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Preface

Fluid mechanics is a traditional cornerstone in the education of civil engineers. As numerous
books on this subject suggest, it is possible to introduce fluid mechanics to students in many
ways. This text is an outgrowth of lectures | have given to civil engineering students at the
University of Canterbury during the past 24 years. It contains a blend of what most teachers
would call basic fluid mechanics and applied hydraulics.

Chapter 1 contains an introduction to fluid and flow propertiestogether with areview of vector
calculusin preparation for chapter 2, which contains a derivation of the governing eguations of
fluid motion. Chapter 3 coversthe usual topicsin fluid statics— pressure distributions, forceson
plane and curved surfaces, stability of floating bodies and rigid body acceleration of fluids.
Chapter 4introducestheuse of control volume equationsfor one-dimensional flow calculations.
Chapter 5 givesan overview for the problem of solving partial differential equationsfor velocity
and pressure distributions throughout a moving fluid and chapters 6-9 fill in the details of
carrying out thesecal cul ationsfor irrotational flows, laminar and turbulent flows, boundary-layer
flows, secondary flows and flows requiring the calculation of lift and drag forces. Chapter 10,
which introduces dimensional analysis and model similitude, requires a solid grasp of chapters
1-9if students are to understand and use effectively this very important tool for experimental
work. Chapters 11-14 cover some traditionally important application areas in hydraulic
engineering. Chapter 11 covers steady pipe flow, chapter 12 covers steady open channel flow,
chapter 13 introduces the method of characteristics for solving waterhammer problems in
unsteady pipe flow, and chapter 14 builds upon materia in chapter 13 by using characteristics
to attack the more difficult problem of unsteady flow in open channels. Throughout, | havetried
to use mathematics, experimental evidence and worked examples to describe and explain the
elements of fluid motion in some of the many different contexts encountered by civil engineers.

The study of fluid mechanics requires a subtle blend of mathematics and physics that many
students find difficult to master. Classes at Canterbury tend to be large and sometimes have as
many asahundred or more students. Mathematical skillsamong thesestudentsvary greatly, from
the very able to mediocre to less than competent. As any teacher knows, this mixture of student
backgroundsand skills presentsaformidablechallengeif studentswith both stronger and weaker
backgrounds are al to obtain something of value from acourse. My admittedly |ess than perfect
approach to this dilemma has been to emphasize both physics and problem solving techniques.
For this reason, mathematical development of the governing equations, which is started in
Chapter 1 and completed in Chapter 2, is covered at the beginning of our first course without
requiring the deeper understanding that would be expected of more advanced students.

A companion volume containing a set of carefully chosen homework problems, together with
corresponding solutions, isan important part of courses taught from thistext. Most students can
learn problem solving skills only by solving problems themselves, and | have a strongly held
belief that this practice is greatly helped when students have access to problem solutions for
checking their work and for obtaining help at difficult pointsin the solution process. A series of
laboratory experiments is also helpful. However, courses at Canterbury do not have time to
include alarge amount of experimental work. For thisreason, | usually supplement material in
this text with several of Hunter Rouse's beautifully made fluid-mechanics films.



This book could not have been written without the direct and indirect contributions of a great
many people. Most of these people are part of the historical development of our present-day
knowledge of fluid mechanics and are too numerous to name. Others have been my teachers,
students and colleagues over a period of more than 30 years of studying and teaching fluid
mechanics. Undoubtedly the most influential of these people has been my former teacher,
Hunter Rouse. However, more immediate debts of gratitude are owed to Mrs Pat Roberts, who
not only encouraged me to write the book but who also typed the final result, to MrsVal Grey,
who drew the large number of figures, and to Dr R H Spigel, whose constructive criticism
improved the first draft in a number of places. Finaly, | would like to dedicate this book to the
memory of my son, Steve.

Bruce Hunt
Christchurch
New Zealand
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Chapter 1

Introduction

A fluid is usually defined as a material in which movement occurs continuously under the
application of atangential shear stress. A simple example is shown in Figure 1.1, in which a
timber board floats on areservoir of water.

— I A — g ce

v
T = shear stress

Figure 1.1 Useof afloating board to apply shear stressto areservoir surface.

If aforce, F, isappliedto one end of the board, then the board transmitsatangential shear stress,
T, tothereservoir surface. The board and the water beneath will continue to move aslong as F
and t are nonzero, which meansthat water satisfiesthe definition of afluid. Air isanother fluid
that is commonly encountered in civil engineering applications, but many liquids and gases are
obviously included in this definition as well.

Y ou are studying fluid mechanics because fluids are an important part of many problemsthat a
civil engineer considers. Examplesinclude water resource engineering, in which water must be
delivered to consumers and disposed of after use, water power engineering, in which water is
used to generate electric power, flood control and drainage, in which flooding and excess water
are controlled to protect lives and property, structural engineering, in which wind and water
create forces on structures, and environmental engineering, in which an understanding of fluid
motion is a prerequisite for the control and solution of water and air pollution problems.

Any serious study of fluid motion uses mathematics to model the fluid. Invariably there are
numerous approximations that are made in this process. One of the most fundamental of these
approximations s the assumption of acontinuum. We will let fluid and flow properties such as
mass density, pressure and velocity be continuous functions of the spacial coordinates. This
makes it possible for usto differentiate and integrate these functions. However an actua fluid
Iscomposed of discrete molecules and, therefore, is not a continuum. Thus, we can only expect
good agreement between theory and experiment when the experiment haslinear dimensionsthat
arevery large compared to the spacing between molecules. In upper portions of the atmosphere,
where air molecules arerelatively far apart, this approximation can place serious limitations on
the use of mathematical models. Another example, morerelevant to civil engineering, concerns
the use of rain gauges for measuring the depth of rain falling on a catchment. A gauge can give
an accurate estimate only if itsdiameter isvery large compared to the horizontal spacing between
rain droplets. Furthermore, at amuch larger scal e, the spacing between rain gaugesmust be small
compared to the spacing between rain clouds. Fortunately, the assumption of acontinuum isnot
usually a serious limitation in most civil engineering problems.
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Fluid Properties

The mass density, p, isthe fluid mass per unit volume and has units of kg/m?. Mass density is
afunction of both temperature and the particular fluid under consideration. Most applications
considered herein will assume that p is constant. However, incompressible fluid motion can
occur inwhich p changesthroughout aflow. For example, in aproblem involving both fresh and
salt water, afluid element will retain the same constant value for p asit moves with the flow.
However, different fluid elements with different proportions of fresh and salt water will have
different valuesfor p, and p will not have the same constant value throughout the flow. Values
of p for some different fluids and temperatures are given in the appendix.

The dynamic viscosity, p, has units of kg/(m-s) = N -s/m?" and is the constant of
proportionality between a shear stress and a rate of deformation. In a Newtonian fluid, g isa
function only of the temperature and the particular fluid under consideration. The problem of
relating viscous stresses to rates of fluid deformation isrelatively difficult, and thisis one of the
few places where we will substitute a bit of hand waving for mathematical and physical logic.
If the fluid velocity, u, depends only upon a single coordinate, y, measured normal to u, as

shown in Figure 1.2, then the shear stress acting on a plane normal to the direction of y isgiven
by

du
dy

T = U (1.1)

Later inthe courseit will be shown that thevelocity inthe
water beneath the board in Figure 1.1 varieslinearly from
u = ufy) a value of zero on the reservoir bottom to the board
velocity where the water is in contact with the board.
Together with Equation (1.1) these considerations show
that the shear stress, t, in the fluid (and on the board
surface) is a constant that is directly proportional to the
board velocity and inversely proportional to the reservoir
y depth. The constant of proportionality is (. In many
t problems it is more convenient to use the definition of
X Kinematic viscosity

v = ulp (1.2

Figure 1.2 A velocity field in

which u changes only with the in which the kinematic viscosity, v, has units of m?s.
coordinate measured normal to Vaues of u and v for some different fluids and
the direction of u. temperatures are given in the appendix.

A Newton, N, is a derived unit that is related to a kg through Newton's second law, F = ma.
Thus, N = kg - m/s?.
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Surface tension, o, has units of N/m = kg/s? and is aforce per unit arc length created on an
interface between two immiscible fluids as aresult of molecular attraction. For example, at an
air-water interface the greater mass of water mol ecul es causes water molecules near and on the
interface to be attracted toward each other with greater forces than the forces of attraction
between water and air molecules. The result is that any curved portion of the interface acts as
though it is covered with a thin membrane that has atensile stress 6. Surface tension allows a
needle to be floated on a free surface of water or an insect to land on a water surface without
getting wet.

o2mr For an example, if we equate horizontal pressure and
—  surfacetension forceson half of the spherical rain droplet

shown in Figure 1.3, we obtain

Apmr? or Apmr? = o2nr (1.3

inwhich Ap = pressure difference across the interface.
| Thisgivesthefollowingresult for the pressuredifference:
Figure 1.3 Horizontal pressure and 26
surface tension force acting on half Ap = e (1.4)
of aspherical rain droplet.

If instead we consider an interface with the shape of ahalf circular cylinder, which would occur
under aneedle floating on afree surface or at ameniscus that formswhen two parallel plates of
glass areinserted into areservoir of liquid, the corresponding force balance becomes

Ap2r = 20 (1.5)

which gives a pressure difference of

Ap = % (16)
A more general relationship between Ap and o is given by
1 1
Ap = 0(—+—) a.7)
rl r2

in which r, and r, are the two principal radii of curvature of the interface. Thus, (1.4) has
r,=r,=r while(1.6) has r, = r and r, = . From these examples we conclude that (a)
pressure differencesincrease asthe interface radius of curvature decreases and (b) pressures are
always greatest on the concave side of the curved interface. Thus, sincewater in a capillary tube
hasthe concave sidefacing upward, water pressuresbeneath the meniscusare bel ow atmospheric
pressure. Vaues of o for some different liquids are given in the appendix.

Finally, although it is not a fluid property, we will mention the “gravitational constant” or
“gravitational acceleration”, g, which hasunitsof m/s?. Both thesetermsare misnomersbecause
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g isnot aconstant and it isaparticle acceleration only if gravitational attraction isthe soleforce
acting on the particle. (Add adrag force, for example, and the particle acceleration is no longer
g.) The definition of g states that it is the proportionality factor between the mass, M, and
weight, W, of an object in the earth's gravitational field.

W = Mg (1.8)

Since the mass remains constant and W decreases as distance between the object and the centre
of the earth increases, we seefrom (1.8) that g must al so decrease with increasing distance from
the earth's centre. At sealevel g isgiven approximately by

g = 9.81 m/s? (1.9)

which is sufficiently accurate for most civil engineering applications.

Flow Properties

Pressure, p, isanormal stress or force per unit area. If fluid is at rest or moves as arigid body
with no relative motion between fluid particles, then pressureisthe only normal stressthat exists
inthefluid. If fluid particles move relative to each other, then the total normal stressis the sum
of the pressure and normal viscous stresses. In this case pressureisthe normal stressthat would
exist in the flow if the fluid had a zero viscosity. If the fluid motion is incompressible, the
pressure is aso the average value of the normal stresses on the three coordinate planes.

Pressure has unitsof N/m? = Pa, and in fluid mechanics a positive pressure is defined to be a
compressive stress. This sign convention is opposite to the one used in solid mechanics, where
a tensile stress is defined to be positive. The reason for this convention is that most fluid
pressures are compressive. However it isimportant to realize that tensile pressures can and do
occur in fluids. For example, tensile stresses occur in awater column within a small diameter
capillary tube as a result of surface tension. There is, however, a limit to the magnitude of
negative pressure that aliquid can support without vaporizing. The vaporization pressure of a
given liquid depends upon temperature, a fact that becomes apparent when it is realized that
water vaporizes at atmospheric pressure when its temperature is raised to the boiling point.

Pressure are always measured rel ative to somefixed datum. For example, absolute pressuresare
measured relative to the lowest pressure that can exist in agas, which isthe pressurein a perfect
vacuum. Gage pressures are measured relative to atmospheric pressure at the location under
consideration, a process which is implemented by setting atmospheric pressure equal to zero.
Civil engineering problems aimost always deal with pressure differences. In these cases, since
adding or subtracting the same constant val ueto pressures does not change apressure difference,
the particular reference value that is used for pressure becomes immaterial. For this reason we
will almost always use gage pressures.”

* One exception occurs in the appendix, where water vapour pressures are given in kPa absolute. They
could, however, be referenced to atmospheric pressure at sea level simply by subtracting from each
pressure the vapour pressure for atemperature of 100°C (101.3 kPa).
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If no shear stresses occur in a fluid, either because the fluid has no relative motion between

particles or because the viscosity is zero, then it is a simple exercise to show that the normal

stress acting on asurface does not change asthe orientation of the surface changes. Consider, for

example, an application of Newton's second law to the two-dimensional triangular element of

fluid shown in Figure 1.4, in which the normal stresses o, o, and o, have all been assumed
. : . y n

to have different magnitudes. Thus XF, = ma, gives

o, Ay - on\/Ax2+Ay2 cosO = %AxAan (1.10)

inwhich a, = acceleration component in the x direction. Since the triangle geometry gives

_ Ay
cosO = (1.12)
JAX? + Ay?
we obtain after inserting (1.11) in (1.10) for cosd and dividing by Ay
o, - 0, = %Axax (1.12)
o O VAXZ+ Ay?  Thys letting Ax - O gives
o Ay 0
—_lAy
Ax o, = 0, (1.13)
y
L,X 0, Ax A similar application of Newton's law in the y direction

gives

Figure 1.4 Normal stressforces
acting on a two-dimensional o, = O, (1.14)
triangular fluid element.

Therefore, if no shear stresses occur, the normal stress acting on a surface does not change asthe
surface orientation changes. This result is not true for a viscous fluid motion that has finite
tangential stresses. In this case, as stated previoudly, the pressure in an incompressible fluid
equals the average value of the normal stresses on the three coordinate planes.
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z Fluid particle
pathline

r=xti+yt)j+ z(t)k
y

Figure 1.5 The position vector, r, and pathline of afluid particle.

Lett =timeandr (t) = x(t)i +y(t)] +x(t)k betheposition vector of amovingfluid particle,
as shown in Figure 1.5. Then the particle velocity is
ddx. dy. dz
V== Y k (1.15)

— i+ =]+ =

dt ot dt dt

If we define the velocity components to be
V =ui +Vvj +wk (1.16)

then (1.15) and (1.16) give
dx
dt

— y
V = Z
i (1.17 a, b, ¢)

dz
dt

If e, = unit tangent to the particle pathline, then the geometry shown in Figure 1.6 allows usto
caculate

(1.18)

y o O _rAy -r@) o Ase o
dt At At

t

inwhich s = arc length along the pathlineand V = ds/dt = |V | = particle speed. Thus, the
velocity vector is tangent to the pathline as the particle moves through space.
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%At) -r(t) = As e;

Figure 1.6 Relationship between the position vector,
arc length and unit tangent along a pathline.

Itisfrequently helpful toview, at aparticular valueof t, thevelocity vector field for acollection
of fluid particles, as shown in Figure 1.7.

Figure 1.7 Thevelocity field for acollection of fluid particles at one instant in time.

In Figure 1.7 thelengths of the directed line segmentsare proportional to |V | = V, andtheline
segments are tangent to the pathlines of each fluid particle at the instant shown. A streamlineis
acontinuous curved linethat, at each point, istangent to the velocity vector V at afixed value
of t. Thedashedline AB isastreamline, and, if dr =incremental displacement vector along AB,
then

V = Adr (1.19)

inwhichdr = dxi + dyj + dzk andAisthescaar proportionality factor between |V [and Idr |.
[Multiplying the vector dr by the scalar A does not change the direction of dr, and (1.19)
merely requiresthat V and dr havethe samedirection. Thus, A will generally be afunction of
position along the streamline.] Equating corresponding vector componentsin (1.19) gives aset
of differential equations that can be integrated to calculate streamlines.
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(1.20)

There is no reason to calculate the parameter A in applications of (1.20). Time, t, istreated as
aconstant in the integrations.

Steady flow isflow in which the entire vector velocity field does not change with time. Then the
streamline pattern will not change with time, and the pathline of any fluid particle coincideswith
the streamline passing through the particle. In other words, streamlines and pathlines coincide
in steady flow. Thiswill not be true for unsteady flow.

The acceleration of afluid particle isthe first derivative of the velocity vector.

a = v 121
When V changes both its magnitude and direction along acurved path, it will have components

both tangential and normal to the pathline. Thisresult is easily seen by differentiating (1.18) to
obtain

a=—e +V— (1.22)

The geometry in Figure 1.8 shows that

de, e(t+At)-e(t)

dt At

As .
At

n

o<

e (1.23)

Tl

inwhich R = radius of curvature of the pathlineand e, = unit normal to the pathline (directed
through the centre of curvature). Thus, (1.22) and (1.23) give

a=—e+-—e (1.24)

Equation (1.24) showsthat a hasatangential component with amagnitude equal to dV /dt and
anormal component, V 2/R, that is directed through the centre of pathline curvature.
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et) et + At)
L

Pathline
(1) \et(t + At)- e4t) = Afe,
A0F et + AY) in which
R AO=AS |R
AO
Centre of
curvature

Figure 1.8 Unit tangent geometry along a pathline.
[|et(t+At)| = |e(t)] = 1sothat | e (t+At) - e/(t)] = 1A6]

Review of Vector Calculus

When a scalar or vector function depends upon only one independent variable, say t, then a
derivative has the following definition:
dFE(t) _ F(t+At) -F()
dt At

a At-0 (1.25)

However, in amost all fluid mechanics problems p and V depend upon more than one
independent variable, say x, y, z and t. [X, y, z and t areindependent if we can changethe
value of any one of these variableswithout affecting the value of theremaining variables.] Inthis
case, the limiting process can involve only one independent variable, and the remaining
independent variables are treated as constants. This process is shown by using the following
notation and definition for a partia derivative:

oF(x,y,z,t) _ F(Xy +Ay,zt) - F(X,y,21)
oy Ay

a Ay -0 (1.26)

In practice, this meansthat we calculate apartia derivative with respectto y by differentiating
with respect to y whiletreating x, z and t as constants.

Theabovedefinition hasat least two important implications. First, the order in which two partial
derivatives are calculated will not matter.

O%F _ O%F

OXay i oyox (127)
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Second, integration of a partia derivative

IF(x,y,z1)
ay

=G(x,y,zt) (1.28)

inwhich G isaspecified or given function is carried out by integrating with respect to y while
treating X, z and t asconstants. However, theintegration “ constant”, C, may be afunction of
the variablesthat are held constant in theintegration process. For example, integration of (1.28)
would give

F(X,y,2zt) = f G(x, Y,z t)dy + C(x, z,t) (1.29)

inwhich integration of theknown function G iscarried out by holding x, z and t constant, and
C(x, z, t) isan unknown function that must be determined from additional equations.

Thereisavery useful definition of a differential operator known as del:

3 .0 3
v-iZ+j Lkl
x ey e (1.30)

Despite the notation, del (V) is not avector because it fails to satisfy all of the rules for vector
algebra. Thus, operations such asdot and cross products cannot be derived from (1.30) but must
be defined for each case.

The operation known as the gradient is defined as

V¢:|@+J@+k@

aX ay 0z (1.31)

inwhich ¢ isany scalar function. The gradient has several very useful propertiesthat are easily
proved with use of one form of avery general theorem known as the divergence theorem

{vq)dv = £ de, dS (1.32)

inwhich v isavolume enclosed by the surface S with an outward normal e, .
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X = X4 m?ST

z
X =Xy Ly
Az
on32
[ F--
L
L7 Ax
Ay
/ y

x/
s
Figure 1.9 Sketch used for derivation of Equation (1.32).

A derivation of (1.32) is easily carried out for the rectangular prism shown in Figure 1.9.

fl gy - fff a(bdxdydz—ffl b(%,y,z)dydz

(1.33)
_ ff| (l) xl,y,z)dydz
S,
Since i istheoutward normal on S, and -i on S, (1.33) becomes
fl ? gy - f(be dS+fc]>e ds (1.34)

Similar results are obtained for the components of (1.31) inthe j and k directions, and adding
the three resulting equations together gives

qu>dv = i; fcbendS = fcbendS (1.35)
v S S

inwhich S isthe sum of the six plane surfaces that bound V. Finally, if amore general shape
for V issubdivided into many small rectangular prisms, and if the equationsfor each prism are
added together, then (1.32) results in which S is the external boundary of V. (Contributions
fromtheadjacent internal surfaces § and § cancelinthesumsince ¢; = ¢; bute, = - € )

One easy application of (1.32) is the calculation of the pressure force, F, ona tiny fluid
element. Since p = normal stress per unit areaand is positive for compron we calculate

= - [pe,ds (1.36)
S



1.12 Chapter 1 — Introduction

However, use of (1.32) with p substituted for ¢ gives

F, = fprdv ~ -VYVp (137)
v

Thus, -Vp isthe pressure force per unit volume acting on atiny fluid element.

P(xy,2) = ¢4

Figure1.10 A volume chosen for an application of (1.32) inwhich
all surfaces are either parallel or normal to surfaces of constant ¢.

Further progress in the interpretation of V¢ can be made by applying (1.32) to atiny volume
whose surfaces are al either paralel or normal to surfaces of constant ¢, as shown in
Figure1.10. Since ¢ hasthesamedistributionon S, and S, bute, = -e, , contributionsfrom
S, and S, cancel and we obtain

VV(I) = d)lslenl + (bzszenz (138)

ButS =S ande, = -e, sothat(1.38) becomes

YV = Se, (b -, (1.39)

Since V = S An inwhich An =thicknessof Vv in the direction perpendicular to surfaces of
constant ¢, division of (1.39) by V gives

B ¢, - P, B do
Vo = e, A e, an (1.40)
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Thus, V¢ hasamagnitude equal to the maximum spacial derivative of ¢ and isperpendicular
to surfaces of constant ¢ in the direction of increasing ¢.

Application of the preceding result to (1.37) shows that the pressure force per unit volume,
Vp, has amagnitude equal to the maximum spacial derivativeof p. (Thederivativeof p inthe
direction normal to surfaces of constant pressure.) Furthermore, because of the negative sign on
the right side of (1.37), this pressure force is perpendicular to the surfaces of constant pressure
and isinthe direction of decreasing pressure.

Finally, asimple application of (1.40) using the geometry shown in Figure 1.11 will be used to
derive arelationship known asthe directional derivative. Equation (1.40) applied to Figure 1.11
givesthe result

Tp - db g h 9

(1.41)

"dn " An

Figure1.11 Geometry used for the calculation of the directional derivative.

If e, isaunit vector that makes an angle 6 with e_, then dotting both sides of (1.41) with e,
gives
(bl N ¢3

An

= cos0

eV = e e, d)lA_ b (1.42)

However An = As cos0, and (1.42) givesthe result

. b -9 do
e Vo = s ds (1.43)




1.14 Chapter 1 — Introduction

In words, (1.43) states that the derivative of ¢ with respect to arc length in any direction is
calculated by dotting the gradient of ¢ with a unit vector in the given direction.

Equation (1.43) has numerous applicationsin fluid mechanics, and wewill useit for both control
volume and differential analyses. One simple application will occur in the study of irrotational
flow, when we will assume that the fluid velocity can be calculated from the gradient of a
velocity potential function, ¢.

V =V (1.44)

Thus, (1.44) and (1.40) show that V is perpendicular to surfaces of constant ¢ and isin the
direction of increasing ¢. Since streamlines are tangent to V, this means that streamlines are
perpendicular to surfaces of constant ¢, as shown in Figure 1.12. If e, isaunit vector in any
direction and s isarc length measured in the direction of e,, then (1.44) and (1.43) give

d
eV = d—ds’ (1.45)

Thus, the component of V inany direction can be calcul ated by taking the derivative of ¢ inthat
direction. If e, istangent to a streamline, then d¢/ds is the velocity magnitude, V. If e, is
normal to astreamline, then d¢/ds = 0 alongthisnormal curve (which givesanother proof that
¢ is constant along a curve perpendicular to the streamlines). If e, makes any angle between 0
and /2 with a streamline, then (1.45) allows us to calculate the component of V in the
direction of e, .

P(x,y,z) = ¢.1 ¢.2 ¢.3

Streamlines

P1< Po<Pg3

Figure 1.12 Streamlines and surfaces of constant potential for irrotational flow.
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The divergence of a vector function is defined for (1.30) in a way that is analogous to the
definition of the dot product of two vectors. For example, the divergenceof V is

V'V(ii+ji+ki) -(ui+vj+wk):@+ﬂ+a_w

oX ay 0z ox dy o0z (1.46)

Thereis another definition wewill makethat allows V to be dotted from the left with avector:

V-V =(ui+vj+wk)|i—+]j—+k—] =u—+v—+w—
( : ) ( ax ) ox  ady oz (1.47)

Equations (1.46) and (1.47) are two entirely different results, and, since two vectors A and B
must satisfy thelaw A-B = B - A, wenow seethat V failsto satisfy one of the fundamental
laws of vector algebra. Thus, as stated previoudly, results that hold for vector algebra cannot
automatically be applied to manipulations with del.

The definition (1.46) can be interpreted physically by making use of a second form of the
divergence theorem:

{V-Vdvév-ends (1.48)

inwhich Vv isavolume bounded externally by the closed surface S, e isthe outward normal
on Sand V isany vector function. If V is the fluid velocity vector, then V- e_ gives the
component of V normal to S withasignthat ispositivewhen V isoutof V and negativewhen V
isinto V. The product of this normal velocity component with dS gives avolumetric flow rate
with units of m¥s. Thus, the right side of (1.48) is the net volumetric flow rate out through S
sinceoutflowsarepositive and inflows negativein cal cul ating the sum represented by the surface
integral. If (1.48) is applied to a small volume, then the divergence of V isgiven by

1y,
VeV £v e,dsS (1.49)

Equation (1.49) shows that the divergence of V isthe net volumetric outflow per unit volume
through a small closed surface surrounding the point where V -V is calculated. If the flow is
incompressible, this net outflow must be zero and we obtain the “ continuity” equation

Ju  Jdv  Iw

V:V=—+—+—=0
ox  ay 0z (1.50)
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A derivation of (1.48) can be obtained by using Figure 1.9 to obtain

dv fff—dxdydz = f!zu(xz,y,z)dydz - f!lu(xl,y,z)dydz (1.51)

Buti-e, =1onS andi-e =-1onS since e, is the outward normal. Thus, (1.51)
becomes

axdv fw edS+fU| -e, dS = fw -e. dS (152)

inwhichusehasbeenmadeof thefactthat i - e, = 0 oneverysideof theprismexcept S and S,.

Similar resultscan beobtained for f ov/oydV and f ow/0zdV, andaddingtheresultingthree
equations together gives

adu ov
— + — dv = ui +vj +wk)-e dS
{(ax*ay* az) [lui e k) (159

Equation (1.53) holdsfor arbitrary functions u, v and w andisclearly identical with (1.48). The
extension to amore genera volumeis made in the same way that was outlined in the derivation
of (1.32).

In analogy with a cross product of two vectors the curl of avector is defined in the following
way:

)k (a_WQ)i(a_w@),-
3 9 9 3y 0z ox 0z
vxv-|= 2 2 Y (1.54)
ox 9y 0z +(avau)k
u v w ox ay

If welet V bethefluid velocity vector, then aphysical interpretation of (1.54) can be made with
the use of Figure 1.13. Two line segments of length Ax and Ay arein aplane parallel to the
X,y plane and have their initial locations shown with solid lines. An instant later these lines
have rotated in the countercl ockwise direction and have their locations shown with dashed lines.
The angular velocity of theline Ax inthe k directionis

ﬂk _ V, -V
oX AX

Lk = o,k (1.55)
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Figure 1.13 Sketch for aphysical interpretation of V x V.

and the angular velocity of theline Ay inthe k directionis

ou __u4_u3k:u3_u

Ak = w.k 1.56

inwhichtheright sidesof (1.55) and (1.56) areidentical if thefluid rotatesasarigid body. Thus,
the k component in (1.54) becomes

[ﬂ@

k = 2w_k
™ ay) , (1.57)

if rigid-body rotation occurs. Similar interpretation can be made for i and j components of
(1.54) to obtain

VxV=2w (1.58)

inwhich w istheangular velocity vector. Often V x V isreferred to in fluid mechanics asthe
vorticity vector.

A very useful model of fluid motion assumesthat V x V = 0. Equation (1.58) showsthat this
is equivalent to setting w = 0, which givesrise to the term “irrotational” in describing these
flows. In an irrotational flow, if the line Ax in Figure 1.13 has an angular velocity in the
counterclockwise direction, then the line Ay must have the same angular velocity in the
clockwisedirectionsothat w, = 0. Many useful flowscan bemodelled with thisapproximation.

Some other applications of the curl come from the result that the curl of a gradient always
vanishes,

VxVd =0 (1.59)

in which ¢ isany scalar function. Equation (1.59) can be proved by writing
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ik
b (a2¢a2_¢)i(az_¢az_¢),-

dyoz odzdy oxdz  Jdzox

VXV =| dx 9y 0z (1.60)
2 2
b 39 9% +(a“’—a“’)k
3x 9y oz oxdy  dyox

Since x, y and z areindependent variables, (1.60) and (1.27) can be used to compl ete the proof
of (1.59).

When velocities are generated from apotential function, as shown in (1.44), then taking the curl
of both sides of (1.44) gives

VXV =VxVd (1.61)

Thus, (1.58), (1.59) and (1.61) show that the angular velocity vanishes for a potential flow, and
apotential flow isirrotational.

For another application, consider the equation that we will derivelater for the pressure variation
inamotionlessfluid. If k points upward, this equation is

Vp = -pgk (1.62)

Equations (1.40) and (1.62) show that surfaces of constant pressure are perpendicular to k and
that pressureincreasesinthe -k direction. Equation (1.62) givesthree scalar partial differential
equations for the calculation of p. However, there is a compatibility condition that must be
satisfied, or el setheseequationswill haveno solutionfor p. SinceV x Vp = 0, takingthecurl
of both sides of (1.62) shows that this compatibility condition is

9p

. ap .
0-=Vx(-pgk)=-g<Pj+gl
(-pgk) 95y 95! (1.63)

Dotting both sides of (1.63) with i gives
9Ip _

Jy (1.64)
and dotting both sides of (1.63) with j gives

Ip

— =0

Ix (1.65)

Equations (1.64) and (1.65) show that p cannot change with x and y if (1.62) is to have a
solution for p. Thus, p may be a constant or may vary with z and/or t, and a solution of (1.62)
for p will exist.



Chapter 2

The Equations of Fluid Motion

In this chapter we will derive the general equations of fluid motion. Later these equations will
be specialized for the particular applications considered in each chapter. The writer hopes that
this approach, in which each specialized application is treated as a particular case of the more
general equations, will lead to aunified understanding of the physics and mathematics of fluid
motion.

There are two fundamentally different ways to use the equations of fluid mechanics in
applications. Thefirst way isto assumethat pressure and vel ocity components change with more
than one spacial coordinate and to solvefor their variation from point to point withinaflow. This
approach requires the solution of a set of partial differential equations and will be called the
“differential equation” approach. Thesecond way isto useanintegrated form of thesedifferential
equationsto calculateaveragevaluesfor vel ocitiesat different cross sectionsand resultant forces
on boundarieswithout obtai ning detailed knowl edge of vel ocity and pressuredistributionswithin
the flow. Thiswill be called the “control volume” approach. We will devel op the equations for
both of these methods of analysisin tandem to emphasi ze that each partial differential equation
has a corresponding control volume form and that both of these equations are derived from the
same principle.

Continuity Equations

Consider avolume, Vv, bounded by afixed surface, S, in aflow. Portions of S may coincide
with fixed impermeable boundaries but other portions of S will not. Thus, fluid passes freely
through at least some of S without physical restraint, and an incompressible flow must have
equal volumetricflow ratesenteringandleaving vV through S. Thisisexpressed mathematically
by writing

2.1)

V-edS=0
£ .

inwhich e =outward normal to S. Thus, (2.1) statesthat the net volumetric outflow through S
is zero, with outflows taken as positive and inflows taken as negative. Equation (2.1) is the
control volume form of a continuity equation for incompressible flow.

The partial differential equation form of (2.1) isobtained by taking vV to beavery small volume
intheflow. Then an application of the second form of the divergencetheorem, Eq. (1.49), allows
(2.1) to berewritten as

fv-vav:o (2.2)
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Since V can aways be chosen small enough to alow the integrand to be nearly constant in Vv,
Eq. (2.2) gives

V-V =0 (2.3)

for the partial differential equation form of (2.1). If we set V = ui +vj +wk, then the
unabbreviated form of (2.1) is

@+Q+GW—O (2.4)
ox oy 0z

A conservation of mass statement for the same control volume used to derive (2.1) statesthat the
net mass flow rate out through S must be balanced by the rate of mass decrease within V.

_ . d
\Y

Equation (2.5) isacontrol volume equation that reducesto (2.1) when p is everywhere equal to
the same constant. However, as noted in the previous chapter, some incompressible flows occur
in which p changes throughout V.

The partial differential equation form of (2.5) follows by applying (2.5) and the divergence
theorem to a small control volume to obtain

f[V'(pV) . %}dv - 0 (2.6)

v

inwhich the ordinary timederivativein (2.5) must bewritten asapartial derivative when moved
withintheintegral. (/, p dV isafunctionof t only, but p isafunction of both t and the spacial
coordinates.) Since (2.6) holds for an arbitrary choice of Vv, we obtain the following partial
differential equation form of (2.5):

V-(pv)+ £ -0 2.7)

The unabbreviated form of (2.7) is

dlpu) , dlpv) , 9lpw) , o _ 4
ox ay 0z ot

(2.8)

Again we seethat (2.7) reducesto (2.3) if p is everywhere equal to the same constant.
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Now we can consider the consequence of applying (2.3) and (2.7) simultaneously to an
incompressi ble heterogeneousflow, such asaflow involving differing mixtures of fresh and salt
water. Expansion of V - (pV ) in either (2.7) or (2.8) gives

3
p(V'V)+V°Vp+a—‘t)=0 2.9)

Thefirst termin (2.9) vanishes by virtue of (2.3), and use of (1.17 a, b, ¢) in (2.9) gives

O:V-Vp+%:%@+ﬂ%+$%+@

ot dt ox d oy dt oz ot (2.10)

The four terms on the right side of (2.10) are the result of applying the chain rule to calculate
dp/dtinwhichp = p(X, Y, z, t) with x(t), y(t) and z(t) equal tothe coordinatesof amoving
fluid particle. This time derivative following the motion of afluid particle is called either the
substantial or material derivative and is given the specia notation

D d
_ = V 'V + —
Dt e (2.12)
Thus, (2.9) can be written in the compact form
Dp
— =0
Dt (2.12)
or in the unabbreviated form
9p 9p 9 , 9p
Uu— +Vv—+w— + — =0
ox ay 0z ot (2.13)

Equation (2.12), or (2.13), states that the mass density of afluid particle does not change with
time asit moveswith anincompressibleflow. Equation (2.5) isthe only control volume form of
(2.12), andthepartial differential equations(2.3), (2.7) and (2.12) contai n betweenthem only two
independent equations. An alternative treatment of this material is to derive (2.7) first, then
postulate (2.12) as “obvious’ and use (2.7) and (2.12) to derive (2.3).

In summary, a homogeneous incompressible flow has a constant value of p everywhere. In this
case, (2.1) and (2.3) are the only equations needed since all other continuity equations either
reduce to these equations or are satisfied automatically by p = constant. A heterogeneous
incompressibleflow has p = p(X, Y, z, t). Inthiscase, (2.1) and (2.3) are used together with
either (2.5) and (2.7) or (2.5) and (2.12).

It has been assumed in deriving (2.3), (2.7) and (2.12) that V isthe same velocity in al three equations. In
other words, it has been assumed that mass and material velocities areidentical. In mixing problems, such as
problems involving the diffusion of sat or some other contaminant into fresh water, mass and materia
velocities are different. In these problems (2.3) is used for incompressible flow and (2.7) and (2.12) are
replaced with a diffusion or dispersion equation. Yih (1969) gives a careful discussion of this subtle point.
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Momentum Equations

Thevariousforms of the momentum equationsall originate from Newton's second law, in which
the resultant of external forces on amoving element of fluid equals the product of the mass and
acceleration. The acceleration was defined in Eg. (1.21) as the time derivative of the velocity
vector of a moving fluid particle. Since the x, y and z coordinates of this particle are all
functionsof t, andsinceV =V (X, Y, z, t), an application of the chain rule gives

_dv _dx oV dy oV  dz oV | oV

dt  dt ox dt oy ot oz ot (2.14)

Thus, (2.14) and (1.17a, b, c) show that a is calculated from the material derivative of V.

v . av ov v v DV
a=u— + W — =(V-V)V + =2 = ==
ox ay oz ot ( ) ot Dt (2.15)

Since Newton'slaw will be applied in this case to the movement of acollection of fluid particles
as they move with a flow, we must choose the surface of Vv alittle differently. We will let S
deformwith t inaway that ensuresthat the samefluid particles, and only those particles, remain
within vV over an extended period of time. Thisis known in the literature as a system volume,
as opposed to the control volume that wasjust used to derive the continuity equations. The mass
of fluid within this moving system volume does not change with time.

If we include pressure, gravity and viscous forces in our derivation, then an application of
Newton's second law to atiny system volume gives

fpe dS+fpng+ffpdV f—PdV (2.16)

in which the pressure force pdS creates aforcein the negative e, directionfor p >0, g isa
vector directed toward the centre of the earth with amagnitude of g (=9.81 m/s”at sealevel) and
f = viscous force per unit mass. An application of the first form of the divergence theorem,
Eqg. (1.32) with ¢ = p, tothefirst term of (2.16) gives

prdV+fpng+ffpdV fp_dv (2.17)

Since V can be chosen to be very small, (2.17) gives apartia differential equation form of the
momentum equation:

DV

-Vp + +pof = p —
P+pg +p th

(2.18)
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A relatively complicated bit of mathematical analysis, as given for example by Yih (1969) or
Malvern (1969), can be used to show that an incompressible Newtonian flow has

9%V . 9%V . 9%V
ox?  oy?  9z2

f =vW2V =y

(2.19)

inwhich v = kinematic viscosity defined by (1.2). Thus, inserting (2.19) into (2.18) and dividing
by p gives

1 2, DV
- ZVp+g+ vV = =¥
VP9 - (2.20)

Equation (2.20), which applies to both homogeneous and heterogeneous incompressible flows,
isavector form of the Navier-Stokes equations that were first obtained by the French engineer
Marie Henri Navier in 1827 and later derived in a more modern way by the British
mathematician Sir George Gabriel Stokesin 1845.

Equation (2.20) can be put in asimpler form for homogeneous incompressibleflows. Sincep is
everywhere equal to the same constant value in theseflows, the first two terms can be combined
into one term in the following way:

~lvpg- g[V(i] g} -gVh 2.21)
p pg) g

in which the piezometric head, h, isdefined as

h-L2 - e, T (2.22)

The vector e, = g/g = unit vector directed through the centre of the earth, and r = position
vector defined by

r=xi +yj +zk (2.23)

Thus, e, r isagravitational potential function that allows h to be written for any coordinate

system. For example, if the unit vector j points upward, then e, = -j and
h==L 1y (2.24)
P9

If the unit vector k points downward, then e, = k and
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h-L -2 (2.25)

In open channel flow calculationsitiscustomary tolet i point downstream along achannel bed
that makes an angle 0 with the horizontal, as shown in Figure 2.1. Then e, = isin® - jcoso
and

h =L - xsno ~ y cost (2.26)

P9

Note that (2.26) reducesto (2.24) when 6 = 0.

Figure 2.1 Coordinate system used for an open-channel flow.

The introduction of (2.21) into (2.20) gives a form of the Navier-Stokes equations for
homogeneous incompressible flows:

_gVh +vV2V=% (2.27)

Equation (2.27) is avector equation that gives the following three component equations:

oh u u Jdul| ou _adu du du
-g— + v + + =U—+V—"FtW—+ —
oX ox? oay? 9z2 oX ay 0z ot
2 2 2
L R e LA RRVE-L R WEEL (228a,b, ¢)
ay ox? oay? 9z2 oX ay 0z ot
oh dw Aw Aw| ow _ dw oW ow
-g—+vV + + =U—+tV—*+tW— +—
0z ox? oy? 0z? oX ay oz ot
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Thusfor homogeneousincompressibleflows, Egs. (2.3) and (2.27) givefour scalar equationsfor
the four unknown values of h, u, v and w. For an inhomogeneous incompressible flow, p
becomes a fifth unknown, and Eq. (2.27) must be replaced with Eq. (2.20). Then the system of
equationsis closed by using either (2.7) or (2.12) to obtain afifth equation.

Thecontrol volumeform of themomentum equation isobtained by integrating (2.18) throughout
acontrol volume of finite size. In contrast to the system volume that was used to derive (2.18),
the control volume is enclosed by a fixed surface. Parts of this surface usually coincide with
physical boundary surfaces, while other parts allow fluid to pass through without physical
restraint. Sincethethreetermsontheleft sideof (2.18) areforcesper unit volumefrom pressure,
gravity and viscosity, respectively, integration throughout a control volume gives

DV
k- { P o9 (2.29)

inwhich F = resultant external force on fluid within the control volume. In general, this will
include the sum of forces from pressure, gravity and boundary shear.

Theright sideof (2.29) can be manipulated into the sum of asurfaceintegral and volumeintegral
by noting that

ofpuv) , olpwV)  alpwV) . 9(eV) _|g.(ov )+ 2P lv 4 oliv. v OV
X ay 0z ot [V ov) at}v p[(v V)V at} (2:30)

The first term on the right side of (2.30) vanishes by virtue of (2.7), and the last term is the
product of p with the material derivative of Therefore,

0 DV _ 9(puV) . d(pvV) , d(pwV) _ 3(pV)

Dt aX ay 0z ot

(2.31)

Integrating both sides of (2.31) throughout vV and using the same techniques that were used to
derive EQ. (1.48) [see, for example, Eq. (1.52)] leads to the result

DV .., _ , . V)
{pﬁdv = £ pV(V en)dS {Tdv (2_32)

Placing the partial derivative in front of theintegral in the last term of (2.32) alows the partial
derivative to be rewritten as an ordinary derivative since integrating pV throughout vV givesa
result that is, at most, afunction only of t. Thus, (2.32) and (2.29) together give the following
control volume form for the momentum equation:

d
E - £ pV(V-e,)dS + m { pvVdav (2.33)
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Thisvery general equation holdsfor all formsof incompressibleflow and even for compressible
flow. It states that the resultant of all external forces on acontrol volumeis balanced by the sum
of the net flow rate (flux) of momentum out through S and the time rate of increase of
momentum without V. The last term in (2.33) vanishes when the flow is steady.

Another equation that is often used in control volume analysis is obtained from (2.27) by
neglecting viscousstresses (v = 0) and considering only steady flow (0V /ot = 0). Then (2.27)
reducesto

~gvh = (V-V)V (2.34)

If we dot both sides of (2.34) with the unit tangent to a streamline

€ = v 2.35
we obtain
V
-ge-Vh = v'(V'V)V (2.36)

Thescalar V = |V | may be moved under the brackets in the denominator on the right side of
(2.36) to obtain

But Eq. (1.44) canbeusedtowrite e, -V = d/dsinwhich s = arclengthinthedirection of e,
(i.e. s = arclength measured along a streamline). Thus, (2.37) becomes

dh dv. _d( 1 d(1,,
—g— =V- L - 2| ZVv-V]| =2 =ZV
J ds ds ds( ) ds( 2 ) (2:38)

Dividing both sides of (2.38) by g and bringing both termsto the same side of the equation gives

2
i(m\/_) -0 (2.39)
ds 29

Equation (2.39) states that the sum of the piezometric head and velocity head does not change
along a streamline in steady inviscid flow, and it is usually written in the alternative form
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2
h +_:h2+¥ (2.40)
g

in which points 1 and 2 are two points on the same streamline. Since streamlines and pathlines
coincide in steady flow, and since p is seen from (2.12) to be constant for any fluid particle
following along a streamline, a similar development starting from (2.20) rather than (2.27) can
be used to show that (2.40) holdsalso for the more general case of heterogeneousincompressible
flow. Equation (2.40) is one form of the well known Bernoulli equation.

Finally, although we will be concerned almost entirely with incompressible flow, this is an
opportune time to point out modifications that must be introduced when flows are treated as
compressible. Since volumeisnot conserved in acompressible flow, EqQ. (2.3) can no longer be
used. Equations (2.7) and (2.18) remain valid but Eq. (2.19) is modified dlightly to

f =2V« 2 V(V-V) (2.41)

Equation (2.7) and the three scalar components of the Navier-Stokes equations that result when
(2.41) issubstituted into (2.18) contain five unknowns: the pressure, three vel ocity components
and the mass density. This system of equations is then “closed” for a liquid or gas flow of
constant temperature by assuming arelationship between p and p. However, for agasflow in
which the temperature aso varies throughout the flow, it must be assumed that a relationship
exists between p, p and thetemperature, T. For example, an ideal gas has the equation

p = pRT (2.42)

inwhich p = absolute pressure, p = mass density, T = absolute temperature and R = gas
constant. Equation (2.42) isthefifth equation, but it also introducesasixth unknown, T, intothe
system of equations. The system of equations must then be closed by using thermodynamic
considerations to obtain an energy equation, which closes the system with six equations in six
unknowns. Both Yih (1969) and Malvern (1969) give an orderly development of the various
equations that are used in compressible flow analysis.
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Chapter 3

Fluid Statics

In this chapter we will learn to calculate pressures and pressure forces on surfaces that are
submerged in reservoirs of fluid that either are at rest or are accelerating asrigid bodies. Wewill
only consider homogeneousreservoirsof fluid, although someapplicationswill consider systems
withtwo or morelayersof fluid inwhich p isadifferent constant within each layer. Wewill start
by learning to calculate pressures within reservoirs of static fluid. This skill will be used to
calculate pressure forces and moments on submerged plane surfaces, and then forces and
moments on curved surfaces will be calculated by considering forces and moments on carefully
chosen plane surfaces. The stability of floating bodies will be treated as an application of these
skills. Finally, the chapter will conclude with a section on cal culating pressureswithin fluid that
accelerates asarigid body, atype of motion midway between fluid statics and the more general
fluid motion considered in later chapters.

Fluid statics is the smplest type of fluid motion. Because of this, students and instructors
sometimes have atendency to treat the subject lightly. It isthe writer's experience, however, that
many beginning students have more difficulty with this topic than with any other part of an
introductory fluid mechanics course. Because of this, and because much of the material in later
chapters depends upon mastery of portionsof thischapter, studentsare encouraged to study fluid
statics carefully.

Pressure Variation

A qualitative understanding of pressure variation in a constant density reservoir of motionless
fluid can be obtained by setting V = 0 in Eq. (2.20) to obtain

Vp = pg (31)

Since g pointsdownward through the centre of the earth, and since Vp isnormal to surfaces of
constant p and pointsin thedirection of increasing p, Eg. (3.1) showsthat surfaces of constant
pressure are horizontal and that pressure increases in the downward direction.

Quantitative cal culations of pressure can only be carried out by integrating either (3.1) or one of
its equivalent forms. For example, setting V' = 0 in (2.27) gives

-gvh =0 (32

which leads to the three scalar equations
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oh

— =0

OX

oh

— =0

3y (33a,b, 0
LU

oz

Equation (3.3a) showsthat h isnot afunction of x, (3.3b) showsthat h isnot afunction of y
and (3.3c) showsthat h isnot afunction of z. Thus, we must have

h = h, (3.4)

in which h, is usually aconstant, although h, may be afunction of t under the most general
circumstances. If we use the definition of h given by (2.22), Eq. (3.4) can be put in the more
useful form

P =P *pg-T (3.5)

inwhich p, = pgh, = pressureat |r| =r = 0and g = ge, = gravitational vector defined
following Eg. (2.16). Since gr = gr cosO = g multiplied by the projectionsof r aong g,
the geometry in Figure (3.1) shows that

P =p, +pPYE (3.6)

inwhich p, = pressureat £ = 0 and £ isavertical coordinate that is positive in the downward
direction and negative in the upward direction.

po at
coordinate

origin T

9 & =rcosf

p at (x,y,z)

|
|
|
|
|
|
-
— ||

Figure 3.1 Geometry for the calculationof g -r in (3.5).
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Equation (3.6) also showsthat p is constant in the horizontal planes £ = constant and that p
increases in the downward direction as & increases. An alternative interpretation of (3.6) isthat
the pressure at any point in the fluid equal s the sum of the pressure at the origin plus the weight
per unit areaof avertical column of fluid betweenthe point (X, y, z) andtheorigin. Clearly, the
choice of coordinate origin in any problem is arbitrary, but it usually is most convenient to
choose the origin at a point where p, is known. Examples follow.

Example 3.1

Atmospheric
pressure: p, = 0
a / \v4

¢ N
L=5m p=1000kg/m?3
be

Given: pand L.
Calculate: p at point b in gage pressure.

Solution: Whenever possible, the writer prefers to work a problem algebraically with symbols
before substituting numbersto get the final answer. Thisis because (1) mistakes are less apt to
occur when manipul ating symbols, (2) apartia check can be made at the end by making surethat
the answer is dimensionally correct and (3) errors, when they occur, can often be spotted and
corrected more easily.

By measuring £ fromthefreesurface, wherep = 0, wecanapply (3.6) between pointsa and b
to obtain

P, =0 + pgl =| pglL

Unitsof p, are (kg/m?)(m/s?)(m) = kg/m - s? = N/m?, sothe unitsare units of pressure,
as expected. Substitution of the given numbers now gives

p, = (1000)(9.81)(5) = 49,050 N/m? = | 49.05 kN /m?
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Example 3.2

.—R =Radius = 2.5 mm

SX1

Atmospheric
[pressure: pg=20

a &

Water: p = 1000 kg/m %at 5°C

ik
|

Given: p and R.

Calculate: Theheight, L, of water riseinthetubeif the meniscus hasaradiusof curvature equal
to the tube radius, R.

Solution: Applying (3.6) between points a and b gives

p, =0 + pg(-L) = -pglL

Thus, the pressure is negative at b. If R = tube radius, and if the meniscus has the same

spherical radius as the tube, Eq. (1.4) or (1.7) gives
o, - - 20
b R

Elimination of p, from these two equations gives

L=20

pgR

_ 2
A check of unitsgives L = (N/m) + (kg/m?3) x [m) xm=N-S" . m, whichis
correct.

After obtaining o from the appendix, substituting numbers gives

-2
Lo 2A754x10°) pones i [ 615 mm
(1000)(9.81)(.0025)

Thisvalueof L hasbeen calculated by using o for distilled water inair. Impuritiesin tap water
decrease o, and some additives, such as dish soap, also decrease ¢. It iscommon practicein
laboratories, when glass piezometer tubes are used to measure pressure, to use aslarge diameter
tubes as possible, which reduces L by increasing R. If capillarity isstill aproblem, then L is
reduced further by using additivesto decrease o.
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Example 3.3

Atmospheric
pressure: p, = 0

Po 2

Given: p,, p,, L, and L,.
Calculate: p, if surfacetension effectsat a and b are negligible.
Solution: Applying (3.6) from a to b gives
P, =P, * POL; =0+ p, 0L,
Applying (3.6) from ¢ to b gives
P, = P, * P0L,
Elimination of p, gives

p,gL; =p, + p,0L,

or P, = plng - ngLz

This calculation can be done in one step by writing the pressure at a and then adding pg A¢
when going down or subtracting pg A& when going up to eventually arrive at c.

0+ plng - ngLz = P

The next example aso illustrates this technique.
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Example 3.4
P1

CR
- L
Ly } A ps |3

a( +)—— Ly
Y 4

P2

Given: p,, p,, P53, L, L, and L.
Calculate: p, - p,.

Solution:
pa - plgl—l + ngl—g - pggl—3 = pb

P, — By = plng_ngL2+p3gL3

Area Centroids

There are certain areaintegrals that arise naturally in the derivation of formulae for calculating
forces and moments from fluid pressure acting upon plane areas. These integrals have no
physical meaning, but it isimportant to understand their definition and to know how to calcul ate
their value. Therefore, we will review portions of this topic before considering the problem of
calculating hydrostatic forces on plane areas.

The area centroid coordinates, (xc, yc), are given by the following definitions:
X, A = [ xdxdy
[

(3.74a,b)
Y A = fydxdy
A

Theintegrals on theright side of (3.7 a, b) are sometimesreferred to asthe first moments of the
area, and (xc, yC) can be thought of as average values of (x, y) within the plane area, A. When
X, =Y, = 0, then (3.7 a b) show that
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xdxdy =0
[

[y - (38a,b)
ydxdy =
A

In this case, the coordinate origin coincides with the area centroid.

(a) (b) I

Figure 3.2 Two geometries considered in the calculation of area centroids.

In many applications, one or both of the centroidal coordinates can be found through
considerations of symmetry. In Figure 3.2 a, for example, ¢ liesalong aline of symmetry since
corresponding elements on opposite sides of the y axis (the line of symmetry) cancel out in the
sum

N

> % AA =0 (3.9)

i=1

g
g

xdA =
|

The y, coordinatein Figure 3.2 amust be determined from an evaluation of theintegral in (3.7
b). When two orthogonal lines of symmetry exist, as in Figure 3.2 b, then the area centroid
coincides with the intersection of the lines of symmetry. Locations of centroids are given in the
appendix for afew common geometries.
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Moments and Product of Inertia

The moments and product of inertiafor aplane areain the (x, y) plane are defined as

I, = [ y?dA

[

ly = [ x*dA (3104, b, ¢
wszm

A

inwhich | and I, are moments of inertiaabout the x and y axes, respectively,and |, isthe
product of inertia. Again, theseintegrals have no physical meaning but must often be cal culated
in applications. These integrals are sometimes referred to as second moments of the area.

If one, or both, of the coordinate axes coincides with aline of symmetry, asin Figures 3.2 aand
3.2 b, then the product of inertia vanishes.

N

[xydA =3 xy AA =0 (3.11)
A

i=1

When this happens, the coordinate axes are called "principal axes'. Frequently, principal axes
can belocated from considerations of symmetry. In other cases, however, they must be located
by solving an eigenval ue problem to determine the angle that the coordinate axes must be rotated
to make the product of inertia vanish. We will only consider problems in which principal axes
can be found by symmetry. Moments and products of inertiafor some common geometries are
given in the appendix.

Forces and Moments on Plane Areas

Consider the problem of calculating the pressure force on a plane area, such as one of the areas
shown in Figure 3.2. The pressure at the area centroid, ¢, can be calculated from an application
of (3.6), and pressures on the surface are given by (3.5) after setting
Pp =P 9 =00 + gyj + g,k andr =xi +yj(sincez =0onA).

P =P, *PYX *PYY (3.12)

The coordinate origin coincideswith the areacentroid, and the pressureforceontheareaisgiven
by the integral of p over A:

F o=k [pda (3.13)
A
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Inserting (3.12) in (3.13) and making use of (3.8 a, b) gives

F = -pAk (3.14)

Equation (3.14) showsthat the force on aplane areaequalsthe
product of the area with the pressure at the area centroid.

Frequently we need to calculate both the pressure force and the moment of the pressure force.
The moment of the pressure force about the centroid, c, is

M = [rx(-pkdA) = -i [ypdA +] [ xpdA (3.15)
A A A

On aplane area there is one point, called the centre of pressure and denoted by cp, where the
force p, A can be applied to give exactly the same moment about ¢ as the moment calculated
from (3.15). Thus, the moment about c isthen

M = 1% (=P AK) = —iy, PA + X, P A (3.16)

inwhich x_, and y_ arethe coordinates of the centre of pressure. The corresponding i and |
components of (3.15) and (3.16) give

1
X, = —— [ xXpdA
cp CA\[

. (3.17 a, b)
Yop = —— [ YPOA
c A

When the pressure, p, is plotted as a function of x and y over a plane surface area, A, we
obtain athree-dimensional volume known asthe pressure prism. Equations (3.17 a, b) show that
the centre of pressure has the same x and y coordinates as the volumetric centroid of the
pressure prism. Thereisavery important casein which the centroid of the pressure prismisused
directly to locate the centre of pressure. This occurs when a constant width plane areaintersects
afree surface, as shown in Figure 3.3. Then the pressure prism has a cross section in the shape
of aright triangle, and the centre of pressure is midway between the two end sections at a point
one third of the distance from the bottom to the top of the prism.
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Free surface p = pg§

Free surface

(b)

Figure 3.3 Pressure prisms and centres of pressure when a plane area intersects a free surface
for (a) avertical areaand (b) adlanted area.

For more general cases when the plane area either is not rectangular or does not intersect afree
surface, the centre of pressure is usually located by substituting (3.12) into (3.17 a, b) to obtain

x
Il
o

(gx Iy i gy Ixy)

>

cp P
‘ (3.18a, b)

o

(Gchy + 91)

e
>

inwhich g _and g, arethe x and y components of the vector g and |, I, and l,, are the
moments and products of inertiadefined by (3.10 a, b, ¢). In most applications a set of principal
axesislocated by symmetry and used so that Ly = 0.
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Example 3.5
- B _—
—L 7 L
= l& B = X
z J
. Yy=—c
g(-i sinf i
-k cosb) ]/
Given: p, 0, H and B.
Calculate: The pressureforceand r ) = X, i + Y, .
Solution: The pressure forceis given by
F = -p,Ak = -pg& Ak = pggsinG(BH)k

The area centroid, ¢, has been located by symmetry at the midpoint of the rectangle, and
considerations of symmetry also show that the coordinate axes have been oriented so that
Ly = 0. Thus, aset of principal axesisbeing used and (3.18 a, b) reduce to
__bp __bp
Xep = ﬁgXIy and Yep = ﬁgylX

c

In these equations we have g,
|, = B®H/12. Thus, we obtain

-gsnB, g, =0, A=BH,I, = bH3/12 and

3
ch - P (7gSine) B:ll_; = %
[pg%sine)(BH)
p 0 B3H 0
) o

pr = H
(ngsine) (BH)

The distance from the plate bottom to the centre of pressureis H/2 - H/6 = H/3, which agrees
with the result noted in the discussion of the volume centroid of the pressure prism shown in
Figure 3.3(b). As a partial check, we also notice that the dimensions of the expressions for
F, X, andy,, arecorrect.
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Example 3.6

—=
B T = Cable tension

D [
< Hinge

Given: p, D, B and H.
Calculate: Thetension, T, inthe cablethat isjust sufficient to open the gate.

Solution: When the gate startsto open, the reservoir bottom and the gate edge | ose contact. Thus,
the only forces on the gate are the cable tension, the water pressure force on the top of the gate
surface and the hinge reaction when T isjust sufficient to open the gate. We will assume that
the hinges are well lubricated and that atmospheric pressure exists on the lower gate surface. A
free body diagram of the gate is shown below.

Setting the summation of moments about the

hinge equal to zero gives P A q Xep
T
- pCA(H 3 ch) -0 [ z Hinge moment = 0
x o

T :(U3+XWIH)pCA

Since g = -gk, we have g, = 9, = 0 and,

* IR = Hinge reaction
therefore, x,, = y,, = O from (3.18', b). g

Wealso have p, = pgD and A = BH/2.

pgDBH

T = Y3(pgD)(BH/2) = =

The hinge reaction force could be found by setting the vector sum of forces equal to zero.

This result could have been found more efficiently by noting that the pressure distribution over the gate is
uniform. Thus, aline normal to the gate and passing through the area centroid also passes through the volume
centroid of the pressure prism.
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Example 37

View E-E’

Given: p, &, B, H, «, and B.
Calculate: Xep and Yep for the rectangular gate.
Solution: The zx’ planeisvertical, andtheanglebetweenthe x’ and x axisisp. The xy and x'y’
are both in the plane of the gate. The most difficult part of the problemiswriting g asavector
in the xy system of coordinates, which is aset of principal axes for the rectangular gate. This
can be done by writing g as avector in both the zx'y’ and zxy coordinate systems:

g = g(i’sina - kcosa) = g + 9+ gk

Since k isperpendicular to i/, dotting both sides with k gives
-gcosa = g,
Dotting both sideswith i gives
gi-i'sine = g,

But i-i = cosli,i’) = cosp
g, = gsina cosp

Dotting both sideswith j gives
gj-i'sna =g,

But j-i’ = cos(j,i’) = cos(n/2 + B) = -sinp
9, = -gsine sinf

Since p, =pg€, I, =0,1 =BH¥12, 1 =B°H/12and A = BH, we obtain from
(3.18 3, b)

B p . 3 . H2 .
X . = ————(gsinadcosP)(BH °/12) =| —— sinc cosf
AT erz) =)
P__(-gsnasinB)(B2H/12) - | -2 snasin
y. = ——_—_(-gsnasn =| - sine sin
® pg,(BH) 12¢,

Severa partial checks can be made on these answers. First, the dimensions are correct. Second,
ifweset p = 0 and £ = (H/2)sina, wegety,, = 0 and x, = H/6, whichagreeswiththe
result obtained for Example 3.5. Finaly, if we set p = n/2 and £, = (B/2)sina, we get
X, = 0andy,, = -B/6, whichalso agrees with the result obtained for Example 3.5. Also
note that Xep and Yep both vanish as £ becomes infinite.
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Forces and Moments on Curved Surfaces

The problem of calculating forces and moments on a curved surface can always be reduced to
an equivalent system consisting of avertical force acting through the centroid of avolume and
vertical and horizontal forces on plane areas acting through the centre of pressurefor each plane
area. For example, consider the problem of cal culating the force and moment from the pressure
acting on the left side of the curved area shown in Figure 3.4(a).

