plane (in the direction of motion), and 4y pointing upward perpendicular to the plane. Let’s apply
Newton's second law to the x and y directions:

X Z Fx =mgsind = ma (14.2)
y: ZFy:n—mgCOS(9=O (14.2)

In Eqg. (14.1), the sum of the forcesin the x directionismg sin8; solving this equation gives the acceleration
of ablock down an incline:

@9

In Eq. (14.2), the forces in the y direction are n (in the 4y direction) and the y component of the weight
(mg cos ) inthe —y direction. Solving this equation gives the magnitude of the normal force: n = mg cos6.

From this example, we can see the general procedure for solving problemslikethis:

1. Define acoordinate system. You're free to define the direction and origin however you wish, so choose
something convenient that will make the equations simple.

1The others are the lever, the wheel and axle, the pulley, the wedge, and the screw. See Chapter 22.
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2. ldentify all the forces acting on the body. You may wish to draw a free-body diagram if it helps you to
identify the forces.

3. Find the projection of each force onto the coordinate axes you defined.
4. Apply Newton'ssecond law (3, F; = ma) inboth the x and y directions.
5. Solve the equations to find whatever you're asked to find.
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Chapter 15

Atwood’s Machine

Atwood’s machine is a device invented in 1784 by

the English physicist Rev. George Atwood. (See
Fig. 15.1 at right.) The purpose of the device is
to permit an accurate measurement the acceleration
due to gravity g. In the 18th century, without accu-

rate timepieces or photogate timers, thiswas a diffi-
cult measurement to make with good accuracy. At-
wood's machine has the effect of essentially scaling
g toasmaler value, so the masses accelerate more
dowly and allow g to be determined more easily.

Let's see how the machine works. There are
two identical masses (labeled A and B in the fig-
ure) connected by a light string that is strung over
a pulley. Since the masses are identical, they will
not move, regardless of whether one is higher than
the other. The tall ( 8 ft) vertical pole has a distance
scale marked off ininches.

To use the machine, we move mass A to thetop
of the scale, and place a small U-shaped bar on top
of the mass. (The bar islabeled M inthefigure, but
is shown somewhat enlarged; the actual bar would
be just a little longer than the diameter of the ring.)
Now mass A will begin accel erating downward until
it reaches ring R. The mass will then pass through
ring R, but the ring will lift the bar off the mass,
so that the bar is left behind, sitting on the ring—in
effect, thering “locks in” thefinal post-acceleration
velocity. After A passes throughthering, the masses
on both ends of the string will be the same, so the
acceleration will be zero and mass 4 will continue
moving with a constant velocity until it lands on
stage S. Bothring R and stage S are movable, and
can be moved up and down the scale as heeded.

To collect data, we use a pendulum as a timing
device. Move ring R up and down until it takes one
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second for mass A (with bar M on it) to fall from

the beginning of the scale to the ring. Then move stage S up and down until it takes one second for mass
A (now missing bar M) to move from ring R to the stage S. The distance between the ring and the stage
(divided by one second) gives the speed of mass A after it has accelerated for one second. Now repeat the
experiment for the case where mass A takes two seconds to fall from the top of the scaletoring R, then again
for three and four seconds; in each case move stage S o it is one second's falling time below the ring. In
each case, the distance between the ring and the stage gives the velocity v of mass A after A has accelerated
by the given number of seconds. Now since the acceleration is constant,

v =at + vo (15.2)

and vy = 0, so the accelerationisa = v/t; for each experiment, we can then determine the acceleration a.
In theory, a should be the same for each experiment, so we just take the average of the results.

Now that we've determined the accel eration of the masses a, how do we determine the actual acceleration
due to gravity g? To begin the analysis, let’s first define some coordinate systems. For mass A4, let +x be
downward, and for mass B, let +x be upward; that way, as mass A is accelerating downward and B is
accelerating upward, both will be accelerating in the 4+x direction; obviously both masses must have the
same acceleration a. Let themasses of A and B each be m, let the mass of the bar be mpg, and | et the tension
in the string be T', which is the same throughout the length of the string. Now let’s apply Newton’s second
law to both masses:

A: ZF =m+mpg)g—T = (m+mpy)a (15.2)
B: Y Fr=-mg+T =ma (15.3)

Adding these two equations together, we get
Mpar & = 2m + mpg) a (15.9)

and so the acceleration due to gravity g is determined from

2
g = myt Mo (15.5)
Mpar
where the acceleration a is determined as described earlier.
Conversely, if you aready know g and wish to predict the accel eration of the masses in the machine,
Mpar
=——3¢g. 15.6
. 2m + Mpa & ( )
More generally, if we refer to the two masses by their total mass and call themm 4 = m + mpy andmp = m,
then the two masses accel erate with acceleration
my —mp

a=—¢g. 15.7
mA+mBg ( )

The above equations may also be solved for the string tension 7°:

m + Mpa 2mamp
T =2m = 15.8
(2m+mbar)g mA+mBg (158)
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Complete Solution

Just for fun, let's work out the complete general solution for the Atwood's machine shown in Fig. 15.1.
Suppose the mass with the bar is released from near the top of the scale at timez = 0 and position x on the
scale; that the ring at position x - liftsthe bar off of the mass at time ¢, ; and that the the mass hitsthe stage at
position x at time ¢;. What isthe acceleration due to gravity g interms of xo, -, xr, ts, and x;?

Let’s begin with the motion between the release at time ¢ = 0 and reaching thering at timer = ¢,. The
mass is accel erating with constant acceleration @, so from the equations of one-dimensional kinematics (Eg.
(5.23)), wehaveatt =1,

Xy = %atrz + votr + Xo, (15.9)

where vop = 0 since the mass is released from rest. Assuming the scale increases going downward, the
acceleration will be positive and given by Eqg. (15.6); we then have

1 Mpar 2
Xp = 7 (2m i g) t; + xo. (15.10)
If we knew the time ¢, at which the mass reaches the ring, then we would be finished, just by solving Eq.
(15.10) for g—there would be no need for the stage later on. So apparently the time 7, was not measured
directly in practice. Let's continue the analysis, incorporating information about the motion of the mass
between the ring and the stage.

After thering liftsthe bar off of the mass, the mass will be moving at a constant velocity v, given by

vy = aty + vo (15.11)
Mpar
=|—- 1. 15.12
(Zm + Mpar g) " ( )
Solving for ¢,
2
f = (w) vy. (15.13)
Mpar§
Substituting thisfor ¢, into Eq. (15.10), we have
1 Mpar & 2m + Mpy 2 2
= = 15.14
r 2(2m+mbar)( Mbar g ) Ur o (1514)
1 /2
== (w v2 + xo (15.15)
2 Mpar g

We don’'t know the velocity v,, sowe'll need to eliminateit. At velocity v,, the mass will move from thering
at x = x, tothestage at x = x; intime
Xs — Xr

At = , (15.16)
Ur

where At = t; — t,. Solving for v,

Xs — Xr
= 15.17
Ur Al ( )
Using this expression to substitutefor v, in Eq. (15.15), we have
1 (2m + mpa Xs — Xp\2
_ 1 , 15.18
Xr =3 ( — ) ( A7 ) + Xo ( )
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Solving for g,
2m + Mpar Xs — Xp\2
2(x, — xo) = 15.19
(5 —x0) = (Pt ) (B ) (15.19)
At \* 2
2(xr — xo) ( ) _ 2 b (15.20)
Xs — Xr Mpar g
or
2m + My Xs — Xr\2
= . 15.21
& [Zmbar(x, — xo):| ( At ) ( )
Simplifying somewhat, we have
(m/mpar) + % Xs — Xp\2
= . 15.22
g [ Xr — Xo ( At ) (15.22)

Apparently in operating Atwood's machine, one needed to measure the masses (m and mpy), the positions
of the ring and stage (x, and x;), and the amount of time At it takes the mass to move from the ring to the
stage. Then the acceleration due to gravity g would be given by Eq. (15.22).
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Chapter 16

Statics

Statics isthe branch of mechanics that deals with systems in equilibrium, where bodies are all stationary. In
this case the forces all balance, and the net force on each body is zero.

16.1 Mass Suspended by Two Ropes

Asatypica example of a problemin statics, consider the situation shown in Fig. 16.1(a). A block of mass m
is suspended by a wire, and the upper end of the wire is attached to two more ropes or wires that connect to
the ceiling. Each of the three ropesis under tension; the tensions are labeled 7’1, 75, and T5.

To begin the analysis of thissituation, it is often helpful to draw afree-body diagram for each body in the
problem. A free-body diagram shows all the forces acting on the body, and helps clarify your thinking when
doing the analysis. For this problem, there are two bodies present: the block and the knot. Fig. 16.1(b) is a
free-body diagram for the block, and Fig. 16.1(c) is afree-body diagram for the knot.

Now let’'s begin the analysis; our goal will be to determine the three tensions 71, 73, and T3, given the
mass m and two angles 6; and 6,. First, let’slook at the free-body diagram for the block (Fig. 16.1(b)). For
the block, the tension and weight vectors are given by

T3 =T3] (16.1)

(Note the x and y directionsindicated in Fig. 16.1(a).) Now let’s apply Newton's second law in both the x
and y directions, notingthat F = ma = 0 in thiscase:

x: Y F.=may = 0=0 (16.3)
y: ZFy:may = T35 —mg=0 (16.4)

Both right-hand sides are zero because the acceleration of the block iszero. The x equation (Eq. 16.3) yields
atautology 0 = 0, which gives usno information. The y equation (Eq. 16.4) tellsus T3 = mg, Sowe've just
found tension T'.

We can find the other two tensions (7 and 73) by analyzing the other body: the knot (Fig.16.1(c)). For
the knot, the three tension vectors are given by

Ty =-T1cosb,i+ T Sin91j (165)
T, =T,cos0,i+ T, Sin92j (166)
T3 =-T3] (16.7)
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w

Figure 16.1: A block suspended from the ceiling by ropes. (a) Diagram of the situation. The block of mass
m is suspended by a rope; the upper end of the rope is attached to two other ropes that are attached to the
ceiling. (b) Free-body diagram for the block. (c) Free-body diagram for the knot.
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Now let’s apply Newton's second law (F = ma = 0) individualy to the x and y components:
x: Y F.=may = — Ty cosby + T>cos6, = 0 (16.8)
y: Y F=ma, = Tisnf +Tsn0,—T3=0 (16.9)

Again both right-hand sides are zero because the knot is not accelerating. Since T is aready known, this
gives two simultaneous equations in the two unknown tensions 7'; and 7,. One method for solving this
system of equationsisto write the equationsin matrix form:

—cosf; cosf, "y _( O
( snf,  sin, )( T )— ( Ty ) (16.10)
Now multiplying both sides on the |eft by the inverse of the 2 x 2 matrix, we have
T, \ _( —cosb, cosb, \ ' ( O

Since the tension 7’3 and the angles 6; and 6, are al known, this gives the two unknown tensions 7'y and 75.
We can further simplify this by computing the matrix inverse explicitly. The determinant of the 2 x 2
meatrix is (Appendix Q)

—cosf; cosf, \ . .
det( snd,  sné, )_—005919n92—9n9100592 (16.12)

= —sin(f;, + 6;), (16.13)

and the matrix of cofactorsis

—cosf; cosbt, \ sinf, —siné,
COf( sinf,  sint, )_ ( —cosf —cosb; ) (16.14)

Hence the matrix inverse, which is the transposed matrix of cofactors divided by the determinant, is

—cosfy cosb, \ ' B 1 sinf, —cosbt, (16.15)
sinf;  sino, ~sin(@; +6,) \ —sinf; —cosh; '
1 —sinf, cosf,
= ; . 16.16
sin(6: + 62) ( sinf;  coso; ) ( )
Thetensions 7 and T, are therefore
Ty 1 —sinf, cosh, 0
_ _ 16.17
()= s (oo o ) (7)) s
T3 cos 6,
_ , 16.18
sin(6; + 6,) ( cos b, ) ( )
Recall that we've already found 75 = mg; then thefinal results are
mg Cos6,
- ’ 16.19
"7 En(; + 6,) (16.19)
T, = m8eost (16.20)
sin(0; + 6,) ' .
T3 = mg. (16.212)
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16.2 The Elevator

An elevator isalarge box (caled a car) that is used to lift and lower passengers or cargo, typically operated
by a pulley arrangement.

Suppose an elevator contains a passenger of mass m, standing on ascale. The scale will then measure the
total force on the passenger. If the elevator is stationary, the scale measures the passenger’s weight, mg. If
the elevator is moving up or down with a constant velocity, then the scale still measures only the passenger’s
weight, mg. But if the elevator is accelerating upward with acceleration a, then the passenger will feel
heavier; the elevator’s upward accel eration will be added to the acceleration due to gravity, and the scale will
read m(g + a). If the elevator is accelerating downward with acceleration a, then the passenger will feel
lighter; the elevator’s downward acceleration will be subtracted from the accel eration due to gravity, and the
scale will read m(g — a). If the cable holding the elevator breaks, the elevator will fall downward with an
acceleration a = g, and the scale will read zero; in other words, there will be no force on the passenger, who
will begin floating inside the elevator car, similar to the way astronauts float inside a spacecraft.

Suppose you fall asleep, and wake up in aclosed, windowless elevator car in which you have your normal
weight. How do you know whether you're sitting stationary on the surface of the Earth, or if you're in
space, being accelerated by rockets at 9.8 m/s*? A remarkable consequence of Einstein's General Theory
of Relativity (Section 51.8) is: you can’t tell. There is no experiment you can do that would enable you to
distinguish gravity from an acceleration of the elevator car. Gravity and acceleration are equivalent. This
result has been proposed as a means for providing artificial gravity to astronauts during along space voyage:
the spacecraft can accelerate at 9.8 m/$ to provide artificial gravity for the astronauts up to the half-way point
of their trip; then the ship can rotate 180° and de-accelerate at 9.8 m/s* for the last half of thetrip.

16.3 The Catenary

Consider a chain elevated above ground, attached only at its two ends, both ends at the same height, and
hanging under its own weight. The chain will sag, forming a hyperbolic cosine curve called acatenary. With
a coordinate system defined as shown in Figure 16.2, the equation of the catenary is found to be
y = acosh (i) —a (16.22)
a
wherea = H/w, H isthe horizonta tension in the chain at the pole (in newtons), and w isthe linear weight
density of the chain (in newtons per meter).
The arc length s of the catenary from x = 0 to x isgiven by
s(x) = asinh (f) (16.23)
a
so that if the poles are separated by a distance d, thetotal arc length s; is
. d
sy =2asinh| — (16.24)
2a

Notethat if the horizontal tension H isvery large (the chain ispulled very taut), thena = H/w isvery large,
d/2aisvery smal, and so sinh(d /2a) ~ d/2a, sothat s; ~ d, as expected.

Linredl life, eevators are built with several levelsof safety devicesto prevent thiskind of freefall. If the power goes out, the brakes
automatically engage, since the power holds the brakes open. If the car goestoo far inside the shaft, another independent set of brakes
engages. Also, thereis alarge spring at the bottom of the shaft to catch the passengersjust in case everything else fails.
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Figure 16.2: A chain hanging under its own weight, forming a catenary curve.
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Chapter 17

Friction

17.1 Introduction

Friction is aresistive force between two solid bodies in contact that inhibitsthe motion of the objects. We're
all familiar withfrictionin everyday life: if you try to slide an object across the floor, it does not continuein a
straight line at constant speed, as might be expected from Newton'sfirst law of motion. Instead, the object’s
speed decreases until it comes to a stop. The reason is given by Newton’sfirst law: there must be an external
force present—the frictional force.

Friction is caused by the interaction of the surfaces of two objects rubbing against each other. For ex-
ample, as an object is diding across the floor, the top layer of atoms in the floor are constantly making and
breaking chemical bonds with the bottom layer of atoms in the object. Thisinteraction of the atomic layers
causes the object’s kinetic energy to be converted to heat bit by bit, so both the object and the floor become
hotter as the object slows down. (We'll learn about kinetic energy in Chapter 23.)

Here are afew facts about friction:

* Frictionisaforce that aways acts opposite the direction of motion of the object.

» Experimentally, we find that the frictional force f is proportional to the normal force n: f = un,
where p is called the coefficient of friction.

 Traditionally physicists describe three types of frictional force: static friction, kinetic friction, and
rolling friction. Static friction is at work when the object is stationary; kinetic frictionis at work when
the object is in motion; and rolling friction applies to rolling bodies. But under carefully controlled
conditions, experiments show that the two tend to become indistinguishable.

» No one has yet been able to derive the relation f = un from first principles. It's an example of an
empirical law: something that has been found to be at |east approximately true under many conditions.

17.2 Static Friction

You know from everyday experience that if an object issitting on the floor and you giveit avery light push, it

will not move. That's because africtional forceis at work: you have to give the object some minimum force
in order to get itto move at all. Thisisthestatic frictional force. It isfound experimentally to be proportional

to the normal force:

(7.
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where f; isthe static frictional force, n isthe normal force, and w5 isthe coefficient of static friction.

Noticethe “less than or equal to” signin Eq. (17.1). The static frictional force f isequal in magnitude to
the applied force, whatever the applied force may be—up until the point just before the object starts moving.
The equality sign holds when the object is just on the verge of moving. Once it begins to move, the kinetic
frictional forceisin play.

It is notoriously difficult to reliably reproduce measurements of the coefficient of static friction, which
suggeststhat it is due to nicks or bumps or other imperfectionsin the surfaces, or to bits of dust or other gunk
that hinder the initial movement of the object.

17.3 Kinetic Friction

Once you push on an object enough to get it moving, thereis akinetic frictional force that will tend to slow it
down unless you keep pushing onit. If you apply just enough force to keep it moving at a constant velocity,
then the force you're applying will be exactly equal to the the kinetic frictional force, which, like the static
frictional force, isfound to be proportional to the normal force:

@2

Here f; isthe static frictional force, n is the normal force, and . is the coefficient of kinetic friction. The
direction of the force of kinetic friction is always opposite the direction in which the body is moving.

If you push an object with a force less than f;, it will not move, and will be held in place by the static
frictional force fs. If you push it with a force greater than f;, it will accelerate with an acceleration a =
(Fapp — fr)/m, where Fyy, isthe applied force.

17.4 Rolling Friction

A different kind of frictional force applies to rolling bodies like wheels. If a whedl rolls along the ground
without dlipping, thereis arolling frictional force at the point of contact between the wheel and the ground,
due to the forming of chemical bonds between the wheel and the ground at that point, and the breaking of
those bonds as the wheel moves along to the next point. This is not kinetic friction, because the wheel is
not sliding across the ground — each point of the wheel isjust momentarily in contact with the ground. The
rolling frictional forceisfound to be, like the other two frictional forces, proportional to the normal force:

@

Here f, istherolling frictional force, n isthe normal force, and . , is the coefficient of rolling friction. The
direction of therollingfrictional forceis always opposite the direction of motion of the axis of thewheel. For
example, if thewhed isrollingto the right, then the rolling frictional force pointsto the left.

17.5 The Coefficient of Friction

Some physics textbooks and handbooks include tables of coefficients of friction (i s and ) for rubber on
wood, metal on metal, etc. These tables are all false, and should be ignored. The coefficient of friction
depends on a number of factors, including the smoothness of the surfaces and complex surface chemistry
(including contaminants from the air sticking on the surfaces), and cannot be simply looked up in atable.

So how do we determine the coefficient of friction? One simple method is to place an object of mass
m on an inclined plane (Fig. 17.1). Now tilt the plane up to higher and higher angles, gradually increasing
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0 until just before the object starts to move; let’s call thisangle 6. Now let’s apply Newton's second law
(F = ma = 0 since the acceleration is zero) to the x and y components of the motion:

X ZFx:max = mgsinfs — f; =0 (17.9)
y: Z F, = ma, = n—mgcosfs =0 (17.5)

n = mg cosb

Figure 17.1: An object sliding on an inclined plane, with friction included.

The x eguation (Eq. 17.4) tells us the magnitude of the maximum static frictional force:
fs = psn = mg siné. (17.6)
The y equation (Eq. 17.5) tell us the magnitude of the normal force:
n = mg cos by (17.7)
Now using Eg. (17.7) to substitute for the normal force n in Eq. (17.6), we have
fs = ps(mg cosby) = mg sinds. (17.8)

To solve for s, we divide through by mg cosf:

@9

So the coefficient of static friction between the object and the inclined plane isjust the tangent of angle 0 ;.

Now increase the incline angle 6 alittle more as you give the mass m little tapsto get it going. At some
angle 6, the object will keep moving, a a constant velocity. (Tipping the incline up farther will cause the
object to accelerate; you want the angle at which the object moves down the incline at constant velocity,
without accelerating.) Once again in this case the acceleration of the object is zero, and the analysis follows
just as with the static case. The coefficient of kinetic friction isthen

@719

So the coefficient of kinetic friction between the object and the inclined plane isjust the tangent of angle 6.
Asagenerd rule, the coefficient of static frictionis greater than the coefficient of kinetic friction; in other
words, it generally takes alarger force (acting against friction) to get an object moving than to keep it moving:

s > Mk (generally). (17.11)

But as mentioned earlier, under carefully controlled conditions, one finds the relationship tendstoward 1 5 =
i, SO thetwo frictional forces tend to become indistinguishable.
The coefficient of rolling frictionis typically much less than the coefficient of kinetic friction:

Hr <K WUk (generally). (17.12)
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Chapter 18

Blocks and Pulleys

In this chapter, we will examine the dynamics of two blocks connected with a string, where the blocks lie on
smooth (frictionless) surfaces, rough surfaces, or are hanging vertically.

18.1 Horizontal Block and Vertical Block

Consider thefollowing problem: ablock of massm 1 ison africtionlesshorizontal surface, and connected by a
string, through a pulley, to amass m, hanging vertically (Figure 18.1). (We assume the string is unbreakable,
unstretchable, and of negligible mass.) What isthe acceleration of the system?

First, we recognize that the block m; will accelerate to the right, and block m, downward, with the
same acceleration a, since the two blocks are tied together. Next, consider the forces on block m: it has a
weight m g, and isacted upon by anormal force, also of magnitudem ; g, so that the net force in the vertical
direction is zero. Thisis as expected, since the block is not accelerating in the vertical direction. In the
horizontal direction, the only force acting on m ; isthe string tension 7. Thus for m ;, Newton’s second law
gives, in the horizontal direction,

X Fi = mya = T =mia (18.1)

There are no horizontal forces acting on mass m,, but there are two vertical forces: the upward tension T
(equal to the tension acting on m 1) and the downward weight force mg. Then Newton’s second law for m,

Pulley
A
- — s

Figure 18.1: Horizontal and vertical pulley connected by a string.
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inthevertical (downward) direction, is
X Fi = mpa = myg — T = mpa (18.2)

This gives us two simultaneous equations in the two unknowns ¢ and 7. Adding the two equations will
eliminate the tension 7'; we can then solve for the acceleration « to find

ma
== 18.3
¢ mp + my & ( )

And then by Eq. (18.1), thetensionin thestring is

= "2, (18.4)
mj + my

Now let’s consider the same problem, but this time we' |l include friction acting on the horizontal block.
In this case, Newton's second law for m; (Eqg. (18.1)) will include a frictional force f = un = umig
(where 1 isthe coefficient of (kinetic) friction) acting to the left, and becomes

Y F; = mia = T —umig =ma (18.5)
Newton's second law applied to mass m, isthe same as before:
X, F; = mpa = mag — T = maa (18.6)

Adding these two equationsto eliminate thetension 7', we find the acceleration a to be

o= M2 A (187)
mp + my

and the tension to be (using Eg. (18.5)),

(1 + pymimy
= 8§
my + my

T (18.8)

Notice that these last two equations reduce to their frictionless counterparts when . = 0.

18.2 Inclined Block and Vertical Block

Now let’'s generalize the previous problem by placing block 7 ; on an upward inclined plane that makes an
angle 6 to the horizontal (Figure 18.2). We'll begin with the case where the inclined planeisfrictionless. The
forces on mass m; are the upward tension T as before, plus a downward acceleration m g sin6 down the
inclined plane.

Taking upslope as positive and downslope as negative, Newton’'s second law for iz 1 isthen

X, F; =mja = T —migsing = mia (18.9)
Newton's second law for m,, inthe vertical (downward) direction, isthe same as before:

X Fi = mpa = myg — T = mya (18.10)

88



Prince George's Community College Genera Physics| Simpson & Simpson

Figure 18.2: Inclined block and vertical block.

Asbefore, we add these two equations to eliminate the tension 7' and solve for the acceleration a. We find

—my;Siné
a= wg (18.11)
my + my

and then solving for thetension 7', we find

T = Mg (18.12)
my + my

Notice that these equations reduce to the equations for m ; on a horizontal surface (Section 18.1) when we set
0 = 0, as expected.

Note particularly how we chose the signsin this problem. When the system isreleased, the vertical block
will fall downward; we'll choose to call thisthe positive (+a) direction. Since thiswill result in the block
on the plane accelerating upslope, thismeans we must choose upslope to be the positive direction to keep the
signs consistent.

Now let’s generalize this even further by adding friction to the inclined plane. In this case, mass m ; will
experience an upslope force equal to the tension 7' and a downslope force m; g sinf. In addition, there will
be africtional force f = un = um;g cos acting opposite the direction of motion (downslope). Thus

3 F; = mya = T —mygsingd — umyg cosd = mya (18.13)
Newton's second law for m,, inthe vertical (downward) direction, isthe same as before:
X Fi = mpa = myg — T = mya (18.14)

Asbefore, we add these two equations to eliminate the tension 7' and solve for the acceleration a:

Lo my(pcosf 4 sind) g (18.15)
my + my

and we find the tension to be

mima (1 4+ pcosé + sinf)
g
my + my

T =

(18.16)
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The last two equations are generalizations of all the previous problems. Setting & = 0 recovers the equations
for my on a horizontal surface, and setting © = 0 recovers the frictionless formulas. Furthermore, setting
uw = 0and & = 90° produces the equations for the acceleration and tension for the Atwood's machine
discussed in Chapter 15.
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Chapter 19

Resistive Forces in Fluids

19.1 Introduction

In the last chapter we examined the frictional force between solid bodies in direct contact. Another type of
resistive force applies to objects moving through a fluid® such as air. In such a situation, the resistive force
Fpr isgenerally found to be proportional to some power of the velocity v of the body:

Fr o v™. (19.1)

We' Il examine two common models of this resistive force: one where n = 1, and another wheren = 2.
Examples with n = 1 include flow through fine fibrous mats such as furnace filters, and the movement of
fog, mist, and dust particles through the atmosphere. Examples with n = 2 include most falling objects,
parachute flight, and aerodynamic drag on automobiles.

19.2 Model I: Fp xx v

In thisfirst model, we model the resistive force Fr through a fluid as being proportional to the first power of
the velocity v:

Fr = —bv, (19.2)

where b isthe constant of proportionality; the minus sign showsthat the resistive force is always opposite the
direction of motion.

Under thismodel, the net downward force onthefallingbody ismg + F g = mg —bv. Then by Newton's
second law,

F = ma (19.3)
d
mg —bv = md_lt} (19.4)

Dividing through by m, we have

dv b, (19.5)

1A fluid is a substancethat flows (agasor aliquid).
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Thisis afirst-order differential equation, which you will learn to solve for v(¢) in a course on differential
equations. But briefly, for a differential equation of the form

dy .

ot p)y =q(), (19.6)
the solution y(¢) isfoundto be (Ref. [2])

y(@t) = % U n(t) q(t) dt + C], (19.7)

where C is aconstant that depends on the initial conditions, and 1.(¢) is an integrating factor, given by

n(t) = exp [/ p() dt:| . (19.8)

Sincethisisafirst-order differential equation, there will be one arbitrary constant of integration, and it isthe
constant C in Eq. (19.7).
Comparing Eg. (19.5) with Eq. (19.6), we have

y() =v(), (19.9)
pt) =b/m, (19.10)
q@t) =g. (19.11)

Then the integrating factor .(z) is, from Eq. (19.8),

n(t) = exp [/ p() dt:| (19.12)
= exp [/ % dt:| (19.13)
= Aebt/m. (19.14)

where A isa constant of integration. The solutionto Eq. (19.5) isthen given by Eq. (19.7):

—bt/m
p=" v U Aeltmg dr 4 C} (19.15)
_ ,—bt/m[ME bt/m / 19.1
e [ Sebtim c] (19.16)
=18 | crebiim (19.17)

b

To find the constant C’, we use the initial condition: if we release the body at time zero, then v = 0 when
t = 0; EQ. (19.17) then becomesat t = 0

0= % ol (19.18)
and so
c =" (19.19)
b
Therefore, from Eq. (19.17), the solutionis
_mg @e—bt/m’ (19.20)

b b
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or

_Mm& (y_ bt/m
v= " (1 e ) (19.21)
Thisisthe solutionwe're after: it givesthe falling object’svelocity v at any time ¢, assuming that it’s dropped
fromrest at timer = 0.
Now let’'s examine what happensto the solution (Eg. 19.21) as¢ — oo. In thiscase, the exponential term
approaches zero, and the falling object’s vel ocity approaches the limiting value

Voo = %. (19.22)

This is called the terminal velocity, and is a general feature of bodies faling through resistive fluids. at
some point the resistive force balances the downward gravitational force, and the body stops accel erating and
moves at a constant velocity.? Sky divers experience this phenomenon: some time after jumping out of an
airplane, a sky diver will reach aterminal velocity of roughly 100 miles per hour, and will not change speed
further until the parachute is deployed.

19.3 Model Il: Fg o v?

Now let’s consider a different model of resistive force in a fluid, in which the resistive force is proportional
to the square of the velocity:

Fr o v2. (19.23)

This model is appropriate for most situations when Model | is not used. We find experimentally that the
resistive force in this case is proportional to the area A normal to the flow direction, and to the density p of
the fluid. We write Eq. (19.23) as

Fr = 3CppAv?, (19.24)

where Cp is called the drag coefficient, and the factor of 1/2 is conventional. The drag coefficient Cp
depends on things like the shape of the falling body, its smoothness, and how turbulent the flow of fluid
around the body is.

Proceeding as with Model |, we have, starting with Newton’s second law,

F =ma (19.25)
1 2 dv
mg — 5CppAv® = mz (19.26)

Thisisa nonlinear differential equation that is much more difficult to solve than the one we had for Mode! |
(Eqg. 19.5). Instead of trying to solve for v(z), we'll simply note that we can find the terminal velocity v o, by
setting the acceleration dv/dt = 0 in Eq. (19.26). Thisimmediately gives

2mg
0 \ CppA ( )

So Model |1 of the resistive force, like Model 1, exhibitsa terminal velocity: astimet — oo, the velocity of
the falling body will approach a constant, v .

Example. With what speed do raindrops hit the Earth?
Solution. Assume the following rough estimates:

2A simpler way to arrive at Eq. 19.22 isto simply set the acceleration dv/dt = 0 in Eq. (19.5), which immediately gives v oo =
mg/b.
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Cloud base height: 2 = 1000 m
* Air density: par = 1.29 kg/m?

Raindrop (spherical) diameter: d = 2 mm
Raindrop (water) density: py, = 1.00 x 103 kg/m3

* Raindrop coefficient of friction: Cp = 0.5

First, let’'s try a naive approach, and neglect air resistance. As seen in Chapter 5, the velocity v of a
raindrop falling under gravity through a height % is given by

v = agh (19.29)
= /2(9.8 m/s?) (1000 m) (19.29)
=140 m/s (19.30)
= 313 mph (19.31)

Clearly raindrops are not hitting the Earth with a speed of 313 mph, or they would be lethal. The problem
hereisthat it isvery important to consider air resistance, or you will not get even close to the correct answe.

A more accurate analysis would be to alow for air resistance by computing the terminal velocity. After
falling 1000 meters, a raindrop will have more than enough time to reach the terminal vel ocity, so the impact
velocity will equal the terminal velocity, given by Eq. (19.27). We're given g, Cp, and p; the cross-sectional
A = nd?/4; and theraindropmassm = pyV = pw (md>/6). Then by Eq. (19.27), theimpact velocity will
be

. 2mg

. /CD s (19.32)
_ [2purd/6)g
_ [4pwdg
_ / a (19.34)
_ \/ 4(1000 kg/m?) (2 x 103 m) (9.8 m/s?) (19.35)
B 3(0.5) (1.29 kg/m?) '
=6.37m/s (19.36)
= 14.2 mph (19.37)

Whether or not it's important to consider air resistance in a particular problem is a matter of judgment
and experience. With practice you develop an intuitionabout when it’s likely to be important to include these
kinds of effects.

Example. Consider the following problem due to L.L. Simpson (Ref. [11]): if it is considered safe for an
adult to jump off of a three-foot high ladder without injury, what is the maximum design load for a conical
parachute that is 30 feet in diameter and has a drag coefficient of 1.5? The design air density is 0.08 Ib/ft3.

Solution. First, let’s convert everything to Sl units:
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» Height: 3ft = 0.9144 m.
* Parachute diameter: 30 ft = 9.144 m.
» Air density: 0.08 Ib/ft® = 1.281477 kg/m>.

Here's the general approach to the solution: from the first part of the problem, we can calculate the impact
velocity of an adult jumping from a three-foot ladder. That impact velocity is considered safe, so we'll use
that as the terminal velocity (using Eg. (19.27), since Model 11 is applicable for parachutes). We then solve
for theweight mg, which is the required maximum weight that can be attached to the parachute and still have
it reach a safe terminal velocity.

Let’'s begin. Theimpact velocity is given by Eq. (5.33),

v =+/2gh (19.38)
= \/2(9.8 m/s%)(0.9144 m) (19.39)
= 4.23347m/s. (19.40)

We'll set the parachute terminal velocity v, equal to this impact velocity. Now solve Eq. (19.27) for the
weight mg:

mg = 3Cp pAvZ,. (19.41)
Next replace the parachute area A with md?/4, where d isthe parachute diameter:
mg = gmCppd*vZ,, (19.42)

and substitute the numbers we're given:

mg = 1m(1.5)(1.281447 kg/m?)(9.144 m)?(4.23347 m/s)? (19.43)
= 1131.1670 N (19.44)
= 254 Ibf, (19.45)

where in the fina step we've converted back to British engineering units, the maximum design load is a
weight of 254 |bf.
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Chapter 20

Circular Motion

20.1 Introduction

Aswe've already seen, the acceleration vector a is defined by Eq. (8.2):

a—dv
Cdt’

This says that acceleration isthe time rate of change of the velocity. We typically think of an acceleration as
being a change in the magnitude of the velocity, but it can also be a change in the direction of the velocity.
For example, if a particleis moving in a circle at constant speed, it is still accelerating: the velocity vector,
while not changing its magnitude, is changing its direction with time.

So if we have a particle moving in acircle of radius r with a constant speed v, then it'saccel erating; what
are the magnitude and direction of the acceleration vector? The situation is shown in Fig. 20.1.

(20.1)

(a)

Figure 20.1: (a) A body moving in a circular path of radius r with constant speed v. Attimez, the body is
at position r; and has velocity vy ; at adightly later timez,, it isat position v, and has velocity v,. (b) The
difference in velocity vectorsv, — v, isthedirection of the acceleration vector.

96



Prince George's Community College Genera Physics| Simpson & Simpson

Notethat since the path iscircular, thetrianglein Fig. 20.1(a) is an isoscel es triangle with apex angle A6.
Since the speed v is constant, the trianglein Fig. 20.1(b) is also isosceles, and also has apex angle A6. Since
the two isosceles triangles have the same vertex angle, it follows from geometry that the two triangles are
similar. Therefore

|Av|  |Ar]|

(20.2)
v r
Multiplying both sides by v/ At,
A A
[Av] _ v |Ar] (20.3)
At r At
Taking the limit as At — 0,
. lAav] v |AT]
—_— = — 204
AHTO At r Allmo At (204)
or
dv v dr
- 20.5
dt r dt (205)

The left-hand side dv/dt isjust the acceleration a.; the second factor on the right-hand side dr/dt isthe
velocity v. Therefore this equation becomes

U2

ae = —. (20.6)
r

We've now found the magnitude of the acceleration of a particle moving in a circle: it's the square of its
speed divided by the radius of the circle. Thisacceleration is called the centripetal acceleration.

The direction of the centripetal acceleration vector can be seen by examining Fig. 20.1(b): by inspection,
you can see that the acceleration vector a points inward, toward the center of the circle.*

In summary, if aparticleismovinginacircular path of radius r with constant speed v, itsacceleration is:

* inmagnitude: a, = v?/r;

* indirection: inward, toward the center of the circle.

20.2 Centripetal Force

By Newton'sfirst law of motion, a body in motion will tend to continue that motion in a straight line, unless
acted upon by some outsideforce. Therefore, if abody ismoving inacircle, there must be some force present
that is causing it to move in a circle. Whatever force is responsible for making the body move in a circle we
identify as the centripetal force. The magnitude of the centripetal forceisegual to the mass of the body times
the centripetal acceleration v2/r:

Fo=—. (20.7)
r
For example, for a satellite orbiting the Earth, the centripetal force is the gravitational force. If you tiea
small weight to the end of a string and swing it over your head in a circle, then the centripetal force is the
tension in the string.

1Sincea = Av/At pointsin the same direction as Av.
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Typically the way we approach problemsinvolving uniform circular motionistowrite down an expression
for the centripetal force, and set it equal to mv?2/r.

Example. The International Space Station orbits the Earth at an altitude of about 350 km. How fast isit
moving?

Solution. We' Il write down an expression for the gravitational force and set it equal tomv 2/r. Theradius
of the Earth is 6378.140 km; if you add that to the altitude of the Space Station above the Earth’s surface, you
find the radius of itsorbit r = 6378.140 km + 350 km = 6728.140 km = 6728140 m. The centripetal force
in this case is the gravitational force, which (as will be seen later) isgivenby F = GM gm/r?, where Mg
isthe mass of the Earth, m isthe mass of the space station, r isthe radius of the orbit, and G is the universal
gravitational constant. Setting thisexpression for the gravitational force equal to the centripetal forcemv 2/r,
we have

Mgm  mv?

G——=—. (20.8)
r r
Multiplying both sides by r/m,
v? = G@, (20.9)
r
and so
p= [SMe (20.10)

r

Using the orbital radiusr = 6728140 mand GM g = 3.986005 x 10'* m® s72, we have the velocity of the
Space Station as

o [GMe (20.11)
r
3986005 x 10'* m* 572 (20.12)
- 6728140 m '
= 7697 m/s (20.13)
= 17,200 mph (20.14)

A note about Eg. 20.12: the product GM g, is known to higher accuracy than either G or Mg individually;
therefore we use the product here. See Appendix L for alisting of common physical constants.

20.3 Centrifugal Force

Sometimes it is helpful to think of uniform circular motion in terms of a fictitious centrifugal force. We've

all experienced this. when you're in an automobile making atight turn at high speed, you feel what appears

to bea“force” pushing you outward, away from the center of the circle. Thisiscalled fictitious force because

therereally is no force pushing you outward; instead, you're trying to continue moving in astraight linewhile

the car is turning underneath you. The “centrifugal force” isrealy just inertia: it is an artifact of making an

observation in the rotating reference frame of the car, rather than in an “inertial” (non-accelerating) frame.
The centrifugal force, like the centripetal force, has a magnitude of mv?/r.
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20.4 Relations between Circular and Linear Motion

It's a simple matter to derive some very useful relations between circular and linear motion. We begin with
the relation between arc length s and angle 6 (in radians) for acircle of radiusr:

s =rb. (20.15)

Taking the derivative with respect to time of both sides gives a relation between linear veloctiy v = ds/dt
and angular velocity w = d6/dt:

vV =ro. (20.16)

20.5 Examples

Example—motion in a horizontal circle.

Suppose you spin a mass m in a horizontal circle of radius r over your head; then the centripetal force
(thetensionin the string) ismv 2/ r, where v isthe speed of the mass.

Assume there is no gravity present; then what happens if the string suddenly breaks? Then the mass will
immediately move in a straight line tangent to the circle.

Example—motion in a vertical circle.

If you spin a bucket of water in a circle in a vertical plane (Fig. 20.2), then (if you're spinning it fast
enough) the centrifugal force (i.e. inertia) will keep the water in the bucket. How fast must you spin the
bucket?

At top of the swing (when the string is vertical
and the bucket is upside-down), the outward cen-
trifugal force mv?/r must be greater than or equal
to the weight of the water mg; so the minimum
speed v of the bucket is given by

2
g =mg (20.17)
or
v =./gr (20.18)

The time T required for the bucket to make one
complete circle (called the period of the motion) is

then
2 2
r="""_ (20.19)
v Jer
or

T =2n \E (20.20)

For example, if the bucket isswungin acircle of ra-
dius 0.8 meters, this formula gives a period of 1.80
seconds; in other words, if you swing the bucket in
a vertical circle at a constant speed so that it com-
pletes each circle in not more that 1.80 seconds, the  Figure 20.2: A bucket of water being spun in a verti-
water will stay in the bucket, even at the top of the cal circle. Inertia (sometimes thought of as a fictitious
swing. “centrifugal force”) keepsthewater inthe bucket, even
when upside-down. (Ref. [18]).
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Chapter 21

Work

21.1 Introduction

If aforceisapplied to an object over some distance, the force is said to have done work on the object. The
work doneis equal to the product of the force and the distance through which the force acts.
Work is measured in Sl unitsin joules (J), named for the English physicist James Joule;

kg m?
1J=1Nm=1=—. (21.1)
In CGS units, work is measured in ergs:
gcm?
lerg=1dynecm =1 e (21.2)

The British engineering system does not have any special name for work; itissimply measured in foot-pounds
(ft-1bf).

Although work is always the product of force and distance, there are simpler expressions if the force is
constant or in the direction of motion. We'll look at these special cases before examining the general case.

21.2 Case |l: Constant F || r

Suppose that the applied force is constant and parallel to the direction of motion. Then the work W done by
theforce F acting through a distance x issimply

W = Fx. (21.3)

Example. Suppose you have a box sitting on the floor. You apply a force of 50 N to the box over a
distance of 4 meters, causing it to accelerate. Then the amount of work done by you on the box is W =
(50 N)(4 m) = 200 J.

Example. Suppose a mass m is sitting on the floor; you pick it up and lift it a height 4. Then you have
donework W = mgh on the mass against gravity. Another way to think of thisis to say the gravitational
force has done work —mgh on the mass against you. If you now lower the mass down to the ground, you're
doing negative work —mgh onthe mass against gravity, and gravity is doing work +mgh on the mass against
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you. It'simportant to keep the signs straight when computing work: be sure you're clear about what force is
doing the work.

Note that the physics sense of “work” is a bit different from the everyday sense. If you're standing with
a100-1b mass in your arms, your muscles are exerting quite a bit of effort to hold up the heavy mass. But in
the physics sense of the word, you're doing zero work against gravity. Only if you lift the mass are you doing
work.

21.3 Case ll: ConstantF 4 r

Now let’slook at amore general case. Suppose the applied force F is still constant, but not necessarily inthe
direction of motion. Then thework W done by the force is equal to the component of F that’'sin the direction
of motion times the distance over which the forceis applied. We can write this using the dot product:

W =F-r, (21.4)

where r isavector in the direction of motion, whose magnitudeis equal to the distance over which the force
isapplied.

Example. Suppose a constant force F of magnitude F = 60 N acting 30° from the horizontal isapplied to
abox sitting on the floor for a horizontal distance of 12 m. Then the work done by the forceisW =F - r =
Frcosf = (60 N)(12 m)(cos30°) = 623.5 J.

21.4 Case lll: VariableF || r

Now let’stake another case: suppose theforce F isin the direction of motion, but suppose F' isnot constant,
but is a function of position x. Now take the straight-line path over which object moves and divide it into
many infinitesimal segments, each of length dx. Then over distance dx, the force F can be considered
constant, and the work d W done over distance dx is F(x)dx. To get the total work done by the force F, we
sum up all these contributions Fdx by doing an integral:

W = / F(x) dx. (21.5)

Example. For a mass on a spring, the work done by the spring force is given by Hooke'slaw: F(x) =
—kx, where k isthe spring constant. Then the work done by the spring is

W = f F(x) dx (21.6)
~ [ ax (21.7)
=—k f x dx (21.8)
= —2kx2. (21.9)

In extending the spring a distance x from equilibrium, awork —k x 2 /2 is done by the spring; work +kx2/2
is done by you, against the spring.
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21.5 Case IV (General Case): Variable F } r

In the most general case, an object moves through some arbitrary path in space, and the force F is variable,
which we'll write as F(r). Then we'll dividethe path into infinitessimal segments dr, and the force along d r
can be considered constant over that short distance. The work doneby theforcealongdrisd W = F(r) - dr.
Then the total work done by the force is computed with an integral:

W = /F(r) -dr. (21.10)

This means that you imagine dividing the entire path into infinitesimal segments dr; at each segment, you
compute the force F(r) at that segment, and take the dot product F(r) - dr. You then add together all those
dot products with an integral to get the total work done by the force.

This general expression for work reduces to the other formulee under the special conditions mentioned
earlier. For example, if F actsin the direction of motion, then F(r)-dr = F(x) dx, and we get Eq. (21.5).
If the force F in Eqg. (21.10) is constant, then F can be taken outside the integral, and we recover Eq. (21.4).
Andif F and r are parallel, then Eq. (21.4) reduces to Eq. (21.3).

21.6  Summary

The following table shows all four work formulag and the conditions under which they may be used.

Table 21-1. Formulaefor computing work.

Formula F | r? Constant F?
W = Fx v v
W=F-r v
W = [Fdx v
W= [F-dr
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Chapter 22

Simple Machines

A given amount of work may often be accomplished with less effort by employing some sort of machine.
Classical physics has, since the Renaissance, recognized six basic simple machines. All other machines in
usetoday may be considered as combinations of two or more of these simple machines. The simple machines
are:

. inclined plane

1

2. wheel and axle
3. pulley

4. lever

5. wedge

6. screw

Each of these simple machines allowswork to be performed with less effort, by trading off effort (applied
force) for distance. Recall that work is the product of force and distance: W = Fx, so that the same amount
of work W may be accomplished by applyingasmaller force F over agreater distance x. Thisiswhat smple
machines do.

We define the mechanical advantage of asimple machine to be theratio of the resistance (resistive force)
Fr totheeffort (effort force) Fg:

M =R (22.1)

Fg

For example, the resistive force Fr may be the weight of a body, and the effort force Fg may be the force
required to lift it. Suppose, for example, that we have a body of mass m, and we wish to lift it onto the top
of atable. Inthis case, theresistive force is the weight of the body, mg; the force required to lift it directly
onto the table is equal to also its weight mg, so the mechanical advantage for lifting the body directly (with
no machine) isM.A. = mg/mg = 1. If one uses a simple machine such as an inclined plane or pulley, the
same body may be lifted with less force, and therefore amechanical advantage greater than 1. In the sections
below, we' [l see how to compute the mechanical advantage for each of the simple machines.

We may also define the efficiency of a simple machine to be the ratio of the output work W, to the input
work W, . Since work isforce times distance,

_Wg_ Fr xg
W, Fgxg

n (22.2)
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where W, = Fgr xg isthe output work—the resistive force times the distance over which the resistive force
moves, and W; = Fg xg isthe input work—the input effort force times the distance over which the effort
force is applied. In the absence of friction, the efficiency of a simple machine will be 1, or 100%, and the
input and output work are equal. If friction is present, then alarger input effort force F g will be required to
overcome friction, and the efficiency will be less than 1.

22.1 Inclined Plane

An inclined plane (previously encountered in Chapter 14) is a flat surface tilted at some angle 6 from the
horizontal. For example, if you're ever rented a moving van, the van will have an inclined plane (a“ramp”)
at the back of thetruck. Instead of lifting heavy items directly into the back of the truck, one may push or roll
them up the ramp. This requiresless force (effort), at the expense of having to move it farther. (Figure 22.1)

FOUR MEN NEEDED TO
ILIFT SAFE ONTO TRUCK

__ _LENGTH OF PLANE
T HEIGHT OF PLANE

THL INCLINED PLANE

Figure 22.1: The inclined plane. In thisexample, L = 12 ft, H = 3 ft, so the mechanical advantage is
M.A. = L/H = 4. Rollingthe safe up theincline requires only 1/4 the force of liftingit directly. (Ref. [17])

In the case of an inclined plane whose inclined length is L and whose high end is at height H, the
mechanical advantage isfound from W; = W,, or

FgL=FrH (22.3)
so the mechanical advantage M.A. = Fr/FEg is

Ma =L o (22.4)
H

Note that as 6 — 90°, the inclined plane approaches a vertical ramp, and the mechanical advantage ap-
proaches 1, as expected. The mechanical advantage of the inclined plane may be made arbitrarily large by
increasing the length L of the plane.

22.2 Wheel and Axle

A wheel and axle consists of a large whedl rigidly attached to a smaller axle. The resistive force is attached
to the axle, and the applied effort force is attached to the larger wheel. Then the distance traveled by the
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resistive forceis2nr,, where r, isthe axle radius. The distance through which the effort force is applied is
2 ry, Wherer,, isthe whedl radius. (Figure 22.2.)

{2) The wheel and axle.

Figure 22.2: (a) The wheel and axle. (b) The windlass, another type of wheel and axle. Here R isthe
resistance (resistive force) and E isthe effort (effort force). (Ref. [17])

The input and output work are

W; = Fg 2mtry, (22.5)
» = Fr2mr, (22.6)

In the absence of friction, W; = W,, so
Fg 2nry = FR2mr, (22.7)

The mechanical advantage is then

MA = IR _ 2T (22.8)
Fg 2mrg
or
Tw
MA. =2 (22.9)
Ta
22.3 Pulley

A pulley isagrooved wheel mountedinaframe. Pulleysmay be connected to other pulleysto form compound
pulley systems that have alarge mechanical advantage. One may use such pulley arrangements to allow just
one or two men to lift alarge, heavy object such as a piano or safe. (Figure 22.3)

The mechanical advantage of a set of pulleysisequal to the number of strands Nz holding up theresistive
force:

M.A. = Ng (22.10)

Therefore one can gain alarger mechanical advantage (and thus lift a heavier weight) by using more pulleys.
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Figure 22.3: Systems of pulleys. These systems have a mechanical advantage of (left to right): 1, 2, 5, and
6, so that each example requires only 1 Ib of effort to lift 1, 2, 5, and 6 pounds, respectively. Note that the
leftmost arrangement only changes the direction of the applied effort force, by allowing usto pull downward
to lift the weight upward; it does not provide any mechanical advantage. (Ref. [17])

22.4 Lever

Swc pot o otw koL T yov kwwaow. (Give me a place to stand, and | shall move the Earth.)
—Archimedes

In thisfamous quote, Archimedesisreferring to the lever. A lever isarigid bar free to turn around a pivot
point called the fulcrum. Levers may be divided into three classes, according to the relative position of the
effort, resistance, and fulcrum (Figure 22.4):

* First class — the fulcrum is between the resistance and the effort.
» Second class — the resistance is between the fulcrum and the effort.
» Third class — the effort is between the fulcrum and the resistance.

The mechanical advantage of the lever may be found simply. The distance from the effort to the fulcrum
is called the effort arm (r g); the distance from the fulcrum to the resistance is called the resistance arm (r g).
Then in the absence of friction, the input work eguals the output work:

I/Vi = Wo (2211)
or
FE re = FR 1 (22.12)

Thus the mechanical advantage isthen Fr/ Fg, or the effort arm divided by the resistance arm:

mA =L (22.13)

'R
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Figure 22.4: The three classes of levers. (Ref. [17])
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Figure 22.5: A jackscrew, here used to lift the back of atruck. (Ref. [17])

22.5 Wedge

The wedge is a movable inclined plane, used to split a body. Examples are axes, chisels, knives, nails,
and pins. Because friction plays a large role in the operation of the wedge, it is difficult to determine its
mechanical advantage.

22.6 Screw

The screw is essentially an inclined plane wound around cylinder. A common example isajackscrew (Figure
22.5). Let ¢ be the length of the arm, and let p be the pitch of the screw (the distance between successive
threads). Then one complete turn of the arm will move the end of the arm a distance 25 £, and thiswill result
in the load being moved a distance p.

Since the input work is equal to the output work,

Wi=W, (2214)
or
Fg (27‘[@) = FRp (22.15)

The mechanical advantage of the jackscrew isthen Fr/ Fg, or

MA. = 2t (22.16)
V4
22.7 Gears

Some writerslist the gear as a seventh simple machine, but itisn’t. There are only six simple machines. The
gear is a compound machine: a combination of the wheel and axle and the pulley.

A system of two connected gears can provide a mechanical advantage, inarotational sense. Therotational
work done by a rotating disk like a gear is' W = 76, where t is the torque applied to the gear, and 6 isthe
angle through which the gear isturned. Since the input work is equal to the output work,

W =W, (22.17)

1Rotational motion is described |ater in these notes.
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or
tg0r = tRrOR (22.18)

The mechanical advantage of the two gearsisthen tg /g, or

N
ma =5 v _ TR _ Nk (22.19)

 6r wr TE Ng

Here one of the two gears (E) isthe “input” (effort) gear, and the other gear (R) isthe “output” (resistance)
gear. Therefore the mechanical advantage is the ratio of the input angle rotated (6 g) to the output angle
rotated (6g). Itisalso equa to the ratio of the angular speeds of the input to output gears; to the ratio of the
output to input gear radii (r g/ rg); and to the ratio of the number of teeth in the output gear to the number of
teeth in theinput gear (Nr/NE).

The mechanical advantage is aso known as the gear ratio.

If the input gear is smaller than the output gear (r g < rr), then several turns of the input gear are needed
for each turn of the output gear. The mechanical advantage (gear ratio) is greater than 1, and less input torque
isrequired to do the same work.

If the input gear islarger than the output gear (rg > rgr), then one turn of the input gear will produce
several turns of the output gear. The mechanical advantage (gear ratio) isless than 1, and more input torque
is required to do the same work; this can be used to turn the output gear at high speed while turning the input
gear at low speed.

