

Rafael Beltrán Lucena Área de Química Analítica Facultad de Ciencias Experimentales Universidad de Huelva

La Elaboración del Vino

El vino

Definición

Vino Blanco es la bebida resultante de la fermentación alcohólica del jugo de uva Blanca sin las partes sólidas del racimo.

Raspón o Escobajo Grano de uva Hollejo Semilla Pulpa o mosto

El vino **Definición**

Vino Tinto es la bebida resultante de la fermentación alcohólica del jugo de uva Tinta con las partes sólidas del racimo.

Vino Rosado/Claretes es la bebida resultante de la fermentación alcohólica del mosto procedente de uvas tintas o mezclas de tintas y vez despalilladas blancas, que una suavemente molturada se mantienen varias horas en contacto con los hollejos que le aportan el color aroma característico.

La Elaboración del Vino

Calidad de un vino

La Elaboración del Vino

La Elaboración del Vino

Tipos de Vinos

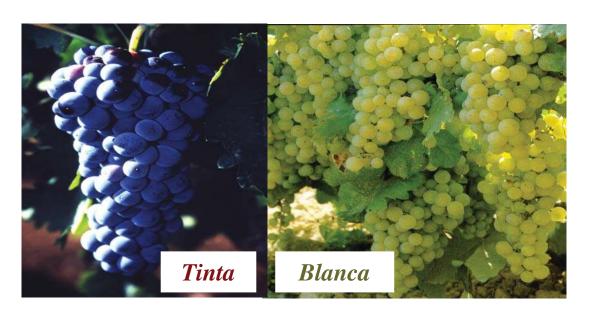
Vino Uva Elaboración

• Blancos

Vinificación en Blanco

Tintos

Vinificación en Tinto

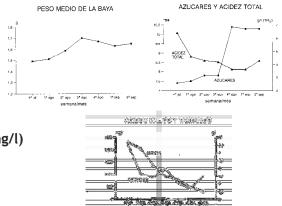

Rosados

Vinificación en Blanco

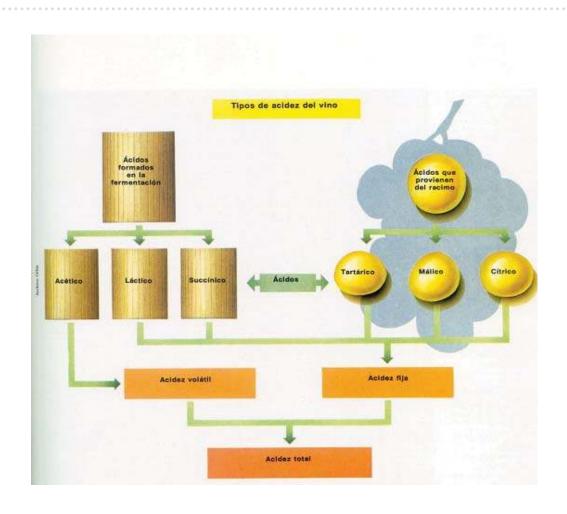
La Uva

La Uva

Maduración de la Uva


SEGUIMIENTO DE LA MADURACIÓN

Peso del grano de uva Acumulación de azúcares Acidez total Acidez tartárica Ácido málico Periodo en el cual la uva va adquirir las características definitiva que van a configurar el tipo de vino que se va a producir



Fenómenos fisicoquímicos producidos durante la maduración

- 1.- Crecimiento del grano de uva
- 2.- Acumulación de azúcares
- 3.- Disminución de acidez
- 4.- Evolución de los compuestos polifenólicos
- 5.- Acumulación de sustancias minerales
- 6.- Acumulación de sustancias nitrogenadas (180 mg/l)
- 7.- Evolución de las sustancias aromáticas

La Uva

FACTORES QUE INFLUYEN EN LA MADURACIÓN

Factores permanentes

(Constates y no varían de un año a otro)

Variedad de uva

Clima

Suelo

Factores variables

(Climatología del año)
Temperatura
La luz

Humedad

FI I I I '~

Edad del viñedo

Factores modificables

(dependen del hombre y de las prácticas culturales)

Poda (superficie foliar y el número de racimos que maduran)

Fertilización y enmiendas del suelo.

Labores del cultivo.

Tratamientos fitosanitarios

Factores accidentales

Enfermedades viróticas, bacterianas y criptogámicas.

