
Michael Stiber
Bilin Zhang Stiber

Eric C. Larson

Michael Stiber
Bilin Zhang Stiber

Eric C. Larson

Signal Computing:
Digital Signals in the Software Domain

Signal Computing:
Digital Signals in the Software Domain

Signal Computing:

Digital Signals in the Software Domain

Spring 2020

Michael Stiber
Bilin Zhang Stiber
University of Washington Bothell
18115 Campus Way NE
Bothell, Washington 98011

Eric C. Larson
Southern Methodist University
Lyle School of Engineering
3145 Dyer Street
Dallas, TX 75205

Copyright © 2002–2020 by Michael and Bilin Stiber and Eric C. Larson

This material is based upon work supported by the National Science Foundation under
Grant No. 0443118.

Cover art by Eduardo Sainos.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

Contents

Preface xiii
Objectives . xiv
Prerequisites . xiv
About This Book . xvi
Typographical Conventions . xvi
Further Reading . xvii

1 Signals in the Physical World 1
1.1 Multimedia and Sensation . 1
1.2 Sensation and Perception . 2
1.3 Computer Video Displays . 4
1.4 Multimedia System Operation . 5
1.5 Vibrations and Sound . 6
1.6 Phasors . 9
1.7 Spectra . 14

1.7.1 Interlude: Vectors . 15
1.7.2 Derivation of the Fourier Series . 17

1.8 Problems . 25
1.9 Further Reading . 29

2 Signals in the Computer 31
2.1 From the physical to the digital . 31
2.2 Measuring Noise . 32
2.3 Sampling . 33

2.3.1 Aliasing . 35
2.4 Quantization . 38
2.5 Dynamic Range . 41
2.6 Periodic and Aperiodic Signals . 41
2.7 Problems . 42

Signal Computing i

2.8 Further Reading . 43

3 Filtering and Feedforward Filters 45
3.1 Introduction . 45
3.2 Feedforward Filters . 46

3.2.1 Delaying a phasor . 46
3.2.2 A simple feedforward filter . 47
3.2.3 Digital Filters . 50
3.2.4 Delay as an Operator . 52
3.2.5 The z-plane . 55
3.2.6 Phase Response . 59
3.2.7 Implementing Digital Filters . 62

3.3 Problems . 64
3.4 Further Reading . 65

4 The Z-Transform and Convolution 67
4.1 Domains . 67
4.2 The z-transform . 68

4.2.1 Example: z-transform of an impulse 69
4.2.2 Example: z-transform of exponential signal 70

4.3 Convolution . 75
4.3.1 Example of Convolution . 75
4.3.2 Implementing Convolution . 76

4.4 Properties of the Z-Transform . 79
4.4.1 Example: Time Shifting . 80
4.4.2 Example: Convolution . 80

4.5 Impulse Response and the Transfer Function 82
4.6 Problems . 83
4.7 Further Reading . 83

5 Feedback Filters 85
5.1 Introduction . 85

5.1.1 Poles . 85
5.1.2 Example: Computing Transfer Function and Impulse Response 88
5.1.3 Stability . 88
5.1.4 Resonance and Bandwidth . 91

5.2 Mixing Feedback and Feedforward Filters . 95
5.3 Implementation . 95

5.3.1 Avoiding Complex Numbers . 96
5.3.2 Limitations of Numerical Accuracy 97

5.4 Problems . 99
5.5 Further Reading . 99

Signal Computing ii

6 Spectral Analysis 101

6.1 The Fourier Transform . 101

6.1.1 Example: Fourier transform of a rectangular pulse 102

6.2 The Discrete Fourier Transform . 104

6.2.1 Derivation of the IDFT [Optional] 106

6.2.2 Finite vs. Infinite Signals . 107

6.2.3 Properties of the DFT . 107

6.2.4 Computing the DFT Directly . 111

6.2.5 The Fast Fourier Transform Algorithm 112

6.3 The inverse DFT . 118

6.3.1 Example: Sum of Two Sinusoids . 119

6.4 Power Leakage [Optional] . 120

6.5 Tradeo↵ Between Time and Frequency Resolution [Optional] 124

6.6 Windowing [Optional] . 128

6.7 Problems . 134

6.8 Further Reading . 135

7 Compression 137

7.1 Signals and Information . 137

7.2 Entropy (Lossless) Compression . 141

7.2.1 Repetitive Sequence Compression . 141

7.2.2 Statistical Compression . 142

7.3 Source (Lossy) Compression . 144

7.3.1 Di↵erential Compression . 145

7.3.2 Transform Compression . 146

7.4 Problems . 147

7.5 Further Reading . 148

8 Audio & Video Compression and Coding 149

8.0.1 Issues in Coding Method Selection 149

8.1 Audio Coding Standards . 150

8.1.1 Speech Coding for Telephony . 150

8.1.2 High-Quality Audio Coding . 151

8.2 Still Image Coding Standards . 153

8.2.1 JPEG . 153

8.3 Video Coding Standards . 159

8.3.1 MPEG Coding . 159

8.4 Problems . 161

8.5 Further Reading . 162

Signal Computing iii

9 Review and Conclusions 163
9.1 A Generic Digital Multimedia System . 163
9.2 Compact Discs . 163

9.2.1 Data Encoding . 165
9.2.2 CD System Signal Processing . 168

9.3 Conclusion . 170
9.4 Further Reading . 170

A Answers to Self-Test Exercises 171
A.1 Chapter 1: Signals in the Physical World . 171
A.2 Chapter 2: Signals in the Computer . 173
A.3 Chapter 3: Filtering and Feedforward Filters 174
A.4 Chapter 4: The Z-Transform and Convolution 176
A.5 Chapter 5: Feedback Filters . 178
A.6 Chapter 6: Spectral Analysis . 178
A.7 Chapter 7: Compression . 181
A.8 Chapter 8: Audio & Video Compression and Coding 182
A.9 Chapter 9: Review and Conclusions . 182

Index 183

Signal Computing iv

List of Figures

0.1 Course conceptual road map . xv

1.1 Schematic diagram of a CRT. 4
1.2 Interlaced and non-interlaced raster scanning 5
1.3 Real periodic signals . 7
1.4 Components of a phasor are sinusoids. 9
1.5 Graphical summation of vectors. 10
1.6 Phasor representation of beating. 13
1.7 Amplitude vs. time representation of beating. 13
1.8 A train of periodic rectangular pulses . 21
1.9 The sinc function. 22
1.10 First 12 terms in the Fourier series for a periodic sequence of rectangular pulses 24
1.11 First 100 terms in the Fourier series for a periodic sequence of rectangular pulses 25
1.12 Spectrum of a periodic sequence of rectangular pulses 26
1.13 Spectrum of a periodic sequence of rectangular pulses; varying pulse width . 27
1.14 Spectrum of a periodic sequence of rectangular pulses; varying period 28

2.1 Block diagram of the data acquisition process. 31
2.2 Sample and hold output . 34
2.3 Sampling and apparent frequency . 35
2.4 Error in output for 8-bit ADC . 39

3.1 Four frequency components . 46
3.2 Filter frequency response . 47
3.3 A filtered signal . 47
3.4 Unfiltered vs. filtered signal . 48
3.5 A basic feedforward filter block diagram. 48
3.6 Treat transfer function as a black box. 55
3.7 Two zero filter r = 0.9, !̂0 = ±⇡/2. 58
3.8 Two zero filter r = 0.9, !̂0 = ±5⇡/6. 58
3.9 Frequency response of two time delay feedforward filter 60

Signal Computing v

LIST OF FIGURES

3.10 Two sinusoid spectrum . 64

4.1 The exponential signal x[n] = (1/2)n, n = 0, 1, 2, 71
4.2 Frequency content of the signal shown in figure 4.1. 72
4.3 Frequency content of the unit step signal. 73
4.4 Example of convolution function execution for nx = 5 and nh = 2. 77
4.5 Convolution of en ⇤ en . 78

5.1 Block diagram of a simple filter with both feedforward and feedback terms. . 85
5.2 One pole in the z-plane, located at r = 0.9 and !̂0 = ⇡/2. 87
5.3 Magnitude response of two filters . 87
5.4 Block diagram of a filter with M feedforward and N feedback terms. 90
5.5 One pole a1 = rej!̂0 in z-plane. r = R, !̂0 = 0 and z = ej!̂ 92
5.6 Feedback filter design . 94
5.7 Example filter frequency responses . 96

6.1 A rectangular pulse with width ⌧ . 102
6.2 Fourier transform of the pulse in figure 6.1. 103
6.3 Fourier transform of a rectangular pulse for various width values 104
6.4 Plot of the sequence x[n] = 0.8n and the magnitude of its DFT 110
6.5 First half of DFT of x[n] = 0.8n . 111
6.6 Schematic outline of an iterative 8-point FFT 116
6.7 Sum of two sinusoids with 512 samples and its FFT 119
6.8 Sum of two sinusoids with 512 samples and its FFT; di↵erent frequencies . . 120
6.9 Magnitude spectrum of windowed signal x[n] = cos !̂0n 122
6.10 Magnitude spectrum of a one-sided signal x[n] = cos !̂0n with !̂0 = 0.2⇡. . . 123
6.11 Magnitude spectrum of the signal (6-55) made up of three sinusoids 125
6.12 The same figure as 6.11, but with rectangular window length N = 128 125
6.13 Bird call waveform and spectrogram; window size 512 samples, overlap 511 . 127
6.14 Bird call waveform and spectrogram; window size 128 samples, overlap 127 . 127
6.15 Di↵erent bird call waveform and spectrogram; 512 sample window, overlap 511129
6.16 Bird call waveform; 128 sample window, overlap 127 129
6.17 A 512-point Hamming window in the time domain. 130
6.18 The 512-point Bartlett window in the time domain. 130
6.19 Hann windowed cosine waveform and its spectrum 131
6.20 Bartlett windowed cosine waveform and its spectrum 132
6.21 Comparison between Hann and Bartlett windows for a cosine wave 133
6.22 Similar spectrogram as figure 6.14, but here a rectangular window is used. . 133
6.23 Similar spectrogram as figure 6.16, but here a rectangular window is used. . 134

7.1 Shannon’s model for coding information for transmission. 138
7.2 A taxonomy of coding/compression schemes. 140
7.3 Generalized scheme for encoding. 140
7.4 Binary tree with prefix property code. 144

Signal Computing vi

LIST OF FIGURES

8.1 Block diagram of JPEG encoder and decoder 154
8.2 Illustration of transform of 8x8 pixel block into 8x8 spectrum by DCT 155
8.3 Example 2D spectra . 156
8.4 Example spectrum (right) of an 8x8 block taken from a natural image. . . . 157
8.5 Entropy coding of JPEG DCT blocks . 158
8.6 Simplified block diagram of an MPEG video source encoder 159

9.1 Block diagram of a generic multimedia system. 164
9.2 Simplified block diagram of a CD player. 168
9.3 Simplified oversampling filter. 169

Signal Computing vii

LIST OF FIGURES

Signal Computing viii

List of Tables

4.1 Summary of frequency transforms. 68
4.2 Some properties of the z-transform. 79

6.1 Some examples of how �!̂, �! = �!̂fs, and �f = �!/2⇡ = fs/N change
for signals of di↵erent duration and sampling rate. 106

6.2 Example of the e↵ect of bit reversal on an eight-element input vector. 114

7.1 Two binary codes. 143

9.1 Part of the eight-to-fourteen modulation lookup table. 167

Signal Computing ix

LIST OF TABLES

Signal Computing x

List of Algorithms

3.1 Generate two sinusoids. 63
3.2 Filtering. 63
4.1 Discrete convolution. 76
6.1 Recursive FFT. 114
6.2 Iterative FFT. 115

Signal Computing xi

LIST OF ALGORITHMS

Signal Computing xii

Preface

As computers have become ubiquitous, they have also become more and more embedded not
only in the devices we own and use but in our lives. As a result, computers become embedded
in the physical world, with their primary purpose being to detect and analyze happenings in
our world and to produce responses that a↵ect that world. As computing professionals, we
need to understand how computers can process information from the physical world as digital
signals : multimedia (sound, images, video) and other measurements (in medical instruments,
cars, cell phones, eyeglasses, etc). This is why we have chosen to coin the phrase “Signal
Computing”.

Digital signals place great demands on processing power, network bandwidth, storage
capacity, I/O speed, and software design. As a result, signal computing is a great laboratory
for exercising the full range of knowledge of computer science.

In this book, you will learn how digital signals are captured, represented, processed,
communicated, and stored in computers. The specific topics we will cover include: phys-
ical properties of the source information (such as sound or images), devices for informa-
tion capture (microphones, cameras), digitization, compression, digital signal representation
(JPEG, MPEG), digital signal processing (DSP), signal analysis and feature extraction via
re-representation as functions of frequency, and network communication. By the end of this
book, you should understand the problems and solutions facing signal computing systems de-
velopment in the areas of data structures and algorithms, data analytics, feature extraction,
information retrieval, user interfaces, and communications.

While there certainly may be many opportunities for you to work in signal computing,
the value of this study extends far beyond. Studying signal computing and its underlying
mathematics directly exercises key computer science abilities in areas like abstraction and
algorithmics. You will see that this book interleaves mathematical topics with applications
and algorithms. At each step of the way, we take a representation of digital signals or
operations on them that you are familiar with, reach a concept in which it is awkward or
di�cult to use, and then develop an alternative representation that simplifies matters. This
is exactly what computing professionals do in their careers — identify that a problem at hand
can be represented by some abstraction with known properties that can be manipulated by
well-understood algorithms. We hope that the journey you take through the mathematical

Signal Computing xiii

PREFACE

abstractions here will not only give you an important set of tools to use later on, but will
also help exercise your fundamental ability to move from one representation to another.

Beyond your own personal professional capabilities, we hope that this book will also give
you a better understanding of the design process that electrical engineers go through when
they design the details of signal processing systems, such as filters. Even if you do not go on
to build software components that perform signal processing, there is a good chance that you
will work on large systems that have DSP components. We believe that it will be invaluable
for you to understand the basics of how such DSP components work and what your electrical
engineering colleagues are working on.

Objectives

By the end of this book, you should know:

• What physical signals are like in the “real” world and how their properties a↵ect how
we perceive them.

• How these signals are digitized and the tradeo↵s among sampling speed, levels of
quantization, file size, etc.

• How to perform simple signal filtering to remove noise, emphasize important features,
etc. You should be well-prepared to work with electrical engineers in the design of
more advanced signal processing systems.

• How to carry out simple time-series analysis techniques to analyze frequency and char-
acterize unknown signals.

• How multimedia file sizes can be reduced by compression, and the tradeo↵s among
compression, processing overhead, and media quality.

Prerequisites

This book covers much of the mathematical foundations for understanding signals and signal
processing; however, it is assumed that you are familiar with topics such as complex numbers,
trigonometry, derivatives, vectors, the basic idea of integrals, infinite series, and basic physics
(mass, acceleration, force, etc). Figure 0.1 shows these prerequisites in the context of this
book’s chapters.

Figure 0.1 also outlines how each chapter’s concepts are used by subsequent ones and
what the major themes are. You’ll notice that there’s not much in the way of programming
indicated. While there is an expectation that you understand the basics of computational
complexity and can understand, appreciate, and analyze algorithms, this is not a program-
ming book. Instead, this is a book that makes concrete many of the previously abstract
mathematical concepts that you are familiar with. It shows how these concepts relate to real

Signal Computing xiv

PREFACE

Application: CD-Digital Audio

Ch. 9

JPEG

Ch. 8

MPEG

Ch. 8

Ch. 5

FFT
Ch. 6

Information Theory
& Compression

Ch.7
Z-Transform
& Convolution

Ch. 4

Feedforward
Filters

Ch. 3

Physical Signals
Ch. 1

Computer Signals
Ch. 2

Derivatives

Trigonometry

Limits

Complex
Numbers

Summation

Introductory
Integrals

Vectors

Computational
Complexity

Exponentials

Feedback
Filters

Figure 0.1: Course conceptual road map and background knowledge.

Signal Computing xv

PREFACE

applications that produce tangible changes on digital signals — it connects mathematics to
bits.

In the past, this book has been used in a wide range of signal computing courses, from
those that place little emphasis on programming, to some that required an online, free tool
known as Java Digital Signal Processing (J-DSP), and in others that used C++ or the Java
Media Framework.

So, this book and the concepts within can be learned without any explicit knowledge of
low level programming in languages like C, C++, or Java. However, we also provide prob-
lems for students that have varying levels of programming expertise (for example, you may
have already taken an algorithms or data structures class). If you have some programming
expertise, we provide problems that use Matlab, and we include some Matlab code on the
textbook website to help get you started. If you have more experience in programming,
we provide problems asking you to write small programs in your choice of a “lower level”
language (such as C, C++, or Java).

About This Book

This book is divided into nine chapters. Chapters include self-test questions and review ex-
ercises scattered throughout, so we suggest that you go through all the material sequentially
(or, at least, do the self-test exercises in each section). Answers are provided at the back of
the book. Each chapter concludes with written or programming assignments and pointers
to additional readings.

If you read the PDF version of this book, you will find that it is extensively hyper-linked.
This includes links from exercises to their answers, links to resources on the web, and links
from the table of contents, list of figures, index, etc. to their respective locations.

Rather than distribute this book via a traditional publishing model, costing you money
and likely netting us very little, we have decided to make this book freely available for
both students and faculty. Moreover, we have opened the source material for re-use, up-
dating, and expansion via a Creative Commons Attribution-ShareAlike 4.0 International
License. This not only benefits you, it also benefits us by getting our work into more peo-
ple’s hands. You can find the book’s website at http://faculty.washington.edu/stiber/
pubs/Signal-Computing/, including a pointer to its source material on GitHub. If you find
any errors, make any changes, or find this book useful in your course or your life, please
email us at stiber@uw.edu, or send us a pull request.

Typographical Conventions

There are no real “standards” for much of the notation that is used in digital signal pro-
cessing; depending on which textbook you read, you will encounter di↵erent typographical
conventions. In this textbook, we have chosen the following:

Signal Computing xvi

http://faculty.washington.edu/stiber/pubs/Signal-Computing/
http://faculty.washington.edu/stiber/pubs/Signal-Computing/
mailto:stiber@uw.edu

PREFACE
j

p
�1

t continuous time; units typically seconds
x(t) a real-valued function of continuous time (physical signal)
f continuous frequency; units cycles/second or Hertz (Hz)
T an interval of time; often T = 1/f , meaning the period of a signal
f0 a particular frequency; subscript may vary depending on use
! continuous angular frequency; units radians/second
!0 a particular angular frequency; subscript may vary depending on use
!0 apparent (continuous angular) frequency, as a result of aliasing
n discrete time or sample number; dimensionless, but you can think of

the units as being “samples”
x[n] a function of discrete time; may be real-valued (sampled signal) or

discrete valued (quantized/digital signal)
f̂ discrete frequency; units cycles/sample
f̂0 a particular discrete frequency; subscript may vary depending on use
!̂ discrete angular frequency; units radians/sample
!̂0 a particular discrete angular frequency; subscript may vary depending

on use

Further Reading

An excellent introduction to digital signal processing that is targeted at beginning electrical
engineering students is DSP First: A Multimedia Approach, by James H McClellan, Ronald
W. Schafer, and Mark A. Yoder (Prentice Hall, 1998). It is important to note that that
book’s target is the design of low-level signal processing components (i.e., filters) and more
generally linear, time-invariant systems, rather than the role such components play in overall
software systems.

Signal Computing xvii

PREFACE

Signal Computing xviii

1 Signals in the Physical World

This chapter introduces the fundamental concepts of multimedia from an “outside the com-
puter” perspective. We define the term “multimedia,” discuss why it is an important issue,
how multimedia signals (sound, images) are generated in the “real world” (by both natural
and artificial means) and how we perceive them. We also introduce a set of convenient
mathematical tools for describing signals. When you are done with this chapter, we hope
you will appreciate the complexity and importance of multimedia communications and will
be eager to see how signals can be processed by computer.

1.1 Multimedia and Sensation

“What can give us surer knowledge than our senses? With what else can we
better distinguish the true from the false?” Lucretius

Humans, like any other organisms, depend on their senses to provide information critical
to their development and survival. Over time, life has evolved sophisticated systems for
capturing information about the physical world. The first senses were almost certainly
chemical — what we would call taste or smell. These senses have a number of drawbacks:
they typically require close physical presence or even direct contact, they have poor temporal
resolution (you can tell that someone was cooking onions, but not when), and they have
poor spatial resolution (from where is that bad smell coming?). Other senses — hearing,
seeing, electrical senses that fish have, magnetic senses that birds have — allow us to gather
information remotely from the information source.

Given all this, it is perhaps not surprising that people find computer systems di�cult
to use, uninspiring, or even objects of distaste. Computers by and large produce a very
impoverished set of stimuli, composed almost entirely of patterns of light that we must
interpret as text (when people use devices that provide a richer experience, such as tablets or
smartphones, they often mentally categorize them just that way: as devices, not computers).
It is only fairly recently that computers have done much more than this, as processing power
and hardware speed has enabled multimedia capabilities (though these are almost always
used to imitate other appliances, like televisions, telephones, photo albums, etc., rather
than to produce new things). The goal of making computers more “human friendly,” then,
depends on our ability to process multimedia information digitally, and to do so in a useful

Signal Computing 1

1. SIGNALS IN THE PHYSICAL WORLD

fashion. But what is useful? The answer to this question depends on the user, and central
to the user is how his or her sensory system works.

1.2 Sensation and Perception

Regardless of the sensorymodality, all senses have
one thing in common: they are composed of cells
which are responsive to some property of the phys-
ical world and whose responses are interpreted by a
nervous system to construct a model of the world.
In other words, the world does not “look” like our
perception. Our perception is a construct ; an inter-
pretation.
For example, consider sight. Our environment is
constantly bathed in a sea of radiation, which we
can think of as sinusoidal waves of varying wave-
length, ranging from very long (radio waves) to very
short (X-rays, gamma rays), and amplitude. Some
of this radiation is absorbed by objects and some is
reflected, depending on the objects’ properties. The
“goal” of our visual system is not to provide us with
information about reflected energy. Our visual sys-
tem has evolved in tandem with the rest of our ner-
vous system for the purpose of extracting useful in-

Important Terms:

color constancy our ability to perceive
object color independent of light
source qualities.

cone a photoreceptor that supports color
vision.

luminance measure of visible light
strength.

photoreceptors sensory cells in the
retina.

retina Layer of sensory and other neurons
at the back of the eye.

rod a photoreceptor that supports low-
light-level vision.

trichromatic vision construction of
color sensation from measurement
of three primary colors.

formation about objects’ properties based on reflected radiation. In this respect, it is much
like a remote-sensing satellite and ground data analysis system: we want to know about crop
conditions, we gather reflected light data at a number of wavelengths, and then we analyze
the data to produce a report on crop conditions. We don’t really care about the reflected
light; it is merely a means to an end.
Likewise, when we “see” a chair, what we perceive is no more a chair than the word “chair” is
a chair. It is an internal representation of a chair — a useful representation, which can allow
us to recognize the object’s purpose, location, size, composition, etc., but a representation
nonetheless. What we perceive about the world is at least as much a psychological issue as
a data acquisition one. For brevity’s sake, however, we will confine ourselves in this section
to discuss the basics of “low-level” sensory organs, rather than high-level perceptual issues.

Our eyes are made up of an optical system and a sensory system. The sensory system
— the retina — is composed of a number of di↵erent kind of nerve cells arranged in well-
structured layers. We won’t go into the details of the eye’s structure, but instead concentrate
on one class of cells: the photoreceptors.

Photoreceptors are specialized cells that contain pigments that absorb light and respond
electrically (to make a complex matter simple). Each pigment is responsive to a fairly
narrow range of light wavelengths, and in total, we can see a range of visible light with

Signal Computing 2

1. SIGNALS IN THE PHYSICAL WORLD

wavelengths between roughly 400 nanometers (400 ⇥ 10�9 meters) and 700nm — this from
an electromagnetic spectrum that covers 1⇥ 10�6nm to thousands of kilometers.

Our eyes have photoreceptors specialized for color vision at high (daytime) light levels
(called cones) and photoreceptors specialized for low (nighttime) light levels (called rods).
There are three cone types, each with a pigment sensitive to a di↵erent range of light wave-
lengths. These are usually termed red, green, and blue, though the correspondences to these
colors is not exact. The fact that our visual system combines measurements of three “colors”
of light to form our perception of color is known as trichromatic vision.

We do not experience light as a set of intensity (luminance) measurements at a variety
of light wavelengths, however. We experience light as having color. Color is a complex
psychological issue, and it is still not understood exactly how this is achieved. A simple
proof-by-contradiction of the idea that the color we see is the “color” of the light hitting
our eyes is the observation that we see objects as having the same color under a wide
range of lighting conditions (morning sunlight, afternoon sunlight, incandescent lighting). In
each of these circumstances, the light reflected from the objects around us is very di↵erent
because the illuminating light is di↵erent. The fact that our perception of color is more
characteristic of the objects’ surface properties than the illuminating light is called color

constancy. Again, our perceptual system acts to give us information about things, not
measurements of incoming data.

Similar observations can be made of our sense of hearing. Sound is made of moving
waves of varying air pressure, in a manner analogous to ripples on a pond. These waves
are eventually transduced by auditory neurons, each sensitive to a relatively small range of
frequencies (low pitched sounds, high pitched sounds — the full range of audible sounds).
Yet, we do not perceive a set of signal strengths, just as we don’t for light.

Even more extraordinarily, though our sensors for sound and light are distinct and very
di↵erent, we don’t have separate sensations of hearing and vision. Instead, we perceive the
world as a unified whole, with sound and appearance being properties of the objects around
us. Our brains fuse the incoming sensory stimuli and construct a synthetic experience.

All of the foregoing is of course a great simplification of how these systems actually work.
However, these issues have great impact on the design of computer multimedia systems,
because the main point of such systems is delivering a particular user experience. In the
following sections, we will outline first how computer systems can generate images, then
delve deeper into how we can develop a more precise, mathematical view of sound. This
mathematical view will be essential to our understanding of computer representation and
manipulation of multimedia information.

When we eventually want to represent physical signals in the computer, perception of the
signals will play an even more vital design role. For instance the sensors we use to capture
light and sound are not nearly as advanced as the human eye or human ear. They contain
various forms of noise that corrupt the integrity of the signal. The di↵erence between how
we perceive physical signals and how we perceive signals that have been captured by di↵erent

sensors will be of great importance to us. We will return to this concept later on.

Signal Computing 3

1. SIGNALS IN THE PHYSICAL WORLD
Screen

Cathode Anode Focusing
System

Horizontal
Deflection
Plates

Vertical
Deflection
Plates

Figure 1.1: Schematic diagram of a CRT.

1.3 Computer Video Displays

The two most prevalent computer displays are cathode ray tubes (CRTs) and liquid crystal

displays (LCDs); we’ll just discuss CRTs here (while they are becoming rarities, their
operation is more accessible for our purposes here). A simplified CRT is sketched in figure 1.1.
It is composed of an electron gun, which generates cathode rays (aka, “electrons”). In
this gun, a metal cathode is heated to cause electrons to “boil o↵;” they are accelerated
toward the screen by a positively-charged anode (or possibly by charging the screen itself),
which attracts the negatively-charged electrons. In between the anode and the cathode is a
negatively-charged control grid. By varying the charge on the control grid, the intensity of
the beam can be varied in a manner analogous to the way that a faucet valve controls the
flow of water.

After leaving the electron gun, the flow of elecrons is focused into a narrow beam by
an electrostatic or magnetic focusing system. The focused beam then passes by deflection
plates, which can “steer” the beam magnetically to hit any part of the screen.

The screen itself is coated with one (for B&W) or more (for color) phosphors : chemicals
which glow (emit visible light) when struck by electrons. Di↵erent phosphors emit di↵erent
light wavelengths, and so multiple phosphors can be used to produce the perception of
color images (typically by combining red, green, and blue phosphors). Another property of
phosphors is persistence: how long it will glow after an impinging electron beam is removed.
Low persistence phosphors will require that the screen image be refreshed more often (by
repainting the screen with the electron beam); otherwise, the display will flicker. On the
other hand, a high persistence phosphor will glow longer, and so will produce blurry moving
images.

So, how can we “paint” a two-dimensional image with an electron beam that only creates
a single spot on the screen? We do this by raster scanning the beam, as shown in figure 1.2.

Signal Computing 4

1. SIGNALS IN THE PHYSICAL WORLD

Figure 1.2: Interlaced (left) and non-interlaced (right) raster scanning.

The horizontal and vertical deflection systems work in concert with the control grid to move
the beam across the screen while varying its intensity. When the beam moves across the
screen horizontally, its intensity is varied in proportion to the desired light intensity. While
the deflection system resets to the beginning of the next horizontal line, the beam is turned
o↵. This is called horizontal retrace.

Subsequent lines are painted on the display in a similar manner until the bottom of the
screen is reached — this is one frame. At that point, the beam is turned o↵ and the deflection
system resets itself to the beginning of the top screen line; a process called vertical retrace.

For computer displays, a frame is usually displayed in between 1/60 and 1/80 of a second
(though some displays have higher refresh rates). Typically, such displays are non-interlaced
(figure 1.2, right). Analog televisions, on the other hand, have interlaced displays (left).
Interlaced raster scanning involves painting all of the odd scan lines in about 1/60 of a
second, then a vertical retrace, and a painting of the even lines. This allows the TV 1/30 of
a second to display an entire frame and yet still presents a flicker-free image (because every
other line is refreshed every 1/60 of a second).

This explains how a greyscale display works. But, what about color? A color display
requires three di↵erent phosphors, usually considered to be red, green, and blue (RGB). In
color monitors, three electron guns are used — one dedicated to each color. The guns are
aligned so that their beams strike slightly di↵erent spots on the screen. The three phosphors
are laid down in a pattern so that each color gun’s beam will hit the appropriate phosphor
for each pixel. By varying the intensity of each beam appropriately, control of the relative
mix of the three primary colors (and thus the perceived color) and the overall brightness is
possible.

1.4 Multimedia System Operation

Multimedia systems need to support four basic functions:

Signal Computing 5

1. SIGNALS IN THE PHYSICAL WORLD

1. They must support appropriate user perception of the media — provide output media
and represent (code) media in such a way that the output seems natural.

2. They must be able to retain media — store it and provide e�cient access (perhaps in
a database).

3. They should allow users to reason about media information. If the goal is greater than
a digital television or radio, then users must be able to manipulate the media.

4. They must be capable of transmitting media between machines. This can have signifi-
cant impact on networking, resource allocation, and synchronization of activity across
geographically distributed computer systems.

All of these place a high demand on computer power. For example, let’s assume that we
encode audio information as 8 bits per sample at 8000 samples per second (this would be
considered very low quality). How many bits per second is that (answer in A.1 #1)? Perhaps
that doesn’t sound too bad, so let’s consider video. Let’s say we encode each frame in a video
stream as 1000x1000 pixels, 24 bits/pixel, and 30 frames/second. How many bits per second
is that (answer in A.1 #2)? Even if we were to achieve an extremely high compression ratio
of 1/500, this would still mean more than 1 million bits/second.

On the one hand, we can attack this problem through faster hardware. But you should
be well aware by this time that the di↵erence between a good algorithm and a bad one can
be the di↵erence between an application which places very little load on a modest CPU and
one which takes all the power of a supercomputer. That is what we will be focusing on
here: developing the mathematical underpinning for developing e�cient multimedia signal
processing algorithms.

1.5 Vibrations and Sound

For much of this book, we will focus on sound when talking about signals. The reason
we do this is that sound is simpler than video. Sound is a one-dimensional function of
time (amplitude versus time), while video is at least a three-dimensional function of time
(intensity at each x and y pixel location as a function of time for greyscale; R, G, B values
at each x and y pixel location as a function of time for color).

Sound is carried by pressure waves in the air. These pressure waves can be generated
by a variety of di↵erent sources. Ideally, the human ear responds to anything that vibrates
between about 20 Hz and 20 kHz. A stereo speaker in a home theater system generates sound
by vibrating a flexible cone. The human vocal tract generates sound by rapidly opening and
closing a muscle called the glottis as air passes through it from the lungs. Musical instruments
resonate at specific frequencies depending on the width and length of strings or pipes.

In nature, sound is the result of a chaotic mix of events. It may at first seem surprising,
then, that most sounds occurring in nature repeat (usually hundreds or thousands of times
per second). Figure 1.3 shows graphs of sounds generated from a tuning fork and the vocal

Signal Computing 6

1. SIGNALS IN THE PHYSICAL WORLD

0 5 10 15 20 25 30 35

−1

−0.5

0

0.5

time (ms)

0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

0.5

1

time (ms)

Figure 1.3: Real periodic signals. Top: human speech of the vowel ‘a’ as in ‘bat.’ Bottom:
ringing of a tuning fork.

tract (the sound ‘a’, as in bat). In each case, notice that some portion of the wave repeats;
repeating signals are commonly called periodic. This phenomenon has spurred scientists and
mathematicians to develop standard means of representing periodic signals.

As we will see, it turns out that any periodic signal can be represented as a weighted sum
of harmonically related sines and cosines (sinusoids at frequencies that are integer multiples
of each other). If a periodic signal has a period of T0 (where period is merely the reciprocal of
frequency, so T0 = 1/f0), it can be represented by a weighted sum of sinusoids at harmonics
of T0, namely sinusoids with periods of T0,

1
2T0,

1
3T0,

1
4T0, · · · . This is potentially very

powerful! It means that if we know the period of any repeating function, we can represent
it by a discrete set of weights (one weight for each harmonic).

Each weight tells us exactly how much to multiply by each harmonic, and thus, how
much of a certain frequency is present in a given signal. By graphing the weights of each
harmonic versus the frequency, we can analyze the frequency content of the signal. This is
commonly known as the Fourier Series (we will discuss this later).

Signal Computing 7

1. SIGNALS IN THE PHYSICAL WORLD

The reason sines and cosines occur so often in nature is due to the physics of the way
objects vibrate. When an object is acted on by a force, the way the object moves (its
displacement) is a function of its velocity and acceleration. When solving for the exact
displacement equation, x(t), we often end up with an equation of the form,

d2x(t)

dt2
= �Cx(t) (1-1)

where C is some constant and d2x(t)
dt2 is the acceleration of the object. This kind of equation

— which relates a derivative of something to itself — is called a di↵erential equation. We
bet you didn’t know they were that simple! To solve a di↵erential equation, we look for
a function, x(t), that will satisfy the equation. This is analogous to solving an algebraic
equation, where we look for a number that can be substituted for a given variable. The only
di↵erence is that numbers fall along a one-dimensional number line (unless we’re talking
about complex numbers), while there is no such neat number line for all possible functions.
So, we need to find a function, x(t), whose second derivative is proportional to itself. Can
you think of one or two (answer in A.1 #3)?

Luckily, people have been working with functions and di↵erential equations for a while,
and so finding such functions is not di�cult. For example, consider sinusoids. The first and
second derivatives of sin!t are:

d

dt
sin!t = ! cos!t (1-2)

d2

dt2
sin!t =

d

dt
! cos!t = �!2 sin!t (1-3)

Therefore, di↵erential equation (1-1) describes simple harmonic motion: sinusoidal vibra-
tion of a simple object. Sinusoids occur naturally in the real world when an object is acted
on by a force! More complicated forces and objects result in more complicated di↵erential
equations, but they almost always involve sines and cosines.

Sinusoid Phase

Because sines and cosines are so powerful it is necessary to represent them as neatly and
compactly as possible. Above we saw why sin!t occurs naturally. The same argument can
be used for cos!t. In fact, cosine is just a delayed version of sine, as cos!t = sin(!t+ ⇡/2).
So, a more general solution to (1-1) would be:

x(t) = sin(!t+ �) (1-4)

In (1-4), � is called the sinusoid’s phase: the time closest to t = 0 when x(t) = 0 (for
the case of a sine; it would be when x(t) = 1 for a cosine). Depending on when an object
starts vibrating (and our time reference; the time that we call t = 0), we will get sinusoids
of di↵ering phase.

Signal Computing 8

1. SIGNALS IN THE PHYSICAL WORLD

cos!t

sin!t

Real Axis

Imaginary Axis

Figure 1.4: Components of a phasor are sinusoids.

Let’s use tuning forks as an example. What would happen if we hit two identical tuning
forks but at di↵erent times? They would vibrate at the same frequency, but would have
di↵ering phases and amplitudes (loudnesses). If the two forks were close together, we would
hear the sum of their tones. What would that sum be (answer in A.1 #6)? Simplifying
this sum would be involved; we would have to remember all sorts of trigonometric identities
and then crank out the algebra. Luckily, we can come up with another representation of a
sinusoid which simplifies this problem considerably. In fact, much of the new math we will
cover in this course is primarily focused on making the paper-and-pencil work easier.

1.6 Phasors

Instead of thinking of a sinusoid as a function which oscillates up and down, let’s think of
it as something that goes round and round: a rotating vector of length a (where a is the
sinusoid’s amplitude). Think of this vector rotating around the origin of the x-y plane. At
any point in time, the vector makes an angle ✓(t) with the positive x axis. The phase, �,
is defined as � = ✓(0) (i.e., the angle that the vector makes with the x-axis at t = 0). As
figure 1.4 shows, the x and y components of the vector as it moves counterclockwise are
cosine and sine functions.

If we have two vectors u and v, we can add them by adding their components. This is
done graphically in figure 1.5 by placing the “tail” of one vector on the “head” of the other.
The sum u+ v is the vector from the origin to the “head” of the second vector. Of course,
that’s just the sum at one point in time. What does u+ v look like if u and v are rotating
at the same rate (answer in A.1 #7)?

Signal Computing 9

1. SIGNALS IN THE PHYSICAL WORLD

u
v

u+v

Figure 1.5: Graphical summation of vectors.

Complex Exponential Representation

While we used the x and y axes above as frames of reference (for considering components
— sine and cosine — of the vector), we didn’t actually define what the plane was. Let’s
imagine that our rotating vectors are in the complex plane, where x is the real axis and y
is the imaginary axis. At any point in time, the location of a vector is therefore a complex
number:

v = x+ jy (1-5)

We use j here for
p
�1, rather than i as you’ve probably seen before, to adhere to the

convention used by electrical engineers (who use i for current). This notation allows us to
represent vectors in the complex plane as complex numbers.

Note that equation 1-5 is the rectangular representation of complex numbers; we can also
represent them in polar form (magnitude and angle), written as R 6 ✓.

Review Exercises: Complex Numbers

1. What is the sum of the two complex numbers x+ jy and v + jw (answer in A.1 #8)?

2. What is the product of the two complex numbers x+ jy and v + jw (answer in A.1 #9)?

3. Convert the complex number z = x+ jy to polar form, R 6 ✓ (answer in A.1 #10).

4. Multiply the two polar-form complex numbers R1 6 ✓1 and R2 6 ✓2 (answer in A.1 #11).

So, we have an easier-to-manipulate representation of a vector at one point in time. But,
we want to represent a rotating vector. Let’s talk about a “standard” sinusoid — one with

Signal Computing 10

1. SIGNALS IN THE PHYSICAL WORLD

unit amplitude — and let’s call this E(✓). We know from our first discussion of the rotating
vector representation that cosine and sine are the x and y axis projections of the vector, so
let’s rewrite our rectangular form in the complex plane as:

E(✓) = cos ✓ + j sin ✓ (1-6)

Can we rewrite the polar form in a similar way? We need a function of ✓ that satisfies
the same requirements as the rectangular form of equation (1-6). The derivative of (1-6) is:

d

d✓
E(✓) = � sin ✓ + j cos ✓ (1-7)

We note that (1-7) is also just jE(✓), which is the original function times a constant.
What function satisfies the condition that its derivative is proportional to itself?

E(✓) = ej✓ (1-8)

d

d✓
E(✓) = jej✓ (1-9)

This is the complex exponential representation. It has the property that ej✓ = cos ✓ +
j sin ✓; also called Euler’s formula (“Euler” is pronounced “oiler”). It will make our work
much simpler. For example, raising the complex exponential to a power is equivalent to

rotating the vector :

E(✓)k =
�
ej✓
�k

= ej✓ej✓ · · · ej✓ = ejk✓ (1-10)

As you can see in (1-10), raising E(✓) to the kth power is equivalent to multiplying the
angle ✓ by k in the complex exponential.

The complex exponential ej✓ has unit magnitude. The representation for a general com-
plex vector R 6 ✓ is therefore Rej✓. So, we see that the sine and cosine representation is the
rectangular form, and the complex exponential is the polar form.

E(✓) = Rej✓ (polar form) (1-11)

E(✓) = R cos ✓ + jR sin ✓ (rectangular form) (1-12)

Self-Test Exercises

1. Multiply the two complex sinusoids z1 and z2 (answer in A.1 #12).

2. The complex conjugate is indicated by z
⇤. If z = x+ jy, z⇤ = x� jy. What is the complex

conjugate of the complex sinusoid, z = Re
j✓ (answer in A.1 #13)?

3. Answer the following for z = x+ jy (answers in A.1 #14):

(a) What is z + z
⇤?

(b) What is z � z
⇤?

(c) What is zz⇤?

Signal Computing 11

1. SIGNALS IN THE PHYSICAL WORLD

Going back to (1-10), we can now write an expression for a complex sinusoid as a function
of time (a rotating complex exponential). The angle of the sinusoid is a function of time,
✓(t) = !t, where ! is its frequency (just as for our original sinusoids):

ej✓(t) = ej!t (1-13)

This rotating complex sinusoid is called a phasor (with apologies to Captain Kirk). The
phasor representation is extremely powerful. Just as with sines and cosines, it turns out that
any periodic function can be written as a unique sum of phasors. Notice that phasors are
complex functions but that we can add them in special ways to represent completely real
functions. For example,

f(t) = ej!t + e�j!t

= cos!t+ j sin!t+ cos�!t+ j sin�!t Use Euler’s formula

= cos!t+ j sin!t+ cos!t� j sin!t simplify �!

= 2 cos!t

where we have used odd and even symmetry properties of sinusoids, (sin�x = � sin x) and
(cos�x = cosx). The function f(t) was represented as a sum of complex exponentials
but had no imaginary component! In fact, sinusoids are often represented using complex
exponentials.

cos x =
ejx + e�jx

2
(1-14)

sin x =
ejx � e�jx

2j
(1-15)

Practical Example: Tuning a Guitar

When a person tunes a guitar, they usually tune just the lowest string to a reference (a pitch
pipe, for example). Then, they finger that string to produce the same note that the next
higher string should. If the second string does produce the same tone, they can hear that.
If the second string is out of tune, it will produce a slightly di↵erent tone, and they can hear
beating. Beating is what results when two sinusoids at di↵erent frequencies are added.