An example of the use of gearsisin the bicycle. The input gear (the chainring) is attached to the pedals,
and the output gear (the cog) to the rear wheel. In addition, most bicycles provide severa gears on both the
chainring and the cog, and the rider is able to select a different gear for each. For a bicycle, the gear ratio
is usually less than 1, so that each turn of the pedals will result in more than one turn of the rear wheel. A
larger gear ratio (a small front chainring gear used with a large rear cog gear) provides a larger mechanical
advantage, and isused for pedaling up hillswith less effort. A smaller gear ratio (alarge front chainring gear
used with a small rear cog gear) provides a smaller mechanical advantage, and is used for pedaling at high
speed on level ground or downhill.
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Chapter 23

Energy

23.1 Introduction

Energy isone of the most important conceptsin all of physics, although it’s a bit difficult to define exactly.

Unitsfor energy are the same as the units of work: joules in Sl units, ergs in CGS units, and foot-pounds
in British engineering units.

Another common (non-Sl) unit of energy is the electron volt (eV). Thisis a small unit of energy, com-
monly used in atomic, nuclear, particle, and plasma physics. It is defined as the amount of energy gained by
accelerating an electric charge equal to the electron charge through an electric potential difference of 1 volt,
and hasavaueof 1 eV = 1.602176634 x 10712 J.

23.2  Kinetic Energy

Kinetic energy is the energy abody has as a consequence of it being in motion. If abody isat rest, it has zero
kinetic energy; if it isin motion, it has more kinetic energy the faster it's going.

Kinetic energy is defined to be the amount of work required to accelerate a body of mass m from rest to
velocity v. We can compute an explicit formula for it as follows: by definition, the kinetic energy K is, by
Eq. (21.5),

K:W:/FM. (23.1)
Applying Newton’s second law F' = ma,
K = /ma dx (232
=4 23.3
mm x. (23.3)
Now applying the chain rule,
dv dx
K= ——dx 234
/ dx dt (234)

Cancelling dx in denominator with the final dx,

K = / m— dv. (23.5)
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Now dx/dt isjust the velocity v, SO

K= /OU mv dv (23.6)
= m/ov v dv (23.7)

or
K = %mvz. (23.8)

Sometimes it's useful to write thisin vector form:

K =ZImv-v. (23.9)

23.3 Potential Energy

Potential energy is stored energy; energy is stored in the system in some fashion. Once the potential energy
isreleased, it can do work.
Since potential energy U isthe ability to do work, it can be expressed as

U=-W= —/ F(x) dx, (23.10)

where W isthe work done by the force. Unlikethekinetic energy K, for which thereis asingle formula (Eq.
23.8), potential energy has many formulag depending on what force present.
Gravity

For example, suppose the force is gravity between two point masses, for which the force given by F =
—Gmmy/r?. Then the potential energy is

U(r) = — / F(r) dr (23.11)
_ _Gmrl m e (23.12)

We now have a formula for the potential energy for the gravitational force—but what do we do with the
integration constant C? It turns out that C is completely arbitrary; you can set it to any convenient value.
Values of potential energy actually have no physical meaning; it is only differences in potential energy that
are physically meaningful, and for differences in potential energy, the integration constants C cancel out.
Thisisan important feature of potential energy that you should keep in mind.

By convention, one generally chooses the integration constant for gravity so that U = 0 when r = oo,
and by inspection of Eq. (23.12) this implies that we choose C = 0. So for gravity we find the potential
energy function U(r) to be

Gmlmz

Ur)=—- (gravity). (23.13)

Note that the gravitational potential energy is always negative; as the masses become increasingly separated,
the potential energy increases, becoming less and less negative, finaly reaching zero when the masses are
infinitely far apart.
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Eq. (23.12) may be used to find an expression for the gravitational potential energy of a mass m due to
the Earth, which has mass Mg and radius Rg:

GM@m
r

U(r) = +C. (23.19)

Here one may choose U = 0 a r = oo (for which C = 0), or one may choose U = 0 at the surface of
the Earth (r = Rg). The choiceis arbitrary, and just depends on what is most convenient for the problem at
hand. In the second case (U = 0 at r = Rg), we can find C by noting that

M
URg) = —ZMe™ L ¢ o, (23.15)
Re
so
c = GMem (23.16)
Re
Thus
1 1
U(r) = GMgm (— - —) , (23.17)
R@ r
orintermsof thealtitudes = r — Rg,
1 1
= _—— ity, Earth). 23.1
Uh) = GMgm (Rea 7 R@) (gravity, Earth) (23.18)

An important special case of thisis when a body of mass m is a short atitude i above the surface of
the Earth. In this case, Eq. (23.18) may reduced to a much simpler form. First, expand 1/(h + Rg) into a
binomal series:

1 1 h WK

B I 23.19
h+Re Re RgB+R§B R§9+ (2319)
Now substitute thisresult into Eq. (23.18):
1 1 h n* K
Uh) = GMgm | — — | — — — 4+ — — — + - (23.20)
® [R@ (ReB RL "Ry RS )]
h h? h3
=GM e — e 23.21
o (Ré RS T RY ) (23.21)
If h < Rg, we can neglect all but the first term in the series in parentheses; we then have
h
U(h) ~ GMgm (—2> (23.22)
Rg
GM
= 2mh (23.23)
R
®

Or, since GMg/R3, = g,

‘ Uh) = mgh (gravity, near Earth surface). ‘ (23.24)

Inthiscase, i isthe height above any convenient surface. Choose what height you want touseforthe U = 0
level at the beginning of a problem, then stay with that choice throughout the solution to the problem. A
typical choice for many problemsisto choose U = 0 at the floor, ground, or atabletop, so that / isthe height
above that surface. But remember: the choice of where you choose U = 0 is arbitrary, so you can use any
choice that is convenient.
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Electric Potential Energy

As a third example, consider the electrostatic force between two point charges, which is similar in form to
the gravitational force between point masses. The electrostatic force is given by Coulomb’s law,

1 qqe
drreg 12’

(23.25)

where g; and ¢, are thetwo chargesin coulombs, r istheir separation, and ¢ isthe permittivity of free space.
Proceeding as we did with gravity, we find

qi19>2
4meor

Ur) = (electric force), (23.26)

where again we choose, by convention, tohave U = 0 a r = oo. Inthiscase U(r) will be negative if the
charges are attracted, and positive if they are repelled.
Elastic Potential Energy
As afourth example, consider the elastic force on a mass attached to a spring. In this case, the force isgiven
by Hooke'slaw, F = —kx. The potential energy functionis
Ur) = —/(—kx) dx (23.27)
= Tkx? + C. (23.28)

Conventionally we choose C = 0, so that

U(r) = 3kx*  (spring, Hooke'slaw). (23.29)

Summary
In summary:

» There are many different formulaefor potential energy, depending on what forceis present. A few such
formulaeare shown in Table 23-1.

* You can aways add an arbitrary constant to the potential energy; it is only differences in potential
energy that are physically meaningful.

Table 23-1. A few formulaefor potential energy.

Force Formula
Gravity U =—SGmm

r

Gravity (near Earth surface) U = mgh

Electric U=
Elastic (spring) U= kx?
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23.4 Other Forms of Energy

The sum of the kinetic and potential energies is called the mechanical energy:
ME. =K+ U. (23.30)

Energy can occur in a number of other forms besides kinetic and potential. For example:
» Thermal energy isthe energy of heat.

* Acoustic energy isthe energy of sound.
* Electromagnetic energy isradiant light energy.

» Mass energy. Einstein showed that mass itself can be converted directly into energy, the clearest illus-
tration being the mutual annihilation of matter and antimatter. If a mass m is converted entirely into
energy, the amount of energy producesis given by Einstein’s famous equation,

Eo = mc?, (23.31)
where E isthe mass energy and ¢ isthe speed of light in vacuum.

Energy can be converted from one form to another. For example, if you hold an object a height 2 above
the floor, its energy is all potential. When you release it, its energy is converted little by little from potential
to kinetic as it falls. By the time the object is about to hit the ground, al of its potential energy has been
converted to kinetic energy. After it hitsthe ground, al of that kinetic energy has been converted to thermal
energy (causing both the floor and the object to get hotter) and acoustic energy (you can hear the sound of the
object hitting the floor).

23.5 Conservation of Energy

One of the most important laws in physics is called the law of conservation of energy. It states that, if you
add up all the energy inasystemin all itsforms (giving the total energy E), that total energy will not change
with time. Energy may be converted from one form to another, but the total energy will remain constant as
long as the system is closed (i.e. no energy enters or leaves the system).

The conservation of energy isnot only an important physical principle, but it can also be used as a shortcut
in solving certain problems.

Example. A body of mass m isdropped from a height 2. What isitsimpact velocity (i.e. its velocity just
before hitting the floor)?

Solution. There are a number of ways of approaching this problem. We could, for example, use Eq.
(5.23) for x () to solvefor thetimet it takesthe body to fall, then substituteinto Eq. (5.17) to find the impact
velocity. Alternatively, we could use Eg. (5.31) to find the impact velocity directly.

A third approach is to use the conservation of energy. When the body is a height / above the floor, its
potential energy isU; = mgh, and, sinceit'sat rest, itskinetic energy is K; = 0; itstotal energy istherefore
E; = U; + K; = mgh. Just before it hits the ground, al of that potential energy has been converted to
kinetic energy; its potential energy isnow U s = 0, itskinetic energy is Ky = mv?/2, and itstotal energy is
therefore Er = Uy + Ky = mv?/2. Since total energy E is conserved, we must have

E; = Ef (23.32)
mgh = +mv? (23.33)
or, solving for v,
v =+/2gh. (23.34)
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23.6 The Work-Energy Theorem

Not only can energy be converted from one form to another, but it can aso be converted into work, and vice
versa. If aforceis applied to a moving body over some distance, then work is done on the body, causing a
change in its kinetic energy. The change in kinetic energy of the body is equal to the amount of work done.
Thisresult is called the work-energy theorem:

@39

Example. Suppose a body of mass 1000 kg is moving at a speed of 50 m/s; then its kinetic energy is
K = mv?/2 = 1,250,000 J. If we now do awork of 200,000 J on the body in the direction of motion, then
by the work-energy theorem its kinetic energy will increase to 1,450,000 J. Its final velocity will then be

v=+/2K/m = 53.85m/s.

23.7 The Virial Theorem

The virial theorem relates the time-average kinetic energy of a system to the time-average potentia energy.
In the common situation that the force is proportional to some power of the distance,

Focrm, (23.36)

then the virial theorem states that the time-average kinetic energy (K) isrelated to the time-average potential
energy (U) by

(K) = (U). (23.37)

Since the total energy £ = (K) + (U), we can use the virial theorem (Eq. 23.37) to derive a useful
expression for the total energy in terms of the time-average energies:

n+3 n+3
K) = U). 23.38
1 (K) =) (23.38)

Example. For the spring (Hooke'slaw) force F = —kx, we haven = 1. So by the viria theorem (Eq.
23.37),

(K)=(U). (23.39)
It turnsout inthis case that (K) = (U) = kA2 /4, where A isthe amplitude of the motion. By Eq. (23.38),
E =2(K) =2(U) = kA% (23.40)
Example. For the gravitational force given by Newton's law of gravity (F = —Gm (m,/r?), and o
n = —2. Then by the virial theorem,

(K) =—3(U). (23.41)
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Inthiscase, (K) = Gmim,/(2r). By Eq. (23.38),

wy = -G (23.42)
2r

This second example has some interesting consequences. Suppose we have a body orbiting the earth with
orbital radius r. Its velocity is then given by Eq. (20.10):

M.
v — Gr@, (23.43)

where G isthe gravitational constant and Mg is the mass of the Earth. Now suppose we increase r, putting
the body into a higher orbit. What happens to the energy? Since the potential energy isU = —GM gm/r,
boosting the body to a higher orbit increases its potential energy. By Eq. (23.43), its velocity will decrease,

thereby decreasing its kinetic energy. What happens to the total energy? By the virial theorem, the second
example shows that the increase in potential energy is twice the decrease in potentia energy, so overal, the
total energy isincreased for higher orbits.

Now suppose you're in a spacecraft, trying to dock with the International Space Station, whichisin orbit
ahead of you (looking in the direction of motion), at the same orbital radius. To reach the Space Station,
you must do something counterintuitive: fire your spacecraft jets toward the station, so that there’'s a force
pushing you away from the Station. Thiswill slow the spacecraft down, decreasing its total energy, thereby
dropping it into a lower orbit, where its velocity will increase—causing the spacecraft to move toward the
Space Station.
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Chapter 24

Conservative Forces

A conservative force is one which has the following properties:
» The work done by the force isindependent of path.

» The work done by the force over aclosed path is zero:
ggF-dr:O. (24.1)

» The force can be written as the derivative of a potential energy function U:

dU

- (24.2)

F =

These three properties are all eguivalent statements of the same thing. Examples of conservative forces are
gravity and the the electrostatic force.

Some forces, such as friction, are not conservative. Such forces have no corresponding potential energy
function. For the frictional force, for example, the work done does depend on the path taken by the body, and
thefrictional force has no potential energy function.
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Chapter 25

Power

Simply put, power isthe rate of change of energy (or work) with time:

dE
P =—. 25.1
7 (25.1)
In Sl units, power is measured in units of watts (W), named for the Scottish engineer James Waitt:
tw=1d = ke (25.2)
s 8 '
In CGS units, power is measured in units of statwatts:
er cm?
| statwatt =1 29 —1 9 3 (25.3)

The British engineering unit of power has no special name; it is simply a foot-pound per second (ft-1bf/sec).

Another common unit that is not part of the British engineering system is the horsepower (hp): 1 hp =
550 ft-Ibf/sec, or about 745.7 watts. The power produced by an automobile engine is traditionally measured
in horsepower. A few examples:

* Lawn mower: 5 hp
* Smart car: 90 hp
* Typica modern automobile engine: about 200 hp

1967 Pontiac GTO “muscle car”: 360 hp

Semi truck (tractor): 500 hp
» Modern farm tractor: 500 hp
» Formula One engine used in a modern Indianapolis 500 race car: 700 hp or more

» “Monster truck” (as seen at county fairs): 1500 hp
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25.1 Energy Conversion of a Falling Body

As an example, let's look at a body of mass m (near the surface of the Earth) released from height # and
faling under the influence of gravity. As the body falls, we've noted that the initial potential energy is
gradually converted to kinetic energy, until at impact, when the energy isal kinetic. At what rate are these
energies changing with time? (These rates of change will be powers, in watts.)

Let’'s start with the kinetic energy: the time rate of change of kinetic energy is

dKk d (1
il 254
dt dt (zmv ) (254)

dv
—m 2 255
mv— (25.5)
Butdv/dt = a = g, the acceleration due to gravity; hence
K

ii_t = mguv. (25.6)

Since the gravitational force F = mg, thisgives a general expression for power:
P = Fu. (25.7)
Now what is the time rate of change of potential energy?
du  d

- —E(mg)’) (25.8)
dy
— —mel 25.9
mg— (25.9)
But dy/dt isthe velocity v, so we get
ii—lt] = —mgv. (25.10)

So as the body falls, itskinetic energy K increases at therate dK /dt = mgv, whilethe potential energy
U decreases at therate dU/dt = —mgv. Therefore thetotal energy £ = K + U remains constant, which
is consistent with the conservation of energy.

Since v increases as the body falls, the rate of change of the kinetic and potential energies increases as
the body falls. At any height y, the potential energy isU = mgy. Since the total energy is £ = mgh, the
kinetic energy at height y mustbe K = E — U = mg(h — y). Therefore the velocity v at height y isgiven
by

K = imv? =mg(h —y) (25.11)
v=+2g(h—y). (25.12)

So the time rates of change of the energies as afunction of y is
‘;—If = ‘;—ll] = Fv (25.13)
=mg+/2gh—y) (25.14)
=m+2g3(h—y). (25.15)

Right after thebody isreleased, dK/dt = —dU/dt = 0; after the body fallsthrough a height #, the rates of
change have increased to dK /dt = —dU/dt = m+/2g3h.
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25.2 Rate of Change of Power

As seen in the previous section, the powers (rates of change of kinetic and potential energy) of falling bodies
change with time. But if the force is constant, then the rates of change of these powers (rate of change of rate
of change of energy) is constant. Let's see why thisis so: since the power & is given by

P = Fv, (25.16)
the time rate of change of power is, if theforce F is constant,

dP dv

—=F— = Fa. 25.17
dt dt . ( )
By Newton’'ssecond law, F = ma, s0 thisgives

dP 5
T ma*~ (constant a). (25.18)

For the example of abody of mass m released from height #, this gives
dP 5
— = . 25.19
T (25.19)

25.3 Vector Equation

Eq. (25.7) isvalid in one dimension; we can develop an analogous eguation in two or three dimensions by
noting that the kinetic energy K = mv?/2 = mv-v/2:

_dK

P 25.20
T (25.20)
d (1

== (Zmv-v]). 25.21
T (zmv v) (25.21)

Now using Eq. (7.17), we get

dv

P = C— 25.22
mv T ( )

and so, sinceF = m dv/dt,
P=F-v. (25.23)
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Chapter 26

Linear Momentum

26.1 Introduction
The linear momentum (or simply momentum) p of abody of mass m is defined as
p = mv, (26.1)
where v isitsvelocity. More generally, momentum is a vector, defined by
p = mv. (26.2)

Curioudly, there is no named Sl unit for measuring momentum. Momentum in Sl units is measured in
units of kg m/s.

26.2 Conservation of Momentum

Momentum, like energy, is a conserved quantity: in a closed system (in which no momentum enters or
leaves the system), the total momentum is constant. Unlike energy, though, momentum is a conserved vector
quantity. This means that the following are all conserved:

» The vector momentum, p;
* The magnitude of the momentum, p; and
» Each component of the momentum, px, p,, and p;.

In a closed system, momentum may be transferred from one body to another, but the total momentum—the
sum of the momenta of all bodies in the system—uwill remain constant. Detailed examples of momentum
conservation will be given in Chapter 28.

26.3 Newton’s Second Law of Motion

Asshown in Appendix R, Newton's second law of motion, as he originally presented it, is (in modern nota-
tion),

F= (26.3)
dt
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Using the definition of momentum (Eg. 26.1), we get
Fo d_p _d(mv)

= = 26.4
dt dt (264)
dv dm
=m— —_— 26.
mdt +v T (26.5)

If the mass m is constant, then dm/dt = 0, and this reduces to

dp dv
F=—=m— =ma. 26.6
dt g dt md (26.6)

So the formulation of Newton's second law F = ma isaspecia case, that applies when the massis constant.
The more general formulationis F = dp/dt.
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Chapter 27

Impulse

When two bodies move toward each other until they come into direct contact, the event it called a collision.
The time during which the two bodies are in direct contact with one another ! is actually quite short, and
during that short time the force between the bodies is very large (Fig. 27.1). We can characterize such a
collision by theimpulse I, which is defined as the area under the force vs. time curve:

1 :/F(t) dt. (27.2)

Force

Time

Figure 27.1: Force between two colliding bodies vs. time. There is a large force between the bodies, but it
lasts only for a short time. The area under the curve istheimpluse /.

1Two colliding bodies normally never come into direct contact with each other; rather the outermost electrons in their outermost
atomic layersrepel each other under the electrostatic force.
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The Sl units of impulse are newton-seconds (N s).
The impulse is closely related to the average force between the bodies during the collision. Recall from
the calculus that the average of afunction f(x) over theinterval x = atox = b is

__ 1 b
fx)= h—a / f(x)dx. (27.2)
—a a
Therefore the average of aforce F(¢) over thetimeinterval t = #; to¢ = 1, isgiven by

Fae =

1 (-
/ F(t) dt. (27.3)
lZ - ll t

The integral isjust theimpulse 7. Writing At = ¢, — t1, wethen have the average force Fae as

1

There isaclose relationship between impul se and momentum. Recall by Newton’'s second law (Eg. 26.3)
that F = dp/dt; substitutingthisinto Eq. (27.1) gives

I:/th:/j—];dt:/dp:Ap, (27.5)

and so theimpulse isjust the change in momentum of the body during the collision:

@9

For many collision problems, the large force at work during the collision is so much larger than other
forces present (friction, etc.) that the other forces can be neglected. Also, the duration At of the collision
is so short that the motion of the bodies during the collision can be neglected; in other words, we can con-
sider the collision to be essentially instantaneous. These assumptions together are referred to as the impulse
approximation.

Example: golf ball. Suppose you hit a golf ball with a driver, giving it aninitial velocity of 134 miles per
hour. The club isin contact with the ball for 0.5 ms. What is the average force of the club on the ball?

Solution. From the change in the ball’s momentum we can find the impulse, and from the impulse we
can find the average force. The ball isinitially at rest, so itsinitial momentum is zero. After being hit by the
driver, the ball has a velocity of 134 miles per hour = 59.9 m/s. The mass of agolf ball is45.0 g, soitsfinal
momentum is (59.9 m/s)(0.045 kg) = 2.6955 kg m/s. Therefore the impulse for the collisionis

I =Ap=pr—pi =2.6955kgm/s—0 (27.7)
= 2.6955kgm/s. (27.8)

Then by Eq. (27.4), the average force during the collisionis
1

Fae = X (27.9)

_ 2.6955kgm/s (27.10)
0.5x103s

= 5391 N (27.11)

= 1212 Ibf. (27.12)
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Chapter 28

Collisions

28.1 Introduction

As mentioned earlier, a collision is an event in which two bodies briefly come into direct contact with each
other. During the collision, it’'s possible that some of theinitial kinetic energy of the bodies may be converted
into heat and sound energy, and energy that doeswork in deforming the colliding bodies. Based on the extent
to which this happens, we classify collisionsinto three categories:

* A perfectly elastic collision is one in which none of the initial kinetic energy is converted into heat or
deformation.

* A perfectly inelastic collision is one in which all of theinitial kinetic energy is converted into heat and
deformation.

* Most collisionslie between these two extremes, and some of the initial kinetic energy is converted into
heat. Such collisionsare called inelastic.

Each of these cases istreated differently mathematically, as we'll see shortly.

28.2 The Coefficient of Restitution

We can compute a dimensionless number called the coefficient of restitution that measures how elastic a
collisionis. The coefficient of restitution e is defined as

e=2 (28.1)
Pi
where py isthefinal momentum of the body, and p; isitsinitial momentum. For a perfectly elastic collision,
€ = 1, for aperfectly inelastic collision, ¢ = 0; and for an inelastic collision, ¢ is some number between 0
and 1, being closer to 1 the more elagtic it is.

An easy way to measure the coefficient of restitution is to drop a body on a flat surface. The height to
which the body rebounds will determine the coefficient of restitution. Suppose the body is initially dropped
from aheight /;, and rebounds to a height /2 . By conservation of energy, the kinetic energy of the body just
beforeit hitsthe floor ismv?/2 = mgh;, soitsvelocity isv; = /2gh;. Similarly, just after the collisionthe
velocity isvy = /2ghy. Therefore the coefficient of restitution e is

pr mvy vy /2ghy

e Pr_mur _vr (28.2)

Di muv; V; V2gh; '
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or

hy
= /. 28.
€ P (28.3)

The coefficient of restitution isjust the square root of the ratio of the rebound height to the initial height. *
Now let’sfirst ook at amathematical analysisof collisionsin one dimension, where the anaysisissimpler.
At the end of the chapter we'll examine collisionsin two dimensions.

28.3 Perfectly Inelastic Collisions

The easiest type of one-dimensional collision to analyze is a perfectly inelastic collision. In this type of
collision, all of the initial kinetic energy is converted into heat and into work that deforms the bodies. After
the collision, the two bodies stick together, forming a single combined mass equal to the sum of the original
masses. Momentum is conserved, but not kinetic energy.

To analyze this situation, consider two bodies moving along the x axis: one of mass m ; moving with
initial velocity v1;, and one of mass m, moving with initial velocity v,;. After the collision, the two bodies
stick together, forming a single body of mass m{ + m, moving with velocity v. The question is: given the
masses m; and m, and initial velocitiesvy; and v,;, what isthe final velocity v of the combined mass?

To answer this question, we make use of the principleof conservation of momentum. Beforethe collision,
theinitial momentum p; of the system is the sum of the momenta of all the bodiesin the system:

pi = myvi; + mavy;. (28.4)
After the collision, the total energy of the systemis

pr = (my + ma)v. (28.5)
Since momentum is conserved, the initial and final momenta must be the same: p; = py, SO

mivy; + mavy; = (my + my)v. (28.6)

Thefina velocity v isthen

v = w (28.7)
my + my

28.4 Perfectly Elastic Collisions

A dlightly more difficult situation to analyze is the perfectly elastic collision. In this type of collision, none
of the kinetic energy islost, and so kinetic energy is conserved.?

Let’s begin the analysis of a perfectly elastic collisionin one dimension. We begin with two masses m ;
and m, with initial velocities v,; and vy;, respectively. After the collision, the two masses have velocities
viy and v, ¢. Thetypical problemis: given the masses and initial velocities, what are the final velocities?

1The 1961 Disney movie The Absent-Minded Professor is about a college professor who invents a material called flubber, whose
coefficient of restitution is greater than 1, so that it bounces higher and higher with each bounce. Among other uses, it is attached to the
bottoms of the shoes of the college basketball team, giving the playersa significant advantage.

2Note that in general, total energy is conserved, but kinetic energy is not. Kinetic energy is only conserved in perfectly elastic
collisions.
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We know the total momentum of the system is conserved, so the sum of the momenta before the collision
equals the sum of the momenta after the collision:

M1V1; + MaVai = M1V1y + mavay. (28.9)

But because the collision is perfectly elastic, we know that the kinetic energy is also conserved. This gives
us a second eguation:

K; = Kf (28.10)
%mlvfi + %mzvgi = %mlvff + %mzvgf (28.11)
miv3; + mavs; = mlvff + mzvgf (28.12)

Equations (28.9) and (28.12) give two simultaneous equations in the two unknown final velocities v ;¢ and
Vo f :

mivy; + MaV2j = MV + MaVsf (28.13)
mivy; + mav3; = myvi, + mavy . (28.14)

To solve these equations simultaneoudly, let’s rearrange to put the m ; terms on the left and the m, terms on
theright:

m1(vi; —viy) = ma(vay — v2;) (28.15)
mi(v}; —vi,) = ma(vy; — v3;) (28.16)

Expanding the difference of squaresin Eq. (28.16), we have

my1(vii —viy) = ma(vaf — v2;) (28.17)
my(vii +vir)(V1 — Vi) = ma(Vay + v2i) (V2 — v2i) (28.18)

Now divide Eq. (28.18) by Eq. (28.17) to get
V1 + V1 = V2 + Vaf. (28.19)

To solve for the final velocitiesv, » and v, ¢, we write Egs. (28.13) and (28.19) in matrix form:

mp my Vif o\ _ [ ™M1vVii +mav2i 28.2
(7)) - () @820
and solve for the final velocities:
-1
Vig Y _f ™1 m2 miv1; + mava; 28.21
(o) =(v ) (i) @2y

Let's now expand the matrix inverse as the transposed matrix of cofactors divided by the determinant (Ap-
pendix Q):

vig \__ 1 (1 m mivi; + Mava; ) (28.22)
Uaf mp+my \ 1 —my —v1; + V2 '
_ 1 mvy; + Mav2; — MoV + MaVz; ) (28.23)
my 4+ my \ M1V + MaVz; + mvy; —myvy; '
1 (M1 —ma)vi; + 2movy;
= 28.24
mp + my ( 2myvy; + (my —my)vy; ( )

127



Prince George's Community College Genera Physics| Simpson & Simpson

Collision Balls,

Figure 28.1: Newton'scradle. (Credit: Scientific American.)

Thus
my; —my 2my
= —F i _ i 28.25
Vif (ml T mz) V1 + (ml +m2) U2j ( )
2mq my —ny
— . _ . 28.26
Uaf (ml T mz) vi; + (ml +m2) V2i ( )

Eqgs. (28.25) and (28.26) are the general solutionfor finding the final velocitiesin a one-dimensional perfectly
elastic collision.

28.5 Newton’s Cradle

Newton’s cradle is a device consisting of several identical suspended steel balls hanging in a row such that
adjacent balls are touching (Fig. 28.1). If you pull one ball awvay from the end and release it, it will collide
with the row of other balls, and one ball at the opposite end of the row will fly upward to almost the same
height from which the original ball was released.

It is easy to see that momentum is conserved during the collision: assuming each ball has mass m, the
first ball hits the rest of the balls with speed v, and so it has momentum p = mv. The ball flying off of the
other end after the collision will have initial speed v, so it also has momentum p = mv. So just before the
collision of the first ball, the system has momentum p = muv, and has this same momentum p = mv after
the collision.

But momentum could al so be conserved if the device sent up two balls after the collision, each with speed
v/2. Before the collision, the momentum of the system (due to the motion of the first bal) is p = mv;
after the collision, the momentum of the system in this case would be p = m(v/2) + m(v/2) = mv, and
momentum is still conserved. So if momentum is conserved in either case, how does the device “know” to
send up one ball, rather than two, after the collision?

The answer is that the collision between the steel ballsis close to being perfectly elastic, and so kinetic
energy isalso conserved (not just momentum). Theinitial kinetic energy of the system just beforethe collision
is equal to the kinetic energy of the first ball: K = mv?2/2. If one ball goes up after the collision, then the
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kinetic energy after the collisionisaso K = mv?/2, and kinetic energy is conserved, as required for an
elastic collision. But if two balls go up (each with speed v/2 to conserve momentum), then the kinetic
energy just after the collisionis K = m(v/2)?/2 + m(v/2)?/2 = mv?/4, and kinetic energy would not be
conserved. Therefore if one ball israised initially (as shown in the figure), then only one ball will fly off of
the other end after the collision.

28.6 Inelastic Collisions

Now let’'s consider a one-dimensional inelastic collision of two bodies—one for which the coefficient of
restitution is some number between 0 and 1. Then the conservation of momentum applies (Eg. 28.9), so that
the sum of the momenta before the collision equals the sum of the momenta after the collision:

M1V + MaVz; = MUy + Mavay. (28.27)

This is one equation, but assuming that we know the masses and initial velocities, there are two unknowns:
the final velocitiesv; s and v, . In order to solve simultaneous equations, there must be as many equations
as unknowns, so we're one equation short. So this problem cannot be solved unless we're given some more
information, such as one of the final velocities or the coefficient of restitution.

28.7 Collisions in Two Dimensions

Now consider a collision in two dimensions between two masses m; and m, (Fig. 28.2). Without loss of
generality, we can work in a coordinate system that is at rest with respect to mass m,, and in which mass m;
is moving in the +x direction, as shown in the figure. Then before the collision, mass m ; is moving with
velocity vi; = vy;i. After the collision, mass m; moves with velocity vy = (v €0s6y)i — (vir SIN6Y)j;
mass m, moves with velocity v,y = (v, C0S6,)i 4 (Vo SING,)j.

Figure 28.2: A collisionin two dimensions.
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By conservation of momentum, we know that both the x and y components of thetotal system momentum
are independently conserved. This gives two equations: inthe x direction,

pix = pre (28.28)
mivy; = miuyy cosd; + mavs £ cosb,, (2829)

and in the y direciton,

I (28.30)
0= —mivif sinf; + mavaf sinés. (2831)

So Egs. (28.29) and (28.31) give us two equations—but in this case there are four unknowns (v 1, va ¢, 01,
and 6,). To determine the four unknowns, we need as many equations as we have unknowns, so we're two
equations short and we need to provide some more information. For example, if we assume that the collision
is perfectly elastic, then we can add another equation, since kinetic energy will be conserved in this case:

Ki =K, (28.32)
FMIVT; = 3mivie + 3mavs . (28.33)

Now we have three equations (Egs. 28.29, 28.31, and 28.33), but we still have four unknowns—we till
need more information to find the final velocities. To solve the problem, we could be given one of the four
unknowns, for example. But the piece of information that’s really missing here is the impact parameter of
the collision, which is the perpendicular distance between the center of mass m, and the line along the the
initial velocity vector v4;. If the impact parameter is zero, then mass m; hitsmass m, head-on. If the impact
parameter isequal to the sum of the radii of m, and m,, then the two masses will barely touch in a glancing
blow. Knowing the impact parameter is necessary for finding the angles 6, and 6,.

Callisionsin two dimensions are more genera that you might think: under a central-force law, motion
will be in a plane, so the particles will move in two dimensions. Analyzing two-dimensional collisions of
thistype is common in particle physics. There the particles typically do not actually touch, but are repelled
or attracted by the electrostatic force. The same laws apply in particle physics as what we've described here.
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Chapter 29

The Ballistic Pendulum

How fast does a bullet travel when it leaves the barrel of a rifle? To measure the speed of a bullet, you
might imagine an elaborate setup with high-precision timing and stop-action photography, but there’samuch
simpler method using the ballistic pendulum (Fig. 29.1).

(a) (b) o

= —

m
L — M

—
=

Figure 29.1: The ballistic pendulum. (@) Just before the collision, the pendulum is vertical and at rest; the
bullet is moving at speed v. (b) After the collision, the bullet has embedded itself into the block. The fina
position of the pendulum is at an angle 6 from the vertical; the block has moved a vertical height /.

The bullet is fired into a wooden block that forms the bob of a pendulum, as shown. The bullet becomes
embedded in the block, and the bullet-block combination swings up and is held in its final position with a
ratcheting mechanism. The initial speed of the bullet v can then be determined from the angle 6.

Let's determine the relationship between the bullet’s initial speed v and the angle 6. First, the bullet
embeds itself into the wooden block; thisis a perfectly inelastic collision so the speed v o of the block-bullet
combination just after the bullet hitsthe block is given by Eq. (28.7):

mpv + M(©O)  mpy
M+m, — M+my

Vo = (29.1)

This relation comes from the conservation of momentum.® As the pendulum is hanging vertically, its energy

1We cannot use the conservation of energy at this point, because some of the bullet’s initial kinetic energy is converted into heat.
Using conservation of energy would require knowing thingslike the increase in the temperature of the block, which we don’t know.
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isall kinetic; the pendulum will begin swinging upward, gradually converting its kinetic energy into potential
energy until it reaches its maximum height at angle 6, where it is held in place. The block’sinitial kinetic
energy is

Ko = (M + mp)v} (29.2)
1 mpv 2
=-(M 29.3
S0+ ) (57 (293)
2.2
__ mjv (29.4)
2(M + M)

All of thiskinetic energy goes into raising the block-bullet combination by a height /2, so by conservation of
energy,

Ko=U (29.5)

mzv?

308 gy = M+ mo)gh (29.6)

Solving for the bullet speed v, we find

M
v = ;mb J2gh. (29.7)
b

Now from geometry, the height 7 is given in terms of the pendulum length L and the angle 6 by
h=L-—Lcosd = L(1—cosh). (29.8)

Substituting thisinto Eq. (29), we have theinitial speed v of the bullet:

V= (mﬁ + 1) v2gL(1 —cosb). (29.9)
b
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Chapter 30

Rockets

30.1 Introduction

A rocket isavehiclethat propelsitself through space by gjecting a propellant gas at high speed in adirection
opposite the desired direction of motion. The German V-2 rocket was an early example, as were the United
States rockets such as Juno, Redstone, Agena, and Saturn. The largest and most powerful rocket ever built
is the United States Saturn VV Moon rocket, which took the Apollo astronauts to the Moon in the 1960s and
1970s.

In order to place a spacecraft into low-Earth orbit, a rocket must accelerate its payload from rest to a
speed of about 17,000 miles per hour. In order to reach this speed, most of the rocket’s mass must be fuel.
The amount of fuel required for a given mass of payload is governed by the rocket equation, which will be
derived here.

Some critics of early space exploration claimed that rockets would not be able to travel in space because
“they would have nothing to push against.” Aswe'll see here, such arguments are silly—one needs only to
make use of the conservation of momentum to show that rockets can work in space.

30.2 The Rocket Equation

Let’'s now derive the rocket equation. Given a rocket of mass m, we will wish to find an equation that tells
us how much fuel (propellant) is required to change the rocket’s speed by an amount Av. The complication
here isthat the rocket loses mass as it expels propellant, so we need to allow for that.

Suppose that at an initial timez = 0, arocket has velocity v and total mass m, including propellant mass.
The total momentum of the rocket and propellant at time = 0 istherefore muv.

Now let’slook at the situation an instant later, at timetr = dt. Let dm be the (negative) change in mass of
the rocket due to the expulsion of propellant, and let dv be the corresponding (positive) change in the velocity
of the rocket. Then at time¢ = dt, amass of propellant —dm is expelled at velocity v — v,,. (The rocket is
moving at velocity v with respect to the Earth, the propellant is moving at speed —v ,, relative to the rocket,
and so the velocity of the propellant relative to the Earthisv — v ,.) This expulsion of propellant will cause
the rocket to then have mass m + dm and velocity v + dv. Thetotal momentum of the system at t = dr is
then the sum of the rocket and propellant momenta, (m + dm)(v + dv) + (v — vp)(—dm). By conservation

133



Prince George's Community College Genera Physics| Simpson & Simpson

of momentum, the momentum of the system at time s = 0 must equal the momentum at time ¢ = dr:

mv = (m+dm)(v + dv) + (v —v,)(—dm) (30.1
=mv+vdm+mdv+dmdv—vdm+v,dm (30.2)
(30.3)

Now thetwo mv terms cancdl, thetwo v d m terms cancel, and theterm dm dv isasecond-order differential,
which can also be cancelled. We're then left with

O0=mdv+v,dm (30.4)

mdv =—v,dm (30.5)

dv = —v, " (30.6)
m

Now let the rocket burn al its propellant. The rocket’svelocity will change by atotal amount Av and its mass
will change from m to its empty mass m ... Integrating Eq. (30.6) over the entire propellant burn, we find

v+Av Mme d
/ dv = —vp/ am (30.7)
v m m
Or, evaluating the integrals,
Av = —v,In2¢ (30.8)
m
or
Av = v, In— (30.9)
Me

Eq. (30.9) is called the rocket equation. It relates the fueled and empty masses of the rocket and the vel ocity
of the propellant to the total change in velocity of the rocket.

30.3 Mass Fraction

The fraction of thetotal initial mass m that is propellantis

lant —m, e
propel antimass _ m—me _ | Me (30.10)
total initial mass m m

Solving Eq. (30.8) for thisfraction, we find

1Mo e tv/v (30.11)
m

Eq. (30.11) tellswhat fraction of the rocket’s total mass must be fuel in order to achieve a desired change in
rocket velocity Av.

Example

Let’'s take as an example the launch of arocket from the Earth’s surface to low-Earth orbit. In this case, the
rocket’s velocity will need to change by an amount Av = 17,000 mph, or about 7600 m/s. Let's say we have

arocket that can expel propellant with a speed v, = 4000 m/s. Then by Eq. (30.11),
1= Me | _ v/ — 85, (30.12)
m

s0 85% of the rocket’sinitial mass must be propellant.
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30.4 Staging

In practice, it is found that it can be more efficient to launch rockets in stages, where part of the rocket
structure drops away when it is no longer needed, thus decreasing the amount of mass that needs to be placed
in orbit. For example, the Saturn V rocket had three stages. The large lower first stage contained a large
fuel tank and large engines. When all the fuel contained in that stage had been spent, the entire first stage
separated and dropped away, and a smaller second stage was ignited. When all the second-stage fuel was
spent, it too separated and and dropped away, and the third stage engine ignited, which placed the spacecraft
into Earth orbit. This staged approach requires much less fuel than launching the entire Saturn V rocket into
orbit.
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Chapter 31

Center of Mass

31.1 Introduction

The center of mass of a body or collection of bodies is the mean position of the mass. Usually the center
of mass is the same as the center of gravity, which is the balance point of a body. For example, imagine
supporting arod or sheet of material at the point where it is perfectly balanced; thiswill be the body’s center
of mass.

The center of mass may be defined for a collection of discrete masses, or for a continuous body; it may
also be defined in one, two, or three dimensions.

31.2 Discrete Masses
For a collection of discrete point masses in one dimension, the center of mass x ¢, is defined to be
Xem = %lm’;;l P

where the summations are over al of the point masses. Thisis just the weighted average of the positions of
the masses, where the “weights” are the masses. Note that the denominator is the total mass of all the point
masses.

(31.2)

Example. Supposethereisamass of 3kg at x = 1 m, amass of 2 kg at the origin, and a mass of 4 kg at
x = 2 m. Where isthe center of mass?
Solution. Let's put the datain atable:

i mi(kg) x; (m)
1 30 1.0
2 20 0.0
3 40 2.0

Then by Eq. (31.1),

_ Bkgd m) + (2kg)(0m) + (4 kg)(2 m)
N 3kg+ 2 kg + 4 kg
=1.222m. (31.3)

(31.2)

cm
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Intwo or threedimensions, the x, y, and z coordinates of the center of mass are cal culated independently:

M Xi

Xem = %7’“ (31.4)
i MiYi

Yem = %7’”)7 (3L5)
iMiZi

Zem = % e (316)

Example. Intwo dimensions. suppose thereisa mass of 3kgat (x, y) = (1,3) m, amass of 2 kg at the
origin,and amass of 4 kg at (x, y) = (5, —1) m. Whereis the center of mass?
Solution. Let's put the datain atable:

mi (kg)  x; (M) i (M)
3.0 1.0 3.0
2.0 0.0 0.0
4.0 5.0 -1.0

WN e~

Then by Egs. (31.4) and (31.5),
_ Gk m + 2kg)(Om) + (4 kg)(5 m)

on 3kg + 2 kg+ 4 kg (1.7
=2.556m. (31.8)
and
_GkgBm + 2kgOm + (4kg)(=1 m) (3L.9)
on 3kg + 2 kg + 4 kg '
=0.556 m. (31.10)

The center of massisat (xcm, yem) = (2.556,0.556) m.

31.3 Continuous Bodies

To find the center of mass of a continuous body, just imagine dividing the body up into little infinitessimal
pieces, each of which has mass dm; then treat each of these infinitesimal masses as a point mass, and add
together the products of d m and its position using an integral. In one dimension:

. _[xdm
cm — )
[dm

(31.11)

where the integrals are taken over the entire length of the body. But there's a problem here. How are we
going to integrate x with respect to m? We need to write both the integrand and the variable of integration
with respect to the same variable. If we have arod in one dimension, for example, then we would want to
integrate over the entirelength of the rod, so it’snatural to want the variable of integrationto be x. Somehow,

then, we need to change the variable of integration from m to x.
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We do this through the density. In the case of a one-dimensional problem, we'll use the linear mass
density (mass per unit length) A:
azdm (3L.12)
dx
where A has units of kg/m. In general, the density A can be variable across the body, so it will be a function
of x, so we can writeit as A(x). Interms of x, we can therefore write the mass dm as

dm = A(x) dx. (31L.13)
Making this substitutioninto Eq. (31.11), we have the one-dimensional formula
[ x A(x) dx
— ar 31.14
Xem f)k(x) dx ( )

The denominator [ A(x) dx isthe total mass of the body M .

Example. Suppose we have arod of length 5 m, whose density isgiven by A(x) = 2x + 3 kg/m, where
x isin meters from the left end of the rod. Where isthe center of mass of the rod?

Solution. Let's first solve the more genera problem: where is the center of mass of a rod of length L,
when the density isgiven by A(x) = ax + b. The center of mass is given by Eq. (31.25):

_ fOL x A(x) dx

Xem = (31.15)
o fOL A(x) dx
fOL x (ax +b) dx
=L (31.16)
Jo (ax + b) dx
fOL(ax2 + bx) dx
=7 (31.17)
Jo (ax + b) dx
B (ax®+ 1bx?)|§ (31.18)
N (%ax2 + bx)|g '
La13 + LpL2
= 3‘:# (31.19)
ECZLZ + bL
2al3 4+ 3bL?
= Bal? f 6bL (8120

Now substitutea = 2 kg/m?, b = 3 kg/m, and L = 5 m, and we get

2(2 kg/m?)(5 m)* 4 3(3 kg/m)(5 m)?
xcm = > (3121)
3(2 kg/m*)(5 m)2 4 6(3 kg/m)(5 m)

_ 725kgm (31.22)
240 kg '

= 3.021 m. (31.23)
(The denominator isthe total mass, M = 240 kg.)
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We can take a similar approach with a two-dimensional continuous object. The position vector r ¢, of the
center of massin two dimensionsis

_Jro(rda
Fem = W (31.29)
_ J[romdxdy (31.25)

[[a(r) dx dy

where o (r) is the area mass density of the body (mass per unit area), in units of kg/m2. Here we imagine
dividing the body up into infinitesimal squares of area dA = dx dy, and treat each square as a point mass.
The integralsin Eqg. (31.25) are called double integrals, which you will learn more about when you study the
calculus of several variablesin acalculus course. Briefly, though, adoubleintegral isinterpreted as

// fx,y)dxdy = / [/ f(x,y) dx:| dy (31.26)

To evaluate this, you first evaluate the integral inside the square brackets, treating x as the variable of inte-
gration and treating y as a constant. You then use the result as the integrand of the outer integral, thistime
treating y as the variable of integration.

Similarly, in three dimensions, the position vector r ¢y, of the center of massis

_Jrp(mav
om = W (31.27)
. J[f rp(r)dx dy dz (31.28)

~ I p(r) dx dy dz

where p(r) isthe familiar volume mass density of the body (mass per unit volume), in units of kg/m3. In this
case we imagine dividing the body into infinitesimal cubes of volumedV = dx dy dz, and treat each cube
as apoint mass. The integralsin Eq. (31.28) are called atriple integrals. Such an integral isinterpreted as

// f(x.y.2)dx dy dz.=/{/ [/f(x,y,z.) dx} dy} dz (31.29)

Here you evaluate the innermost integral (in square brackets) first, treating x as the variable of integration,
treating y and z as constants. You then use this result as the integrand for the next integral (curly braces),
treating y as the variable of integration, with z constant. Finally, you use that result as the integrand for the
outermost integral, treating z as the variable of integration.
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Chapter 32

The Cross Product

Many of the equations involving rotational motion of bodies involve the vector cross product, so before
proceeding further, let's examine the cross product of two vectors in some detail.

You'll recall from Chapter 7 that there are several different ways of multiplying one vector by another
vector. There we examined one such type of multiplication, the dot product. Before we study rotational
motion, we'll need to learn about another type of vector multiplication, the cross product. In the cross
product, one multiplies a vector by another vector, and gets another vector back as the result (unlike the dot
product, which returns a scalar result).

Unlikethe other two kinds of vector multiplication, the cross product is only defined for three-dimensional
vectors.!

32.1 Definition

The cross product (sometimes called the vector product) is indicated with a cross sign (A x B) and is pro-
nounced “A cross B.” When you take the cross product of two vectors, you get back another vector, whose
magnitude is

|Ax B| = AB siné, (32.1)

where @ isthe angle separating vectors A and B.2

The direction of the vector A x B is perpendicular to the plane of vectors A and B. But there are two
possible choices for direction of avector perpendicular to a plane; which one do we choose? By convention,
we choose the one given by aright-hand rule: if you curl the fingers of your right and from vector A toward
vector B, then the thumb of your right hand pointsin the direction of A x B (Fig. 32.1).

Since A x B is perpendicular to the plane formed by vectors A and B, it is also perpendicular to both
vectors A and B:

(AxB) LA (32.2)
(AxB) LB (32.3)

11t is also possible to define a vector cross product in seven dimensions. A meaningful vector cross product can only be defined in
three or sevendimensions.
2An old physicsjoke: What do you get when you cross an elephant with a banana? Ans. “Elephant bananasine §.”
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v

=l

Figure 32.1: The vector cross product A x B is perpendicular to the plane of A and B, and in the right-hand
sense. (Credit: “Connected Curriculum Project”, Duke University.)

32.2 Component Form

A convenient mnemonic for finding the rectangular components of the cross product is through a matrix
determinant:

i j ok

AxB=| A, A, A, (32.4)
B, B, B,

= (AyB; — A By)i — (Ax B, — A By)j + (Ax B, — A, Bo)kK. (32.5)

For example, if A = 3i+5j+2kandB = 2i—j+4k,then A x B = (20— (-2))i—(12—4)j+ (-3—10)k =
22i — 8j — 13k.

32.3 Properties

Anti-Commutativity
The cross product is anti-commutative:
AxB=-BxA, (32.6)

as should be clear by applying the right-hand rule.

Orthogonality

If two vectors are parallel or anti-parallel, their cross product will be zero. For example, for the cartesian unit
vectors,

ixi=jxj=kxk=0. (32.7)

Notice that the result is the zero vector, encountered earlier in Chapter 6: a vector whose components are all
zero. The zero vector has magnitude zero, and no defined direction.
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Also, the products of any two different cartesian unit vectors permute cyclicaly:

ixj=k; jxi=—k (32.8)

ixk=1i Kxj=—i (32.9)

kxi=j; ixk=—j (32.10)
Derivative

The derivative of the cross product is similar to the familiar product rule for scalars:

d(A x B) dB dA
—_— = — + — xB. 2.11
dt Ax dt + dt x (32.11)

Note, though, that since the cross product is not commutative, you must keep the order of multiplicationsas
they’re shown here.

The Triple Vector Product

Unlike normal scalar multiplication, the cross product is non-associative: Ax(B x C) # (A x B)xC. The
cross products of three vectors may be expanded like so:

Ax(B xC) =B(A-C) —C(A-B) (32.12)
(AxB)xC =B(A-C)—A(B-C) (32.13)

Eqg. (32.12) is sometimes remembered as the “back cab” rule (from the letters “BAC CAB” on the right-
hand side), but this requires remembering where the parentheses are on the left-hand side. A better way to
remember both productsin Egs. (32.12) and (32.13) is: “The middle vector times the dot product of the two
on the ends, minus the dot product of the two vectors straddling the parenthesis times the remaining one.”

Products of Two Cross Products

The dot product of two cross products can be expanded as
(AxB)-(CxD)=(A-C)(B-D)—(A-D)B-C). (32.14)

while the cross product of two cross products can be expanded as

(AxB)x (CxD)=(AxB-D)C—-(AxB-C)D. (32.15)

The Triple Scalar Product

An interesting vector product is the so-called triple scalar product, A - B x C, involving one dot product and
one scalar product. No parentheses are needed here: the cross product must be done before the dot product.
(Attempting to do the dot product first results in the cross product of a scalar with a vector, which is not
defined.) The result isa scalar.

The triple scalar product has a number of interesting properties:

» The dot and cross operators can be exchanged without changing the result: A-BxC = AxB-C.
(Because of this property, the triple scalar product is sometimes written simply as [A, B, C].)

» Vectors A, B, and C can be permuted cyclically without changing theresult: A-BxC =B-Cx A =
C-AxB.
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» The absolute value of the triple scalar product is equal to the volume of the parallel epi ped whose edges
are formed by the vectors A, B, and C.

* Interms of cartesian components, the triple scalar product can be written as a determinant:

Ac A, A,
A-BxC=| B, B, B, (32.16)
c. C, C;

= AyByC, — A B,Cy — AyB,C, + AyB,Cx + A, B,Cy — A,B,C,  (32.17)

32.4 Matrix Formulation

Another way to represent the components of the cross product is to write the components of vector A into an
antisymmetric 3 x 3 matrix, then multiply that matrix by the column vector B:

0 -4, A4, B,
AxB=| 4, 0 —A, B, (32.18)
-4, A, 0 B,
Ay B, — A B,
=| A4.B.,—4.B; |. (32.19)
A B, — A, B,

32.5 Inverse

Suppose we have vectors A, B, and C such that A x B = C. If vectors B and C are known, can we solve for
vector A?

There is no such thing as a “cross division” operation, so we can't do anything similarto A = C/B. In
fact, thereis no unique solution for vector A. There are an infinite number of vectorsthat can be crossed with
B toyield vector C; the smaller the angle between A and B, the larger the magnitude A must have to yield a
given vector C.

To solve A x B = C for vector A, we will need to know vectors B and C, along with one other piece of
information, such as the magnitude of vector A or the angle 6 between A and B. Suppose the magnitude A
of vector A isknown; thensince |A x B| = ABsing = C, we have

sinfg = —. (32.20)
AB
On the other hand, if 8 isknown, then
C
A= . 32.21
Bsin® ( )

In either case, we now know both the magnitude A and the angle 8. Then since A-B = AB cos6, we can
now find the dot product A - B. Now let’stake

AxB=C. (32.22)
Crossing both sides on the right with vector B, we get

(A x B)xB = C x B. (32.23)
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The left-hand side is a vector triple product; applying Eq. (32.13), we get
B(A-B)— B’A=CxB. (32.24)

Solving for vector A, we find

A:%[(BxC)—i—(A-B)B] (32.25)

Soif either A or 6 isknown, then we canfind A - B = AB cosf; knowing thisand B and C, Eq. (32.25) lets
us solve for vector A (provided B, C # 0).
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Chapter 33

Rotational Motion

33.1 Introduction

We can describe the rotation of a solid body about an axisin a manner similar to the way we describe linear
motion.

First, instead of the giving position of the body along an axis, we specify its rotation angle 6 relative to
an agreed-upon zero rotation angle. Then we define an angular velocity w in away similar to the definition
of linear velocity:

do
= —. 331
= (33.1)
We aso define an angular acceleration « that's analogous to linear acceleration:
do d?0
- _ 33.2
e dt? (332)

33.2 Translational vs. Rotational Motion

There are some important relations between translational and rotational motion. Recall the relation between
an angle 6 (in radians) and arc length s:

s =rb, (333)

where r isthe radius of rotation. Taking derivatives of both sides with respect to timeand using ds/dt = v,
df/dt = w, and r is constant, we get arelation between linear and angular velocities:

V=ro, (33.9)

since the radius of rotation r is constant. Taking derivatives with respect to time again, we get a relation
between the learn and angular accelerations:

a=ra. (335

Many of the formulee involving rotational motion are similar to the formulee we saw in translational
motion, and we can use the same methods for working with them. Each of the quantities we encountered
in trandlational motion has a rotationa counterpart, as shown in Table 33-1. (Time ¢ is the same in both
translational and rotational motion.)
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Table 33-1. Trandlational and rotational quantities. This table shows several quantities related to transla-
tional motion, along with their counterpartsin rotational motion and how the two are related.

Trand ational Motion

Rotational Motion

Name Symbol Name Symbol | Relationship
Position X Angle 0 0=s/r
Velocity v Angular velocity ) ® =v/r
Acceleration a Angular acceleration o a=a;/r
Mass m Moment of inertia I I=[r%dm
Force F Torque T T=rxF
Momentum )4 Angular momentum L L=rxp

(In the first three lines, s is arc length, and v, and a; are the tangential components of the velocity and
accel eration, respectively.)

