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DATA FILE DESCRIPTIONS 

The analysis examples use synthetic data sets created to closely resemble those from educational 
studies described in Montague et al. (2005) and Montague et al. (2014). The data and analysis 
scripts are available for download from the project website: www.appliedmissingdata.com/ 
videos. 

The behaviorachievement.dat file is taken from a longitudinal study that followed 138 
students from primary to middle school. The file includes three annual assessments of broad 
reading and math achievement beginning in the first grade, seventh grade standardized 
achievement test scores taken from a statewide assessment, and a final measure of broad reading 
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms 
and learning problems were also obtained in the first grade.  

The mathachievement.dat data set is taken from an educational intervention where 250 
students were assigned to an intervention and comparison condition. The file includes pretest 
and posttest math achievement scores, a measure of math self-efficacy, standardized reading 
scores taken from a statewide assessment, and several sociodemographic variables. 

The problemsolving2level.dat data set is taken from a cluster-randomized educational 
intervention where 29 schools were assigned to an intervention and comparison condition. In 
addition to the intervention assignment indicator, school-level variables include the average 
years of teacher experience and the percentage of learners for whom English is a second 
language. The 928 student-level records include pretest and posttest math problem-solving and 
self-efficacy scores, standardized math scores taken from a statewide assessment, and several 
sociodemographic variables. 

The problemsolving3level.dat data set is taken from a cluster-randomized 
educational intervention where 29 schools were assigned to an intervention and comparison 
condition. In addition to the intervention assignment indicator, school-level variables include the 
average years of teacher experience and the percentage of learners for whom English is a second 
language. The 928 student-level records include seven monthly measures of math problem-
solving and self-efficacy, standardized math scores taken from a statewide assessment, and 
several sociodemographic variables. 
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Variable Definitions for behaviorachievement.dat File 

Name Definition Missing % Scale 

ID Individual identifier 0 Integer index 

MALE Gender dummy code 1.5 0 = Female, 1 = Male 

HISPANIC Hispanic dummy code 5.1 0 = African American, 1 = Hispanic 

RISKGRP Emotion/behavior disorder risk 2.2 1 = Low, 2 = Medium, 3 = High 

ATRISK Emotion/behavior disorder risk 2.2 0 = Low, 1 = Medium/high 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric (17 to 92) 

LRNPROB1 1st grade learning problems 2.2 Numeric (31 to 88) 

READ1 1st grade reading composite 6.5 Numeric (39 to 153) 

READ2 2nd grade reading composite 9.4 Numeric (20 to 150) 

READ3 3rd grade reading composite 14.5 Numeric (46 to 138) 

READ9 9th grade reading composite 17.4 Numeric (41 to 123) 

READ9GRP 9th grade reading classification 17.4 0 = Below average, 1 = Average 

STANREAD7 7th grade standardized reading 19.6 Numeric (100 to 399) 

MATH1 1st grade math composite 6.5 Numeric (60 to 149) 

MATH2 2nd grade math composite 9.4 Numeric (76 to 138) 

MATH3 3rd grade math composite 14.5 Numeric (71 to 143) 

MATH9 9th grade math composite 17.4 Numeric (55 to 127) 

MATHGRP9 9th grade math classification 17.4 0 = Below average, 1 = Average 

STANMATH7 7th grade standardized math 19.6 Numeric (100 to 421) 
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Variable Definitions for mathachievement.dat File 

Name Definition Missing % Scale 

ID Individual identifier 0 Integer index 

CONDITION Experimental condition 0 0 = Comparison, 1 = Intervention 

MALE Gender dummy code 0 0 = Female, 1 = Male 

FRLUNCH Lunch assistance dummy code 4.4 0 = None, 1 = Lunch assistance 

ATRISK Emotion/behavior disorder risk 5.2 0 = Low risk, 1 = At-risk 

STANREAD Standardized reading  9.2 Numeric (27 to 69) 

EFFICACY Math self-efficacy rating scale 9.6 Ordinal (1 to 6) 

ANXIETY Math anxiety composite 8.4 Numeric (0 to 44) 

MATHPRE Math achievement pretest  0 Numeric (26 to 76) 

MATHPOST Math achievement posttest  18.0 Numeric (37 to 85) 
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Variable Definitions for problemsolving2level.dat File 

Name Definition Missing % Scale 

SCHOOL School identifier 0 Integer index 

STUDENT Student identifier 0 Integer index 

CONDITION Experimental condition 0 0 = Control, 1 = Experimental  

TEACHEXP Teacher years of experience 10.8 Numeric (4.3 to 24.6) 

ESLPCT % English as second language 0 Numeric (10 to 100) 

ETHNIC Ethnicity/race 9.0 1 = White, 2 = Black, 3 = Hispanic 

MALE Gender dummy code 0 0 = Female, 1 = Male 

FRLUNCH Lunch assistance code  4.7 0 = None, 1 = Lunch assistance 

LOWACH Low achievement code 5.2 0 = Typically achieving, 1 = Low achieving 

STANMATH Standardized math scores  7.4 Numeric (5.3 to 87.8) 

EFFICACYPRE Math self-efficacy pretest 0 Numeric (0 to 12) 

EFFICACYPST Math self-efficacy posttest 20.5 Numeric (0 to 12) 

PSOLVEPRE Math problem-solving pretest  0 Numeric (37 to 66) 

PSOLVEPST Math problem-solving posttest  20.5 Numeric (37 to 65) 
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Variable Definitions for problemsolving3level.dat File 

Name Definition Missing % Scale 

SCHOOL School identifier 0 Integer index 

STUDENT Student identifier 0 Integer index 

WAVE Monthly wave identifier 0 Integer index (1 to 7) 

CONDITION Experimental condition 0 0 = Control, 1 = Experimental 

TEACHEXP Teacher years of experience 10.8 Numeric (4.3 to 24.6) 

ESLPCT % English as second language 0 Numeric (10 to 100) 

ETHNIC Ethnicity/race 9.0 1 = White, 2 = Black, 3 = Hispanic 

MALE Gender dummy code 0 0 = Female, 1 = Male 

FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Lunch assistance 

LOWACH Low achievement code 5.2 0 = Typically achieving, 1 = Low achieving 

STANMATH Standardized reading  7.4 Numeric (5.3 to 87.8) 

MONTH0 Time scores (baseline = 0) 0 Numeric (0 to 6) 

MONTH7 Time scores (endpoint = 0) 0 Numeric (–6 to 0) 

EFFICACY Math self-efficacy 11.4 Numeric (0 to 14) 

PROBSOLVE Math problem-solving 11.4 Numeric (37 to 68) 



GETTING STARTED WITH SOFTWARE 

The tutorial examples use the Blimp application for Bayesian estimation and multiple 
imputation. Blimp’s development was supported by the Institute of Education Sciences, U.S. 
Department of Education, through Grant R305D150056 & R305D190002 to UCLA. Blimp is 
freely available at www.appliedmissingdata.com/blimp. The Blimp User Guide is available from 
the same website and from the Help > Help pull-down. To modify and customize features of 
the graphical interface (e.g., fonts, layout of the syntax and output panes, etc.), go to the Blimp 
Studio > Preferences pull-down. 

The tutorial examples use Mplus for maximum likelihood estimation and for analyzing 
multiply imputed data sets created by Blimp. A free demo version of Mplus is available at 
www.statmodel.com/demo.shtml. Many of the scripts run on the demo version, which is limited 
to six variables. 

The tutorial examples also use various R packages for maximum likelihood estimation and for 
analyzing multiply imputed data sets created by Blimp. R is available for download at www.r-
project.org, and RStudio is available at www.rstudio.com/products/rstudio/download/. The 
script below installs the packages used in this document. 

 
install.packages("lavaan", dependencies = T) 
install.packages("semTools", dependencies = T) 
install.packages("mitml", dependencies = T) 
install.packages("mdmb", dependencies = T) 
install.packages("remotes") 
remotes::install_github("bkeller2/fdir") 
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SECTION 1: MAXIMUM LIKELIHOOD ESTIMATION 
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EXAMPLE 1: MULTIPLE REGRESSION WITH  
MULTIVARIATE NORMAL DATA 

This example illustrates a multiple regression analysis with multivariate normal incomplete data. 
The analysis uses the behaviorachievement.dat data set taken from a longitudinal study that 
followed 138 students from primary through middle school. The file includes three annual 
assessments of broad reading and math achievement beginning in the first grade, seventh grade 
standardized achievement test scores taken from a statewide assessment, and a final measure of 
broad reading and math obtained in ninth grade. The data also contain teacher ratings of 
behavioral symptoms and learning problems were also obtained in the first grade. The data 
description at the beginning of this document provides additional details. The variables for this 
analysis are as follows. 

Name Definition Missing % Scale 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  
LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 
READ9 9th grade broad reading composite 17.4 Numeric 

Analysis Model 

The analysis model features ninth grade broad reading scores regressed on first grade reading 
achievement and teacher-rated learning problems and behavioral symptoms. 

 𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 (1) 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors.  The Mplus and R scripts below assign a multivariate 
normal distribution to the set of analysis variables.  

  



   4 

Mplus Script 

The code block below shows Mplus script Ex1.1.inp. 

 
Mplus Script Ex1.1.inp 
 
 1  DATA:  
 2  file = behaviorachievement.dat; 
 3  VARIABLE:  
 4  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 5    read1 read2 read3 read9 read9grp stanread7  
 6    math1 math2 math3 math9 math9grp stanmath7; 
 7  usevariables = read9 read1 lrnprob1 behsymp1; 
 8  missing = all(999); 
 9  ANALYSIS: 
10  estimator = ml; 
11  MODEL:   
12  read1 lrnprob1 behsymp1; 
13  read9 on read1 lrnprob1 behsymp1 (beta1-beta3); 
14  MODEL TEST: 
15  0 = beta1; 0 = beta2; 0 = beta3; 
16  OUTPUT: 
17  patterns sampstat stdyx cinterval; 
 

The DATA command specifies the name of the input text file. No file path is required when the 
data set is located in the same directory as the script, as it is here. The VARIABLE command 
provides information about the data. Beginning on line 4, the names subcommand assigns names 
to the variables in the input data, the usevariables subcommand selects variables for the 
analysis, and the missing subcommand gives the global missing value code. The ANALYSIS 
command and estimator subcommand specify full information maximum likelihood 
estimation. These commands are optional because the maximum likelihood missing data 
handling is the default. If the variables are nonnormal, specifying estimator = mlr on line 10 
generates robust test statistics and standard errors.  

The MODEL section of the script consists of two lines. Listing all predictors by name on line 12 
is important because doing so invokes a multivariate normal distribution for these variables. As 
mentioned previously, assigning distributional assumptions to predictors is necessary for missing 
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data handling. On line 13, the outcome variable appears to the left of the on keyword, and the 
predictors appear to the right. The end of this line includes labels for the slope parameters in 
parentheses. The subsequent MODEL TEST command uses these labels to specify a custom 
significance test of the omnibus null hypothesis that all three population slopes equal zero. 
Finally, the OUTPUT command specifies four keywords on line 17 that request a summary of the 
missing data patterns, maximum likelihood estimates of sample statistics, standardized 
coefficients, and confidence intervals. 

Mplus Output 

Information about the missing data patterns is found near the top of the output file. The table in 
the excerpt below shows the analysis variables in the rows and missing data patterns in the 
columns. The output also displays the frequency of each missing data pattern. 

 
SUMMARY OF MISSING DATA PATTERNS 
 
 
     MISSING DATA PATTERNS (x = not missing) 
 
           1  2  3  4  5  6  7 
 READ9     x  x  x  x 
 READ1     x  x  x     x  x 
 LRNPROB1  x  x     x  x  x  x 
 BEHSYMP1  x     x  x  x     x 
 
 
     MISSING DATA PATTERN FREQUENCIES 
 
    Pattern   Frequency     Pattern   Frequency     Pattern   Frequency 
          1          99           4           8           7           1 
          2           4           5          22 
          3           3           6           1 
 

Next, the covariance coverage matrix displays the proportion of observed data for each 
variable on the diagonal and the proportion of observed data for each variable pair on the off-
diagonals. A low value on the off-diagonal indicates that the data contain little information about 
a bivariate association. 
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COVARIANCE COVERAGE OF DATA 
 
Minimum covariance coverage value   0.100 

 
     PROPORTION OF DATA PRESENT 

 
           Covariance Coverage 
              READ9         READ1         LRNPROB1      BEHSYMP1 
              ________      ________      ________      ________ 
 READ9          0.826 
 READ1          0.768         0.935 
 LRNPROB1       0.804         0.913         0.978 
 BEHSYMP1       0.797         0.899         0.942         0.964 
 

Most software programs that fit regression models report an omnibus F test that evaluates the 
set of slope coefficients. The MODEL TEST command in the previous script requested an 
analogous Wald chi-square statistic that evaluates the null hypothesis that all population slopes 
equal zero. The chi-square statistic, degrees of freedom, and p-value appear near the bottom of 
the MODEL FIT INFORMATION section under the Wald Test of Parameter Constraints 
heading. The test statistic is statistically significant, thus refuting the null hypothesis. 

 
MODEL FIT INFORMATION 
 
Number of Free Parameters                       14 
 
... 
 
Wald Test of Parameter Constraints 
 
          Value                            159.666 
          Degrees of Freedom                     3 
          P-Value                           0.0000 
 

The table of unstandardized parameter estimates is shown below. Because the analysis 
specifies a multivariate normal distribution for the predictors, the means, variances, and 
covariances of these variables are printed along with the focal model estimates. These supporting 
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parameters are not of substantive interest, and they do not need to be reported. The first two 
columns display the unstandardized estimates and their standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown in 
bold typeface. 

 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 READ9    ON 
    READ1              0.503      0.045     11.230      0.000 
    LRNPROB1          -0.224      0.132     -1.703      0.089 
    BEHSYMP1          -0.222      0.110     -2.023      0.043 
 
 LRNPROB1 WITH 
    READ1             -5.643     19.063     -0.296      0.767 
 
 BEHSYMP1 WITH 
    READ1            -11.235     20.841     -0.539      0.590 
    LRNPROB1          92.048     13.548      6.794      0.000 
 
 Means 
    READ1             86.732      1.709     50.739      0.000 
    LRNPROB1          52.328      0.914     57.224      0.000 
    BEHSYMP1          49.483      1.039     47.631      0.000 
 
 Intercepts 
    READ9             66.901      6.465     10.349      0.000 
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Variances 
    READ1            387.270     48.040      8.061      0.000 
    LRNPROB1         114.162     13.820      8.260      0.000 
    BEHSYMP1         146.318     17.738      8.249      0.000 
 
 Residual Variances 
    READ9             86.095     11.813      7.288      0.000 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading slope. The model predicts that two individuals who 
differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by .50 
points on the outcome. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 11.23, p < .001). 

Specifying the stdyx keyword as an option prints the table of standardized estimates and R -
squared statistic shown below. The slope coefficients convey the expected change in standard 
deviation units for a one standard deviation increase in a given predictor. For example, the model 
predicts that two individuals who differ by one standard deviation on READ1 but are the same on 
LRNPROB1 and BEHSYMP1 should differ by .68 standard deviations on the outcome. The R-
squared statistic at the bottom of this section indicates that the collection predictors explain 59% 
of the variation in ninth-grade reading scores. 