Ataques de insectos y de otros organismos. Daños físicos climáticos y de explotación

La Uva

Variedades blancas

Macabeo/Viura

Airen

Verdejo

Albariño

Moscatel

Palomino

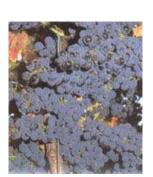
Garrido Fino


Listan de Huelva


Chardonnay

Riesling

Sauvignon blanc



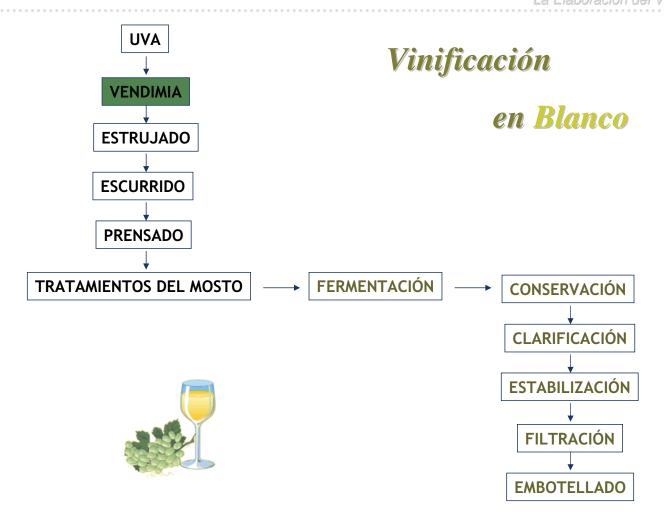
Variedades Tintas

Merlot


Cabernet Sauvignon

Malbec

Syrah


Pinot Noir

Tempranillo

La Elaboración del Vino

La vendimia

Cuidados durante la vendimia Momento de la vendimia Vendimias anticipadas

La Vendimia

CONDICIONES METEOROLÓGICAS Tiempo seco

Primera hora de la mañana

SELECCIÓN DE LA UVA Estado sanitario (Botitris cinerea)

Grado de maduración

Acidez total

MANEJO Y TRANSPORTE

Cajas de 15-20 Kg

TIEMPO DE VENDIMIA Corto para evitar oxidaciones y

maceraciones

Recepción de uva

Toma de muestras

Tolva de recepción Sin fin \rightarrow Estrujadora

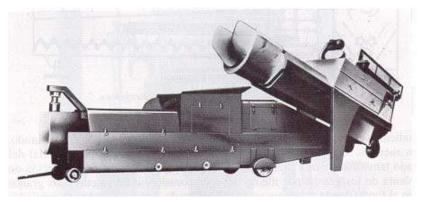
Estrujado

Estrujado

Finalidad romper los hollejos y desprender la pulpa

Estrujadoras de Rodillos (caucho, goma o acero inoxidable)

Debe de ser suave, no trituren las pepitas ni el raspón



Escurrido

Separación del mosto liberado durante el estrujado Pasta con 80-90% de mosto extraíble (rendimiento) Obtención del mosto yema

Escurrido estático, la presión que se le somete a la masa es su propio peso, tiene la ventaja de mostos limpios y la desventaja de posibles fenómenos de oxidación

Escurrido mecánico o dinámico, se ejerce una acción sobre la masa para favorecer la separación del mosto (por medio de vibraciones o por medio de presión)

Escurridor inclinado, provisto de vibrador, acoplado a una prensa continua

Escurrido

Desvinador

Separación mediante presión

Ángulo de inclinación Tiempo de escurrido Rendimiento 25-30° (<35°) 5-10 min 60-70%

Prensado

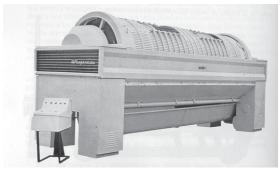
Extracción del mosto por medio de la presión ejercida sobre la vendimia una vez estrujada y escurrida

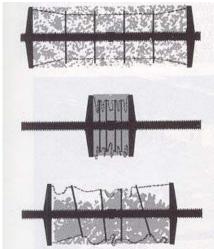
No se puede alcanzar un 100% de primera calidad

Fermentar por separado las distintas fracciones en función de sus calidades

CLASIFICACIÓN DE MOSTOS → ORUJOS

Prensado


Prensas Verticales

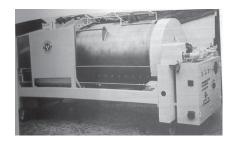

Prensas Horizontales (Más usuales)

Prensas horizontales discontinuas de Husillo o platos

(Ciclo de carga, prensado, descarga y limpieza)

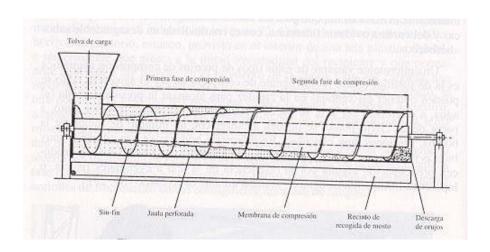
Llenado de la jaula

Los dos platos con un sistema de cadenas y varios arcos en acero inoxidable, están en los dos extremos de la jaula.