Many of the tranglational formulaewe've encountered so far have a similar formulain rotational motion.
We can generally find these rotational formuleeby replacing the transl ational variableswith the corresponding
rotational variables from Table 33-1. Examples of such formulaeare shown in Table 33-2.
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Table 33-2. Trandlational and rotational formulae This table shows a number of formulaefrom transa-
tional mechanics, along with their rotational counterparts.

Description Trandational Motion Rotational Motion
Velocity v=dx/dt w=do/dt
Acceleration a=dv/dt o =do/dt

Constant acceleration

Newton's 2nd law (const. mass)

Newton's 2nd law (general)
Momentum

Work

Kinetic energy

Hooke's Law

Potential energy (spring)
Power

33.3 Example Problems

Translational Problem

x = Zat? + vol + xo
v =at + vy

v? = v + 2a(x — xo)

F =ma
F =dp/dt
p=mv
W =Fx
K = Imv?
K = p?/2m
F =—kx
Us = 3kx?
P =Fv

0 = Jar® + wot + Oy
w = ot + wo

0? = wg + 2a(0 — 6y)

=]«
t=dL/dt
L=1Iw
W =16
K = 310?
K =1%)21
T = —«0
Us = 3x6?
P =10

Consider the following trand ational problem: a body of mass m = 3.0 kg isinitally at rest; then aforce of

F =5.0Nisappliedtoitfortimer = 7.0 seconds. What isthefina velocity v of the body?

Solution. Given the force, we can find the acceleration; knowing the acceleration and time, we can find
the velocity. The applicable equations are

F = ma

v = at + vyp.

Solving Eg. (33.6) for ¢ and substitutinginto Eqg. (33.7), we have

(%)
v=|—)t+vp.
m

Substituting the given values of F', m, and ¢, and using vy = 0, we have

50N
v = (m) (70 S),

v=11.67m/s

or

147

(33.6)
(33.7)

(33.8)

(33.9)

(33.10)



Prince George's Community College Genera Physics| Simpson & Simpson

Rotational Problem

Now consider the following similar rotational problem, which can be solved using the same method: a body
of moment of inertia 7 = 3.0 kg m? isinitially at rest (not rotating); then atorque of = = 5.0 N mis applied
toitfortimer = 7.0 seconds. What isthe final angular velocity o of the body?

Solution. Given the torque, we can find the angular acceleration; knowing the angular acceleration and
time, we can find the angular velocity. The applicable equations are analogous to those used for the tranda
tional problem:

=1 (3311)
w = at + wy. (33.12)

Solving Eg. (33.11) for « and subsgtituting into Eq. (33.12), we have

w= (;) t + wo. (33.13)

Substituting the given values of t, I, and ¢, and using wo = 0, we have

ON
- (Lmz) (7.0'9). (33.14)
3.0kgm
or
|0 = 11.67 rad/s] (33.15)
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Chapter 34

Moment of Inertia

34.1 Introduction

The moment of inertia is the rotational counterpart of mass. It takes into account not only the total mass
of the body, but also how far the mass is distributed from the axis of rotation: a body will have a higher
moment of inertiaif it has a higher mass, or if more of the mass is distributed farther from the rotation axis.
Two bodies can have the same mass, but different moments of inertia, if their mass is distributed through the
bodies differently.

To introduce the concept of moment of inertia, let's first look at a point mass m moving in a circle of
radius r (Fig. 34.1). The moment of inertia of the point mass is defined to be the mass times the square of its
rotation radius:

I =mr?. (34.1)

In Sl units, moment of inertia has units of kg m2.

Knowing the definition of the moment of inertia of a single point mass, we may make use of the calculus
to find the moment of inertia of any extended body. Imagine that we have some solid body that is rotating
about some axis. Now imagine dividing the body into many infinitesimal cubes of mass dm, and treat each of
these cubes as a point mass. If r isthe perpendicular distance of dm from the rotation axis, then the moment
of inertia of the body is found by adding up all the contributionsr 2 dm over the entire body by means of an
integral:

I = /r2 dm. (34.2)

Note that, unlike with mass, it makes no sense to refer simply to the moment of inertia of a body—you must
also specify the axis about which the body is rotated.

Example. Asasimple example, let'sfind the moment of inertia of auniform rod of length L. and mass M
when rotated about its center of mass (Fig. 34.2). To set up the problem, we' Il define an x axis running along
the axis of the rod, and define the origin at the center of mass, as shown in the figure.

Now imagine dividing the rod into many infinitesimal segments of length dx. Each of these segments
then has mass A dx, where A isthe density of the rod. Therefore, the moment of inertia of therod is given by
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Figure 34.1: The moment of inertia of a point massm moving inacircle of radiusr is1 = mr 2.

Eq. (34.2). Since the distance r of dm from therotation axisisr = |x|, we have

I = /rz dm (34.3
L/2
:/ x2A dx (34.4)
—L/2
A .1L/2
-z 3‘ (34.5)
3 1-L/2
A (L3 L3
_AM (8L 34.6
. ( A 8) (346)
—lxﬁ (34.7)
T '

Since therod is uniform, its density isa constant A = M/ L; hence
— i%lfi

12 L (348)

So the moment of an inertiaof auniform rod of length L and mass M when rotated about an axis perpendic-
ular rod and passing through the center is

I =45ML2. (34.9)

Example. Let's repeat the previous example, but find the moment of inertia of the rod of length L and
mass M when rotated about one end. We move origin of the coordinate system to the left end; in this case

150



Prince George's Community College Genera Physics| Simpson & Simpson

Figure 34.2: Coordinate system for arod of length L.

r = x, weintegrate from 0 to L, and we have

I = /rz dm (34.10)
L
:/ x%A dx (34.12)
0
A 4L
= x ‘0 (34.12)
Aos
=2 -0) (34.13)
1,3
= -AL". (34.19)
3

Since therod isuniform, its density isa constant A = M/ L; hence
- l%l}

1=
3L

(34.15)

So the moment of an inertiaof auniform rod of length L and mass M when rotated about an axis perpendic-
ular rod and passing through one end is

I =1IML% (34.16)

Example. As athird example, let’s find the moment of inertia of a uniform thin hoop of mass M and
radius R, when rotated about an axis passing through the center of the hoop and perpendicular to the plane
of the hoop. We imagine dividing the hoop into many infinitesimal segments of length ds. If the (constant)
linear mass density of the hoop is A, then the mass of each such segment isdm = Ads. But the arc length
ds = R d6, so the mass of each segment becomes dm = AR d6. Since the distance of each segment from
therotation axis r=R, the moment of inertia 7 isthen

I = /rz dm (34.17)
2w
= / R* AR df (34.18)
0
2w
= AR3 do (34.19)
0
= 2mAR3. (34.20)
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y y

ds

40 Rsin 8

rot. axis R Rcos 8 X

Figure 34.3: Calculation of the moment of inertia of a hoop when rotated about an axis passing through the
hoop.

The linear mass density of the hoop A isthe total mass M divided by the total length 27 R, so

I =2n (%) R3. (34.21)
v

so the moment of inertia of the hoop is

(3422)

Example. As a fourth example, consider the same uniform thin hoop of mass M and radius R from
the previous example — but thistime, let’s rotate it about an axis passing through the rim of the hoop, and
perpendicular to the plane of the hoop (Figure 34.3). Then the moment of inertiais calculated as

I = /rz dm (34.23)

2
=/ r> AR df (34.24)
0

as before. But thistime, the distance from the infinitesimal piece of hoop at angle ¢ to the rotation axisis
not R, but some more complicated function of 6. We'll need to derive aformula r (6) for the distance to the
rotation axis.
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Looking at Figure 34.3, thisdistance must be (from the Pythagorean theorem)

r? = (R + Rcosf)? + (Rsinh)? (34.25)
= R?[(1 + cos6)? + sin* ] (34.26)
= R*(1 + 2 cosf + cos’ 6 + sin® 6) (34.27)
= R?*(2 4 2cosf) (34.28)
= 2R?*(1 + cosb) (34.29)

Thisisthe desired function r (9) for the distance to the rotation axis. Putting this expression into the integral
for the moment of inertia 7, we have

2
I = / [2R*(1 4 cosf)] AR df (34.30)
0
2
= 2AR3 (1 4 cosf) db (34.31)
0
2 2

= 2AR3 ( do + / cosf d(?) (34.32)

0 0

2
— 2R3 (27‘[ + sin@‘o ) (34.33)
= 2AR3(27) (34.34)
= 47 AR? (34.35)

Since the hoop is uniform, its density is the total mass divided by the total length: A = M/(2nR). The
moment of inertiais then

I = 4n (ﬂ) R’ (34.36)

- (34.37)

In thissame way, we can work out the moments of inertiaof anumber of common geometries. The results
of such calculations are shown in Figure 34.4.

34.2 Radius of Gyration

A quantity closely related to the moment of inertiais the radius of gyration k. Whatever the shape of abody,
if al its mass were to be located at the radius gyration k, then the moment of inertia would be unchanged.
The radius of gyrationis given by

1

k== (34.38)
m

where [ is the moment of inertia and m is the mass of the body. As with moment of inertia, the radius of
gyration depends upon the axis about which the body is rotated.

153



Prince George's Community College Genera Physics| Simpson & Simpson

(a) Slender rod, (b) Slender rod, (c) Rectangular plae, {d} Thin rectangular plate,
axis through center axis through one end axis through center axis along edge

Vs Bz g resy Loamoy
] ,3.1»\‘!. i/ lz:‘l’ff-r + 5b%) i l'w”

P -
- < /”/'.’ =
; e
-
(e) Hollow cylinder (F) Solid cylinder (g) Thin-walled hollow (h) Solid sphere (i) Thin-walled hollow
cylinder sphiere
| | 1 R B _ 2 et _ 2
1= MR} + &) = 5MR 1= MR 1= gMR = FMR
! L.

HJ

Figure 34.4: Table of moments of inertia of uniform bodies. (Credit: University of Pennsylvania.)

34.3 Parallel Axis Theorem

There are some theorems that allow us to extend Table 34-1 to other rotation axes. The most important of
theseiscalled the parallel axis theorem (sometimes called Steiner’s theorem). It relates the moment of inertia
I.m about an axis A passing through the center of mass to the moment of inertia 7 about another axis parallel
to A. If the two rotation axes are separated by a distance i, then

I = Ien+ Mh?. (34.39)

Example. Consider the fourth example in the previous section, where a hoop was rotated about an axis
going through the rim of the hoop. The same result may be found much more simply using the parallel axis
theorem. From Figure 34.4, the moment of inertia of the hoop when rotated about its center is I ¢, = MR2.
The distance / from the center totherim is R. Therefore, by the parallel axis theorem,

I = MR?> + MR? = 2MR?, (34.40)
in agreement with the previous result.

Example. Using the parallel axis theorem, find the moment of inertia of a rod of mass M and length L
about an axis perpendicular to the rod and passing through one end.

Solution. From Table 34-1, the moment if inertia about an axis perpendicular to the rod and passing
through the center of mass is Iy = ﬁMLZ. The distance between an axis passing through the center of
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mass and an axis passing through oneend ish = L /2. Therefore, by the parallel axis theorem, we have

[ = Iem+ Mh? (34.41)
1 L\?
= EML2 +M (E) (34.42)
11 )
1 2
= —ML?, (34.44)
3

in agreement with the result in Table 34-1.

34.4 Plane Figure Theorem

Another, lesser known, theorem involving moments of inertiais the plane figure theorem, and relates to the
moment of inertia of atwo-dimensiona (plane) figure. The theorem states that given the moments of inertia
I and I, of thefigure about two perpendicular axesin the plane of the figure, the moment of inertia / ; about
an axis perpendicular to the first two is given by

I =1, +1,. (34.45)

Example. What is the moment of inertia of a uniform disk of mass M and radius R when rotated about
an axis passing through the center of the disk and lying in the plane of the disk?

Solution. Define a coordinate system such that the x axis lies along the rotation axis, and the z axisis
perpendicular to the disk and passing through the center of the disk. Then by symmetry, the desired moment
of inertia/ = I, = I,. Furthermore, we know from Table 34.4 that 1, = %MRZ. Therefore, by the plane
figure theorem,

I, =1+ I,. (34.46)
which becomes

%MRZ =1+1 (34.47)
SO

I = %MRZ (34.48)

345 Routh’s Rule

Routh’s rule isamnemonic formulafor finding the moment of inertia of a symmetrical solid. The ruleworks
for acircular or elliptical cylinder rotated about the cylinder axis, or for acircular or elliptical disk about any
of the axes of symmetry.

Routh’s rule states that the moment of inertia I of abody of mass M about an axisis given by

el .
=M (sum of squares of the perpendicular semi axes) ’ (34.49)

3,4,0r5
where the denominator is 3 for arectangular body, 4 for a elliptical body, or 5 for an ellipsoidal body.
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Example

For example, consider the moment of inertiaof a circular disk of radius R rotated about an axis perpendicular
to the plane of the disk and passing through its center. Then the numerator in Eq. (34.49) is R 2 + R? = 2R?,
while the denominator is 4 (acircleis a special case of ellipse), so I = M(2R?/4) = (1/2)MR?.

Example

As a second example, we find the moment of inertia of a solid sphere rotated about an axis passing through
its center. Then the numerator of Eq. (34.49) is R? + R2, while the denominator is 5 (a sphere is a specia
case of ellipsoid); hence I = (2/5)M R>.

34.6 Lees’ Rule

Lees’ rule, like Routh’srule, isaformulafor computing the moment of inertia of a symmetrical solid. It is
really a kind of mnemonic device for helping to recall several moment of inertiaformulae
Lees rule states that the moment of inertia I of a body of mass M about an axisis given by

a? b?

where a and b are the lengths of the semi-axes perpendicular to the rotation axis, and n and n’ are the
“numbers of principal curvature” that terminate semi-axes a and b, respectively (n, n’ = 0 for aflat surface,
1for acylindrical surface, or 2 for a spherical surface).

Example

For example, suppose we want the moment of inertia of a rectangular plate of dimensions £ x w, about an
axis through the center of the plate and perpendicular to the plane of the plate. Thena = ¢/2, b = w/2, and
n = n’ = 0 because the surfaces are flat. Then Lees' rule gives

02/4  w?/4
I1=M
( 3 T3

) = %M(ZZ + w?). (34.51)

Example

As another example, consider the moment of inertia of a solid cylinder of radius R rotated about its axis. In
thiscasea = b = R,andn = n’ = 1. Lees ruleinthis case gives

R?> R? 1
I=M (T + T) = EMRZ. (34.52)

Example

As athird example, consider the moment of inertiaof a solid cylinder of radius R and length £ rotated about
an axis perpendicular to the cylinder axis, and passing through the center of the cylinder. Inthiscase, a = R,
b=1{/2,n=1,andn’ = 0. Then Lees rulegives

RZ  (2/4 Rz 2
=M= =M=+ = .
I M(4+ 3 ) (4+12) (34.53)
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Chapter 35

Torque

35.1 Introduction

Torque is the rotationa counterpart of force. Suppose a body rotates about an axis and a force F is applied
some distance r from the axis (Fig. 35.1). The distance from the rotation axis to the point at which the force
isapplied is called the moment arm. If the force is applied perpendicular to the moment arm (Fig. 35.1(a)),
then torque t is defined as

7= Fr. (35.2)

Torque in Sl units is measured in units of newton-meters (N m); in CGS units it is measured in dyne-
centimeters (dyn cm); and in British engineering units, it is measured in foot-pounds (ft Ibf).

Figure 35.1: Torque on arod that pivots about point P. (a) Force F applied normal to the rod; (b) force F
applied obliquely.

More generally, supposetheforce isapplied at some angle 6 to the moment arm (Fig. 35.1(b)). Then only
the component of the force F' perpendicular to the moment arm contributesto the torque:

7= Frsné. (35.2)
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Torqueis actually avector quantity. Its magnitude is as described above; itsdirection is perpendicular to
the plane containing the force and the moment arm. Let r be a vector pointing from the rotation axis to the
point at which the force is applied. Then the torque vector 7 is defined as

(35.3)

The direction of 7 isgiven by aright-hand rule: if you curl the fingers of your right hand from r into F, then
the thumb of your right hand pointsin the direction of t.

35.2 Rotational Version of Hooke’s Law
There isarotational counterpart of Hooke'slaw:
T = —«0, (35.4)

where k isthe spring constant, in unitsof N m rad—!. This version of Hooke'slaw applies to something like
atorsional pendulum, in which a mass suspended by awireis allowed to twist back and forth.

35.3 Couples

A couple is two forces, equa in magnitude and opposite in direction, but which are separated by some
distance (Figure 35.2). Since the two forces are equal and opposite, a couple results in zero net force on the
body. However, it does result in a torque on the body. If the forces act along lines separated by a distance /,
then the torque ¢ acting on the body due to the couple is given by

t=Fl (35.5)

= R S

-.——L ZTy—>
¥

Figure 35.2: A couple. Thetorquehereis Fx, — Fxy = F(xp —x1) = Fl.
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Chapter 36

Measuring the Moment of Inertia

M easuring the mass of abody iseasy: place the body on a scale or beam balance, and read the mass directly.
Measuring the moment of inertia of abody is not quite as easy; here we describe two methods that could be
used to measure a body’s moment of inertia.

36.1 Torque Method

The first method involves building a device specifically for the purpose (Figure 36.1).

r“."&sr
Eowr PuiLLEY

o

Figure 36.1: A simple device for measuring the moment of inertia

A rotating rod has a pulley at one end and the body to be measured attached to the other end. A string
with a weight of mass m at one end is wrapped around the pulley, so that the falling weight will unwrap the
string. If the pulley hasradius r,, then the falling weight will apply aforce mg to the pulley, which will result
inatorquemgr, onthe pulley. Thistorqueisthen applied to the pulley, to the rod, and to the test body ét the
other end of the rod. The rotation angle of the pulley at any time ¢ isthus given by

1 1
0= —ar? = ~ 242 (36.1)
where « isthe angular acceleration, which, by the rotational version of Newton’s second law, isequal to /1,

where t = mgr, isthetorque and / is the total moment of inertia, including the pulley, the test body, and
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therod. Let'swrite thistotal moment of inertiaas
I=0L+1+1 (36.2)

where [, isthe moment of inertia of the pulley, I, isthe moment of inertia of the rod, and /; isthe moment
of inertiaof the test body, which iswhat we're trying to measure. The rotation angle 6 isgivenby 6 = 2z N,
where N isthe number of revolutions of the pulley. But N is also equal to the total length L of the string
divided by the circumference of thepulley: N = L/(2xrp). Thus

L _L (36.3)

b4
27 rp Ip

0=2

Combining al these results, Eq. (36.1) becomes

L 1
L_ 1 mgry (36.4)
rp 21, + 1, + I

Solving for the moment of inertia of the body,
mgryt?
2L

b= -1, -1, (36.5)
The pulley and rod are both disks, so their respective moments of inertiaare I, = ympr2 and I, = 1m,r2,
wherem,, and r,, are the mass and radius of the pulley, and m, and r, the mass and radius of therod. Equation
(36.6) then becomes

r2 (mgt> 1
I, = ?p ( 7 —m,,) — Emrrr2 (36.6)

To use the machine, we attach the test body to the end of the rod opposite the weight, wrap the string
around the pulley, release the weight, and measure how much time ¢ it takes the string to completely unwind.
The moment of inertia of the test body is then given by Eq. (36.6). The weight m can be adjusted so that the
unwinding time islong enough to be measured easily (say, several seconds).

36.2 Pendulum Method

A second method for measuring a body’s moment of inertia has been described by Rhett Allain of South-
eastern Louisiana University.l. The ideaof this method is to attach the body to be measured to along string,
forming a physical pendulum. One measures the period 7' of the pendulum at a variety of different lengths
L. Now recall that the period T' of a physical pendulum is given by

T =2m I (36.7)
mgL

Solving for the moment of inertia, we get

T?mgL
J =
47

(36.8)

1https://www.wired.com/2017/OS/physics—of—a—fidget—spinner/
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By the parallel-axis theorem,
Jd=1+mL? (36.9)
Combining these equations, we get

T?mgL
47

=1 +mL? (36.10)

If we plot the left-hand side vs. L2, we will get a straight line of slopem and ordinate intercept equal to the
moment of inertia /.
In summary, the steps for measuring the moment of inertiaare:

1. Attach the test object to the end of a string, forming a physical pendulum.
2. Measure the period T of the pendulum at various lengths L.

3. Performalinear regression analysis onthe data (treating L 2 astheindependent variable, and T2mg L /472
as the dependent variable).

4. The ordinateintercept isthen the desired moment of inertia.
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Chapter 37

Newton’s Laws of Motion: Rotational
\Versions

Newton's three laws of motion have rotational counterparts. The rotational version of Newton's laws of
motion are;

1. Law of Rotational Inertia. A body at rest (non-rotating) will remain at rest, and a body rotating with
constant angular velocity will continue rotating with that same angular velocity, unless acted upon by
some outside torque.

2. v = la: If atorque 7 is applied to a body of moment of inertia 7, it will accelerate with angular
accelerationo = 7/1.

3. Torques aways come in pairsthat act in opposite directions. If body 1 acts on body 2 with atorque z,
then body 2 will act back on body 1 with torque ¢ (equal in magnitude and oppositein direction).

37.1 First Law of Rotational Motion

The rotational form of Newton's first law states that bodies have a property called rotational inertia, which
means that once given an initial angular velocity, they will continue spinning with that same angular velocity
forever, unless acted upon by some outside torque. Nobody knows why thisis; just like with linear inertia,
it'sjust the way the Universe works.

37.2 Second Law of Rotational Motion

Therotational form of Newton’s second law of motion states that the torque ¢ on abody is proportiona to its
resulting angular acceleration o:

7= 1a. (37.2)

When atorque 7 is applied to a body, its spinning will accelerate with angular acceleration « = t/I—the
larger the moment of inertia, the smaller the angular accel eration.
If the torque 7 is a function of angle, and using acceleration « = d 26/dt?, this becomes a differential
equation
d?6
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Solving this differential equation for 6(¢) gives a complete description of the rotational motion.

The most general form of Newton's second law isnot t = I«, but t = dL/dt, where L isthe angular
momentum. This reducesto r = I/« when the moment of inertiais constant.

The rotational form of Newton's second law may also be expressed in vector form:

t=1a, (37.3)

where « isthe angular acceleration vector, which lies aong the axis of rotation. Most generally, the moment
of inertia/ isatensor, i.e. a3 x 3 matrix, so that T and & do not necessarily liein the same direction.

37.3 Third Law of Rotational Motion

The rotational form of Newton’s third law of motion states that torques always come in pairs that act in
opposite directions. For example, imagine an astronaut floating in space next to a space capsule. He has
a wrench in his hand, and wishes to tighten a bolt on the spacecraft. But if he uses the wrench to turn
the bolt clockwise, the bolt will, in turn, apply a torque back on him, and the astronaut will rotate himself
counterclockwise. To avoid this, the astronaut can anchor his feet to the space capsule. The same thing will
still happen, but this time the astronaut and the capsule will rotate counterclockwise. Since the capsule’s
moment of inertiais so large, the angular acceleration of the capsule « = /1 will be very small.

The rotational form of Newton's third law may be used to advantage in controlling spacecraft attitude
(orientation). Spacecraft contain a set of spinning wheels called reaction wheels. By applying atorqueto one
of these wheels, the spacecraft can be rotated in the opposite direction.
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Chapter 38

The Pendulum

38.1 Introduction

A pendulum is a body that is supported from a pivot point and allowed to swing back and forth under the
influence of gravity. Among their other uses, pendulums were an essential component of clocksfor centuries.

38.2 The Simple Plane Pendulum

A simple plane pendulum is a pendulum that consists of a point mass m at the end of a string of length L of
negligible mass (Fig. 38.1). The pendulum is displaced from vertical by an angle 6, and released; after that,
it swings back and forth under the influence of gravity. The pendulum is constrained to swing back and forth
inaplane.

/]

Figure 38.1: A simple plane pendulum.

When the pendulum makes an angle 6 from the vertical, the torque acting to move it back toward vertical
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is—mgL sinf. Then by the rotational version of Newton's second law of motion,

=1« (38.2)
. d?6
—mgLsing = mLZW (38.2)
d?0 g .

Thisis a second-order differential equation that isfairly difficult to solve; the solutionis shown in Appendix
S. If we constrain the pendulum to small angles 8, then we can make the approximation

snfd ~ 6 (6 inradians). (38.9)
Under this approximation, Eq. (38.3) becomes

d?o g
=_%9 38.5
dr? L’ (38.5)
This is a second-order differential equation that’s fairly easy to solve; you'll learn how to solve differential
equationslike thisin a course on differential equations. The solution turns out to be

0(t) = 6y cos(wt + §), (38.6)

where 0, is the (angular) amplitude of the motion (in radians), ® = +/g/L isthe angular frequency of the
motion (rad/s), and § is an arbitrary integration constant (seconds). The solution can be verified by direct
substitutioninto Eg. (38.5).

The period T' of the motion (the time required for one compl ete back-and-forth cycle) is given by

=27 (38.7)
w
or
L
T =2r1/=. (38.9)
g

Remember that thisis an approximation, andisvalid only for small 6. The period of motionfor alarge period
isgiven by an infinite series, and is shown in Appendix S.

38.3 The Spherical Pendulum

A spherical pendulum is similar to a simple plane pendulum, except that the pendulum is not constrained to
move in a plane; the mass m is free to move in two dimensions along the surface of a sphere. Figure 38.2
shows a photograph of the movement of a spherical pendulum.

38.4 The Conical Pendulum

A conical pendulum is also similar to a simple plane pendulum, except that the pendulum is constrained to
move along the surface of a cone, so that the mass m moves in a horizontal circle of radius r, maintaining a
constant angle 6 from the vertical.
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Figure 38.2: Trace of the motion of a spherical pendulum, made by the author. A flashlight lens was covered
with a piece of cardboard in which a small hole was punched. The flashlight was then suspended by a string
from the ceiling (Iens downward) to create a pendulum. The room was then darkened, the flashlight turned on,
and the flashlight pendulum allowed to swing back and forth for several minutes above a camera which was
on the floor pointing up toward the ceiling. The camera shutter was kept open, allowing this time-exposure
image to be made on the film. (Image Copyright © 2011 D.G. Simpson.)
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For a conical pendulum, we might ask: what speed v must the pendulum bob have in order to maintain
an angle 6 from the vertical? To solve this problem, let the pendulum have length L, and let the bob have
mass m. A general approach to solving problems involving circular motion like thisis to identify the force
responsible for keeping the mass moving in a circle, then set that equal to the centripetal force mv?2/r. In
this case, the force keeping the mass moving in a circle is the horizontal component of the tension 7', which
isT sin6. Setting that equal to the centripetal force, we have

2
Tsng = 2. (38.9)
r

The vertical component of thetensionis
T cost = mg (38.10)

Dividing Eg. (38.9) by Eq. (38.10),

U2

gr
From geometry, theradiusr of thecircleis L sin. Making this substitution, we have

U2

tanf = ————.
gLsné

(38.12)

Solving for the speed v, we finaly get

v=,/Lgsinftand. (38.13)

38.5 The Torsional Pendulum

A torsional pendulum (Fig. 38.3) consists of amass
m attached to the end of a vertical wire. The body
is then rotated dightly and released; the body then
twists back and forth under the force of the twisting
wire. As described earlier, the motion is governed
by the rotational version of Hooke'slaw, t = —«6.

38.6 The Physical Pendulum

A physical pendulum consists of an extended body
that allowed to swing back and forth around some
pivot point. If the pivot point isat the center of mass,
the body will not swing, so the pivot point should be
displaced from the center of mass. As an example,
you can form a physical pendulum by suspending
a meter stick from one end and allowing to swing
back and forth.

In a physical pendulum of mass M, there isa
force M g acting on the center of mass. Suppose the
body is suspended from a point that is a distance

Figure 38.3: A torsiona pendulum. (Ref. [1])
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Figure 38.4: A physical pendulum. The object has mass M and is suspended from point P; & isthe distance
between P and the center of mass.

from the center of mass (Fig. 38.4). Then there is
aweight force M g acting on the center of mass of
the body, which creates atorque —M gh sin 9 about
the pivot point. Then by the rotational version of
Newton’s second law,

=1 (38.19)
2
—Mghsing = I%, (38.15)

where I isthe moment of inertiaof the body when rotated about its pivot point. Aswith the simple plane pen-
dulum, thisis asecond-order differential equation that is difficult to solve. But if we constrain the oscillations
to small amplitudes, we can make the approximationsin 6 = 0 as before, and the equation becomes
4’6 _ _Msgh
a2 1
We can solve this second-order differential equation as before, and get

6. (38.16)

0(t) = 6y cos(wt + §), (38.17)

where 0, is the (angular) amplitude of the motion (in radians), ® = /Mgh/I isthe angular frequency of
the motion (rad/s), and § is an arbitrary integration constant (seconds). The solution can be verified by direct
substitutioninto Eg. (38.16).
The period T' of the motion (the time required for one complete back-and-forth cycle) is given by
21

T="2, (38.18)

or

T =2m —. (38.19)
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38.7 Other Pendulums

» Double pendulum. A double pendulum isformed by attaching one pendulum to the bob of another, so
that the two pendulums are attached vertically and both bobs are free to move. The motion of a double
pendulumisa classic exercise in Langrangian mechanics, to be described later.

« Ballistic pendulum. A ballistic pendulum is a type of pendulum used to measure the speed of high-
speed objects like bullets. The ballistic pendulum is described in Chapter 29.

 Foucault pendulum. A Foucault pendulum is a type of simple plane pendulum that is used to demon-
strate the rotation of the Earth. As the pendulum swings back and forth in a plane, the Earth rotates
underneath the pendulum, causing itstrace along the ground to drift with time.
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Chapter 39

Simple Harmonic Motion

The small-angle approximation of the simple plane pendulum is an example of what iscalled simple harmonic
motion. Simple harmonic motion is the motion that a particle exhibits when under the influence of a force of
the form given by Hooke’s law (named for the 17th century English scientist Robert Hooke):

F = —kx. (39.1)

A force of thisform describes, for example, the force on a mass attached to a spring with spring constant &,
where k is ameasure of the stiffness of the spring. In thiscase F' isthe force exerted by the spring, and x is
the distance of the mass from its equilibrium position—that is, the “resting” position at which the mass can
be left where it will not oscillate.

Substituting Hooke's law as the force in Newton's second law F = ma (and recalling the acceleration
a = d*x/dt?) givesthe equation

d?x
kx =m TR (39.2)

This is a second-order linear differential equation with constant coefficients, and can be solved for x(¢)
using standard methods from the theory of differential equations. We won't go into the theory of differential
equations here, but just present the result. The solutionis

x(t) = Acos(wt + §). (39.3)

Here w is called the angular frequency of the motion, and measures how fast the particle oscillates back and
forth. The constant A is called the amplitude of the motion, and is the maximum distance the particle travels
from its equilibrium position, x = 0. The constant § called the phase constant, and determines where in its
cycletheparticleisat timer = 0. A plot of x(¢) isshownin Fig. 39.1.

Since the sine and cosine function differ only by a phase shift (sin6 = cos(6@ — =/2)), we could replace
the cosine function in Eqg. (39.3) with a sine by simply adding an extra /2 to the phase constant §. So either
the sine or the cosine can be used equally well to describe simple harmonic motion; here we will choose to
use the cosine function.

The calculus may also be used to find the vel ocity of the particle at any time; theresult is

v(t) = —Aw sin(wt + §). (39.9)
so that the maximum speed of the simple harmonic oscillator is

|vmax| = Aw (39.5)
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Simple Harmonic Motion
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Figure 39.1: Simple harmonic motion. Shown are the amplitude A4, period 7', and phase constant §. The
horizontal line x (¢) = 0 isthe equilibrium position.
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Further, it can be shown that the acceleration at any timez is

a(t) = —Aw? cos(wt + §) (39.6)

Multiplying Eq. (39.7) by the particle mass m, wefind
ma(t) = F(t) = —mw*x(t). (39.8)

Comparing thiswith Eq. (39.1) we see that

k = mw?, (39.9
or
W= E (39.10)
m

In Eqg. (39.3), the amplitude A depends on how far the particle was displaced from equilibrium before being
released; the phase constant § just depends on when we choose time ¢t = 0; but the angular frequency w
depends on the physical parameters of the system: the stiffness of the spring & and the mass of the particle
m.

39.1 Energy

The kinetic energy K of a particle of mass m moving with speed v is defined to be the work required to
accelerate the particle from rest to speed v; thisisfound to be

K = Imv2. (39.11)

From Hooke'slaw, the potential energy U of a simple harmonic oscillator particle at positionx can be shown
to be

U = 1kx2 (39.12)
The total mechanical energy £ = K + U of a simple harmonic oscillator can be found by observing that
when x = + A4, we have v = 0, and therefore the kinetic energy K = 0 and the total energy is all potential.
Since the potential energy at x = £ A4 isU = kA?/2 (by Eq. (39.12)), the total energy must be

E = JkA%. (39.13)

Sincetotal energy isconserved, theenergy E isconstant and does not change throughout the motion, although
the kinetic energy K and potential energy U do change.

In a simple harmonic oscillator, the energy sloshes back and forth between kinetic and potential energy,
as shown in Fig. 39.2. At the endpoints of its motion (x = £ A), the oscillator is momentarily at rest, and
the energy is entirely potential ; when passing through the equilibrium position (x = 0), the energy isentirely
kinetic. In between, kinetic energy is being converted to potential energy or vice versa.

We can find the velocity v of a simple harmonic oscillator as a function of position x (rather than time )
by writing an expression for the conservation of energy:

E=K+U (39.14)
7kA? = mv? + Lkx? (39.15)

172



Prince George's Community College Genera Physics| Simpson & Simpson

Simple Harmonic Oscillator Energy
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Figure 39.2: Kinetic, potential, and total energy of the simple harmonic oscillator as a function of time. The

oscillator continuously converts potential energy to kinetic energy and back again, but the total energy £
remains constant.
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Solving for v, we find

v(x) = :l:A\/g V1- Z—z (39.16)

This can be simplified somewhat by using Eg. (39.10) to give

2
v(x) =ftAw /1 — Ve (39.17)

where Aw is, by inspection of Eqg. (39.4), the maximum speed of the oscillator (the speed it has while passing
through the equilibrium position).

39.2 Frequency and Period

The angular frequency w described earlier is a measure of how fast the oscillator oscillates; specifically, it
measures how many radians of its motion the oscillator moves through each second, where one complete
cycle of motionis 2z radians. A related quantity is the frequency £, which describes how many complete
cycles of motion the oscillator moves through per second. The two frequencies are related by

w=2rf. (39.18)

You can think of w and f as really being the same thing, but measured in different units. The angular
frequency w is measured in units of radians per second (rad/s); the frequency f is measured in units of hertz
(Hz), where 1 Hz = 1/sec.
The reciprocal of the frequency is the period 7', and is the time required to complete one cycle of the
motion:
1 2w
T=—=".
f 1)
The period is measured in units of seconds. As shown in the plot of x (¢) (Fig. 39.1), the period T isthe time
between peaks in the motion.

(39.19)

39.3 The Vertical Spring

If a horizontal mass on a spring is turned to a vertical position, then the spring is stretched by an amount
xo = mg/k, giving it a new equilibrium position. For the vertical spring, the potential energy is still given
by U = %kxz, but x inthis case refers to the distance from the original (horizontal) equilibrium position.

39.4 Frequency and Period

The angular frequency w described earlier is a measure of how fast the oscillator oscillates; specifically, it
measures how many radians of its motion the oscillator moves through each second, where one complete
cycle of motionis 2z radians. A related quantity is the frequency £, which describes how many complete
cycles of motion the oscillator moves through per second. The two frequencies are related by

w=2xf. (39.20)

You can think of w and f as really being the same thing, but measured in different units. The angular
frequency w is measured in units of radians per second (rad/s); the frequency f is measured in units of hertz
(Hz), where 1 Hz = 1/sec.
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The reciprocal of the frequency is the period T, and is the time required to complete one cycle of the
motion:

T=—=2 (39.21)

The period is measured in units of seconds. As shown in the plot of x (¢) (Fig. 39.1), the period 7" isthe time
between peaks in the motion.

39.5 Mass on a Spring

The discussion so far has applied to simple harmonic motion in general; there are many specific examples
of physical systems that act as simple harmonic oscillators. The most commonly cited example is a mass
m on a spring with spring constant k. The spring constant & is a measure of how stiff the spring is, and is
measured in units of newtons per meter (N/m). Specifically, k describes how much force the spring exerts
per unit distance it is extended or compressed.

A mass on a spring oscillates with angular frequency

w=5 (39.22)
m

and therefore has period 7' = 27/ w, or

T =2r \/% . (39.23)

It really doesn’t matter whether a mass on a spring moves horizontally on a frictionless surface, or bobs
up and down vertically. The motion is the same—the only difference is that if you take a horizontal spring
and hang it vertically, the equilibrium position will change because of gravity. The period and frequency of
motion will be the same.

The importance of the spring example is not that there are government laboratories filled with researchers
studying springs; rather the spring example serves as an important model and approximation for other prob-
lems. Often even a complicated force can be approximated as a linear force (Eg. (39.1)) over some limited
range. In this case one may approximately model the force as a spring force with an “effective spring con-
stant” k, and alow at least an approximate answer to what might otherwise be a difficult problem.

There are severa other examples of systems that form simple harmonic oscillators: the torsional pendu-
[um, the simple plane pendulum, a ball rolling back and forth inside a bowl, etc.

39.6 More on the Spring Constant

It is often not appreciated that the spring constant & depends not only on therigidity of the spring, but also on
the diameter of the spring and the total number of turns of wire in the spring. Consider a vertical spring with
spring constant k, and a mass m hanging on one end. Assume the system isin its equilibrium position, and
in this position it has length L ¢ and consists of N turns of wire. Now if you apply an additional downward
force F to the mass, the string will stretch by an additional amount x given by Hooke'slaw: x = F/k. This
stretching will manifest itself as an additional spacing of x /N between adjacent turns of the spring. It isthis
additional spacing per turn that is the true measure of the inherent “stiffness” of the spring.

Now suppose thisspringiscut in half and put initsequilibrium position. Itsnew lengthwill be L /2, and
will consist of N/2 turnsof wire. When the same additional force F is applied to the mass m, the additional
spacing between adjacent turns of the spring will be the same as before, x/ N, because the spring still has
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Series Parallel
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Spring constant =k

Spring constant = 0.5k

Figure 39.3: Springsin series and parallel (Credit: http://spmphysics.onlinetuition.com.my).

the same dtiffness. Since the number of turnsis now N/2, this means that the additional total stretching of
the spring is x /2, so it will stretch by only half as much as before. By Hooke's law, the spring constant is
now k' = F/(x/2) = 2F/x = 2k, so the spring constant is now twice what it was before. In other words,
cutting the spring in half will double the spring constant. Likewise, doubling the length (number of turns) of
the spring will halve its spring constant.

Another way to think of thisis to consider two springs connected in series or in parallel (Fig. 39.3). If
several springs are connected end-to-end (i.e. in series), then the equivalent spring constant & ; of the system
will be given by

1 1
- = — 39.24
Iy (39.24)
1 1 1
- 4 4. 39.25
k1 + ko + k3 + ( )
If the springs are connected in parallel, then the equivalent spring constant k , of the system will be
kp =Y ki (39.26)
=ki+ka+ks+... (39.27)

For example, if twoidentical springs, each of spring constant k, are connected in series, then the combination
will have an equivalent spring constant of £ /2. If the twoidentical springswere instead connected in parallel,
then the combination would have an equivalent spring constant of 2k, as shown in Figure (39.3).

Now imagine you have a long spring of spring constant k. You can imagine it as being two identical
springs connected in series, each having spring constant 2k, so that the combination has a total equivalent
spring constant of [(1/2k) + (1/2k)]~! = k. If thelong spring is cut in half, then you are |eft with only one
of those smaller springs of spring constant 2k, so again we reach the conclusion that cutting the springin half
will double the spring constant.
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It's possible to cal culate the spring constant from the geometry of the spring. The formulais?

Gd*

_ 2
8ND? (39-28)

where d isthe wire diameter, N isthe number of active turnsin the spring, D isthe coil diameter (measured
from the center of thewire), and G is called the modulus of rigidity of the spring material; G is given by

Y

T (39.29)

where Y is the Young’s modulus of the material (a measure of how much it stretches when pulled or com-
pressed), and v is the material’s Poisson ratio (a measure of how much it squeezes sideways when com-
pressed). These are properties that are characteristic of the material, and can be looked up in a handbook of
material properties. Values for a few materials are shown in the table below.

Table 39-1. Young's Moduli and Poisson Ratios.
Material Young'sModulus Y (N/m?) Poisson Ratio v

Aluminum 69 x 10° 0.334
Bronze 100 x 10° 0.34
Copper 117 x 10° 0.355
Lead 14 x 10° 0.431
Magnesium 45 x 10° 0.35
Stainless stedl 180 x 10° 0.305
Titanium 110 x 10° 0.32
Wrought iron 200 x 10° 0.278

Notice from Eq. (39.28) that if the springiscut in half, N will be half its original value, and so the spring
constant k& will be doubled, in agreement with what we've found earlier.

Example. Suppose we make a spring of 1 mm diameter copper wire, the diameter of the springis 1 cm,
and there are 50 turns of wirein the spring. What is the spring constant?

Solution. From the above table, for copper, ¥ = 117 x 10° N/m? and v = 0.355. From Eq. (39.29), we
have
G Y _u7xio N/m?
S 2(14+v)  2(140.355)

=432 x10° N/m?

And the spring constant is found from Eq. (39.28)

Gd*  (43.2x 10° N/m?)(10~3 m)*

k=SND? = 8(50)(10-2 m)3

=108 N/m

lseeeg http://www.engineersedge . com/spring_comp_calc_k.htm
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Chapter 40

Rocking Bodies

Another example of simple harmonic motion is that of a rocking body — a body that, as it rotates, will
experience atorque that tends to return it to an equilibrium position. A rocking chair isa common example.

40.1 The Half-Cylinder

To analyze rocking motion, let’'s consider a fairly simple body: a uniform right circular cylinder of radius r
that has been cut in half by a plane passing through the axis of the cylinder to form a half-cylinder, whose
cross-section is a semicircle (Figure 40.1), and which is resting on a flat table. Let m be the mass of the
half-cylinder.

It can be shown using the multivariate cal culus that the the distance p between the axis S and the center
of massT is

=i (40.)
/]

We will need to find the moment of inertia 7y of the half-cylinder when rotated about an axis that lies
along the line of contact between the half-cylinder and the table. We'll find this by first finding the moment
of inertia /7 about an axis parallel to the half-cylinder axis and passing through the center of mass 7'; from
that, we can then use the parallel axistheorem to find 7. We'll find I by first finding /¢, the moment of
inertiawhen rotated about the cylinder axis. In summary, we'll find 7 s, then I, then Iy .

S

http://physicstasks.eu/

Figure 40.1: Rocking half-cylinder. The center of massiaat point T'.
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To find I, note that if we take two half-cylinders and place their flat ends together, we will have afull
cylinder of mass 2m and moment of inertia equal to the sum of the moments of inertia of the two half-
cylinders, Is + Is. The moment of inertiaof asolid cylinder when rotated about itsaxisis 1/2 its mass times
the square of itsradius, so thisfull cylinder would have moment of inertia

Is + Is = 32m)r? (40.2)

mr? (40.3)

N [—=

Is =
For the half-cylinder, the moments of inertia / ¢ and /7 are related by the parallel-axis theorem,
Is = IT + mp*? (40.4)

and the moments of inertia I and Iy are related by (again using the parallel-axis theorem),

Ig = It + m(r — p)? (40.5)
and so
Ig = (Is —mp?) + m(r — p)? (40.6)
= (3mr? —=mp?) + m(r — p)* (40.7)
= %mr2 —mp? +mr? —2mrp + mp* (40.8)
= %mr2 —2mrp (40.9)
=2mr*> —2mr (££) (40.10)
or
3 8
Iy =mr? (5 - g) (40.11)

Now we'll find the period of oscillation using conservation of energy. Let's rock the cylinder by some
small angle oy (Figure 40.2). In this position, the cylinder is momentarily at rest, so it has zero kinetic
energy. It does have a potential energy, though, equal to mgh, where & is the height of the center of mass
above its height when in equilibrium. (Here we choose zero potential energy to be when the cylinder isiniits
equilibrium position.)

From the figure and using geometry, we see that

h=p— pcosag = p(1 —Ccosay) (40.12)
and so the potential energy is
mgh = mg(p — pcosag) = mgp(l — coSwyp) (40.13)

Now, starting from angle o, we release the half-cylinder. When the half-cylinder reaches its equilibrium
position, its potential energy is zero, but it has kinetic energy %IHw,Z,,, where w,, = aow is the angular
velocity at the equilibrium point (cf. Eq. (39.5)). By conservation of energy, the total energy at angle o ¢ must
equal the total energy at the equilibrium position:

0+ mgp(1 —cosay) = %IHw,Z,, +0 (40.14)
= 21 (wag)* +0 (40.15)
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Figure 40.2: Rocking cylinder rocked by angle «.

We now use the small-angle approximation

cosog ~ 1 — — = 1 —cosag ~

N |OQN

we get (approximately)

o? 1
B

Solving for the angular frequency w, wefind

_ [mgpa} mg(3L)
= j 2(3_ 8
HOq mr (2 37r)

We now do some simplifying:
o | 8GD)
r? (Y6
g(4r)(6m)
37r?2 (97 — 16)
_ 8
r (97 — 16)

and so the period of oscillation T = 27 /w is

r (97 — 16)

T=2 _—
T 8g

(40.16)

(40.17)

(40.18)

(40.19)

(40.20)

(40.22)

(40.22)

Noticethat T o< /7, so the larger the radius, the longer the period of oscillation. Notice also that the period
isindependent of the mass m, so that all half-cylinders of the same radiuswill rock with the same period.
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Chapter 41

Rolling Bodies

41.1 Introduction

The motion of a body like a sphere or a cylinder rolling (without slipping) down an inclined plane introduces
a complication into the motion: the body as a whole moves down the incline, while at the same time the
body rotates about its axis. The net movement of the body isa combination of both motions: atranslational
movement of thewhole body down theincline, together with arotational motionabout itsaxis. We'll examine
here the velocity, accel eration, and kinetic energy of around body rolling down an incline.

41.2 Velocity

Let's imagine the following scenario: suppose we have an inclined plane, inclined at an angle 6 to the
horizontal. Now place a round body of mass M and radius R at a height /2 above the base of theincline. If
we release the body from rest, what will be its speed v at the bottom of the incline?

Let's look at the problem from a point of view of energy. At any given instant, the rolling body will
be pivoting about the point of contact with the incline (we'll call this point P). Its total kinetic energy is
therefore the rotational kinetic energy

1
K = 5Ipwz, (41.2)

where Ip isthe moment of inertiaabout P and w isthe rotational angular velocity of the body. Now by the
parallel axistheorem, we know

Ip = Iem + MR?, (41.2)

where I, isthe moment of inertiaof the body about its center of mass. Substitutinginto Eq. (41.1), we get

1

K= 2(em + MR?) »* (41.3)
1 1

— Elcmwz + EMRZCOZ. (414)

Now using v = Rw inthe second term on the right, we have

1 1
K= Elcma)z + 5Muz. (41.5)
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This saysthat the total kinetic energy of the body is the sum of the rotational kinetic energy (thefirst term on
the right) and the translational kinetic energy (the second term on the right).

Now |et’suse the conservation of energy to solve for the speed v at the bottom of the incline. At thetop of
theincline, the body is at rest, and itsenergy is al potential and equal to M gh. At the bottom of the incline,
the energy isall kinetic, and is given by Eq. (41.5). Then by conservation of energy,

1 1
Mgh = Elcmwz + 5Muz. (41.6)

Substitutingw = v/R into thefirst term on the | eft,

1 v\2 1 2
Mgh = S Ion (E) + M. (41.7)

Now out factor v2/2 on the right-hand side to get

Mah = (1t + ) 2 (41.8)

g&n = M3 3 .
Now dividing throughby M,
Iem v?

=03 —. 41.

gh (MR2+1)2 (41.9

The dimensionless combination /¢m/ (M R?) occurs often enough that it’s convenient to introduce the abbre-
viation
g = tom_ (41.10)
MR?

(Values of B for several common geometries are shown in Table 41-1.) With this definition, Eq. (41.9)
becomes

2
gh= B+ 1)%- (41.12)

Solving for v, we finally have the speed at the bottom of the incline given by

o= | ﬂzi hl (41.12)

41.3 Acceleration

Now let’s find the (translational) acceleration of the body down the incline. If the distance down the incline
is x, then the velocity v at the bottom of theinclineisrelated to x by

v? = 2ax (41.13)
By geometry, sinf = h/x, and so x = h/ sinf; using thisto substitutefor x, we have

h

2
v =2a——,
sinf

(41.14)
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or, solving for the acceleration a,

v2sing
= . 41.15
a ey (41.15)
Now let’s use Eq. (41.12) to substitute for v; the result is an expression for the acceleration of a body rolling

down anincline,

gsing
a =
B+1

(41.16)

Table 41-1 shows values of 8 and « for several common geometries.

Equation (41.16) has some interesting consegquences. For example, if you start a solid sphere and a
cylindrical shell at the top of aincline and release them at the same time, which one will reach the bottom
first? From Table 41-1, you can see that the solid sphere will will win: itsacceleration (5/7)g sinf is greater
than the cylindrical shell’s acceleration of (1/2)g sin6. What's surprising about thisis that all solid spheres
will beat all cylindrical shells, regardless of mass or radius. In general, the object with the smaller 8 will win
such arace, since that will give the smallest denominator in Eq. (41.16) and therefore the larger acceleration.

41.4 Kinetic Energy

As abody rolls down an incline, its potential energy is converted partly into translational kinetic energy, and
partly into rotational kinetic energy. How much goes into translational kinetic energy, and how much into
rotational form?

First, let's compute the translational kinetic energy, K, = Mv?/2. Using Eq. (41.12) to substitute for v
gives

1 1 2gh
K= -Mv?=_M |2~ 4117
=M T (ﬂ+1)’ (4117
or
Mgh
K = —— 41.18
TR+ (41.18)

Now let’s find the rotational kinetic energy, K, = Ignw?/2. Usingw = v/R,

1 v\2
Kr = len () (41.19)
Again using Eq. (41.12) to substitutefor v,
o Lom 2gh (41.20)
2R2B+1

Multiplying the numerator and denominator by M,
Iem Mgh

K, = o 41.21
MR2 B + 1 (41.21)
The first factor ontherightisjust 8, so wefinally have for the rotational kinetic energy
K, = Mgh (L) =B K, (41.22)
B+1
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Knowing that the total kinetic energy is K = M gh, we can now use Egs. (41.18) and (41.22) to find the
ratio of the trandational kinetic energy to the total kinetic energy:

K; 1

A — 41.23

K B+1 ( )
Similarly, the ratio of the rotational to total kinetic energy is given by

K __ B (41.24)

K pBg+1

Values of these ratiosfor common body geometries are shown in Table 41-1. It isinteresting to note that
substituting 8 = 0 into the formuleewe've derived here recovers the formulaefor an object sliding down an
inclinewithout rolling, as shown in the last line of the table.

Table 41-1. Accelerations and energy ratios for rolling bodies.

Body B a K:/K K,/K
Cylindrical shell 1 (1/2) gsinf 12 12
Solid cylinder 2 (2/3)gsinf 2/3 13
Spherical shell 2/3 (3/5) gsinf 3/5 2/5
Solid sphere 2/5 (5/7) gsinf 5/7 217
Sliding object 0 gsing 1 0

41,5 The Wheel

Imagine awheel of radius r rolling along the ground without slipping. When the wheel makes one compl ete
revolution, the axis will have been directly above each point on the circumference of the wheel exactly once.
Therefore the axis of the wheel has traveled a horizontal distance equal to the circumference of the wheel, or
2z r. In other words, each revolution of the wheel causes the axis (or any vehicle attached to the wheel) to
move a distance of 2xr.

As a consequence of this observation, we can relate the angular velocity o of the wheel to the linear
velocity v of the axis. Let’'ssay that it takes atime Az for the wheel to rotate once onitsaxis. Then the linear
velocity of the outer edge of the wheel is2sr/At. During that same time, the axis of the wheel has traveled
the same distance 27, and so the linear velocity of theaxisisalso 21/ At. Both the velocity of the axisand
the linear velocity of the outside edge of the wheel are equal to v = rw. In other words: The linear velocity
of the axis with respect to the ground is equal to the linear velocity of the outer edge of the wheel with respect
to the axis.

Example. A bicycle with wheels of radius 34 cm is traveling with a speed of 7 m/s. What is the angular
velocity of the wheels?

Solution. From the above discussion, the velocity of the bicycle v is equal to the linear velocity of the
outer edge of thewheels, rw. Thereforev = rw, 0w = v/r = (7 m/s)/(0.34 m) = 20.6 rad/s.
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41.6 Ball Rolling in a Bowl

Suppose aball of mass m and radiusr isallowed to roll (without slipping) back and forth inside a hemispher-
ical bowl of radius R. Does this congtitute simple harmonic motion? And if so, what is the period of the
motion?

To begin, let 8 be the angle the ball makeswith thevertical, sothat & = 0 when the ball isat the bottom of
the bowl. Also let w be the rotational angular velocity of the ball about its center of mass, 2 = d6/dt bethe
angular velocity of the ball’s motion within the bowl, and v = (R — r)Q2 the translational speed of the ball.
It turns out that we can find the equation of motion by computing the time derivative of the total mechanical
energy of theball. The ball’stotal mechanical energy isthe sum of three components: itstranglational kinetic
energy, itsrotational kinetic energy, and its gravitational potential energy.