Previously, we added two sinusoids at the same frequency, and saw that the result is
another sinusoid at that same frequency. That is the case when the second string is in tune.
Let’s now add two complex sinusoids with slightly di↵erent frequencies, ! and ! + �, where
the di↵erence between the two frequencies is � ⌧ !:

a1e
j!t + a2e

j(!+�)t = a1e
j!t + a2e

j!tej�t

= (a1 + a2e
j�t)| {z }

low frequency

ej!t|{z}
high frequency

(1-16)

Signal Computing 12

1. SIGNALS IN THE PHYSICAL WORLD

a1

a2

Figure 1.6: Phasor representation of beating.

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time, seconds

Figure 1.7: Amplitude vs. time representation of beating.

This has the form of a complex sinusoid of frequency ! and amplitude that is a function
of time, a1 + a2ej�t, that varies with a frequency of �. Figure 1.6 presents the graphical
version of this, which looks like a top view of the amusement park “octopus” ride. There
are times when the ej�t adds a factor of up to a2 to the first sinusoid and times when it
subtracts a factor of up to a2. The result is the beating waveform seen in figure 1.7 (in this
case, the result of adding 10Hz and a 12Hz sinusoids, which can be seen to produce a 2Hz
“beat frequency”).

Signal Computing 13

1. SIGNALS IN THE PHYSICAL WORLD

MATLAB and Sound Files

• A MATLAB .m file for demonstrating beating is available at http://faculty.
washington.edu/stiber/pubs/Signal-Computing/beating.m.

• Audio files to demonstrate beating: a 1000Hz sine wave at http://faculty.washington.
edu/stiber/pubs/Signal-Computing/1000Hz.au, a 1005Hz sine wave at http://
faculty.washington.edu/stiber/pubs/Signal-Computing/1005Hz.au, and their sum,
at http://faculty.washington.edu/stiber/pubs/Signal-Computing/beating.au.

Frequency and Period

Until now, we’ve been using ! as the symbol for the speed of rotation of a phasor. If t is
in seconds (which we will assume is always the case), then the phasor rotates !/2⇡ times
in one second, or once in 2⇡/! seconds. Remembering that our exponential representation
corresponds cos!t + j sin!t, we see that each of these rotations corresponds to 2⇡ radians
in the oscillation of a sinusoid, and so its units must be radians/second. We will call this
angular frequency, as it is the rate of change of the phasor’s angle per second. However,
when we speak of periodic physical signals, it is more convenient to speak of the number of
times that the signal repeats per second: cycles/second or Hertz. We will use f to refer to
frequencies expressed as Hertz. Since one cycle is 2⇡ radians, we can convert between these
two units as ! = 2⇡f . In this book, we will use whichever units are most convenient for
each topic; you’ll need to note which is in use.

If ! and f are the number of radians or cycles of a sinusoid per second, then their
reciprocals are the number of seconds per radian or cycle of rotation. Seconds per radian is
only infrequently used, so we only define a symbol for seconds per cycle, T = 1/f = 2⇡/!.
This is the period of a signal in seconds.

1.7 Spectra

Let’s return to our discussion of harmonics, but now using complex exponentials. We stated
earlier that any periodic function could be represented by a sum of weighted harmonics.
Let’s start with a sum of two sinusoids. Let’s call the first sinusoid’s frequency !0 and the
second’s !1 = m!0, m = 2, 3, Their sum is a0ej!0t + a1ejm!0t, and there’s nothing we
can do to simplify this equation. This “failure to simplify” is not a result of our lack of
mathematical sophistication — there truly is no simpler representation. Another way of
saying this is that sinusoids at di↵erent frequencies are independent or orthogonal to each
other. In general, if we add a large number of harmonics together, their sum is:

NX

k=0

ake
jk!0t (1-17)

You’ll note that the k = 0 term of this summation has the value a0 for all time; this is
often called the DC component of the signal. All other components have frequencies that are

Signal Computing 14

http://faculty.washington.edu/stiber/pubs/Signal-Computing/beating.m
http://faculty.washington.edu/stiber/pubs/Signal-Computing/beating.m
http://faculty.washington.edu/stiber/pubs/Signal-Computing/1000Hz.au
http://faculty.washington.edu/stiber/pubs/Signal-Computing/1000Hz.au
http://faculty.washington.edu/stiber/pubs/Signal-Computing/1005Hz.au
http://faculty.washington.edu/stiber/pubs/Signal-Computing/1005Hz.au
http://faculty.washington.edu/stiber/pubs/Signal-Computing/beating.au

1. SIGNALS IN THE PHYSICAL WORLD

integer multiples (harmonics) of !0, the fundamental frequency. Note that a sinusoid with
frequency k!0 has a period of 2⇡/(k!0) = T0/k — it repeats k times in T0 seconds. This
means it also repeats every T0 seconds, and since each term in the summation repeats every
T0 seconds, the whole summation repeats that often, and therefore the period of the signal
represented by the summation is T0. As we said before, such a summation can in fact be
used to represent any periodic function of time. The series of weights, ak, is known as the
Fourier Series. This Fourier series is one of the most important and fundamental principles
of signal processing. It allows us to look at the spectrum of a signal.

You should be familiar already with the term “spectrum” as used to describe the con-
tinuous band of colors that white light (sunlight) can be broken into — a rainbow. From
physics, you know that each color corresponds to a specific frequency of the visible spectrum.
Hence, the decomposition of white light into colors is actually a form of frequency analy-
sis. Frequency analysis involves the decomposition of a signal into its frequency (sinusoidal)
components; this is also called spectral analysis. The multimedia signal waveforms we are
concerned with here are basically functions of time.

At this point, you should recognize that the Fourier series represents the spectrum of
a periodic signal. It (and other tools) decomposes signals into spectra defined in terms of
sinusoidal (or complex exponential) components. With such a decomposition, a signal is said
to be represented in the frequency domain; otherwise, usually it is in the time domain. For
periodic signals, such a decomposition is the Fourier Series. For infinite signals (with finite
energy), the decomposition is called a Fourier Transform. For finite, discrete signals, the
decomposition is the Discrete Fourier Transform. Recombining the sinusoidal components
to reconstruct the original signal is basically a Fourier synthesis problem or inverse Fourier

analysis.
The weights, ak, of the Fourier Series are usually complex valued. To explain the deriva-

tion of the Fourier Series, we therefore need to look at vectors in the complex plane.

1.7.1 Interlude: Vectors

Here is a list of vector operations, most of which you are likely already familiar with. Let v
and w be arbitrary vectors and ~x, ~y and ~z be an orthogonal basis (the component vectors
that define the coordinate system, which for 3D Cartesian coordinates would be unit vectors
parallel to the X, Y , and Z axes). We can then define the following:

1. Projection of a vector onto the basis vectors (you may know these as the components

of the vector)

vx = hv,~xi

vy = hv, ~yi (1-18)

vz = hv,~zi

(1-19)

Signal Computing 15

1. SIGNALS IN THE PHYSICAL WORLD

and

wx = hw,~xi

wy = hw, ~yi (1-20)

wz = hw,~zi

(1-21)

2. Expressing a vector using the basis (i.e., as the sum of its components)

v = vx~x+ vy~y + vz~z (1-22)

w = wx~x+ wy~y + wz~z (1-23)

3. Inner product of two vectors

hv,wi = vxwx + vywy + vzwz (1-24)

hv,vi = v2x + v2y + v2z (1-25)

You may be familiar with the inner product of a vector with itself as being its length
squared, |v|2. When the vector is complex the inner product is defined as:

hv,w⇤
i = vxw

⇤

x + vyw
⇤

y + vzw
⇤

z (1-26)

hv,v⇤
i = |vx|

2 + |vy|
2 + |vz|

2 (1-27)

where ⇤ denotes complex conjugate.

We can also consider arbitrary functions to be more generalized forms of vectors. If
f(t) and g(t) are periodic functions of a continuous time variable t with period T , their
inner product is defined as

hf, gi =
1

T

Z T

0

f(t)g⇤(t)dt (1-28)

which is normalized to one by T . Intuitively, you can think of this as a “projection”
of one function onto another, or “how much” of of f is in the same “direction” as g.

4. Vector sum
v +w = (vx + wx)~x+ (vy + wy)~y + (vz + wz)~z (1-29)

5. Distributive and commutative properties of inner products

hv + u,wi = hv,wi+ hu,wi (1-30)

hu,vi = hv,ui (1-31)

6. v is orthogonal to w
hv,wi = 0 (1-32)

7. Unit vector
hv,vi = v2x + v2y + v2z = 1 (1-33)

Signal Computing 16

1. SIGNALS IN THE PHYSICAL WORLD

1.7.2 Derivation of the Fourier Series

Here we present frequency analysis tools for continuous time periodic signals. A periodic
signal is defined as:

f(t) = f(t+ T) (1-34)

where t is a continuous time variable and T is the signal’s period.
The basic mathematical representation of periodic signals is the Fourier Series, which as

we have seen is a weighted sum of harmonically related sinusoids (sinusoids whose frequencies
are all multiples of a single, fundamental one) or complex exponentials. This was first devel-
oped in the nineteenth century by the French mathematician Jean Baptiste Joseph Fourier
to describe heat conduction. Now it has extensive applications in a variety of problems
encompassing many di↵erent fields.

The Fourier Series description of a periodic function f(t), with period T = 2⇡/!0, is
defined as a weighted sum of complex exponentials:

f(t) =
1X

k=�1

cke
jk!0t (1-35)

We may think of the exponential signals (or phasors)

ejk!0t, k = . . . ,�2,�1, 0, 1, 2, . . . (1-36)

as a set of basis vectors, where !0 = 2⇡/T is the frequency of the phasor in radians/second.
By our earlier definition, !0 is the fundmental frequency. In a Fourier series, the periodic
function f(t) is expressed in terms of the basis and ck is the projection of f(t) onto the basis
ejk!0t, just like the projection vx of a vector v onto the basis ~x. The weight, ck, tells us
exactly “how much” of the signal, f(t), is a result of the frequency k!0. From equation 1-28,
the inner product of f(t) and ejk!0t is

ck = hf(t), e
jk!0ti =

1

T

Z T

0

f(t)e�jk!0tdt. (1-37)

where the Fourier coe�cients ck are called the frequency content or spectrum of f(t), k =
0,±1,±2, . . . ,±1. This spectrum is just like the familiar shorthand of writing a vector as a
column or row of numbers, with the understanding that each is the coe�cient of one of the
basis vectors (i.e., when we write v = [123], what we actually mean is v = 1~x+2~y+3~z). This
is the signal’s representation in the frequency domain, where frequency is the coordinate (in
other words, the signal expressed as a function of frequency). Similarly, f(t) is the signal’s
time domain representation, where time is the coordinate. Notice that the Fourier series
transforms a finite (periodic), continuous signal in the time domain into an infinite (because
the values of k range from �1 to +1), discrete (because k only takes on integer values)
spectrum in the frequency domain.

Signal Computing 17

1. SIGNALS IN THE PHYSICAL WORLD

Alternative Derivation of the Fourier Series [Optional]

Another way to derive the formula for the ck is as follows. The aim of this derivation is
to plug in the Fourier Series definition of f(t) into the equation for ck and see if we can
get exactly ck back by manipulating the equation. We first multiply both sides of (1-35) by
the phasor e�jl!0t (l = . . . ,�2,�1, 0, 1, 2, . . .) and then integrate both sides of the resulting
equation over a single period [0, T],

ck =
1

T

Z T

0

f(t)e�jl!0tdt =
1

T

Z T

0

1X

k=�1

cke
jk!0te�jl!0tdt

=
1X

k=�1

ck
1

T

Z T

0

ej(k�l)!0tdt (1-38)

Note that

1

T

Z T

0

ej(k�l)!0tdt =
1

T

ej(k�l)!0t

j(k � l)!0

����
T

0

=
ej(k�l)!0T � 1

j(k � l)!0T
(1-39)

Equation (1-39) has two di↵erent solutions, depending on whether k = l or not. Let’s
make the substitution u = k� l. So, when k = l, u = 0, and the numerator and denominator
of (1-39) are both zero. We therefore use L’Hôpital’s rule to find the limit:

lim
u!0

eju!0T � 1

ju!0T
=

d
du

�
eju!0T � 1

�

d
duju!0T

�����
u=0

=
j!0Teju!0T

j!0T

����
u=0

=
j!0T

j!0T

= 1 (1-40)

For the case of k 6= l, let’s rewrite the numerator of (1-39) as cos(k � l)!0T + j sin(k �
l)!0T �1. Remember that !0 = 2⇡/T , and so !0T = 2⇡. Since both k and l are integers and
k 6= l, their di↵erence is an integer; let’s call that integer m. The numerator then becomes
cos 2⇡m+ j sin 2⇡m� 1. We know that cos 2⇡m = 1 and sin 2⇡m = 0, and so the numerator
is zero. On the other hand, the denominator of (1-39) is j2⇡m 6= 0, and so (1-39) is zero.

In summary,
1

T

Z T

0

ej(k�l)!0tdt =

⇢
1 k = l
0 k 6= l

(1-41)

From the review at the beginning of this chapter (more specifically, the definition of the
inner product of two periodic function in (1-28)), this yields the interesting revelation that

Signal Computing 18

1. SIGNALS IN THE PHYSICAL WORLD

complex sinusoids at di↵erent frequencies are orthogonal (and so, by extension, can serve as
an orthogonal basis).

Using (1-41), equation (1-38) becomes

1

T

Z T

0

f(t)e�jl!0tdt = cl, l = . . . ,�2,�1, 0, 1, 2, . . . (1-42)

We got the same result as (1-37).

Real-Valued Signals

In general, the Fourier coe�cients ck are complex valued. If the periodic signal f(t) is real
valued (the kind of signals we’re concerned with here), the ck satisfy the condition,

ck = c⇤
�k (1-43)

Consequently,
|ck|

2 = |c⇤
�k|

2 (1-44)

Since ck is the (amplitude) spectrum of f(t), |ck|2 is the power spectrum. Equation (1-44)
tell us that the power spectrum is a symmetric (or “even”) function of frequency. Also, when
f(t) is real, we can further decompose the Fourier Series. Equation (1-35) becomes

f(t) =
1X

k=�1

cke
jk!0t

= c0 +
1X

k=1

cke
jk!0t +

�1X

k=�1

cke
jk!0t (split sum into 0/+/- parts)

= c0 +
1X

k=1

cke
jk!0t +

1X

k=1

c�ke
�jk!0t (distribute -1 into second sum)

= c0 +
1X

k=1

[cke
jk!0t + c�ke

�jk!0t] (combine common sum)

= c0 +
1X

k=1

[cke
jk!0t + (c⇤

�ke
jk!0t)⇤] (double conjugate)

= c0 +
1X

k=1

[cke
jk!0t + (cke

jk!0t)⇤] (real signal: ck = c⇤
�k)

= c0 + 2
1X

k=1

Re[cke
jk!0t] (a+ a⇤ = 2Re(a)) (1-45)

With your help in the next self-test exercise, we get

f(t) = c0 + 2
1X

k=1

Re(ck) cos k!0t� 2
1X

k=1

Im(ck) sin k!0t (1-46)

Signal Computing 19

1. SIGNALS IN THE PHYSICAL WORLD

where

Re(ck) =
1

T

Z T

0

f(t) cos(k!0t)dt (1-47)

Im(ck) = �
1

T

Z T

0

f(t) sin(k!0t)dt (1-48)

from (1-37) and Euler’s formula. You can view equations 1-47 and 1-48 as the projection of
f(t) onto cosine and sine functions in the same way that the previous definition of ck was the
projection of f(t) onto complex exponentials. This representation of ck does not require any
complex number arithmetic, but it is often more cumbersome to carry out the integration
using cosines and sines, rather than phasors.

Examples of periodic signals that are frequently encountered in practice are square waves,
rectangular waves (both being used as timing signals in electronics), triangle waves, and of
course sinusoids and complex exponentials. In the next example, we will use the Fourier
series to analyze some of these.

Self-Test Exercises

See A.1 #15–16 for answers.

1. Prove the relationship in (1-43).

2. From equation (1-45), derive (1-46). Hint : Use the fact that equation (1-45) is a real signal
to simplify the complex multiplication.

Example: Fourier series of a general square wave

The simplest type of square wave has a 50% duty cycle: that is, 50% of the time f(t) takes on
the value of 1 and 50% of the time it has the value -1. Let’s do a bit more general of a case.
We will consider a train of rectangular pulses (a kind of square wave, but shifted upward
and scaled so that it has a minimum of zero and a maximum of V0) with pulse duration ⌧
and period T seconds. This waveform can be expressed as

f(t) =

8
<

:

0 region a (nT t < nT + t0)
V0 region b (nT + t0 t < nT + t0 + ⌧)
0 region c (nT + t0 + ⌧ t < (n+ 1)T)

n = 0, 1, 2, . . . (1-49)

The waveform is plotted in figure 1.8 with example regions shown.

There are a few general observations we can make of this signal: the first, that the pulse
duration ⌧ is a variable, so it can be wide or narrow, thus changing the duty cycle. When it
is really narrow, the signal becomes a train of impulses; when it is on the order of ⌧ = T/2,
it is called “50% duty cycle”. The second observation is that t0 changes the pulse’s phase.

Signal Computing 20

1. SIGNALS IN THE PHYSICAL WORLD

0

V
0

0 T 2T 3T

{{{ a b c

T + t0 ! T + t0 + �

 � !

t0 !

Figure 1.8: A train of periodic rectangular pulses with period T , pulse width ⌧ , and initial
pulse start at t0.

According to (1-37), the Fourier coe�cients ck are

ck =
1

T

Z t0

0

0e�jk!0tdt+
1

T

Z t0+⌧

t0

V0e
�jk!0tdt+

1

T

Z T

t0+⌧

0e�jk!0tdt (1-50)

=
1

T

Z t0+⌧

t0

V0e
�jk!0tdt (1-51)

=
V0

T

e�jk!0t

�jk!0

�t0+⌧

t0

(1-52)

=
V0

�jk!0T
[e�jk!0(t0+⌧)

� e�jk!0(t0)] (1-53)

In equation (1-50), the integral defining the Fourier coe�cients in (1-37) has been broken
into three parts for the three “segments” of the square wave: f(t) = 0 (region a, when
nT t < nT + t0), f(t) = V0 (region b, when nT + t0 t < nT + t0 + ⌧), and f(t) = 0
(region c, when nT + t0 + ⌧ t < (n + 1)T). The first and third terms are equal to zero,
leaving only the middle term, which is just the integral of an exponential. If we remember
that the derivative of an exponential deat

dt is aeat, then the anti-derivative from (1-51) to (1-
52) should make sense. Finally, we just need to evaluate the expression in (1-52) between
the two limits t0 and t0 + ⌧ to yield (1-53).

Signal Computing 21

1. SIGNALS IN THE PHYSICAL WORLD

-10π -5π 0 5π 10π
α

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

si
n

c(
α

)

Figure 1.9: The sinc function.

The middle steps are left for your homework; let’s skip to the result:

ck =
V0⌧

T

sin(k!0⌧/2)

k!0⌧/2| {z }
magnitude

e�jk!0(t0+⌧/2)
| {z }

phase

(1-54)

This is just the polar representation of a complex valued ck = Rej✓. The phase ✓ or angle of
ck is

✓ = �k!0

⇣
t0 +

⌧

2

⌘
(1-55)

Let’s define ↵ = k!0⌧/2, and take a look at the magnitude in (1-54). This function oc-
curs frequently enough in modern communication theory to be given a name: the sampling
function, or sinc. We define

sinc↵ =
sin↵

↵
(1-56)

We note that sinc↵ is zero whenever ↵ is an integral multiple of ⇡; that is,

sincn⇡ = 0, n = 1, 2, 3, . . . (1-57)

When ↵ is zero, the function is indeterminate, but it is easy to show that its value is
unity:

sinc 0 = 1 (1-58)

The magnitude of sinc↵ therefore decreases from unity at ↵ = 0 to zero at ↵ = ⇡. As
↵ increases from ⇡ to 2⇡, sinc↵ increases from zero to a maximum less than unity. As ↵

Signal Computing 22

1. SIGNALS IN THE PHYSICAL WORLD

continues to increase, the successive maxima become smaller because the numerator of sinc↵
can not exceed unity while the denominator increases. Also, sinc↵ shows even symmetry.
Figure 1.9 shows the sinc function.

From (1-58), we know that c0 is

c0 =
V0⌧

T
(1-59)

Substituting c0 and ck, k = 1, 2, 3, . . . into (1-45), the Fourier series of f(t) is

f(t) =
V0⌧

T
+ 2Re

(
1X

k=1

V0⌧

T

sin(k!0⌧/2)

k!0⌧/2
e�jk!0(t0+⌧/2)ejk!0t

)
(1-60)

=
V0⌧

T
+ 2Re

(
1X

k=1

V0⌧

T

sin(k!0⌧/2)

k!0⌧/2
ejk!0(t�t0�⌧/2)

)
(collect exponents) (1-61)

=
V0⌧

T|{z}
c0

+
2V0⌧

T

1X

k=1

sinc(k!0⌧/2)

| {z }
ck

cos[k!0(t� t0 � ⌧/2)]| {z }
harmonically related sinusoids

(apply Euler’s) (1-62)

In (1-60), we have used the knowledge of this being a real-valued signal. We collected
the exponents to get (1-61), then factored out the V0⌧/T , applied Euler’s formula to the
exponential, and finally retained only the real part of each term of the summation to yield (1-
62).

Now, a train of pulses is represented by an infinite number of sinusoidal waves. How well
can it be approximated by a finite number? Look at figure 1.10. The solid curve shows the
sum of the first 12 terms of the signal’s Fourier series; it looks like a pulse train modulated
by a sinusoid. The ideal pulses are shown as dashed lines. The approximation gets better
when more terms are used, as in figure 1.11.

Let’s construct the signal’s spectrum: a plot of its Fourier coe�cients. We first consider
|ck| expressed in terms of the fundamental frequency f0, remembering that !0 = 2⇡f0:

|ck| =
V0⌧

T
| sinc(k⇡f0⌧)| (1-63)

The magnitude of any ck is obtained from (1-63) by using the known values of pulse
width ⌧ and signal period T = 1/f0, and selecting the desired value of k (k = 0, 1, 2, . . .).
Instead of evaluating (1-63) at these discrete frequencies, let us sketch the envelope of |ck|
by considering the frequency kf0 to be a continuous variable. That is, though f = kf0 can
really only take on the discrete values (the harmonic frequencies - 0, f0, 2f0, 3f0, . . .) we may
think of k for the moment as a continuous variable. When f is zero, |ck| is V0⌧/T , and when
f has increased to 1/⌧ , |ck| is zero. In fact from (1-57) when f⇡⌧ = m⇡ (m = 1, 2, 3, . . .),
sinc(f⇡⌧) = 0, which yields zeros at frequencies f = m/⌧ .

The resultant line spectrum and envelope are plotted in figure 1.12. The figure is the
plot of the envelope of the Fourier coe�cients {ck} (the spectrum of the periodic sequence

Signal Computing 23

1. SIGNALS IN THE PHYSICAL WORLD

0

V
0

0 T 2T 3T

t0 t0 + �

Figure 1.10: The Fourier series for a periodic sequence of rectangular pulses. The first 12
harmonic terms in summation (1-62) are included. The ideal pulse train is shown as dashed
lines. The period is T = 1, the initial point t0 = 0.5 and the pulse width ⌧ = 0.3333.

of rectangular pulses), versus frequency f = kf0. The magnitude of its peaks decays at the
rate of 1/k.

There are several observations which we may make that relate changes in the line spec-
trum to changes in the graph of rectangular pulses given in figure 1.12. Firstly, note that
the width of the envelope depends upon changes in ⌧ , the pulse width. In fact, the shape of
the envelope does not vary with changes in T ; instead, changes in T correspond to changes
in the frequency interval between spectral lines. If the pulse period T is increased (f0 is
decreased), the number of spectral lines between zero frequency and 1/⌧ increases and the
amplitude of each line decreases. Figures 1.13 and 1.14 illustrate this.

A shift in the phase t0 does not change the line spectrum, that is, |ck| is not a function of
t0. The phase of the frequency components do change with the choice of t0 (we just haven’t
plotted those).

When talking about the generalized square wave, with fixed period T and pulse width ⌧
increasing or decreasing, the result is a family of di↵erent waveforms. When ⌧ = T/2, we
have a 50% duty cycle square wave. When ⌧ takes on di↵erent percentages of T , we get
di↵erent duty cycles. Also, when ⌧ becomes really small, the waveform become a train of
impulses.

Signal Computing 24

1. SIGNALS IN THE PHYSICAL WORLD

0

V
0

0 T 2T 3T

t0 t0 + �

Figure 1.11: The Fourier series for a periodic sequence of rectangular pulses. The sum of
the first 100 terms is shown, as in figure 1.10.

Self-Test Exercise

See A.1 #17 for the answer.

1. Prove (1-58).

1.8 Problems

1. The di↵erential equation for a tuning fork can be written as d2x(t)
dt2 = � k

M x(t) where
M is the mass of the tuning fork, k is a constant, and x(t) is the displacement of the
tuning fork endpoints. Discuss how the mass of the tuning fork a↵ects the frequency
at which it vibrates. Hint: relate the given equation to equation 1-1.

2. What musical instruments might be governed by properties analogous to that of a
tuning fork?

3. When you add two sinusoids with frequencies that di↵er by �, the result is beating.
Imagine you’re tuning a guitar. As the two strings get closer together in tone, what
happens to the beat frequency? Show how this result is predicted by the sum of the
complex sinusoids.

Signal Computing 25

1. SIGNALS IN THE PHYSICAL WORLD

k=0

k=1

k=2

k=3

k=4
k=5

k=6

k=7 k=8

0 3f
0

6f
0

9f
0

V0�

T

V0�

2T

0

V0�

T
|sinc(k⇡f0�)|

|c
k
|

k

Figure 1.12: The spectrum of a periodic sequence of rectangular pulses: the magnitude
of ck vs. frequency f = kf0, where f0 = 1/T (light gray vertical lines). The envelope
for continuous k is plotted as the black curve. Zero points in the spectrum |ck| are at
kf0 = n/T = m/⌧ , m = 1, 2, 3,

4. A complex number can be written in rectangular coordinates as z = x+ jy. Write the
relations to calculate the polar form, z = (r, ✓) or z = rej✓.

5. Using Euler’s formula, express cosx and sin x as a combination of complex exponentials.
Recall that Euler’s Formula is given by: e±j!t = cos(!t)± j sin(!t).

6. Find expressions for the following as complex exponentials:

(a) 1

(b) j

(c) 1 + j, (1 + j
p
3)/2

7. Compute [(1 + j
p
3)/2]2 and (1 + j)4 directly using:

(a) Rectangular representations.

(b) Complex exponentials.

8. Show that (zxzy)⇤ = z⇤xz
⇤

y .

Signal Computing 26

1. SIGNALS IN THE PHYSICAL WORLD

0

0.5

1

0 T 2T

0

1

2

! = 0.50T

0
3f

0
6f

0
9f

0

0

0.5

1

0 T 2T

0

1

2

! = 0.30T

0
3f

0
6f

0
9f

0

0

0.5

1

0 T 2T

0

1

2

! = 0.20T

0
3f

0
6f

0
9f

0

Figure 1.13: The spectrum of a periodic sequence of rectangular pulses, when T is fixed and
the pulse width tau varies.

9. Express |z|2 as a function of z and z⇤.

10. Given the following equations:

x1(t) = 5 sin(2⇡(200)t+ 0.5⇡)

x2(t) = 5 sin(2⇡(200)t� 0.25⇡)

x3(t) = 5 sin(2⇡(200)t+ 0.4⇡)

x4(t) = 5 sin(2⇡(200)t� 0.9⇡)

(a) Using pencil and paper: Express x1(t) through x4(t) as complex exponentials.

(b) Create the sum sinusoid, x5(t) = x1(t) + x2(t) + x3(t) + x4(t). Express x5(t) as a
sum of complex exponentials.

(c) Using complex exponentials, express the amplitude and phase of x5(t) (use pencil
and paper with the aide of a graphing calculator, spreadsheet, or MATLAB).

11. What is the period of e�j ⇡
4 t + e�j ⇡

2 t ?

12. What is the period of e�j!0t + e�j5!0t ?

Signal Computing 27

1. SIGNALS IN THE PHYSICAL WORLD

0

0.5

1

0 T 2T

0

1

2

T = 2!

0
3f

0
6f

0
9f

0

0

0.5

1

0 T 2T

0

1

2

T = 3!

0
3f

0
6f

0
9f

0

0

0.5

1

0 T 2T

0

1

2

T = 4!

0
3f

0
6f

0
9f

0

Figure 1.14: The spectrum of a periodic sequence of rectangular pulses with fixed pulse
width tau and varying period T .

13. Implement a Complex class for representing complex numbers in an object oriented
programming language (C++, C#, Java, python, etc.). Your class should include at
least the following methods:

• add()

• multiply()

• real()

• imag()

• magnitude()

• angle()

Document your code so that this class could be used by someone else. Write a test
program that exercises all of this class’ methods.

14. Derive equation (1-54) from equation (1-53).

15. Determine the coe�cients of the Fourier series for the following signals:

Signal Computing 28

1. SIGNALS IN THE PHYSICAL WORLD

(a) The sinusoid

x(t) = cos
⇡

3
t

(b) The sawtooth waveform
x(t) = t� btc

(c) The rectified wave

x(t) = | cos(
⇡

3
t)|

1.9 Further Reading

• James H McClellan, Ronald W. Schafer, and Mark A. Yoder, DSP First: A Multimedia

Approach, Prentice Hall, 1998, chapters 1–3 (§3.1–3.4), appendix A.

• Martin D. Levine, Vision in Man and Machine, McGraw-Hill, 1985, chapter 1, sections
2.1, 2.2.

• Robert S. Tannenbaum, Theoretical Foundations of Multimedia, Computer Science
Press, 1998, chapters 1 & 2.

• Donald Hearn & M. Pauline Baker, Computer Graphics, Second Edition, Prentice Hall,
1997, sections 2.1–2.4.

• A. Murat Tekalp, Digital Video Processing, Prentice Hall, 1995, chapters 1 & 2.

Signal Computing 29

1. SIGNALS IN THE PHYSICAL WORLD

Signal Computing 30

2 Signals in the Computer

In chapter 1, you were introduced to the nature of physical signals and how they can be
described mathematically. In this chapter, we move onward to discuss how these “real world,”
analog signals end up inside computers: analog to digital conversion (A/D conversion, or
ADC). We then develop the first little bit of a fundamental mathematical representation of
such discrete signals. In the process, we visit the problems that digitization creates. At
the end of this chapter, you should have a basic grasp of how ADC works and the tradeo↵s
involved in A/D parameters versus the characteristics of the analog signal.

2.1 From the physical to the digital

Physical signals fundamentally involve application of energy to cause some physical quantity
to change. For instance, sound is carried by waves of changing air pressure; images are pat-
terns of emitted and/or reflected light. On the other hand, computer signals are collections
of binary numbers — vectors for sound, 2D arrays for images, or sequences of 2D arrays for
video. The process of bridging this gap is the process of connecting the analog world to the
digital computer, or data acquisition. There are three parts to this process:

1. transduction,

2. sampling, and

3. quantization.

Figure 2.1 shows these three steps and the intervening representations of the signal. This
is an important point: the “real” signal is the physical one; what we seek to do is to produce

Transducer
Sample

and
Hold

ADC

Physical
Signal

Analog
Electrical
Signal

Sampled
Signal

Digital
Signal

Figure 2.1: Block diagram of the data acquisition process.

Signal Computing 31

2. SIGNALS IN THE COMPUTER

a representation of this signal within the computer. Our goal is that this representation will
carry all the information of interest that the original had. In this chapter, we will concern
ourselves primarily with two ways that information (fidelity) is destroyed: sampling and
quantization.

But, before either can be performed, the physical signal must be converted into an analog,
electrical signal. This process, known as transduction, involves a sensor that responds to the
physical signal and produces an electrical output. A microphone is such a sensor: it might
include a membrane that vibrates in response to air pressure changes which in turn moves
a coil of wire around a magnet to produce an electric current in the coil. Image sensors
are typically composed of 2D arrays of charge-coupled devices (CCDs), in which photons
a↵ect the leakage of electrical charge. A sensor is typically connected to signal conditioning
hardware (not shown), which amplifies its output to match the subsequent stages’ inputs
and may perform filtering operations (we’ll discuss this filtering later in the chapter). The
result of transduction is truly an analog signal: it is an electrical waveform whose value is
proportional to the physical signal. Herein lies our first source of noise.

Transduction always results in noise. Temperature variations, humidity conditions, and
a variety of other sources cause the sensor representation of a signal to be imperfect. In a
microphone, the relationship between the sensor output and the actual sound may be non-
linear, or there may static noise from other devices (i.e., a hum in the background). For
cameras, low light conditions can cause graininess, a random fluctuation of the actual signal.
However, noise can be introduced in many parts of the digitization process.

Figure 2.1 also presents the basic process of digitization — converting an analog electrical
signal into a sequence of binary numbers. Digitization involves two processes: sampling

and quantization. In the former process, the value of the analog signal is measured at
regular intervals of time (the sampling interval). The output of a sample and hold (S/H)
device will maintain a fixed level in between sampling times. This makes the quantization
process easier: the analog-to-digital converter (ADC) takes an analog signal at some fixed
voltage (the sampled signal) and produces a binary output that approximates the voltage
— quantization. Each of these processes, together with transduction, will add noise to the
signal in one form or another. It is important to know how to measure this noise and how
to avoid it at each step.

2.2 Measuring Noise

The fidelity of a signal is defined as the correspondence between an input signal and an
output signal. A signal with high distortion has low fidelity. We will need to define three
terms in order to measure the amount to which a signal is distorted:

1. Root mean square (RMS) magnitude: this defines the “power” that a signal has. For a

signal f(t) with a period of T we define the RMS magnitude as fRMS =
q

1
T

R
T f(t)2dt.

Where
R
T denotes that the integral is taken over one period of f(t). Intuitively, a signal

with large values will also have a large RMS magnitude.

Signal Computing 32

2. SIGNALS IN THE COMPUTER

2. Signal-to-noise ratio (SNR): this compares the RMS magnitude of the signal, xRMS,
to the RMS magnitude of the noise, nRMS. SNR is defined as xRMS/nRMS. The noise
signal, n(t), can be measured directly (taking the di↵erence between the noisy signal
and the reference signal, if available) or indirectly (such as using the expected noise
magnitude for a given application or device).

3. The decibel (dB): we normally convert SNR into a dB scale using SNRdB = 20 log10(SNR).
There are historical and perceptual reasons for using the decibel scale, but, practically,
it helps to compare large and small SNR values on the same graph. The log operation
makes very small SNR values large negative numbers and simultaneously makes very
large SNR values lesser in magnitude.

Mathematically, SNR becomes:

SNR = 20 log10

✓
xRMS

nRMS

◆
(2-1)

We can quantify the amount of noise in a signal by using the SNR. The idea is that noise
becomes more of a problem when it reaches the same magnitude as the signal. For example,
a slight hissing noise on a loudspeaker is not as troublesome as the same hissing noise in
a telephone conversation because the signal from the loudspeaker “overpowers” the noise
signal. At each stage of transduction and digitization, we can use SNR to tell us exactly how
much distortion we have introduced into the signal. There are other measures of fidelity of a
signal (actually it is an open research problem in many fields), however, we will concentrate
on SNR because it is the most widely used measure and is not specific to any application.

2.3 Sampling

A sample and hold (S/H) device acts like a switch and an analog memory device. While
we may talk of sampling a signal at a point in time, a real device requires a period of time
to perform its function, and this includes sampling. Over some short period of time, the
S/H closes its “switch” and the analog signal is presented to the memory device (which
can be considered to be a capacitor, for example). The memory device’s internal voltage
takes a short time to reach equilibrium with the applied voltage — called the aperture time.
After this aperture time, the “switch” is opened and the sampled signal stays stable while
the ADC converts the signal to a digital value. However, the sampled signal doesn’t stay
perfectly constant — some of the stored electrical charge leaks away, and thus the sampled
signal “sags” towards zero volts. While these limitations of the physical device are important
for sensor design and de-noising, we will focus on the basic idea of sampling at points in
time and assume the S/H performs like an ideal device. Figure 2.2 shows the input/output
behavior of such an idealized device.

We’ve already stated that we’d like the digitization process to retain all the information in
the original physical signal (or, at least, that not being possible, to retain all information as

Signal Computing 33

2. SIGNALS IN THE COMPUTER

0 0.005 0.01 0.015 0.02
!1

!0.5

0

0.5

1

0 0.005 0.01 0.015 0.02
!1

!0.5

0

0.5

1

time (s)

Figure 2.2: Sample and hold output. Analog input signal (sinusoidal curve) is a 330Hz sine
wave; sampling rate is 2000Hz (top) and 300 Hz (bottom). Output of S/H is red lines.
Discrete value are shown as dark circles.

far as is practical). However, sampling alone can destroy information. In the case of figure 2.2
(top), no information is lost (the original waveform could in principle be reconstructed)
because the sampling rate, at 2000Hz, is much higher than the sinusoid’s frequency, 330Hz.
Of course, the higher the sampling rate the more expensive the S/H and ADC, and the
more data produced at the output (i.e., a higher data rate). How slowly can we sample a
sinusoid? Figure 2.2 (bottom) shows the same sinusoid, but this time sampled at 300Hz. In
the 20ms plotted, the original signal goes through approximately six cycles. If we look at
the sampled signal, it looks like a sampled version of a sinusoid that goes through only a half
cycle. If we reconstruct from the sampled signal and compared it to the original it would
have an extremely low SNR! It appears that the relatively low sampling rate has caused the
330Hz frequency component of the original signal to appear as an alias at a lower frequency
(perhaps 25 or 30 Hz).

Signal Computing 34

2. SIGNALS IN THE COMPUTER

Digital frequency, Analog frequency,

Apparent frequency,

sampling

Figure 2.3: Sampling an analog signal, x(t), with an analog (actual) frequency f produces a
digital signal, x[n], at a digital frequency f̂ . If one examines that digital signal and converts
f̂ back to an analog frequency, the apparent frequency is f 0, which may not be the same as
f , due to aliasing.

2.3.1 Aliasing

We see aliasing all the time in our everyday lives. For example, if you have ever seen video of
a car wheel on the highway, it appears as though the wheel is spinning much slower than its
actual rate. This is because the video camera is not sampling the wheel image fast enough
and the high frequency spinning rate aliases back to a low frequency.

Aliasing will occur for a sinusoid whenever the sampling rate is less than twice the
sinusoid’s frequency. Or, alternatively, given a particular sampling rate, only sinusoids with
frequencies up to one-half that rate will be accurately represented. This cuto↵ frequency is
called the Nyquist frequency. Let’s suppose we sample a phasor x(t) every Ts seconds. The
original, analog phasor is x(t) = ej!0t. The sampled version of the phasor is:

x[n] = x(nTs|{z}
sample
times

)

= ej!0nTs (2-2)

In equation (2-2), x[n] gives the value of the signal at the sample times: the phasor repre-
sented as a sequence of measurements, each taken at a time that is a multiple of the sampling
interval Ts. This was done by replacing t by nTs, the sampling times {0, Ts, 2Ts, 3Ts, . . .}.
x[n] is a discrete signal (a function of discrete time). For example, x[n] could be the black
circles in figure 2.2. The value of x[n] is undefined when n is not an integer.

The fundamental reason for aliasing is that we do not know what happens between
samples. Take for example a continuous periodic signal. Every cycle of the signal repeats,
so we can’t tell if two samples were taken from two successive cycles, or if a single cycle was
skipped in between them, or if a hundred cycles were skipped. If we sample a signal and
then reconstruct it from the samples we must assume that in between samples the signal is
smooth (i.e., it has no other frequencies above the Nyquist frequency).

Signal Computing 35

2. SIGNALS IN THE COMPUTER

To reconstruct a signal from its samples we need to talk about the notion of actual

frequency versus digital frequency and apparent frequency, as shown in figure 2.3. We can
use these quantities to calculate precisely if a frequency will alias, and at what frequency it
will appear. The actual frequency of a signal is the continuous time frequency that we are
accustomed to talking about. For ej!0t, the actual frequency is !0. The digital frequency is
the frequency at which the signal appears to be based on the indices, n, of the sampled signal.
Once sampled, ej!0t becomes ej!0nTs which has a digital frequency of !̂0 = !0Ts = !0

2⇡
!s
.

x(t) = exp(j !0|{z}
actual

t)

x[n] = exp(j !0Ts|{z}
digital, !̂

n) (2-3)

Digital frequency, !̂, must be between�⇡ and ⇡. This is because of Nyquist. For example,
if the sampling rate, !s, is equal to 4!0, then the digital frequency is

!̂0 = !0 ⇥
2⇡

!s
= !0 ⇥

2⇡

4!0
=

⇡

2

which is less than ⇡, so Nyquist is satisfied.
Apparent frequency, !0, is the frequency which we get by converting from digital frequency

back to continuous time frequency. To convert from digital frequency to apparent we use
the following formula,

!0 = !̂ ⇥
!s

2⇡
(2-4)

which of course is just the inverse of the previously-used conversion from continuous to digital
frequency.

For our continuing example, when !s is equal to 4!0, this means the apparent frequency
is !0

0 = ⇡/2 ⇥ !s
2⇡ = ⇡/2 ⇥ 4!0

2⇡ = !0. Since the sinusoid was sampled at greater than the
Nyquist rate, the apparent frequency equals the actual frequency.

If we sample at a frequency less than Nyquist the apparent and actual frequencies are
di↵erent. For example, if we instead sample at !s = 4/3!0, then the digital frequency will
be !̂0 = !0

2⇡
4/3!0

= 3⇡/2, which is not on the interval �⇡ to ⇡. We convert the frequency

down by using a clever identity, e�j2⇡n, which is equal to 1 for all values of n,

x[n] = ej
3⇡
2 n

= ej
3⇡
2 ne�j2⇡n (e�j2⇡n = 1)

= ej(
3⇡
2 �2⇡)n (combine exponents)

= e�j ⇡
2 n (equivalent digital frequency)

Essentially, this identity allows us to subtract 2⇡ from the digital frequency until it is on
the correct interval. Geometrically, we see that 3⇡

2 is the same as �⇡
2 . When we convert

Signal Computing 36

2. SIGNALS IN THE COMPUTER

to apparent frequency we get !0

0 = �⇡/2 ⇥ !s
2⇡ = �⇡/2 ⇥ 4!0

6⇡ = �!0/3, which is lesser in
magnitude than the actual frequency and negative (the phasor is spinning in the opposite
direction).