 
STANDARDIZED MODEL RESULTS 
 
STDYX Standardization 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 READ9    ON 
    READ1              0.683      0.049     13.901      0.000 
    LRNPROB1          -0.165      0.097     -1.698      0.089 
    BEHSYMP1          -0.185      0.091     -2.032      0.042 
 
 LRNPROB1 WITH 
    READ1             -0.027      0.091     -0.296      0.767 
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BEHSYMP1 WITH 
    READ1             -0.047      0.087     -0.541      0.588 
    LRNPROB1           0.712      0.042     16.784      0.000 

 
 Means 
    READ1              4.407      0.287     15.339      0.000 
    LRNPROB1           4.897      0.309     15.864      0.000 
    BEHSYMP1           4.091      0.262     15.594      0.000 
 
 Intercepts 
    READ9              4.620      0.575      8.032      0.000 
 
 Variances 
    READ1              1.000      0.000    999.000    999.000 
    LRNPROB1           1.000      0.000    999.000    999.000 
    BEHSYMP1           1.000      0.000    999.000    999.000 
 
 Residual Variances 
    READ9              0.411      0.059      6.974      0.000 

 
R-SQUARE 
 
    Observed                                        Two-Tailed 
    Variable        Estimate       S.E.  Est./S.E.    P-Value 
 
    READ9              0.589      0.059     10.014      0.000 
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R Script 

The R input file for the analysis is Ex1.1.R. The code block below shows the commands that 
import the data. 

 
R Script Ex1.1.R 
 
1  library(fdir) 
2  library(lavaan) 
3  set() 
4  data <- read.table("behaviorachievement.dat", na.strings = "999") 
5  names(data) <-c("id","male","hispanic","riskgrp","atrisk","behsymp1", 
6   "lrnprob1","read1","read2","read3","read9","read9grp","stanread7", 
7   "math1","math2","math3","math9","math9grp","stanmath7") 
 

The example requires the fdir and lavaan packages, which are loaded on lines 1 and 2. On line 
3, the set() function of the fdir package identifies the file path of the folder containing the R 
script and sets this location as the working directory. On line 4, the read.table command 
imports the data, and the na.strings parameter specifies 999 as the global missing value code. 
It is only necessary to specify the name of the input data, as no file path is required when the file 
resides in the same folder as the R script, as it does here. Finally, variable names are listed 
beginning on line 5. 

The code block below shows the lavaan syntax that fits the regression model and summarizes 
the results.  

 
R Script Ex1.1.R, continued 
 
 8  model <- 'read9 ~ b1*read1 + b2*lrnprob1 + b3*behsymp1' 
 9  fit <- sem(model, data, fixed.x = F, missing = "fiml") 
10  inspect(fit, "patterns") 
11  inspect(fit, "coverage") 
12  summary(fit, rsquare = T, standardize = T) 
13  wald.constraints <- 'b1 == 0; b2 == 0; b3 == 0;' 
14  lavTestWald(fit, constraints = wald.constraints) 
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The model variable on line 8 defines a text string specifying the regression model, with the 
outcome variable on the left side of the tilde and the predictors to the right. Each predictor’s 
slope is preceded by a label (i.e., b1, b2, and b3). A subsequent command uses these labels to 
specify a custom significance test of the null hypothesis that the population slopes equal zero. On 
line 9, the model string and data frame are passed into the sem function. The fixed.x = F 
parameter specifies that the predictors are treated as normally distributed variables, and missing 
= "fiml" requests missing data estimation. The fixed.x specification is important because it 
invokes a multivariate normal distribution for the analysis variables. As mentioned previously, 
assigning distributions to incomplete predictors is necessary for missing data handling.  

The inspect functions on lines 10 and 11 produce a table of missing data patterns and a 
covariance coverage matrix with the proportion of observed data for each variable or variable 
pair, respectively. The summary function on line 12 produces tabular results with standardized 
estimates and the R-squared statistic. Finally, the wald.constraints variable on line 13 defines 
a text string that uses the aforementioned labels to specify the null hypothesis that all three 
population slopes equal zero. The lavTestWald function on line 14 uses that text string to 
generate a chi-square statistic, degrees of freedom, and p-value. 

R Output 

The inspect functions in the previous script request information about the missing data 
patterns and missing data rates. The missing data pattern table in output below shows the 
analysis variables in the columns and missing data patterns in the rows (1 = observed, 0 = 
missing).  

 
> inspect(fit, "patterns") 
     read9 read1 lrnpr1 bhsym1 
[1,]     1     1      1      1 
[2,]     0     1      1      1 
[3,]     1     0      1      1 
[4,]     1     1      1      0 
[5,]     1     1      0      1 
[6,]     0     0      1      1 
[7,]     0     1      1      0 
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The covariance coverage matrix displays the proportion of observed data for each variable on the 
diagonal and the proportion of observed data for each variable pair on the off-diagonals. A low 
value on the off-diagonal indicates that the data contain little information about a bivariate 
association. 

 
> inspect(fit, "coverage") 
         read9 read1 lrnpr1 bhsym1 
read9    0.826                     
read1    0.768 0.935               
lrnprob1 0.804 0.913 0.978         
behsymp1 0.797 0.899 0.942  0.964 
  

The table of parameter estimates is shown below. Because the analysis specifies a multivariate 
normal distribution for the predictors, the means, variances, and covariances of these variables 
are printed along with the focal model estimates. These supporting parameters are not of 
substantive interest, and they do not need to be reported. The first two columns display the 
unstandardized estimates and their standard errors, and the third and fourth columns display the 
corresponding z-statistics and p-values. The rightmost column gives the standardized 
coefficients. The focal model results are shown in bold typeface. 

 
> summary(fit, rsquare = T, standardize = T) 
 
... 
 
Regressions: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
  read9 ~                                                                
    read1     (b1)    0.503    0.045   11.230    0.000    0.503    0.683 
    lrnprob1  (b2)   -0.224    0.132   -1.702    0.089   -0.224   -0.165 
    behsymp1  (b3)   -0.222    0.110   -2.023    0.043   -0.222   -0.185 
 
Covariances: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
  read1 ~~                                                               
    lrnprob1         -5.637   19.063   -0.296    0.767   -5.637   -0.027 
    behsymp1        -11.228   20.841   -0.539    0.590  -11.228   -0.047 
  lrnprob1 ~~                                                            
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    behsymp1         92.048   13.548    6.794    0.000   92.048    0.712 
 

 
Intercepts: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
   .read9            66.901    6.465   10.349    0.000   66.901    4.620 
    read1            86.732    1.709   50.739    0.000   86.732    4.407 
    lrnprob1         52.328    0.914   57.225    0.000   52.328    4.897 
    behsymp1         49.483    1.039   47.631    0.000   49.483    4.091 
 
Variances: 
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
   .read9            86.096   11.813    7.288    0.000   86.096    0.411 
    read1           387.275   48.041    8.061    0.000  387.275    1.000 
    lrnprob1        114.160   13.820    8.260    0.000  114.160    1.000 
    behsymp1        146.317   17.738    8.249    0.000  146.317    1.000 

 
R-Square: 
                   Estimate 
    read9             0.589 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading slope. The model predicts that two individuals who 
differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by .50 
points on the outcome. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 11.23, p < .001).  

The standardized coefficients in the Std.all column convey the expected change in standard 
deviation units for a one standard deviation increase in a given predictor. For example, the model 
predicts that two individuals who differ by one standard deviation on READ1 but are the same on 
LRNPROB1 and BEHSYMP1 should differ by .68 standard deviations on the outcome. The R-
squared statistic at the bottom of this section indicates that the collection predictors explain 59% 
of the variation in ninth-grade reading scores. 

Most software programs that fit regression models report an omnibus F test that evaluates the 
set of slope coefficients. The lavTestWald function in the previous script requested an 
analogous Wald chi-square statistic that evaluates the null hypothesis that all population slopes 
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equal zero. The chi-square statistic, degrees of freedom, and p-value appear on the output as 
follows. The test statistic is statistically significant, thus refuting the null hypothesis. 

 
$stat 
[1] 159.6636 
 
$df 
[1] 3 
 
$p.value 
[1] 0 
 
$se 
[1] "standard" 
 

Adding Auxiliary Variables 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). The next part of example introduces two auxiliary variables using the saturated correlates 
approach described by Graham (2003). The analysis variables are as follows. 

Name Definition Missing % Scale 

Focal Variables 
BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  
LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 
READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 
READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 
 

A path diagram of the saturated correlates model is shown below. The curved arrows depict 
correlations and residual correlations that connect the auxiliary variables to each other and to the 
residuals of the focal variables. Both Mplus and R have facilities that automatically introduce 
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auxiliary variables according to this model. Note that the saturated correlates approach assumes 

that all variables are multivariate normal. 

 

Mplus Script and Output 

The code block below shows Mplus script Ex1.2.inp. The only change to the script is the 
auxiliary subcommand on line 8, which functions as a second variable list containing just the 
auxiliary variables. The (m) specification indicates that the additional variables are missing data 
auxiliary variables (Mplus uses this command for other purposes unrelated to missing data). 
Finally, note that the additional variables are omitted from the usevariables line. 
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Mplus Script Ex1.2.inp 
 
 1  DATA:  
 2  file = behaviorachievement.dat; 
 3  VARIABLE:  
 4  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 5    read1 read2 read3 read9 read9grp stanread7  
 6    math1 math2 math3 math9 math9grp stanmath7; 
 7  usevariables = read9 read1 lrnprob1 behsymp1; 
 8  auxiliary = (m) read2 stanread7; 
 9  missing = all(999); 
10  ANALYSIS: 
11  estimator = ml; 
12  MODEL:   
13  read1 lrnprob1 behsymp1; 
14  read9 on read1 lrnprob1 behsymp1 (beta1-beta3); 
15  MODEL TEST: 
16  0 = beta1; 0 = beta2; 0 = beta3; 
17  OUTPUT: 
18  patterns sampstat stdyx cinterval; 
 

The only indication that auxiliary variables are included in the model appears in the SUMMARY 
OF ANALYSIS table near the top of the output file. The main body of the output doesn’t change 
with auxiliary variables, as the additional parameters (e.g., the curved arrows, or correlations) are 
suppressed. The estimates and standard errors may change, which is expected when including 
auxiliary variables that have salient semipartial correlations with the incomplete variables. 

 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                         138 
 
Number of dependent variables                                    1 
Number of independent variables                                  3 
Number of continuous latent variables                            0 
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Observed dependent variables 
 
  Continuous 
   READ9 
 
Observed independent variables 
   READ1       LRNPROB1    BEHSYMP1 
 
Observed auxiliary variables 
   READ2       STANREAD7 
 

R Script and Output 

The R input file that incorporates auxiliary variables is Ex1.2.R. In addition to the fdir and 
lavaan packages, the analysis requires the semTools package, which automates the inclusion of 
auxiliary variables. The code block below shows the syntax that fits the saturated correlates 
regression model. The model text string remains the same with auxiliary variables. The major 
change is that the sem.auxiliary function replaces the sem function from the earlier example, 
and the aux parameter defines a vector of auxiliary variable names. Unlike Mplus, the R output 
includes the auxiliary variable parameters. The additional estimates can be ignored because they 
are not the substantive focus. 

 
1  model <- 'read9 ~ b1*read1 + b2*lrnprob1 + b3*behsymp1' 
2  fit <- sem.auxiliary(model, data, fixed.x = F,  
3   aux = c("read2","stanread7")) 
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EXAMPLE 2: LOGISTIC REGRESSION  
WITH A BINARY OUTCOME 

This example illustrates a binary logistic regression analysis with incomplete data. The analysis 
uses the behaviorachievement.dat data set taken from a longitudinal study that followed 138 
students from primary through middle school. The file includes three annual assessments of 
broad reading and math achievement beginning in the first grade, seventh grade standardized 
achievement test scores taken from a statewide assessment, and a final measure of broad reading 
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms 
and learning problems were also obtained in the first grade. The data description at the 
beginning of this document provides additional details. The variables for this analysis are as 
follows. 

Name Definition Missing % Scale 

Focal Variables 
BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  
LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 
READ9GRP 9th grade reading classification 17.4 0 = Below average, 1 = Average 

Auxiliary Variables 
READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

Analysis Model 

The analysis model features a binary classification of ninth grade reading performance regressed 
on first grade reading achievement and teacher-rated learning problems and behavioral 
symptoms. 

 logit(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) (2) 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. Models with mixtures of categorical and numeric 
variables require a factored regression specification that separates the likelihood function into 
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separate components for each variable type. Mplus assigns a multivariate normal distribution to 
the predictors, whereas the R script links predictors to one another using a sequence of univariate 
regression models. 

Mplus Script 

The code block below shows Mplus script Ex2.1.inp. 

 
Mplus Script Ex2.1.inp 
 
 1  DATA:  
 2  file = behaviorachievement.dat; 
 3  VARIABLE:  
 4  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 5    read1 read2 read3 read9 read9grp stanread7  
 6    math1 math2 math3 math9 math9grp stanmath7; 
 7  usevariables = read9grp read1 lrnprob1 behsymp1; 
 8  categorical = read9grp; 
 9  missing = all(999); 
10  ANALYSIS: 
11  estimator = ml; 
12  link = logit; 
13  integration = montecarlo; 
14  MODEL:   
15  read1 lrnprob1 behsymp1; 
16  read9grp on read1 lrnprob1 behsymp1 (beta1-beta3); 
17  MODEL TEST: 
18  0 = beta1; 0 = beta2; 0 = beta3; 
19  OUTPUT: 
20  patterns sampstat stdyx cinterval; 
 

The DATA command specifies the name of the input text file. No file path is required when the 
data file is located in the same directory as the script, as it is here. The VARIABLE command 
provides information about the data. Beginning on line 4, the names subcommand assigns names 
to the variables in the input data file, the usevariables subcommand selects variables for the 
analysis, and the missing subcommand gives the global missing value code. The categorical 
subcommand on line 8 defines the outcome as a binary variable. The ANALYSIS command and 
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estimator subcommand specify full information maximum likelihood estimation. Additionally, 
the link = logit subcommand specifies a logistic regression for the outcome variable, and 
integration = montecarlo invokes an algorithmic method for models with mixed variable 
types. 

The MODEL section of the script consists of two lines. Listing all predictors by name on line 15 
is important because doing so invokes a multivariate normal distribution for these variables. As 
mentioned previously, assigning distributional assumptions to predictors is necessary for missing 
data handling. On line 16, the outcome variable appears to the left of the on keyword, and the 
predictors appear to the right. The end of this line includes labels for the slope parameters in 
parentheses. The subsequent MODEL TEST command uses these labels to specify a custom 
significance test of the omnibus null hypothesis that all three population slopes equal zero. 
Finally, the OUTPUT command specifies four keywords on line 20 that request a summary of the 
missing data patterns, maximum likelihood estimates of sample statistics, standardized 
coefficients, and confidence intervals. 

Mplus Output 

Information about the missing data patterns is found near the top of the output file. Following 
the missing data pattern table, the output displays a covariance coverage matrix that gives the 
proportion of observed data for each variable on the diagonal and the proportion of observed 
data for each variable pair on the off-diagonals. The format of these table is the same as those 
shown in Example 1. In the interest of space, we point readers to that example for additional 
details. 