The trangdlational kinetic energy of the ball is

1

K, = Emvz (41.25)
1

= Em(R —r)*Q? (41.26)

The rotational kinetic energy of the ball about itsaxisis

(41.27)

where 7 isthe moment of inertia of the ball about its center of mass. If we take zero potential energy to be
the point where the ball is at the bottom of the bowl, then the potential energy of the ball is

U =mg(R—r)(1—cosb). (41.28)
Therefore the total mechanical energy of the ball is
E=K:+K.+U (41.29)

1 1
= Em(R —r)?Q% + Elwz + mg(R —r)(1 —cosf) (41.30)

We'll want to get all terms of this equation in terms of 6; to do this, we'll need to write w in terms of .
Since the ball rolls without slipping, we know v = rw, and so

v=rw=(R—-r)Q (41.31)
wz(R_r)sz. (41.32)
r
Substituting thisinto Eq. (41.29), we have
1 gy 1 (R=7\>_,
E= 5m(R —r) Q° + 51 — | Q°+ mg(R —r)(1 —cosb). (41.33)
r
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Writing the moment of inertiaas I = Bmr 2, the total energy may be written

E = %m(R —-r)2Q% + %,erz (?)2 Q% + mg(R —r)(1 — cosh) (41.34)
= %m(R —r)?Q% + %,Bm(R —7r)?Q?% + mg(R —r)(1 —cosf) (41.35)
= %m(R —r)?Q%(B + 1)+ mg(R —r)(1 —cosh) (41.36)
= %m(R —r)? (%)2 (B+ 1)+ mg(R —r)(1 —cosb) (41.37)

(41.38)

wherein the last step we substituted the definition Q = d6/dt. We can find the equation of motion by taking
the time derivative d E /dt, which must be zero, since E must be constant:

dE , (dOY (d?6 . do
And so, cancelling acommon df/dt on both sides, we get
2 (d?0 :
m(R —r) el B+1)=—-mg(R—r)sing. (41.40)
Cancelling acommon m (R — r) on both sides,
d?0 .

Now solving for d 26 /dt?, we get the equation of motion:

d?o g .

— =———————193in

dr? B+DR=-1)
Thisisthe same as Eq. (38.3) for a simple plane pendulum, with effective length

Lgt =B+ 1)(R—71). (41.43)

0. (41.42)

The ball rolling in the hemispherical bowl is, like the simple plane pendulum, not exactly a simple harmonic
oscillator; but it is approximately a simple harmonic oscillator for small oscillations.

For small oscillations, the period of oscillation 7' is given by Eq. (38.8), with L replaced by L & in Eq.
(41.43):

T = ZnJW. (41.44)

For example, if the ball isa uniform solid sphere, then 8 = 2/5,andso 8 + 1 = 7/5 and we have

T =on [ZRZD (41.45)
58

A ball rolling in a hemispherical bowl will have a period greater than that of a simple plane pendulum of the
same length, by afactor of \/8 + 1 = /7/5 ~ 1.1832.
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Chapter 42

Galileo’s Law

42.1 Introduction

Galileo Galilei (1564—1642) was an Italian physicist to did some of the early work in classical mechanics.
One of his magjor contributionswas in the area of falling bodies. Galileo recognized that bodies falling due
to the Earth’s gravity will fall with a constant acceleration, and that he could study that acceleration by, in
effect, slowing it down through the use of an inclined plane.

Galileo constructed an inclined plane tilted at a slight angle (4 °), with a groove in the center. He then
rolled a solid brass ball in the groove down incline and studied how the ball moved as a function of time. He
could do this by placing small bumpsin the groove in which the ball rolled; whenever the ball hit a bump, it
made a noise. By studying the timing of the noises and comparing that to the distance between the bumps, he
could make some quantitative studies of the ball accelerating down the incline.

Unfortunately, Galileo did not have access to accurate timepieces—using his own pulse was about the
best method available. If he made the bumps equally spaced apart along the incline, he could tell that the
noises of the ball hitting the bumps got closer together as the ball rolled down the incline, but had no way to
measure the times accurately.

Then Galileo hit upon an idea: instead of spacing the bumps equally far apart, he would adjust their
spacing until he could hear that the time between the ball hitting the bumps was the same. As a skilled player
of the Renaissance lute, Galileo had a well-developed sense of musical rhythm, and was able to judge fairly
accurately when the click-click-click-click of the ball rolling down the incline and hitting the bumps on the
incline were separated by equal time intervals. Once he was satisfied that the sounds of the balls hittingsthe
bumps were all equally separated in time, he could accurately measure the distances between the bumps.

He discovered that the distance from the top of the incline to the second bump was 4 times the distance
to the first bump; the distance to the third bump was 9 times the distance to the first bump; the distance to the
fourth bump was 16 times the distance to the first bump, and so on. This allowed him to deduce what is now
called Galileo’s law: the total distance x covered intimez is proportional to the square of the time:

x o« t? (42.1)

42.2 Modern Treatment

Developmentsinthe theory of classical mechanics since Galileo’stime allow us to investigate his experiment
in more detail. For one thing, we now know that the proportionality constant in Eq. (42.1) isa/2, wherea is
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the acceleration of the ball down the incline; Galileo's law then becomes

1
x = - at’. (42.2)

2
Furthermore, we now know that the acceleration a of a solid ball rolling down an inclined plane is given

by
_gsinf  gsnd

a = - ’
14 o 1+ 8

(42.3)

where g is the acceleration due to gravity (9.8 m/s?), 6 is the inclination of the inclined plane, I isthe
moment of inertia of the ball about its center of mass, M isthe mass of the ball, R is the radius of the ball,
and B = Icm/(MR?). For asolid spherical ball, we know

2
Iem = g MRZ’ (42.9)

0 B = Ign/(MR?) = 2/5; the acceleration of a solid ball down an inclined plane is therefore
5 .
a=z gsiné. (42.5)

Galileo'slaw for a solid ball rolling down an incline then becomes

x = % at? (42.6)

= % (; gsin(?) t? (42.7)

= 1—54 (gsing) 2. (42.8)
Using g = 9.8 m/s? and § = 4° for Galileo'sincline, we get

x = 0.244 12, (42.9)

where x isin meters and ¢ isin seconds.
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Chapter 43

The Coriolis Force

43.1 Introduction

Imagine you're on a rotating merry-go-round, and you throw a ball to another person who's on the opposite
side of the merry-go-round. If you aim directly at the other person, you'll miss them—the ball will travel in
a straight line relative to the ground, but the merry-go-round will have rotated during the time the ball isin
the air. Relative to the merry-go-round, the ball will appear to move aong a curved path. You can attribute
this curvature to a “fictitious force” called the Coriolis force. The Coriolisforce isnot areal force—it'sjust
an artifact of viewing the ball’s motion in a rotating reference frame. The ball really moves in a straight line
relative to the ground.

So in therotating reference frame of the merry-go-round, you' Il see the ball movein a curved path, which
can’t happen unless there is a “force” present. We can compute the magnitude of this Coriolis force by
considering the following situation. Suppose you're at the center of the merry-go-round, and throw a ball
outward with velocity v while the merry-go-round is rotating with an angular velocity 2. After atimez, the
ball will have moved aradia distance r = vt. Attimer, apoint on the merry-go-round adistance r from the
center will have moved through an arc length

s=r6 (43.1)
=r(Q1) (43.2)
= (vt)Qt (43.3)
= Qut>. (43.4)

But under a constant acceleration a., we know
1

s = Eactz. (43.5)
Comparing Eq. (43.4) with Eq. (43.5), we deduce that the Coriolisacceleration a . is given by
ac =2Qv. (43.6)

More generally, in terms of vectors, the Coriolisacceleration vector a. is given by

a, = =2 (2xv)| (43.7)

From Newton’s second law, the corresponding Coriolisforce F. on abody of massm isthen

Fe =—2m (2xV)| (43.8)
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43.2 Examples
Golf

For example, suppose we're on the surface of the Earth, in the northern hemisphere, and hit a golf ball due
south with velocity v. Since the Earth rotates to the east, the Earth’s angular velocity vector  is along the
Earth’s axis, northward out of the north pole. Then by Eq. (43.8), there will be a westward Coriolis force
acting on the golf ball, equal in magnitude to

F. =2mQusng, (43.9)

where ¢ isthe latitude and m isthe mass of the golf ball. Thiswill cause the ball to slice the right. The effect
is very dight, though. For example, given the rotation rate of the Earth Q = 7.2921 x 10 > rad/s, the mass
of the golf ball m = 45 g, atypical ball speed v = 50 m/s, and a latitude of ¢ = 39°, the Coriolisforce only
amountsto F, = 206.5 uN, or about 0.05% of the weight of the golf ball.

The Coriolisforce is zero at the equator, and greater at higher latitudes. In the southern hemisphere, the
Coriolis force will cause a slight hook of the ball to the left, rather than the slice it will experience in the
northern hemisphere.

Weather

By Eqg. (43.8), we can see that in the northern hemisphere, air currents moving northward are deflected to the
east; eastward currents are deflected to the south; southward currents are deflected to the west; and westward
currents are deflected to the north. If alow-pressure areaformsin the atmosphere, then the pressure gradients
will cause the air currents to flow toward the center of the area; but because of the Coriolis deflections, the
result will be that the air currents will flow counter-clockwise, creating an air pattern called a cyclone around
the low-pressure area. Similarly, inthe southern hemisphere, cycloneswill be air currents rotating clockwise.

Hurricanes, tornados, water spouts, and whirlpoolsall rotate counterclockwisein the northern hemisphere
due to the Coriolisforce (and clockwise in the southern hemisphere).
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Chapter 44

Angular Momentum

44.1 Introduction

The rotational counterpart of momentum is called angular momentum. Just as linear momentum is defined
as the product of mass and velocity (p = mv), angular momentum L is defined as the product of moment of
inertiaand angular velocity:

L=Io. (44.1)

More generally, angular momentum, like linear momentum is a vector quantity:

(@42)

Sl unitsfor angular momentum arekgm? s !, or N ms.
Angular momentum L isrelated to linear momentum p according to

3

If you recall, Newton's second law of motion statesthat F = dp/dt, where F isforce and p is momen-
tum; in the special case where mass is constant, thisreducesto F' = ma, where a is the acceleration. There
are analogous formulaein rotational motion, which can be derived by taking the time derivative of Eq. (44.3):

dL _ . dp

- = . 444
dt "t (444)
The right-hand side is the torque; the result is the rotational form of Newton’s second law:
dL
=2, 445
T=— (44.5)

where t istorque and L is angular momentum. In the case where the moment of inertia is constant, this
reducesto t = I, where « is the angular acceleration.

44.2 Conservation of Angular Momentum
Angular momentum, like linear momentum, is a conserved vector quantity: in a closed system (in which

no angular momentum enters or leaves the system), the total angular momentum is constant. Since angular
momentum is avector, this means that the following are all conserved:
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* The vector angular momentum, L;
* The magnitude of the angular momentum, L; and
» Each component of the angular momentum, L, Ly, and L.

In a closed system, angular momentum may be transferred from one body to another, but the total angular
momentum—the sum of the angular momenta of all bodies in the system—will remain constant.

Asacommon example, conservation of angular momentum isillustrated by the spinning of afigure skater.
As she'sdoing a spin, afigure skater will rotate about a vertical axis. As she brings her armsin closer to her
body, the figure skater decreases her moment of inertia. By Eq. (44.3), if the moment of inertia / decreases,
then the angular velocity w must increase in order to keep the angular momentum L constant.
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Chapter 45

Conservation Laws

There are four conserved quantitiesin classical physics:
 Energy
* Linear momentum
* Angular momentum
* Electric charge

Two of these (energy and electric charge) are scalar quantities; the other two (linear momentum and angular
momentum) are vector quantities.

We've seen the first three of these quantitiesin this course. You'll meet the fourth — conservation of
electric charge — in General PhysicslI.

In addition to these four, there are a few more esoteric conservation laws related to particle physics; but
these conservation laws are beyond the scope of this course.
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Chapter 46

The Gyroscope

46.1 Introduction

A gyroscope (from the Greek yvpog, “aring,” and okomew, “se€”) is a wheel attached to an axle; the
wheel and axle are spun to rotate at an angular velocity w, so that the gyroscope has an angular momentum
L = Iw, where the moment of inertia I ~ MR?. The gyroscope has various uses as a children’s toy
(where it is similar to a top), as an apparatus for demonstrating principles of physics, or as an instrument
for navigation. The Hubble Space Telescope, for example, has six gyroscopes on board that are used to help
determine the attitude of the spacecraft (its orientation in space).

46.2 Precession

The gyroscope can be used to illustrate some properties of rotating bodies. For example, suppose the axis of
the gyroscope is held vertical, and the axle is supported from the bottom end only. If the gyroscope is not
spinning, then the instrument is unstable: the slightest movement from a perfectly balanced vertical position
will cause it to topple over. But suppose we set the gyroscope spinning first, then set it down so the axle
is vertical and supported from the bottom end. The instrument will still tend to topple over, but in doing so
it will pivot about the bottom end of the axle, creating a torque about that point. The spinning gyroscope
already has an angular momentum L ; thetorque T = dL/dt due to gyroscope wanting to tip over causes the
instrument’s angular momentum to change with time, causing it to move in acircle.

For example, suppose the gyroscope is vertical and spinning counterclockwise as seen from above. Then
by the right-hand rule, itsangular momentum vector L pointsupward. If you're watching the gyroscope from
the side and it beginsto topple over to the right, then thereis atorque vector T pointing away from you. Since
T = dL/dt, thismeans the torque and the change in angular momentum will be in the same direction, so the
gyroscope will start to rotate away from you. Essentially the falling over of the gyroscopeisturned sideways,
causing the gyroscope to describe a circular motion called precession.

The angular velocity vector @ p of this precession isfound to satisfy

T =wp xL. (46.2)
Solving for the magnitude of the angular velocity of the precession w p, we find

MgD
_ 46.2
“P = Tsng’ (46.2)

where M isthe mass of the gyroscope wheel, D is the distance between the bottom end of the axle and the
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Figure46.1: Motion of agyroscope. By the right-hand rule, the angular momentum of the wheel isto theleft.
The torque vector due to the gyroscope tipping over is horizontal, toward the observer. This torque vector
“pushes’ the angular momentum vector around counterclockwise, as shown; the resulting motion is called
precession. (From Ref. [13])

whesl, L isthe angular momentum of the gyroscope about its axis, and 6 is the angle of the gyroscope axis
from the vertical.

46.3 Nutation

As the gyroscope tips over, this “tipping over” motion is turned sideways, resulting in the precession just
described. But in general, the tip of the gyroscope axiswill tend to “overshoot” the nominal plane of preces-
sion, causing the gyroscope to momentarily dip bel ow this plane before moving back upwards. The resulting
motion, called nutation, is a kind of ‘nodding” of the axis up and down, superimposed on the precessional
motion. The actual motion of the gyroscope axis will be a cycloid superimposed on the circular precessional
circle.
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Chapter 47

Elasticity

47.1 Introduction

We have generally been treating solid bodies as if they are infinitely rigid, and do not deform when forces
are applied to them, and thisis often not a bad approximation. But in the real world, solid bodies do deform
somewhat, and we sometimes need to allow for these deformation effects. Elasticity refers to the ability of
a material to be deformed somewhat, then return to its origina state. Broadly speaking, we apply a stress
(deforming force) to a body, which produces a strain (deformation). The body responds following a law
similar to Hooke's law:

(47.)

where o isthestress, ¢ isthe strain, and E isthe elastic modulus, which takes the place of the spring constant
in Hooke's law.
In Eq. (47.1), the stress o and elastic modulus E both have units of N/m?; the strain ¢ is dimensionless.
There are different types of stress, depending on the method by which the body is deformed. The three
main categories are (1) longitudinal (or normal) stress, (2) transverse (or shear) stress, and (3) volume stress.
In all cases, the stress o is defined as the force F applied to the body, divided by the area A over which the
force acts:

_F 47.2
o y ( )

There are three types of elastic moduli, depending on the stress involved: the Young’s modulus, shear
modulus, and bulk modulus. These moduli are described below.

47.2 Longitudinal (Normal) Stress

In longitudinal (or normal) stress, the applied force is normal (perpendicular) to the surface.

Imagine a metal rod, for example: pulling on both ends of the rod (so as to stretch it to alonger length)
iscalled tensile stress. If instead we push the ends of the rod together (so as to compress the rod to a shorter
length), it is called compressional stress. In either case, the area A in Eq. (47.2) is the cross-sectional area
of the rod; the longitudinal stress is then the force applied to either end of the rod divided by the rod’s
cross-sectional area.
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Strain
When applying a longitudinal stress to the rod, it changes from its original length L o to a new deformed
length L. Then thelongitudinal strain ¢ is defined by

(47.3)

where AL = L — Ly isthe change in the length of the rod from its original length, and will be positive for
tensile stress and negative for compressional stress.

Young’s Modulus

In the case of alongitudinal stress, the appropriate elastic modulusis the Young’s modulus Y :

_ FuLo
T AALS

(47.4)

Here F, istheforce applied normal to the area A, L isthe original (unstressed) length of the rod, L isthe
stressed length of therod, and AL = L — Ly.

47.3 Transverse (Shear) Stress—Translational

In transverse (or shear) stress, the applied force is parallel to the surface. There are two types of transverse
stress: translational and torsional. In this section we'll examine tranglational transverse stress.

Asan example of translational transverse stress, imagine placing your physicstextbook face-up on atable.
Now put your hand on the front cover and push the cover to the right, so that the front cover moves to the
right but the rear cover remains stationary on the table (by friction). Now if you look at the bottom end of the
book, it will look like a parallelogram. In this case, the stress is given by Eq. (47.2), where theforce F isthe
component of the force parallel to the surface (front cover of the book), and A isthe area of the surface (the
area of the book cover).

Strain

For translational transverse stress, the strain is the angle ¢ (in radians) by which the body is deformed (Fig.
47.1). For small deformations, we can write ¢ ~ tan¢ = d /[, and so the strain

p~dfl (47.5)

-—F‘

Fo< ¢
* d

Figure 47.1: Transverse shear stress.
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Shear Modulus

In the case of trandational transverse stress, the appropriate elastic modulus is the shear modulus S. Since
the elastic modulusis the ratio of the stressto the strain, we have

F, /A
djl’

S = (47.6)

where F; isthe component of the applied force parallel to the area A, d is the displacement of the body, and
[ isitsthickness (Fig. 47.1).

47.4 Transverse (Shear) Stress—Torsional

The other type of transverse stress is torsional stress. This is the type of stress produced, for example, by
applying atorque to a bolt with awrench.

Strain

For torsional transverse stress, imagine we have a right circular cylinder of length £, fastened in place at
one end, and with atorque t applied to the other end. Then the strain is the arc length s through which the
cylinder istwisted, divided by the length of the cylinder: ¢ = s /4. If the cylinder is twisted through an angle
6, then this becomes

e=ro/L. (47.7)

Shear Modulus

In the case of the torsional transverse stress on a cylinder of length £ and radius r twisted through an angle 6
by atorque 7, it can be shown that the shear modulusis

214

47.5 \olume Stress

The other types of stress described so far (longitudinal and transverse) deform a solid body, but do not change
itsvolume. A third type of stress, the volume stress (or hydrostatic pressure), involves a change in volume. It
typically occurs with the compression or expansion of a gas.

For a gas, the volume stress is just the gas pressure P. Pressure in S| unitsis measured in Pascals (Pa),
named for the French mathematician and physicist Blaise Pascal. One pascal is equal to 1 N/m?.

Strain
For volume stress, the strainisthe fractional change in volume:

e =—AV/Vp, (47.9)
where AV = V — V, isthe change in volume, V; is the original (unstressed) volume and V' is the stressed

volume. If the gas is compressed, then AV is negative and the strain ¢ is positive; if the gas expands, then
AV ispositive and the strain ¢ is negative.
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Bulk Modulus

In the case of volume stress, the appropriate elastic modulusis the bulk modulus B. Since the elastic modulus
istheratio of the stressto the strain, we have

p=——"r (47.10)

CAV/ V'

47.6 Elastic Limit

Rigid bodies can only be deformed by a certain amount before the deformation becomes permanent. The
maximum stress that can be applied to a material before it becomes permanently deformed is called the
elastic limit. If a stressless than the elastic limit is applied, then the body will resume its original shape once
the stress is removed.

A related quantity is the tensile strength, which is the maximum stress a sample can endure before frac-

turing.

47.7 Summary

The types of stress are:
* Longitudina (normal)

— Tensile
— Compressional

 Transverse (shear)

— Trandational
— Torsiona

* Volume

The following table summarizes the formulaeinvolved in elasticity.

Table 47-1. Summary of elasticity equations.

Type of Stress Stress  Straine Elastic modulus E
Longitudina (tensileor compressiond) F,/A AL/Lo Y = F,Lo/(AAL)
Transverse (tranglational) F, /A ¢=~d/l S=(F/A)/d]])
Transverse (torsional) F;/A ro/t S =2tl/(nr*0)
Volume P —AV/Vy B =—=P/(AV/ V)
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Chapter 48

Fluid Statics

48.1 Introduction

A fluid is any substance that flows. Although it is usualy aliquid or a gas, a granular solid or powder can
behave as afluid in certain processes such as fluidization. The study of fluidsand fluid flow isits own branch
of mechanics, and an active area of research. In this chapter and the next, we'll present a broad overview of
the basics of fluid statics (stationary fluids) and fluid dynamics (fluids in motion).

48.2 Archimedes’ Principle

One of the simplest principles of fluid statics is Archimedes’ principle, which states that if a body is wholly
or partially submerged in a fluid, then it is buoyed upward by a buoyant force B equa to the weight of the
displaced fluid:

(48.)

where B is the buoyant force, and W = pgV isthe weight of the displaced fluid: p isthe density of fluid
displaced, V isthe volume of fluid displaced, and g is the acceleration due to gravity.

Suppose we have a body of volume V' and density p;, completely submerged in a fluid of density ps.
What will happen? There will be two forces acting on the body: the weight of the body, acting downward *
(W = —ppVg), and the buoyant force, acting upward (B = pyVg). The net forceisthen F = B + W =
(or — pp)Vg. Thisimplies that:

* If pp = py (the body is the same density as the fluid), then there is no net force on the body.

* If pp < pr (the body is less dense than the fluid), then F > 0 and there is a net upward force on the
body: the body will float up toward the surface.

* If pp > pr (the body is denser than the fluid), then F < 0 and there is a net downward force on the
body: the body will sink.

48.3 Floating Bodies

If asolid body is placed in afluid, it will float if its density is less than the fluid density. Suppose we have a
body of mass m; and volume V}, floating in aliquid of density po. Then part of the body will be submerged,

1We take positive to be upward, and negative downward.
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and part will be above the surface of the liquid. How much of the body will be submerged?

To answer this, let V; be the submerged volume of the body. Then if the body isin equilibrium, the weight
of the body mj g (acting downward) must equal the upward buoyant force. But by Archimedes' principle,
the buoyant force is equal to the weight of the displaced liquid. Now the mass of the displaced liquid is the
displaced volume V; times the density of the liquid, po, and so the weight of displaced fluid is Vs pog. Then
since the weight of the body equals the upward buoyant force, we have

mpg = Vspog (48.2)
mp = Vs,OO (483)

To write this another way, note that the mean density of thebody is p;, = my/ V). Using thisto substitute for
my, inthe above eguation, we get

Vopp = Vspo (48.4)
and so

Vs _ P (48.5)

Vo po

In other words, the fraction of the body’s volume that is submerged is equa to the mean density of the body
divided by the density of the liquid. The less dense the body, the higher it will “ride” in the liquid; the denser
the body, the lower it will be submerged.

Example. We use the phrase “the tip of the iceberg” to indicate a small part of something much larger.
The phrase has its origin in observation that an iceberg floating in water has only a small part of its volume
visible above the water surface. In areal iceberg, how much of theiceberg is above water, and how much is
below water?

Solution. First, note that the iceberg itself is made of fresh water, and is typically floating in sea water.
The density of iceisabout p, = 0.9169 g/lcm?, and the density of sea water is about 1.025 g/lcm3. Therefore
the fraction of the iceberg that is submerged is p;/po = 0.9169/1.025 = 0.895. So an iceberg has about
90% of its volume submerged below water, and about only about 10% above water.

48.4 Pressure

Pressure P isdefined to be force divided by the area over which that force is applied:

F
P=— (48.6)

For afluid, imagine placing asmall area A inside the fluid. Then the pressure at the location of A4 isthe force
due to the fluid on one side of 4 on the fluid on the other side of A, divided by the area A.

Pressurein Sl unitsismeasured in Pascals (Pa), named for the French mathematician and physicist Blaise
Pascal. One pascal is equal to 1 N/m?. Other common units are:

* atmospheres (1 atm = 101,325 Pa)

e torr (1torr = 1 mmHg = 133.3223684210526315789 Pa)

* bar (1 bar = 100,000 Pa; 1 millibar = 100 Pa)

* pounds per square inch (psi) (1 psi = 6894.757293168361336723 Pa)
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* inches of mercury (1inHg = 3386.388157894736842105 Pa)
« dynes per square centimeter (dyne/cm?) (1 dyne/cm? = 0.1 Pa)

The pressure P is sometimes called the absolute pressure; thisisto distinguishit from the gauge pressure
P, , which isthe difference between absol ute pressure and atmospheric pressure P,: Py = P — P,.

48.5 Change in Fluid Pressure with Depth

The pressure in afluid in a gravitational field increases in the downward direction. A common exampleisthe
pressure of the Earth’s atmosphere: atmospheric pressure is highest at the surface of the Earth, and decreases
as you go up in atitude. Above a certain atitude (about 8000 feet above sea level), passengers in aircraft
and mountain climbers need extra oxygen to be able to breathe properly. Another common example is well
known to divers: water pressure increases with depth.

We can compute the change in pressure with depth using Archimedes’ principle. Suppose we have afluid
likewater, and we want to find how the pressure P increases with depth i from the surface. Imagine a slab of
fluid (inside the bulk fluid) of area A and thickness Ak. WEe' Il call the pressure on the top surface P, and the
pressure on the bottom surface P,. The net buoyant force on the dab of fluid will be (P, — P1)A = APA.
But by Archimedes' principle,

APA = pgAAh, (48.7)
and so

AP

i 0g. (48.8)
Taking thelimit as Ak — 0, we have

dp

T~ oo, 48.9

an ~ "¢ (48.9)

Constant Density

Let's consider a specia case where the density p is constant (as with water, for example). From Eqg. (48.9),
we have

dP = pgdh. (48.10)
Integrating both sides gives

| P = Po + pgh.

(48.12)

where Py isthe pressure a depth 27 = 0.

Variable Density

Now consider another special case, where the density p isnot constant. For a gas likethe Earth’s atmosphere,
we typically have the density proportional to the pressure, so let’s let the density p = KP, where K isa
constant with units of s> m=2. Also, for the atmosphere, it will be convenient to use the upward-pointing
altitude y = —h rather than the downward-pointing depth. Eq. (48.9) then becomes

dp

= = _KPg. (48.12)
dy
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Now re-write thisas

d?P = —Kgdy (48.13)

and integrate both sides; the result is

InP =—-Kgy+C, (48.19)
where C is aconstant. Taking e to the power of both sides, we get

P =eCeKey (48.15)

If y = 0, then thisreducesto P = €, s0 € isthe pressure at y = 0, which we'll write as Py. Then the
pressure P at dtitude y is

P = Pye K8, (48.16)

The quantity H = 1/(Kg) has unitsof length, and is called the scale height. When the altitude y is equal
to the scale height H, the pressure will be 1/e ~ 0.368 of itsvalue at y = 0. For the the lowest layer of the
Earth’s atmosphere (called the troposphere), the scale height is about 8 km.

In terms of the scale height H, Eq. (48.16) may be written

won

Equation (48.17) assumes an isothermal (constant temperature) atmosphere. In reality, temperature decreases
with increasing height at the rate of 0.0065 °C/m in the troposphere. This fact can be used with Eq. (48.9) to
show that

— _2y
P =P, (1 %) , (48.19)
wherefor the Earth’stroposphere # = 44,329 mandn = 5.255876. Thisexpression for pressure vs. atitude
is part of anumerical model of the atmospheric pressure, density, and temperature of the Earth’s atmosphere
called the U.S. Standard Atmosphere (Ref. [15]).

48.6 Pascal’s Law

Another important principlein fluid statics is Pascal’s law. It states that when a pressure change is applied
to a fluid (as with a piston, for example), the pressure change is transmitted undiminished throughout the
fluid and to the walls of the container. In other words, there's nothing special happening in the direction of
movement of the piston; the pressure change will be “felt” equally throughout the fluid.
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Chapter 49

Fluid Dynamics

Fluid dynamics, also termed fluid mechanics, isavery important and broad study of fluidsin motion, impact-
ing most engineering disciplines, weather and climate modeling, city and home water distribution systems,
etc. Here wewill focus oninternal flows in piping, tubing, hoses, and fittings transporting a single gas or lig-
uid phase, thereby excluding multi-phase flows such as gas-liquid, gas-solid, and liquid-solid mixtures. Also
outside the scope of this material is high-speed gas flow (sonic and supersonic), hydraulic hammer (liquids),
and open channel flow (culverts).

Fluid dynamics is a complex subject; in fact it's probably the most complex of the physical sciences.
Even fairly simple physical systems can have very complicated solutions, and some subjects, such as fluid
turbulence, are a long way from being well understood. The study of fluid flow is of great importance in
fields like chemical engineering and meteorology.

The flow of fluids can be characterized by a number of properties:

» Steadiness. Fluid flow may be steady (laminar) or full of irregular eddies (turbulent).

» Compressibility. Fluids generally change density with changing pressure; such fluids are called com-
pressible. A fluid that does not change density with changing pressure is called incompressible; thisis
sometimes used as an approximation for real fluids.

* Viscosity. Real fluids exhibit a kind of internal friction called viscosity that measures how “thick” the
liquidis. Honey and molasses, for example, are fluids with a high viscosity, while water and gasoline
have relatively low viscosity. Viscosity is discussed in detail in section 49.5.

* Rotation. A fluidisrotational if it exhibits angular momentum about some point (so that asmall paddle
inserted at that point would begin to rotate). A fluid with no such pointsis called irrotational.

In many cases the fluid can be treated as though it had no viscosity, resulting in frictionlessflow. Such a
fluid is called an ideal fluid. The flow of an ideal fluid can be incompressible or compressible; it is neither
laminar nor turbulent.

Flow in piping may be laminar, transitional, or turbulent. Laminar flow is characterized by a parabolic
velocity profile having a centerline vel ocity equal to two timesthe average (Figure49.1). Flow isvery orderly
and there is no radia or tangential movement. Behavior is predictable with little uncertainly as long as the
fluid viscosity is Newtonian: i.e., constant, and independent of sheer rate. Most low-viscosity fluids, such as
air, water, alcohol, and gasoline are Newtonian. Laminar flow isusually associated with low velocities, small
equipment and/or viscous liquids.

Unlike laminar flow, turbulent flow is chaotic, and the technology relies on empirical correlations to
predict physical behavior. Wall friction produces eddies, some as large as the pipe, which produce smaller
eddiesthat ultimately dissipate as heat. British physicist Lewis Fry Richardson said it best:
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Figure 49.1: Laminar fluid flow through a pipe. The maximum flow velocity v,, is a the centerline and
is equal to twice the average flow velocity. (Figure from Georgia State University, http://hyperphysics.phy-
astr.gsu.edu/hbase/pfric2.html)

Large whirls have little whirls
That feed on their velocity;

And little whirls have lesser whirls,
And so on to viscosity.

Also unlike laminar flow, turbulent flow depends on the surface roughness of the containing pipe.
It is also possible to have transitional flow which switches between laminar and turbulent flow in an
irregular manner.

49.1 The Continuity Equation

Consider a fluid flowing with velocity v through a pipe of cross-sectiona area A;. Then in atime At,
avolume vy AtA; of fluid passes a fixed on that pipe. Now suppose the pipe flares to a larger or smaller
pipe of area A,. If the fluid is incompressible, then the same volume must pass a fixed point in the new
pipeintime At. Therefore the fluid velocity in the new pipe must change to a new velocity v, that satisfies
vV1AtA] = v AtA;, Or v A1 = v Ay, Thisimpliesthat for incompressible fluid flow, the flow rate Av must
be constant:

(49.2)

The flow rate Av has units of volume per unit time (m3/s). Thisrelation is called the continuity equation.

You may be familiar with thisidea in playing with a garden hose with the nozzle removed. Water flows
out of the hoserelatively slowly; but if you place your thumb over the opening to block most of the flow, then
water squirts out of the small remaining opening at high velocity.

49.2 Bernoulli’s Equation

Bernoulli’s equation was developed by 18th-century Swiss physicist Daniel Bernoulli. Given fluid flow in
a pipe that varies in elevation, the equation relates the velocity, pressure, and elevation as the fluid flows
through the pipe. It states

P 2
— 4+ — 4 y = constant, (49.2)
g 28
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where P isthe pressure, v isthe fluid velocity, y is elevation, p isthe fluid density, and g isthe acceleration
dueto gravity. Each term in Bernoulli’sequation has unitsof length and iscalled a head: the P/(pg) termis
called the pressure head, the v2/(2g) term is called the velocity head, and the y term is called the elevation
head.

Example. Supposewe have avertical pipe containing a stationary incompressible fluid of density p. How
doesthe pressure P vary with depth 2?

Solution. Let the pressure at depth 2 = 0 be Py. Since the fluid is stationary, the fluid velocity v is zero
everywhere. Then Bernoulli’sequation becomes (with y = —h)

P, 0 P 0
Oy b= (49.3)
pg 28 pg 28
P P
0Ty (49.4)
pg  Pg
Py =P —pgh (49.5)
P = Py + pgh (49.6)

in agreement with Eq. (48.11).

49.3 Torricelli’s Theorem

As another example of Bernoulli’sequation, consider a cylinder filled with liquid, and with ahole in the side
of the cylinder through which the liquid can leak out (Fig. 49.2). With what velocity does the liquid flow out
of the hole?

We can analyze this using Bernoulli’s equation. At the top surface of the liquid in the cylinder (which
we'll call elevation y1), the pressure will be atmospheric pressure Py. Theliquid level drops here as water
flows out of the cylinder, but at a very slow rate, so we'll take the velocity of the liquid here to be approxi-
mately zero.

At the hole in the side of the cylinder (where we'll call the elevation y,), the pressure will aso be
atmospheric pressure Py, since the holeis exposed to the atmosphere here also. If the liquidisincompressible
with density p, then by Bernoulli’sequation,

P 0 P v?
_0+_+y1:_0+_+y2 (49.7)
pg 28 pg 28
U2
Nn=-—+m»m (49.8)
2g
U2
Vi — Y2 = —. (499)
2g

Calling the differencein elevations h = y; — y,, we get

v =+/2gh. (49.10)

This result, called Torricelli’s theorem after 17th century Italian physicist Evangelista Torricelli, gives the
fluid velocity when the difference between the fluid level in the cylinder and the positionin the holeis . The
formulamay look familiar: it'sthe same as the formulafor the impact vel ocity of a point mass dropped from
aheight /.

In Fig. 49.2, the water leaving the cylinder follows a parabolic path, just as a projectile would. Using
the constant-accel eration formuleg we find that if the holeis a height H above the platform, then the amount
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Figure 49.2: Apparatus for demonstrating Torricelli’stheorem. (Ref. [14])

of time required for a parcel of water to fal to the platform will ber = /2H/g. Therefore the horizontal

distance the water travelswill be x = v /2 H/g. Substituting the horizontal velocity v given by Eq. (49.10),
we have the horizontal distance x traveled by the water stream as

x =2vVH, (49.11)

where again H is the height of the hole above the platform, and / is the height of the liquid surface in the
cylinder above the hole.

If the cylinder in Fig. (49.2) isfilled all the way to the top and al five holes in the cylinder are opened,
which stream will travel farthest horizontally? To answer this, let’s number the top hole 1, the bottom hole 5,
and let’s choose a coordinate system with + y pointing upward and the origin at the platform. If the distance
between the holesis a, then theliquid inthe cylinder isat y = 6a, and so h = 6a — H ; then by Eq. (49.11),

« Holel: H =5a,h = a, 0 x = 2a+/5.
« Hole2: H = 4a,h = 2a, 0 x = 2a+/8.
* Hole3: H =3a, h = 3a, 0 x = 2a+/9.
* Holed: H =2a,h = 4a,0x = 2a /8.
« Hole5: H = a, h = 5a, 0 x = 2a+/5.

The water from the center hole (number 3) will travel farthest, a horizontal distance x = 6a.

Another way to think about this result is that hole 1 is high above the platform, but the water velocity is
low, so it doesn’t travel very far horizontally. The water velocity is highest at hole 5, but the holeis so close
to the platform that it also doesn’t travel far. Hole 3 is a compromise between height and fluid velocity that
gives the maximum horizontal distance.
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Figure 49.3: A siphon. (From Ref. [14])

49.4 The Siphon

A siphon (or syphon, from the Greek o1pwv) isatubethat transfersliquid from areservoir at higher elevation
to areservoir at lower elevation, without the need for a pump—even though the liquid must travel uphill for
part of the journey (Fig. 49.3).

It isa common misconception that a siphon works by atmospheric pressure pushing the water throughthe
siphon, but thisis not correct; siphons have been known to work even in vacuum. It's actually gravity that
allows the siphon to work: water in the downward part of the siphon (the downleg) “pulls’ the water in the
rest of the tube along asit falls under gravity.

Siphons must be started or “primed” by filling the siphon tube with liquid before the siphon works. 1f
the liquid to be moved is clean water, for example, one may sometimes start a siphon by mouth, creating a
suction on one end as one would use a drinking straw. Once the tube is filled, you insert one end into the
source reservoir, lower the other end into the target reservoir, and the siphon will begin to operate. But you
would not want to start a siphon thisway with atoxic liquid such as gasoline. (Service stations post a notice
near the gasoline pumps, warning “do not siphon by mouth”.)

We can analyze the flow of liquid through a siphon using Bernoulli’s equation, Eq. (49.2). Let's let
atmospheric pressure be Py and the velocity of liquid through the siphon be v. We'll define a coordinate
system with the 4y axis pointing upward, and with the origin at the surface of the liquid in the higher
(“source”) reservoir, so all elevations will be measured with respect to this level. As seenin Fig. 49.3, the
upper end of the siphon tube is immersed in the liquid; let's say it's at a depth d below the surface of the
liquid, soitisat elevation y = —d . Let’scall the height of the upper horizontal tube above the upper reservoir
liquid level h, soitisat elevation y = h; and let’s call the distance between the upper liquid level and the
lower end of the downleg L, so y = —L there. Then applying Bernoulli’s equation to various points along
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the siphon,

Lit} + U—Z —d=k Upper end of siphon (entrance) (49.12)
rg 28

Po + 9 +0=k Surface of upper reservoir (49.13)
rg 28

P2 U2 . . .

% + % +h=k Top (horizontal) portion of siphon (49.14)
Po + U—Z —L=k Lower end of downleg (exit) (49.15)
rg 28

Notice that the constant k£ on theright-hand side isthe same for all equations, since the equationsall apply
to the same siphon. We've used the atmospheric pressure Py in Egs. (49.13) and (49.15), because the surface
of the upper reservoir and the exit point are both open to the atmosphere. Note also that the velocity of liquid
at the surface of the upper reservoir has been set to zero; thisis not strictly true because the liquidlevel in the
upper reservoir is dropping, but the speed with which it dropsis very slow compared to the siphon velocity
v, sowe'll set the liquid level velocity to zero as an approximation. Pressure P isthe liquid pressure at the
siphon entrance, and P, isthe pressurein the upper (horizontal) part of the siphon.

Let'stry to find the velocity v of liquid through the siphon. Combining Egs. (49.13) and (49.15),

P, 0 P, 2
_0_|___|_0:_0_|_U__L (49.16)
pg 28 pg 28
U2
0=——1L (49.17)
2g

or

v=+/2gL. (49.18)

So the velocity v of liquid through the siphon depends only on the distance L between the upper reservoir
liquid level and the exit end of the siphon.*

Siphons are more complex than this brief analysis would indicate. Pressures in the tubing above the
upper reservoir will be less than atmospheric pressure. As the water rises, gases will be liberated, and with
large values of #, the volumetric gas rate will lower the effective density of the water, thereby increasing the
maximum siphon height. When the pressure is near the vapor pressure of water,? the water will boil and can
greatly reduce the effective water density. Under some circumstances, thiswater vapor can collapse violently
in the downleg, causing severe vibration.

There doesn’t seem to be alimit to the siphon height /2, but 40 ft (12 m) or more are possible. Thereisno
limit to the length of the downleg L; values as high as 200 ft (61 m) have been tested.

49.5 Viscosity

Real fluids (especially liquids) exhibit a kind of internal friction called viscosity. Fluidsthat flow easily (like
water and gasoline) have a fairly low viscosity; liquidslike molasses that are “thick” and flow with difficulty
have a high viscosity.

11t's actually alittle more complicated than this, because of inlet losses and pipe friction. When considering just the inlet losses, the
liquid velocity islimited to vmax = /g L.
2The vapor pressure of water depends on temperature; at 20 °C it is 2339 Pa.
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There are two different types of viscosity defined. The more common is dynamic viscosity; the other is
kinematic viscosity. Both are described below.
Dynamic Viscosity

Recall from the study of elasticity (Chapter 47) that when a body is placed under transverse (shear) stress
o = F;/A, theresulting strain ¢ isthe tangential displacement x divided by the transverse distance [ :

oc=Es (49.19)
F,; X

S i 49.2
y S R (49.20)

where S is the shear modulus. Fluid flow undergoes a similar kind of shear stress; however, with fluids, we
find that the stressis not proportional to the strain, but to the rate of change of strain:

F,
Fo odx v (49.21)

A PaTr T
where v is the fluid velocity. The proportionality constant w, which takes the place of the shear modulus, is
the dynamic viscosity. The Sl units of dynamic viscosity are pascal-seconds (Pa s). Other common units are
the poise (1 P = 0.1 Pas) and the centipoise (1 cP = 0.001 Pa s).

Viscosity, especially liquid viscosity, istemperature dependent. You've probably noticed thisfrom every-
day experience: refrigerated maple syrup is fairly thick (high viscosity), but if you warm it on the stove it
becomes much thinner (low viscosity).

The following table shows dynamic viscosities of some common liquids at room temperature. A more
extensive tableis given in Appendix U.

Table 49-1. Viscosities of common liquids (room temperature).

Dynamic viscosity u

Liquid (Pas) (cP)
gasoline 5x 1074 0.5
water 8.9x107*  0.89
mercury 0.0016 16
olive ail 0.09 90
ketchup 13 1300
honey 5 5000
molasses 7 7000

peanut butter 250 250,000

Kinematic Viscosity
In addition to the dynamic viscosity i, one sometimes encounters a kinematic viscosity v. The kinematic
viscosity is defined as the dynamic viscosity divided by the density:

v="L, (49.22)
P

Sl unitsfor kinematic viscosity are m?/s. Other common units are stokes (1 St = 10~* m?/s) and centistokes
(LcSt = 1076 m?/s).
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49.6 The Reynolds Number

Experiments have shown that there is a combination of four factors that determines whether flow of a viscous
fluid through a pipe is laminar or turbulent. These four factors can be combined into a single dimensionless
number called the Reynolds number Re, whose value gives an indication of whether flow will be laminar or
turbulent:

__ pvD
0

Re (49.23)

Here p isthe fluid density, v is the average velocity, D is the diameter of the pipe, and w is the dynamic
viscosity. Experience shows that, as a genera rule of thumb:

* Re < 2000: laminar flow
* 2000 < Re < 3000: transition region
* Re > 3000: turbulent flow

In the transition region (Re between 2000 and 3000), the fluid is unstable and may change back and forth
between laminar and turbulent flow.

49.7 Stokes’s Law

Stokes’s law gives the resistive force on a sphere moving through a viscous fluid. It was developed by the
19th century English physicist and mathematician George Stokes. Stokes'slaw states that the resistive force
on the sphere is given by

(022

where Fp isthe resistive force on the sphere, r isitsradius, u is the dynamic viscosity of the fluid, and v
is the relative velocity between the fluid and the sphere. Thisis generally valid for low Reynolds numbers
(Re < 1).

Notice that the Stokes's law force is of the form of a Model | resistive force described in Chapter 19
(Fr o v), with the resistance coefficient b = 6zpur. By EQ. (19.22) the terminal velocity for Model | is
Voo = mg/b; sofor asphere moving through a viscous fluid, we have by Stokes'slaw

__mg
C 6mur’

Voo

(49.25)

Example. What is the terminal velocity of a steel ball of diameter 1 cm falling through a jar of honey?
Solution. Taking the density of steel as p = 7.86 g/cm?, we find the mass of the stee! ball as

m=pV =p (37r3) =4.115g=4.115x 107> kg. (49.26)

From Table 49-1, the dynamic viscosity i of honey is5 Pa s; the terminal velocity is then given by Eq.
(49.25):

v = M8 (49.27)
6mur
-3
_ (4.115x 107 kg)(9.80 m/s%) (49.28)
67(5 Pas)(0.5 x 1072 m)
= 8.56 cm/s. (49.29)
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49.8 Fluid Flow through a Pipe

If aviscousfluid isflowing through a pipe, then thereis an additional term called the friction head introduced
into Bernoulli’s equation:

P L 2 2
—+ f—v— + v + y = constant, (49.30)
rg D2g  2¢g

where the second term on the left isthe friction head; f isadimensionless constant called the friction factor, 3
L isthe pipe length, D isthe pipe diameter, and v is the average fluid velocity (the fluid will flow faster at
the center of the pipe than near the edges).

For laminar flow, the friction factor f is given simply by

f=g  Gaminarfow), (49.31)

where Re is the Reynolds number. For a nonviscous fluid, the viscosity 1 = 0, the Reynolds number
Re = o0, and so f = 0, so that Eq. (49.30) reduces to the previous form of Bernoulli’sequation, Eq. (49.2).

For turbulent flow, the analysisto find the friction factor is more complicated and depends on the Reynolds
number and the ratio of the pipe surface roughness to pipe diameter. There is ageneral formuladue to SW.
Churchill that gives the friction factor f for all values of Reynolds numbers and all types of flow (laminar,
transitional, and turbulent) through both rough and smooth pipes. Churchill’s equation (as modified by L.L.
Simpson to produce accurate results for turbulent flow) is

P | e 502 . +(l 05 16+(13269 16
~|\Re 9%0{370 " Re {370 " \Re Re

where ¢ isthe piperoughness and D is the pipe diameter. The friction factor vs. Reynolds number is shown
in Figure 49.4.

_3/2|1/12

(49.32)

499 Gases

The study of the physics of gases can be fairly involved, and isusually studied as part of thermodynamics, or
the study of heat. In thissection, we'll cover afew basic properties of gases.

A gas is a state of matter in which the atoms or molecules making up the gas are not attached to one
another, so that they are free to move about independently. The air we breath is an example of a gas; it
consists primarily of 78% nitrogen molecules (N ;) and 21% oxygen molecules (O,); the remainder is argon
and a few other gases.

Studies of gases in the 18th and 19th centuries revealed a few basic properties of a gas of volume V' and

3Sometimes f is called the Moody friction factor, Weisbach friction factor, or Darcy friction factor. One sometimes also encounters
the Fanning friction factor equal to f/4, and the Stanton friction factor equal to f//8. The Moody friction factor used here is the most
common.
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__ Friction Factors from Modified Churchill Equation

Dascy-Weisbach Friction Fackor
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Figure 49.4: Friction factor as afunction of Reynolds number, for both laminar and turbulent flow. (Ref. [11])

(absolute) temperature* T, under a pressure P:

1
P x v (Boyle'slaw) (49.33)
PxT (Amonton’slaw) (49.34)
VT (Charles'slaw) (49.35)

where in each case, the unnamed variable (T, V, and P, respectively) is assumed to be held constant. These
three equations can be combined into one, called the ideal gas law that relates the pressure P, volume V', and
temperature 7' of an ideal gas:

PV =nRT (49.36)

Here n isthe number of moles of gas atoms or molecules present, and R is a constant called the (molar) gas
constant; it is equal to exactly

R = 8.31446261815324 Jmol~!' K~! (49.37)
The ideal gas law is sometimes expressed in the equivalent form
PV = NkgT (49.38)

where N isthe total number of atoms or molecules of gas present, and k g isBoltzmann’s constant; it is equal
to exactly

kp = 1.380649x 10723 J/K (49.39)

4Temperature must be in kelvins (K) for SI or CGS units, or in degrees Rankine ( °R) in English units. Fahrenheit (°F) and Celsius
p
(°C) are not absolute temperature scales, and may not be used here.
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Theidea gaslaw isan equation of state for the gas; it assumes the gasis“ideal” — that is, the atoms making
up the gas are of negligible size, and that the atoms to not interact with each other chemically (only through
collisions). Other equations of state may be used, such as the van der Waals equation of state, that takesinto
account the finite size of the atoms or molecules making up the gas, and the intermolecular forces between
nearby molecules:

[P ta (%)2} (% —b) — RT (49.40)

If the coefficients a and b describing these effects are known, then the van der Waals equation may be amore
realistic equation of state than the ideal gaslaw.

49.10 Superfluids

When liquid helium-4 (*He) is cooled below a critical temperature of 2.17 K (called the lambda point), a
sudden phase transition occurs, and the helium becomes an exotic fluid called helium 11.5 Helium 11 is the
best-known example of a superfluid—a fluid with odd properties that are governed by the laws of quantum
mechanics.

As helium | is cooled toward the lambda point, it boils violently; but when the lambda point is reached,
the boiling suddenly stops. Thisis due to a sudden increase in the thermal conductivity of the liquid when
it transitions to the superfluid state. The thermal conductivity of superfluid helium Il is more that a million
times greater than that of liquid helium I, and helium 11 is a better conductor of heat than any metal.

Superfluid helium |1 is perhaps best known for its unusual viscosity. One method for measuring the
viscosity of aliquidisto alow it to flow through a thin tube or channel called a capillary: the more viscous
the liquid, the larger the diameter of the capillary needed to permit the liquid to flow. Helium Il can flow
through capillaries much less than 1 um in diameter, and in such experiments behaves as though it has zero
viscosity. This ability of helium 11 to flow through very tiny capillariesis called superflow.

Another method for measuring viscosity isto rotate asmall cylinder inside the liquid; viscosity will cause
the liquid to be dragged along with the cylinder, and a small rotatable paddle placed near the axis of the
rotating cylinder will show whether the rotating cylinder is causing the liquid to rotate. In such experiments,
helium |1 does exhibit some viscosity. No ordinary liquid exhibitsthis sort of dual behavior with respect to
viscosity.

A common model to explaining this odd behavior is called the two-fluid model. In this model, liquid
helium 11 is thought of as consisting of two interpenetrating components: a normal (viscous) component,
and a superfluid (nonviscous) component. In the capillary experiment, only the superfluid component flows
through the tiny capillaries, but in the rotating-cylinder experiment, the normal component is dragged along
with the cylinder, causing circulation in the liquid.

Another unusual phenomenon observed in helium 11 is called the fountain effect (Fig. 49.5). A tube with
a porous plug in the bottom is placed inside a bath of helium I1. A superflow of helium is observed to flow
through the tiny (<« 1 wm) capillaries toward the heater; upon being heated, the superfluid component is
converted to a normal component, and the fluid is unable to flow back out through the fine capillaries in the
plug. Pressure buildsin the tube until the helium squirts out of the capillary in the top of the tube, creating a
“helium fountain”. Since the second law of thermodynamics states that heat cannot flow from lower to higher
temperatures, thisimpliesthat the superfluid component carries no heat: any heat in the helium Il must bein
the normal component.

Yet another interesting property of helium Il isthe formation of a very thin film called a Rollin film when
theliquidisplaced in acontainer. The Rallinfilm will creep up the sides of the container, and if the container
isopen, itwill creep back down the outside, so that the helium I1 will spontaneously creep out of the container

5Above2.17 K, liquid helium is a (mostly) ordinary liquid called helium 1.
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FPorous Flug

Heater \

Figure 49.5: The fountain effect in superfluid liquid helium 11. (Credit: NASA.)

(Fig. 49.6). The Rallin film is much less than 1 um in thickness; its creeping speed is slow just below the
lambda point, but may reach a speed as high as 35 cm/s at lower temperatures.

Figure49.6: A Rollinfilm of superfluid helium I1. The film creeps up the sides of the container and back down
the outside, collecting in small drops at the bottom. (Credit: Liquid Helium I1: The Superfluid, University of
Michigan.)
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Finally, helium Il exhibitsan unusual way of conducting heat. Normally, substances conduct heat through
diffusion, where the rate of heat flow is proportional to the temperature difference; but in superfluid helium
I1, heat is conducted by waves. This phenomenoniscalled second sound, and no other substance exhibitsthis
behavior. The speed of second sound is small just below the lambda point; at a lower temperature of 1.6 K, it
isabout 20 m/s.

It should be kept in mind that the two-fluid model of helium Il discussed here is simply a model—a
convenient way of thinking about the behavior of the liquid. Superfluid helium Il is a quantum liquid, and a
complete description of its behavior requires the application of quantum mechanics.
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Chapter 50

Hydraulics and Pneumatics

Fluids can be used to practical advantage for constructing certain machines. The practical application of
liquid mechanics is called hydraulics.

50.1 Hydraulics: The Hydraulic Press

The properties of liquids may be exploited to make it possible to lift large, heavy objects using a machine
called ahydraulic press (Fig. 50.1). Referring to the figure, we know by Pascal’s law that pressure P; must
be equal to pressure P;:

Py = P,. (50.1)
Therefore
F F
= (50.2)
where A; and A, are the cross-sectional areas of the pistons on the left and right. Solving for F;, we find
A
F=F-1 (50.3)
A

Since A, > A;, the force F; is multiplied by the factor A,/A4;. One may place a heavy object like an
automobile on theright, and lift it by applying arelatively small force on the left. The price for gaining this
multiplication of force isthat the piston on the left must be moved through a greater distance than the object
ontheright will beraised. To find the distance d through which the piston on the left must be moved in order
tolift the object on the right a distance d », we note that the liquid is essentially incompressible; therefore the
volume change on the left must equal the volume change on the right:

Ardy = Axds. (50.4)

Therefore the distance d; is

A
dy = dzA—l. (50.5)
We can find d; in terms of the ratio of forces using Eq. (50.3) to substitutefor 4,/ A;; we get
)
di =dy—. )
1=dap (50.6)
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F]dl = F’:dz You have to pay for the
multiplied output force by
E, A, exerting the smaller input
d] =—'d-, =—'d-, force through a larger
- ~ distance.