Furthermore, from equation 2-4 we can see that the sampling frequency, !s, corresponds
to the digital frequency !̂ = 2⇡. In digital frequency, we have seen that all frequencies at
multiples of 2⇡ from each other have the same apparent frequency. This gives the following
relationship between apparent and actual frequency:

!0

0 =!0 + k!s (k = . . . ,�2,�1, 0, 1, 2, . . .) (2-5)

The apparent frequency could be the result of any frequency that is at a multiple of the
sampling frequency.

Now, remember that we are dealing with a real-valued signal, not a complex-valued one;
we use the complex exponential as a representation that makes the math easier. For a real-
valued signal, the imaginary component of the complex exponential must be canceled out.
We can do this easily by adding another complex exponential at a negative frequency, since
cos!0t = 1/2ej!0t + 1/2e�j!0t. So, for a completely real sinusoid we should really write,

{!0

0} = ±!0 + k!s (2-6)

Let’s consider the case where !s/2 < |!0| < !s, that is, the sinusoid’s frequency is
just a bit greater than the Nyquist frequency (or, equivalently, you could think of it as the
sampling rate being just a bit too slow: !s < 2|!0|). Call the amount that |!0| exceeds !s/2
!a = |!0|�!s/2. Let’s figure out what happens to the negative frequency component, �!0.
Using !a, we can rewrite �!0 as

�!0 = �!a � !s/2 (2-7)

(this is simply solving the !a equation for �!0).
But we know that, according to equation (2-6), the sinusoid’s frequency really corresponds

to a set of ambiguous frequencies, and so we can write equation (2-7) as �!0 + k!s =
�!a � !s/2 + k!s to show all of the ambiguous frequencies. To simplify matters, let’s just
look at the “first” ambiguous frequency at k = 1:

!0

0 = �!0 + !s = �!a � !s/2 + !s (substitute k = 1)

!0

0|{z}
apparent
frequency

= �!a + !s/2|{z}
Nyquist
frequency

So, the apparent frequency is one that is just a bit below the Nyquist frequency. In fact,
if we substitute back in the definition of !a, we get that the apparent frequency is located
at !s�!0. So, the first ambiguous frequency for the negative frequency component of a real
sinusoid is located at a positive frequency.

What if the sampling frequency is not just a bit too slow? In that case, !0 > !s. To find
the location of the k = 1 ambiguous frequency, we can follow the above procedure and find

Signal Computing 37

2. SIGNALS IN THE COMPUTER

that we can just subtract multiples of !s from !0 until its absolute value is less than !s/2.
Now we can see that the sampled signal in figure 2.2 (bottom) must have a frequency of
330-300=30Hz (subtracting the sampling frequency of 300Hz from the sinusoid’s frequency
of 330Hz one time).

At the end of chapter 1, we saw how any function can be represented as a sum of
sinusoids — its Fourier series. If you look at the above discussion, you will see that, if we
replace the phasor in, say, equation (2-3) by a sum of phasors at frequencies !1,!2,!3, . . .,
we will reach the same conclusions, but they will now apply to each frequency component :
each will produce aliases. In the case of the square wave of Figure 1.8, the frequencies of the
sinusoids have no upper limit — the signal’s spectrum is infinite. Certainly, then, there will
be frequencies greater than !s/2, regardless of how fast we sample.

How can we avoid this aliasing? We’ve been discussing the Nyquist frequency in terms
of the sampling frequency; that the signal must have frequency components less than one-
half the sampling frequency. Another way of looking at sampling is to require that the input
signal be band limited : that it have a maximum frequency component, rather than an infinite
spectrum. Given that the signal is band limited with maximum frequency !m (which we can
achieve using analog filters, similar to those described in chapters 3 and 5), then we can set
our sampling rate so that it is at least 2!m.

Self-Test Exercises
See A.2 #1–3 for answers.

1. Aliasing can happen in the world around you. Identify the source of the original signal and
the sampling mechanism in the following situations:

(a) The hubcap of a car coming to a stop in a motion picture;

(b) A TV news anchor squirming while wearing a tweed jacket;

(c) A helicopter blade while the helicopter is starting up on a sunny day.

2.4 Quantization

Understanding aliasing helps us deal with the problems raised by discretizing time using a
sample and hold device. There is another discretization that occurs, however: a discretization
of the analog level output from the S/H to the finite number of binary values output by the
ADC. This process is formally known as quantization. Since an ideal analog signal has an
infinite number of possible values, while the computer representation (be it integer or floating
point) has a finite number of values, there will be some error.

This error is illustrated in figure 2.4. To produce this figure, the output of the S/H from
figure 2.2 (top) was quantized to 256 levels, each corresponding to 1/256 of the distance
between -1 and +1. This result was then subtracted from the ideal S/H output and plotted
as the error shown in the bottom plot in the figure. How much can this error be? The error
can be as much as one part in ±1/2 of the least significant bit (LSB). This follows from

Signal Computing 38

2. SIGNALS IN THE COMPUTER

0 0.005 0.01 0.015 0.02
!1

!0.5

0

0.5

1

x
(t
)

0 0.005 0.01 0.015 0.02
!5

0

5
x 10

!3

E
rr
o
r,

n
(t
)

time (s)

Figure 2.4: Error in output (bottom) of an ADC that uses 8 bits to represent values in the
range [-1, +1] for the S/H output in figure 2.2 (top). Original analog signal is shown in top
plot.

the fact that, when we convert the analog value to digital, we round to the nearest digital
number. In other words, the ADC number is within LSB/2 of the actual signal. What are
the statistics of this noise? Assuming that Nature hasn’t conspired against us, we would
expect the mean of this error to be zero. If all ADC input values have equal probability,
then the errors should also, which means that it is uniformly distributed between minus and
plus one-half. Remembering our statistics, the standard deviation of a continuous random
variable is the square root of its variance,

�2 =

Z +1

�1

(x� µ)2dx (2-8)

In this case, µ = 0, the variable’s range is [-1/2, +1/2], and the variable’s value is constant
within that range. The result is a standard deviation of � = 1/

p
12 LSB ⇡ 0.29 LSB (how

[answer in A.2 #4]?). In the case of an 8-bit ADC, this comes to 0.29/256 = 1/883 of the

Signal Computing 39

2. SIGNALS IN THE COMPUTER

ADC’s full range.

Noise is ubiquitous in the physical world — and this includes analog electronics (digital
electronics have noise, too, but its e↵ect on digital signals is di↵erent). Sometimes, this
noise is truly random, or stochastic, perhaps produced by thermal e↵ects within the circuitry.
Other times, the noise is merely unwanted signal, such as “background noise” in an audio
recording. To quantify this noise we will use SNR (equation 2-1). The standard deviation,
�, is an estimate of the noise power (nRMS = �). For simplicity we will assume that the
signal uses the entire ADC range (256 levels, xRMS = 256). So, for example, if there was
no other noise present than that from quantization by an 8-bit ADC, the SNR would be
20 log10 256/0.29 ⇡ 59dB. For a 12-bit ADC, the SNR is 83dB; for 16-bit, the SNR is 107dB.

Another way we might consider the noise that results from quantization is to consider
that amount of noise that it adds given a realistic signal that already includes other noise.
For example, let’s suppose that the ADC input signal has a range of 5 volts (V), and that it
includes noise (from whatever source) with a standard deviation of 1 millivolt (mV). If we
use an 8-bit ADC, 5V corresponds to 255 and 1mV is then 0.051 LSB. (What is the SNR
for the original signal (answer in A.2 #5) ?

When we add random variables, we add their variances, and so the standard deviation of
their sum is the square root of the sum of their variances, �0 =

p
�2
1 + �2

2. For an 8-bit ADC,
then, we have the total noise (inherent plus quantization) of

p
0.0512 + 0.292 = 0.294 LSB.

So, almost all of the noise in the digitized signal is caused by quantization (the noise on the
output represents a 476% increase from the input noise)! If we go to 12 bits, the total noise
is
p
0.822 + 0.292 = 0.87 LSB — quantization increases the noise by 6%. From a design point

of view, we select the ADC based in part on the expected noise in the analog signal and the
maximum noise we can tolerate in the digital one.

MATLAB and Sound Files

• A MATLAB .m file for demonstrating quantization using tones is available at http://
faculty.washington.edu/stiber/pubs/Signal-Computing/quantdemo1.m.

• A MATLAB .m file for demonstrating quantization using a more interesting sound
is available at http://faculty.washington.edu/stiber/pubs/Signal-Computing/
quantdemo2.m, along with a data file at http://faculty.washington.edu/stiber/pubs/
Signal-Computing/amoriole2.mat.

Self-Test Exercises
See A.2 #6 for the answer.

1. What ratio of amplitudes is represented by one bel?

Signal Computing 40

http://faculty.washington.edu/stiber/pubs/Signal-Computing/quantdemo1.m
http://faculty.washington.edu/stiber/pubs/Signal-Computing/quantdemo1.m
http://faculty.washington.edu/stiber/pubs/Signal-Computing/quantdemo2.m
http://faculty.washington.edu/stiber/pubs/Signal-Computing/quantdemo2.m
http://faculty.washington.edu/stiber/pubs/Signal-Computing/amoriole2.mat
http://faculty.washington.edu/stiber/pubs/Signal-Computing/amoriole2.mat

2. SIGNALS IN THE COMPUTER

2.5 Dynamic Range

So, one reason we might choose an ADC with more bits is to reduce the e↵ects of quantization
noise. There is another reason: our desire to represent both low and high amplitude signals
with reasonable fidelity. The need for this dynamic range can result in us needing more bits.
Let’s use as an example the digitization of an orchestra where the ratio of the low amplitude
passages to the high amplitude ones is 1/1000 (60dB). If we use an 8-bit ADC, then 255
corresponds to the highest amplitude and the lowest amplitude is 0.255 LSB. In other words,
we have used just about all the bits for the loudest passages, leaving nothing for the quiet
parts! For a 12-bit ADC, the lowest amplitudes are allocated about 2 bits; for a 16-bit
ADC, only about 6 bits. The reason for this is that we’ve coded the signal linearly, with the
step between ADC outputs being the same for low and high amplitude signals. Logically,
however, it would seem unlikely that our ears would be as sensitive to slight changes in loud
passages as they would be to the same changes to quiet ones — that at least some part of
our perception would be based on relative comparisons, not just absolute di↵erences.

This intuition is correct, and so consideration of the psychophysics of hearing (the in-
tersection of the physics of sound and the psychology of perception) leads us to a solution
for audio digitization: companding. We first pass the analog signal through a “squashing
function” before digitization. This nonlinear function doesn’t modify the quiet passages (the
region of the function near zero is basically linear, with a slope of one). However, it causes
changes in loud passages to result in smaller changes in the signal to be digitized. This is
equivalent to allocating more bits to the quiet passages and fewer to the loud ones. Assuming
we use the exact inverse function on any audio output provided by our system, there should
be little noticeable e↵ect of this companding.

Of course, this is all based on the assumption that we are digitizing a signal that will
be listened to. If, on the other hand, the signal is some other kind of data not for “human
consumption,” then small steps at high amplitude may be just as important as those at low
ones, and so companding won’t be usable — it would destroy valuable information.

2.6 Periodic and Aperiodic Signals

In this chapter, we talked about a signal as being a sum of sinusoids, as in chapter 1. In
general, a periodic signal can be expressed as a sum of both sines and cosines, which we can
express as the sum of complex sinusoids:

f(t) =
+1X

k=�1

cke
jk2⇡t/T (2-9)

Equation (2-9) is the general Fourier series, which can be used to represent any periodic
signal with period T . In this series, all of the complex sinusoids have periods that are mul-
tiples of T (frequencies that are multiples of 2⇡/T). So, the frequency content, or spectrum,
of a periodic signal (the cks) is discrete: it only has values at particular frequencies.

Signal Computing 41

2. SIGNALS IN THE COMPUTER

As we shall see in chapter 6, for an aperiodic signal, the Fourier series becomes the
Fourier integral, and the signal’s spectrum is continuous :

f(t) =
1

2⇡

Z +1

�1

F (j!)ej!td! (2-10)

In equation (2-10), the function F (j!) describes the magnitude of the complex sinusoid
at frequency !. This is the continuous (because ! can take on all values, not just a discrete
set) spectrum of an aperiodic signal. Intuitively, we take the limit as the period of the signal
goes to infinity in equation 2-9, which pushes the spacing between the ck spectral lines closer
and closer until the spectrum becomes continuous. I’ll revisit this topic later, in more detail.

2.7 Problems

1. What is the RMS magnitude of the sine wave A sin(!t)?

2. What is the RMS magnitude of the sawtooth waveform

x(t) =
A

T
t, 0 < t <= T

where x(t) repeats every T seconds

3. The sin wave from problem 1 is sampled in noise, if the desired SNR is 20 dB, how
large can the RMS magnitude of the noise be?

4. If the sawtooth waveform from problem 2 is considered noise and the sine wave from
problem 1 is the signal, what is the SNR in dB?

5. The signal ej2⇡⇥200t is sampled at !s = 2⇡ ⇥ 300. What are the actual, digital, and
apparent frequencies?

6. The signal cos(2⇡ ⇥ 200t) is sampled at !s = 2⇡ ⇥ 250. What are the actual, digital
and apparent frequencies of the resulting cosines?

7. Consider the 50% duty cycle square wave with amplitude from -1 to 1 and period T .

(a) What is the RMS magnitude?

(b) The fourier series of the 50% duty cycle square wave is given by,

4

⇡

1X

k=1,3,5...

sin(k!0t)

k

If we consider the “band limit” of the square wave to be when it has no other
frequencies with magnitudes larger than 1% of the RMS magnitude, then what
is the minimum sampling rate to capture all frequencies below the “band limit”
without aliasing?

Signal Computing 42

2. SIGNALS IN THE COMPUTER

8. Suppose we wish to sample from an audio signal that ranges from 0 to 2.5V (Assume
that the range of our ADC is 0-2.5V also). If the analog noise on the line is 3mV and
our ADC is 8bits, what percentage of the total SNR is from the analog noise and what
percentage is from the 8 bit quantization?

9. If we have the same signal from question 8 (audio signal from 0-2.5V with 3mV analog
noise),

(a) how many bits should our ADC have so that the noise added by quantization is
less than the analog noise?

(b) how many bits should our ADC have so that the quantization noise does not
decrease our SNR by more than 1%?

2.8 Further Reading

James H McClellan, Ronald W. Schafer, and Mark A. Yoder, DSP First: A Multimedia

Approach, Prentice Hall, 1998, chapter 4 (§4.1–4.3).

Signal Computing 43

2. SIGNALS IN THE COMPUTER

Signal Computing 44

3 Filtering and Feedforward Filters

3.1 Introduction

In this chapter, we will introduce you to the most basic type of algorithm for processing
digital signals: feedforward filters. We start with the concept of filtering and the operation
of basic feedforward filters. By the end, you should understand some important terms related
to filters, for example, frequency response, phase response, transfer function and zeros of a
transfer function. You should be able to implement simple digital filters on a computer and
use them to solve some simple signal processing problems.

The concept of filtering should not be new to you. For example, if you were interested
in filtering and opened this book, you would see that this chapter deals with filtering and
so you would pay attention to this chapter and ignore the others. Your mind performed a
bandpass filter with the pass band being chapter 3. Some other kinds of filters are low pass,
high pass, and band stop. Using the same example, a low pass filter allows you to attend to
all the chapters in the book, from the beginning to the end of the pass band, say chapter 3;
the high pass on the other hand will pass only the chapters beyond a certain one, say beyond
chapter 4; the band stop is the one that allows you to pay attention to all the chapters except
the stop band, say chapter 3.

In the signal processing domain, filters exclude and/or include signal frequencies. For
example, consider a signal x(t) (where t is time) with four sinusoidal components. It has
frequencies at f1 = 50, f2 = 100, f3 = 250, and f4 = 350:

x = sin(2⇡tf1) + sin(2⇡tf2) + sin(2⇡tf3) + sin(2⇡tf4) (3-1)

Self-Test Exercise

See A.3 #1 for the answer.

1. Is the signal of equation 3-1 periodic? If so, what is its period?

Figure 3.1 shows a plot of about 0.1 second of this signal. Its four frequencies are
shown as green peaks in figure 3.4. Let’s say that we would like to have a filter to keep
the f3 = 250Hz sinusoid and get rid of the f1, f2, and f4 sinusoids. This filter can be
visualized as in figure 3.2. Here, the horizontal axis is frequency and the vertical axis is

Signal Computing 45

3. FILTERING AND FEEDFORWARD FILTERS

0.1 0.2
−3

−2

−1

0

1

2

3

Time (sec)

W
av

ef
or

m

Figure 3.1: A sinusoidal signal with four frequency components: f1 = 50, f2 = 100, f3 = 250,
f4 = 350Hz.

magnitude of the filter’s response. The filter is designed to have a frequency passband be-
tween 200 and 300 Hz, which means that only the signal’s frequency components within
this band are allowed to pass. Figure 3.3 shows this filter’s output — in other words,
the filtered signal — plotted along time. Another way to look at the filtered signal is
its frequency components, which are shown in figure 3.4 (magenta). This latter graph
clearly shows that, after filtering, the signal is very close to a 250 Hz sinusoid, exactly
as expected. You can hear these two signals as sounds: http://faculty.washington.
edu/stiber/pubs/Signal-Computing/sine4.au is the sum of four sinusoids and http:
//faculty.washington.edu/stiber/pubs/Signal-Computing/filtered_sine4.au is the
filtered version.

At this point, you should have an idea of what filters do. Next, I will explain how filters
work.

3.2 Feedforward Filters

3.2.1 Delaying a phasor

In chapter 1, we learned the term phasor, a complex sinusoid expressed as ej!t. We also saw
that this representation makes the math simpler for adding sinusoids, at least. A phasor’s
magnitude is one, its frequency is !, and its angle is !t, where t is time. It moves around
the unit circle counter-clockwise along time. If we delay it by ⌧ sec, then the delayed time
is t� ⌧ , and we can write this as:

ej!(t�⌧) = e�j!⌧ej!t (3-2)

This is the product of two phasors at the same frequency. This doesn’t do anything

Signal Computing 46

http://faculty.washington.edu/stiber/pubs/Signal-Computing/sine4.au
http://faculty.washington.edu/stiber/pubs/Signal-Computing/sine4.au
http://faculty.washington.edu/stiber/pubs/Signal-Computing/filtered_sine4.au
http://faculty.washington.edu/stiber/pubs/Signal-Computing/filtered_sine4.au

3. FILTERING AND FEEDFORWARD FILTERS

0 100 200 300 400 500
0

0.5

1

Freq. (Hz)

M
ag

. o
f F

re
q.

 R
es

p.

Figure 3.2: Filter’s frequency response. The pass band is [200 300] Hz.

0.1 0.2
−1

0

1

Time (sec)

W
av

ef
or

m

Figure 3.3: The signal (3-1) after filtering out frequencies 50, 100 and 350Hz.

except rotate the phasor by �!⌧ (i.e., it doesn’t change its magnitude).

3.2.2 A simple feedforward filter

Filters combine delayed versions of signals. We have already seen that signals are made up of
phasors. A simple feedforward filter’s block diagram is shown in figure 3.5. A block diagram
is a type of data flow diagram: it shows flow of signal data within the filter (in contrast to
a flow chart, which shows flow of control within a program). In figure 3.5, the input signal
data x(t) branches, with one copy sent to an adder (“+”) and another sent to a delay block.

Signal Computing 47

3. FILTERING AND FEEDFORWARD FILTERS

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

Frequency (Hz)

Fr
eq

. C
om

po
ne

nt
s

Figure 3.4: Spectrum of four-sinusoid signal (green) and its filtered version (magenta).

Delay

by τ

x(t) y(t)

b
1

Figure 3.5: A basic feedforward filter block diagram.

The output of the delay block is sent to a multiplier, which multiplies it by the constant b1
(sometimes, multiplication by a constant is just indicated by writing the constant next to a
link). Its output, y(t), is the summation of its input and a scaled (or weighted) version of its
input delayed by ⌧ . Given an input signal x(t), its delayed version x(t� ⌧), and coe�cient
b1, the output y(t) can be written by inspection of the block diagram as:

y(t) = x(t) + b1x(t� ⌧) (3-3)

Signal Computing 48

3. FILTERING AND FEEDFORWARD FILTERS

When the input is a phasor, x(t) = ej!t, equation (3-3) becomes:

y(t) = ej!t + b1e
j!(t�⌧) (3-4)

Notice that the input and the output have the same frequency, !. We can factor out the
ej!t in equation (3-4) to obtain:

y(t) = [1 + b1e
�j!⌧]ej!t (3-5)

= [1 + b1e
�j!⌧]x(t) (3-6)

We now define a filter’s frequency response (how its output varies as a function of the input
frequency) to be the ratio of output to input,

H(!) =
y(t)

x(t)
(3-7)

which in this case is
H(!) = 1 + b1e

�j!⌧ (3-8)

So, in general, the output of a filter can be expressed as the product of its input and its
frequency response,

y(t) = H(!)x(t) (3-9)

Remember that ⌧ is a constant delay; what can vary here (besides t, which is the same
for both x(t) and y(t)) is the frequency of the input, !. So, H(!) is a complex function
of frequency. Frequency response is generally written in a polar form with its magnitude
response |H(!)| and phase response ✓(!):

H(!) = |H(!)|e�j✓(!) (3-10)

According to equations (3-9) and (3-10), for a given input sinusoid at frequency !, the
filter scales the amplitude by its magnitude response |H(!)| and shifts its phase by the
phase response ✓(!). These two functions completely define the filter’s behavior. For this
particular example, considering only the magnitude,

|H(!)| = |1 + b1e
�j!⌧

| (3-11)

= |1 + b21 + 2b1 cos(!⌧)|
1
2 (3-12)

(leaving the derivation to an upcoming self-test exercise).
Since | cos(!⌧)| 1, the maximum value |H(!)| can reach is (1 + b1), which occurs

when the angle !⌧ = n⇡, n = 0, 2, 4, ... (zero or even multiples of ⇡). Why is this (answer
in A.3 #2)? Similarly, the minimum of |H(!)| is 1� b1, which happens when !⌧ = n⇡, n =
1, 3, 5... (odd multiples of ⇡). For example, let’s say ⌧ = 167µs. Remembering that !
(radians/second) is converted to Hz by ! = 2⇡f , this delay corresponds to a filter with
passbands centered at 2⇡f⌧ = n⇡, or f = n/(2⌧) for even n, producing maxima at 0, 1/⌧

Signal Computing 49

3. FILTERING AND FEEDFORWARD FILTERS

(6 kHz), and 2/⌧ (12 kHz) and notches at f = n/(2⌧) for odd n, or 1/(2⌧) (3 kHz), 3/(2⌧)
(9 kHz), and 5/(2⌧) (15 kHz).

You can easily see how the input signal’s frequency components (remember that all
periodic functions can be expressed as sums of complex sinusoids) will be altered by the
filter: when they are within the filter’s passbands, they will be passed through; they will
be reduced in magnitude or filtered out when their frequency matches the low magnitude
response. Figure 3.2 is another example of a bandpass filter with passband [200 300] Hz.
The input signal’s frequencies out of this range are filtered out. This is shown in figure 3.4:
in the output signal, only the frequency component at f = 250 Hz is left.

Self-Test Exercise

See A.3 #3 for the answer.

1. Use Euler’s formula and the definition of the magnitude of a complex vector to derive (3-12)
from (3-11).

3.2.3 Digital Filters

Electrical engineers have spent a lot of time developing di↵erent kinds of filter transfer func-
tions for di↵erent classes of filters. You may run across names like Butterworth or Cheby-
shev. The motivation behind this has been to produce filters with good properties (flatness
of the passband, steepness of the rollo↵ from the passband, minimal phase distortion) that
is still implementable in analog hardware (operational amplifiers, resistors, and capacitors).
However, once we digitize a signal, we can filter it in a computer because filtering is a
mathematical operation and that’s what computers do. By directly implementing a filter’s
frequency response, we can implement digital filters that may be di�cult or impossible to
implement in analog hardware.

To be implemented on a computer, an analog filter must be discretized in its variables, to
yield a digital filter. There are two important points here related to digital filters compared
to analog filters:

1. Time is expressed as an integer times a sampling period, Ts.

2. Only frequencies below the Nyquist frequency can be represented.

For the first point, recall that digitized time t or ⌧ is in form of:

t = nTs (digital time) (3-13)

or,

⌧ = mTs (digital delay) (3-14)

where n and m are integers, and Ts is the time interval between samples or the sampling
period, whose units are sec/sample. Note in equation (3-14) that we can only delay a

Signal Computing 50

3. FILTERING AND FEEDFORWARD FILTERS

digital signal by an integer number of sampling intervals. When the sampling rate is fs
(samples/second), Ts = 1/fs. So the phasor becomes ej!t = ej!nTs , with its exponent having
units of radians/sec ⇥ samples ⇥ sec/samples = radians.

It’s rather cumbersome to have to carry around
Ts or fs in all our equations. Additionally, if we keep
these variables we will always need to note and re-
member the signal in question’s Nyquist frequency.
To simplify our notation, let’s again use our notion
of digital frequency, !̂. Recall that !̂ = !Ts and is a
normalized frequency on the interval �⇡ to ⇡ (with
units of radians/sample). Using this notation we
only need to use the sample index n, rather than the
analog time t. Similarly, our normalized frequency
will be f̂ = fTs = f/fs, with units of cycles/sample.

Units:

Ts seconds/sample
fs samples/second
t seconds
f cycles/second (Hz)
! radians/second
fNyquist = 1/2fs cycles/second
n samples
!̂ radians/sample
!̂Nyquist = ⇡ radians/sample
f̂ cycles/sample
f̂Nyquist = 1/2 cycles/sample

Our phasor then becomes ej!nTs = ej!̂n, and has the same form as the analog version, except
that we are now using the sample index instead of continuous time.

For the second point, recall that the Nyquist frequency is:

fNyquist =
fs
2

(3-15)

Only frequencies below fNyquist will be accurately represented after sampling, beyond it they
are aliased to frequencies below fNyquist . It is important to restrict the frequency range to
fNyquist so you can get correct results.

Again, for convenience, the digital frequency can be normalized by fs,

f̂ =
f

fs
(3-16)

and

f̂Nyquist =
fNyquist

fs
=

fs/2

fs
=

1

2
(3-17)

Since the analog f fs/2, f̂ is a fraction that ranges between zero and 1/2 — a fraction of
the digital sampling rate. In other words, for a sinusoid, we can only have up to 1/2 of a
cycle per sample. We can multiply it by fs to convert it back to the analog units of Hz, if
necessary.

If f̂Nyquist is 1/2, the normalized !̂Nyquist is

!̂Nyquist = 2⇡f̂Nyquist = 2⇡ ⇥ 1/2 = ⇡ (3-18)

This explains why !̂ is always between �⇡ and ⇡ and why f̂ is always between �1/2 and
1/2 (its Nyquist!). Going back to our simple feedforward filter, the discrete representation
of equation (3-12) with a one time step delay (⌧ = Ts) is:

|H(!̂)| = |1 + b21 + 2b1 cos(!̂)|
1
2 (3-19)

Signal Computing 51

3. FILTERING AND FEEDFORWARD FILTERS

When !̂ is zero, |H(0)| = (1 + b1). When !̂ = !̂Nyquist = ⇡, |H(!̂Nyquist)| = (1 � b1). The
response begins with a large magnitude and reaches a minimum at f̂ = 1/2 (the maximum
digital frequency). The filter has a broad band from 0 until the minimum, so it can pass all
the frequencies from 0 to below 1/2 — this filter is a lowpass filter!

Self-Test Exercises

See A.3 #4–5 for answers.

1. Suppose that we sample a signal at 1000Hz. For each of the following analog frequencies
f , determine !, f̂ , and !̂. Indicate if that frequency will be aliased.

(a) f = 100Hz.

(b) f = 200Hz.

(c) f = 500Hz.

(d) f = 1000Hz.

2. Suppose that we sample a signal at 44.1kHz (the sampling rate used in audio CDs). For
each of the following analog frequencies f , determine !, f̂ , and !̂. Indicate if that frequency
will be aliased.

(a) f = 100Hz.

(b) f = 1000Hz.

(c) f = 10000Hz.

(d) f = 20000Hz.

(e) f = 25000Hz.

3.2.4 Delay as an Operator

We’re still on our quest to make the mathematics of filter design and analysis as simple as
possible. Generally, a feedforward filter can have many delays, not just one, and the input
x[n] to output y[n] relation can be written as:

y[n] = b0x[n] + b1x[n� 1] + · · ·+ bMx[n�M]

=
MX

k=0

bkx[n� k] (3-20)

where M is the number of delays. We shall refer to this as the filter’s defining equation.
Each term in the summation corresponds to a parallel pathway in the block diagram with a
particular delay and constant multiplier.

Signal Computing 52

3. FILTERING AND FEEDFORWARD FILTERS

When x[n] is the phasor ejn!̂ this becomes

y[n] =
MX

k=0

bke
jn!̂�jk!̂ (3-21)

= ejn!̂
MX

k=0

bke
�jk!̂ (3-22)

= x[n]

|{z}
original signal

MX

k=0

bke
�jk!̂

| {z }
delaying terms

(3-23)

Now that you’re comfortable with the concept of multiplication by the phasor e�jk!̂ being
a delay, let’s get rid of it. Seriously, though, it’s a lot of writing; this phasor is acting as an
operator which, when applied to another phasor, delays it. It is customary to use another
symbol for convenience’s sake. In this case, we define an operator z as follows:

z = ej!̂ (3-24)

This is a symbol that represents the application of an action on an object (an operation,
so z is an operator). So a k time delay e�jk!̂ can be written as

z�k = e�jk!̂ (3-25)

Here z�k is a k time delay operator, where k = 0, 1, 2, . . . denotes the 0, 1, 2, . . . k, . . . time
step delay. Operators are a general concept in mathematics, which can be used in many
other circumstances to simplify notation.

Example 1: Consider a “square” operator S, which squares the thing on which it operates.
When it operates on a variable x, we get:

Sx = x2

Example 2: The transpose operator T is commonly used in linear algebra. It transposes
the matrix to which it is applied, exchanging its rows and columns. For example, when
applied to the matrix A,

A =

2

4
1 2 3
4 5 6
7 8 9

3

5

the result is

TA = AT =

2

4
1 4 7
2 5 8
3 6 9

3

5

Signal Computing 53

3. FILTERING AND FEEDFORWARD FILTERS

An operator can be thought of as purely notation (though this can be a subtle point):
it stands for a mathematical operation. We could use a functional notation, for example
delay(x[n]) just as well. However, if the mathematical operation has certain properties, then
the operator notation is much more useful, as its syntax gives us “direct access” to these
properties because of our familiarity with them from other mathematical operations. In the
case of delay, the z�k operator notation “works” because of the properties of multiplication
and division on exponents (exponents add during multiplication; exponents are negated when
dividing). We are not “really” multiplying or dividing, in the true sense of mathematical
multiplication and division operations. Instead, we are applying the delay operator or its
inverse because it “looks like” multiplication or division.

Now we’re ready to analyze how a digital filter responds to an input. Let the vector
X = {x[0], x[1], . . . , x[n], . . .} be the entire digital input signal: the ordered set of all samples.
We use the same notation to produce the vector Y for the ordered set of output samples.
Instead of using just one sample (x[n] and y[n]) as in equation (3-23), let’s substitute X
and Y and the delay operator z�k to obtain an equation that describes the action of a
filter on an entire digital signal (in other words, how to compute all of the elements of Y
“simultaneously” using a single parallel operation):

Y =
MX

k=0

bkz
�kX (3-26)

= [b0 + b1z
�1 + · · ·+ bkz

�k + · · ·]X (3-27)

The benefit of using the delay operator is that it makes the task of factoring out the
entire signal X simple. If we call the expression in the square brackets H(z),

H(z) =
MX

k=0

bkz
�k (3-28)

= b0 + b1z
�1 + · · ·+ bkz

�k + · · · (3-29)

we get
Y = H(z)X (3-30)

H(z) is also an operator, which transfers the input signal X to the output signal Y , so
it is called the filter’s transfer function. The relation between the analog frequency response
and digital transfer function is

H(!̂) = H(z)|z=ej!̂ (3-31)

So, we evaluate the transfer function H(z) at the frequency !̂ by substituting z = ej!̂ to get
the frequency response. For M = 1 (a filter with a single delay), this yields

Y = H(z)X = [b0 + b1z
�1]X (3-32)

Equation (3-32) says that the output equals the weighted sum of the input signal and the
input signal delayed by one time step (one sampling interval).

Signal Computing 54

3. FILTERING AND FEEDFORWARD FILTERS

X YH

Figure 3.6: Treat transfer function as a black box.

We can treat the transfer function as a black box that does everything that the filter
needs to do. We only need to pay attention to the input and output, as in figure 3.6. This
give us a way to combine di↵erent filters, simply by composing block diagrams. Consider
two simple filters H1(z) and H2(z) connected in series. H1(z) has input X and output W ,
and H2(z) takes H1(z)’s output as its input and outputs Y . Starting from the output of this
system, this can be written

Y = H2(z)W = H2(z)[H1(z)X] = [H2(z)H1(z)]| {z }
combined transfer function

X (3-33)

This suggests that the combined transfer function is H2(z)H1(z). In fact, we can inter-
change the order

H2(z)H1(z) = H1(z)H2(z) (3-34)

Because the transfer function is a polynomial, this gives us a way to represent digital filtering
as just multiplication by a polynomial (and the product of two polynomials is just another
polynomial).

Self-Test Exercises

See A.3 #6–8 for answers.

1. Write equation (3-23) for M = 0, 1, 2, 3, then write the transfer function for each.

2. Given the signal x(t) = sin t and the derivative operator D = d/dt, what is Dx(t)?

3. When

H1(z) = b0 + b1z
�1

H2(z) = b
0
0 + b

0
1z

�1

and b0, b1, b00, and b
0
1 are constants, show that H2(z)H1(z) = H1(z)H2(z).

3.2.5 The z-plane

We just used z as a delay operator without much comment as to why we picked it. In
mathematics, the same symbol is used for the complex plane (also called the z-plane). The
operator z = ej!̂ is a complex variable in the z-plane. For any value of !̂, it lies on a circle of
radius one, at an angle of !̂ relative to the positive real axis — it is the polar representation

Signal Computing 55

3. FILTERING AND FEEDFORWARD FILTERS

of a complex number with a magnitude of one. As !̂ varies from zero to 2⇡ (or �⇡ to +⇡, if
you prefer not to consider !̂ > !̂Nyquist), its path is the unit circle in the z-plane. Since the
Nyquist frequency !̂Nyquist = ⇡, we are only interested in the top of half of the circle running
from !̂ = 0 to !̂ = ⇡.

Using the complex plane makes filters easier to analyze (just like phasors!). To understand
why, we will need to develop the relationship between the frequency response of a filter and
the complex plane. Let’s examine the defining equation of a simple digital filter with one
time delay:

y[n] = x[n]� b1x[n� 1] (3-35)

Just for convenience, we have used subtraction instead of summation (or, equivalently you
can think of using a negative weight on the delayed signal). Using the delay operator z and
the transfer function H(z), this becomes:

Y = [1� b1z
�1]X = H(z)X (3-36)

We can express the transfer function as

H(z) = 1� b1z
�1 = (1� b1z

�1)
z

z
=

z � b1
z

(3-37)

For our purposes, we shall restrict ourselves to considering z to be on the unit circle
(z = ej!̂). The magnitude of H(z) is the same as the magnitude of H(!̂), so the magnitude
of the frequency response is

|H(!̂)| = |H(z)|z=ej!̂ =
|z � b1|z=ej!̂

|z|z=ej!̂
= |z � b1|z=ej!̂ (3-38)

You can see that although z = 0 makes the denominator of H(z) zero, we’re not considering
that case — we’ve already said that we’re on the unit circle: that |z| = 1. The value that
makes the denominator of H(z) zero is called a pole, which we will talk about in a subsequent
chapter.

Equation (3-38) tells us that the magnitude of the transfer function is the distance be-
tween z and b1 in the complex plane. Since z is a vector from the origin to the unit circle and
b1 is a constant, which can be any number here, |H(!̂)| is equal to the length of the vector
from b1 to the unit circle where z points. As this length becomes shorter, |H(!̂)| becomes
smaller. We can see that is the case when z nears b1.

The other thing that equation (3-38) tells us is that when z = b1, H(!̂) = 0, so b1 is a root
of H(!̂) — also called a zero — which makes the magnitude of the frequency response reach
its minimum. When the zero (b1) is near !̂ = 0 (z = 1), this results in a high pass filter
because it doesn’t pass frequencies near zero (low frequencies). Similarly, when the zero (b1)
is near !̂ = ⇡ (z = �1) we obtain a low pass filter: high frequency components are filtered
out. In this way, we can graph the zeros of a filter in the z-plane to better understand its
behavior.

Signal Computing 56

3. FILTERING AND FEEDFORWARD FILTERS

Example 3: Consider the general two-time-step delay feedforward filter,

y[n] = x[n] + b1x[n� 1] + b2x[n� 2]

where b1 and b2 are real constants. Let’s analyze its behavior. The transfer function is

H(z) = 1 + b1z
�1 + b2z

�2

= (1 + b1z
�1 + b2z

�2)
z2

z2

=
z2 + b1z + b2

z2

The magnitude response is

|H(z)| =
|z2 + b1z + b2|

|z2|
(3-39)

It has two poles at zero; however, as we already know, |z2| = 1, so they don’t a↵ect the
magnitude response. So |H(z)| becomes:

|H(z)| = |z2 + b1z + b2| (3-40)

The zeros of this magnitude response are merely the roots of a polynomial of order two,

z1,2 =
�b1 ±

p
b21 � 4b2
2

(3-41)

For real bk, the possible types of zeros are:

• When b21 > 4b2, there are two real zeros.

• When b21 = 4b2, there are repeated zeros at �b1.

• When b21 < 4b2, there are two complex conjugate zeros

Let’s call the two solutions of equation (3-41) z1 and z2. Since these are the roots of the
magnitude response, we can factor the polynomial in (3-40) that describes the magnitude
response as:

|H(z)| = |(z � z1)(z � z2)| (3-42)

We can write the zeros in polar form, for convenience of visualization, as

zi = rie
j!̂0i , i = 1, 2 (3-43)

where ri > 0 are the radii where the zeros are located, and !̂0i their angles. Depending on
the angles !̂0i , the zeros can be either real or complex. For example, when !̂0i = 0, the zero
lies on the z-plane’s real axis, and when !̂0i = ⇡/2, it is on the imaginary axis. Actually,
when a filter’s coe�cients are real, if one of the zeros is a complex number, the other one

Signal Computing 57

3. FILTERING AND FEEDFORWARD FILTERS

−1 −0.5 0 0.5 1
−1

0

1

Z−plane

Z

0 0.5 1
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Freq. (pi)

d
B

Figure 3.7: Two zero feedforward filter with r = 0.9, !̂0 = ±⇡/2 and magnitude of frequency
response.

−1 −0.5 0 0.5 1
−1

0

1

Z−plane

Z

0 0.5 1
−35

−30

−25

−20

−15

−10

−5

0

Freq. (pi)

d
B

Figure 3.8: Two zero feedforward filter. r = 0.9, !̂0 = ±5⇡/6 and magnitude of frequency
response.

will be its conjugate mate (if one of them is real, the other will be real, too). So, in the case
where one zero is imaginary at !̂0i = ⇡/2, the other zero’s angle would be !̂0 = �⇡/2. So,
for this filter and real coe�cients, the pair of complex zeros can be written as

z1,2 = re±j!̂0 (3-44)

Figures 3.7 and 3.8 show two di↵erent sets of zero locations. The magnitude responses
for those two sets of zeros are also presented.

Signal Computing 58

3. FILTERING AND FEEDFORWARD FILTERS

3.2.6 Phase Response

So far we have been talking about the magnitude response of H(!̂). In the last topic of this
chapter, let’s talk about its phase response. We already know that H(!̂) can be expressed
in polar form, with its magnitude and angle

H(!̂) = |H(!̂)|ej✓(!̂) (3-45)

|H(!̂)| is the magnitude response and ✓(!̂) is the phase response. The phase response can
be computed as

✓(!̂) = 6 H(!̂) = arctan

✓
Im[H(!̂)]

Re[H(!̂)]

◆
(3-46)

When the input signal is a phasor, x[n] = ejn!̂, the filter’s output is

y[n] = |H(!̂)|ej✓(!̂)| {z }
H(!̂)

ejn!̂ = |H(!̂)|| {z }
change in magnitude

ej(n!̂+✓(!̂))
| {z }
phase shift

(3-47)

So, what a filter does to a phasor (one frequency of the input) is to change the input’s
magnitude at that frequency by multiplying by |H(!̂)| and shift its phase (which is the same
thing as delaying it) by the phase response ✓(!̂).

Example 4: Let’s examine the previous example (from the discussion of the z-plane):

y[n] = x[n] + b1x[n� 1] + b2x[n� 2]

Its transfer function is
H(z) = 1 + b1z

�1 + b2z
�2

with the values b1 = 0 and b2 = 1. The frequency response can be separated into the
magnitude and phase response according to,

H(!̂) = 1 + b1e
�j!̂ + b2e

�2j!̂ (3-48)

= 1 + e�2j!̂ (substitute for b1, b2)

= e�j!̂(ej!̂ + e�j!̂) (factor out e�j!̂)

= e�j!̂
|{z}
phase

response

2 cos(!̂)| {z }
magnitude
response

(use Euler’s formula) (3-49)

The magnitude of equation (3-49) is:

|H(!̂)| = 2| cos(!̂)| (3-50)

and the phase is

✓(!̂) =

⇢
�!̂ 0 !̂ < ⇡/2

⇡ � !̂ ⇡/2 < !̂ ⇡
(3-51)

Signal Computing 59

3. FILTERING AND FEEDFORWARD FILTERS

0 0.5 1
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Freq. (pi)

d
B

0 0.5 1
−2

−1

0

1

2

Freq. (pi)

P
h

a
s
e

 R
e
s
p

o
n

s
e

Figure 3.9: Magnitude and phase response of two time delay feedforward filter, with b1 =
0, b2 = 1 in (3-53). Its zeros are at e±j⇡/2.

Notice there is a jump of ⇡ = 180� when the cos !̂ goes from positive to negative at !̂ = ⇡/2.

In other words both the magnitude and phase responses are functions of !̂ — they change
the input in a frequency-dependent way. According to equation (3-50), the two zeros of the
transfer function are at:

!̂ = ±
⇡

2

which, in the z-plane, are a pair of complex zeros on the imaginary axis. Using polar
coordinates they are

z1,2 = e±j⇡/2 (3-52)

with r = 1.