Most software programs that fit regression models report an omnibus F test that evaluates the 
set of slope coefficients. The MODEL TEST command in the previous script requested an 
analogous Wald chi-square statistic that evaluates the null hypothesis that all population slopes 
equal zero. The chi-square statistic, degrees of freedom, and p-value appear near the bottom of 
the MODEL FIT INFORMATION section under the Wald Test of Parameter Constraints 
heading. The test statistic is statistically significant, thus refuting the null hypothesis. 
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MODEL FIT INFORMATION 
 
Number of Free Parameters                       13 
 
... 
 
Wald Test of Parameter Constraints 
 
          Value                             21.889 
          Degrees of Freedom                     3 
          P-Value                           0.0001 
 

The table of unstandardized parameter estimates is shown below. Because the analysis 
specifies a multivariate normal distribution for the predictors, the means, variances, and 
covariances of these variables are printed along with the focal model estimates. These supporting 
parameters are not of substantive interest, and they do not need to be reported. The first two 
columns display the unstandardized estimates and their standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown in 
bold typeface. 

 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 READGRP9   ON 
    READ1              0.069      0.016      4.446      0.000 
    LRNPROB1          -0.018      0.033     -0.549      0.583 
    BEHSYMP1          -0.028      0.028     -1.014      0.311 
 
 LRNPROB1 WITH 
    READ1              3.085     19.553      0.158      0.875 
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BEHSYMP1 WITH 
    READ1             -5.194     21.046     -0.247      0.805 
    LRNPROB1          92.088     13.554      6.794      0.000 
 
 Means 
    READ1             86.974      1.719     50.598      0.000 
    LRNPROB1          52.319      0.914     57.267      0.000 
    BEHSYMP1          49.488      1.041     47.544      0.000 
 
 Thresholds 
    READGRP9$1         3.874      1.729      2.240      0.025 
 
 Variances 
    READ1            384.526     47.859      8.035      0.000 
    LRNPROB1         113.906     13.775      8.269      0.000 
    BEHSYMP1         146.740     17.818      8.235      0.000 
 

The results are interpreted in the same way as a complete-data logistic regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that the logits for two 
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 
differ by 0.07. The corresponding test statistic indicates that the slope coefficient is statistically 
different from zero (z = 4.45, p < .001). Note that Mplus reports a threshold parameter instead of 
the usual regression intercept. The threshold from a binary logistic model has the same value as 
the intercept but the opposite sign (i.e., 𝛽0̂ = –3.87). 

Finally, the printed output also includes the table of odds ratios that reflect multiplicative 
changes to the odds. For example, a one-point increase in first grade reading scores increases the 
odds of achieving an average ninth grade reading level by a factor 1.07, holding first grade 
learning problems and behavioral symptoms constant. 
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LOGISTIC REGRESSION ODDS RATIO RESULTS 
 
                                                95% C.I. 
                    Estimate       S.E.  Lower 2.5% Upper 2.5% 
 
 READGRP9   ON 
    READ1              1.072      0.017      1.040      1.105 
    LRNPROB1           0.982      0.032      0.921      1.047 
    BEHSYMP1           0.972      0.027      0.921      1.027 
 

Adding Auxiliary Variables 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). The saturated correlates model from Example 1 is not applicable to logistic regression 
models because it assumes multivariate normality. Instead, auxiliary variables enter the model as 
additional outcomes that are predicted by the analysis variables and by each other.  

The additional regression equations are as follows. 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) + 𝛾21(𝑅𝐸𝐴𝐷1) 

(3) 
+ 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) 

+ 𝛾32(𝑅𝐸𝐴𝐷1) + 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 
 

Along with the logistic regression model from Equation 2, the collection of regression equations 
can be viewed as the path model shown below, where the dashed lines are the additional 
regressions. With this method, the focal model is one part of a larger network of variables.  
Importantly, the path model does not represent substantive theory, but is simply a tool for 
linking the auxiliary variables to the focal variables and to each other. 
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Mplus Script 

The code block below shows an excerpt from Mplus script Ex2.2.inp. The MODEL command 
includes two new regression equations, but the script is otherwise similar to Ex2.1.inp.  

 
MODEL:   
read1 lrnprob1 behsymp1; 
read9grp on read1 lrnprob1 behsymp1 (beta1-beta3); 
read2 on read9grp read1 lrnprob1 behsymp1; 
stanread7 on read2 read9grp read1 lrnprob1 behsymp1; 
 

The main table of results expands to include summaries of the auxiliary variable regression 
models. However, these additional parameters can be ignored because they are not the 
substantive focus. The logistic model’s estimates and standard errors change, which is expected 
when including auxiliary variables that have salient semipartial correlations with the incomplete 
variables. 

R Script 

The lavaan package currently does not offer maximum likelihood estimation for models with 
incomplete categorical variables. The example instead uses the mdmb package. This package 
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leverages a factored regression specification that links incomplete predictors to one another using 
a sequence of univariate regression models. The additional regression equations are as follows. 

𝐵𝐸𝐻𝑆𝑌𝑀𝑃1 = 𝛾01 + 𝜖1 

𝐿𝑅𝑁𝑃𝑅𝑂𝐵1 = 𝛾02 + 𝛾12(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 (4) 

𝑅𝐸𝐴𝐷1 = 𝛾03 + 𝛾13(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾23(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖3 
 

These equations essentially comprise a path model where first grade behavioral symptom ratings 
predict learning problems, and both variables then predict first grade reading scores. 

The R input file for the analysis is Ex2.R. The code block below shows the commands that 
import the data. 

 
R Script Ex2.R 
 
1  library(fdir) 
2  library(mdmb) 
3  set() 
4  data <- read.table("behaviorachievement.dat", na.strings = "999") 
5  names(data) <-c("id","male","hispanic","riskgrp","atrisk","behsymp1", 
6   "lrnprob1","read1","read2","read3","read9","read9grp","stanread7", 
7   "math1","math2","math3","math9","math9grp","stanmath7") 
8  summary(data[,c("stanread7","read2","read1","lrnprob1","behsymp1")]) 
 

The example requires the fdir and mdmb packages, which are loaded on lines 1 and 2. On line 3, 
the set() function of the fdir package identifies the file path of the folder containing the R 
script and sets this location as the working directory. On line 4, the read.table command 
imports the data, and the na.strings parameter specifies 999 as the global missing value code. 
It is only necessary to specify the name of the input data, as no file path is required when the file 
resides in the same folder as the R script, as it does here. Finally, variable names are listed 
beginning on line 5. 

The mdmb package requires the user to specify “nodes” for the missing values. These nodes are 
essentially a fixed list of plausible score values that span each variable’s range. Specifying these 
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values is necessary for the optimization algorithm, which uses an imputation-like algorithm 
called numerical integration. The summary function on line 8 generates a table displaying the 
observed values of the numeric variables. The summary table is as follows. 

 

   stanread7         read2            read1           lrnprob1        behsymp1     

 Min.   :100.0   Min.   : 20.00   Min.   : 39.00   Min.   :31.00   Min.   :17.00   

 1st Qu.:228.0   1st Qu.: 83.00   1st Qu.: 74.00   1st Qu.:45.00   1st Qu.:41.00   

 Median :263.0   Median : 92.00   Median : 86.00   Median :51.00   Median :48.00   

 Mean   :264.5   Mean   : 93.74   Mean   : 86.81   Mean   :52.36   Mean   :49.47   

 3rd Qu.:314.0   3rd Qu.:108.00   3rd Qu.: 99.00   3rd Qu.:60.50   3rd Qu.:58.00   

 Max.   :399.0   Max.   :150.00   Max.   :153.00   Max.   :88.00   Max.   :92.00   

 NA's   :27      NA's   :13       NA's   :9        NA's   :3       NA's   :5 

 

The next part of the code creates variables that contain vectors of plausible replacement scores 
(nodes, pseudo-imputations) that span the entire range of the distributions. The binary outcome 
has only two possible scores, so its node vector on line 12 consists of 0s and 1s. For continuous 
variables, specifying 20 to 40 nodes is usually sufficient. For example, nodes.read1 is a vector of 
plausible scores ranging from 30 to 160 in increments of two, and nodes.lrnprb1  is a sequence 
of scores between 20 and 100 in increments of two. To account for the possibility that the 
missing scores fall outside the observed range, the vectors specify values beyond the minimum 
and maximum scores from the data. 

 
R Script Ex2.R, continued 
 
10  nodes.stanread7 <- seq(80, 420, by = 5) 
11  nodes.read2 <- seq(10, 160, by = 2) 
12  nodes.read9grp <- c(0,1) 
13  nodes.read1 <- seq(30, 160, by = 2) 
14  nodes.lrnprob1 <- seq(20, 100, by = 2) 
15  nodes.behsymp1 <- seq(10, 100, by = 2) 
 

The next part of the script specifies a model for each analysis variable and auxiliary variable. 
The predictor variable regressions from Equation 4 are listed first, followed by the logistic model 
from Equation 2. The auxiliary variable regressions from Equation 3 are last. Each model object 
includes three arguments: the type of regression (linear or logistic), an equation, and the 
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incomplete variable’s vector of nodes or pseudo-imputations. Linear regressions are specified 
with "model" = "linreg" parameter, and the binary logistic regression is specified using 
"model" = "logistic".  

 
R Script Ex2.R, continued 
 
16  model.behsymp1 <- list("model" = "linreg",  
17   "formula" = behsymp1 ~ 1, nodes = nodes.behsymp1) 
18  model.lrnprob1 <- list("model" = "linreg",  
19   "formula" = lrnprob1 ~ behsymp1, nodes = nodes.lrnprob1) 
20  model.read1 <- list("model" = "linreg",  
21     "formula" = read1 ~ lrnprob1 + behsymp1, nodes = nodes.read1) 
22  model.read9grp <- list("model" = "logistic",  
23     "formula" = read9grp ~ read1 + lrnprob1 + behsymp1,  
24     nodes = nodes.read9grp) 
25  model.read2 <- list("model" = "linreg",  
26   "formula" = read2 ~ read9grp + read1 + lrnprob1 + behsymp1,  
27   nodes = nodes.read2) 
28  model.stanread7 <- list("model" = "linreg",  
29   "formula" = stanread7 ~ read2 + read9grp + read1 + lrnprob1 +   
30   behsymp1, nodes = nodes.stanread7) 
 

 The mdmb package views stanread7 (the auxiliary variable in the final regression model) as 
the ultimate “dependent” variable in the sequence, and it considers all other variables 
“independent variables”. Starting on line 31, the final part of the code combines the independent 
variable models into a list. On line 34, the data frame and the predictor list are passed into the 
frm_em function, which fits the sequence of models. Finally, the summary function on line 36 
requests tables of parameter estimates. 

 
R Script Ex2.R, continued 
 
31  predictor.models <- list(behsymp1 = model.behsymp1, lrnprob1 =  
32   model.lrnprob1, read1 = model.read1, read9grp = model.read9grp,  
33   read2 = model.read2) 
34  fit <- frm_em(dat = data, dep = model.stanread7, ind = 
35   predictor.models)  
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36  summary(fit) 
 

R Output 

The mdmb output includes a table of results for every fitted regression model. In this example, the 
output tables summarize linear regressions for the three incomplete predictors, a logistic 
regression for the binary dependent variable, and a pair of linear regressions for the auxiliary 
variables. These supporting model parameters are not of substantive interest, and they do not 
need to be reported. The output below shows the parameter estimates from the focal logistic 
model. The first two columns display the unstandardized estimates and their standard errors, the 
third and fourth columns display the corresponding t-statistics and p-values, and the rightmost 
columns contain 95% confidence interval limits. 

 

Model 4: mdmb::logistic_regression( read9grp ~ read1 + lrnprob1 + behsymp1 )  

 

  index       dv                    parm ON     est     se       t      p lower95 upper95 

1    14 read9grp read9grp ON (Intercept)  1 -3.9045 1.6291 -2.3968 0.0165 -7.0974 -0.7117 

2    15 read9grp       read9grp ON read1  1  0.0675 0.0149  4.5252 0.0000  0.0383  0.0968 

3    16 read9grp    read9grp ON lrnprob1  1 -0.0225 0.0308 -0.7330 0.4636 -0.0828  0.0377 

4    17 read9grp    read9grp ON behsymp1  1 -0.0192 0.0251 -0.7664 0.4434 -0.0685  0.0300 

 

Pseudo R^2 (McKelvey & Zavoina)=0.4944 

 

The results are interpreted in the same way as a complete-data logistic regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that the logits for two 
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 
differ by 0.07. The corresponding test statistic indicates that the slope coefficient is statistically 
different from zero (t = 4.53, p < .001). 
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EXAMPLE 3: REGRESSION WITH  
BINARY AND ORDINAL PREDICTORS 

This example illustrates a multiple regression analysis with incomplete categorical predictors. 
The analysis uses the mathachievement.dat data set taken from an educational intervention 
where 250 students were assigned to an intervention and comparison condition. The file includes 
pretest and posttest math achievement scores, a measure of math self-efficacy, standardized 
reading scores taken from a statewide assessment, and several sociodemographic variables. The 
analysis variables are as follows. 

Name Definition Missing % Scale 

Focal Variables 
MATHPOST Math achievement posttest  18.0 Numeric 

CONDITION Experimental condition 0 0 = Comparison, 1 = Intervention 

FRLUNCH Lunch assistance code 4.4 0 = None, 1 = Free/reduced lunch 
EFFICACY Math self-efficacy rating  9.6 Ordinal (1 to 6) 
MATHPRE Math achievement pretest  0 Numeric 

Auxiliary Variables 
ATRISK Behavioral disorder risk 5.2 0 = Low risk, 1 = At-risk 

STANREAD Standardized reading  9.2 Numeric 

Analysis Model 

The analysis model features math posttest scores regressed on the experimental condition and 
lunch assistance dummy codes, math self-efficacy ratings, and math pretest scores. 

𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇 = 𝛽0 + 𝛽1(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) + 𝛽2(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) 
(5) 

+ 𝛽3(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌) + 𝛽4(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜀 
 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. In this case, the predictor set includes incomplete binary 
and ordinal variables, so assigning a normal distribution to the variables is questionable.  
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The analysis instead uses a factored regression specification that separates the likelihood 
function into separate components for each variable type. In practical terms, this specification 
uses a sequence of univariate regression models to link incomplete predictors. The additional 
regression equations are both logistic regressions. 

logit(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) = 𝛾01 + 𝛾11(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) + 𝛾21(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) 
(6) 

logit(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌) = 𝛾02 + 𝛾12(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾22(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) + 𝛾32(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) 
 

These equations comprise the path model below, where the intervention indicator and math 
pretest scores predict the lunch assistance indicator, and all three variables, in turn, predict self-
efficacy. The two complete variables are always on the right side of regression equations because 
they do not require a model. The absence of residual arrows in the path diagram conveys this 
feature. 

 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following Example 2, auxiliary variables enter the model as additional outcomes that are 
predicted by the analysis variables and by each other. The additional regression equations are as 
follows. 

logit(𝐴𝑇𝑅𝐼𝑆𝐾) = 𝛾03 + 𝛾13(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾23(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) 

(7) + 𝛾33(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾43(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌) + 𝛾53(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷 = 𝛾04 + 𝛾14(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝛾24(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾34(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) 
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+ 𝛾44(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾54(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛾64(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖4 
 

Again, the entire collection of regression equations can be viewed as a path model (see the 
auxiliary variable path diagram from Example 2). The key difference is that the path coefficients 
are just a tool for linking variables with different metrics and do not represent a substantive 
theory. 