1 1

Figure 50.1: The hydraulic press. (Credit: HyperPhysics project, Georgia State University, Ref. [7]).

Pressure s exerted
on fluid in small
cylinder, usually by
a COmpressor.

Pressure is exerted equally Though the pressure
in all parts of an enclosed is the same, it is
static fluid: Pascal's law exerted over a much

larger area, giving a
multiplication of force
that lifts the car.

The force in the small cylinder must be exerted over a much larger distance. A small
force exerted over a large distance is traded for a large force over a small distance

Figure 50.2: An automobile on a hydraulic press. (Credit: HyperPhysics project, Georgia State University,
Ref. [7]).

Example. Supposethe piston on theleft has adiameter of 10 cm, and the piston on theright has a diameter
of 1 m. What force must be applied on the left to lift a 1000-kg automobile on the right? (See Fig. 50.2.)

Solution. The automobile has a weight F, = mg = (1000 kg)(9.8 m/s*) = 9.8 x 103 N. The area
Ay = wr?/4 = (7/4)(0.1 m)? = (7/4) x 1072 m?. Thearea A, = nr?/4 = (7/4)(1 m)? = 7/4 m?.
Theforce F; isthen

Ay
Fi = F,— 50.7
1 N (50.7)
w/4x 1072 m?
=098x103N)——— 50.8
(9.8 x ) /e (50.8)
=98 N. (50.9)

In this case, the piston on the left must be pushed in 1 m to lift the car by 1 cm.
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50.2 Pneumatics

The science of the mechanical properties of air (or other elastic fluids) is called pneumatics (after the Greek
word 7 vevua, meaning breath or air). It isa counterpart of hydraulics, but using air instead of water as the
working fluid. The primary difference between the two fluidsisthat air isfairly compressible, whilewater is
largely incompressible.
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Chapter 51

Gravity

51.1 Newton’s Law of Gravity

The English physicist Sir Isaac Newton developed his theory of the gravitational force in his famous work
Philosophiee Naturalis Principia Mathematica. In modern language and notation, it states that the force F
between two point masses m; and m, separated by a distance r is given by

mimy

F=-G—3

, (51.1)

where G is the universal gravitational constant, 6.67430 x 10~ m? kg=! s72. Here we take the usual
convention in one dimension, where a negative force is attractive, and a positive force is repulsive. Since
mass is always positive, the gravitational force is always attractive.

In vector form, Newton's law of gravity becomes

M2 4. (51.2)

F12:G

where F1, isthe force on mass 1 dueto mass 2, and f1, isa unit vector pointing from mass 1 to mass 2.
From Newton's law of gravity, we can deduce the acceleration due to gravity at the Earth’s surface. The
gravitational force between the Earth of mass Mg, and an object on the surface of mass m is (in magnitude)

M@m

F=G
R

: (51.3)

where Rg isthe radius of the Earth. By Newton's second law, the gravitational force on m at the Earth’s
surfaceis F = ma = mg, s0 g = F/m, and we have

_ GMg
RS

=9.8m/s. (51.4)

51.2 Gravitational Potential

Sometimes it is useful to define a gravitational potential, which is a property of space, rather than a property
of the bodies present the way force and potential energy are. To find the gravitational potential, suppose we
have a mass m creating a gravitationa field in space. We put a small “test mass’ myg in space near mass
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m, determine the gravitational potential energy on the test mass due to m’s mass, and divide the resulting
potential energy by m . The result isthe gravitational potential €. For a point mass m,

Gm
-

g = (51.5)

51.3 The Cavendish Experiment

Determining the universal gravitational constant G is a fairly difficult problem because of the weakness of
the gravitational force. The problem was solved in a famous experiment by the English physicist Henry
Cavendish. In his experiment, Cavendish attached two heavy masses to the ends of a rod; the rod was
then suspended at its balance point from a vertical wire that was attached to the ceiling, forming a torsional
pendulum. Two very large stationary masses were then placed next to the two suspended masses, so that
each mass on the rod was adjacent to one of the large stationary masses. The gravitationa attractive force
between the masses caused the rod to rotate slightly. From knowing the masses, their separation, the torsional
“Hooke'slaw” constant «, and the angle of rotation, Cavendish was able to determine the value of G.

51.4 Helmert’s Equation

The acceleration dueto gravity g is

g= G% =9.8m/s, (51.6)
®
to two significant digits, where M g is the Earth’s mass and Rg isitsradius. But what if we want to use a
more exact valuefor g?

You might be tempted to use a value found in some reference books: g = 9.80665 m/s?, but that would
actually be wrong. This value is just a standard value used for the definitions of some units (for example,
in the conversion between pounds-force and newtons). You should never use this value in a physics formula
that contains g as the acceleration due to gravity—it’sonly used when doing certain unit conversions.

The acceleration due to gravity g at the surface of the Earth varies over the surface of the Earth for a
number of reasons:

1. Asyou get closer to the equator, the Earth’s rotation rate gets larger, resulting in a greater centrifugal
force that counteracts gravity. This has the effect of reducing g closer to the equator.

2. Also, the Earth has an equatorial bulge due to its rotation, so that you're farther from the center of the
Earth near the equator. This also has the effect of reducing g closer to the equator.

3. Thereisalso an elevation effect: the higher you are in elevation, the smaller g is.

These effects can be approximately accounted for using an equation called Helmert’s equation. According
to Helmert's equation, the accel eration due to gravity is given by

g = 9.80616 — 0.025928 cos2¢ + (6.9 x 107°) cos® 2¢ — (3.086 x 10" ®)H m/s’, (51.7)

where ¢ isthelatitudeand H isthe elevation (in meters) above sea level. For example, for Largo, Maryland,
the latitude ¢ is 382898 and the elevation H is about 174 feet (53.0 meters). Substituting these values into
Helmert's equation, we find g at Largo is about 9.80052 m/s2. In other cities around the world, the value
ranges from 9.779 m/s?> (Mexico City) to 9.819 m/s? (Helsinki). For most problems we just use an average
value of 9.8 m/s?. (You should never round this to 10 m/s? unless you're doing a very rough order-of-
magnitude estimation.)
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51.5 Earth Density Model

Suppose we have a uniform, spherical body (such as a planet) of radius R and mass M . What is the acceler-
ation g due to gravity as afunction of r for r both inside and outside the body (0 < r < 00)?

First, consider the case where we're inside the body (r < R). Inthis case, the acceleration due to gravity
atrisg(r) = Gm/r?, where m isthetotal mass inside a sphere of radiusr:

m = %nr3p (51.8)

where the (uniform) density p = M/(%nR3). Thus
GM
gr)y=—5r (0=<r<R) (51.9)
R3
soinsidethe body, g o r.

Second, consider the case where we're outside the body (r > R). In this case, the total mass inside a
sphere of radiusr is M, and so

GM
gr) = 2 (r=R) (51.10)

50 that outside the body, g o 1/r2. The maximum value of g is at the surface, g = GM/R?> atr = R
(Figure51.1).

Acceleration due to Gravity vs r for a Uniform

Figure 51.1: Acceleration due to gravity for a uniform sphere.

However, planetary bodies are generally not uniform. For example, the Earth has a higher density closer
toitscore, anditsdensity decreases closer to the surface. Onedensity model of the Earth given by Dziewonski
and Anderson' is shown in Figure 51.2. We can use this density model to compute a more realistic mode! of
g(r) insidethe Earth:

2(r) = /0' Gp(r) dV = /Or GP(’”)(4nr2) dr = 471G/0r p(r)dr (51.11)

r2 r2

Theresultisplottedin Figure 51.3. We see that in amore realistic model of the Earth’sinterior, the maximum
value of the acceleration to to gravity g occurs just outside the outer core, where g = 10.7 m/s?.

1Dziewonski, A.M., and Anderson, D.L ., Preliminary Earth referencemodel. Physics of the Earth and Planetary Interiors, 25 (1981)
297-356.
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Earth Density vs r
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Figure 51.2: Earth density model (Dziewonski and Anderson, 1981.)

Earth Acceleration due to Gravity vs r
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Figure 51.3: Modeled acceleration due to gravity for Earth.
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51.6 Escape Velocity

The escape velocity is the initial velocity a particle must have to escape the gravity of its parent body. Typi-
caly it refers to the initial velocity a particle must have at the surface of a planet in order to leave the planet
forever, and never be pulled back by the planet’s gravity. If a particle leaves the surface of a planet with an
initial velocity equal to the escape velocity, then the body will move more and more slowly as the particle
moves farther from the planet, finally reaching a velocity of zero at r = oco. (We assume only the particle
and the planet are present, and ignore all other bodies.)

To compute the escape velocity, consider running the problem with time running backwards: the body
starts at » = oo with zero velocity and falls toward the planet. The impact velocity from infinity will be
the same as the escape velocity. Now at r = oo, the potential energy U = —GM,m/r = 0, where M, is
the mass of the planet and m is the mass of the particle. Since the particle isat rest at r = oo, the kinetic
energy there isalso zero, so the total mechanical energy K + U = 0. Now et the particle begin falling from
r = oo under the influence of the planet's gravity, until it impacts the planet a r = R ,, where R, isthe
radius of the planet. At the point of impact the potential energy isU = —GM ,m/R,,, and itskinetic energy
will be K = mv?2/2, where v, istheimpact (escape) velocity. By the law of conservation of energy, the total
mechanical energy at r = oo must bethesame asitisat r = Rp:

1 GM,m
K+U:§mvez— R;}

=0. (51.12)

Solving for the escape velocity v,, we find

Ve = XIZGM” ) (51.13)
RP

For the Earth, for example, we have (from Appendix L) GM,, = 3.986005 x 10'* m* s2 and R, =
6378.140 x 103 m; substituting these valuesinto Eq. 51.13, we find the escape velocity for Earthisv, = 11.2
km/s. In other words, if you were to fire a projectile from the surface of the Earth with an initia velocity
of 11.2 km/s, it would be able to escape the Earth’s gravity, going more and more slowly the higher it goes,
finally comingtorest at r = oo.

51.7 Gauss’s Formulation

It is possible to re-cast Newton's law of gravity into a different mathematical form using a mathematical
theorem known as Gauss’s law. This is not a separate theory of gravity—it is still Newton's law, but in
different mathematical clothing. This form of Newton's law of gravity lets us easily solve some problems
that would be fairly difficult using Newton’s original formulation.

An alternative formulation of Newtonian gravity is Gauss's law for gravity. It states that the acceleration
g dueto gravity of amass m (not necessarily a point mass) is given by

95 g-AdA=—47Gm (51.14)
S

This equation requires a bit of explanation. The circled integral sign indicates an area integral evaluated
over a closed surface S. A closed surface may be a sphere, cube, cylinder, or some irregular shape—any
closed surface that has awell-defined “inside” and “outside” Theintegral isan areaintegral: we imagine that
the surface S isdivided into many infinitesimal squares, each of which has area dA. Performing the integral
means summing up the integrand times dA over the entire closed surface S.
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The vector g isthe acceleration due to gravity, as avector. The vector always pointstoward the mass.

The vector A isaunit vector, perpendicular (“normal”) to the surface S, and pointing outward from S.

On the right-hand side of Equation (51.14), we find familiar constants (= and G), along with mass m.
Here m isthe total mass inside surface S. It doesn’t matter what shape the mass m is, or how it is distributed;
m isjust the total mass inside surface S.

So Gauss's law for gravity says this: we're given some mass m, which may be of some arbitrary shape.
Now imagine constructing an imaginary surface S around mass m (a sphere, or any other closed shape).
Divide surface S into many infinitesimally small squares, each of which has area dA. At each square, draw
a unit normal vector fi that is perpendicular to the surface at that square’s location, and which is pointing
outward from S. Let g be the acceleration due to gravity at that square. If we take the dot product of g and
f at that square, multiply by the area of the square dA, then sum up all of those products for al the squares
making up surface S, then the result will be —47 G timesthe total mass enclosed by S

Thislaw appliesin general, but in practice itis most useful for finding the acceleration to to gravity g due
to a highly symmetrical mass distribution (a point, sphere, line, cylinder, or plane of mass). In these cases,
theintegral is particularly easy to evaluate, and we can easily solvefor g injust afew steps.

Point Mass
For example, let's use Gauss's law to find the acceleration g due to the gravity of a point mass m. Since
F = Gmm'/r? and F = m’g, the result should be

We begin with a point mass m sitting in space. We now need to construct an imaginary closed surface S
surrounding m. While in theory any surface would do, we should pick a surface that will make the integral
easy to evaluate. Such a surface should have these properties:

1. The gravitational acceleration g should be either perpendicular or parallel to S everywhere.

2. The gravitational acceleration g should have the same value everywhere on S. (Or it may be zero on
some partsof S.)

3. The surface S should pass through the point at which you wish to calculate the acceleration due to
gravity.

If we can find a surface S that has these properties, the integral will be very ssimple to evaluate. For the
point mass, we will choose S to be asphere of radiusr centered on mass m. Since we know g pointsradially
inward toward mass m, it is clear that g will be perpendicular to S everywhere. Also, by symmetry, it is not
hard to see that g will have the same value everywhere on S.

Having chosen asurface S, let us now apply Gauss's law for gravity. The law states that

95 g-fdA = —4xGm. (51.16)
S

Now everywhere on the sphere S, g - i = —g (since g and f are anti-parallel—g pointsinward, and i points
outward). Since —g isaconstant, Eq. (51.16) becomes

—g?ﬁ dA = —4nGm. (51.17)
N

Now theintegral isvery simple: it isjust dA integrated over the surface of a sphere, soit’sjust the area of a
sphere:

95 dA = 4nr?. (51.18)
S
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Equation (51.17) isthen just
—g(4nr?) = —4nGm, (51.19)

or (cancelling —47 on both sides)

Gm

in agreement with Eq. (51.15) from Newton’s law.

Line of Mass

The Gaussian formulation allows you to easily calculate the gravitational field due to a few other shapes.
For example, suppose you have an infinitely long line of mass, having linear mass density A (kilograms per
meter), and you wish to calculate the acceleration g due to the gravity of the line mass at a perpendicular
distance r of the mass. The appropriate imaginary “Gaussian surface” S inthiscase isacylinder of length L
andradiusr, whose axisliesalong theline mass. Inthiscase, everywhere along the curved surface of cylinder
S, the gravitational acceleration g (pointing radially inward) is anti-parallel to the outward normal unit vector
n. Everywhere along the flat ends of the cylinder S, the gravitational acceleration g is perpendicular to the
outward normal vector i, so that on the ends, g - i = 0, and the ends contribute nothing to the integral. We
therefore need only consider the curved surface of cylinder S.
Now apply Gauss's law:

95 g-AdA=—4nGm. (51.21)
S

Since g is anti-parallel to A aong the curved surface of cylinder S, we have g - i = —g there. Bringing this
constant outside the integral, we get

—gyg dA = —4nGm. (51.22)
N
The integral is just the area of a cylinder:
95 dA = 2nrL, (51.23)
N

so Eq. (51.22) becomes
—gQ2nrLl) = —4nGm. (51.24)

Now m isthe total mass enclosed by surface S. Thisis a segment of length L and density A, so it has mass
AL. Thisgives

—g@nrL) = —4xG(AL). (51.25)

Cancelling —27 L on both sides gives

_2GA
n r

g (51.26)
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Plane of Mass

In addition to spherical and cylindrical symmetry, this technique may also be applied to plane symmetry.
Imagine that you have an infinite plane of mass, having area mass density o (kilograms per square meter),
and you wish to calculate the acceleration g due to the gravity of the plane at a perpendicular distance r from
the plane. The approach is similar to the previous cases: draw an imaginary closed “ Gaussian surface,” write
down Gauss's law for gravity, evaluate the integral, and solve for the acceleration g.

In this case, the appropriate Gaussian surface S isa “pillbox” shape—a short cylinder whose flat faces
(of area A) are pardllel to the plane of mass. In this case, everywhere along the curved surface of S, the
gravitational acceleration g is perpendicular to the outward normal unit vector A, so the curved sides of S
contribute nothing to theintegral. Only the flat ends of the pillbox-shaped surface S contributeto theintegral.
On each end, g isanti-parallel to A, sog - i = —g on the ends.

Now apply Gauss's law to this situation:

515 g-AdA=—4nGm. (51.27)
S

Here the integral needs only to be evaluated over the two flat ends of S. Sinceg- i = —g, we can bring —g
outside the integral to get

—ggg dA = —4nGm. (51.28)
s

The integral in this case is just the area of the two ends of the cylinder, 24 (one circle of area A from each
end). This gives

—g(2A) = —47Gm. (51.29)

Now let’s ook at the right-hand side of this equation. The mass m is the total amount of mass enclosed by
surface S. Surface S is sort of a“cookie cutter” that punches a circle of area A out of the plane. The mass
enclosed by S isacircle of area A and density o, so it hasmass 0 A. Then Eq. (51.29) becomes

—g(2A) = —4nG(dA) (51.30)
Cancelling —2 A on both sides, we get

513

Note that thisis a constant: the acceleration due to gravity of an infinite plane of mass is independent of the
distance from the plane!

In hisscience fiction novel 2010: Odyssey Two, author Arthur C. Clarke describes alarge rectangular slab
that has been build by an alien race and placed in orbit around Jupiter. Astronauts are able to calculate the
mass of the slab by placing a small spacecraft near the center of the large face and timing it to see how long it
takes to fall to the surface of the slab. By approximating the slab as an infinite plane, they use Eq. (51.31) to
find the accel eration; from that and the falling time, they can calculate the mass. (Actually, Dr. Clarke got the
wrong answer in the book. You may want to find the book and see if you can calculate the correct answer.)

Gauss’s Law for Electrostatics

You will find the techniques described here will appear again in your study of electricity and magnetism.
Classical electricity and magnetism is described by four equations called Maxwell’s equations; one of these
is Gauss’s law, and describes the electric field E produced by an electric charge ¢:

515 E-fda=21 (51.32)
N €o
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This equation is of the same form as Gauss's law for gravity, so everything discussed previously for gravity
also applies here. Although this equation istrue in generd, it has a good practical use for easily calculating
the electric field E due to a point, sphere, line, cylinder, or plane of electric charge. To do this, you do
just as we did with the gravity examples: draw an imaginary Gaussian surface around the charge ¢, write
down Gauss's Law, evaluate the integral, and solve for the electric field E£. Here g isthe total electric charge
enclosed by S. The electric field E points away from positive electric charge, and toward negative charge.
The constant ¢ is called the permittivity of free space, and has a value of 8.854187817 x 10~!2 F/m.
You'll find more details about Maxwell’s equationsin General Physicsll.

51.8 General Relativity

Our best theory of gravity to date is Albert Einstein’s general theory of relativity. A full description of
general relativity is beyond the scope of this course, as it makes use of advanced mathematical ideas such as
differential geometry. But briefly, the idea is that mass causes space and time to become distorted, and it is
thisdistortion that is the nature of the gravitational force.

The central equation governing general relativity is called the Einstein field equation:

1 8n G
Ry — ERg;Lv = C—4T;Lv- (51.33)

Theindices u and v range from 0 to 3, and stand for the coordinates ¢, x, y, and z, so that each side of the
equationisa 4 x 4 matrix. Broadly speaking, the left-hand side of this equation represents the curvature of
space time, and the right-hand side represents the distribution of mass. Here:

* R, istheRicci curvature tensor, and describes the curvature of space-time.

» Risthescalar curvature, and is an overall average curvature of space-time.

* g.v isthemetric tensor, and defines the “ distance” between neighboring pointsin space-time.
» T, isthestress-energy tensor, and measures the mass density of matter.

* G isthegravitational constant, and ¢ is the speed of light in vacuum.

Inthe special case where the gravitational field isweak, it can be shown that Einstein’sfield equation reduces
to Gauss'slaw for gravity (Eq. 51.14), i.e. Newtonian gravity.
A few consequences of general relativity are:

» Time moves more slowly in a strong gravitational field than in aweak field. For example, clocks run
more slowly at sealevel than at the top of a mountain.

* Light can be bent by gravity. Thiswas an important early test of general relativity: the amount of light
bending predicted by general relativity was confirmed by measuring the positions of stars near the Sun
during a solar eclipse in 1919. This effect has been observed recently by the Hubble Space Telescope
in the form of gravitational lensing: the gravity of arelatively nearby galaxy will bend the light from
more distant objects, producing multipleimages of the distant object.

* Gravitational redshift: light emitted by a massive object will tend to be redder than it would be if the
gravity were not present.

* Orbit precession: the orbits of planets “precess’ due to gravitational effects, causing the perihelion
position to slowly move around the Sun. The amount of this precession predicted by general relativity
is dightly different than what would be predicted by Newtonian gravity. The effect is very dlight, and
most noticeable in the orbit of Mercury.
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51.9 Black Holes

A star like our Sun existsin a state of equilibrium: its own gravity tries to pull the Sun’s mass inward toward
the center, but the outward radiation force due to nuclear fusion (which burns hydrogen fuel to create helium,
causing the Sun to shine) is pushing outward. The inward and outward forces are in balance, and the Sun
assumes the shape of a sphere of its current size.

Eventually (about 5 billion years from now), the Sun will run out of hydrogen fuel to burn, and the Sun
will begin to collapse. The collapse will cause the Sun’s material to heat again; the Sun will then enter a
phase where it becomes a red giant star and burns helium as fuel to create carbon and other heavy elements.
Once the helium fuel is used up, what's left behind will be a dense stellar core called a white dwarf star.
Eventually, over 10 billion years or so, a white dwarf star will cool into a black dwarf star.? A similar fate
awaits any star with amass less than about 4 to 8 solar masses.

For a bigger star (4-8 up to about 10-15 solar masses), the star’s gravity is strong enough to actualy
collapse the atoms in what would have been a white dwarf at the end of the star’s life. The electrons are
pushed into the atomic nuclei, forming essentially a giant ball of neutrons called a neutron star. As described
in Chapter 4, neutron star material isextremely dense.

Starswith an initial mass of greater than about 10-15 solar masses face an even more exotic destiny. The
gravitational force will be so strong that even the neutrons are collapsed. Once the star runs out of fuel, the
entire star collapses into a mathematical point called a singularity: it is essentially a hole punched in space
itself. Surrounding the black hole is a spherical region of space called the event horizon, where the force
of gravity is so strong that not even light can escape. Any matter—even light—that crosses inside the event
horizon can never escape from the black hole's gravity, and effectively becomes cut off from the rest of our
Universe. The radius of the event horizon (called the Schwarzschild radius) is found by setting the escape
velocity (Eq. 51.13) to the speed of light ¢, which gives

2GM

R = 2

. (51.34)

The existence of black holes is predicted by genera relativity, and their reality has been confirmed to
the satisfaction of most astronomers. A well-known example is called Cygnus X-1, an X-ray source in the
constellation Cygnus.

In additionto the stellar-mass black holes described here, astronomers have recently discovered that most,
if not all, galaxies contain a supermassive black hole at their center, with a mass on the order of millionsor
billions of solar masses. Our own Milky Way galaxy has such a supermassive black hole at its center called
Sagittarius A*, with a mass of 4 million solar masses.

We don’t know what goes oninside ablack hole’s event horizon. Some astrophysicistsbelieve awormhole
may be formed—essentially a tunnel leading to a distant part of our Universe, or even to another Universe.
Black holeresearch is still initsinfancy, and is at the frontier of astrophysics research.

2No black dwarf stars have yet been detected.
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Chapter 52

Earth Rotation

52.1 Introduction

You already know that the Earth rotates on its axis once every 24 hours. But if you look at the rotational
motion in detail, you find that it's more complicated than that. Slight redistributions in the Earth’s mass
cause changes in the moment of inertia, which are reflected in slight changes in the rotation rate. These
mass redistributions may be seasonal, or unpredictable one-time events like mass shifts due to earthquakes
or tsunamis. Even the construction of a dam can cause tiny, measurable changes in the Earth’s rotation rate.
And besides these short-term events, there along-term slowing of the Earth’s rotation due to tidal friction, so
that days are becoming gradually slower over the long term.

In addition, the direction of the Earth’s axis itself is moving around in a complicated way; the resulting
motions of the axis, called precession and nutation, will be described here.

52.2 Precession

The Earth’srotation axisis currently oriented so that the north axis pointsnear the direction of the star Polaris
(o UrseeMinoris, sometimes called the “North Star”). The north axis has not always pointed toward Polaris,
though; the Earth’srotation axis actually movesin a big circle (of radius23.5 °) with a period of about 26,000
years; thismotion is called precession. The precession is caused by the gravitational pull by the Moon and
Sun on the Earth’s equatorial bulge.

Because of precession, the “North star” is different stars at different times. While it is now Polaris, in
ancient times (c. 3000 B.C.) the “North star” was the star Thuban (¢ Draconis). In the distant future, the
north rotation axis will be near other stars: it will be near Deneb (o Cygni) in A.D. 10,000, and near the very
bright star Vega (o Lyrag in A.D. 14,000. Figure 52.1 shows a star chart with the direction of the Earth’s
north pole over time.

52.3 Nutation

Superimposed on the long-term (26,000-year) precession of the Earth’s axis is a more complicated, shorter-
term motion called the nutation. It is a complex motion composed of the superposition of several different
harmonic motions, the largest of which has a period of about 18.6 years. It is generally perpendicular to the
precessional direction, so that itisakind of “nodding” up and down of the Earth’s axis (see Figure 52.2).
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Figure 52.1: Star chart showing the direction of the Earth’s north pole for different years. The movement is
dueto precession of the Earth’saxis, and has a period of about 26,000 years. (Credit: Tau*olunga, Wikipedia.)

Figure52.2: Precession (P) and nutation (V) of the Earth’srotationaxis R. The nutationisa small “nodding”
motion superimposed on the larger precessional motion. This figure shows the general shape of the nutation,
with a period of about 18.6 years; the actual motion, when seen in detail, is more complex. (Credit: ©GNU-
FDL, Wikimedia Commons.)
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Figure 52.3: Polar motion. The dashed line shows the polar motion for the period 2001-2006. The solid
line shows the drift in the mean pole position over the period 1900-2006. The axes are in units of seconds
of arc subtended from the center of the Earth (0.1 arcsec = 3 meters). (Credit: International Earth Rotation
Service.)

52.4 Polar Motion

In addition to a change in the direction of the Earth’'s rotation axis described so far, there is also a small
movement of the location of the intersection of the rotation axis with the Earth’'s surface; this movement is
called polar motion. It consists of three major components:

» Anannua oscillation with a period of 365 days, due to small changes in the gravitational attraction of
the Sun caused by the eccentricity of the Earth’s orbit.

» An oscillation with a period of 435 days, called the Chandler wobble. Thisis attributed to factors such
as ocean floor pressure variation and wind.

* Superimposed on these two oscillationsis along-term drift, so that the north pole moves in the general
direction of 80° west longitude.

The two oscillations“beat” together, so that the pole moves in a circle that expands and contracts in diameter
with a frequency equal to the beat frequency (the difference in frequencies of the two motions); therefore the
period of the change in diameter is

1 1 \!
VY _eveas 52.1
(365d 135 d) 6 years (62.1)

The rate of long-term driftisirregular, but over the last 100 years has averaged about 12 cm per year.

52.5 Rotation Rate

Asmentioned earlier, shiftsin the distribution of the Earth’s mass due to earthquakes, tsunamis, or even dams
cause small changes in the Earth’s moment of inertia, that are reflected in tiny changes in the Earth’s rotation
rate. There are also seasona variations; ice melts in one hemisphere or the other depending on the season,
which also causes small changes in the mass distribution.
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Superimposed on the smaller effectsis along-term slowing of the Earth’s rotation due to tidal drag. As
the Moon pulls on the Earth’s oceans, there is a friction force created that tends to slow the Earth’s rotation
over long time scales. From the beginning of the Paleozoic era (about 542 million years ago) to the present,
the length of the day (LOD) has been found to be [4,5, 16]

LOD = 24.00 — 4.987, (52.2)

where LOD is the length of the day in hours, and 7 is the time in billions of years ago (Ga). (Prior to the
beginning of the Paleozoic era, the slowing of the Earth’s rotation was thought to have been at a slower rate
than this 4.98 hr/Gyr rate.) Using thisformula, the day length at the beginning of the Age of Dinosaurs (the
Mesozoic era, about 250 million years ago) was only about 22 hours 45 minutes, or an hour and 15 minutes
shorter than it is today.

This slowing of the Earth’s rotation continues today, and is the source of some difficulty in timekeeping.
We keep time by very precise atomic clocks, but at the same time we would like to keep our clocks in
synchronization with the Earth’s rotation. In fact, for historical reasons, the Sl second as defined by atomic
clocks correspondsto the length of the day as it was around 1820. Since the Earth’s rotation has slowed since
then, it means atomic clocks are running fast compared to the Earth rotation. To accommodate this, we from
time to time insert leap seconds into our civil time scale (called Coordinated Universal Time, or UTC). A
leap second inserts an extra second at the end of a day (generally a June 30 or December 31), so that clocks
just before midnight read: 23:59:58, 23:59:59, 23:59:60, 00:00:00. This has the effect of setting the clock
back one second to keep it in synchronization with the Earth’s rotation.

The Earth’s moment of inertia is roughly constant, so as the Earth’'s rate of rotation w decreases, its
angular momentum L = [w must also decrease. But angular momentum is conserved; where does the
angular momentum go? It turns out that it is transferred to the Moon, in the form of increased orbital
angular momentum. As the Earth’srotation slows, the Moon recedes away from the Earth to conserve angular
momentum. This lunar recession has been confirmed using Earth-based lasers and retroreflectors left on the
lunar surface by the Apollo astronauts: the Moon is currently receding from the Earth at a rate of about 4 cm
per year. Thisrecession should continue until the Earth becomes tidally locked to the Moon the same way the
Moon is now tidally locked to the Earth: not only will the Moon always present the same face to the Earth,
but the Earth will always present the same face to the Moon. At that point, the Moon will appear stationary
in the sky, and from some parts of the Earth will never bevisible.

However, it's not likely that this tidal locking of the Earth to the Moon will ever happen. Calculations
show that it would not occur for another 50 billion years?®; in about 5 billion years the Sun will reach its red
giant stage, and may expand enough to consume both the Earth and the Moon.

1For comparison, the current age of the Universeis 13.7 billion years.
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Chapter 53

Geodesy

53.1 Introduction

Geodesy is the study of the measurement of the Earth, its precise shape, and the details of its gravitational
field. With precise determinations of latitude and longitude around the globe, geodesists provide a means to
tie together results of local land surveys into a consistent, coherent, global system.

Although the Earth is often considered to be a sphere, it is much closer to being an oblate spheroid,
bulging slightly at the equator due rotation over time. The equatorial and polar radii, set by the WGS 84
standard?, area = 6378.1370 km and b = 6356.7523142 km, respectively. The polar radius 5 is cal culated
from the equatorial radiusa and a flattening parameter.? These two radii approximate the Earth’s size at sea
level. From them we can calcul ate the constants given in Table 53-1.

Table 53-1. WGS 84 Derived Constants.

Surface area of oblate spheroid 5.10065622 x 108 km?
Volume of oblate spheroid 3.44795987 x 101! km3
Mean radius of semi-axes 6371.00877 km

Radius of sphere of equal area 6371.00718 km

Radius of sphere of equal volume  6371.00079 km
Equatoria circumference 40075.0167 km

Polar circumference 40007.8629 km

This oblate spheroid is part of the satellite-based Global Positioning System (GPS) and serves as the
reference for coordinate calculations. GPS can also be used to estimate elevation; however the accuracy is
reduced, in large part because sea level is not the shape of an oblate spheroid, but varies with the gravity,
which in turn varies with latitude and local terrain and ground composition. Sea level is modeled as an
irregularly shaped surface known as the geoid. Itslocal valueis referenced to the spheroid.

The Earth’s volume exceeds that of the oblate spheroid due to the land volume above sea level, which is
estimated to be 3.755 x 107 km?, based on the global mean elevation of 231.3 meters.

Note that one fourth of the polar circumference isless the 2 km more than the pole-to-equator dimension
used to define the original meter. A large part of this discrepancy is due to a calculation error made during

11984 World Geodetic System.
2Theflattening factor f = (a — b)/a = 1/298.257223563. s0b = a(1 — f).
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the survey that was made in the late 18th century to determine the distance from the equator to the North Pole
for the purpose of defining the meter. The resulting error led to our current meter being about 0.2 mm shorter
than intended.®

In this chapter, we'll examine some formulae used in geodesy to find the distance between two points
on the globe. The so-called cosine formula is a fairly ssmple method for determining distance along the
Earth’s surface, under the assumption that the Earth is a perfect sphere. More precise results may be obtained
by using Vincenty’s formula, which model the Earth as an ellipsoid. Vincenty’'s formulae are much more
complicated, but they have two advantages over the cosine formula: they give more accurate results, and they
also give the direction between the two points.

53.2 Radius of the Earth

There isa useful formulathat gives the radius of the Earth R at any latitude ¢:

R@) = \/ (@ cos¢)” + (b Sng)” (53.1)

(acos¢)? + (bsing)?

where, asbefore, the equatorial radiusa = 6378.1370 km, and thepolar radiusb = a(1—f) = 6356.7523142
km (WGS 84).

53.3 The Cosine Formula

The cosine formula from spherical trigonometry gives the angular separation between two points on the
surface of a sphere, where the apex of the angle is at the center of the sphere. If the two points have latitudes
¢1 and ¢, and longitudes L, and L,, then the cosine formula gives the angular separation of the two points
0:

CosfH = sing Sing, + COS¢y COS¢h COS(L1 — Ly) (53.2)

This formula may be used to compute, for example, the angular separation between two stars in the sky,
where¢p = § and L = « are thecelestial counterparts of latitude and longitude, called declination and right
ascension, respectively (see Chapter 54). To find the distance s between two points on the Earth’s surface,
convert 0 toradiansand use s = Rg 60, where Rgy = 6371.0 km isthe average radius of the Earth.

If the angular separation 6 between the two pointsis small, better accuracy may be obtained by using the
haversine function, hav(x). The haversine is defined by

. 0
hav 6 = sin® (5) , (53.3)
and so theinverse haversine functionis given by
hav~!'y =2sn™! /3. (53.4)
Using the haversine function, the cosine formula can be replaced by

hav 6 = hav(¢1 — ¢2) + OS¢ COS¢, hav(Li — Ly). (53.5)

3The story of this survey is described in the book The Measure of All Things by Ken Alder.
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53.4 Vincenty’s Formulee: Introduction

Vincenty’s formulsewere devel oped by the Polish American geodesist Thaddeus Vincenty in the mid-1970s.
Like the cosine and haversine formulag they are used to calculate the distance between two points on the
Earth’s surface. Unlikethose formulag though, Vincenty’sformuleemodel the Earth’s surface as an ellipsoid,
and they a so provide the direction between the two points.

There are two sets of Vincenty'sformulaa

* One st solves the direct problem: given one point on the Earth’s surface (latitude and longitude), a
direction, and a distance, these equationsfind the latitude and longitude of the ending point.

* The other set solves the inverse problem: given two points on the Earth’s surface (latitudes and longi-
tudes), these equations find the distance between the two points, as well as the direction from one point
the other.

53.5 Vincenty’s Formulee: Direct Problem

Inthe direct problem, we're given the latitude ¢ ; (north positive) and longitude L ; (east positive) of one point
on the Earth’'s surface; a distance s; and a direction oy (measured clockwise from north). The goa of the
direct problem isto find the latitude ¢, and longitude L, of the point you would reach by starting at (¢1, L1)
and traveling a distance s in the direction ;.

We're also given the following constants that define the size and shape of the Earth €llipsoid: 4

* Earth ellipsoid semi-major axis (i.e. equatoria radius): « = 6378137.0 meters.

* Earth flattening factor f = 1/298.257223563. Thisis defined as the difference between semi-major
and semi-minor axes, divided by the semi-major axis: f = (a — b)/a.

We begin by finding the semi-minor axis b of the Earth’s ellipsoid:
b=(1-f)a. (53.6)

Then calculate the following, step by step, working with all anglesin radians:

tanU; = (1 — f) tan ¢, (537)
U =tan ! (tanU)) (53.8)

01 = arctan (tan Ui ) (53.9)

cosay
sina = cosU; Sina; (53.10)
cos’ o = (1 —sina)(1 + sin) (53.11)
2 2
u? = (cos ) (%) (53.12)

4These are the val ues used for the WGS-84 ellipsoid, used by GPS receivers.
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2

A=1
+ 16384

{4096 + u* [~768 + u* (320 — 175u%) ]} (53.13)

M2

~ 1024

Then, using an initial value o = s/bA, iterate Egs. (53.15) through (53.17) until there is no significant
changeino:

{256 + u* [—128 + u?(74 — 47u?)]} (53.14)

20m =201+ 0 (53.15)

Ao =B sino{ coS(20/)+ 1 B[ coso (—14-2 €05’ (20,n))— £ B €0S(20, ) (—3+4 sin* o) (—3+4 COSZ(ZGm))]}
(53.16)

s
- 53.17
o=y + Ao ( )

Once o is obtained to sufficient accuracy, calculate:

sinU; cos cosU; sino cos
> — arctan 16050 + COST1 SN0 Cosan (53.18)

- f)\/Sinzoz + (sinU; sino — cosU; coso cosa)?

A= arctan( Sno Sne_ ) (53.19)
cosU; coso —sinU; Sino cosa g
C = 1f_6 cos’ a4 + f(4 —3cos’ )] (53.20)
L=1-(1-C)fsina{o + C sino [cos(20,,) + C coso(—1 + 2cos’(20m))]} (53.21)
Ly=L+ L (53.22)
o = arctan( Y ) (53.23)
—sinU; sino + cosU; coso CoSoq

Then (¢2, L») are thelatitude and longitude of the ending point (in radians).
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Example. If you travel exactly 1000 miles northwest of the sounding rocket in Chesapeake Hall at Prince
George's Community College (38° 53/ 17.62” N, 76° 49’ 23.40” W), where do you end up? (Give the answer
as latitude, longitude, and describe the location.)

Solution. The coordinates of Chesapeake Hall are: ¢; = +38.888228°, L1 = —76.823167°. The given
distance is 1000 miles = 1609.344 km, and the given azimuth «; = 315°. Employing Vincenty's formulee
(direct method), we find:

b = 6356752.3 meters
U, = 38.794230°
o1 = 48.663693°
cos? o = 0.696266995365
u? = 0.0046924891470
A = 1.0011720921377
B = 0.0011703772996
o = 14.482402°
¢ = 48.206878°
A = —15.357896°
C = 5.84547783404 x 107*
L = —15.331156°
Lo = —92.154324°

Hence the ending point is at latitude 48° 12’ 24.76” N, longitude 92° 09° 15.56” W. This is in northern
Minnesota (St. Louis county), within Superior National Forest, just afew miles south of the Canadian borde.

53.6 Vincenty’s Formulee: Inverse Problem

In the inverse problem, we're given two points on the Earth’'s surface (¢, L1) and (¢,, L») and want to
calculate the distance s between them, as well as the direction from one to the other. We'll use the constants
defining the Earth’s ellipsoid as before:

« Earth ellipsoid semi-major axis (i.e. equatoria radius): a = 6378137.0 meters.

* Earth flattening factor f = 1/298.257223563. Thisis defined as the difference between semi-major
and semi-minor axes, divided by the semi-major axis: f = (a — b)/a.

In performing the following calculations, work with all anglesin radians. We begin by calculating

U =tan [(1 — f)tan¢] (53.24)
U, = tan [(1 — f)tan¢y,] (53.25)
L=1L,—1L, (53.26)
b=(0-f)a (53.27)

Now set aninitial value A = L. Then iterate on Egs. (53.28) through (53.35) until A converges:

sino = y/(cosU, sinA)2 + (cosU, sinU, — sinU; cos U, Cos A)2 (53.28)
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coso = sinU; sinU, + cosU; cosU, cosA (53.29)
sin

o = arctan —2 (53.30)
Coso

_ cosU; cosUs sinA

sino (53.31)
sino

cos?a =1—snra (53.32)
4 .

€08(20,,) = COSO — w (53.33)
cos?

C = 1f_6 cos’ a4 + f(4—3cos’ )] (53.34)

A=L+(1-C)fsina{o+ Csino [cos(20,) + C coso(—1 + 2cos*(20m))]} (53.35)

When A has converged to the desired degree of accuracy, continue calculating:
2 _ b2
u? = (cos ) (“ ) (53.36)
b2
2
A=1+ 120 {4096 + u* [~768 + u* (320 — 175u%) ]} (53.37)
M2
= Tom {256 + u* [—128 + u?(74 — 47u?)]} (53.38)

Ao = B sina{ C0S(20m)+ 5 B[ coso (—1+2 oS’ (20,)) — & B €OS(20) (—3+4 Sin* o) (—3+4 COSZ(ZGm))]}

(53.39)

s =bA(oc — Ao) (53.40)

o) = arctan cosUzSnA (53.41)
' cosU; sinU, — sinU; cosU, cos A '
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( cosU; sinA )
o, = arctan

- - (53.42)
—sinU; cosU, + cosU; sinU, cos A

Then s is the distance between the two points.

Example. Find the distance between the sounding rocket in Chesapeake Hall at Prince George's Commu-
nity College (38° 53’ 16.87" N, 76° 49’ 23.14” W) and the top (apex) of the Great Pyramid of Gizain Egypt
(29° 58’ 45.03” N, 31° 08’ 03.69" E).

Solution. The given parameters are the coordinates ¢; = 38.888019°, L = —76.823094°, ¢, =
29.979175°, L, = +31.134358°. Employing Vincenty’'s formulae(inverse method), we find:

U; = 38.794230°
U, = 29.895958°
L = 339.15856744°
b = 6356752.3 meters
A = 108.139490°
u? = 0.00393162979
A = 1.00098218405082
B = 9.809796134747123 x 1074
Ao = 0.054160886°
s = 9351378.858 meters
o) = 55.910048°
o = 131.801775°

So the distance s = 9351.378858 km (5280 miles, 3576 feet, 10 inches), in the direction 55.910048°
(10.91° south of northesst).
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Chapter 54

Celestial Mechanics

54.1 Introduction

The area of classical mechanics that deals with the orbits of astronomical bodies around each other under the
influence of gravity is called celestial mechanics. Celestial mechanics is a vast (and very interesting) field;
here we'll get just a taste for how to do some basic calculations, where we examine a simple orbit of one
body around another — the so-called “two-body problem”.

54.2 Kepler’s Laws

Kepler'slaws of planetary motion were derived by the German astronomer Johannes Kepler inthe early 17th
century, based on astronomica observations made by the Danish astronomer Tycho Brahe. The describe
some of the basic motion of planets orbit the Sun (although they apply more generally to any two-body orbit
problem).

Kepler’s First Law

Each of the planets orbits the Sun in an elliptical orbit, with the Sun at one of the foci of the ellipse.

Before Kepler'stime, it was assumed that the planets moved around the Sunin circles (or circles orbiting
on circles), but the predictions failed to satisfactorily match observations. Kepler was the first to recognize
that the planets did not move in circles, but in ellipses.

One can derive the equation of the orbital ellipse in plane polar coordinates, in the plane of the orbit. The
resultis

a(l —e?)

" Tt ecos(d—w) (54.1)

Here (r, 0) are the plane polar coordinates of the planet, a is the semi-mgjor axis of the orbit, e is the
eccentricity of the orbit, and w isthe argument of perihelion.

Kepler’s Second Law

A line drawn from the Sun to a planet sweeps out equal areas in equal times.
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The essence of this law is that planets move more slowly when they’re farther from the Sun, and speed
up as they get closer to the Sun. A comet in a highly elliptical orbit will spend most of its time far from the
Sun, moving very slowly; as it gets close to the Sun, it will speed up, quickly whip around the Sun, and then
move away again.

Quantitatively, the area per unit time swept out by alinejoining the Sun to a planet is given by

dA 1
= — J/GMa(l — €?2), 54.2
=5 VGMa(l—¢?) (54.2)
where A isthearea, G isthe universal gravitational constant, and M isthe mass of the Sun. Since everything
on the right-hand side of thisequation isa constant, it followsthat dA/dt is constant.

Kepler’s Third Law

The square of the period of the orbit is proportional to the cube of the semi-major axis.

This law relates the period of a planet’s orbit (i.e. the time required to complete one orbit) to its distance
from the Sun. Mathematically, thislaw is expressed as

P2 xd’, (54.3)

where P is the period of the orbit. The proportionality constant turns out to be 47 2/ GM , so Kepler's third
law becomes

472 3
=—a".
GM

54.3 Time

The way we measure time for civil use (years, months, days, weeks, etc.) is not particularly convenient for
astronomical calculations. A more convenient way to measure time iswith the Julian day. The Julian Day is
simply a count of the total number of days that have elapsed since noon on Monday, January 1, 4713 B.C. (by
the old Julian calendar). (Notice that the Julian Day begins at noon, not at midnight as on our civil calendar.)
Asan example, December 1, 2010 (midnight, beginning of December 1) is Julian Day 2455531.5.

The calendar date may be converted to and from the Julian Day using some fairly simple, well-known
algorithms (see e.g. Meeus, 1991), or by the use of pre-computed tables.

The Julian day makes it very easy to find the number of days between two dates: just convert both dates
to their corresponding Julian day, and subtract. Thisis how computer programs like spreadsheets deal with
dates: they store dates internally as Julian Days, and use standard algorithms to convert to and from the
calendar date that is displayed on the screen.

P? (54.4)

54.4 Orbit Reference Frames

In order to describe the orientation of an orbit in space, we need to have a reference frame with respect to
which the orbit will be described. Such a reference system is defined by a reference plane, and a reference
direction that liesin that plane. The two common choices are the equatorial and ecliptic reference frames.

In the equatorial reference frame, the reference plane isthe plane of the Earth’s equator, and the reference
direction isthe direction of the vernal equinox. The vernal equinox is the direction from the Earth to the Sun
on thefirst day of spring (around March 21). This equatorial frame is commonly used for bodies orbiting the
Earth, such as artificial satellites.
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In the ecliptic reference frame, the reference plane is the plane of the ecliptic (i.e. the plane of the Earth’'s
orbit around the Sun), and the reference direction is again in the direction of the vernal equinox. The ecliptic
frame is used for most astronomical bodies: planets, comets, etc.

The plane of the equator and the plane of the ecliptic intersect along aline, and the direction of the verna
equinox lies aong that line of intersection. The two planes are separated by a dihedral angle of about 23.5°
(thetilt angle of the Earth’s axis); this angleis called the obliquity of the ecliptic (¢).

545 Orbital Elements

Now suppose that we want to describe the orbit of one body around another: for example, the Moon around
the Earth, or the planet Saturn around the Sun. We first choose an appropriate reference frame, and then we
need to describe the orbit. The orbit is specified using a set of seven numbers called the orbital elements of
the orbit, which are described here.

Figure 54.1 shows atypical orbit and reference frame. In thisfigure, the xy-plane isthe reference frame
(either the equator or the ecliptic), and the x direction is the reference direction (the vernal equinox). The
orbit plane intersects the reference plane along a line called the line of nodes. The point where the orbiting
body moves from below the reference plane to above the reference planeis called the ascending node, and is
marked N in Fig. 1. The opposite point on the line of nodes, where the body moves from above the reference
planeto below is called the descending node.

The point of closest approach of the orbiting body to the center body is called the pericenter, and the
point of farthest approach is called the apocenter. In the case where the body is orbiting the Earth, these are
called the perigee and apogee (respectively); when the body is orbiting the Sun, these points are called the
perihelion and aphelion (respectively). The line connecting the pericenter to the apocenter is called the line
of apsides.

Now to the orbital elements. First, we need to specify the size of the orbit. Bodiesin closed orbits always
orbit in ellipses, where the body being orbited is at one of the two foci of the ellipse. The size of the orbitis
specified by giving the semi-major axis a of the ellipse.

Second, we need to specify the shape of the orbit. We do this by specifying the eccentricity e of the
ellipse. The eccentricity is a number between 0 and 1, and is measure of how elongated the ellipseis: e = 0
for a circle, and values of ¢ close to 1 are long, cigar-shaped ellipses. The eccentricity e is related to the
semi-major axis a and semi-minor axis b of the ellipse by

va2 — b2

a

e — (54.5)

Next, we need to specify the orientation of the orbit in space. This requires three angles: (1) the incli-
nation i of the orbit with respect to the reference plane; (2) the longitude of the ascending node 2, whichis
the angle between the verna equinox and the ascending node, measured in the reference plane; and (3) the
argument of pericenter w, which isthe angle between the ascending node and the orbit pericenter, measured
in the plane of the orbit. These three angles areillustrated in Fig. 54.1.

Now we've completely specified the orbit itself, but we need one more bit of information: where the body
isinthisorbit. Thisrequirestwo numbers: an angle, and atime at which the body is at that angle. The angle
is called the mean anomaly at epoch M, and gives the angle from the pericenter to the body (measured in
the plane of the orbit) at a specified epoch time Ty.

The seven orbital elements are summarized in the table below, and illustrated in Figure 54.1.
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Figure 54.1: Orbital elements for a body of mass m, orbiting a body of mass m,. The xy-plane is the
reference plane, and x is the direction of the vernal equinox. Shown are the orbital elements i, 2, and w,
along with the true anomaly f. Point N isthe ascending node of the orbit. (From McCuskey, 1963 [12].)

Table 54-1. Orbital elements.

Element Symbol
Semi-major axis a
Eccentricity e
Inclination i
Longitude of ascending node Q
Argument of pericenter 1)
Mean anomaly at epoch M,
Epoch time To

54.6 Right Ascension and Declination

The goal of the orbit cal culation isto find the position of abody inthe sky, givenitsorbital elements. Thefinal

result, the position in the sky, will be given in a coordinate system that is analogous to the longitude-latitude
system used to locate places on the surface of the Earth. Imagine rotating the Earth on its axis until the prime
meridian (0° longitude) intersects the direction of the vernal equinox. Then projecting thelines of geographic
longitude into the sky gives lines of right ascension for astronomical objects. Similarly, projecting the lines
of geographic latitude into the sky give lines of declination.

Here'sanother way to think of this: imaginethe Earth isahollow glass sphere, withlongitudeand latitude
lines drawn on it. Rotate the Earth on its axis until the prime meridian intersects the direction of the vernal
equinox, and hold the Earth still at that position. Now if you are at the center of the Earth and ook out toward
the sky, the lines drawn on the glass will be lines of right ascension and declination.

Right ascension ranges from 0° to 360°, and declination ranges from —90° to +90° (where + is north).
Often right ascension is given in units of hours, rather than degrees (1 hour = 15 °). Under this convention,
right ascension ranges from Oh to 24h.
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54.7 Computing a Position

Now let's put all this together and see how you go about computing the position of a body in an elliptical
orbit — let’s say a planet orbiting the Sun — at atime ¢, given its orbital elements. We begin by computing
the mean daily motion » of the body, which is how many revolutionsit makes in its orbit per day. Thisis
found from Kepler'sthird law:

86400 [GMo

n
2 ad ’

(54.6)

where G isthe universal gravitational constant, M o is the mass of the central body, and « isthe semi-major
axis of the orbit. The factor 86400/2 in front converts to units of rev/day.
Next we find the mean anomaly M at timez::

M = Mo + 27n(t — To) (54.7)

Essentially what we're doing here is assuming the orbit is a perfect circle; knowing the mean anomaly M at
the epoch time T, this equation finds the mean anomaly M at some other time¢. Here both M and M, are
in units of radians, r and Ty are Julian days, and » isin units of rev/day.

Of course, thereal orbitisgenerally an ellipse, not acircle, sothe next step is to adjust the mean anomaly
M to correct it for the eccentricity of the orbit. The result is called the eccentric anomaly E£. We find the
eccentric anomaly by solving the following equation, called Kepler’s equation, for E:

M =E —esnE (54.8)

(Here M and E are bothinradians.) Kepler's equation cannot be solved for E in closed form, so we need to
make use of some iterative method such as Newton’s method to solve for E.

Having found E, the next step is to correct the orbit for the fact that the body is at one of the foci of
the ellipse, not at the center of the ellipse. This correction gives what's called the true anomaly f (againin
radians):

S\ _ [l+e E
tan ( > ) =V tan > (54.9
The trueanomaly [ isthe true polar coordinate of the body, measured from the pericenter to the body, in the

plane of the orbit.
Next we find radial distance r of the orbiting body from the central body:

r=a(l —ecoskE) (54.10)

The quantities r and f are the plane polar coordinates of the orbiting body, with the central body at the
origin. The remainder of the calculations are essentially a set of coordinate transformations to find the right
ascension and declination of the body.

We begin these coordinate transformations by finding the argument of latitude u (radians):

Next, we find the heliocentric cartesian ecliptic coordinates (x, y, z) of the orbiting body:

x = r(cosu cos2 — sinu Sin€2 cosi) (54.12)
y = r(cosu Sin2 4+ sinu cos <2 cosi) (54.13)
z =rsnusni (54.19)
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For the orbit of a planet around the Sun, these are the cartesian coordinates of the body in a coordinate system
centered at the Sun.

We don’t want to know where the body will appear in the sky as seen from the Sun, though—we want to
know where it will be in the sky as seen from the Earth. So next we move the origin of this coordinate system
from the Sun to the Earth, giving the geocentric cartesian ecliptic coordinates (x ., ye, z.) of the body:

Xe = X + Xo (54.15)
Ye =Y+ Yo (54.16)
Ze =2+ 20 (54.17)

where (xo, yo, Ze) are the geocentric cartesian coordinates of the Sun at timez.
Now we convert from cartesian to spherical coordinates. Assuming the reference planeisthe ecliptic, this
gives the geocentric ecliptic longitude A and ecliptic latitude g:

tand = 2¢ (54.18)
Xe

. Ze

SN = ———— (54.19)
VX2 4+ yZ2+ 272

Finally, we convert these ecliptic coordinatesto right ascension « and declination §:

sinAcose —tanB sin

tana = e—tenpsne (54.20)

COSA
sin§ = sinf cose + cosB sinesinA, (54.21)

where ¢ isthe obliquity of the ecliptic (about 23.5°).

Egs. (54.20) and (54.21) are the solution to the problem: we could find a star atlas (which has lines of
right ascension and declination marked on it), locate the planet, and find where in the sky the planet can be
seen.