Prensado de los orajos

Los dos platos al aproximarse han prensado y reducido los orujos a un pastel.

Desmenuzado de los orujos


Los dos platos al volver a la posición inicial extienden las cadenas y los aros, que con la ayuda de la rotación de la jaula provocan el desmenuzado de los orujos.

Prensas horizontales discontinuas Neumáticas

Inflamiento de una bolsa axial interior de caucho grueso

Prensas continuas Horizontal

La Elaboración del Vino

Tratamientos del mosto

SULFITADO Adición de Metabisulfito. ANTIMICROBIANO y ANTIOXIDANTE

Inactiva la tirosinasa (enzima oxidativa natural de la uva) y la lacasa (enzima oxidativa producida por la botrytis)

Selecciona la microflora que va a fermentar el mosto

Facilita la maceración

Mejora el color

Mejora la disolución de los polifenoles

La dosis necesaria de anhídrido sulfuroso puede variar de 6 a 12 g por HI. Estas consideraciones son para vinos de calidad obtenidos a partir de mosto flor, ya que en vinos de prensa exigen por su distinta composición mayor cantidad de sulfuroso.

ACIDIFICACIÓN

Efecto selectivo sobre bacterias más que sobre levaduras Características sensoriales

MÉTODOS - Racimos agraces 20-25 g ác./L

- Ácido cítrico < 1 g/L (↑ acidez volátil)

- Ácido tartárico sin límite legal

ENZIMAS PECTOLÍTICOS

Mejor clarificación y menor oxidación Mejora en la fermentación Mejora el aroma

Tratamientos del mosto

DESFANGADO

DEPÓSITOS DE DESFANGADO

Reposo del mosto (12 a 24 horas) para que las partículas sólidas suspendidas, por decantación, se depositen en el fondo del depósito PROCESO FÍSICO DE LIMPIEZA

TEMPERATURA

DESFANGADO ESTÁTICO: Lentitud

DESFANGADO DINÁMICO: Rapidez, mayor coste

Filtro Rotativo a vacío: Problema de fermentación

Aromas varietales

Centrifugación: oxidación de los mostos

TRATAMIENTOS CON CLARIFICANTES

Mejora de la clarificación espontánea

(gelatinas, caseína, arcillas, bentonitas)

La Elaboración del Vino

Fermentación Alcohólica

Levaduras Etanol + CO₂

LEVADURA AUTÓCTONA

LEVADURAS SELECCIONADAS

(Mosto fermentado activamente durante la vendimia) levaduras comerciales o levaduras aislada del medio

DOS etapas en el COMPORTAMIENTO METABÓLICO de las levaduras

vía oxidativa: multiplicación rápida de la levaduras, hasta el agotamiento del oxigeno

vía fermentativa: transformación de la glucosa y fructosa en alcohol con desprendimiento de CO₂

 $C_6H_2O_6$ \longrightarrow Etanol + 2CO₂ Q = 40 Kcal/mol

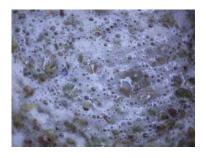
14,6 Kcal/mol a las funciones vitales de las levaduras y 25,4 en producir calor

LEVADURAS

NECESIDADES NUTRITIVAS DE LAS LEVADURAS

COMPUESTOS NITROGENADOS TEMPERATURA (20 y 25° C)

FASES DE LA FERMENTACIÓN


(sucesión de especies de levaduras)

Primera fase: Kloeckera apiculata

Segunda fase: Saccharomyces ellipsoideus Tercera fase: S. ellipsoideus y S. oviformis

DENSIDAD Y TEMPERATURA

Inicio

Tumultuosa

La Elaboración del Vino

Fermentación

Control de temperatura

TEMPERATURA ELEVADA

 $\begin{cases} \downarrow \text{ etanol y } \uparrow \text{alcoholes superiores} \\ \downarrow \text{SO}_{2,} \downarrow \text{ aromas} \\ \text{alcalinidad (vinos más bastos)} \end{cases}$