F

(a)
Figure 3.4 Calculation of forces and moments on the | eft side of the
curved surface de.

Figure 3.4(b) showsanimaginary closed surface def withinthesamefluid, whichiseverywhere
at rest. The pressureforceson the curved surfaces de in Figures 3.4(a) and 3.4(b) will obviously
beidentical provided that the surface de has the same geometry and orientation and is located
at the same depth in both cases. However, if in Figure 3.4(b) we consider the closed surface def,
we must have both the summation of external forces and the summation of moments equal to
zero since the fluid within def isin equilibrium. The external forces consist of (a) the vertical
and horizontal components, F,, and F,,, of the pressure force on de, (b) the weight of fluid
pgV within def that actsthrough the volume centroid of def, (c) the horizontal pressureforce
F,; that actsthrough the centre of pressure of the vertical plane surface ef and (d) the vertical
pressure force F; that acts through the centre of pressure of the horizontal plane surface df.
Summing horizontal forces gives

ef (3.19)

and summing vertical forces gives

Fy = Fg — POV (3.20)

The line of action of the horizontal force F,, can be found by considering horizontal forces F,
and F, on the horizontal element shown in Figure 3.5.
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Since the sum of horizontal forces on this element must PPt ':e
vanish, F, and F, must be equal. When we consider the F o L F
contributions of all horizontal elementsthat occur in def, ] - 2

it becomes evident that the horizontal pressure forces / !

F, and F_ create momentsabout any point in space that ! !

are equa in magnitude but opposite in direction. dt---=----- of
Therefore, we conclude that the horizontal forces Figure 3.5 Horizontal forces F;
F,, and F_ inFigure3.4(b) havethesamemagnitudeand and F, on a horizontal fluid
line of action but opposite directions. element in Figure 3.4(b).

Since the horizontal forces F, and F_; have the same magnitude and line of action, and since
thesummation of all momentsactingon def must vanish, itisevident that thelineof actionof F,,
must be such that the moment created about any point in space by the vertical forces must vanish.
When three vertical forces are involved, as in Figure 3.4(b), these three forces will not be
collinear. However, if the horizontal surface coincides with a free surface, as shown in
Figure 3.6, then only two forces areinvolved and they must be collinear. Thus, in Figure 3.6 the
vertical force F,, and theweight of fluid p gV must both pass through the volumetric centroid
of defh.

PGV
S
) i *c E
i e
: F
d FV ———
H

Figure3.6 Caculationof F  anditslineof action when
the horizontal surface hf coincides with afree surface.

If thevolume defh in Figure 3.6 isalso used to calculate the horizontal force F,, then F, will
equal the difference between the horizontal forceson hd and ef. However, summing moments
to determine aline of action for either F,, or F , can alwaysbe avoided, if desired, by choosing
different geometriesfor the calculation of F,, and F,,. For example Figure 3.4(b) could be used
to calculate F, anditsline of action, and Figure 3.6 could be used to calculate F,, anditsline
of action. In fact, the geometry of Figure 3.6 can always be used to calculate F,, and itsline of
action, even if afree surface does not exist in the stated problem. In this case, an equivalent
problem is used with afree surface placed at an elevation that creates the same pressures on the
curved surface as existed in the original problem. The extension of these ideas to three
dimensionsis obvious and will not be discussed.
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Example 3.8
E ' — 7 /) \v4
= g = . [
g
H P H
bl 7
e g 7 A
/ﬁ R
a \ Y
/ // / / //
E b—>» 3 B
View E - E’

Given: p, R, H, and B.

Calculate: The vertical and horizontal pressure forces and their lines of action for the quarter
circular cylinder ab.

Solution: We will solve this problem by considering the following problem:

\v4
1 =

The forces acting on abd are asfollows:
b pa¥V = pgnR<B/4

F rv)/
H_Jr‘_ P.A = pg(H - R/2)(BR)

c

a "f"d
P, A = pgH(BR)

Theforces F, and pg(H - R/2)(BR) have the same line of action, which can be calculated
from Eq. (3.18 a, b).
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b
R/2 , ‘
—4— y R
Xepl W™ pg(H - R12)(BR) N !
d - B o
| = 1 BR3 1. =0 = =0
y - E ] Xy - ] gx - g! gy -
3 2
“olad x - P g1 - pg(BRY12) _ R
Yep " oA XY po(H-R2)BR) | 12(H-R2)

ﬂ b Cadlculation of the x coordinate of the volume centroid for abd follows:
y (R
_w_ x¥ = [xd¥ . x(zR¥4)B - [ x(BdA) = B [ xdA

X A A A

The constant valuesof B cancel, and switching to polar coordinatesinwhich x = rcos0 gives

2R 2 R
x (nR%4) = (rcos®)(rdrdd) = [ cos6dd [ r2dr
[ [ ]
Calculation of the integrals gives
4
X. = —R
° 3n

Sincethe pressuredistribution over ad isuniform, the volumetric centroid of the pressure prism
is easily located by symmetry midway between points a and d. Thus, the vertical forces have
the following magnitudes and lines of action:
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Summing forces in the vertical direction gives

- F, - pgnR?B/4 + pgHBR = 0

F, =| pgBR(H - nR/4)

Summing moments about d gives, since moments of the horizontal forces cancel,

pgH(BR)(R/2) - pchRZ(B/4)[ S_iR) - (F, =0

Substituting the calculated value of F,, and solving for ( gives

H_R
i=|| 23 |R
H- TR

4

The expressions for al forces and lengths have the correct dimensions, which gives a partial
check on the calculations.
Example 3.9

Check the calculations for the vertical force F,, in Example 3.8 by using the volume shown
below:

\v e d
r =

The only vertical forces acting on abde are the weight of fluid within abde and the vertical
component of forceon ab. Thus, these two forces have the same magnitude since the sum of
vertical forces must vanish.

F, = P9V = pgB(HR - tR%4) = | pgBR(H - nR/4)

This agrees with the result calculated previously in Example 3.8.
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Sinceall momentscreated by the horizontal forcescancel, themoment of the vertical forcesmust
also cancel. Since only two forces act in the vertical direction, they must have the same line of
action through the volume centroid of abde.

Thewidth B isconstant and cancel sout inthe cal cul ation of Xe so that X, isidentical withthe x
coordinate of the area centroid of abde.

XA = f xdA = f xdA - f xdA = x, A - x A

A=A -Ay Ay A

2 4 2

x.(HR - nR%4) = (RI2)(HR) - 3—R) (nR¥4)
TC
Solution for x_ gives H R
Xs = 2 SI; R

H-T™
4

This value agrees with the value calculated previously for ¢ in Example 3.8.

Buoyancy Forces

A buoyancy force is defined to be the net force from fluid pressure acting on the surface of an
object that is either completely or partially submerged in afluid at rest. The buoyancy force and
its line of action can always be found by the principles just introduced for the calculation of
forces on curved surfaces. For example, if the object is completely submerged so that its entire
surfaceiswetted, then we consider abody of fluid at rest that is submerged at the same depth and
that hasthe same geometry and orientation as the surface of the submerged body. Thefluid body
has only two external forces acting upon it: its weight, which acts downward through its mass
centroid, and the pressure or buoyancy force acting on its surface. Since the vector sum of these
external forces must vanish, and since the fluid weight isin the vertical direction, the buoyancy
force must have zero horizontal components and a vertical component equal to the weight of
fluid displaced by the physical object (Archimedes buoyancy principle). Sincethereare only two
forces acting on the body of fluid, and since these two external forces must create a zero net
moment, these forces must also be collinear. If the fluid is homogeneous so that p is constant
everywhere, then the mass centroid and volume centroid of the body of fluid coincide. In
conclusion, this means that the net buoyancy or pressure force on a submerged physical object
is vertical with a magnitude equal to the weight of displaced fluid and has aline of action that
passes through the volume centroid of the displaced fluid. Thisresult is shown in Figure 3.7.
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Fluid weight = pg+

Buoyancy force = pgv

Figure 3.7 Buoyancy forces on (a) a submerged physical object and (b) a
volume of fluid with the same pressure distribution around its surface.

An equilibrium configuration or position for the submerged object is determined by considering
al of the external forces acting on the object. These forces include the buoyancy force (which
isupward with avertical line of action that passes through the volume centroid of the displaced
fluid), the object weight (which is downward with a vertical line of action that passes through
the mass centroid, cg, of the object) plus all other external forces acting on the object. If the
system of forcesis statically determinate, then setting the sum of forces and moments equal to
zero will be sufficient to determine all unknown forces plus the body orientation in equilibrium.
If the system is statically indeterminate, then elastic considerations must be used to close the
system of equations. An example is shown in Figure 3.8, where an object istethered by asingle
rope. Since the rope is capable of carrying only a single tensile force in the direction of its
longitudinal axis, the tensile force in the rope must equal the difference between the upward
buoyancy force and the downward object weight. All three of these forces are vertical (the rope
force must be vertical since the weight and buoyancy force are both vertical), and setting the
summation of moments equal to zero will give the relative positions of ¢, cg and the point at
whichtheropeisattached to the body. For instance, if the object ishomogeneous, then ¢ and cg

and the point of rope attachment all lie along the same vertical line.

Body weight

pg¥ = Buoyancy force

y
T = Rope tension = pg¥ - Body weight
A

TN
Figure 3.8 Forces acting on an object tethered by a single rope.
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The problem for an object floating on a free surface differs from the problem for a completely
submerged object in two ways. First, the object weight and the buoyancy force are usually the
only two external forces acting on the floating body. This means that these two forces must be
equal in magnitude, oppositein direction and have the sameline of action in order to ensure that
the resultant force and moment both vanish. Second, the volume of fluid that isused to calculate
the buoyancy force and its line of action has the same geometry as the wetted surface of the
floating object when closed with a plane of zero fluid pressure that coincides with the free
surface. An exampleis shown in Figure 3.9.

Body weight Fluid weight =pg¥

Figure 3.9 Forceson (a) afloating object and (b) the volume of fluid used to
calculate the corresponding buoyancy force on the floating object.

Example 3.10

It is believed that Archimedes discovered the buoyancy laws about 200 B.C. when asked by
King Hiero of Syracuyseto determineif his new crown contained the stipulated amount of gold.
Show how this could be done for pure gold by first weighing the crown in air, which has a
density small enough relative to gold to be neglected, and then in water, which has a density
relative to gold of 0.052.

Solution: The weight of the crown in any fluid isidentical with the tension in a string when the
crownissuspendedinthefluid by thestring. If wedenotethestringtensioninair andwater by T,

and T, respectively, andif we consider the buoyancy forcein air small enough to be neglected,
then free body diagrams for the crown in air and water are as follows:
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T, = Wire tension in air T,, = Wire tension in water
®,
pg ¥ = Crown weight p9 ¥ = Crown weight
Ay9Y = Buoyancy force

Summing forcesin air and then in water gives

Ta =p. 9V
T, =p.9Y -p,9V

Elimination of gV from these two equations gives

Thus, a measured value of T /T, dlows the calculation of p  /p., which could then be
compared with the value of 0.052 that is known for gold.

Example 3.11

! a l
——
- H
p = Fluid de;s;v L
p. = Cone density

Given: p, p,, a and H.

Calculate: ¢

Solution: Sincethevolume of aright circular conewith abaseradius r and height h is nr 2h/3,
and since the buoyancy is calculated by using a cone of height ¢ while the cone weight is
calculated for acone of height H, we obtain the following free body diagram:
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p.gma’H/3 = Cone weight

V

pg 75(% 0)2 0/3 = Buoyancy force

where al/H isthe cone radiusin the plane of the free surface.
Summing forces in the vertical direction gives
a 2
pgT [ ﬁ QJ /3 = p,gna®H/3

from which we calculate

0= (pclp)m’H

We will seein the next section that the cone may or may not be stable in this position.

Stability of Floating Bodies

Not all equilibrium configurations are stable. Asin al stability theory, the stability of afloating
body is tested by subjecting the body to a small disturbance. This disturbance, which takes the
form of asmall rotation, creates a changein the system of forces acting on the body. If this new
system of forces acts to force the body back into its initial configuration, then the initial
configuration is said to be stable. However, if the new system of forces acts to further increase
the disturbance, then theinitial configuration is unstable.

v | IPQ*‘ ~
C
00
¥ = Volume of
Y Mg displaced fluid ~ YM9
() (b)

Mg = Body mass
Figure 3.10 An example of stable equilibrium.

As an example of stable equilibrium, consider the body shown in Figure 3.10(a). The volume
centroid of the displaced fluid, ¢, hastheforce pgV acting through it. Thisis the resultant of
pressure stresses acting over the wetted surface area of the body and is the buoyancy force. The
masscentroid, cg, of thefloating body hasthe body weight, Mg, actingthroughit. Both ¢ and cg
lie dlong the same vertical line, and, since pgV = Mg, Figure 3.10(a) is an equilibrium
configuration.
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To test the configuration in Figure 3.10(a) for stability, the body is given a small angular
displacement, as shown in Figure 3.10(b). The mass centroid, cg, is fixed in the body and,
therefore, rotateswithit. However, thevolumecentroid, ¢, of thedisplaced fluid movesleftward
as a result in the change in geometry of V. The resulting couple from the forces shown in
Figure 3.10(b) would act to cause the body to rotate in the clockwise direction back toward the
initial configuration shown in Figure 3.10(a). Thus, Figure 3.10(a) shows an example of stable
equilibrium. In general, any floating object that has cg below ¢ will bein stable equilibrium.

IMg Mg
oo
—L—] =~
) [ Yo [ ]
lpgv POV
(a) (b)

Figure3.11 An example of unstable equilibrium.

An example of unstable equilibrium is shown in Figure 3.11. An equilibrium configuration is
shownin Figure3.11(a) since ¢ and cg liealong the samevertical lineand since pgV = Mg.
Inthiscase, asmall rotation createsthe force system shownin Figure 3.11(b). Since c liestothe
right of cg in Figure 3.11(b), the couple created by pgV and Mg isin the counterclockwise
direction and acts to cause the body to rotate further from the equilibrium configuration shown
in Figure 3.11(Q). Thus, Figure 3.11(a) shows an unstable equilibrium configuration.

Area = A

\ dA = dxdy

X | A2
1 Mg
y g 1
01_.; ’ e Cg
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Figure 3.12 A floating body shown (@) in plan view and (b) in elevation view.

The example considered in Figure 3.11 might tempt a student to conclude that al equilibrium
configurations in which cg liesabove ¢ are unstable. Figures 3.12 and 3.13, however can be
used to show that thisisincorrect. Figure 3.12 shows afloating body in which cg liesabove c.

Figure 3.13 shows the same body after being rotated asmall angle, 0. If ¢ liestotheleft of cg

when therotation is counterclockwise, as shown in Figure 3.13(a), then the resulting couple will

bein the clockwise direction and the equilibrium configuration shown in Figure 3.12(b) will be
stable. Thisisquantified by calculating the distance ¢ in Figure 3.13(a) and comparing ¢ with the
vertical distance between cg and ¢ in Figure 3.12(b).
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d¥ = (0x)dA

(b)

Figure 3.13 The object in Figure 3.12 after rotating a small angle, 0.

The difference between ( and the vertical distance between cg and c is called the metacentric
height. A positive metacentric height indicates stability, and a negative metacentric height
indicates instability.

Since 6 is very small, the distance Ax_ that the volume centroid, ¢, moves when the body is
rotated is seen from Figure 3.13(a) to be

Ax, = (6 (3.21)
But Ax_ can also be calculated by considering thelocation of ¢ beforeand after rotation. Before

rotation, ¢ coincides with the coordinate origin in Figure 3.12 and

0= [ xdV
I

1

(3.22)

inwhich v, = volume of displaced fluid before rotation. After rotation, Ax, in Figure 3.13(a)
isthe new x coordinate of ¢ inthe displaced fluid and is given by

V,AX_ = f xdV

V2

(3.23)

inwhich Vv, = volume of displaced fluid after rotation. Subtracting (3.22) from (3.23) gives

V,AX = | xdV - [ xdV = xdVv
L, - [ xav - [xav - | o2

2 1

inwhich v, -V, isthe shaded region near the free surface that is shown in Figure 3.13(b). In
thisregion dV isgiven by
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dv = (6x)dA (3.25)

inwhich dA isthe areaof asmall element inthe (x,y) plane that is shown in Figures 3.12(a)
and 3.13(b). Substituting (3.25) into (3.24) and then eliminating Ax, between the result and
(3.21) gives

1 2
0= = [ x2dA
3.26
v2£ (3.26)

Although VvV, and V., havedifferent geometries, their magnitudesareidentical . Furthermore, the
integral in (3.26) isthe moment of inertia denoted by l,- Therefore (3.26) can be written more
compactly as

0= 1,0 (3.27)

where I, is calculated in the plane of the free surfacewhen 6 = 0.

If & = vertical distance between ¢ and cg, then the metacentric height, m_, is given by

m =0-98=1/v-5 (3.28)

C

A positive value for m_ denotes stability, and a negative value denotes instability.

The (x, y) plane, whichisthe planein which l, iscalculated in (3.28), coincides with the plane
of the free surface, and the value of m_ calculated from (3.28) is a quantitative measure of the
stability of afloating body for a small rotation about the y axis. However, there was nothingin
the derivation of (3.28) which determined the direction that the y axis must point. Clearly, the
worst case occurswhenthe y axispointsin adirection that makes I, aminimum. The moments
and product of inertia are components of a two-dimensional matrix or tensor, | .

(3.29)

A mathematical development like the one used by Fung (1969) for the two-dimensional stress
matrix can be used to show that |, hasits minimum value when (1) the (x, y) axes are aset of
principal axessothat 1., = O anoi, (2) the y axisparallelsthedirection of the largest dimension
of A. Then (3.28) will give the smallest value for m,.
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Example 3.12

Mass density = kp

P = Fluid mass density

T

The homogeneous body shown above has amass density kp inwhich p = fluid mass density. If
p and the dimensions ¢ and L are given, calculate the range of values for k that will alow the
body to float with its lateral faces vertical.

Weig'ht = k pglL (2 Solution: If the bottom of the body is a depth A¢

cq below the free surface, then equating the object
~ | ° weight to the pressure force gives
= : (o4 5}(@
| kpgL(? = pglLA?

Pressure force = pgL A2
A=K

From this we see that the volume of displaced fluid is
vV = Lo(A0) = xL(?
The body will be stableif m_ > 0. Thus, (3.28) gives

l,/V -8 >0
Since 6 = vertical distance between cg and ¢, we have
& =012 - A2 =012 - x0/2 = (1 -x)0/2
l,> Vo = (kL 2)(1-x)e/2

We want the minimum value for | . This means that we must choose a set of centroidal axes
with the y axis parallel to the direction of largest dimension of the A, as shown below.
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e‘ XF’V

L

1
| = [ x?dA = —L¢®
y { 12

Les kL«
12

Dividing aninequality by apositive constant does not changeitssense. Thus, dividing by L 03/2
gives

1

=>x(l-x

2> k(1)
Since the body will only float if its density is less than the fluid density, we must also have the
restriction

O<xk<l1

Simultaneous solution of these inequalities gives

0<K<—[1i) and &[1+AJ<K<1

3 2\” s

Thus, the body will only float with its lateral faces vertical for values of k in either of the
ranges 0 < k < 0.211 or 0.789 < x < 1. For values of k in the range 0.211 < x < 0.789 the
equilibrium configuration under consideration is unstable, and some other configuration will
occur. An experimental confirmation of thisresult is shown in Figure 3.14.

Figure 3.14 Three floating cubes. Values of k, from left to right, are 0.03, 0.39 and 0.82.
The cubeswere originally constructed for teaching purposes by Professor Frank Henderson.
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Example 3.13

Calculate the rel ationship between p_ and p for the conein Example 3.11 that must be satisfied
in order that the equilibirum configuration shown in Example 3.11 be stable.

Solution: Equation (3.28) gives the requirement for stability as
|ﬂV—6>O
I, and V aregiven by
_ 4 _ a |’
|, = nr /4 = n(ﬁﬂ) /4

2
V = nr2h/3 - n(%@) /3

The mass centroid of aright circular cone of height H isadistance H /4 above its base. Thus,
0 isgiven by

8 =(H-0+0/4) -H/4 = 3(H-1)/4

Substituting l,, vV and & intheinequality gives
2
3l20"L - 3mH-nso
4\ H 0t 4

Thisinequality can be manipulated into the form
L1
H 1y
Inserting the solution for ¢/H from Example 3.11 gives
Poy 1
P [Le(a/HPF

Since the cone will only float if p./p < 1, we have the stability requirement

1 Py

[L+(a/m)f P

Thus, a cone that is too light will violate this inequality, and a different (stable) equilibrium
configuration will be found. Also note that a light cone can be made stable by increasing a/ H
to asufficiently large value.
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Rigid Body Fluid Acceleration

When acontainer of fluidisaccel erated so that no rel ative motion occurs between fluid particles,
we say that thefluid isbeing accel erated as arigid body. In this case the viscous stress vector, f,
vanishesin Eq. (2.18) to give

-Vp + pg = pa (3.30)

inwhich a = DV /Dt =fluid acceleration. We will consider two cases. When the container is
moving along astraight line, a will be given asthe same constant vector for every fluid particle.
When the contai ner isrotated about afixed axis, a will begivenasthevector -r w?e_ inwhich r

=radical coordinate, w = angular velocity of rotationand e, = unit vector normal to the circular
pathlines and pointing toward the axis of rotation, as defined in Eq. (1.24). In either case, the
vector a in (3.30) is specified, and (3.30) can be put in the form

Vp - pG (3.31)

in which the vector G isgiven by

G=9g-a (3.32)

Ifg =g, + gyj +g,kanda=ai + a\/j + a,k, then (3.32) gives
c-lol- o, af (g af @ af 239

In applicationsit will be more convenient to calculate G directly from (3.32) rather than (3.33)
since numerous components of g and a are usually zero.

Since Vp is normal to surfaces of constant p and points in the direction of increasing p,
Eq. (3.31) shows that surfaces of constant p are normal to G and that p increases in the
directionof G. When motionisalongastraight lineand a isthe same constant vector for every
fluid particle, then G isaconstant vector and surfaces of constant p are planes perpendicular
to G. In this case (3.31) and (3.1) are identical if we substitute G for g. This means that
pressure variations and pressure forces on plane and curved surfaces can be calculated by using
thesameresultsobtained for agtaticfluid reservoir providedthat G and G aresubgtitutedfor g and g
and provided that € in (3.6) is measured perpendicular to surfaces of constant p inthedirection
of G.

When the container of fluid isrotated about afixed axis with a constant angular velocity w, we
haveV = r w and Eq. (1.24) showsthat G isafunctionof r. Inthiscase surfacesof constant p
will no longer be plane surfaces, and pressures and forces within the fluid must be cal culated by
integrating (3.31).



Chapter 3 —Fluid Satics 3.31

Example 3.14

e o I

A

P H '-aok 'gk

Y

i

A cylindrical container of liquid (massdensity = p) hasaradius R and fluid depth H. Calculate
the pressure force on the container bottom if the container is given an acceleration a, in the
upward direction.

Solution: If k isaunit vector in the downward direction, then a = -a k and g = gk.
G=g-a-= (g+a0)k
Surfaces of constant p arenormal to G and, therefore, are horizontal surfaces. Since€ in (3.6)
is measured perpendicular to these surfaces and in the direction of G, we will measure &
downward from the horizontal free surface. Since the equations of statics apply if we replace g
with G = (g + ao), we obtain
P, = p(9+ag)H

for the pressure at the area centroid of the circular container bottom. The resulting forceis

F = p,Ak = p(g+aO)H nR2%k

In this particular case a, may vary with t without changing the essentialy rigid body motion
of thefluid.

Example 3.15
i l_"' Igj
J
B -~
Width = W p H a_OJ

~
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Therectangular container of liquid shown aboveisgiven aconstant horizontal acceleration a,ji .
Calculate the depth of theliquid along AB, to ensurethat liquid isnot lost, and theforce created
on AB if thetank hasawidth W.

Solution: Using the unit base vectors i and j shown in the sketch, we obtain

G=g-a=g0j-a, and G =\/g2+a§

Surfaces of constant p are perpendicular to G and are shown in the following sketch with
dashed lines:

A vector tangent to surfaces of constant p is
e, =1cosO +jsino
Sincewe must have G - e, = 0, weobtain

-a,cosf + gsin® =0

s

or tan0 = —
g

Theconfiguration showninthesketch only appliesif tan6 = a /g < (/L. Inthiscase, sincewe
must always have the same volume of fluid that we started with, and since the free surface tilts
as aplane surface, the distance ( between A and B is

0=H +(L/2)tan® = | H +(L/2)(a,/g)

The pressure on the area centroid of AB is

2
g p. = PGE, = pyg? +ay (0/2)cosb

@ % But cosd - g/,/g2+ag
02+ a2

p. = pgl/2 = pg[H +(L/2)(a0/g)]/2

Frg = “PAI = -p (Wi =| -pgW[H +(L’2)(ao’9>]2/2
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A

When accelerations are large enough to satisfy tan6 = a,/g > (/L, the geometry of the free
surface and surfaces of constant pressure change to those shown in the sketch. In this case,
equating the volume of accelerated liquid to its volume at rest gives

0 = y2HLten® = | \/2HLa,/g

As before, the pressure on the area centroid is

p. = PGE, = p\/g2+a§ (0/2)cosb
in which cosb = g/\/gz+a§

p, = pgt/2

Fas = ~P Al = -ptWi = -(pgWe?/2)i

Fe =| ~PWHLa,i

Thisresult isnot surprising. Since AB istheonly vertical surfacethat can createaforceinthe i
direction on thefluid, this pressure forceis simply the product of the total mass of fluid with its
horizontal acceleration.
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Example 3.16
~P =Po
aol
—-
-
. lgi
J

Anenclosed tank of liquid has p = p, at itstop when the tank and fluid are motionless. Givea
qualitativedescription of the pressure distribution after thetank isgiven ahorizontal acceleration
a=a,i.

Solution: Since G = g - a = -a,i + gj, surfaces of constant pressure are as shown in the

following sketch:
p = constant

/ |
[ [
\\ \\’/ \/ \\ -a,i
N N \

e —
N N\ N 3 g
L N N N G
. \ \ \

Since pressuresincreaseinthedirection of G, pressures are aminimum at the upper right-hand
corner and amaximum at thelower |eft-hand corner. Theintegration of (3.31) to cal culateunique
values for pressures requires specification of pressure as afunction of time at one point in the
fluid. Thisisaccomplished in most instances by either including afree surface or el se by venting
the tank to the atmosphere at one point. If no free surface or vent exists, aunique answer for the
pressure distribution can be calculated only by including elastic effects in the fluid and tank
walls. Thisprocedure, whichiscarried out in Chapter 13 for unsteady pipeflow, introducestime
derivatives of pressureinto the problem and allowsfuture pressure distributionsto be cal cul ated
from specification of theinitial hydrostatic distribution that exists when motion starts.

Example 3.17 A cylindrical tank of liquid is spun with a
M < Ja) " constant angular velocity, w, about a vertical
axis through its centre. Calculate the equation
v of the free surface and the pressure distribution
= ) within thetank if the fluid rotates with the tank
as a rigd
P H b ody
(V = rw).
! Solution:
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If we use the cylindrical coordinate system shown in the sketch, then Eqg. (1.24) gives

a=--—e = -ro‘e

G=-g-a- —gez—(—rwzer) - rw’e, - ge,
The components of V p incylindrical coordinates are shown by Hildebrand (1976) to be

Pe 1Pg Py
or r o0 % 0z ®
Since G = G(r), surfacesof constant p arenot planesurfaces. Puttingtheequationsfor G and

V p into Eq. (3.31) and dotting both sides of theequationwith e , €, and e, givesthreescalar
equations.

Vp =

ap 2
-+ = prw
or P
1dp _p
r 00
ap _ _
. o)

The second equation showsthat p = p(r, z) only, and the first and second equations have a
solution for p since
o _ 9%p

0zor aroz

This condition is identical with the compatibility requirement that V x Vp = 0, asdiscussed
at the end of Chapter 1.

Integration of the first equation gives

p = 2+ F(2)

N o
-

Substitution of thisresult for p into the third equation gives an equation for F(z).

dF(z) _

37 - P9

F(z) = -pgz + C

2

and p r2w?

N o

- pgz + C
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The equation of the free surface is obtained by setting p = 0.

2

r’w? - pgz + C

o
Il
N o

Thus, the free surface is a parabola of revolution, and C is determined by requiring that the
volumes in the motionless and spinning fluid be identical.

2n R z(r)

TR%H =£{ { dzr dr do

2.2
inwhich z(r) = £, I . Integration gives
P
2 4. .2
7R?H -[C—R R"))zn
2pg 89
C = pgH - £ R%?
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Chapter 4

Control Volume Methods

This chapter uses control volume forms of the governing equations to solve problems involving
fluid motion. These equations are relatively few in number and include the continuity equation,

2.1,

Vee dS =0
n 4.1
£ 4.1)
the momentum equation, (2.33),
d
F = VV-e dS + — Vdv
fp (V-e,)ds + dr f P (4.2)
s v
and the Bernoulli equation, (2.40),
Ve vy
h1+—:h2+— 4.3)
2g 2g
in which the piezometric head, A, is defined by (2.22) and Figure 3.1 to be
h="L -—¢.-r=-L -¢ 4.4
g ¢ pg @9

The variable £ is a vertical coordinate that is positive in the downward direction. If it is decided
instead to define € as positive in the upward direction, then the minus sign in front of § in (4.4)
must be replaced with a plus sign. In many texts k points upward and 4 becomes p/pg +z.

Although the equations that are used in control volume analysis are few in number, the effective
use of these equations in applications requires a subtle blend of mathematical skill and physical
insight. This combination of talents, which makes the study of fluid mechanics both interesting
and challenging, is probably best taught by using a combination of worked examples and student
homework problems. However, there are a few general points that can be discussed before
working a series of specific examples.

We will only apply control volume equations to problems in steady flow. It was pointed out in
Chapter 1 that steady flow occurs when the vector velocity field does not change with time. One
consequence of this assumption, which has already been made in the derivation of (4.3), is that
streamlines and fluid particle pathlines coincide. The V- e, terms that appear in both (4.1) and
(4.2) vanish along any portions of S that coincide with streamlines or stream surfaces (since V
is tangent to these lines and surfaces). A second important consequence is that the last term in
(4.2) vanishes, and the momentum equation reduces to
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F = | pV(V-e,)dS
[orire)

4.5)

One of the keys to developing skill in working control volume problems is to make a neat and
qualitatively correct sketch of both the control volume and internal streamline pattern. The
control volume boundary, S, is often chosen so that it is a combination of streamlines or stream
surfaces, along which V- e, = 0, and surfaces normal to the streamlines in regions of uniform
flow, where ¥V can be approximated with a vector that has both a constant magnitude and
direction. An example of this is shown in Figure 4.2. Furthermore, since the acceleration is
shown by (1.24) to have a zero component normal to streamlines in uniform flow, dotting both
sides of (2.27) with e, and using the directional derivative (1.44) shows that
dh

A 0 (4.6)

in which n = arc length normal to the streamlines in a region of uniform flow. Thus, 4 is not
changing in the direction of » when streamlines have zero curvature. In other words, pressures
are distributed hydrostatically across streamlines in regions of uniform flow, and the principles
that were covered in Chapter 3 can be used to calculate pressure forces on portions of § that lie
within these regions.

The deceptively simple looking Bernoulli equation, (4.3), has sometimes been described as the
most misused equation in fluid mechanics. Its derivation, which was given in Chapter 2, assumes
that the flow is steady and that points 1 and 2 lie on the same streamline. One classical case of
its correct use is shown in Figure 4.1, in which a Pitot tube is used to measure the velocity at
point 1.

A:h=h,

————a B:h=hy
Streamlines Static opening

™ Pitot tube

Stagnation opening

Figure 4.1 A sketch of a Pitot tube and surrounding streamlines.
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Point 2 lies on the same streamline as point 1 and is directly in front of the stagnation opening,
where the velocity is zero. (The flow on the Pitot tube nose is radial and away from point 2, and
symmetry requires that the velocity stagnate or vanish at point 2.) Thus, an application of (4.3)

with ¥V, = 0 gives
v, = ,/Zgihz -h,) 4.7)

The static openings are located far enough downstream from the Pitot tube nose to be in a region
of uniform flow. Therefore, (4.6) applies and the value of 4 at the static opening equals the
value of 4 in the undisturbed flow. Thus, the static tube measures 4,, and connecting the
stagnation tube, 4, and the static tube, B, to piezometers allows A, - h, to be measured and
inserted in (4.7) to calculate V. This principle is probably the simplest, most direct, most
accurate and most used method for measuring flow velocities. For example, stagnation tubes are
sometimes placed in low speed airplanes for measuring air speeds. In this case, a flow that is
unsteady when viewed from a fixed point on the ground becomes steady when viewed from the
moving cockpit, where the stagnation and static values of A are read.

By substituting (4.4) into (4.3) and multiplying both sides of the resulting equation by pg we
obtain the following alternative form of the Bernoulli equation:

p, - pgt, + %Vlz = p, - pgt, + gi (4.8)

In many flows gravity is neglected (g = 0) by omitting the pg€ terms in (4.8). Formal
justification for this can be obtained by manipulating (4.8) into the following form:

2]2_1+M

4.9
4 V12 “9)

Py~ Py _
pV12/2

The last two terms in (4.9) show that we may omit the term containing g if, and only if,

28| 51 B Ez |
_— T <1
4.10
V12 (4.10)

This usually occurs for high speed flows of a gas or liquid when changes in & are not too large.
For example, along a free streamline of a high speed jet we might have | €, - &,| = 0.1 m and
V, = 10 m/s. Then we calculate

2818 -&1 _ 2(9.81)0.1)
Vi (10)?

- 0.0196 @.11)

Since this number is small compared with unity, we would be justified in setting g = 0 in either
(4.8) or (4.9). Since pressures are also constant along a free streamline (a line or surface of
atmospheric pressure), either (4.8) or (4.9) shows that velocities are constant along a free
streamline (V2 = V1) when gravity is neglected. This approximation is often made in working
control volume problems involving high speed liquid jets.
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YYYVY VY

Figure 4.2 Flow in a streamlined constriction. The control volume surface, §,
1s shown with a dashed line.

Flow through the streamlined constriction shown in Figure 4.2 is a simple but typical example
of a flow in which control volume methods are used routinely. Boundary surfaces of the control
volume either coincide with streamlines or are located at the two end sections in regions of
uniform flow, where the streamlines are straight and parallel. Equation (4.6) shows that
hydrostatic pressure distributions occur at each of the two end cross sections. Therefore, the
pressure force on each end cross section is the product of the centreline pressure [p, in
Eq. (3.14)] with the area of the cross section. We also assume constant, or uniform, velocity
distributions at each of these two end cross sections, an approximation that is often called a “one-
dimensional flow approximation”. Thus, since 2 and V are both constant across each cross
section located in uniform flow, the application of (4.3) along any of the streamlines joining
these two cross sections gives exactly the same result. If instead we apply (4.8), then p will vary
across each cross section as pg€ varies, but the sum p - pg€ will be the same constant for any
point in the cross section because of the hydrostatic pressure distribution indicated by Eq. (4.6).

Finally, it remains to discuss the occurrence of energy losses in flows. Equations (4.3) and (4.8)
can be described as work-energy equations in which the sum of work done by pressure and
gravity in moving a fluid particle from point 1 to point 2 equals the change in kinetic energy
between these same two points. Work done by tangential stresses has been ignored. Thus, if
work done by tangential stresses becomes relatively large, then Egs. (4.3) and (4.8) either cannot
be used or else must be modified to account for this work. These modifications take the
following forms:

V2 V2
hy+ —— =hy + = + H, 4.12)
2g 2g

2_

P1‘Pg51+%Vl =p, - pgE, + ’

V, + Ef (4.13)

(S o)
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in which H; and E; = pgH, are described as a head-loss term and an energy-loss term,
respectively. Point 2 is downstream from point 1, so that H; and E; are always positive. This
is because the tangential stresses being considered are passive stresses that can only subtract
energy from a flow as it proceeds downstream.

There are two instances in which H; and E; often become too large to ignore. In the first
instance, tangential stresses may be small but the work done by these stresses accumulates to a
sizeable value within a control volume that has a large length to width ratio. Examples of this
occur in flow through pipes and flow in rivers and canals where control volume length to width
ratios may be of the order of 100, 1000 or more. The second instance usually occurs in
decelerating flow, where streamlines diverge and flow separation and highly turbulent flow exist.
For example, if the direction of flow in Figure 4.2 is reversed, flow is likely to separate from the
diverging boundaries and the flow tends to become highly turbulent,” as shown in Figure 4.3. A
transfer of energy from the main flow into the many vortices creates an energy loss in the main
flow. These energy losses, which occur over relatively short distances, are often called “local”
or “minor” losses. (Although they may not be minor in the sense of being relatively small.) The
first type of loss, which occurs within relatively long control volumes, is often referred to either
as a “resistance” or “friction” loss.

SIS SIS ISP,
S

S T v

— :
RN

Figure 4.3 Flow in an expansion.

Energy losses do not have a direct influence upon the use of either the continuity equation, (4.1),
or the momentum equation, (4.2). In fact we will use these two equations to calculate energy
losses in a few flows. However, energy losses can have an indirect influence on the accuracy of
approximation when the continuity and momentum equations are applied. This is because large
local losses invariably occur as a result of fluid decelerations, and fluid decelerations usually
cause increased departures from the one-dimensional velocity distributions that are assumed in
evaluating the surface integrals in (4.1) and (4.2). For example, behaviours for experimental
velocity distributions in Figures 4.2 and 4.3 are shown in Figures 4.4 and 4.5, respectively. In
these sketches it is seen that the rapid accelerations that occur in Figure 4.4 create a downstream
velocity distribution that is relatively close to the one-dimensional approximation pictures in
Figure 4.2. The decelerating flow in Figure 4.5, however, has a downstream velocity distribution
that departs much more markedly from its one-dimensional approximation.

Turbulence is a highly disorganized state of flow that occurs when a flow becomes unstable. Looked at closely,
it consists of many vortices of differing sizes and intensities superimposed on the main flow pattern. The net
effect of turbulence is to create both lateral mixing of the flow and energy dissipation. Turbulence will be
studied in more detail later in the text.
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Figure 4.4 A sketch of experimental velocity distributions that occur for
highly accelerated flow through a streamlined constriction.
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Figure 4.5 A sketch of experimental velocity distributions that occur for
decelerated flow through an expansion.
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Example 4.1

Suppose that the flow in Figure 4.2 has known values for the flow rate, Q, the cross sectional
areas 4, and 4, and the pressure p, at the intersection of the centre streamline with the area 4, .
We w111 calculate the velocities V1 and V,, the pressure p_ at the intersection of the centre
streamline with the area 4, and the force that the conduit walfs exert upon the flow. This force,
of course, is equal in magnitude and opposite in direction to the force that the flow exerts upon
the conduit walls, and the conduit walls and joints must be designed to withstand the stresses
created by this force.

Solution: Since V -e, = 0 along the conduit boundary, and since V-e, = -V, on 4, and
V-e, =V, on A,, anapplication of the continuity equation (4.1) to the control volume shown
with a dashed line in Figure 4.2 gives

~A VAV, = 0
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Since the flow rate, @, is the product of an area with the velocity component normal to the area,
this equation can be written as

A4V, =4V, =0

from which we obtain

v, = 2 and | V, = 2
4, 4,

in which Q is the known flow rate that is usually measured in units of m%/s.

We will assume that the centre streamline passes through the area centroids of 4, and 4,, which
will be true if the conduit is either an axisymmetric pipe or a rectangular duct. Then p., and p.,
are pressures at two points of the same streamline, and an application of the Bernoulli equation,
(4.3) or (4.8), gives

" v
B3 =P, *P—-

+
pc p 2

1

in which it has been assumed either that the conduit is horizontal, in which case the gravitational
potential terms - pg€ cancel on both sides of the equation, or else that velocities are so large that
gravity can be neglected, as illustrated by (4.10). In either case, the pressure p, is given by

P, =P, * P7 - 97

in which all quantities on the right side have either been given or calculated previously.

Since the momentum equation, (4.2) or (4.5), requires a sum of forces on its left side, use of the
momentum equation should always be preceded by a sketch of a free body diagram of the control
volume and coordinate system, as shown next.

PC1A1 P02A2

Since the end sections 4, and 4, are in regions of uniform flow, where streamlines have zero
curvature, pressures are distributed hydrostatically across the streamlines and pressure forces are
given by the product of pressures at area centroids with the corresponding areas.
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The curved streamlines along the conduit boundaries have rapidly varying, non-hydrostatic
pressure distributions, and we can only replace the integral of these pressures with the unknown
resultant force, R. The weight of fluid in the control volume, pgV, is important only for low
speed flows in which the pressure forces and fluid weight are of comparable magnitude. An
application of (4.5) to the control volume shown both in Figure 4.2 and in the free body diagram
gives the following result:

p, Aji-p, Ayi-pgVj+R = p(V,i)(V,4,)+p(V,i)(-V, 4,)

Solution for the unknown value of R gives

R = (-p, A, +p, A, +pV3 Ay~ PV} 4y )i + pgVj

in which all values on the right side have either been given or calculated previously.

Example 4.2
i Z
i N i
S
Vi Ay : L Vo Ay
X I
!
N \ 1

\ IrRERE

Flow in the abrupt expansion shown in the sketch has relatively large energy losses as a result
of flow separation and turbulence. We will neglect gravity to calculate an expression for this
energy loss.

Solution: Students should form the habit of sketching streamlines within control volumes when
solving problems. This shows regions of uniform and curvilinear flow and helps immensely in
selecting boundary locations for control volume analysis. It also helps locate regions of diverging
streamlines and separated flow, where energy losses become relatively large and one-
dimensional velocity approximations become less accurate. Streamlines for this flow are shown
in the sketch.

Control volume boundaries for this problem are shown with a dashed line in the sketch. An
application of the continuity equation (4.1) gives

-V, 4, + V,4, = 0

and an application of the Bernoulli equation with an energy loss term and zero gravitational

potential, (4.13), gives

—V12 —V22 E
+ = + +

D P ) D, v P ) L
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This last equation can be solved for E, .

2 2
E; =(P1_P2) + 971 - 972

The pressure difference, p, - p,, canbe calculated by an application of the momentum equation.
A free body diagram for the control volume follows:

- = == Notable points about this free body diagram
= I
:_/_ are that (1) the net boundary pressure force
P;As r—/—_: P, A, in a direction normal to the axis of
| | g

, symmetry is zero because of symmetry and

y the neglect of gravity and (2) the pressure

| :%_\ o force on the upstream cross section is

X calculated over the area A4, rather than 4, .

This is possible because pressures are

distributed hydrostatically over the entire

upstream cross section. (Pressures across 4, are hydrostatic since the streamlines there have no

curvature, and velocities and accelerations within any zone of separated flow are known from

experimental evidence to be small enough to give hydrostatic pressure distributions across the
separated flow region.) Thus, an application of (4.2) or (4.5) gives

pA,i - pyA,i = p(Vzi)(VzAz) + p(V1 i)(— VlAl)

Dotting both sides of this vector equation with # and solving the resulting scalar equation for p, - p,
gives

y
Pr-p)=p¥s oV
2

Substituting this expression for p, - p, into the expression for E, gives
4 Vi Ve
2 2 4 1 2
E, =pVs-pV]— +p— - p—
L= PVy—pPV 4, p ) Y >
The result from the continuity equation can be used to put the expression for E; in any one of
the following three forms:

A 4\2 VP A 2 p?
EL=p¥=(l__l] p%:(i—l) p_2

Decelerating flow within the control volume creates larger differences between experimental and
one-dimensional velocity approximations at the downstream cross section than for the
accelerated flow considered in Example 1. Thus, the results from Example 1 can be expected to
describe experimental flows more closely than the results from Example 2. Nevertheless, the
results from Example 2 are useful and are the basis for representing local or minor energy losses
for less mathematically tractable flows in any one of the following forms:

v,-V. Ve g
E, =K1PM =K2971 =K3PT

in which values for the loss coefficients, K, are determined experimentally.
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Example 4.3

ey,

)

A

82_1_ — | B3

AL TSI ST

The high-speed two-dimensional jet shown in the sketch strikes a rigid horizontal surface and
divides in two. The velocity ¥, the jet dimension, B, and the angle 0 are known. We will
calculate the depths B, and B, and the force per unit width that the rigid surface exerts against
the jet. Both gravity and tangential boundary stresses will be neglected.

Solution: Since velocities are assumed to be large, application of the Bernoulli equation along
each of the two free streamlines shows that the velocity magnitude equals ¥, at every point on
both free streamlines, as explained following equation (4.8). Thus, the uniform velocities at cross
sections 2 and 3 both have magnitudes of ¥, and an application of the continuity equation to
a unit width control volume gives

~V,B, + V,B, + V,B, = 0

Division by ¥, gives the following equation with unknown values of B, and B :

Since gravity has been neglected, we can dot both sides of (2.20) with e, in the regions of
uniform flow that exist at cross sections 1, 2 and 3 to obtain

—len-Vp =0

p
in which e, isnormal to the straight, parallel streamlines. Thus, the directional derivative (1.44)
allows this result to be written as

dp _
dn

Since this shows that p is not changing in a direction normal to the streamlines, and since p = 0
on each of the two free streamlines, we see that p = 0 across each of the three cross sections
1, 2 and 3. Thus, the only force acting on the control volume of fluid is a normal pressure force
exerted by the rigid horizontal surface, as shown in the following free body diagram:
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An application of the momentum equation gives
Rj = p(V1 cos@i - 7, sinﬁj)(— VlBl)
+p(= Vi) (V,B,) + p(V1)(V, Bs)

Dotting both sides of this vector equation with i and then j gives the following two scalar
equations:

0=-pV Bycos® - pV}B, + pV.B,

R = p V] B,sin0

The second equation gives the required force per unit width, and the first equation can be solved
simultaneously with B, + B; = B, to obtain

B, = (1-cos0)B,/2
B, = (1 +cos0)B,/2

For a partial check on these results, we see that B, = B, = B;/2 when 6 = m/2 (which must be
true from considerations of symmetry) and that B, = 0 and B; = B, when 6 = 0.

Example 4.4
+ ‘ ‘ ‘ Orifice or slot area = A,
& Free streamlines : p = 0
Q, A1 ¥ P
- A2

T <
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Flow exits with a high velocity through either a circular orifice or a slot in a plate covering the
end of either a pipe or two-dimensional conduit. The jet downstream from the orifice or slot
contracts so that its cross sectional area, A4,, is less than the orifice or slot area, 4,. The
contraction coefficient, C_, is defined to be the ratio of jet to orifice or slot areas.

C, = 4 , (€, <1)

4,
It will be shown in a later chapter that C, is a function of 4,/4,, and values of C, will be given
in that chapter for axisymmetric and two-dimensional high speed jets. In this problem we will
assumethat 4,, 4, and C, are known, and this will allow us to calculate a relationship between
the pressure p, and the flow rate Q and also an expression for the pressure force that the orifice
plate exerts upon the flow. Gravity and tangential boundary stresses will be neglected.

Solution: An application of the continuity equation between cross sections 1 and 2 gives
-4,V + C.4,V, =0

which can be rewritten in terms of the flow rate, Q.
4,V = C 4V, = Q

Since the jet has high enough velocities to allow the neglect of gravity, the discussion in
Example 3 with regard to the lateral pressure gradient in regions of uniform flow applies to this
problem as well. Thus, the pressure across 4, is zero, and the pressure across 4, is a positive
constant. This means that application of (4.8), with g = 0, along any streamline that connects 4, and 4,
gives
2 2
p + p ﬁ = p ﬁ
! 2 2

The continuity result can be used to rewrite V; and ¥, in terms of Q, and solution of the
resulting equation for Q gives

2p,
p L -1
Cldy 4]

This result is often used to measure flow rates in civil engineering applications.

Q:

- —— = -
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The free body diagram has only a horizontal pressure force over the area 4, and a horizontal
pressure force, R, exerted by the orifice plate upon the flow. The resultant pressure force normal
to the axis of symmetry vanishes since gravity has been neglected. Thus, the momentum equation
gives

p4yi - Ri = p(Vyi)(-V4,) + p(V,i)(V,C, 4,)
Dotting both sides of this equation with i gives
p A, -R=-pA, V] + pCA, Vs

The Bernoulli equation can be used to eliminate p, to obtain

nooWn ) )
R=4|lp—-p—| +p4,V] -pC,4,V,
2 2
and use of the continuity equation to rewrite ¥, and ¥, in terms of @ ultimately leads to the

result

The orifice plate and welds must be strong enough to withstand the force R.

Example 4.5
1 < '
@ — [
1
H [ Orifice area = A
: Contraction coefficient = CC
:
_Y o

Water flows through an orifice in the side of a large reservoir. The orifice centreline is a vertical
distance H below the reservoir free surface. Calculate the flow rate through the orifice and the
jet trajectory if the orifice area, 4,), and contraction coefficient, C , are known. The downward
curvature of the free jet is caused by gravity, so that gravity will be included in our calculations.
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Solution: The Bernoulli equation, (4.3), can be applied along a streamline that starts on the
reservoir free surface, where V' - 0, and passes through the free surface in the contracted part
of the jet to obtain

in which ¥V = free surface velocity at the jet vena contracta. If H is large compared to the
orifice diameter, then the velocity distribution in the vena contracta is nearly uniform and the
flow rate is given by

Q = C,A4,V, = C,A,2gH

since the area of the contracted jet cross section is C_4,,.

Downstream from the vena contracta pressures are atmospheric throughout the jet. Thus, if
tangential stresses on the jet free surface are neglected, and if the jet does not break apart into
droplets of spray from turbulence, then a free body diagram of a fluid particle in the jet has its
weight, mg, as the only external force.

-

. d*x .,  d% .,
mgj =m| =i+ —=j
dt? dt?

Newton's second law,
F = mDV/Dt, gives

Dotting both sides with i and j gives two scalar equations.

2
a’x _ 0
dt?

d2

_';; = g
dt

Integrating each equation once gives

=C, =V, =2¢gH

=gt +C, =gt

S &|&

in which C; = V; and C, = 0 were determined by requiring dx/dt = V,, and dy/dt = 0 in the
vena contractaat x = y = ¢ = 0. A second integration gives
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=
1l

ty2gH + C; = ty2gH

1 ., | P
= —gt?+C, = —gt
y 28 4 2g

inwhich C; = C, = Osincex =y = 0 at¢ = 0 inthe vena contracta. Time, ¢, plays the role
of a parameter in these equations, and elimination of this parameter by solving the first equation
for ¢ and substituting the result into the second equation gives an equation for the jet trajectory.

2
y - Lol X
2 (vng]

This equation can be put in the following dimensionless form:

This is the equation of a parabola with its vertex at the coordinate origin in the vena contracta.

If a number of orifices with different values for H are present in the reservoir side walls, as
shown in the following sketch, then points in an experimental plot of y/H versus x/H for each
jet should all lie along the same curve, which is obtained from a plot of (y/H) = (1/4)(x/H)?.
This type of solution, in which results for a number of different experiments collapse onto a
single curve, is often encountered in fluid mechanics and is known as a similarity solution. A
plot of some experimental data obtained by students in an actual laboratory exercise is also
shown.

1§

H. D = Orifice diameter
1
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y/H

Example 4.6

Slot height = b

‘y2 = ch

X AR RN R RN

Flow in an open channel exits beneath a sluice gate, which has an opening or slot height of 5.
The initial depth, y,, slot height, b, and contraction coefficient, C,, are known. We will
calculate the flow rate per unit width, g (in units of m?/s), and the pressure force exerted by the
gate upon the flow. Values of C, for a sluice gate of this type will be given in a later chapter.

Solution: Since cross sections 1 and 2 are in regions of uniform flow, an application of the
continuity equation to a flow of unit width gives

V,C.b - Viy, =0
This equation can be rewritten as
V,C.b =Viy, =¢q

in which g = flow rate per unit width.
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An application of the Bernoulli equation, (4.3), between points on the free surface at cross
sections 1 and 2 (both points are on the same streamline) gives

in which 4 in (4.4) has been used in the form A = p/pg +y. Substitution for V; and V, in
terms of g from the continuity result gives

This equation can be solved for g in the following form:

g - |BnCh) [ 2g
1 1 7'y +Ch

CZp?  yf

Velocities in this type of flow are too small to allow the neglect of gravity. However, the control
volume is relatively short so that tangential boundary forces are small compared with normal
pressure forces. Thus, a free body diagram includes only pressure forces on the two end sections,
the gate and the channel bottom together with the weight of fluid in the control volume.

=-——-——— Y= - -
— |
yq : LPQV | Fg = Gate force
ng_(y1) . e
— I
y ; S-—---- Cob
| ! re— pg ZL (C.b)

Since uniform flow exists at cross sections 1 and 2, Eq. (4.6) shows that pressures are distributed
hydrostatically in the vertical direction at each end cross section. Thus, hydrostatic pressure
forces at the end cross sections are the products of pressures at area centroids with cross sectional
areas. Use of the momentum equation, (4.2) or (4.5), gives

» C. b2
pg = ~Pg—— ~Fg| i+ (Fy=pgV)j = p(V,i)(V,C.0)

(i) (-7n)
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Dotting both sides of this vector equation with i and j gives two scalar component equations.

2 272
y C,b
Pg?l‘Pg 5 —FG=pV22ch—pV12y1
Fy-pg¥ =0

The second equation states that the pressure force on the channel bottom equals the weight of
fluid in the control volume. If ¥, and ¥, are written in terms of ¢ from the continuity equation,
the first equation gives the gate force as

2 272
Y C.b g2 q2
F = _ = + _ = —_—
¢ = P& ) Pg 2 p " P C.b

Use of the previously calculated expression for g and a bit of algebra allows this to be
simplified.

» _ P -Cb)
G 2(y1 + ch)

Example 4.7

Yo

q

\&@

ATy

A hydraulic jump often forms downstream from structures such as dam spillways or sluice gates.
In these flows a high velocity flow with a relatively small depth suddenly increases its depth with
a corresponding decrease in velocity. When changes in depth and velocity are relatively large,
the jump contains a great deal of turbulence and a large roller, as shown in the sketch. Thus,
energy losses can be considerable and should not be ignored. In this example we will calculate
expressions for the change in depth and the head loss across the jump.

Solution: An application of the continuity equation to a flow of unit width gives

Vv vV, =0

which can be rewritten in terms of the flow rate per unit width, ¢.

Vivi="y =4q
An application of the Bernoulli equation with a head-loss term gives

2 2

V.
y1+_=y2+_2+HL
2g 2g
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Use of the continuity result allows this to be rewritten in terms of q.

21 1
H, =(y1—y2)+§’— 2 2
&\ » 3 %)

A free body diagram for the control volume contains pressure forces at the two end cross
sections and along the channel bottom together with the weight of fluid within the control
volume.

JRUpERPEI A,
y12 /7 7 lpg*‘ 1 pgﬁ
P95 === -- 2
_>| |
y ————————————————————
X 1 Rg
This allows application of the momentum equation to obtain
2 2
N Y2 |, . . .
pg? - pg? 1+ (RB - ng)] = p(Vzl)(szz) + p(V1 1)(_ V1y1>
The i and j components of this equation give
y2 »
1 2 2 2
PE— ~ P8 =Py, —PViy
2 2
R, -pgvV =0

The second equation states that the pressure force on the channel bottom equals the weight of
fluid within the control volume. The first equation, however, leads to a more interesting result
that can be obtained by rewriting ¥V, and V, in terms of g.

2 2 1 1 =0
g(yl _yz):q2 — T — :q27
2 Yo N Y1),

Since y, = y, is not a root that is of interest, division by (y1 - y2> gives

y =
2 WY
This equation is a quadratic equation for y, that has the classical solution

)

N

in which the Froude number, F,, is defined as




4.20 Chapter 4 — Control Volume Methods

The Froude number is dimensionless and has great significance in open channel flow
calculations.

If the expression for ¢ is substituted into the expression for the head loss, H » We obtain

1 1 1
HL = (y1 _yz) + Z(y1y2>(y1 +y2)( I 2]
Y1 M

This result can be manipulated into a much simpler and more significant form.

P2 - »)

H =
By,

Since H; > 0, this result shows that y, must be greater than y,. (Only an increase in depth
across a jump is possible.) It also shows that H, increases as (y2 - J’1) increases, and the
expression for y,/y, shows that this is caused by an increase in F,. In other words, an increase
in Froude number for the approaching flow increases both the change in depth and the energy
loss across the jump. Engineers often design stilling basins below spillways so that hydraulic
jumps form within these basins. This is to ensure that high velocity flows from the lower part of
the spillway exit from the stilling basin with a smaller velocity and larger depth in order to
prevent erosion near the spillway base.

In some design problems the upstream depth must be calculated for a given downstream depth
and Froude number. In that case the solution can be written in the following form:

h )

B )

The following figure, which has been replotted from a figure in Rouse (1946), shows a
comparison between calculated and measured depths in a hydraulic jump together with a curve
that gives the length,L, of the jump. This curve, which was obtained from laboratory
measurements, is useful when designing the length of a stilling basin.

(eL ]

10 I o Bakhmeteff-Matzke °
z L Nyl

8 e Bliss-Chu °
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y2/y1 and Lly2
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Extensions for Control Volume Applications

The methods that we have used so far can be extended in two different ways. First, techniques
used in the study of particle and rigid body dynamics can be used to obtain equations for moving
control volumes that are both translating and rotating. Second, moment of momentum equations
can be obtained for both stationary and moving control volumes. Applications of these equations
include fluid motion through rotating machinery, such as pumps and turbines, and calculation
of lines of action for control volume forces. Shames (1962) gave what was probably the first and
most complete derivation of these equations. We will consider only the relatively simple case
of a translating control volume.

Moving
4 coordinate
Fixed axes
coordinate
axes
X

Figure 4.6 Position vectors in a moving (x,y, z)
coordinate system and a fixed (X, ¥, Z) coordinate system.

Figure 4.6 shows an (X, Y, Z) coordinate system that is fixed in space and an (x, y, z)
coordinate system that is translating. Since the moving coordinate system is not rotating, we can
use the same base vectors (i, j, k) for both coordinate systems by choosing the coordinate axes
of the two systems to be parallel. Thus, if R is the position vector of a fluid particle relative to
the fixed coordinate system, we can write

R =R, +r 4.14)
in which
R=Xi+Yj+Zk (4.15)
R, =X,i +Y,j+ Zk (4.16)
r=xi+yj+zk 4.17)

Equation (4.14) shows that the position of the fluid particle relative to the fixed coordinate
system equals the sum of the position vector of the translating origin and the position of the fluid
particle relative to the translating coordinate system. Since the (i, j, k) base vectors are not
rotating, they have zero time derivatives. Thus, differentiation of (4.14) gives
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dR dR, dr
- = — 4+ — 4.18
dt dt dt ( )

in which

dRO dXvO . dYO . dZO k U . V . W k 4 19
= i+ + = i+ + .
dt dt a’ 4 0 o/ 0 (4.19)

dr _dx. dy. dz , .
— = —i+=j+ =k=ui=vj+wk
dt dt dt] dt “ S (4.20)

Equations (4.18) — (4.20) show that the absolute velocity of the fluid particle equals the vector
sum of the absolute velocity of the translating origin and the velocity relative to the moving
coordinate system.

Newton's second law is only valid for the absolute acceleration of a particle, and differentiation
of (4.18) to obtain this absolute acceleration gives

2 d*R 2
dR 25, d7 4.21)
dt? dt? dt?

in which
d’R, dU,  dV, daw,
dt? dt dt dt

k 4.22)

d2r=Dui+DVj+Dwk 123
dt? Dt Dt Dt (4.23)

Equations (4.21) — (4.23) show that the absolute acceleration of the fluid particle equals the
vector sum of the absolute acceleration of the translating origin and the acceleration relative to
the moving coordinate system.

The equations of motion in the translating coordinate system can be obtained by substituting
d*R/dt? in (4.21) for DV/Dt in (2.18). The end result is that ¥ in all of the governing
equations, including the continuity equations, is the velocity relative to the moving coordinate
system, and a term dZRO/ dt? given by the right side of (4.22) must be added to (2.20) and
(2.27). Since this additive term is a function of # but not of the spacial coordinates, the control

volume form of the momentum equation contains a corresponding function of time added to the
right side of (2.33).
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~ d“R, . P
F = pVv 7 + £ pV(V en)ds + P l pV oV (4.24)

If the flow is steady when viewed from the moving coordinate system, then (2.34) becomes
2

d°R,

dt?