54.8 The Inverse Problem

The problem we just solved is: given the orbital elements of the planet, we found its position in the sky at
any given time. But how did we get the orbital elements in the first place? This has to do with the inverse of
the problem just solved: given the position of the planet in the sky, what are the orbital elements?

It turns out that we require three separate observations of the body at three different times. Knowing the
right ascension o and declination § of the body at three different times, one can derive the orbital elements.
Details are given in Chapter 4 of the reference by McCuskey [12].

54.9 Corrections to the Two-Body Calculation

We've described here the basics of a two-body orbit calculation, but there are a number of corrections that
would need to be made to make a more accurate cal culation; for example:

» The reference frames are actually not fixed, but move in time because of motions of the Earth. A more
careful calculation would take these effects (precession and nutation of the Earth) into account.

* The orbital elements change with time — notably the longitude of the ascending node €2 and the
argument of pericenter w.
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« Other bodies are always present — not just the planet and the Sun. More complex calculations take the
effect of other bodiesinto account.

* Parallax corrections: the position of the body in the sky varies slightly depending on the position of the
observer on the surface of the Earth.

» Atmospheric refraction can cause small changes in the apparent position of the body in the sky.

54.10 Bound and Unbound Orbits

The planetary orbits we've considered so far are elliptical orbits: the planets (according to Kepler’sfirst law)
move in ellipses, with the Sun at one focus. Similarly, satellites of the planets move in ellipses around the
parent body. In general, the motion of a body under the inverse-square gravitational force is a conic section,
i.e. acircle, ellipse, parabola, or hyperbola. Circular and elliptical orbitsare bound orbits: if only two bodies
are present, then the orbit retraces itself indefinitely. Parabolic and hyperbolic orbits are unbound: the body
will orbit its parent body once, then move off toward infinity, leaving the vicinity of the parent body forever.

* A circular orbitis aspecial case of an elliptical orbit, for which the eccentricity e = 0.

* An elliptical orbit is one in which the body orbitsits parent body, with the parent at one of the foci of
the ellipse. Elliptical orbits have eccentricity 0 < e < 1.

* A parabolic orbitisbarely unbound, and lies at the boundary between a highly eccentric elliptical orbit
and a hyperbolic orbit. Parabolic orbits have eccentricity e = 1.

* A hyperbolic orbit is unbound, and has eccentricity e > 1. In ahyperbolic orbit, the body orbits its
parent once along one of the branches of the hyperbola, with the parent body at the focus of that branch
of the hyperbola.

One could argue that in the real world there are no truly circular or parabolic orbits, since the eccentricity
e will never be exactly 0 or 1. But some orbits have their eccentricities close enough to 0 or 1 for them to at
least be approximated as circular or parabolic.

Whilethe planetsall orbit the Sunin elliptical orbits, comets may orbit the Sun inany kind of orbit. Some
comets like Halley’s comet are in highly eccentric eliptical orbits that return to the Sun at regular intervals.
Other comets are in unbound orbits, and visit the Sun only once; they have sufficient energy to leave the solar
system forever along hyperbolic orbits.

54.11 The VisViva Equation

When an object of small mass m orbits a body of much larger mass M, we can use conservation of energy
considerationsto find the smaller body’s velocity v at radial distance r. We have for the small body m:

K = Imv? (kinetic energy) (54.22)
M

U=- G . e (potential energy) (54.23)
M

E = —Gzam (total energy) (54.24)

where the quantity « is the radius for a circular orbit, the semi-major axis for an elliptical orbit, the negative
of the semi-major axis for a hyperbolic orbit, or infinity for a parabolic orbit.
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By conservation of energy,

E=K+U (54.25)
Mm 1 GM
_GMm _ 1 2 GMm (54.26)
2a 2 r

Solving for the orbit speed v, wefind

v=,/GM (3 - l). (54.27)

r a

Thisresult is known as the vis viva equation (Latin for “live force”).

54.12 Bertrand’s Theorem

There is a theorem in classical mechanics called Bertrand’s theorem, which proves that there are only two
types of force law that can possibly lead to closed orbits (orbits for which the particle eventually retraces its
own footsteps):

1. Aninverse-square law force F o 1/r? (e.g. gravity or electrostatics); and
2. A Hooke'slaw force F o« r (e.g. aspring).

For a proof of Bertrand's theorem, see Appendix A of Ref. [8].

54.13 Differential Equation for an Orbit

It can be shown (Ref. [8]) that a central force F(r) satisfies the differential equation

1 12u? (d?u
Fl-)|l=—— "+ 54.28
(u) m (d92 +u), ( )

where the equation is in polar coordinates, ! is the angular momentum of the orbit, m is the mass, and
u = 1/r. This equation has an interesting application: given the orbit function in polar coordinates r(0),
you can solvefor theforce law F(r) that gives that orbit. In theory, you could, for example, use Eq. (54.28)
to find what force law would be necessary to produce a square orbit.

Example. As a simple example, suppose we observe a mass m in circular orbit of radius R around a
parent mass M, so that the orbit equationisr () = R (aconstant), and sou = 1/R. If theforce present is
gravity, then the orbital angular momentum of m will be/ = m ~/GMR. Eq. (54.28) then gives

12 2 d2
F=— ;Z (d—g’; n u) (54.29)
m2GMR (1
= TTaRE (E) (54.30)
GMm
e (54.31)

and we recover Newton’slaw of gravity. Thisisnot by any means aderivation of Newton’slaw of gravity—in
order to get the result in this example, we had to assume Newton's law of gravity to get the expression for
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angular momentum /. Thisexample isreally just an illustration of how you can derive theforcelaw if you're
given the orbit and its angular momentum.

Example. Suppose a particle orbitsin a circle that passes through the center of force. Show that the force
law must be an inverse-fifth law force (F o< 1/r%).

Solution. The polar equation of acircle passing through the originisr = 2a cosé, where a isthe radius
of the circle. From Eq. (54.28), we can find the force law. Sincer = 2a cosf, we have

1 1
= - = . 54.32
r  2acos6 ( )
WEe'll need the second derivative of u with respect to 6:
du sind
B — 54.33
df  2acos?0 ( )
d*>u  2acos® 6 + 4acoshsin® 6
- = 54.34
do? 4a2 cos* 0 ( )
2acos® 0 + 4acosf(1 — cos® 0)
= 54.35
4a2 cost 0 ( )
2a¢0S° 0 + 4a cosh — 4a cos® 0
n 4q2 cost 0 (54.36)
1 1 2
= — 54.37
2a cosf + acos’  2acosf ( )
1 1
= — 54.38
acos’  2acosf ( )
8a? 1
= — 54.39
8a3cos’f  2acosh ( )
= 8a*u® —u (54.40)
Using thisresult, Eq. (54.28) becomes
1?u? (d?u
F =— - 54.41
m (d92 + ") (5441)
v 5
=——@8a"u” —u+u (54.42)
m
272
_ _8a’l” s (54.43)
m
272
1
- 1 qeD (54.44)
m r

54.14 Lagrange Points
In any two-body system (the Sun-Earth system, for example), there are five points called Lagrange points

(or libration points) where the net force on a body at that point would be zero. For example, the Sun-Earth
Lagrange points are (see Figure 54.2):
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. TheL; pointis between the Sun and the Earth.
. The L, pointison the Sun-Earth line, but farther from the Sun than the Earth.
. The L3 pointisalso on the Sun-Earth line, but on the other side of the Sun.

. The L4 point forms an equilateral triangle with the Sun and Earth, and |eads the Earth.

a A W DN P

. The Ls point, likeL 4, forms an equilateral triangle with the Sun and Earth, but trailsthe Earth.

There is a similar set of five Lagrange points for the Earth-Moon system: the Earth-Moon L point is
between the Earth and Moon, etc. One distinguishes between these two sets by referring to them as the
“Sun-Earth Lagrange points’ and the “ Earth-Moon Lagrange points.”

The Lagrange pointsL, L, and L3 are unstable: a body placed at any of those pointswould experience
zero net force, but if it were moved dlightly away from the Lagrange point it would continue to move farther
away. Lagrange pointspointsL 4 and L5 are both stable: if abody placed at either of these pointswere moved
slightly away from the Lagrange point, the forces present would tend to push it back toward the Lagrange
point.

Although Lagrange pointsL, L,, and L3 are unstable, spacecraft are often placed at these (Sun-Earth)
positions in so-called halo orbits, where the various forces present cause them to move in closed “orbits’
around the Lagrange point.

A number of asteroids called Trojan asteroids have accumulated at the Sun-Jupiter L 4 and Ls Lagrange
points.> One asteroid (called 2010 TK7) has recently been discovered at the Sun-Earth L4 point.

54.15 The Rings of Saturn

If you look at the planet Saturn through a telescope (Fig. 54.3), you'll see it surrounded by a prominent set
of rings. Although the ringslook solid, they are actually composed of a vast number of chunks of ice or ice-
covered rock, ranging in size from small grains to chunks the size of buildings. It was shown by the Scottish
physicist James Clerk Maxwell (following Laplace) that Saturn’s rings cannot be solid. For one thing, if the
rings were solid, Maxwell showed that their orbit would be unstable and they would eventually crash onto
Saturn’s surface.

For another thing, tidal forces would tear the rings apart. According to the vis viva equation (Eq. 54.27),
for a circular orbit, the velocity v of a body in orbit decreases with increasing distance from the planet by
v oc r~1/2, But if the rings were solid, they would rotate as a solid body, obeying v = rw, S0 v o« r — the
velocity would increase with increasing distance. The orbital velocity can't both increase and decrease with
distance, so the result would be a large stress on the rings that would tear them apart.

In general, it has been shown that no body that is held together by gravity can avoid being torn apart if it
orbitsa planet with an orbital radiusinside the so-called Roche limit, which is given by

r=244R, 32 (54.45)
Pb

where R, istheradius of the planet, p,, isits density, and p;, isthe density of the orbiting body.

The rings of Saturn are also extremely thin—maybe only 100 yards or so thick. Why are Saturn’s rings
so thin? It has to do with the ring particles colliding with each other. Ring particles that are high above or
below the rings are in a highly inclined orbit, and have more energy than ring particles that are closer to the
ring plane. When those particles collide with other particles, some of their energy islost, so causing them to
move to lower-energy orbits closer to the ring plane. Over time, the ring particles (especially the larger ones)

1By convention, the Trojan asteroids near the L 4 point are given namesof charactersfrom the Greek side of the Trojan War chronicled
in Greek mythology; the Trojan asteroids near the L 5 point are given names from the Trojan side of the war.
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Figure 54.2: The Sun-Earth Lagrange points. The Wilkinson Microwave Anisotropy Probe (WMAP) space-
craft is shown orbiting the L, Lagrange point in ahalo orbit. (Credit: NASA.)
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Figure 54.3: Saturn and itsrings, as seen by the Cassini spacecraft. (Credit: NASA.)

tend to flatten themselves into a thin plane, as we see today. Thisis the general picture, but the details are
still being worked out.

54.16 Hyperbolic Orbits

Suppose we wish to calculate the position of a body that isin a hyperbolic orbit (¢ > 1), asis the case
with some comets in orbit around the Sun. The procedure is the same as outlined in Section 54.7, except for
Equations (54.8) through (54.10).

For hyperbolic orbits, in place of Kepler's equation (Eq. (54.8)), we use the hyperbolic Kepler’s equation:

M =esnhF — F, (54.46)

where M isthe mean anomaly (in radians), and F' isavariable that takes the place of the eccentric anomaly.
Aswiththe elliptical Kepler’'s equation, the hyperbolic version cannot be solved for F' in closed form; instead
we must rely on some numerical method like Newton's method to solve for F'. Once we have found F, we
solve for the true anomaly f using this replacement for Eq. (54.9):

tan(i) = et tanh(E). (54.47)

2 e—1 2
Finally, theradial distance from the Sun to the body is found by this replacement for Eq. (54.10):
r=a(ecoshF —1), (54.48)

where for a hyperbolaa is the distance from the center of the hyperbolato either vertex. The rest of position
calculation is the same as described in Section 54.7 for elliptical orbits.
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54.17 Parabolic Orbits

Suppose we wish to calculate the position of a body that isin a parabolic or near-parabolic orbit (e = 1), as
is the case with some comets in orbit around the Sun. The procedure isthe same as outlined in Section 54.7,
except for Equations (54.6) through (54.10).

For parabolic orbits, in place of the semi-mgjor axis of the ellipse a, we use the perihelion distance ¢,
and in place of the epoch time we use the time of perihelion passage 7,. Then the true anomaly f at time ¢
is given by Barker’s equation,

tan (%) + %tan3 (%) = \/g(z —Tp). (54.49)

In the case of abody orbiting the Sun, GM isthe graviational constant of the Sun, equal to 1.32712440041 x
102° m® s72. It is possible to solve Barker’s equation (54.49) for the true anomaly f directly (see e.g.
McCuskey [12]) injust afew steps. Let K be the right-hand side of Eq. (54.49):

|GM

Then the true anomaly f is found through a series of steps:

3 3JGM
cots = = |K| = ———= |t — Tp| (54.51)
2 (29)3?2
cot (%) =1+ cot?s + cots (54.52)
N
_ 3 D
cotw = 3/cot (2) (54.53)
cot?w — 1
cot2w = ~ 2 (54.54)
2 cotw
tan (%) = (2cot2w) x sgn(t — Tp) (54.55)

Here sgn(x) isthe signum function, and is defined as

—1 (x <0)
sgn(x) =4 0 (x=0) (54.56)
+1  (x>0)

Once the true anomaly £ has been found, the radial distance from the Sun to the body is found by this
replacement for Eq. (54.10):

r = g s (g) . (54.57)

The rest of position calculation is the same as described in Section 54.7 for elliptical orbits.
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Chapter 55

Astrodynamics

Astrodynamics isafield closely related to celestial mechanics, except that it deals only with man-made orbits
of spacecraft, rather than the orbitsof natural astronomical objects. Astrodynamicistsdesign spacecraft orbits
to optimize time or energy, and to also fall within the constraints of the mission. For example, during the
Apollo missions to the Moon in the 1960s and 1970s, the spacecraft orbits were designed to land at low-

latitude locations on the Moon's surface, with the constraint that the landing location had to be on the near

side of the Moon, while the day sideisin daylight.

55.1 Circular Orbits

Asasimple example, suppose we wish to place a spacecraft of mass m into acircular orbit around the Earth.
If the orbit radiusis r, then the potential energy U of the spacecraft (withU = 0 at r = 00) is
M@m

U. =-G — (55.1

where G is Newton's gravitational constant and Mg is the mass of the Earth. The kinetic energy of the
spacecraft is

1
K. = 5muz. (55.2)

Here the orbit velocity v at orbital radius r is found by setting the centripetal force mv 2/r equa to the
gravitational force GMgm/r?:

mv>  GMgm

r r2

(55.3)
so, solving for v,

GMg

r

Ve =

(55.4)

Substituting this result into Eq. (55.2), we have an expression for the kinetic energy K in terms of the orbit
radiusr:

M@m

K=G
2r

(55.5)
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From Egs. (55.1) and (55.5), we find the total orbit energy E is

M
E.=U.+ K. =G ;im. (55.6)

Thisisanimportant result, since total energy isconserved. Another important result isthe angular momentum
of the spacecraft, since that’s also conserved. The angular momentum of the spacecraft in a circular orbit is
L = mvr; using Eq. (55.4), we have

L =m\/GMgr. (55.7)

Launch Velocity

Suppose we wish to launch a spacecraft from the surface of the Earth into a circular orbit of radius r, using
only a single blast of the engines on the ground and coasting the rest of the way. The initia velocity with
which the spacecraft is launched is called the launch velocity, and can be found using the conservation of
energy:

E=U+K (55.8)
M@m 1 2

=+ Emv

and so solving for v gives the launch velocity vy, :

=G (55.9)

E M
v = )2 (— + G—®) (55.10)
m r

Inreal life, however, there are a number of complications that require an analysis more complex that this:

 Spacecraft are not launched with a single initial blast and allowed to coast. Instead, the engines are
continuously burned over some extended period.

» The mass of the spacecraft decreases during launch, as fuel is burned, so that the rocket equation must
be employed. (See Chapter 30.)

» Most spacecraft are staged in some way (as described in Chapter 30), which also causes the spacecraft
mass to decrease with time during launch.

 The drag due to the Earth’s atmosphere must be accounted for, which we have not done here.

There's another issue here. The above analysis assumes the spacecraft is launched from a non-rotating
Earth. In redl life, we launch from a rotating Earth, which we can use to our advantage. Since the Earth is
rotating, we can useitsrotational velocity to contributeto the needed launch vel ocity, as long as the spacecraft
islaunched to the east so that it orbits the Earth in the same sense as the Earth’srotation. The linear velocity
of the Earth due to itsrotation is R g, where Rg is the radius of the Earth (about 6378 km) and w isthe
angular velocity of the Earth:

_lrev 27 rad
= 24hr T 86400 sec

At latitude ¢, the linear velocity of the Earthis

=7.2722 x 107° rad/s. (55.11)

v = Rgw COS¢. (55.12)
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The closer the launch site is the the equator (¢ = 0), the larger v is, and the more we can take advantage of
the Earth’s rotation in hel ping to achieve the desired launch velocity. Thisis why the Kennedy Space Center
islocated in Florida: it'sin the southern United States, about as close to the equator as we can get within the
United States.* The latitude of the Kennedy Space Center is¢ = 28.5°, which givesv = 408 km/s that we
get “for free” from the Earth toward the launch vel ocity.

To take maximum advantage of the Earth’s rotation, a spacecraft would be launched due east from the
Kennedy Space Center. Once the spacecraft is in orbit, it cannot just orbit the Earth at the latitude of the
launch site; the laws of physics require the plane of the orbit to pass through the center of the Earth. The
result is a circular orbit, inclined with respect to the equator by an angle equal to the latitude of the launch
site (28.5° for alaunch from Kennedy). Many launches from the Kennedy space center are therefore circular
(or near-circular) orbits with an inclination of 28.5 ° with respect to the equator.

55.2 Geosynchronous Orbits

Consider the motion of an artificial satellite in a circular orbit of radius r around the Earth. In order to be
orbitingat radius r, it will have orbital speed v given by setting the centripetal force equal to the gravitational
force:

mv?  GMgm

r r2

: (55.13)

where G is Newton's gravitational constant and M ¢ isthe mass of the Earth. Solving for the orbital velocity
v,

GMg
.

v = (55.14)
Notice the one-to-one correspondence between r and v: for each orbital radius r there is a specific orbital
velocity v for any object in that orbit.
The period T isthe time required to complete one orbit, and isegual to the length of one orbit 27 r divided
by the orbit velocity v:
_ 2mr

T="". (55.15)
v

Using Eqg. (55.14) to substitutefor v, we find the period of an orbit at radius r to be

2
r="" (55.16)
v

=2nr (55.17)

GMg

r3 g
=2 55.1
"\ Mg (55.18)

This showsthat at any given orbital radius r, there is a specific orbital period for a body in a circular orbit of
that radius.

Now suppose an artificial satellite is orbiting directly above the Earth’s equator, and in the same sense
as the Earth’s rotation (counterclockwise as seen from above the north pole). If the period T is 24 hours,

1Als0, by using the east coast of Florida and launching to the east, we launch out over the Atlantic Ocean instead of over populated
areas. Thisis another important factor that makesthe east coast of Florida a desirable launch site.
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the satellite will stay directly above the same point on the equator as it orbits the Earth, and will appear to
“hover” above the Earth. Such an orbit is called a geosynchronous orbit.
The radius of a geosynchronous orbit can be found by solving Eqg. (55.18) for r:
TZ 7‘3

—_— = = 55.19
47'[2 GM@’ ( )

MgT?
. 3/G4;B2 . (55.20)

Now setting T = 24 hours = 86400 sec and GMg = 3.986005 x 10'* m3 s72, we find the radius of a
geosynchronous orbit to be

or

r = 42241 km = 6.62Rg, (55.21)
where Rgy = 6378.140 km isthe equatorial radius of the Earth. The altitude of a geosynchronousorbit is
r — Rg = 35,863 km = 22,284 miles. (55.22)

(This number isthe origin of the address of the former COMSAT Laboratories; 22300 Comsat Drive, Clarks-
burg, Maryland.)

Geosynchronous orbits are often used for communications satellites and satellite television. Since the
satellites appear to hover over the equator, the satellite antenna dish need only be pointed at the satellite
once; the satellite will not move appreciably from the point of view of the observer. Three geosynchronous
satellites placed over the equator 120° in longitude apart are sufficient to cover the whole Earth (except for
regions near the poles).

Some people have proposed the construction of space elevators to move people and cargo into space.
A strong light cable would connect a geosynchronous satellite to the surface of the Earth, and elevator cars
would move up and down the cable. The technology necessary to construct a space elevator is still some
distance in the future, though.

55.3 Elliptical Orbits

Severa of the results we found earlier for a circular orbit can be generalized for an elliptical orbit. Suppose
an eliptical orbit has semi-major axis a and eccentricity e. The the semi-minor axisb = a+/1 — ¢2, and the
distance from the center of the ellipse to either of the two foci isc = ae = +a? — b2. Then the distance
from the center of the Earth (located at one focus) to the perigee point is

rp=a—c=a(l—e), (55.23)

and the distance from the center of the Earth to the apogee point is
fa=a+c=a(l +e). (55.24)
A littlealgebra gives an expression for the semi-major axisa interms of the perigee and apogee distances:

a= % (55.25)

and similarly we can get an expression for the eccentricity e:

e="12""r (55.26)
Tag+71p
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Energy
The total orbit energy £ of aspacecraft in an elliptical orbit turns out to be
M
E=-c28" (55.27)
2a

The potential and kinetic energies vary with r around the orbit. The potential energy at r is given by Eq.
(55.1). The orhit velocity at r isfound from the vis viva eguation, Eq. (54.27),

v=/GMg (% - 2) (54.27)

from which we find the kinetic energy at r to be

1 1
K = GMgm (— — —) (55.28)
r 2a

At perigee, r =r, = a(l —e), and so

GMg 1+e
— 55.29
Op a 1-—e ( )
Mgm 1
K, = GMem1te (55.30)
2a l—e

Atapogee, r =r, = a(l + e), and s0

Mg 1 —
vy = Mo 1—¢ (55.31)
a l1l+e

_ GMgm 1 —e

K, (55.32)
2a 1+e
Angular Momentum
The angular momentum also varies with r, and is given by
L = mrv cos¢. (55.33)

Here ¢ is called the elevation angle, and is the angle between the tangent to the ellipse at the spacecraft and
the spacecraft velocity vector.

At either perigee or apogee, ¢ = 0, S0 L = mrv. At perigee, r, = a(l — e), and so the angular
momentum is

L, = mvpa(l —e). (55.34)
At apogee, r, = a(l + e), and o
L, = mvga(l + e). (55.35)

Since angular momentum is conserved, then L, = L,; if the orbit parameters a and e are known and the
velocity at either the apogee or perigee point is known, then the velocity at the other point is known:

Ly=1L, (55.36)
mvpa(l —e) = mvga(l + e) (55.37)
vp(l—e) =v,(1 +e) (55.38)
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Thus the perigee velocity v, is related to the apogee velocity v, through

1
Yoo _*e (55.39)
P 1—e
In terms of the apogee and perigee distances r, and r,,
Y _la (55.40)
Vg Ip

Example. Suppose a spacecraft isin an Earth-orbiting elliptical orbit with a semi-major axisa = 8000
km and eccentricity e = 0.1500. What are its velocities at perigee and apogee?
Solution. From Eqg. (55.29), the perigee velocity is

GMg 1
vp = (| 2@ _F e (55.41)
a l—e

_ \/3.986005 x 10" m* s72 1 4 0.1500

55.42
8000 x 103 m 1 —0.1500 ( )
= 8210km/s. (55.43)
The apogee velocity can be found using Eqg. (55.39):
1—e 1 —-0.1500
= = 8210 km/s————— = 6069 km/s. 55.44
b =T e /S 01500 — L069kmys (5544)

Circularizing an Orbit

An elliptical orbit may be circularized by changing the spacecraft velocity appropriately. One can change
the spacecraft velocity at perigee to create a circular orbit whose radius is equa to the perigee distance, or
one can change the spacecraft velocity at apogee to create a circular orbit whose radiusis equal to the apogee
distance. To calculate the change in spacecraft velocity (called the Delta v, or Av), one uses the principle of
conservation of energy.

Suppose a spacecraft isin an elliptical orbit with semi-major axis a and eccentricity e, and we wish to
circularize it at perigee. The spacecraft velocity at perigeeis given by Eqg. (55.29), and the circular velocity
a r = rp isgiven by Eq. (55.4). The required change in spacecraft velocity at perigee is their difference.
Using these equations along with Eq. (55.23) gives, after alittlealgebra,

Av=v,—v, = wlaﬁﬁf@e) (1-vV1+e). (55.45)

Similarly, if wewanted to circularize the orbit at apogee, the required change in spacecraft velocity at apogee
is found by finding the difference of Egs. (55.4) and (55.31); using these equations along with Eq. (55.24),
we get

| GMg
~Va( +e)

(1-vVI—e). (55.46)

Av = v, — v,

If the spacecraft velocity vector is perpendicular to the radius vector r at some instant in time, then the
maghnitude of the velocity determines what kind of orbit the spacecraft isin:
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o If v = v, (EQ. (55.4)), then the spacecraft isin acircular orbit.
* If v > v, then the spacecraft is at perigee in an elliptica orbit.

* If v < v, then the spacecraft is at apogee in an elliptical orbit.

Example. Suppose we have an Earth-orbiting spacecraft in an elliptical orbit, with perigee distance 8000
km and apogee distance 12000 km. We wish to circularize the orbit at apogee to create a circular orbit with
radius 12000 km. From Egs. (55.23) and (55.24), we have

rp +rq 8000 km + 12000 km

= = 10000 km. (55.47)
2 2
The eccentricity is
e="1a"Tr _ 0200 (55.48)
Ta+71p

Circularizing the elliptical orbit to the apogee distance will require a single engine burn at the apogee point
that resultsin a change in spacecraft velocity given by Eq. (55.46):

M
Av — GMg (1-v1—e) (55.49)
a(l +e)
B 3.986005 x 104 m? s72 (1 — VT=0200) (55.50)
~ V(10000 x 103 m)(1 + 0.200) ' '
= 608 m/s (85.51)

55.4 The Hohmann Transfer

On occasion we need to re-shape an orbit. One common situation is that we need to move a spacecraft from
acircular orbit to another circular orbit with a different radius. How do we do this?

It can be shown that the most efficient method for performing such a maneuver is to connect the two
orbitswith an ellipse that is tangent to one circular orbit at its perigee point, and tangent to the other circular
orbit at its apogee point (Fig. 55.1). One changes the spacecraft velocity twice, using two engine burns: one
burn on the initia circular orbit to create an eliptical transfer orbit, and a second burn at apogee or perigee
to circularize the orbit. Thistype of two-burn maneuver is called a Hohmann transfer.

One can use aHohmann transfer to move aspacecraft from alow-atitudecircular orbit to ahigher-atitude
circular orbit by increasing the speed with the first burn to create an elliptical orbit with the desired apogee,
then circularizing the orbit with the second burn. The Av for the first burn will be given by the negative of
Eqg. (55.45), and the Av for the second burn will be given by Eq. (55.46). (Both Av burns will be positive,
since both will be adding energy to the orbit.)

To move a spacecraft from high-altitude orbit down to a low-altitude circular orbit, one decreases the
speed with the first burn to create an elliptical orbit with the desired perigee, then circularizes the orbit with
the second burn. The Awv for the first burn will be given by Eq. (55.46), and the Av for the second burn
will be given by the negative of Eq. (55.45). (Both Av burns will be negative, since both will be subtracting
energy from the orbit.)
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Cuter Orbit

Hohmann Eliptical Tranefer Orbkbit

Hohmann Transfer Orbit
Figure 55.1: A Hohmann transfer orbit.

55.5 Gravity Assist Maneuvers

To send a spacecraft to another planet, one may often get a“free” boost in velocity by flying by another planet
along the way, thus shortening the trip. These free velocity increases are called gravity assist maneuvers..

To see how thisworks, consider Fig. 55.2, which shows a spacecraft flying past the planet Jupiter, where
Jupiter is assumed to be stationary in space. The spacecraft speeds up as it heads toward Jupiter, then slows
down again as it moves away from Jupiter. The net result isthat the spacecraft leave the encounter having its
velocity vector change direction, but without any change in magnitude.

Now consider the same situation, but with Jupiter moving in its orbit around the Sun (Fig. 55.3). Inthe
figure, the spacecraft is flying “behind” Jupiter (i.e. so that at the point where the spacecraft passes Jupiter’'s
orbit, Jupiter is moving away from the spacecraft). The velocity of Jupiter in its orbit around the Sun (or a
significant portion of it) is added to velocity vector of the spacecraft, as shown in the two vector diagrams.
Asyou can see from the vector diagrams, the velocity vector increases in magnitude after the Jupiter flyby,
so that the spacecraft has gained speed.

How is this possible? The spacecraft has gained energy, but energy is conserved; where did the extra
energy come from? The answer is: Jupiter. When the spacecraft flies behind Jupiter, it tugs on Jupiter a bit,
due to the gravitational attraction between Jupiter and the spacecraft. This causes Jupiter to slow down atiny
bit, thereby losing orbital energy, so it moves in toward the Sun atiny bit. Of course, Jupiter is so massive
that this movement toward the Sun isimmeasurably tiny, but the effect on the spacecraft is significant.

This gravity assist maneuver is often used to send spacecraft to the outer Solar System; it alows the
spacecraft to reach their destinations sooner, and does not require extra fuel to gain the extra speed. In fact,
it is often advantageous to send a spacecraft first to the inner Solar System to take advantage of gravitational
flybys before sending it to the planets. For example, when the Cassini spacecraft was sent to orbit Saturn,
it was first sent to Venus for two gravity assists from that planet; it then flew past Earth and Jupiter for two
additional gravity assists before arriving at Saturn.
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SPACECRAFT OUTBOUND
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Figure 55.2: Spacecraft flying past astationary Jupiter. Credit: NASA Jet Propulsion Laboratory.
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Figure 55.3: Spacecraft flying past a moving Jupiter; Jupiter is moving to the left in its orbit around the Sun.
In this case, the spacecraft is passing “behind” Jupiter, and gains speed during the encounter. Credit: NASA
Jet Propulsion Laboratory.
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Figure 55.4: Orbits of Apollo spacecraft 8 and 10-17. The spacecraft enters lunar orbit in front of the Moon,
to help slow its velocity. (Credit: NASA.)

Similarly, Voyager 2 made gravity-assist flybys of Jupiter, Saturn, and Uranus, and it made studies of
each of those planets as it flew past them. After its encounter with Uranus, Voyager 2 flew past Neptune and
made observations there; however, it flew over Neptune's north pole, so it did not gain extra speed from the
Neptune encounter. The spacecraft has now reached the outer boundary of the Solar System and is entering
interstellar space. In about 40,000 years, Voyager 2 will pass 1.7 light-years from the star Ross 248 and in
about 296,000 years, it will pass 4.3 light-years from Sirius, the brightest star in the sky. Both Voyager 2 and
its sister spacecraft Voyager 1 will travel through the Milky Way galaxy indefinitely

Contrariwise, if the spacecraft were to fly in front of Jupiter (so that Jupiter is moving toward it when it
crosses Jupiter's orbit), then the spacecraft would lose speed. This was used to advantage during the Apollo
missions to the Moon, when this type of gravity assist maneuver with the Moon was used to reduce the
amount of fuel needed to place the spacecraft into lunar orbit (Fig. 55.4).

55.6 The International Cometary Explorer

Figure 55.5 shows a very complex example of an orbit design, in which the |SEE-3 (International Sun-Earth
Explorer 3) spacecraft was re-named | CE (International Cometary Explorer) and sent to intercept two comets.
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ISEE3 MANEUVERS FROM LAUNCH
TO HALO ORBIT
TO COMET EXPLORATION

Figure 55.5: In 1982, the International Sun/Earth Explorer 3 (ISEE-3) spacecraft was re-purposed to become
the International Cometary Exporer (ICE), so that it could explore comets Giocobini-Zinner and Halley.
ISEE-3 orbited the L ; Sun-Earth Lagrange point. Getting the spacecraft to intercept the two comets involved
one of the most complex trajectories ever designed (shown here). (Credit: NASA.)
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Chapter 56

Partial Derivatives

Before introducing the advanced Lagrangian and Hamiltonian formulations of classical mechanics, we'll
need a some additional mathematical background, since the equations of these formulations are expressed in
the language of partial differential equations. We will leave the methods for solving such egquationsto a more
advanced course, but we can still write down the equations and explore some of their consequences. First, in
order to understand these equations, we'll first need to understand the concept of partial derivatives.

56.1 First Partial Derivatives

You've already learned in a calculus course how to take the derivative of a function of one variable. For
example, if

f(x) =3x% +7x° (56.1)
then
d
a _ 6x + 35x*. (56.2)
dx
But what if f isafunction of more that one variable? For example, if
fx.y) =557y +4y* — Txy® (56.3)

then how do we take the derivative of f'? Inthiscase, there aretwo possiblefirst derivatives: one with respect
to x, and one with respect to y. These are called partial derivatives, and are indicated using the “ backward-6"
symbol 9 in place of the symbol d used for ordinary derivatives.

To compute a partia derivative with respect to x, you simply treat all variables except x as constants.
Similarly, for the partial derivative with respect to y, you treat all variables except y as constants. For
example, if g(x,y) = 3x*y7, then the partial derivative of g with respect to x isdg/dx = 12x3y7, since
both 3 and y7 are considered constants with respect to x.

As another example, the partial derivatives of Eq. (56.3) are

af

o 15x2y° —7y° (56.4)
af 3,4 5
@ =25x"y" + 8y — 42xy (56.5)

Notice that in Eq. (56.4), the derivative of the term 4y2 with respect to x is 0, since 4y? is treated as a
constant.

265



Prince George's Community College Genera Physics| Simpson & Simpson

56.2 Higher-Order Partial Derivatives

Itissimilarly possible to take higher-order partial derivatives. For a function of two variables f'(x, y), there
are three possible second derivatives:

2 2 02 d (0
PLL(L) ELL(W). we PLoi() 566)
0x2  dx \ dx dxdy  dx \ dy dyz  dy \ dy
In the second case, the order of differentiation doesn’t matter: 32 f/(dxdy) = 92 f/(dydx). Thisproperty is
known as Clairaut’s theorem.

For example, suppose f(x, y) is as given by Eq. (56.3). Then the second partial derivatives of f are
found by taking partial derivatives of Egs. (56.4) and (56.5):

02 f

Pl 30xy° (56.7)

2

v/ = 75x2y* — 42y° (56.8)
dxdy

*>f 3.3 4

—= = 100x"y” + 8 —210xy (56.9)
ay?
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Chapter 57

Lagrangian Mechanics

In this course we have been studying classical mechanics as formulated by Sir Isaac Newton; thisis called
Newtonian mechanics. Newtonian mechanics is mathematically fairly straightforward, and can be applied to
awide variety of problems. Newton’s formulation of mechanics is not unique, however; other formulations
are possible. Here we will look at two common aternative formulations of classical mechanics: Lagrangian
mechanics and Hamiltonian mechanics. Langrangian mechanics will be discussed in this chapter; Hamilto-
nian mechanics will be covered in Chapter 58.

It isimportant to understand that all of these formulations of mechanics equivalent. In principle, any of
them could be used to solve any problemin classical mechanics. The reason theyre important is that in some
problems one of the alternative formulations of mechanics may lead to equationsthat are much easier to solve
than the eguations that arise from Newtonian mechanics. Unlike Newtonian mechanics, neither Lagrangian
nor Hamiltonian mechanics requires the concept of force; instead, these systems are expressed in terms of
energy. Althoughwe will be looking at the equations of mechanics in one dimension, al these formulations
of mechanics may be generalized to two or three dimensions.

Thefirst alternative to Newtonian mechanics we will look at is Lagrangian mechanics. Using Lagrangian
mechanics instead of Newtonian mechanics is sometimes advantageous in certain problems, where the equa-
tions of Newtonian mechanics would be quite difficult to solve.

In Lagrangian mechanics, we begin by defining a quantity called the Lagrangian (L), which isdefined as
the difference between the kinetic energy K and the potential energy U :

L=K-U (57.1)

Since thekinetic energy isafunction of velocity v and potential energy will typically be afunction of position
x, the Lagrangian will (in one dimension) be aa function of both x and v: L(x, v).
The motion of a particle isthen found by solving Lagrange’s equation; in one dimensionitis

d(M) L _, 572

dt\w) oax
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57.1 Examples

Example: Simple Harmonic Oscillator

Asan example of the use of Lagrange's equation, consider a one-dimensional simple harmonic oscillator. We
wish to find the position x of the oscillator at any time .
We begin by writing the usual expression for the kinetic energy K:

K = imv? (57.3)
The potential energy U of a simple harmonic oscillator is given by

U — %kxz (57.9)
The Lagrangian in this case is then

Li,v)=K—-U (57.5)
= gmv? — $kx? (57.6)

Lagrange's equation in one dimension is

d (0L L

(=) -==0 57.7

dt ( v ) 0x (7.0
Substituting for L from Eq. (57.6), we find

% [% (2mv? — %kxz):| - % (3mv? — 2kx?) =0 (57.8)

Evaluating the partial derivatives, we get
i (mv)+kx =0 (57.9
dt B '

or,sincev = dx/dt,

d?x

which isa second-order ordinary differential equation that one can solve for x (¢). Note that the first term on
theleftisma = F, sothisequationisequivalentto F = —kx (Hooke'sLaw). The solutionto the differential
equation (57.10) turnsout to be

x(t) = Acos(wt + §), (57.11)

where A is the amplitude of the motion, ® = /k/m is the angular frequency of the oscillator, and § is a
phase constant that depends on where the oscillator isat ¢t = 0.
Example: Plane Pendulum

Part of the power of the Lagrangian formulation of mechanics is that one may define any coordinates that
are convenient for solving the problem; those coordinates and their corresponding velocities are then used in
place of x and v in Lagrange’s equation.
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For example, consider a simple plane pendulum of length £ with a bob of mass m, where the pendulum
makes an angle 6 with the vertical. The goal isto find the angle 6 at any time z. In this case we replace
x with the angle 8, and we replace v with the pendulum’s angular velocity w. The kinetic energy K of the
pendulum is the rotational kinetic energy

K = 11w? = sml?e?, (57.12)

1
2

where I is the moment of inertia of the pendulum, I = m{?2. The potential energy of the pendulum is the
gravitational potential energy

U = mgl(1l — cosb) (57.13)
The Lagrangian in this case is then

LO,w)=K-U (57.14)
= 2ml?»? —mgl(1 — cosb) (57.15)

Lagrange's equation becomes
d (JL L
B el I 57.16
dt (aw) 20 ( )
Substituting for L,
d (01 ,, , 1, 2 2
790 smlZw® —mgl(1 — cost) ~ smlZw® —mgl(l —cosh)| =0 (57.17)

ow

Computing the partia derivatives, we find

% (ml?w) + mglsing = 0. (57.18)

Since w = df/dt, thisgives

ezdzg £sinf =0 57.19
m el + mglsing =0, (57.19)
which is a second-order ordinary differential equation that one may solve for the motion 6(¢). The first term
on the left-hand side is the torque T on the pendulum, so thisequationis equivalentto t = —mgfsin6.

The solution to the differential equation (57.19) is quite complicated, but we can simplify it if the pendu-
lum only makes small oscillations. In that case, we can approximate sinf = 6, and the differential equation
(57.19) becomes a simple harmonic oscillator equation with solution

0(t) ~ 6y cos(wt + §), (57.20)

where 6 isthe (angular) amplitude of the pendulum, = /g/¢ isthe angular frequency, and § is a phase
constant that depends on where the pendulumisat ¢ = 0.
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Chapter 58

Hamiltonian Mechanics

Besides Lagrangian mechanics, another aternative formulation of Newtonian mechanics we will look at is
Hamiltonian mechanics. In this system, in place of the Lagrangian we define a quantity called the Hamilto-
nian, to which Hamilton’s equations of motion are applied. While Lagrange's equation describes the motion
of a particle as a single second-order differential equation, Hamilton’s equations describe the motion as a
coupled system of two first-order differential equations.

One of the advantages of Hamiltonian mechanics is that it is similar in form to quantum mechanics, the
theory that describes the motion of particles at very tiny (subatomic) distance scales. An understanding of
Hamiltonian mechanics provides a good introduction to the mathematics of quantum mechanics.

The Hamiltonian H is defined to be the sum of the kinetic and potential energies:

H=K+U (58.1)

Here the Hamiltonian should be expressed as a function of position x and momentum p (rather than x and
v, asin the Lagrangian), so that H = H(x, p). This means that the kinetic energy should be written as
K = p?/2m, rather than K = mv?/2.

Hamilton's equations in one dimension have the elegant nearly-symmetrical form

dx oH

dp oH

- = —— 58.
dt ox (58.3)

58.1 Examples

Example: Simple Harmonic Oscillator

As an example, we may again solve the simple harmonic oscillator problem, this time using Hamiltonian
mechanics. We first write down the kinetic energy K, expressed in terms of momentum p:
2
p
— 58.4
2m ( )

Asbefore, the potential energy of a simple harmonic oscillator is

U = Lkx? (58.5)
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The Hamiltonian in this case is then

Hx,p)=K+U (58.6)
p2 1
2

Substituting thisexpression for H into the first of Hamilton's equations, we find

dx oH

- 58.8
dt ap (588)
I (P* 1, 2
=—|—+5 58.9
op (2m +akx ) (58.9)
-7 (58.10)
m
Substitutingfor H into the second of Hamilton's equations, we get
dp oH
= 58.11
dt ax ( )
d (P> 1,
=——\|—+5 58.12
0x (2m +akx ) ( )
= —kx (58.13)

Equations (58.8) and (58.11) are two coupled first-order ordinary differential equations, which may be solved
simultaneously to find x () and p(z). Notethat for thisexample, Eq. (58.8) isequivalent to p = mv, and Eq.
(58.11) isjust Hooke'sLaw, F = —kx.

Example: Plane Pendulum

As with Lagrangian mechanics, more general coordinates (and their corresponding momenta) may be used
in place of x and p. For example, in finding the motion of the simple plane pendulum, we may replace the
position x with angle 6 from the vertical, and the linear momentum p with the angular momentum £.

To solve the plane pendulum problem using Hamiltonian mechanics, we first write down the kinetic
energy K, expressed in terms of angular momentum £:

£? £2

== == 14
21 2mt?’ (58.14)

where I = m{? isthe moment of inertiaof the pendulum. As before, the gravitational potential energy of a
plane pendulum is

U = mgl(1l — cosb). (58.15)
The Hamiltonian in this case is then

HO. &) =K+U (58.16)
2

= 2mez

+ mgl(1 — cosb) (58.17)
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Substituting thisexpression for H into the first of Hamilton's equations, we find

do _ o
dt 3%
o[ £2
=37 [2mez + mgl(l — cos(?)}
L
mi?

Substitutingfor H into the second of Hamilton’s equations, we get

ax __on
dt 96
o[ &2
[ p—p— 1_
30 [2mez + mgl( cos(?)}
= —mglsing

(58.18)
(58.19)

(58.20)

(58.21)

(58.22)

(58.23)

Equations (58.18) and (58.21) are two coupled first-order ordinary differential equations, which may be
solved simultaneoudly to find 6(¢) and £(z). Notethat for thisexample, Eq. (58.18) isequivalentto £ = Iw,

and Eq. (58.21) isthetorquet = —mgfsing.
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Chapter 59

Special Relativity

59.1 Introduction

The classical mechanics described by Sir Isaac Newton begins to break down at very high velocities, i.e. at
velocities near the speed of light ¢ = 299,792.458 km/s. For bodies moving at a significant fraction of the
speed of light, Newton's mechanics needs to be modified. The necessary modifications were developed by
physicist Albert Einstein in the early 20th century, in atheory now called the special theory of relativity.

59.2 Postulates

Einstein discovered that the necessary modifications to Newtonian mechanics could be derived by assuming
two postul ates:

1. Absolute uniform motion cannot be detected.

2. The speed of light isindependent of the motion of the source.

Thefirst postulate saysthat all motionisrelative—that thereis no reference frame that all observers can agree
to be absolutely at rest. The second postul ate says that light does not obey the usual laws of velocity addition.
For example, if someone is moving toward you at 99% of the speed of light and turns on a flashlight in your
direction, you will measure the light’s speed to be the same as if that person were at rest.

Although these postulates seem quite reasonable, they lead to some surprising consequences. Let's ex-
amine afew of those consequences.

59.3 Time Dilation

It turns out that one consequence of Einstein’s postulates is that time runs more slowly for someone moving
relative to you; this effect is called time dilation. If someone is moving at speed v relative to you, then their
clocks will run slower than yours. If a clock measures a time interval Azo when it's at rest, then when it's
moving at a speed v relative to you, you will measure that time interval to be longer by afactor y:

At =y Aty, (59.1)
where At isthe time interval measured by the moving clock, Az, isthe timeinterval measured on the clock
whenit'sat rest, and y isan abbreviation for the factor

1

= io e

(59.2)
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(Notethat y > 1.) Thetimeinterval At,, measured when you're at rest with respect to the clock, is called
the proper time.

This effect means that time travel is possible—at least time travel into the future. One simply builds a
spacecraft and travel s closeto the speed of light, then turns around and returnsto Earth. (It isnot clear whether
time travel into the past is possible, but it might be possible under Einstein’s general theory of relativity.)

59.4 Length Contraction

Another consegquence of the postulates is that a moving body will appear to be shortened in the direction of

motion; this effect is called length contraction. The length of a moving body will appear to be shortened by

this same factor of y:
14

L (59.3)

Here L, isthe length of the body when itisat rest, and is called the proper length. Since y > 1, the moving
body will be shorter when it is moving.

59.5 An Example

As an example, let’simagine that a spacecraft is launched at high speed relative to the nearest star, Alpha
Centauri (which is about 4 light-years away). The ship travels at 80% of the speed of light during the trip.
From Earth, we see that the whole trip takes 5 years. We also see the astronaut’s clocks running more slowly
than ours by afactor of y = 2.78, so that when the astronauts arrive, they are only 1.8 years older.

What do the astronauts see from their point of view on the spacecraft? Their clocks run at what seems a
normal rate for them, but they see that the distance to AlphaCentauri has been length-contracted by afactor of
y = 2.78. They'retraveling at a speed of 0.80c¢, but they only have to travel a distance of (4 light-years)/y =
1.44 light-years. When they arrive at Alpha Centauri, they're older by (1.44 light-years)/0.80c = 1.8 years.

In summary, observers on Earth see the astronaut’s clocks moving more slowly, but the astronauts have
to travel the full 4 light-years. The astronauts see their clocks moving at normal speed, but the distance they
have to travel is shorter. All observers agree that the astronauts are only 1.8 years older when they arrive.

59.6 Momentum
In Newton's classical mechanics, momentum isp = mv. Under specia relativity, thisis modified to be
p = ymv. (59.9)

Relativistically, it is this definition of momentum that is conserved. Newton’s second law intheform F = ma
is no longer valid under special relativity, but Newton's original form F = dp/dt is till valid, using this
definition of momentum p.

Noticethat asv — ¢, we have y — oo (by Eq. (59.2)), and so momentum p — oo. As a body goes
faster, its momentum increases in such away that it becomes increasingly difficult to make it go even faster.
This means that it is not possible for a body to move faster than the speed of light in vacuum, c.
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59.7 Addition of Velocities

Let's suppose that we have two bodies moving in one dimension. The first is moving at speed u, and the
second ismoving at speed v. What is the speed of the second relative to the first? In other words, what will
you measure as the speed of the second body if you're sitting on the first body?

In classical Newtonian mechanics, the speed w of the second body relative to the first is simply

w="v-—u. (59.5)

For example, if the first body is moving to the right with speed u = 10 m/s, and the second body is moving
toward it to the left with speed v = —20 m/s, then an observer on the first body will see the second body
moving toward it with a speed of w = 30 m/s.

In the special theory of relativity, this seemingly self-evident equation for adding velocities must be
modified as follows:

V—Uu

w=-—"
1 —uv/c?

(59.6)

Thisreducesto Eq. (59.5) unless the speeds involved are near the speed of light. For the above example, where
u = 10 m/sand v = —20 m/s, Eq. (59.6) gives w = 29.99999999999993324 m/s, rather than w = 30 m/s
given by Eqg. (59.5). Asyou can see, for many applications, the difference between the classical formula (Eq.
(59.5)) and the exact relativistic formula (Eq. (59.6)) is not enough to justify the extra complexity of using
therelativistic formula.

But for speeds near the speed of light, using the relativistic formulais important. For example, if u =
0.99¢ and v = —0.99c¢, then the classical formulaof Eq. (59.5) would give w = 1.98¢ > ¢, in violation of
special relativity; but using the exact expression in Eg. (59.6) gives the correct answer, w = 0.9999494975c¢.

Eq. (59.6) makes it impossible for the the relative speeds to be greater than the speed of light c. In the
extremecaseu = ¢ and v = —c, Eq. (59.6) gives w = ¢, in agreement with the Einstein’s second postul ate.

59.8 Energy
Rest Energy

Einstein showed that mass is aform of energy, as shown by his most famous equation,
Eo = mc?. (59.7)

Ey iscalled the rest energy of the particle of mass m. The clearest illustration of this formulais the mutual
annihilation of matter and antimatter (akind of mirror-image of ordinary matter). When a particle of matter
collides with a particle of antimatter, the mass of the two particles is converted completely to energy, the
amount of energy liberated being given by Eq. (59.7).

As examples, the rest energy of the electron is 511 keV, and the rest energy of the proton is 938 MeV.
(1 eV isoneelectron volt, and isequal to 1.602176634 x 10719 J)

Kinetic Energy

In classical Newtonian mechanics, the kinetic energy isgivenby K = mv?/2. Therelativistic version of this
equationis

K = (y — Dmc?. (59.8)

275



Prince George's Community College Genera Physics| Simpson & Simpson

It is not obviousthat this reduces to the classical expression until we expand y into a Taylor series:

(Y _1/2_1+1v2+3v4+5v6+35v8+63v1°+231v_12+ (509
Y= 2 T T2 TR T 16¢6 T 128¢8 | 25610 | 1024 ¢12 '
Substituting this series expansion for y into Eq. (59.8), we get
1 3 v 5 p® 35 8 63 wl0 231 pl2
K=-m?+ome+2ml 4 2,0 2, = v 59.10
M e T 18" T 256 e T oMo T (59.10)

Unlessthe speed v is near the speed of light ¢, all but the first term on the right will be very small and can be
neglected, leaving the classical equation.

Total Energy

If the only forms of energy present are the rest energy E and the kinetic energy K, then the total energy E
will be the sum of these:

E = Ey + K = ymc?. (59.11)

It is often useful to know the total energy of a particle in terms of its momentum p rather than its velocity v.
It can be shown that the total energy is given in terms of momentum by

E? = (pc)® + (mc?)>. (59.12)

In the case where the total energy is much larger than the rest energy (E > Ej), we may neglect the second
term on theright, and use

E ~ pc. (59.13)
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Chapter 60

Quantum Mechanics

60.1 Introduction

In this course we have been studying mechanics as formulated by Sir Isaac Newton; thisis called classical

mechanics. Although classical mechanics can be applied to a wide range of situations, it was discovered at
the beginning of the 20th century that it cannot be applied to very small distance scales—say on the order of

the size of an atom or smaller. For these small distance scales, classical mechanics no longer works, and a
completely different system of mechanics is needed, called quantum mechanics. Here we will present a brief
overview of quantum mechanics, so that you can get a sense for what it is all about. For simplicity, we will

be working in one dimension, although the equations can be generalized for three dimensions.

60.2 Review of Newtonian Mechanics

We begin by reviewing Newtonian classical mechanics in one dimension. In this formulation, we begin by
writing Newton's second law, which givesthe force F required to give an acceleration a to amass m:

F = ma. (60.1)
Generally the force isafunction of x. Since the acceleration a = d2x/dt?, Eq. (60.1) may be written

d?x

This is a second-order ordinary differential equation, which we solve for x (¢) to find the position x at any
time¢. Solving a problem in Newtonian mechanics then consists of these steps:

1. Write down Newton's second law (Eg. 60.2);
2. Substitutefor F(x) the specific force present in the problem,;

3. Solvetheresulting differential equation for x (¢).

60.3 Quantum Mechanics

The quantum world at very small distance scales (atomic sizes and smaller) is very aien and strange, and
completely beyond our everyday experience. Here are a few of the key conceptsin quantum mechanics:
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1. In guantum mechanics, it generally makes no sense to talk about the the exact position x of a particle
at atimet. Instead, a particleis thought of as being in many different places at the same time. Only
when we go measure the position of the particle does it appear at a precise location. When we're not
measuring its position, it is, in a sense, in many places at once.

2. The concept of the position x of a particleis replaced by the concept of awave function y(x, ¢). The
physical interpretation of the wave function is that its square, |y (x,1)|2, gives the probability that
when we measure the particle’s position at timez, it will appear at position x. Thisidea of probability
is a central concept of quantum mechanics: when we go to measure the position of a particle, it is
fundamentally impossible to predict where it will appear, no matter how much information we have. It
isonly possibleto predict the probability that it will be found at a given location.

3. Thisidea of awave function is closely connected the the idea of wave-particle duality: matter funda-
mentally behaves like both a wave and a particle at the same time. For example, both photons (particles
of light) and electrons show both particle-like behavior and wave-like behavior.

4. It is fundamentally impossible to know both a particle's exact position and its velocity at the same
time. (Thisisin contrast to Newtonian mechanics, where a particle’s position and velocity can both
be measured to arbitrary accuracy.) Thisidea is called the Heisenberg uncertainty principle, and is
described in more detail below.

5. In bound systems, we generally find that a particle cannot have just any value of energy. Instead, we
find that the particle can have only certain discrete values of energy; we thus say that the energy is
quantized. The particle cannot have an energy that lies in between the alowed discrete values. We
also often find that quantities like position and angular momentum are also quantized. For example,
an electron in orbit around an atom has its orbital position quantized: it can only be at certain allowed
positionswith respect to the nucleus, and other positionsare now allowed.