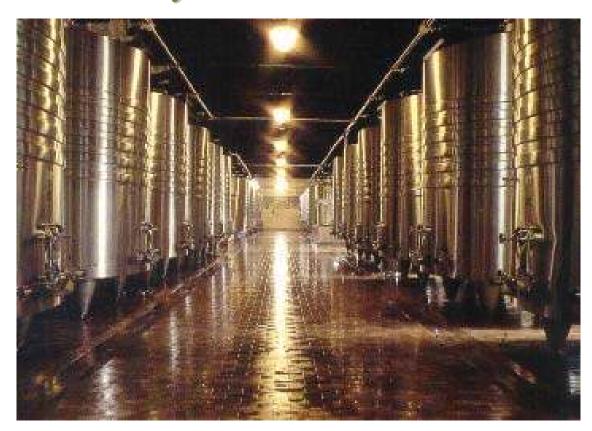
TEMPERATURA BAJA

Aromas primarios ↓glicerina (vinos fuertes y ácidos)

TEMPERATURA ÓPTIMA: la mínima que permita la fermentación sin interrupciones

- < 20 °C Riesgo de fermentaciones interrumpidas
 - 25 °C Óptima para el desarrollo de levaduras (15-18 °C en blancos)
 - 30 °C Las levaduras pierden capacidad fermentativa
 - 40 °C Las levaduras detienen la actividad fermentativa
- 45-65 °C Mueren las levaduras

Control de temperatura



La Elaboración del Vino

Estabilización y Conservación

Conservación

Fase de reposo del vino a una determinada temperatura $T^a \sim 16^{\circ}C$

TRASIEGOS PERIÓDICOS

PRIMER TRASIEGO

Cuando ha terminado la fermentación alcohólica Temperatura baja SEGUNDO TRASIEGO TERCER TRASIEGO

CONTROLES DURANTE LA CONSERVACIÓN

SO₂ Acidez Volátil, Total Otros (color, fenoles totales, etc.)

La Elaboración del Vino

Clarificación

1. Adición de sustancias de carácter coloide (CASEINA, GELATINAS, ALBÚMINA, BENTONITAS....)

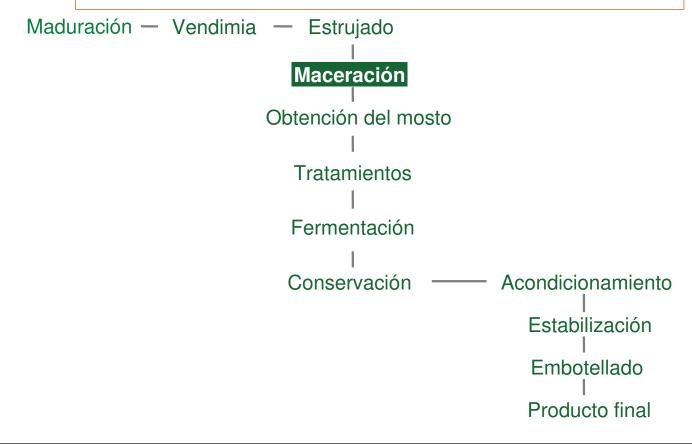
2. Floculación de la proteína con los residuos pécticos

3. Sedimentación. Disminuye la viscosidad y el vino se clarifica en 6-18 horas

Tratamiento por frío

-5°C → Precipitación tartratos

- 1. Tierra
- 2. Placas
- 3. Amicróbico


La Elaboración del Vino

Embotellado

Nuevas Tecnologías en la Elaboración de Vinos

La Elaboración del Vino

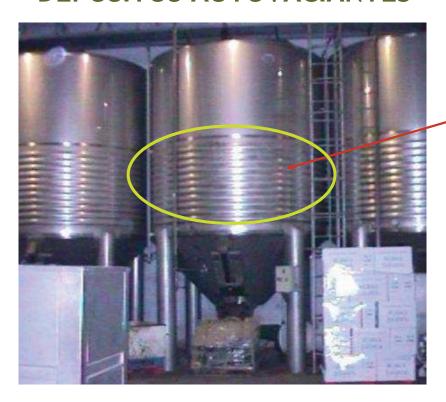
Nuevas Tecnologías en la Elaboración de Vinos

Criomaceración

Maceración prefermentativa de los mostos con los hollejos a temperatura controlada

Mayor cantidad de aromas

Mayor cantidad de compuestos fenólicos (Color del vino)


Temperaturas: 10 - 25 °C

Tiempos: 2-6 h

Depósitos: 30.000 litros

Control de temperatura

DEPÓSITOS AUTOVACIANTES

Camisa refrigerante

La Elaboración del Vino

Control de temperatura

La Elaboración del Vino

DESPALILLADO

Consiste en separar los granos de uva de los escobajos o raspones.