-gVh = (V-V)V + 4.25)

in which the last term is a function only of #. The sketch shown in Figure 1.6 can be used to
show that

e, = — (4.26)

so that a series of steps similar to those followed in the derivation of (2.40) shows that (2.39) is
replaced with
d V2 dU, dv, dw,

—| h+ — +x +y +z =0 4.27)
ds 2g dt dt dt

and (2.40) is replaced with

Ve dU, dv, dw,

h, + — + x + 9, — — =
Vo2g M oar N T 4
X (4.28)
2 du, 4V,  dw,
hy + = +x, RS 2
2g di di di

in which ¥, and ¥, are velocities relative to the moving coordinate system. The question of
whether it is possible to have a flow that appears steady in a coordinate system that is
accelerating will not be discussed.

We will only consider applications in which the moving control volume and coordinate system
are translating with a constant velocity. Then dU,/dt = dV,/dt = dW,/dt = d2R0 /dt? = 0, and
all of the governing equations become identical with the equations for a fixed control volume
except that velocities are now measured relative to the translating coordinate system. The
following examples should help make this clear.
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Example 4.8

If an obstruction, such as a sluice gate, is suddenly lowered into an open channel flow, a shock
or surge will move upstream with a constant speed that we will call ¢. (The ¢ stands for
celerity.) This surge has the appearance of the hydraulic jump considered in Example 4.7 except
that it is moving upstream, as shown in the following sketch:

¢ = constant

in which V| and ¥, are absolute velocities. If we choose a control volume and coordinate
system that move with the surge and write velocities relative to the moving control volume, we
obtain the result shown in the following sketch:

Y=
Vi+ec —_—_/—— 2. —
— Y /

N A R AN

This flow, from the viewpoint of an observer in the translating control volume and coordinate
system, appears to be the same steady flow considered in Example 4.7 except that V| and V,
are replaced with the relative velocities V; + ¢ and ¥, + c¢. Thus, from the results calculated in
Example 4.7, we have

in which

In addition, the continuity equation gives

(c + V1>J’1 = (c + Vz)y2

The two circled equations contain five variables: y,, y,, ¥, ¥, and c. Any three of these
variables can be specified, and the remaining two can be found from these equations. For
example, if a sluice gate is lowered all the way to the channel floor, then ¥, = 0 and ¥, and y,
would be the known velocity and depth that existed before the gate entered the flow. Then these
two equations could be solved for ¢ and y,. For a second example, we might generate the surge
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in a reservoir of still water by moving the sluice gate leftward with a specified velocity. Then
V, = 0, y, is the undisturbed water depth and V, is a negative number equal to the speed at
which the sluice gate moves. Again, the circled equations could be solved for ¢ and y,.

Surges exist naturally in some river estuaries as a result of an interaction between the river flow
and a rising tide. They can also occur in rivers as a result of blockage by an avalanche, or they
can travel down a river as a result of a sudden increase in flow caused, for example, by a dam
bursting or a sudden release of flow from a reservoir.

Example 4.9
A high speed jet directed against a moving curved blade is often used as the basis for

A = Jet area ,
Vg = Blade velocity

V, = Jet velocity —_—

—

understanding the fluid mechanics of a Pelton wheel. (The Pelton wheel is an impulse turbine
in which curved blades or buckets are mounted along the periphery of a large diameter wheel.
A high speed water jet directed against the blades, tangential to the wheel periphery, spins the
wheel. The spinning wheel is used either to generate electric power or to do other useful work.)
We will assume that 4, V;, V, and 0 are known, and this will allow us to calculate the force
vector that the moving blade exerts on the flow, the absolute velocity vector for the flow as it
leaves the blade and the power extracted from the flow by the moving blade.

Solution: We will choose a control volume and coordinate system that moves with the blade.
Since the flow is steady when viewed from this moving control volume, and since the jet speed
is large enough to allow us to neglect gravity, the relative flow speed on the free surface is
constant. Thus, streamlines and relative velocities are as shown in the following sketch:

Vy-Vp
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Since pressures are atmospheric on the free surfaces and across uniform flow streamlines at the
entrance and exit of the control volume, and since the weight of fluid within the control volume
is relatively small, a free body diagram of the control volume has the pressure force between the
blade surface and fluid as the only external force.

—

Equation (4.18) shows that the absolute velocity at the control volume exit is the sum of the
control volume velocity and the relative velocity.

V = Vgi + (V,-Vg)(cosO i + sin0 j)

The force exerted by the blade on the flow can be calculated from the momentum equation,

R = p[(VJ— VB)iH_(VJ_ VB)AJ]
* p[[F;= Va)licos +jsin0)][[7; - Vo)

in which use has been made of the continuity equation to show that the cross sectional areas of
the jet at its exit and entrance are both equal to 4. The expression for R simplifies to

R = pA,(V,- VyP[-(1-cosB)i + sin j]

Power has units of N -m/s = Watt, abbreviated W, and is computed from the dot product of
a force with the velocity at the point of force application. (If the velocity is the product of an
angular velocity with a radial distance from a centre of rotation to the point of force application,
this dot product also equals the product of the angular velocity with the torque or moment
created by the force about the centre of rotation.) Thus, since the force exerted by the fluid upon
the blade is - R, the power imparted to the blade is

P = (Vyi)-(-R) = pA,Vy(V, - Vs}(1 - cosb)
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This shows that the fluid imparts zero power to the blade if ¥, = 0, ¥ = ¥, or 6 = 0. This
suggests that the power reaches a maximum when ¥ is somewhere in the range 0 < Vp < V.
Differentiation of P with respect to Vp gives
dP
= A1 - c0s)((V, - V2 - 27,(V,- V)]
B

Thus, dp/Vy = 0 when V, -V, = 0, whichis not of interest since P attains a minimum value
of zero then, and when

v, =3V,

This gives a maximum power extraction of
P, = 4pA,V;(1-cosB) = 4p4,V; (1 -cos0)/27

When viewed as a function of 0, the power extraction is also maximized by making 0 = .

References

Rouse, H. (1946) Elementary Mechanics of Fluids, John Wiley & Sons, Inc, New York,
p. 146.

Shames, [.H. (1962) Mechanics of Fluids, McGraw-Hill Book Co., New York,
pp. 109-114, 123-140.



4.28 Chapter 4 — Control Volume Methods




Chapter 5

Differential Equation Methods

Pressure and velocity variations at points within a control volume can be found only from the
solution of the partial differential equations of fluid motion. An example of this has already
occurred in Chapter 3 when we integrated these equations to cal cul ate pressures in motionless
bodiesof fluid. Now wewill be concerned with integrating the equationsfor problemsinvolving
fluid motion. This chapter will give a general overview of the problem, and the following
chapters will fill in more details.

The governing equations for homogeneous, incompressible, steady, two-dimensional flow are
the continuity equation, (2.4),
Ju adv

— +— =0
aX i ay (5.1)

and two components of the Navier-Stokes equations, (2.20),

P, d%u . d%u
IX ox?  ay?

:u@+V@

dX ay

(5.2 a,b)

Dl ©|r

P, 82v+82v :uﬂ+vﬂ
dy ox?  ay? oX oy

inwhich gravity hasbeen neglected. If gravity isincluded, then (2.28) showsthat p/p isreplaced
with gh.

The exact solution of (5.1) — (5.2) is extremely difficult, largely because of the nonlinear
acceleration terms on the right side of (5.2). Numerical techniques considerably increase the
number of problems for which (5.1) — (5.2) can be solved, but even then there remain many
problems for which neither mathematical nor numerical solutions of (5.1) — (5.2) are possible.
Thus, in many problemsit becomes necessary to use mathematical and physical insight to obtain
approximate solutions of (5.1) — (5.2).

The most important technique for finding approximate solutions of (5.1) — (5.2) uses order of
magnitude estimates for terms that appear in these equations. An order of magnitude is afactor
of ten. Thus, two orders of magnitude are 100, three orders of magnitude are 1000, etc. To say
that aterm is of order 1 does not mean that its magnitude is exactly 1. Rather, it means that its
absolute magnitude is not likely to exceed 1, 2 or 3 rather than 10, 20 or 30. The technique
consists of choosing suitable estimates for maximum values of termsin Egs. (5.1) —(5.2). Then
the relative importance of terms are compared to see which, if any, are small enough to be
neglected.
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For example, if maximum changesinuandv aredenoted by U and V, respectively, andif these
changes occur over distances ¢, and ¢, inthe x and y directions, respectively, then order of
magnitude estimates for du/ox and ov/dy are given by

Jou U
x oy
(53a,b)
vV
ay

<

inwhich ~ isread “ of the order of”. If either (5.3 @) or (5.3 b) isknown to be nonzero, then (5.1)
shows that
u.y

00,

(5.4)

(Signs do not matter in scale analysis.) Thus, (5.4) givesan estimate for V if U, ¢, and (, are
known.

Qy
V~=U (5.5)

0

If P isan estimatefor themaximum changein p, thenusing P, U, ¢, 0 andtheestimatefor V
from (5.5) gives the following estimates for termsin (5.2):

P u u uz U2
— + V| = + — ~ 4+ —
Pl oo Kok
(5.6 3, b)
U U2, U?
P 3y R 2y . 2y
Ly [N 0 0

Division of (5.6 8) by U ?/¢, and (5.6 b) by U ?/¢,, givesdimensionless estimatesfor therelative
magnitude of each term.

(5.7a,b)
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Thedimensionlessratios P/(pU 2) and U, /v areimportant parametersin fluid mechanicsand
areknown as an Euler number and Reynolds number, respectively. Because of the way inwhich
the Euler and Reynolds numbers were obtained in (5.7), authors frequently state that Euler and
Reynolds numbers are dimensionless ratios of a pressure force to an acceleration and an
acceleration to aviscousforce, respectively. Thereader iscautioned, however, that this physical
interpretation is not always possible. For example, the Reynolds number also makes its
appearancewhen considering flow resistance and energy lossesfor fully-devel oped laminar pipe
flow. Velocity distributions in this flow do not change from one cross section to the next. Thus,
fluid accelerations are zero everywhere, yet the Reynolds number still appearsin the expression
for the Darcy-Weisbach friction factor.

Figure5.1 Flow through a streamlined constriction.

Consider flow through the streamlined constriction shown in Figure 5.1. The boundary geometry
and velocity U, would be specified for this two-dimensional flow, and control volume
techniques would allow usto calculate U = U, - U, . Inthiscasewetake ¢, ~ ¢, ~ B;, and
(5.7) becomes

P Y

+ 1+1]~1+1

pU2 UBl

P . (5.8a,b)
+ 1+1]~1+1

pU2 UB,

If, for example, the fluid is oil with v ~ 107°> m?/s, U ~ 2 mm/sand B, ~ 5 mm, then

~1 (5.9)

In this case all terms are of equal importance, and the following estimate is obtained for P :

P~ pU?2 (5.10)



5.4 Chapter 5 — Differential Equation Methods

Moreimportantly, all termsin (5.1) — (5.2) would haveto beretained, and it would be necessary
to impose the following boundary conditions:

u=v=0 on ab and cd (5.11)
u=U/(y) and v=0 on ad (5.12)
u=UJ(y) ad v=0 on bc (5.13)
p =p, forone point in the flow (5.14)

The requirement that u and v be specified on all boundaries is equivalent to specifying both
normal and tangential velocity components and is necessary in order that the solution of
(5.1) —(5.2) be unique. The solution would undoubtedly have to be obtained by using numerical
technigues, and the flow would be described as viscous and laminar, a topic that will be
discussed briefly in afollowing chapter.

In a more likely civil engineering application involving the flow of water, we could take

v ~ 10®m?/s, U ~ 1 m/s and B, ~ 100 mm to obtain

v
uB

~ 10° (5.15)
1

In this case (5.8) shows that the viscous terms are negligible, and an estimate for P is again
given by (5.10). Thisflow would be termed inviscid, and (5.1) — (5.2) would be approximated
with

du L, 9v _ g
oX y
d au ov
2P _jou oV (5.16 4, b, c)

aX aX ay

ap _, ov . ov
ay X ay

|l ©|r

Since the second derivativesin (5.2) have been dropped, uniqueness requires that only normal
velocity components be specified around the boundary.

V-e =0 on ab and cd
= U(y) on ad (5.17)
= U,(y) on bc

p =p, forone point in the flow (5.18)
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Since the tangential component of V cannot be specified (because of the loss of second
derivatives of u and v in the approximation), the flow will dlip along boundaries ab and cd.
A particular typeof inviscid flow, known aseither potential or irrotational flow, will bediscussed
a length in the following chapter.

Theinviscid flow just described would be a good description of experiment throughout most of
the control volume. However, slippage of the flow along boundaries ab and cd isunredistic,
and the inviscid flow approximation breaks down near these boundaries. The reason for thisis
that our scaling estimateswereincorrect for the boundary region. Thisboundary regioninwhich
an inviscid flow approximation breaks down along a physical boundary is called a boundary
layer. If we denote its thicknessby ¢, = 6 inwhich x and y are now coordinates measured
along and normal, respectively, to the physical boundary, then aboundary layer is characterised
by the statement

5
- 1 (5.19)
X

In this case the largest viscous term in (5.7 @) must be of order one (since at least one viscous
term must be retained if we want to specify both normal and tangential velocity components on
the boundary), and we obtain the estimate

0 2
L(_X] ~1 (5.20)
Ut
which becomes
5 )2 \Y
[Q_x) U_QX (5.21)

Using our estimatesof v ~ 10°° m?s, U ~ 1 m/s and B, ~ 100 mm with ¢, ~ B, gives

o/ Bl) ~ 0.003, which suggests that the boundary layer is so thin compared to control volume
dimensions that an accurate numerical solution of (5.1) — (5.2) for the entire control volume
would be impossible to obtain.

Using (5.21) to eliminate the Reynolds number from (5.7) gives

(5.22)

P 5 )2
+ | —
pU 2 0

(2 ()

Since 6/, « 1, comparison of (5.2) and (5.22) shows that the boundary layer equations are
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du, ov _
ax oy
19 o2 ou du
——— +V—— =U— +V—
o 3x ay? Ix 3y (5.234, b, ¢)
J1op g
p dy

inwhich x and y arenow curvilinear coordinates measured along and normal to the boundary,
as shown in Figure 5.2. Equation (5.23 c¢) showsthat p does not change across the boundary
layer, and this very important result meansthat p isfirst calculated along the boundary from the
inviscid solution of (5.16) — (5.18) and then substituted into the first term of (5.23 b) to calculate
velocities and shear stresses near boundaries ab and cd. This boundary layer approximation
was first suggested by the German engineer L. Prandtl in 1904, and it marks a milestone in the
understanding of both fluid mechanics and applied mathematics. Boundary layer flows will be
treated at some length in alater chapter.

AL

Figure 5.2 Boundary layer development along boundary ab of Figure 5.1.

The only remaining topic to mention is turbulence. Turbulence appears in flows when a
disturbance, in the form of asmall vortex, becomes amplified into an unsteady pattern of large
and small vortices superimposed upon both themselves and the main flow pattern. Thisis flow
instability in which an otherwise one or two-dimensional steady flow suddenly becomes three-
dimensional and unsteady. A mathematical or numerical solution of a problem involving
turbulence requires the solution of the unsteady, three-dimensional form of the Navier-Stokes
equationswith extremely small spacial and time resolutions. This has never been accomplished.
Thus, the study of turbulence relies heavily upon laboratory observation and ad hoc hypotheses
and theories that have little hope of being useful for general applications. We will discuss
turbulence briefly in one of the following chapters.
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In summary, order of magnitude estimates have been used to suggest that all termsmultiplied
by the kinematic viscosity, v, in Egs. (5.2a, b) can be neglected throughout most of the flow
when Reynolds numbers are large. This inviscid flow approximation works well for many
civil engineering applications, athough it is not valid when flows are highly turbulent or
when Reynolds numbers are of order one or smaller (for example, submerged turbulent jets,
groundwater flow or very fine sediment particles falling slowly through water). The most
commonly used inviscid flow approximation is called irrotational flow and is discussed in
chapter 6. Examples of flows that are closely approximated with irrotational flow include
flow under sluice gates, freejets exiting through orifices, flow over spillways and weirs and
unsteady wave motion. However, at large Reynolds numbers, all inviscid flow
approximations break down in very thin regions next to boundaries. In these regions, which
are called boundary layers, pressures are calculated from an inviscid flow approximation but
velocities and tangential stresses are calculated by including one of the viscous terms on the
left side of Eq. (5.2a). Boundary-layer approximations are discussed in chapter 8. Finally,
some very important engineering applications that require an understanding of both
irrotational flow and boundary-layer approximations are covered in chapter 9, which is
concerned with drag and lift forces on objects that are submerged in flows.
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Chapter 6

Irrotational Flow

In this chapter we will consider the inviscid flow approximation that is known as either
irrotational or potential flow. Thisapproximation assumesthat Reynoldsnumbersare sufficiently
largeto allow theneglect of al viscoustermsin the Navier-Stokes equations. It al o assumesthat
boundary layer thicknesses along physical boundaries are small relative to control volume
dimensions. In general, boundary layer thicknesses remain small when Reynolds numbers are
large and when fluid particles are highly accel erated as they move with the flow. In steady flow
this requirement means that streamlines must converge rapidly in the direction of motion.

The governing equationsfor an inviscid, incompressible flow are the continuity equation, (2.3),
V-V =0 (6.1)

and the inviscid form of the Navier-Stokes equations, (2.27)

DV

The three scalar components of (6.2) are usually referred to as Euler's equations.

Circulation and the Velocity Potential Function

Not al inviscid flows are irrotational, and it is important to understand when a flow can be
approximated as both inviscid and irrotational. Further understanding can be obtained by
introducing the definition of circulation, T,

b
r :fv-dr (6.3)

in which dr = displacement vector along a path or curved line joining points a and b. The
integrand V - dr in (6.3) is the projection of the velocity vector, V, upon dr multiplied by
ldr | = ds and can be written as

V-dr =V-eds (6.4)

inwhich e, = unit tangent to the curve joining points a and b.

The discussion in this section paralels similar arguments that are often made in particle dynamics when
introducing the concept of work done on a particle by conservative forces.
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If I'iscalculated along amaterial curvethat isdefined by joining the samefluid particles asthey
move with the flow, then dr = dr (t) and the time derivative of (6.3) is
b
dr :f[d_V.dr . V.d(ﬂ)
dt

at at (65)

But dr/dt =V, and dV/dt = DV /Dt can be replaced with the left side of (6.2) to obtain

dr  °
o =f[—th-dr +V-dv] (6.6)

a

Since g isaconstant, the integrand of (6.6) can be written as an exact differential.

b

dr - [ [V(-gh)-dr + d(V-V/2)

E a
) (6.7)
- [ d(-gh +Vv?2/2)
a

Thus, if the integration path is closed so that points a and b coincide, and if we only consider
flows in which h and V are single valued, we obtain a result known as Kelvin's circulation
theorem.

d_lg - (-gh +V2/2), - (-gh +V?2)_ -0 (6.8)

Equation (6.8) shows that the circulation calculated around a closed material path of fluid
particles remains constant with time as this path moves with the flow provided that the flow is
inviscid.

There are two very important cases in which the constant value of I" for aclosed material path
iszero. Thefirst caseiswhen the materia path startsfromrest. ThenV = 0 at t = 0, andthe
constant value of I" computed from (6.3) at t = O obviously vanishes. The second case occurs
when V = constant vector at t = 0. Then

tzozv-fdr=V-[r(b)—r(a)]=0 (6.9)

since points a and b coincide. Thus, any closed materia path that starts out either in aregion
of zero motion or of uniform flow will have azero valuefor I' asthe path moves with the flow.
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¢ Now consider a third point, ¢, on a closed material path
that has a zero circulation, as shown in Figure 6.1.

Then (6.3) gives

b c b
'=0=(V-dr =[V-dr + [V-dr 6.10
{ f f f (6.10)

Figure6.1 Circulation calculated Since points a and b coincide, and since reversing the
around a closed material path for order of limits reverses the sign in front of an integral,

aninviscid flow. (6.10) isequivalent to
C Cc
fV'dr =fV-dr (6.11)
a b

Equation (6.11) shows that the circulation calculated along all paths joining points a and c is
exactly the same, and thisisonly possibleif V - dr isthe exact differential of ascalar function
that we will call ¢.

V-dr =d¢ = Vé-dr (6.12)

Since (6.12) must hold for an arbitrary choicefor dr, Eq. (6.12) showsthat the velocity vector
must be calculated from the gradient of a potential function, ¢.

V =V (6.13)

Clearly, we could have placed aminus signin front of d¢ and V¢ on theright side of (6.12)
and (6.13), and some authors choose to do so. The potential function, ¢, has no physical
meaning beyond thefact that itsfirst derivativesgivevel ocity componentsinthethree coordinate
directions.

§- 2
oX
o

vV = 9 (6.14 4, b, c)
ay

W = @

0z



6.4 Chapter 6 — Irrotational Flow

In summary, we can now say that any highly accelerated flow in which motion starts either
from a state of rest or a state of uniform flow can be approximated with a velocity field
generated from the gradient of a potential function. Since this velocity field is shown by
Equation (1.59) to have a zero curl, and since the average angular velocity of afluid element
is shown by Equation (1.58) to be proportional to the curl of V, we also see that a potential
flow isirrotational .

- Uy

V1f——l——fV2

I»US

SIS

Figure 6.2 Vorticity for irrotational motion in (a) uniform flow and (b) curvilinear flow.

It is now worth reviewing the physical interpretation of vorticity and irrotationality that was
introduced in thefirst chapter. If we consider the uniform flow shown in Figure 6.2(a), then the
angular velocities of the two dashed lines must be equal in magnitude and oppositein direction.
Since v, = v, = 0, this means that u, = u,. Thus, velocities pardlel to the physical
boundary must remain constant all theway to the boundary, and there can be no boundary layer.
The curvilinear flow in Figure 6.2(b) has v, = - v, . Thismeansthat the dashed line parallel
to the curved boundary has an angular velocity in the clockwise direction. Thus, the dashed line
normal to the boundary must have the same angular velocity in the counterclockwise direction,
which meansthat u, > u,. In other words, the irrotational velocity must increase as we move
toward the centre of curvature, and this rate of velocity increase must be maintained right to the
physical boundary. Again, we seethat fluid must slip along the physical boundary inirrotational
flow, and no boundary layer can exist. Thismeansthat the definitions of astreamlineand afixed
physical boundary are identical for steady irrotational motion: the normal velocity component,
and only the normal velocity component, vanishes along both surfaces.

Thus, any streamline in steady irrotational flow can be replaced with a
fixed physical boundary, and vice versa.

Simplification of the Gover ning Equations

Equations (6.1) - (6.2) ssimplify considerably with the introduction of (6.13). For example,
substitution for V from (6.13) in (6.1) showsthat ¢ satisfiesthe Laplace equation.

V2¢ =0 (6.15)
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The unabbreviated form of (6.15) is

2 2 2
2p P, P,
ox? 9dy? 9z?

(6.16)

This effectively uncouples (6.1) - (6.2) since (6.16) contains ¢ as its only unknown.
Furthermore, (6.15) is linear with constant coefficients and is one of the simplest and most
studied partial differential equationsin mathematical physics.

Boundary conditions for (6.15) require that we specify normal velocity components along all
boundaries. Thus, if wereplace e, and s in (1.45) with e, and n, respectively, then boundary
conditions take the form

—— =V-e =F (6.17)

inwhich n = arc length normal to aboundary and F isa prescribed function that may or may
not be zero. For example, F = 0 aong boundaries ab and cd in Figure 5.1. However, F
would benon-zerocondantsalong ad and bc givenby F = U, andF = U, B, /B, for ad and bc,
respectively. Thus, the function F cannot be prescribed in a completely arbitrary way on all
boundaries of aflow region; it must be constant along boundaries that lie in uniform flow, and
It must also satisfy the control volume form of the continuity equation, (3.1).

Equations (6.15) and (6.17) can be solved for ¢, and ¢ caninturn be used to calculate V in
any part of the flow. The remaining unknown, the pressure, p, or the piezometric head, h,
(knowledge of h gives p, and vice versa), must then be found by integration (6.2). However,
this can be done, once and for al, in avery general way. In particular, because of the identities

u_a(ad) _afab

9 _ v
dy dy\ ox ox\ dy X

ou _ 9 (ap)| _ o (ap| _ ow (6.18a, b, c)

E E oX & 0z 5
du_ o (o) 20
ot ot \ ox ox\ ot

the acceleration component inthe i direction can be rewritten as

au ou du adu . du oV ow a(aq))
Uu— +V— + W + u +V— + W— +

ax ay 9z ot ax  ox ax  ox

ot
; " (6.19)
:5(2+V2+W2)/2+a_t
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Similar expressions can be obtained for the j and k acceleration components, and this allows
(6.2) to berewritten as

v gh+V-V/2+% - 0 (6.20)

After dividing by g, Eg. (6.20) gives the following three component equations:

2
i h+V_+1@ =0
aX 29 g ot
2
Olh Y, 190) g (6.21a, b, c)
ay 29 g ot
2
i h+V_+1@ =0
0z 29 g ot

Since the bracketed terms in (6.21) are not functions of x, y and z, the most general solution
of (6.21) is

h+—+==f=H (6.22)

inwhich H isafunction of t. However, V iscalculated from the spacial derivatives of ¢, and
neither ¢ nor its time derivative have any physical meaning in this problem. Thus, we can
alwaysincludein the definition of ¢ anadded functionof t that has been determined so that its
time derivative gives gH (t).

By, 2,t) = Bl v 2 t) + [gHE)dt 623)
0

Then ¢ isreplaced with ¢’ in (6.15), (6.17) and (6.22), and H on the right side of (6.22) is
replaced with azero.” Thismeansthat H in Eq. (6.22) can always be chosen to be either zero
or a constant, and we will always do so.

Equation (6.22) is a general form of the Bernoulli equation that differsin two very important
respects from the Bernoulli equation (4.3) that we used for control volume analysis. First, it can
be used for unsteady aswell as steady flow. Second, the sum of terms on the |eft side of (6.22)
Isconstant for each and every pointintheflow and not just for points along the same streamline.

This argument fails in steady flow, where variables do not depend upon time. In thiscase, H in (6.22) isa
constant that must be calculated for each problem.
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6.7

Basic Irrotational Flow Solutions

Known solutions and solution techniques for the Laplace equation cover a vast quantity of
material. Therefore, we will limit our consideration to steady flow in two dimensions. Then the

Laplace equation has the form

which can aso be written in the following polar coordinate form:

2
10f,09), 13 _,
r or or r2 9e2

Velocity vectorsin these coordinate systems are calculated from

V:i@+j@:er@+e61@
oX ay or r 00

A sketch of these two coordinate systems is shown in Figure 6.3.

y \/er

(6.24)

(6.25)

(6.26)

Figure 6.3 Coordinates and unit base vectors in the Cartesian and polar coordinate systems.

Uniform flow in the positive x direction has the potential

¢ =Ux , (U = constant)

(6.27)

inwhich U is positive for flow inthe i direction and negative for flow in the -i direction.
Direct substitution of (6.27) into (6.24) shows that (6.27) satisfies the Laplace equation, and

substitution into (6.26) gives the corresponding velocity field.

V =Ui

(6.28)
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A solution of (6.25) with radial symmetry is easily seen to be given by

b - 2_1 In(f) , (g = constant) (6.29)

Substitution of (6.29) into (6.26) gives

_ 9
V = oo & (6.30)

Equation (6.30) shows that V is radially outward for g > 0 and inward for q < 0. Since
V | = lg|/(2nr), andsince 2nr =circumferenceof acircleof radiusr, weseethat q =flow
rate per unit width emitted by a source (q > 0) or absorbed by asink (q < 0). Note that V
becomessingularasr - 0.

Since (6.25) contains only a second derivative with respect to 0, a solution of (6.25) is aso
given by alinear function of 0.

FO
¢ = e 6 ., (T, = constant) (6.31)
Substitution of (6.31) into (6.26) gives
v - Lo 6.32
= e .
o 0 (6.32)

Since V isinthe e, direction and changesonly with r, (6.31) isthe solution for anirrotational
vortex. Asnotedearller \V lincreasesasr decreases, and weseeagainthe V becomessingular
asr - 0. Thevelocity isinthe e, directionfor I') > 0 andinthe -¢, directionfor I'; < 0.
Furthermore, calculation of the ci rculation around any closed path that includes r = O inits
interior shows that the constant T', in (6.31) - (6.32) isthe circulation I' defined in (6.3). The
circulation calculated from (6.3) for any closed path that doesnot includethepoint r = O inits
interior can also beshownto bezero. (Thisdoesnot violate Kelvin'sconstant circul ation theorem
since any closed material path that surroundsr =0 att = O will dlsoinclude r = 0O at later
times. Thus, the circulation will remain constant for any closed material path.)

The easiest way to cal culate the circulation from (6.3) for any irrotational flow is to substitute
(6.13) into (6.3) to obtain

b b b
F:fv-dr:qurdr:qu):q)bfcba (6.33)

Thus, (6.31) and (6.33) show for an irrotational vortex that the circul ation about any closed path
that surroundsthe origin, since 6, - 6, = 2w, is
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P- 220,06, -T, (634

and that any closed path that excludes r = 0 fromitsinterior has 6, = 0, so that
r

I = z_i(eb -0,)=0 (6.35)

Since the coefficients in (6.24) are constant, replacing x and y in any solution of (6.24) with
x -&andy - n will fill giveasolution of (6.24) providedthat £ and 1 donot dependupon x and .
Thus, in any of our basic solutions we can replace r and 6 with

r = y(x-E2 + (y - n)? (6:36)
_tan- il YN
0 = tan [X—E) (6.37)

inwhich r and 6 now have the interpretations of radial distance and angular displacement in
alocal coordinate system with its origin at the point (£, n). Since (6.24) is also linear, we can
add or subtract any number of these basic solutions to obtain other solutions. Thisis a process
known as superposition.

An example of the superposition process can be used to (x.y)
obtain the basic potential for flow from a doublet. If a ’
source and sink are placed a points 2 and 1, y ry 1,2
respectively, in Figure 6.4, the potential is

q 9 1 -

X

Multiplying the right side of (6.38) by 6s/ds in which
ds= distance between points 1 and 2 gives Figure6.4 Superposition of asource
at point 2 and a sink at point 1 to

In(r,)-In(r obtain adoublet.
(l) — qés ( 2) ( l) (639)
27 oS
If wenow set gds = A = constant and take the limit 8s -~ 0 we obtain
A d A
=— —In{r) = =V, _In(r)-e
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in which V, - is the gradient calculated with respect to the (€,m) coordinates and e, = unit
vector alongﬂme doublet axis1- 2. Sincer isgiven by (6.36), thegradientswith respectto (£,m)
and (x, y) differ by aminussign. Thus, wecan set V, , = -V, _ and use the polar coordinate
form of (6.26) to calculate A\ Thisgives

A A
=-—=e e =-—cos(0-a
¢ = -o—e e =-—-—cos(0-a) (6.41)
The velocity field calculated from (6.26) and (6.41) is
A
2nr 2

V = [cos(ﬁ -a)e, +sin(0 - oc)ee} (6.42)

The superposition principle applies not only to velocity potential functions but also to velocity
vector fieldsgenerated from the potentials. Streamline geometriesfor uniform flow, asourceand
sink, avortex and a doublet are shown in Figure 6.5.

'
V= Ui Y|
U
¢ = Upx — - Uniform flow
Y = Uy > -
-
-9 1
V= 27 1 °f y
-9
= 57 In(r)
_ 9 X
Y = 5 0
Source (g>0) Sink (g<0)
To 1

v €
2z r ° y Vortex (T, >0)
_To |
2z 0

__Jo
y =TI

A1 )

V= EF[COS(G-a)er + Sln(g-a)egj

¢ = __A cos(b-a) Doublet (A>0)
2n r

_ A sin(0-a) y
v 2n r
L» i L

X
Figure 6.5 Streamline patterns for some basic flows.
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Example 6.1

/\
_——/\

___.—///7_%\ e, cosf e, sind

- yw; / ’/0’./(& 0
— =
_\/

_—

Uo

Flow past acircle of radius R surrounding the origin can be obtained by adding the potentials
and velocity fields for uniform flow and adoublet at the origin with o« = 7.

A
= Ugx + cos6

¢ 0 2mr

V =U,i + -cosbe, - sinbe

° 27cr2( r d
Seti = cosbe, - sinb e, intheexpressionfor V to obtain
V=1U, - A cosbe, -| U, ~+ A sinf g,
2nr 2 2mr 2

Since the normal velocity component must vanish on the cylinder surface r = R, we must set
A

U, - -0
toobtain A = 2nR?U, and

°  onR?
2 2
1—5 1+B
r r

At r = « we see that V = U cosbe, - Uysinbe, = Uji, and on r = R we have
V -e, = 0, which proves that this is the solution for flow past the circular cylinder. On the
cylinder surface the tangential velocity vector is

V =U, cosbe, - U, sinf g,

V = -2U,sinb g,
The pressure on the cylinder surface is calculated from the Bernoulli equation

p + pV2/2 = constant = pU02/2
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in which we have neglected gravity and the integration constant has been evaluated at infinity,
where V2 = U and p = 0. Setting V2 = 4U. sin?0 on the cylinder surface gives

P g = (1 - 4sin26)pU02/2

A dimensionless plot of this pressure distribution is shown below.

It isevident from the symmetry of pressuredistribution that thereisno net pressureforce on the
cylinder in any direction. The fact that the drag force (the force in the direction of the
approaching flow) iszero is known as D'Alembert's paradox, aresult that is true for any object
submerged in an irrotational flow without separation.

Example 6.2

Since an irrotational vortex has a zero radia component of velocity and an g, velocity
component that vanishesas r -~ «, we can add the potential and velocity fields for avortex to
the potential and velocity fieldsin Example 6.1 to obtain asolution for flow past acylinder with
circulation.

2 I
d = Uo[x ¥ R—cos@) + 29

r 27
2
1[ R)
r

{3

Since velocity vector components add near the cylinder bottom and subtract near the top, this
increases V and decreases p near the bottom and decreases V and increases p near thetop. A
sketch of the streamline pattern is shown below.

o

V =U
0 27r

cosbe, - U, snbe, +

€
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UO
—-

v

Symmetry showsthat thedrag forceisstill zero, but theincreased pressureson top and decreased
pressures below obviously lead to adownward "lift" force. Since V 2 on the cylinder surfaceis
given by

V? =

r )2
-2U,sin® + =2 )
27

the pressure on the cylinder surfaceis

. r \2
= pU2/2 - p| -2U_sind 2
P =pUa/ p( 0 ' 2nR) /

The pressure force on the cylinder is

F - 7fperds = ff p(i cosb + j sinB)RdO

Substitution for p and integration gives

F=-pU,Ij

It can be shown that thisexpression for alift force holdsfor irrotational flow past any object. An
approximation to thisflow field can be generated in thelaboratory by placing aspinning cylinder
inauniform flow. In this case viscosity forces the fluid to "stick" to the spinning boundary and
generatesacircul ation pattern around the cylinder. In three dimensionsthis same process creates
the side thrust that causes a spinning golf ball, tennisball, cricket ball or baseball to curve.

Example 6.3

The previous two examples were concerned with flow exterior to the surface of a circular
cylinder (r > R). However, amathematical flow also occurswithin the cylinder boundary even
though the region r < R lies outside the region of physical interest for this particular
application. A sketch of the internal streamline pattern for Example 6.1 is shown below:
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Thus, a streamline has been used to replace a physical boundary.

Flow past a circular cylinder was generated in Examples 6.1 and 6.2 by placing singularities
within the circular streamline that modelled the boundary. This suggests that flow past more
generally shaped boundaries might be modelled by adding potential and velocity fields for
numerous sources, sinks, doublets and vortices that have been placed within the streamline that
coincides with the physical boundary. For example, the following velocity potential

¢ = Ux + 2—(1 In(r,) - 2—?Tln(rz)

might be used to approximate flow past the elliptical boundary shown below.

The potential function is the sum of the potentials for uniform flow, a source of strength q at
point 1 and asink of strength q at point 2. The source and sink must be of equal strength since
no flow can pass through the closed streamline that models the physical boundary, and the
undetermined constant q can be found by requiring that the normal velocity component vanish
at one point on the boundary streamline.

A better approximation for thisflow could be obtained by placing anumber of sourcesalong the x
axis and determining the strengths of these singularities by requiring zero normal velocity
components at a number of different points along the boundary. In particular, we might set

N

d =Ux+ Y iIn(ri)

i—1 2m

and determine the constants g, by requiring
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dx dy.
Dl ey

in which X, Y, is a point on the ellipse boundary, éx Oc) isapoint on the x axisinside the
ellipse boundary, r;; = = = distance between pomts . X, yJ and

dx. dyj ,
€, = — i +—]

dn dn
is the boundary unit normal at XY, ) By choosing point j at N different points along the
boundary we could obtain N smultaneous equationsto solvefor the N unknown valuesof g;.
Solution of these equations would give positive values for some ¢, 's and negative values for
others. In general, we would find that

N

> g =0

i=1

since no flow passesthrough the boundary. The use of doubletsinstead of sourceswould obviate
this last requirement since a doublet is the result of combining a source and sink of equal
strength.

Even more accurate results could be obtained by using definite integrals to distribute singular
solutions over the boundary surface. This method leads to the solution of singular integral
equations, atechnique that is known in most present day engineering literature as the boundary
element method.

Stream functions

In many applications it is helpful to be able to plot streamlines for a flow. This can be done
relatively easily for two-dimensional and axisymmetric flows by introducing a stream function,
which we will denote by . For example, in two dimensions the continuity equation

Ju  dv

Yoo
x 3y (6.43)

can be satisfied for al flows, inviscid or viscid, by calculating u and v from the following
equations:

u - Z_"’

i; (6.44 a, b)
V = —_llj

oX

Substitution of (6.44) into (6.43) showsthat all choicesfor  will generate valuesfor uand v
that satisfy (6.43).



6.16 Chapter 6 — Irrotational Flow

If we also require that a flow be irrotational (i.e. flow generated from a velocity potential
function, ¢), then (6.14) and (6.44) require that

9% _ ¥
aX ay
(6.45 a, b)
9 _ ¥
ay aX
Elimination of ¢ from (6.45) gives
~d( dd d(aodp) oI ov 0 oy
0=~} 2| - | =X = | X+ - | -Z*%
ay[ ax) ax( ay) ay[ ay) ax[ X (6.46)
This shows that the stream function, , is also a solution of the Laplace equation.”
92 92
_qz; + —q; =0 (6.47)
ox ay

The physical significance of ¢ is found by substituting for u and v from (6.44) into the
eguation for a streamline, which is given by Eq. (1.20).

O:fvdx+udy:a—¢dx+a—¢dy:d¢ (6.48)
ox ay

Thus, integration of (6.48) shows that the equation of a streamline is
obtained by setting ¢ equal to a constant.

P (X, y) = constant (6.49)

Every streamline in aflow will have a different value for the integration constant in (6.49).

The integration constant in (6.49) has a very important physical meaning that can be found by
calculating the flow rate contained between any two streamlines. For example, the flow rate
passing through any line parallel to the y axis that connects point 1 on the streamline
¥(X,y) = ¢, with point 2 on the streamline y(x, y) = ¢, is

2
q-= udy=fg—‘;’dy=¢z—¢1 (6.50)
1

I—'\l\)

Do not try to extrapol ate this result to axisymmetric flows. A similar procedure for axisymmetric flows easily
leads to the equation satisfied by r, but it is not the Laplace equation.
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Equation (6.50) shows that the difference between two numerical values of ¢ on any two
streamlines gives the flow rate contained between the two streamlines. Of coursethereisalso a
sign associated with g in (6.50), and this sign will depend upon whether u isin the direction
i or -i andwhethery, >y, ory, <y,. Thesameresult can be obtained by integrating along
aline parallel to the x axis, and alittle more effort can produce the same result by integrating
along any curved line joining points 1 and 2. One important consequence of (6.50) isthat the
integration constant in (6.49) may be chosen arbitrarily on one streamline in a flow, and
numerical valuesfor theremaining constantswill be fixed by (6.50) for all other streamlines.

The stream function for auniform flow inthe x directionisobtained by using (6.27) and (6.45).

ay aX
(6.51a, b)
a_lIJ = — @ = 0
aX ay
Integration of (6.51 b) gives
¥ o= f(y) (6.52)

and substitution of (6.52) into (6.51 a) gives an ordinary differential equation for f(y).

df (y)
—21 =U
dy (6.53)
Integration of (6.53) and substitution of the result into (6.52) gives
Yy =Uy +C (6.54)

Choosing ¢ = 0 onthestreamliney = 0 gives C = 0. Thus, the stream function for uniform
flow inthe x directionis

y = Uy (6.55)

Since streamlines for this flow are shown by (6.55) to be lines of constant v, it is obvious that
(6.55) setisfies (6.50).

Stream functions for the remaining basi ¢ solutions are most easily obtained by writing the polar
coordinate form of (6.45).

ar r86 6564 b
130 oy 6620
r 00 or



6.18 Chapter 6 — Irrotational Flow

Thus, the stream function for a source is found from (6.28) and (6.56) as the integral of

W _aq
00 2=n
(6.57 &, b)
N g
ar
The solution of (6.57) is
B
Y o (6.58)

with g > 0 for asource and g < O for a sink. Equation (6.58) shows that streamlines for a
source are the radial lines 6 = constant. Since numerical values of 0 on two adjacent
streamlines differ by 2w after one complete circuit about the source, (6.58) also shows that q
Isthe flow rate emitted by the source.

The stream function for avortex is

¥ = -—In(r) (6.59)

inwhich I') > O for counterclockwise circulation. The stream function for a doublet is
A sin(0 -a)
27 r

¥ = (6.60)

Streamlines for a vortex are seen from (6.58) to be circles about the vortex centre, while
streamlinesfor adoublet have amore complicated geometry that hasbeen sketchedin Figure 6.5
and Example 6.3.

The stream function, ¥, satisfies a linear equation, (6.47). Thus, stream functions can also be
superimposed by the algebraic addition and subtraction of stream functionsfor different flows.
For example, the stream function for Example 6.1 is

A sn0

veUy o (A - 2nR?U,) (6.61)

Streamlines are most conveniently plotted from (6.61) by setting y = r sin© to obtain

Y = Uo(r - &2) sind (6.62)

r

In other problems it is sometimes easier to use Cartesian coordinates or to mix Cartesian and
polar coordinates in the same expression for . The values of Y calculated in this section are
summarized in Figure 6.5.
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Example 6.4

Flow past a half body is obtained by placing a source in a uniform flow. A sketch of the flow
pattern is shown below.

Since all velocities, both within and outside the half body, approach U, as r - «, theflow rate
emitted by the source at the coordinate origin is calculated at X = - within the half body as

g = UyW

which determines q in terms of the approach velocity and the asymptotic width. The potential
function, stream function and velocity field for this flow are

¢ = Ugx + ziln(r)

TT
= U +i6
v oy * o
V=Uior T
2m r

Flow past the rear half of ahalf body is obtained by placing asink in auniform flow field. The
flow pattern is identical with the above sketch except that both U, and the x axis have their
directions reversed.

Example 6.5

Steady groundwater flow is a very important application area for potential flow in civil and
environmental engineering. If an aquifer ishomogeneous, and if streamlinesare horizontal, then
these flows are solutions of a continuity equation
Ju adv
+

oax  ay
and Darcy'slaw

u-9% ad v-29 with ¢ - -knh
aX ay
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inwhich K = coefficient of permeability and h = piezometric head = water table elevation if
the aquifer is unconfined. These equations are identical with the equations used to treat two-
dimensional irrotational flow. Thus, a stream function can be defined in the same way and
solutions for irrotational flow can be used for groundwater flow.

The half body solution considered in Example 6.4 is important in groundwater pollution
problems since it describes the streamlines for flow from a point source of contamination. If
contaminant scattering is neglected, then the contaminant is contained entirely within the half
body boundary. Flow past the rear half of the half body becomes important if awell is placed
downstream from a contaminated area to abstract the contaminated groundwater for treatment.
Then the half body interior becomeswhat isknown asthe"zone of capture”. If thewell abstracts
atotal flow of Q m%s, and if the aquifer has a saturated thickness of B, then g = Q/B. Thus,
iIf the polluted area has a horizontal width W acrossthe streamlines, then the well must abstract
aminimum flow of

Q = BUW

in order to keep the polluted area entirely within the zone of capture. A sketch of this caseis
shown below.

Zone of capture
boundary

Abstraction well

Contaminated area

Flow Net Solutions

Flow netsprovideagraphical techniquefor solving steady two-dimensional problems. Numerical
techniques, such as the boundary element method mentioned at the end of Example 6.3, are
considerably more accurate, efficient and versatile and are used for amost all modern
applications of irrotational flow theory. Flow nets, however, have one great advantage over any
other solution technique: they provide an easily grasped method for obtaining a physical
understanding of irrotational flow behaviour. For this reason it can be argued that flow net
methods are more important for an introductory course on fluid mechanics than the method of
superposition of basic flows, which forms the basis for boundary element techniques.
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It was explained in Chapter One, following Eq. (1.44), that the vel ocity vector is perpendicular
to curves of constant ¢. Since curves of constant §r were shown by Eq. (6.49) to betangent to the
velocity vector, we immediately see that the curves ¢(x, y) = constant and (X, y) = constant
meet at right angles. Thisistruefor al pointsin aflow except at isolated pointswhere V¢ either
vanishes or becomesinfinite. A flow net is simply afreehand sketch of these curves of constant
¢ and . Anexampleisshownin Figure 6.6 for flow through the streamlined constriction shown
inFigure4.2. Sinceflow in Figure 4.2 issymmetrical about the conduit centreline, and since any
streamline can be replaced with a boundary in irrotational flow, the flow net in Figure 6.6 has
been drawn only for the lower half of the flow shown in Figure 4.2.

Flow net construction starts by sketching a guessed pattern of streamlines. Then the potential
lines are sketched in at right angles to check the guessed streamline pattern. The check is
accomplished by ensuring that the continuity equation is satisfied at each point intheflow. More
specifically, along any streamtube bounded by two successive streamlines we can calculate the
flow rate

2

Aq = fV-etdn (6.63)
1

inwhich e, istangenttoboth V andthestreamlines, n = distancenormal tothestreamlines, Aq
= flow rate through the streamtube and points 1 and 2 are points on the two streamlines that
bound the streamtube. Since Aq = ¥, - ¥, = Ay from(6.50),andsinceV - e, = d¢/dsfrom
(1.45), (6.63) becomes

Ay = | 99 4n (6.64)

A finite-difference approximation for the integral in (6.64) gives

A
Ay = A—(: An (6.65)

in which A¢ = change in ¢ across two successive curves of constant ¢, As = distance
between these two curves measured acrossthe el ement mid-point, Ay =changein { acrosstwo
successive curves of constant ¢ and An = distance between these two curves measured across
the element mid-point. A sketch of the geometry used to obtain (6.65) from (6.64) is shown in
Figure 6.7. Equation (6.65) is the basic equation that is used to see if a flow net has been
sketched so that continuity is satisfied across the mid-point of each flow net element.
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Figure 6.7 Geometry for aflow net element.

Theusual practice when sketching flow netsisto choose An = As acrossthe mid-point of every
flow net element and to refer to these elements as curvilinear squares. Then (6.65) shows that
across each element

Ay = Ad (6.66)

Along astream tube, however, Ay isthe same constant for every element. Consequently, (6.66)
shows that A¢p must also be the same constant across every element in that stream tube.
Similarly, along a potential tube’ A¢ is a constant, and (6.66) shows that Ay is the same
constant for every element in the potential tube. The end result isthat by choosing An = As
in aflownet weensurethat Ay isthesame constant for all stream tubes, that A¢ isthesame
constant for all potential tubes and that Ay = A¢ for all elementsin the flow net.

The velocity at any point in aflow can be calculated by using afinite-difference approximation
of EqQ. (1.45)

A
V=V-e = A_i) (6.67)

inwhich V =velocity at the mid-point of As. Equation (6.67) can be written for two different
points in the flow net, and, since A ¢ isthe same constant at each point, the ratio of these two
equations gives

As
As,

Q

Vb
v, (6.68)

Equation (6.68) allowsvelocities at pointsin the flow to be calculated in terms of one reference
velocity, say V, in (6.68). Then specification of that single reference velocity will determineall
other velocities in the flow.

We define a potential tube to be the region between two successive curves of constant ¢ .
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Students often make the mistake of thinking that As in (6.67) and (6.68) must be measured
across the mid-point of afluid element. Thisis not a requirement. In fact, most applications
require the calculation of velocities and pressures on a physical boundary. In this case As is
measured along the boundary between two curves of constant ¢ to obtain the velocity on the
boundary mid-way between these two equi-potential curves. The geometry for this type of
calculation is shown in Figure 6.8.

¢1 ¢2

|

Yo
Aq

b

RSSSSANRNN
- — — 1/)1
ASb

Figure 6.8 Geometry used for the calculation of the velocity on a boundary.

If (6.22) is applied between points a and b in steady flow, we obtain

V2 V2
hy + — = h, + —= (6.69)
29 & 29

Manipulations identical with those used to obtain Eq. (4.9) allow (6.69) to be rewritten in the
following dimensionless form:

2
ha B hb Vo
— = =] -1 (6.70)
Vaz/(zg) Va
If gravity is neglected, then we obtain
2
P, - P \Y
22 - _b] -1 (6.72)
pVa /2 Va

Since (6.68) givesaway of calculating theright side of either (6.70) or (6.71), we seethat aflow
net enablesusto cal cul ate vel ocitiesand pressures at poi ntsthroughout theflow oncethevel ocity
and pressure are specified at one point in the flow. If amore general solutionisdesiredinwhich
V, and h, or p, arenot specifiedin advance, then (6.68) can be used to calculate distributions
of the dimensionless term on the left side of (6.70) or (6.71). Thisis donein Figure 6.9 for the
flow net shown in Figure 6.6.
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Itisworth commenting now ontherequirementsfor auniqueirrotational flow solution. A unique
velocity distribution for a given boundary geometry can be calculated if normal velocity
components are specified along all boundaries of the flow region. There are, however, some
restrictions on the way in which these normal velocity components can be specified: they must
be uniform distributions across regions in which streamlines are straight and parallel, and they
must satisfy the control volume form of the continuity equation. In addition to these
requirements, a unique calculation of h or p requiresthat h or p be specified at one point in
the flow.

The only exception to the orthogonality requirement for lines of constant ¢ and {r occurs at
points where streamlines form sharp corners. Examples of this are shown in Figure 6.10. In
Figure 6.10 atheinterior angle, «, isintherange O < « < 7, and the sharp corner isapoint of
stagnation where IV | = 0. In Figure 6.10 b theinterior angleisintherange © < « < 27, and
the sharp corner isasingularity where IV |- «. Thevelocity remainsfinite, and linesof constant
¢ and constant { are orthogonal, only when o = 7.

(@) (b)

Figure 6.10 Flow net construction where streamlines form sharp corners.

The behaviour of velocities at sharp corners can be shown rigorously by considering flow inthe
sharp corner shown in Figure 6.11. The stream function for this flow must satisfy the Laplace
equation and be a constant, say zero, on the boundary. In polar coordinates these requirements
become

1 9 oy 1 0%y

- —|r = — T =0

r ar( ar) ' rz 902 (6.72)
Y(r,0) =0 for O<r<e (6.73)

Y(r,a) =0 for O0<r<o (6.74)
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A solution of (6.72) - (6.74) isreadily seen to be given by
¥ = Ar™*sin(n6/a) (6.75)

inwhich A isan undetermined constant. The velocity vector is obtained in polar coordinates
from

v-19v, v

e
r oo " oar ° (6.76)

which gives the result

V =Alcos(nB/a)e, - sin(rnB/a)e,|(n/a)r /o)t (6.77)

The velocity magnitude in (6.77) is zero, finite or infinite as r -~ 0 when the exponent of r is
positive, zero or negative, respectively. Thus, (6.77) givesthe final result

VI-0 if O<a<nm
= Finite Number if o« == (6.78)
S oo if m<oa<2m

Figure6.11 Irrotational flow in a sharp corner.

An example of flow net construction with sharp corners is shown in Figure 6.12. Since a
streamline and a physical boundary can beinterchanged inirrotational flow, thisflow net can be
used to model either flow over a fence or the top half of flow past a flat plate. Points of
stagnation occur at points A and C, and asingularity occurs at point B. A viscid flow would
not tolerate either theinfinitevel ocity or the corresponding negatively infinite pressureat point B.
Thus, aviscid flow separates at point B, as shown in Figure 6.13 for flow past aflat plate.
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C

A
A/ /i

Figure6.12 Irrotational flow over afence.

— =

\______/

_\/

Figure6.13 Viscid flow past aflat plate.

Free Streamline Problems

Therearetwo important reasonsfor an engineer to study irrotational flow. First, irrotational flow
provides a basic foundation for the study of boundary layer theory. Second, irrotational flow
solutions give a close approximation for a number of flows that occur in practice. Many of the
problemsin this category are problemsthat have free surfaces. Examplesinclude free jet flows

through orifices and dots and open channel flows beneath sluice gates and over spillways and
weirs.

A free surface or free streamline has an unknown geometry that must be calculated as part of a
problem solution. This means that two boundary conditions must be prescribed along a free
streamline. The first boundary condition requires that the normal velocity component vanish
along the free streamline, which is equivalent to requiring that the free streamline be a line of
constant . The second boundary condition requires that the pressure be constant, say zero,
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along thefree streamline. When dealing with ahigh speed jet in which gravity may be neglected,
this second requirement is shown by Eq. (6.71) to be equivalent to requiring a constant velocity
along the free streamline, as pointed out previously in Chapter 4. In open channel flowswhere
gravity cannot be neglected, Eg. (6.70) shows that a constant pressure along a free streamline
requires that

V 2
b
_1

a

ya - yb
V. /(2g)

in which points a and b are on the same free streamline.

Complex variable methods have been used to cal culate afew exact free streamline solutionsfor
problemsinwhich gravity can be neglected. In most other problems, though, numerical solutions
have been calculated by using a method of trial and error. (An optimist would describe the
procedure as one of successive approximation!) This procedure consists of calculating the
irrotational flow solution for a guessed free streamline geometry. Then velocities are cal cul ated
along the free streamline and used to see if pressures remain constant. It not, then the free
streamline geometry is adjusted and the procedure is repeated.

Tablesandfiguresonthefollowing pagesgive contraction coefficientsand discharge coefficients
for somefree streamline problems. The degree of approximation in these types of problemsmay
bejudged by observing the comparison between cal cul ated and measured free surface coordinates
for the axisymmetric jet shown in Figure 6.14. These measurements were madefor ajet leaving
a100 mm diameter orifice, and it is seen that the experimental jet diameter isslightly larger than
theirrotational jet diameter. Thissmall differenceisbelieved to be the result of athin boundary
layer along the free surface. A boundary layer develops aong the plate boundary before the jet
exits from the orifice. Although relatively thin in such a highly accelerated flow, this creates a
layer of lower velocity flow on the free surface. The effect of thisboundary layer isto movethe
free streamline radially outward if the discharge is to remain the same for both irrotational and
experimental jets. Generadly, irrotational flow solutions describe experimental flows better as
both the scale and Reynolds number increase. Thisis because these conditions cause a decrease
in the ratio of boundary layer thickness to control volume dimensions, and irrotational flow
solutions have zero boundary layer thicknesses.
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| Centreline p Orifice edge
i r ,
i‘J o ~—
0 0.2 0.4 0.6 0.8 1.0
0 ~
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0.4
»
0.6
Z_
)
0.8
Calculated LP
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lExJperiment
1.2 L‘
1.4 r

Figure 6.14 Comparison between calculated and measured free streamline
geometries for an orifice in the wall of an infinite reservair.
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FLOW THROUGH A SLOT

Gravity neglected

b
z

Valuesof C_ = A, /A, = b /b
b/B B = 45° B-90° | p=-13° | p-=-180°"
of .746 611 537 .500
A 747 .612 546 513
2 747 .616 555 .528
3 .748 .622 .566 544
4 .749 .631 .580 .564
5 752 .644 .599 .586
.6 .758 .662 .620 .613
Ve .768 .687 .652 .646
8 .789 122 .698 .691
9 .829 781 .761 .760
1.0 1.000 1.000 1.000 1.000
* EE:@;“L Thelimit B - 180° gives
5 r_:L " “Borda's mouthpiece”,
L5 7 shown at |eft.
t b/B = Oisinterpreted as B - « for afixed value of b.

Reference

Rouse, H. (1946). Elementary Mechanics of Fluids, John Wiley and Sons, New Y ork,

p. 57.
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AXISYMMETRIC FLOW THROUGH AN ORIFICE

Gravity neglected and = 90°

2
Aorifice _ ( E) ? C - Aﬁet - ( 5]
Cc
Apipe B Aorifice b
0 578
25 594
.50 .624
75 .691
1.00 1.000

Reference

Hunt, B. (1968) Numerical solution of an integral equation for flow from a circular
orifice, Jnl Fluid Mech., Vol. 31, Pt. 2, pp. 361-377.



Chapter 6 — Irrotational Flow 6.33

FLOW BENEATH A SLUICE GATE

Gravity
included

|

B
b;

b}
NAEASNSANNANNANNSANSANERNN AN,

Il

wlo
ol|o

0 611

.600
595
594

o|rx N[

Reference

Fangmeier, D.D.and T.S. Strelkoff. (1968). Solution for gravity flow under asluice gate,
Jnl Engrg Mech. Div., ASCE, Voal. 94, No. EM1, pp. 153-176.
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TWO-DIMENSIONAL SHARP-CRESTED WEIR

Gravity included. Underside fully ventilated.

q - %Cd /2gh3

g = flow rate/unit width
C, = discharge coefficient.

h /W 0 0.1 0.5 1.0 2.0 3.0
C, .611 .618 .644 677 743 .809
Reference

Strelkoff, T.S. (1964). Solution of highly curvilinear gravity flows, Jnl Engrg Mech. Div.,
ASCE, Vol. 90, No. EM3, pp. 195-221.
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Chapter 6 Summary

This chapter has been concerned with cal culating solutions of Egs. (6.1)—(6.2), which describe
inviscid flows. Generally, an inviscid flow approximation is most accurate when moderate to
large Reynoldsnumber flowsare accel erated rapidly. Thisisbecause boundary-layer thicknesses
decreaserapidly in accelerated flow, flow separation from boundary-layer devel opment will not
occur unless sharp corners exist along boundaries and disturbances present in the flow are
damped rather than amplified into full-scal e turbulence. Under these circumstances an inviscid-
flow approximation can be expected to give velocity distributions that are accurate everywhere
except within very thin layers next to physical boundaries, and pressure distributions both along
these boundaries and throughout the remainder of theflow field are closely approximated by the
inviscid-flow solution.

Theirrotational or potentia flow approximation isthe simplest and most widely used inviscid-
flow approximation. Kelvin's circulation theorem, which was proved and discussed in the first
part of this chapter, showsthat the circulation, I',around a closed material path of fluid particles
remains constant as this material path is convected with the flow. If this material path starts out
fromapoint where I' = 0, such asapoint wherethe flow iseither at rest or in astate of uniform
motion, then T" = 0 for all time around this path and the velocity field is derivable from the
gradient of apotential function, asshown by Eq. (6.13). Thischapter has been entirely concerned
with the treatment of these kinds of flows.

There are some flows for which an inviscid-flow approximation is appropriate but which also
have velocity fields that are not derivable from the gradient of a potential function. These are
flows that have moderate to large Reynolds numbers and are highly accelerated over relatively
short distances, but motion startsfrom an approaching velocity field that is non-uniform.
Examples include flow through a streamlined pipe construction when the velocity field of the
approaching flow is highly non-uniform, or flow around a building or other structure that lies
within an atmospheric boundary layer where the approaching vel ocity increases with distance
above the ground surface. There is no general body of the theory that can be used to treat these
kinds of flows, and analysis must usually proceed by obtaining numerical solutions of
Egs. (6.1)—6.2).
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Chapter 7

Laminar and Turbulent Flow

Laminar flow derives its name from the experimental observation that different layers of fluid
appear to slide over each other inlayersor laminae without the disorderly movement and mixing
that ischaracteristic of turbulent flow. A strict interpretation of thisdefinition wouldincludeboth
low Reynolds number, highly viscous flows and the high Reynolds number, highly accel erated
flows that were considered in the previous chapter. However, we will use the term laminar to
mean low Reynolds number flowsin which viscous effects areimportant throughout most of the

flow region.

Figure 7.1 Developing and fully developed laminar flow between two flat plates.

Laminar Flow Solutions

Figure 7.1 showsthetwo-dimensional laminar flow that occurswhen fluid from areservoir enters
the region between two parall €l flat plates. Boundary layer thicknesses near the entrance are very
small compared to the plate spacing, B. Asflow proceeds downstream, however, boundary layer
thicknessesincrease and cause a corresponding increase in uniform flow vel ocity near the centre
sincetotal flow ratesat each crosssectionareidentical. At x = 0 inFigure7.1thetop and bottom
boundary layers meet, and the flow is said to be fully developed for x > 0. In this fully
developedflowregionv = 0 and u = u(y). Inother words, inthefully developed flow region
the velocity vector is parallel to the plate boundaries, and velocity distributions do not change
from one cross section to the next.