We can illustrate the e↵ect of this filter in a simple manner by examining the response
when the input is a phasor (a single frequency, x[n] = ejn!̂):

y[n] = H(!̂)x[n] = 2 cos !̂ej(n�1)!̂ (3-53)

We can see that the e↵ect of the filter on the input signal is to delay it by one sampling
interval (from the (n� 1) term in the exponential) and to multiply it by 2 cos !̂. Notice that
the delay is independent of its frequency. When all the frequency components of a signal are
delayed by an equal amount, we say the filter has no phase distortion or linear phase. The
magnitude response and phase response are shown in figure 3.9.

Example 4: generic method [optional] There is also a more generic method to get the
filter’s phase response that will work for any value of b1 and b2, for which we need to access

Signal Computing 60

3. FILTERING AND FEEDFORWARD FILTERS

the frequency response’s real and imaginary parts. The frequency response is

H(!̂) = 1 + b1e
�j!̂ + b2e

�2j!̂ (3-54)

= 1 + b1(cos !̂ � j sin !̂) + b2(cos 2!̂ � j sin 2!̂)

= (1 + b1 cos !̂ + b2 cos 2!̂)| {z }
Re[H(!̂)]

�j(b1 sin !̂ + b2 sin 2!̂)| {z }
j Im[H(!̂)]

where we have used Euler’s formula to rewrite it so that we can separate its real and imagi-
nary components. We can obtain the magnitude response from the square root of the sum
of the square of these components and the phase response using equation (3-46).

When the magnitude response of a filter is plotted, the y axis scale is usually expressed
in decibels (dB), a logarithmic scale. We can take advantage of this to slightly simplify its
computation. To do this, we note that the square of the magnitude response is the sum of
the squares of the real and imaginary components:

|H(!̂)|2 = [1 + b1 cos !̂ + b2 cos 2!̂]
2 + [b1 sin !̂ + b2 sin 2!̂]

2 (3-55)

A quantity is converted to dB by taking twenty times the logarithm (base ten). |H(!̂)|
can be converted to dB as

|H(!̂)|dB = 20 log10 |H(!̂)| = 10 log10 |H(!̂)|2

= 10 log10
�
[1 + b1 cos !̂ + b2 cos 2!̂]

2 + [b1 sin !̂ + b2 sin 2!̂]
2

Which is a trivial matter to compute for any value of !̂ (on a computer) for plotting purposes.
The phase response is

✓(!̂) = arctan

�(b1 sin !̂ + b2 sin 2!̂)

1 + b1 cos !̂ + b2 cos 2!̂

�
(3-56)

Consider the special case used in the previous example: b1 = 0 and b2 = 1 (a filter with
a two-step delay). Substituting these values into equations (3-55) and (3-56), the squared
magnitude becomes

|H(!̂)|2 = (1 + cos 2!̂)2 + sin2 2!̂

= 1 + 2 cos 2!̂ + cos2 2!̂ + sin2 2!̂

= 1 + 2 cos 2!̂ + 1

= 2(1 + cos 2!̂)

= 2(1 + 2 cos2 !̂ � 1)

= 4 cos2 !̂

Where the next to last step made use of the double-angle identity, cos 2✓ = 2 cos2 ✓� 1. The
square root of this is

|H(!̂)| = 2| cos !̂|

Signal Computing 61

3. FILTERING AND FEEDFORWARD FILTERS

Which is exactly what we calculated in equation (3-50)!
With the substitution, the phase response becomes

✓(!̂) = arctan

✓
� sin 2!̂

1 + cos 2!̂

◆
(3-57)

If we remember the double-angle formulae,

sin 2!̂ =
2 tan !̂

1 + tan2 !̂

cos 2!̂ =
1� tan2 !̂

1 + tan2 !̂

and substitute them into equation (3-57), we get

✓(!̂) = arctan

✓
�2 tan !̂

2

◆

= arctan(� tan !̂)

=

⇢
�!̂ 0 !̂ < ⇡/2

⇡ � !̂ ⇡/2 < !̂ ⇡

Which is what we calculated in equation (3-51).
The final result for the transfer function, written in polar form, is:

H(!̂) = |H(!̂)|ej✓(!̂) = e�j!̂2 cos !̂ (3-58)

Self-Test Exercises

See A.3 #9–10 for answers.

1. Prove |z
2
| = 1 in equation (3-39).

2. Starting with the factored magnitude response in equation (3-42), derive expressions for b1
and b2 in terms of z1 and z2.

3.2.7 Implementing Digital Filters

Implementing feedforward digital filters is really quite straightforward. Let’s first look at how
we would implement the two time delay feedforward filter y[n] = x[n]+b1x[n�1]+b2x[n�2],
when b1 = 0, b2 = 1, using pseudocode. I’ll present segments of a script to do the computation
and plot some results with my comments on it interspersed.

In algorithm 3.1, we’ve generated a discrete signal x containing sine wave values at all
the time points at which the sampling should occur (100 samples at 100Hz = 1 second).
The signal has two frequency components: one at 5Hz and one at 25Hz (both well below the
Nyquist frequency).

Signal Computing 62

3. FILTERING AND FEEDFORWARD FILTERS
Algorithm 3.1 Generate two sinusoids.
Fs = 100, N = 100, Ts = 1/Fs

f1 = 5 and f2 = 25
for n = 0, 1, 2, . . . N � 1 do
x[n] = sin(2⇡f1nTs) + sin(2⇡f2nTs)

end for

Algorithm 3.2 Filtering.
b1 = 0 and b2 = 1
y[0] = 0 and y[1] = 0
for n = 2, 3, 4 . . . N � 1 do
y[n] = x[n] + b1x[n� 1] + b2x[n� 2]

end for

In algorithm 3.2, we have the luxury of being able to hold the entire input and output
signal in arrays. Because there is a two time step delay, we can’t compute a value for y[0]
or y[1], so those are set to zero.

After we filter the sum of sinusoids, we want to see what happened to the signal’s fre-
quency components. We will use the fast Fourier Transform to analyze the components.
We’ll talk about the Fourier transform and FFT in section 6.1. Figure 3.10 shows the mag-
nitude of each frequency in the generated and filtered sine waves. From the plot we can see
that the high frequency wave is completely filtered out. And finally, we’ll plot the input and
output. They’re shown in figure 3.10 (right).

How would one implement this in a language like C, C++, Java, etc? Let’s not worry
about the plotting issue: that would certainly have to be dealt with, but it would involve
either getting a graphics library, writing one’s own, or using an external plotting package
(ideally, one targeted at scientific and engineering applications, rather than one written for
business). For example, a fine alternative would be to vectorize all the array operations and
use MATLAB. We will discuss the fft() function in section 6.2.5. The only remaining issue
is that of keeping the entire input and output signal in memory.

In general, it is not possible to keep the entire input and output signal in memory. In
fact, many (if not most) digital signal processing applications involve real-time processing,
so the computer system really needs to be viewed as just a stage in a processing pipeline,
with the input flowing in and the output flowing out (just like the block diagrams used to
illustrate filters). We can therefore only devote a relatively small amount of memory to hold
the part of the input and output needed for the current computation. If n delayed samples
of the input are needed to compute each output value, we will need storage for n+ 1 input
samples (the current one plus the delayed samples). For a feedforward filter, there is no need
to save output values; they can be sent out as soon as they are computed.

What abstract data type (ADT) should hold the delayed inputs (answer in A.3 #11)?
As each input sample comes in, it displaces the oldest input sample from our bu↵er of n+1
values. For computer scientists, this is clearly a first-in-first-out (FIFO) ADT — a queue.

Signal Computing 63

3. FILTERING AND FEEDFORWARD FILTERS

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Freq. (Hz)

F
re

q
.
C

o
m

p
o
n
e
n
ts

0 0.5 1
−2

−1

0

1

2

Time (sec)

T
im

e
 w

a
v
e
fo

rm

Figure 3.10: The spectrum of a two frequency component sine wave and its filtered version,
using the feedforward filter y[n] = x[n] + x[n � 2], f1 = 5Hz and f2 = 25Hz. Zeros are at
z0 = 0.99e±j⇡/2. The time waveforms are also shown.

A queue is very e�ciently and simply implemented in an array, especially when the queue
size is fixed. Furthermore, you can treat the array as though it were circular using indexing
modulo the queue size.

3.3 Problems

1. In Example 4, we used a large number of trigonometric identities to go from the filter’s
frequency response in (3-54) to the results in (3-58) and (3-53) for the special case of
b1 = 0 and b2 = 1. There is an easier way. First, substitute the values of b1,2 into (3-
54), and then use the fact that we can always factor a real number into a product
of complex conjugate numbers, i.e., 1 = ej!̂e�j!̂. A little bit of algebra and Euler’s
formula should allow you to derive the results (3-58) and (3-53) of Example 4 much
easier.

2. For the filter whose magnitude response is described in (3-42), plot the location of a
pair of complex conjugate zeros at r = 0.8 and !̂0 = ±⇡/4. Using MATLAB, compute
and plot the filter’s magnitude response. Submit your code with your figures.

3. In the self-test exercise on page 55, two filters with transfer functionsH1(z) = b0+b1z�1

and H2(z) = b00 + b01z
�1 were connected in series, and it was shown that they could

be connected in either order to produce the same composite e↵ect (the same overall
transfer function). Redo this exercise using the defining equations for the two filters,
i.e., y1[n] = F1(x[n]) for the filter with transfer function H1(z) and y2[n] = F2(x[n])
for the filter with transfer function H2(z). In other words, show that F2(F1(x[n])) =
F1(F2(x[n])).

Signal Computing 64

3. FILTERING AND FEEDFORWARD FILTERS

4. Use MATLAB to plot the results of filtering the following signals with the filter: y[n] =
x[n] + x[n� 1]. Submit your code with your results.

(a) x[n] = n

(b) x[n] = sin(n⇡/100)

(c) x[n] =

⇢
+1 n mod 5 even
�1 n mod 5 odd

5. Check the following factorization: z2 � z + 1 = (z � ej⇡/3)(z � e�j⇡/3)

3.4 Further Reading

• James H McClellan, Ronald W. Schafer, and Mark A. Yoder, DSP First: A Multimedia

Approach, Prentice Hall, 1998, ch. 5 (§5.1–5.3), 6 (§6.1, 6.4–6.7).

Signal Computing 65

3. FILTERING AND FEEDFORWARD FILTERS

Signal Computing 66

4 The Z-Transform and Convolution

Two signal processing tools — the z transform and convolution — are introduced in this
chapter. These operations play important roles in the analysis of discrete-time signals (which
is what we do in the computer). We shall see that they are related — the convolution
of two time-domain signals (which is what we do when we filter a signal) is equivalent
to multiplication of their corresponding z-transforms. This is one example of how these
representations can greatly simplify computation.

After studying this chapter, you should be able to understand what the z-transform
and convolution are, and how to implement them. You should understand the di↵erences
between them and the other transforms: Fourier series, Fourier transform, and discrete
Fourier transform. You will enrich your knowledge of filter transfer functions with its time
domain representation: its impulse response.

4.1 Domains

Up to this point, we have covered the Fourier series representation of a signal as a weighted
sum of sinusoids. In e↵ect, the Fourier series transforms a finite and periodic, continuous
signal in the time domain into an infinite, discrete spectrum in the frequency domain.
When we use the term domain, we merely mean a particular way of looking at a signal.
In this case, we have two di↵erent ways of thinking about our signals: as functions of time
or as functions of frequency. These are equivalent, in the sense that we can convert the
signal’s representation back and forth between the two domains without loss of information
(neglecting matters such as roundo↵ error).

In future chapters, we will cover two other transforms:

Fourier transform transforms an infinite, continuous signal in the time domain into an
infinite, continuous spectrum in the frequency domain.

Discrete Fourier transform transforms a finite, discrete signal in the time domain into
a finite, discrete spectrum in the frequency domain.

Here, however, we will learn about the z-transform, which converts an infinite, discrete
signal in the time domain into a finite, continuous spectrum in the frequency domain. The
z-transform fills the last combination among “finite vs. infinite; continuous vs. discrete”.

Signal Computing 67

4. THE Z-TRANSFORM AND CONVOLUTION

Table 4.1: Summary of frequency transforms.

Transform Time Domain Frequency Domain

Fourier Series Finite, Continuous Infinite, Discrete
Fourier Transform Infinite, Continuous Infinite, Continuous
Discrete Fourier Transform Finite, Discrete Finite, Discrete
Z-Transform Infinite, Discrete Finite, Continuous

Table 4.1 summarizes all four transforms. As you can see, continuous versus discrete in the
time domain transforms to infinite versus finite in the frequency domain, while finite versus
infinite in the time domain transforms to discrete versus continuous in the frequency domain.

4.2 The z-transform

The z-transform of a discrete time signal x[n], n = 0,±1,±2, . . . ,±1 is defined as the power
series

X(z) ⌘
1X

k=�1

x[k]z�k (4-1)

where z is a continuous complex variable. It transforms the time domain, infinite, discrete
sequence into its complex plane representation X(z). Since the z-transform is an infinite
power series, it exists only for those values of z for which this series converges. The region

of convergence (ROC) of X(z) is the set of all values of z for which X(z) has a finite value.
We consider the z-transform to be a transform between the time domain and the frequency
domain because we can substitute z = ej!̂ into equation (4-1) to get the signal’s (finite and
continuous) frequency content X (!̂) — just as we previously made the same substitution to
derive a feedforward filter’s frequency response from its transfer function.

The relationship between x[n] and X(z) can be indicated by the transform pair

x[n]|{z}
function of
sample #

Z
 ! X(z)| {z }

function of
complex z

(4-2)

Self-Test Exercises

See A.4 #1–2 for answers.

1. Determine the z-transform for the sequence x[n] = {1, 2, 5, 7, 0, 1}, n = 0, 1, 2, 3, 4, 5

2. Determine the z-transform of the sequence x[n] = {1, 2, 5, 7, 0, 1}, n = �2,�1, 0, 1, 2, 3

Signal Computing 68

4. THE Z-TRANSFORM AND CONVOLUTION

4.2.1 Example: z-transform of an impulse

The unit impulse or unit sample signal is the � function,

�[n] =

⇢
1 n = 0
0 n 6= 0

(4-3)

It has value of zero for every sample except n = 0, for which it has a value of one. Substituting
this signal into (4-1) to get its z-transform, we have

�(z) =
1X

k=�1

�[k]z�k

= 1z�0 = 1 (4-4)

that is
�[n]

Z
 ! 1 (4-5)

Since the frequency content of the signal is the magnitude of its z-transform on the unit
circle in the z-plane,

|D(!̂)| = |�(ej!̂)| = 1 (4-6)

This tells us that the frequency content is the same for all frequencies: an impulse has a flat

spectrum.
What about time shifted impulses,

�[n� n0] =

⇢
1 n = n0

0 n 6= n0
, n0 > 0 (4-7)

�[n+ n0] =

⇢
1 n = �n0

0 n 6= �n0
, n0 > 0 (4-8)

In these cases the nonzero value is not at sample zero, but at samples n0 or �n0. We can
compute the z-transform as before,

�(z) =
1X

k=�1

�[k � n0]z
�k

= 1z�n0 = z�n0 =
1

zn0
(4-9)

for �[n�n0]. The z-transform for this shifted unit impulse has one value, z�n0 , for any z 6= 0.

�[n� n0]
Z
 !

1

zn0
, n0 > 0 (4-10)

Its frequency content is also one, just like �[n] (remember that we compute the spectrum
for values of z on the unit circle),

|D(!̂)| = |�(ej!̂)| = |e�jn0!̂| = 1 (4-11)

Signal Computing 69

4. THE Z-TRANSFORM AND CONVOLUTION

This is not surprising at all, because it is, after all, just a time-shifted version of �[n]. The
signal �[n+ n0] is left as a self-test exercise.

Self-Test Exercises

See A.4 #3–4 for answers.

1. Sketch equation (4-6).

2. Compute the z-transform and frequency content for the signal �[n+ n0].

4.2.2 Example: z-transform of exponential signal

An exponential signal is defined as

x[n] =

⇢
↵n n � 0
0 n < 0

(4-12)

where ↵ can be any real or complex value less than one. The signal consists of an infinite
number of samples. The z-transform of this signal is

X(z) =
1X

k=�1

x[k]z�k

=
1X

k=0

↵kz�k

=
1X

k=0

(↵z�1)k (4-13)

This is an infinite geometric series : a sum in which each successive term is the previous
term times some (unchanging) expression (i.e., the ratio of successive terms is constant).
The ratio of two successive terms in a geometric series like equation (4-13) is called its
common ratio, which in this case is ↵z�1. We can show this by rewriting equation (4-13) as
X(z) = 1 + ↵z�1 + ↵2z�2 + · · · . Rewriting the i+ 1st element of this series as a recurrence
relation (in terms of the ith), we get X(z)i+1 = X(z)i↵z�1, which shows the common ratio.

If we have a geometric series in which successive terms bi and bi+1 have the common ratio
r (i.e., bi+1/bi = r), then any term in the series can be expressed in terms of the first term
as

bi = b0r
i

So, a geometric series can be expressed as a sum of these, b0+b0r+b0r2+ · · · . We can factor
out the zeroth term, leaving us with the task of simplifying 1 + r + r2 + · · · . Multiplying

Signal Computing 70

4. THE Z-TRANSFORM AND CONVOLUTION

0 1 2 3 4 5 6 7 8 9
0

0.5

1

Sequence count k

f_
k

Figure 4.1: The exponential signal x[n] = (1/2)n, n = 0, 1, 2,

this sum by (1� r)/(1� r), we obtain

(1 + r + r2 + · · ·)
1� r

1� r
=

1 + r + · · ·� r � r2 � · · ·

1� r

=
1� rN

1� r
(4-14)

In this case, |r| < 1 so rN ! 0 as N !1:

1 + r + r2 + r3 + . . . =
1

1� r
, if |r| < 1 (4-15)

Consequently, for |r| = |↵z�1
| < 1 or |z| > |↵|, X(z) converges to

X(z) =
1

1� ↵z�1
, |z| > |↵| (4-16)

In the z-plane, |z| > |↵| refers to any z that is outside of the radius |↵| circle. We see
that in this case, the z-transform provides a compact alternative representation of the signal
x[n].

Let’s check out some special cases:

When ↵ is a real number, say ↵ = 1/2: The discrete signal in this case is

x[n] =

⇢ �
1
2

�n
n � 0

0 n < 0
(4-17)

or

x[n] =

(
1,

1

2
,

✓
1

2

◆2

,

✓
1

2

◆3

, . . . ,

)
(4-18)

Signal Computing 71

4. THE Z-TRANSFORM AND CONVOLUTION

0 0.5 1
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

omega (pi)
|F

(o
m

eg
a)

| d
B

Figure 4.2: Frequency content of the signal shown in figure 4.1.

Figure 4.1 shows the graph of the signal x[n].
Replacing ↵ with 1/2 in (4-16), its z-transform is expressed as

X(z) =
1

1� 1
2z

�1
, |z| >

1

2
(4-19)

As you should be familiar with now, the frequency content of this signal is the magnitude
of its z-transform on the unit circle z = ej!̂ in the z-plane, which is

|X (!̂)| = |X(ej!̂)| =

����
1

1� 1
2e

�j!̂

���� (4-20)

Figure 4.2 is the plot of |X (!̂)| versus frequency !. The amplitude decreases along
increasing frequency. Its peak is at zero frequency, which is called DC (which literally means
“direct current,” implying the constant — actually mean — component of the signal).

When ↵ = 1: For ↵ = 1, the sequence becomes

x[n] = u[n] =

⇢
1 n � 0
0 n < 0

(4-21)

or
u[n] = {1, 1, 1, . . .}, n � 0 (4-22)

This is a discrete time, infinite duration unit step signal. Notice the di↵erence between
the unit step signal and the unit impulse signal. The latter only has one nonzero value at
one particular time, the former has value one for all time after some particular time. By
analogy with �[n] , a unit step occurring at sample k is called u[n� k]. Substituting ↵ = 1
into (4-16) we have

U(z) =
1

1� z�1
, |z| > 1 (4-23)

Signal Computing 72

4. THE Z-TRANSFORM AND CONVOLUTION

0 0.5 1
−35

−30

−25

−20

−15

−10

−5

0

omega (pi)

|F
(o

m
eg

a)
| d

B

Figure 4.3: Frequency content of the unit step signal.

We can see that the pole (a zero in the denominator; you’ll learn more about this in Chap-
ter 5) is at z = 1, where the z-transform has an infinite value.

Let’s evaluate the frequency content of the unit step signal. If we evaluate U(!̂) on the
unit circle (except at z = 1), we obtain

U(!̂) = U(ej!̂) =
1

1� e�j!̂

ej!̂/2

ej!̂/2

=
ej!̂/2

ej!̂/2 � e�j!̂/2

=
ej!̂/2

2j sin !̂/2

=
ej(!̂/2�⇡/2)

2 sin !̂/2
, !̂ 6= 2⇡k, k = 0, 1, . . . (4-24)

because �j = e�j⇡/2 (see the self-test exercises). Hence, the presence of a pole (a zero in the
denominator) at z = 1 (that is, at !̂ = 0) creates a problem only when we want to compute
|U(!̂)| at !̂ = 0, because |U(!̂)|!1 as !̂ ! 0. For any other value of !̂, |U(!̂)| is finite.

Figure 4.3 shows a plot of |U(!̂)| vs. !̂. Since the signal is a unit step, and so has
a constant value from zero onwards, we might expect the signal to have zero frequency
components at all frequencies except at !̂ = 0, but that is not the case. The reason is
that the signal is not a constant for all �1 < n < 1. Instead, it is turned on at n = 0.
This abrupt jump creates all the frequency components existing in the range 0 < !̂ ⇡.
Generally, all signals which start at a finite time will have nonzero frequency components
everywhere in the frequency axis from zero up to the Nyquist frequency. All such signals
can be considered to be the product of some infinite signal with a unit step; we will see the
e↵ect of this on their spectrum when we explore convolution in section 4.3.

Signal Computing 73

4. THE Z-TRANSFORM AND CONVOLUTION

Optional: When ↵ is a complex number, ↵ = Rej✓: When ↵ = Rej✓, equations (4-12)
and (4-16) become

x[n] =

⇢
Rkejn✓ n � 0
0 n < 0

(4-25)

X(z) =
1

1�Rej✓z�1
, |z| > |R| (4-26)

When z = Rej✓ we have what we call a pole (a zero in the denominator; you’ll learn more
about this in Chapter 5). Equation (4-26) can be broken into real and imaginary parts using
Euler’s formula:

X(z) =
1

1�Rej✓z�1

=
1

1�R(cos ✓ + j sin ✓)z�1

=
1

1�R cos ✓z�1 � jR sin ✓z�1

=
1�R cos ✓z�1 + jR sin ✓z�1

[1�R cos ✓z�1]2 � [jR sin ✓z�1]2

=
1�R cos ✓z�1 + jR sin ✓z�1

1� 2R cos ✓z�1 +R2z�2

=
1�R cos ✓z�1

1� 2R cos ✓z�1 +R2z�2
+ j

R sin ✓z�1

1� 2R cos ✓z�1 +R2z�2
(4-27)

We break the signal into two parts, too:

Re{x[n]} = Rn cos(k✓), n � 0 (4-28)

Im{x[n]} = Rn sin(k✓), n � 0 (4-29)

From real part we get

Rn cos(n✓)
Z
 !

1�R cos ✓z�1

1� 2R cos ✓z�1 +R2z�2
(4-30)

and from imaginary parts we have

Rn sin(n✓)
Z
 !

R sin ✓z�1

1� 2R cos ✓z�1 +R2z�2
(4-31)

When R < 1, Rn cos(n✓) and Rn sin(n✓) are damped cosine and sine waves.

Self-Test Exercises

See A.4 #5–7 for answers.

1. What is the derivative of u[n� k] (the unit step at time step k)?

2. Show that ej!̂/2
� e

�j!̂/2 = 2j sin !̂/2.

3. Prove that e�j⇡/2 = �j.

Signal Computing 74

4. THE Z-TRANSFORM AND CONVOLUTION

4.3 Convolution

Convolution is an important operation for implementing digital filters. Let’s first define what
convolution is. For two infinite, discrete signals x[n] and h[n], the convolution y[n] of them
at sample n is defined as

y[n] =
1X

k=�1

h[k]x[n� k] (4-32)

The notation for convolution is “⇤”, so this can be written as

Y = X ⇤H (4-33)

where Y , X, and H are the signals with samples at n being y[n], x[n], and h[n].
Let’s consider the case when both x and h both start at zero. This is equivalent to saying

that both have values of zero before that sample. So, h[k] = 0 when k < 0 and x[n� k] = 0
when n� k < 0. Equation (4-32) becomes

y[n] =
nX

k=0

h[k]x[n� k] (4-34)

Actually, this is a more realistic situation than k’s summation from �1 to 1.
We expand the summation in (4-34) as

y[n] = h[0]x[n] + h[1]x[n� 1] + h[2]x[n� 2] + . . .+ h[k]x[n� k] + . . .

+ h[n� 2]x[2] + h[n� 1]x[1] + h[n]x[0] (4-35)

Using this formulation, you may show that the convolutionX⇤H has the following properties:

1. Commutative: X ⇤H = H ⇤X

2. Distributive : X ⇤ (H1 +H2) = X ⇤H1 +X ⇤H2

3. Associative : (X ⇤H) ⇤G = X ⇤ (H ⇤G)

You should be able to convince yourself that x ⇤ ~0 = ~0 ⇤ x = 0 (where ~0 is a vector of all
zeros). How about ~1⇤~1 (where ~1 is a vector of all ones, in this case ~1 = u[n]; see the self-test
exercise)?

4.3.1 Example of Convolution

Determine the convolution en ⇤ en, n = 0, 1, 2, . . . ,. Using (4-34),

en ⇤ en =
nX

k=0

eken�k

=
nX

k=0

en = en
nX

k=0

1 = nen (4-36)

Signal Computing 75

4. THE Z-TRANSFORM AND CONVOLUTION

Self-Test Exercises

See A.4 #8–9 for answers.

1. Determine if u[n] ⇤H 6= H is true, where h[n] = n, n = 0, 1, 2, . . . (a ramp).

2. Compute u[n] ⇤ u[n].

4.3.2 Implementing Convolution

From observation of equation (4-35), we know that for a fixed sample n, y[n] can be computed
by the term-by-term multiplication of the sequence

{h[0], h[1], h[2], . . . , h[k], . . . , h[n� 2], h[n� 1], h[n]} (4-37)

and the time-reversed sequence

{x[n], x[n� 1], x[n� 2], . . . , x[n� k], . . . , x[2], x[1], x[0]} (4-38)

We just multiply the corresponding terms (for example, h[k]x[n� k]), then add these prod-
ucts. This produces the convolution for one sample n. Remember, however, that the output
y[n] is also a sequence, n = 0, 1, 2, We need to repeat this process for all {n} to get the
full sequence, as shown in algorithm 4.1.

Algorithm 4.1 Discrete convolution.
Require: h[n] is a finite, discrete signal, n = 0, 1, 2, . . .
Require: x[n] is a finite, discrete signal, n = 0, 1, 2, . . .
Ensure: y[n] is the convolution X ⇤H, n = 0, 1, 2, . . .
for n = 0, 1, 2, . . . do
Reverse x[k] to produce x0[k] = x[n� k], k = 0, 1, 2, . . . , n
s[k] = h[k]x0[k]
y[n] =

Pn
k=0 s[k]

end for

A more-or-less direct implementation of this algorithm in C is:

/* Convolution of two vectors

Input: vectors x and h of lengths nx and nh (nh < nx)

Output: vector y of length nx + nh - 1 (storage already allocated)

*/

void convolve(int x[], unsigned nx, int h[], unsigned nh, int y[])

{

for (unsigned n=0; n<nx+nh-1; n++) {

y[n] = 0;

Signal Computing 76

4. THE Z-TRANSFORM AND CONVOLUTION

x y

t

h

1 0

1 0

0 1 2 3 4 t

0

1

2

3

4

5

1 0

1 0

1 0

1 0

Figure 4.4: Example of convolution function execution for nx = 5 and nh = 2.

for (unsigned k=max(0,n-nh+1); k<=min(nx-1,n); k++)

y[n] += x[k] * h[n-k];

}

}

You’ll notice something nasty was done here: the identities of x and h were reversed! Of
course, this is perfectly OK, given the commutative property of convolution. This was done
because we generally assume that h (the shorter vector) is a property of the filter (we will
see about this later) and it is easier to think about reversing it than reversing the signal x.
If for no other reason, this makes sense because h has a shorter length.

The implementation is for finite-length signals, rather than the infinite ones we’ve been
discussing. It assumes that h is shorter than x (nh < nx). This h input is often called the
convolution kernel because, as we shall see, h represents the action of our signal processing
system while x is the actual input signal. Notice that, for small n < nh � 1, not all of h is
used. This is equivalent to multiplying the unused elements of h against the zero values of
x[k], k < 0. Similarly, for large n > nx � 1, part of h is also unused — multiplied against
the zero values of x[k], k > nx � 1. Figure 4.4 illustrates function execution for a signal X
of length 5 and a kernel H of length 2. This is one way to deal with the boundary conditions

associated with the convolution: what to do at the ends of the signal X. In general, there
are three ways of dealing with these boundary conditions:

Signal Computing 77

4. THE Z-TRANSFORM AND CONVOLUTION

e^t

e^{t−k}

0 1 2 3 4 5
0

50

100

150

Am
pl

itu
de

0 1 2 3 4 5
0

5000

10000

15000

Time (sec)

C
on

vl
ut

io
n

Figure 4.5: Convolution of en ⇤ en. Top blue line is en, top red line is time reversed version
of en, the bottom plot is the result of convolution.

1. “Pad” X with zeros past its ends. In e↵ect, this is what was done in the code above.

2. “Reflect” X by copying element k to index �k. This is sometimes done in image
processing operations.

3. “Truncate” the convolution at the ends of X. This means that n would cover the range
nh � 1 n nx and Y would be shorter than X.

MATLAB has the built-in convolution function conv, which takes two vectors as inputs
and outputs the convolution result with length equal to one less than the sum of the two
input vector lengths. You can use “help conv” to get more information (how does conv
deal with boundary conditions [answer in A.4 #10]?)

Let’s look at the convolution of X ⇤ H = en ⇤ en again. In this case, X and H are the
same function. In figure 4.5 (top), X is shown as a blue curve and the time-reversed H is
shown as a red curve. The convolution result is in the bottom graph.

Signal Computing 78

4. THE Z-TRANSFORM AND CONVOLUTION

Table 4.2: Some properties of the z-transform.

Property Time Domain, Z�1
{·} z-Domain, Z{·}

Linearity a1x[n] + a2y[n] a1X(z) + a2Y (z)
Time shift x[n� k] z�kX(z)
Scaling in the z-domain anx[n] X(a�1z)
Time reversal x[�n] X(z�1)

Di↵erentiation in the z-domain nx[n] �z dX(z)
dz

Convolution x[n] ⇤ y[n] X(z)Y (z)

Self-Test Exercises

See A.4 #11 for the answer.

1. Use MATLAB to compute the convolution e
�n
⇤ e

�n and plot the result.

4.4 Properties of the Z-Transform

The z-transform is a very powerful signal processing tool because it has some very important
properties. Some of these properties are listed in table 4.2, where the time-domain signals
x[k] and y[k] have z-transforms of X(z) and Y (z).

Knowing these properties can be very convenient. For example, the z-transform of a
signal shifted (delayed) by k samples, x[n � k], is z�kX(z); this is our familiar z (delay)
operator. You can also see that the convolution property of the z-transform means that
convolution in the time domain is multiplication in the z-domain. So, if we have the z-
transform of two signals, it is much easier to perform convolution. Later on, you will find
out that this is very important in filtering. Let’s prove this property:

From (4-34) a convolution of x[n] and h[n] is defined as:

y[n] = x[n] ⇤ h[n] =
1X

k=�1

h[k]x[n� k] (4-39)

The z-transform of y[n] is

Y (z) =
1X

n=�1

y[n]z�n

=
1X

n=�1

1X

k=�1

h[k]x[n� k]

!
z�n (4-40)

Signal Computing 79

4. THE Z-TRANSFORM AND CONVOLUTION

Interchanging the order of the summations (which is equivalent to factoring out the h[k] and
distributing the z�n over the inner summation),

Y (z) =
1X

k=�1

h[k]

1X

n=�1

x[n� k]z�n

!
(4-41)

The inner summation is merely the z-transform of x[n] shifted by k samples. Applying the
time shift property of the z-transform, we obtain

Y (z) =
1X

k=�1

h[k]X(z)z�k

= X(z)
1X

k=�1

h[k]z�k = X(z)H(z) (4-42)

Which is the product of the two z-transforms. I’ll present a couple examples of using these
properties.

4.4.1 Example: Time Shifting

Remember that the z-transform of the unit impulse �[n] was discussed in section 4.2.1

�[n] =

⇢
1 n = 0
0 n 6= 0

(4-43)

as being 1 and that the z-transform of the shifted unit impulse �[n � k] is z�k? Using the
time-shifting property of the z-transform, this is easy to determine:

�[n]
Z
 ! 1 (4-44)

then
�[n� k]

Z
 ! 1⇥ z�k = z�k (4-45)

4.4.2 Example: Convolution

Given the signals
x[n] = {1,�3, 2, 1}, n = 0, 1, 2, 3 (4-46)

and

h[n] =

⇢
1 n = 0, 1
0 n = 2, 3

(4-47)

use the z-transform to compute their convolution Y = X ⇤H.
According to (4-1),

X(z) = 1� 3z�1 + 2z�2 + z�3 (4-48)

H(z) = 1 + z�1 (4-49)

Signal Computing 80

4. THE Z-TRANSFORM AND CONVOLUTION

Then using the convolution property of the z-transform, we have

Y (z) = X(z)H(z) = (1� 3z�1 + 2z�2 + z�3)(1 + z�1)

= 1� 2z�1
� z�2 + 3z�3 + z�4 (4-50)

Now we can easily get the inverse z-transform y[n] = x[n] ⇤h[n] from the result Y (z). Again
from the z-transform definition (4-1),

y[n] = x[n] ⇤ h[n] = {1,�2,�1, 3, 1} (4-51)

We can also compute the convolution directly, according to the convolution definition (4-
34). There are only 4 nonzero terms in x[n] and 2 in h[n]. For a fixed sample n, the
convolution is given by

y[n] =
nX

k=0

x[k]h[n� k]

= x[0]h[n] + x[1]h[n� 1] + x[2]h[n� 2] + x[3]h[n� 3] (4-52)

Changing n gives the sequence of the convolution output as a function of time. In the
following computation, h[n� k] = 0 is used, if n� k < 0 and x[k] = 0 and h[k] = 0 if k > 3:

y[0] = x[0]h[0] = 1

y[1] = x[0]h[1] + x[1]h[0] = 1� 3 = �2

y[2] = x[0]h[2] + x[1]h[1] + x[2]h[0] = 0� 3 + 2 = �1

y[3] = x[0]h[3] + x[1]h[2] + x[2]h[1] + x[3]h[0] = 0 + 0 + 2 + 1 = 3

y[4] = x[1]h[3] + x[2]h[2] + x[3]h[1] = 0 + 0 + 1 = 1

y[n] = 0, n > 4

Therefore, this also gives the result

y[n] = x[n] ⇤ h[n] = {1,�2,�1, 3, 1} (4-53)

Self-Test Exercises

See A.4 #12 for the answer.

1. Prove the scaling property of the z-transform; that is, if

x[n]
Z
 ! X(z)

then
a
n
x[n]

Z
 ! X(a�1

z)

Signal Computing 81

4. THE Z-TRANSFORM AND CONVOLUTION

4.5 Impulse Response and the Transfer Function

Recall the a filter’s input/output relationship is summarized by the transfer function dis-
cussed in chapter 3 (and which you’ll see again in chapter 5). Let’s denote the input signal
as x[n] and output as y[n] in the time domain. You learned that the the transfer function
in the z domain is H(z). What is its time domain representation? We will answer this
shortly; first let’s give a name to the time domain transfer function, h[n]: the filter’s impulse

response. The filter’s input/output relationship can be written using h[n] as:

y[n] = x[n] ⇤ h[n] (4-54)

This says that the output of filter results from the convolution between input signal x[n] and
filter’s impulse response h[n]. From earlier in this chapter, you now know that convolution
of two signals in the time domain is equivalent to multiplying their z-transforms in the z
domain. So, we obtain the input/output relationship via the transfer function in the z
domain as

Y (z) = X(z)H(z) (4-55)

where X(z) and Y (z) are the z-transforms of x[n] and y[n] and H(z) is the z-transform of
h[n]. Actually, this H(z) is just the transfer function we talked about in chapter 3. In other
words, a filter’s transfer function is the z-transform of its impulse response!

As a simple example of how to use the z-transform to determine a filter’s transfer function
from its defining equation, consider the feedforward filter:

y[n] = b0x[n] + b1x[n� k] (4-56)

Applying the z-transform to both sides,

Y (z) = b0X(z) + b1z
�kX(z) (4-57)

because of the time shift property of the z-transform. This can be rearranged to be

Y (z) = (b0 + b1z
�k)X(z) (4-58)

So the transfer function is
H(z) = b0 + b1z

�k (4-59)

and therefore, we have
Y (z) = H(z)X(z) (4-60)

Applying the inverse z-transform, we can get the time domain representation of H(z), or
the impulse response h[n]. In a similar manner, we can get the output y[n] from Y (z). In
fact, using (4-55), we found an easy way to compute a filter’s response to a signal if we have
already know the signal’s z-transform and the filter’s transfer function.

Let’s see why h[n] is called the impulse response. Remember the unit impulse, which is
a signal that has the value one at n = 0 and zero otherwise, and which can be expressed as

�[n] =

⇢
1 n = 0
0 n 6= 0

(4-61)

Signal Computing 82

4. THE Z-TRANSFORM AND CONVOLUTION

The impulse response of a filter is its output when a unit impulse is applied. Now we
compute these two functions’ convolution,

y[n] =
nX

k=0

�[k]h[n� k] = h[n] (4-62)

because all of the terms except k = 0 drop out (since �[k] = 0 for all k 6= 0). This tell us
that the filter response y[n] to a unit impulse is h[n]. This is why h[n] is called the impulse
response.

Applying the z-transform to both side of the above equation, we get

Y (z) = H(z) (4-63)

Therefore, the transfer function can be viewed as the z-transform of the filter’s impulse

response, or its impulse response in the z domain.
If we restrict z to lie on the unit circle, z = ej!̂, from (4-55) we obtain

Y(!̂) = H(!̂)X (!̂) (4-64)

where X (!̂) is the signal’s frequency content, Y(!̂) is the frequency content of the filter
output and H(!̂) is the filter’s frequency response.

4.6 Problems

1. Compute the z-transform of

x[n] =

⇢
(�1)n n � 0
0 n < 0

(4-65)

and determine its frequency content.

2. Determine the z-transform of the signal

x[n] =

⇢
cos !̂0n n � 0
0 n < 0

(4-66)

3. Find the z-transform of the signal

x[n] =

⇢
1/n! n � 0
0 n < 0

Recall that 0! = 1.

4. The impulse response of a system is h[n] = {1, 2, 1,�1}, n = �1, 0, 1, 2. Determine
the response of the system to the input signal x[n] = {1, 2, 3, 1}, n = 0, 1, 2, 3.

4.7 Further Reading

• James H McClellan, Ronald W. Schafer, and Mark A. Yoder, DSP First: A Multimedia

Approach, Prentice Hall, 1998, chapter 7 (§7.1–7.6.3).

Signal Computing 83

4. THE Z-TRANSFORM AND CONVOLUTION

Signal Computing 84

5 Feedback Filters

5.1 Introduction

In this chapter, we will continue to introduce filters, this chapter focusing on feedback filters,
in which previous outputs are combined with new inputs to produce new outputs. We will
learn about their structure, function, and the di↵erences between feedforward and feedback
filters. We will see that sometimes it is better to combine these two kinds of filters. We will
also briefly examine digital filter design. After this chapter, you should understand important
concepts like the poles (as compared to zeros) of a transfer function, impulse response, and
bandwidth. You should know about features of feedback filters and special types of such
filters, such as resons. You should be able to design simple digital filters, implement them
on a computer and use them to solve some simple signal processing problems.

5.1.1 Poles

Figure 5.1 presents the block diagram of a filter with one feedforward and one feedback term;
the feedback filter’s signal flowgraph is shown on the right. Compared to the feedforward
one on the left in the figure, we notice that instead of combining the input signal with a
delayed version, here the output signal is delayed and “fed back” to be combined with the
input. The feedback processing alone is expressed by

y[n] = x[n] + a1y[n� 1] (5-1)

z-1

x[n] y[n]

b
1

a
1

b
0

z-1
y[n-1]

Figure 5.1: Block diagram of a simple filter with both feedforward and feedback terms.

Signal Computing 85

5. FEEDBACK FILTERS

(ignoring the factor of b0) which is the equation for a simple feedback filter with one delayed
component. a1y[n� 1] is the feedback term. You can see that the output at n� 1 is used to
compute the output at time n. The combined filter’s full defining equation is

y[n] = b0x[n] + b1x[n� 1] + a1y[n� 1] (5-2)

but for the moment we will concentrate on just the feedback part of the filter, from equa-
tion (5-1).

From equation (5-1), the z-transforms of the input and output signals, and the delay
operator z�1, we can get the filter’s transfer function as follows:

Y (z) = X(z) + a1z
�1Y (z)

Y (z)[1� a1z
�1] = X(z)

Y (z) =
1

1� a1z�1
X(z) (5-3)

Finally we have the transfer function:

H(z) =
Y (z)

X(z)
=

1

1� a1z�1

=
z

z � a1
(5-4)

The magnitude response is:

|H(!̂)| = |H(z)| =

����
z

z � a1

���� =
����

1

z � a1

���� (5-5)

(|z| = 1 because we are only concerned with the magnitude when z is on the unit circle, and
so its magnitude is always one).

The values of z that make the denominator of the transfer function zero (the roots of the
denominator polynomial, where the transfer function becomes infinite) are called its poles.
In (5-5), there is one pole at z = a1. In general, a1 is not on the unit circle, and so the
phasor z approaches it but is never equal to it. Just as we did for zeros, we can draw a line
from the pole to the unit circle to indicate the distance between z and the pole. However,
now this distance is in the denominator. Therefore, instead of H(z) having a notch or dip
when z nears a zero, it has a peak when z nears a pole.

Example 1 For the one pole filter (5-1), a1 = rej!̂0 . Figure 5.2 shows this pole when
r = 0.9 and !̂0 = ⇡/2. Figure 5.3 shows its magnitude response. As expected, |H(!̂)| has a
“hill” near !̂0 = ⇡/2. As r moves closer to one, the hill becomes steeper.