You may wonder: how can it be that a particleisin many places at once, or that the place where it appears
is completely unpredictable, or that it is in an unknown state unless we're measuring it, or that it can be
both a particle and a wave at the same time? The truth is that nobody really understands how it can be this
way—it just is. We can write down the eguations to describe it, and predict the outcomes of experiments to
high accuracy, but nobody has a good intuitive picture of how things can possibly be thisway. Natureisfar
stranger than we can imagine.

Now for a mathematical description of quantum mechanics. Recall how we work with Newtonian me-
chanics: we write down Newton's second law, substitute a specific force for F(x), and solve the resulting
differential equation for x (r). Quantum mechanics does not use the concept of a force; rather, everything
is formulated in terms of energy. In place of Newton's second law, we use the time-dependent Schrddinger
equation, which isa partial differential equation:

h* %y _ 0
— ez TUY G0 = in— (60.3)

where m is the mass of the particle, U(x) is the potential energy function, and v (x, ¢) is the wave function
we wish to solve for. The constant 7 (pronounced “h-bar”) is an abbreviation for Planck’s constant / divided
by 27, and has the value & = h/2m = 1.054571726 x 10734 Js. Notice the presence of the factor i =
/—1 ontheright-hand side: in general, quantum mechanical wave functions are complex, but the physically
meaningful quantity is the square of the wave function, whichisreal.

Solving a problem in quantum mechanics consists of the following steps (anal ogous to the steps described
earlier for Newtonian mechanics):

1. Write down the Schrodinger equation (Eg. 60.3);
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2. Substitutefor U(x) the specific potential energy present in the problem;

3. Solvetheresulting differential equation for v (x, 7).

It turns out that it is possible to separate the solution v/ (x, y) into the product of two parts: a part that
depends only on x and a part that depends only on 7. The solutionis v (x, 1) = ¢(x)e “*E1/% where ¢(x) is
the solution to the time-independent Schrodinger equation:

h? d?¢
_Z_d— + U(x)p(x) = E@(x) (60.4)
and where E is the total energy of the particle. So to solve the time-dependent Schrodinger equation for

¥ (x,t), we first solve the time-independent Schrodinger equation for ¢(x), then multiply that solution by
e—iEt/h_

60.4 Example: Simple Harmonic Oscillator

Asan example of the use of the Schrodinger equation, consider a one-dimensional simple harmonic oscillator.
We wish to find the wave function v (x, t) of the oscillator at any position x and timez.
The potential energy U of a simple harmonic oscillator is given by

U(x) = 3kx2, (60.5)

where k is the spring constant. With this potential energy function, the time-independent Schrodinger equa-
tion (Eq. 60.4) becomes
h? d%p
- + kx o(x) = Ep(x) (60.6)
2m dx?
Thisisa second-order differential equation whose solution can be worked out using the theory of differential
equations. The solution turns out to be

on(x) = ,/ﬁ Hy(ax)e 3 (1=0,1,2,3,..) (60.7)

Here « isdefined by «* = mk /h? and the H,, are specia functions called Hermite polynomials, the first few
of which are shown in Table 60-1. Notice that the solution is quantized: only certain discrete solutions are
allowed, which we find by substitutingthe integers o, 1, 2, 3, ... for n.

The solutions to the time-dependent Schrodinger equation are then found by multiplying Eq. (60.7) by
e—iEt/h:

Un(x,1) = ﬁ Hy(ax) e 3% o=iEnt/h (4 —0.1,2,3,..) (60.8)
The physical significance of the wave functionisthat itssquare, || = v * v, givesthe probability of finding
the particle at position x.* Squaring Eg. (60.8), we find this probability function for the harmonic oscillator
is

Va0 = o Ha@oP e (1=0.1.2.3,..) (60.9)
It turns out that the energy, like the wave function, is also quantized; the allowed values of E are
En=0n+3ho (n=0,1,2,3,..) (60.10)

where w = /k/m isthe angular frequency of a classical simple harmonic oscillator. Thisisin contrast to
the classical harmonic oscillator, which can have any value of energy, E = kA2 /2.

1Technically, it's the probability of finding the particle between positions x and x + dx.
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Table 60-1. Hermite polynomials.

H()(X) =1

Hi(x) =2x

Hy(x) = 4x2 -2

Hi(x) = 8x3 — 12x

Hy(x) = 16x* — 48x2 + 12

Hs(x) = 32x° — 160x3 + 120x

Hg(x) = 64x° — 480x* 4+ 720x2 — 120

Notice that the quantum simple harmonic oscillator has a minimum energy, called the zero-point energy,
whenn = 0: Eg = hw/2. The classical harmonic oscillator can have zero energy, but the not quantum
harmonic oscillator—in quantum mechanics, there is always a minimum non-zero energy that the particle
must have. The same is true of the atom: an electron can be in the lowest-energy K shell of the atom, but
cannot have any lower energy. Thisisfortunate: if the electron energy were not quantized, it would have no
minimum energy, and could spiral al the way in to the nucleus. Quantization of energy is what keeps the
atom from collapsing.

60.5 The Heisenberg Uncertainty Principle

The Heisenberg uncertainty principle states that it is fundamentally impossible to simultaneously measure,
to arbitrary accuracy, certain pairs of variables. No matter how good the experiment, the fundamental ran-
domness of Nature restricts the accuracy to which it is possible to make these measurements.

The Heisenberg uncertainty principle can be stated mathematically by the following relations:

Ax Ap > h/2 (60.12)
Ap AL >1h/2 (60.12)
AE At > h/2 (60.13)

Eqg. (60.11) states that we cannot simultaneously measure the position x of a particle and its momentum p
to arbitrary accuracy; the product of the uncertainties cannot be less than /2. The more accurately you
measure the position, the less accurately you know the momentum. Similarly, Eq. (60.12) states that you
cannot simultaneously measure a particle’s angular position ¢ and its angular momentum L to arbitrary
accuracy. Eq. (60.13) relates the uncertainty in measuring a particle’'s energy £ and the uncertainty in time ¢
required to make that measurement.

Notice that each of these Heisenberg relations involves the product of the uncertainties in a conserved
guantity and its so-called conjugate variable.
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Chapter 61

The Standard Model

The Standard Model of particle physicsis our current best theory of how the Universe is put together at its
most fundamental level. It describes the fundamental nature of both matter and forces. Thisistill very much
at the frontier of physicsresearch, soit'snot clear how much of our understanding of thisis correct.

61.1 Matter

All of (ordinary) matter isfound to be made of two types of particles: quarks and leptons. There are six types
of quarks (called up, down, charmed, strange, top, and bottom) and six types of Ieptons (the electron, muon,
tau lepton, and their associated neutrinos.) (Table 61-1.)

Table 61-1. The basic particles of matter.

Quarks Leptons
Up (u) Electron (e ™)
Down (d) Electron neutrino (v?2)

Charmed (c) Muon (™)
Strange(s)  Muon neutrion (v9)
Top (t) Tau lepton (7 7)
Bottom (b)  Tau neutrino (v?)

Quarks are never observed in isolation: they occur only as a system of three quarks (called a baryon), or
asaquark-antiquark pair (called ameson). (An antiquark isaform of antimatter, described below.) Examples
of baryons are the proton (which consists of two “up” quarks and one “down” quark) and the neutron (which
consists of two “down” quarks and one “up” quark). Baryons and mesons together are collectively known as
hadrons, so a hadron refers to a collection of bound quarks.

Quarks are held together in hadrons by a very strong force that becomes stronger the farther apart the
quarks are separated. Thisiswhy they are not observed in isolation.

Leptons consist of the electron, the muon (which acts likeaheavy electron), and the tau lepton (which acts
like a very heavy electron). Each of these particles has a charge of —e. In reactionsin which these particles
are produced, there is generally also a neutrino particle. Neutrinos are very light particles with aimost no
mass, and for the most part they pass right through ordinary matter; in fact, there are billions of them passing
through your body right now. Only very rarely do they interact with ordinary matter, but occasionally they
do. Physicists have built neutrino “telescopes’ to detect them; these telescopes consist of underground pools
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filled with cleaning fluid surrounded by light detectors. Intherare event that a neutrino interactswith ordinary
meatter, it emits a brief flash of light which is detected and recorded.

Both quarks and leptons are, as far as we can observe, point masses. None of them has any internal
structure that we're currently aware of.

61.2 Antimatter

Each quark and lepton has a corresponding mirror-image particle that has the same mass but opposite charge;
such particles are called antimatter. The antimatter counterpart of the electron is called the positron (e *); for
other particles, you just add the prefix anti- (e.g. anti-proton, anti-neutron, etc.)

Whenever a particle of ordinary matter comes in contact with its antimatter counterpart, the two particles
are destroyed and converted to energy in the form of gamma rays. The amount of energy created is given by
Einstein'sfamous formula, Eq = mc?, where m is the sum of the particle masses and ¢ is the speed of light
in vacuum.

61.3 Forces

We know of four fundamental forces in Nature: the gravitational force, the electromagnetic force, and two
nuclear forces (Table 61-2.) We're all familiar with the gravitational force (which is keeping you attached
to the ground as you read this). Most of the other forces you encounter in everyday life are electromagnetic
in nature. The strong nuclear force is responsible for holding atomic nuclei together against the mutual

electrostatic repulsion of protons, and is also responsible for nuclear fusion reactions that occur in the Sun

and in hydrogen bombs. The weak nuclear force is responsible for a process called 8 decay, in which a
neutron in an atomic nucleus decays into a proton, electron, and anti-neutrino, and the el ectron escapes from
the atom in the process.

Table 61-2. The four forces.

Force Vector boson
Gravitational Graviton (?)
Electromagnetic  Photon
Strong nuclear Gluon
Weak nuclear W, Z

According to the Standard Model, each of these forces is mediated by a particle called avector boson. In
effect, each force is thought to be caused by the exchange of these particles.

The electromagnetic and weak nuclear forces have been (somewhat) unified intoacombined “ el ectroweak
theory”, although this theory is not entirely complete. Many physicists believe that the electromagnetic,
strong nuclear, and weak nuclear forces can be shown to be different aspects of a single underlying force, and
thus all covered by asingle“Grand Unified Theory”. No Grand Unified Theory has yet been discovered.

Our best theory of gravity to date is Einstein’s General Theory of Relativity, and has so far been shown
to be consistent with experimental results. However, general relativity says that the gravitationa force is due
to the curvature of space-time; thisis at odds with the Standard Model view, which is that gravity is caused
by the exchange of particles called gravitons. No experiment has yet detected the existence of gravitons, and
it's uncertain whether or not general relativity isthe correct final theory of gravity.

1The gravitational forceis not considered to be part of the Standard Model.
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Some physicistsbelieve that it may be possibleto show that all four forces (including gravity) are aspects
of a single underlying force, and covered by a theory called the “Theory of Everything”. Such a theory
(which is essentially a grand unified theory plus gravity) has not yet been found, nor is it known whether
such a theory even exists. Some theories such as string theory have been proposed, but are far from being
experimentally verified. These are issues to be worked out by future generations of physicists.

61.4 The Higgs Boson

A key piece of the Standard Model is Higgs field, which is responsible for giving particles their mass. The
Higgsfield fill all of space, even in places where there would otherwise be a vacuum. The degree to which a
particle interacts with the Higgs field determines its mass. particles interacting weakly with the Higgs field
are light, while those that interact strongly with the Higgs field are heavy. Particles that don't interact with
the Higgsfield at al, like the photon, are massless.

The Standard Model predicts that fields that fill all space should be associated with a particle — for
example, as we've seen each of the four fundamental forces is associated with a vector boson particle.? The
particle associated with the Higgsfield is the Higgs boson. The Higgs boson was detected experimentally at
the CERN particle physics accelerator® in 2015, thus confirming the existence of the Higgs field and giving
increased confidence in the Standard Model .4

2Except, perhaps, for gravity.
3CERN stands for Conseil Européen pour la RechercheNucléaire, andisafacility located on the border between France and Switzer-
land.
4Seehttp://www.nobelprize.org/nobel prizes/physics/laureates/2013/popular-physicsprize2013.pdf
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Further Reading

General

* Classical Mechanics (2nd ed.) by Herbert Goldstein (Addison-Wesley, Reading, Mass., 1980). The
standard graduate-level text on classical mechanics.

» The Feynman Lectures on Physics (Definitive Edition; 3 vol.) by Richard P. Feynman, Robert B.
Leighton, and Matthew Sands (Addison-Wesley, Reading, Mass., 2006). This classic work is well
knownto all students of physics. These lectures were presented by Nobel laureate Richard Feynman to
hisphysicsclass at the Californial nstitute of Technology inthe 1960s, and are considered a masterpiece
of physics exposition by oneif its greatest teachers. (The the audio for these lectures is also available
on CD, in 20 volumes.)

* Thinking Physics (3rd ed.) by Lewis Carroll Epstein (Insight Press, San Francisco, 2009). A very nice
collection of thought-provoking physics puzzles.

Numerical Analysis (Chapter 10)

» Numerical Recipes by Press, Teukolsky, Vetterling, and Flannery (Cambridge, 1987). Numerical anal-
ysisis a whole subject in itself, and quite a number of books have been written about it. This book
is a good starting point. It includes not only computer codes for various methods, but also a good
discussion of the motivation behind the methods.

Friction (Chapter 17)

* “Friction at the Atomic Scale” by Jacqueline Krim, Scientific American, October 1996, pp. 74-80.

» An excellent discussion of frictionis available in Volume 1, Chapter 12, Section 12-2 of The Feynman
Lectures on Physics (Definitive Edition) by Richard P. Feynman, Robert B. Leighton, and Matthew
Sands (Addison-Wesley, Reading, Mass., 2006).

* A review articlein the journal Reviews of Modern Physics examines friction in detail, at an advanced
level. See Andrea Vanossi et al., Colloguium: Modeling friction: From nanoscale to mesoscale. Rev.
Mod. Phys., 85, 529-552 (April-June 2013).

Energy (Chapter 23)

* Energy, the Subtle Concept by Jennifer Coopersmith (Oxford, 2010). An extended discussion of the
concept of energy, with anumber of biographical anecdotes and minimal mathematics.
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Pendulums (Chapter 38)

* The Pendulum: A Case Study in Physics by G.L. Baker and J.A. Blackburn (Oxford, 2005). An entire
book about pendulums, at roughly the level of this course.

The Gyroscope (Chapter 46)

* Volume 1, Chapter 20, Section 20-3 of The Feynman Lectures on Physics (Definitive Edition) by
Richard P. Feynman, Robert B. Leighton, and Matthew Sands (Addison-Wesley, Reading, Mass,,
2006).

Superfluids (Chapter 48 and 49)

o Liquid Helium I, the Superfluid (film), Alfred Leitner films, Michigan State University, 1963. (Avail-
able on YouTube.)

Gravity and General Relativity (Chapter 51)

» Black Holes and Time Warps: Einstein’s Outrageous Legacy by Kip Thorne (Norton, 1995). A very
readable introduction to black holes, for the general reader.

* It Must Be Beautiful: Great Equations of Modern Science by Graham Farmelo (ed.) (Granta Books,
New York, 2002). The chapter “ The Rediscovery of Gravity” by Roger Penrose gives a brief overview
of general relativity at about the level of this course.

» A First Course in General Relativity (2nd ed.) by Bernard Schutz (Cambridge, 2009). This is an
excellent first text on general relativity.

* Gravitation by Misner, Thorne, and Wheeler (Freeman, 1973). This huge tome (over 1200 pages) is
the granddaddy of all general relativity texts. It's excellent, and well known to all students of general
relativity. Thisis probably the text you would use in a graduate school course.

Earth Rotation (Chapter 52)

» The Earth’s Variable Rotation by Kurt Lambeck (Cambridge, 1980). An extended discussion of irreg-
ularitiesin the Earth’s rotation, at a graduate-school level.

Geodesy (Chapter 53)

» The Measure of All Things: The Seven-Year Odyssey and Hidden Error That Transformed the World
by Ken Alder (Free Press, 2003).

Celestial Mechanics (Chapter 54)

* Introduction to Celestial Mechanics by SW. McCuskey (Addison-Wesley, Reading, Mass., 1963). A
brief, excellent introductionto celestial mechanics.
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* Astronomical Algorithms by Jean Meeus (Willmann-Bell, Richmond, 1991). Anocther excellent book,
with 58 chapters of material covering how to do practical calculations of all sorts related to celestial
mechanics.

 The Astronomical Almanac (U.S. Government Printing Office). Thisis published inanew edition each
year, and isfull of data related to celestial mechanics.

» Explanatory Supplement to the Astronomical Almanac by PK. Seidelmann (ed.) (University Sci-
ence Books, 1992). A gold mine of information related to celestial mechanics and the calculation
of ephemerides. A very well-known and respected work, and very interesting to read.

Astrodynamics (Chapter 55)

» Fundamentals of Astrodynamics by Roger R. Bate, Donald D. Mueller, and Jerry E. White (Dover,
Mineola, N.Y., 1971). A good introductory text on astrodynamics at about the level of this course.

* An Introduction to the Mathematics and Methods of Astrodynamics (revised ed.) by Richard H. Battin
(AIAA, Reston, Va,, 1999). An advanced text on astrodynamics, with emphasis on mathematical
methods.

» Fundamentals of Astrodynamics and Applications (4th ed.) by David A. Vallado (Microcosm Press,
2013). One of the standard references on astrodynamics. An advanced text.

Special Relativity (Chapter 59)

* Spacetime Physics (2nd ed.) by E.F. Taylor and J.A. Wheeler (Freeman, 1992). An excellent introduc-
tory treatment of special relativity, at about the level of this course. The authors are very well known
and highly respected in the field of relativity. The last chapter isabrief overview of general relativity.

Quantum Mechanics (Chapter 60)

There doesn’'t seem to be any one standard quantum mechanics text, but the ones listed below are some
popular choices for undergraduate and graduate school courses in quantum mechanics.

* Quantum Mechanics (3rd ed.) by Leonard |. Schiff (McGraw-Hill, New York, 1968).
* Quantum Mechanics (2 vol.) by Cohen-Tannoudji, Diu, and Laloe (Wiley, New York, 1977).
* Principles of Quantum Mechanics (2nd ed.) by R. Shankar (Springer, New York, 1994).

Just for Fun

* Physics of the Impossible by Michio Kaku (Doubleday, 2008). A noted physicist discusses the possi-
bility of timetravel, force fields, invisibility cloaks, transporters, etc.

 The Disappearing Spoon by Sam Kean (Little, Brown & Co., 2010). A very entertaining collection of
stories surrounding the periodic table of the elements.
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» Mr. Tompkins in Paperback by George Gamow (Cambridge, 1993). A famous Russian physicist wrote
these stories of aworld in which the speed of light isjust 30 mph so relativistic effects are visible, and
more stories of aworld where Planck’s constant is so large that quantum effects are visible. An updated
version has also been written, The New World of Mr. Tompkins (Cambridge, 2001).

» Dragon’s Egg by Robert L. Forward (Del Rey, 2000). Physicist Robert Forward wrote this novel about
humans who discover a civilization of creatures living on the surface of a neutron star.
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Appendix A

Greek Alphabet

Table A-1. The Greek alphabet.

L etter Name

Ao Alpha
Bp Beta
ry Gamma
Aé Ddta
Ee  Epslon
Zt Zeta
Hn Eta

® 6 Theta
I lota
Kk  Kappa

A A Lambda

Mup  Mu

N v Nu

E&  Xi

Oo Omicron

IMIn P

Pp Rho

Yo  Sigma
Tt Tau

Tv Upslon

by  Phi

Xy  Chi

Uy P

Qw Omega

(Alternateforms. 6 = B, e = ¢,9 =0, x =k, w =7, 0=p, ¢ =0, ) = ¢.)
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Appendix B

Trigonometry

Basic Formulae

sin?0 +cos?f = 1
sec?f =1+tan’6
csc?0 =1+ cot? 8

Angle Addition Formulee

sin(e + B) = sina cosB + cosa sinf
cos(a + B) = cosa cosf F sinasinf
tana +tan g

e £ 8) = I atan g

Double-Angle Formulae

. . 2tan6
sin20 =2snfcosf = ———
1 +tan? 0
; . 1 —tan? 8
cos20 =cos?f —sin*@ =1—2sn*0 =2cos 0 — 1= —
1 +tan? 0
2tan6
tan20 = ———
1 —tan? 6

Triple-Angle Formulae

sin30 = 3sinf —4sin®6
cos36 = 4cos’ 6 — 3 cosd

3tanf —tan 6
tan30 = ——M
1—3tan? 0
t3 6 — 3 cot
Cot3QECO 6 —3coth
3cot20 — 1
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Quadruple-Angle Formulee

sin4f = 4cos’ #sind — 4cosh sin® 6
cos46 = cos* § — 6cos> Hsin®f + sin* @
4tanf — 4tan® 6
1—6tan? 0 + tan* 4
cot*d —6cot2 0 + 1
cot40 =
4cot3 9 —4coth

tan46 =

Half-Angle Formulea

0 1 — cos6
Sn-=4/—F-—

2 2

0 1 + cosf
cos—zi,/;

2 2
tang— snf 1 —cosd

2 1+4cosf  snéb

Products of Sines and Cosines

sina cosp = % [sin(e 4 B) + sin(a — B)]
cosa sSnp = % [sin(e + B) — sin(a — B)]
cosa Cosf = % [cos(er + B) + cos(a — B)]
sina sinf = —% [cos( + B) — cos(a — B)]

Sums and Differences of Sines and Cosines

a+p a—p
2

sine + sinfB = 2sin cos 3
sina—sinﬁchosa+ﬂsina_’3
2 2
o o —
CoSw + cosB = 2 cos ;ﬂcos 25
. o . o —
CoSx — COSf = —2sin ;Lﬂsm 25
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Power Reduction Formulae

sin*§ = 1 (1 —cos26)

cos’§ = 1 (1 + cos26)

Other Formuleae

tand = cotf — 2 cot 20
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Trig Cheat Sheet

Definition of the Trig Functions

Right triangle definition
For this definition we assume that

Oclic%or 0" <@ <90°.

lecnme

ho

opposite

Unit circle definition
For this definition © is any angle.

csell =

secl =

colf =

[N TPRPY

Facts and Properties

adjacent
sing = _oPposite o hypotenuse
hypotenuse opposite
ol adjacent P hypotenuse
hypotenuse adjacent
tand = op!'nml.c cotf = adjac —
adjacent opposite
Domain

The domain is all the values of & that
can be plugged into the function.

sin® , @ can be any angle
cosfl, 0 canbe any angle

tanfl , 0:[;11—%].'!. n=0,£1,£2,...
csc@, O#am, n=0.£1£2,..

1
secl 0:[;11—5].1, n=0£1%2,.

cotd, B=am, n=0%l £2,..

Range
The range is all possible values to get
out of the function,

~l<sin@ <1  esel 21 andese € -1
~l<cosf =1  sec 2] andsecd < -1
—= < lanf <= -m <ot <

Period

The period of a funetion is the number,
T.such that £(@+7)=1(0). So,if w
is a fixed number and @ is any angle we
have the following periods.

. 2z
sin(wd) - T=2
@
cos(wd) — ro2n
Lol
tn(w0) - 7=
o
wselwf) — i"'=2—47
@
2z

see(wl) —

cot(mf) —

© 2005 Paul Dawsins

Formulas and Identities

Tangent and Cotangent Identities

(anf = sinf cotf = :?50
cosd sin@

Reciprocal Identities

cscl L sing = L
sin @ cscl)

secl = L cosfl = L
cosf) sect

cmﬁ‘:; tanf =—
tan cot®

Pythagorean Identitics
sin® @ +cos*0 =1
tan’ @ +1=sec’ 0
I+cot’ @ =esc’
Even/Odd Formulas

sin (-8 )= -sin@ wsc(-0) = —cscl
cos(=0) = cos sec(~0) = secd
tan(-0)= cot(-6) =-cotf

Periodic Formulas
If ot s an integer.
sinf+ 2en) =sind  ese(f+2mn) = csc
cos(8+2xn)=cos sec(0+2mn) =sech
wan (0 +xn)=tand cot(d+xn)=cotd
Double Angle Formulas
sin(20) = 2sin @ cos @
cas(20) = cos* 0 —sin’ B

=2cos’ 0 -1

=1-2sin’ @

2tand

tan(20) = 1= tan’ 6

Degrees to Radians Formulas
If % is an angle in degrees and 1 is an
angle in radians then

LI X
—== = (=— amd
180 x 180

Credit: trigidentities.net, ©2005 Paul Dawkins.

Half Angle Formulas
sin*@ = %(I —cos(20))

cos* 6 =2L(I +eos(20))
~1-cos(28)
7I+cns(20]

Sum and Difference Formulas
sinfa + B =sinacos B +cosasin f

tan’ @

cos (e + ) = cosa cos ff Fsina sin i
tan e tan f

[ )= ———=

ﬂll[ﬂ B) 15 tana tan i

Product to Sum Formulas

sina sin fi = %[cos(oc —B)-cos(a 4—{3)1

cosa cos i —.l_’[ms(rz ~ )+ cos(a+ ﬁ)]

sina cos ff = %[uin (e B)+sinfa-7)]
cosasinfi = %[ﬁin (a + B)-sinfe-B)]
Sum to Product Formulas

sina +sin ff = 25i:1[rz ';'ﬁ ]Wb[#]

sina —sin :zcm‘[ﬂ 1"B};m[ﬂ{ -8

x
7))

[’ 0 |=seco [" 0)-eseo
L el =S¢ $EC| —— = E5C|
o 30 )= Z0 e

. 0
tan| ——0 |=cotd cot| ——@ | =tand

\z 2

© 2005 Paul Dawkins
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Exact values of trigonometric functionsat 3° intervals. (Ref. [6])

0 sin@ cosf tan@
0° =0m 0 1 0
®=Z 15 [(VE+v2) (VE-1)—2(Vi-1) s+ 5| | {s[2(V3+1) 5+ vE+(Ve-vE)(vE-1)| | F(v5-vE)(vi-1)(Vio+2E-vE-1)
6° =% %( 30—6J§—J§—1) %(s/_+~/_+\/10 2.5 %(v10—2~/_—~/ﬁ+~/3)
9° =2 %(\/ﬁ+\/§—2 5—5 %(s/_+~/_+2\/5—~/§ V5+1—y5+2V5
120 = % 51{( 10+2J§—Jﬁ+ﬁ) ;1{( 30+6 +J§—1) %(3f—ﬁ—v50—22ﬁ)
=7 | L(vE-va) 1 (ve+v2) 2-V3
18°= 7% T(v5-1) /10425 Lya5—1045
210= 1% 1%[2(\/3+1) 5—V5- (V6 ﬂ)(f+1)] ﬁ[(ﬁ+ﬂ)(ﬁ+1)+2(ﬁ—1)\/5—ﬁ] H(v3- ﬁ)(ﬁ+1)(¢m 2 —f+1)
240 =21 %(JE+J§— 10-2.5 %(\/30—6J§+J§+1) %( 50 +224/5-33 - ~/_)
2°= 3 | §(2/5+V5- IO+ v2) §(2V5+ 5+ v0-v2) VE—1-y5-23
30°=Z 1 13 1v3
3= g | s [(VB+vR) (VE-1)+2(VE- )5+ 5] | s [2(v3+ 1) s+ V- (vE-va) (vE-1)] | H(vE-vA)(vA-1)(Viow2E+ vE )
36°=1 Lio-2v5 L (v5+1) 5-2V5
390 = 13z %[(J@rﬁ)(ﬁ“)_z(\/‘ llfﬁ[z(fw JWs—5+ (f—ﬂ)(ﬁ+1)] %(ﬁ+ﬁ)(ﬁ—1)(\/10—2f—ﬁ+1)
a20=1x 1 ‘/30+6\/§—\/§+1) (1o ~/_+~/_—~/_) %(\/ﬁ+\/§—\/10+2\/§)
45°0=Z NG v 1
4go = 41 %( 10+2J§+J1_—f) %( 30+ 65— f+1) %(3ﬁ—ﬁ+\/50—22~/§)
s10=1ZF | 5 [2(Vi+1)5- A+ (Vo-vE) (vE+1)| | [(Ve+vE)(VE+1)=2(vi-1) 5= V5| | (V5= (vi+1)(Vi0-2vE+vE-1)
540 = 37 L (v3+1) 1Vi0-2v3 Ly25+ 1045
570 = 197 %[2(f+1)‘/5+f—(f—f)(ﬁ—1)] 11—6[(JE+J§)(J§—1)+2(J§—1)\/5+ﬁ] %(ﬁ+ﬁ)(ﬁ+1)(\/10+zﬁ—ﬁ—l)
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Appendix C

Hyperbolic Trigonometry

Basic Formulae

cosh’x —sinh?x = 1
sech? x = 1 —tanh? x

csch? x = coth? x — 1
Angle Addition Formulee

sinh(x + y) = sinhx coshy + coshx sinhy
cosh(x & y) = coshx coshy + sinhxsinhy

tanhx + tanhy

tanh(x + y) = ———
anh(x £ ) 1 £ tanhx tanhy

Double-Angle Formulae

sinh2x = 2 sinhx cosh x

cosh2x = cosh? x + sinh? x
2tanhx

tanh2x = ————
1 + tanh” x

Half-Angle Formulea

/ -1
Sinhf =+ 7008'1)6
2 2
_ Jcoshx +1

N 2

X
2

X sinhx  coshx —1
2 " coshx+1  sinhx
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Products of Hyperbolic Sines and Cosines

sinhx coshy = % [sinh(x + y) + sinh(x — y)]
coshx sinhy = % [sinh(x + y) — sinh(x — y)]
coshx coshy = % [cosh(x + y) + cosh(x — y)]
sinhx sinhy = % [cosh(x + y) — cosh(x — y)]

Power Reduction Formuleae

sinh” x = 5 (cosh2x — 1)

cosh’ x = 1 (cosh2x + 1)
Relations to Plane Trigonometric Functions

sinhx = —i sin(ix)
coshx = cos(ix)

tanhx = —i tan(ix)
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Appendix D

Useful Series

The first four series are valid if |x| < 1; thefifthisvalid for x2 < a?; and the last three are valid for all real

X.

8_|_...

8

8

8

11 1 5 7 21 33 429
1 1/2 =1 Ty 42 W37 4 _ 5 6 7_
(I+x) T T e T8t Tse T 102a” T 20a8F T 32768
11 1 5 7 21 33 429
1— 1/2:1__ 2 -3 - 4 " 5 6 7_ _
(I =x) 2° 78 Tt T 1287 T 2567 T 1024 T 2048 T 327687
13 5 35 63 231 429 6435
1 —1/2:1__ -2 - .3 - 4 -5 6 7 _
(I+x) 2T T 16N Tt 256 1024t T 2048" T 327687
13 5 35 63 231 429 6435
1— —-1/2 =1 _ 2 ~ .3 o 4 5 6 7
(1—=x) TN T 6™ T8t Tas6t Tioa T20a8" T 32768
11 x+x2 x3+x4 x5+
a+x a a2 a® a*  da® a4
x2 X3 Xt XS x6 x7 x8 x?2
X
=1 S T T T TR
¢ T T2 T 120 T 720 T 5040 T 20320 T 362880 ©
“n 3 . x5 ¥7 . ¥9 K1 . y13
ymg T X _ .
6 120 5040 ' 362880 39916800 ' 6227020800
2 X4 x6 x8 xlO le
cosx =1——+4——_— - —
x 2 247720 T 30320 ~ 3628800 " 479001600
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Appendix E

d .
— Sinx = CoSx
dx

d .
— C0Sx = —Sinx
dx

d 2
— tanx = sec” x
dx

d
— Secx =tanx secx
dx

d

— CSCx = —COtx CSCx
dx

d 2

— Ccotx = —CsC” x

dx

Table of Derivatives
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d

e (E.12)
AT (E.13)
dx X

4 0% — a*Ina (E.14)
dx

d 1

- = El
dx O X Ina (E15)
d . | 1

— = E.1
xS T e (£19
d -1

- = E.17
Py e (E17)
d 1

—tan'x = E.l
dx a X 1+ x2 (E18)
d 1

— SeC X = ———— E.19
dx Ix|v/x2 =1 (E.19)
d | -1

— CC X = ——— E.20
dx Ix[v/x2 =1 (E.20)
4 oty = ! (E.21)
dx 14 x2 '

d .

— sinhx = coshx (E.22)
dx

d .

— coshx = sinhx (E.23)
dx

d 2

— tanhx = sech” x (E.24)
dx
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Appendix F

Table of Integrals

In the following table, an arbitrary constant C' should be added to each result.

/ dx = x (FY)
/a dx = ax (F2)
" xn+1
/x dx:n+1 (n #-1) (F.3)
/ Jx dx = %@ (F4)
1
—dx = In|x]| (F5)
X
/sinx dx = —cosx (F-6)
/COSx dx = sinx (F7)
/tanx dx = In|secx]| (F8)
(F.9)
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/%Cx dx =In|secx + tanx| (F.10)

/CSCX dx =In|cscx — cot x| (F11)

/cotx dx =In|sinx]| (F.12)

/ex dx = e* (F.13)

/Inx dx =xInx —x (F14)

* gy = 4

[arax = (F.15)
Inx —

/Ioga xdx = xnx=x (F.16)
Ina

/Sinhx dx = coshx (F17)

/Coshx dx = sinhx (F.18)

/tanhx dx = Incoshx (F19)
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Appendix G

Mathematical Subtleties

» When taking the square root of both sides of an equation, a 4+ sign must aways be introduced. For
example:
x> =ua = X =+4a

Both roots may be valid, or, depending on the problem, it may be that one root or the other may be
rejected on mathematical or physical grounds.

+ Dividing an equation through by a variable may result in losing roots. For example, suppose we have
x> —ax =0

Dividing through by the variable x will result in one solution, x = a; the solution x = 0 has been lost.
Instead of dividing through by the variable x, the proper procedure is to factor out an x:

x(x—a)=0
Since the product on the left-hand side is zero, it followsthat either x = 0 or x —a = 0, and we retain
both roots.
* Therelation
VXYY = VXY (G1)

isvalidonly for x, y > 0.
» Some mathematical conventions:
* 1 isnot considered a prime number.
* 0!l=1
* 00=1
Towers of exponents are evaluated from the top down: a?“ = )

»*
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» When taking an inverse trigonometric function, there will in general be two correct values; your cal-
culator will give only one value, the principal value (PV.). The other value is found using the table

bel ow.
Function PV. Othervalue
arcsin 0 T—0
arccos 0 —0
arctan 0 T+ 0
arcsec 0 -0
arccsc 0 T—0
arccot 0 T+ 0

For arctan (y/x), add = to the calculator’s principal value answer if x < 0.
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Appendix H

SI Units

Table H-1. S| base units.

Name  Symbol Quantity
meter m length
kilogram kg mass
second s time
ampere A electric current
kelvin K temperature
mole mol amount of substance
candela cd [uminousintensity
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Table H-2. Derived Sl units.

Name Symbol  Definition Base Units Quantity
radian rad m/m — plane angle
steradian s m?>/m?> — solid angle
newton N kgms2 kgms? force
joule J N m kg m? s72 energy
watt w JI's kgm? s73 power
pascal Pa N/ m? kgm~! s72 pressure
hertz Hz s! st frequency
coulomb C As As electric charge
volt \% J/IC kgm? A~1s73  electric potential
ohm Q V/A kgm? A=2s3  dlectrical resistance
siemens S AlV kg-! mm2 A%2$® dectrical conductance
farad F Cc/Vv kg"! m™2 A2 s*  capacitance
weber Wb Vs kgm? A~! s72  magnetic flux
tesla T Wb/m? kgA~ls? magnetic induction
henry H Wb /A kgm? A=2s2  induction
[umen Im cd sr cd s [uminous flux
lux Ix Im/ m? cdsr m2 illuminance
becquerel Bg st st radioactivity
gray Gy J/ kg m? s—2 absorbed dose
sievert Sv J/ kg m? s—2 dose equivalent
katal kat mol / s mol s™! catalytic activity

306



Prince George's Community College

Genera Physics|

Simpson & Simpson

Table H-3. Sl prefixes.

Prefix ~ Symbol  Definition English
yotta- Y 1024 septillion
zZetta z 10! sextillion
exa E 1018 quintillion
peta- P 10%° quadrillion
tera T 10'2 trillion
giga G 10° billion
mega- M 10° million
kilo- k 103 thousand
hecto- h 102 hundred
deka da 10! ten

deci- d 107! tenth
centi- c 1072 hundredth
milli- m 1073 thousandth
micro- m 107° millionth
nano- n 107° billionth
pico- p 10712 trillionth
femto- f 1071 quadrillionth
atto- a 10713 quintillionth
zepto- z 10~21 sextillionth
yocto- y 10724 septillionth

Table H-4. Prefixes for computer use only.

Prefix ~ Symbol Definition

yobi- Yi 280 —1,208,925,819,614,629,174,706,176
zebi- Zi 270 =1,180,591,620,717,411,303,424
exbi- Ei 200 =1,152,921,504,606,846,976

pebi- Pi 250 = 1,125,899,906,842,624

tebi- Ti 240 —1,099,511,627,776

gibi- Gi 230 —=1,073,741,824

mebi- Mi 220 =1,048,576

Kibi- Ki 210 = 1,024
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Gaussian Units

Table |-1. Gaussian base units.

Name Symbol Quantity
centimeter cm length
gram g mass
second s time
kelvin K temperature
mole mol amount of substance
candela cd [uminousintensity
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Table |-2. Derived Gaussian units.

Name Symbol Definition Base Units Quantity
radian rad m/m — plane angle
steradian s m? / m? — solid angle
dyne dyn gcms? gcms2 force
erg erg dyncm gcm? s72 energy
statwatt statW  erg/s gem? s73 power
barye ba dyn/cm? gcm~!s2 pressure
galileo Gal cm/s? cms2 acceleration
poise P g/(cms) gem st dynamic viscosity
stokes St cm? /s cm? st kinematic viscosity
hertz Hz s! st frequency
statcoulomb  statC g'/2cm¥2 s dectric charge
franklin Fr statC g'/2cm?/2s!  electric charge
Statampere  statA  statC/s g'/2cm¥?2s2  dlectric current
statvolt statV  erg/ statC g'/2em!/2s7!  electric potential
statohm statQ  satV/statA  scm! electrical resistance
statfarad statF  statC/statvV. cm capacitance
maxwell Mx  statV cm g'/2cm?2 s magnetic flux
gauss G Mx / cm? g'/2ecm™'/2 71 magnetic induction
oersted Oe  satAs/cm®> g'/2ecm /25! magnetic intensity
gilbert Gb  saA g'/2cm?/2s2  magnetomotive force
unit pole pole  dyn/Oe g'/2cm?/2s7!  magnetic pole strength
stathenry statH  erg/statA? 2 cm! induction
lumen Im cd sr cdsr [uminous flux
phot ph Im/cm? cd sr cm—2 illuminance
stilb sb cd/ cm? cd cm—2 luminance
lambert Lb 1/mcd/cm?  cdem™2 luminance
kayser K 1/cm cm! wave number
becquerel Bg st st radioactivity
katal kat mol / s mol s™! catalytic activity
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Appendix J

British Engineering Units

Table J1. Britsh Engineering base units.

Name Symbol Quantity
foot ft length
slug dug mass
second S time
degree Rankine °R temperature
pound-mole Ib-mol  amount of substance
candle candle  luminousintensity
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Table J-2. Derived British Engineering units.

Name Symbol  Definition  Base Units Quantity

radian rad ft/ft — plane angle
steradian s ft2 / ft2 — solid angle
pound-force | bf sugfts™ dugfts2 force

hertz Hz st st frequency
becquerel Bq st st radioactivity
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Units of Physical Quantities

Table K-1. Unitsof physical quantities.

Quantity Sl Units  Gaussian Units
Absorbed dose Gy ergg !
Acceleration ms2 cms2
Amount of substance mol mol
Angle (plane) rad rad
Angle (solid) s s
Angular acceleration rad s—2 rad s—2
Angular momentum Nms dyncms
Angular velocity rads—! rads!
Area m? cm?
Bulk modulus Pa ba
Catalytic activity kat kat
Coercivity Am! Oe
Crackle ms—> cms™
Density kgm™3 gem™3
Distance m cm
Dose equivalent Sv egg!
Elastic modulus N m~—2 dyncm—2
Electric capacitance F statF
Electric charge C statC
Electric conductance S statQ !
Electric conductivity Sm! gaQ !'cm!
Electric current A statA
Electric dipole moment Cm statC cm

Electric displacement (D) Cm—2 statC cm—2
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Table K-1 (cont’d). Unitsof physical quantities.

Quantity Sl Units  Gaussian Units
Electric elastance F! statF!
Electric field (E) Vm! statV ecm!
Electric flux Vm statV cm
Electric permittivity Fm™! —
Electric polarization (P) Cm2 statC cm—2
Electric potential Vv statV
Electric resistance Q stat
Electric resistivity Qm stat2 cm
Energy J erg
Enthal py J erg
Entropy JK™! erg K™t
Force N dyn
Frequency Hz Hz
Heat J erg
Heat capacity JK! erg K™t
[1luminance Ix ph
Impulse Ns dyns
Inductance H statH
Jerk ms3 cms3
Jounce ms# cms
Latent heat Jkg™! ergg!
Length m cm
Luminance cdm2 sb
Luminous flux Im Im
Luminousintensity cd cd
Magnetic flux Wb Mx
Magnetic induction (B) T G
Magnetic intensity (H) Am! Oe
M agnetic dipole moment (B convention) A m2 polecm
Magnetic dipole moment (H convention) Wb m polecm
Magnetic permesability Hm™! —
Magnetic permeance H s
Magnetic pole strength (B convention) Am unit pole
Magnetic pole strength (H convention) Wb unit pole
Magnetic potential (scalar) A Oecm
Magnetic potential (vector) ™m Gecm
Magnetic reluctance H-! st
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Table K-1 (cont’d). Unitsof physical quantities.

Quantity Sl Units  Gaussian Units
Magnetization (M) Am! Mx cm—2
M agnetomotive force A Gb
Mass kg g
Memristance Q stat$2
Molality mol kg~! mol g~!
Molarity mol m—3 mol cm—3
Moment of inertia kg m? gcm?
Momentum Ns dyns
Pop ms© cms¢
Power W statWw
Pressure Pa ba
Radioactivity Bq Bq
Remanence T G
Retentivity T G
Shear modulus N m~2 dyncm—2
Snap ms* cms*
Specific heat JK™1kg™!  egKlg!
Strain — —
Stress N m~2 dyncm—2
Temperature K K
Tension N dyn
Time S S
Torque Nm dyncm
Velocity ms! cms!
Viscosity (dynamic) Pas P
Viscosity (kinematic) m2 s! St
Volume m3 cm?
Wave number m-! kayser
Weight N dyn
Work J erg
Young’s modulus N m~—2 dyncm—2
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Appendix L

Physical Constants

Table L-1. Fundamental physical constants (CODATA 2018).

Description Symbol Vaue
Speed of light (vacuum) c 2.99792458 x 108 m/s
Gravitational constant G 6.67430 x 10711 m3 kg~! s72
Elementary charge e 1.602176634 x 1071° C
Permittivity of free space o 8.8541878128 x 10~!2 F/m
Permeability of free space Ko 1.256637062121076 N/A?
Coulomb constant (1/(4meg)) ke 8.9875517923 x 10° m/F
Electron mass Me 9.1093837015 x 1073! kg
Proton mass mp 1.67262192369 x 10727 kg
Neutron mass my 1.67492749804 x 10727 kg
Atomic mass unit (amu) u 1.66053906660 x 10727 kg
Planck constant h 6.62607015 x 10734 Js
Planck constant <27 h 1.0545718176461564 x 10734 Js
Boltzmann constant kp 1.380649 x 10723 JK
Avogadro constant Ny 6.02214076 x 1023 mol~!

Table L-2. Other physical constants.

Description Symbol Vaue
Acceleration dueto gravity at Earth surface g 9.80 m/s?
Radius of the Earth (eq.) Rg 6378.140 km
Mass of the Earth Mg  5.97320 x 10%* kg
Earth gravity constant GMg  3.986005 x 1014 m3 s72
Speed of sound in air (20°C) Vsnd 343 m/s
Density of air (sealevel) Dair 1.29 kg/m3
Density of water ow 1 g/cm? = 1000 kg/m?3
Index of refraction of water Nw 133
Resistivity of copper (20°C) ocu 1.68x1078 Qm
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Appendix M

Astronomical Data

Table M-1. Astronomical constants.

Description Symbol Vaue
Astronomical unit AU 1.49597870 x 1011 m
Obliquity of ecliptic (J2000) e 23°4392911
Solar mass Mg 1.9891 x 103 kg
Solar radius Rg 696,000 km
Earth grav. const. GMg 3.986004415 x 10 m? s72
Sun grav. const. GMg  1.32712440041 x 10*° m? s72

Table M-2. Planetary Data.

Planet Mass(Yg) Eq.radius(km) Orbit semi-major axis (Gm)

Mercury 330.2 2439.7 57.91

Venus 4868.5 6051.8 108.21
Earth 5973.6 6378.1 149.60
Mars 641.85 3396.2 227.92
Jupiter 1,898,600 71,492 778.57
Saturn 568,460 60,268 1433.53
Uranus 86,832 25,559 2872.46
Neptune 102,430 24,764 4495.06
Pluto 12.5 1195 5906.38
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Appendix N

Unit Conversion Tables

Time

1 day = 24 hours = 1440 minutes = 86400 seconds
1 hour = 60 minutes = 3600 seconds
1year = 31557600 seconds ~ 7 x 107 seconds

Length

1 mile = 8 furlongs = 80 chains = 320 rods = 1760 yards = 5280 feet = 1.609344 km

1yard = 3feet = 36 inches = 0.9144 meter

1foot = 12 inches = 0.3048 meter

linch =254 cm

1 nautical mile = 1852 meters = 1.15077944802354 miles

1 fathom = 6 feet

1 parsec = 3.26156376188 light-years = 206264.806245 AU = 3.08567756703 x 10 ' meters
1 &ngstrom = 0.1 nm = 10° fermi = 1071° meter

Mass

1 kilogram = 2.20462262184878 Ib

1 pound = 16 0z = 0.45359237 kg

1 slug = 32.1740485564304 b = 14.5939029372064 kg
1 short ton = 2000 1b

llongton = 22401b

1 metric ton = 1000 kg

Velocity

15 mph = 22 fps
1 mph = 0.44704 m/s
1 knot = 1.15077944802354 mph = 0.514444444444444 m/s
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Area

1 acre = 43560 ft? = 4840 yd? = 4046.8564224 m?
1 mile?* = 640 acres = 2.589988110336 km?

1 are = 100 m?

1 hectare = 10* m? = 2.47105381467165 acres

Volume

1liter = 1dm3 = 1073 m® ~ 1 quart

1m3 = 1000 liters

lcm® =1mL

1ft3 = 1728in3 = 7.48051948051948 gal = 28.316846592 liters
1galon= 231in3 = 4 quarts = 8 pints = 16 cups = 3.785411784 liters
1 cup = 8floz = 16 tablespoons = 48 teaspoons

1 tablespoon = 3 teaspoons = 4 fluidrams

1dry gallon = 268.8025in3 = 4.40488377086 liters

1limperial galon = 4.54609 liters

1 bushel = 4 pecks = 8 dry gallons

Density
1 glem?® = 1000 kg/m? = 8.34540445201933 |b/gal = 1.043175556502416 |b/pint

Force

11bf = 4.44822161526050 newtons = 32.1740485564304 poundals
1 newton = 10° dynes

Energy

1 calorie = 4.1868 joules

1BTU = 1055.05585262 joules
1ft-lb = 1.35581794833140joules
1kW-hr = 3.6 MJ

leV = 1.602176634 x 10~!° joules
ljoule =107 ergs

Power

1 horsepower = 745.69987158227022 watts
1 statwatt = 1 abwatt = 1 erg/s = 10~7 watt

Angle

rad = deg x &5 deg = rad x 182

1 deg = 60 arcmin = 3600 arcsec
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Temperature

°C=(°F-32)x 3 °F=("Cx2) + 32
K=°C+273.15
°R = °F + 459.67

Pressure

1 atm = 101325 Pa = 1.01325 bar = 1013.25 millibar = 760 torr
= 760 mmHg = 29.9212598425197 inHg = 14.6959487755134 psi
= 2116.21662367394 |b/ft?> = 1.05810831183697 ton/ft2
= 1013250 dyne/cm? = 1013250 barye

Electromagnetism

1 statcoulomb = 3.335640951981520 x 10~1° coulomb
1 abcoulomb = 10 coulombs

1 statvolt = 299.792458 volts

1 abvolt = 1078 volt

1 maxwell = 108 weber

1gauss = 10~* teda

1 oersted = 250/ 7 (= 79.5774715459477) AIm
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QU

Figure N.1: Conversion chart for kitchen measurements. (Credit: S.B. Lattin Design.)
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Angular Measure

Plane Angle

The most common unit of measure for plane angleisthedegree ( ° ), whichis 1/360 of afull circle. Therefore
acircleis360°, asemicircleis 180°, and aright angle is 90°.

A similar unit (seldom used nowadays) is a sort of “metric” angle called the grad, defined so that a right
angleis 100 grads, and so afull circle is 400 grads.

The SI unit of plane angle isthe radian (rad), which is defined to be the angle that subtends an arc length
equal to the radius of the circle. By thisdefinition, a full circle subtends an angle equal to the arc length of a
full circle (2 r) divided by itsradius r — and so afull circleis 27 radians.

Since a hemisphereis 180° or r radians, the conversion factors are:

T
- 0.1
rad = o  deg (0.1)
180
deg = — x rad (0.2)
T

Subunits of the Degree

For small angles, a degree may be subdivided into 60 minutes ( /), and a minute into 60 seconds (). Thusa
minuteis 1/60 degree, and asecond is 1/3600 degree.> Anglessmaller than 1 second are sometimes expressed
as milli-arcseconds (1/1000 arcsecond).?

Solid Angle

A solid angle isthe three-dimensional version of a plane angle, and is subtended by the vertex of acone. The
Sl unit of solid angle is the steradian (sr), which is defined to be the solid angle that subtends an area equal
to the square of theradius of a circle. By this definition, afull sphere subtends an area equal to the area of a
sphere (47 r2) divided by the square of itsradius (r 2) — so afull sphereis 47 steradians, and a hemisphere
is2n steradians.

1Sometimes these units are called the minute of arc or arcminute, and the second of arc or arcsecond to distinguish them from the
units of time that have the same name.

2In an old system (Ref. [10]), the second was further subdividedinto 60 thirds ( /), thethird into 60 fourths ( /"), etc. Under this
system, 1 milli-arcsecond is 3.6 fourths of arc. This system is no longer used, though; today the second of arc is simply subdividedinto
decimals (e.g. 32.86473").
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Figure O.1: Relation between plane angle 6 and solid angle €2 for aright circular cone.

There is a simple relation between plane angle and solid angle for aright circular cone. If the vertex of
the cone subtends an angle 6 (the aperture angle of the cone), then the corresponding solid angle €2 is (Fig.
0.1

Q=27 (1 — cosg) . (0.3

Another unit of solid angle is the square degree (deg?):

2
sg. deg. = s x (?) . (ox:))

In these units, a hemisphere is 20,626.48 deg?, and a complete sphere is 41,252.96 deg?.
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Vector Arithmetic

A vector A may be written in cartesian (rectangular) form as
A= Ayi+ Ayj+ Ak, (P1)

where i isaunit vector (avector of magnitude 1) in the x direction, j is a unit vector in the y direction, and
k isaunit vector in the z direction. A, 4,, and A, are called the x, y, and z components (respectively) of
vector A, and are the projections of the vector onto those axes.

The magnitude (“length”) of vector A is

Al =A=,/42 + A2 + A2 (P2)

For example, if A = 3i 4 5j 4+ 2k, then |A| = 4 = /32 + 52 + 22 = /38.
Intwo dimensions, a vector hasno k component: A = A.i + A4,j.
Addition and Subtraction
To add two vectors, you add their components. Writing a second vector asB = Bi + B,j + Bk, we have
A+B=(Ax + By)i+ (4y + By)j+ (4, + By k. (P3)

For example, if A = 3i + 5] + 2k and B = 2i — j + 4k, then A + B = 5i + 4j + 6k.
Subtraction of vectorsis defined similarly:

A—-B=(Ax—By)i+ (4, —B))j+(4; — By k. (P4)

For example, if A = 3i+ 5j + 2kand B = 2i — j + 4k, then A— B =i + 6j — 2k.

Scalar Multiplication
To multiply a vector by a scalar, just multiply each component by the scalar. Thusif ¢ isascalar, then
cA =cAxi+cA)j+ cAk (P5)

For example, if A = 3i + 5j + 2k, then 7A = 21i + 35j + 14k.
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Dot Product

It is possibleto multiply a vector by another vector, but there is more than one kind of multiplication between
vectors. One type of vector multiplicationis called the dot product, in which avector is multiplied by another
vector to give ascalar result. The dot product (written with a dot operator, asin A - B) is

A-B=ABcost = AxBx + A, B, + A; By, (P6)

where 6 isthe angle between vectors A and B. For example, if A = 3i + 5j + 2k and B = 2i — j + 4k, then
A-B=6-5+8=0.

The dot product can be used to find the angle between two vectors. To do this, we solve Eq. (P6) for 6
and find cosf = A - B/(AB). Applying thisto the previous example, we get A = /38 and B = /21, s0
cosf = 9/(+/38+/21), and thus@ = 71.4°.

An immediate consequence of Eq. (P6) is that two vectors are perpendicular if and only if their dot
product is zero.

Cross Product

Another kind of multiplication between vectors, called the cross product, involves multiplying one vector by
another and giving another vector as aresult. The cross product iswritten with a cross operator, asin A x B.
Itisdefined by

AxB = (4ABsinf)u (R7)
i j Kk

=| A, A4, A (P8)
B, B, B,

= (AyB, — A;By) i — (AxB; — A;Bx) j + (Ax By — Ay By) k, (P9)

where again 0 is the angle between the vectors, and u is a unit vector pointing in a direction perpendicular
to the plane containing A and B, in a right-hand sense: if you curl the fingers of your right hand from
A into B, then the thumb of your right hand points in the direction of A x B (Fig. P1). Asan example, if
A = 3i+5j+2kand B = 2i—j+4k, then A x B = (20— (—2))i—(12—4)j + (=3 —10)k = 22i—8j—13k.