If weset v =0andu = u(y) toobtain a solution for fully developed flow, the continuity
equation (2.4) reducesto the identity O = 0 and the Navier-Stokes equations (2.28) reduce to
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2
oh ,, du@)
oX dy2

oh
g -0
935

(7.1a,b)

Equation (7.1 b) showsthat h = h(x), and all termsin (7.1 a) can then be written as ordinary
derivatives.

dh(x) _ y d2u(y)
dx dy2

g (7.2)

However, x and y areindependent variables, which meansthat one variable can changeitsvalue
without causing acorresponding changein the other. Thus, Eq. (7.2) only makes senseif each of
its two terms equal's the same constant, C,.

dh (x)
=C
J T 0
(7.3a,b)
2
y du®)
dy?
Integration of (7.3) gives
h(x) - h(0) = C,x/g
(74 4a,b)

u(y) = C, + C,y + y2C,/(2v)

Sinceu=0ay=B/2andy = -B/2, we obtain C, = 0 and C, = -(B/2)°C,/(2v).
Thus, (7.4 b) becomes

u(y) = [y2-(B/2)?]c,/(2v) (7.5)

If we define adischarge or flux velocity U by
B/2

UB = [ u(y)dy (7.6)

-B/2

then inserting (7.5) in theright side of (7.6) alows usto calculate C, from

2(B)?C
U:_§[E) 2—\‘: (7.7)
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Eliminating C, between (7.5) and (7.7) gives

U (7.8)

N

ufy) =

which showsthat thevel ocity distributionisaparabol athat issymmetrical about thecentrdiney = 0.
Sincethemaximumvelocity, U__ , occursaty = 0, setting y = 0in(7.8) givestherelationship
between maximum and flux velocities.

C
Il
N w
C

(7.9)

max

Finally, eliminating C, between (7.4 &) and (7.7) gives an expression for the change in
piezometric head.

vxUu
gBZ (7.10)

h(x) - h(0) = - 12

Further manipulation can be used to put (7.10) in the following more significant form:

h(0) - h(x) = f % Lz’_gz (7.11)

in which the dimensionless friction factor, f, isgiven by

fo24 [Re:ﬁ) (7.12)

\Y

Thereare severa notable pointsabout thissolution. First, sincevel ocitiesarenot changingwith x,
the change in piezometric head given by the right side of (7.11) is aso the change in total head.
In other words, (7.11) is an expression for an energy loss, and (7.10) shows that this energy loss
increasesas v, X and U increaseand B decreases. Second, the Reynoldsnumber, Re, hasmade
itsappearancein aflow that isnot accel erating, and thisis despite the statement that i s sometimes
made that a Reynolds number is the ratio of an acceleration to a viscous force.

A similar result can be obtained for axisymmetric pipeflow. Inthiscase, the corresponding results
are



7.4 Chapter 7 — Laminar and Turbulent Flow

o[ |u
u(r) = 21-
-2 573)
U_ -2u
2 (7.134a,b,c,d)

h(0) - h(x) = f X Y-

D 2g

fo 8 (Re - Q)
Re v

inwhich D = pipe diameter.

Equation (7.13 @) showsthat the velocity distribution is a parabola of revolution, and the results
differ from resultsfor the two-dimensional flow only by the magnitude of some of the constants.
An experimental verification of (7.13) is shown in Figure 7.2.

[T FTTTTT TTTTT ]
0.40 N x 0.225 cm dia.
Ao+ 0.402 cm dia. 1]
e 0.591 cmdia. H
0.20
\
[ ]
f N
0.10 f=ra
Re ‘!
0.06 M
0.04 N\
0.02
100 200 400 600 1000 2000
Re = UD/v

Figure7.2 Experimental verification of (7.13). [Measurements
by Hagen, reproduced from Schlichting (1968).]

An approximate solution for very slow motion past a sphere gives a drag force on the sphere of
F = 3ruDU (7.14)

inwhich D = sphere diameter and U = velocity of the approaching flow or the velocity of the
sphere when falling with a constant speed through a motionlessfluid. Equation (7.14) can be put
in the standard form

2
F - cDApU7 . (A = nD4) (7.15)
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in which the dimensionless drag coefficient, C,, isgiven by

c, -2 (Re - %) (7.16)

Equation (7.14) wasfirst obtained by Stokesin 1851. It neglects accelerationsand isareasonable
approximation when Re < 1, flows which are sometimes termed "creeping flows". Equations
(7.14) - (7.16) find civil engineering applications when calculating fall velocities for very fine
particles settling through water in both geomechanics and sediment transport. Experimental
verification of (7.16) and drag coefficients for some other axisymmetric bodies are shown in
Figure 7.3.
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Figure 7.3 Drag coefficients for some axisymmetric bodies. [ Reproduced from Rouse (1946).]

It is important to realise that (7.14) - (7.16) all neglect the effect of gravity. Thisis a valid
approximation when the sphere density is much greater than the fluid density. When thisis not
the case, gravitational effects must be included by adding a vertical hydrostatic buoyancy force.
For example, the application of (7.14) to calculate the constant terminal velocity of a spherical
body uses the free body diagram shown in Figure 7.4. The only forces acting on the body are the



7.6 Chapter 7 — Laminar and Turbulent Flow

body weight, the drag force and the hydrostatic buoyancy force. Since the sphere has a zero
acceleration, setting the sum of vertical forces equal to zero gives the equation of motion.

p.gnD?¥6 - p,gnD36 - 3tuDU_ =0 (7.17)

in which p, and p_ = mass densities of the fluid and sphere, respectively, and U_ = sphere
terminal velocity. Solution for the terminal velocity gives

y - 9P p)D°

7.18
. T (7.18)

Equation (7.18) isshown by Figure 7.3 to apply only when Reynolds numbers are less than unity.

psgnD3/6 = Bodly weight

An additional force must be considered when a body
Is accelerating. This force is written as a coefficient,
k, multiplied by the displaced mass of fluid and the
body acceleration. Because this additional term is
traditionally added to the acceleration term in
Newton's second law, it is called the "added mass
term", and k is called the "added mass coefficient".
The value of k computed from irrotational flow
theory for asphereis0.500, and some valuesfor other
bodies are given by Robertson (1965). Although it
may be possible to make a physical interpretation of
thisterm, it isprobably less confusingto simply think Figure 7.4 The free body diagram for a
of an added mass term asthe difference between drag  spherical body falling through a dense
forcesin steady and unsteady flows. fluid with a constant terminal velocity.

3muDU , = Drag force

pfger3/6 = Buoyancy force

If we consider the movement of aspherical body from thetimewhenitisfirst released fromrest,
Newton's second law becomes

p,gnD ¥6 - p,g7D ¥6 - 3nuDU = (p, + kp, )(nD ¥6)dU /et (7.19)

in which the added mass term has been added to the right side. Equation (7.19) can be simplified
by using (7.17) to put it in the form

du 18y

+

dt (ps+kpf)D2

(U-U.)=0 (7.20)
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Itiseasier to interpret theresultif U iscalculated asafunction of distance, x, from the point of
release rather than t. This can be done by setting

=— —=U—= (7.21)

Inserting (7.21) in (7.20) and separating variables gives

U (x) 1 8}1 X

U
du = - ————— [ dx 7.22
{ Y- (ps+kpf)D2£ -

in which the integration limits have been set by requiring U(x) = 0 a x = 0. Since
U/(U - Um) =1+ Um/(U - Um), astraightforward integration gives

18ux

U(X)"‘Umln 1—U(X)/Uw = Y 7.23
[ ] b kpr D7 (7.29
Division of both sides of (7.23) by U_ givesthe following result:
Uk ., U (x) x/D
—= +In|1-—=|= -18 7.24
u. u. (ps/ p; +k)Re (7.24)
in which the Reynolds number is given by 1.00
UDp, UD
Re = = (7.25)
M v
0.75
A dimensionless plot of (7.24) in Figure 7.5 U
shows that the terminal velocity, U_, is T
approached very quickly. For example if °°
Re =1, k = 0.5and p_/p; = 10, thesphere 0.50
reaches 99 per cent of its termina velocity
after moving just over two sphere diameters
from its point of reIease(x/D = 2.10).
025 — —
Another civil engineering application of
laminar flow occurs when considering
seepage of water through the ground. If we
assume that control volume dimensions are 0 |
large compared to soil particle diameters, 0 0.1 0.2
then we can treat the flow as acontinuum and x/D
write a continuity equation in the form (b/ps + KRe

Figure 7.5 The approach to terminal velocity

v-v=0 (7.26) when a sphereis released from rest.
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inwhich V = aflux velocity. (i.e. The product of an areawith the normal component of V gives
the flow rate through the area. Thisareaincludesthe sum of the areas of solids and pores.) Since
particle diameters are of the order of 1 mm, velocities of the order of 1-10 m/day and the
kinematic viscosity for water is of the order of 10°® m?/s, we see that the Reynolds number hasan
order of magnitude between 1/100 and 1/10. This suggests, from Eq. (5.8), that viscoustermsin
the Navier-Stokes equationsare 10 to 100 timeslarger than accel eration terms and, consequently,
that acceleration terms can be neglected. Therefore, the momentum equation, (2.18), can be
approximated with

-Vp+pg+pf=0 (7.27)

in which f = viscous force per unit mass exerted on the fluid. If we assume that the flow is
homogeneous and incompressible, Eq. (2.22) allows (7.27) to be written as

~gVh +f =0 (7.28)

inwhich the piezometric head, h, isgiven by (2.22). However, Stoke'slaw, (7.14), suggests that
the force per unit mass might be approximated with

f=- ﬁ v (7.29)

inwhich k, = constant of proportionality that has units of m?. The negative sign ontheright side
of (7.29) reflectsthefact that f and V arein opposite directions. Eliminating f between (7.28)
and (7.29) gives Darcy's law,

V = -KVh (7.30)
in which
K = % (7.31)

Theconstant k, istheintrinsic permeability andisafunction only of the porous matrix geometry,
and K isthe coefficient of permeability with units of avelocity (m/s).

If the aquifer is homogeneous and isotropic, then K isaconstant and (7.30) can be written
V=V , (b =-Kh) (7.32)

Equations(7.26) and (7.32) areidentical with Egs. (6.1) and (6.13). Thismeansthat the equations
that describe groundwater flow, which is a flow dominated by viscous resistance, are identical
with the equations that describe inviscid irrotational flow.

Our final application of laminar flow theory will consider the Hele-Shaw approximation. Hele-
Shaw flows are very slow (creeping) viscous flows between two parallel plates, as shown in
Figure 7.6.
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Figure 7.6 A Hele-Shaw flow between two parallel plates.

If we assume that accelerations can be neglected and that all velocities are parallel to the two
boundaries, then the Navier-Stokes equations, (2.28), reduce to

a_h
oX
a_h
ay
a_h
0z

+

(aZV 9%v azv)
+ Vv + +

=0

(aZU d°u azu) ~
v + + =0

ox%2 9y? 9z

-0 (7.334a, b, c)
ox%2 9y? 9z

Equation (7.33 c) shows that h does not change with z, and an order of magnitude analysis
similar to the one carried out in Chapter 5 can be used to show that the second derivatives of u
and v aremuch larger in the z direction than inthe x and y directions. Thus, (7.33) reducesto

-9

-9

oh %u
V —_—

Finally, Eq. (7.8) suggests that we might approximate u and v with

c

N w

N w

= 4 =0
X 0z?
2
oh v v _ 0 (7.344a, b, )
ay 972
h = h(x,y,t)
R
z
1-| — U, vy,t
(B,Z] X, y.1)
) (7.354, b)
(-2’ V(x,y, t)
- — ~ X1 1
Biz) | o7
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Elimination of uand v from (7.34) - (7.35) gives the end result

u--koh
ox (7.36 a, b)
. a,
v--k2h
ay

inwhich U and V areflux velocitiesinthe x and y directions, respectively, and K isgiven by

BZ
K =92~ 7.37
12v (7:37)
Since U and V areflux velocities, the continuity equation
ﬂ + ﬂ =0 7.38
ax ay (7.38)

completes the description of the flow. Equations (7.36) and (7.38), which describe fluid
movement in directions parallel to the two plate boundariesin Figure 7.6, are identical with the
two-dimensional form of Egs. (7.26) and either (7.30) or (7.32), which can be used to describe
either inviscid irrotational flow or groundwater flow. Thus, a Hele-Shaw experiment is an
experimental analogy that can be used to model either of these two types of flow.

Probably the most important practical use of a Hele-Shaw analogue models two-dimensional
groundwater flow inavertical plane. Since h, U and V havethesame physical meaninginboth
model and prototype,” boundary conditions for afree surface or an interface between two fluids
with different densities are identical for model and prototype provided that the groundwater
aquifer porosity istaken asunity in the Hele-Shaw model. Thus, one of the great advantages of
aHele-Shaw experiment isthat it locates afree surface or interface experimentally without using
the trial and error procedure that is required when numerical methods are used.

Equation (7.37) shows that the "permeability” is directly proportional to the square of the plate
spacing. This means that changes in permeability can be modeled by a change in plate spacing,
whichiseasily accomplished by inserting athird plate, withitsrequired thickness cal cul ated from
(7.37), between the two boundaries shown in Figure 7.6. For example, if the permeabilities for
two different regions in the flow have theratio K, /K, = 1/5, then (7.37) shows that the plate
spacings in these two regions must have the ratio B,/B, = \/K,/K, = 1/\/5 A reservoir of
constant depth ismodelled by making B for the reservoir very large compared to the value of B
used for the aquifer. One implication that follows from thisisthat if K, /K, iseither very large
or very small, say 100 or 1/100, then the region of larger permeability will behave essentially as
areservoir in which velocities are negligible and piezometric heads are nearly constant. In this
caseit is better to model only the region of smaller permeability and to treat the region of larger
permeability as areservoir.

A prototypeisaflow in the field that is approximated with a model flow.
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Q = Inflow
p Embankment core v
7 7
2 v 7
7 - I 7
/ 7
/ Reservoir ":
/ K1 Reservoir ;:
g X ﬁ
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% o A . o o A

Q = Outflow
Figure 7.7 A Hele-Shaw model for seepage through a zoned embankment.

An example of a vertical Hele-Shaw experiment used to model seepage through a zoned
embankment isshown in Figure 7.7. The embankment core hasalow permesbility, K, , toreduce
seepage through the embankment. Embankment cores are typically constructed from fine silt or
clay, but these materials have very low structural strengths. Consequently, coarser material with
apermeability K, is placed on both sides of the core to add structural strength and to prevent
erosion of the core material from seepage (piping). The two reservoirs have plate spacings, B,
which are much larger than plate spacings for the embankment (by afactor of at least 10), and the
plate spacing ratio B, /B, iscaculated from B, /B, = ,/K,/K,. If thisratiois 10 or more, then it
would be better to treat the outer material as reservoirs and to only model flow through the
homogeneous core. Figure 7.8 shows the flow that would result if B,/B, > 10 and if this
procedure were not followed.

Q = Inflow
p Embankment core v
2 7
2 v 7
7 ] N Z
/ X .
/ Reservoir 7
/ K1 Ko \ Reservoir ;:
é Kq %
% o A . o o A

\0 — Outflow

Figure 7.8 The flow that would occur in Figure 7.7 if K /K, > 100.

Therearesevera practical problemsto consider when constructing Hele-Shaw experiments. First,
since K isproportional to B2, it isvery important to keep B constant in regions of constant K.
This is normally done by using plates constructed from relatively flexible material, such as
Perspex or Lucite, and by inserting numerous spacers throughout the region of flow. These
spacers are most conveniently constructed by drilling holes through both plates and inserting
small diameter boltsthrough larger diameter metal sleeveswith lengthsthat have been machined
to the same length as the required plate spacing. Flow disturbances caused by these spacers are
localised and have negligible effects on the overall flow characteristics.
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A second practical consideration concernsthe choiceof fluid and plate spacing. (Therelativeplate
spacings are determined from the permeability ratios, but a plate spacing must still be chosen for
one of the regions of constant K.) Since the Hele-Shaw analogy assumes creeping laminar
motion, velocities must be very low. Vel ocities can be decreased by decreasing the plate spacing
and/or increasing the fluid viscosity. However, since a free surface occurs in the experiment,
decreasing the plate spacing too much causes errors from capillary climb. Thisis easily spotted
inamodel by observing an apparent jump in free surface height where the plate spacing changes.
Inthewriter'sexperienceit isbetter to keep plate spacings reasonably largeto minimize capillary
effectsand toincreasethefluid viscosity to keep vel ocities at acceptably low values. For example,
thewriter has used one experiment for anumber of yearsin which oil flows between two Perspex
plates with a spacing of 3 mm.

A relatively high fluid viscosity causes the pump that is used to recirculate the oil to heat the ail
during the experiment. Since changing the oil temperature affects both the oil viscosity and the
permeability given by (7.37), it becomes necessary to know how the permeability varies with oil
temperature. Thisinformation is obtained by measuring the permeability at anumber of different
temperatures with a "permeameter” that consists essentialy of a vertical free jet between two
plates of Perspex, asshown in Figure 7.9. Since streamlines are vertical inthisflow, U = 0 and
(7.36 a) showsthat h isafunction of y determined by its value along either of the two vertical
free streamlines, where h = y. Thus, h =y everywhere within the jet, and this result together
with Eq. (7.36 b) shows that the vertical flux velocity exactly equals the coefficient of
permeability, K. Therefore, the permeability is measured by dividing the total flow rate by the
cross sectional area of the jet.

Finally the problem of scaling resultsfrom model to Q
prototype needs to be considered. The
recommended technique uses results from a l
dimensional analysisfor thispurpose. InFigure7.7, > ||' '|‘<]
for example, if H isthe upstream reservoir depth
andif L isacharacteristic horizontal dimension of y / p=0
the embankment (say its base width), then the flow L
X

rate per unit length of embankment, g, will be a

function of the following group of dimensionless K=-V= %
variaples <——1/ B = Plate spacing
K
9 _¢|H (7.39)
K,L L K, - W X

in which model and prototype embankments are Figure 7.9 Use of a vertica free jet to
geometrically similar. Thefunction f isnotknown, measure the permeability in a Hele-Shaw
but it is exactly the same function for both model  experiment.

and prototype. Thus, if we require that

7))
L prototype L model .



Chapter 7— Laminar and Turbulent Flow 7.13

K K
1 _ 1
[_K ) = (_K ] (7.41)
2 prototype 2/ modd

then we must also have
_a | 9
prototype model

These three equations can be used to calculate H, K, /K, and q for the prototype from values
measured for the model. Dimensional analysis techniques, which are used to obtain Eqg. (7.39),
will be introduced in alater chapter.

Turbulence

In Chapter 4 it was stated that turbulence is a highly disorganised state of flow that occurs when
aflow becomes unstable. In detail, it consists of many vortices of differing sizes and intensities
superimposed upon the main flow pattern. This meansthat aflow that might otherwise be steady
and one or two-dimensional becomes unsteady and three-dimensional, although time averages of
velocities and pressures may still be steady and one or two-dimensional. For example, atypical
velocity measurement at a point in turbulent flow is shown in Figure 7.10, and it is seen in this
case that the velocity fluctuations caused by turbulence have a zero time average and

instantaneous magnitudes that are small compared to the time averaged vel ocity.
Ui

Uay A\%VA\AVWXKPA_

0 »
0 t

Figure 7.10 Variation of velocity with time at a point in turbulent flow.

All turbulence starts as a disturbance that becomes unstable and is amplified throughout alarger
region astime proceeds. A very good example of thisisshownin Figure 7.11 for flow along aflat
plate. Ludwig Prandtl took these photographs in 1933 by moving a camera with the flow after
sprinkling aluminium dust on the free surfaceto maketheflow pattern visible. Osborne Reynolds
carried out the first systematic investigation of flow stability in 1883 by injecting a filament of
dye into flow through a glass tube. Reynolds defined a stability parameter, now known as the
Reynolds number, for these flows by using the average flux velocity and the tube diameter, as
shownin Eq. (7.13 d). Heinitially found that the flow became unstable for Re = 1400 but later
changed thisvalueto Re = 1900 - 2000.
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Thereisatendency for studentsto think that the
transition from laminar to turbulent flow
depends entirely on the value of acharacteristic
Reynolds number. Actualy, this transition
depends upon anumber of factors, including the
presence of an initial disturbance that has a
suitable scale (characteristic linear dimension)
andfregquency, alargeenough Reynoldsnumber,
whether the flow is being accelerated or
decelerated and the presence or absence of steep
lateral velocity gradients. Each of these factors
will be discussed now in more detail.

Schlichting (1968) gives a brief discussion of
early experimenta evidencewhichindicated that
the transition to turbulence can be delayed by
reducing the amount of disturbance presentin a
flow. For example, V.W. Ekman in 1910
conducted experiments similar to Reynolds
experiments in which laminar flow occurred for
Reynolds numbers as high as 40,000. This was
accomplished by avoiding, asfar aspossible, the
introduction of disturbances in the flow. Thus,
the figure of 2,000 must be regarded as a lower
limit of the Reynolds number for flow through a
pipe. Furthermore, Tollmienin 1929 showed mathematically that whether or not adisturbanceis
amplified as time proceeds al so depends upon both the wave length, or scale, and the frequency
of an introduced disturbance. This analysis was carried out by introducing a mathematical
disturbance into the Navier-Stokes equations and then determining values for parametersin the
resulting equation that allow this disturbance to grow with time. The curve of neutral stability,
which is the boundary between regions of stable and unstable flow, is shown in Figure 7.12 for
flow along aflat plate. (B, isthe disturbance frequency, U_ isthe velocity at infinity, v isthe
kinematic viscosity and 9, isthe boundary-layer displacement thickness for alaminar boundary
layer — about one third of the total boundary layer thickness.) Experimental confirmation of this
result was not obtained until 1943 when H.L. Dryden, G.B. Schubauer and H.K. Skramstad of the
U.S. National Bureau of Standards succeeded in constructing awind tunnel with anextremely low
turbulence intensity in the approaching flow. Their experimental data is aso shown in Figure
7.12.

Figure 7.11  The amplification of a
disturbance into turbulence for flow along a
flat plate. [ Photographsby Prandtl, reproduced
from Schlichting (1968).]

Figure 7.12 showsthat all flowsalong aflat platewith Re < 400 will belaminar, which confirms
theintuitive notion that increasesin viscosity tend to damp disturbanceswhileincreasesin either
scale lengths or velocities hasten the approach to instability. For Re > 400, flow along a flat
plate may be either laminar or turbulent — depending upon the disturbance frequency. Since the
disturbance frequency can be replaced with avelocity divided by the disturbance scale, it can be
concluded that disturbance scale also affects the transition to turbulence.
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It must not be concluded from this - 6 f 400

1
discussion that the same critical U2 260 |‘ ® Observed Neutral Oscillations
Reynolds number applies for all 4] (Schubauer and Skramstad) |
flows. As illustrated by Egs. 320 ‘;l
(7.12), (7.13 d), (7.16) and :
Fig. 7.12, Reynolds numbers are 280

defined with different
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Figure 7.12 The curve of neutral stability for flow along a
ngnolds numbers. In st.eady fllow flat plate predicted from theory by Tollmien in 1929 and
this means that flows with rapidly verified with experiment by Schubauer and Skramstad in

converging streamlines are likely 1943 [Reproduced from Schlichting (1968).]
to remain laminar, and flows with

diverging streamlines are likely to

be turbulent. As an example, akey feature of the low turbulence-intensity wind tunnel that was
used to obtain the experimental data in Figure 7.12 was a very large contraction ratio for the
approaching flow.

flows with moderate to large

Steep |l ateral velocity gradientsare seenfrom Eqg. (1.1) to createlargetangential stressesinaflow.
These tangential stresses introduce many disturbances, decelerate the flow and, at high enough
Reynoldsnumbers, lead to highly turbulent flows. The classic example of thistype of flow occurs
where asubmerged jet entersareservoir of otherwise motionlessfluid, as shown in Figure 7.13.
A free shear layer of highly turbulent flow starts at the nozzle edge, where the lateral gradient of
the velocity is nearly infinite. This free shear layer expands rapidly in size as it extends further
into the reservoir of fluid, and the rapidly decelerated flow becomes highly turbulent. Other
examples of this nature occur in wakes behind bluff bodies and along interfaces between two
fluids with different densities and velocities. An atmospheric example of this latter type of flow
Is shown in Figure 7.14, in which clouds show the development of vortices aong the boundary
between relatively dense fluid in a cold front below lighter warm air above.

Turbulence has two important effects on any flow: energy dissipation and mixing. The fact that
energy dissipation occurs at a greatly increased rate in turbulent flow as the result of energy
transfer from themain flow into the vortices hasa ready been pointed out in Chapter 4. Ultimately
thistransferred energy is dissipated in the form of heat, although temperature rises are so small
asto beamost unmeasurable. The submerged jet in Figure 7.13 provides an outstanding example
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of energy dissipation in ahighly turbulent flow. It isan experimental fact that piezometric heads
are constant throughout a submerged jet if the reservoir of motionless receiving fluid is large
comparedtothenozzlediameter, D. Itisalsoanexperimental fact that centrelinevel ocitiesdecay
to zero as z/D becomeslarge. Thus, the Bernoulli sum h + V2 / (2g) adongthecentre streamline
decaysfromitsmaximumvalueat z = 0 toitsminimumvalueof h a z = «, inwhich h isthe
same constant throughout the flow. In other words, the head loss and energy loss are exactly
V2/(2g) and pV 2/2, respectively.

7 Zone of N Zone of _
f flow establishment - established flow _—" "
,-// P
?’ —
% _—
Centreline % — -
7 o
DN —— T
\\ r
iR R
3 Umag<vl;’0>
el 0 f % LIk
Nt @ ek
N\ ™ e
§ L its of turbulent ~
& imits of turbulen ~0

mixing region

Figure 7.13 Veocity distributions and the turbulent mixing region in a submerged jet.
[Reproduced from Albertson, Dai, Jensen and Rouse (1948).]

Figure7.14 A freeshear flow along the interface between cold and w ar in the atmosphere.
[Photograph by Paul E. Branstine, reproduced from Drazin and Reid (1981).]
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The effects of turbulent mixing are usually most noticeable in directions that are normal to the
direction of main flow. Thislateral mixing, which transports high velocity particlesinto regions
of lower velocity and vice versa, createsaredistribution of average longitudinal velocity and also
mixes or spreads contaminants and tracers across time averaged streamlines. For example,
Figure 7.13 showsthat the lateral width of the central core of uniform velocity inthe zone of flow
establishment is rapidly reduced through turbulent mixing to a value of zero at the start of the
zone of established flow. This occurs at just over six nozzle diameters from the point where the
jet first entersthereservoir. Thislateral mixing then continuesto spread the longitudinal velocity
distribution in the zone of established flow, and thelongitudinal velocitiesare ultimately reduced
to zero everywhere asthey are spread over larger and larger radial distances. If the jet containsa
contaminant or tracer, such as smoke, that is not present in the undisturbed receiving reservoir of
fluid, thistracer is mixed and spread laterally in the same way.

A second exampl e of lateral mixing caused by turbulence concernsfully devel oped flow in pipes.
Laminar pipe flow with an average or flux velocity U isseen from (7.13 a) to be a parabola of

revolution.
2
1- r
D/2

Anempirical expression that is often used to describe turbulent flow in smooth pipesis given by
the following power law:

=2 (7.43)

4
U

1n
e z

max

inwhichy = distancefromthepipewall =D /2 -r and nisanexponent that dependsupon Re.

An integration of (7.44) over the pipe cross section gives the following relationship between
average and maximum (centreline) velocities:

u _ 2n?
U. (n+1)(2n+1) (7.49)

max

Typicaly, n istaken as 7 and (7.44) is referred to as the one seventh power law.” In this case,
(7.44) becomes

N

u 0 r
U _9[1(D—/2) (7.46)

" n actually varies with the Reynolds number in smooth pipes. Schlichting (1968) gives an experimentally
measured variationfrom n=6at Re=4,000ton= 10 at Re=3,2000,000. Thevaluen =7 holdsat Re= 110,000.
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Since Egs. (7.43) and (7.46) both measure u relative to the same flux velocity, U, these
equations can be plotted upon the same graph and compared, as shown in Figure 7.15. Thisplot,
which keeps the flow rate constant for the two flows, shows that lateral mixing creates a much
more uniform velocity distribution in the turbulent flow.

U
u
0 0.5 1.0 1.5 2.0
0 Pipe centreline
rrrrp T
oL
D/2 B
; — Laminar flow: Eq.(7.43)
0.5—
: Turbulent flow: Eq.(7.46)
1.0

T T 77 a7 Pe well

Figure 7.15 Velocity distributions in laminar and turbulent pipe flow.

Turbulence Solutions

There is no general analytical technique that can be used to obtain solutions for problems with
turbulent flow. Various methods have been used in the past and have provided some answers for
specific typesof problems. Theseinclude mixing length techniques, statistical methodsand more
recent k - e computer modelling methods. None of these techniques, however, are generally
applicable, and experimental methods have undoubtedly provided themost useful general method
for obtaining turbulent flow solutions. Wewill consider only two of these solutions: flow in pipes
and flow in the submerged jet shown in Figure 7.13.

The solution for laminar pipeflow wasgiveninEgs. (7.13 a, b, ¢, d), and it isimportant to notice
that the roughness of the pipe wall boundary does not appear in these equations. Thus, thefriction
factor, f, in laminar flow depends only upon the Reynolds number and not upon the pipe wall
roughness. When turbulence first appears in the flow, it occurs in central portions of the flow
away from the boundary, as shown in Figure 7.16. Thus, a layer of laminar flow, called the
laminar sublayer, exists next to the boundary. As long as this sublayer has a thickness that is
sufficient to submerge the pipe wall roughness, this laminar sublayer will exist and the pipe is
described as "hydraulically smooth”. Thisis because boundary shear forces are calculated from
Newton'slaw of viscosity, Eq. (1.1), and boundary roughness has no influence in laminar flow.
Thus, boundary shear forces in smooth pipes depend only upon the Reynolds number, but they
are considerably larger than corresponding stresses in completely laminar flow because of the
much steeper vel ocity gradient created on the pipe boundary from turbulent mixing in the central
portion of the flow.
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Figure 7.16 Zones occupied by turbulent and laminar flow for turbulent flow through a
hydraulically smooth pipe.

The thickness of the laminar sublayer decreases as the Reynolds number increases. When the
sublayer thicknessdecreasesto about the sameval ue astheroughnessel ement height, the sublayer
disappears and turbulent flow exists all the way to the boundary. At this point the tangential
boundary force consists amost entirely of pressure forces acting on the roughness elements
(pressure or form drag), and the Bernoulli equation suggests that the tangential boundary stress
might be approximated with

T = ApU?/2 (7.47)

inwhich U isacharacteristic velocity that we will take as the flux velocity, Q/A, and A isan
experimental coefficient known as the Fanning friction factor. In this case A can be expected to
depend only upon therelative roughnessheight, € /D, and not upon theviscosity. The pipeisnow
described as"hydraulically rough”. Thus, the same pi pe can be either smooth or rough, depending
upon relative dimensions of the roughness elements and laminar sublayer.

A freebody diagram showing horizontal control volumeforcesfor fully devel oped turbulent flow
through ahorizontal pipeisshownin Figure 7.17. The only horizontal forces are pressure forces
on thetwo end sections and the tangential boundary forcegiven by the product of t in (7.47) with
surfacearea P, L inwhich P, isthewetted perimeter, nD, and L isthe control volumelength.
Since the fluxes of momentum out of and into the control volume are identical, the momentum
equation requires that the sum of these horizontal forces vanish.

p,A-p,A-P, LApUZ2/2 =0 (7.48)
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Figure 7.17 Horizontal control volume forces for turbulent flow through a
horizontal pipe. (A = crosssectional areaand P, = wetted perimeter.)

Solution of (7.48) for the pressure difference gives

P, U 2
pl—p2=AKLpT (7.49)

Theratio A/P,, iscaledthe"hydraulicradius' and hasanimportant significancefor non-circular
cross sections and open channel flow. For apipe, thisratio is D/4. Thus, Eq. (7.49) becomes

L U?
P, P, :fB PT (7.50)

inwhich f = Darcy-Weisbach friction factor that is related to the Fanning friction factor, A, by
f =4A (7.52)

There are several important points about Eqg. (7.50). First, since the flow velocity is the same at
both cross sections, Egs. (4.12) and (4.13) show that head and energy |osses are given by

2
ool UZ
D 29
(7.52 4, b)
- D 2

inwhich there hasbeen an obviousswitchinnotationfrom V to U for theflux velocity. Second,
our development suggests that f depends upon €/D but not Re for completely turbulent flow
through arough pipebut that f dependsupon Re andnot €/D either for completely laminar flow
or for turbulent flow through a smooth pipe. This suggests that a transition zone must exist in
which f depends upon both Re and /D for turbulent flow in a pipe that is neither completely
smooth nor completely rough.
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All of the features just discussed are illustrated in the Moody diagram for f that is shown in
Figure 7.18. This plot, which is essential for the engineering solution of pipe flow problems,
showsthat f isgivenby (7.13d) for Re < 2000. A critical zone, shown by cross hatching, exists
for 2000 < Re < 4000. It is in this zone that a disturbance first becomes amplified into
turbulence. Turbulent flow in smooth pipesis shown by the bottom curvefor Re > 4000. Along
thiscurve f depends upon Re but not upon e/D. The horizontal linesto the right of the dashed
curve are for complete turbulence in rough pipes, when f depends upon e€/D but not upon Re.
The curved lines joining the smooth pipe curve to the family of rough pipe curves lie in a
transition zone where f depends upon both Re and €/D. Thus, as stated previously, the same
pipe may be either smooth or rough, depending upon Re and e/D values— which determinethe
relative dimensions of the laminar sublayer and roughness heights. At this point the writer
suggests that students might profit from rereading this section on turbulence solutions while
referring back to Figure 7.18 for an illustration of the various points raised in the discussion.

Problemsinvolving flow through conduitswith non-circular crosssectionsareusually solved with
(7.49) and (7.51) provided that cross section width to height ratiosare not too different from unity.
Thus, head and energy losses for these flows are computed from

L u®

i
4 AIP, 2g
(7532, b)
_f L uy?
E = — p—
4 AP, 2

The Reynolds number and relative roughness for calculation of f in (7.53 a, b) are determined
by substituting four times the hydraulic radius, A/ P, for D. Equations (7.53 g, b) reduce to
(7.52 @, b) for circular cross sections.

The turbulent jet shown in Figure 7.13 will be considered in detail in a later chapter on
dimensional analysis. Since pressures are known from experimental measurements to be
hydrostatic throughout the flow, the momentum flux through any cross section normal to theflow
does not change with z. This fact, together with a functional relationship obtained from
dimensional analysis, greatly simplify the problem of fitting mathematical equations to
experimental data. The end result for an axisymmetric jet follows:
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U
max - 1 for 0<z/D <62
U0
(7.54)
_ 62 for 6.2<2z/D <
z/ID
L _e 7D’ for 62<z/D<w (7.55)
Umax
Q z
— =032 = for 62<7D<w
o 5 (7.56)
C
mx -1 for 0<z/D <50
C0
(7.57)
_ 50 for 50<z/D <
z/D
C _ L-62(/2)>2
- e for 50<z/D < (7.58)

Cmax

inwhich ¢, C, and C__ are concentrations for a neutrally buoyant tracer or contaminant that
areusually expressed in unitsof mg/litre. Corresponding resultsfor thetwo-dimensional jet (flow
from adot) follow:

U
L for 0<z/D <52
UO
(7.59)
. for 52<2z/D <
Vz/D
U _e®202° for 52<2z/D <o (7.60)
Umax

Q _ 0622 for 52<z/D<w (7.61)
Q \ D

0
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C
L for 0<z/D <56
CO
(7.62)
_ 238 for 56 <z/D <
Vz/D
C - e®02? for 56<z/D <o (7.63)
Cmax

inwhich D = dlotwidthand y replacestheradial coordinate of the axisymmetric jet. Equations
(7.54) - (7.56) and (7.59) - (7.61) were obtained by Albertson, Dai, Jensen and Rouse (1948), and
(7.57) - (7.58) and (7.62) - (7.63) were abstracted from Fischer, List, Koh, Imberger and Brooks
(2979).

Equations (7.54) - (7.63) show that turbulence mixesthe time averaged velocity distribution and
atracer insimilar, but not completely identical, ways. All velocitiesdecay as z - «, whichmeans
that a head loss of UO2 / (29) occurs aong the centre streamline. Finally, Egs. (7.56) and (7.61)
show that the volume flux past any cross section increaseswith z asaresult of entrainment from
turbulent mixing. Entrainment from mixing isanother characteristic of highly turbulent flow, and
entrainment from turbulent mixing even occurs across an air-water interface in hydraulic jumps
or high velocity flows down spillways.
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Chapter 8

Boundary-Layer Flow

It was shown in Chapter 5 that many flowswith large Reynold numbers have viscous effectsthat
becomeimportant only near physical boundaries. If x isacurvilinear coordinate measured along
such a boundary from the start of the layer of retarded flow, then Eq. (5.21) estimates that the
thickness, &, of alaminar boundary layer has the following order of magnitude:

5
L (Rex%) (8.1)

X \/R_ex Y

inwhich U isthe velocity at the outer edge of the boundary layer. Equation (8.1) implies that
the relevant Reynolds number for boundary-layer cal cul ations usesthe vel ocity at the outer edge
of the boundary layer and distance along the boundary for the characteristic velocity and length
inthe Reynolds number. It al so showsthat an increasein the Reynolds number causes adecrease
in the relative boundary layer thickness. [The relative thickness, 6 / X, is shown by (8.1) to
decreaseinversely with /x. However, the absolute thickness, 6, isshown by this same equation
to increase directly with |/x.] The strict definition of aboundary layer requiresthat /x be very
small (8/x <<1), whichimpliesthat Re, >> 1.

U U Turbulent
LN flow
1/ B )0 "
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Figure 8.1 Boundary-layer development along aflat plate.

The simplest example of boundary-layer development occurs for flow along aflat plate, which
isillustrated in Figure 8.1. The coordinate originischosen at the leading edge of the plate, and x
is measured along the plate surface in the direction of flow. The plate has a zero thickness, and
the boundary-layer thickness, 6, isthe y coordinate of the point wherethevel ocity iswithin one
per cent of the approach velocity, U. If the flow were inviscid, the constant velocity U would
be maintained al the way to the plate boundary y = 0. Thus, y = 8(x) marks the outer edge
of the region which is affected by viscous shear next to the plate surface. Thesurfacey = 6 (x)
must not be confused with a streamline, since flow actually crosses through this mathematical
surface.

The boundary layer startswith zero thicknessat x = 0 and increasesitsthickness with distance
downstream. Flow within the boundary layer isinitially laminar, and tangential stresses on the
plate surface are unaffected by plate roughness. However, the Reynolds number defined in (8.1)
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increases its magnitude with distance downstream. Thus, if Re, becomes large enough, and if
a disturbance of the correct magnitude and frequency is present, the boundary layer becomes
turbulent at x = x_. Then aviscous sublayer forms next to the boundary, and the plate behaves
as a smooth surface provided that the roughness elements are completely submerged in the
laminar sublayer. In this case, plate roughness has no effect upon tangential plate stresses.
However, if the sublayer thickness and roughness element height have the same order of
magnitude, the sublayer vanishes. Then turbulent flow exists right up to the plate surface, and
the plate becomes a hydraulically rough surface.

Tangential stresses along a plate surface can, in theory, be calculated from Eq. (1.1) aslong as
the plate surface remains smooth. Over the front portion of the plate, where the boundary layer
is completely laminar, the velocity gradient on the plate surface decreases with x. Thus,
tangential stresses decrease with x until x = x.. Downstream from x = x_ turbulent mixing
creates much steeper velocity gradients, and tangential stresses on the plate surface increase. If
the laminar sublayer vanishes and the plate surface becomes hydraulically rough, pressure drag
ontheroughness el ementsbecomesthe dominant source of tangential stress, astressthat islarger
than the tangential boundary stressfor either acompletely laminar boundary layer or aturbulent
boundary layer along asmooth boundary. Thus, tangential boundary stressesincrease asflow in
the boundary layer goesfrom compl etely laminar flow to turbulent flow along asmooth boundary
to turbulent flow along a rough boundary.

Boundary Layer Analysis

The fundamental ideas of boundary layer theory were first published by the German engineer
Ludwig Prandtl in a paper given at a mathematics conference in Heidelberg, Germany in 1904.
Although Prandtl had exceptional insight into the physics of fluid motion and was particularly
skilful in applying this insight to remove relatively small terms from the governing partia
differential equations, he was unable to solve these equations by himself. The first solution of
the boundary layer equations was published in 1908 by Blasius, a young student of Prandtl's.
Blasius obtained amathematical solution of Egs. (5.23 a, b, ¢), which describe flow in alaminar
boundary layer. However, wewill illustratethe fundamental ideas of boundary layer calculations
by using an approximate method that wasfirst proposed by K. Pohlhausenin 1921. This method
is far simpler than obtaining direct solutions of the partial differential equations for a laminar
boundary layer, and it also has the great advantage of providing an approximate method for the
calculation of turbulent boundary layers.
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Figure 8.2 Horizontal forces on a control volume in the boundary layer.
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The Pohlhausen integral equation can be obtained by applying the horizontal component of the
momentum equation to the control volume shown in Figure 8.2. Since 6/x << 1, gravitational
forcesare neglected in boundary layer calculations. Thus, pressure and boundary shear createthe
only horizontal forceson the control volume. Equation (5.23 ¢) showsthat pressuresare constant
at any cross section in the boundary layer, which in turn shows that p within a boundary layer
is determined from its irrotational value on the boundary. (Since 6/x <<1, irrotational flow
pressures are calculated along the boundary by neglecting the presence of a boundary layer.)
Thus, the momentum equation gives

(P3), = (P8) . ax + P[B(x+AX) -8(X)] - T,AX =

8 (x + AX) 8(x)
f ouzdy - f ou2dy + f pu(V e )ds (8.2)
0 0 y=0(x)

in which the last integral does not vanish since V-e  # 0 dong y = 6(x). However,
u=U(X)aongy = d(x) inwhich U (x) istheirrotational flow velocity on the plate surface,
and the last integral can be rewritten as

fpu(\/ 2)ds = pU f(\/'en)ds=pu

y=93(x) y=93(x)

5 (x) O (x+AX)

udy - udy
[uar -

0

(8.3)

in which the continuity equation has been used to calculate the flux through y = 6 (x) asthe
difference between the flux through the cross sectionsat x and x + Ax. Substituting (8.3) into
(8.2) and dividing by Ax gives

_(P8),ax ~(PB), 08X A%) - 8(x)

AX AX 0
S (x+AXx) d(x) S (x+Ax) d(x) (8 4)
u?dy - [ u?dy udy - [ udy '
[ e e ]
AX AX

Letting Ax - 0 in (8.4) givesthe end resullt.

o] 0
_d(pd) d ;> d
=p— [u“dy -pU— [ud

dx p dx TR T Px { yop dx{ Y (8.5)

Expansion of thefirst term and division by the constant ( - p) puts (8.5) in the following simpler
form:

d® d®
- U2 fudy - & [u?d
U f y dx{ y (8.6)
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in which dp/dx and U are functions of x that have been calculated previously from an
irrotational flow solution that disregards the presence of the boundary layer.

Equation (8.6) can be shown to be the exact result of integrating the boundary layer equation
(5.23 a, b, c), across the boundary. The approximation comes in the method that must be used
to solve (8.6). This method uses the following steps:

1 Vauesof dp/dx and U arecalculated fromanirrotational flow solution and substituted
into (8.6).

2 A physically realistic assumptionismadefor thevariation of u withintheboundary layer
and is substituted into the integrals on the right side of (8.6).

3 An expression for T, is substituted into the left side of (8.6). For alaminar boundary
layer, <, is calculated from Eq. (1.1) and the assumed variation of u. For turbulent
boundary layers, empirical pipe flow equations are used to approximate t,,.

4 The resulting first-order ordinary differential equation for 6(x) is integrated. The
integration constant is calculated by requiring &(0) = O.

For the ssmplest problem of aflat plate of zero thickness aligned with the flow, the irrotational
flow solutionis U = constant and dp/dx = 0. Then (8.6) simplifiesto

To

> % (U -u)udy , (U = constant) (8.7)

oOtY— &

The drag force on one side of the plate is obtained from

F = 1,dx (8.8)

O\l_

inwhich L = plate length and the plate has a unit width. Using (8.7) in (8.8) and making use of
theinitial condition 6 (0) = O gives

(L)

F=p [ (U-u)udy (8.9)
0

inwhich u = u(L, y) and U = constant.
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Example 8.1

We will use (8.7) and (8.9) to calculate the solution for a laminar boundary layer along a flat
plate. Sincefully devel oped laminar flow betweentwoflat plateshasavel ocity distribution given
by a parabola, we will assume that

ux,y) = a(x) + bix)y + c(x)y?
Physics requires the boundary conditions

ux,00 =0 , u(x,8)=U |, dux,d) 0
Iy

These three equations determine a, b and ¢ and lead to the result

u(x, y) = U (2 - €2) in which £ = -

5(x)
Thus, theintegral on the right sides of (8.7) and (8.9) is
5 B 1
[(U-uudy = U? [({L-26+&)@E-€)dy = U?S [ (2 - 527+ 48> - £)de
0 0 0
_ 2 e
15U 8(x)

(The integral on the right side of (8.7) can always be calculated most easily by changing the
integration variable from y to £.) The shear stress on the left side of (8.7) is calculated by
inserting the expression for u(x, y) into Eqg. (1.1) to obtain

o
=

Thus, Eq. (8.7) becomes

Separating variables gives

and integration gives
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This can be written dimensionlessly as

Ux/v \/R_ex

The force per unit width on one side of the plate is calculated from (8.9).

8 30 548
X

d()

2 2, 548
F-p [ (U-uudy =p2U25(L)-p2u222
{ 15 15 fRe

This can be put in the more significant form

2
F(:DApU7 , A=Lx1 |, chl'—46 , Re =

The exact solution of (5.23 a, b, ¢) that was obtained by Blasius gave
[ 5.0 1.33
X

! D

JRe, Re

Thus, the error of approximation in our solution is about 10 per cent. A comparison between
experiment, the approximate solution and the Blasius solution is shown in Figure 8.3 for the
velocity distribution within alaminar boundary layer.

6
5
Hansen
oX =1cm
ex = 10cm /
4 /
Y‘/Rex Parabola ;
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0
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uxy)
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Figure8.3 Comparison between measured and cal cul ated vel ocity distributionswithin alaminar
boundary layer on aflat plate. [Measurements by Hansen, reproduced from Rouse (1961).]
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Example 8.2

We will use (8.7) and (8.9) to calculate an approximate solution for a turbulent boundary layer
along a smooth flat plate. We will use the one seventh power law given by Eq. (7.43)

ux,y) = UEY | &= %X)

Thus, theintegral on the right sides of (8.7) and (8.9) is

oOtY— o

1
_ _ 112 Cpun\evr gz - (2
(U -u)udy = U 5{(1 EVT)EVT gE U 8(x)

Although the boundary is covered by a laminar sublayer that allows the use of Eq. (1.1) for
calculating t,, our assumed velocity distribution istoo inaccurate to give agood approximation
for t, from (1.1). (Infact, ou/dy =« ony = O if we use the power law.) Thus, t, must be
approximated with an empirical expression from pipe flow measurements. A reasonable
approximation has been found to be
v ¥
Ty = 0.0225[ _6) pU

Thus, (8.7) becomes

1/4
00225 Y| uz- L y2dd
Us 72 dx

Integration of this differential equation gives
6 037
X

1/5

Re,

This allows the drag force to be computed from (8.9).

3()

7 7 0.37
F = U-u)udy = p—U?38(L) =p—U2="1L
p [(U-uudy = p_-UZB(L) = p— T
0 L
This result can be rewritten in the following standard form:
2
F-c Apl | A-Lx1 , ¢, -202 = g UL
2 Rells A%
L

In practice, experimental data shows that this holds for 5x 10° < Re, < 10" when 0.072 is
changed to 0.074 in the formulafor C,.
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Example 8.3

Theresultsfrom examples 8.1 and 8.2 assume that the boundary layer is either entirely laminar
or entirely turbulent from the leading edge of the flat plate. More generally, the boundary layer
will change from laminar to turbulent at x = x, when 0 < x_ < L. Itispossibleto caculatea
solution for this case using the same techniques that were used in examples 8.1 and 8.2. In
practice, asimpler approximation suggested by Prandtl is used in which the laminar drag force
for 0 < x < x_ is added to the turbulent drag force for x. < x < L. Prandtl's approximation
assumes that the forces on each of these two intervals are identical with the forces that would
occur if the boundary layer were entirely laminar or entirely turbulent, respectively, from the
leading edge. Thus, if we set

then the total drag force is approximated with

1.33 U2 0074 U2 0.074 U?
X P i 15 Lp - U5 X P
J/Re, 2 Re/ 2 Re 2

C

F =

inwhich thefirst term is the laminar drag for 0 < x < x_ and the turbulent drag for x, < x < L
is computed from the last two terms by subtracting the turbulent contribution for 0 < x < X,
fromtheturbulentdragfor 0 < x < L. Since A = L x 1, thisresult can berewrittenintheform

UZ
FoCore
inwhich
c .U X 0074 0074 %
’ Re, L R R L

C

However, x./L = Re_/Re_ and this becomes

c .oo7a G
0 Refj > Re
inwhich
0074 133
C, = Re, =
Re; J/Re,

An average value of Re, = 5x 10° is usualy used to calculate C, = 1741 in applications.
However, there is always some uncertainty about which value of Re, to use sincethetransition
to turbulence depends upon more than just a Reynolds number. Therefore, when amore precise
value for drag is needed in an experiment, the leading edge of the plate is usually roughened to
ensure that the boundary layer is turbulent from the leading edge.
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Figure 8.4 shows a plot of the solutions calculated in examples 8.1-8.3 together with some
experimental data. The solution for Example 8.2 holds for amore limited range of Re thanthe
range shown in Figure 8.4. Thus, it isrecommended that Figure 8.4 be used to obtain values
for C, in all calculationsfor either alaminar boundary layer or aturbulent boundary layer
along a smooth plate. This plot makes obvious the fact that, at the same value of Re , a
turbulent boundary layer creates a much larger drag than alaminar boundary layer.

The similarity between Figure 8.4 and the Moody diagram for pipe flow, Figure 7.18, suggest
that another family of curves should be appended to Figure 8.4 for a rough plate. These
calculations were published in 1934 by Prandtl and Schlichting and are plotted in Figure 8.5.
Vauesfor the roughness height, €, are givenin Figure 7.18 for some different surfaces.
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Example 8.4

Wind blowing across arelatively shallow reservoir of water causes the reservoir free surface to
tilt. The increase in water depth at the downwind end of the reservoir is known as “wind setup”
and must be considered when determining freeboard requirements for a dam design. For afirst
approximation, the free surface can be assumed to tilt as a plane, and boundary layer theory can
be used to calculate the drag force created on the free surface by the wind. The principal
horizontal forcesinvolved are the free surface wind drag and hydrostatic pressure forces on the
two end sections, as shown in the following sketch for a cross section of unit width.

py9hal2

Setting the sum of horizontal forces equal to zero gives

inwhich p and p, are water and air mass densities, respectively.

This equation can be manipulated into the form
1 2 2\ 1 _ U 2 pa
E(hz - hl) = E(hz + hl) (h2 - h1> = CD L 2_g p—W

Since the free surface has been assumed to tilt as a plane,

1
E(hz i hl) = hy
in which h, is the depth before the wind started to blow. Thus, the difference in water depth
between the two endsis
L U? P,
h,-h)=C, — — —=
( 2 1) D ho 29 p,,

inwhich L isknown asthe “fetch”. Thisshowsthat wind setupisincreased by increasing L /h,
and U. Thus, wind setup isgreatest for shallow reservoirs. Lake Ellesmere, ashallow lake south
of Christchurch has afetch of about 25 km and an average depth of about 2 m. Values of (h2 - hl)
of ametre or more often occur on thislake as aresult of storms.
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Wind stresses on the reservoir free surface create surface water velocities in the downwind
direction. However, if the ends are enclosed so that zero flow occurs across both end sections,
then the continuity equation requiresthat there be azero net flow past any vertical cross section.
Thus, aregion of return flow near the reservoir bottom must bal ance the downwind flow near the
free surface, as shown with the velocity distribution in the sketch.

Example 8.5

Now consider athree-dimensional flow that results when wind blows across a reservoir that is
shallow on one side and deeper on the other, asin the following plan view:

o, e R e A

Shallow water

Deep water

Bt s ot oo A T

Sincewind setup isgreater for the shallow side than for the deep side, the free surface elevation
a A islower thanat D and the elevation at B ishigher than at C. Thus, pressure gradientsin
the form of agloping free surface are created in the directionsfrom D to A and from B to C.
Since no other horizontal forces occur in these directions, the water must be accelerated from
D to A andfrom B to C and adepth-averaged counterclockwise pattern of circulation must be
created, as shown in the following sketch:

el et

(O
c - D/

7

A



8.14 Chapter 8 — Boundary-Layer Flow

Water velocities near the free surface must al be in the downwind direction, but return flows
near the bottom no longer balance with these surface flows since there must be anet flow at any
vertical cross section in the direction of the circulation cell. If ssdes AB and CD are both
shallow, and if deeper water occursin thereservoir centre, then two circul ation cells are created,
as shown in the sketch. The writer isindebted to Dr R. Spigel for this example.

A Shallow water
Deep water <U_
Shallow water

s

Pressure Gradient Effectsin a Boundary Layer

Equation (5.23 ¢) shows that pressures within a boundary layer are fixed by inviscid flow
pressures calculated on the boundary. Thus, flow within a boundary layer reacts to pressure
gradientsthat are imposed externally by an inviscid flow. Boundary layer development along a
flat plate was particularly simple to analyse because this pressure gradient is zero. Now we will
consider flow aong boundaries where pressure gradients are non-zero and can cause important
effects.

A pressure gradient causes anet force on afluid particle in the direction of decreasing pressure.
Thus, if pressures decrease in the direction of flow along a boundary, then Newton's law shows
that a fluid particle will be accelerated in the direction of motion. Thisis called a favourable
pressure gradient, and it is characterized by irrotational flow streamlines that converge as flow
moves along the boundary. If pressuresincrease in the direction of flow along aboundary, then
pressure forces oppose motion and create a deceleration. This is called an adverse pressure
gradient, and it ischaracterized by irrotational flow streamlinesthat diverge asflow movesalong
aboundary.

Since a favourable pressure gradient accelerates a fluid particle within a boundary layer, we
would expect velocity distributions within the boundary layer to become more uniform when
irrotational flow streamlines converge in the direction of flow. Conversely, we would expect an
adverse pressure gradient to decel erate flow and createlessuniform vel ocity distributionswithin
a boundary layer when irrotationa flow streamlines diverge in the direction of flow. Thisis
shown with sketches in Figure 8.6, in which it is also shown that boundary layer thicknesses
decrease with x for afavourable pressure gradient and thicken with x for an adverse pressure
gradient.
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Figure 8.6 Typical velocity distributions and boundary-layer thicknesses that result from
(a) favourable, (b) zero and (c) adverse pressure gradients.

Mathematical proof that boundary layers react to pressure gradients in the way shown in
Figure8.6isprovided by the Falkner-Skan laminar boundary-layer solution for flow past awedge
plotted in Figure 8.7. Theinterior wedge half angleis /2, and the inviscid boundary vel ocity
isgivenby U (x) = u,x Minwhich u, and mareconstantsand 0 < x < «. Thisvelocity isused
to calculate boundary pressures, so that positive and negative values of m correspond to
favourable and adverse pressure gradients, respectively, and m = 0 correspondsto flow along
aflat plate. Boundary-layer thicknesses decrease and vel ocity gradients on the boundary increase
as mincreasesfrom 0, while exactly the opposite happensfor an adverse pressure gradient as m
becomes negative.

Flow in a boundary layer can withstand only a very limited amount of deceleration from an
adverse pressure gradient before separating from theboundary. A sketch showing the stream-line
pattern and velocity distribution near a point of flow separation is shown in Figure 8.8. The
separating streamlineis defined asthe streamlinethat leaves the boundary at the point where the
boundary shear, t,, vanishes.[t, = O at this point since velocities and boundary shear forces
arein opposite directions on either side of the separation point. In laminar flow Eq. (1.1) shows
that this is equivaent to requiring du(x, 0)/dy = 0 at the separation point.] Flow outside the
separating streamline can still be approximated asinviscid, whileflow between the boundary and
separating streamline is highly rotational. However, calculation of the separating streamline
geometry is extremely difficult since its existence modifies the inviscid flow velocity and
pressure distribution both upstream and downstream from the separation point, and it is this
unknown pressure distribution that must beinserted into the viscousflow equationsto determine
thepointat which t, = 0. Furthermore, the boundary- layer equationsare probably invalid near
the separation point since the term 02u/9x? is unlikely to remain negligible there. Thus, the
general problem of calculating a mathematical solution that is valid near a point of flow
separation has, at present, no satisfactory solution.

Despite the mathematical difficulty of calculating valid solutions near points of flow separation,
experimental and mathematical considerations alow usto make several important observations
about theseflows. First, boundary-layer separation hastwo important requirementsthat must both
be met before separation can occur: the presence of aretarded layer of fluid next to a boundary
(aboundarylayer) and the presenceof an adver sepressuregradient. Theclassical experimental
evidencefor thisconclusionisshown in Figure 8.9, which shows flow normal to aflat plate both
without and with a splitter plate extending into the flow on the upstream side of the plate.
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Figure 8.7 The Falkner-Skan solution for flow past a wedge with
U (x) = u;x™. [Reproduced from Schlichting (1968).]
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Figure 8.8 Streamline pattern and velocity distribution near a poi nt of flow separation.
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Thesame adverse pressure gradient ispresent for both flows, but flow separation only occurswith
the splitter plate because this also provides a boundary layer for the approaching flow. Similar
flows can be observed through the movement of dust in atrapped vortex when a dry hot wind
blows against abuilding corner or in front of alarge hill or mountain when flow at low levelsin
front of the mountain is observed to be in a direction opposite to the approaching flow.

Figure 8.9 Flow normal to aflat plate, () without and (b) with a splitter plate. [ Photographed
by Foettinger, reproduced from Schlichting (1968).]

A second experimentally observed characteristic of flow in zones of flow separation is that
pressures, or piezometric heads if gravity isimportant, remain nearly constant in cross sections
normal to the boundary. Thus, flow separation creates large and important modification of
boundary pressure distributions. In fact, the net boundary pressure component of adrag forceis
known to be zero if flow separation is not present in an irrotational flow (D'Alembert's paradox).
Thus, control of boundary-layer separation is important if one wants to control the boundary
pressure component of adrag force. Thiscontrol, when practical, isaccomplished by speeding up
flow within the boundary layer to counteract the effects of an adverse pressure gradient. The most
common example uses roughness elements (dimples on agolf ball, roughness elements on top of
airplanewings, etc.) to create aturbulent boundary layer, which has higher velocities closeto the
boundary as aresult of turbulent mixing. However, moving a boundary in the direction of flow,
injecting higher velocity flow into a boundary layer or sucking lower velocity fluid out of the
boundary layer can all be used to speed up flow in the boundary layer and either delay or prevent
separation. The two volumes edited by Lachmann give extensive consideration to methods of
controlling boundary-layer separation.

Another form of flow separation occurs at sharp corners. The cause of thistype of separation can
be attributed either to an infinite velocity and negatively infinite pressure calculated from
irrotational flow theory, neither of which can be tolerated by a viscous fluid, or else an extreme
form of boundary-layer separation, which resultsfrom aninfinite adverse pressure gradient on the
downstream side of the sharp corner. Regardless of which of these two explanationsis accepted
as a reason, the important fact is that flow separation always occurs at a sharp corner.
Furthermore, while the location of the separation point can, and usually does, change with
Reynoldsnumber alongamoregently curving boundary, the separation point at a sharp corner
remains fixed at the sharp corner for all Reynolds numbers.
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(©)

Figure 8.10 Some additional examples of flow separation. All flows are from left to right.
[Reproduced from Rouse (1961).]
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Some additional examples of flow separation are shown in Figure 8.10. In Fig. 8.10 a, which
resemblesflow past an orifice plate inserted in apipe, separation similar to the separation shown
in Fig. 8.9 b occursin the corner on the upstream side of the plate, and a second separation point
occurs at the protruding sharp corner. Figure 8.10 b shows separation at the sharp corner formed
by thejunction of the two conduits, and Fig. 8.10 ¢ shows separation both in the corner stagnation
point and at the protruding sharp corner. Figures 8.10 b and 8.10 c¢ also show the difference
between flow patterns in an abrupt expansion and an abrupt contraction. Energy losses from a
transfer of energy into theregionsof separated flow occur in both instances. Intuition suggeststhat
theselossesincrease asthe size of the zone of separated flow increases, which suggeststhat | osses
will be larger for Figure 8.10 b than for Figure 8.10 c.