Ventajas:

- -En el grano se ejerza un presión de rotura suave.
- -El escobajo quede perfectamente eliminado.
- -Las semillas deben permanecer enteras.
- -El conjunto quede suficientemente aireado

Inconvenientes:

- Los raspones ahuecan las vendimias y se evita que el sombrero (masa de orujo que flota sobre el mosto tinto en fermentación) demasiado sea compacto,
- Se facilitan los bazuqueos o mecidos del mosto.
- •El raspón durante la fermentación absorbe caloría, equilibrando así los aumentos de temperaturas.
- •Facilita el prensado de los orujos, acelera las fermentaciones y las hace más completas.

- Menos sabores astringentes y amargos
- •Se consigue una mayor acidez ya que el raspón aporta potasio que salificaría los ácidos
- Se obtiene más color
- Se obtiene mayor grado alcohólico
- •Se reduce el volumen en los depósitos en un 30 %

FERMENTACIÓN-MACERACIÓN

Durante la fermentación y por acción de las levaduras, los azúcares se desdoblan en alcohol y se desprende anhídrido carbónico (CO_2) ; al mismo tiempo las materias colorantes del hollejo se disuelven en el líquido.

El gas carbónico desprendido empuja hacia arriba los hollejos, formando una barrera superior denominada sombrero.

Esta barrera hay que remojarla con mosto en fermentación para activar la extracción del color, mediante una operación que recibe el nombre de remontado.

La temperatura del proceso de fermentación no debe sobrepasar nunca los 30°C.

La Elaboración del Vino

FERMENTACIÓN MALOLACTICA

"Transformación del ácido málico en ácido láctico (con emisión de anhídrido carbónico) por acción de bacterias lácticas.

La reacción química es la siguiente:

 $COOH-CHOH-CH_2-COOH = COOH-CHOH-CH_3 + CO_2$

El proceso tiene lugar después de la fermentación alcohólica (maloalcohólica) por lo que en algunas ocasiones se denomina "fermentación secundaria

Esta fermentación reduce la acidez total del vino al perderse parte de la acidez fija: una parte de la acidez del vino se transforma en gas carbónico, el cual se desprende y desaparece.

La fermentación del ácido málico está provocada por el desarrollo de bacterias lácticas que se encuentran en los hollejos de las uvas maduras.

CRIANZA EN BODEGA

El envejecimiento de los vinos se determina por el tiempo que pasa en la barrica o depósito un vino después de su fermentación alcohólica.

Se determinan las siguientes clasificaciones que pueden variar según legislaciones específicas de algunas denominaciones de origen:

-Vino de Crianza

Para que el vino sea de Crianza, tiene que reposar un mínimo de seis meses en madera y hasta dos años en botella. Crianza será tanto el vino que tiene un año en madera y otro en botella como el que tiene 18 meses en madera y 6 en botella. Total 24 meses.

-Vino de Reserva

En caso de querer hacer un Reserva, el vino tendría que pasar un año en madera y hasta tres años en botella.

- Vino Gran Reserva

Para el Gran Reserva tendría que pasar un mínimo de dos años en madera y hasta cinco en botella.

La Elaboración del Vino

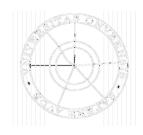
LA MACERACIÓN CARBÓNICA

ES UN TIPO DE VINIFICACIÓN EN TINTO PARA ELABORAR VINOS JÓVENES QUE SE REALIZA EN DOS FASES.

1ª FASE. Los racimos enteros, con raspón y sin despalillar ni estrujar, se depositan en los depósitos, poco a poco se va creando una atmósfera de anhídrido carbónico, por el peso y estrujado propio y natural de la uva, produciendo una fermentación intracelular, en el interior de la baya.

Por una parte se produce una pequeña fermentación alcohólica en el fondo del depósito por mosto liberado y por otro lado una microfermentación individual de las uvas en la parte superior.

Estas se van reblandeciendo y en ese momento comienzan a generar una serie de procesos químicos que darán lugar a las características propias de este tipo de vinificación.


Esta fase suele durar aproximadamente una semana dependiendo de la temperatura de fermentación.

2ª FASE. El mosto se descuba y/o se prensa obteniendo las distintas calidades con los que el bodeguero elaborará el vino final.

En esta segunda fase se realiza la fermentación alcohólica del mosto

Rafael Beltrán Lucena Área de Química Analítica Facultad de Ciencias Experimentales Universidad de Huelva