Mplus Script 

The code block below shows Mplus script Ex3.inp. 

 
Mplus Script Ex3.inp 
 
 1  DATA:  
 2  file = mathachievement.dat; 
 3  VARIABLE:  
 4  names = id condition male frlunch atrisk  
 5   stanread efficacy anxiety mathpre mathpost; 
 6  usevariables = mathpost condition frlunch efficacy  
 7   mathpre atrisk stanread; 
 8  categorical = frlunch efficacy atrisk;  
 9  missing = all(999); 
10  ANALYSIS: 
11  estimator = ml; 
12  link = logit; 
13  integration = montecarlo; 
14  MODEL: 
15  frlunch on condition mathpre; 
16  efficacy on frlunch condition mathpre; 
17  mathpost on condition frlunch efficacy mathpre (beta1-beta4); 
18  atrisk on mathpost condition frlunch efficacy mathpre; 
19  stanread on atrisk mathpost condition frlunch efficacy mathpre; 
20  MODEL TEST: 
21  0 = beta1; 0 = beta2; 0 = beta3; 0 = beta4; 
22  OUTPUT: 
23  patterns sampstat cinterval; 
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The DATA command specifies the name of the input text file. No file path is required when the 
data file is located in the same directory as the script, as it is here. The VARIABLE command 
provides information about the data. Beginning on line 4, the names subcommand assigns names 
to the variables in the input data file, the usevariables subcommand selects variables for the 
analysis, and the missing subcommand gives the global missing value code. The categorical 
subcommand on line 8 defines three variables as either binary or ordinal. The ANALYSIS 
command and estimator subcommand specify full information maximum likelihood 
estimation. Finally, the link = logit option specifies a logistic regression for the outcome 
variable, and integration = montecarlo invokes an algorithmic method for models with 
mixed variable types (and a factored regression specification for the likelihood). 

The MODEL section of the script consists of five lines. Lines 15 and 16 are logistic regressions 
linking the discrete predictors to the complete variables and each other (see Equation 6), and line 
17 is the focal regression model from Equation 5. The end of this line includes parameter labels 
in parentheses. Finally, lines 18 and 19 are the auxiliary variable regressions shown in Equation 7. 
As noted previously, the collection of regressions can be viewed as a path model, with the focal 
regression as one part of the larger network of variables. Next, the MODEL TEST command uses 
the labels from line 17 to specify a custom significance test of the null hypothesis that all three 
population slopes equal 0. Finally, the OUTPUT command specifies three keywords on line 23 that 
request a summary of the missing data patterns, maximum likelihood estimates of sample 
statistics, and confidence intervals (standardized coefficients are not available for this analysis). 

Mplus Output 

Information about the missing data patterns is found near the top of the output file. Following 
the missing data pattern table, the output displays a covariance coverage matrix that gives the 
proportion of observed data for each variable on the diagonal and the proportion of observed 
data for each variable pair on the off-diagonals. The format of these table is the same as those 
shown in Example 1. In the interest of space, we point readers to that example for additional 
details. 

Most software programs that fit regression models report an omnibus F test that evaluates the 
set of slope coefficients. The MODEL TEST command in the previous script requested an 
analogous Wald chi-square statistic that evaluates the null hypothesis that all population slopes 
equal zero. The chi-square statistic, degrees of freedom, and p-value appear near the bottom of 
the MODEL FIT INFORMATION section under the Wald Test of Parameter Constraints 
heading. The test statistic is statistically significant, thus refuting the null hypothesis. 
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MODEL FIT INFORMATION 
 
Number of Free Parameters                       31 
 
... 

 
Wald Test of Parameter Constraints 
 
          Value                            149.182 
          Degrees of Freedom                     4 
          P-Value                           0.0000 
 

The table of unstandardized parameter estimates is shown below. Because the analysis 
specifies a multivariate normal distribution for the predictors, the means, variances, and 
covariances of these variables are printed along with the focal model estimates. These supporting 
parameters are not of substantive interest, and they do not need to be reported. The first two 
columns display the unstandardized estimates and their standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown in 
bold typeface. 

 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 FRLUNCH    ON 
    CONDITION          0.011      0.265      0.041      0.967 
    MATHPRE           -0.020      0.015     -1.290      0.197 
 
 EFFICACY   ON 
    FRLUNCH           -0.031      0.246     -0.125      0.901 
    CONDITION          0.506      0.240      2.107      0.035 
    MATHPRE            0.056      0.014      3.881      0.000 
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 MATHPOST   ON 
    CONDITION          2.306      1.023      2.255      0.024 
    FRLUNCH           -5.498      1.063     -5.173      0.000 
    EFFICACY           0.833      0.340      2.448      0.014 
    MATHPRE            0.526      0.061      8.594      0.000 

 
ATRISK     ON 
    MATHPOST          -0.028      0.025     -1.141      0.254 
    CONDITION         -0.080      0.342     -0.233      0.815 
    FRLUNCH            0.898      0.399      2.248      0.025 
    EFFICACY          -0.337      0.115     -2.925      0.003 
    MATHPRE           -0.018      0.024     -0.722      0.470 
 
 STANREAD   ON 
    ATRISK           -13.492      1.231    -10.957      0.000 
    MATHPOST           0.349      0.078      4.466      0.000 
    CONDITION          1.493      1.019      1.466      0.143 
    FRLUNCH           -2.435      1.177     -2.068      0.039 
    EFFICACY          -0.478      0.351     -1.361      0.173 
    MATHPRE            0.006      0.073      0.076      0.939 
 
 Intercepts 
    MATHPOST          29.375      3.016      9.739      0.000 
    STANREAD          44.135      4.035     10.938      0.000 
 
 Thresholds 
    FRLUNCH$1         -0.623      0.780     -0.799      0.425 
    EFFICACY$1         1.308      0.748      1.748      0.080 
    EFFICACY$2         2.213      0.752      2.942      0.003 
    EFFICACY$3         3.250      0.770      4.222      0.000 
    EFFICACY$4         4.186      0.786      5.324      0.000 
    EFFICACY$5         4.976      0.800      6.217      0.000 
    ATRISK$1          -4.351      1.317     -3.304      0.001 
 
 Residual Variances 
    MATHPOST          51.270      5.185      9.888      0.000 
    STANREAD          52.261      5.226     10.000      0.000 
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The results are interpreted in the same way as a complete-data regression analysis with 
categorical predictors. For example, consider the slope for the treatment assignment dummy 
code. The positive coefficient indicates that, for two students who share the same covariate 
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student 
in the experimental condition should score 2.31 points higher than the student in the control 
group. The corresponding test statistic indicates that the slope coefficient is statistically different 
from zero (z = 2.26, p = .02). 

R Script  

The lavaan package currently does not offer maximum likelihood estimation for models with 
incomplete categorical variables. The example instead uses the mdmb package. This package 
leverages the same factored regression specification described previously. The R input file for the 
analysis is Ex3.R. The code block below shows the commands that import the data. 

 
R Script Ex3.R 
 
1  library(fdir) 
2  library(mdmb) 
3  set() 
4  data <- read.table("mathachievement.dat", na.strings = "999") 
5  names(data) <- c("id", "condition","male","frlunch", "atrisk", 
6   "stanread","efficacy", "anxiety", "mathpre", "mathpost") 
7  summary(data[,c("mathpost","stanread")]) 
 

The example requires the fdir and mdmb packages, which are loaded on lines 1 and 2. On line 3, 
the set() function of the fdir package identifies the file path of the folder containing the R 
script and sets this location as the working directory. On line 4, the read.table command 
imports the data, and the na.strings parameter specifies 999 as the global missing value code. 
It is only necessary to specify the name of the input data file. No file path is required when the 
data reside in the same folder as the R script as is the case here. Finally, variable names are listed 
beginning on line 5. 

The mdmb package requires the user to specify “nodes” or “pseudo-imputations” for the 
missing values. These nodes are essentially a fixed list of plausible score values that span each 
variable’s range. Specifying these values is necessary for the optimization algorithm, which uses 
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an imputation-like algorithm called numerical integration. The summary function on line 7 
generates a table displaying the observed values of the numeric variables. The discrete variables 
are excluded because their ranges are either 0 and 1 (the binary codes) or 1 to 6 (ordinal self-
efficacy ratings). The summary table is as follows. 

 

 
    mathpost        stanread     
 Min.   :37.00   Min.   :27.00   
 1st Qu.:52.00   1st Qu.:45.00   
 Median :57.00   Median :55.00   
 Mean   :57.45   Mean   :52.52   
 3rd Qu.:63.00   3rd Qu.:60.50   
 Max.   :85.00   Max.   :69.00   
 NA's   :45      NA's   :23 
 

The next part of the code creates variables that contain vectors of plausible replacement scores 
(nodes, pseudo-imputations) that span the entire range of the distributions. The binary variables 
have only two possible scores, so their node vectors on lines 8 and 11 consist of 0s and 1s. On line 
9, the efficacy scores similarly use integer nodes between 1 and 6. For continuous variables, 
specifying 20 to 40 nodes is usually sufficient. For example, nodes.stanread is a vector of 
plausible scores ranging from 20 to 80 in increments of two, and nodes.mathpost  is a sequence 
of scores between 30 and 90 in increments of two. To account for the possibility that the missing 
scores fall outside the observed range, the vectors specify values beyond the minimum and 
maximum scores from the data. 

 
R Script Ex3.1.R, continued 

 
 8  nodes.frlunch <- c(0,1) 
 9  nodes.efficacy <- seq(1, 6, by = 1) 
10  nodes.mathpost <- seq(30, 90, by = 2) 
11  nodes.atrisk <- c(0,1) 
12  nodes.stanread <- c(20, 80, by = 2) 
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The next part of the script specifies a model for each analysis variable and auxiliary variable. 
The predictor variable regressions from Equation 6 are listed first, followed by the focal model 
from Equation 5. The auxiliary variable regressions from Equation 7 are last. Each model object 
includes three arguments: the type of regression (linear or logistic), an equation, and the 
incomplete variable’s nodes. Linear regressions are specified with "model" = "linreg" 
parameter, and the binary logistic regression is specified using "model" = "logistic".  

 
R Script Ex3.1.R, continued 
 
13  model.frlunch <- list("model" = "logistic",  
14   "formula" = frlunch ~ condition + mathpre,  
15   nodes = nodes.frlunch) 
16  model.efficacy <- list("model" = "linreg", 
17   "formula" = efficacy ~ frlunch + condition + mathpre,  
18   nodes = nodes.efficacy) 
19  model.mathpost <- list("model" = "linreg",  
20   "formula" = mathpost ~ condition + frlunch + efficacy + mathpre,  
21   nodes = nodes.mathpost) 
22  model.atrisk <- list("model" = "logistic",  
23   "formula" = atrisk ~ mathpost + condition + frlunch + efficacy +   
24   mathpre, nodes = nodes.atrisk) 
25  model.stanread <- list("model" = "linreg",  
26   "formula" = stanread ~ atrisk + mathpost + condition + frlunch +  
27   efficacy + mathpre, nodes = nodes.stanread) 
 

 The mdmb package views stanread (the auxiliary variable in the final regression model) as the 
ultimate “dependent” variable, and it considers all other variables “independent variables”. 
Starting on line 28, the final part of the code combines the independent variable models into a 
list. On line 31, the data frame and the predictor list are passed into the frm_em function, which 
fits the sequence of models. Finally, the summary function on line 32 requests tables of parameter 
estimates. 
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R Script Ex3.1.R, continued 
 
28  predictor.models <- list(frlunch = model.frlunch,  

  29   efficacy = model.efficacy, mathpost = model.mathpost,  
  30   atrisk = model.atrisk) 

31  fit <- frm_em(dat = data, dep = model.stanread,  
32   ind = predictor.models)  
33  summary(fit) 
 

R Output 

The mdmb output includes a table of results for every fitted regression model. The supporting 
model parameters are not of substantive interest, and they do not need to be reported. The 
output below shows the parameter estimates from the focal regression model. The first two 
columns display the unstandardized estimates and their standard errors, the third and fourth 
columns display the corresponding t-statistics and p-values, and the rightmost columns contain 
95% confidence interval limits. 

 

Model 3: stats::lm( mathpost ~ condition + frlunch + efficacy + mathpre )  

 

  index       dv                    parm ON     est     se       t      p lower95 upper95 

1    15 mathpost mathpost ON (Intercept)  1 29.0504 3.0085  9.6562 0.0000 23.1539 34.9469 

2    16 mathpost   mathpost ON condition  1  2.2939 1.0226  2.2431 0.0249  0.2895  4.2982 

3    17 mathpost     mathpost ON frlunch  1 -5.2352 1.0592 -4.9427 0.0000 -7.3111 -3.1593 

4    18 mathpost    mathpost ON efficacy  1  0.7966 0.3391  2.3490 0.0188  0.1319  1.4612 

5    19 mathpost     mathpost ON mathpre  1  0.5200 0.0607  8.5687 0.0000  0.4011  0.6390 

6    20 mathpost          mathpost sigma  0  7.1076 0.3524 20.1691 0.0000  6.4169  7.7983 

 

Explained variance R^2=0.4197 

 

The results are interpreted in the same way as a complete-data regression analysis with 
categorical predictors. For example, the positive coefficient for the treatment assignment 
predictor indicates that, for two students who share the same covariate profile (i.e., lunch 
assistance, self-efficacy, and pretest scores), the model predicts that the student in the 
experimental condition should score 2.29 points higher than the student in the control group. 
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The corresponding test statistic indicates that the slope coefficient is statistically different from 
zero (t = 2.24, p = .03). 
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EXAMPLE 4: MODERATED REGRESSION  
WITH AN INTERACTION EFFECT 

This example illustrates a multiple regression analysis with an incomplete interaction effect. The 
analysis uses the behaviorachievement.dat data set taken from a longitudinal study that 
followed 138 students from primary through middle school. The file includes three annual 
assessments of broad reading and math achievement beginning in the first grade, seventh grade 
standardized achievement test scores taken from a statewide assessment, and a final measure of 
broad reading and math obtained in ninth grade. The data also contain teacher ratings of 
behavioral symptoms and learning problems were also obtained in the first grade. The data 
description at the beginning of this document provides additional details. The variables for this 
analysis are as follows. 

Name Definition Missing % Scale 

Focal Variables 
BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  
LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 
READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 
READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

Analysis Model 

The analysis model features ninth grade broad reading scores regressed on first grade reading 
achievement, teacher-rated learning problems and behavioral symptoms, and the product of first 
grade reading scores and learning problems. 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) 
(8) 

+ 𝛽3(𝑅𝐸𝐴𝐷1)(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽4(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 
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Moderated regression models (and models with non-linearities more generally) require a 
factored regression specification that splits the likelihood into separate parts for the outcome 
model and predictors. 

Unlike a complete-data regression analysis, incomplete variables also require distributional 
assumptions and models that define those distributions. The analysis uses a factored regression 
specification that separates the likelihood function into separate components for each variable. In 
practical terms, this specification uses a sequence of univariate regression models to link 
incomplete predictors. The additional regression equations are as follows. 