Secondary Flows

In some instances pressure gradients are at right angles to the direction of primary flow outside
the boundary layer, and these transverse pressure gradients cause a component of fluid motion
perpendicular to the direction of primary flow. Because of this, the motion is referred to as
secondary. In general, secondary flows create energy losses, redistribute longitudinal velocities
and cause sediment erosion and transport in erodible channels.

~_ ., <

Tea leaves
\ /)L J

vy 1N v

(a) (b)

Figure8.11 Secondary flow currentsin astirred cup of tea(a) immediately after
stirring has stopped and (b) after all motion has stopped with tealeaves deposited
in the centre by the secondary flow.

A commonly encountered example of secondary flow occurs after a cup of tea has been stirred,
as shown in Fig. 8.11 a. Immediately after stirring has stopped, the primary flow has circular
streamlines with a centripetal acceleration component, V %/ R, given by the radial component of
Eq. (1.24). Thisradial acceleration is directed toward the vertical axis of symmetry and, from
Newton's second law, isaccompanied by a pressure gradient that causes pressuresto decreasein
thesamedirection. Sincevertical accelerationsarerelatively small, pressuresare hydrostatic along
vertical lines. Thus, the radial pressure decrease results in a free surface that slopes downward
toward the centre of the cup, as shown in Figure 8.11 a. Since this same pressure gradient exists
in the boundary layer along the bottom, slowly moving fluid particles on the bottom are
accelerated toward the cup centre. This resultsin the two circulation cells shown in Figure 8.11
a, although the actual motion in these cells is three-dimensional with a velocity component in
the e, directionaswell. The pile of tealeavesdeposited in the centre after all motion has ceased
gives evidence of the earlier existence of the secondary flow.
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The teacup principle just described creates secondary flows in a number of applicationsthat are
of interest to civil engineers. One example occursin pipeflow through abend, as shownin Figure
8.12. Theprimary flow hascircular streamlines and aradial acceleration, V /R, directed toward
the centre of streamline curvature at point 0 in Figure 8.12 a. The accel eration is accompani ed by
adecrease in pressure toward point 0 in both the primary flow and the boundary layer next to the
pipe walls. Thus, a convective acceleration is created along the pipe boundaries from
atob andc tod inFigure8.12 b as aresult of the pressure gradient imposed by the primary
flow. The circulation cell motion is shown in Figure 8.12 b, but this motion is highly three-
dimensional. In fact, streamlines in the boundary layer zone follow the spiral pattern shown in

()

b d
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Figure8.12 Secondary flow inacurved pipe showing (a) streamlinesin the boundary layer zone,
(b) the circulation cell flow pattern and (c) contours of constant velocity (isovels).

There are two effects caused by the secondary flow shown in Figure 8.12. First, the secondary
flow carries low velocity flow from the boundary layer into the primary flow near the inside of
the bend and higher velocity flow near the pipe centre toward the pipe boundary on the outside
of the bend. Thisisshown by theisovelsor contours of constant velocity sketched in Figure 8.12
c. Therefore, velocities in the primary flow are modified considerably from an irrotational flow
distribution, which would have maximum and minimum velocities on the inside and outside of
the bend, respectively. Second, the secondary flow creates an energy loss through a transfer of
energy from the primary flow into the spiral motion of the secondary flow. If separation also
occurs on the inside of the bend, then this energy loss is increased further. Thus, a“minor” or
“local” energy loss term of the form

U 2

is used for bends in the Bernoulli equation when working pipe flow problems. K is a
dimensionless experimental coefficient that varies with both the angle of the bend and, to alesser
extent, with the pipe wall roughness.

The teacup principleis aso responsible for secondary flow in open channel bends, as shown in
Figure8.13. Sinceno boundary layer existsal ongthefree surface, only onecirculation cell occurs,
with flow near the bottom boundary having both radially inward and longitudinal velocity
components. Theend result, asin flow through apipebend, isaspiralled flow superimposed upon
the primary flow, increased energy losses and a shift in longitudinal velocity distribution with
larger velocities occurring near the outside of the bend and smaller velocities near the inside.
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Furthermore, when the open channel is lined with erodible material, larger velocities near the
outside of the bend cause erosion that deepens the channel and movesthe outer boundary further
outward in the horizontal direction. At the same time the inward velocity component near the
channel bottom carries sediment toward the inside of the bend and deposits it on the channel
bottom in the region of smaller velocity. Thus, water depths become shallower on the inside of
the bend, and theinside bend boundary moves horizontally outward. When longitudinal river bed
slopes are small enough, this process continues until the bend migrates so far in the outward
direction that a flood cuts the bend off on the inside and forms an oxbow lake. This processis
sketched in Figure 8.14.

A!
——

Inside Outside Inside Outside

e
A E EE T E LT TEE

Elevation view A-A’ Elevation view A-A’

(b) ()

T (@)

Figure 8.13 Secondary flow in an open channel bend showing (a) streamlines in the bottom
boundary layer, (b) the circulation cell pattern and (c) isovel contours.
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Figure 8.14 River bend geometry in erodible material showing (a) the flow cross section at the
bend and (b) the direction of channel migration caused by secondary flow.
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Another important example of secondary flow occurs in flow past a bridge pier and is shown
schematically in Figure 8.15. Boundary-layer separation occurs on the channel bottom along the
stagnation streamline at the front nose of the pier. This forms a vortex in the zone of separated
flow that wrapsitself around the front of the pier and trails downstream on both sidesin the shape
of ahorseshoe. This horseshoe vortex has large enough velocities to create a scour hole in front
of the pier, and many bridge failures have occurred when the scour hol e has become deegp enough
to undermine a pier. There isan equilibrium depth that exists for a scour hole in each particul ar
set of circumstances, and a design engineer must ensure that the bridge pier extends far enough
below this equilibrium depth to avoid losing the pier in aflood.

/ /f—Horseshoe vortex
=)=
x N 7z

Plan View Scour hole Elevation View
(a) (b)
Figure 8.15 Erosion around a bridge pier caused by a horseshoe vortex.

Not all secondary flows are created by boundary-layer pressure gradients that originate from
curved streamlinesin the primary flow. Figure 8.16 ashowsaset of isovelsthat were determined
experimentally by Nikuradse for turbulent flow in along straight conduit with arectangular cross
section. Intuition suggests that vel ocities should be relatively small in the corners because of the
close proximity of two perpendicular boundaries. However, Fig. 8.16 a shows that isovels are
actually pushed into the corners so that longitudinal velocities remain relatively high in the
corners. Theapparent explanation isthat turbulent vel ocity fluctuationsin the primary flow create
relatively high corner pressures and the secondary flow patterns shown in Fig. 8.16 b. These
secondary flows carry fluid with higher longitudinal velocities from the primary flow into the
corner and slower moving fluid from the boundary layer into the primary flow.

)

Figure 8.16 Flow in a rectangular conduit showing (a) isovels measured by
Nikuradse and (b) secondary flow cells that influence the isovels near a corner.
[Measurements by Nikuradse, reproduced from Schlichting (1968).]
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Chapter 9

Drag and Lift

The resultant force that a flow exerts upon a body has, in general, one component parallel and
one component normal to the approaching flow. Theforce component parallel tothe approaching
flow iscalled drag, and the normal component iscalled lift. Drag and lift forces are the result of
integrating pressure and shear stressesaround the body surface, and an understanding of drag and
lift isimportant for an engineer who wantsto design structures that will withstand these forces.

Drag

A drag force is expressed in the following way:

U2
Fo = CoAp — (9.1)

inwhich C, = dimensionless drag coefficient, A = area, p = fluid massdensity and U_ =
velocity of the approaching flow. Thearea, A, isusually defined to be the projected area of the
body on a plane normal to the approaching flow, although for aflat plate aligned with the flow
it becomes the surface area of the plate.

The drag coefficient, C, isamost always measured experimentally. (Two exceptions to this
occur for aflat plate aligned with the flow and creeping motion past a sphere, which allowsthe
use of Stokes solution.) In the most general case C, varieswith the geometry and orientation of
the body, the Reynolds number and the relative surface roughness. In practice, the surface
roughness effect tendsto be relatively small and is almost aways neglected. (The drag on aflat
platealigned with theflow isone example, however, in which surface roughness can beincluded.
See Figure 8.5.) Experimental drag coefficients for some axisymmetric bodies were given
previoudly in Figure 7.3 as a function of body geometry and orientation and the Reynolds
number.

A better understanding of drag can be obtained by considering the details of pressure and shear
stress distributions around boundary surfaces. Figure 7.3 suggests that C,, isastrong function
of the Reynolds number when Reynolds numbersare low. Stokes solution for creeping flow past
a sphere gives a pressure drag that is one third of the total drag force and a tangential shear or
surface drag contribution that is two thirds of the total drag. (The pressure drag contribution is
sometimes called form drag, and surface drag is often called skin friction drag.) At higher
Reynolds numbers, however, the surface drag component only becomes important for well
streamlined bodiesthat havelargelength to width ratios. For thisreason, most attemptsto reduce
drag focus on modification of pressure distributions around bodies.
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At larger Reynolds numbers, when boundary layers are thin, pressures around the surface of a
body aredetermined by inviscid flow pressureson theboundary. D'Alembert'sparadox statesthat
any body submerged in asteady inviscid flow without separation hasazero drag force. A general
proof of thisresult intwo dimensions can be given by using thefact that irrotational flow around
any body can be obtained by distributing sources, sinks, doublets and vortices either within or
on the boundary surface. Since the net flow emitted and absorbed by all the sources and sinks
must be zero for a closed body (ZiN:l g, = 0, asnoted in example 6.3), the velocity on alarge
circleof radius r that surrounds the body has the asymptotic behaviour

R I 1
V ~U_i + - g *+ 0 F (9.2

inwhich U_ = velocity at infinity, I'; = sum of the circulations from all vortices and O(JJr 2)
means that the next term is bounded by a finite constant divided by r 2 as r - «. A sketch of
thisflow is shown in Figure 9.1.

ey = -sindi + costj

e, = costi + sintf

0 Fp = Drag force

if—

f F [ = Lift force

Figure 9.1 Two-dimensional flow past a body.

If gravity is neglected, then the momentum equation applied to Figure 9.1 gives

~Fgi + Fj - fper(rdﬁ) = fpV(\/'er)(rdG) (9.3)

The Bernoulli equation gives
Uoo2 V2
-p — (9.9

P=P = 2

inwhich p and V arethe pressure and vel ocity magnitudes on the large circle and the Bernoulli
constant, pr/Z, has been obtained by setting p = 0 at infinity. Putting (9.2) and (9.4) into
(9.3) gives, afterrewriting e, and e, intermsof i and |, (becausee, and e, arefunctionsof 6
but i and j are constant unit vectors)
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. . ur, .[. S 1
ol Rl e — f sinB(cosB i +sinBj) + 0(?)]d6
(9.5)
T ur
- f pUZ’rcosd + - % (cosO j -sin@ i)cosd + 0(1)]d6
. 21 r
However, the integrals
fcos@dﬁ = fsinﬁcosﬁdﬁ =0 (9.6)
allow (9.5) to be simplified to
. . opU Ly T 1
Fol + FLj = —= i [ (sin®® + cos’®)do + 0 = (9.7)

Sincetheintegrandin (9.7) isunity, letting r - « and evaluating theintegral givesthefollowing
significant result:

F, =0

F.=pU.T,

(9.8 a,b)

Equation (9.8) states that the drag force is zero but that a finite lift force exists if the flow is
uniform at infinity and if circulation occurs around the body. This same result was obtained in
Example 6.2 for the particular case of flow around a circular cylinder.

Sincethe pressure drag on abody submerged inirrotational flow iszero if no separation occurs,
and since pressure distributions on a surface are approximated closely by irrotational flow
pressures on the boundary for high Reynolds numbers, it becomes obvious that significant
pressure or form drag forces in high Reynolds number flows must be the result of flow
separation. Thisis shown very clearly in Figure 9.2 for flow past a sphere. Measured pressures
along the forward portion of the sphere boundary are very closeto theirrotational flow pressure
distribution shown in Figure 9.2 a. However, experimental boundary pressures immediately
upstream from the separation point deviate from irrotational flow values, and the nearly constant
boundary pressure across the wake is fixed by the negative pressure that occurs at the point of
flow separation. This negative wake pressure often makes a larger contribution to the pressure
drag than the zone of positive pressure along the front boundary. All of these considerations
suggest that pressure drag at high Reynolds numbers can only be decreased by moving the
point of flow separation as far as possible toward the rear of the body.
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Ap
pv2I2 (c) Re = 435,000
Boundary layer turbulent
Measurements by Flachsbart in air

Figure 9.2 Irrotational and measured pressured distributions for flow past a sphere.
[Reproduced from Rouse (1948).]

(b) Re = 162,500
Boundary layer laminar

RS e e o o

la) (b)

Figure 9.3 The use of turbulence in the boundary layer to delay separation. (U.S. Navy
photographs.)
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Some of the methods that can be used to delay or prevent boundary-layer separation were
discussed in Chapter 8. Probably the most commonly used method isto introduce turbulenceinto
the boundary layer. Thisincreases vel ocities closeto the boundary through turbulent mixing and
movesthe separation point further downstream. Examples of thisare shown in Figures9.2 b and
9.2 c and in Figure 9.3 for a bowling ball dropped into water. In Figure 9.3 a the ball has a
smooth surface with a laminar boundary layer. In Figure 9.3 b the nose of the ball has been
covered with sandpaper to create aturbulent boundary layer, and the point of flow separation has
been moved further downstream. The end result is that the drag coefficient has been reduced
from about 0.5 in Figure 9.3 a to about 0.2 in Figure 9.3 b. Since the terminal velocity is
inversely proportional tothe squareroot of C, thespherein Figure 9.3 b should have aterminal
velocity about 58 per cent greater than the spherein Figure 9.3 a. The decreasein drag coefficient
that results from turbulence in the boundary layer is shown in Figure 7.3 to occur at a Reynolds
number of about 3 x 10° for a sphere, although the presence or lack of a correct disturbance
frequency and scale in the boundary layer can change this critical Reynolds number value.
Practical applications of this result include dimples on golf balls, roughness elements on thetop
of airplanewingsand the use of uprai sed seamson cricket ballsand baseballsto cause turbulence
in the boundary layer on one side of the ball. Thisleads to an asymmetric pressure distribution
and causes the ball to curve during its flight.

When separation point locations are fixed by sharp corners at high Reynolds numbers, drag
coefficients becomeindependent of the Reynolds number. Thisiswhy tables often give only one
valuefor C, for unstreamlined angular bodies. Examplesinclude circular disks and flat plates
normal to the flow, hemispheres, right circular cones and rods with rectangular cross sections.
For lower Reynolds numbers, however, Egs. (5.7 a, b) show that pressuresthroughout aflow are
influenced by viscosity. Thisisone reason why drag coefficientsin Figure 7.3 vary rapidly with
Reynolds numbers for smaller values of Re. Figure 9.4 shows the variation of drag coefficient
with Reynolds number for some two-dimensional bodies, and Table 1 lists drag coefficients for
various bodies.
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Figure 9.4 Drag coefficients for some two-dimensional bodies. [Reproduced from Rouse
(1948).]
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Table 9.1 Drag coefficientsfor various bodies.

Form of Body L/D Re Co

Circular disk > 10° 1.12

Tandem disks (L = spacing) 0 > 10° 1.12

1 0.93

2 1.04

3 1.54

Rectangular plate (L = length, D = width) 1 > 10° 1.16

5 1.20

20 1.50

oo 1.90

Circular cylinder (axis | to flow) 0 > 10° 112

1 0.91

2 0.85

4 0.87

7 0.99

Circular cylinder (axis . to flow) 1 10° 0.63

5 0.74

20 0.90

oo 1.20

5 >5x10° 0.35

oo 0.33

Streamlined foil (1:3 airplane strut) o0 >4 x 10 0.07

Hemisphere:  Hollow upstream > 10° 1.33

Hollow downstream 0.34

Sphere 10° 0.50

>3 x10° 0.20

Ellipsoid (1:2 major axis | to flow) >2x10° 0.07

Airship hull (model) >2x10° 0.05

Half circular cylinder: Hollow upstream > 10 2.30

Hollow downstream > 10 1.20

Square rod (axis L to flow, > 10 2.00
faces | and 1 toflow)

Parachute > 10° 1.20

Cube (faces | and L toflow) > 10 1.10

Right circular cone (apex angle of 60° > 10 0.50

pointing upstream)
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Drag Forcein Unsteady Flow

The drag forces considered so far are for steady flow. However, Robertson (1965) notes that it
was found as early as 1786 that an additional mass of fluid has to be added to the mass of an
oscillating sphere in order to account for experimental differencesin drag forcesin steady and
unsteady flow. This added mass concept was introduced in Chapter 7 when studying the slow
movement of asphere dropped fromrest in afluid. In that case the fluid motion waslaminar, but
the same concept applies for all unsteady motions of a body through fluid.

Robertson (1965) givesan interesting discussion of the history and application of the added mass
concept. Added mass coefficientsare usual ly cal culated mathemati cally by usingirrotational flow
approximations. However, these coefficientsal so depend, to alimited extent, upon viscosity and
the presence or absence of nearby boundaries. Furthermore, when the moment of momentum
equation of rigid body dynamicsis applied to rotating bodies, then an added moment of inertia
must be used. The calculation of added mass and moment of inertia coefficients is relatively
difficult, and wewill finish this section by simply stating that the added mass coefficients, k, for
asphereand aninfinitely long circular cylinder translating in an unbounded fluid are0.5and 1.0,
respectively. The added moment of inertia when these bodies are spinning is zero.

Example 9.1

Calculate the terminal velocity for a sphere falling through a fluid.

Solution: P9V = Sphere weight

Buoyancy force = pg+¥ Fn = CDApUOf /2

The three forces acting on the sphere are the sphere weight, the buoyancy force (equal to the
weight of displaced fluid) and the drag force, as showninthefreebody diagram. Sincethe sphere
a termina velocity is trandating with a constant speed, the sphere acceleration is zero.
Therefore, setting the sum of vertical forces equal to zero gives

fCDApr/Z - pgv + pgVv =0

in which
A = tD?%/4
v = tD3/6
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Solution for U_ gives

If p, <p, then the sphere will rise and the direction of the drag force is reversed. Thisgives a
terminal velocity in the upward direction of

u - |4 (L-elp)gD
RVE Co

In general, C, changes with U_. This means that these expressions for U_ may have to be
solved by successive approximation.

Example 9.2

Calculate the unsteady motion of the spherein Example 9.1 after it isrel eased from rest. Assume
that C is constant.

Solution:

Using the free body diagram in Example 9.1, Newton's second law for the sphere becomes

du
- C,Ap; U 2/2 - gV + pgv = (ps+kpf)v 0
inwhich k = added mass coefficient. The second and third termson thel eft side can berewritten
in terms of the terminal velocity from Example 9.1 to obtain
du
- C,Ap, U 2/2 + CoAp; Um2/2 = (ps+ kpf>v It

Use of the expressionsfor vV and A alowsthisto be rewritten in the following form:

du 3 CD (UZ_UZ)

dt 4 (ps/pf +k)D

oo

Since t doesnot appear on theright side of thisequation, we can calculate U asafunction of x
by using the chain rule to write
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Substituting the previous expression for dU /dt and separating variables gives
~ udu 3 C y
4

in which we have required U = 0 a x = 0 in the corresponding lower integration limits.
Integration gives

x/D

3
~inf1-u2/u?) - 2% oo ¥

The qualitative behaviour of thissolution issimilar to the behaviour for the creeping flow case
shown in Figure 7.5. By setting U = 0.99U_ we find that 99 per cent of the terminal velocity
isreached at

x/D 261

(pslpf +k) Co

If wetake C, = 0.5, p,/p; = 10 and k = 0.5, whichwere used in the numerical examplefor
Stokes solution in Chapter 7, we find that terminal velocity is achieved at x/D = 54.8. This
compares with thevalueof x/D = 2.10 that we calculated for creeping flow in Chapter 7, and
it suggests that creeping flows achieve terminal velocity much more quickly. If we use avalue
of C, = 0.2 that occurs after the boundary layer becomesturbulent, wefindthat x /D increases
to 137.

Example 9.3

The drag force on alarge structure can be measured in alaboratory with agreatly reduced scale
model. The model and prototype must be geometrically similar and must be orientated with
respect to the flow in the same way. Then the drag coefficient isafunction only of the Reynolds
number and relative roughness

c, - f ( UL € )

Y L

inwhich U = approach velocity, L = characteristic length, v = kinematic viscosity and € =
roughness height. The unknown function f isto be determined from measurements, and it will
be the same function for both model and prototype. Thus, if the Reynolds number and relative
roughness are the same for model and prototype,

), (%),

(), (5, =

then C, will be the same for model and prototype.

—|m
—|m
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FI/A
pU 2/2

FI/A
pU?2/2

m p

The Reynolds number similarity requirement can be rewritten in the form

U, L,

u L,

<|<
3

p

inwhich Lp/Lm > 1. If thesamefluidisused for model and prototype, then vm/vp = landwe
must have

o°
3

Thisis not usually practical. For example, the drag force on a 50 m high building in a 20 m/s
wind could be measured in awind tunnel with a 0.5 m high model only if

L
u - =2u -2 (20) - 2000 ms
L P 05
If water is used as the fluid for the model, then v, /v = 1/10 and
L v
Up=—2-2u =2 L 0) - 200 mis
.V 5 10

Neither of these possibilitiesis practical since the required velocities are too high to achieve.
(Even if these velocities could be obtained in alaboratory, fluid compressibility effects would
have to be considered for flows with such large velocities.)

Drag forces on buildings are in fact measured in laboratories, but this can only be done if C
does not change with Reynolds number. The drag force on most buildings is ailmost entirely
pressure or form drag, and points of flow separation are almost alwaysfixed at sharp cornersand
do not changelocation with Reynolds number. Thus, C doesnot usually changewith Reynolds
number in these problems provided that Reynolds numbers are reasonably large.
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(a) Anguler nose

a78

Separation

(8) Round nose

042

no separalion

Example 9.4

The above figure, which is reproduced from Schlichting, shows drag coefficients that were
measured by E. Moeller in 1951 for aVVolkswagon delivery van. Rounding the front corners of
the van moved the points of flow separation to the rear and decreased the drag coefficient by 45
per cent. The power required to overcome adrag force equal s the product of the drag force with
thevelocity. Thus, the power required to overcome wind drag at any particul ar speed for thisvan
was al so decreased by 45 per cent with this simple change in body geometry.

Example 9.5

U= U(y/g)ﬁn

2R

)

T

i
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A cylindrical pole of length ¢ and radius R has an approaching wind velocity given by
u=U(y/oe)n

inwhich U and n areknown constants. If we assumethat theflow at any fixed valueof y istwo
dimensional, then the total force and moment about the pole base caused by wind drag are given
approximately by

U2
CD(ZR)P 7dy

in which we will take C asaconstant and assume that u varies with y. Using the power law
equation for u and evaluating the integrals gives

F = C, RipU2/(1+1n)

M = Cp R?pU 2/(2+1n)

An estimate of the degree of approximation can be made for the case of a uniform approach
velocity, for which n = ~. Then
F = C,RipU?

inwhich C isgivenin Table9.1as1.20for L/D = «. However, the correct value for C,
when n = «, which takes into account end effects at the pole top, is aso obtained from
Table 9.1 by setting L/D = 20/(2R) = ¢/R. (Wemust use L = 20 since the ground boundary
is a streamline and, therefore, a line of symmetry for a pole of length 20 in an inviscid flow.)
Table 9.1 shows how C, varieswith (/R, and the end effect at the pole top is seen to become
relatively small as (/R and Re increase.

Lift

Lift istheforce component created on abody normal to the direction of an approaching flow. A
lift force is usually expressed in the following way:

2

U.
> (9.9)

F. = CLAp

inwhich C_ = lift coefficient, A = area, p = fluid mass density and U_ = velocity of the
approaching flow. The lift coefficient is usually measured experimentally, and the area, A, for
an aerofoil isusually defined to be the product of the wing chord with the wing length.
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(Thewing chord isthe maximum straight line distance acrossthe wing, in the direction of flow,
a a zero angle of attack.) The lift coefficient is a function of the aerofoil geometry and
orientation. Thus, C,_isusually plotted for a given aerofoil asafunction of the angle of attack.
Typical plotsof C, and C, for an agrofoil are shown in Figure 9.5.
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Figure 9.5 Coefficientsof lift and drag plotted as a function of attack angle
for atypical aerofoil. [Reproduced from Streeter and Wylie (1981).]

A better understanding of lift can be obtained by considering details of flow around an aerofail.
Figure 9.6 shows photographs of two-dimensional flow around an aerofoil (a) at alow angle of
attack, when the aerofoil isan efficient lifting device, and (b) at ahigh angle of attack, when flow
separates from the top boundary and stall occurs. As shown in Figure 9.5, C, increases asthe
angle of attack increases until the angle of stall is reached. At the angle of stall the flow
separation point suddenly moves forward to the leading edge, lift decreases and drag increases.
Stall has been responsible for alarge number of plane crashes.

The unseparated high Reynolds number flow shown in Figure 9.6 a can be modelled fairly
accurately with irrotational flow. It was shown both for a circular cylinder in Example 6.2 and
for flow about any two-dimensional body in thischapter that anirrotational lift forceisgiven by
Eq. (9.8 b). Equating valuesof F _in (9.8 b) and (9.9) gives

C = —_—
L (9.10)

inwhich ¢ = chord length for atwo-dimensional aerofoil. (Wehaveset A = ( for afoil of unit
length.)
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Figure 9.6 Flow past an aerofoil (a) at alow angle of attack and (b) at a high

angle of attack with flow separation. [Photograph by Prandtl and Tigens,
reproduced from Schlichting (1968).]

b,

¢.
Figure 9.7 A flow net constructed for Figure 9.6 a.

A flow net constructed for the flow in Figure 9.6 ais shown in Figure 9.7. Since

I‘Ozjv'drzjvq)'dr:jdcbzcbw—cb (9.11)

in which the integration path is any closed curve that starts on the bottom side of the trailing
edge, encircles the aerofoil in the clockwise direction and finishes on top of the trailing edge.

Since there are 10.1 values of A¢ aong the top boundary and 7.2 values of A¢ along the
bottom boundary, (9.11) gives

I, =101A¢ - 72A¢ = 29A¢ (9.12)
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inwhich A¢ = changein ¢ between any two successive potential linesin Figure9.7. Equation
(9.12) issignificant becauseit showsthat circulation occursaroundtheaerofoil inirrotational
flow, and this result is generally interpreted to mean that circulation occurs about the
experimental aerofoil in Figure 9.6 aaswell. Since A ¢ in Figure 9.7 can be calculated from
the flow net geometry as

Ap = Ay = U _An, (9.13)

inwhich An_ = streamtube spacing in the approaching flow, and since direct measurement of
the chord length, ¢, in Figure 9.7 gives

0 =77An, (9.14)

where An_ hasbeen estimated from an upstream portion of theflow net that isnot showninFig.
9.7, we obtain from (9.10) and (9.12) - (9.14) the following value forC, :

2(2.9)
CL = 7 = 0.75 (9_15)

Thus, C, hasbeen calculated from aflow net whose construction required nothing morethan
specification of the aerofoil geometry and angle of attack. This is why C, is normally
considered to be a function only of the aerofoil geometry and orientation.

The flow net in Fig. 9.7 has one streamline that |eaves the trailing edge of the aerofoil. This
requirement, which is necessary if the irrotational flow model is to give a physically redlistic
description of the actual flow, isknown asthe Kutta condition. If this condition is not imposed,
then irrotational flow rounds the sharp trailing edge of the foil with an infinite velocity. The
Kutta condition al so makesthe mathematical solution unique by fixinganumerical valuefor the
circulation, T', that is sufficient to move a stagnation point on the top foil surface to the sharp
trailing edge.

The previous discussion showed that circulation around an aerofoil existsin steady irrotational
flow and, therefore, probably existsfor viscid flow. Thereis also an ingenious argument, based
on Kelvin's circulation theorem (proved in Chapter 6), which is used to show how circulation
becomes established around an aerofoil asit startsits motion from rest. Consider alarge closed
material path that surrounds the aerofoil when the fluid and foil are both motionless, as shown
in Figure 9.8 a. The circulation around this path is zero before motion starts, and Kelvin's
theorem states that the circulation around this path remains constant, and therefore zero, asthe
aerofoil and fluid start to move. However, experimental observation showsthat alarge“ starting
vortex” together with a series of smaller vortices are shed from the trailing edge of thefoil asit
starts its motion, as shown in Figure 9.8 b. Since each of these shed vortices has a
counterclockwise circulation, and since the sum of all circulation within the large material path
must be zero, there must be a clockwise circulation around the aerofoil that balances the
counterclockwise circulation of the shed vortices. The clockwise circulation around the aerofoil
is often referred to as a “bound vortex”, and if the experimental foil is suddenly stopped, this
bound vortex is released into the flow. A photograph showing this in an experimental flow
appearsin Figure 9.9.
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Material path

Stationary aerofoil

Fluid at rest

(@)

Starting vortex

Bound vortex

(b)
Figure 9.8 The establishment of circulation around an aerofoil
asit starts motion.



Chapter 9 — Drag and Lift 9.17

(b)

Figure 9.9 Photographs of (a) a starting vortex shed into the flow as the foil starts motion and
(b) abound vortex shed into the flow beside the starting vortex when the foil suddenly stops
motion. [Reproduced from Prandtl and Tietjens (1934).]
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A secondary flow, known as awing-tip vortex, occurs at the end of an aerofoil that has a finite
length. Positive pressures occur beneath the foil, and negative pressures occur on top. (Positive
and negative meaning pressures that are greater and |ess, respectively, than the pressure in the
undisturbed approaching flow.) At the wing tip the fluid in the high pressure zone beneath the
foil moves toward the low pressure zone on top of the foil and creates a vortex that trails from
the wing tip, as shown in Figure 9.10. The end result of thisthree-dimensional effect isthat lift
isdecreased and drag increased from val uesthat woul d occur for two-dimensional flow. Wing-tip
vortices can persist for some minutes after alarger plane has passed, and pilots of smaller planes
must be careful not to land too closely behind alarger plane because of thedanger of runninginto
alarge wing-tip vortex.

Starting vortex
Wing-tip vortices

Low pressure—— Vortex

==

High pressure

Figure9.10 Thelocation of wing-tip and starting vortices soon after
aplane has started its motion.

There are numerous applications of the principles of lift. Bird wings, sails and kites al act as
aerofoils. Airplane propellers have cross sections in the shape of foils. In this case, since the
relative speed of the approaching flow changes with distance from the axis of rotation, an
efficiently designed propeller hasacross-sectional geometry and angl e of attack that changewith
distance along itslength. Hydrof oils can be mounted below aboat to lift its hull out of the water
and greatly reduce its drag. Ship propellers, pump impellers and turbine blades are other
examples of foils.

Cavitation can becomeaproblemwhen foilsareusedinaheavy liquid, such aswater. Cavitation
occursin aflow of liquid when the pressureis reduced to the vaporization pressure of theliquid.
(The vaporization pressure of a liquid depends upon its temperature, as discussed in the first
chapter.) Vaporization causes many small bubblesto form in the flow, and the collapse of these
bubbl es causes|arge pressurewaves. When anearby boundary refl ectsthesewaves, the boundary
issubjected repeatedly tolarge compressiveand tensilestressesand eventually failsfrom fatigue.
In apump or turbine the top boundaries of the foils are sometimes destroyed from this process.
Ship propellers can have cavitation in their wing-tip vortices, asshownin Figure 9.11. Thislast
phenomenon is sometimes prevented by encasing the propeller in a tube.
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Figure9.11 Flow cavitating in wing-tip vortices shed from aship
propeller.[U.S. Navy photograph, reproduced from Rouse (1948).]

Oscillating Lift Forces

Oscillating lift forces sometimes create vibrations and even failures in structures. The Tacoma
Narrows Bridge failure of 1940 is probably the best known example of a failure caused by
oscillating lift forces. However, difficulties from thistype of flow behaviour can occur in many
structuresranging from long slim bridgesto flag poles, smoke stacks and cables. Thebasic cause
of these failures is a matching of the oscillating lift force frequency with one of the natural
frequencies of the structure. Thelift forceitself need not be vertical but may be horizontal or in
any direction at right angles to the approaching flow.

Anoscillating lift forceis caused by arow of vorticesthat formsin the wake of abody. A picture
of such avortex trail isshown in Figure 9.12. The essential feature of thisflow isthat vortices,
with circulations in opposite directions, are formed and shed periodically on alternate sides
behind the body. If alarge closed material contour surrounds both the body and vortex trail, then
Kelvin'stheorem statesthat the sum of al circulationswithin thiscontour must be zero. (Kelvin's
theoremwas proved in Chapter 6.) However, thetotal circulation of all vorticesinthevortex trail
is periodically changing with time as each new vortex is formed and shed into the flow. Thus,
there must be circulation around the body that oscillates in direction to balance the constantly
changing direction of total circulation inthevortex trail. This createsalift force on the body that
oscillates in direction with the same frequency as the vortex shedding frequency.

Figure9.12 Thevortex trail behind acircular cylinder. [Reproduced
from Schlichting (1968).]
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Figure 9.13 The Strouhal number, S, versus Reynolds number for a vortex trail behind a
circular cylinder. The frequency, w, isin radians per second. [Reproduced from Gerhart and
Gross (1985).]

Although small structural oscillations can be noisy and troublesome, really large oscillationsand
structural failure can result if the lift force frequency matches one of the natural frequencies of
the structure and causesresonance. Dimensionlessvaluesof thevortex frequency, w, areplotted
as afunction of the Reynolds number in Figure 9.13 for flow past acircular cylinder. The next
section shows how this plot can be used to predict the onset of resonance in structures subjected
to oscillating lift forces.

Oscillating Lift Forcesand Structural Resonance

As afirst example, consider a right circular cylinder suspended horizontally by a system of
springs in aflow with an approach velocity U_. If yisa coordinate normal to the approaching
flow, then the transverse component of Newton’s second law of motion becomes

d? .
MEY - _ky- Fosin(wt) (9.16)

dt?

where M = cylinder mass, t = time, K = sum of all spring constants, F, = lift force amplitude
and w = lift force frequency, which is given as a first approximation by Figure 9.13. The
coordinate y ismeasured from the equilibrium position of the cylinder centrewhen U_ = 0. The
left side of (9.16) isthe product of the cylinder massand y component of acceleration. Thefirst
term on the right side is the spring resistance force, and the last term is the forcing function
created by theoscillating lifeforce. Sincethe system startsfrom astate of rest, appropriateinitial
conditions are given by

y(0)=0 (9.17)
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———=0 (9.18)

which require that the cylinder displacement and velocity bezero at t = 0.

The solution of (9.16)—9.18) is given by

w

JRTW

where /K/M is the natural frequency of the unforced system. Resonance occurs when
VK/M -~ w. Since the right side of (9.19) has the indeterminate form 0/0, an application of
I"Hospital’ srule gives

F/M [ |
y(t) = m sin(wt) - S'n(t K M) (9.19)

) F/M

isin(o)t) - tcos(wt)
2w

w

(9.20)

Equation (9.20) showsthat the displacement amplitudeat resonance growslinearly with timeand
that y - ~ast - «. Inpractice, thesmall amplitude approximation that wasimplicitin modelling
both the spring force and wind lift force would invalidate the use of Eqg. (9.16) long before this
point isreached. It is also worth noting that including alinear damping term in Eqg. (9.16) leads
to aresonant solution for y(t) that is relatively large but bounded.

The previous example was worked as a particle dynamics problem and gave asingle value for
the resonant frequency. The remaining examples will model several different structures with
continuousdistributions of mass. Consequently, these exampleswill all have an infinite number
of resonant frequencies. In these cases, it isfrequently the smallest resonant frequency that is of
most interest.

Bodies such as smokestacks, flag poles and long slender bridges can be modelled with the
equation that describesthe lateral vibration of beams. Thisequation, which isderived by Humar
(1990) and numerous other authors, has the form

02 9%u 0%u :

— | El—| + m=— = F,sin(wt) 9.21

axz( axz] otz ° (0.2)
in which u = lateral displacement, E = modulus of elasticity, | = moment of inertia of the

cross section, m = mass per unit length, F, = lift force amplitude, w = lift force frequency,
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x = distancealongthebeamand t = time. Wewill assumethat EI, m and F; are constants.
In this case a solution of (9.21) isgiven by

F
u(xt) =|C,cosh(ax) + C,sinh(ax) + C,cos(ax) + C,sin(ax) - 04 sinfwt) (9.22)
Ela
in which
L\ V4
a-|M® (9.23)
El

Equations (9.22) - (9.23) give what is often referred to as the “steady state” solution of (9.21),
which is the solution of (9.21) when t has become large enough to disregard the influence of
initial conditions on the behaviour of u.

If (9.21) model sthe behaviour of asmokestack or flag pole, then the correct boundary conditions
to determine the C,'sin (9.22) are asfollows:

u(0,t) =0 (9.24)
u(0,t) _

x 0 (9.25)
o%u(e, t) _ 0
T (9.26)
du(t, t) _
T (9.27)

Equations (9.24) and (9.25) require that the beam be clamped at x = 0, and (9.26) and (9.27)
require that the free end have a zero moment and shear force, respectively.

Substituting (9.22) into (9.24) - (9.27) and dividing the homogeneous equations by non-zero
factorsthat are common to each term gives the following set of four equations for the unknown
constants C, C,, C, and C,:
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Ela*

C, " C, =0 (9.284a, b, c,d)
C,cosh(at) + C,sinh(al) - C,cos(at) - C,sin(at) = 0
Csinh(at) + C,cosh(at) + C,sin(al) - C,cos(at) = 0

Equation (9.28) will have bounded solutions for C, unless the determinant of the coefficient
matrix vanishes. Thus, setting thisdeterminant equal to zero givesthefollowing requirement for
resonance:

1 + cos(at) cosh(at) = 0 (9.29)

Equation (9.29) hasan infinite number of real rootsthat can befound easily by Newton'smethod.
Theresults are

al = 1.19n/2, 299n/2, 5.00n/2, 7.00m/2, .. (9.30)

By using the definition of the Strouhal number to eliminate w in (9.23), we obtain an expression
for al.

V4 U
at = o] on = (9.31)
El D

Since resonance cannot occur when (af) is less than the smallest valuesin (9.30), we see that

resonance is not possible if
14 SU
of M = < 075 (9.32)
El D

Equation (9.32) shows that long slender beams with largeratios of (/D are most likely to give
problems with resonance from oscillating lift forces. Smaller amplitude oscillations may still
occur, however, even if resonance is not possible.

Example 9.6

Suppose that a solid steel pole (E = 200 x 10° N/m2) of length ¢ = 10 m isto be designed
so that resonance cannot occur with wind speeds up to amaximum valueof U_ = 20 m/s. We
will use a Strouhal number from Figure 9.13 of 0.20 and amass density for steel of 7,860 kg/m?
to calculate the range of pole diameters for which resonance is not possible. The pole will have
one end clamped and the other end free.
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Solution:

If welet p = massdensity of steel, then m = pnD?/4. Since| = nD*/64, Eq. (9.32) becomes

1/4 SuU
a( 1692) — <075
ED

Setting ¢ = 10 m, p = 7,860 kg/m3, E = 200x 10° N/m?, U_ = 20 m/s and S = 0.2
shows that resonance is not possible if

D>0751m

Example 9.7

Supposethat the solid steel polein the previous exampleisreplaced with ahollow steel polethat
has awall thickness, T, that is small compared to the outer diameter, D.

Solution:

If T = wall thickness, then m = p(ri/4)D2 - (D - 2T 4|~ pnDT and | = - [D* - (D - 2T )]
~ nD3T/8 for 2T/D << 1. Therefore, Eq. (9.32) becomes 64

1/4 SuU
o| Be * < 0.75
ED? D

Setting ¢ = 10 m, p = 7,860 kg/m3, E = 200x 10° N/m?, U_ = 20 m/sand S = 0.2
shows that resonance is not possible if

D > 0.632 m

Itisinteresting to noticethat T cancels out when calculating theratio m/I. Thismeansthat the
wall thicknesshasnoinfluenceontheresult providedthat 2T /D << 1. However, T would have
to be large enough to withstand bending moments and shear forces created by the wind drag
(Example 9.5).

Similar calculations can be carried out for other boundary conditions. For example, if the beam
Is simply supported at both ends, so that the deflection and moment vanish at each end, then
resonance occurs when
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U4 suU
o 2n = = (2n-1)n forn =123, .. (9.33)
El D
This shows that resonance is not possible if
va | SU
0 m * < E (934)
El D 2
If the beam is clamped at both ends, resonance occurs when
U4 suU
[ ( g) 2n—= = 301m2, 50072, 7.00m2, .. (9.35)
and resonance is not possible if
14 | SU
of M * < 1.89 (9.36)
El D
Vibrations in some structures are described by the wave equation,
02u  d2u Fy .
c2— = + — sin(wt) 9.37
ox? oJt2 m (.37
inwhich ¢ = wave speed in the body. For atightly stretched cable, ¢ isgiven by
c =yP/m (9.38)

in which P = cable tension and m = mass per unit length. Humar (1990) shows that a tall

building modelled as a shear beam has

| 12zE1
C =
mh?

(9.39)

inwhich 2EI = sumof theproductsof E and | forall columnsinthebuildingcrosssection, m =

mass per unit height and h = storey height.
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Equation (9.37) isasecond order equation and requires only one boundary condition at each end.
A cable stretched tightly between two fixed supports has u = 0 at each end, and resonance
occurs in this case when

2n— — S=nn for n =12 3, .. (9.40)

Since (/D is very large for a cable, it is virtually impossible to design a cable so that large
amplitude oscillations can be avoided under all conditions.

A building has a zero displacement at ground level and a zero shear force at its top. The zero
shear force condition is imposed by requiring du/dx = 0O at the building top and leads to the
following requirement for resonance:

L (2n-1) L for n=1,23, .. (9.41)
D c 2
Thus resonance is not possible if
U
L Z=gcd (9.42)
D c 4

Theratio U_/c = 1/3, and S = 0.2 from Figure 9.13. This suggests that resonance from an
oscillating lift force is not possible in a tall building if ¢/D < 3.75, which is usually true.
Smaller lateral oscillations may occur since the vortex trail and accompanying oscillating lift
force are always present. The lateral oscillations, however, are unlikely to become very large.

The preceding analysis neglected damping and the yielding of supports. It also assumed that the
structures are elastic. A departure from any one of these assumptions leads to resonant
oscillations that remain bounded. In fact, vibration amplitudes are sometimes controlled by
inserting damping rather than by changing dimensions of the structures,
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Chapter 10

Dimensional Analysis and Model Similitude

Experimental methods have traditionally played a major role in the study of fluid mechanics.
Exact mathematical solutions are exceptions rather than the rule, and this means that the end
result of different mathematical approximations must be tested with experiment before they can
be used with confidence. Experimental methods must be used for some problems, such asflows
requiring sol utionsthat depend upon three spacial coordinates, that tax the limits of both modern
day computers and specialists in numerical methods who devise and use computer software.
Finally, problems involving turbulent flow cannot presently be solved in a general way with
either numerical or mathematical methods. At best, approximate methods must beused, and these
approximationsalwaysrequire experimental datato determine unknown constantsand to ensure
that approximationsarerealistic. Dimensional analysisprovidesabasictool that helpsorganize
an experiment, plot resultsin a general way and scale results from model to prototype.

Thetheory of dimensional analysisrequiresonebasic hypothesis: it must be possibleto describe
an experiment uniquely with a function that depends upon variables with dimensions. For
example, consider the problem of measuring the drag force on an object in aflow. If we consider
only objects that are geometrically similar and that have the same orientation in the flow, then
the drag force is a unique function of the following variables:

Fp =f(p,U., D, v, €) (10.1)

inwhich F, = drag force (N = kg - m/s?), p = fluid mass density (kg/m3), U_ = approach
velocity at infinity (m/s), D = characteristic length (m) that determines the scale of the
geometrically similar bodies, v = kinematic viscosity (m%s)and € = absoluteroughnessheight
(m). Since p hasbeeninduded, and sincethedynamicandkinematicviscostiesarerdaedby v = u/p,
we could replace v with p but should not include both p and v. In other words, we should
include only independent variables on the right side of (10.1).

The following development, although too unwieldy for general use, shows why dimensional
analysis can be used for any problem that is described uniquely with a set of variables that has
dimensions. Ifweuse M, L and T torepresent thefundamental dimensionsof mass, length and
time, then dimensions of the termsin (10.1) can be represented symbolically in the following

way:

_ ML M , D~L, v~—, e-~L (10.2)

e ML L
T2 L3 T T

D

in which ~ is read “has dimensions of” rather than indicating orders of magnitude, as in
Chapter 5. Dimensions of mass can be removed from F by writing
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F, = ( %] p (10.3)

If F, in (10.3) is now regarded as the product of (FD / p) with p, then (10.1) can be rewritten
in the equivalent form

FD/p :fl(p,Um,D,v,e) (10.4)
in which
L4
Fo/p - = (10.5)

Since p istheonly variablein (10.4) that contains dimensions of mass, achangein unitsfor M

(say from kg to slugs) will change the numerical magnitude of p but will leave the magnitude
of al other variablesin (10.4) unchanged. However, it isimpossible to change the numerical
magnitude of just one variablein afunctional relationship without changing the magnitude of at
least one other variable in the relationship. Thus, (10.4) can be correct only if p does not appear
by itself in f,.

Fo/p = f,(U.. D, v, €) (10.6)

If we now use U_ to eliminate dimensions of time from (10.6) by writing

Do oy’ 10.7
p prZ « ( - )
\Y
v=|—|U
(Um) . (10.8)

then (10.6) can be written in the equivalent form

Fy v
K =fz(Um,D'U—,€] (10.9)

o
o0

in which

(10.10)
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A%
ot (10.11)

o0

Thus, timeiscontained only inthedimensionsof U_ in(10.9), and achangein unitsof time (say
from seconds to minutes) will change only the magnitude of U_. Thisisinconsistent with the
behaviour of afunctional relationship unless U_ no longer appears by itself in (10.9).

Fy y
K :fz[D’I’e) (10.12)

oo

Finally, D can be used to eliminate the dimensions of length by writing

Fy [ FD/D2]D2

(10.13)
2 2
pU. pU.
\% \%
T ( T D] D (10.14)
€
€ = (B) D (10.15)
Thisalows (10.12) to be rewritten as
FD/D2 - 1D \Y €
W*s 'UD' D (10.16)

inwhich D hasunits of length and all other termsaredimensionless. A changein units of length
(say from metres to feet) will change only the magnitude of D, which meansthat D must not
appear by itself in (10.16).

(10.17)

FD/DZfS( v ]

pU2 UMD’B

Since we are considering drag forces on geometrically similar bodies, specification of D also
determines an area, A, which is proportional to D 2. Furthermore, we are free to insert
dimensionless constantsin any of thetermsin (10.17) or to replace any term with another power
of itself. Thus, (10.17) can be written in the equivalent form
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(10.18)

Fo /A U( U.D e)

U’ /2 v D

in which the left side of (10.18) is the drag coefficient, C, that we studied in Chapter 9.

Two advantages of using dimensional analysis are that it reduces the amount of experimental
work and it allows experimental results to be used to predict resultsfor other similar flows. For
example, Equation (10.18) has been used to plot the experimental curvesshownin Figure 9.4 for
smooth and rough circular cylinders. Thisis a three-dimensional plot in which C, is plotted
against Re whileholding thethird dimensionlessvariable, €/D, constant for each curve. [There
are only two curves shown for a circular cylinder in Figure 9.4: one for a smooth surface
(e/D = 0) and one for arough surface with /D unspecified. Presumably this is because the
drag on acircular cylinder is amost entirely pressure or form drag at large values of Re, and
different values of e/D will probably give much the same result provided that €/D is of
sufficient size to cause turbulence in the boundary layer.] Furthermore, these plots hold for any
other experiment in which Re falls within the range shown in Figure 9.4. This result should be
contrasted with the difficultiesthat would ariseif the datawere plotted dimensionally according
to (10.1): six variables would require the use of alarge number of three-dimensional plots, and
each plot could be used only for the particul ar values of dimensional variablesthat wereusedin
the original experiments.

A dimensional analysis also provides the basis for scaling results from model to prototypein a
mode! study. For example, the function f, in (10.18) is the same function for model and
prototype. Therefore, if theindependent variablesareidentical for model and prototype, then the
dependent variable must also be the same for model and prototype:

UD UD
(5] (1)
p m
€ €
(B)p = [B)m (10.20)

[ /A

pU’/2

F. /A
[ o/ ] (10.21)

2
; pU’/2

in which the subscripts m and p denote model and prototype, respectively. In the language of
hydraulic modelling, Equations (10.19) - (10.21) require Reynolds number similarity, geometric
similarity and Euler number similarity, respectively. The direct use of (10.19) - (10.21) for a
particular model study merely eiminates the intermediate step of preparing the general
dimensionless plot shown in Figure 9.4.
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A Streamlined Procedure

The example just considered is useful for showing why dimensional analysis works for any
problem that can be described uniquely with a set of variables that has dimensions. In practice,
however, the process that was just used to obtain (10.18) can be streamlined by using
p, U_ and D to obtain one dimensionless variable when combined with each of the remaining
variables. When p, U_ and D are combined with F, they give

1 1 1 F/D? _ _FIA

F.x = x — x — =

D
P u? D? pU pU%2

(10.22)

Mo o2 g (10.23)

in which (10.23) shows the dimensions of each term in (10.22).

When p, U_ and D are combined with v, they give

VX X S e S (10.24)

1
x Tx -1 (10.25)

(10.26)

Lx—=~1 (10.27)

Thus, (10.22), (10.24) and (10.26) lead to (10.18) with considerably less effort than was required
for thefirst procedure. An observant student, however, will noticethat the streamlined procedure
merely uses adifferent order for the same steps that were used in the first procedure.

Steps in the streamlined procedure can be organized in the following general way:

1 Write down the dependent variable and the corresponding list of independent variables,
asin Eqg. (10.1).

2 Write down the dimensions of each variable, asin Eqg. (10.2).
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3 Choose as many “repeating variables’ as basic dimensions represented in step 2. (Our
first example had thethreebasicdimensions M, L and T representedin (10.2), and we
chosethethreerepedtingvaiablesp, U and D . Otherexamplesmight havefever,ssy L and T,
or more, say M, L, T and temperature.) The repeating variables must contain between
them all of the basic dimensions present in step 2, and it must not be possible to form a
dimensionless variable by using only the repeating variables.

4 Combine the repeating variables with each of the remaining variables to form
dimensionless variables, asin (10.22) - (10.27).

Standard Dimensionless Variables

It has already been pointed out that a derived dimensionless variable can aways be modified by
inserting dimensionless multiplicative constants and by taking the variable to any power other
than zero. It is also possible to replace a dimensionless variable by its product with any
combination of powers of other dimensionless variables in the problem. For example, if a
particular problem has the result

my = f(ny, g, m,) (10.28)

in which dimensionless variables are represented by . , then we can always write

T, = (TEZ g ng)/(ng ng) (10.29)

Since (10.29) can be viewed asthe product of (n2 g ntj ) withafunctionof n; and m,, wecan
replace (10.28) with the following equivalent statement:

T, = fl[(nz g nﬁ), T3, n4] (10.30)

inwhich a and b arearbitrary numbers. This means, of course, that the result of adimensional
analysis is never unique. In practice, this additional flexibility is used to obtain standardized
forms for dimensionless variables whenever possible. Some of these standard dimensionless
variables follow:

A
Euler number = 0 5/2 (10.31)
Reynolds number = % (10.32)
Froude number = Y

oL (10.33)
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U

Densimetric Froude number = — — 10.34
VLaAplp (1034
Strouhal number = %L (10.35)

Weber number = U
STl (10.36)

inwhich Ap and Ap arechangesin pressureand massdensity, respectively, o = frequency and
o = surface tension. We see from (10.31) that the drag coefficient given by the left side of
(10.18) is actually an Euler number.

Example 10.1

A modd study of the spillway shown in the sketch is to be carried out in a laboratory by
constructing a geometrically similar model at areduced scale.

We will use a dimensiona analysis to organize the study and to scale results from model to
prototype. The dependent variables are the flow rate, Q, over the spillway and the minimum
pressure, p,.., on the spillway crest. (To save construction costs, designers sometimes reduce
the radius of curvature of the spillway crest. Too large a reduction, however, would create
sufficiently negative pressures to cause cavitation. Thus, amodel study of this nature measures
minimum crest pressures to seeif cavitation might occur. The relationship between Q and H
isimportant because the dam embankment must not be overtopped when the spillway passesthe
maximum possible outflow from the reservoir.)

Solution: The flow rate, Q, over the spillway is a function of the following independent
variables:

Q-f(W,H,g,e v, p)
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inwhich W = spillway height, H = reservoir height abovethe spillway crest, g = gravitational
constant, e = spillway surfaceroughness, v = kinematicviscosity and p = fluid massdensity.
Dimensions of these variables follow:

Q~—, W-~L, H-~L, g~L, e ~L, v~—, p~M
T T? T L3

Since p istheonly variablethat contains M, it cannot combine with any of the other variables.
Thus, we will omit p from this part of the analysis, which means that two basic dimensions,
L and T, occur and that two repeating variables must be chosen. We will choose W and g for
repeating variables. This is a suitable choice because they contain between them both basic
dimensions of L and T and because W and g cannot form a dimensionless variable by
themselves.

Combining W and g with Q gives

Qxix 1 = Q

L3 T 1
X

— X _ ~

T L 1/2 L 5/2

Thisdimens onlessflow rateisaFroudenumber. Combining W and g with H obvioudy gives H /W,
and from e we obtain arelative roughnessterm e /W. The kinematic viscosity can be combined
with W and g to obtain

1, g x W32 _ WoW
\%

\Y

1/2
le_xL3/2~1

Lz T

Since any analysis that contains a viscosity, velocity and length can be expected to yield a
Reynolds number, we will replace this last variable by its product with the dimensionless flow
rate to obtain

Q__¢|H  Q
w2/gw LW W ww

Theresult contains both a Froude and Reynolds number, but thereisafundamental difficulty in
obtaining both Froude and Reynolds number similarity when the same fluid is used for model
and prototype. In particular, this requires

i, (. = (5,13,
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If g and v arethe samefor both model and prototype, this givestwo conflicting requirements:

5/2
& = % and & = %
Qm Wm Qm Wm
This contradiction is resolved by making use of our knowledge of irrotational flow. We know
that irrotational flow cal culationswould give ahighly accurate approximationfor Q if boundary
layer thicknesses are very small compared with flow depths on the spillway crest. This will
certainly be true for the prototype, since Reynolds numbers are very large, and it will be
approximately true for the mode! if model surfaces are made very smooth (e/D - 0) and if the
scaleislarge enough to havefairly large Reynolds numbers. Nobody knowswhat thisscaleratio
must be to ensure relatively small boundary-layer effects, but everyone agrees that it should be
aslarge as practically possible. Under these conditions, the dimensional analysis gives

1
W 2/gW W

and similarity regquirements become

i), (), | = |5
wWa/gw)  \ W3/ow) | W

Minimum spillway crest pressures depend upon the following variables:

P, = T(W,H,g,p)

in which boundary layer effects have been neglected. Dimensionsof p . are

M
Prnin F
and dimensions of the remaining variables have been given previously. Thistime dimensions of
massappear inboth p . and p, whichmeansthat p cannot bediscarded. Therearethreebasic
dimensions (M, L and T), andwewill choose W, g and p asrepeating variables. Combining
the repeating variables with p_. = gives

pminxixixi:pmin
g p W pgW
M T2 L®_ 1
X — X — x = ~1
LT 2 L M L
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Combining W, g and p with H gives H /W, and we obtain the following end result:

pmin :f ﬂ
pgW W

Thus, for similarity we have the requirements

( pmin) _ ( pmin) and [ﬂ
pgW), \ pgW) W

Example 10.2

Use the results from Example 10.1 to calculate Q, p,../(pg) and h for the prototype if a 1:20
scale model gives values of 0.0225 m*/s, - 0.12 m and 0.15 m, respectively, for aparticular run.

Solution: The Froude number similarity requirement gives

512
[L) [L) or Qp(%] Qm(ﬁ)w (0.0225) - | 402 m¥s
w2/gw) | w2/gw) W, 1

m

The corresponding reservoir depth is

W
H = _P
W

m

H - 2_10 015) -| 30 m

and the minimum crest pressure head is

[pmin) %[‘i] -2 (012 -| -24m
pg p Wm pg m 1

This is well above the vaporization pressure head at sea level and 5°C of - 10.2 m (gage
pressure).
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Selection of Independent Variables

Up to this point we have been concerned entirely with the process of combining dependent and
independent variables into dimensionless variables. Thisis an important step in a dimensional
analysis, and it obvioudly is a step that must be mastered if correct results are to be obtained.
However, the most difficult step in an analysis is the first step, the step in which independent
variables are chosen. This process frequently requires a combination of mathematical and
physical insight that can be learned only through experience. In fact, that is the primary reason
for placing this chapter at the end rather than at the beginning of a series of chapters that are
concerned with the study of basic fluid mechanics.

Normally, an experimental study hopes to obtain results for a class of flowswith geometrically
similar geometries. Thismeansthat asingle geometriclengthisusually sufficient to characterize
the flow geometry, and specification of more than one geometric length would beincorrect since
afunctional rel ationship should not have morethan one dependent variable. An exception occurs
if the orientation of the geometry changes during the experiments. In this case, one or more
angles, which are already dimensionless, must be included in the list of independent variables.

It is often necessary to include avelocity in the list of independent variables. For example, the
velocity at infinity was included in (10.1) since a change in U_, with all other independent
variablesheld constant, would certainly changethedrag force, F. It would have beenincorrect,
however, to include a second velocity for any other point in the flow. This is because the flow
net and one specified velocity are sufficient to calculate the velocity at all other points in the
flow.

Some of the most difficult variablesto consider are the mass density, p, theviscosity, i or v,
and the gravitational constant, g. Generaly, since the Navier-Stokes equations can be written
in theform

DV
-Vp + pg + UV?V = p ot (10.37)

itisaways possible to divide the pressure, p, into the sum of ahydrostatic pressure, p,, and a
dynamic pressure, p, .

P =Ps * Py (10.38)
The hydrostatic pressure satisfies (10.37) when V = 0.

-Vp, + pg =0 (10.39)

Subtraction of (10.39) from (10.37) and use of (10.38) gives

DV
~Vpy + UV?V = p ot (10.40)
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Equation (10.40) can be solved simultaneously with the continuity equation

V-V =0 (10.41)

for the unknown values of p, and V. After p, has been calculated from (10.40) - (10.41), p,
can be cal culated from the principles of hydrostatics and added to p,, to obtain p in (10.38). We
will use (10.40) - (10.41) to show when g and p must be included in an analysis.

Since g is missing from (10.40) - (10.41), the solution for p, and V will not depend upon g
unless g enters the problem through a boundary condition on either a free surface or an
interface between two fluids with different densities. Along a free surface p = 0 and, from
(10.38), p; = - p,. Since p, is shown from (10.39) to depend upon g, we seethat p, and V
will also depend upon g. The only exception occurs when changes in free surface elevation are
small compared with V %/(2g), as shown with Equations (4.9) - (4.10). One common example
of this occursfor free jets with extremely large velocities.

Prandtl (1952) points out that constant-density two-layer flows can be simplified if one of the
layershasapressuredistribution that isnearly hydrostatic. He givesasan examplealayer of cold
dense air flowing across a mountain range beneath arelatively thick layer of warmer air. Inthis
case pressures in the upper layer of warm air are nearly hydrostatic. Pressuresin the layer with
a hydrostatic pressure distribution satisfy

-Vps + ps9 =0 (10.42)

Thus, since pressuresin the other layer satisfy (10.37), subtraction of (10.42) from (10.37) gives

DV
“VPg t(pp)g t HYEV = p (10.43)

inwhich p and p, areprescribed constants. Thedynamicboundary conditionaongtheinterface
requiresthat p, = 0, sothat (10.43) showsthat the interface can betreated as afree surface but
withareduced gravitational term (p - ps) g. Insteady flow thismeansthat if achangein velocity
creates a certain depth change in an open channel flow, then the same change in velocity for a
two-layer flow has adepth change that is magnified by theratio p/(p - p). In unsteady flow the
reduced gravitational termincreasesthetimescalefor aproblemasp - p,)- 0. Inadimensional
analysisfor thistype of problem we canreplace p, p, and g withjust p and (p -ps)9 = gAp
in the list of independent variables, a simplification that ultimately leads to the densimetric
Froude number defined in Eq. (10.34). If, on the other hand, pressure distributionsin one of the
layers cannot be described by (10.42), then it becomes necessary to include all three of the
variables p, p, and g.