Rectangular and Polar Forms

A two-dimensional vector may be written in either rectangular form A = A i + A, j described earlier, or in
polar form A = AZ6, where A is the vector magnitude, and 6 is the direction measured counterclockwise
from the +x axis. To convert from polar form to rectangular form, one finds

Ay = Acosé (P10)
A, = Asinf (P11)

Inverting these equations gives the expressions for converting from rectangular form to polar form:

A= [A2 1+ A2 (P12)

tand = % (P13)

X
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Figure P1: The vector cross product A x B is perpendicular to the plane of A and B, and in the right-hand
sense. (Credit: “Connected Curriculum Project”, Duke University.)
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Appendix Q

Matrix Properties

This appendix presents a brief summary of the propertiesof 2 x 2 and 3 x 3 matrices.

2x2 Matrices
Determinant
The determinant of a2 x 2 matrix is given by the well-known formula:

det( Z Z ):ad—bc. (Q.2)

Matrix of Cofactors

The matrix of cofactorsisthe matrix of signed minors; for a2 x 2 matrix, thisis

cof(i Z):(_"b —ac) Q2

Inverse

Finally, the inverse of a matrix is the transpose of the matrix of cofactors divided by the determinant. For a
2 X 2 matrix,

(Z Z)_lzadl—bc(—dc _ab) Q3
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3x3 Matrices

Determinant

The determinant of a3 x 3 matrix is given by:

det(

Matrix of Cofactors

o AR

b
e
h

N.\Q

) =alei — fh)—b(di — fg) + c(dh — eg). (Q.9)

The matrix of cofactorsisthe matrix of signed minors; for a3 x 3 matrix, thisis
a b ¢ ei— fh fg—di dh—eg
cof | d e f |=| ch—bi ai—-cg bg—ah (Q.5
g h i bf —ce c¢d—af ae—bd

Inverse

Finally, the inverse of a matrix is the transpose of the matrix of cofactors divided by the determinant. For a
3 x 3 matrix,

(

b ¢\ | ei — fh ch—bi bf —ce
e = - - fe—di ai—cg cd—af
h { alei — fh) = b(di — fg) + c(dh —eg) dh—eg bg—ah ae—bd

(Q.6)

oy AU
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Appendix R

Newton’s Laws of Motion (Original)

Newton’slaws of motion appear at the beginning of Book | of Philosophig Naturalis Principia Mathematica:

Axiomata, sive Leges Motus?

I. Corpusomne perseverare in statis suo quiescendi vel movendi uniformiter in directum, nisi quatenus a
viribusimpressis cogitur statum illum mutare.

[1. Mutationem motus proportionalem esse vi motrici impressee & fieri secundum lineam rectam qua vis
illaimprimitur.

[11. Actioni contrariam semper & asgualem esse reactionem: sive corporum duorum actiones in se mutuo
semper esse agquales & in partes contrarias dirigi.

In modern language,
* Vis means force.
* Actio (action) and reactio (reaction) also refer to force.

» Motus (motion) is equivalent to what we now call momentum.

1Axioms, or Lawsof Motion

I. Every body preservesin its state of being at rest or of moving uniformly straight forward, except in so far asit is compelled to
changeits state by forces impressed.

1. A changein motion is proportional to the motive force impressed and takes place along the straight line in which that forceis
impressed.

I1l. Toany action thereis alwaysan oppositeand equal reaction; in other words, the actions of two bodies upon each other arealways
equal and always oppositein direction.
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Appendix S

The Simple Plane Pendulum: Exact
Solution

The solution to the simple plane pendulum problem described in Chapter 38 is only approximate; here we
will examine the exact solution, which is surprisingly complicated. We will begin by deriving the differential
equation of the motion, then find expressions for the angle 6 from the vertical and the period T at any time
t. We won't go through the derivations here—we’ll just look at the results. Here we'll assume the amplitude
of the motion 6y < , so that the pendulum does not spin in complete circles around the pivot, but simply
oscillates back and forth.

The mathematics involved in the exact solution to the pendulum problem is somewhat advanced, but is
included here so that you can see that even a very simple physical system can lead to some complicated
mathematics.

Equation of Motion

To derive the differential equation of motion for the pendulum, we begin with Newton's second law in rota-
tional form:

d?6
dr?’
where t isthetorque, / isthe moment of inertia, o isthe angular acceleration, and 6 is the angle from the
vertical. In the case of the pendulum, the torqueis given by

t=Ila=1 (S

T =—mgLsing, (S2)
and the moment of inertiais
I =mL? (S3)
Substituting these expressions for ¢ and 1 into Eq. (S.1), we get the second-order differential equation
d?6

H 2
—mgLsing =mL TR (S.9)
which simplifies to give the differential equation of motion,
d?6 g .
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Solution, 6(¢)

If the amplitude 6 is small, we can approximate sinf =~ 6, and find the position 6(¢) at any time ¢ isgiven
by Eg. (38.6) in Chapter 38. But when the amplitude is not necessarily small, theangle 6 from the vertical at
any timet isfound (by solving Eg. (S.5)) to be a more complicated function:

O(r) = 2sin™! {ksn[\/%(t —to);k}g, (S6)

where sn(x; k) is a Jacobian elliptic function with modulus k = sin(6/2). The time z, isatime at which
the pendulumisvertical (& = 0) and movingin the +6 direction.

The Jacobian eliptic function is one of a number of so-called “specia functions’ that often appear in
mathematical physics. In this case, the function sn(x; k) is defined as a kind of inverse of an integral. Given
the function

u( 'k)—fy & S
> o VA —12)(1—k2?) '
the Jacobian eliptic function is defined as:
sn(u; k) = y. (S.8)

Values of sn(x; k) may be found in tables of functions or computed by specialized mathematical software
libraries.

Period

Asfound in Chapter 38, the approximate period of a pendulum for small amplitudesis given by

T() =2 \/Z (Sg)
g

Thisequationisreally only an approximate expression for the period of asimple plane pendulum; the smaller
the amplitude of the motion, the better the approximation. An exact expression for the period is given by

L (! dt
T el , S.10
* g/o VI =12)(1 —k2t2) (510

whichisatype of integral known as a complete elliptic integral of the first kind.
The integral in Eq. (S.10) cannot be evaluated in closed form, but it can be expanded into an infinite
series. Theresultis

B /L o~ [ =D 5, (6o
T =2 2T 1+n;[ i } sin? (7» (S.11)
3 /L 1 @n) 7? 6o
=22 1+n§[22n(n')2} sin? (2)§ (S.12)

330



Prince George's Community College Genera Physics| Simpson & Simpson

We can explicitly write out the first few terms of this series; the result is

L 1. (6 9 (6 25 .. (6o
T =27 =1+ -—sn|= —an* | =2 ~&§nt [ =2
”\/g[+4 (2)+64 (2)+256 (2)

1225 . o (60) 3969 . 10(90) 53361 12(90 184041 14(90 (S.13)
——sn°' | — |+ ——sn" | = | + —=—==sin* | — sin'* | — :
* 16384 ( )+ * 1048576 +

2) " 65536 2 2 ) 7 4194304 2
41409225 4 (o 147744025 o (60 . 2133423721 _ 0 (6o
——— " gn'°| = ————gn'® | = ———gn”’ [ — | +---|.
1073741824 2 ) " 4294967296 2 ) " 68719476736 2

If we wish, we can write out a series expansion for the period in another form—one which does not
involve the sine function, but only involves powers of the amplitude 6 . To do this, we expand sin(6, /2) into
aTaylor series:

bo o~ (—Drtggn!

O o (et 14

sn3 ; 22n-1(2p — 1) (534
3 5 7 9 11

_ 6 6 6 b b b .. (S.15)

2 48 ' 3840 645120 ' 185794560 81749606400
Now substitute this series into the series of Eq. (S.11) and collect terms. Theresultis

T:Zn\/z(1+i92+ s, T3 o, 2931 L 1319183
g 16 © 30727° © 737280 © ' 1321205760 ° ' 951268147200 °
233526463 |, 2673857519 »
2009078326886400 ° ' 265928913086054400 ° (S.16)
39959591850371 . 8797116290975003 "
44931349155019751424000 ° ' 109991942731488351485952000 °
4872532317019728133 2
+ 868751011807449177034588160000 0 T )

An entirely different formula for the exact period of a simple plane pendulum has appeared in a recent
paper (Adlgj, 2012). According to Adlgj, the exact period of a pendulum may be calculated more efficiently
using the arithmetic-geometric mean, by means of the formula

L 1
= 2”\/; X 2gm(1. cos(f/2)) (517

where agm(x, y) denotes the arithmetic-geometric mean of x and y, which is found by computing the arith-
metic and geometric means of x and y, then the arithmetic and geometric mean of those two means, then
iterating this process over and over again until the two means cornverge:

anypy = 218 (S.18)
2
8n+1 = /ng&n (S.19)

Here a, denotes an arithmetic mean, and g, a geometric mean.

Shown in Fig. S.1 is a plot of the ratio of the pendulum’s true period 7' to its small-angle period T ¢
(T/@2r+/L/g)) vs. amplitude 6, for values of the amplitude between 0 and 180°, using Eq. (S.17). As
you can see, the ratio is 1 for small amplitudes (as expected), and increasingly deviates from 1 for large
amplitudes. The true period will always be longer than the small-angle period T'.
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Pendulum: Ratio of True to Small-Angle Period
30 ' ' | ' ' | ' ' | ' ' | ' ' | ' '

2.8 R
26 '_
2.4 R
22 R

TIT,
o
|
T

16 '_
14 R
124 R
1.0 '_
08 !

—r r r - r r r r r 1 r T T T
0° 30° 60° 90° 120° 150° 180°
Amplitude 6,

Figure S.1: Ratio of a pendulum’strue period T to its small-angle period Ty = 27 +/L/g, as afunction of
amplitude 6. For small amplitudes, thisratio is near 1; for larger amplitudes, the true period is longer than
predicted by the small-angle approximation.
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Appendix T

Motion of a Falling Body

Given abody of massm released fromrest at timet = 0 from aheight 2 above thefloor, we find the following
results about the motion. Here the y axis points upward and hasitsorigin at the floor, and so the acceleration
dueto gravity is —g.

 Position y at timet:

y(t) =h—5gt* (T.)
« Velocity v:

v(t) = —gt (T.2)

v(y) = —v2g(h—y) (T.3)
« Fall timez;:

= % (T.4)

* Impact velocity vy:

v = —+/2gh (T.5)
* Total energy E:
E =mgh (T.6)

* Kineticenergy K:
K(t) = 3mg?t* (T.7)
K(y) =mg(h —y) (T.8)
* Potential energy U:

U(t) = mgh — 3mg*1? (T.9)
U(y) = mgy (T.10)
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 Time derivatives of kinetic energy:

dK
o = mev = mg*t = mg+/2g(h — y) (T.12)
d*K

» Time derivatives of potential energy:

dU

v mgv = —mg’t = —mg\/2g(h -y) (T.13)
d?U
o —mg? (T.14)

» Time averages:

(v) = —-12gh (T.15)
(K) = Tmgh (T.16)
(U) = 2mgh (T.17)

Virial theorem (n = 0):

(U) (T.18)
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Appendix U

Table of Viscosities

The following table of viscosities is from the G.E. Alves and E.W. Brugmann, “Estimate Viscosities by
Comparison with Known Materials” Chemical Engineering, 68, 19, 182 (September 18, 1961).
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Appendix V

Calculator Programs

On the class Web site you will find several physics-related programs for a variety of electronic calculator
models. The programs are available at:

http://www.pgccphy.net/1030/software.html

Contents

Projectile Problem

Kepler’s Equation
Hyperbolic Kepler’s Equation
Barker’s Equation

Reduction of an Angle
Helmert’s Equation

Pendulum Period

G N o g H~ w D oPRE

1D Perfectly Elastic Collisions
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Appendix W

Round-Number Handbook of Physics

The one-page Round Number Handbook of Physics on the following page is by Edward M. Purcell of Harvard
University, and appeared in the January 1983 issue of the American Journal of Physics. It isintended as a
brief reference for doing quick “back of the envelope”, order-of-magnitude calculations.
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ROUND-NUMBER HANDBOOK OF PHYSICS

CONSTANTS

c=3%x10"cms™!
fi=10""ergs

Ny = 6X10% mole™!
ny=3x10%cm™3

g=10*cms™?
e=4.8%X10""esu
=1.6x10""C

k=14x10""ergdeg™"
a = e*/fic=1/137
(o/€,)'* = 37102
G=7%x10"8gcm *s~?
Ho=47X 107" NA™?

€, =88X10"2N"!'A’m~?¢?
R =2 cal/mole deg

CONVERSIONS

lcal=4J=4Xx10"erg
IN = 10°dyn .
680 lumens = 1 W (5550 A)
1ft=30cm

1lb=44N

1 ci = 4% 10" disint/s
leV=1.6x10""erg
1027 '=9%x10" cm/s
pc(eV) = 300 Br(G cm)

MASSES

m,=10""¢g
My = 270m,
Mygon = 1000m,
Mpucleon = 20mme
m,c* = 0.5 MeV
= 200m,

m muon

USEFUL NUMBERS

classical electron radius = 7, = ¢/m,c* = 3X 107> cm
Bohr radius = a, = #/m.e’ = 5% 10~° cm

Rydberg wavelength = 1 = #’c/m_e* = 7X 10~ cm
Compton wavelength =1, = #/m,c=4Xx10"" cm
Bohr magneton = efi/2mc = 10~ erg/G
Stefan-Boltzman const = 6 X 10~ "> W/deg* cm?

Min. ionization loss: 2 MeV/g cm?

KT, = 0.025 eV

R, ctear =4 *X107 % cm

&/a,=26¢eV

hv|visible) = 2 eV
Band gaps: Si=1.1eV; Ge=0.7eV
Spin precession: e:3 MHz/G; p:4 kHz/G

MATERIALS

Resistivities in 2 cm: Cu:2 X 1075 (room temp.)
H,O(pure):2 X 107; seawater:25 2 cm

Specific heat (solid or liquid) = 0.5 cal/cm?® deg

Linear expansion (solid or liquid) = 2 X 10~%/deg

Heat conduction (insulator) = 10~ %cal/s cm deg
(metal) = 1.0(pcy, /Pmerar )cal/s cm deg

Heat of combustion (food or fuel) = 10* cal/g

Heat of vaporization = 10* cal/mole

Elastic moduli (solids) = 10''-10'* dyn/cm?

Tensile strength (solids) = 10%-10'° dyn/cm?®

Surface tension: H,O = 50 dyn/cm

Diffusion: H,0 1075, air:0.2 cm?/s

Viscosity: H,0 1072, air:2 X 10~* dyn s/cm?

ASTRONOMICAL

1pc=3%x10"cm

Il mag= —4dB

mgy,, =mat 10 pc

My (sun) = + 5

B (pole) = 0.5 G

Mo =6X107 g

R = 6X108cm

Mg =2x10"g

R; =8x10"cm

Lo =2X10Perg/s =1 kW/m? at Earth
Prmoon = 4X10'° cm

Fon =1 AU=15X10"”cm

Moy =2X10% g

Distance to center of galaxy = 3 X 10* cm
Distance between galaxies = 10%° cm
Energy density: starlight = 10~ '? erg/cm’®
Primary cosmic rays: 1/cm? s

R Universe — 3(m Mpc

ATMOSPHERE (STP)

P, = 10° dyn/cm? = 15 psi
Vsuund = Vmolec = 4x 104 cm/s
Radiation length = 36 g/cm?
Density = 1073 g/cm?

Mean free path = 7X 10~ %cm
Scale height = 8 km



Appendix X

Short Glossary of Particle Physics

baryon, a particle made up of three quarks.

boson, any particle that has integer spin.

electron, alepton of negative charge, found to surround the atomic nucleusin atoms of ordinary matter.
fermion, any particle that has half-integer spin.

hadron, any particle that “feels’ the strong nuclear force.

Higgs boson, the particle associated with the Higgs field, that gives mass to other particles.

lepton, one of six light fundamental particles: e ~, v2, 1=, v}, 77, VY.

meson, a particle consisting of a quark-antiquark pair.

neutron, an uncharged baryon, found in the nucleus of atoms of ordinary matter.

proton, a baryon of positive charge, found in the nucleus of atoms of ordinary matter.

quark, one of six heavy fundamental particles: u, d, c, s, t, b.

vector boson, a particle responsible for mediating a force.
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Appendix Y

Fundamental Physical Constants —
Extensive Listing

The followingtables, published by the National Institutes of Science and Technology (NIST), give the current
best estimates of a large number of fundamental physical constants. These values were determined by the
Committee on Data for Science and Technology (CODATA) for 2018, and are a best fit of the constants to
the latest experimental results. These values include the 2019 re-definition of SI units.

(Source: https://physics.nist.gov/cuu/Constants/index.html)

342



Prince George's Community College

Genera Physics|

Simpson & Simpson

Fundamental Physical Constants — Extensive Listing

Relative std.

Quantity Symbol Value Unit uncert. u,
UNIVERSAL
speed of light in vacuum c 299792 458 ms~! exact
vacuum magnetic permeability 4nafi/e?c o 1.256 637 062 12(19) x 1076 N A2 1.5 x 10710
110/ (47 x 1077) 1.000 000 000 55(15) N A2 1.5 x 10710
vacuum electric permittivity 1/p0c? €0 8.8541878128(13) x 10712 Fm™! 1.5 x 10710
characteristic impedance of vacuum gigc Zo 376.730 313 668(57) Q 1.5 x 10710
Newtonian constant of gravitation G 6.67430(15) x 1071¢ mikgls™2 22x107°
G/he  6.70883(15) x 10739 (GeV/c?) ™2 22x107°
Planck constant™® h 6.626 07015 x 10734 JHz ! exact
4.135667696... x 1071° eV Hz ! exact
h 1.054571817... x 10734 Is exact
6.582119569... x 10716 eVs exact
he 197.326 9804 . .. MeV fm exact
Planck mass (hc/G)'/? mp 2.176434(24) x 108 kg 1.1 x107°
energy equivalent mpc? 1.220890(14) x 10*° GeV 1.1x107°
Planck temperature (hc®/G)'/?/k Tp 1.416 784(16) x 1032 K 1.1 x 107°
Planck length ii/mpc = (hG/c3)1/? lp 1.616 255(18) x 103 m 1.1 x107°
Planck time Ip /c = (hG/c®)1/? tp 5.391247(60) x 10~44 s 11x107°
ELECTROMAGNETIC
elementary charge e 1.602176 634 x 10~1° C exact
e/h 1.519267447... x 105 AJt exact
magnetic flux quantum 277/ (2¢) LN 2.067833848...x 1071 Wb exact
conductance quantum 2¢2/27h Gy 7.748091729... x 1075 S exact
inverse of conductance quantum Gyt 12906.40372... Q exact
Josephson constant 2e/h K; 483597.8484. .. x 10° HzV~! exact
von Klitzing constant poc/20c = 27hi/e? Rk 25812.80745. .. Q exact
Bohr magneton efi/2m, i 9.2740100783(28) x 10724 JT! 3.0 x 107!
5.788 381 8060(17) x 10~5 eVT! 3.0 x 10710
ps/h 1.39962449361(42) x 101 HzT-! 3.0 x 10710
s /he  46.686 447 783(14) m~ ' Tt 3.0 x 10-1°
pus/k  0.67171381563(20) KT ! 3.0 x 10710
nuclear magneton efi/2m,, HUN 5.050 783 7461(15) x 10727 JT! 3.1 x 10719
3.152451 258 44(96) x 10~% eVT! 3.1 x 10710
pn/h - 7.6225932291(23) MHzT-!  3.1x 10710
un/he  2.54262341353(78) x 1072 m~* T-1F  3.1x10°10
un/k  3.6582677756(11) x 10~* KT ! 3.1x 10710
ATOMIC AND NUCLEAR
General
fine-structure constant e2/47eghic « 7.2973525693(11) x 1073 5x 10710
inverse fine-structure constant at 137.035999 084(21) 1.5 x 10710
Rydberg frequency a®m.c?/2h = Ey,/2h cRo 3.289 841960 2508(64) x 10>  Hz 1.9 x 10712
energy equivalent hc Ry 2.1798723611035(42) x 10718 ] 1.9 x 10712
13.605 693 122 994(26) eV 1.9 x 10712
Rydberg constant R 10973 731.568 160(21) [m~—1]f 1.9 x 10712
Bohr radius i/amec = 4meoh®/mee? ao 5.20177210903(80) x 1011 m 1.5 x 10~
Hartree energy a’me.c? = e*/4negag = 2hcRsy By 4.3597447222071(85) x 10718 J 1.9 x 10712
27.211 386 245 988(53) eV 1.9 x 10712
quantum of circulation nh/me  3.6369475516(11) x 1074 m? s71 3.0 x 10719
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Relative std.

Quantity Symbol Value Unit uncert. U,
2nh/me  7.2738951032(22) x 10~* m?s~! 3.0 x 10710
Electroweak
Fermi coupling constant? Gr/(hc)®  1.1663787(6) x 10> GeV~2 5.1 %1077
weak mixing angle§ Ow (on-shell scheme)
sin? Oy = 53y = 1 — (mw/mz)? sin?fw  0.22290(30) 1.3x 1073
Electron, e~
electron mass Me 9.109 383 7015(28) x 10731 kg 3.0 x 10710
5.48579909065(16) x 10~ u 2.9 x 1011
energy equivalent Mec? 8.187105 7769(25) x 10714 J 3.0 x 10710
0.510998 950 00(15) MeV 3.0 x 10710
electron-muon mass ratio Me /My 4.83633169(11) x 1073 2.2x 1078
electron-tau mass ratio Me /My 2.87585(19) x 10~* 6.8 x 107°
electron-proton mass ratio me/my 5.44617021487(33) x 10~* 6.0 x 101!
electron-neutron mass ratio Me /My 5.438 673 4424(26) x 1074 4.8 x 10710
electron-deuteron mass ratio Me/My 2.724 437107 462(96) x 1074 3.5 x 1071
electron-triton mass ratio Me /My 1.819200 062 251(90) x 10~* 5.0 x 1071
electron-helion mass ratio Me /My 1.819 543074 573(79) x 1074 4.3 x 1071
electron to alpha particle mass ratio Me /My, 1.370933 554 787(45) x 10~* 3.3x 107!
electron charge to mass quotient —e/me —1.758 820010 76(53) x 10*'  Ckg~! 3.0 x 10710
electron molar mass Nam, M(e), M, 5.4857990888(17) x 1077 kgmol~™' 3.0 x 10710
reduced Compton wavelength /i/mec = aag A 3.8615926796(12) x 10713 m 3.0 x 10710
Compton wavelength Ac 2.42631023867(73) x 10712 [m]f 3.0 x 10710
classical electron radius a?ag Te 2.817 940 3262(13) x 10715 m 4.5 x 10719
Thomson cross section (87/3)72 e 6.652458 7321(60) x 1072  m? 9.1 x 10710
electron magnetic moment Lo —9.284 764 7043(28) x 10724 JT-! 3.0 x 10710
to Bohr magneton ratio He/ P —1.001 159 652 181 28(18) 1.7 x 10713
to nuclear magneton ratio He/ N —1838.281 971 88(11) 6.0 x 10711
electron magnetic moment
anomaly |pe|/pp — 1 e 1.159 652 181 28(18) x 1073 1.5 x 10710
electron g-factor —2(1 + a,) Je —2.002 319 304 362 56(35) 1.7x 1071
electron-muon magnetic moment ratio fre/ fin 206.766 9883(46) 2.2x 1078
electron-proton magnetic moment ratio e/ tp —658.210 687 89(20) 3.0 x 10710
electron to shielded proton magnetic
moment ratio (HzO, sphere, 25 °C) JINITS —658.2275971(72) 1.1 x 1078
electron-neutron magnetic moment ratio the/ Hin 960.920 50(23) 2.4 %1077
electron-deuteron magnetic moment ratio the/ Ha —2143.9234915(56) 2.6 x 1079
electron to shielded helion magnetic
moment ratio (gas, sphere, 25 °C) e/ 114, 864.058 257(10) 1.2x 1078
electron gyromagnetic ratio 2|pe|/h Yo 1.760 859 630 23(53) x 10! sTIT-1 3.0x10710
28024.951 4242(85) MHz T 3.0 x 1010
Muon, u™
muon mass my 1.883 531 627(42) x 10728 kg 2.2x 1078
0.113 428 9259(25) u 2.2 x 1078
energy equivalent myc? 1.692833804(38) x 1011 J 2.2x 1078
105.658 3755(23) MeV 2.2 % 10°8
muon-electron mass ratio My /Me 206.768 2830(46) 2.2x 1078
muon-tau mass ratio my/ms 5.946 35(40) x 1072 6.8 x 107°
muon-proton mass ratio my/my 0.112609 5264(25) 2.2x 1078
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Quantity Symbol Value Unit uncert. u,
muon-neutron mass ratio my/my 0.1124545170(25) 2.2x 1078
muon molar mass Namy M(p), M, 1.134289259(25) x 10~* kgmol™t 2.2 x 1078
reduced muon Compton wavelength i/myc ~ Xc 1.867 594 306(42) x 10715 m 2.2 %1078
muon Compton wavelength Acpu 1.173444110(26) x 10714 [m]f 2.2x 1078
muon magnetic moment o —4.490 448 30(10) x 1026 JT-! 2.2x 1078
to Bohr magneton ratio M/ 1B —4.84197047(11) x 1073 2.2x 1078
to nuclear magneton ratio H/ N —8.890 597 03(20) 2.2 x 1078
muon magnetic moment anomaly
i/ (eh/2my) — 1 ay 1.16592089(63) x 10~3 5.4 % 1077
muon g-factor —2(1 + ay) Iu —2.002 331 8418(13) 6.3 x 10710
muon-proton magnetic moment ratio o/ —3.183345142(71) 2.2 x 1078
Tau, T~
tau mass My 3.16754(21) x 10727 kg 6.8 x 107°
1.907 54(13) u 6.8 x 107°
energy equivalent mec? 2.84684(19) x 10710 J 6.8 x 107°
1776.86(12) MeV 6.8 x 107°
tau-electron mass ratio Me/Me 3477.23(23) 6.8 x 107°
tau-muon mass ratio me/my 16.8170(11) 6.8 x 1075
tau-proton mass ratio me/my, 1.89376(13) 6.8 x 107°
tau-neutron mass ratio Mg /My 1.89115(13) 6.8 x 1075
tau molar mass N, M(t), M, 1.90754(13) x 1073 kgmol~! 6.8 x 107°
reduced tau Compton wavelength 7/mc Xc ot 1.110538(75) x 10716 m 6.8 x 107°
tau Compton wavelength Acs 6.977 71(47) x 10716 [m]f 6.8 x 107°
Proton, p
proton mass mp 1.67262192369(51) x 107%7 kg 3.1 x 10710
1.007 276 466 621(53) u 5.3 x 10711
energy equivalent mpc? 1.503 277615 98(46) x 10710 ] 3.1x 10710
938.272 088 16(29) MeV 3.1 %1010
proton-electron mass ratio Mmp/Me 1836.15267343(11) 6.0 x 10711
proton-muon mass ratio mp/my 8.880243 37(20) 2.2 x 1078
proton-tau mass ratio mp/me 0.528051(36) 6.8 x 107°
proton-neutron mass ratio Mp /M 0.998 623 478 12(49) 4.9 x 10710
proton charge to mass quotient e/myp 9.578 833 1560(29) x 107 Ckg™! 3.1 x 10710
proton molar mass Namy, M(p), M, 1.00727646627(31) x 1073 kgmol™* 3.1 x 10719
reduced proton Compton wavelength i/mpc  Xc 2.10308910336(64) x 10716 m 3.1 x 10710
proton Compton wavelength Ac.p 1.321409 855 39(40) x 10~*°  [m]* 3.1x 10710
proton rms charge radius o 8.414(19) x 10716 m 2.2x 1073
proton magnetic moment o 1.410606 797 36(60) x 10726 JT-! 4.2 x 10710
to Bohr magneton ratio /1B 1.521 032202 30(46) x 1073 3.0 x 10710
to nuclear magneton ratio fp/ 1N 2.792 847 344 63(82) 2.9 x 10710
proton g-factor 2, /i 9p 5.585 694 6893(16) 2.9 x 10710
proton-neutron magnetic moment ratio Hp/ fn —1.459898 05(34) 2.4 x 1077
shielded proton magnetic moment 15, 1.410570 560(15) x 10726 JT! 1.1 x 1078
(H2O, sphere, 25 °C)
to Bohr magneton ratio to/ 1B 1.520993128(17) x 1073 1.1 x 1078
to nuclear magneton ratio o/ BN 2.792775599(30) 1.1x 1078
proton magnetic shielding correction
1 — i /iy (H20, sphere, 25 °C) al 2.5689(11) x 1075 4.2 x 1074
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proton gyromagnetic ratio 24, /% o 2.6752218744(11) x 108 sTIT™1 42x10719
42.577 478 518(18) MHzT-! 4.2 x 1010
shielded proton gyromagnetic ratio
2;1;/77, (H20, sphere, 25 °C) ’yl/) 2.675153151(29) x 108 sTiT! 1.1x 1078
42.576 384 74(46) MHzT~! 1.1x1078
Neutron, n
neutron mass My 1.674 927498 04(95) x 10727 kg 5.7 x 10710
1.008 664 915 95(49) u 4.8 x 10710
energy equivalent muc? 1.505 349 762 87(86) x 10710 J 5.7 x 10710
939.565 420 52(54) MeV 5.7 x 10719
neutron-electron mass ratio My /Me 1838.683 661 73(89) 4.8 x 10710
neutron-muon mass ratio My /My 8.89248406(20) 2.2 x 1078
neutron-tau mass ratio My /Mme 0.528 779(36) 6.8 x 107°
neutron-proton mass ratio My /my 1.00137841931(49) 4.9 x 10710
neutron-proton mass difference My — My 2.305 574 35(82) x 10730 kg 3.5 x 1077
1.38844933(49) x 103 u 3.5 x 1077
energy equivalent (my —mp)c®  2.07214689(74) x 10713 J 3.5 x 1077
1.293 332 36(46) MeV 3.5 x 1077
neutron molar mass Namy, M (n), M, 1.00866491560(57) x 1073 kgmol~! 5.7 x 10710
reduced neutron Compton wavelength li/muc Ao, 2.1001941552(12) x 10716 m 5.7 x 10710
neutron Compton wavelength Ac,n 1.31959090581(75) x 107>  [m]} 5.7 x 10710
neutron magnetic moment Un —9.6623651(23) x 10727 JT! 2.4 x 1077
to Bohr magneton ratio o/ B —1.04187563(25) x 1073 2.4 %1077
to nuclear magneton ratio o/ IN —1.91304273(45) 2.4 x 1077
neutron g-factor 2u, / pn In —3.826 085 45(90) 2.4 %1077
neutron-electron magnetic moment ratio fin/ e 1.040 668 82(25) x 1073 2.4 %1077
neutron-proton magnetic moment ratio Hn/ tp —0.684979 34(16) 2.4 x 1077
neutron to shielded proton magnetic
moment ratio (H»O, sphere, 25 °C) P/ —0.684 996 94(16) 2.4 %1077
neutron gyromagnetic ratio 2|y |/h Va 1.83247171(43) x 108 sTIT-1 24x1077
29.164 6931(69) MHzT-' 24 x 1077
Deuteron, d
deuteron mass ma 3.343583 7724(10) x 10727 kg 3.0 x 10710
2.013553 212 745(40) u 2.0 x 1071
energy equivalent mac? 3.00506323102(91) x 10710 J 3.0 x 10710
1875.612 942 57(57) MeV 3.0 x 10719
deuteron-electron mass ratio md/Mme 3670.482 967 88(13) 3.5 x 1071
deuteron-proton mass ratio mqa/my 1.999 007 501 39(11) 5.6 x 10711
deuteron molar mass Namg M(d), My 2.01355321205(61) x 1072 kgmol™! 3.0 x 1071°
deuteron rms charge radius Ta 2.12799(74) x 1071° m 3.5 x 1074
deuteron magnetic moment fd 4.330735094(11) x 10727 JT! 2.6 x 1077
to Bohr magneton ratio Ha/pB 4.669 754 570(12) x 1074 2.6 x 1079
to nuclear magneton ratio Ha /N 0.857 438 2338(22) 2.6 x 1077
deuteron g-factor juq/pn gd 0.8574382338(22) 2.6 x 1079
deuteron-electron magnetic moment ratio fa/ e —4.664 345551(12) x 10~* 2.6 x 1079
deuteron-proton magnetic moment ratio pa/ 0.307 012209 39(79) 2.6 x 1079
deuteron-neutron magnetic moment ratio ta/ —0.448206 53(11) 2.4 x 1077
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Triton, t
triton mass my 5.007 356 7446(15) x 10727 kg 3.0 x 10719
3.015500 716 21(12) u 4.0 x 10711
energy equivalent myc? 4.5003878060(14) x 10710 J 3.0 x 10719
2808.921 132 98(85) MeV 3.0 x 10710
triton-electron mass ratio me/Me 5496.921 535 73(27) 5.0 x 10711
triton-proton mass ratio me/my 2.993 717034 14(15) 5.0 x 10711
triton molar mass Namy M(t), My 3.01550071517(92) x 1073  kgmol~! 3.0 x 10710
triton magnetic moment It 1.504 609 5202(30) x 10726 jT-! 2.0 x 1079
to Bohr magneton ratio e/ 1 1.622 393 6651(32) x 1073 2.0 x 1079
to nuclear magneton ratio e/ N 2.978 962 4656(59) 2.0 x 1079
triton g-factor 24, /N g 5.957 924 931(12) 2.0 x 1079
Helion, h
helion mass my 5.0064127796(15) x 10727 kg 3.0 x 10710
3.014932247175(97) u 3.2 x 10711
energy equivalent myc? 4.4995394125(14) x 10710 J 3.0 x 10710
2808.391 607 43(85) MeV 3.0 x 10719
helion-electron mass ratio my/Me 5495.885 280 07(24) 4.3 x 10711
helion-proton mass ratio mn/my 2.99315267167(13) 4.4 x 1071
helion molar mass Namy, M(h), My, 3.01493224613(91) x 10~  kgmol~! 3.0 x 10710
helion magnetic moment Un —1.074617532(13) x 10726 JT-! 1.2x 1078
to Bohr magneton ratio pn/ 1B —1.158 740 958(14) x 1072 1.2 x 1078
to nuclear magneton ratio Hn/ N —2.127625307(25) 1.2x 1078
helion g-factor 2y, /N gn —4.255250615(50) 1.2 x 108
shielded helion magnetic moment wh —1.074553090(13) x 10726 JT~! 1.2x 1078
(gas, sphere, 25 °C)
to Bohr magneton ratio W/ e —1.158671471(14) x 1073 1.2 x 1078
to nuclear magneton ratio [N —2.127497719(25) 1.2 x 1078
shielded helion to proton magnetic
moment ratio (gas, sphere, 25 °C) i/ b —0.761 766 5618(89) 1.2x 1078
shielded helion to shielded proton magnetic
moment ratio (gas/HoO, spheres, 25 °C) 1, /i), —0.761 786 1313(33) 4.3 x107°
shielded helion gyromagnetic ratio
20l |/ (gas. sphere, 25 °C) N 2.037894569(24) x 108 sTIT1 12x10°8
32.434099 42(38) MHzT-! 1.2x 1078
Alpha particle, o
alpha particle mass Ma 6.644 657 3357(20) x 10727 kg 3.0 x 10710
4.001 506 179 127(63) u 1.6 x 107!
energy equivalent M c? 5.9719201914(18) x 10710 J 3.0 x 10719
3727.3794066(11) MeV 3.0 x 10719
alpha particle to electron mass ratio Mea/Me 7294.299 541 42(24) 3.3 x 1071
alpha particle to proton mass ratio Me/myp 3.972 599 690 09(22) 5.5 x 10711
alpha particle molar mass Namg M(a), M, 4.0015061777(12) x 1073 kgmol™! 3.0 x 10710
PHYSICOCHEMICAL
Avogadro constant Na 6.022 14076 x 10?3 mol 1 exact
Boltzmann constant k 1.380649 x 10723 JK! exact
8.617333262... x 107° eVK! exact
k/h 2.083661912... x 10'° HzK! exact
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k/he 69.50348004. .. [m—* K-t exact
atomic mass constant!
my = %m(uC) = 2hc Ry /0?2 AL (e) my 1.660 539 066 60(50) x 10727 kg 3.0 x 10710
energy equivalent myc? 1.492 418 085 60(45) x 10719 J 3.0 x 10719
931.494 102 42(28) MeV 3.0 x 10710
molar mass constant/ M, 0.999999 999 65(30) x 1072 kg mol~! 3.0 x 10719
molar mass!l of carbon-12 A, (*2C) M, M*2C)  11.9999999958(36) x 1073 kg mol~* 3.0 x 10710
molar Planck constant Nah 3.990312712... x 10710 JHz ' mol~!  exact
molar gas constant Na k R 8.314462618... Jmol7! K~!  exact
Faraday constant Npe F 96485.33212. .. C mol ! exact
standard-state pressure 100000 Pa exact
standard atmosphere 101325 Pa exact
molar volume of ideal gas RT'/p
T =273.15 K, p = 100 kPa Vi 22.71095464 ... x 1073 m3 mol~! exact
or standard-state pressure
Loschmidt constant N /V;, no 2.651645804 ... x 10%° m~3 exact
molar volume of ideal gas RT /p
T =273.15 K, p = 101.325 kPa Vin 22.41396954... x 1073 m?3 mol ! exact
or standard atmosphere
Loschmidt constant N /V;, no 2.686780111... x 10%® m—3 exact
Sackur-Tetrode (absolute entropy) constant™*
2 + In[(mu kT /27h*)3/ 2 KT /o]
Ty = 1K, pp = 100 kPa So/R —1.151707 537 06(45) 3.9 x 10719
or standard-state pressure
Ty = 1K, pp = 101.325 kPa —1.164 870523 58(45) 3.9 x 10719
or standard atmosphere
Stefan-Boltzmann constant
(m2/60) kYR c2 o 5.670374419... x 1078 Wm~2K* exact
first radiation constant for spectral
radiance 2hc? st~ ! e 1.191042972... x 10716 [Wm?sr— 1T exact
first radiation constant 21hc? = msr ¢y, c1 3.741771852... x 10716 [W m?2] exact
second radiation constant he/k Co 1.438776877...x 1072 [m K]f exact
Wien displacement law constants
b= AmaxT = ¢2/4.965114 231... b 2.897771955... x 1073 [m K]F exact
0 = Viax /T = 2.821439372...¢/co v 5.878925757... x 10'° HzK™! exact

* The energy of a photon with frequency v expressed in unit Hz is £ = hv in J. Unitary time evolution of the state of this photon is given by
exp(—iEt/h)|p), where |p) is the photon state at time ¢ = 0 and time is expressed in unit s. The ratio Ft/ is a phase.

T The full description of m~! is cycles or periods per meter and that of m is meter per cycle (m/cycle). The scientific community is aware of
the implied use of these units. It traces back to the conventions for phase and angle and the use of unit Hz versus cycles/s. No solution has been
agreed upon.

# Value recommended by the Particle Data Group (Tanabashi, ef al., 2018).

% Based on the ratio of the masses of the W and Z bosons mw /mz recommended by the Particle Data Group (Tanabashi, er al., 2018). The
value for sin?fy they recommend, which is based on a variant of the modified minimal subtraction (¥8) scheme, is sin?0w (Mz) = 0.231 22(4).

9 This and other constants involving my are based on mec? in MeV recommended by the Particle Data Group (Tanabashi, et al., 2018).

I The relative atomic mass A, (X) of particle X with mass m (X ) is defined by A,(X) = m(X)/mu, where m, = m(*2C)/12 = 1 u is the
atomic mass constant and u is the unified atomic mass unit. Moreover, the mass of particle X is m(X) = A;(X) u and the molar mass of X is
M(X) = Ax(X)M,, where M,, = Na u is the molar mass constant and Ny is the Avogadro constant.

** The entropy of an ideal monoatomic gas of relative atomic mass A, is given by S = So + 2R In A: — R In(p/po) + 3R In(T/K).

1 The full description of m? is m~2 x (m/cycle)*. See also footnote for m~*.
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Index

Acceleration, 30
constant, 32
Acoustics, 12
Aerogel, 28
Amonton’slaw, 213
Ampere, 16
Amplitude, 165, 168, 170
Angular acceleration, 145
Angular frequency, 170
Angular momentum, 191
Angular velocity, 99, 145
Antimatter, 114, 282
Aphelion, 243
Apocenter, 243
Apogese, 243
Apsides, line of, 243
Archimedes, 106
principle of, 200
Argument of latitude, 245
Argument of pericenter, 243
Arithmetic-geometric mean, 331
Ascending node, 243
longitude of, 243
Asteroid 2010 TK7, 250
Astrodynamics, 254
Astronomical unit, 316
Astrophysics, 12
Atmosphere, 201
Atomic mass unit (amu), 17
Atomic physics, 12
Atwood smachine, 75

“Back cab” rule, 142
Ballistic pendulum, 131
Bar, 201

Barker's equation, 253
Baryon, 281

Base units, 14

Beat frequency, 232
Bernoulli’sequation, 205
Bertrand’stheorem, 248

Beta decay, 68, 282

Binary prefixes, 23

Biophysics, 12

Black dwarf, 229

Black hole, 229
supermassive, 229

Boltzmann’s constant, 213

Boyle'slaw, 213

Bulk modulus, 196, 199

Candela, 16
Capillary, 214
Catenary, 82
Cavendish experiment, 221
Center of mass, 60, 136
Centrifugal force, 98
Centripetal
acceleration, 97
force, 97
Chainring, 109
Chandler wobble, 232
Charles'slaw, 213
Chemical physics, 12
Churchill equation, 212
Clairaut’stheorem, 266
Classical mechanics, 12
Cog, 109
Callision, 123, 125
elastic, 125
inelastic, 125, 126
Comet, 247
Compressible fluid, 204
COMSAT, 257
Conservativeforce, 117
Continuity equation, 205
Coordinated Universal Time, 233
Caoriolisforce, 60, 189
Cosineformula, 235
Coulomb’slaw, 113
Couple, 158
Crackle, 31
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Cross product, 45, 140, 324
inverse, 143

Cross-disciplinary physics, 12

Curl, 43

Currency exchange rates, 22

Cycloid, 195

Cyclone, 190

Cygnus X-1, 229

Darcy friction factor, 212
Declination, 235, 244, 246
Degree, 17, 321

square, 322
Deltav, 259
Deneb, 230
Density, 26, 138
Descending node, 243
Dimensiona analysis, 19
Direct product, 45
Displacement, 29
Divergence, 43
Dot product, 45, 324
Double integral, 139
Downleg, 208
Drag coefficient, 93
Dynamics, 29
Dyne, 67

Earth, 316

radius of, 235
Eccentric anomaly, 245
Eccentricity, 243
Ecliptic, 243

obliquity of, 243, 246
Ecliptic latitude, 246
Ecliptic longitude, 246
Efficiency

simple machine, 103
Effort, 103
Einstein field equation, 228
Elastic limit, 199
Elastic modulus, 196
Elasticity, 196
Electricity and magnetism, 12
Electromagetic force, 67
Electromagnetic force, 282
Electromagnetic units, 19
Electron volt, 110
Electrostatic units, 19
Electroweak threory, 282

Elevation angle, 258
Elevator, 82
Empirical law, 68, 84
Energy, 110, 275
conservation of, 114
kinetic, 84, 110, 275
mechanical, 114
potential, 111
table, 113
total, 114
Entity, 17
weight, 17
Eo6tvos experiment, 66
Epoch time, 243
Equation of state, 214
Equator, 242
Equilibrium, 638
Equilibrium position, 170
Equivalence principle, 66
Erg, 100, 110
Escape velocity, 224
Event horizon, 229

Fanning friction factor, 212

Fictitiousforce, 98

Flattening factor, Earth, 236, 238

Floating bodies, 200

Flow rate, 205

Flubber, 126

Fluid, 91, 200
compressible, 204
dynamics, 204
ideal, 204
incompressible, 204
irrotational, 204
mechanics, 204
Newtonian, 204
rotational, 204
statics, 200

Fluidization, 200

Foot, 15

Force, 67
conservative, 117

Fountain effect, 214

Fourth (of arc), 321

Free-body diagram, 79

Frequency, 174

Friction, 84
coefficient of, 84, 85
kinetic, 85

354



Prince George's Community College

Genera Physics|

Simpson & Simpson

rolling, 85
static, 84
Friction factor, 212

Fulcrum, 106

g (acceleration unit), 30
Gdlilei, Galileo, 187
Gadlileo'slaw, 187
Gas constant, 213
Gases, 212
Gauss'slaw, 224, 227
electrostatics, 227
gravity, 224
Gaussian units, 19
Gear, 108
Gear ratio, 109
Generd relativity, 82, 228
Geodesy, 234
Geoid, 234
Geophysics, 12
Geosynchronous orhit, 257
Global Positioning System, 234
Grad, 17, 321
Grand Unified Theory, 282
Grave (f.n.), 18
Gravitation, 67
Gravitational force, 282
Gravitational lensing, 228
Gravitational potential, 220
Graviton, 282
Gravity
acceleration, 30
Gravity assist maneuvers, 261
Gyration, radius of, 153
Gyroscope, 194

Hadron, 281
Halley's comet, 247
Halo orbit, 250
Hamiltonian, 270
Hamiltonian mechanics, 270
Haversine, 235
Head, 206, 212
Heaviside-L orentz units, 19
Heisenberg uncertainty principle, 278, 280
Helium 11, 214
Helmert's equation, 221
Hermite polynomials, 279, 280
Higgs

boson, 283

field, 283
Hohmann transfer, 260
Hooke'slaw, 68, 113, 158, 167, 170, 196, 248
Horsepower, 118
Hubble Space Telescope, 194, 228
Hydraulic press, 217
Hydraulics, 217
Hydrostatic pressure, 198
Hyperbolic functions, 296

Ideal fluid, 204
Ideal gas law, 213
Impact parameter, 130
Impact velocity, 34
Imperial units, 14
Impulse, 123
approximation, 124
Inclined plane, 73, 104
Incompressible fluid, 204
Inertia, 70
law of, 70, 162
rotational, 162
Inertial reference frame, 98
International Prototype Kilogram (1PK), 16, 28
[ridium, 27
Irrotational fluid, 204

Jackscrew, 108

Jacobi elliptic function, 330
Jerk, 31

Joule, 100, 110

Joule, James, 100

Jounce, 31

Julian day, 242

Jupiter, 316

Kelvin, 16
Kepler's equation, 245
hyperbalic, 252
Kepler'slaws, 241
first, 241, 247
second, 241
third, 242
Kinematics, 29
Kinetic energy, see Energy, kinetic

Lagrange points, 249
Lagrangian, 267
Lagrangian mechanics, 267
Lambda point, 214
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Laminar flow, 204, 211

Leap second, 233

Lees rule, 156

Length contraction, 274

Lepton, 281

Lever, 106

Libration points, 249

Lithium, 27

Logic, deductive, 13

Longitude of ascending node, 243

Mars, 316
Mass, 66
gravitational, 66
inertial, 66
Mathematical physics, 12
Maxwell’s equations, 68, 227
Mean anomaly, 243, 245
Mean daily motion, 245
Mechanical energy, see Energy, mechanical
Mercury, 316
Meson, 281
Mesozoic era, 233
Meter, 15
Metric tensor, 228
Metric ton, 16
Metric units, 14
Micron, 22
Modulus of rigidity, 177
Molar gas constant, 213
Mole, 16
Moment arm, 157
Moment of inertia, 149
measurement of, 159
Momentum, 121, 274
angular, 191
Monkey and hunter problem, 60
Moody friction factor, 212
Muzzle velocity, 54

Natural units, 14

Neptune, 316

Neutron, 281

Neutron star, 229

Newton, 16, 67

Newton'scradle, 128

Newton’slaw of gravity, 66, 220
Gauss's formulation, 224

Newton’slaws of motion, 12, 70, 162
first, 70

original, 328
rotational, 162
second, 66, 70, 121, 122, 147, 162, 191
third, 70, 72, 163
Newton's method, 63
Newton, Sir Isaac, 67
Newtonian fluid, 204
Normal force, 69
North star, 230
Nought, 32
Nuclear fusion, 68
Nuclear physics, 12
Nutation, 195, 230

Obliquity of the ecliptic, 243, 246, 316
Optics, 12
Orbit
bound, 247
closed, 248
differential equation of, 248
unbound, 247
Orbital elements, 243
Osmium, 27

Paleozoic era, 233
Parallel
springs, 176
Parallel axis theorem, 154
Parallelogram method, 38
Partial derivative, 265
Particle, 29
Particle physics, 12
Pascal, 198, 201
Pascal’s law, 203
Pendulum, 164
ballistic, 131, 169
conical, 165
double, 169
Foucault, 169
nonlinear, 329
physical, 167
simple plane, 164, 329
spherical, 165
torsional, 167
Pericenter, 243
argument of, 243
Perigee, 243
Perihelion, 243
Period, 99, 174, 175, 256
Permittivity of free space, 228
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Phase constant, 170
Physics, 12
Pitch, 108
Planck’s constant, 278
Plane figure theorem, 155
Plasma physics, 12
Pluto, 316
Pneumatics, 219
Poise, 210
Poisson ratio, 177
Polar motion, 232
Polaris, 230
Polygon method, 38
Pop, 31
Position, 29
initial, 33
vector, 49
Potassium, 27
Potential energy, see Energy, potential
Pound, 19
force, 19
mass, 16, 19
Power, 118
Precession, 194, 195, 230
Pressure, 198, 201
absolute, 202
gauge, 202
hydrostatic, 198
Projectile, 54
exploding, 60
summary of formulag 62
Proton, 281
Psi (Ib/in?), 201
Pulley, 105
Pythagorean theorem, 41, 153

Q.E.D. (f.n.), 62

Quantum electrodynamics, 68
Quantum mechanics, 12, 214, 216, 277
Quark, 281

Quaternion, 44

Radian, 17, 321
Radius of gyration, 153
Range, 55
Red giant, 229, 233
Relativity, 12
genera, 12, 82, 228, 274
special, 12, 273
Resistance, 103

Restitution, coefficient of, 125
Reynolds number, 211

Ricci curvature tensor, 228
Rice Krispies, 31

Right ascension, 235, 244, 246
Right-hand rule, 140, 158, 324
Roche limit, 250

Rocket, 133

Rocket equation, 133, 134
Rocking bodies, 178

Rocking cylinder, 178
Rollinfilm, 214

Rolling bodies, 181

Rotation, 145

Rotational fluid, 204
Rotationa motion, 145
Routh’srule, 155

Sagittarius A*, 229
Saturn, 27, 250, 316
Saturn V (rocket), 133, 135
Scalar, 37
Scalar curvature, 228
Scalar product, 45
Scale height, 203
Schrodinger equation
time independent, 279
time-dependent, 278
Schwarzschild radius, 229
Screw, 108
Second (of time), 16
Second sound, 216
Semi-major axis, 243
Series
springs, 176
Shear modulus, 196, 198
Sl units, 15
Signum function, 253
Simple harmonic motion, 170
kinetic energy, 172
potential energy, 172
total energy, 172

Simple harmonic oscillator, 268, 270, 279

Simple machines, 73, 103
Singularity, 229

Siphon, 208

Slug, 19

Snap, 31

Solid angle, 321
Solid-state physics, 12
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Space elevator, 257
Specific gravity, 27
Speed, 29
Spring
vertical, 174
Spring constant, 68, 170, 175
Staging, 135, 255
Standard Atmosphere, 203
Standard Model, 281
Stanton friction factor, 212
Statics, 29, 79
Statistical mechanics, 12
Statwatt, 118
Steiner’s theorem, 154
Steradian, 321
Stokes, 210
Stokes'slaw, 211
Strain, 196-198
Stress, 196
compressional, 196
longitudinal, 196
normal, 196
shear, 196, 197
tensile, 196
torsional, 197, 198
trandational, 197
transverse, 196, 197
volume, 196, 198
Stress-energy tensor, 228
String theory, 283
Strong nuclear force, 68, 282
Superflow, 214
Superfluid, 214
Syphon, see Siphon

Tensile strength, 199
Tension, 69

Tensor, 163

Terminal velocity, 93
Thermodynamics, 12, 212
Third (of arc), 321
Thuban, 230

Time dilation, 273
Timeinflight, 55
Torque, 157

Torr, 201
Torricelli’stheorem, 206
Transitiona flow, 205
Triangle method, 38
Tripleintegral, 139

Triple scalar product, 142
Triple vector product, 142
Trojan asteroids, 250
Troposphere, 203

True anomaly, 245
Turbulent flow, 204, 211
Two-fluid model, 214

U.S. Standard Atmosphere, 203
Unit vector, 40, 323

Uranus, 316

UTC, 233

Van der Waals equation, 214
Vector, 37, 323
magnitude, 41
polar form, 324
rectangular form, 324
zero, 43, 141
Vector boson, 282
Vector product, 140
Vega, 230
Velocity, 29
average, 30
impact, 34
initial, 32
instantaneous, 30
Venus, 316
Vernal equinox, 242
Versus (vs.) (f.n.), 35
Vincenty’sformulee
direct problem, 236
inverse problem, 238
Virial theorem, 115, 335
Vis viva eguation, 248
Viscosity, 204, 209, 336
dynamic, 210
kinematic, 210

W boson, 282

Watt, 118

Watt, James, 118

Wave function, 278
Wave-particle duality, 278
Weak nuclear force, 68, 282
Wedge, 108

Weight, 16, 68

Weisbach friction factor, 212
Whesel, 184

Whed and axle, 104

358



Prince George's Community College General Physicsl

Simpson & Simpson

White dwarf, 229

Work, 100

Work-energy theorem, 115

World Geodetic System (WGS), 234
Wormhole, 229

Young'smodulus, 177, 196, 197

Z boson, 282
Zero vector, 43, 141
Zero-point energy, 280
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