𝐵𝐸𝐻𝑆𝑌𝑀𝑃1 = 𝛾01 + 𝜖1 

𝐿𝑅𝑁𝑃𝑅𝑂𝐵1 = 𝛾02 + 𝛾12(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 (9) 

𝑅𝐸𝐴𝐷1 = 𝛾03 + 𝛾13(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾23(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖3 
 

The composition of these models mimics the path diagram from Example 3. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes 
that are predicted by the analysis variables and by each other. The additional regression 
equations are as follows. 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) + 𝛾21(𝑅𝐸𝐴𝐷1) 

(10) 
+ 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) 

+ 𝛾32(𝑅𝐸𝐴𝐷1) + 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 
 

Along with the other models, the collection of regression equations can be viewed as a path 
model where the focal analysis is one part of a larger network. The key difference is that the path 
coefficients are just a tool for linking incomplete variables and do not represent a substantive 
theory.  
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R Script 

Mplus and the lavaan package currently do not offer maximum likelihood estimation for 
incomplete interaction effects. The example instead uses the mdmb package. The R input file for 
the analysis is Ex4.R. The code block below shows the commands that import the data. 

 
R Script Ex4.R 
 
1  library(fdir) 
2  library(lavaan) 
3  library(mdmb) 
4  set() 
5  data <- read.table("behaviorachievement.dat", na.strings = "999") 
6  names(data) <-c("id","male","hispanic","riskgrp","atrisk","behsymp1", 
7   "lrnprob1","read1","read2","read3","read9","read9grp","stanread7", 
8   "math1","math2","math3","math9","math9grp","stanmath7") 
 

The example requires the fdir, lavaan, ad mdmb packages, which are loaded on lines 1 through 
3. On line 4, the set() function of the fdir package identifies the file path of the folder 
containing the R script and sets this location as the working directory. On line 5, the 
read.table command imports the data, and the na.strings parameter specifies 999 as the 
global missing value code. It is only necessary to specify the name of the input data file. No file 
path is required when the data reside in the same folder as the R script as is the case here. Finally, 
variable names are listed beginning on line 6. 

The analysis centers the two variables involved in the interaction at their grand means. 
Because the predictors are incomplete, the script uses lavaan to obtain maximum likelihood-
estimated means for centering.  The code block is shown below. The model variable on lines 9 
and 10 defines a text string describing a set of empty regression models with only an intercept 
(the ~ 1 after each variable name). Along with the data frame, this model is passed into lavaan’s 
inspectSampleCov function on line 11. The resulting maximum likelihood estimates of the 
means are used to create new centered variables called read1.cgm and lrnprob1.cgm on lines 
12 and 13. 
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R Script Ex4.1.R, continued 
 
 9  model <- "stanread7 ~ 1; read2 ~ 1; hispanic ~ 1; read9 ~ 1;  
10   read1 ~ 1; lrnprob1 ~ 1; behsymp1 ~ 1;" 
11  descriptives <- inspectSampleCov(model, data, missing = "fiml") 
12  data$read1.cgm <- data$read1 - descriptives$mean["read1"] 
13  data$lrnprob1.cgm <- data$lrnprob1 - descriptives$mean["lrnprob1"] 
14  summary(data[,c("stanread7","read2","read9","read1.cgm", 
15   "lrnprob1.cgm","behsymp1")]) 
 

The mdmb package requires the user to specify “nodes” or “pseudo-imputations” for the 
missing values. These nodes are essentially a fixed list of plausible score values that span each 
variable’s range. Specifying these values is necessary for the optimization algorithm, which uses 
an imputation-like algorithm called numerical integration. The summary function on lines 14 
and 15 generates a table displaying the observed values of the numeric variables. The summary 
table is as follows. 

 

  stanread7         read2            read9          read1.cgm         lrnprob1.cgm          behsymp1     

 Min.   :100.0   Min.   : 20.00   Min.   : 41.00   Min.   :-47.1887   Min.   :-21.29959   Min.   :17.00   

 1st Qu.:228.0   1st Qu.: 83.00   1st Qu.: 81.00   1st Qu.:-12.1887   1st Qu.: -7.29959   1st Qu.:41.00   

 Median :263.0   Median : 92.00   Median : 89.00   Median : -0.1887   Median : -1.29959   Median :48.00   

 Mean   :264.5   Mean   : 93.74   Mean   : 88.55   Mean   :  0.6175   Mean   :  0.05597   Mean   :49.47   

 3rd Qu.:314.0   3rd Qu.:108.00   3rd Qu.: 97.00   3rd Qu.: 12.8113   3rd Qu.:  8.20041   3rd Qu.:58.00   

 Max.   :399.0   Max.   :150.00   Max.   :123.00   Max.   : 66.8113   Max.   : 35.70041   Max.   :92.00   

 NA's   :27      NA's   :13       NA's   :24       NA's   :9          NA's   :3           NA's   :5 

 

The next part of the code creates variables that contain vectors of plausible replacement scores 
that span the entire range of the distributions. For continuous variables, specifying 20 to 40 
nodes is usually sufficient. For example, nodes.read1 is a vector of plausible centered scores 
ranging from –55 to 75 in increments of two, and nodes.lrnprb1  is a sequence of centered 
scores between –30 and 50 in increments of two. To account for the possibility that the missing 
scores fall outside the observed range, the vectors specify values beyond the minimum and 
maximum scores from the data. 
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R Script Ex4.1.R, continued 
 
10  nodes.stanread7 <- seq(80, 420, by = 5) 
11  nodes.read2 <- seq(10, 160, by = 5) 
12  nodes.read9 <- seq(30, 130, by = 2) 
13  nodes.read1 <- seq(-55, 75, by = 2) 
14  nodes.lrnprob1 <- seq(-30, 50, by = 2) 
15  nodes.behsymp1 <- seq(10, 100, by = 2) 
 

The next part of the script specifies a model for each analysis variable and auxiliary variable. 
The predictor variable regressions from Equation 9 are listed first, followed by the focal 
moderated regression model from Equation 8. The auxiliary variable regressions from Equation 
10 are last. Each model object includes three arguments: the type of regression (linear or logistic), 
an equation, and the incomplete variable’s vector of nodes or pseudo-imputations. Note that the 
focal model list beginning on line 25 includes the product of two centered variables. 

 
R Script Ex4.1.R, continued 
 
16  model.behsymp1 <- list( "model" = "linreg",  
17   "formula" = behsymp1 ~ 1,  
18   nodes = nodes.behsymp1) 
19  model.lrnprob1 <- list( "model" = "linreg",  
20   "formula" = lrnprob1.cgm ~ behsymp1,  
21   nodes = nodes.lrnprob1) 
22  model.read1 <- list( "model" = "linreg",  
23   "formula" = read1.cgm ~ lrnprob1.cgm + behsymp1,  
24   nodes = nodes.read1) 
25  model.read9 <- list( "model" = "linreg",  
26   "formula" = read9 ~ read1.cgm + lrnprob1.cgm +  
27   read1.cgm*lrnprob1.cgm + behsymp1,  
29   nodes = nodes.read9) 
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30  model.read2 <- list("model" = "linreg",  
31   "formula" = read2 ~ read9 + read1.cgm + lrnprob1.cgm + behsymp1,  
32   nodes = nodes.read2) 
33  model.stanread7 <- list("model" = "linreg",  
34   "formula" = stanread7 ~ read2 + read9 + read1.cgm  
35   + lrnprob1.cgm + behsymp1, nodes = nodes.stanread7) 
 

The mdmb package views stanread7 (the auxiliary variable in the final regression model) as 
the ultimate “dependent” variable in the sequence, and it considers all other variables as 
“independent variables”. Starting on line 36, the final part of the code combines the independent 
variable models into a list. On line 39, the data frame and the predictor list are passed into the 
frm_em function, which fits the sequence of models. Finally, the summary function on line 41 
requests tables of parameter estimates. 

 
R Script Ex4.1.R, continued 
 
36  predictor.models <- list(behsymp1 = model.behsymp1, lrnprob1 =  
37   model.lrnprob1, read1 = model.read1, read9 = model.read9,  
38   read2 = model.read2) 
39  fit <- frm_em(dat = data, dep = model.stanread7, ind = 
40   predictor.models)  
41  summary(fit) 
 

R Output 

The mdmb output includes a table of results for every fitted regression model. The supporting 
model parameters are not of substantive interest, and they do not need to be reported. The 
output below shows the parameter estimates from the focal model. The first two columns display 
the unstandardized estimates and their standard errors, the third and fourth columns display the 
corresponding t-statistics and p-values, and the rightmost columns contain 95% confidence 
interval limits. 
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Model 4: stats::lm( read9 ~ read1.cgm + lrnprob1.cgm + read1.cgm * lrnprob1.cgm + behsymp1 )  

 

  index    dv                            parm ON     est     se       t      p lower95  upper95 

1    14 read9            read9 ON (Intercept)  1 94.5840 4.9630 19.0577 0.0000 84.8566 104.3114 

2    15 read9              read9 ON read1.cgm  1  0.5182 0.0413 12.5350 0.0000  0.4372   0.5992 

3    16 read9           read9 ON lrnprob1.cgm  1 -0.2913 0.1144 -2.5455 0.0109 -0.5155  -0.0670 

4    17 read9               read9 ON behsymp1  1 -0.1396 0.0990 -1.4103 0.1585 -0.3335   0.0544 

5    18 read9 read9 ON read1.cgm:lrnprob1.cgm  1  0.0126 0.0044  2.8549 0.0043  0.0040   0.0213 

6    19 read9                     read9 sigma  0  8.9828 0.6140 14.6292 0.0000  7.7793  10.1863 

 

Explained variance R^2=0.6353 

 

The lower-order terms in a moderated regression are conditional effects that depend on 
scaling or centering. Specifically, the lower-order slope of first grade reading scores ( 𝛽1̂ = 0.52) is 
the effect of that predictor at the mean of the first-grade learning problems, and the learning 
problems slope (𝛽2̂ = −0.29) similarly reflects a conditional effect at the reading score mean. The 
interaction slope captures the change in the first-grade reading slope for each one-unit increase 
in learning problems (and vice versa). Specifically, the positive coefficient (𝛽3̂ = 0.013) indicates 
that the association between first and ninth grade reading scores becomes stronger (i.e., more 
positive) as learning problems increase. That is, the predictive power of early reading on later 
reading is strongest for students with elevated learning problem ratings in first grade.  
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EXAMPLE 5: CURVILINEAR REGRESSION 

This example illustrates a multiple regression analysis with an incomplete curvilinear effect. The 
analysis uses the mathachievement.dat data set taken from an educational intervention where 
250 students were assigned to an intervention and comparison condition. The file includes 
pretest and posttest math achievement scores, a measure of math self-efficacy, standardized 
reading scores taken from a statewide assessment, and several sociodemographic variables. The 
analysis variables are as follows. 

Name Definition Missing % Scale 

Focal Variables 
MATHPOST Math achievement posttest  18.0 Numeric 

ANXIETY Math anxiety composite 8.4 Numeric  

FRLUNCH Lunch assistance code 4.4 0 = None, 1 = Free/reduced lunch 
EFFICACY Math self-efficacy rating  9.6 Ordinal (1 to 6) 
MATHPRE Math achievement pretest  0 Numeric 

Auxiliary Variables 
ATRISK Behavioral disorder risk 5.2 0 = Low risk, 1 = At-risk 

STANREAD Standardized reading  9.2 Numeric 

Analysis Model 

The analysis model features math posttest scores regressed on anxiety and its square, the lunch 
assistance dummy code, math self-efficacy ratings, and math pretest scores. 

𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇 = 𝛽0 + 𝛽1(𝐴𝑁𝑋𝐼𝐸𝑇𝑌) + 𝛽2(𝐴𝑁𝑋𝐼𝐸𝑇𝑌 2) 
(11) 

+ 𝛽3(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛽4(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛽5(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜀 
 

Curvilinear regression models (and models with non-linearities more generally) require a 
factored regression specification that splits the likelihood into separate parts for the outcome 
model and predictors. 

Unlike a complete-data regression analysis, incomplete variables also require distributional 
assumptions and models that define those distributions. The analysis uses a factored regression 
specification that separates the likelihood function into separate components for each variable. In 
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practical terms, this specification uses a sequence of univariate regression models to link 
incomplete predictors. The additional regression equations, two of which are logistic models, are 
as follows. 

logit(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) = 𝛾01 + 𝛾11(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) 

(12) logit(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) = 𝛾02 + 𝛾12(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾22(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) 

𝐴𝑁𝑋𝐼𝐸𝑇𝑌 = 𝛾03 + 𝛾13(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌) + 𝛾23(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾33(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖3 
 

These equations essentially comprise a path model where math pretest scores predict the lunch 
assistance indicator, the lunch assistant dummy code and math pretest scores predict efficacy, 
and all three variables, in turn, predict anxiety (see the path diagram in Example 3). The 
complete variable is always on the right side of regression equations because it does not require a 
model. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes 
that are predicted by the analysis variables and by each other. The additional regression 
equations are as follows. 

logit(𝐴𝑇𝑅𝐼𝑆𝐾) = 𝛾04 + 𝛾14(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾24(𝐴𝑁𝑋𝐼𝐸𝑇𝑌) 

(13) 
+ 𝛾34(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾44(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌) + 𝛾54(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷 = 𝛾05 + 𝛾15(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝛾25(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾35(𝐴𝑁𝑋𝐼𝐸𝑇𝑌 ) 

+ 𝛾45(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾55(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛾65(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖5 
 

Again, the entire collection of regression equations can be viewed as a path model where the 
curvilinear regression is one piece of a larger network. The key difference is that the path 
coefficients are just a tool for linking incomplete variables and do not represent a substantive 
theory. 
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R Script 

Mplus and the lavaan package currently do not offer maximum likelihood estimation for 
incomplete interaction effects. The example instead uses the mdmb package. The R input file for 
the analysis is Ex5.R. The code block below shows the commands that import the data. 

 
R Script Ex5.R 
 
1  library(fdir) 
2  library(lavaan) 
3  library(mdmb) 
4  set() 
5  data <- read.table("behaviorachievement.dat", na.strings = "999") 
6  names(data) <-c("id","male","hispanic","riskgrp","atrisk","behsymp1", 
7   "lrnprob1","read1","read2","read3","read9","read9grp","stanread7", 
8   "math1","math2","math3","math9","math9grp","stanmath7") 
 

The example requires the fdir, lavaan, ad mdmb packages, which are loaded on lines 1 through 
3. On line 4, the set() function of the fdir package identifies the file path of the folder 
containing the R script and sets this location as the working directory. On line 5, the 
read.table command imports the data, and the na.strings parameter specifies 999 as the 
global missing value code. It is only necessary to specify the name of the input data file. No file 
path is required when the data reside in the same folder as the R script as is the case here. Finally, 
variable names are listed beginning on line 6. 