The mass density, p, isseen from (10.40) - (10.41) to appear in any problem that has non-zero
accelerations. For example, Stoke's solution for creeping flow past a sphere neglects
accelerations, and Eq. (7.14) showsthat p doesnot appear inthe expression for thedynamicdrag
force. (If a buoyancy force must be included as part of the problem, then pg re-enters the
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problem. Thisis because abuoyancy forceis calculated from p,, whichis seen from (10.39) to
depend upon p g. Frequently, however, we study only the dynamic effectsof aproblem sothat g
can beomitted.) In another example, fully devel oped laminar flow in apipe haszero acceleration
everywhere, and Eqg. (7.10) shows that the dynamic pressure loss is independent of both
p and g. [If we consider only dynamic pressures, then h = pd/(pg). Since v = u/p onthe
right side of (7.10), both p and g cancel out of the solution for the dynamic pressureloss.] On
the other hand, Eq. (7.51) and the Moody diagram, Figure 7.18, show that the dynamic pressure
lossinturbulent flow isindependent of g but dependsupon p. [For example, f dependsupon /D
but not Re for completely turbulent flow in a rough pipe, and p does not cancel out of
Eq. (7.51).] Thisis because highly turbulent flow has instantaneous accel erations that are non-
zero, even whentime-averaged vel ocities are not changing with time. Thus, p must beincluded
in any problem that has non-zero accelerations, and this includes problems in which
instantaneous accel erations are caused by turbulence.

The viscosity can be expected to appear in any problem for which Reynolds numbers are
sufficiently small. It will also appear in high Reynolds number flows that have laminar
boundary layers or laminar sublayers next to a boundary either (a) if tangential boundary
stresses are an important part of the problem or (b) if points of flow separation change
location with changes in the Reynolds number. Examples of some of these possibilities are
showninFigure7.3. Inparticular, thedrag coefficient for acircular disk varieswith the Reynol ds
number for 0 < Re < 10° but remains constant thereafter. Evidently, since flow separates at the
sharp disk edge for all but the smallest values of Re, pressures on the disk surface change with
viscosity until Reynolds numbersreach about 10°. Thedrag coefficient for aspherevariesrapidly
with Reynolds number for 0 < Re < 10%. Thereafter, C, remains nearly constant until
Re =~ 3x 10°, when the pressure distribution is changed abruptly by the onset of turbulencein
the boundary layer. Thedrag coefficient for aflat plate aligned with theflow isseenin Figure 8.5
to depend upon Re, and thereforethe viscosity, until the laminar sublayer vanishes and the plate
becomes hydraulically rough. Thereafter, the influence of viscosity disappears.

With this background it now becomes easy to see why some variables have been included and
others omitted in the problems considered so far. Equation (10.1) contains p because the fluid
isaccelerated as it passes the object, and g was omitted because no free surface is present and
we have only considered the dynamic drag force. The viscosity is important if flow occurs at
lower Reynolds numbers, if surface drag is a significant part of the total drag force or if points
of flow separation change location with Re. The roughness, €, was included because it may
create turbulence within the boundary layer at high enough Reynolds numbers and because
relativeroughness hasastronginfluence on surface drag when thelaminar sublayer vanishes. For
relatively short, unstreamlined bodies submerged in moderate to high Reynolds number flows,
both v and e can be omitted if points of flow separation are fixed at sharp corners.

In Example 10.1 g wasincluded because of the presence of afree surface. The massdensity, p,
was included because flow is highly accelerated as it passes over the spillway crest. (p later
dropped out of the analysisfor Q because none of the other variables contained dimensions of
mass. However, p did combine with the pressure, p, when spillway crest pressures were
considered.) Both v and € were included because boundary layer thicknesses can be a
significant portion of flow depths on the crest for small enough Reynolds numbers.



10.14 Chapter 10 —Dimensional Analysis and Model Smilitude

Example 10.3

,‘% Weight = W

- ) r/ﬁ_=”
=" Q?
L @ |
I

A small scale moddl is to be used to predict the total drag force on a ship. Carry out a
dimensional analysis for this problem.

Solution: The drag force can be expected to be a function of the following variables:
F=f(U,0,p,0,v, e, W)

The ship velocity, U, and hull length, (, are obvious choices for independent variables that
influence the magnitude of the drag force, F. The mass density, p, isincluded because fluid
accelerations occur. The gravitational constant, g, results from the presence of afree surface.
The kinematic viscosity, v, and relative roughness, €, are included because surface or skin
friction dragisasignificant portion of thetotal dragforceonawell streamlined ship. Finaly, the
total weight, W, of the ship and its cargo isincluded since thiswill determine the submergence
depth of the hull. Dimensions for these variables follow:
ML L M L L2 ML

F~~— U-~=, (¢~L, p~—, g~—, V~—, €~L, W~ —
TZ T L3 T2 T TZ

Therearethreebasicdimensions (M, L and T ) represented, andwewill choose U, ¢ and p for
repeating variables. This means that 8 - 3 = 5 dimensionless variables will result. Combining
U, ¢ and p with each of the remaining variables can be carried out either by setting down each
group of four variables and using appropriate powers to make units cancel or by making use of
past experience to write the end result. (U, ¢ and p combined with F will give an Euler
number; U, ( and p combinedwith g will giveaFroudenumber; U, ¢ and p combinedwith v
will give a Reynolds number; etc.) In either case, an acceptable final result is

F/()_Zif U Ut e W

oU 212 Joi v U pgfd

[An observant student will notice that combining U, p and ( with W gives

W
pl2U 2
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This dimensionless variable was then replaced by its product with (U/\/@)2 to obtain a
dimensionlessvariable, W/ (p g 123), that effectively determinesthe hull submergence depth when
the ship is not moving. This step is not obligatory. It is merely aresult of the writer's personal
tastes.]

Example 10.4

Discuss difficulties that arise when trying to use the results from Example 10.3 to scale drag
forces from model to prototype.

Solution: Theend result of Example 10.3 requires both Froude and Reynolds number similarity.

(L) [L) and [w) [w)

vau) ., \Wat), Vi AV

If thesamefluidisused for model and prototype, thisgives conflicting requirementsfor velocity
scales.

U 0 U 0

—m M oand M- P
U, 0, U, I

In practice, this difficulty is circumvented by an approximate method that divides the total drag
into the sum of pressure drag and surface drag.

The surface drag is calcul ated analytically with approximations from boundary layer theory for
both model and prototype. Then the pressure drag is scaled using experimental resultsfrom the
model with the following approximation:

Fpmlﬂ2 s U W
pU 2/2 Jat  pg®

Both model and prototype are normally considered to have smooth boundaries. However, there
is some uncertainty in Figure 8.4 about whether calculations for the model should assume a
completely laminar boundary layer, a completely turbulent boundary layer or a boundary layer
that is partly laminar and partly turbulent. This problem is usually solved by roughening the
leading edge of the model to ensure a completely turbulent boundary layer.
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Example 10.5

A 1:100 scale model hasatotal dragof F = 0.9 N whentowed at aspeedof U = 1.0 m/sin
fresh water. The smooth hull has its leading edge roughened, a wetted length of 0.60 m and a
wetted surface areaof 0.10 m?. Calculate for the prototypein salt water the corresponding speed,
total drag force and power required to overcome the drag force.

Solution: The model surface drag calculation requires a Reynolds number.

UL _ (L0)(06)
\J 1.31x10°

Re = = 46x10°

Since the rough leading edge ensures a completely turbulent boundary layer, Figure 8.4 gives
C, = 0.0052
This allows an approximate cal culation of the model surface drag.

Eo-caoY’ - 00052 (0.10) (10000 L9 026 N
surpo7’(- )()( ) > = U

Thus, the pressure drag for the model is

Frs=F Fg =09-026 =064 N

pres

The corresponding prototype speed is obtained by requiring Froude number similarity.

(i) = [L) or -U_ |2 = 100 10 m/s = 36 km/hr
vat),  \vat), JQ

Euler number similarity gives the prototype pressure drag.
2 2
Fr2 | [ Fi? e P Y%k
= or Fp =F,— | — —
pu2) pU2/2) Pm { Un I

Since U /U = /i, /0, thisgives

p m
pm m

3
(
F =F &[—p] (064)(1025)(1cl)o) - 6.56x10° N
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The prototype Reynolds number is

UL _ (10) (0.60 x 100)
\J 1.31x10°

Re = = 4.6 x 108

inwhich L has been computed from the product of the model wetted length with the scaleratio.
Figure 8.4 gives

C, = 0.0017
Thus, the prototype surface drag is
u? 10°

Far = CoAp =~ = (0.0017) (0.10 x 100?) (1,025) = = 871x 10* N

Adding the prototype surface and pressure drag forces gives the total drag.

F=F,«* Foq = 6.56x 10° + 8.71x10* =| 7.43x10° N

pres

Finally, the power required to overcomethisdragiscal culated from the product of the drag force
and speed.

Power = FU = (7.43x 10°)(10) = 7.43x 10° watts

=| 7.43 megawatts

Example 10.6

Carry out adimensional analysisfor velocitiesin the highly turbulent axisymmetric submerged
jet shownin Figure 7.13.

Solution: It was pointed out in Chapter 7 that experimental pressures have been found to be
hydrostatic throughout a turbulent submerged jet when the receiving reservoir of fluid is
relatively large. Therefore, a control volume contained between any two vertical planes in
Figure7.13 hasazero horizontal pressureforce, and the horizontal momentum flux through each
of the two vertical planes must be identical. In other words, the momentum flux through any
vertical planeremainsunchanged asthe z coordinate of the plane changes, which meansthat this
constant momentum flux can be computed from the momentum flux at the nozzle.
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M, = pUgmD %/4

In general we would have to expect that the velocity, u, at any point in the flow would depend
upon both U, and D. However, the preceding comments about momentum flux suggest that it
might be possible to combine U, and D into the single term M, for large enough values of
z/D. Experiments have shown that thisis possible, and, for large enough values of z/D, the
nozzleisreferredto asa* point source of momentum”. Thus, thefollowing analysisisvalid only
for the zone of established flow in Figure 7.13.

The time averaged velocity in the zone of established flow is a function of the following
variables:

u= f(MO, o, I, z)

The mass density, p, has been included because accel erations occur both in the mean flow and
in the turbulent velocity fluctuations. The gravitational constant, g, has been omitted because
there is no free surface, and the viscosity has been omitted because measurements show that
changesin viscosity have anegligible effect on time averaged velocitiesin highly turbulent flow
at large Reynolds numbers. Dimensions of these variables follow:

Mmo-MEo S ML 2L

4 -y E

L
T b
Sincetherearethreebasic dimensions (M, L and T) represented, wewill choose M), p and z

as repeating variables. This will give 5 - 3 = 2 dimensionless variables. Combining
M,, p and z with u gives

1 uz
u x X4 Jp Xz =
\/M7() VM, /p
Lx T xNxL~1
T

M L 3/2

Combining M,, p and z with r obviously gives r /z. Thus, we obtain

23

If weset r = 0, we get an expression for the maximum velocity at the centreline in the region
of fully established flow.
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The constant C, has been determined experimentally to be C, = 7.0, and substitution for
M,/p and C, leadsto Eq. (7.53).

=—"— for 62 <z/D <

If we divide the first circled equation by the equation for C, that followsit, we obtain

ufr,z) _f(r/z) _ e—Czrzlzz
U C,

max

for 6.2 < z/D < »

in which the given exponential function has been found empirically to provide a close fit of
experimental data. The constant C, can be calculated from C, by using the constant momentum
flux regquirement.

M, =fpu2(r,z)2nrdr
0

Substitution for M, and u(r, z) gives

-2C,r2/z2
2 " rd

pUSnD2/4 = 2npU.%, f e r
0

27p

2
6.2U, f o2
z/D s

By cancelling terms and changing the integration variablefrom r to £ = r /z (with z fixed) we

obtain

- 2622 [ e 2% £dE = 2(62)7 —
(6.2) { £dg = 2(6.2) o

1
4 2

Thus, we calculate for C, the value given in Eq. (7.54).

C, = 2(6.2)% = 77

Thefollowing plot showsthe experimental variation of centreline velocity for an axisymmetric
jet. [Reproduced from Albertson, Dai, Jensen and Rouse (1948).]
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Example 10.7

For a number of years civil engineering students at Canterbury have carried out a laboratory
experiment in which spheres are suspended in turbulent jets of air and water, as shown in the
following sketch:

ps = Sphere density

p = Fluid density
‘/ﬂ/rr; Velocity of approaching flow

Up
iy o

&Nozz!e




Chapter 10 — Dimensional Analysis and Model Smilitude 10.21

The sphere hasan equilibrium position that is stable for small horizontal displacements because
of the velocity distribution of the approaching flow. For example, if the sphere is displaced
dightly to the right of its pictured position, the bell shaped velocity distribution in the
approaching flow creates higher vel ocities and lower pressures on the left side of the spherethan
ontheright. Asaresult, an unsymmetric pressure distribution forces the sphere back towardsits
original position aong the jet centreline.

The vertical elevation, z, of the sphere is afunction of the following variables:

z = f(d, gAp, p, M0>

inwhich d = spherediameter, g = grawtatl onal constant, p = fluid massdensity, p, = sphere
mass density, Ap = p,-p and M, = p U0 nD2/2 = nozzle momentum flux. Our previous
experience with hi gth turbulent submerged jets suggests that viscosity is unimportant and that
the nozzle diameter and flow velocity can be combinedinto M, for apoint source of momentum.
The fluid mass density, p, has been included because fluid accelerations are present, and d is
needed to fix the scale of the experiment. Setting the summation of vertical forces equal to zero
for the sphere gives

d(ps - p)nd¥6 = Cp(nd%4)pU 2/2
in which the | eft side is the difference between the sphere weight and the buoyancy force, and
the right side is a drag force calculated from an unknown drag coefficient and characteristic
velocity in the approaching flow. Since p_ and g appear in the equation only in the form
g(pS - p) = gAp, thissuggeststhat p, p, and g might be replaced by gAp and p.

Dimensions for the five relevant variables follow:

z~L, d~L, gAp ~ M , p~M, M ~M—|2'
T

Since there are three basic dimensions represented (M, L and T), we will choose
d, gAp and p for repeating variables to obtain 5 - 3 = 2 dimensionless variables. Combining
the repeating variableswith z gives z/d, and combining the repeating variableswith M, gives
the following result:

This gives the relationship
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However, since M,, isproportional to pUOZ, we seethat the dimensionless momentum flux term
isactually adensimetric Froude number. For thisreason, wewill replacethistermwithitssquare
root to obtain

Ile
d3gAp

Il
—

olN

Some experimental measurements confirming this result are shown in the following plot:

Symbol Object Fluid | d/D
o Steel sphere Water | 2.0
14 A Glass Marble ! 4.0
[} Table Tennis Ball | Air 2.0
[
12—
[ J
10 —
z/d
|
8 |—
S
- £
[ )
(o]
I £
O
4
AO
2 |— A o]
0 | | | | |
0 1 2 3 4 5
3MQ
d'grp
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Chapter 11

Steady Pipe Flow

Pipe-flow problemsareimportant for engineerswho design distribution systemsfor water supply
and waste disposal. These are problemsin which control volumes have extremely large ratios of
length to width. Thus, as explained in Chapter 4, the Bernoulli equation must be modified to
account for energy losses that result from work done by tangential stresses. This means that
Eq. (4.12)

u; U,
h, + — =h, + —= + H, (11.1)
29 29
and aone-dimensional form of the continuity equation
Q = UA =UA, (11.2)

arethemaintoolsof analysis. Wewill let z beavertical coordinatethat ispositivein the upward
direction, which means that the piezometric head in (11.1) has the following form:

h=2 7 (11.3)

The head loss term in (11.1) most generally consists of the sum of friction losses over long
lengths of pipe, given by Eq. (7.51 a),

U2

L
H = f —_— 4
(ll. )

L

and local or “minor” losses expressed in any one of the three forms suggested in Example 4.2:

U
AR (11.5)

in which cross sections 1 and 2 are immediately upstream and downstream, respectively, from
the sudden change in pipe geometry that createsthelocal loss. Local lossesare theresult of high
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levels of turbulence, flow separation and/or secondary flows. These losses occur over relatively
short lengths of pipeasaresult of pipeexpansionsand contractions, bends, valvesand other pipe
fittings. They areusually called “minor” |osses because oftenthey are small compared tofriction
losses. Thisisnot alwaystrue, however, and wewill prefer to describetheselossesaslocal rather
than minor.

Foundations for the use of (11.4) have been given in Chapter 7 and will not be repeated in this
chapter. Instead, we will remind readersthat L and D are the length and constant diameter,
respectively, of the pipe and that the friction factor, f, isafunction of the Reynolds number,
Re = UD /v, andrelativeroughness, e/D. Valuesof € and f aregiveninthe Moody diagram
shown in Fig. 7.18.

Withafew exceptions, local loss coefficientsareusually determined experimentally. Onenotable
exception occurs for a sudden expansion, for which it was shown in Example 4.2 that

K, =1
2
A
K,=|1-=2
A, (11.64a,b, c)
2
K, = Py
Al

Equations (11.6 a) and (11.6 b) also hold for the limiting case of a submerged pipe discharging
into alarge reservoir, in which case U, vanishesand A, isinfinite.

Local loss coefficients for sudden contractionsare givenin Table 11.1, and loss coefficients for
somecommercial pipefittingsareshowninTable11.2. Losscoefficientsfor gradual expansions,
bends and various other pipe transition geometries and fittings can be found in other texts, such
as Albertson, Barton and Simons (1960).

Table11.1 Loss coefficients for sudden contractions.

D,/D, K,
1 0
0.8 0.13
0.6 0.28
04 0.38
0.2 0.45
0.0 (reservoir inlet) 0.50
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Table 11.2 L oss coefficientsfor commer cial pipefittings.

Globe valve (fully open) 10
Angle valve (fully open) 5
Swing check valve (fully open) 25
Gate valve (fully open) 0.2
Close return bend 2.2
Standard tee 18
Standard elbow 09
Medium sweep elbow 0.75
Long sweep elbow 0.6

Hydraulic and Energy Grade Lines

Every termin Egs. (11.1) and (11.3) has dimensions of length. This makes it possible to show
in a sketch for any pipe-flow problem the qualitative behaviour of each term in these two
equetions Theenergy gradeline (eboreviated EGL) showsthemagnitudeof theBemoulli sum, h + U 2/(2g).

Thislineis sketched by starting from its known elevation at a point upstream (often areservoir
free surface). Friction losses are shown by (11.4) to cause the EGL to slope downward linearly
with distance in the direction of flow, and local losses, given by (11.5), are assumed to create
discontinuitiesin the EGL at the locations of expansions, contractions, bends, valves, etc. The
hydraulic gradeline (abbreviated HGL ) showsthemagnitude of the piezometrichead, h. Since h

differs from the Bernoulli sum by the velocity head, U 2/ (29), the HGL isparal€ to the EGL
and lies below it by an amount U 2/(2g). Since z in (11.3) is the elevation of the pipe
centreline, the pressure head, p/(pg), is the vertical distance between the HGL and the pipe
centreline. Therefore pressures in the pipe are positive and negative, respectively, when the
HGL liesabove and bel ow the pipe centreline. Thefollowing examples should help make these
ideas clear.
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Example 11.1
U /(29)
=1 | __Ea_ |
____HGL _ T T~ — e _EGL
—‘____ ~§§~§~
H e _ HaL

— —

] Gate valve

=Y K5 =10.38 ql,{/
LA A Free jet A
Y "/ 2 2 .\/ / J

Two pipes, joined in series, allow flow to exit from areservoir. Theloss coefficient for the gate
valveiszerosince no free shear layer and associated turbul ence exist downstream fromthevalve.

Sketch the energy and hydraulic grade lines. Then use symbols to write an equation that could
be solved for the flow rate leaving the reservair.

Solution: The EGL and HGL are shown in the sketch with dashed lines. Since atmospheric

pressure exists both on the reservoir free surface and within the free jet, writing (11.1) between
these two points gives

H = (Q/ZAJ)Z + 1, % (leAl)z + 1, i (Q/A2)2
g 1 g D, 29
+ 05 Q/A,f + 0.38 w
29 29

inwhichthearbitrary datum hasbeen chosen to coincidewith the pipe centreline and thevel ocity
on the reservoir free surface has been taken as zero.
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Example 11.2

Supposethat the pipesin Example 11.1 arecommercial steel and that the following dataapplies:

H =10 m AJ = 0.003 m?
L, = 100 m L, =10m
Dl = 200 mm D2 = 80 mm

Water Temperature = 10°C

Calculate the flow rate, Q.

Solution:  Calculations give A, = 0.0314 m? and A, = 0.0050 m?. Figure 7.18 gives
€ = 0.046 mm for commercial steel, whichleadsto e/D; = 0.00023 and €/D, = 0.00058.
Inserting these numbers in the equation obtained for Example 11.1 gives

10 = (5663 + 25847 f, + 251,811 f, + 26 + 766)Q?

Solution for Q gives

i 1
/646 ~ 2585T, + 25,181T,

in which f, and f, vary with relative roughness and Reynolds number. This means that
f, and f, arefunctions of Q, and this equation must be solved by successive approximation.

Thevaluesof €/D, = 0.00023 and €/D, = 0.00058, when used with Fig. 7.18, suggest that
we might start with f, = 0.0143 and f, = 0.0178. Thisgives

Q = 0.0297 m3/s

e - UiDi  Q/A)D:  (0947)(200) _ 4 4e s g0
! v v 1.31x10°®

Re, = 3.61x 10°

2

Thesevaluesof Re and /D givenew valuesof f, = 0.0183 and f, = 0.0184. Thisgivesthe
following second approximation: O - 00294 m¥s

Re, = 1.43x 10°
Re, = 357 x 10°

Since valuesfor f, and f, do not change in the next cycle, we have the final result

Q = 0.0294 m?3/s
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Example 11.3

Point B
r /

v Elev=H | £Gy
EGL
N *d‘iIZ:L u2g)
Jo T~ gQL
\\ Q
Ts 1 v Elev=0
Q =
e
Kg = o/ p/(pg)
Ky, =1
EE -’

\

K2 = K3 = 0.9 at all bends

Sketch the EGL and HGL and write an equation that could be solved for the flow rate through
the siphon shown in the sketch. Then determine the lowest negative pressure in the pipe.

Solution: TheEGL and HGL areshownwith dashed lines. Sincethepipeentranceisrounded, K, = 0
and the EGL starts at the free surface elevation in the upstream reservoir. Friction lossesin the
vertical pipe sectionsand local losses at the four pipe bends cause vertical discontinuitiesin the
EGL, and EGL slopes are the same for all horizontal sections of pipe since the pipe diameter is
constant.

The HGL is parallel to the EGL and liesavertical distance U %/2g below it. Furthermore, since
pressures are known, from experiment, to be hydrostatic within asubmerged jet entering alarge
reservoir, the HGL meets the free surface in the downstream reservoir. Pipe pressures are
negative at points where the pipe centreline lies above the HGL.

Writing (11.1) between pointson thefree surfaces of thetwo reservoirs, where U = 0, givesthe
following equation to solvefor Q:

H - a09) QAP 1 QAR (L (QIA?
29 29 D 2Zg
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in which z has been measured upward from the downstream reservoir free surface. Since f
depends upon Q, the solution of this equation would have to proceed by successive
approximation.

Pressures within the pipe can be calculated once Q has been determined. Inspection of the
relative elevations of the HGL and pipe centreline shows that the lowest negative pressure will
occur either immediately downstream from point B or elsefurther downstream. If p, and z, are
the pressure and el evation of apointimmediately downstream from point B, then an application
of (11.1) between this point and a point further downstream in the vertical section of pipe gives

Pe QA2 _ p

— + Z, +

U (o LY P S B YN
pg 9 pg 9 D 29

This equation can be put in the following form:

(Q/A)?

Lot
D 29

(%)

Since p varies linearly with z, there can be no relative minimum for p. If the last term is
positive, then an absoluteminimumfor p occurswhen (z, - z) = 0. If thelasttermisnegative,
then an absolute minimum occurs where (z, - z) attains amaximum positive value. However,
the circled equation that was written to obtain Q shows that

i L
D Zg 29 29

This gives the inequality

f QA2 _H
D Zg L

The problem sketch showsthat H/L < 1, which leadsto the following inequality:

£ (Q/AP
D 29

1- >0

Thus, the minimum value of p/(pg) occurs where (zB - z) =0

Min {ﬂ} = E
P9 pg

An application of (11.1) between a point on the upstream reservoir free surface and the point
immediately downstream from point B gives
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P QA 500 QAS ¢ Le Q/AF

29 29 D 29

H = +Z

B

2|
«Q |w

inwhich L; = pipe length between point B and the upstream reservoir. This equation can be
solved for the minimum pipe pressure, pg. If py exceeds the vaporization pressure of water,
then cavitation will not occur. (A brief discussion of cavitation is given in Chapter 9 in
connection with Fig. 9.11.)

Hydraulic Machinery

A civil engineer sometimes needs to design pipe systems that contain pumps or turbines. The
purpose of this section isto acquaint readers with afew of the fundamental ideas that are used
to choose pumps or turbines for specific applications. More detailed discussions of hydraulic
machinery are given in other texts, such as Streeter and Wiley (1981).

The power delivered to a system by apump or extracted from a system by aturbine is given by

P = pgQAH, (11.7)

in which P = power in watts (W = N-m/s = kg-m%s3), p = fluid mass density
(kg/m3), g = gravitational constant (m/s2), Q = flow rate (m%s) and AH,, = change in
Bernoulli sum across the machine (m). The output power required from amotor to drive apump
shaft isobtained by dividing (11.7) by the pump efficiency, and the power delivered by aturbine
is obtained by multiplying (11.7) by the turbine efficiency. Linsley and Franzini (1955) suggest
that impulse, Francis, propeller and K aplan turbines can have efficiencies as high as 80 to 95 per
cent. Peak efficiencies for centrifugal pumps are of the order of 80 to 90 per cent.

Equation (11.1) must be modified when hydraulic machinery is present. The modification takes
the form

2

U
—* + —2 4 H_+ AH,, (11.8)
29 29

inwhichtheplusand minussignsinfront of AH,, areusedfor aturbineand pump, respectively.
The correct sign is easily remembered since a turbine subtracts energy from aflow and a pump
adds energy. Consequently, when sketching an EGL, a step decrease in elevation of the EGL
occurs at aturbine and a step increase at a pump.

Turbines are usually designed individually for each specific application. Pumps, however, are
mass produced, and pump manufacturers routinely provide pump characteristic curvesfor their
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AHpy

\

0
0

Q

Figure 11.1 A typical characteristic curve for a

centrifugal pump.

products.” The most important of these
curves from our standpoint is a plot of
AH,, versus Q. An example of atypical
characteristic curve for a centrifugal pump
isshowninFig. 11.1.

Sometimesit becomes necessary to connect
two or more pumps in either series or
paralel. In this case a single equivalent
characteristic curvecan beconstructed from
the curves for each pump by remembering
that Q isconstant and AH,, additive for
two pumps connected in series, asshownin
Fig. 11.2. When pumps are connected in
paralel, AH,, is constant and Q is
additive, asshownin Fig. 11.3.

A
Two pumps
)
( P AHyy
AHpy
One pum
| pump
(7) e
i -""--.___-
AHpy
<
TQ 0 F -
0 Q

Figure 11.2 An equivalent pump characteristic curve for two pumps connected in series

Choosing a pump to deliver a specified discharge, Q, generally requires the following steps:

1 Apply Eq. (11.8) with the specified Q to calculate AH,,.

2 Choose from a set of characteristic curves supplied by a pump manufacturer apump that
will supply the given Q and calculated AH,, at areasonably high efficiency.

3 Choose amotor that will provide sufficient power to turn the pump shaft.

It is possible to use a pump in reverse as aturbine for relatively small applications. Efficiencies are likely to

be reduced, however.
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A
7N\ AHy,
( P ) Two pumps
\/ N
~
ol N 4 0 >, ¢
77\
\_/ One pump
0 >
0 Q

Figure 11.3 An equivalent pump characteristic curve for two pumps connected in parallel.

In some applications it becomes necessary to calculate the flow rate, Q, delivered by a pipe
system that has a given pump aready in place. This requires the simultaneous solution of
Eq. (11.8) and a pump characteristic curve that plots Q versus AH,,. The solution is obtained
by using (11.8) to calculate and plot AH,, for anumber of specified values of Q for the pipe
system. The intersection of this system curve with the pump characteristic curve gives the
operating point, as shownin Fig. 11.4.

A Eq. (11.8)

AHp, Pump curve

Operating point

0 . >
0 Q
Figure11.4 Calculationof AH,, and Q for agiven pump installed in a pipe system.
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Example 11.4

Free jet:

D = 100mm A, = 0.003m?
f=0.015 3
Y Q =0.03m /s

A flow of 0.03 m%s can be diverted from a small stream through a 50 m length of pipe and
discharged asafreejet at apoint 25 m below the free surface of the stream intake. Neglect local
losses and assume an efficiency of 100 per cent to cal culate the maximum amount of power that
could be produced by placing aturbine in the pipe line.

Solution: TheEGL and HGL are showninthesketch. A step decreasein elevation of theselines
occursat theturbinelocation. Application of Eq. 11.8) between apoint on the free surface above
the intake and a point in the free jet gives the following result:

QAF f

b QAP | \n

L
29 D 2g M

Substitution of the given numbers leads to the result
AH,, = 143 m

Equation (11.7) can now be used to calculate the power extracted from the flow, which would
also be the power produced by the turbineif it were 100 per cent efficient.

P = pgQAH,, = (1000)(9.81)(0.03)(14.3) = 4,220 W

P = 422 kW

An 80 per cent efficiency would reduce P to 3.37 kW.
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Example 11.5

Free jet:
A, = 0.003m?

Q= 0.01m3/s

H=2m

L = 50m
D = 100mm
f =0.013

A pump is to be used to force 0.01 m¥s of water through a 50 m length of pipeto apoint 2 m
above the intake free surface. Calculate the value of AH,, that must be supplied by the pump.
Then estimate the power that must be used to drive the pump if the pump and motor together are
80 per cent efficient. Neglect al local losses.

Solution: TheEGL and HGL are showninthe sketch. A step increasein elevation of theselines
occurs at the pump location. Furthermore, the pipe centreline lies above the HGL between the
reservoir and pump, which means that pressures in this region are negative. The magnitude of
these negative pressures can be reduced by moving the pump to aslow an elevation as possible.

If alocal loss at the pipe entrance is neglected, Eq. (11.8) can be applied between a point on the
intake free surface and a point in the free jet to obtain

2
29 G 2

Substituting the given numbers leads to the following value of AH,, :

AH,, = 310 m
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The values of AH,, and Q could be used with a manufacturer's set of pump characteristic
curves to choose a pump and motor for this application. If the pump and motor are 80 per cent
efficient, the power required to drive the system can be estimated from Eq. (11.7).

_ PYQAHy, (1000)(9.81)(0.01)(3.10)
efficiency (0.80)

P =380 W = 0.380 kW

Pipe Network Problems

We will define a pipe network to be any system that contains at |east one junction where three
or more pipes meet. Some examples are shown in Fig. 11.5. It is normally assumed when
working these problems that piezometric head and friction loss terms dominate the Bernoulli
equation. This meansthat Eqgs. (11.1) and (11.4) are approximated with

L (Q/A)
h,-h, = f= :
1hy =5 = (11.9)
and Eq. (11.2) is replaced with the following equation at each junction:
Xj: Q=0 (11.10)

in which flows out and into the junction are taken as positive and negative, respectively. When
Eqg. (11.9) is written for every pipe in the network and Eq. (11.10) for every pipe junction,
specification of h at one or more pipe ends or junctions gives enough equations to solve for h
at every pipejunction and Q through every pipe.

Pipe network problems can be formulated so that the unknowns are either flow rates or
piezometric heads. Since EqQ. (11.9) is nonlinear, either method requires the use of successive
approximation to solve a set of simultaneous, nonlinear equations. Large pipe networks can
contain many pipes, and computers are an essential ingredient in the solution of these problems.
In the writer's opinion it is easier to both understand and program the formulation in which
piezometric heads are unknowns, and this will be the only formulation that will be considered
herein. Readerswill find the second formulation, in which flow rates are unknowns, described
in most other texts. In either case, solution for one set of unknowns leadsto adirect calculation
of the other set from Eq. (11.9).

A typical junction in a pipe network is shown in Fig. 11.6. The junction under consideration is
labelled O, and the numbers 1 - 4 denote the other end of pipes meeting at 0. (The number of
pipesjoined at O isarbitrary. Thereisno particular reason for using four pipesin Fig. 11.6). The
external flow at node O isdenoted by Q, and hasasign that is positive for outflow and negative
for inflow. The resistances, R, for each pipe are defined by the following equation:
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Figure 11.5 Some examples of pipe networks.

Figure 11.6 A typical junction in a pipe network.
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Q =R (hy - ) (11.11)

inwhich, since R >0, the sign of Q isdetermined by the sign of (ho - hj . Thus, Q isalso
positiveand negativefor outflow andinflow, respectively. Expressionsfor R will begivenlater.

Substituting (11.11) into (11.10) and using the definition of Q, gives the following equation,
which has values of h at nodes 0 through 4 as its only unknowns:

4

Q + Y Ry -h)=0 (11.12)

j=1

By writing asimilar equation for every node at which h isunknown, and by specifying values
of h at the remaining nodes, we obtain as many equations as unknown values of h. These
equations can be solved by using either adirect method, such as Gaussian elimination, or by an
iterative technique, such as the Gauss-Seidel iteration. Iterative techniques are probably easier
to program and more efficient for this application. The Gauss-Seidel iteration uses Eq. (11.12)
in the following form:

hy = (11.13)

in which the upper limit on the sum has been changed to N to allow any number of pipesto be
joined at node 0. Theiteration proceeds by using the last approximations for hj intheright side
of (11.13) to cal culatethe newest approximationfor h,. Calcul ationsterminatewhenvaluesof h
cease to change significantly at all nodes for any two successive cyclesin the iteration.

Varga(1962) showsthat the Gauss-Seidel iteration will alwaysconvergefromany starting values
of h. if the governing equations are both linear and irreducibly diagonally dominant. Equation
(11.12) satisfiesthese criteriafor laminar flow when h is specified at one or more nodesin the
network. In this case Eq. (11.9) and f = 64/Re give the following constant value for R:

(11.14)

In most instances, however, flow is turbulent. Then R depends upon h, Eq. (11.12) becomes
nonlinear and there are no theorems to guarantee convergence. Nevertheless, Isaacs and Mills
(1980) report satisfactory convergence in applications they have considered. Equation (11.9)
shows that R has the following value for turbulent flow:
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D2 2gDI/L
R ==L
, a \Tin, 1] (11.15)

Equation (11.15) never givesasingular valuefor R. sinceasmall valueof | h, - hj | leadsto a
small Reynolds number and requiresthe use of (11.14) for laminar flow. Thisisoneminor detail
inwhich theformulation considered herein differsfrom the formul ation used by Isaacsand Mills
(1980), who effectively set R, = 0 when |hy - h, | became smaller than a specified value.

A computer coding for the solution of pipe network problems requires a convenient way of
calculating f for use in (11.15). Swamee and Jain (1976) obtained the following explicit
approximation for f:

f = 1.325 . for 10°° <

[In( % + 5.74 Reo'g) } (11.16)

and 5000 < Re < 10°

Vaues of f computed from (11.16) are within one per cent of values computed from the
following Colebrook implicit equation that was used to construct the Moody diagram in
Fig. 7.18:

1.325

in[ €D, 251

2 (11.17)

Equations (11.14)—(11.16) do not cover the transition zone 2000 < Re < 5000. The computer
program given at the end of this chapter uses (11.14) for 0 < Re < 2000 and (11.15)—(11.16)
for Re > 2000.
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11.17

Example 11.6

The problem shown in Fig. 11.5 b has the following data:

h, = 100m
2_ h,=80m
000m
L =700m 100mm
D = 100mm 0.05mm

e = 0.05mm

6 2
y=152x10 m /s

500m

o or-
o
o=

3

Use Eq. (11.13) to calculate h, and the flow rate in each of the three pipes.

Solution: Values of R for each of the three pipes are as follows:

R, - 0.0158 for 0 < Re < 2000
_ 0000348 ¢ Re > 2000
\/fl ‘ ho h h1 ‘
R, - 0.0226 for 0 < Re < 2000
_ 0000416 ;) Re > 2000
\/fz ‘ ho h hz ‘
R, - 0.0317 for 0 < Re < 2000
0.000492

= ————-""  for Re > 2000
vfs‘ hofhs‘

The relative roughness is the same for all pipes.
< - 00005
D
Reynolds numbers for each pipe are given by the following expression:

Re - 8.38x10°|Q, |
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Since Q, = 0, h; = 100m, h, = 80m, and h, = 0 m, Eq. (11.13) reducesto

100R, + 80R,
° R, +R, +R,

Vaues of Q, from the previous cycle are used to compute Re, and fJ. , Wwhich means that
guessed values for fj must be used for the first cycle. The following table summarizes the
remaining calculations:

Cycle | h, m f, f, f, |[Q (m¥% | Q, Q,
1 500 | 0017 | 0017 | 0017 | -00189 | -0.0207 | 0.0267
2 580 | 00194 | 00192 | 00187 | -00162 | -0.0141 | 0.0274
3 59.9 | 00197 | 00200 | 00187 | -0.0157 | -0.0132 | 0.0278
4 60.6 | 00197 | 00201 | 00187 | -0.0156 | -0.0129 | 0.0280
5 60.9 | 00198 | 00202 | 00187 | -00155 | -0.0128 | 0.0281
6 610 | 00198 | 00202 | 00187 | -00154 | -0.0128 | 0.0281
7 610 | 00198 | 00202 | 00187 | -00154 | -0.0128 | 0.0281

Since no change occurs in the calculated results from cycle 6 to cycle 7, the final answers are

h, = 61.0 m

Q, = -0.0154 m%s (inflow)
Q, = -0.0128 m®s (inflow)
Q, = 0.0281 m%s (outflow)

Despite the fact that the solution ceased to change after six cycles, continuity is not satisfied
exactly at the junction.

Q +Q,+Q, = -00001 # 0

This error, which is about 0.4 per cent of the flow rate Q,, can be reduced by retaining more
significant figuresin the calculations.
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Pipe Network Computer Program

The listing for a computer program that uses (11.13) - (11.16) to solve pipe network problems
isshown in Fig. 11.7. The program has been designed to require a minimum amount of input
data, with definitionsfor theinput data variables shown in comment statements at the beginning.
The piezometric head must be specified for at least one node, which is a requirement for
uniqueness. (If h isnot specified for at least one node, then the same arbitrary constant can be
added to h at all nodeswithout changing the flow rate through any of the pipes. Thisis because
the flow rate through each pipe depends only upon the difference between valuesof h atitstwo
ends, and the arbitrary additive constant cancels when cal culating this difference.) The external
flow rate, Q,, must be specified at all nodesfor which h isnot specified. Thus, either Q, or h,
but not both, must be specified for every node in the network. An example of the use of this
program for a network with 13 nodes and 18 pipesis shown in Figs. 11.8 - 11.9. Input datafor
thisproblem isprinted in thefirst 32 lines of the output data shown in Fig. 11.9. Units of metres
and seconds have been used for all variablesin this example.

The program makes no allowance for pumps inserted in a network. However, apump is easily
included by placing nodes in the pipe immediately before and after the pump, as shown in
Fig. 11.10. Then specification of an outflow and inflow with the same magnitudes at the
upstream and downstream nodes, respectively, alows calculation of h at each node. The
difference in these two values of h can be computed for the specified flow rate, and repeating
this calculation for a number of different flow rates allows a system curve to be plotted on the
pump characteristic curve. The intersection of the system and characteristic curves gives the
operating point for the system.

Colebrook and White (1937) found that commercial pipe roughness heights generally increase
linearly with time as the result of corrosition and deposition. The rate at which roughness
increaseswith time can be determined for any given pipe only by measuring thefriction factor, f,
a two different times. This means that prediction of e for a pipe often requires an educated
guess. It also meansthat it is unrealistic to expect extremely accurate predictions from any pipe
flow calculation.
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THIS CALCULATES SOLUTIONS FOR STEADY FLOW THROUGH PIPE NETWORKS
Heads, H(I), are specified and external flows cannot be specified at nodes
1 through NH. External node flow rates, Q0(I), are specified and heads are
unknown at nodes NH+1 through NQ. Other variable definitions follow:
NP = number of pipes
ERRA = allowable error
v kinematic viscosity
H(I) = head at node I for I = 1 through NH
Q0 (I) = external flow at node I for I = NH+1
through NQ (outflows positive,
inflows negative)
If K = pipe number, then
L(K) pipe length
D(K) pipe diameter
E (K) pipe roughness height
I1(K),I2(K) = node numbers at each pipe end
Use a consistent set of units for all variables.
REAL L
DIMENSION H(100),Q0(100),L(100),D(100),E(100),I1(100),I2(100),
1 N(100),ID(100,6),RL(100,6),RT(100,6),0Q(100),F(100)
OPEN (UNIT=1,FILE="'INPUT.DAT', STATUS='0OLD"')
OPEN (UNIT=2,FILE='OUTPUT.DAT', STATUS="'NEW')

1
(

NN NNONOCONOAQCNON

Data is entered and written out.

[eNeNe!

READ (1, *) NH,NQ,NP,ERRA,V
WRITE(2,1000) NH,NQ,NP,ERRA,V
1000 FORMAT (1X, 'NH=',I3,2X,'NQ=',I3,2X, 'NP=',I3,2X, 'ERRA=',F9.6,
1 2X,'V=',lPE10.2)
DO 100 I=1,NH
READ(1,*) J,H(I)
WRITE(2,2000) J,H(I)
2000 FORMAT (1X,'J="',I3,2X,'H=',F10.3)
100 CONTINUE
NH1=NH+1
DO 150 I=NH1,NQ
READ(1,*) J,Q0(I)
WRITE (2,2500) J,Q0(I)
2500 FORMAT (1X,'J="',I3,2X,'Q0=",F12.7)
150 CONTINUE
DO 200 I=1,NP
READ(1,*) R,L(I),D(I),E(I),I1(I),I2(I)
WRITE(2,3000) R,L(I),D(I),E(I),I1(I),I2(I)
3000 FORMAT (1X,'R=',I3,2X,'L=',F6.0,2X,'D=',F6.3,2X,'E=',F8.5,
1 2X,'Il1=',I3,2X,'I2="',1I3)
200 CONTINUE
c
C Variables are initialised and connectivity is determined.
c
G=9.806
PI=3.141593
DO 300 I=NH1,NQ
N(I)=0
H(I)=0.
300 CONTINUE
DO 400 K=1,NP
F(R)=0.02
N(I1(K))=N(I1(K))+1
N(I2(K))=N(I2(K))+1
D(I1(K),N(I1(K)))=
D(I2(K),N(I2(K)))=
400 CONTINUE

Figure11.7 A computer program that solves pipe network problems.
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C
C Coefficients are calculated
C
DO 500 I=NH1,NQ
NJ=N(I)
DO 500 J=1,NJ
K=ID(I,J)
RL(I,J)=PI*G*D(K)**4/(V*L(K)*128.)
RT(I,J)=SQRT(2.*G*D(K)/L(K))*PI*D(K)**2/4.
500 CONTINUE
C
C The solution is calculated by iteration.
C

10 ERRC=0.
DO 600 I=NH1,NQ
SUM1=-Q0 (I)
SUM2=0.
NJ=N(I)
DO 700 J=1,NJ
K=ID(I,J)
IF(I.EQ.I1(K)) THEN
J1=I2(K)
ELSE
J1=I1(K)
ENDIF
RE=4.*RT (I, J)*SQRT (ABS (H(I)-H(J1))/F(K))/(PI*V*D(R))
IF(RE.GT.2000) THEN
C=RT(I,J)/SORT (F(K)*ABS (H(I)-H(J1l)))
SUM1=SUM1+C*H (J1)
SUM2=SOM2+C
ELSE
C=RL(I,J)
SUM1=SUM1+C*H (J1)
SUM2=SOM2+C
ENDIF
700 CONTINUE
A =SUM1/SUM2
ERRC=ERRC+ (H(I) -A) **2
H(I)=A
600 CONTINUE
DO 750 K=1,NP
C=SQRT (2.*G*D (K) *ABS (H(I1(K))- (I2(K)))/(F(K)*L(K)))
RE=C*D (K) /V
IF(RE.GT.2000) THEN
Q(K)=C*PI*D(K) **2/4.
F(K)=1.325/(ALOG(E(K)/(3.7*D(K))+5.74/RE**0.9)) **2
ELSE
C=PI*G*D(K)**4/ (V*L(K)*128.)
Q(K)=C* (ABS(H(I1(K))-H(I2(K))))
ENDIF
750 CONTINUE
ERRC=SQRT (ERRC)
IF (ERRC.GT.ERRA) GO TO 10
c
C The solution is written out.
c
DO 800 I=1,NQ
WRITE(2,4000) I,H(I)
4000 FORMAT(1X,'H(',I3,')=',F10.3)
800 CONTINUE
DO 900 K=1,NP
WRITE (2,5000) K,Q(K)
5000 FORMAT (1X,'Q(',I3,')="',Fl12.7)
900 CONTINUE
END

Figure 11.7 A computer program that solves pipe network problems, (continued).
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NH= 1 NQ= 13 NP= 18 ERRA= 0.000100 V= 1.52E-06

J= 1 H= 0.000
2 Q0= 0.0000000
3 Q0= 0.0000000
4 Q0= 0.0000000
J= 5 Q0= 0.0000000
6 Q0= 0.0020000
7 Q0= 0.0020000
= 8 Q0= 0.0020000
J= 9 Q0= 0.0020000
J= 10 Q0= 0.0020000
J= 11 Q0= 0.0000000
J= 12 Q0= 0.0000000

J= 13 Q0= -0.0300000

K= 1 L= 50. D= 0.100 E= 0.00010 Il1= 1 I2= 2
K= 2 = 100. D= 0.100 = 0.00010 Il1= 2 I2= 3
K= 3 L= 100. D= 0.100 E= 0.00010 Il= 3 I2= 4
K= 4 = 100. D= 0.100 E= 0.00010 1Il= 4 I2= 5
K= 5 = 50. D= 0.100 = 0.00010 Il1= 5 I2= 6
K= 6 = 50. D= 0.100 = 0.00010 Il= 4 I2= 7
K= 7 = 50. D= 0.100 E= 0.00010 1I1= 3 I2= 8
K= 8 L= 50. D= 0.100 E= 0.00010 Il= 2 I2= 9
K= 9 = 100. D= 0.100 = 0.00010 Il1= 9 I2= 8
K= 10 = 100. D= 0.100 E= 0.00010 1Il1= 8 I2= 7
K= 11 = 100. D= 0.100 = 0.00010 I1= 7 I2= 6
K= 12 = 50. D= 0.100 = 0.00010 1Il1= 6 I2= 13
K= 13 = 50. D= 0.100 E= 0.00010 TIl1= 7 I2= 12
K= 14 = 50. D= 0.100 = 0.00010 Il1= 8 I2= 11
K= 15 = 50. D= 0.100 = 0.00010 Il1= 9 I2= 10
K= 16 L= 100. D= 0.075 E= 0.00010 Il= 10 I2= 11
K= 17 = 100. D= 0.075 = 0.00010 Il= 11 I2= 12
K= 18 = 100 D= 0.075 E= 0.00010 Il= 12 I2= 13
H( 1)= 0.000

H( 2)= 3.537

H( 3)= 5.798

H( 4)= 7.835

H( 5)= 9.283

H( 6)= 10.007

H( 7)= 7.872

H( 8)= 5.804

H( 9)= 4.300

H( 10)= 4.351

H( 11)= 5.817

H( 12)= 8.008

H( 13)= 14.048

Q( 1)= 0.0199846

Q( 2)= 0.0110251

Q( 3)= 0.0104352

Q( 4)= 0.0087135

Q( 5)= 0.0087140

Q( 6)= 0.0017234

Q( 7)= 0.0005931

Q( 8)= 0.0089600

o( 9)= 0.0088906

Q( 10)= 0.0105191

Q( 11)= 0.0106966

Q( 12)= 0.0214111

Q( 13)= 0.0035476

Q( 14)= 0.0009684

Q( 15)= 0.0020705

Q( 16)= 0.0040710

Q( 17)= 0.0050406

Q( 18)= 0.0085888

Figure 11.9 Output data for the pipe network example shownin Fig. 11.8.
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AHpy = hy - hy
Figure 11.10 A method for including a pump in a pipe network problem.
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Chapter 12

Steady Open Channel Flow

Channelled flowswith afree surface are known as open channel flows. Examplesinclude flows
in rivers, canals and drainage ditches. These flows are of traditional importance for civil
engineers who work in the areas of water supply, flood control, hydropower, irrigation and
drainage.

The study of steady flow in open channels can be divided into consideration of three separate
typesof flow. Thefirst flow typeisdescribed asrapidly varied. In thisflow changesin depth and
velocity occur over relatively short lengths of channel. Typical control volume lengths are less
than about ten channel depths, and exampl e applicationsinclude flow beneath sluice gates, over
weirs, spillways and humps and between side-wall constrictions and expansions. Since control
volumes in these flows are relatively short, calculations usually neglect channel resistance and
dope. However, energy losses from flow separation and turbulence are included when
considering applications such as hydraulic jumps and sudden channel expansions.

The second type of flow is described as gradually varied. This flow has changes in depth and
velocity that occur over relatively long lengths of channel. Typical control volume lengths are
morethan 100 channel depths. Thismeansthat channel resistance and slope play dominant roles
and must be included in gradually varied flow calculations.

Thethird type of flow is described as uniform. It would probably be more accurate to describe
this flow as fully developed rather than uniform since thisis flow in which the free surface is
paralel to the channel bottom and velocity distributions remain unchanged from one cross
section to the next. This type of flow is seldom encountered in practice. However,
approximationsfor energy lossesthat are used in gradually varied flow cal culations are obtained
from uniform flow equations. This means that uniform flow concepts are extremely important
when studying gradually varied flow, even though examples of truly uniform flow are not
common.

Rapidly Varied Flow Calculations

Rapidly varied flow calculations make use of three equations: the continuity equation, the
Bernoulli or energy equation and the momentum equation. These are the same basic tools that
were used in Chapter 4 except that the forms of these equations are a little more specialised.
Initially wewill consider flow in channel swith rectangular cross sections, and changesthat must
be made when cross sections have more general shapes will be discussed |ater.

Variable definitions for rapidly varied flow in open channels are shown in Fig. 12.1. In
rectangular channelsit is convenient to define aflow rate per unit width, q, by

q = Uy (12.1)
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inwhich U (x) = flux velocity and y (x) = flow depth. Thus, if the channel width, B, changes
with distance, x, aong the channel, the continuity equation takes the form

Q = qlBl = quz (122)

in which Q isthe constant flow rate and the subscripts 1 and 2 denote cross sections at two
different values of x in the same flow.

B(x) = Channel width

A%
U(x) = Flux velocity T -
—— y(x) = Flow depth

/_,;, '
T A
e —

z(x) = Channel bed elevation

Datum

Figure12.1 Definitionsof variablesusedfor rapidly varied flow
in open channels.

It is aso convenient to define a specific energy function, E, as

U 2 2
E-y+——=y+—— (12.3)
29 29y
This definition alows the Bernoulli or energy equation to be written in the form
z,+E =2, +E, + F (12.4)

in which z = channel bed elevation above an arbitrarily chosen horizontal datum plane,
E, = head lossand cross section 2 is downstream from cross section 1. The definition of E in
(12.3) differsfrom an earlier use of this same letter in Eq. (4.13) by afactor of pg. Thisswitch
in notation is excused on the grounds that the choice of notation in (12.3) is standard in most
open channel flow texts.

Inmany applicationsboth E and q in(12.3) areknown numbers, and (12.3) must besolvedfor y.
The resulting cubic equation may have two real positive roots. In other words, the solution of
(12.3) for y is not unique until additional information is inserted into the problem for each
application. Thisis one of the considerations that makes open channel flow calculations both
challenging and interesting.
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The best way to study solutions of (12.3) isto consider E asafunction of y, with g aspecified
constant, rather thantryingto calculatey asafunctionof E. (E isasingle-valued functionof v,
whereasy is a multiplevalued function of E.) As y -, E has the asymptotic
behaviour E ~y, and,as y -~ 0, E ~ q2/(2gy?). Thus E becomes positively infinite as y
approachesboth zero and infinity. Thismeansthat E must haveaminimumfor somevaueof y
intherange 0 <y <, asshowninFig. 12.2.

A
y A

Yo b---p"---

Figure 12.2 Behaviour of the specific energy function.

Thevalue of y that makes E (y) aminimum iscalled critical depth and isdenoted by y_, and
the corresponding value of E (y,) isdenoted by E_. Since the derivative of (12.3) is given by

dE(y) _, _ 9°

12.5
dy gy’ (12.5)
the requirement that E (y) beaminimumat y = y, becomes
9> _
—— =1
12.6
oY (129

2 13
y, = ( Q_) (12.7)
g
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Equation (12.6) also alows usto plot ageneralized specific energy diagram, valid for all values
of g, by eliminating q from (12.3) and (12.6) to obtain

E -

(12.8)

Equation (12.8) is plotted in Fig. 12.3. This generalized plot is useful in obtaining numerical
solutions of rapidly varied flow problems. Equation (12.8) aso shows that the minimum value
of E ay =y, isgivenby

E -

C

N w

Ye (12.9)

Generally, flowsinwhich y >y_ are called subcritical, and flowsin which y <y, are called
supercritical. (Sometimestheterms*tranquil” or “ streaming” are used to denotesubcritical flow,
and theterms“rapid” or “shooting” are used to denote supercritical flow. Wewill not use these
terms.)

A relatively simpleillustration of the use of the specific energy concept and Fig. 12.3 isprovided
by flow beneath the sluice gate shown in Fig. 12.4. We would expect on physical groundsto be
able to calculate both upstream and downstream depths if q and the gate opening, y,, are
specified. Since the channel bottom is horizontal and energy losses are negligible, the Bernoulli
equation gives

E(yl) = E (yz) (12.10)

Equation (12.10) containsthetwounknowns y, and y,. A second equation with thesesametwo
unknowns is provided by the contraction coefficient relationship given in Chapter 6.

— = C, (12.11)

inwhich C_ isafunction of yG/yl. Since C,_ changes slowly with y /y,, aprevious estimate
for y, canbeused in (12.11) to calculate y,,, whichin turn can be used in (12.10) to obtain an
improved estimatefor y, . Several cyclesof thismethod of successiveapproximationare usually
sufficient to obtain reasonably accurate valuesfor y, and y,. Some examples follow.
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yﬂ
v Y1p------
) —
a 1 "N M
——
Yq Yo
A 7
Yag = Y

R R R R R R R R R R

Figure 12.4 Use of specific energy for flow beneath a sluice gate.

Example 12.1

A duice gate in arectangular channel has a gate opening y; = 0.5 m. Calculate y, and y,
if Q =8m%sand B = 4 m.

Solution: Since q = Q/B = 8/4 = 2 m?/s, critical depth is

2]J3 22 1/3
yc(%] (—) - 0742 m

The iterative process will be started by assuming that C, = 0.600. Then y, = 0.600y,
= 0.600(0.5) = 0.300 m and
2 2
9 _o03+—2 _o57m
29y 2(9.81) (0.3)2

E, =y, +
E,ly, - 257/0.742 - 3.46

Since flow at cross section 1 must be subcritical with E; = E,, use of the larger value of
yly, for E,/y, = 3.46 inFig. 12.3 gives

y,ly. = 340
y, = 340y = 3.40(0.742) = 252 m
Now we must check to see if the correct value of C_, was used initialy. Since
Ys!y, = 0.5/2.52 = 0.200, the contraction coefficient relationship givenin Chapter 6 for flow

beneath asluicegategives C, = 0.600, which agreesexactly with our starting value. Hence, our
final answers are
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y, =252m
0.300 m

Y2

In most cases we would not be quite as lucky in our initial estimate for C_, and one or two
additional iterations might be required.

Example 12.2
Discuss the solution behaviour as y, decreasesin Fig. 12.4.

Solution: Since E; = E,, points1and 2inthe specific energy diagram must lie along the same
vertical line. Thus, as y, decreases, y, mustincrease. This process continues until points 1 and
2coincideaty, =y, = Y,. SinceC, = 1 when y,/y, = 1 (thisobviousresultisoutsidethe
range of y;/y, for whichvaluesof C_ aregivenin Chapter 6), weaso seethat y; =y, at this
critical point. Further decreasesin y, will cause the flow to pass beneath the sluice gate without
touching itslower edge. In this case points 1 and 2 will coincide and will be on the supercritical
branch of the specific energy diagramin Fig. 12.4.

Example 12.3

Explain how y/y_ can be calculated by iteration from
1
20y 1yef

(E/Ye) = (y/¥e) +
when (E/yc) is specified.

Solution: Somealgebraic clutter can beeiminated by replacing (E/yc) and (y/yc) with E and y,
respectively, to obtain

1
2y

E=y~+ >

For subcritical flow (y > 1), thelast termisrelatively small. This suggests an iterative process
in which the equation

is solved by placing the last estimate for y in the right side to cal cul ate the next estimate for y.
Since convergence is fastest when a good starting value is used for vy, it issuggested that E be
used for the first approximation for y. An example for E = 3.5 is shown below, and
convergence for larger values of E will be faster.
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E = 350
cycle y
0 3.500
1 3.459
2 3.458
3 3.458

For supercritical flow (y < 1), thefirst term on theright is relatively small. This suggests an
iterative process in which the equation

y = 1/V2E-Y)

is solved by placing the last estimate for y in the right side to calcul ate the next estimate for y.
Thefirst approximation for y should be 1/@ Anexamplefor E = 3.5 isshown below, and
convergence for larger values of E will be faster.

E = 350
cycle y
0 0.378
1 0.400
2 0.402
3 0.402

Newton'smethod providesasecond approachto thisproblem. Thismethod definesafunction f (y)
by

1
2

- E

fly) =y~

Thefirst derivative of f (y) is

1
f(y) =1- =
y

The first two terms of a Taylor's series expansion about y =y, are

fly) = f(y) + F'O) (Y -Yp) + -+

If the seriesistruncated after the first two terms, and if f (y) is set equal to zero, we obtain the
following formulafor y:
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()
£(y,)

0

The last approximation for y is substituted in the right side for y, to calculate the next
approximation for y.

Rates of convergence for these different methods are compared in the following table:

Number of Cycles for Convergence
Starting Value | Final Answer | Newton's _E- 1 - 1
E fory fory Method y = ? y = E Y

1.55 1.550 1.207 3 10 —
1.55 0.568 0.838 4 — 11
2.00 2.000 1.855 2 3 —
2.00 0.500 0.597 3 — 4
3.00 3.000 2.942 1 2 —
3.00 0.408 0.442 2 — 2
4.00 4.000 3.968 1 2 —
4.00 0.354 0.371 2 — 2

In al cases, rates of convergence decrease as E - 1.50 and increase as E becomes larger.
Newton'smethod hasasdlightly more complicatediteration formula. Onthe other hand, Newton's
method converges at amuch faster rate for small values of E, and the same iteration formulais
used for both subcritical and supercritical flow. There is not much difference in convergence
rates for either of the methods when E is greater than about two.

Flow over a hump and the corresponding specific energy diagram are shown in Fig. 12.5. Since
the hump has a maximum elevation of Az, the Bernoulli equation becomes

E, =E, + Az = E, (12.12)

in which cross sections 1, 2 and 3 are upstream, on top of and downstream, respectively, from
the hump. Equation (12.12) showsthat E, = E; and E; - E, = Az, aresult whichisshown
graphicaly in the specific energy diagram of Fig. 12.5. If the approaching flow is subcritical
#yl > yc), then the specific energy diagram showsthat y, <y, and y, = y,. If theapproaching
low is supercritical (yl < yc), then the same diagram showsthat y, >y, and y, = y,.

One of the most interesting results for the flow in Fig. 12.5 occurs when Az is allowed to
increase. Then points 1 and 3 remain fixed in the specific energy diagram and point 2 moves
leftward. This process continues until critical depth occursat 2and y, = y.. Since point 2 can
move no further leftward, any additional increasein Az causespoint 1 to moverightward. When
theapproaching flow issubcritical, y, increasesand raiseswater level supstream fromthe hump.



12.10 Chapter 12 — Steady Open Channel Flow

When the approaching flow is supercritical, y, suddenly increases to its subcritical value and
creates a hydraulic jump upstream from the hump. At first glance, moving point 1 rightward
wheny, < y_causesy, todecrease. However, supercritical flow velocities are faster than the
speed of asmall wave or disturbancein still water.” This means that any disturbance or change
in water level is rapidly swept downstream, and water levels in supercritical flow cannot be
controller or changed from a downstream point. Therefore, the only possibility when point 1
moves rightward in Fig. 12.5 isto have subcritical flow form upstream from the hump, which
sends a shock or surge in the upstream direction. This surge will eventually come to rest and
become a hydraulic jump if the upstream channel islong enough. Thus, in either case moving
point 1 rightward increases y, , and the flow is said to be “choked”.