Signal Computing 86

5. FEEDBACK FILTERS

−1 −0.5 0 0.5 1
−1

0

1
Z−plane

Z

Figure 5.2: One pole in the z-plane, located at r = 0.9 and !̂0 = ⇡/2.

0 0.5 1
0

10

20

30

40

50

60

70

Freq. (pi)

dB

Figure 5.3: Magnitude response of two filters with poles located at !̂0 = ⇡/2 and r = 0.9
(bottom) or r = 1 (top).

Signal Computing 87

5. FEEDBACK FILTERS

5.1.2 Example: Computing Transfer Function and Impulse Re-
sponse

Compute the transfer function and impulse response of the system described by the feedback
filter,

y[n] = 2x[n] +
1

2
y[n� 1] (5-6)

By computing the z-transform of the both side of above equation and using the fact that

y[n� 1]
Z
 ! z�1Y (z) (5-7)

we obtain,

Y (z) = 2X(z) +
1

2
z�1Y (z). (5-8)

Hence the transfer function is

H(z) =
Y (z)

X(z)
=

2

1� 1
2z

�1
=

2z

z � 1
2

(5-9)

H(z) has a pole at z = 1/2 and zero at z = 0. Now we compute its impulse response.
Previously we had an example of an exponential signal (4-12) and its z-transform (4-16), so
we have

an
Z
 !

1

1� az�1
, n � 0, |z| > a (5-10)

This is of the same form as (5-9), with a = 1/2. Using this result, we obtain the inverse
transform

h[n] = 2

✓
1

2

◆n

, n � 0 (5-11)

where the left and right sides of equation (5-11) are the inverse z-transforms of H(z) and
2/(1 � 1

2z
�1) from equation (5-9), respectively (the latter making use of our example from

section 4.2.2). This is the corresponding impulse response.

5.1.3 Stability

Let’s examine equation (5-1) again. Note that y[n] doesn’t only depend on x[n]. This means
that, even if the input signal is zero after some initial value, this feedback term can continue
to have a nonzero value and so the filter can still produce some output. This is a major
di↵erence from feedforward filters, where the output depends only on the input. As an
extreme example, consider the case where the input signal is a unit impulse,

x[n] = �[n] =

⇢
1 n = 0
0 n > 0

(5-12)

Signal Computing 88

5. FEEDBACK FILTERS

which means it only has a value of one at the beginning, and then turns o↵. The output of
any filter for a unit impulse is called, logically enough, its impulse response. For the filter
in (5-1) with coe�cient a1 = 0.5, the impulse response is:

y[0] = x[0] = 1

y[1] = x[1] + 0.5y[0] = 0 + 0.5⇥ 1 = 0.5

y[2] = x[2] + 0.5y[1] = 0 + 0.5⇥ 0.5 = 0.25 = 0.52

y[3] = x[3] + 0.5y[2] = 0 + 0.5⇥ 0.25 = 0.125 = 0.53

...

y[n] = 0.5n (5-13)
...

You can see that the output y[n] continues after n = 0, but the value becomes smaller each
time, and will decay towards zero. On the other hand, if a1 > 1, the output becomes bigger
and bigger, and goes to infinity. This second behavior is called unstable. From equation (5-
5), we know that a1 is a pole of the filter. In fact, a feedback filter with multiple poles pi is
stable if and only if

|pi| < 1, for all i (5-14)

In other words, all the poles must be inside the unit circle. Here is the basic idea for a
four-step (well, three-step-and-a-note) proof of this:

1. A feedback filter with N feedback terms can be decomposed into N one-pole
feedback filters.

The equation for a feedback filter with N feedback terms (the right hand side of the
general feedforward/feedback filter block diagram in figure 5.4) can be written as

y[n] = x[n]�
NX

k=1

aky[n� k] (5-15)

Its transfer function is

H(z) =
1

1 +
PN

k=1 akz
�k

=
zN

zN +
PN

k=1 akz
N�k

(5-16)

where we’ve multiplied by zN/zN , as is our usual practice, to produce a ratio of poly-
nomials with positive exponents.

Let pi, i = 1, 2, ..., N be its poles (the roots of the denominator polynomial). Let’s not
worry about how we can get them (we know how if we can factor the denominator

Signal Computing 89

5. FEEDBACK FILTERS

x[n] y[n]

b
1

a
1

b
0

z-1

y[n-1]

z-1

z-1

a
2

a
N

ΣΣ

b
2

b
M

y[n-2]

y[n-N]

z-1

z-1

z-1

x[n-1]

x[n-2]

x[n-M]

Figure 5.4: Block diagram of a filter with M feedforward and N feedback terms.

polynomial, so let’s assume we have already done that). So, (5-16) can be rewritten in
the form

H(z) =
zN

(z � p1)(z � p2) . . . (z � pN)
(5-17)

=
zN

QN
k=1(z � pk)

(5-18)

Recalling our pre-calculus, a fraction with a product of terms as in (5-18) can be
rewritten using a partial fraction expansion as

H(z) =
A1

(1� p1z�1)
+

A2

(1� p2z�2)
+ . . .+

AN

(1� pNz�N)
(5-19)

=
NX

k=1

Ak

(1� pkz�k)
(5-20)

Each of the terms
Ak

(1� pkz�k)
(5-21)

is a one-pole feedback filter. So, the complete N -pole filter’s output is the sum of N
one-pole filters’ outputs. This is called a parallel one-pole filter.

2. A one-pole feedback filter is stable if and only if its impulse response is
stable.

Signal Computing 90

5. FEEDBACK FILTERS

Consider the unit impulse �[n],

�[n] =

⇢
1 n = 0
0 n > 0

(5-22)

Any discrete input signal can be thought of as a weighted sum of delayed unit impulses.
This is a straightforward application of the knowledge that �[n] = 1 when n = 0,
�[n � 1] = 1 when n = 1, �[n � 2] = 1 when n = 2, etc. Each of these is zero
for all other time indices, so we can use a sum of impulses, each multiplied by the
corresponding element of x[n], to express a discrete signal:

x[n] = {x[0], x[1], x[2], . . .}

= x[0]�[n] + x[1]�[n� 1] + x[2]�[n� 2] + · · · (5-23)

We can see that the filter’s response to any signal will be stable if and only if its
response to each of these impulses is stable.

3. An impulse response is stable if and only if its pole’s |p| < 1.

Equation (5-13) tell us that the ith one-pole feedback filter’s impulse response is the
signal with samples

1, pi, p
2
i , p

3
i , . . . (5-24)

This impulse response is stable only when the pole’s |pi| < 1, so that the sequence is
decreasing in magnitude.

4. An impulse response is neither stable nor unstable if |p| = 1.

5.1.4 Resonance and Bandwidth

Resonance is the increase in a filter’s magnitude response in the region near a pole. An
example is shown in figure 5.3. The pole is at frequency !̂ = ⇡/2, which is the peak of the
magnitude response. The magnitude is small when away from the pole.

One other thing mentioned before is that the peak becomes steep when r nears one.
The steepness is measured by the filter’s bandwidth. Bandwidth, B, is defined as the width
of the filter’s response (i.e., the range of frequencies) at half its maximum power output.
Bandwidth is an important measure of a filter’s performance; it indicates which frequencies
are passed and which are filtered out.

The filter’s power is the square of its amplitude, so the bandwidth can also be measured
at 1/

p
2 of its peak amplitude value. These half power levels are denoted by |H(!̂)|2B (the

1/
p
2 amplitude points written as |H(!̂)|B). If the peak value of power is |H(!̂)|2p and the

peak amplitude is |H(!̂)|p, the bandwidth points are located at the (two) values of !̂ that
satisfy the following relationship:

|H(!̂)|B| {z }
cuto↵

amplitude

=
1

2
|H(!̂)|2p| {z }

peak
power

=
1
p
2
|H(!̂)|p| {z }

peak
amplitude

(5-25)

Signal Computing 91

5. FEEDBACK FILTERS

−1 −0.5 0 0.5 1
−1

0

1
Z−plane

Z

R

Phi

Figure 5.5: One pole a1 = rej!̂0 in z-plane. r = R, !̂0 = 0 and z = ej!̂

Since 20 log10(1/
p
2) = �3dB

|H(!̂)|B
|H(!̂)|p

= �3dB (5-26)

and so the cuto↵ amplitude for a filter are those for which its output is reduced 3dB from its
peak. The values of !̂ at which the filter’s output is reduced by this much define the edges of
its passband and are called its cuto↵ frequencies ; they are sometimes called its “minus three
deebee points”. We will call these frequencies !̂B in the simple case where the passband
is symmetrical and the two cuto↵ frequencies are the same amount above and below the
frequency at peak filter output, !̂p.

Let’s make matters simple and take a look at the case in which a pole is on the real axis
and no other poles are nearby; the pole is a1 = rej!̂0 , r = R and !̂0 = 0 (so a1 = R). A
point on the unit circle is z = ej!̂. This situation is illustrated in figure 5.5. We know that
the one pole transfer function is

H(z) =
1

1� a1z�1
(5-27)

with magnitude

|H(z)| =

����
1

1� a1z�1

���� (5-28)

Consider the inverse square of the magnitude, substituting in our expressions for a1 and

Signal Computing 92

5. FEEDBACK FILTERS

z,

1

|H(!̂)|2
= |1�Rej!̂|2

= |1�R cos !̂ � jR sin !̂|2 (using Euler’s formula)

= (1�R cos !̂)2 +R2 sin2 !̂
�
|H|

2 = Re[H]2 + Im[H]2
�

= 1� 2R cos !̂ +R2 cos2 !̂ +R2 sin2 !̂

= 1� 2R cos !̂ +R2
�
cos2 ✓ + sin2 ✓ = 1

�
(5-29)

The peak of |H(!̂)|2 should be the value of angle !̂p = !̂ that makes 1/|H(!̂)|2 = 1 �
2R cos !̂ +R2 minimum (and so |H(!̂)|2 maximum), that is when !̂ = 0. The power at this
peak is determined by substituting !̂ = 0 into equation (5-29) and taking its reciprocal:

|H(!̂)|2p =
1

(1�R)2
(5-30)

According to equation (5-25),

|H(!̂)|B =
1

2
|H(!̂)|2p =

1

2(1�R)2
(5-31)

The corresponding !̂B can be obtained by substituting |H(!̂)|B for |H(!̂)| in equation (5-29)
and solving for frequency:

2(1�R)2 = 1� 2R cos !̂B +R2 (5-32)

cos !̂B = 2�
1

2

✓
R +

1

R

◆
(5-33)

The filter’s bandwidth is the span [�!̂B, !̂B] — a distance of 2!̂B. When R is close to
one, we can express R as a small amount ✏ less than one: R = 1 � ✏. We can then take
advantage of the expansions:

1

R
=

1

1� ✏
= 1 + ✏+ ✏2 + ✏3 + · · · (5-34)

and

cos ✏ = 1�
✏2

2!
+

✏4

4!
+ · · · (5-35)

So, from (5-33),

cos !̂B = 2�
1

2
[(1� ✏)| {z }

R

+(1 + ✏+ ✏2 + ✏3 + · · ·)| {z }
1
R

]

= 1�
✏2

2
�O(✏3)

⇡ cos ✏ (5-36)

Signal Computing 93

5. FEEDBACK FILTERS

=-3dB

Figure 5.6: Designing a simple one-pole feedback filter. A filter’s frequency response is
sketched for the situation where we want the center of its passband at !̂p and we wish to
ensure that another frequency, !̂2 = !̂p + !̂d, is well outside the passband. We choose the
filter’s cuto↵ frequencies, !̂B1 = !̂p � !̂B and !̂B2 = !̂p + !̂B, to achieve this.

(where O(✏3) is shorthand for terms in the expansion of order ✏3 or higher). Therefore,
!̂B ⇡ ✏. So, when R is close to the unit circle,

B = 2!̂B ⇡ 2✏ = 2(1�R) (5-37)

or

R ⇡ 1� B/2 (5-38)

If we want a low-pass filter with a particular bandwidth, equation (5-38) gives us a way to
determine its pole location.

Let’s consider how we might use these observations to design a filter, as sketched in
figure 5.6. We want the peak of the filter’s frequency response (the center of its passband)
to be at the frequency !̂p and we want to ensure that it filters out some other frequency, !̂2.
We choose the -3dB points to be at a distance ±!̂B from !̂p, labelled !̂B1 and !̂B2 in the
figure. These cuto↵ frequencies are chosen to ensure that !̂2 is well outside the passband.

Our design problem is to choose the pole location. The peak frequency for the passband,
!̂p, gives us the pole angle, so all we need to do is determine the pole radius, R, to give us
a1 = Rej!̂p . Looking at equation (5-28), we can substitute this value of a1 and z = ej!̂ and

Signal Computing 94

5. FEEDBACK FILTERS

collect terms:

|H(!̂)| =

����
1

1�Rej!̂pe�j!̂

����

=

����
1

1�Rej(!̂p�!̂)

���� (5-39)

We just need to make sure that when the frequency !̂ = !̂2, |H(!̂)| is below -3dB. Clearly,
we can achieve this by ensuring that the half bandwidth, B, is less than !̂d. We can then
use equation (5-38) to determine the value of R that ensures this, and we have the correct
pole location.

Self-Test Exercises

See A.5 #1–2 for answers.

1. Derive equation (5-33) from (5-32).

2. In the situation where the sampling rate is 44,100Hz and the desired bandwidth is 20Hz,
R in (5-38) is 0.998575. Solve for R the situation where the desired bandwidth is 200Hz.
Is it true that when R is far away from one, B grows large?

5.2 Mixing Feedback and Feedforward Filters

We have now seen feedforward filters with zeros in the transfer function and feedback filters
with poles. Zeros suppress frequency components and poles enhance them. Quite often, we
want to combine poles and zeros to improve the filter’s features, such as the flatness of the
passband and the abruptness with which its response transitions between the passband and
the stop band. Generally, the transfer function of a filter with block diagram in figure 5.4
can written as

H(z) =
b0 + b1z�1 + · · ·+ bMz�M

1 + a1z�1 + · · ·+ aNz�N
(5-40)

and the filter is

y[n] = b0x[n] + b1x[n� 1] + · · ·+ bMx[n�M]| {z }
feedforward terms

� a1y[n� 1]� · · ·� any[n�N]| {z }
feedback terms

(5-41)

Depending on the coe�cients {bk} and {a`}, the filter will show di↵erent features. Some
of these features have proven so useful that these forms of (5-40) have acquired special
names, such as elliptic, Butterworth, etc. (usually, based on the form of the numerator
and/or denominator polynomial). Figure 5.7 presents some example frequency responses.

5.3 Implementation

Just as in chapter 3, feedback filters have their delays implemented with queues which are
“circular arrays”. However, there are two additional complications that we must deal with:

Signal Computing 95

5. FEEDBACK FILTERS

Figure 5.7: Example filter frequency responses: elliptic (left)1and Butterworth (right)2.

complex poles and accuracy of numerical computation.

5.3.1 Avoiding Complex Numbers

In principle, there is no reason that we couldn’t perform all our computations using complex
numbers and just output the real part of the result as the filtered signal. However, we
often want to perform filtering in real time, and so would like to avoid any unnecessary
computation. A cute trick allows us to eliminate the need for complex numbers.

Remember that all complex poles will appear in conjugate pairs. Since each pole is a root
of a polynomial, that means that the denominator of the filter’s transfer function will have
even degree (excepting the real-valued poles, of course), and when it is factored the conjugate
pairs (zi, z⇤i) will appear as (z�zi)(z�z

⇤

i). If we multiply this out, we get z2�2Re[zi]z+|zi|2.
In other words, the imaginary parts of poles cancel each other out. Since we’re already using
bk for the feedforward coe�cients and a` for the feedback ones in the filter equation, let’s set
ci = �2Re[zi] and di = |zi|2. If the transfer function’s denominator is of order N (N even),
then we can multiply out the polynomials for each complex conjugate pair and rewrite the
denominator as the product of N/2 second-order polynomials

(z2 + c0z + d0)(z
2 + c1z + d1) · · · (z

2 + cN/2�1z + dN/2�1) (5-42)

with no need for complex arithmetic. We’ve done this before symbolically, using Euler’s
formula to eliminate the imaginary part of a complex conjugate pair. The point here is
that, since complex poles always appear in conjugate pairs, we can do this with even quite
complicated filters to eliminate the need for performing complex arithmetic or processing
complex numbers — a significant optimization.

1By Inductiveload (Own work) [Public domain], via Wikimedia Commons.
1By Alejo2083 (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http:

//creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.5-2.0-1.0 (http://creativecommons.
org/licenses/by-sa/2.5-2.0-1.0)], via Wikimedia Commons.

Signal Computing 96

http://www.gnu.org/copyleft/fdl.html)
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0
http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0

5. FEEDBACK FILTERS

5.3.2 Limitations of Numerical Accuracy

When we talk of the mathematics of filters, we assume that numbers have infinite precision.
Unfortunately, this is not the case for computer implementation. These days, computers
(including digital signal processors) typically use either 32 or 64 bits to represent numbers
(be they fixed or floating point). That may seem like a great deal of precision, but it is
unfortunately not uncommon for intermediate results in numerical computation to require
many more bits to retain needed precision. There are a number of ways this can happen,
but one is where a computation is performed iteratively, so that a long chain of operations
is applied to inputs before they become outputs. At each step of this chain, the result has
limited precision. In other words, the number we get is not exactly correct — in general, it
can’t be, since we don’t have infinite precision.

This loss of precision can mount rapidly, eventually destroying the result. We can think
of this limited precision as an error. If the input is from a 16-bit A/D, for example, and we
assume it does its conversion absolutely accurately to the smallest bit (which, as you have
seen in chapter 2 and will revisit in chapter 7, is probably not realistic), then that’s around
log10 2

16
⇡ 5 decimal digits from the A/D, to be generous. Each arithmetic operation we

perform, regardless of the number of bits we use, can have the undesirable e↵ect of decreasing
the number of digits of precision we have. Sums of approximate values have errors which
are the sums of their addends’ errors. Multiplication tends to magnify errors. Let’s see this
with a simple example.

Example 4 Consider the following two recurrence relations for computing the series {x[n]} =
{1/3n} (n = 0, 1, 2, . . .):

x0[n] =
1

3
x0[n� 1] (5-43)

x00[n] =
10

3
x00[n� 1]� x00[n� 2] (5-44)

Both of these equations are mathematically “correct”. They also look like the expressions

we use for our filters. Yet, they yield very di↵erent results because of loss of significance.
Let’s use an initial value of x0[0] = 0.99996 for (5-43) and initial values of x00[0] = 1 and
x00[1] = 0.33332 for (5-44). This is an initial error of 0.00004 for x0[0] and 0.000013̄ for x00[1].
I’ll use MATLAB to compute the first ten terms in each sequence with double-precision
accuracy for each calculation. The MATLAB code is

% significance.m

% 2/22/02 MDS

% Examine how error grows in an iterative computation

stdout = 1;

% This isn’t efficient, but it is straightforward

% Values of n for computation

Signal Computing 97

5. FEEDBACK FILTERS

n = [0:10];

% Series 1: the real McCoy

x = 1./3.^n;

% Series 2: x’[n] = 1/3 x’[n-1]

xp = 0.99996;

for n = [1:10],

xp(n+1) = 1/3 * xp(n); % Remember, MATLAB indices start at 1, not 0

end;

% Series 3: x’’[n] = 10/3 x’’[n-1] - x’’[n-2]

xpp = [1 0.33332];

for n = [2:10],

xpp(n+1) = 10/3 * xpp(n) - xpp(n-1);

end;

% Print out the results

fprintf(stdout, ’ n x[n] x’’[n] x’’’’[n]\n’);

for n = [0:10],

fprintf(stdout, ’%2.1d\t%12.10f\t%12.10f\t%12.10f\n’, ...

n, x(n+1), xp(n+1), xpp(n+1));

end;

The output this script produces is:

n x[n] x’[n] x’’[n]
0 1.0000000000 0.9999600000 1.0000000000
1 0.3333333333 0.3333200000 0.3333200000
2 0.1111111111 0.1111066667 0.1110666667
3 0.0370370370 0.0370355556 0.0369022222
4 0.0123456790 0.0123451852 0.0119407407
5 0.0041152263 0.0041150617 0.0029002469
6 0.0013717421 0.0013716872 -0.0022732510
7 0.0004572474 0.0004572291 -0.0104777503
8 0.0001524158 0.0001524097 -0.0326525834
9 0.0000508053 0.0000508032 -0.0983641945

10 0.0000169351 0.0000169344 -0.2952280648

The first column is accurate to the full precision of IEEE floating point (that is, the
computation is that accurate; the output was limited to ten decimal places). The second
column’s error is stable: it decreases in an exponential manner, and the value for x0[10]
is within 7 ⇥ 10�10 of the actual value. The third column’s error is unstable: it increases
exponentially.

Signal Computing 98

5. FEEDBACK FILTERS

Couple this with the need for precise pole placement, and you can see that we need
to be careful about our implementations. We saw in this chapter’s section on combining
feedforward and feedback filters the general transfer function for a filter (5-40) and its direct
implementation (5-41), which involved M delayed values of x and N delayed values of y.

However, it is better to implement such a digital filter as a cascade of second-order
ones, by factoring the numerator and denominator (which should be “easy,” since we know
the locations of the poles and zeros) and multiplying out terms with complex conjugate
pairs as described in the previous section. The resultant fraction will have numerator and
denominator which are each a product of second-order polynomials. Each ratio of second-
order polynomials is a subfilter, which can be implemented by a simple update equation. If
we take the output of one subfilter and present it as the input of the next, the output of
the last subfilter will be equivalent to the output of the entire original filter (we saw this
cascade of filters in chapter 3). Note that, though each filter has a very short (two step)
queue, the series combination produces what amounts to a longer overall queue. In practical
applications, this shouldn’t be much of a computational penalty.

5.4 Problems

5.5 Further Reading

• James H McClellan, Ronald W. Schafer, and Mark A. Yoder, DSP First: A Multimedia

Approach, Prentice Hall, 1998, chapter 8 (§8.1–8.6, 8.8).

Signal Computing 99

5. FEEDBACK FILTERS

Signal Computing 100

6 Spectral Analysis

We begin our study of signal frequency analysis with the representation of continuous-time
periodic and aperiodic signals by means of the Fourier Transform. This is followed by a
treatment of discrete-time signals, that is the Discrete Fourier Transform and an e�cient
algorithm for computing it: the Fast Fourier Transform (FFT). After this chapter, you
should understand what they are and how the FFT works. You should also understand
related terms, for example, fundamental frequency, harmonics, spectrum, time domain, and
frequency domain. You should be able to use them to do some frequency analysis of a signal.
We will also go over some problems that you need to keep in mind when using them: power
leakage caused by sudden changes in the signal, the tradeo↵ between time and frequency

resolution, and the function of windows. You should be able to use this knowledge to guide
what you do to obtain accurate results in estimating spectral information.

6.1 The Fourier Transform

We developed the Fourier series to represent a periodic signal as a linear combination of
harmonically related complex exponentials:

x(t) =
+1X

k=�1

cke
j2⇡kf0t (6-1)

Here, the ck are the Fourier coe�cients and the sequence . . . , c�1, c0, c1, . . . can be thought
of as the frequency domain representation (the amplitudes of the complex sinusoids) of the
time domain signal x(t). For continuous time aperiodic signals x(t), the Fourier Transform
is defined. It can be derived from the Fourier series allowing the signal period T to go to
infinity. Here I’ll just give its definition:

x(t) =

Z
1

�1

X(f)ej2⇡ftdf (6-2)

X(f) =

Z
1

�1

x(t)e�j2⇡ftdt (6-3)

Equation (6-3) is the Fourier transform of x(t): a function of the continuous frequency
variable f . Equation (6-2) is called the inverse Fourier transform, which yields x(t) when

Signal Computing 101

6. SPECTRAL ANALYSIS

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

tau/2−tau/2

V0

Time (sec)

Pu
ls

e

Figure 6.1: A rectangular pulse with width ⌧ .

X(f) is known. The Fourier transform converts an infinite-duration (aperiodic), continuous
signal in the time domain into an infinite, continuous spectrum in the frequency domain. It
is apparent that the essential di↵erence between the Fourier series and the Fourier transform
is that the spectrum in the latter is continuous (the Fourier series yields a discrete line
spectrum; it has non-zero values only at specific frequencies) and hence the synthesis of
an aperiodic signal from its spectrum is accomplished by means of integration instead of
summation. The Fourier transform pair in (6-3) and (6-2) can also be expressed in terms of
the radian frequency variable ! = 2⇡f . Since f = !/(2⇡), the pair becomes

x(t) =

Z
1

�1

X(!)ej!td! (6-4)

X(!) =

Z
1

�1

x(t)e�j!tdt (6-5)

6.1.1 Example: Fourier transform of a rectangular pulse

Let’s look at the rectangular pulse written about before; but here the pulse is aperiodic —
there is just a single pulse instead of a train of them. The signal is defined as

x(t) =

⇢
1 |t| ⌧/2
0 |t| > ⌧/2

(6-6)

and illustrated in Figure 6.1.

Signal Computing 102

6. SPECTRAL ANALYSIS

−40 −30 −20 −10 0 10 20 30 40
−0.1

0

0.1

0.2

0.3

0.4

f (Hz)

X(
f)

Figure 6.2: Fourier transform of the pulse in figure 6.1.

By applying (6-3), we find that

X(f) =

Z +⌧/2

�⌧/2

e�j2⇡ftdt

=
e�j2⇡ft

�j2⇡f

����
+⌧/2

�⌧/2

=
1

�j2⇡f
[e�j⇡f⌧

� ej⇡f⌧]

= ⌧ sinc(⇡f⌧) (6-7)

The final step in deriving (6-7) made use of the observation that the di↵erence of a complex
number and its conjugate is just twice its imaginary part, (a � jb) � (a + jb) = �2jb. In
polar notation, then, e�j⇡f⌧

� ej⇡f⌧ = �2j sin ⇡f⌧ , using Euler’s formula. We observe that
X(f) is real and has the shape of the sinc function we mentioned previously. The important
di↵erence here is that it is a continuous spectrum instead of line spectrum. It is shown in
figure 6.2.

As with the periodic rectangular pulses, from (6-7) we note that the zero crossings of
X(f) occur at multiples of 1/⌧ . Furthermore, the width of the main lobe, which contains
most of the signal energy, is equal to 1/⌧ . As the pulse duration ⌧ decreases or increases, the
main lobe becomes broader or narrower, and more energy is moved to the higher or lower
frequencies, respectively, as is illustrated in figure 6.3. Thus, as the single pulse is expanded
(compressed) in time, its transform is compressed (expanded) in frequency.

Signal Computing 103

6. SPECTRAL ANALYSIS

−2 0 2

0

0.5

1

1.5

Pu
ls

e

−20 0 20

0

0.5

1

X(
f)

−2 0 2

0

0.5

1

1.5

Pu
ls

e

−20 0 20

0

0.5

1

X(
f)

−2 0 2

0

0.5

1

1.5

Time (sec)

Pu
ls

e

−20 0 20

0

0.5

1

f (Hz)

X(
f)

Figure 6.3: Fourier transform of a rectangular pulse for various width values ⌧ .

6.2 The Discrete Fourier Transform

So far, we have examined the Fourier series (which is for a periodic, continuous signal) and
its discrete spectrum and the Fourier transform (which is for an aperiodic, continuous signal)
and its continuous spectrum. Now, we will investigate periodic, discrete signals and their
spectra, which are discrete.

Let’s consider a finite digital signal {x[n]} (n = 0, 1, 2, . . . , N � 1). The discrete Fourier

Signal Computing 104

6. SPECTRAL ANALYSIS

transform (DFT) is defined as

X[k] =
N�1X

n=0

x[n]e�jnk2⇡/N , k = 0, 1, 2, . . . , N � 1 (6-8)

where X is the spectrum of x, and its synthesis equation or inverse DFT (IDFT) is

x[n] =
1

N

N�1X

k=0

X[k]ejnk2⇡/N , n = 0, 1, 2, . . . , N � 1 (6-9)

The DFT converts a finite (periodic), discrete signal in the time domain (x[n]) into a
finite, discrete spectrum in the frequency domain (X[k]).

We can derive the DFT informally from the Fourier series of a periodic signal. Let’s
compare equation (6-8) and that for the coe�cients of the Fourier series, equation (1-37),
which I repeat here:

ck = hf(t), e
jk!0ti =

1

T

Z T

0

f(t)e�jk!0tdt (6-10)

First, notice that the DFT uses a summation within [0, N � 1] and the series uses an
integral within one period T. This di↵erence arises because here the signal is discrete and
finite (and so we write x[n] instead of f(t)). The factor of 1/T in (6-10) is equivalent to that
of 1/N in (6-9), where that factor has been arbitrarily included in the IDFT instead of the
DFT.

Now let’s compare the basis (the complex exponential). The frequency here is also
discretized. Remember that a sampled signal has a Nyquist frequency of !s/2, or ⇡ radi-
ans/sample, where !s is the sampling rate, equivalent to 2⇡ radians/sample. Let’s discretize
this signal’s frequencies using N equally-spaced points. The step �!̂ between neighboring
frequencies (in radians/sample) is

�!̂ =
2⇡

N
(6-11)

This is what equation (6-8) indicates within the sum: that whatever nk is, it will be a
multiple of 2⇡/N . The kth frequency in radians can be written as

k�!̂ = k
2⇡

N
, k = 0, 1, 2, . . . , N � 1 (6-12)

Substituting k�!̂ in (6-12) for k!0 in the Fourier series basis should convince you that
the DFT is the discrete version of the Fourier series. The coe�cient X[k] is the magnitude
of the spectrum of x at frequency k2⇡/N .

Table 6.1 illustrates how the step between frequencies changes as the signal duration
and sampling rate (and thus number of samples) change. Increasing the signal duration,
and therefore the number of samples, without changing the sampling rate (which keeps the
Nyquist cuto↵ constant) decreases the step between frequencies (or, if you prefer to think
of this another way, increases the frequency resolution). On the other hand, decreasing the
sampling rate decreases the number of samples (assuming the signal duration stays constant)
and the Nyquist cuto↵, so the step between frequencies stays constant.

Signal Computing 105

6. SPECTRAL ANALYSIS
T (s) fs (Hz) N �!̂ (rad/sample) �! (rad/s) �f (Hz)
1 10 10 ⇡/5 2⇡ 1
10 10 100 ⇡/50 ⇡/5 1/10
100 10 1000 ⇡/500 ⇡/50 1/100
100 5 500 ⇡/250 ⇡/50 1/100
100 1 100 ⇡/50 ⇡/50 1/100

Table 6.1: Some examples of how �!̂, �! = �!̂fs, and �f = �!/2⇡ = fs/N change for
signals of di↵erent duration and sampling rate.

6.2.1 Derivation of the IDFT [Optional]

Next, let’s see how we can get the synthesis equation IDFT from the DFT. Multiplying both
sides of (6-8) by ejn

0k2⇡/N and then summing over all k,

N�1X

k=0

X[k]ejn
0k2⇡/N =

N�1X

k=0

N�1X

n=0

x[n]e�jnk2⇡/Nejn
0k2⇡/N (6-13)

Switching the order of summation of n and k on the right side, plus some algebraic rear-
rangement yields

N�1X

k=0

X[k]ejn
0k2⇡/N =

N�1X

n=0

x[n]
N�1X

k=0

ejk(n
0
�n)2⇡/N (6-14)

It can be shown that
N�1X

k=0

ejk(n
0
�n)2⇡/N =

⇢
N n = n0

0 n 6= n0
(6-15)

= N�[n� n0] (6-16)

where �[n� n0] is defined as

�[n� n0] =

⇢
1 n = n0

0 n 6= n0
(6-17)

Substituting the above result into (6-14), we get the IDFT (but for that pesky factor of
1/N):

N�1X

k=0

X[k]ejn
0k2⇡/N =

N�1X

n=0

x[n]N�[n� n0]

= Nx[n0] (6-18)

To simplify the notation, let’s use a vector notation for the discrete signal x = {x[n]}
and its spectrum X = {X[k]}. The DFT and IDFT operations become N ⇥ N matrices F
and F�1, respectively. An element in row k and column n of F is

[F]kn = e�jnk2⇡/N , k, n = 0, 1, 2, . . . , N � 1 (6-19)

Signal Computing 106

6. SPECTRAL ANALYSIS

Then the DFT and IDFT can be written as

X = Fx (6-20)

x = F�1X (6-21)

or

x
F
�! X (6-22)

X
F�1

�! x (6-23)

6.2.2 Finite vs. Infinite Signals

In this book, we have used (and will continue to use) the terms “periodic” and “finite”
interchangeably (and, similarly, “aperiodic” and “infinite”). When we compute the Fourier
series or the DFT of a finite signal of duration T , we do so only within that interval of
time. In e↵ect, what we are doing for finite signals is “pretending” that the signal is actually
periodic with period T and that we are only looking at one of its periods.

On the other hand, if a signal is actually of infinite duration, we would use the Fourier
transform. However, this is not a process that we can perform on a computer, where infinite
duration signals cannot exist (the duration of any signal is limited by the available storage).
We have to chop the signal o↵ at a length that the computer can handle, ignoring the error
it may produce (or testing to make sure that the error is tolerable for our application). This
brings us back to the DFT for processing the resulting finite signal as an approximation of
the infinite signal’s Fourier transform. Note that, even outside the computer, our time is
finite (even the lifespan of the universe is finite) and so no physically realizable signal is
actually infinite.

6.2.3 Properties of the DFT

Let’s consider some of the properties of the DFT of physically realizable signals. These
signals are real, so x[n] = x[n]⇤. What is the spectrum of such a signal like? We can think
of the signal’s frequency content or spectrum, X[k] (k = 0, 1, . . . , N � 1), as a sequence of
N complex numbers. This is known as a N point FFT. If we compute X[N � k] using (6-8),

Signal Computing 107

6. SPECTRAL ANALYSIS

we get

X[N � k] =
N�1X

n=0

x[n]e�jn(N�k)2⇡/N

=
N�1X

n=0

x[n]e�jn2⇡ejnk2⇡/N

=
N�1X

n=0

x[n]ejnk2⇡/N (since e�jn2⇡ = 1)

=

"
N�1X

n=0

x[n]⇤e�jnk2⇡/N

#⇤
(since ab = ((ab)⇤)⇤ = (a⇤b⇤)⇤)

Because x[n] = x[n]⇤,

X[N � k] =

"
N�1X

n=0

x[n]e�jnk2⇡/N

#⇤

= X[k]⇤ (6-24)

So for example, when N = 8, k = 0, 1, 2, 3, 4, 5, 6, 7, and

X[7] = X[1]⇤ X[6] = X[2]⇤ X[5] = X[3]⇤ (6-25)

(When k = 0, X[8] = X[0]⇤ but X[8] is out of spectrum, which ranges from 0 to 7 only. This
is the “DC”, or zero-frequency, component of the signal.)

This can be represented diagrammatically as

0
"

DC

1
z }| {
2 3 4 5| {z } 6 7

| {z }
(6-26)

This is clearly symmetric about k = 4. When N is an even number, the spectrum has N/2
at the center; when N is an odd number, the center is between bN/2c and dN/2e. So, for
N = 7,

0
"

DC

1
z }| {
2 3 4|{z} 5 6

| {z }
(6-27)

What this means is that the spectrum over frequencies dN/2e to N�1 has the same mag-
nitude as over 1 to bN/2c, but with negative phase angle (which means negative frequencies
on the unit circle). In fact, N/2 corresponds to the Nyquist frequency in radians/sample.
We can see this from (6-12), when k = N/2

!̂N/2 =
N

2

2⇡

N
= ⇡ (6-28)

Signal Computing 108

6. SPECTRAL ANALYSIS

Converting this to Hz, we get

f̂N/2 = !̂N/2
fs
2⇡

= ⇡
fs
2⇡

=
fs
2

(6-29)

where fs is the sampling rate. The above equation shows that f̂N/2 is the Nyquist frequency
in Hz. The conclusion is that the magnitude of the transform of a real valued signal is
an even function of frequency and so we only need to plot its spectrum in range [0, N/2],
corresponding to the range of frequencies from 0 to the Nyquist frequency. This also means
that the DFT of a real signal has (slightly more than) half the information of the DFT of
a complex-valued signal with the same number of samples (which makes sense, since each
sample has an imaginary component of zero).

Self-Test Exercises

See A.6 #1 for the answer.

1. Show which frequencies will be equal for a spectrum with:

(a) 16 points.

(b) 15 points.

Example: Spectrum of an exponential

Consider the exponential signal

x[n] = an, 0 < a < 1, n = 0, 1, 2, . . . , N � 1 (6-30)

The signal is plotted in the top of figure 6.4
The DFT of the sequence x[n] is

X[k] =
N�1X

n=0

x[n]e�jnk2⇡/N

=
N�1X

n=0

ane�jnk2⇡/N (6-31)

The common ratio for this geometric series (the ratio of two successive terms) is ae�jk2⇡/N .
Accordingly, the summation in (6-31) becomes

X[k] =
1� aNe�jkN2⇡/N

1� ae�jk2⇡/N

=
1� aN

1� ae�jk2⇡/N
(6-32)

The magnitude of X[k] for N = 50 and a = 0.8 is plotted in the bottom of figure 6.4.
Since this is a real signal, |X[k]| is an even function of frequency, and so we can just plot
the first half of the range of 0 to N/2. That is shown in figure 6.5

Signal Computing 109

6. SPECTRAL ANALYSIS

0 10 20 30 40 50
0

0.5

1

Sequence count t

x_
t

0 10 20 30 40 50
0

1

2

3

4

5

Frequency points k

|X
_k

|

Figure 6.4: Plot of the sequence x[n] = an, 0 < a < 1 (top) and the magnitude of its DFT
(bottom), where a = 0.8 and N = 50.

Signal Computing 110

6. SPECTRAL ANALYSIS

0 5 10 15 20 25
0

1

2

3

4

5

|X
_k

|

Frequency points k

Figure 6.5: Magnitude of DFT for the signal 6.4 top is plotted for the first half of its range.

6.2.4 Computing the DFT Directly

Later on, a method for computing the DFT e�ciently will be introduced. In view of the
importance of the DFT in various digital signal processing applications, such as linear filter-
ing, correlation analysis, and spectrum analysis, its e�cient computation is a topic that has
received considerable attention by many mathematicians, engineers, and applied scientists.
But, let’s first consider the direct, brute-force approach.

To compute the DFT, we need to compute the sequence {X[k]} of N complex-valued
numbers given another sequence of data {x[n]} of length N , according to the formula (6-8):

X[k] =
N�1X

n=0

x[n]e�jnk2⇡/N , k = 0, 1, 2, . . . , N � 1

In general, the data sequence x[n] is also assumed to be complex valued. We observe that
for each value of k, direct computation of X[k] involves N complex multiplications (4N real
multiplications and 2N real additions) and N �1 complex additions (2N �2 real additions).
Consequently, to compute all N values of the DFT requires 4N2 complex multiplications
and 4N2

� 2N complex additions. So, the direct approach is an O(N2) algorithm, and you
should recognize that this is not terribly e�cient to say the least.

Signal Computing 111

6. SPECTRAL ANALYSIS

6.2.5 The Fast Fourier Transform Algorithm

The development of computationally e�cient algorithms for the DFT is made possible if we
adopt a divide-and-conquer approach, called Fast Fourier Transform (FFT). This approach
is based on the decomposition of an N point DFT into successively smaller DFTs, in a
manner similar to how mergesort or quicksort divide large sorting problems into smaller
sorting problems.

A DFT of length N can be rewritten as the sum of two DFTs, each of length N/2. One
of the two is formed from the even-numbered points of the original N , while the other uses
the odd-numbered points. This division can be arrived at straightforwardly:

X[k] =
N�1X

n=0

x[n]e�jnk2⇡/N

=
N/2�1X

n=0

x[2n]e�jk(2n)2⇡/N +
N/2�1X

n=0

x[2n+ 1]e�jk(2n+1)2⇡/N

=
N/2�1X

n=0

x[2n]e�jkn2⇡/(N/2) + e�jk2⇡/N

N/2�1X

n=0

x[2n+ 1]e�jkn2⇡/(N/2)

= X[k]even + e�jk2⇡/NX[k]odd, k = 0, 1, 2, . . . , N � 1 (6-33)

where

X[k]even =
N/2�1X

n=0

x[2n]e�jkn2⇡/(N/2) (6-34)

X[k]odd =
N/2�1X

n=0

x[2n+ 1]e�jkn2⇡/(N/2) (6-35)

where k = 0, 1, 2, . . . , N/2� 1.

X[k]even denotes the kth component of the DFT of length N/2 formed from the even
components of the original x[n], while X[k]odd is the corresponding transform of length N/2
formed from the odd components. The transforms X[k]even and X[k]odd are periodic in k

Signal Computing 112

6. SPECTRAL ANALYSIS

with length N/2. So each is repeated through two cycles to obtain X[k]:

X[k +N/2]even =
N/2�1X

n=0

x[2n]e�j(k+N/2)n2⇡/(N/2)

=
N/2�1X

n=0

x[2n]e�jkn2⇡/(N/2) = X[k]even (6-36)

X[k +N/2]odd =
N/2�1X

n=0

x[2n+ 1]e�j(k+N/2)n2⇡/(N/2)

=
N/2�1X

n=0

x[2n+ 1]e�jkn2⇡/(N/2) = X[k]odd (6-37)

because e�jkn2⇡ = 1.
The good thing is that this process can be continued recursively, just as in the divide-

and-conquer sorting algorithms. Having reduced the problem of computing X[k] to that of
computing X[k]even and X[k]odd , we can do the same reduction of X[k]even to the problem
of computing the transform of its N/4 even-numbered elements and N/4 odd-numbered
elements. In other words, we can define X[k]even�even and X[k]even�odd to be DFT of the
points which are respectively even-even and even-odd on the successive subdivisions of the
data. The same process can be applied to recursively divide X[k]odd .

It is easy to imagine continuing this process until the DFT size is one, if N is a power
of two. Though there are special algorithms if N is not a power of two, we can assume that
the data is just padded with zeros up to the next power of two. Having done that, we will
continue developing the FFT algorithm for N a power of two as a general-purpose DFT
algorithm. With this condition on N , we can continue applying the dividing method until
we have subdivided the data all they way down to transforms of length 1. The DFT of x[n]
for some n, and N = 1 is x[n]! Therefore,

X[k]even�even�odd�··· = x[n], for some n (6-38)

The results of adjacent pairs of these one-point DFTs can be merged using (6-33):
X[k]even + e�jk2⇡/NX[k]odd . In this case k = {0, 1}, N = 2, and the one-point DFTs are
the even and odd signal values themselves, so this reduces to,

X2[0] = x[even] + e�j(0)2⇡/2x[odd]

= x[even] + x[odd] (6-39)

X2[1] = x[even] + e�j(1)2⇡/2x[odd]

= x[even]� x[odd] (6-40)

where the subscript “2” has been used to indicate that this is a 2-point DFT.