The analysis centers math anxiety predictor (the variable involved in the quadratic effect) at 
its grand mean. Because the predictors are incomplete, the script uses lavaan to obtain 
maximum likelihood-estimated means for centering.  The model variable on lines 9 and 10 of the 
following code block defines a text string describing a set of empty regression models with only 
an intercept (the ~ 1 after each variable name). Along with the data frame, this model is passed 
into lavaan’s inspectSampleCov function on line 11. The resulting maximum likelihood 
estimate of the mean is used to create a new centered variable called anxiety.cgm. 
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R Script Ex5.1.R, continued 
 
 9  model <- "stanread ~ 1; atrisk ~ 1; mathpost ~ 1; anxiety ~ 1;  
10   frlunch ~ 1; efficacy ~ 1; mathpre ~ 1;" 
11  descriptives <- inspectSampleCov(model, data, missing = "fiml") 
12  data$anxiety.cgm <- data$anxiety - descriptives$mean["anxiety"] 
13  summary(data[,c("stanread","mathpost","anxiety.cgm","efficacy")]) 
 

The mdmb package requires the user to specify “nodes” or “pseudo-imputations” for the 
missing values. These nodes are essentially a list of plausible score values or pseudo-imputations 
that span each variable’s range. Specifying these values is necessary for the optimization 
algorithm, which uses an imputation-like algorithm called numerical integration. The summary 
function on line 13 generates a table displaying the observed values from the data. The summary 
table is as follows. 

 
    stanread        mathpost      anxiety.cgm          efficacy     
 Min.   :27.00   Min.   :37.00   Min.   :-18.2628   Min.   :1.000   
 1st Qu.:45.00   1st Qu.:52.00   1st Qu.: -5.2628   1st Qu.:2.000   
 Median :55.00   Median :57.00   Median : -1.2628   Median :3.000   
 Mean   :52.52   Mean   :57.45   Mean   : -0.1056   Mean   :3.394   
 3rd Qu.:60.50   3rd Qu.:63.00   3rd Qu.:  3.7372   3rd Qu.:5.000   
 Max.   :69.00   Max.   :85.00   Max.   : 25.7372   Max.   :6.000   
 NA's   :23      NA's   :45      NA's   :21         NA's   :24 
 

The next part of the code creates variables that contain vectors of plausible replacement scores 
(nodes, pseudo-imputations) that span the entire range of the distributions. For continuous 
variables, specifying 20 to 40 nodes is usually sufficient. For example, nodes.mathpost  is a 
sequence of raw scores between 30 and 90 in increments of two, and nodes.anxiety is a vector 
of plausible centered scores ranging from –30 to 30 in increments of two. To account for the 
possibility that the missing scores fall outside the observed range, the vectors specify values 
beyond the minimum and maximum scores from the data. 
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R Script Ex5.1.R, continued 

 
14  nodes.frlunch <- c(0,1) 
15  nodes.efficacy <- seq(1, 6, by = 1) 
16  nodes.mathpost <- seq(30, 90, by = 2) 
17  nodes.anxiety <- seq(-30, 30, by = 2) 
18  nodes.atrisk <- c(0,1) 
19  nodes.stanread <- c(20, 80, by = 2) 
 

The next part of the script specifies a model for each analysis variable and auxiliary variable. 
The predictor variable regressions from Equation 12 are listed first, followed by the focal model 
from Equation 11. The auxiliary variable regressions from Equation 13 are last. Each model 
object includes three arguments: the type of regression (linear or logistic), an equation, and the 
incomplete variable’s vector of nodes or pseudo-imputations. Linear regressions are specified 
with "model" = "linreg" parameter, and the binary logistic regression is specified using 
"model" = "logistic". Note that the focal model list beginning on line 29 includes the square 
of the centered variable (i.e., I(anxiety.cgm^2)). 

 
R Script Ex5.1.R, continued 
 
20  model.frlunch <- list("model" = "logistic",  
21   "formula" = frlunch ~ mathpre,  
22   nodes = nodes.frlunch) 
23  model.efficacy <- list("model" = "linreg", 
24   "formula" = efficacy ~ frlunch + mathpre,  
25   nodes = nodes.efficacy) 
26  model.anxiety <- list("model" = "linreg", 
27   "formula" = anxiety ~ efficacy + frlunch + mathpre,  
28   nodes = nodes.anxiety) 
29  model.mathpost <- list("model" = "linreg",  
30   "formula" = mathpost ~ anxiety.cgm + I(anxiety.cgm^2) + 
31   frlunch + efficacy + mathpre, nodes = nodes.mathpost) 
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32  model.atrisk <- list("model" = "logistic",  
33   "formula" = atrisk ~ mathpost + anxiety + frlunch + efficacy +   
34   mathpre, nodes = nodes.atrisk) 
35  model.stanread <- list("model" = "linreg",  
36   "formula" = stanread ~ atrisk + mathpost + anxiety + frlunch +  
37   efficacy + mathpre, nodes = nodes.stanread) 
 

 The mdmb package views stanread (the auxiliary variable in the final regression model) as the 
ultimate “dependent” variable in the sequence, and it considers all other variables “independent 
variables”. Starting on line 38, the final part of the code combines the independent variable 
models into a list. On line 41, the data frame and the predictor list are passed into the frm_em 
function, which fits the sequence of models. Finally, the summary function on line 43 requests 
tables of parameter estimates. 

 
R Script Ex5.1.R, continued 
 
38  predictor.models <- list(frlunch = model.frlunch,  

  39   efficacy = model.efficacy, anxiety = model.anxiety, 
40   mathpost = model.mathpost, atrisk = model.atrisk) 
41  fit <- frm_em(dat = data, dep = model.stanread,  
42   ind = predictor.models)  
43  summary(fit) 
 

R Output 

The mdmb output includes a table of results for every fitted regression model. The supporting 
model parameters are not of substantive interest, and they do not need to be reported. The 
output below shows the parameter estimates from the focal curvilinear model. The first two 
columns display the unstandardized estimates and their standard errors, the third and fourth 
columns display the corresponding t-statistics and p-values, and the rightmost columns contain 
95% confidence interval limits. 
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Model 4: stats::lm( mathpost ~ anxiety.cgm + I(anxiety.cgm^2) + efficacy + frlunch + mathpre )  

 

  index       dv                         parm ON     est     se       t      p lower95 upper95 

1    15 mathpost      mathpost ON (Intercept)  1 33.2388 3.3678  9.8695 0.0000 26.6380 39.8396 

2    16 mathpost      mathpost ON anxiety.cgm  1  0.0398 0.0793  0.5015 0.6160 -0.1156  0.1952 

3    17 mathpost mathpost ON I(anxiety.cgm^2)  1 -0.0209 0.0059 -3.5452 0.0004 -0.0324 -0.0093 

4    18 mathpost         mathpost ON efficacy  1  1.0629 0.3324  3.1975 0.0014  0.4114  1.7145 

5    19 mathpost          mathpost ON frlunch  1 -5.5373 1.0398 -5.3255 0.0000 -7.5752 -3.4994 

6    20 mathpost          mathpost ON mathpre  1  0.4648 0.0651  7.1361 0.0000  0.3371  0.5925 

7    21 mathpost               mathpost sigma  0  6.9386 0.3460 20.0511 0.0000  6.2604  7.6168 

 

In a curvilinear regression model, the lower-order term for math anxiety is a conditional effect 
that depends on scaling or centering. The slope conveys the instantaneous linear change in the 
outcome at the anxiety mean, controlling for all other predictors (𝛽1̂ = 0.04). The negative 
quadratic coefficient (𝛽2̂ = –0.02) indicates that the positive association at the mean decreases 
(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety, 
the association becomes negative, such that anxiety has a debilitating effect on math 
performance. 
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SECTION 2: BAYESIAN ESTIMATION AND 
 MODEL-BASED MULTIPLE IMPUTATION 
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EXAMPLE 6: MULTIPLE REGRESSION WITH 
MULTIVARIATE NORMAL DATA 

This example illustrates a multiple regression analysis with multivariate normal incomplete data. 
The analysis uses the behaviorachievement.dat data set taken from a longitudinal study that 
followed 138 students from primary through middle school. The file includes three annual 
assessments of broad reading and math achievement beginning in the first grade, seventh grade 
standardized achievement test scores taken from a statewide assessment, and a final measure of 
broad reading and math obtained in ninth grade. The data also contain teacher ratings of 
behavioral symptoms and learning problems were also obtained in the first grade. The data 
description at the beginning of this document provides additional details. The variables for this 
analysis are as follows. 

Name Definition Missing % Scale 

Focal Variables 
BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  
LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 
READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 
READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

Analysis Model 

The analysis model features ninth grade broad reading scores regressed on first grade reading 
achievement and teacher-rated learning problems and behavioral symptoms. 

 𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 (14) 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. By default, Blimp invokes a multivariate normal 
distribution for predictors. 
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The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following the same factored regression specification from earlier examples (e.g., Examples 
2 through 6), auxiliary variables enter the model as additional outcomes that are predicted by the 
analysis variables and by each other. The additional regression equations are as follows. 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) + 𝛾21(𝑅𝐸𝐴𝐷1) 

(15) 
+ 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) 

+ 𝛾32(𝑅𝐸𝐴𝐷1) + 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 
 

Along with the focal regression model from Equation 14, the collection of regressions can be 
viewed as a path model, where the focal regression is one part of a larger network (see the path 
diagram from Example 2). The key difference is that the path coefficients are just a tool for 
linking incomplete variables and do not represent a substantive theory. 

Blimp Script 

The code block below shows Blimp script Ex6.1.inp. 

 
Blimp Script Ex6.1.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5  MISSING: 999; 
 6  MODEL:  
 7  read9 ~ read1@beta1 lrnprob1@beta2 behsymp1@beta3; 
 8  stanread7 read2 ~ read9 read1 lrnprob1 behsymp1; 
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 9  TEST: 
10  beta1:beta3 = 0; 
11  SEED: 90291; 
12  BURN: 1000; 
13  ITERATIONS: 10000;  
 

The first five lines can be viewed as a set of commands that specify information about the data 
and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is located in the same directory as the script, as it is here. Starting on 
line 2, the VARIABLES command names the data columns, and the MISSING command on line 5 
defines a global missing value code as 999.  

The MODEL and TEST blocks can be viewed as a set. The MODEL command lists the regression 
models, with outcome variables to the left of the tilde and predictors to the right. Line 7 assigns 
labels the slope coefficients using the @ symbol. Blimp automatically configures the explanatory 
variable models under the assumption that they are normally distributed. Line 8 is a syntax 
shortcut that produces the two auxiliary variable regression models in Equation 15; in the first 
model, READ2 is regressed on the focal variables, and the second model features STANREAD7 
regressed on READ2 and the focal variables. The TEST command uses the parameter labels to 
specify a custom hypothesis test that all three slopes equal zero.  This command produces the 
Bayesian Wald test (Asparouhov & Muthén, 2021), which is essentially a chi-square statistic that 
captures the discrepancy between the Bayesian point estimates (posterior means) and the 
hypothesized values of zero.  

Lines 11 through 13 can be viewed as a block of commands that specify features of the MCMC 
algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

Blimp prints a table of regression results for each outcome variable to the left of a tilde, and it 
orders the tables alphabetically. In this example, the focal model’s table would not appear first on 
the output. Blimp allows users to order tables by assigning labels to blocks of regression 
equations. To illustrate, the code block below assigns the label focal.model to main regression 
and the label auxiliary.models to the auxiliary variable regressions. Because output tables are 
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listed in the same order as the labels, the focal results would now appear before the ancillary 
model results. 

     
     MODEL: 
     focal.model:  
  read9 ~ read1@beta1 lrnprob1@beta2 behsymp1@beta3; 
     auxiliary.models: 
  stanread7 read2 ~ read9 read1 lrnprob1 behsymp1; 
 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           26 to 50              1.263            15   
                           51 to 100             1.081            41   
                           76 to 150             1.056            37   
                          101 to 200             1.037            26   
                          126 to 250             1.059            32   
                          151 to 300             1.027            17   
                          176 to 350             1.031            41   
                          201 to 400             1.022            33   
                          226 to 450             1.034            17   
 



   60 

   
                          251 to 500             1.020            15 
                          276 to 550             1.027            20   
                          301 to 600             1.023            44   
                          326 to 650             1.014            19   
                          351 to 700             1.010            45   
                          376 to 750             1.014            33   
                          401 to 800             1.012            33   
                          426 to 850             1.017            37   
                          451 to 900             1.023            41   
                          476 to 950             1.025            41   
                          501 to 1000            1.016            41  
 

The next output excerpt shows information about the variables in the analysis and the models 
used for estimation. The MODELS summary section is reserved for outcome variables that appear 
to the left of a tilde symbol. In this example, Blimp automatically constructs supporting models 
for incomplete predictor variables, so these models are omitted from the table. 

 
DATA INFORMATION: 
 
  Sample Size:              138 
  Missing Data Rates: 
 
                    read9 = 17.39 
                    read2 = 09.42 
                stanread7 = 19.57 
                 behsymp1 = 03.62 
                 lrnprob1 = 02.17 
                    read1 = 06.52 
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MODEL INFORMATION: 
 
  NUMBER OF PARAMETERS 
    Outcome Models:         18 
    Predictor Models:       12 
 
  PREDICTORS 
    Incomplete continuous:  behsymp1 lrnprob1 read1 

 
MODELS 
 
   focal.model: 
    [1]  read9 ~ Intercept read1@beta1 lrnprob1@beta2 behsymp1@beta3 
 
   auxiliary.models: 
    [2]  read2 ~ Intercept read9 read1 lrnprob1 behsymp1 
    [3]  stanread7 ~ Intercept read2 read9 read1 lrnprob1 behsymp1 
 

Most software programs that fit regression models report an omnibus F test that evaluates the 
set of slope coefficients. The TEST command in the previous script requested an analogous 
Bayesian Wald chi-square statistic (Asparouhov & Muthén, 2021) that evaluates the null 
hypothesis that all population slopes equal zero. The chi-square statistic, degrees of freedom, and 
p-value appear near the bottom of the MODEL FIT section under the WALD TEST heading. The 
test statistic is statistically significant, thus refuting the null hypothesis. 

 
MODEL FIT: 
 
  INFORMATION CRITERIA 
 
    Marginal Likelihood 
      DIC2                  3424.672 
      WAIC                  3458.337 
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Conditional Likelihood 
      DIC2                  3424.672 
      WAIC                  3458.337 

 
WALD TESTS (Asparouhov & Muthén, 2021) 
 
  Test #1 
 
    Full: 
      [1]  read9 ~ Intercept read1@beta1 lrnprob1@beta2 behsymp1@beta3 
 
    Restricted: 
      [1]  read9 ~ Intercept read1@beta1 lrnprob1@beta2 behsymp1@beta3 
 
    Constraints in Restricted: 
      [1]  beta1 = 0 
      [2]  beta2 = 0 
      [3]  beta3 = 0 
 
 
    Wald Statistic (Chi-Square)               166.865 
    Number of Parameters Tested (df)                3 
    Probability                                 0.000 
 

The tables summarizing the focal regression model includes unstandardized coefficients, 
standardized slopes, and variance explained effect size estimates. MCMC estimation produces a 
distribution for each parameter in the table. The median and standard deviation columns 
describe the center and spread of the posterior distributions; although they make no reference to 
drawing repeated samples, they are analogous—and numerically equivalent in most cases—to 
frequentist point estimates and standard errors. The 95% credible intervals in the rightmost 
columns give a range that captures 95% of the parameter’s distribution. These are akin to 
confidence intervals, but the intervals describe parameter distributions rather than characteristics 
of repeated samples. The N_Eff values in rightmost column of the table give the effective 
number of MCMC samples for each parameter. These quantities essentially represent the 
number of independent estimates on which the parameter summaries are based after removing 
autocorrelations from the MCMC process. Gelman et al. (2014, p. 287) recommend values 
greater than 100.  All values in the example table exceed this recommended minimum. In cases 
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where the N_Eff values are insufficient, increasing the value on the ITERATIONS command will 
remedy the issue. The table summarizing the focal regression model is shown below. 