T %\ ——
i>y1>yc / >yy2\ Yy=Y3
TV1<Vc //, /,///// /?7// )
Gz o 7

yl

Y1 =VY3

Y2

Yo
Y1 =VY3

Figure 12.5 Supercritical and subcritical flow over a hump.

When the hump is sufficiently high to choke the flow, water levels at 3 may be either
supercritical or subcritical. For example, a downstream sluice gate can be used to ensure
subcritical flow at 3, and flows at cross sections 1, 2 and 3 are subcritical, critical or subcritical
and subcritical, respectively. If no downstream control raises the water level at 3, then these

Since supercritical flow has y <y, Eq. (12.6) shows that supercritical flow is characterized by the
requirement that q%(gy® > 1. Since q = Uy, thisisequivalentto U %gy > 1 or

U > 3y

The theory of shallow water waves shows that the speed of an unbroken wavein still water is given by /gy.
Thus, velocitiesin supercritical flow are greater than the wave speed of adisturbance. Likewise, consideration
of Eq. (12.6) and q = U_y, showsthat critical conditions occur at a point where the flow velocity and wave
speed are equal.
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flows become subcritical, critical and supercritical, respectively. A sketch of these possibilities
isshown in Fig. 12.6, in which (a) curve A resultsif the downstream depth islessthan y, , (b)
curve B results if the downstream depth exactly equals y, and (c) curve C results if the
downstream depth exceeds y,. When curve A occurs, a hydraulic jump may or may not form
further downstream from the hump. Curve C occurs when a downstream control completely
submerges the hump. Flow downstream from a hump will be discussed again in the section on

gradually varied flow.

Y o~ I C
//////,/////,? = A
A LRZLATL A

Figure 12.6 Choked flow over a hump.

Changes in cross section width, B, cause q to change according to Eg. (12.2). In this case
Eq. (12.8) and Fig. 12.3 can till be used provided that different valuesfor y_ are calculated at
each cross section by using ¢, and g, in (12.7). However, a qualitative understanding of flow
behaviour is best obtained from adimensional plot of (12.3) for valuesof g = q, and q = q,.
If q, > q, (acongtriction), then (12.3) shows that the curve for g, will lie to the right of the

curvefor g, asshownin Fig. 12.7.

My

Figure12.7 A plot of Eq. (12.3) for two different values of q.

If weconsider thecaseinwhich ahorizontal channel of width B, narrowstoawidth B,,, thenq, > q,
since B, < B, . Thedifferent possibilitiesfor thiscase are shownwith dashedlinesinFig. 12.7.
Since the Bernoulli equation requires E, = E,, al operating pointslie along the same vertical
dashed line. If y, is subcritical, then y, <y, ; if y, is supercritical, then y, >y, . If the
congtriction is narrowed further, then g, increases and the specific energy curvefor g, moves
rightward. This process continues until point 2 lieson the point of minimum E, wherey, = vy..
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Any additional decrease in B, after critical conditions have been reached causes the vertical
dashed line to move rightward with y, = y_. In this case the flow becomes choked. If the
approaching flow is subcritical, y, is increased and raises water levels upstream from the
constriction. If the approaching flow is supercritical, then flow immediately upstream from the
constriction suddenly becomes subcritical and sends a surge in the upstream direction. Depths
downstream from the constriction are determined from the same considerations that are used in
discussing flow downstream from a hump.

Non-rectangular Cross Sections

Theextension of specific energy cal culationsto non-rectangular crosssectionsisstraightforward.
However, computational detailsare more difficult because rel ationshi ps between areaand depth
are more complicated and becausetheflow rate per unit width, g, nolonger hasameaning. This
means that the specific energy must be calculated from

U2 QZ

E:y+_: +

y
29 2gA?

(12.13)

inwhich A = A(y). Thus, plotsof E versusy can be made and used in calculations, and the
resulting curves and the sol utions obtained from these curveswill besimilar to the corresponding
resultsfor rectangular cross sections. The more complicated rel ationship between areaand depth
makes it much more difficult to obtain aclosed form solution for critical depth, and thisusually
makes it impractical to construct a generalized specific energy plot like the one shown in
Fig. 12.3 for rectangular cross sections. This means that it is usualy necessary to make
dimensional plotsof (12.13), likethe plot shownin Fig. 12.8 for atrapezoidal crosssection. The
Interpretation and use of dimensional specific energy diagramsfor non-rectangular crosssections
Is straightforward once the principles for rectangular cross sections have been mastered.

Uniform Flow Calculations

Fully developed flow in an open channel is described as uniform. This is flow on a sloping
channel bottom in which the free surface is paralel to the channel bottom and velocity
distributions do not change with distance aong the channel. Truly uniform flow conditions can
be approached only in prismatic channelswith very large ratios of length to depth. Nevertheless,
uniform flow approximations are important because they are routinely used to estimate energy
losses in gradually varied flows.

Thefreebody diagram for acontrol volume of length Ax in uniform open channel flow isshown
inFig. 12.9. Pressureforceson end sections of the control volume haveidentical magnitudesand
are not shown since they cancel out when summing forces. The pressure force exerted by the
channel bottom on the control volume has aso been omitted since we are only interested in
forces paralel to the channel bottom. Since momentum fluxes at the two end sections have
identical magnitudes, the momentum equation requires that the summation of forces parallel to
the channel bottom vanish:
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Figure 12.8 The dimensional specific energy diagram for atrapezoidal cross section.

A = Cross sectional area
R,= Wetted perimeter
7 = Channel bed shear

0 = Channel slope

Figure 12.9 The free body diagram for a control volume of length Ax in uniform flow.
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pgAAxsin® - tP Ax = 0 (12.14)

inwhich p = fluid mass density, g = gravitational constant, A = cross sectional area, Ax =
control volume length, 6 = channel bed slope, © = channel bed shear stressand P, = wetted
perimeter of the cross section. Dividing (12.14) by Ax and using Egs. (7.47) and (7.51) leadsto
the following expression for the flux velocity, U (= Q/A):

U - %QR% (12.15)

inwhich §, = sin6 = channel sope, f = Darcy-Weisbach friction factor and the hydraulic
radius, R, is defined as the ratio of the cross sectional areato wetted perimeter.

A
R= - 12.16
P (12.16)
The Bernoulli sum, H, for flow in asloping channel is
H=E+z (12.17)

in which E = specific energy [defined by (12.3) when slopes are small enough to alow
cosO = 1 and sin® = tan® = 0] and z = channel bottom elevation. Since energy losses
cannot be ignored when ratios of control volume length to flow depth are large, the Bernoulli
sum decreases with x. Inuniform flow E is constant, and differentiation of (12.17) gives

dH dz
= +

2o+ 22
™ ™ (12.18)

Butdz/dx = -sinf = - §,anddH/dx = - S inwhich § iscaledthefrictionslope. Thus,
(12.18) shows that the friction slope in uniform flow is given by

__dH |
S ix S (12.19)

and elimination of S, from (12.15) and (12.19) gives

c
N

§ - OH

X

(12.20)

o] —+
©«
pu)
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Equation (12.20) has been derived for uniform open channel flow on aslope. However, itisalso
used as an approximation for S; in gradually varied flow for both horizontal and sloping
channels.

In some applications the ratio of flow depth to channel width is small. Calculation of the
hydraulic radius for arectangular channel gives

A By y

(12.21)

P, B+2y 1:2(y/B)
When 2(y/B) issmall, (12.21) can be expanded in the following power series:
R = y[1-2(y/B) + 4(y/B)? - ] (12.22)
Thus, when 2(y/B) islessthan 0.1, we can approximate R with the flow depth.
R=y for 2(y/B)<o01 (12.23)

Theerror in (12.23) is about ten per cent when 2(y/B) = 0.1, which leadsto an error of about
five per cent when used in (12.15) to calculate U.

Vauesof f in(12.15) and (12.20) are given by the Moody diagram shown in Fig. 7.18. Since
the hydraulic radius of acircular pipeisgiven by D /4, both the Reynolds number and relative
roughness in the Moody diagram are computed by replacing D with 4R:

UD U(4R
Re - _ U@R) (12.24)
A% A%
£- £ 12.25
D 4R (12.25)

in which R is calculated from (12.16). Values of € for some different surfaces have been
published in an ASCE task force report (1963) and are givenin Table 12.1
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Table12.1 Vauesof € in mm for some different surfaces.

0.15 Concrete class 4 (monoalithic construction, cast against oiled steel forms
with no surface irregularities).

0.30 Very smooth cement-plastered surfaces, al joints and seams hand-
finished flush with surface.

0.49 Concrete cast in lubricated steel moulds, with carefully smoothed or
pointed seams and joints.

0.61 Wood-stave pipes, planed-wood flumes, and concrete class 3 (cast against
steel forms, or spun-precast pipe). Smooth trowelled surfaces. Glazed
sewer pipes.

1.52 Concrete class 2 (monolithic construction against rough forms or smooth-

finished cement-gun surface, the latter often termed gunite or shot
concrete). Glazed brickwork.

2.44 Short lengths of concrete pipe of small diameter without special facing of
butt joints.

3.05 Concrete class 1 (precast pipes with mortar squeeze at the joints). Straight
uniform earth channels.

4.27 Roughly made concrete conduits.

6.10 Rubble masonry.

3.05t09.14 Untreated gunite.

For many years engineers have used an empirical equation known as the Manning equation to
calculate velocities in uniform open channel flow. Because this equation is not dimensionally
homogeneous, it has different forms for different systems of units. In metre-second unitsit has
the form

1
U - = R¥S” (12.26)
and in foot-second units it changes to
1.49
U - == R®g" (12.27)

inwhich n isthe dimensionless Manning surface roughness coefficient. It is generally agreed
that Mannings equation holds only in fully rough turbulent flow, where f dependsupon relative
roughness but not upon the Reynolds number. On the other hand, Eq. (12.15) is dimensionally
correct, sothat itsform doesnot changewith the system of units, andit holdsfor flowsinwhich f
depends upon both relative roughness and Reynolds number. Consequently, we will prefer the
use of (12.15).
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Despite the shortcomings of the Manning equation, a great deal of information exists about
choicesfor n in open channel flows. [For example, Chow (1959) and Henderson (1966).] For
this reason, many engineers continue to use the Manning equation. Values for f can be
calculated from n by using the following equation with foot-second units:

n-149RY | (12.28)

89

When metre-second units are used, this equation changes to

n-Rrus | T (12.29)

89

Equations (12.28) - (12.29) have been obtai ned by equating theexpressionsfor U in(12.15) and
(12.26) - (12.27).
Example 12.4

Calculate the uniform flow velocity and discharge in the trapezoidal canal shown in Fig. 12.8
ify =2m, § = 12000 and € = 0.49 mm.

Solution: The area and wetted perimeter for adepth of 2 m are

A=2y2+y) =2(2(2+2) = 16 m?
P,=4+2y/5=4+2(2)5 =129 m

This leads to the following value for the hydraulic radius:

16

R = el
12.9

=124 m

A
I:)W
Thus, Eq. (12.15) gives

3 8 1 0.221
U - \'? gRS, - \l? (9.81)(1.24)[ 2000) S

In general, f depends upon Re and €/D, and this equation must be solved by successive
approximation. We will start by calculating

e/D = el(4R) = 0.49x 103 / (4x 1.24) = 0.0001

If the flow is completely turbulent with a rough boundary, Fig. 7.18 gives
f = 0012 and U = 0.221 /\/0.012 = 2.02 m/s. At 10°C, this gives a Reynolds number of
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U(4R) _ (2.02)(4x1.25)
\J 1.31x10°6

= 7.65x 10°

Re =

Thisleadsto arevised valueof f = 0.0123 from Fig. 7.18 and adlightly changed valuefor U.

U - 0221 / /00123 = | 1.99 mis

Since Re = 7.53 x 108, Fig. 7.18 shows that the next cycle would give the same values for f
and U. Finally, thedischargeis

Q - UA = (1.99)(16) = | 31.8 m¥s

Example 12.5

Caculate the uniform flow depth in the trapezoidal cana shown in Fig. 12.8 if
Q = 20 m¥s, §, = 1:2000 and € = 0.49 mm.

Solution: The unknown depth appearsin A, P, (and, thus R) andalsoin f since f depends
upon both the Reynolds number and relative roughness. Thus, the uniform flow equation,
(12.15), cannot be solved directly for y. Therefore, it is better to specify values for y and
calculate corresponding valuesfor Q. Theninterpolation givesan estimatefor y corresponding
to Q = 20 m¥/s. Theresultsfor this example are summarized in the following table:

y (M) A (m? P, (M) R (m) U (m/s) Q (m3s)
1.3 8.58 9.81 0.874 161 13.8
1.5 10.5 10.7 0.981 1.73 18.2
1.6 115 11.2 1.03 1.79 20.6
Linear interpolation gives
y =158 m

Gradually Varied Flow Calculations

In gradually varied flow, where changesin depth and velocity occur over distances greater than
about 100 flow depths, the effects of both channel slope and energy losses must be taken into
account. Mathematical solutionsfor thistype of flow are obtained from a simultaneous solution
of the continuity and momentum equations. Probably the easiest way to derive the momentum
equation is to differentiate the Bernoulli sum
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H=z+y+— (12.30)

with respect to x to obtain

o= = (12.31)

Setting dz/dx = -§ and dH/dx = -§ in (12.31) gives a general form of the momentum
equation for gradually varied flow in an open channel:

dy . U du

dx+Ea=~%—Sf (12.32)

Equation (12.32) holds for any cross sectional geometry, and s; in (12.32) is usually
approximated with the friction slope for uniform flow on a slope given by (12.20).

The qualitative behaviour of solutions of (12.32) is investigated most easily for a relatively
shallow flow in a prismatic channel for which theratio of flow depth to channel width issmall.
Under these conditions, (12.23) shows that the hydraulic radius is approximated with the flow
depth and (12.20) becomes

U2

12.33
ay (12.33)

| =

Itisalso convenient tointroduce the definition of normal depth, y_, asthedepth calculated from
(12.15) if uniform flow existed in the channel:

9y, S (12.34)

in which U_ = velocity for the corresponding uniform flow depth, y.. Eliminating 8g/f
between (12.33) and (12.34) gives

S - Sbﬁ‘lj—z—so[ ] (1239

in which the continuity equation q = Uy = U_vy_ has been used to replace U/Un)2 with
#yn /y)z. Finallyuseof U = q/y alowsthe convective accel eration term to be calculated inthe
ollowing form:

3
2
Bd_U:ii[ﬂ):_q_ﬂ:_(£) dy (12.36)
y dx
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in which the definition of critical depth given by (12.6) has been used to eliminate g%/ g.
Substituting (12.35) and (12.36) into (12.32) gives an ordinary differential equation for the
gradual variation of depth in a shallow open channel.

dy o 1-(y ) o Y Ve

dx 1-(y.1y)? ye-ye

(12.37)

Equation (12.37) wasfirst integrated in closed form by Bressein 1860. Although the integration
is fairly straightforward, we will give neither the details nor the results. This is because most
engineers calculate numerical solutions of (12.32), and these numerical solutions can be
calculated for both prismatic and non-prismatic channels with cross sections of any form. It is
important, however, to obtain a qualitative understanding of the way in which solutions of
(12.37) behave. Thisqualitative behaviour is obtained most easily from adirect study of (12.37)
rather than from plots of the integral of (12.37).

Solutions of (12.37) have behaviours that depend upon the magnitude of y compared with the
magnitudes of y and y_. Since the straight lines y =y and y = y_ divide the solution
domain into three distinct regions, asloping channel hasthree different solution regionsthat are
denoted by subscripts 1, 2 and 3 in going from the top, to the middle and to the bottom,
respectively. Furthermore, we must consider slopes that are mild (yn > yc), steep (yn < yc),
adverse (y, non-existent) and horizontal (y, = «). Solutions for these various slopes are
denoted withtheletters M, S, A and H, respectively. This classification should become clear
as each possibility is discussed.

A mild slopeischaracterized by therequirement y, > y_. Thestraightlinesy = y andy =y,
are shown in Fig. 12.10 with dashed lines that are parallel to the channel bottom. The solution
for amild slopewhen y <y < « isdenoted by M, inFig. 12.10. In thisregion theright side
of (12.37) ispositive. Thus, dy/dx > 0 inregiononeand approaches § asy - o, whichshows
that thesolutionfor y isasymptotictoahorizontal lineasy - «. Asy - y_fromwithinregion
ong, dy/dx - 0. Inregiontwo,wherey, <y <y, , therightsideof (12.37)isnegative. Thus, dy/dx
is negative for region two and approaches zero and negative infinityasy - y, and y - vy,
respectively. Thissolutionisdenoted by M, inFig. 12.10. Finally, regionthreehas 0 <y < y_.
Inthiscasetheright side of (12.37) ispositive. When y - 0, dy/dx isafinite positive number.
Wheny - y_, dy/dx becomespositively infinite. Thissolutionisdenoted by M, inFig. 12.10.
Solution curve behaviour for asteep slopeisdetermined inthe sameway, and theresult isshown
inFig. 12.10.

Thesolutionbehaviour for anadversesiope (S, < 0) cannot bedeterminedfrom (12.37) since y,
isnot defined. Sincecritical depth can still be calculated from (12.7), the convective accel eration
term can bereplaced with (12.36). Thefriction sl ope can beapproximated with (12.33),inwhich U

can be replaced with q/y. Thus, (12.32) can be written for an adverse slope in the form
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Steep Slope (y.>y,)

Horizontal asymptote

Hs

OO

Horizontal Slope (sy= 0, y, = =)

Figure 12.10 Gradually varied flow solution behaviour for relatively shallow flow in open
channels.
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2

fq

SO_
dy _ 8gy® (12.38)
dx  1-(y.fy)®

in which § < 0. The right side of (12.38) is negative when y_ <y < «~ and approaches
§ asy - = Wheny - y_ through values of y greater than y_, dy/dx approaches negative
infinity. The curvefor thisregion, which isdefined to beregiontwo, islabelled A, inFig. 12.10.
Similar reasoning gives the curve labelled A, when 0 <y < 'y_. Solutions for the horizontal
slope are also determined from (12.38) after setting §) = 0. These curves are labelled
H, and H, in Fig. 12.10.

It is now possible to summarize the results shown in Fig. 12.10. Since a finite normal depth
exists only for positive slopes, there are three possible solutions for mild and steep slopes but
only two solutionsfor adverseand horizontal slopes. Normal depthisapproached asymptotically
a the upstream end of mild slopes and at the downstream end of steep slopes, and horizontal
asymptotes are approached in all cases as y becomes infinite. Finally, all solutions have an
infinite slope as y - y,. When these facts are remembered, it becomes easy to sketch
qualitatively correct solution behaviours for the different cases. There is no need to memorize
the results, however, since they are all summarized concisely in Fig. 12.10.

Flow Controls

A flow control is defined to be any point along an open channel where a unique relationship
exists between flow rate and depth. One example isthe sluice gate considered in Example 12.1,
where specification of aflow rate and gate opening allowed upstream and downstream depths
to be calculated. Another example occurs for flow over either aweir or spillway, in which case
specificationof Q determinesan upstream depth. A freeoverfall, showninFig. 12.11a, becomes
aflow control if the approaching flow is subcritical. Then critical depth occurs at the overfall.”
Critical depth does not occur at the overfall, however, if the approaching flow is supercritical.
In that case the overfall is not aflow control. A final example, shown in Fig. 12.11b, occurs at
apoint where a channel slope changes from mild to steep, in which case critical depth occurs at
the point where the slope changes. In all of these cases subcritical and supercritical flow occur
upstream and downstream, respectively, from the control unless another downstream control
drowns all or part of the control under consideration.

A channel constriction or rise in channel bottom elevation becomes a flow control only if the
flow is choked so that critical depth occurs at the constriction or on top of the rise. A hydraulic
jumpisnot aflow control since specificationof Q determinesarelationship betweeny, and vy,
but is not sufficient to determine values for these depths. Henderson (1966) gives a detailed
discussion of flow controls.

Experiments show that critical depth actually occurs adistance of 3y, to 4y upstream from the brink. This
distanceis usually ignored in gradually varied flow calculations, and critical depth is assumed to occur at the
brink.
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Figure 12.11 Flow controls (a) at afree overall and (b) at a change in channel slope.

Gradually varied flow calculationsmust, in general, start at a flow control and proceedin the
upstream direction for subcritical flow andin thedownstream direction for supercritical flow.
Flow controls are important because they fix the flow depth, and, therefore, provide an initial
condition to fix theintegration constant when integrating thefirst-order differential equation for
gradually varied flow. Since subcritical and supercritical flow generally exist upstream and
downstream, respectively, from aflow control, gradually varied flow profiles are calculated by
integrating in both the upstream and downstream direction from flow controls. When a flow
control exists at both ends of a channel reach, the resulting flow profiles can be joined only by
inserting a hydraulic jump somewhere along the reach. However, a hydraulic jump can always
move upstream to submerge al or part of an upstream control, or sometimes it can move
downstream to eliminate a downstream flow control. Examples will be shown in the following
section.

Flow Profile Analysis

Flow profile analysis uses the free surface behaviours shown in Fig. 12.10 together with
additional information about flow controlsto predict free surface flow profilesin open channel
flows. Every problem generally has a number of different possible profiles, and afinal unique
solution for any given problem ultimately depends upon specific valuesfor vy, , y,, flow control
depths, depths calcul ated from rapidly varied flow equations and from integrations of (12.32) or
(12.37) for gradually varied flow. However, the final numerical solution of a particular
problem should not be attempted until a flow profile analysis has been used to examine the
different possibilities.

Our first examplewill consider flow in ahorizontal channel downstream from ahump when the
hump chokes the flow, as shown in Fig. 12.12. We will assume that the downstream channel
terminates with afree overfall. Since the flow immediately downstream from the hump islikely
to be supercritical, Fig. 12.10 shows that an H, profile will extend downstream until critical
depth is reached at a finite distance from the hump. We assume initially that the overfall brink
occurs well downstream from this point, which means that critical depth occurs at the overfall
brink and that an H, profile extends upstream from this point. Thus, the overfall also actsas a
flow control, and the supercritical profile downstream from the hump and the subcritical profile
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upstream from the overfall can bejoined only with adiscontinuity in depth given by the hydraulic
jump equation calculated in Example 4.7:

Y, 1
22 E( Slayfle 8F12) (12.39)

u, q
Fy = p— (12.40)
Wi oy,

By starting at the point where y_ occurs in the H, profile, depths in the H, profile can be
inserted for y, in (12.39) -(12.40) to calculate corresponding values for y,, which are shown
with dotsin Fig. 12.12. The intersection of this curve with the H, curveisthe point where the
gradually varied flow equationsand the hydraulic jump sol ution are sati sfied simultaneously, and
it is at this point where the jump will stabilize.

Hydraulic jump

Critical depth Critical depth

mﬁ’/ﬂﬁfﬁﬂ/ﬁ/ﬂﬁ’;’f x,‘?’f}"f?’\

Figure 12.12 The flow profile downstream from a hump in a horizontal channel. The hump
chokes the upstream flow, and the downstream channel terminates with a free overfall.

The flow profile shownin Fig. 12.12 isnot unique, but it can be used to arrive at other possible
profiles. For example, shortening the distance between the overfall and hump lowers the H,
profile and causes the intersection of the H, profile with the curve calculated from
(12.39) - (12.40) to move downstream. If thischannel reach is shortened sufficiently to place the
overfall brink upstream from the point where critical depth occursin the H, profile, the jump
will be swept over the brink. Then supercritical flow with an H, profile extendsalong the entire
reach. Inthiscasethe overfall nolonger actsasaflow control. At the other extreme, lengthening
the channel reach causes the jump to move upstream by raising the elevation of the H, profile.
If the channel reach becomeslong enough, thejump will move upstream to the hump. Inthiscase
the jump will remain at the hump as a drowned hydraulic jump if the H, depth at this point is
lessthan the depth just upstream from the hump. If the H,, depth equalsthe depth upstream from
thehump, curve B inFig. 12.6 will result. Finally, if the H, depth at the hump exceedsthe depth
immediately upstream from the hump, curve C inFig. 12.6 will occur. Inthiscase, critical depth
no longer occurs on the hump, and the hump ceases to act as aflow control.
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Critical depth

Figure 12.13 A possible flow profile for two consecutive reaches.

In more general problems flow profiles must be considered for two or more reaches joined
together. Figure 12.13 shows a mild reach (yn > yc) joined to a steep reach (yn < yczl with a
dluice gate at the upstream end of the mild reach and aweir at the downstream end of the steep
reach. Flow profilesareshowninFig. 12.13for the casein which flow controlsexist at the sluice
gate, the changein channel slopeandtheweir. Valuesof y, calculated from (12.39) - (12.40) are
shown again with dots, and hydraulic jumps occur in each reach at the intersection of these
curveswith subcritical flow profiles. Asinthepreviousexample, theremaining possibleprofiles
can be obtained by modifications of the channel and profile geometry shown in Fig. 12.13. For
example, lengthening the mild reach will force the first jump upstream, and shortening the mild
reach allowsthe jump to move downstream. It is al so possible to shorten the mild reach enough
to sweep the jump over the change in channel slope, in which case an M, profile extends over
the full length of the reach and the change in channel slope ceases to act as a flow control.
Lowering the sluice gate will al'so move the jJump downstream, and raising the gate allows the
jump to move upstream. Likewise, lowering or raising the weir causes the jump on the steep
slope to move downstream or upstream, respectively, and it may be possible to raise the weir
enough to drown the flow control at the change in channel slope.

Theproblems considered so far have assumed that flow ratesare given. A moredifficult problem
occurs when the flow rate is an unknown that must be calculated as part of the solution. An
example of this occurs when two reservoirs at different elevations are joined with a sloping
channel, as shown in Fig. 12.14. Free surface elevations in both reservoirs are given, and the
unknowns are the flow rate per unit width, g, and the free surface profile in the open channel.
Since g isunknown, critical and normal depths cannot be calculated directly. This means that
amethod of successive approximation must be used to obtain the final solution.
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Figure 12.14 Two reservoirsjoined with a sloping channel.

Since critical and normal depths are unknown, the solution of this problem can be started by
assuming that the channel slope is steep. If the channel is steep, then critical depth must occur
at the upstream end of the channel with an S, curve extending downstream. If the downstream
reservoir surface is high enough, then an S, curve extends upstream from the lower end of the
channel. Inthiscasethe S, and S, curves are joined with ahydraulic jump at the point where
the S, and S, depths satisfy (12.39) - (12.40), as shown in Fig. 12.15. Raising or lowering the
downstreamreservoir surfacewill causethejump to moveupstream or downstream, respectively.
If the downstream reservoir surface fallsbelow the value of y, calculated from (12.39) - (12.40)
at the downstream channel end, then the jump will be swept into the reservair.

Steep

Figure 12.15 The free surface profile for Fig. 12.14 when the channel slope is steep.

An application of the Bernoulli equation at the upstream channel end in Fig. 12.15 gives
2

H=y + 9

c 12.41
29y, (1241
The simultaneous solution of (12.6) and (12.41) for y, and q gives
2
Yo = 3 H (12.42)
q-.|2gHs (12.43)
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Thevalue of q in (12.43) can be used to calculate a normal depth from

8
a4 = Yo 7 9% S (1249

If y, calculated from (12.44) is less than y, calculated from (12.42), then the channel is
confirmed to be steep and (12.42) - (12.43) givethe correct solution. In thiscase, the free surface
profiles shown in Fig. 12.15 can be calculated without further difficulty.

If thevalue of y, calculated from (12.44) exceedsthevalue of y, calculated from (12.42), then
the channel slopeismildand (12.41 - (12.43) areinvalid. Possiblefree surface profilesfor amild
slope are shown in Fig. 12.16, with either an M, or M,, profile extending upstream from the
downstream reservoir. Inthis case an assumed value of g can be used to calculate corresponding
values for y_, y, and free surface coordinates in the open channel. Then the free surface
coordinate at the upstream end of the channel can be used to calculate H from the Bernoulli
equation.

2

q
2gy?

H=y~+ (12.45)

After H has been calculated from (12.45) for a number of assumed values of g, aplot of H
versus g can be prepared and used to calculate the particular value of q that will occur for any
specified value of H.

——

RN

Figure 12.16 Free surface profilesfor Fig. 12.14 when the channel slopeis mild.

It becomes apparent from an examination of Fig. 12.16 that all free surface profiles for amild
slope approach normal depth asymptotically at the upper end of the channel. Therefore, if the
channel is long enough, the procedure just outlined becomes equivaent to the simultaneous
solution of (12.44) and (12.45) [after replacing y in(12.45) with'y_]. Inthiscaseitisconvenient
to specify y. and calculate g and H from (12.44) and (12.45), respectively, to obtain a plot of
H versus . Thisprocedureisconsiderably easier than thefirst proceduregivenfor amild slope
since it does not require calculation of a free surface profile for every assumed value of Q.
However, one or two free surface profiles should be cal cul ated for the channel to ensure that the
channel reach islong enough to allow uniform flow to be approached at the upstream end of the
channdl.
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Example 12.6

A rectangular open channel serves as an outlet for a reservoir. Calculate a dimensionless
relationship between the outflow per unit width, g, and reservoir free surface elevation, H, if
the channel islong enough to ensure that any downstream control creates anegligible backwater
effect at the reservoir outlet.

Solution: When the channel slope is steep, Eq. (12.43) gives the outflow discharge.

a _ |8 when 'y <y,

s N7

Solution of Eq. (12.44) for y_ and use of the previous equation for q gives

( fq® ¥ _( fH3
Yo 89S, 275,

Substituting this expression for y, and Eq. (12.42) for y_ intheinequality y, <y, gives

3

Y, <Y, Wwhen i<8

This shows that the channel can be made steep by either increasing S, or decreasing f.

When the channel slope is mild, flow at the reservoir outlet can be influenced by non-uniform
flow that results from a downstream control (i.e. a backwater effect). If we assume that the
channel islong enough to have anegligible backwater effect at thereservoir outlet, then uniform
flow exists in the channel immediately downstream from the outlet and Eq. (12.44) gives the
following expression for the flow depth:

Yo (1 g®2 f)7
H {8 gH® %

Setting y =y, inthe Bernoulli equation, Eq. (12.45), gives a second relationship.
L N S
H 2 gH3 (y,H)

1

Elimination of theparameter y, /H betweenthesetwo equétionsgivesare ationship between q/y/gH 8
and f /S, for amild slopewhen 'y, > y.. However, the numerical solution of these equations
is achieved most easily by calculating g/y/gH * from the second equation for an assumed value
of y./H. Then the assumed value of y, /H and calculated value of g/y/gH * can be used inthe
first equation to compute f /S,. The result of this calculation is shown in the following plot.
Applications of this plot under the most general circumstances must proceed by trial and error
since f depends upon both Reynolds number and rel ative roughness.
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0 10 20 30 40 50 60 70 8 90 100
/S,

Numerical Integration of the Gradually Varied Flow Equation

The numerical integration of (12.32) is carried out most conveniently by rewritingit in theform

dE o
vl S-S (12.46)

inwhich E isdefined, for the most general case, by (12.13). There are two basic waysin which
(12.46) isintegrated to cal cul ate free surface coordinates. Thefirst way, which can only be used
for prismatic channel swith constant slopes, specifies E (and, therefore, y) at two different cross
sections and uses (12.46) to calculate the x distance between these two cross sections. Thus, if
E, and E, are specific energies at x = x; and X = X,, respectively, an application of the
trapezoidal rule to integrate (12.46) gives

v x, - E2 B

S-8) (%-9),

1 1 ]
+ (12.47)

inwhichthesignof x, - x, determineswhether cross section 2 isupstream or downstream from
cross section 2. The second method, which can be used for both prismatic and non-prismatic
channelswith either constant or variableslopes, specifiesthedistance x, - x, betweentwo cross
sections and integrates (12.46) to calculate E and the depth at cross section 2. For example, a
second-order Runge-Kutta method uses the known value of E; at x = x; to get a first
approximation for E,:

E;” = By + ($-S),06 %) (12.48)
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This first approximation for E, gives corresponding values for yél) and (33 - 3)‘21), and the

second and final approximation for E, isgiven by

P - E, + —(X2;X1) (&-8), - (-SF] (12.49)

Again, (x2 - X1> has a sign determined by the relative positions of cross sections 1 and 2.
Computational accuracy isincreased with (12.47) by decreasing LEZ - El), whichincreasesthe
number of steps required to calculate a profile for a specified channel length. Computational
accuracy is increased with (12.48) - (12.49) by decreasing (X,-X, ), which aso increases the
number of steps required to calculate a profile for a specified channel length.

Example 12.7

The trapezoidal canal in Fig. 12.8 has Q = 5 m?¥s, S = 1:2000, € = 0.49 mm and
y, = 0.500 m. Usetwo equal stepsin depthto cal culatethe distance between cross sectionsthat
have depthsof y = 0.90 and 1.00 m.

Solution: A calculation like the one illustrated in Example 12.5 gives y = 0.74 m for
Q = 5 m3s. Since Y. <Y, the slope is mild. Since al values of y in this calculation are
greater than y_, we expect an M, curveinwhich depthsgofromy = 1.00 t00.95t00.90 min
the upstream direction.

Figure 12.8 shows that E = 1.03, 0.98 and 0.94 m when y = 1.00, 0.95 and 0.90 m,
respectively. Corresponding valuesfor S at these depths are calculated from Eq. (12.20):

Calculationsfor S are summarized in the following table:

Cross Section 1 2 3

y (m) 1.00 0.95 0.90

A (m? 6.00 5.61 5.22

R (m) 0.708 0.680 0.650
Re 1.80 x 10° 1.85 x 10° 1.90 x 10°

e/(4R) 0.00017 0.00018 0.00019
f 0.0140 0.0141 0.0141
S 0.000175 0.000210 0.000254
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Since §, = 1/2000 = 0.00050, application of (12.47) gives

- x :(E27E1> 1 . 1 +(Es*Ez) i 1
> 2 |(%-8), (%-S), 2 |(%-S), (%-8),

0.05[ 11 }0.04[ 11 }

2 0.000325 0.000290 2 [0.000290  0.000246

=| -313m

The negative sign indicates that cross section 3 is upstream from cross section 1, which isto be
expected for an M, curve.

Example 12.8

Rework the previous example by using two equally spaced steps in x to caculate y, at
Xx=-313mify =100matx, =0.

Solution: From Example12.7wehave (x, - X, ) = -313/2 = -157 m, (§,-§) = 0.000325
and E; = 1.03 m. Therefore, Eq. (12. 48) glvesthefollowmgflrst apprOX|mat|on for E,:

E®- E, +(§-S),(x, - %) = 1.03+(0.000325)(~157)- 0.98 m
The corresponding value for y,, isfound from Fig. 12.8 to be yz(l) = 0.95m, which leadsto

-§)S @) - 0.00050 - 0.000210 = 0.000290. The final approximation for E, is now
calculated from Eq. (12.49).

E2(2) = E, + (2_;1)[(% - 3)1 + (% _ Sf)(zl)} - 103 - 157[

0.000325 + 0.000290] = 0.98 m

The corresponding value for y,, isfound from Fig. 12.8 to be yz(z) = 0.95 m,which leadsto
& -$)P = 0.00029.

Repetition of this process for the second step in x gives the following results:

EY (S-S ), (% ~ %,) = 098 +0.000290(-157) = 0.93 m

y;) =088 and (§-S) = 0.00050 - 0.000273 = 0.000227

EQ - E,+ (X32X2) & -5), (8- S)?] - 098~ 1§7 [0.000290 + 0.000227] = 0.94 m

y? =1 090 m

This happensto agree exactly with the value of y, that was used in Example 12.7. In genera we
would expect these values to be close but not necessarily identical.
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Gradually Varied Flow in Natural Channels

Gradually varied flow in natural channels can be calculated with the one-dimensional flow
approximationsused inthischapter only when flow issubcritical. Thisisbecause standing waves
always occur in irregular channels containing supercritical flow, and this causes the flow to
become highly two and three-dimensional. Since channel cross sections used in the integration
have x coordinates that are fixed by the natural geometry of the channel, subcritical flow
integrations must be carried out in the upstream direction by using Egs. (12.48) - (12.49).
However, these equations are usually modified to include aterm for local losses at sharp bends
or sudden expansions. Furthermore, sincethe channel slopevariesirregularly, the channel slope
and flow depth termsin E are combined to give the vertical elevation, z, of the free surface
above an arbitrarily chosen fixed datum. Thus, Egs. (12.48) - (12.49) take the following form:

HyY = Hy = (S) (% %) + H (12.50)

H? = H

(8 s (1251)

inwhich H_ = local headloss, (x2 - X1> < 0 sincecrosssection 2isupstream from cross section
land H isdefined as

. QA
29

(12.52)

Equations (12.50) - (12.51) are applied in the same way that (12.48) - (12.49) were used in
Example 12.8 except that EqQ. (12.52) and field measurements must be used to prepareapl ot of H
versus z for each channel cross section. Henderson (1966) points out that little generalized
information is available for values of H, , and river engineers commonly use values that have
been measured in past floods.
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Chapter 13

Unsteady Pipe Flow

In unsteady flow variables such as velocity and pressure change with time at afixed point. An
important exampl e of unsteady flow that will be considered in this chapter is concerned with the
movement of relatively large pressure waves through a pipe when avalve is closed rapidly, a
phenomenon known as waterhammer. We will treat these flows as one-dimensional. However,
the addition of time as a second independent variable means that all dependent variables are
functions of both x and t. As a result, these problems are described with partial rather than
ordinary differential equations. In this chapter we will learn to solve these partial differential
equations by using a very general and powerful technique that is known as the method of
characteristics.

The Equations of Unsteady Pipe Flow

Wewill only consider flow in constant diameter pipes. However, pressures in these flows often
become so large that elastic effects in both the fluid and pipe walls must be included in an
analysis. Thus, the control volume shown in Fig. 13.1 has a cross sectiona area, A, and mass
density, p, that changewith both x and t. For this reason longitudinal pressure forcesinclude
pressure forces on both end sections and athird force exerted by the diverging pipe walls on the
flow. Theremaininglongitudinal forcesinclude acomponent of thefluid weight and atangential
shear force along the pipe walls. The pipe centreline makes an angle 0 with the horizontal.

A(x,t) = Cross sectional area

P, Ax (b)

Figure 13.1 The control volume and free body diagram for unsteady flow in a pipe.
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The control volume form of the continuity equation states that the sum of the net mass flux out
through the control volume boundaries and the time rate of increase of mass within the control
volume must vanish.

d(pAAX)

(PAU) T

- (pAU), + =0 (13.1)

X + AX

Since x and t are independent variables, Ax istreated as a constant when differentiating with
respect to t. Therefore, division of (13.1) by Ax and letting Ax - O gives

ApAU) , dpA)

=0
I 3t (13.2)
Expansion of thefirst termin (13.2) gives
ou dpA) , 9(pA)
A— +U + =
P X oX ot (133)

and use of the definition of the material derivative puts (13.3) in arelatively smple form.

oU , 1 DlpA)

ox pA Dt (134)

Changesin pA occur in the flow only as aresult of changesin pressure, p. Thus, we define

1 dlpA) _ 1
pA dp pC

. (13.5)

Use of the chain rule and Eqg. (13.5) gives

1 D(A) _ 1 d(pA) Dp _ 1 Dp
oA Dt pA dp Dt pc? Dt (136)
and alows Eq. (13.4) to be written in itsfinal form.
ou op . ap
cZ—=+U—+-+-—"2L=-0
P X ox ot (13.7)

Later in this chapter we will show that ¢ isthe celerity or speed of a pressure wave in the flow,
(i.e. c isthe speed of sound in the fluid). Wylie and Streeter (1982) give expressionsfor ¢ for
various types of conduits. The most important of these expressions for our purposes is the
following result for an elastic conduit with thin walls:

(13.8)
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inwhich E, = fluid bulk modulus of elasticity, E, = pipe material modulus of elasticity, D =
pipediameterand T = pipewall thickness. Equation (13.8) showsthat ¢ canbeincreased either
by stiffening the pipewalls or by increasing the pipe wall thicknessrel ative to the pipe diameter.
For water at 15°C in a steel pipe, ¢ decreases from 1,464 m/swhen D/T = 0 to 1,017 m/s
when D/T = 100.

The momentum eguation can be derived by using the free body diagram shown in Fig. 13.1b. In
this case the dashed lines become system volume boundaries. Since the mass of fluid within the
system volume does not change with time (by definition of a system volume, as explained in
Chapter 2), Newton's second law states that the resultant of all external forces on the system
volume equals the product of its mass and accel eration.

. DU
(PA), = (PA), ax * (A s~ A)P + PYAAXSING - TP AX = pAAX oy (139

Dividing by pAAx and letting Ax - 0 gives

i a(pA) +£%+gsin6— L DU

oA X  pA ox pAIP, Dt

(13.10)

Expansion of the derivative in the first term and use of (7.47), (7.51) and A/P,, = D /4 puts
(13.10) in the following form:

19, ggno . fjuju-DY_yau, 2y

p JX 2D Dt ax ot (13.11)

inwhich the absolute value sign in the third term has been used to ensure that the tangential wall
shear forceisalwaysin adirection oppositeto the direction of motion. Thisisnecessary because
pressure waves and velocities in water hammer problems invariably oscillate in direction.

Simplification of the Equations

Equations (13.7) and (13.11) contain a few terms that are relatively small. While it is not
incorrect to retain theseterms, their presence complicates both the cal culation and interpretation
of solutions. Furthermore, these terms are likely to make contributions to the end result that are
of the same order as errors introduced by inaccurate estimates for ¢ and f. For these reasons,
wewill scaletermsin (13.7) and (13.11) and discard severa termsthat are found to berelatively
small.

The problemin Fig. 13.2 is useful for estimating magnitudes of termsin (13.7) and (13.11). As
in Chapter 5, the symbol ~ will be used to denote “of the order of”. Thus, sinceflow in the pipe
has a constant initial velocity U, that is reduced to zero at the downstream pipe end when the
valveissuddenly closed, wehavetheestimate U ~ U,,. Since ¢ isthe speed of apressurewave
intheflow, acharacteristictimeisgivenby At ~ L/c. Changesin p and c arerelatively small
in these problems, and thisallows usto treat p and ¢ as constantsin Egs. (13.7) and (13.11).
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|||<]

At~ Lje

Figure13.2 A problem used to estimate magnitudes of termsin Egs. (13.7) and (13.11).

If Ap isthe maximum changein pressure created by suddenly closing avalve at the downstream
end of the pipe, then termsin Eq. (13.7) have the following orders of magnitude:

2 Yo Ap ., Ap

pC T + U, 3 Tl (13.12)

Since op/at isunlikely tobesmall in (13.7), division of (13.12) by Ap/(L /c) givesan estimate
for each of thefirst two termsrelativeto op/ot.
pcU, U,

+—+1-0 13.13
Ap | c (13.13)

But ¢ ~ 1400 m/s and, in most problems, we would expect that U, would not exceed 50 my/s.
Thus, the second termisunlikely to be more than four per cent of thethird term, and thefirst and
third terms must have the same order of magnitude. Thus, Eq. (13.13) gives the following
estimate for Ap:

Ap ~ pcU, (13.14)

When we eventually solve the problem in Fig. 13.2, we will find that the estimate given by
(13.14) isextremely close.

The easiest way to appreciate the size of the pressure increase given by (13.14) isto divide both
sides of (13.14) by pg to obtain
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Ah - — 2 (13.15)

in which Ah is the maximum increase in piezometric head. Since ¢ ~ 1400 m/s and
g = 9.81m/s, Ahisverylargefor any reasonably largevalueof U,. For example,if H = 10m,
if friction and local losses are neglected and if the valve is completely open before being
suddenly closed, then U, = y/2gH = 14 m/s and Ah ~ 2000 m. In dimensionlessterms, this
gives Ah/H ~ 200. This massive pressure increase can be large enough to burst apipeand is
the reason for using the term waterhammer to describe the phenomenon.

The preceding analysis showed that the second termin (13.7) can be neglected and al so provided
an estimatefor the maximum pressurerise created by suddenly closing avalve at thedownstream
end of the pipe. A similar analysis of Eq. (13.11) gives

cy, f

+gsnd + — U2~ U Yo, Y (13.16)
2D ° L Lic '

in which (13.14) has been used to provide an estimate for Ap. Since U /dt isunlikely to be
small, division of (13.16) by U, /(L /c) givesan estimate for each term relative to oU /ot.

U U

L . f L 0 0
1+ 3 snp v 2 = 2~ 04 (13.17)
cU0 2D c c

Equation (13.17) shows that the convective acceleration term, U oU /dx, should be dropped
since it has the same relative magnitude as the term U dp/dx that was dropped in (13.7). The
friction term can be neglected only when

U
L oy (13.18)
D c

N | —

Since (13.18) isnot alwaystrue, we will retain the friction term but note that it can be neglected
when (13.18) is satisfied. Equation (13.17) also shows that the gravitational term g sin© can
probably be neglected in most problems. However, we will choose to retain this term and then
absorb it by changing the dependent variablesfrom p and U to h and U.

The governing equations, (13.7) and (13.11), now have the following simpler forms:

23U, 8p g

C
P oX ot

(13.19)

LY

T (13.20)

1P gsne - L juju
o0 ox 2D
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inwhich p and c aretreated as constants. If z is measured upward from an arbitrarily chosen
horizontal datum, the piezometric head defined by Eq. (2.22) becomes

h==L .2 (13.21)

in which z(x) = elevation of the pipe centreline above datum. Since dz(x)/dt = 0, (13.21)
allows (13.19) to be rewritten in the form

2 gy 13.22
oX ot (1322)

Sincesin® = -09z(x)/ox, (13.21) allows(13.20) to berewritten in thefollowing simpler form:

oh ou f
.Y - |u|u
95 " 5 0 U | (13.23)

Second-order equationswith U or h astheir unknown can be obtained from (13.22) - (13.23).

For example, differentiating (13.23) with respect to x and using (13.22) to eliminate 0U /9x

gives

» 0°h  9%h _flU] oh
ox?  ot? D odt

c

(13.24)

Inasimilar way, differentiating (13.23) with respectto t and using (13.22) to eliminate oh /ot
gives
, 02U 09°U f|U| aU
C — =
ox?  ot? D ot

(13.25)

Equations (13.24) and (13.25) are anonlinear form of an equation known as the wave equation.
If these equations are linearized by replacing | U | with a constant, say U, then standard
solutiontechniques such as separation of variables (Fourier series) or Laplacetransform methods
can be used to obtain solutions. However, the method of characteristics offers a number of
important advantages over these other techniques. These advantages include closed-form
solutionsthat are easily interpreted when friction is neglected together with atechnique that can
be used to obtain accurate and stable numerical solutions when the nonlinear friction term is
included. Therefore, the remainder of this chapter will be concerned exclusively with the use of
characteristics to solve (13.22) - (13.23).
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The Method of Characteristics

The method of characteristics is based upon the idea of a directional derivative, which was
introduced in Chapter 1. If a dependent variable, ¢, is a function of the two independent
variables x and t, then acurvein the (x, t) plane can always be described parametrically asa
function of arc length, s, along its path.

X = X(S)

Lot (13.26 &, b)

Thismeansthat along thiscurve ¢ takeson thevalues ¢p[x(s), t(s)], and the derivative of ¢
with respect to s is calculated from the chain rule of differential calculus.

4o _ ¢ dx , 3¢ dt

ds ox ds ot ds (13.27)

Since dx/ds and dt/ds are the direction cosines of the unit tangent to the curve, Eq. (13.27)
isatwo-dimensiona form of Eq. (1.44).

Analternativeformfor adirectional derivative can beobtained by solving (13.26b) for s = s(t)
and substituting the result into (13.26 &) to obtain

x = x[s(t)] = x(t) (13.28)

Thefunction ¢ now takeson thevaluesof ¢[x(t),t] along the curve, and the derivative of ¢
along this curve is given by

— = = — + — (13.29)

We will choose to use (13.29) when using the method of characteristics to solve problems
because dx/dt hasthephysical interpretation of avelocity. However, wecould just aseasily use
(13.27), inwhich s may or may not be chosen as arc length, or we could instead solve (13.26 @)
fors = s(x) anduset = t[s(x)] = t(x) tocaculate

do _ 99  dt ¢

dx oX dx ot (13.30)

Our choice of (13.29) is quite arbitrary. We will call the curve given by Eq. (13.28) a
“characteristic curve’. Some examples will now be used to show how (13.29) can be used to
integrate partia differential equations.
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Example 13.1

Solve the following problem by using the method of characteristics:

@+et@:0
oX ot

for -—w<Xx<owo and 0<t<ow

d(x, 0) = e for -e<x<o

Solution: The first step is to divide the differential equation by e' so that o/t has a
coefficient of unity.

¢
oX ot

Equation (13.29) shows that this partial differential equation is equivalent to the simultaneous
solution of two ordinary differential equations along a characteristic curve:

d9
dt

Integration of these two equations gives

= 0 along the curve % =et

¢ =K, adong x+e'=K,

The next step is to make qualitatively correct sketches of the (x,t) plane and a typical
characteristic curve. It is usually easier to obtain characteristic curve geometry from the
differential equation (dx/dt = e' in thiscase) than fromitsintegra (x + e = K, inthis
case).

(€,0) X
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Thecharacteristic curveoriginatesfromthepoint (x, t) = (£, 0), whered = e & fromtheinitial
condition given in the problem statement. Thus, K, and K, may be evaluated at this point to
obtain

(I)ze’Ez dong x+et=f+1 for -wo<E<o

Thisalows ¢ to be calculated at every point along the characteristic curve, and by allowing &
to take on al valuesintherange - » < £ < «» we are able to calculate avalue for ¢ at every
pointinthesolutiondomain -« < X <« and 0 < t < . Thiswill becalledtheparametricform
of the solution, with & as a parameter.

Thenon-parametric form of the solution isobtained by eliminating £ from thetwo equationsthat
hold along the characteristic curve. Inthiscase, thecharacteristiccurvegives¢ = x + et - 1,
from which we obtain

¢ = elke P for wcoxiet-l<w

Thesolutionfor ¢ obvioudly satisfiesthecorrectinitial conditionatt = 0, anditisnot difficult
to show that it also satisfies the partia differential equation. The inequality shows that the
solution holdsonly in the region covered by characteristic curvesthat passthrough pointswhere
initial datafor ¢ was specified. (In thiscase, initial datawas specified along the entire x axis.
Since the characteristic curves passing through the x axis cover the entire solution domain, the
solutionfor ¢ holdseverywherewithinthisregion.) Inpracticeit iseasier and moreinformative
to omit the inequality and, instead, indicate in adrawing of the (x, t) plane the region in which
the solution holds.

d):e’(x*e"“l)2 for -o<x<eo and O<t<o

<Y
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Example 13.2

Use characteristics to solve the following problem:

5@+@:1 for 0<X<owo and O0<t<ow

X ot
d(x,0) =0 for 0<Xx<o
$(0,t) = L for O<t<w

1+t

Solution: Since the coefficient of d¢/adt is unity, Eq. (13.29) shows that the following two
ordinary differential equations hold along a characteristic curve:

49 _ 1 aong the curve dx 5
dt dt

Integration of these two equations gives
¢ -t=K, aong x -5 =K,

The characteristic curvesare straight lineswith aslope of 5. A sketch of the (x, t ) planefollows:

0,7)

(€,0) X

The solution domain coversthe entirefirst quadrant. However, the characteristic curves passing
through thepositive x axis, where K, and K, canbecalculated fromthegiveninitial condition,
only cover the portion of this solution domain that lies below the characteristic curve passing
through the coordinate origin (x = 5t). Because of this, the boundary condition along the

positive t axisisrequired so that the solution can be calculated in the region above the curve
X = 5t.
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Along the characteristic curve that intersects the x axisat (€, 0) we obtain

¢ -t=0 adong

X-5=¢ for 0<E<o

Elimination of the parameter £ gives

in the region between x = 5t and the positive x axis.

Along the characteristic curve that intersectsthe t axisat (0, t) we obtain

-t = -1

along

X - 5t

= -5t for

O<t<w

Elimination of the parameter t gives

¢ =t

+

1

(L+t-x/5)

- (t - x/5)

in the region between x = 5t and the positive t axis. A sketch of the solution domain and the

final form of the solution follows:

tﬂ X 1
¢=% * 1+t-x/5
v
7
7
v
_
7 o =t
v
v
7

Y

Again, it iseasy to seethat the boundary and initial conditions are satisfied, and abit more work
would show that the partial differential equation is also satisfied.
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Example 13.3

Use characteristics to solve the following problem:
—5@ . 9¢ =1 for 0<x<ew and O0<t<w
oX ot
$(x,0) =0 for O0<x<w

Solution: The characteristic form of the partial differential equation follows:

do
dt

Integration of these equations gives

along the curve % = -5

¢ -t=K, aong x+5 =K,

Thecharacteristic curvesarestraight lineswith aslope of -5. A sketch of the (x, t) planefollows:

A
t

N

(£,0) X

The solution domain again consists of the first quadrant. However, because the characteristics
haveanegativeslope, characteristics passing throughthepositive x axiscover theentiresolution
domain. Therefore, only theinitial condition along the positive x axisis needed to calculate a
solution in the first quadrant.

Along the characteristic curve that intersects the x axisat (€, 0) we obtain

¢ -t=0 dong x+5t=E for 0<Ef<w

The non-parametric form of the solutionis

which isvalid throughout the entire solution domain.
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The previousthree examplesillustrate anumber of important pointsthat can be generalized. We
will state these points without proofs.

1

Any equation or set of equationsthat can be solved by using characteristicsis defined to
be hyperbolic. All linear first-order equationswith asingle unknown can be solved using
characteristics and, therefore, are hyperbolic.

Hyperbolic equations alow discontinuities in either the dependent variable or its
derivatives to be carried from a boundary into a solution domain along a characteristic.
(Seethediscontinuityin ¢ that occursalongthecharacteristic x = 5t inExample13.2.)
Only hyperbolic equations have this property. Since numerical methods usually
approximate dependent variables with polynomials, hyperbolic problems with
discontinuous boundary or initial conditions can be solved accurately with numerical
techniquesonly by integrating al ong, rather than across, characteristics. Thissuggeststhat
accurate numerical solutionsof these problems can be obtained only by using the method
of characteristics.

The geometry of the characteristics determines which boundary and initial conditions
must be used to obtain aunigue solution. For example, asinglefirst-order equationinone
unknown requiresthat thedependent variable, ¢ , be specified at one, and only one, point
on each and every characteristic within its solution domain. (In Example 13.2, the
positive sloping characteristics required that data be specified a ong both the positive x
and positive t axes to calculate a solution in the first quadrant. In Example 13.3, the
negative sloping characteristics meant that data specified along only the positive x axis
was sufficient to calculate asolution in thefirst quadrant. Specification of any moredata,
say along the positive t axis, would have over determined the solution.)

The characteristic slope, dx/dt, gives the wave speed. This is the speed at which a
disturbance or solution is carried through a solution domain.

One fascinating topic that has not been discussed is the occurrence of shocks within a solution
domain. Shocks, which are often called surges by hydraulic engineers, occur only when
coefficients of the highest derivatives in hyperbolic partial differential equations are functions
of the dependent variable or itsderivatives. (This causes characteristic curve slopesto vary with
changes in the dependent variable)) Since coefficients of the derivatives of h and U in
(13.22) - (13.23) areconstants, shocks cannot occur inwaterhammer problems. However, shocks
do occur in unsteady open channel flow problems, which are not considered in this chapter.
Stoker (1957) and Whitham (1974) give detailed discussions of shocks.

Theideasjust discussed for asinglefirst-order equation can sometimes be extended to solvetwo
or more simultaneous first-order equations. For example, consider the following two equations:

ou ﬂ
oX ot
ov @
oX ot

=0

(13.314a, b)
-0
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Wewill look for alinear combination of these equationsthat containsderivatives along the same
characteristic curvein the (x, t) plane. Multiplying (13.31 b) by an unknown parameter A and
adding the result to (13.31 @) gives

ou ov ov au
— + =+ A=+ =Z=] =0
ox ot ( X at) (13.32)

This can be rearranged in the following form:

1 du au ov ov
Al = — +— | +|A—+—1] =0
[ A Ox ot ) ( ox ot ) (13.33)

Sincewewant al derivativesin (13.33) to bedirectiona derivativesalongthesamecurveinthe (x, t)
plane, (13.29) shows that we must choose A so that

dx

1
dt A

= A (13.34)

Then (13.33) becomes

du dv dx
A— +— =0 aon — =
dt + i g dt (13.35)

Since (13.34) gives A2 = 1 and A = +1, we obtain two sets of equations from (13.35).

du dv _ 0 aong dx _ 1

dt dt dt

q q q (13.36 4, b)
L LA aong &X_ 1

dt dt dt

Integration of (13.36) gives
u+v=K adong x-t-=K,
(13.37 4, b)

-u+v =K, dong x-+t=K,

From this result we see that there are two families of characteristic curves for this problem. In
general, the method of characteristics can be used to solve a problem only if the number of
unknowns, the number of simultaneous differential equationsand the number of families of
characteristic curves are all identical. The next example will show how (13.37 a, b) are used
to solve a particular problem.
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Example 13.4
We will use (13.37 a, b) to solve the following problem
@+ﬂ=0 for 0<x<L and O<t<w
aX ot
ﬂ+@=0 for 0<x<L and O<t<w
aX ot
u= and v=0 a t=0 for O0<x<L
u= a Xx=0 for 0<t<w
v=0 a Xx=L for O0<t<w
tA
D B
EN /
AN /
AN /
N /
N /
\NE/
X
7 N\
/ N
0,9 / SN (LY
/ N\
Al/ N\[Cc

0 (x40) (x4,0) (x5,0) (x30) L X

Solution: Sketches of the (x, t) plane and some typical characteristics are shown below.

Since(13.37 &) and (13.37 b) apply aong the characteristicsoriginating from (xl, 0) and (x
respectively, we obtain

u+vs=x aong x-t-=x

-u+Vv

X, dong Xx+t=xX

2

in which K, K,, K, and K, have been calculated from the given initial condition

)

s for

uand v att = 0. Solution of these equations for u, v, x and t at the point where the two

characteristics meet gives the parametric solution.

u:(xl+x2)/2 v:(xlfxz)/z
x:(xl+x2)/2 t:(xzfxl)/z
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By choosing x, and x, in the range 0 < x, <X, < L, values for u, v, x and t can be
calculated at every point within the triangle AEC. The non-parametric form of the solution is
obtained by eliminating the parameters x, and x, to obtain

u=x ad v = -t within AEC

Thus, u and v must both be specified at t = 0 for 0 < x < L if aunique solution is to be
calculated within AEC.

Application of (13.37 @) aong the characteristic originating at (x3, 0) gives the parametric
solution for u and t along BC.

u=x, aong L -t-=x,

Elimination of the parameter x, gives the non-parametric form of the solution.

u=L -t aong BC

From thisresult it becomes apparent that either u or v or some functional relationship between
u and v must be specified as a boundary condition along x = L if aunique solutionisto be
calculated along BC.

Application of (13.37 b) a ongthecharacteristic originating at (x " 0) givetheparametric solution
for v and t along AD.

-1+v=-x, dong t=xX,

Elimination of the parameter x, gives the non-parametric form of the solution.

v=1-t adong AD

Thus, either u or v or afunctional relationship between u and v must be specified along the
boundary x = 0 if aunique solution isto be calculated along AD.

The solution within AED can be obtained by using positive and negative sloping characteristics
that originate from AD and AC, respectively. The solution within BEC can be obtained by using
positive and negative sloping characteristics that originate from AC and BC, respectively. The
solution in the region immediately above DEB can be calcul ated by using positive and negative
sloping characteristics that originate from AD and BC, respectively. Thus, the solution for each
region is used as a stepping stone to calculate the solution for another region.
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Inthisparticular problem the boundary andinitial conditionsspecify u sothat it isdiscontinuous
a x =t = 0. Therefore, discontinuities in u and v can be expected to travel through the
solution domain along the characteristic AB.

These discontinuities will then move back into the solution domain along the negative sloping
characteristic that originates at B. From this we see that disturbances move through the solution
domain with speedsgiven by the slopes of the characteristics, and thediscontinuitiesiny and v

that originatedat x = t = 0 continuetotravel through theentire solutiondomainfor 0 <t <
along both positive and negative sloping characteristics. These discontinuities would make an
accurate numerical solution of this problem virtually impossible to obtain with finite difference
or finite element methods.

A Fourier series solution could be obtained since u and v can be shown to both satisfy the
second-order wave equation.

However, the rate of convergence of aFourier seriesis slowed considerably by discontinuities,
and oscillations known as Gibbs phenomenon occur in Fourier series solutions near
discontinuities. Kreyszig (1993) gives a brief discussion of Gibbs phenomenon.

Example 13.5
Under what conditions can the equation

2 2 2
Aa¢+Ba¢+Cﬂ:0
ox?2 oxot Jt?2

be solved by using characteristics?