Signal Computing 113

6. SPECTRAL ANALYSIS
Algorithm 6.1 Recursive FFT.
Require: x is a discrete function of time of length N = 2m

Ensure: X is the DFT of x (also of length N)
if N = 1 then
Return x

else
Divide x into xeven and xodd

{the even and odd numbered points}
Xeven = FFT(xeven)
Xodd = FFT(xodd)
for k = 0, 1, 2, . . . , N � 1 do
XN [k] = XN/2[k]even + e�jk2⇡/NXN/2[k]odd

end for
Return X

end if

Table 6.2: Example of the e↵ect of bit reversal on an eight-element input vector.

Input Bit-Reversed Result
Decimal Binary Binary Decimal

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

This is the basic FFT. High-level pseudocode for a recursive implementation is given in
algorithm 6.1, where I have used subscripts to distinguish between the values of the N/2-
point FFT and the N -point FFT. The base case for the recursion is that the length of the
signal is one. As I’m sure you’re familiar, recursive algorithms are short, simple, and elegant,
but not always as e�cient as non-recursive ones. There is a non-recursive approach to the
even and odd dividing, and it is really neat, so I’ll go over it.

We start with the problem of how to sort even and odd numbers and how to know which n
goes to which pattern of X[k]even�··· and X[k]odd�···. The successive subdivisions of the data
into even and odd parts are tests of successive low-order (least significant) bits of the binary
representation of n. This is true because the least significant bit of an binary number is what
determines if it is even or odd, and the act of dividing a binary number by two is equivalent
to shifting it to the right one bit, which makes the next bit the new least significant bit. We
take the original vector of data x[n] and rearrange it into bit-reversed order (see table 6.2

Signal Computing 114

6. SPECTRAL ANALYSIS

for an example for N = 8), so that the individual numbers are not in order of n, but of the
number obtained by bit-reversing n. The function of bit-reversing is to take care of all those
even and odd divisions to the final list for N one-point transforms!

How do we recombine these non-recursively to produce the result? Starting with the one-
point transforms, we combine adjacent pairs to get two-point transforms according to (6-33),
then combine adjacent pairs of pairs of 4-point transforms, and so on, until we combine N/2
point transforms into the final transform of N total data points.

Algorithm 6.2 Iterative FFT.
Require: x is a discrete function of time of length N
Ensure: X is the DFT of x (also of length N)
if N is not a power of two then
Pad x with zeros until its length is the next power of two

end if
Shu✏e the x[n] in bit-reversed order
Size = 2 {Size = 1 DFTs already done}
while Size N do
Compute N/Size DFTs from the existing ones as XSize/2[k]even + e�jk2⇡/SizeXSize/2[k]odd

Size = Size ⇥ 2
end while

In summary, the bit-reverse-based nonrecursive FFT algorithm is given in algorithm 6.2.
This is illustrated in figure 6.6.

As far as the computational complexity of this algorithm is concerned, each iteration of
the loop is O(N) (we’re computing N/Size DFTs, each with Size elements), and the loop
executes log2 N times, so the whole algorithm is O(N log2 N). Directly computing the DFT
(i.e., not using the FFT algorithm) takes O(N2).

Example: 8-Point FFT

Let’s compute the FFT of the signal, x[n] = {0, 1, 0, 1, 0, 1, 0, 1}, n = {0, 1, 2, 3, 4, 5, 6, 7}.
The first thing we’ll do is write the signal out as a 1D array, with indices in binary:

x[n] 0 1 0 1 0 1 0 1
n 000 001 010 011 100 101 110 111

Next, we sort the elements according to their bit-reversed indices:

x[n] 0 0 0 0 1 1 1 1
n 000 100 010 110 001 101 011 111

Each of these elements is already a 1-point FFT; we now begin merging them into 2-
point ones (X2[0] = x[even] + x[odd] and X2[1] = x[even] � x[odd]), as in equations (6-39)
and (6-40):

Signal Computing 115

6. SPECTRAL ANALYSIS
0

000
1

001
2

010
3

011
4

100
5

101
6

110
7
111

0
000

4
100

2
010

6
110

1
001

5
101

3
011

7
111

Bit Reversal

{ { { {

Merge MergeMergeMerge

0
000

4
100

2
010

6
110

1
001

5
101

3
011

7
111{ {

Merge Merge

0
000

4
100

2
010

6
110

1
001

5
101

3
011

7
111{

Merge

0
000

1
001

2
010

3
011

4
100

5
101

6
110

7
111

Figure 6.6: Schematic outline of an iterative 8-point FFT

X2[k] 0 0 0 0 2 0 2 0
k 0 1 0 1 0 1 0 1

Now we have four 2-point FFTs; we now merge adjacent pairs of points. So, we will be
computing X4[k] for k = {0, 1, 2, 3}. To compute elements k = 2 and k = 3, we need to
remember equations (6-36) and (6-37) — that, since the transform X is periodic, we simply
repeat the 2-point FFTs to get the “extra” two points. So, X2[2] = X2[0] and X2[3] = X2[1].
The resulting equations are:

X4[0] = X2[0]
even + e�j(0)2⇡/4X2[0]

odd

X4[1] = X2[1]
even + e�j(1)2⇡/4X2[1]

odd

X4[2] = X2[0]
even + e�j(2)2⇡/4X2[0]

odd

X4[3] = X2[1]
even + e�j(3)2⇡/4X2[1]

odd

We can do the arithmetic in the exponents,

X4[0] = X2[0]
even + e0X2[0]

odd

X4[1] = X2[1]
even + e�j⇡/2X2[1]

odd

X4[2] = X2[0]
even + e�j⇡X2[0]

odd

X4[3] = X2[1]
even + e�j3⇡/2X2[1]

odd

Signal Computing 116

6. SPECTRAL ANALYSIS

and then simplify,

X4[0] = X2[0]
even +X2[0]

odd

X4[1] = X2[1]
even
� jX2[1]

odd

X4[2] = X2[0]
even
�X2[0]

odd

X4[3] = X2[1]
even + jX2[1]

odd

yielding:

X4[k] 0 0 0 0 4 0 0 0
k 0 1 2 3 0 1 2 3

We repeat this process one more time to get the 8-point final result,

X8[0] = X4[0]
even + e�j(0)2⇡/8X4[0]

odd

X8[1] = X4[1]
even + e�j(1)2⇡/8X4[1]

odd

X8[2] = X4[2]
even + e�j(2)2⇡/8X4[2]

odd

X8[3] = X4[3]
even + e�j(3)2⇡/8X4[3]

odd

X8[4] = X4[0]
even + e�j(4)2⇡/8X4[0]

odd

X8[5] = X4[1]
even + e�j(5)2⇡/8X4[1]

odd

X8[6] = X4[2]
even + e�j(6)2⇡/8X4[2]

odd

X8[7] = X4[3]
even + e�j(7)2⇡/8X4[3]

odd

producing:

X8[0] = X4[0]
even +X4[0]

odd

X8[1] = X4[1]
even + e�j⇡/4X4[1]

odd

X8[2] = X4[2]
even
� jX4[2]

odd

X8[3] = X4[3]
even + e�j3⇡/4X4[3]

odd

X8[4] = X4[0]
even
�X4[0]

odd

X8[5] = X4[1]
even + e�j5⇡/4X4[1]

odd

X8[6] = X4[2]
even + jX4[2]

odd

X8[7] = X4[3]
even + e�j7⇡/4X4[3]

odd

The final result is:

X8[k] 4 0 0 0 -4 0 0 0
k 0 1 2 3 4 5 6 7

Signal Computing 117

6. SPECTRAL ANALYSIS

To interpret this, since we’re dealing with a real-valued signal, we refer back to (6-26).
X8[0] is the DC value, proportional to the mean value of the signal (in fact, it would be
equal to the mean if we divide by N). We need only examine elements 1 through 4, since the
spectrum is periodic. Only element 4 is nonzero. This makes sense, since the original signal
repeated every other sample, which is right at the Nyquist frequency (⇡), corresponding to
element 4.

Self-Test Exercises

See A.6 #2–4 for answers.

1. Prove that the DFT of x[n] for any n = m and N = 1 is x[m].

2. Perform step-by-step division for the example given in table 6.2 to prove the final result is
equal to the bit-reversed input.

3. Perform the 4-point FFT of the signal x[n] = {1, 2, 3, 4}, n = {0, 1, 2, 3} by hand.

6.3 The inverse DFT

The inverse DFT (IDFT) can be computed using method similar to that used to compute
the DFT, that is the FFT. Let’s take look at (6-9) again:

x[n] =
1

N

N�1X

k=0

X[k]ejnk2⇡/N , n = 0, 1, 2, . . . , N � 1

Take the complex conjugate of both sides of this equation and multiply by N ,

Nx[n]⇤ =
N�1X

k=0

X[k]⇤e�jnk2⇡/N = DFT(X[k]⇤) (6-41)

Compare this to (6-8); the right side is just the forward DFT of X[k]⇤. So, x[n] can be
computed from X[k] as

x[n] =
1

N
[DFT(X[k]⇤)]⇤ (6-42)

Given the DFT of a signal {X[k]} (k = 0, 1, 2, . . . , N � 1), the algorithm for computing
its IDFT {x[n]} using the FFT is:

1. take {X[k]}’s conjugate: {X[k]⇤}

2. take {X[k]⇤}’s forward transform using the FFT: FFT({X[k]⇤})

3. take the conjugate of the result and divide by N to get {x[n]}

Signal Computing 118

6. SPECTRAL ANALYSIS

0 1 2 3 4 5
−2

0

2

Time (s)

x(
t)

0 10 20 30 40 50
−300

−200

−100

0

100

Frequency (Hz)

|X
|,

dB

Figure 6.7: Sum of two sinusoids x with N = 512 samples (top) and its FFT |X| (bottom).
The sampling frequency is fs = 100Hz, f1 = 25�f = 4.8828Hz and f2 = 128�f = 25.0Hz,
where frequency step �f = fs/N = 0.1953Hz/sample.

6.3.1 Example: Sum of Two Sinusoids

Let’s investigate the FFT using the example of two sinusoids,

x(t) = sin 2⇡f1t+ sin 2⇡f2t (6-43)

I’ll set the sampling rate to fs = 100Hz, so the sampling interval is Ts = 1/fs = 0.01s. A
finite-length (N point) segment of the digital version of above signal becomes,

x[n] = sin(2⇡f1nTs) + sin(2⇡f2nTs), n = 0, 1, . . . , N � 1 (6-44)

The corresponding frequency step in Hz is �f = fs/N , so f̂ = k�f , k = 0, 1, 2, . . . , N/2.
First, let’s use N = 512 and set the frequency components of the signal to be f1 = 25�f =
4.8828Hz and f2 = 128�f = 25.0Hz. The signal and its FFT result are shown on the top
and bottom of figure 6.7.

As we expected, the two components appear in locations 4.8828Hz and 25.0Hz. Their
magnitudes are around 300dB. Theoretically, all other value should be zero except these two.
The nonzero values away from these two frequencies represent unavoidable computational
errors introduced.

Now, let’s choose another a pair of frequency values, f1 = 5Hz and f2 = 25Hz and check
the result in figure 6.8 (top).

Signal Computing 119

6. SPECTRAL ANALYSIS

0 10 20 30 40 50
−50

0

50

|X
|,

dB

0 10 20 30 40 50
−50

0

50

Frequency (Hz)

|X
|,

dB

Figure 6.8: Similar input signals as in figure 6.7, but here the two frequencies are f1 = 5Hz
and f2 = 25Hz for the top plot and f1 = 5Hz and f2 = 24Hz for the bottom.

How about f1 = 5Hz and f2 = 24Hz?, See figure 6.8 (bottom). In both cases in this
figure, the peaks are below 40dB, down from 300dB. Why? This is caused by the discrete
nature of the frequency representation and the fact that one or two of the signal’s frequency
components are not lined up with the set of discrete frequencies {f̂} — they fall in between
two DFT points. For the pair f1 = 5Hz and f2 = 25Hz, f1 = 5Hz falls between the points
k = 25 and 26 and f2 = 25Hz is lined up with k = 128. So, the first peak is broad and
its energy shows up in significant amounts at all of the DFT frequencies. The second one
is narrow and sharp, but because of the first peak’s energy distribution, its amplitude is
low too (actually, the amplitudes of all the “in between” points have been raised). For the
second pair of f1 = 5Hz and f2 = 24Hz, neither are lined up so both of them are broad and
low.

6.4 Power Leakage [Optional]

Power leakage is the phenomenon where power at a particular frequency (called the center

frequency or central lobe) “leaks” into neighboring frequencies, which results in the center
frequency peak being reduced, the peak width becoming broader, and nearby frequencies’
(or side lobes’) amplitudes increasing. This happens when the signal abruptly changes, for

Signal Computing 120

6. SPECTRAL ANALYSIS

instance suddenly turning on or o↵. Let’s see the case of a truncated signal.

When we compute a signal’s spectrum, values of the signal for all time are required.
However, in practice, we observe signals for only finite durations. Therefore, the spectrum
of a signal can only be approximated from a finite data record. Let’s say we have an analog
signal, we sample it at a rate fs, and we limit the duration of the signal to the time interval
T0 = NTs, where N is the number of samples and Ts = 1/fs is the sample interval. We
denote the original, infinite-duration discrete signal as {x[n]} and duration limited signal as
{y[n]}. This is equivalent to multiplying {x[n]} by a rectangular window w[n] of length N .
That is,

y[n] = x[n]w[n] (6-45)

where

w[n] =

⇢
1 0 n N � 1
0 otherwise

(6-46)

The rectangular window w[n] sharply chopped the original signal to get the finite signal y[n].

I’ll use a sinusoid as an example for the signal x[n],

x[n] = cos !̂0n (6-47)

Using Euler’s formula, the signal also can be written as

x[n] =
1

2

�
ej!̂0n + e�j!̂0n

�
(6-48)

The windowed version of this signal is

y[n] =
1

2

�
ej!̂0n + e�j!̂0n

�
w[n] (6-49)

Setting !̂k = k2⇡/N (the N radian/sample frequency points in the FFT) in the DFT
formula and applying it,

Y [k] ⌘ Y (!̂k) =
N�1X

n=0

w[n]
1

2
(ej!̂0n + e�j!̂0n)e�j!̂kn

=
1

2

N�1X

n=0

w[n](e�j(!̂k�!̂0)n + e�j(!̂k+!̂0)n)

=
1

2
(W (!̂k � !̂0) +W (!̂k + !̂0)) (6-50)

where W (!̂) is the DFT of the window w[n]. Actually, w[n] can be viewed as the long pulse

Signal Computing 121

6. SPECTRAL ANALYSIS

−0.5 0 0.5

−40

−30

−20

−10

0

10

Freq. (pi)

|Y
| d

B

Figure 6.9: Magnitude spectrum of windowed signal x[n] = cos !̂0n, !̂0 = 0.2⇡ and the
rectangular window length is N = 128. This Illustrates the occurrence of power leakage.

we talked about in chapter 1. Its DFT is

W [k] ⌘ W (!̂k) =
N�1X

n=0

w[n]e�j!̂kn

=
N�1X

n=0

e�j!̂kn (6-51)

=
sin(!̂kN/2)

sin !̂k/2
e�j!̂k(N�1)/2 (6-52)

Figure 6.9 is a plot of Y (!̂k) with a window length of N = 128, and !̂0 = 0.2⇡. The
power of the original signal sequence x[n] — concentrated at a single frequency !̂0 = 0.2⇡ —
has been spread by the rectangular window into the entire frequency range. That is called
power leakage. The rectangular window’s e↵ect is to cut out a piece of the original “long”
digital signal; this action is equivalent to turning the signal suddenly on at n = 0 and o↵ at
n = N . This causes the power leakage.

Signal Computing 122

6. SPECTRAL ANALYSIS

−0.5 0 0.5

−40

−30

−20

−10

0

10

Freq. (pi)

|Y
| d

B

Figure 6.10: Magnitude spectrum of a one-sided signal x[n] = cos !̂0n with !̂0 = 0.2⇡.

Let’s see what happens if we let the window grow infinity long (or N !1), that is

W [n] ⌘ W (!̂k) =
1X

n=0

w[n]e�j!̂kn

=
1X

n=0

e�j!̂kn (6-53)

This is an infinite geometric series. Its common ratio is e�j!̂k , so

W [k] =
1

1� e�j!̂k

=
1

2je�j!̂k/2 sin(!̂k/2)

=
�jej!̂k/2

2 sin(!̂k/2)
(6-54)

Substituting this result back into (6-50), we obtain the spectrum of a one-sided signal xt.
This is plotted in figure 6.10.

Comparing (6-52) and (6-54), the magnitude of the former has N zeros equally spaced on
the frequency axis, except at the peak frequency !̂0, where there is a 0/0 situation, which
becomes 1. All these zeros contribute to the spectrum’s oscillation. The magnitude of the
latter one does not have a zero.

Signal Computing 123

6. SPECTRAL ANALYSIS

Self-Test Exercise

See A.6 #5 for the answer.

1. Fill in the steps leading from (6-51) to (6-52).

6.5 Tradeo↵ Between Time and Frequency Resolution
[Optional]

Windowing not only distorts the spectral estimate due to leakage e↵ects, it also reduces
spectral resolution. There exists a tradeo↵ between time and frequency resolution. Wider
windows produce finer frequency resolutions, which means you have the ability to distinguish
between nearby spectral peaks. However, it yields worse time resolution, meaning that, if
you deal with a time-varying signal (a signal with spectrum varying along time), the longer
the time window is, the more information is combined within it and the more it misrepresents
when the spectral components occurred.

To illustrate the concept of frequency resolution, let’s use a digital signal consisting of
three frequency components,

x[n] = cos !̂0n+ cos !̂1n+ cos !̂2n (6-55)

When x[n] is truncated to N samples in the range 0 n N � 1, the windowed spectrum
is

Y (!̂k) =
1

2
[W (!̂�!̂0)+W (!̂�!̂1)+W (!̂�!̂2)+W (!̂+!̂0)+W (!̂+!̂1)+W (!̂+!̂2)] (6-56)

Examining (6-52) again, the first zero crossing on either side of the center frequency is
the !̂k that satisfies

!̂kN

2
= ⇡ (6-57)

which is the first frequency at which sin(!̂kN/2) = 0, or !̂k = 2⇡/N . The width of the center
lobe is twice this, because there is no zero at !̂k = 0. The center lobes of the two window
functions W (!̂ � !̂i) and W (!̂ � !̂j) — corresponding to two frequency components !̂i and
!̂j (i 6= j) — will overlap if |!̂i � !̂j| < 4⇡/N . As a result, the two spectral lines (peaks)
of xt will be indistinguishable. Only if |!̂i � !̂j| � 4⇡/N can we see two separate lobes in
the spectrum Y (!̂k). Therefore, our ability to resolve spectral lines of di↵erent frequencies
is limited by the window main lobe width, that is 4⇡/N . As window length N increases, the
spacing between two resolvable frequencies decreases as 1/N , and so we get better frequency
resolution. Figures 6.11 and 6.12 illustrate this conclusion. In these two figures, the signal
has the three components !̂0 = 0.1⇡, !̂1 = 0.12⇡ and !̂2 = 0.3⇡. The length of the window
for 6.11 is N = 16, where the two close components !̂0 and !̂1 are indistinguishable. The
window length for 6.12 is N = 128, and now we can see two peaks around the 0.1⇡ area

Signal Computing 124

6. SPECTRAL ANALYSIS

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−25

−20

−15

−10

−5

0

5

10

Freq. (pi)

|Y
| d

B

Figure 6.11: Magnitude spectrum of the signal (6-55) made up of three sinusoids. !̂0 = 0.1⇡,
!̂1 = 0.12⇡, !̂2 = 0.3⇡, and the rectangular window length was N = 16. Because of the
small window size, !̂0 and !̂1 are indistinguishable.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−40

−30

−20

−10

0

10

Freq. (pi)

|Y
| d

B

Figure 6.12: The same figure as 6.11, but the rectangular window length N = 128 allows
separation of the !̂0 and !̂1 frequency components.

Signal Computing 125

6. SPECTRAL ANALYSIS

because the main lobes have become narrow. At the same time, the side lobes becomes lower,
which means that less central frequency power leaks into neighboring frequencies. This is
why the center frequency peak also becomes higher.

You might then ask if it is always good to extend the window length to get better
frequency resolution. The answer is no. Depending on the signal, a longer segment might
provide worse spectral information. This is the case when the signal is time-varying, that is
the signal’s spectrum changes along time (in every instant, the signal has di↵erent spectrum
or frequency components). When we estimate the spectrum of a windowed signal using the
DFT, we treat the segment as though it were a periodic signal (even though it is not), which
repeats with period equal to the segment length. You can see that, for a signal that changes
with time, this approach mixes together time domain information from the entire segment.
The actual spectrum we get from a windowed signal is the average spectrum in that window.
This means that, for a time-varying signal, a long window will misrepresent what the actual
frequencies are (or, rather it will smear the frequencies together). The frequency information
is all there, but we don’t know when they occurred — we only know that it was sometime
during the window. This suggests that the best approach would be to decrease the window
size to get better time resolution and to get a more accurate time estimate. Unfortunately,
as we just learned, short windows result in bad frequency resolution. This is the so-called
time/frequency tradeo↵. You must do your best to choose a window size that meets both
your time and frequency resolution criteria.

A good way to understand this tradeo↵ is using a spectrogram, or short-time Fourier
transform. This is a method to deal with time-varying signals to get a compromise result for
both the time and frequency domains. A spectrogram is a sequence of FFT results produced
by a sliding window. Sliding window processing starts at some time with a fixed window
length, computes an FFT, slides the window by a fixed increment, recomputes the FFT,
and repeats this sliding and FFT computation for the duration of interest. The result is
usually plotted as a surface in a plot with the X axis being time, the Y axis frequency,
and surface height being power. The resulting spectrogram is a two-dimensional function
with independent variables time and frequency. The magnitude of the spectrogram gives the
spectrum within windows at particular times.

An example of a bird call and its spectrogram is shown in figures 6.13 and 6.14. For each,
the top plot is a section of the bird call waveform and the bottom is a spectrogram with two
variables, time and frequency. Spectrogram color shows the magnitude of the spectrogram
with red high and blue low, as shown by the color bar on the right.

In figure 6.13, the window length is 512 samples with an overlap of 511. Let’s check
the details of the spectral components with large magnitudes. Starting at the beginning,
there is a component at around 1.5kHz which ends a little before 200 milliseconds. A second
component is at around 3.3kHz starting at approximately 50ms continuing until 300ms, but
becoming broader at around 100ms. Just before this component’s end, it has a broad band
frequency range of 1.7kHz to 3.5kHz (time ranging from 150 to 250ms). A similar pattern
can be seen in the span of 400–700ms.

Compare this to figure 6.14, where the window length is 128 samples. From the point of

Signal Computing 126

6. SPECTRAL ANALYSIS

0 100 200 300 400 500 600 700
−1

0

1

−40

−20

0

20

Time (msec)

Fr
eq

. (
kH

z)

0 100 200 300 400 500 600 700
0

1

2

3

4

Figure 6.13: A bird call waveform (top) and its spectrogram (bottom). The window size
is 512 samples and the overlap is 511 samples (increment is 1). Color indicates magnitude,
with color key on the right of the figure.

0 100 200 300 400 500 600 700
−1

0

1

−40

−20

0

20

Time (msec)

Fr
eq

. (
kH

z)

0 100 200 300 400 500 600 700
0

1

2

3

4

Figure 6.14: The same data as figure 6.13, but the window size is 128 samples and overlap
is 127 (increment is 1).

Signal Computing 127

6. SPECTRAL ANALYSIS

view of time, the patterns look narrower, which means they have better temporal resolution
(because of the shorter window). We can now see, for example, that there is a complex
structure in the temporal evolution of the 1.7–3.5kHz frequency band. However, the patterns
are broader and “blockier” along the frequency axis — the frequency resolution got worse
(notice the 1.5kHz component in the area of 50–150ms) because of the short window.

Figures 6.15 and 6.16 are another pair of examples. They show similar e↵ects from the
tradeo↵ between time and frequency resolution.

6.6 Windowing [Optional]

The discussion of power leakage has mentioned that turning a signal on and o↵ suddenly,
abruptly truncating it (which is what a rectangular window does) will cause power leakage
from the central lobe to side lobes. To reduce leakage when we select a segment of a signal,
instead of using an abrupt truncation — like a rectangular window produces — we could
select a data window function w[n] that has lower side lobes in the frequency domain.
Examples of some popular window functions include Hamming, Hann, Bartlett, Blackman,
Gaussian, etc. Each of these has its own characteristics. Some examples of what these
windows look like and what their e↵ects are presented next.

Hamming Window

The coe�cients of an L-point Hamming window are computed from the equation,

Hamming[n] = 0.54� 0.46 cos(2⇡n/(L� 1)) n = 0, 1, . . . , L� 1 (6-58)

It consists of a cycle of a cosine, dropping to 0.08 at the end-points and with a peak value
of one. A plot of a Hamming window is shown in figure 6.17

Bartlett Window

The L-point Bartlett window is defined as:

• For L odd

Bartlett[n] =

⇢ 2n
L�1 0 n L�1

2

2� 2n
L�1

L�1
2 n L� 1

(6-59)

• For L even

Bartlett[n] =

⇢ 2n
L�1 0 n L�1

2
2(L�n�1)

L�1
L�1
2 n L� 1

(6-60)

This is a triangular window with maximum height of one and zeros at samples 0 and
L� 1. It is plotted in figure 6.18.

Signal Computing 128

6. SPECTRAL ANALYSIS

0 50 100 150 200 250
−0.5

0

0.5

−40

−20

0

Time (msec)

Fr
eq

. (
kH

z)

0 50 100 150 200 250
0

2

4

6

8

10

Figure 6.15: Another bird call waveform (top) and its spectrogram (bottom), with window
size of 512 samples and overlap of 511 samples.

0 50 100 150 200 250
−0.5

0

0.5

−40

−20

0

Time (msec)

Fr
eq

. (
kH

z)

0 50 100 150 200 250
0

2

4

6

8

10

Figure 6.16: Same data as figure 6.15, but with window size of 128 samples and overlap of
127.

Signal Computing 129

6. SPECTRAL ANALYSIS

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample count

W
in

do
w

 v
al

ue

Figure 6.17: A 512-point Hamming window in the time domain.

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Sample count

W
in

do
w

 v
al

ue

Figure 6.18: The 512-point Bartlett window in the time domain.

Signal Computing 130

6. SPECTRAL ANALYSIS

100 200 300 400 500
−1

0

1

Sample count
W

av
ef

or
m

0 0.1 0.2 0.3 0.4
−100

−50

0

Frequency, pi

M
ig

ni
tu

de
, d

B

Figure 6.19: Hann windowed cosine waveform (!̂0 = 0.2⇡) and its spectrum, compared to
rectangular window. The top is the cosine waveform windowed by rectangular (yellow) and
Hann (red) windows, the bottom is their corresponding spectra.

Using Window Functions

How do we use window functions? For a general signal sequence x[n], the time domain
relationship between the windowed sequence y[n] and original sequence is

y[n] = x[n]w[n] (6-61)

where w[n] is a window function in time domain. The special case of a rectangular window
was previously discussed; now we will consider w[n] as a general function.

Example: Windowed Sinusoid

Consider again a sinusoid signal x[n],

x[n] = cos(!̂0n); (6-62)

Instead of using a rectangular window, let’s first use a Hann window and see the results.
The windowed signal y[n] is

y[n] = x[n] Hann[n] = cos(!̂0n) Hann[n] (6-63)

where the Hann window is as described in (6-58). y[n] is shown in figure 6.19 (top, red
curve); its spectrum is the red curve in the bottom plot. Since x[n] only has one component
!̂0 = 0.2⇡, ideally there should be only one � function peak at frequency 0.2⇡. However, as
you now know, that is not likely to be the case because of power leakage. The magnitude

Signal Computing 131

6. SPECTRAL ANALYSIS

100 200 300 400 500
−1

0

1

Sample count
W

av
ef

or
m

0 0.1 0.2 0.3 0.4
−100

−50

0

Frequency, pi

M
ig

ni
tu

de
, d

B

Figure 6.20: Bartlett windowed cosine waveform and its spectrum, compared to rectangular
window. The top is the cosine waveform windowed by rectangular (yellow) and Bartlett
(magenta), the bottom is their corresponding spectra.

value is gradually damped down away from the center lobe around !̂0. The leakage is
smaller with the Hann window than a rectangular one (yellow curves). On the other hand,
the rectangular windowed signal has a narrower peak than the Hann windowed one. So, we
can see that the Hann window decreases power leakage by sacrificing peak resolution.

Let’s see the result of using a Bartlett window. For the same cosine waveform, the results
are shown in figure 6.20. We can reach similar conclusions about the Bartlett window. But,
there is a di↵erence between the two windows, as you can see in figure 6.21, which is a
comparison between the Hann and Bartlett windows for the cosine wave. Though it appears
that the Hann window is superior, there are a number of issues (beyond the scope of this
book) that we won’t discuss; the choice of window function involves a number of tradeo↵s
and depends on the signals being processed and the goal of the processing.

Example: Windowed Bird Call

Here, let’s once again examine the bird call spectrogram I introduced earlier. When that
spectrogram was presented, a cheat was used: a Hann window, instead of a rectangular
one. Now, instead of using a Hann window in figure 6.14, if a rectangular one is used, we
get figure 6.22. The increased power leakage into the side lobes of the two main frequency
components is readily apparent. This leakage messes up the spectral appearance and a↵ects
how accurately we can estimate the shape of the frequency components. That illustrates
how important it is to choose the right window.

Figure 6.23 presents a similar result for the bird call originally Hann windowed in fig-
ure 6.16.

Signal Computing 132

6. SPECTRAL ANALYSIS

100 200 300 400 500
−1

0

1

Sample count

W
av

ef
or

m

0 0.1 0.2 0.3 0.4
−100

−50

0

Frequency, pi

M
ig

ni
tu

de
, d

B

Figure 6.21: Comparison between Hann (red, lower curve) and Bartlett (blue, upper curve)
windows for a cosine wave.

0 100 200 300 400 500 600 700
−1

0

1

−40

−20

0

20

Time (msec)

Fr
eq

. (
kH

z)

0 100 200 300 400 500 600 700
0

1

2

3

4

Figure 6.22: Similar spectrogram as figure 6.14, but here a rectangular window is used.

Signal Computing 133

6. SPECTRAL ANALYSIS

0 50 100 150 200 250
−0.5

0

0.5

−40

−20

0

Time (msec)

Fr
eq

. (
kH

z)

0 50 100 150 200 250
0

2

4

6

8

10

Figure 6.23: Similar spectrogram as figure 6.16, but here a rectangular window is used.

Self-Test Exercise

See A.6 #6 for the answer.

1. Plot the Hann and Hamming windows in the time domain and compare their shapes.

6.7 Problems

1. If x(t) = 100 sin 20⇡t for �0.05 < t < 0.05 and x(t) = 0 for t < �0.05 and t > 0.05,
evaluate its Fourier transform at ! = (a) 0, (b) 10⇡, (c) �10⇡, (d) 20⇡.

2. Trace by hand the 8-point FFT algorithm for the following signals, showing the inter-
mediate steps. Plot their magnitude spectra.

(a) x[n] = {�1, 1,�1, 1,�1, 1,�1, 1}

(b) x[n] = {0, 1, 1, 0, 1, 1, 0, 1}

(c) x[n] = {0, 1, 2, 0, 1, 2, 0, 1}

Signal Computing 134

6. SPECTRAL ANALYSIS

(d) x[n] = {0, 1, 2, 3, 0, 1, 2, 3}

3. Use your favorite programming language to implement the iterative FFT defined in
algorithm 6.2.

4. Use Matlab’s built-in FFT subroutine to compute the following DFTs and plot the
magnitudes |Xk| of those DFTs using Matlab.

(a) The 64-point DFT of the sequence

x[n] =

⇢
1 n = 0, 1, . . . , 15
0 otherwise

(b) The 64-point DFT of the sequence

x[n] =

⇢
1 n = 0, 1, . . . , 7
0 otherwise

(c) The 128-point DFT of the sequence in 4b.

(d) The 64-point DFT of the sequence

x[n] =

⇢
10en⇡/8 n = 0, 1, . . . , 64
0 otherwise

Answer the following questions:

(e) What is the frequency interval between successive samples for the plots in (a–d)?

(f) What is the value of the spectrum at zero frequency (DC value) in the plots in
(a–d)?

5. It is common practice to normalize windows by assuring that the sum of their values
is equal to one, i.e.,

L�1X

n=0

w[n] = 1

. Show that the Hamming window is normalized by dividing its values by 0.54L�0.46.

6. Given the bird call data at http://courses.washington.edu/css457/ebook/amoriole2-
1.txt (4000 samples), and its sampling frequency fs = 8kHz, use MATLAB to compute
its spectrogram, plot the waveform and its spectrogram (use window sizes of 128 and
512 with Hann [hanning] windows and an increment of 1). Use only the base MATLAB
toolbox (not the Signal Processing Toolbox). Submit the resulting figures and code.

6.8 Further Reading

• James H McClellan, Ronald W. Schafer, and Mark A. Yoder, DSP First: A Multimedia

Approach, Prentice Hall, 1998, chapter 9.

Signal Computing 135

http://courses.washington.edu/css457/ebook/amoriole2-1.txt
http://courses.washington.edu/css457/ebook/amoriole2-1.txt

6. SPECTRAL ANALYSIS

Signal Computing 136

7 Compression

This chapter investigates how we might reduce the data processing, transmission, and stor-
age requirements for a multimedia system by reducing the number of bits needed for signal
representation. The concept of information is introduced to quantify the content of multime-
dia data, and show how this is distinct from the representation of multimedia data. We see
how the choice of representation a↵ects the number of bits required to represent multimedia
information — that multimedia data can be compressed without loss. We also examine how
additional compression can be achieve by sacrificing information content: lossy compression.

By the end of this chapter, you should understand the main kinds of compression al-
gorithms, their chief features, and their tradeo↵s. You will know when it is appropriate
to sacrifice information for data size and when it is not. You will also have an idea of
how knowledge of human perceptual capabilities is essential for designing lossy compression
schemes. Finally, you will be able to implement some basic compression algorithms yourself.

7.1 Signals and Information

Up to this point, we’ve been implicitly assuming that a signal is sampled, quantized, and
then processed. However, there is more to multimedia computing than just running a stream
of samples through a filter. Among other functions, multimedia systems also need to store
and transmit data (either among components within a single computer, or across networks
to other machines). A critical issue for system performance is the volume of data that
must be stored or moved around. For example, suppose that we are digitizing audio at
CD quality. If a rate of 44,100 samples/second at 16bits/sample, what is the digital data
rate in bits/second(answer in A.7 #1)? If we are digitizing high-quality video — 1k x 1k
pixels/frame, 30 frames/sec, 24 bits/pixel — what is the bit rate (answer in A.7 #2)? Clearly,
multimedia systems require not only high processing power (for real-time operation), but
also high I/O bandwidth, large memory and storage capacity and speed, and fast networks.
However, you should be familiar by now with the idea that a bit of thought can often lead
to significant savings in algorithm run time or memory requirements. This chapter focuses
on the latter: how we can encode digital multimedia information to reduce its volume.

The fundamental ideas related to signal coding were developed by Shannon at Bell Labs
in the late 1940s. He was concerned with transmitting a signal (either via radio or along a
wire) so that it could be reconstructed reliably at the receiver despite any noise corruption

Signal Computing 137

7. COMPRESSION

Source Channel

Noise

Destination
Encoder Decoder

Figure 7.1: Shannon’s model for coding information for transmission.

that might occur along the way. The basic model for this problem is presented in figure 7.1.
Information (which we can think of as a bit stream) at the source is passed through some sort
of encoder (which transforms the source bitstream into another one) and then transmitted
along a channel. While in transmission, the bitstream may become corrupted by noise, which
we can think of as randomly flipping bits with some probability. The goal of the decoder is
to convert the received bitstream back into a replica of the original signal.

While the above problem is phrased in terms of coping with noise in a channel, it is
intimately tied to the number of bits transmitted. The conceptual key to this is the separa-
tion of the information content in a signal from its representation. One goal of encoding is

Signal Computing 138

7. COMPRESSION
to choose a representation that allows the underlying
information to be preserved in the presence of noise
(channel coding). The other goal — which is rele-
vant to this chapter — is that the representation use
the fewest possible bits to do the job (source coding).
To accomplish this, we need first to quantify the in-

formation content of a signal: its entropy. The ba-
sis for a mathematical description of information is
a common-sense one: information is something you
don’t already know. If you are told something you
don’t already know, you’ve been given information;
if you are told something you already know, then
you’ve received none.
In multimedia terms, we are talking about the in-
formation content in a digital signal. You might say
that, unless you already know the signal being sent,
the entire signal is new information to you. However,
this is not true. For example, if the signal is a sam-
pled sine wave, after you’ve received a few samples,
you should be able to predict the next ones. If each
sample is 16 bits, and you can predict the next sam-
ple’s value to an accuracy of 14 bits (in other words,

Web Links:

Introduction to data compression

http://www.faqs.org/faqs/
compression-faq/part2/
section-1.html

Entropy in Information & Coding Theory

http://www.math.psu.edu/
gunesch/Entropy/infcode.html

Primer on Information Theory

ftp://ftp.ncifcrf.gov/pub/
delila/primer.ps

LZW Data Compression http:
//www.dogma.net/markn/
articles/lzw/lzw.htm

Practical Hu↵man coding http:
//www.compressconsult.com/
huffman/

Interactive Data Compression Tutor

http://www.eee.bham.ac.uk/
WoolleySI/All7/body0.htm

The Data Compression Library

http://dogma.net/
DataCompression/

the 16-bit number that you predict is o↵ by, on average, 2 bits), then the transmitted signal
really only contains 2 bits of information per sample. One way to achieve compression, then,
would be to choose an alternative representation for the signal in which each sample only
took 2 bits — the number of bits sent would equal the signal’s information content.

So, one scheme for compression is to remove redundancies in the data: that part of the
data which conveys no additional information, given previous data. This is termed lossless

compression, because no information is lost. Another approach is one which considers the
use to which the data will be put, and selectively eliminates unneeded or unimportant
information — lossy compression. These two coding schemes and their subcategories are
presented in figure 7.2. The rest of this chapter will discuss many of these. In each case, we
are concerned with the following algorithm characteristics:

• the degree of information loss,

• the encoding complexity,

• and the decoding complexity.

Why do we separate out encoding and decoding complexity? Isn’t decoding just the
opposite of encoding? While that may be true conceptually, there is no guarantee that,
for any particular coding scheme, encoding and decoding algorithms will have the same run
time. Schemes for which they do are called symmetric; those for which they are not are

Signal Computing 139

http://www.faqs.org/faqs/compression-faq/part2/section-1.html
http://www.faqs.org/faqs/compression-faq/part2/section-1.html
http://www.faqs.org/faqs/compression-faq/part2/section-1.html
http://www.math.psu.edu/gunesch/Entropy/infcode.html
http://www.math.psu.edu/gunesch/Entropy/infcode.html
ftp://ftp.ncifcrf.gov/pub/delila/primer.ps
ftp://ftp.ncifcrf.gov/pub/delila/primer.ps
http://www.dogma.net/markn/articles/lzw/lzw.htm
http://www.dogma.net/markn/articles/lzw/lzw.htm
http://www.dogma.net/markn/articles/lzw/lzw.htm
http://www.compressconsult.com/huffman/
http://www.compressconsult.com/huffman/
http://www.compressconsult.com/huffman/
http://www.eee.bham.ac.uk/WoolleySI/All7/body0.htm
http://www.eee.bham.ac.uk/WoolleySI/All7/body0.htm
http://dogma.net/DataCompression/
http://dogma.net/DataCompression/

7. COMPRESSION

Coding

Entropy Source

Repetitive

Sequence

Statistical

Run-

Length

Huffman Lempel

-Ziv

Transform Differential Vector

Quantizatio

Differential

PCM

Delta

Modulation

Adaptive

Differential

PCM

FFT DCT

Figure 7.2: A taxonomy of coding/compression schemes.

XForm Quantizer

Raw
Data

Compressible
Representation Symbols Bitstream

Coder

Figure 7.3: Generalized scheme for encoding.

asymmetric. For some applications, symmetric coding is necessary, while for others one end
(typically the encoder) can be allowed to take significantly more time (presumably to produce
greater compression or better signal “quality” given some level of compression). In symmetric
applications, the hardware and the available processing time is usually also symmetric, while
for asymmetric applications one end may have much faster hardware and/or more time.

So, we arrive at the general scheme for encoding in figure 7.3. The data to be encoded
can first be transformed (the “xform” block) to make it more amenable to compression (to
produce a more compressible representation). The goal of such a transform is essentially
to expose the signal’s underlying redundancy. For example, if the signal were a sine wave,
its Fourier transform representation would be more easily compressible: it would have a
single value at one frequency, as opposed to the original time domain function’s sequence
of samples. This representation may also make it easier to separate out components based
on their “importance” (allowing more information to be eliminated from less important
components). I’ll discuss this last point in the sections on lossy compression.

Signal Computing 140

7. COMPRESSION

Once the data has been transformed, it is then converted into a sequence of symbols
for transmission. This quantization step limits the number of di↵erent symbols to be used.
So, though the original signal might have 8 bits per sample, it may not be necessary to
retain all 256 symbols. In general, we may map each input symbol to an output symbol,
or we may take N input symbols and produce one output symbol (this might be the case
when “runs” of increasing inputs are common — we might substitute a single symbol or a
shorter sequence for a stereotypical increasing sequence). Companding is one example of
this kind of quantization: more symbols are allocated to quiet sections of an audio stream,
where small amplitude di↵erences are noticable, and fewer to loud sections, where much
larger di↵erences are needed for changes in volume to be noticable. This stream of symbols
are then coded to produce a bit stream, which might represent each symbol with a varying
number of bits, for example. So, first a quick self-test, and then we’ll look at each of these
blocks and compression schemes in more detail.

Self-Test Exercises

See A.7 #3–6 for answers.

1. If a signal is sent in which all samples have the same value, what is the information content
in bits (ignoring the first sample)?

2. What kind of signal would have maximum information content?

3. Can you give an example of an application which would demand symmetric coding?

4. Can you give an example of an application which could allow asymmetric coding?

7.2 Entropy (Lossless) Compression

Lossless, or entropy, compression ignores the semantics (meaning) of the data. It is based
instead purely on the statistics of the symbols in the data. These statistics can be the
frequencies of di↵erent symbols (how often each occurs) or the existence of certain sequences

of symbols. In the former case, we have statistical compression; in the latter, a category for
which repetitive sequence compression is the simplest case.