 
OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  read9       
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
Variances:                       
  Residual Var.                      91.260     12.801     70.740    120.580      1.001   6116.298  

 
Coefficients:                    
  Intercept                          66.006      6.051     53.949     77.819      1.000   5311.995  
  read1                               0.504      0.044      0.421      0.591      1.000   6268.863  
  lrnprob1                           -0.247      0.120     -0.479     -0.009      1.000   5248.396  
  behsymp1                           -0.182      0.105     -0.387      0.025      1.001   6089.990  
 
Standardized Coefficients:       
  read1                               0.689      0.040      0.603      0.757      1.000   5630.823  
  lrnprob1                           -0.177      0.085     -0.342     -0.006      1.000   5208.179  
  behsymp1                           -0.147      0.083     -0.305      0.020      1.001   6088.430  
 
Proportion Variance Explained    
  by Coefficients                     0.595      0.050      0.487      0.680      1.001   5806.322  
  by Residual Variation               0.405      0.050      0.320      0.513      1.001   5806.322  
 
                                ------------------------------------------------------------------- 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
0.50 points on READ9. The 95% credible interval limits suggest this effect is statistically different 
from zero (p < .05) because the null value is well outside the interval. The standardized 
coefficients convey the expected change in standard deviation units for a one standard deviation 
increase in a given predictor. For example, the model predicts that two individuals who differ by 
one standard deviation on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
.69 standard deviations on READ9. Collectively, the predictors explain 60% of the variation in 
ninth-grade reading scores. Note that the tabled values are numerically identical to the maximum 
likelihood estimates from Example 1. 
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The Blimp output also includes tables of regression model parameters for the auxiliary 
variables as well as the auto-generated models for incomplete predictors. These additionally 
results are not of substantive interest and would not be reported. The auxiliary variable models 
appear in OUTCOME MODEL ESTIMATES section with the focal results, and the auto-generated 
predictor models are displayed under the heading PREDICTOR MODEL ESTIMATES.  

Saving Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex6.2.imp is identical Ex6.1.imp, but it adds the following lines at the bottom 
of the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to 
CHAINS saves a single filled-in data set from the final iteration of a unique MCMC process, thus 
avoiding autocorrelation among the imputations. The SAVE command provides a name for the 
imputed data sets. The script illustrates how to save data sets in two common formats. The 
stacked keyword creates a stacked file where all imputations are in a single file, and the separate 
keyword saves each imputed data set to a separate file with the asterisk replaced by a numeric 
index. To keep things organized, the ./imps part of the file path points to a subfolder named 
imps located within the same folder as the script and data. The separate keyword also creates a 
list of file names needed for analysis in Mplus (in this example, a filed called implist.dat 
located in the imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 
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VARIABLE ORDER IN IMPUTED DATA: 

 

separate = './imps/imp*.dat' 

 

   id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3  

     read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7 

 

stacked = './imps/imps.dat' 

 

   imp# id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3    

   read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7  
 

The imputed data sets are subsequently analyzed in another software package, and estimates 
and standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase 
does not utilize the auxiliary variables, as their information is embedded in the imputations. 
Scripts for analyzing the imputed data sets are found in the next subsections. 

Analyzing Imputations in Mplus 

In lieu of the Bayesian estimates, Blimp’s SAVE command can be used to save multiple 
imputations for analysis in the frequentist framework. Returning to the previous Blimp script, 
the SAVE command and the separate keyword saved each imputed data set to a separate file 
with the asterisk replaced by a numeric index. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps subfolder). The contents of this file are as follows. 

 
imp1.dat 
imp2.dat 
imp3.dat 
imp4.dat 
imp5.dat 
imp6.dat 
imp7.dat 
imp8.dat 
imp9.dat 
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imp10.dat 
imp11.dat 
imp12.dat 
imp13.dat 
imp14.dat 
imp15.dat 
imp16.dat 
imp17.dat 
imp18.dat 
imp19.dat 
imp20.dat 
 

The Mplus input file for analyzing the imputations is Ex6.inp. The script is virtually identical 
to the Ex6.1.inp file described in Example 1 with three exceptions. First, instead of naming the 
raw data set, the DATA command lists the text file containing the names of the imputed data sets 
(the implist.dat file located in the ./imps subdirectory). The type = imputation 
subcommand instructs Mplus that the input data is a list of file names. Second, the missing 
subcommand is omitted because the analysis variables are now complete. Finally, the MODEL 
section no longer specifies a normal distribution for the predictors. Readers can refer back to 
Example 1 for a detailed description of the other commands. The code block below shows the 
analysis and pooling script. 

 
Mplus Script Ex6.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 6    read1 read2 read3 read9 read9grp stanread7  
 7    math1 math2 math3 math9 math9grp stanmath7; 
 8  usevariables = read9 read1 lrnprob1 behsymp1; 
 9  MODEL:   
10  read9 on read1 lrnprob1 behsymp1 (beta1-beta3); 
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11  MODEL TEST: 
12  0 = beta1; 0 = beta2; 0 = beta3; 
13  OUTPUT: 
14  stdyx cinterval; 
 

Mplus Output 

When fitting regression models to complete data sets, researchers often use an omnibus F test to 
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation 
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal 0 
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear 
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of 
Parameter Constraints heading. The test statistic is statistically significant, thus refuting the 
null hypothesis. 

 
MODEL FIT INFORMATION 
 
Number of Free Parameters                       5 
 
... 

 
Wald Test of Parameter Constraints 
 
          Value                            175.893 
          Degrees of Freedom                     3 
          P-Value                           0.0000 
 

The table of unstandardized parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown in 
bold typeface. The Rate of Missing column (also called the fraction of missing information in 
the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 
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MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 READ9    ON 
    READ1              0.506      0.043     11.868      0.000      0.182 
    LRNPROB1          -0.231      0.113     -2.047      0.041      0.149 
    BEHSYMP1          -0.189      0.101     -1.864      0.062      0.160 
 
 Intercepts 
    READ9             65.487      5.803     11.284      0.000      0.150 
 
 Residual Variances 
    READ9             86.366     11.202      7.710      0.000      0.138 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 11.87, p < .001). Note that these estimates are numerically 
identical to those from Bayesian and maximum likelihood estimation. 

Specifying the stdyx keyword with the OPTIONS command prints the table of standardized 
estimates and R -squared statistics shown below. The slope coefficients convey the expected 
change in standard deviation units for a one standard deviation increase in a given predictor. For 
example, the model predicts that two individuals who differ by one standard deviation on READ1 
but are the same on LRNPROB1 and BEHSYMP1 should differ by .70 standard deviations on READ9. 
Collectively, the predictors explain 61% of the variation in ninth-grade reading scores. 
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STANDARDIZED MODEL RESULTS 
 
STDYX Standardization 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 READ9    ON 
    READ1              0.701      0.044     15.767      0.000      0.102 
    LRNPROB1          -0.168      0.082     -2.036      0.042      0.157 
    BEHSYMP1          -0.153      0.082     -1.861      0.063      0.159 
 
 Intercepts 
    READ9              4.424      0.531      8.332      0.000      0.152 
 
 Residual Variances 
    READ9              0.394      0.055      7.166      0.000      0.099 
 
R-SQUARE 
 
    Observed                                        Two-Tailed   Rate of 
    Variable        Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
    READ9              0.606      0.055     11.033      0.000      0.099 
 

Analyzing Imputations in R 

Returning to the previous Blimp script, the SAVE command and the stacked keyword saved the 
imputed data sets to a single stacked file with an index variable in the first column identifying the 
individual files. The stacked file is appropriate for analyzing data in R, SAS, SPSS, and Stata, 
among others. 

The R input file for the analysis is Ex6.R. The code block below shows the commands that 
import the data. 
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R Script Ex6.R 
 
1  library(fdir) 
2  library(mitml) 
3  set() 
4  imps <- read.table("./imps/imps.dat") 
5  names(imps) <- c("imputation","id","male","hispanic","riskgrp", 
6   "atrisk","behsymp1","lrnprob1","read1","read2","read3", 
7   "read9","read9grp","stanread7","math1","math2","math3", 
8   "math9","math9grp","stanmath7") 
 

The example requires the fdir and lavaan packages, which are loaded on lines 1 and 2. On line 
3, the set() function of the fdir package identifies the file path of the folder containing the R 
script and sets this location as the working directory. On line 4, the read.table command 
imports the stacked data. It is only necessary to specify the name of the input data file. No file 
path is required when the data reside in the same folder as the R script as is the case here. Finally, 
variable names are listed beginning on line 5. Importantly, the first variable named IMPUTATION 
is the index that identifies the individual files. 

The next block of code relies on the mitml package to fit the model to each data set and pool 
the results using Rubin’s rules. The implist command on line 9 unstacks the data and creates a 
list that contains the individual files. Line 10 fits the focal regression model using the lm function, 
and line 11 uses the testEstimates function in mitml to implement Rubin’s pooling rules and 
save the results in an object called estimates. The df.com parameter is the denominator 
degrees of freedom that would have resulted had there been no missing data (i.e., N–K–1 degrees 
of freedom, where K is the number of predictors). This argument produces Barnard and Rubin 
degrees of freedom values. Finally, lines 12 and 13 print the estimates and confidence intervals. 
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R Script Ex6.1.R, continued 
 
 9  implist <- as.mitml.list(split(imps, imps$imputation)) 
10  fit <- with(implist, lm(read9 ~ read1 + lrnprob1 + behsymp1)) 
11  estimates <- testEstimates(fit, extra.pars = T, df.com = 134) 
12  estimates 
13  confint(estimates) 
 

When fitting regression models to complete data sets, researchers often use an omnibus F test 
to evaluate the set of slope coefficients. The testModels command below specifies a multiple 
imputation Wald F statistic evaluating the null hypothesis that the population slopes equal 0 (Li 
et al., 1991). The test requires an additional model on line 14 that represents the null hypothesis, 
which in this case is an empty regression model with just an intercept. On line 15, the full model 
and null model objects passed into the testModels function, and the D1 keyword requests the 
Wald test. As before, the df.com parameter is the denominator degrees of freedom that would 
have resulted had there been no missing data. This argument produces the Barnard and Rubin 
(1999) degrees of freedom adjustment. 

 
R Script Ex6.1.R, continued 
 
14  null <- with(implist, lm(read9 ~ 1)) 
15  testModels(fit, null, df.com = 134, method = "D1") 
 

R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown in bold 
typeface. The RIV column (relative increase in variance) is a fraction comparing imputation 
noise to complete-data sampling variation, and the FMI column (fraction of missing information 
in the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 
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> estimates 
 
Call: 
 
testEstimates(model = fit, extra.pars = T, df.com = 134) 
 
Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)    65.487     5.877    11.144   100.498     0.000     0.169     0.161  
read1           0.506     0.043    11.725    92.752     0.000     0.212     0.192  
lrnprob1       -0.231     0.114    -2.022   100.704     0.046     0.168     0.160  
behsymp1       -0.189     0.102    -1.841    97.962     0.069     0.182     0.171  
 
                   Estimate  
Residual~~Residual   88.944  
 
Hypothesis test adjusted for small samples with df=[134] 
complete-data degrees of freedom. 
 
> confint(estimates) 
                 2.5 %      97.5 % 
(Intercept) 53.8288728 77.14584684 
read1        0.4202903  0.59168880 
lrnprob1    -0.4581615 -0.00433096 
behsymp1    -0.3919669  0.01475078 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (t = 11.73, p < .001). Note that these estimates are numerically 
identical to those from Bayesian and maximum likelihood estimation. 

Finally, the Wald omnibus F statistic is shown in the output table below. The test statistic is 
statistically significant, thus refuting the null hypothesis that all population slopes equal zero.  
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Model comparison calculated from 20 imputed data sets. 
Combination method: D1 
 
    F.value     df1     df2   P(>F)     RIV  
     58.272       3 123.487   0.000   0.177  
 
Hypothesis test adjusted for small samples with df=[134] 
complete-data degrees of freedom. 
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EXAMPLE 7: LOGISTIC REGRESSION  
WITH A BINARY OUTCOME 

This example illustrates a binary logistic regression analysis with incomplete data. The analysis 
uses the behaviorachievement.dat data set taken from a longitudinal study that followed 138 
students from primary through middle school. The file includes three annual assessments of 
broad reading and math achievement beginning in the first grade, seventh grade standardized 
achievement test scores taken from a statewide assessment, and a final measure of broad reading 
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms 
and learning problems were also obtained in the first grade. The data description at the 
beginning of this document provides additional details. The variables for this analysis are as 
follows. 

Name Definition Missing % Scale 

Focal Variables 
BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  
LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 
READ9GRP 9th grade reading classification 17.4 0 = Below average, 1 = Average 

Auxiliary Variables 
READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

Analysis Model 

The analysis model features a binary classification of ninth grade reading performance regressed 
on first grade reading achievement and teacher-rated learning problems and behavioral 
symptoms. 

 logit(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) (16) 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. Blimp automatically assigns a multivariate normal 
distribution to the predictors. 
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The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following the same factored regression specification from earlier examples, auxiliary 
variables enter the model as additional outcomes that are predicted by the analysis variables and 
by each other. The additional regression equations are as follows. 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) + 𝛾21(𝑅𝐸𝐴𝐷1) 

(17) 
+ 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) 

+ 𝛾32(𝑅𝐸𝐴𝐷1) + 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 
 

Along with the logistic regression model from Equation 16, the collection of regressions can be 
viewed as a path model, where the focal regression is one part of a larger network (see the path 
diagram from Example 2). The key difference is that the path coefficients are just a tool for 
linking incomplete variables and do not represent a substantive theory. 

Blimp Script 

The code block below shows Blimp script Ex7.1.inp. The first six lines can be viewed as a set of 
commands that specify information about the data and variables. The DATA command specifies 
the name of the input text file. No file path is required when the data file is located in the same 
directory as the script, as it is here. Starting on line 2, the VARIABLES command names the data 
columns. The ORDINAL command on line 5 defines the outcome as categorical. Binary variables 
can be defined as ordinal or nominal, as the statistical models are identical. The MISSING 
command on line 6 defines a global missing value code as 999.  
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Blimp Script Ex7.1.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5  ORDINAL: read9grp; 
 6  MISSING: 999; 
 7  MODEL:  
 8  focal.model:  
 9  logit(read9grp) ~ read1@beta1 lrnprob1@beta2 behsymp1@beta3; 
10  auxiliary.models: 
11  stanread7 read2 ~ read9grp read1 lrnprob1 behsymp1; 
12  TEST: 
13  beta1:beta3 = 0; 
14  SEED: 90291; 
15  BURN: 1000; 
16  ITERATIONS: 10000;  
 

The MODEL and TEST blocks can be viewed as a set. The MODEL command lists the regression 
models, with outcome variables to the left of the tilde and predictors to the right. The code uses 
labels (focal.model and auxiliary.models) to order output tables, such that the logistic 
model appears first followed by the auxiliary variable models. The focal model listed on line 9 
assigns labels the slope coefficients using the @ symbol. Listing the dependent variable inside the 
logit function triggers logistic regression rather than the default probit regression. Blimp 
automatically configures the explanatory variable models under the assumption that they are 
normally distributed. Line 11 is a syntax shortcut that produces the two auxiliary variable 
regression models in Equation 17; in the first model, READ2 is regressed on the focal variables, 
and the second model features STANREAD7 regressed on READ2 and the focal variables. The TEST 
command uses the parameter labels to specify a custom hypothesis test that all three slopes equal 
0.  This command produces the Bayesian Wald test (Asparouhov & Muthén, 2021), which is 
essentially a chi-square statistic that captures the discrepancy between the Bayesian point 
estimates (posterior means) and the hypothesized values of zero.  