Solution: The second-order equation can be rewritten astwo simultaneousfirst-order equations
by setting

u = @ and Vv = @
X t
Then the second-order equation becomes
A % + B ﬂ + C ﬂ =0
X X ot

A second equation is obtained from a compatibility condition.

ou _ 9% _ 93| _ ov
ot Jdtox ox\ ot
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Multiply the second equation by A and add to the first equation.

kﬁfﬂ +AQ+BQ+CQ =0
ot X X X ot

Rearranging terms gives

)\,(é ou +@)

il +Cﬂﬂ+ﬂ =0
A OX ot

C ox ot

Thisequationwill contain derivativesalongthesamecurveinthe (x, t) planeif wecan choose A
so that

dx A _B-1
dt A C
Then the equation takes the following form:
A%+Cﬂ:0 along dx _ A
dt dt dt A

Calculation of A requires the solution of a quadratic equation

The solution for A is

A - (Bt yBZ-4AC)/2

Since there are two equations with two unknowns, u and v, the method of characteristics can
be used only if there are two distinct families of characteristics. This requires that

B2 -4AC>0

in which case the original second-order equation is said to be hyperbolic. The method of
characteristics cannot be used if B? - 4AC = 0, in which case the equation is said to be
parabolic, or if B2 - 4AC < 0, inwhich case the equation is said to be elliptic.
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The Solution of Waterhammer Problems

The method of characteristics will now be used to solve (13.22) - (13.23). Multiplying (13.22)
by A and adding the result to (13.23) gives
A[C2ﬂ+ah) oh . ou f

g 2 -2 L juu
~ ot g U | (13.38)

oXx ot 2D

Rearrangement of the termsin (13.38) gives the following result:

ou ou 1 oh oh f
Ac?2—+ —=| +Ag| = — +—| =-— |U|U
( X ot ) g( A OX at) 2D e (13.39)

Derivativesin (13.39) will be calculated along the same curvein the (x, t) planeif we choose A
so that

dx 1
_ = )\‘CZ = —
T 0 (13.40)
in which case (13.39) becomes
du dh f dx 1
— +Ag— =-—1|U|U don — ==
dt v A9 dt 2D| | g dt A (13.41)

Equation (13.40) gives A = + 1/c, and we obtain from this result and (13.41) the following
equations:

M :—L|U|U along % =C

at 2D at (13.42 4, b)
szL’U’U along %:7(3

dt 2D dt

When (13.18) is satisfied, friction losses can be neglected. In this case (13.42) can be integrated
to obtain

U + ghl/c
U - ghl/c

I
A

K, dong x -ct
(13434, b)

I
7o)

K, adong x +ct

Since two equations with two unknowns, U and h, have given two families of characteristics,
we see that the method of characteristics can be used to solve waterhammer problems.
Furthermore, (13.42) furnishes the proof that velocity and pressure waves in these problems
move with a speed given by c. Finally, since one family of characteristics has a positive slope
and the other family has a negative slope, we see that a unique solution requires:
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1 Specificationof U and hatt = 0 for 0 < x < L. (Initial conditions.)

2 Specification of U or h or one functiona relationship between U and h at both
X =0and x = L for 0 <t <. (Boundary conditions.)

Equation (13.15) showsthat H islikely to beavery small portion of the maximum changein h.
Therefore, any initial or boundary condition which specifiesavalueof h that doesnot exceed H
can often be replaced with the requirement h = 0. This approximation can always be checked
at the end of any calculation by comparing the maximum calculated value of Ah with H to see
if H/Ah << 1. Thus, theprobleminFig. 13.2 hasaninitial valuefor h that doesnot exceed H,
and we will usethe approximateinitial conditionh = Oatt = 0 for 0 < x < L. Likewise, the
boundary condition at x = 0 specifiesavalue for h that does not exceed H, and we will use
the approximate boundary condition h = Oat x = 0 for 0<t <. If thevalveat x = L is
completely closed during a zero time interval, we will require that U = O at x = L for
0<t <o,

Example 13.6

Solve the problem in Fig. 13.2 by neglecting friction and local losses. Use the following initial
and boundary conditions:
Uu=u
h=0 a x=0 for 0<t<w
U=0 a x-=1L for 0<t<w

o ad h=0 a t=0 for O0<x<lL

Solution: Sketches of the (x, t) plane and some typical characteristics are shown below.

t A
L/c \D /B
N 7
N /
AN /7
AN /
NI
PaN
/N
// (x.t) \\
: L
(0,1) Y N (L,%)
Al/ \Nle

0 (x40) (x4,0) (x5,0) (x50) L X
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Equations (13.43 &) and (13.43 b) apply along the characteristic originating from
(%, 0) and (x,, 0), respectively. Use of the initial conditionsto evaluate K; gives

U + ghl/c =U
U - ghl/c=U

o dong x -ct-=x

aong x + ct =x

0 2

Simultaneous solution gives

Uu=u and h =0 within AEC

0

Equation (13.43 &) applied along the characteristic originating from (x3, 0) gives

gh/c = U, adong Xx -ct =X,

0

Thus, we obtain the result

UO
h=— aong BC
g

We note that this agrees exactly with the order of magnitude estimate given by (13.15) for the
maximum change in piezometric head.

Equation (13.43 b) applied along the characteristic originating from (x 4 0) gives

U=U, dong ct=x,

0

Thus, theinitial velocity doesnot changeat x = Ofor 0<t<L/c.

Continuing in this way gives the solution shown in the following sketch of the (x, t) plane:
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t“
4L fc
h=0
U=U, U=0
h=0 h=-CU0/Q
U=0
3L/c 1 h = -cUylg
U=-U, U=2o0
h=0 h=—cU0/g
2L/c U=-=Yo
h =
U=-U, U=0
h= h=cUg/g
U=0
L/c
h=cU,/g
Uu=1uy, U=20
h=0 h=cU,/g
h=
0 >
0 L X

Plotsof h versust at x = L andof U versust at x = 0 show that the maximum piezometric
head oscillates between cU,/g and -cU,/g with aperiod of 4L /c and that the velocity at
X = 0 oscillates between U, and - U, with the same period. These oscillations continue
indefinitely since friction and local 1osses have been neglected.
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A
T
gh(L,1)
cU,
| | | -
0 >
1 2 3 4 5 60_!‘
-7 =
A
4
u(o,t
Up
| | |
0 G
1 2 3 4 5 6 ot
1=

Numerical Solutions

Departures from the idealized assumptions made in working Example 13.6 usually make it
necessary to obtain numerical solutions of (13.42). These departures include the effects of
friction, finite valve closure times and systems with a number of different pipes. Whenever
possible, the solution domain should be discretized with constant node spacingsin the x and t
directions with node spacings determined by the slope of the characteristic curves.

AX = c At (13.44)
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(0,t) (x,t) (L)
At
2 1 2 1
(DU S 2Ax | —Ax ]
(@) (b) (c)

Figure 13.3 Characteristic line segments used for cal culating numerical solutions.

At internal nodes, asin Fig. 13.3 b, Egs (13.42) are approximated with

U + ghic (U + ghic), - (l U \u) At = K,
2D .
(13.45 a, b)
U - ghic (U - ghic), - (l U \u) At = K,
2D ,
which can be solved for U and h at the node (x, t).
U = (K, + K,)/2
(13.46 a, b)
h=c(K, - Kz)/(ZQ)
At the boundary node (0, t) in Fig. 13.3 a, an approximate integral of (13.42 b)
f
U -gh/c (Ugh/C)z(E\U\U) At = K, (13.47)
2

is solved simultaneously with aboundary condition at (0, t) to obtain U and h at (0, t). Atthe
boundary node (L, t) in Fig. 13.3 ¢, an approximate integral of (13.42 a).

f
U + gh/c = (U +gh/c)l(E!U!U) At = K, (13.48)
1

is solved simultaneously with a boundary condition at (L, t) to obtain U and h at (L, t).
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When more than one pipe occursin asystem, it isimpossible to choose constant valuesfor Ax
and At that satisfy (13.44) everywhere. The usual procedure in this case is to choose constant
valuesfor Ax and At inall pipes. Then points 1 and 2 in Fig. 13.3, whose locations are found
from (13.44), do not coincidewith nodes, and linear interpol ation along ahorizontal line between
nodesisusedto calculate U and h (and, therefore, K, and K,) for usein (13.45) - (13.48). If
adiscontinuity or steep gradient in U and h occurs between nodes, this interpolation process
will smooth the solution and create artificial numerical diffusion. For thisreason, (13.44) should
be used to determine node spacings whenever possible.

Finite valve closure times are sometimes used to reduce peak pressures in pipes. When thisis
done, Ah may no longer be very large compared to H in Fig. 13.2. Thismeansthat h = 0 is
no longer an acceptable approximation for a boundary condition at x = 0 or for an initia
condition at t = 0. In this case the initial condition for h is calculated from the Bernoulli
equation with, or without, afriction lossterm. The most accurate form of the boundary condition
ax=0is

h(0,t) =

[
T
[

Uus>o0
29 (13.49)

= H if U<O

This is because the flow behaves as flow into a pipe entrance when U > 0 and as flow in a
submerged jet when U < 0. In practice, most analysts apparently set h(0,t) = H for both
cases, which is an acceptable approximation if U 2/(2gH ) << 1.

For afinite closuretime, the velocity upstream from thevalvein Fig. 13.2 can berelated to h by
U = a/gh (13.50)

inwhich « is an experimental coefficient that varies with the valve geometry. Thus, o will
change with time as the valve is closed. [If datum is not chosen at the valve and the flow does
not exit to the atmosphere at the valve, then h in (13.50) must be replaced with the changein h
across the valve.] Introduction of (13.50) into (13.48) gives

ay/gh + gh/c = K, (13.51)

which can be solved for h to obtain

2
h - % [—oc o fo? - 4Kl/c}2 (13.52)

At the junction of two different pipes, h and the flow rate are assumed to be continuous. Thus,
the following simultaneous equations apply:
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U +ghlc =K,
U, - ghl/c, =K, (13.534a, b, ¢)
UA =UA

inwhich K, and K, aredefinedin (13.48) and (13.47) and U, and U are velocities on each
side of the pipe junction as shown in Fig. 13.4. The solution of these equationsis given by

U - K,c. + K,c, A
- Ac +Ac,

U, = KiC Kol A (1354 a, b, ¢
" Ac +Ac e

K/A - K,A c.c
Ac +Ac, g

A similar, but more involved, calculation can be made where three or more pipes meet by
requiring continuity of flow rates and piezometric heads at the junction.

If apump or valveisinserted in the middle of a pipeline, and if the pipes on either side of the
pump or valve have different areas, then the relevant equations are

U +ghl/c =K,
U, - ghl/c, =K, (13554, b, ¢)
UA =UA

The characteristic geometry for (13.55) is shown in Fig. 13.4.

| Location of junction,
lj pump or valve

Figure 13.4 Characteristic geometry at the location of a pipe junction, pump or valve.
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The three equations in (13.55) contain four unknowns: U _, U , h_ and h, . This system of
equationsis closed for avalve by requiring

U =a()/g[h - R (13.56)

inwhich «(t) isan experimental coefficient that hasthesamesignas (h_ - h, ). The system of
equationsis closed for apump by using an experimental pump characteristic curvethat plots Q
versus the change in h across the pump. An extensive discussion of unsteady flow in pipes,
together with computer program listingsfor some of the simpler cases, canbefoundin Wylieand
Streeter (1982).

Pipeline Protection from Water hammer

There are numerous ways to prevent pipelines from bursting as a result of waterhammer. One
obvious way isto simply design pipes so that they are strong enough to withstand the expected
changes in pressure. Changes in pressure can also be controlled by specifying equipment and
operational procedures, such as minimum timesfor valve closures. Mechanical devices such as
surge tanks, air chambers, reflux valves and pressure relief valves can be used in some
applications. Discussions of many different possibilities are given by Wylie and Streeter (1982)
and Stephenson (1989).
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Chapter 14

Unsteady Open Channel Flow

Unsteady flowsin open channels occur frequently. Examplesinclude waves moving across the
free surfaces of lakes and reservoirs, changes in flow rates and water levels downstream from
reservoir outlet works, sudden rel eases of water from burst damsand floods moving downrivers.
Many of these problems can be modelled by assuming one-dimensional velocity distributions
and pressure distributions that are hydrostatic along lines normal to the channel bottom. This
leads to a set of partial differential equations known as the Saint-Venant equations. These
equationsare hyperbolic, so the method of characteristics can beused intheir solution. However,
the use of characteristicsis considerably more difficult for flow in open channels than for flow
in pipes. Thisisbecausethe equations are nonlinear, so that the slope of the characteristic curves
is not constant but is a function of the dependent variables. As a result, shocks or surges can
appear spontaneously in these solutions, causing difficulties with numerical accuracy and
stability.

In this chapter we will derive the Saint-Venant equations for unsteady flow in a prismatic
rectangular channel. Then the method of characteristics will be used to show the types of
boundary and initial conditions that must be imposed and to illustrate an effective numerical
technique that is sometimes used to solve these equations. Finally, asimplification of the Saint-
Venant equations known as the kinematic wave approximation will be introduced and used to
discussthe problem of flood-wave movement downriversinaprocessknownas"flood routing".

Figure14.1 A control volumefor unsteady flow in an open channel.

The Saint-Venant Equations

A control volume bounded by the free surface, the channel bottom and two surfaces normal to
the channel bottom is shown with dashed linesin Figure 14.1. The two surfaces normal to the
channel bottom are fixed, which means that fluid passes through them. The top boundary,
however, movesin the vertical direction as the free surface geometry changes with time.
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Let q(x, t) betheflow rate per unit width. Sincethe continuity principlestatesthat thedifference
between flow ratesentering and | eaving the control volume must be balanced by therate at which
fluid is stored within, we obtain

d(yAx)

a(x, t) - q(x + Ax, t) = — (14.1)

Since x and t are independent variables, dividing (14.1) by Ax and putting all terms on the
same side of the equation gives

q(x +Ax,t) - q(x,t) 9y _ 0
AX ot

(14.2)

Finally, letting Ax- O givesthe continuity equation for flow in a prismatic rectangular channel
with zero latera inflow.

— + =2 = (14.3)

Since q = Uy inwhich U isthe one-dimensional flux velocity, (14.3) can be written with U
and y asitstwo unknowns.

o(Uy) , gy
9Y -0
Ix ot (14.9)

Probably the simplest way to recover the momentum equation isto take the partial derivative of
(6.22) with respect to x.

2
aX g oXx g oxat aX

If pressures are hydrostatic along any vertical line, then h = z(x) + y(x,t) inwhich z(x) =
channel bed elevation and the channel slope, 0, has been assumed small enough to make the
approximations cos® ~ 1and sinf = tan® = 6 = §, = bed slope. Therefore, the first term
in (14.5) can be rewritten as

oh _dz  dy _ _ 9y
+ax S’+ax (14.6)

inwhich the negative signin front of §) indicatesthat z decreaseswith x when §, ispositive.
(i.e. 0 is positive when the channel dopes downward in the direction of flow.) In one-
dimensional flow the velocity magnitude, V, is given by the velocity component in the x
direction, U. Since x and t are independent variables, the third term becomes
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a0t ax) ot (14.7)

32 :i[aq)) ou
ot ot

in which use has been made of (6.14a). Finally, (12.20) allows us to rewrite the last term in
(14.5) in terms of the friction slope.

— =-S5 (14.8)

Then use of (14.6)-(14.8) in (14.5) and a bit of algebra gives the momentum equation for
unsteady one-dimensional flow.

Q+UaU

U )
9 Frierd 9($-S) (14.9)

Equations (14.4) and (14.9) are known as the Saint-Venant equations of open channel flow.
When theright side of (12.20) is used to approximate S, they contain U and y astheir only
unknowns.

Characteristic Form of the Saint-Venant Equations

Expansion of thefirst termin (14.4) gives

yﬂ+uay+ﬂ:0

% Ix ot (14.10)

Multiplication of (14.10) by an unknown parameter, A, and addition to (14.9) gives

o 0 ou = duU
(9+Au)a—i+ka—¥*(U+)LY)§+a—t:9(Sb*Sf) (14.11)
which can be altered dlightly to
+AU 0 0 ou  ou
k[g - a_i +8_)t/] +[(U +Ay)§ +§ :g(S)*Sf) (14.12)

The directional derivative defined by (13.29) allows (14.12) to be rewritten as a set of
simultaneous ordinary differential equations that hold along a characteristic curvein the (x, t)
plane.

dy+dU

il IS (14.13)
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The time derivatives in (14.13) are calculated along characteristic curves that satisfy the
differential equation
dx _g+AU
dt A

= U + 4y (14.14)

The second of the two equations in (14.14) gives A = =/g/y, and use of this result in
(14.13)-(1.414) gives two equations for each of two separate and distinct families of
characteristic curvesin the (x, t) plane.

d(U +2c) dx
—————1 =9(§-S) dong —= =U +c¢
dt ( ) dt (14.15 a, b)
d(U -2c) _ dx
T—g(%—%) along H_U_C
inwhich
c = /oy (14.16)

Equations (14.15) show that c is the speed of a disturbance or wave when U = 0. These
equations aso show that, when U # 0, adisturbance travels with a speed of U + caong one
family of characteristicsand with aspeed U - ¢ aong the other family of characteristics. When
the flow is subcritical, with U < ¢, one wave travels downstream and another wave travels
upstream. When the flow is supercritical, with U >c, dx/dt is positive for both families of
characteristics and waves travel only in the downstream direction. Another way of stating this
result isthat conditionsat apoint in subcritical flow areinfluenced by boundary conditionsboth
upstream and downstream from the point in question. On the other hand, conditions at a point
insupercritical flow areinfluenced only by boundary conditions upstream from the point under
consideration.

t“

(0.1 %Y (L)

(a) (b) (c)
Figure 14.2 Segments of a characteristic grid for subcritical flow.
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Numerical Solution of the Characteristic Equations

The numerical solution of (14.15) can be carried out with aclosely spaced set of nodes along the
characteristic curves. Figure 14.2 shows segments of a characteristic grid for subcritical flow.
At aninternal point, such asFig. 14.2 b, Egs. (14.15 a) and 14.15 b) can be integrated along the
line segments joining point 1 to (x, t) and point 2to (X, t), respectively, to obtain

(U +20)-(U; + 2¢c)) = g} (S -S)dt dong x-x, = ](U +c)dt

4 1

t t (14.17 a, b)
(U -2c)-(U,-2c,) = gf (S -S)dt dong x-x, = f(U - c)dt

Equations (14.17) are four equations to be solved for unknown valuesof U, ¢, x and t at the
Intersection of thetwo characteristic segments. A second-order Runge-K uttascheme can be used
to do this with the following two steps:

D Approximate the integrals with

] Fdt = Fi(t—ti)

Then solve the resulting linear equations for the first approximations U®,
C(l), X(l) and t(l)

()] Use the first approximations to improve the calculation of the integrals with

}th = %[Fi +FOt-t)
g

Then solvethelinear equationsfor the second, and final, approximationsfor U, ¢, X
and t.

Peopl e often continue this iteration process until solutions for U, ¢, x and t cease to change
from one cycle to the next. However, this only increases the complexity of the calculation and
not its accuracy since steps 1 and 2 are sufficient to obtain second order accuracy, which isthe
same accuracy asthetrapezoidal rulethat isused to approximatetheintegrals. Sinceall variables
must be known at points 1 and 2, we see that both U and ¢ must be prescribed for initial
conditionsat t = O along the full length of the channel.

At the upstream end of the channel, shownin Fig. 14.2 a, we have only the two equations (14.17
b). Since x = 0, these equations contain the three unknown values of U, ¢, and t on the
boundary. Therefore, either U, ¢ or one functional relationship between U and ¢ must be
prescribed at the upstream boundary. A similar situation exists at the downstream boundary,
shownin Fig. 14.2 c. Since Egs. (14.17 a) apply along the segment joining point 1to (L, t), we
see that U, ¢ or one functional relationship between U and ¢ must be prescribed at the
downstream boundary.
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Insupercritical flow both familiesof characteristicshave positives opes. Thismeansthat U and ¢
must be prescribed both for initial conditions along the entire channel length and for boundary
conditions at the upstream boundary. This will be necessary and sufficient to calculate the
solution everywhere else, including the downstream boundary at x = L. Therefore, no
boundary conditions can be prescribed at a downstream boundary for supercritical flow.

The method of characteristics shows how data must be prescribed to calculate solutions of the
Saint-Venant equations. It also gives what is probably the most generally accurate and stable
numerical method. However, Wylieand Streeter (1982) point out that the method iscumbersome
to apply to slow transients since time steps tend to be small. Theirregular spacing of nodes that
isrequired for natural channel cal cul ationsalso makesit difficult to obtain satisfactory solutions.
Therefore, they recommend an implicit finite difference method for slow transients in natural
river channels. Most commercially available computer programs use finite difference methods.

Sincewe are moreinterested in learning about the physics of fluid motion than inlearning about
commercially available computer software, wewill usethe remainder of thischapter to study an
approximate method known as the kinematic wave approximation. This approximation will be
used to discuss the movement of flood waves down rivers.

4
y

Falling limb

t -
Figure 14.3 A typica depth hydrograph for a flood.




Chapter 14 — Unsteady Open Channel Flow 14.7

The Kinematic Wave Approximation

The usual engineering approach to flood data acquisition isto measure river depth or stage asa
function of timeat afixed location along theriver. River stagesarethen related to flow rateswith
arating curvethat hasbeen obtained from previous measurements of flow rates and stagesat that
particular location. The resulting plot of flow versus time for a particular location and flood is
called ahydrograph. The plot of depth versustime, which isnot used as often but is more useful
for this discussion, is called a depth hydrograph.

A typical depth hydrograph for aflood isshownin Fig. 14.3. Inamost all instances, for reasons
that we will discuss later, the rising limb of the hydrograph has a steeper slope than the falling
limb. For scaling purposes, we will denote the maximum change in depth with h, and atime
scale, T, will be chosen so that the ratio h/ T gives an order of magnitude for the maximum
valueof ay/at onthefallinglimb. (Thereason for concentrating onthefalling rather thanrising
limbwill bediscussed later.) Thevalueof T decreasesastheriver catchment areadecreases and
asthe average channel slopeincreases. Thus, T canvary from aslittle as several hoursfor small
steep catchments to weeks for large catchments with smaller slopes. For most applications T is
probably of the order of oneto ten days.

There is no obvious reference length for x in this problem. However, if we denote areference
length by L, and if both terms in the continuity equation (14.4) are assumed to be equally
important, we obtain the estimate

U,h

L

(14.18)

—H|=

inwhich U, isan estimatefor the maximum velocity. From (14.18) we obtain an estimatefor L.

L~ U,T (14.19)

Equation (14.19) shows that L is the distance travelled by a water particle moving at the
maximum speed, U, during time T. In most problems L is very large. For example, if
U, ~ 1 m/sand T ~ 24 hours, then L ~ 86.4 km.

Scaling terms in the momentum equation (14.9) gives
h U. U

T - .
9r " T - g(Sb Sf) (14.20)

If weuse (14.19) toeliminate T and (12.20) and (12.23) to approximate S, Eq. (14.20) becomes

(14.21)
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Division of (14.21) by g S, gives relative magnitudes of terms.

h £ Ug
— (1+Fr2+Fr2) -1+ — O
LS

8 ghs

(14.22)

inwhich Fr = maximum Froude number = U, /y/gh. Inrivers Fr has an order that almost
never exceeds one.

Thekinematic wave approximation assumesthat the free surfaceisnearly parallel to the channel
bottom. In other words, the flow is approximated locally as uniform, and only the bed and
friction slopetermsin (14.9) areimportant. Thus, for awide shallow channel, thekinematic wave
approximation gives

v- (14.23)

2
gy

o|—

-5+

Equation (14.22) now shows that the kinematic wave approximation, Eq. (14.23), results from
assuming that

£ Ug
-2 -1 (14.24)
8 ghg
"1 (14.25)
LS, -

If (14.19) and (14.24) are used to eliminate L and U,, respectively, from (14.25), the
requirement for validity of the kinematic wave approximation reduces to

T» — (14.26)

o] —
©«
&,

For atypical applicationwemightsetf ~ 0.1, h ~ 2 m, g ~ 10 m/s2 and § ~ 1/300. Then
(14.26) requires that T » 4.3 minutes. If § isreduced to S, -~ 1/ 3000, the requirement
becomes T » 2.3 hours. Since most flood hydrographs have values of T that greatly exceed
these values, we conclude that Egs. (14.4) and (14.23) are likely to give an accurate description
of flood wave movement in many, if not most, applications.
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The Behaviour of Kinematic Wave Solutions

By solving (14.23) for U and substituting the result in (14.4) we obtain

e ASY COANCH A (14.27)

318
2N\ f ox ot

Sincethe coefficient of thefirst termin (14.27) isproportional to U (y) calculated from (14.23),
we obtain the following significant result:

g U (y) % + % =0 (14.28)
Use of (13.29) now allows (14.28) to be rewritten in the equivalent form
% =0 (14.29)
along the characteristic curves
d—)t( = gU (y) (14.30)

Equations (14.29)-(14.30) lead immediately to at least four very important observations:

(1) Since (14.29) shows that y is constant along a characteristic, and since U
depends only on y, Eq. (14.30) shows that al characteristics are straight lines
with slopesthat can be determined, once and for all, at each characteristic initial
point.

2 Eqg. (14.30) shows that disturbances move in the downstream direction only.
Therefore, upstream backwater effects are neglected in the kinematic wave
approximation.

3 A point of constant depth moves downstream with a speed equal to one and ahalf
times the local flux velocity.

(4) If y, and y, are two different depths in the flood wave, and if y, > y,, then
(14.30) shows that the point of greater depth moves downstream faster than the
point of smaller depth. [Sl nce U (y,) > U (yl)].
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Figure 14.4 Development of a flood wave profile with time using the kinematic wave
approximation.

The fourth observation shows why the rising limb of the flood hydrograph in Fig. 14.3 usually
has a steeper slope than the falling limb. If, as shown in Fig. 14.4, the flood wave profile at
t = 0 has ashapethat isnearly symmetrical about its peak, then the front portion of the wave
steepens and the trailing portion of the wave flattens since points of larger depth move
downstream with agreater speed. If the channel islong enough, thefront of the wave eventually
developsan overhanging "nose" that gives, in some places, asmany asthreedifferent valuesof y
for the samevaluesof x and t, asshowninFig. 14.4att = t,.

tﬂ

y(0,9=yt)

|
L—

(0,7)

7 X

Figure 14.5 Characteristic curvesinthe (x,t) plane when y,(t) increaseswith t.

The multiple valued behaviour of the solution is also easy to seein the (x, t) plane by solving
(14.29)-(14.30) subject to the boundary condition

y(0,t) = y,(t) for -eo<t<eo (14.31)

Then (14.29)-(14.30) give
y(x,t) = y,(t) for -w<1<e (14.32)
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along the characteristic curve

X = gu[yo(r)}(tr) for oo <1< (14.33)

inwhich (0, ) istheinitial point on atypical characteristic. When y,(t) increaseswith t, the
straight line characteristics have sopes that aso increase with t since these slopes are
determined at x = O from y,(t). This meansthat aregion will existinthe (x, t) plane where
characteristics overlap each other, as shown in Fig. 14.5. Since each characteristic carries a
different value of y(x, t) along its path, it becomes obvious that the solution is multiple valued
in the region of overlapping characteristics.

Thesolutionfor y(x, t) iscaculated from (14.32)-(14.33) for every pointintheright haf of the (x, t)
planein Fig. (14.5). Thisisdone by choosing anumerical valuefor t intherange - « < 1 < .,
Then the constant value of y along the characteristic is given by (14.32), and the path of the
characteristicis calculated from (14.33). The multiple valued nature of the solution presents no
difficulty at all in this calculation.

The"nose" of theflood wave, showninFig. 14.4at t = t,, canbelocated from (14.32)-(14.33).
Sincethewave profileat t = t, isfound by setting t =t, in (14.32)-(14.33) and letting t take
on asufficient number of valuesintherange - « < t < « to plot the solution near the nose, we
seethat x(t, t) in (14.33) achieves arelative maximum at the nose when t isvariedand t is
held constant. The mathematical requirement for locating this relative maximum is

w =0 (14.34)
Substituting (14.33) into (14.34) gives
0- dl;(;o> dﬁf) (t-7) - ZUly) (14.35)
Equation (14.35) can be solved for t to obtain
t=rt+ —/U(yo)/ (14.36)
U’ (¥o)¥o(7)

Use of (14.23) to eliminate U from (14.36) gives

t=1+2 ; (14.37)
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Equation (14.37) gives the t coordinate of the nose in the (x, t) plane for any value of the
parameter T intherange - « < 1 < «, The x coordinateiscalculated from (14.23), (14.33) and

(14.37) intheform
x - g %ol ’% PAGES (14.39)
Yo(T)

Equation (14.38) gives a mathematical proof that a nose and, therefore, a multiple valued
solution can occur only when yo/ (t) > 0. When yo/ (t) <0, the x coordinate of the nose is
negative and outside the region of physical interest.”

A multiple valued solution, of course, has no physical interest, and this behaviour is always
prevented in kinematic wave solutions by inserting avertical discontinuity, called ashock, inthe
wave profile. A sketch of ashock isshown with adashed linein Fig. 14.6. A graphical solution
for the shock location can be obtained by inserting the vertical dashed line so that the two cross
hatched areas in Fig. 14.6 are equal. A numerical solution for the shock location is found by
locating the first point where the shock forms. After this shock initial point is calculated, future
positions of the shock are obtained by requiring conservation of mass across the moving shock.

A
y

Kinematic shock

W

o

X

Figure14.6 A shock used to keep akinematic wave solution singlevalued.

The shock initial point is calculated from (14.37) by finding the value of t that makes t a
minimum. Thisisthefirst point at which the free surface tangent becomes vertical, and it isthe
point at which t in (14.37) is either an absolute or relative minimum. A relative minimum can
be found from (14.37) by setting the derivative of t with respect to T equal to zero. If arelative
minimum does hot occur, then an absol ute minimum occurs and can befound by inserting values
for T and calculating corresponding valuesfor t.

Equations (14.37)—(14.38) give, in parametric form, what isknown asthe envel ope of the characteristic curves
(14.33). Hart (1957) givesaformal and easily understood introduction to the concept of an envelope of afamily
of curves.
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Kinematic wave solution
___[— Eq.(14.57)

Y- T
Y+
ANONONONON N NN N N N N NN NN NN NN OSSO S NN, y
D O N SOOI
B o
X4(t) 'I ¢ |
X -

Figure 14.7 The free surface profile near a kinematic shock.

The differential equation that tracks the location of a shock can be obtained by rewriting (14.4)
in a new system of coordinates that moves with the shock. If the kinematic shock location is
denoted by x = x (t), asshowninFig. 14.7, the new system of coordinates is defined by

g

T =1t

x Xl (14.39 a, b)

in which the new time coordinate, t, is unrelated to the parameter t in (14.32)-(14.33). The
chain rule shows that derivatives transform according to

(14.40 a, b)
o 9 9E ot 9 at a 9
_____+___—XS(‘E)_+_
ot Q0f 9t ot o9t ot JF ot

inwhich adot is used to denote differentiation with respect to t. Thus, (14.4) hasthefollowing
form in the moving system of coordinates:

a%[(u ~x(1))y] + % -0 (14.41)

Since a solution of (14.41) isto be calculated over the samerange for t that wasused for t in
the (x, t) coordinates, t isscaledwithT. Likewise, U and X, are both scaled with U, and y
isscaled with thechangein y acrossthe shock, whichwewill call h. However, £ isscaled with
alength, 6, that gives an order of magnitude for the shock length, as shown in Fig. 14.7. This
means that terms in (14.41) have the following magnitudes:
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~ 0 (14.42)

Division of (14.42) by the first term and use of (14.19) to eliminate U T gives relative
magnitudes.

1+ . 0 (14.43)

It is assumed in the kinematic wave approximation that 8/L « 1. This means that (14.41)
reduces to

0 ’
gl %y =0 (14.44)

Equation (14.44) shows that (U - xs)y changes only with t across a shock. This requirement
gives

(U - x)y. = (U, - %)y, (14.45)

in which the subscripts + and - denote values of U and y immediately downstream and
upstream, respectively, fromtheshock. [Infact, thekinematic wave approximation (14.23) gives
noinformationthat can beusedtofix avaluefor 8, and akinematicwavesolutionadwayssets & = 0
in (14.43).] A physical interpretation of (14.45) follows by writing velocities relative to the
moving shock and noting that (14.45) requires that flow rates calculated relative to the moving
shock be equal immediately upstream and downstream from the discontinuity in depth. This
procedure was carried out earlier in Example 4.8.

Solution of (14.45) for x_ gives

. Uy -Uy
X(1) = ———— (14.46)
y. - Y.

Equation (14.23) can be used to eliminate U from (14.46) to obtain

dx(t 32y
O _ Y 7Y 18, (14.47)
dt y. -y f

At the shock initial point, and also as t - «, (14.47) has the indeterminate form 0/0 asy ~y,.
However, I'Hospital's rule can be applied by fixing y, and letting y -y .. Therefore, fixing y.
in (14.47), differentiating numerator and denominator with respect to y_and settingy =y,
gives the following finite result:
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L3y |8yg - %U(%) (14.48)

Numerical methods are amost always required to integrate (14.47) in a procedure that is
sometimes referred to as "shock tracing"”.

Now it iseasy to discuss why the maximum slope of thefalling limb of the hydrograph was used
to obtain the time scale, T, for the kinematic wave approximation. The rising limb becomes
steeper and the falling limb becomes flatter as a flood wave moves downstream. This fact,
together with Eq. (14.26) and the physical requirement that the free surface be nearly parallel to
the channel bottom for the kinematic wave approximation to be applicable, suggests that the
accuracy of approximation increases for the falling limb and decreases for therising limb as a
flood wave movesdownstream. Therefore, for flowsin which (14.26) issatisfied, thekinematic
wave approximation gives an accurate approximation for the falling limb of the hydrograph
but a relatively poor approximation for therising limb. In the next section we will rescale the
Saint-Venant equations to obtain a more accurate approximation for the rising limb.

Solution Behaviour Near a Kinematic Shock

The existence of a shock in a kinematic wave solution does not mean that a shock necessarily
occurs in either the physical problem or in the solution of the full set of the Saint-Venant
equations. A shock formsin thekinematic wave sol ution because sometermsthat were neglected
to obtain (14.23) become important close to the moving shock. The behaviour of the solution of
the Saint-V enant equations near akinematic shock can be obtained by rescaling these equations
in a coordinate system that moves with the shock. This has aready been done with Egs.
(14.39)-(14.40) toobtain (14.41) and (14.44)-(14.45) as & / L becomessmall. Applyingthesame
transformation to (14.9) gives

ay+(U—XS)aU+ﬂ:g%—

U 2
g a_ﬁ 8_5 3% 7 (14.49)

f
8
inwhich S has been approximated with the right side of (14.23). Scaling termsin (14.49) with
the same values that were used to obtain (14.44) (r ~T, U~ Uy, % ~U,y~h-=
y -y, &~ 6) gives

U 2
TO (14.50)

(14.51)

2 2
h[1+Uo+Uo 6]~1+% Uy
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Since 9y/d& becomesinfinite at the shock in the kinematic wave solution, it is evident that this
term must becomeimportant near the shock. However, since 6 / L « 1 inproblemsdescribed by
the kinematic wave approximation, Eq. (14.51) suggests that the time derivative of U can be
neglected in (14.49) to obtain

9Q+(UXS)%QSO (14.52)

fu
3 y

8

Thetimevariable, T = t, appearsin (14.44) and (14.52) only as a parameter. In other words,
when considering the local behaviour of flow near a kinematic shock, depths and velocities
change much more rapidly with respect to the spacial coordinate than with respect to time.
Integration of (14.44) gives

, Y.y 8
U-X)y =F(@) = - ——— | 79% 14.53

inwhich F(t) has been evaluated by using (14.47) and (14.23) either at a point ahead of the
shock, where y = y_, or at apoint behind the shock, wherey =y . [Either point is shown by
(14.45) to give the sameresult.] Use of (14.47) and (14.53) to eliminate U and x_ from (14.52)
gives, after some complicated algebra, the following differential equation for y:

dy _ Y-y -y)y-w)
o

S
8 14,54
Wf?%wmm (14.59

in which the depth y, isgiven by

A
V) = T/ (14.55)

- f
Itiseasy toshow that y,, y, and y_ satisfy the following inequalities:

Yy <Y, <y (14.56)

The solution of (14.54) has been known for years among hydraulic engineers and applied
mathematicians as the monoclinal rising flood wave. The equation can be integrated in closed
form by separating variables and using partia fractions. Theresult is

£ =D +y+Alnly -y) - Biny -y,) - Ciny - y) (14.57)

in which D isan unknown function of t and the remaining functions of t are given by the
following equations:

3 8
y - y Y.y
Ao P ! (14.58)

(V- -y )y - i)
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3 8
Y. -2 YV Y
B - P ' (14.59)

(V- -y ). - W)

8
7%Mmm—ﬁ

(Y - )y, - )

C - (14.60)

The qualitative solution behaviour isfar easier to deduce from (14.54) than from (14.57). When
y. <y <y, asinFig. 14.7, the inequality (14.56) shows that the numerator on the right side
of (14.54) isnegativeand vanishesatbothy = y_and y = y . Therefore, whenthedenominator
ispositivefory, <y <y , thesolutionisasmooth curvejoining thedepths y, and y_on each
side of the kinematic shock, as shown in Fig. 14.7. On the other hand, when the denominator
becomes negativefor at least somevaluesof y intherangey, <y < y_, asmooth curvecannot
beusedtojoiny and y_acrossthe shock. Inthiscase, ashock can be expected to appear in the
solution of the Saint-Venant equations. Since this requires that the denominator of (14.54) be
negative for at least the smallest valueof y intherangey, <y <'y_, ashock will occur inthe
solution of the Saint-Venant equations if

8
y - Y Y. <0 (14.61)

Equation (14.55) can be used to put (14.61) in the following more useful form:

y ) Yy

2
%So>[l+ E] ¥ (14.62)

Equation (14.62) showsthat ashock will occur inthe solution of the Saint-V enant equationsif y_
is made large enough relative to y, to satisfy the inequality. It aso shows that a shock can be
created by either decreasing f or increasing S, sufficiently to satisfy (14.62).

Equation (14.57) can be used to obtain an estimate for the shock thickness, 0, inFig. 14.7. 1f &
istaken asthedifferencebetween £ aty =y, + ey - y+)and Eay =y - e(yf - y+) in
which e isasmall positive constant, Eq. (14.57) gives

€ €
] (14.63)

6% =[E -&)S =(-1+2¢)h + Aln 1*6) . Bln( 1e)

-(yf - yl)feh

¢ ln_(y+ - Y1)+€h
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inwhich h =y -y = changein depth across the kinematic shock. The leading term in the
expansion of (14.63) for € « 1is(A + B)In(1/e), and arbitrarily choosing € = 0.05 gives
the following estimate for o:

A+ B

(14.64)

The solution across the shock requires 6/L « 1 foritsvalidity, inwhich L ~ U,T.

Backwater Effects

Upstream backwater effects are neglected in the kinematic wave approximation because all
characteristicshave positive slopesthat carry disturbancesin thedownstream direction only. For
example, river and reservoir free surface elevations should be identical where areservoir exists
at the downstream end of ariver. However, the kinematic wave solution determines all depths
along the river from an upstream hydrograph, and this means that the river and reservoir free
surfaces will not generally meet where the river enters the reservoir. This anomaly can be
removed by rescaling the Saint-V enant equationsto obtainalocally valid solution. Inthiscase X
in (14.39)-(14.40) is replaced with the constant x coordinate of the river end, and (14.44) and
(14.52) reduceto

9(Uy) _
3E 0 (14.65)
9 ,ydY . _ful
g 3¢ : gS 5y (14.66)

inwhich thetimevariable, T = t, once again appearsonly as a parameter. These equations are
identical with the equations that describe steady flow in gradually varied open channel flow.
Thus, if g(t) and y (t) aretheflow rateand depth calcul ated at theriver exit from the kinematic
wave approximation, the same manipulations that were used to obtain Eq. (12.37) can be used
to put (14.65)-(14.66) in the form

3 3
ay ¥ - Y-
— = 3 (14.67)
08 y3 - y2
inwhich y_(t) isdefined by
9*() _ 4
- 14.68
gy, (v) (14.68)

Equation (14.67) was integrated by Bresse in 1860 to obtain
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2
£ =Y - 1(% y ®(2) (14.69)
in which the Bresse function, @, isgiven by
2
®(z) = im zZZ+z+ 1 itan’1 E + K (14.70)
6 (z - 17 /3 2z + 1

with x = integration constant and z defined by

_ Yy
e 14.71
v (14.72)

The entire free surface profile can be calculated either by integrating (14.67) with one of the
numerical techniques introduced in chapter 12 for steady gradually varied flow or by using
(14.69)-(14.71). Anestimatefor thelength, &, of thebackwater curve can beobtained by setting
y =Yy +ha ¢ = 0toevauate x andthensettingy =y + eha £ = -0 tocaculate 6.
Thefirst order termfor € « 1 is
3
Lol X
y

If we arbitrarily choose € = 0.05, EqQ. (14.72) gives the following order of magnitude for &:

bl

The kinematic wave approximation will be used to route the inflow depth hydrograph shownin
Fig. 14.8 down a channel that has afriction factor f = 0.1 and aslope §, = 1/300. Equation
(14.26) requires that

0§ ~

¥ |n[ i] (14.72)
6 | e

¥ (14.73)

S

o ~

A Numerical Example

T» |91 2 seconds (14.74)
8 (9.81)(1/300)

Computing the right side of (14.74) and changing time units to hours gives the requirement

T » 0.073 hours (14.75)
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Since T in Fig. 14.8 isabout 10 hours, which is 140 times larger than the right side of (14.75),
the kinematic wave approximation can be applied with confidence in this example.

Yo(t) -
(metres)

2.0 —

1.0

t (hours)

Figure 14.8 The inflow depth hydrograph used for a numerical example.

Theonly difficult part of akinematic wavesol utionisthecal cul ation of shock coordinatesinthe (x, t)
plane. This requires that (14.37)-(14.38) be used to locate the shock initial point on a
characteristic that passesthrough the point (O, 1:,2, asshowninFig. 14.9. Thereafter, shock path
coordinates are calculated by using (14.32)-(14.33) along each of the two straight line
characteristicsthat join (O, rf) to (xs, t) and (0, r+) to (xs, t) together with Eq. (14.47), which
holds along the curved shock path. This means that five equations hold aong three different
curvesin the (x, t) plane. The equations contain six variables: X, t,y.,y,, t_and 1, . Any
one of these variables may be chosen as independent, and the simultaneous solution of thefive
equations gives values for the remaining dependent variables.

The solution of the shock tracing problem in its most general form is difficult. However, two
simplifications can often be madein theinflow hydrograph that makethis problem easy to solve.
These simplifications have been madein Fig. 14.8 and are (1) aconstant inflow depth for values
of t lessthan thetimeat which depthsfirst start toincr ontherising limb of the hydrograph
and (2) either a zero or negative curvatureg[yo// (t) < ngn the rising limb. Differentiation of
(14.37) gives

dt 4, %@%E

= [yo/(T) ]2 (14.76)
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\
t
Shock path
(0,7.)
Shock initial point
(0,7, P
0,4) X

Figure 14.9 Different curves used for calculation of the shock path.

Equation (14.76) shows that dt/dt > 0 on the rising limb since y; (t) < 0. Therefore, the
minimum value of the right side of (14.37) is an absolute rather than relative minimum that
occurs at the beginning of theinterval along which Eq. (14.37) is applied. This meansthat the
shock initial point, which is calculated by setting © = 7, in (14.37)<(14.38), lies on the
characterigticthat passesthrough thepoint (x, t) = (O, rl)inwhich 1, isthetimeatwhich y (t)
changesfrom zeroto a positivevalue. Thisisthepoint x = 0 and t = 4 hoursfor theexample
showninFig. 14.8. Setting t = 4 hoursin (14.37)-(14.38) givesthe following coordinates for
the shock initial point:

t-4+2—1 - 429 hours
(0.35/0.05)
(14.77a, b)
x = 3 % \'% (9.81)(1)(1/300) = 2,495 metres

Since the shock initial point lies on the characteristic that passes through the point (0, T,)in
which 1, isthe value of T where y,(7) first starts to increase from itsinitialy constant value,
and sincevaluesof t, inFig. 14.9 arelessthan 7,, weseethat y, inFig. 14.9isaways equal
tothe constant initia value of y,(t). Therefore, asecond advantage of usingasimplified inflow
hydrographisthat y, becomesaknown constant. Thisreducesthe shock tracing problemto the
simultaneous sol ution of (14.32)-(14.33) along the characteristic joining go, 1:7) to (xs, t) with
(14.47) dlong the shock path. Thesethree equations containthefour variables x_, t, y and 7_.
It will be convenient to choose t  as the independent variable when solving these equations.
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Characteristics Shock path

(0,7) Shock initial point

e Yo(t)=constant for t < t;

Figure14.10 Curvesused for calculation of the shock
path when using the simplified inflow hydrograph.

Curves used for calculation of the shock path when using the simplified inflow hydrograph are
showninFig. 14.10. The (x, t) coordinatesand depths y  and y, are known at point 1, and we
will obtainaset of equationsthat giveadirect solutionfor thesevariablesat point 2. Thedepth y .
at points 1 and 2 equal's the known constant initial value of y,(t). Since y(x, t) is shown by
(14.32) to be constant along the characteristicjoining points2and 3, and since t_ = t, hasbeen
selected as the independent variable, the depth y_ at point 2 equals the known value ;.
Therefore, dx, / dt can be calculated from the right side of (14.47) at both points 1 and 2 and
these two values of dx_/dt can be added to obtain

A [ dxs) ( dxs) (14.78)
= + .
dt ), dt ),
Then use of the trapezoidal rule to integrate (14.47) along the shock path gives
A
X, =% = St ) (14.79)

Equation (14.79) contains X, and t, as its two unknowns, and a second equation with these
same two unknowns is obtained from (14.32)-(14.33).

3

X, =3 Us(t, - t3) (14.80)
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Since U is determined from (14.23) as a function of y, and since y is constant along a
characteristic, U, is caculated from the known value of y,. Elimination of Xs, from
(14.79)-(14.80) gives t,.

2xSl + 3U,t, - Aty

t, = 14.81
) U (14.81)

The value of X can then be calculated from either (14.79) or (14.80). A Fortran computer
program that cal cul atesthe entire shock path from asimplifiedinflow depth hydrographisshown
inFigs. 14.11-14.12. The computed shock path and characteristicsare plotted asasolid lineand
dashed lines, respectively, in Fig. 14.13.

Valuesof y at any point (X, t) arecalculated from (14.32)-(14.33) after the shock path hasbeen
obtained. In particul ar, the depth hydrograph for any specified value of x iscalculated by solving
(14.33) for t.

(14.82)

Substituting any valueof t andthe corresponding valueof y,(t) intheright sidesof (14.32) and
(14.82) givesvalues of y(x, t) and t for the specified value of x. Care must be taken, though,
toset y equal toitsconstant initial valuefor valuesof t that arelessthan thetime of arrival for
the shock. Depth hydrographs for the numerical example are plotted in Fig. 14.14 for different
values of x and shock arrival times, t..

A kinematic shock first appearsat x = 2.5 km. Theshock path, whichisshown asasolid curve
inFig. 14.13, keepsthe sol ution single val ued by preventing characteristicsfrom passing through
it. Since all characteristics carry a constant value of y(x, t) = y,(t) in Fig. 14.9, and since
Yo(t) = constant for © < t,, thedepth y, immediately downstream from the shock is always
equal to the constant initial depth of one metre. Since characteristics meeting the upper side of
the shock path carry the constant depth y,(t_) for t_ > 7, inFig. 14.9, we seethat the depth y_
immediately upstream from the shock will at first increase as y,(t_) increases, then attain a
maximum of y, = 3 metresat t_ = 5 hours and thereafter decrease as y,(t_) decreases for
t_ > 5 hours. If theinflow depth hydrograph ultimately approachesthe same constant depth that
existed before y,(t) started to increase, then the depth discontinuity across the shock will
approach zero and the shock path will become asymptotic to a characteristic as time becomes
infinite, as shown by Eq. (14.48). In this particular problem, Eq. (14.62) showsthat a shock will
not occur in the solution of the Saint-Venant equationssince 83, / f = 0.267, andtheright side
of (14.62) hasaminimum valueof 0.829fory, = 1 and y_ = 3 metres.

A more accurate depth variation across the kinematic shock is plotted in Fig. 14.15 from
Eq. (14.57) for x, = 13.3 km. The function D (t) in (14.57) was fixed by arbitrarily setting
y = 1.8 metresat £ = 0. An order of magnitude for the shock thickness is calculated from
(14.64) to be § 5 ~ 3(A+ B) = 16.9 metres, which is very close to the value shown in
Fig. 14.15. Thisgivesavaueof 6 ~ 16.9(300)/ 1000 = 5.07 km. Thevaueof L computed
from (14.19) and (14.24) is 82.3 km, which gives §/L ~ 0.062. Therefore, the assumption
6/L « 1 that was used to obtain (14.57) isjustified in this case.
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_DSA1 1 4:[CIVL233]SHOCKTRACER.FOR;7
C THIS CALCULATES KINEMATIC WAVE SHOCK COORDINATES FOR A SIMPLIFIED INFLOW
C DEPTH HYDROGRAPH. It assumes a constant depth at X=0 for all values of
C time less than the time at which DY/DT changes from zero to a positive
C value. It also assumes a negative curvature for the rising limb of the
C hydrograph. Definitions for the input variables follow:
¢ Y(I)=inflow depth (metres) at time TAU(I) (hours) for I=1,N
C F=constant friction factor
c S=constant channel slope
C The first value of Y(I) must be the constant initial depth, and the first
C value of TAU(I) must be the time at which DY/DT changes from zero to a
C positive value. Output variables include the shock coordinate, X, at
C time T.
Cc
DIMENSION Y (100),TAU(100)
OPEN (UNIT=1,FILE="'INPUT.DAT',6 STATUS='OLD"')
OPEN (UNIT=2,FILE='OUTPUT.DAT', STATUS="'NEW')
Cc
C Data is entered and written out.
Cc

READ(1,*) N,F,S
WRITE(2 1000) N,F,S

1000 FORMAT (iX, 'N=',I3,2X,'F=',F7.4,2X,'S="',F10.7//2X,'1",3X,
1 'TAU (hours) ', 2X, 'Y (metres) ')
DO 100 I=1,N
READ(1,*) J,TAU(I),Y(I)
WRITE(2,3000) I,TAU(I),Y(I)

100 CONTINUE

C

C The shock initial point is calculated.

C
DYDT=(Y(2)-Y(1))/(TAU(2)-TAU(1))
T=TAU (1) +2*Y (1) /DYDT
X=3*(Y (1) /DYDT) *SQRT (8*9.81*Y (1) *S/F) *3600
WRITE(2,2000) 1,TAU(1),Y(1),X,T

2000 FORMAT (2X,'I',3X, 'TAU (hours) ', 2X, 'Y (metres)',6 2x, 'X(metres)"'

1 5X,'T(hours)'//1X,I3,4X,F7.2,4X,F6.2,3X,E10.3,2X,E10.3)

U=SQRT (8%9.81*Y (1) *S/F) *3600
DXDT1=1.5*U

C

C The remaining shock coordinates

C
DO 200 I=2,N
U=SQRT (8%9.81*Y(I)*S/F)*3600
DXDT2= (Y (I)**1.5-Y(1)**1.5)/(Y(I)-Y(1))
DXDT2=DXDT2*SQRT (8*9.81*S/F) *3600
A=DXDT1+DXDT2
DXDT1=DXDT2
T= (2*X+3*U*TAU (I) -A*T) / (3*U-A)
X=1.5*U* (T-TAU(I))
WRITE(2,3000) I,TAU(I),Y(I),X,T

3000 FORMAT (1X,I3,4X,F7.2,4X,F6.2,3X,E10.3,2X,E10.3)

200 CONTINUE
END

Figure 14.11 Computer program used to calculate the shock path for asimplified
inflow hydrograph.
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_DSA11 4:[CIVL233]0UTPUT.DAT;95

N= 31

I

WoOoJO0UTd WNR

F
TAU (

I IR I S IR T I S S Y G N Y N N NG N N NN N i |

0.1000

ours)

.00
.05
.10
.15
.20
.25
.30
.35
.40

.50
.60

70

.80
.90
.00

20
50

.00
.00
.00

00
00
.00
50
00
50
00
.50
.00
.50
.00

I TAU (hours)

Figure 14.12 Output from the computer program shown in Fig. 14.11 for the numerical

example.

W JO0 Ul WN K

No)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

IS IR TN T, BTG, TS, B NG NG NOO NG O N NN NG N NI N N

.00
.05
.10
.15
.20
.25
.30
.35
.40
.50
.60
.70
.80
.90
.00
.20
.50
.00
.00
.00
.00

.00
.00
.50
.00
.50
.00
.50

S= 0.0033333

Y (metres)
1.00
1.35
1 70
1 93
2.10
2.27
2.45
2 56
2 70
2.83
2.91
2.96
2.98
3.00
3.00
2 98
2 94
2.83
2.54
2.25
1 96
1 70
1.46
1.36
1.27
1 19
1 13
1.08
1.05
1.02
1.01

Y (metres) X (metres)
1.00 0.250E+04
1.35 0.339E+04
1.70 0.434E+04
1.93 0.618E+04
2.10 0.815E+04
2.27 0.981E+04
2.45 0.112E+05
2.56 0.133E+05
2.70 0.148E+05
2.83 0.195E+05
2.91 0.246E+05
2.96 0.300E+05
2.98 0.359E+05
3.00 0.417E+05
3.00 0.480E+05
2.98 0.615E+05
2.94 0.827E+05
2.83 0.123E+06
2.54 0.233E+06
2.25 0.401E+06
1.96 0.701E+06
1.70 0.129E+07
1.46 0.288E+07
1.36 0.453E+07
1.27 0.779E+07
1 19 0.154E+08
1.13 0.325E+08
1.08 0.883E+08

T (hours)

[eNeoNeoNeoNeoNeoNoNoNoNolNoNoNeoNoNoNoNoNolNoNoNoNoNoNolNolNolNolNol

.429E+01
.438E+01
.448E+01
.466E+01
.484E+01
.500E+01
.512E+01
.530E+01
.543E+01
.583E+01
.625E+01
.670E+01
.718E+01
.766E+01
.818E+01
.928E+01
.110E+02
.144E+02
.238E+02
.386E+02
.663E+02
.124E+03
.284E+03
.457E+03
.804E+03
.162E+04
.351E+04
.974E+04
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Figure 14.13 The shock path and characteristics for the numerical example.
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The kinematic wave approximation originated in awell known paper by Lighthill and Whitham
(1955). Much of the material in this chapter, apart from scaling arguments and the discussion of
backwater effects, can be found in a dlightly different form in the book by Whitham (1974).
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Appendix |

Physical Properties of Water and Air

WATER
Vapour Bulk
Dynamic | Kinematic | Surface | Pressure Modulus of
Density | Viscosity | Viscosity | Tension | (Absolute) Elasticity
Temp. | kg/m® | N-s/m? m?/s N/m N/m? N/m?
°C p = 10%u = 10y = | 10%0 = | 103p = 10 °E =
0 1000 1.79 1.79 7.62 0.6 2.04
5 1000 1.52 1.52 754 0.9 2.06
10 1000 131 131 7.48 12 211
15 999 114 114 741 17 2.14
20 998 101 1.01 7.36 25 2.20
25 997 0.894 0.897 7.26 3.2 2.22
30 996 0.801 0.804 7.18 4.3 2.23
35 994 0.723 0.727 7.10 5.7 224
40 992 0.656 0.661 7.01 7.5 2.27
45 990 0.599 0.605 6.92 9.6 2.29
50 988 0.549 0.556 6.82 124 2.30
55 986 0.506 0.513 6.74 15.8 231
60 983 0.469 0477 6.68 19.9 2.28
65 981 0.436 0.444 6.58 251 2.26
70 978 0.406 0.415 6.50 314 2.25
75 975 0.380 0.390 6.40 38.8 2.23
80 972 0.357 0.367 6.30 ar.7 221
85 969 0.336 0.347 6.20 58.1 217
90 965 0.317 0.328 6.12 70.4 2.16
95 962 0.299 0.311 6.02 84.5 211
100 958 0.284 0.296 594 [101.3 2.07
SEA WATER
20 1024 1.07 1.04 7.3 2.34 2.30
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(Standard Atmospher'?\cI I:\F)’rassure at Sea Level)
Dynamic | Kinematic
Density | Viscosity | Viscosity
Temp. kg/m® N - s/m? m?/s
°C p = 10%u = 108y =
-10 1.34 0.0164 12.3
0 1.29 0.0171 13.3
10 1.25 0.0176 14.2
20 1.20 0.0181 151
30 1.17 0.0185 15.9
40 1.13 0.0190 16.9
50 1.09 0.0195 17.9
60 1.07 0.0199 18.6
70 1.04 0.0204 19.7
80 1.01 0.0208 20.8
90 0.974 0.0213 218
100 0.946 0.0217 229
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angular velocity
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Bernoulli equation
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boundary layer

boundary element method

boundary-layer control
Bresse function
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characteristics (method of)

choked flow
circular cylinder
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coefficient of permeability

compressible flow
continuity equation
contraction coefficient
control volume
critical depth
curl
D'Alembert's paradox
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del
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ordinary
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dimensional analysis
directional derivative
discharge coefficient
divergence theorem
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jets
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Kelvin's circulation theorem
Kinematic wave approximation
Kutta condition
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lift coefficient
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local losses
Manning equation
mass density
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minor losses
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model scaling
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momentum equation
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Navier-Stokes equations
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one dimensional flow approximation
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oscillations
pathline
pathline
piezometric head
pipe networks
pipe flow
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pressure
dynamic
principal axes
product of inertia
pump characteristic curve
rapidly varied flow
repeating variables

4.4,6.28-6.32, 4.10-4.16
1.21,7.23-7.24, 10.17-10.22
6.2, 6.8,9.15

14.7-14.29

9.15

7.1-7.13

9.12-9.15

9.3,9.12-9.25

11.1-11.3

12.16-12.17
1.2,10.12-10.13

3.26

11.1-11.3

7.15-7.18

10.4

9.9-9.10, 10.1, 10.4, 10.7-10.10, 10.14-10.17
3.8

24-28,4.1

14.16-14.18, 14.28
12.32

25-2.6,51

12.8-12.9

4.4

12.1-12.32

5.1

9.19-9.25

18

16-1.7,29,4.1

2541

11.13-11.24
4.5,11.1-11.24, 13.1-13.27
4.2

5.5

1.14,1.18, 6.1-6.23
4.26,9.11,11.8, 11.11-11.13
9.1,10.15

14,3.1-3.6

10.11-10.13

3.8

3.8

11.8-11.10

12.1-12.12

10.6



Index

resonance
Reynolds number
roughness (boundary)
roughness
Runge-Kutta method
Saint-Venant equations
scale analysis
secondary flows
separation
setup (wind)
ship model
shock
kinematic
sink
skin friction drag
slope (open channel)
adverse
horizontal
mild
steep
dluice gate
source
specific energy
spillway
stability
floating bodies
fluid motion
stall
starting vortex
steady flow
steady flow
Stoke's law
stream function
streamline
Strouhal number
subcritical flow
sublayer (laminar)
supercritical flow
superposition
surface tension
surface drag
surge
Tacoma Narrows Bridge
turbulence

9.20-9.25

5.2, 7.3-7.4,7.13-7.15, 8.1, 104, 10.6, 10.15
7.18-7.19

7.19,7.21,8.9,8.11, 11.19, 12.15-12.16
12.29-12.30, 14.5

14.1-14.6, 14.23

5.2

8.19-8.22

4.5-4.6, 6.27-6.28, 8.14-8.19, 9.3-9.5
8.12

10.14-10.17

4.23-4.24,13.13

14.12-14.18, 14.20-14.28

6.8, 6.10

9.1

12.20-12.22
12.20-12.22
12.20-12.22
12.20-12.22

4.16, 12.4, 12.6-12.7
6.8, 6.10

12.2

10.7-10.10

3.23-3.29
7.13-7.15

9.13

9.15-9.17
18,28,41,51
1.8

7.4-7.8

6.15-6.28
1.7,6.4, 6.15-6.29
9.20, 10.7

12.4, 14.4-14.6
7.18-7.19

12.4, 14.4-14.6
6.9-6.19
1.3,3.4,10.7
9.1,10.15
4.23-4.24

9.19

4.5, 5.6, 7.13-7.24, 10.13



Index

uniform flow
unsteady flow
vapour pressure
velocity
viscosity

vortex

vortex trail
vorticity
waterhammer
Weber number
wetted perimeter
wing chord
wing-tip vortices
zone of capture

4.2-4.4,6.7,6.10, 12.1, 12.12-12.18
1.8, 13.1-13.27, 14.1-14.29
1.4,10.10

16,421

1.2,10.1, 10.13

6.8, 6.10

9.19

117,64

13.1, 135, 13.27

10.7

7.19-7.21, 12.13-12.15
9.12-9.13

9.18-9.19

6.20