7.2.1 Repetitive Sequence Compression

When two people are having a telephone conversation, it is common for there to be pauses
when nobody is speaking. In still images, it is not unusual for large areas to have the same
(usually, background) color. In video, areas that correspond to moving objects change from
one frame to another while other, larger areas don’t change. All of these situations have
the same feature in their raw stream of samples: long sequences (1D, 2D, or 3D) which are
identical. Many bits are used to send a relatively small amount of information.

The idea of run-length encoding (RLE) is simple: replace long sequences (runs) of iden-
tical samples with a special code that indicates the value to be repeated and the number

Signal Computing 141

7. COMPRESSION

of times to repeat it. For 8 bits/sample data, we might reserve one symbol (say, zero) as a
“flag” to indicate the start of a run length code. A run would then be replaced with a zero,
a byte containing the symbol to repeat (1–255), and one or more bytes as the repetition
count (how many bytes to use we would have to decide ahead of time, based on what we
know about typical run lengths for the particular kind of signals being processed). So, for
example, a run of 112 ‘A’s in a text file could be encoded as: flag, ‘A’, 112.

We can also extend RLE to work for cases where sequences of symbols, rather than just
one, are repeated.

7.2.2 Statistical Compression

Statistical compression schemes work by assigning variable-length codes to symbols based
on their frequency of occurrence. By assigning shorter codes to more frequently occurring
symbols, the average number of bits per symbol can be reduced.

Hu↵man Coding

When we sample data, we almost always do so with a fixed number of bits per sample —
a fixed number of bits per symbol. So, we can consider 8-bit sampling as quantization of
a signal into 256 levels, or equivalently as representing it as a sequence of symbols, where
there are 256 symbols available.

This is usually not the most space-e�cient coding scheme, for the simple reason that some
symbols are more common than others. If instead we use a variable-length representation,
and let more common symbols be encoded in fewer bits, then we can save a considerable
amount of memory. While it may be the case that, for a particular type of signal, the
statistics of symbol usage are fairly stable across multiple data sources, let’s not make this
assumption. Thus, we would expect to use the sampled signal itself as the source of statistical
information for code construction.

A Hu↵man code is a variable-length symbol representation scheme which is optimal in the
case where all symbol probabilities are integral powers of 1/2. Since the number of bits per
symbol is variable, in general the boundary between codes will not fall on byte boundaries.
So, there is no “built in” demarcation between symbols. We could add a special “marker,”
but this would waste space. Rather than waste space, a set of codes with a prefix property

is generated: each symbol is encoded into a sequence of bits so that no code for a symbol
is the prefix of the code for any other. This property allows us to decode a bit string by
repeatedly deleting prefixes of the string that are codes for symbols. This prefix property
can be assured using binary trees.

Two example codes with the prefix property are given in Table 7.1. Decoding code 1
is easy, as we can just read three bits at a time (for example, decode “001010011” [answer
in A.7 #7]). For code 2, we must read a bit at a time so that, for instance, “1101001” would
be read as “11”=‘2’, “01”=‘3’, and “001”=‘4’. (What would the symbol sequence be for
“01000001000” [answer in A.7 #8]?) Clearly, the average number of bits per symbol is less
for code 2 (2.2 versus 3, for a saving of 27%).

Signal Computing 142

7. COMPRESSION

Table 7.1: Two binary codes.

Symbol Probability Code 1 Code 2

a 0.12 000 000
b 0.35 001 10
c 0.20 010 01
d 0.08 011 001
e 0.25 100 11

So, assuming we have a set of symbols and their probabilities, how do we find a code with
the prefix property such that the average length of a code for a character is a minimum?
The answer is the Hu↵man algorithm. The basic idea is that we select the two symbols with
the the lowest probabilities (in Table 7.1, ‘1’ and ‘4’), and replace them with a “made up”
symbol (let’s call it s1) with probability equal to the sum of the original two (in this example,
0.20). The optimal prefix code for this set is the code for s1 (to be determined later) with a
zero appended for ‘1’ and a one appended for ‘4’. This process is repeated, until all symbols
(real or “made up”) have been merged into one “super-symbol” with probability 1.0.

If you think about this merging of pairs of characters, what we are doing is constructing
a binary tree from the bottom up. To find the code for a symbol, we follow the path from
the root to the leaf that corresponds to it. Along the way, we output a zero every time we
follow a left child link, and a one for each right link (or we could use ones for right children
and zeros for left, as long as we are consistent). If only the leaves of the tree are labeled
with symbols, then we are guaranteed that the code will have the prefix property (since we
only encounter one leaf on the path from the root to a symbol). An example code tree (for
code 2 in table 7.1) is in Figure 7.4.

To compress a signal, then, we build the Hu↵man tree (there are more e�cient algorithms
which don’t actually build the tree) and then produce a look up table (like table 7.1) that
allows us to generate a code for each symbol (or decode the symbol at decompression time).
We need to send this table with the compressed signal (or store it in the compressed file).

As indicated at the beginning of this section, Hu↵man coding is only optimal if the
symbol probabilities are integral multiples of 1/2. For the more general case, arithmetic

coding can be used.

Lempel-Ziv Compression

In the 1970s, Lempel and Ziv developed two (patented) families of compression algorithms
based on a dictionary approach. In a nutshell, in one family the algorithm builds a data
structure (dictionary) with entries being sequences of symbols found in the input data. As
the input is scanned, it tries to find the longest sequence of symbols that already exists in the
dictionary. If this is successful, the entry number for that dictionary entry is transmitted.
If unsuccessful, a sequence is added to the dictionary and also transmitted. This approach

Signal Computing 143

7. COMPRESSION

d

c

a

eb

0
1

0 1 0
1

0 1

Figure 7.4: Binary tree with prefix property code.

starts with sequences of pairs of symbols and, as the encoding process continues, adds longer
and longer sequences to the dictionary. As a result, long duration signals can be significantly
compressed, as long stretches are found to be repeats of previously-seen data.

7.3 Source (Lossy) Compression

In certain situtations, it may be appropriate to sacrifice some of the information in the
original signal to obtain increased compression. This may be the case, for instance, when
a human observer cannot perceive the additional information (and therefore won’t notice
its lack). This inability to perceive the di↵erence may be innate to human perception or it
may be a product of the delivery technology (audio system, video monitor, etc.) or a more
subtle interaction of sampling, the original signal, and human perception (as is the case for
di↵erential compression).

Signal Computing 144

7. COMPRESSION

7.3.1 Di↵erential Compression

Recall that when we sample a signal, the discrete representation is limited to frequencies
below the Nyquist cuto↵. It is not uncommon, however, for a signal to be significantly
oversampled : the Nyquist cuto↵ is much higher than the signal’s bandwidth. Even if this is
not always the case, there may be long stretches of signal for which it is. For example, an
orchestral recording may have stretches when no high-pitched instruments are playing.

When a signal lack high-frequency components, this is equivalent to saying that it changes
slowly along time (high frequencies have high derivatives, low frequencies have small deriva-
tives). If a signal changes slowly then, in its sampled version, successive samples are very
similar. Let’s go back to the idea of information content being the part of a message which
you don’t know. If we use each sample as a prediction of the next, then the di↵erence be-
tween them is the information contained in the second. Ideally, then we should just transmit
this di↵erence.

This is the idea behind di↵erential pulse code modulation (DPCM): we use the nth sample
of a signal x[n] as the prediction for the next, x[n + 1], and just transmit the di↵erence,
�x[n+1] = x[n+1]�x[n]3. Of course, we start our encoding by sending a complete sample,
x[0], and then continue with just the di↵erences.

In what way is this lossy? It quite possibly isn’t, depending on the number of bits in the
original samples, the number of bits in the di↵erences we send, the possible di↵erence values
in the signal, and how we treat them. For instance, if our original samples are 8 bits and we
allow 4 bits for di↵erences, we can accommodate di↵erences of up to ±7 between samples
(using a two’s complement representation for the di↵erences). If all actual di↵erences are
less than of equal to ±7, then no loss results. What if actual di↵erences are greater? We
have three basic options:

1. Output the full sample, rather than just a di↵erence.

2. Assume this is an infrequent anomaly, outputting the maximum di↵erence possible and
retaining the actual di↵erence internally. When subsequent di↵erences are less than
the maximum, modify them so that the output di↵erences allows the coded signal to
“catch up” to the value of the input.

3. Use the limited number of bits to cover larger di↵erences by assuming they are multi-
plied by a constant factor, in e↵ect “re-quantizing” them. If the factor was a constant
value of ‘2’, then 4 bits would cover ±14.

The first case is very straightforward, and clearly results in no losses. For the second
approach, the reconstructed signal is not the same as the original — information has been
lost. However, the information is a rare, sudden change in the signal, and if the reconstructed
signal caught up with the original fairly quickly, it is likely to be unnoticable. The third
approach is also lossy, as it is incapable of representing di↵erences that fall in between the
quantized levels.

At the extreme, we can allocate only one bit per di↵erence: this is called delta modulation

(DM). In this case, we need to interpret a ‘0’ as a -1 di↵erence and a ‘1‘ as a +1 di↵erence (we

Signal Computing 145

7. COMPRESSION

could multiply these by a constant factor), so a constant input produces a “0101010101. . . ”
sequence, rather than a “0000000000. . . ” one. Assuming the sampling rate is high enough,
di↵erences more than ±1 will be rare, and loss will be minimal.

A more general approach to DPCM would be to use something other than just the value
of one sample to predict the next. Thus, the di↵erences to be sent (if m values were used)
would be �[n+1] = F(x[n�m+1], . . . , x[n]). This is the approach that adaptive di↵erential
pulse code modulation (ADPCM) uses. It adapts to the signal, using past experience to select
the quantization levels that will be used to encode di↵erences. This means that loud sections
and quiet sections can have di↵erent steps between quantization levels. The international
videoconferencing standards ITU G.726 use ADPCM to encode audio.

7.3.2 Transform Compression

Going back to figure 7.3, one thing that an encoding scheme can do is to transform the origi-
nal signal into a domain that allows for better compression. To allow for better compression,
a representation needs to isolate redundancy. For one-dimensional signals like audio, redun-
dancy is apparent in the sequence of samples. All of the previous compression schemes are
based on this sequential redundancy. For a signal sampled along time like sound, temporal

redundancy is apparent. For a signal that is spatially sampled, like an image, there is a (2D)
spatial redundancy (pixels near each other tend to have similar values). The question is: is
the above noted temporal or spatial domain the domain in which the signal has its greatest
redundancy, or is there some other domain in which more redundancy would be apparent?
As you might guess, there are situations in which this is the case (for the aproach to be
practical, we just need to make sure that an inverse transform, which brings us back to the
original signal domain, exists).

One such domain is the frequency domain. Especially in images, a spectral representation
tends to have great apparent redundancy. In such a representation, an image is considered to
be composed of the sum of sinusoids (just as for sound) that are functions of space (instead
of time, as for sound). The “only” conceptual jump here then is the one from 1D signals to
2D signals, which we’ll defer to chapter 8. For the time being, let’s think of images as being
one-dimensional, like sound, so we can talk about 1D Fourier transforms.

Previously, it was indicated that pixels tend to be similar to those nearby. This is
another way of saying that the change in intensity as a function of space is low — that low-
frequency processes are involved. Repetition coding assumes that there is no change, while
DPCM either places a limit on change or quantizes the changes. Rather than doing these,
let’s take the Fourier transform of our signal. We have now decomposed it according to
frequency. If mostly low-frequency processes have produced our signal, then the coe�cients
for low frequencies will have higher values than those for high frequencies: the low frequency
components carry most of the information.

We can now take the obvious approach: match the number of bits in a representation
to the amount of information contained. In this case, rather than use the same number of
bits for each frequency coe�cient, we assign more bits to the low frequencies and fewer to
the high. This approach, which in e↵ect codes di↵erent frequency bands separately, is also

Signal Computing 146

7. COMPRESSION

called sub-band coding.
You probably remember that the Fourier transform (and FFT) have both magnitude and

phase. We can simplify matters if we use a transform that uses only real arithmetic. This is
one of the motivations behind using the discrete cosine transform (DCT) instead. The DCT
coe�cients can be expressed as:

X[k] =
N�1X

n=0

x[n] cos 2⇡nk/N (7-1)

We throw away absolute phase information and assume that the signal has even symme-
try, but since we don’t care what happens beyond the bounds of the signal, this is fine. Loss
of relative phase information is another matter, but after all, this is a lossy compression
technique. In chapter 8, we will place these losses in the context of human perception.

7.4 Problems

For each of the following MATLAB programming assignments, please email me your .mat
file and your “best” result (the result that best shows the operation of your program). For
your result, send both the original and “reconstituted” compressed version.

1. Write a program that performs run-length coding on images (you may treat the image
as a one-dimensional vector for processing purposes, and in fact MATLAB will allow
you to treat 2D matrices in this fashion). What percent compression do you get for
black and white images (like those that might be produced for sending a fax)? What
percent for color images generated from drawing programs? What percent for images
from a digital camera? What percent for vectors filled with random numbers?

2. Write a program that performs simple, lossy DPCM coding and decoding on sampled
audio. Test it using audio samples. For samples of people speaking, how many bits do
you need for the di↵erences for the result to be still intelligible? For it to be of quality
comparable to the original?

3. For the DCPM examples, can you gain any additional compression by applying run-
length coding to the output of the DPCM coder? Why or why not?

4. One way to apply transform coding of a signal is to divide it into non-overlapping win-

dows and transform and code each window separately. Using the same audio samples
as before, apply DCT coding (MATLAB has DCT and IDCT functions, part of the Signal
Processing Toolkit. If this toolkit isn’t available, use the magnitude of the FFT). (Hint:
keep the window size short; maybe 8 or 16 samples.) Do not try to quantize the DC
(zero frequency) component, but do experiment with quantizing the high frequency
ones. What is the e↵ect with no quantization? See how much compression you can get
by heavily quantizing and/or eliminating high frequency components.

Signal Computing 147

7. COMPRESSION

7.5 Further Reading

• J. Crowcroft, M. Handley, & I. Wakeman, Internetworking Multimedia, Morgan Kauf-
mann, 1999, chapter 4 (§ 4.1–4.5).

• A. Murat Tekalp, Digital Video Processing, Prentice Hall, 1995, chapters 18, 19, 21.

• K.R. Rao & J.J. Hwang, Techniques & Standards for Image, Video & Audio Coding,
Prentice Hall, 1996, chapters 4, 5.

Signal Computing 148

8 Audio & Video Compression and Coding

This chapter continues our coverage of compression begun in chapter 7 with descriptions
of current standard compression schemes for audio and video information. By the end of
this chapter, you will have a basic understanding of how the most common compression
and coding algorithms use the fundamentals of lossless and lossy compression. You will also
understand how the nature of the multimedia application influences compression algorithm
design.

Each coding algorithm or standard discussed in this chapter shows clearly the tradeo↵s
inherent in lossy versus lossless compression, the need for symmetric coding and decoding
versus the ability to asymmetrically place more processing power in the encoder, storage
versus transmission, and human perception versus machine processing. We begin with audio
coding schemes, move on to those for still images, and conclude with video.

More specifically, each coding scheme makes implicit or explicit decisions about each of
the following issues; you should consider what those decisions are when you read about each
standard.

8.0.1 Issues in Coding Method Selection

• What are the application constraints? Are there signal quality requirements? Limits
on system complexity? Upper bounds on end-to-end transmission delay?

• Will the codec (CODer/DECoder) be implemented in software, hardware, or a hybrid
combination of both?

• Should the encoding be reversible, or can it be lossy?

• Besides overall constraints on algorithm e�ciency, are there constraints on e�ciency
consistency? In other words, can the amount of computation required vary (based
on the time-varying nature of the signal), or must it be independent of the signal’s
content?

• Does the algorithm need to be tolerant of transmission errors? Does it need to be able
to correct them? How should it deal with data lost in transmission?

• If a lossy algorithm is desired, what kind of information can be lost? How do we decide
what information to throw away?

Signal Computing 149

8. AUDIO & VIDEO COMPRESSION AND CODING

• Does the data representation need to accommodate future scalability? For example,
are we building a codec for images up to some maximum size, or will we want it to
work with larger images in the future?

• How many times will the media be encoded? Decoded?

• Will we need to synchronize the encoded signal with other media, or are we encoding
it “in isolation”?

• Will our system need to be compatible with other methods? Will we need to “transcode”
our representation to other formats, or transcode other formats to our representation,
e�ciently?

8.1 Audio Coding Standards

8.1.1 Speech Coding for Telephony

Pulse code modulation (PCM), as discussed in chapter 7, is the foundation for most of
the major audio coding standards. The ITU (International Telecommunications Union) has
defined the following audio coding standards (among others) for “low quality” (i.e., telephone
quality) audio:

G.711 This is audio pulse-code modulation (PCM) in support of video conferencing, with a
bandwidth of 64K bits/second. It recommends a sampling rate of 8000 samples/second.
The audio data is logarithmically encoded (which has the e↵ect of companding) to 8
bits, quantized to 212 levels. The encoding itself can be either A-law (this is mostly
used in Europe) or µ-law (which is mostly used in the US and by most computer
hardware and software).

G.721 This is an ADPCM-based standard for 32K bit/second audio.

G.726 This replaces G.721, allowing conversion between 64Kbps and 40, 32, 24, or 16kbps.

G.727 This standard extends G.726 for embedded applications, including transmission over
packet-switching networks (packetized voice protocol, or PVP, which is G.764).

G.722 and G.725 These standards are targeted at higher-quality speech transmission,
with a signal bandwidth of 50Hz to 7kHz. They are targeted at a transmission rate of
64kbps.

There are other approaches that aim to produce high-quality speech with low bandwidth
requirements (below 16kbps). These include LPC (linear predictive coding) and CELP (code
excited linear predictor). In both cases, a model of the speaker’s vocal tract is generated and
the parameters of this model are transmitted to the receiver. After that, only enough data
is sent to allow for the receiver to synthesize speech using the model. So, instead of hearing

Signal Computing 150

8. AUDIO & VIDEO COMPRESSION AND CODING

a processed version of the speaker’s voice, the listener hears a synthesized approximation
to their voice. To improve speech quality, CELP sends error information (the di↵erence
between the actual signal and the model’s output) in addition to the model information.

8.1.2 High-Quality Audio Coding

There are a number of standards used to encode audio at quality levels usable for music,
television, movies, etc. — up to audiophile levels (except perhaps for those folks who insist
that tube amplifiers and vinyl are necessary to capture the warmth of the original music).

MPEG

While MPEG (Moving Picture Experts Group) is a standard for video encoding, it obviously
also must include audio information and is often used in isolation for just encoding audio.
MPEG is actually a family of standards, with successive members providing increased quality
at higher levels of compression (at the price of increasing computational complexity). For
almost all versions, the input signal is assumed to be 20kHz. (What is the minimum sampling
rate for such a signal [answer in A.8 #1]?) The desire is to have quality comparable to
compact disc audio, and to support multiple channels of such audio. For CD quality, at a
sampling rate of 44.1kHz, 16 bits/channel and two stereo channels, the uncompressed audio
stream is 1.4Mbps.

MPEG-I This standard allows for encoding of two channels (stereo) at sampling rates of
32 (FM broadcasting), 44.1 (CD), or 48 (DAT) kHz. It achieves high-quality lossy compres-
sion by incorporating a simple psychoacoustical model of human auditory perception. The
algorithm uses this model to determine what information can be lost without significantly
a↵ecting the listener’s perception of sound quality.

More specifically, the algorithm is based on the phenomenon called masking. It is perhaps
not surprising that our auditory systems are not equally sensitive to all sound frequencies.
We are most sensitive to sounds in the range of 2–4kHz, and increasingly less sensitive to
much higher and lower frequencies. What might be surprising is that our sensitivity at one
frequency can be influenced by the presence of sounds at other frequencies.

The general idea of masking is that signals can interfere with each other within the
processing stages that are a part of sensory systems. For example, a signal at one frequency
(a masker) presented around the same time as another one at a second frequency might
result in the second being undetected by the sensory system. This can occur even though
the sensory system is perfectly capable of perceiving the second signal in isolation (or, in
combination with signals other that the masker). Masking can also occur in time (hence,
my previous statement, “around the same time”), with our sensitivity to sound at some
frequency recovering from its masked level over the course of around 100ms.

In other words, how important a particular frequency is for our perception of sound is a
function of both the frequency itself and the history of signal intensities at other frequencies.

Signal Computing 151

8. AUDIO & VIDEO COMPRESSION AND CODING

MPEG-I takes advantage of masking for compression by dynamically altering a threshold
for each of a number of frequency bands, based on the signal strength in neighboring bands.
It does this by passing the input signal through a filter bank composed of 32 bandpass
filters, thereby breaking the signal into 32 bands. It then computes the amount of masking
for each band based on the signal in the other bands. The information in a band is only
encoded if it is above the masking threshold. If it is encoded, the number of bits to be
used is computed so that the quantization noise introduced is below the masking threshold
(remember the discussion of quantization noise in chapter 2?). The resulting sub-band codes
are then formatted into a bitstream, perhaps with video and synchronization information.

MPEG-I actually includes three audio “layers,” each successive one being an enhancement
of the previous. Layer 1 uses bands of equal width and only frequency masking (no temporal
masking). Since it uses only frequency masking, the codec only needs to keep one “frame”
of audio information (12 samples) in memory: mask-
ing occurs only between bands at the current time.
Layer 1 typically achieves compression ratios of 4:1,
or 384kbps high-quality stereo.
Layer 2 uses three frames of audio information in
memory: previous, current, and next. This allows
it to compute temporal masking, in addition to fre-
quency masking. This allows layer 2 to reach com-
pression ratios of 8:1, for a 192kbps audio stream.
Layer 3 uses frequency bands which are not of equal
width, to better match human auditory perception.
It also seeks to eliminate redundancy between the
two stereo channels (because much of the informa-
tion in one channel is also present in the other). It
does this by separately coding the sum (M , for “mid-
dle”) of the left (L) and right (R) channels and their
di↵erence (S, for “side”). At the decoder, the two
channels are reconstructed as L = (M + S)/

p
2 and

R = (M � S)/
p
2. When you listen to an MP3 au-

dio file, you are actually listening to MPEG-I, layer
3 encoded audio. Finally, layer 3 incorporates Hu↵-
man coding for additional data stream compression.
Layer 3 can produce high-quality audio at a com-
pression rate of 12:1, which corresponds to a 112kbps
data stream.

Web Links:

Compression FAQ http://www.faqs.
org/faqs/compression-faq/

JPEG image compression FAQ http:
//www.faqs.org/faqs/jpeg-faq/

Planet JPEG http://www.geocities.
com/tapsemi/

MPEG section of compression FAQ

http://www.faqs.org/faqs/
compression-faq/part2/
section-2.html

MPEG FAQ http://www.faqs.org/
faqs/mpeg-faq/

MPEG.org http://www.mpeg.org/
MPEG/index.html

MPEG for MATLAB http:
//www.cl.cam.ac.uk/~fapp2/
software/mpeg/

comp.compression newsgroup

news:comp.compression

comp.multimedia newsgroup

news:comp.multimedia

International Telecommunications Union (ITU)

http://www.itu.int/

MPEG-II This extends MPEG-I audio to five channels plus one additional, low-frequency
enhancement (LFE) channel. This should be familiar to you as the basic configuration for
surround-sound (the five channels are center front, front left and right, and rear left and
right; the low-frequency channel is for a subwoofer). These channels could also be used to

Signal Computing 152

http://www.faqs.org/faqs/compression-faq/
http://www.faqs.org/faqs/compression-faq/
http://www.faqs.org/faqs/jpeg-faq/
http://www.faqs.org/faqs/jpeg-faq/
http://www.geocities.com/tapsemi/
http://www.geocities.com/tapsemi/
http://www.faqs.org/faqs/compression-faq/part2/section-2.html
http://www.faqs.org/faqs/compression-faq/part2/section-2.html
http://www.faqs.org/faqs/compression-faq/part2/section-2.html
http://www.faqs.org/faqs/mpeg-faq/
http://www.faqs.org/faqs/mpeg-faq/
http://www.mpeg.org/MPEG/index.html
http://www.mpeg.org/MPEG/index.html
http://www.cl.cam.ac.uk/~fapp2/software/mpeg/
http://www.cl.cam.ac.uk/~fapp2/software/mpeg/
http://www.cl.cam.ac.uk/~fapp2/software/mpeg/
news:comp.compression
news:comp.multimedia
http://www.itu.int/

8. AUDIO & VIDEO COMPRESSION AND CODING

encode multilingual stereo. The additional channels are encoded by being mixed in such a
way that an MPEG-I decoder can still decode the primary left and right stereo channels
from an MPEG-II stream. So, an MPEG-II audio bit stream is an MPEG-I bit stream
with the additional data formatted into data blocks reserved in MPEG-I for ancillary data.
Correspondingly, an MPEG-II encoder consists of an MPEG-I encoder and an MPEG-II
extension encoder.

There are other implementations within the MPEG-II standard which are not backward
compatible with MPEG-I. These include AAC (advanced audio encoding).

MPEG-III Because of the progress of MPEG-II in support of high-definition television,
development of an MPEG-III standard was terminated.

MPEG-IV MPEG-IV is targeted at a much broader range of applications than the pre-
ceding standards. This includes not only compression and coding of audio and video, but
support for structuring content for WWW and hypermedia applications, intellectual prop-
erty right management, computer network quality of service signaling, interactivity by the
user, and low bit rate applications. It encodes data as a composition of multimedia objects,
which can include audio, video, and 3D graphical objects. This builds on the earlier work of
VRML (virtual reality modeling language). Little of this has anything directly to do with
high-quality audio, but it seemed to make sense to discuss this standard right after the other
ones.

8.2 Still Image Coding Standards

There are a number of formats for single images. These include TIFF (tag image file format)
and GIF (graphics interchange format), which are lossless formats that use Lempel-Ziv
compression. Because it also serves as the basis for spatial redundancy reduction in video,
I’ll confine myself to discussing JPEG (Joint Photographic Experts Group).

8.2.1 JPEG

Actually, dismissing formats such as TIFF and GIF was a bit misleading. Those are file

formats, while JPEG is an encoding scheme. In fact, JPEG-encoded images can be stored in
their “own” format (JFIF, for JPEG file interchange format) or stored within a TIFF format
file (which, counterintuitively, provides greater flexibility and more advanced features).

JPEG is targeted at compression of continuous-tone color and grayscale images (as op-
posed to line drawings). It includes a parameterized encoder which can support four lossy
or lossless modes. These modes include:

Sequential The image is encoded in a single top-to-bottom, left-to-right scan.

Progressive The image is scanned multiple times, with successive scans providing informa-
tion for successively better approximations to the original image.

Signal Computing 153

8. AUDIO & VIDEO COMPRESSION AND CODING

Data
Bloc
k

DCT Quantizer

Buffer

Entropy
Encoder

Entropy
Decoder

DequantizerIDCTReassemble

Image
Data In

Image
Data Out

En
co

de
r

D
ec

od
er

Figure 8.1: Block diagram of JPEG encoder and decoder. The DCT, quantizer, and bu↵er
are not used for lossless mode. The bu↵er is only used for progressive mode.

Lossless Only entropy encoding is used.

Hierarchical Multiple versions of the image are encoded, at successively finer resolution.
This allows a receiver to select the appropriate resolution; the encoder needn’t know
the limitations of the decoder or the constraints of its application.

Figure 8.1 presents simplified block diagrams for a JPEG encoder and decoder. There
are four basic steps in the encoding process:

1. Prepare the image data by breaking it into 8-pixel by 8-pixel blocks. If the image is in
color, each color component (i.e., red, green, blue) is separately broken into blocks (in
other words, treated as though it were a separate image).

2. Decompose each block into its frequency components using the discrete cosine trans-
form (DCT). This is a two-dimensional DCT, with the dimensions being the two spatial
dimensions (horizontal and vertical). Let’s say we use the variable x as the horizontal
pixel index and y as the vertical. The location of a pixel in a block is then (x, y), where
0 x 7 and 0 y 7. If we use pxy to refer to the pixel value at (x, y), then the
2D DCT of a block is

ykl =
c(k)c(l)

4

7X

x=0

7X

y=0

pxy cos

(2x+ 1)k⇡

16

�
cos

(2y + 1)l⇡

16

�
(8-1)

where c(k) and c(l) are equal to 1/
p
2 when k or l is equal to zero, and 1 otherwise.

This produces an 8x8 spectrum for the block, where frequency is in cycles per (hori-
zontal and vertical) pixel. The value at y00 is the DC value, and corresponds to the

Signal Computing 154

8. AUDIO & VIDEO COMPRESSION AND CODING

Py

x

Y l

k

DC

DCT

Figure 8.2: Illustration of transform of 8x8 pixel block into 8x8 spectrum by DCT. The
spectrum’s DC component is at y00, corresponding to the average intensity within the block.

average pixel value for the block. Increasing k and l correspond to increasing spatial
frequency (more abrupt changes in image intensity). The correspondence between the
original block and its spectrum is illustrated in figure 8.2.

Figure 8.3 demonstrates the 2D spectra of two simple images. In this case, the MAT-
LAB function fft2() was used, as the basic MATLAB distribution has no 2D DCT
built in. The resulting complex output was converted to reals using the abs() func-
tion (the MATLAB code for all this is located at http://faculty.washington.edu/
stiber/pubs/Signal-Computing/. The top left image is a pixel block in which the
pixel values vary in intensity as the sine of the x coordinate only. We would expect
then that it would have nonzero spectral components for k > 0, because there is hor-
izontal intensity variation. Since there is no vertical intensity variation, the spectral
components in the vertical direction should all be zero for l > 0. This is exactly what
we see in the spectrum plotted in the top right.

The bottom left block has sinusoidal intensity variation along 45-degree diagonals. In
this case, the rate of intensity variation is the same in both the x and y directions,
so it seems logical that the nonzero frequency components would occur at the same
horizontal and vertical frequencies — for k = l. This is shown in the plot of the
spectrum on the bottom right.

Figure 8.4 presents an example of the spectrum of a natural image. In this case, the
original block (left) is someone’s eye, at fairly low resolution. On the right in the figure,
the spectrum of the block is presented. To show the non-DC components more clearly,
the log of the spectrum is plotted (in MATLAB, ykl = log10(abs(fft2(pxy)));).

3. Reduce the number of bits used to quantize each frequency component. An 8x8 quan-
tization matrix, Q, is used to “threshold” each element of ykl, with the result being

Signal Computing 155

http://faculty.washington.edu/stiber/pubs/Signal-Computing/
http://faculty.washington.edu/stiber/pubs/Signal-Computing/

8. AUDIO & VIDEO COMPRESSION AND CODING

x

y

pxy

1 3 5 7

1

3

5

7

k
l

ykl

1 3 5 7

1

3

5

7

x

y

pxy

1 3 5 7

1

3

5

7

k

l
ykl

1 3 5 7

1

3

5

7

Figure 8.3: Example 2D spectra. The magnitude spectra for the 8x8 pixel blocks on the
left are presented on the right. A block with horizontal sinusoidal intensity variation at
a frequency of one cycle per 8 pixels and vertical frequency of zero (top left) has nonzero
frequency components only for l = 0 (top right). A block with diagonal sinusoidal intensity
variation at one cycle per 8 pixels (bottom left) has nonzero frequency components only at
some k = l.

Signal Computing 156

8. AUDIO & VIDEO COMPRESSION AND CODING

x

y

1 3 5 7

1

3

5

7

k

l

1 3 5 7

1

3

5

7

Figure 8.4: Example spectrum (right) of an 8x8 block taken from a natural image.

zkl = round(ykl/qkl). Larger values for qkl mean that larger values for the correspond-
ing spectral component ykl will be ignored (treated as zero) and the e↵ect is that fewer
bits will be used to quantize ykl. The values for Q are determined by the amount of
compression desired.

4. Perform entropy encoding. The local average brightness (the DC component of the
blocks) of images tends to vary slowly across the image; in other words, there is a great
deal of spatial redundancy in the DC components. JPEG encodes the DC components
of each block separately (all of the DC components are encoded together). As far as
the other components are concerned, frequencies close to each other in a block tend
to have the similar value. This is especially true for higher compression levels, where
many of the high-frequency components will have been zeroed out. So, the 2D DCT
block is converted to a 1D data stream by being scanned in a “zig-zag” pattern, as
shown in figure 8.5. The puts the components in increasing order of frequency.

At this point, we have two data streams: the DC components and the non-DC (AC)
components. The DC stream is encoded using a predictive (di↵erence) scheme. The
AC stream is run-length coded to shrink the runs of zero values. Then, both streams
are Hu↵man or arithmetic encoded.

Signal Computing 157

8. AUDIO & VIDEO COMPRESSION AND CODING

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

Figure 8.5: Entropy coding of JPEG DCT blocks. Non-DC frequency components are
scanned in a zig-zag pattern.

Signal Computing 158

8. AUDIO & VIDEO COMPRESSION AND CODING

Video
Frame
Component

8 x 8
Block

Block
XForm Quantization

Variabl
e
Length

To MUX
Prediction

Up To
3

Figure 8.6: Simplified block diagram of an MPEG video source encoder. Input frames
pass through a motion compensation process, 8x8 pixel blocks are converted to a spectral
representation by DCT, the components are quantized according to the desired level of
compression, and then the result is Hu↵man coded.

8.3 Video Coding Standards

Everything you’ve learned so far in this chapter can now be put together, because video
coding involves combining audio and multiple still images. The audio and image information
is combined for transmission and/or storage by multiplexing (MUX): interleaving segments
of each. On the image side of things, there’s still a great deal of redundancy in the sequence
of images, because the change from one frame of video to another is usually quite small. So,
moving image compression involves both spatial and temporal redundancy reduction. There
are a number of ITU standards for videoconferencing, including H.261 and H.263. However,
let’s concentrate on the MPEG standards, as they follow most directly from JPEG.

8.3.1 MPEG Coding

As MPEG-II is an extension of MPEG-I (to multiple bit rates and resolutions), the following
is applicable to both. As previously mentioned, MPEG is a standard for video transmission
and storage. It has a higher computational complexity (on the coder side) and bandwidth
requirement (2–8Mbps) than the videoconferencing standards. (Question: under what con-
ditions is it acceptable to have greater coder complexity [answer in A.8 #2]?) On the other
hand, decoding has a low enough complexity that it can be done in software.

A block diagram of the MPEG coding process is presented in figure 8.6. Except for the
“prediction” block and the destination being a multiplexor, this is essentially the same as
JPEG coding. Though it was probably implied in the discussion of JPEG that the input could
have RGB color planes, in reality MPEG color input has the three components (Y, Cb, Cr),

Signal Computing 159

8. AUDIO & VIDEO COMPRESSION AND CODING

with the first being luminance (brightness) and the second and third chrominance (color).
Because the luminance channel is more important to our perception of visual detail, MPEG
supports two formats in which the chrominance channels have their resolutions reduced, to
either half that of luminance in both the horizontal and vertical dimensions, or half of Y
horizontally only. It is also possible to keep all three matrices the same size. Each channel
is then processed identically, then multiplexed in the output stream.

While each input frame is structurally identical, there are three di↵erent types of output
frames:

I Frames “I,” or intra, frames are encoded like JPEG images; in other words, coding only
takes advantage of intra-frame information (information within the frame). Because
I frames can be decoded in isolation, they can serve as references for random access.
A video stream in which all frames are I frames is sometimes called MJPEG. I frames
don’t use the “prediction” block in figure 8.6.

P Frames “P,” or predictive, frames use the preceding I or P frame to reduce temporal
redundancy. If we ignore cuts between scenes (where the entire image changes), changes
from frame to frame involve motion, either of the camera or of objects (or both). If we
already know what something looked like, then a simple (x, y) vector can tell where
it moved to in the current frame, greatly reducing the amount of data to send. A
motion-compensation algorithm is used to determine these motion vectors. To do this,
the frame is broken into 16x16 macroblocks. For each macroblock in the P frame, an
exhaustive search is performed in the preceding I or P frame for the 16x16 pixel region
which best matches it. That area in that preceding frame is used as a prediction for
the macroblock in the current frame, and prediction errors and a motion vector ((x, y)
o↵set found in the search) are computed for each 8x8 block. This corresponds to the
“prediction” part of the block diagram, with two frames of memory used. These errors
(and motion vectors) are then sent to the block transformation for the rest of the
encoding process.

B Frames “B,” or bidirectional, frames use both past and future I and P frames for motion-
compensated prediction. Two motion vectors are computed, prediction errors are com-
puted by interpolating between the pixel values in the past and future frames, and 8x8
blocks are passed to the DCT transformation process with pairs of motion vectors.

An MPEG coder breaks the stream of input frames into a sequence of GOPs, or group
of pictures. It reorders the encoded I, P, and B frames so that each GOP starts with an I
frame and each B frame in the GOP comes after the two I or P frames on which it is based.
This is the best order for decoding; the decoder then converts the frames back into display
order.

The MPEG standard is not just a video or audio compression standard. It encompasses
a family of standards that include the entire multimedia system, including multiplexing,
timing and synchronization, and a layered definition of the transmitted bitstream.

Signal Computing 160

8. AUDIO & VIDEO COMPRESSION AND CODING

8.4 Problems

1. Discuss the decisions made with respect to the multimedia issues described at the
beginning of this chapter for MPEG-I layer 3 audio and JPEG encoding.

2. Locate an interesting image to perform a simple test of the e↵ects of frequency-
dependent quantization. The MATLAB image processing or signal processing tool-
boxes are needed to have access to DCT functions, so we’ll use the fft2() and ifft2()
functions instead (if you prefer C++ or Java, then fine, but you’ll have to get hold of
decent DCT implementations). The only complication will be the need to deal with
complex numbers, mostly using the abs() function. Load the image and compute its
2D FFT using fft2() (If your image loads as true color, with 3 color planes — which
you’ll know because its dimensions will be N ⇥M ⇥ 3 — then you’ll need to convert it
to greyscale by adding the three components together and dividing by 3, before com-
puting the FFT. This can be done by first converting it from uint8 to double with
double, then doing something like a = (a(:,:,1)+a(:,:,2)+a(:,:,3)/3);). The
resulting matrix has complex values, which we will need to preserve. Use ifft2()
to convert the FFT back and plot the result versus the original greyscale image (use
imagesc()) to check that everything is working fine.

Let’s quantize the image’s spectral content. First, find the number of zero elements
in the FFT, using something like length(find(a==0)), where a is the FFT. Next,
zero out all components with magnitudes below some threshold. You’ll want to set
the threshold somewhere between the min and max magnitudes of a, which you
can get as mn=min(min(abs(a))); and mx=max(max(abs(a)));. Let’s make four
tests, with thresholds 5%, 10%, 20%, and 50% of the way between the min and
max, i.e., th=0.05*(mx-mn)+mn (you may get better results with thresholds related
to log(abs(a)), rather than just abs(a)). Zero out all FFT values below the thresh-
old using something like:

b = a;
b(find(abs(a)<th)) = 0;

(substituting log(abs(a)) if that’s how you’re thresholding). You can count the num-
ber of elements thresholded by finding the number of zero elements in b and subtracting
the number that were originally zero. This is an estimate of the amount the image
could be compressed with an entropy coder.

Convert the thresholded FFT back to an image using something like c = abs(ifft2(b)).
For each threshold value, plot the original image and the processed image. You might
also want to print the di↵erence between the two. Compute the mean squared error
(MSE) between the original and reconstructed image (mean squared error for matrices
can be computed as mean(mean((a-c).^2))). What can you say about the e↵ects on
the image and MSE? Write a script to automate the thresholding and reconstruction,
so you can easily compute MSE for a number of thresholds. Plot MSE vs. the number

Signal Computing 161

8. AUDIO & VIDEO COMPRESSION AND CODING

of matrix values that got thresholded? Please submit the plots and your code as hard
copy.

3. Go through the same procedure as above, but this time, instead of comparing the
magnitude abs(a) to a constant, compare it to a threshold proportional to the distance
from the zero frequency (if x and y are subscripts to a, then the distance is the square
root of x2 + y2). How much more can you compress the image using this method for
the same level of MSE?

8.5 Further Reading

• J. Crowcroft, M. Handley, & I. Wakeman, Internetworking Multimedia, Morgan Kauf-
mann, 1999, chapter 4 (§ 4.6–4.8, 4.10–4.13).

• A. Murat Tekalp, Digital Video Processing, Prentice Hall, 1995, chapters 20, 23, 25.

• K.R. Rao & J.J. Hwang, Techniques & Standards for Image, Video & Audio Coding,
Prentice Hall, 1996, chapters 8–12.

Signal Computing 162

9 Review and Conclusions

This chapter brings our journey to a close. In an in-person course, we would spend some
time in lecture reviewing the material covered; this of course is redundant here, as you have
access to all that material verbatim on-line. You also have access to the instructor for any
questions you might have. Instead, what we will do is examine a generic multimedia system
that includes all the course material, then describe an example media system and relate its
design to what we’ve learned in this course. The system in question is the compact disc
player, which should be familiar to everyone and which is simple enough conceptually that
we can actually describe it in this limited space (at least, in simplified form).

9.1 A Generic Digital Multimedia System

Figure 9.1 presents a simplified generic multimedia system which highlights the concepts
covered in this course. All multimedia begins with physical signals — light, sound, etc.
(Actually, that last statement isn’t 100% true, as there is such a thing as computer-generated
multimedia: computer music, computer graphics, etc.) These signals must be converted into
analog electrical signals so they can be captured by computer (or, for that matter, so they
could be recorded on analog media). Digitization involves converting the continuous-time
analog signal to a discrete-time signal via sampling. The sampled signal is then quantized
to a fixed number of bits of resolution per sample. The result is a digital signal. This raw
signal is typically encoded for compression purposes and/or to add information to the data
stream (for example, error correction codes).

At this point, the encoded signal can be treated like any other digital information ma-
nipulated by computer. It can be stored in files, transmitted over networks, processed to
improve or alter it, and/or presented to human beings on a desktop computer (or, these
days, a consumer device like an HDTV set).

9.2 Compact Discs

One example digital multimedia system is the compact disc, or more precisely, since I’m
referring to music CDs, compact disc digital audio (CD-DA). The standards associated
with CDs (the Red Book, defined by Philips and Sony in 1980 so that discs would be

Signal Computing 163

9. REVIEW AND CONCLUSIONS

Sam
pling

Q
uantization

C
oding

Signal
Processing

Physical
Signal

Transduction

Figure 9.1: Block diagram of a generic multimedia system.

Signal Computing 164

9. REVIEW AND CONCLUSIONS

interchangeable among di↵erent manufacturers’ hardware, and IEC Publication 60908) cover
the disc itself and the optomechanical drives that spin it and read from it.

Information is recorded onto a CD in the pattern of pits and bumps (or lands) of a metal
layer sandwiched between two covering plastic layers. These pits and lands are arranged in
a spiral pattern, like a vinyl LP. There are two di↵erences between the CD layout and the
LP: data is recorded from the innermost part of the surface outward and the disc’s rotation
speed changes as the read laser moves. The change in rotation speed is necessary because a
CD is a constant linear velocity (CLV) device: rotation speed is set so that the data moves
past the read laser at the same rate everywhere on the disc. Near the center, the disc rotates
at 500 rpm; this slows to 200 rpm at the outer edge. The rotation rate is automatically
regulated by the drive mechanism to maintain a constant data rate of 4.3218 Mbps.

Data is read from the disc by a laser/detector pair. The laser illuminates a spot on the
underside of the disc and the metal layer reflects this back to the detector. About 90% of the
laser light is reflected by a land; pits, on the other hand, reflect only about 25% of incident
light. This di↵erence is easily detectable, and thus the encoded data can be read.

9.2.1 Data Encoding

Data is encoded on a CD so as to both minimize the e↵ect of and correct for errors. This is
especially important for a device that has an exposed surface and is intended to by used by
ordinary consumers. Even without these considerations, error correction would be important
in a device where a speck of dust could wipe out 50 bits on each of ten spirals. The CD
standard uses a number of techniques to encode data so that commonly-expected errors can
be detected and corrected.

The first thing we note about error detection and correction is that it will require extra
information to be sent. In e↵ect, redundancy is introduced into the data stream in a manner
such that errors are unlikely to destroy both the “original” and the “copy”. (In reality, of
course, the scheme is more sophisticated than just recording copies of the data.) From this,
you should conclude that the data stream is not maximally compressed; in fact, CD audio
is recorded uncompressed as 16 bits/sample, linearly encoded (i.e., no companding). Error
detection and correction schemes involve adding bits (an error correction code) to each byte
(or larger group) of data.

Error “Clumps”

If you consider the error generated by a scratch, dust, etc., it seems that this will obliterate a
large number of consecutive data bits: a “clump” of data bits. This would seem guaranteed
to eliminate not only the original data, but also the associated error correction codes.

To reduce the probability of errors in long, contiguous stretches of data, a simple scheme is
to not record long, contiguous stretches of data. After all, if you don’t record them, then you
can’t get those kinds of errors, right? This is accomplished by interleaving : data is shu✏ed
before being recorded, so that errors in contiguous sections on the disc will correspond to
isolated errors in the data. To demonstrate this e↵ect, let’s say that we record the numbers

Signal Computing 165

9. REVIEW AND CONCLUSIONS

one through ten in shu✏ed order: 1, 10, 5, 2, 9, 6, 3, 8, 4, 7. Suppose a clump of errors
occurs in the second, third, and fourth numbers, rendering them unreadable. The result is:

1 9 6 3 8 4 7 =) 1 3 4 6 7 8 9

Errors in three consecutive words on disc are widely separated in the de-interleaved data
stream. An appropriate interleaving stream, shu✏ing data over a wide area, can cause
clumps of errors to become widely distributed, and thus more likely to be correctable using
the surrounding intact information. In the CD standard, the interleaving and error correction
scheme is called Cross Interleave Reed-Solomon Code, or CIRC.

“Faking It”

Sometimes, an error will occur which is too massive for the error correction scheme. To
prevent unpleasant listener experiences, CD players use varying two schemes to mask such
errors: interpolation and muting.

In interpolation, the “good” waveform before and after the error is used to fill in the bad
section with an approximation of what it might have been. A simple approach would be to
just repeat the last good data value to fill in the gap; a better method would be to linearly
interpolate between the two data values on either side of the gap. Interpolation schemes also
can be used which “blend” the interpolated values into the gap ends more smoothly than a
straight line does.

At some point, the gap becomes too big for interpolation. The workaround employed
is muting : the volume of the music is smoothly reduced before the gap and increased back
up afterwards. This avoids unpleasant e↵ects like lound pops and clicks. Additionally, by
fading out and back in smoothly, the problem is less noticable (sometimes even unnoticable).

Error Performance

CDs are not error-free devices. In fact, the typical number of errors in the raw data from
a CD is one in 100,000 to 1,000,000 bits. I’ve already mentioned that the data rate from
the CD is over 4 million bits per second, so we should expect many errors per second.
CIRC error correction can repair most of these errors. Depending on the particular player’s
implementation (and this is never listed in the specs for an audio CD player), CIRC can
deal with error clumps of up to 4000 bad bits. After CIRC, the error rate can be as low as
one in 10–100 billion bits (if the player uses a good implementation; there is no requirement
that all of the error correction capability in CIRC be used by the player to correct errors).
In practice, a CD in reasonably good shape might have one uncorrected error, which would
have to be dealt with by interpolation or muting.

The Data Encoding Process

CD-DA data is considered to be in two stereo channels sampled at 44.1kHz at 16 bits/sample.
The samples from each channel are arranged in alternating order (left 16 bits, right 16 bits,

Signal Computing 166

9. REVIEW AND CONCLUSIONS

Table 9.1: Part of the eight-to-fourteen modulation lookup table.

Data Symbol (8 bits) CD Word (14 bits)
00000000 01001000100000
00000001 10000100000000
00000010 10010000100000
00000011 10001000100000
00000100 01000100000000
00000101 00000100010000
00000110 00010000100000
00000111 00100100000000

etc.) to yield 32-bit sampling periods. Six of these sampling periods will be encoded as one
frame of data.

The next step towards assembling the frame is computing error correction coding using
CIRC. The data is treated as a sequence of 8-bit symbols for this process (so each sample
corresponds to two symbols). Four bytes of CIRC parity are added after the first 12 bytes
of data and four are added after the second 12 bytes. So, the original 24 bytes of data has
now become 32 bytes.

Each frame then has a subcode byte prepended to it. The subcodes in each frame contain
information about the number of tracks on the disc, their start and end times, etc. Each bit
of a subcode byte has a separate meaning, and a player collects these bits from 98 consecutive
frames to produce eight 98-bit words with this information. This might not seem like much
information, but on a full CD it would correspond to 32MB!

At this point, the data is ready to be converted to the form which will be recorded on
the disc. Because of fabrication imprecision and other manufacturing considerations, CDs
do not use pits to encode zeros and lands to encode ones (or vice versa). Instead, ones are
encoded as a pit-land or land-pit transitions, while zeros produce no transitions. So, the
rate of transitions (the length of pits or lands) depends on how often ones are encountered
in the data stream (or, equivalently, the length of runs of zeros in the data). It is desirable
to control this so that all pits fall within some range of minimum to maximum length. To
accomplish this, each 8-bit symbol is converted to a 14-bit pattern using eight-to-fourteen

modulation (EFM). This is done via a look-up table, a portion of which is presented in
table 9.1. The bit patterns in each 14-bit word are selected to generate a particular rate of
occurrence of ones (and, as a result, set the typical land and pit lengths). In particular, only
those words with more than two but less than ten zeros in a row are chosen. Additionally,
since only 256 of the possible 16K 14-bit words are used, those words are less similar than
the original symbols, which yields some additional error correction capability. For example,
with 256 8-bit symbols, if we flip a bit in one symbol, we get another one. With only 256 out
of 16K 14-bit words used, flipping one bit is unlikely to produce another valid word (about
a 1.5% chance).

Signal Computing 167

9. REVIEW AND CONCLUSIONS

Bit Detection
and

14-8 Demodulation

Control and Display
Functions

Clock and
Synchronization

subcode

Buffer
Error Correction

and
Concealment

DEMUX Digital Filtering
D/A

D/A

Lowpass
Filter

Lowpass
Filter

signal
from
disc

Left
Channel

Right
Channel

Figure 9.2: Simplified block diagram of a CD player.

There is still a need to control the transition between these 14-bit words and to fix the
ratio of high to low bits. So, between each pair of words, three merging bits are inserted.
Two of these are used to ensure that, even if the first 14-bit word ends with a one and the
next starts with a one, there won’t be two ones in a row. The third bit is chosen to be either
a zero or a one to keep the overall ratio at 8:17.

Frames of data are now indicated by adding a 24-bit synchronization pattern before each:
100000000001000000000010 plus three merging bits. This is a set of three ones separated by
tens zeros between each pair, and won’t appear anywhere else in the data. Besides marking
the start of a frame, this is used by the player as a clock to regulate rotation speed. The
resultant frame contains 588 bits: 24 synchronization pattern bits, 336 data bits (in 24 14-bit
words), 112 error correction bits (in 8 14-bit words), 14 subcode bits, and 102 merging bits
(in 34 groups of three bits each).

The data is ready for recording at this point. Pit edges encode ones; while the extent of
pits or lands correspond to zeros. The data stream has been encoded so that all pits and
lands are between 3 and 11 bits long (in other words, there are between 3 and 11 zeros in a
row anywhere in the data).

The result of all this is that only about 32% of the data on a disk is the actual au-
dio information; the rest is overhead of EFM, merging bits, CIRC, synchronization, and
subcodes.

9.2.2 CD System Signal Processing

A CD player converts the information encoded on the disc into analog audio. Figure 9.2 is
a simplified block diagram of a CD player. Processing begins with detection of the pit/land
transitions from the disc (which includes a control system that maintains the appropriate
spindle rotation speed, moves the laser along the track of the pits, and keeps the laser focused
on the metalized layer within the disc). This raw data then has the merging bits removed,
and is converted from 14-bit words to 8-bit symbols. The subcode symbols are sent to a
parallel pathway to support the player’s user interface.

The data symbols are stored in a queue that leads to further processing. The first step

Signal Computing 168

9. REVIEW AND CONCLUSIONS

xt

yt

z-1

z-2

z-3

a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34

a01

a02

a03

a04

+

+

+

+

yt-1/4

yt-1/2

yt-3/4

44.1kHz rate 176.4kHz rate

Figure 9.3: Simplified oversampling filter.

of this is error detection, correction (if possible), and concealment (if uncorrectable). The
two channels (left and right) are then separated (demultiplexed ; “DEMUX” in the figure).

Next, digital filtering involves an oversampling transformation, in which additional sam-
ples are interpolated between the original ones, and a low-pass filter. Oversampling results
in one, three, seven, or more interpolated values being inserted between each pair of input
samples. The result is a data stream which “simulates” one sampled at twice, four times,
eight times, etc. the original rate of 44.1kHz. “Simulates” is used here because any aliasing
has already occurred when the music was originally digitized (before it was recorded to disc).
The purpose of oversampling here is to produce a digital signal with no information beyond
22.05kHz (the original Nyquist limit imposed by sampling) but with a Nyquist limit of 44.1,
88.2, 176.4kHz or more. This allows the use of analog lowpass filters on the output with
frequency responses which drop o↵ relatively gently beyond 22.05kHz that still do not pass
any undesirable high-frequency artifacts. Question: what’s wrong with low-pass filters with
abrupt cuto↵s (sometimes called brick wall filters) (answer in A.9 #1)?

Signal Computing 169

9. REVIEW AND CONCLUSIONS

Figure 9.3 presents a simplified four-times oversampling filter. In this simplified version,
an input sample plus three delayed versions are summed together to produce four output
samples. The coe�cients are chosen so that a low pass filter with cuto↵ at the input’s Nyquist
limit (22.05kHz) is implemented for each output. The input samples enter at 44.1kHz (and
thus the delays are multiples of the sample period, Ts = 1/44, 100 = 22.7µs). During each
input sample period, each of the xt values is multiplied by four di↵erent coe�cients and
those products summed to produce four yt, at a rate of 176.4kHz. This is then converted
to analog by digital to analog converters (D/A or DAC), and then low pass filtered before
being sent to the preamplifier, power amplifier, speakers, and your ears.

9.3 Conclusion

While it may have at times seemed a long and arduous journey, hopefully, looking back, you
have a sense of satisfaction in the scope of understanding you’ve gained in this important
subject. Digital multimedia is a big subject, and no single course can cover everything.
However, please consider the CD overview that you’ve just gone through, the background
required to understand it, and how incomprehensible even the basics would likely have been
to you before you took this course. I’d like you to use this experience to make you confident
that you could work in a team building multimedia devices, be they digital audio, video, or
telecommunications (wired or wireless). The authors hope that this has served to whet your
appetite for more, and that you’ll look for the implications for multimedia when learning
about databases, or hardware, or networking, or almost any area of computing.

9.4 Further Reading

• Pohlman, Ken, The Compact Disc Handbook, A-R Editions, 1992.

Signal Computing 170

A Answers to Self-Test Exercises

A.1 Chapter 1: Signals in the Physical World

1. Let’s assume that we encode audio information as 8 bits per sample at 8000 samples
per second (this would be considered very low quality). How many bits per second is
that?

Answer : 64,000 bits/second.

2. Let’s say we encode each frame in a video stream as 1000x1000 pixels, 24 bits/pixel,
and 30 frames/second. How many bits per second is that?

Answer : 720 million bits/second.

3. We need to find a function of x whose second derivative is proportional to itself. Can
you think of one or two?

Answer : sin!t and cos!t both work.

4. Solve for ! in terms of k and m.

Answer : ! =
p

k/m.

5. Fork sti↵ness (k) clearly a↵ects vibration frequency. As the fork get sti↵er (k increases),
does the vibration frequency go up or down?

Answer : as k increases, ! (which is vibration frequency) increases.

6. If the two forks were close together, we would heard the sum of their tones. What
would that sum be?

Answer : a1 cos(!t+�1)+a2 cos(!t+�2), where a1 and a2 are the vibrational amplitudes
and �1 and �2 are the two phases.

7. What does u+ v look like if u and v are rotating?

Answer : If the !s of u and v are equal, then u+v rotates with them, the magnitudes
staying constant. Therefore, u+ v is a sinusoid of the same frequency, !.

Signal Computing 171

APPENDIX A. ANSWERS TO SELF-TEST EXERCISES

8. What is the sum of the two complex numbers x+ jy and v + jw?

Answer : You add the reals and imaginaries separately, yielding (x+ v) + j(y + w).

9. What is the product of the two complex numbers x+ jy and v + jw?

Answer : It works just like multiplying polynomials, (x + jy)(v + jw) = xv + jyv +
jwx+ j2yw = (xv � yw) + j(xw + yv) (remember that j2 = �1).

10. Convert the complex number z = x+ jy to polar form, R 6 ✓.

Answer : R = |z| =
p

x2 + y2; ✓ = arctan(y/x).

11. Multiply the two polar-form complex numbers R1 6 ✓1 and R2 6 ✓2.

Answer : R1R2 6 (✓1 + ✓2).

12. Multiply the two complex sinusoids z1 and z2.

Answer : Just like multiplying the polar representation of two vectors, z1z2 = R1R2ej(✓1+✓2).

13. The complex conjugate is indicated by z⇤. If z = x + jy, z⇤ = x � jy. What is the
complex conjugate of the complex sinusoid, z = Rej✓?

Answer : Like the polar representation, it has the same magnitude but a negative angle,
z⇤ = Re�j✓.

14. Answer the following for z = x+ jy:

(a) What is z + z⇤?

Answer : 2 Re(z).

(b) What is z � z⇤?

Answer : 2j Im(z).

(c) What is zz⇤?

Answer : |z|2.

15. Prove the relationship in (1-43).

Answer :

c⇤
�k =

1

T

Z T

0

f(t)ejk!0tdt

�⇤
=

1

T

Z T

0

f ⇤(t)e�jk!0tdt =
1

T

Z T

0

f(t)e�jk!0tdt = ck

because f(t) = f(t)⇤ (f(t) is real).

16. From equation (1-45), derive (1-46).

Answer :

Re[cke
jk!0t] = Re[ck cos k!0t+ jck sin k!0t]

= Re(ck) cos k!0t+ Re(jck) sin k!0t]

= Re(ck) cos k!0t� Im(ck) sin k!0t

Signal Computing 172

APPENDIX A. ANSWERS TO SELF-TEST EXERCISES

17. Prove (1-58).

Answer : Since the denominator of sin↵/↵ is zero at ↵ = 0, we instead evaluate this as

sinc(0) = lim
↵!0

sin↵/↵

and use L’Hôpital’s rule. The limit becomes

sinc(0) =
d
d↵ sin↵

d↵
d↵

�����
↵=0

=
cos↵

1

���
↵=0

= 1

A.2 Chapter 2: Signals in the Computer

1. The hubcap of a car coming to a stop in a motion picture.

Answer : Signal: the spokes; sampling: the discrete images in the movie.

2. A TV news anchor squirming while wearing a tweed jacket.

Answer : Signal: the tweed texture; sampling: the discrete frames of the video.

3. A helicopter blade while the helicopter is starting up on a sunny day.

Answer : Signal: the blade motion; sampling: the strobing e↵ect as each blade blocks,
then reveal, the sun.

4. In this case, µ = 0 and the variable’s range is [-1/2, +1/2] LSB. The result is a
standard deviation (equivalent to the RMS error computed in the textbook) of � =
1/
p
12 LSB ⇡ 0.29 LSB (how?).

Answer : Given the value for µ and the range of the (now definite) integral, we have:

�2 =

Z +1/2

�1/2

x2dx

=
x3

3

����
+1/2

�1/2

=
1

24
+

1

24

=
1

12

And so � = 1/
p
12.

Signal Computing 173

APPENDIX A. ANSWERS TO SELF-TEST EXERCISES

5. If we use an 8-bit ADC, 5V corresponds to 255 and 1mV is then 0.051 LSB. (What is
the SNR for the original signal?

Answer : It is 20 log 5/0.001 = 74dB, which is quite good.

6. What ratio of amplitudes is represented by one bel?

Answer : A bel is ten dB; and 10dB is an amplitude ratio of
p
10 ⇡ 3.2.

A.3 Chapter 3: Filtering and Feedforward Filters

1. Is the signal of equation 3-1 periodic? If so, what is its period?

Answer: Since this signal is a sum of sinusoids with frequencies that have a common
divisor, then, yes, the signal is periodic. The greatest common divisor is 50Hz, and so
the smallest period for the signal is T = 0.02 seconds.

2. Since | cos(!⌧)| 1, the maximum value |H(!)| can reach is (1 + a1), which occurs
when the angle !⌧ = n⇡, n = 0, 2, 4, ... (zero or even multiples of ⇡). Why is this?

Answser : These are the values of !⌧ for which cos!⌧ = +1.

3. Use Euler’s formula and the definition of the magnitude of a complex vector to derive (3-
12) from (3-11).

Answer : Subsituting e�j!⌧ = cos!⌧ � j sin!⌧ , we obtain |H(!)| = |1 + b1(cos!⌧ +
j sin!⌧)| = |1 + b1 cos!⌧ + jb1 sin!⌧ |. The magnitude of a complex number is the
square root of the sum of the squares of its real and imaginary parts, so |H(!)| =
|(1+b1 cos!⌧)2+b21 sin

2 !⌧ |
1
2 . Computing the squared values, |H(!)| = |1+2b1 cos!⌧+

b21 cos
2 !⌧ + b21 sin

2 !⌧ |
1
2 . Factor out the b21 from the last two terms and remember that

cos2 ✓ + sin2 ✓ = 1, and you’re home free.

4. Suppose that we sample a signal at 1000Hz. For each of the following analog frequencies
f , determine !, f̂ , and !̂. Indicate if that frequency will be aliased.

(a) f = 100Hz: ! = 2⇡f = 200⇡ radians/sec. f̂ = f/fs = 100/1000 = 0.1 cy-
cles/sample. !̂ = 2⇡f̂ = 0.2⇡ radians/sample. Not aliased.

(b) f = 200Hz: ! = 2⇡f = 400⇡ radians/sec. f̂ = f/fs = 200/1000 = 0.2 cy-
cles/sample. !̂ = 2⇡f̂ = 0.4⇡ radians/sample. Not aliased.

(c) f = 500Hz: ! = 2⇡f = 1000⇡ radians/sec. f̂ = f/fs = 500/1000 = 0.5
cycles/sample. !̂ = 2⇡f̂ = ⇡ radians/sample. Not aliased.

(d) f = 1000Hz: ! = 2⇡f = 2000⇡ radians/sec. f̂ = f/fs = 1000/1000 = 1
cycle/sample. !̂ = 2⇡f̂ = 2⇡ radians/sample. This is aliased, because it is
greater than the Nyquist limit, fs/2 = 500Hz (!̂Nyquist = ⇡).

Signal Computing 174

APPENDIX A. ANSWERS TO SELF-TEST EXERCISES

5. Suppose that we sample a signal at 44.1kHz (the sampling rate used in audio CDs).
For each of the following analog frequencies f , determine !, f̂ , and !̂. Indicate if that
frequency will be aliased.

(a) f = 100Hz: ! = 2⇡f = 200⇡ radians/sec. f̂ = f/fs = 100/44100 ⇡ 0.0023
cycles/sample. !̂ = 2⇡f̂ ⇡ 0.014 radians/sample. Not aliased.

(b) f = 1000Hz: ! = 2⇡f = 2000⇡ radians/sec. f̂ = f/fs = 1000/44100 ⇡ 0.023
cycles/sample. !̂ = 2⇡f̂ ⇡ 0.14 radians/sample. Not aliased.

(c) f = 10000Hz: ! = 2⇡f = 20000⇡ radians/sample. f̂ = f/fs = 10000/44100 ⇡
0.23 cycles/sample. !̂ = 2⇡f̂ ⇡ 1.4 radians/sample. Not aliased.

(d) f = 20000Hz: ! = 2⇡f = 40000⇡ radians/sec. f̂ = f/fs = 20000/44100 ⇡ 0.45
cycles/sample. !̂ = 2⇡f̂ ⇡ 2.8 radians/sample. Not aliased.

(e) f = 25000Hz: ! = 2⇡f = 50000⇡ radians/sec. f̂ = f/fs = 25000/44100 ⇡ 0.57
cycles/sample. !̂ = 2⇡f̂ ⇡ 3.6 radians/sample. This is aliased, because it is
greater than the Nyquist limit, fs/2 = 22.05kHz (!̂Nyquist = ⇡).

6. Write equation (3-23) for k = 0, 1, 2, 3, then write the transfer function for each.

Answer : For k = 0, y[n] = b0x[n] and H(z) = b0; k = 1, y[n] = x[n](b0 + b1e�j!̂) and
H(z) = b0+b1z�1; k = 2, y[n] = x[n](b0+b1e�j!̂+b2e�2j!̂) andH(z) = b0+b1z�1+b2z�2;
k = 3, y[n] = x[n](b0+b1e�j!̂+b2e�2j!̂+b3e�3j!̂) and H(z) = b0+b1z�1+b2z�2+b3z�3.

7. Given the signal x(t) = sin t and the derivative operator D = d/dt, what is Dx(t)?

Answer : Dx(t) = cos t.

8. When

H1(z) = b0 + b1z
�1

H2(z) = b00 + b01z
�1

with b0, b1, b00, and b01 are constants, show that H2(z)H1(z) = H1(z)H2(z).

Answer : Multiplying H1(z)H2(z), we obtain (b0 + b1z�1)(b00 + b01z
�1) = b0b00 + (b0b01 +

b1b00)z
�1 + b1b01z

�2. Multiplying H2(z)H1(z), we get (b00 + b01z
�1)(b0 + b1z�1) = b00b0 +

(b00b1 + b01b0)z
�1 + b01b1z

�2. Because multiplication is commutative, these two expres-
sions are equal. In other words, series combination of filters is commutative because
multiplication of polynomials is commutative.

9. Prove |z2| = 1 in equation (3-39).

Answer : |z2| = |e2j!|. From Euler’s formula, this is | cos 2! + j sin 2!|. Since the
magnitude of a complex number in rectangular form is the square root of the sum of
the squares of its real and imaginary components, and cos2 2! + sin2 2! = 1, |z2| = 1.

Signal Computing 175

APPENDIX A. ANSWERS TO SELF-TEST EXERCISES

10. Starting with the factored magnitude response in equation (3-42), derive expressions
for b1 and b2 in terms of z1 and z2.

Answer : The factored magnitude response is |H(z)| = |(z � z1)(z � z2)|. Multiplying
the two terms out yields |H(z)| = |z2 � zz1 � zz2 + z1z2| = |z2 � (z1 + z2)z + z1z2|.
Because |H(z)| = |z2 + b1z + b2|, b1 = �(z1 + z2) and b2 = z1z2.

11. What abstract data type (ADT) should hold the delayed inputs?

Answer : a queue.

A.4 Chapter 4: The Z-Transform and Convolution

1. Determine the z-transform for the sequence x[n] = {1, 2, 5, 7, 0, 1}, n = 0, 1, 2, 3, 4, 5

Answer :
X(z) = 1 + 2z�1 + 5z�2 + 7z�3 + z�5 (A-1)

2. Determine the z-transform of the sequence x[n] = {1, 2, 5, 7, 0, 1}, n = �2,�1, 0, 1, 2, 3

Answer :
X(z) = 1z2 + 2z + 5 + 7z�1 + z�3 (A-2)

3. Sketch equation (4-6).

Answer : In a magnitude (|X (!)|) vs. frequency plot, it is a horizontal line of value
one.

4. Compute the z-transform and frequency content for the signal �[n+ n0].

Answer :

�(z) =
1X

k=�1

�[k + n0]z
�k

= 1zn0 = zn0

The convergence region is entire z plane, except z = 1. The frequency content is
|D(!̂)| = |�(ej!̂)| = |ejn0!̂| = 1.

5. What is the derivative of u[n� k] (the unit step at time step k)?

Answer : �[n� k].

6. Show that ej!̂/2 � e�j!̂/2 = 2j sin!/2.

Answer : Euler’s formula states that ej✓ = cos ✓ + j sin ✓. For negative angles, e�j✓ =
cos(�✓) + j sin(�✓) = cos ✓� j sin ✓ (because cosine is an even function and sine is an
odd function). The di↵erence of these two is ej✓ � e�j✓ = 2j sin ✓; substitute ✓ = !̂/2
to finish up.

Signal Computing 176

APPENDIX A. ANSWERS TO SELF-TEST EXERCISES

7. Prove that e�j⇡/2 = �j.

Answer : Using Euler’s formula, e�j⇡/2 = cos⇡/2� j sin ⇡/2 = 0� j ⇥ 1 = �j.

8. Determine if u[n] ⇤H 6= H is true, where h[n] = n, n = 0, 1, 2, . . . (a ramp).

Answer : Yes, it is true:

u[n] ⇤H =
nX

k=0

1(n� k)

=
nX

k=0

n�
nX

k=0

k

= n2
�

n(n+ 1)

2

=
n(n� 1)

2
6= n

9. Compute u[n] ⇤ u[n].

Answer :

u[n] ⇤ u[n] =
nX

k=0

1 = n (A-3)

So u[n] ⇤ u[n] 6= u[n].

10. How does the MATLAB function conv deal with boundary conditions?

Answer : It zero pads.

11. Use MATLAB to compute the convolution e�n
⇤ e�n and plot the result.

Hint : use conv and plot.

12. Prove the scaling property of the z-transform; that is, if

x[n]
Z
 ! X(z)

then
anx[n]

Z
 ! X(a�1z)

Answer : From (4-1),

Z {anx[n]} =
1X

n=�1

anx[n]z�n =
1X

n=�1

x[n](a�1z)�n

= X(a�1z)

Signal Computing 177

APPENDIX A. ANSWERS TO SELF-TEST EXERCISES

A.5 Chapter 5: Feedback Filters

1. Derive equation (5-33) from (5-32).

Answer : Start from (5-32):

2(1� 2R +R2) = 1� 2R cos !̂B +R2

1� 4R + r2 = �2R cos !̂B

so

cos !̂B = �
1

2R
(1� 4R +R2)

= 2�
1

2
(R +

1

R
)

2. In the situation where the sampling rate is 44,100Hz and the desired bandwidth is
20Hz, R in (5-38) is 0.998575. Solve for R the situation where the desired bandwidth
is 200Hz. Is it true that when R is far away from one, B grows large?

Answer : R = 1� ⇡(200/44100) = 0.9858. Yes.

A.6 Chapter 6: Spectral Analysis

1. Show which frequencies will be equal for a spectrum with:

(a) 16 points.

Answer :

0
"

DC

1

z }| {

2 3

z }| {
4 5

z }| {
6 7 8 9| {z } 10 11

| {z }
12 13

| {z }
14 15

| {z }

(b) 15 points.

Answer :

0
"

DC

1

z }| {

2 3

z }| {
4 5

z }| {
6 7 8|{z} 9 10

| {z }
11 12

| {z }
13 14

| {z }

2. Prove that the DFT of x[n] for any n = m and N = 1 is x[m].

Answer :

X[k] =
mX

n=m

x[n]e�jnk2⇡/1 = x[m]ejmk2⇡ = x[m]

because k,m are integers and so ejmk2⇡ = 1.

Signal Computing 178

APPENDIX A. ANSWERS TO SELF-TEST EXERCISES

3. Perform step-by-step division for the example given in table 6.2 to prove the final result
is equal to the bit-reversed input.

Answer : The answer given in decimal is in the following table:

Input N/2 N/4 N/8

0 0 0 0
1 2 4 4
2 4 2 2
3 6 6 6
4 1 1 1
5 3 5 5
6 5 3 3
7 7 7 7

4. Perform the 4-point FFT of the signal x[n] = {1, 2, 3, 4} by hand.

Answer: We first do the bit reversal to get:

Input Bit-Reversed Result
Decimal Binary Binary Decimal Value

0 00 00 0 1
1 01 10 2 3
2 10 01 1 2
3 11 11 3 4

Each row of this table corresponds to a 1-point FFT. Starting with N = 2, we combine
neighbors to form the two-point FFTs according to equations (6-39) and (6-40):

k X[k]

ev
en 0 4

1 -2

od
d 0 6

1 -2

We now have a 2-point “even” FFT and a 2-point “odd” FFT. We can combine corre-

Signal Computing 179

APPENDIX A. ANSWERS TO SELF-TEST EXERCISES

sponding elements of this using k = {0, 1, 2, 3} and N = 4; the four equations are:

X[0] = X[0]even + e�j(0)2⇡/4X[0]odd

= X[0]even +X[0]odd

X[1] = X[1]even + e�j(1)2⇡/4X[1]odd

= X[1]even + e�j⇡/2X[1]odd

= X[1]even � jX[1]odd

X[2] = X[0]even + e�j(2)2⇡/4X[0]odd

= X[0]even + e�j⇡X[0]odd

= X[0]even �X[0]odd

X[3] = X[1]even + e�j(3)2⇡/4X[1]odd

= X[1]even + e�j3⇡/2X[1]odd

= X[1]even + jX[1]odd

And so the FFT values (and the power spectrum, |X[k]|2) are:

k X[k] |X[k]|2

0 10 100
1 -2 + j2 8
2 -2 4
3 -2 - j2 8

5. Fill in the steps leading from (6-51) to (6-52).

Answer : Equation (6-51) is a geometric series with common ratio e�j!̂k , so

W (!̂k) =
1� e�j!̂kN

1� e�j!̂k

Using Euler’s formula, the numerator becomes

1� e�j!̂kN = e�j!̂kN/2(ej!̂kN/2
� e�j!̂kN/2) = 2je�j!̂kN/2 sin(!̂kN/2)

Similarly, the denominator is 2je�j!̂k/2 sin(!̂k/2), so

W (!̂k) =
sin(!̂kN/2)

sin !̂k/2
e�j!̂k(N�1)/2

which is (6-52).

6. Plot the Hann and Hamming windows in the time domain and compare their shapes.

Hint : Use the MATLAB built-in commands hamming() and hanning().

Signal Computing 180

APPENDIX A. ANSWERS TO SELF-TEST EXERCISES

A.7 Chapter 7: Compression

1. If a rate of 44,100 samples/second at 16bits/sample, what is the digital data rate in
bits/second?

Answer : 705.6kb/s.

2. If we are digitizing high-quality video — 1k x 1k pixels/frame, 30 frames/sec, 24
bits/pixel — what is the bit rate?

Answer : 755Mb/s.

3. If a signal is sent in which all samples have the same value, what is the information
content in bits (ignoring the first sample)?

Answer : Since you can predict all subsequent signals with 100% accuracy, no additional
information is sent after the first sample (this assumes infinite signal length; otherwise,
there is additional information — the number of samples).

4. What kind of signal would have maximum information content?

Answer : It would have to be a signal in which the next sample could never be predicted
at better than chance, regardless of the number of previous samples used as “clues”
to the next sample’s value. So, for example, if there were 8 bits/sample, the chance
of predicting the next signal would have to be 1/256. Such an unpredictable signal is
called stochastic, or random. In multimedia terms, noise.

5. Can you give an example of an application which would demand symmetric coding?

Answer : Video conferencing. Both ends typically have the same hardware, both ends
must perform both encoding and decoding, and both operations must be done in real
time.

6. Can you give an example of an application which could allow asymmetric coding?

Answer : Video broadcasting. If the broadcast is not live, then large computers can
be allowed long times to optimize a recording. Even in a live broadcast, the studio
can invest more money in encoding equipment than the viewer in decoding equipment
(TVs or computers).

7. Two example codes with the prefix property are given in Table 7.1. Decoding code 1
is easy, as we can just read three bits at a time (for example, decode “001010011”).

Answer : “2, 3, 4”.

8. What would the symbol sequence be for “01000001000”?

Answer : “3141”.

Signal Computing 181

APPENDIX A. ANSWERS TO SELF-TEST EXERCISES

A.8 Chapter 8: Audio & Video Compression and Cod-
ing

1. For almost all versions, the input signal is assumed to be 20kHz. What is the minimum
sampling rate for such a signal?

Answer : 40kHz.

2. Question: under what conditions is it acceptable to have greater coder complexity?

Answer : When coding is done once and not in real time, or is done by someone with
a lot of money, like a TV station.

A.9 Chapter 9: Review and Conclusions

1. Question: what’s wrong with low-pass filters with abrupt cuto↵s (sometimes called
brick wall filters)?

Answer : Phase distortion; filters with steep cuto↵s introduce large, frequency depen-
dent delays, or phase shifts.

Signal Computing 182

Index

!, 14

ADPCM, 146
analog-to-digital conversion

quantization
noise, 40

analog-to-digital conversion, 32–41
aliasing, 33–38
dynamic range, 41
quantization, 38–40
noise, 40

sampling, 33–38
arithmetic coding, 143
audio files

filtering, 46
audio files

beating, 14
bird calls, 40
sinusoids, 46

bandwidth, 91
block diagram, 47

C code
convolution, 76–77

CD-DA, 163
companding, 41
complex numbers, 10
complex numbers, 10

angle, see complex numbers, polar form
magnitude, see complex numbers, polar

form

polar form, 10
rectangular form, 10

complex sinusoids
as an orthogonal basis, 19

compression
arithmetic, 143
delta modulation, 145
dictionary based, 143
Hu↵man, 142–143
human perception and, 144
information theory and, 138
lossless, 139, 141–144
lossy, 139, 144–147
pulse code modulation (PCM), 145
quantization and, 141
run-length, 141
spatial redundancy and, 146
speech synthesis and, 150
temporal redundancy and, 146

convolution
associative property, 75
boundary conditions, 77
commutative property, 75
discrete
definition, 75
implementation, 76

distributive property, 75
kernel, 77

CRT, 4–5
anode, 4
cathode, 4

Signal Computing 183

INDEX

cathode rays, 4
color, 5
electron gun, 4
phosphor, 4
raster scanning, 4–5
interlaced, 5
non-interlaced, 5

data acquisition, 31
data flow diagram, 47
DC component, 14
decibel, 33, 61
defining equation, 52
delta modulation, 145
demultiplex (DEMUX), 169
diagram

block, 47
data flow, 47
flow chart, 47

di↵erential equations, 8
di↵erential pulse code modulation, 145
digital filtering

pseudocode, 62
digitization, see analog-to-digital conversion
discrete cosine transform (DCT), 147, 154
Discrete Fourier Transform (DFT), 105

direct computation, 111
complexity, 111

FFT, 112
of an exponential, 109
of sum of two sinusoids, 119
properties of, 107

domain
frequency, 67
time, 67

domains, 67

eight-to-fourteen modulation (EFM), 167
entropy, 139
equation

defining, 52
error correction

in compact discs, 165–166

Euler’s formula, 11

FFT
Bartlett window and, 128
frequency resolution, 124
Hamming window and, 128
of finite-duration signals, 121–122
of time-varying signals, 124
points, 108
rectangular window and, 121
time/frequency tradeo↵, 126

filter
band stop, 45
bandpass, 45
cascade, 99
cuto↵ amplitude, 92
cuto↵ frequency, 92
digital, 50
frequency response, 49
high pass, 45
impulse response, 82
low pass, 45
parallel one-pole, 90
passband, 92
phase response, 59
poles, 86
resonance, 91
transfer function, 54
determining with z-transform, 82
relationship to its z-transform, 82

flow chart, 47
Fourier coe�cients, 17
Fourier Series, 17

of a square wave, 20
Fourier series, 15
Fourier Transform, 101

of a pulse, 102
Fourier transform

short-time, 126
frequency

angular, 14
fundamental, 15, 17
Hertz (Hz), 14

Signal Computing 184

INDEX

frequency analysis, 15
frequency domain, 67
frequency response, 49

zero, 56

geometric series, 70
as function of first term, 70
common ratio, 70, 109

harmonics, 7, 14
Hu↵man coding, 142–143

i, see j
independence, 14
information theory, 138
interpolation, 166

j (
p
�1), 10

l’Hôpital’s rule, 18
lands, 165, 167
LCD, 4

magnitude response, 49
MATLAB code

beating, 14
convolution, 78
numerical error, 97–98
quantization, 40

multimedia systems
basic functions, 5–6
computing requirements, 6

multiplex (MUX), 159
muting, 166

Nyquist limit, see analog-to-digital conver-
sion, aliasing, 51

operator
delay, 53
mathematical, 53–54
transfer function, 54

orthogonality, 14

partial fraction expansion, 90
PDF, xvi

perception
as a construct, 2
auditory, 3, 151
psychophysics, 41

multimodal fusion, 3
visual, 2–3
color, 3
color constancy, 2
cone, 2, 3
luminance, 2
photoreceptor, 2, 3
retina, 2
rod, 2, 3
trichromatic, 2, 3
visible light, 2

period
of a sinusoid, 14

phase
of a sinusoid, 8

phase response, 49
polynomial

order two
roots of, 57

power spectrum, 19
psychoacoustics, 151
pulse code modulation (PCM), 145

quadratic equation
roots of, 57

recurrence relation, 70, 97
red book, 163
Reed-Solomon code (CIRC), 166

sampling period, 50
sampling rate, 51
Shannon, 137
signal-to-noise ratio (SNR), 33
sinc function, 22
sinusoids

independent, 14
orthogonal, 14

sound files, see audio files
spectral analysis, 15

Signal Computing 185

INDEX

spectrogram, 126
of a bird call, 126, 132

spectrum, 15, 23
electromagnetic, 3
visible, 2

time domain, 67
transduction, 32
trigonometry

double-angle formulae, 62

unit impulse, 69
unit step, 72
unit vector, 16

vectors, 15–16
as sum of components, 16
basis, 15
components, 15
inner product, 16
commutative property, 16
distributive property, 16

orthogonal, 16
projection, 15
sum, 16
unit, 16

visible light, 2

z
complex plane, 55
delay operator, 53

z-transform
and delay, 79
computing convolution with, 80
of a time-shifted impulse, 80
of a unit step, 72
of an exponential, 70
of an impulse, 69
properties of, 79
relation to z operator, 79
relationship to filter transfer function, 82

zero, 56

Signal Computing 186

	Preface
	Objectives
	Prerequisites
	About This Book
	Typographical Conventions
	Further Reading

	Signals in the Physical World
	Multimedia and Sensation
	Sensation and Perception
	Computer Video Displays
	Multimedia System Operation
	Vibrations and Sound
	Phasors
	Spectra
	Interlude: Vectors
	Derivation of the Fourier Series

	Problems
	Further Reading
	Signals in the Computer
	From the physical to the digital
	Measuring Noise
	Sampling
	Aliasing

	Quantization
	Dynamic Range
	Periodic and Aperiodic Signals
	Problems
	Further Reading

	Filtering and Feedforward Filters
	Introduction
	Feedforward Filters
	Delaying a phasor
	A simple feedforward filter
	Digital Filters
	Delay as an Operator
	The z-plane
	Phase Response
	Implementing Digital Filters

	Problems
	Further Reading

	The Z-Transform and Convolution
	Domains
	The z-transform
	Example: z-transform of an impulse
	Example: z-transform of exponential signal

	Convolution
	Example of Convolution
	Implementing Convolution

	Properties of the Z-Transform
	Example: Time Shifting
	Example: Convolution

	Impulse Response and the Transfer Function
	Problems
	Further Reading

	Feedback Filters
	Introduction
	Poles
	Example: Computing Transfer Function and Impulse Response
	Stability
	Resonance and Bandwidth

	Mixing Feedback and Feedforward Filters
	Implementation
	Avoiding Complex Numbers
	Limitations of Numerical Accuracy

	Problems
	Further Reading

	Spectral Analysis
	The Fourier Transform
	Example: Fourier transform of a rectangular pulse

	The Discrete Fourier Transform
	Derivation of the IDFT [Optional]
	Finite vs. Infinite Signals
	Properties of the DFT
	Computing the DFT Directly
	The Fast Fourier Transform Algorithm

	The inverse DFT
	Example: Sum of Two Sinusoids

	Power Leakage [Optional]
	Tradeoff Between Time and Frequency Resolution [Optional]
	Windowing [Optional]
	Problems
	Further Reading

	Compression
	Signals and Information
	Entropy (Lossless) Compression
	Repetitive Sequence Compression
	Statistical Compression

	Source (Lossy) Compression
	Differential Compression
	Transform Compression

	Problems
	Further Reading

	Audio & Video Compression and Coding
	Issues in Coding Method Selection
	Audio Coding Standards
	Speech Coding for Telephony
	High-Quality Audio Coding

	Still Image Coding Standards
	JPEG

	Video Coding Standards
	MPEG Coding

	Problems
	Further Reading

	Review and Conclusions
	A Generic Digital Multimedia System
	Compact Discs
	Data Encoding
	CD System Signal Processing

	Conclusion
	Further Reading

	Answers to Self-Test Exercises
	Chapter 1: Signals in the Physical World
	Chapter 2: Signals in the Computer
	Chapter 3: Filtering and Feedforward Filters
	Chapter 4: The Z-Transform and Convolution
	Chapter 5: Feedback Filters
	Chapter 6: Spectral Analysis
	Chapter 7: Compression
	Chapter 8: Audio & Video Compression and Coding
	Chapter 9: Review and Conclusions

	Index