Finally, lines 14 through 16 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
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period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           26 to 50              1.140             2   
                           51 to 100             1.072             2   
                           76 to 150             1.041             3   
                          101 to 200             1.041            37   
                          126 to 250             1.033             6   
                          151 to 300             1.030             6   
                          176 to 350             1.028            37   
                          201 to 400             1.023            37                                   
                 ...               ...            ..   
                          401 to 800             1.008            37   
                          426 to 850             1.009            37   
                          451 to 900             1.009            37   
                          476 to 950             1.008            19   
                          501 to 1000            1.008            37 
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The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Example 6. In the interest of 
space, we point readers to that example for additional details. 

Most software programs that fit regression models report an omnibus F test that evaluates the 
set of slope coefficients. The TEST command in the previous script requested an analogous 
Bayesian Wald chi-square statistic (Asparouhov & Muthén, 2021) that evaluates the null 
hypothesis that all population slopes equal zero. The chi-square statistic, degrees of freedom, and 
p-value appear near the bottom of the MODEL FIT section under the WALD TEST heading. The 
test statistic is statistically significant, thus refuting the null hypothesis. 

 
MODEL FIT: 

 

  ... 

 

  WALD TESTS (Asparouhov & Muthén, 2021) 

 

  Test #1 

 

    Full: 

      [1]  logit(read9grp) ~ Intercept read1@beta1 lrnprob1@beta2 behsymp1@beta3 

 

    Restricted: 

      [1]  logit(read9grp) ~ Intercept read1@beta1 lrnprob1@beta2 behsymp1@beta3 

 

    Constraints in Restricted: 

      [1]  beta1 = 0 

      [2]  beta2 = 0 

      [3]  beta3 = 0 

 

    Wald Statistic (Chi-Square)                24.106 

    Number of Parameters Tested (df)                3 

    Probability                                 0.000 

 

The table summarizing the focal regression model is shown below. The table includes 
unstandardized coefficients, standardized slopes, and variance explained effect size estimates. 
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OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  logit(read9grp) 
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
 
Coefficients:                    
  Intercept                          -2.740      1.284     -5.289     -0.241      1.006   5231.685  
  read1                               0.062      0.013      0.038      0.089      1.010   3171.888  
  lrnprob1                           -0.034      0.031     -0.096      0.024      1.005   3810.076  
  behsymp1                           -0.022      0.026     -0.073      0.028      1.005   4367.404  
 
Odds Ratio:                      
  Intercept                           0.065      0.284      0.005      0.786      1.003   6917.301  
  read1                               1.064      0.014      1.039      1.094      1.010   3172.490  
  lrnprob1                            0.967      0.029      0.908      1.024      1.005   3807.143  
  behsymp1                            0.978      0.025      0.929      1.029      1.005   4366.400  
 
Proportion Variance Explained    
  by Coefficients                     0.154      0.057      0.068      0.287      1.008   5059.652  
  by Residual Variation               0.846      0.057      0.713      0.932      1.008   5059.652 
                                ------------------------------------------------------------------- 
 

MCMC estimation produces a distribution for each parameter in the table. The median and 
standard deviation columns describe the center and spread of the posterior distributions; 
although they make no reference to drawing repeated samples, they are analogous—and 
numerically equivalent in most cases—to frequentist point estimates and standard errors. The 
95% credible intervals in the rightmost columns give a range that captures 95% of the 
parameter’s distribution. These are akin to confidence intervals, but the intervals describe 
parameter distributions rather than characteristics of repeated samples. The N_Eff values in 
rightmost column of the table give the effective number of MCMC samples for each parameter. 
These quantities essentially represent the number of independent estimates on which the 
parameter summaries are based after removing autocorrelations from the MCMC process. 
Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in the example table 
exceed this recommended minimum. In cases where the N_Eff values are insufficient, increasing 
the value on the ITERATIONS command will remedy the issue. 

The results are interpreted in the same way as a complete-data logistic regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that the logits for two 
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individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 
differ by 0.07. The 95% credible interval limits suggest this effect is statistically different from 
zero (p < .05) because the null value is well outside the interval. The printed output also includes 
the table of odds ratios that reflect multiplicative changes to the odds. For example, a one-point 
increase in first grade reading scores increases the odds of average or higher ninth grade reading 
by a factor 1.07, holding first grade learning problems and behavioral symptoms constant. 
Collectively, the predictors explain 17% of the variation in the underlying logistic latent variable. 
Note that the tabled values are numerically identical to the maximum likelihood estimates from 
Example 2. 

The Blimp output also includes tables of regression model parameters for the auxiliary 
variables as well as the auto-generated models for incomplete predictors. These additionally 
results are not of substantive interest and would not be reported. The auxiliary variable models 
appear in OUTCOME MODEL ESTIMATES section with the focal results, and the auto-generated 
predictor models are displayed under the heading PREDICTOR MODEL ESTIMATES.  

Saving Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex7.2.imp is identical Ex7.1.imp, but it adds the following lines at the bottom 
of the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to 
CHAINS saves a single filled-in data set from the final iteration of a unique MCMC process, thus 
avoiding autocorrelation among the imputations. The SAVE command provides a name for the 
imputed data sets. The script illustrates how to save data sets in two common formats. The 
stacked keyword creates a stacked file where all imputations are in a single file, and the separate 
keyword saves each imputed data set to a separate file with the asterisk replaced by a numeric 
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index. To keep things organized, the ./imps part of the file path points to a subfolder named 
imps located within the same folder as the script and data. The separate keyword also creates a 
list of file names needed for analysis in Mplus (in this example, a filed called implist.dat 
located in the imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 

 

separate = './imps/imp*.dat' 

 

   id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3  

     read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7 

 

stacked = './imps/imps.dat' 

 

   imp# id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3    

   read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7  
 

The imputed data sets are subsequently analyzed in another software package, and estimates 
and standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase 
does not utilize the auxiliary variables, as their information is embedded in the imputations. 
Scripts for analyzing the imputed data sets are found in the next subsections. 

Analyzing Imputations in Mplus 

In lieu of the Bayesian estimates, Blimp’s SAVE command can be used to save multiple 
imputations for analysis in the frequentist framework. Returning to the previous Blimp script, 
the SAVE command and the separate keyword saved each imputed data set to a separate file 
with the asterisk replaced by a numeric index. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps subfolder). Example 6 shows the contents of this file. 
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The Mplus input file for analyzing the imputations is Ex7.inp. The script is similar to the 
Ex2.1.inp file described in Example 2 with three exceptions. First, instead of naming the raw 
data set, the DATA command lists the text file containing the names of the imputed data sets (the 
implist.dat file located in the ./imps subdirectory). The type = imputation 
subcommand instructs Mplus that the input data is a list of file names. Second, the missing 
subcommand is omitted because the analysis variables are now complete. Finally, the MODEL 
section no longer specifies a normal distribution for the predictors or models for the auxiliary 
variables. Readers can refer back to Example 2 for a detailed description of the other commands. 
The code block below shows the analysis and pooling script. 

 
Mplus Script Ex7.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 6    read1 read2 read3 read9 read9grp stanread7  
 7    math1 math2 math3 math9 math9grp stanmath7; 
 8  usevariables = read9grp read1 lrnprob1 behsymp1; 
 9  categorical = read9grp; 
10  ANALYSIS: 
11  estimator = ml; 
12  link = logit; 
13  MODEL:   
14  read9grp on read1 lrnprob1 behsymp1 (beta1-beta3); 
15  MODEL TEST: 
16  0 = beta1; 0 = beta2; 0 = beta3; 
17  OUTPUT: 
18  stdyx cinterval; 
 

Mplus Output 

When fitting regression models to complete data sets, researchers often use an omnibus F test to 
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation 
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal 0 
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear 
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near the bottom of the MODEL FIT INFORMATION section under the Wald Test of 
Parameter Constraints heading. The test statistic is statistically significant, thus refuting the 
null hypothesis. 

 
MODEL FIT INFORMATION 
 
Number of Free Parameters                        4 
 
... 
 
Wald Test of Parameter Constraints 
 
          Value                             23.342 
          Degrees of Freedom                     3 
          P-Value                           0.0001 
 

The table of unstandardized parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown in 
bold typeface. The Rate of Missing column (also called the fraction of missing information in 
the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 

 
MODEL RESULTS 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
READ9GRP   ON 
    READ1              0.068      0.015      4.463      0.000      0.173 
    LRNPROB1          -0.029      0.030     -0.971      0.331      0.188 
    BEHSYMP1          -0.019      0.025     -0.762      0.446      0.121 
 Thresholds 
    READ9GRP$1         3.602      1.672      2.154      0.031      0.231 
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The results are interpreted in the same way as a complete-data logistic regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that the logits for two 
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 
differ by 0.07. The corresponding test statistic indicates that the slope coefficient is statistically 
different from zero (z = 4.46, p < .001). Note that Mplus reports a threshold parameter instead of 
the usual regression intercept. The threshold from a binary logistic model has the same value but 
opposite sign as the intercept (i.e., 𝛽0̂ = –3.60). Note that these estimates are numerically 
equivalent to those from Bayesian and maximum likelihood estimation. 

Finally, the printed output also includes the table of odds ratios that reflect multiplicative 
changes to the odds. For example, a one-point increase in first grade reading scores increases the 
odds of average or higher ninth grade reading by a factor 1.08, holding first grade learning 
problems and behavioral symptoms constant. 

CONFIDENCE INTERVALS OF MODEL RESULTS 

 

                  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%% 

 

READ9GRP ON 

    READ1             0.038       0.043       0.068       0.092       0.097  

    LRNPROB1         -0.089      -0.079      -0.029       0.020       0.030  

    BEHSYMP1         -0.068      -0.060      -0.019       0.022       0.030  

 

 Thresholds 

    READ9GRP$1        0.324       0.851       3.602       6.352       6.879  

 

CONFIDENCE INTERVALS FOR THE LOGISTIC REGRESSION ODDS RATIO RESULTS 

 

 READ9GRP ON 

    READ1             1.039       1.044       1.070       1.097       1.102 

    LRNPROB1          0.915       0.924       0.971       1.021       1.030 

    BEHSYMP1          0.934       0.942       0.981       1.022       1.030 

 

Analyzing Imputations in R 

Returning to the previous Blimp script, the SAVE command and the stacked keyword saved the 
imputed data sets to a single stacked file with an index variable in the first column identifying the 
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individual files. The stacked file is appropriate for analyzing data in R, SAS, SPSS, and Stata, 
among others. 

The R input file for the analysis is Ex7.R. The code block below shows the commands that 
import the data. 

 
R Script Ex7.R 
 
1  library(fdir) 
2  library(mitml) 
3  set() 
4  imps <- read.table("./imps/imps.dat") 
5  names(imps) <- c("imputation","id","male","hispanic","riskgrp", 
6   "atrisk","behsymp1","lrnprob1","read1","read2","read3", 
7   "read9","read9grp","stanread7","math1","math2","math3", 
8   "math9","math9grp","stanmath7") 
 

The example requires the fdir and lavaan packages, which are loaded on lines 1 and 2. On line 
3, the set() function of the fdir package identifies the file path of the folder containing the R 
script and sets this location as the working directory. On line 4, the read.table command 
imports the stacked data. It is only necessary to specify the name of the input data file. No file 
path is required when the data reside in the same folder as the R script as is the case here. Finally, 
variable names are listed beginning on line 5. Importantly, the first variable named IMPUTATION 
is the index that identifies the individual files. 

The next block of code relies on the mitml package to fit the model to each data set and pool 
the results using Rubin’s rules. The implist command on line 9 unstacks the data and creates a 
list that contains the individual files. Line 10 fits the focal regression model using the glm 
function, and line 12 uses the testEstimates function in mitml to implement Rubin’s pooling 
rules and save the results in an object called estimates. The df.com parameter is the 
denominator degrees of freedom that would have resulted had there been no missing data (i.e., 
N–K–1 degrees of freedom, where K is the number of predictors). This argument produces 
Barnard and Rubin degrees of freedom values. Finally, lines 13 and 14 print the estimates and 
confidence intervals. 
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R Script Ex7.1.R, continued 
 
 9  implist <- as.mitml.list(split(imps, imps$imputation)) 

10  fit <- with(implist, glm(read9grp ~ read1 + lrnprob1 + behsymp1,  

11   family = "binomial")) 

12  estimates <- testEstimates(fit, extra.pars = T, df.com = 134) 

13  estimates 

14  confint(estimates) 

 

When fitting regression models to complete data sets, researchers often use an omnibus F test 
to evaluate the set of slope coefficients. The testModels command below specifies a multiple 
imputation Wald F statistic evaluating the null hypothesis that the population slopes equal 0 (Li 
et al., 1991). The test requires an additional model on line 15 that represents the null hypothesis, 
which in this case is an empty regression model with just an intercept. On line 15, the full model 
and null model objects passed into the testModels function, and the D1 keyword requests the 
Wald test. As before, the df.com parameter is the denominator degrees of freedom that would 
have resulted had there been no missing data. This argument produces the Barnard and Rubin 
(1999) degrees of freedom adjustment. 

 
R Script Ex7.1.R, continued 
 
15  null <- with(implist, glm(read9grp ~ 1, family = "binomial")) 
16  testModels(fit, null, df.com = 134, method = "D1") 
 

R Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third through fifth columns 
display the corresponding test statistics. The focal model results are shown in bold typeface. The 
RIV column (relative increase in variance) is a fraction comparing imputation noise to complete-
data sampling variation, and the FMI column (fraction of missing information in the literature) 
quantifies the imputation noise in each estimate as proportion of its squared standard error. 
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> estimates 

 

Call: 

 

testEstimates(model = analysis, df.com = 134) 

 

Final parameter estimates and inferences obtained from 20 imputed data sets. 

 

             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  

(Intercept)    -3.602     1.672    -2.154    79.914     0.034     0.294     0.246  

read1           0.068     0.015     4.463    93.795     0.000     0.206     0.188  

lrnprob1       -0.029     0.030    -0.971    90.209     0.334     0.227     0.202  

behsymp1       -0.019     0.025    -0.762   106.973     0.448     0.135     0.135 

 

Hypothesis test adjusted for small samples with df=[134] 

complete-data degrees of freedom. 

 

> confint(estimates) 

                  2.5 %      97.5 % 

(Intercept) -6.92951753 -0.27356800 

read1        0.03751055  0.09763918 

lrnprob1    -0.08980267  0.03082041 

behsymp1    -0.06832451  0.03038596 

 

The results are interpreted in the same way as a complete-data logistic regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that the logits for two 
individuals who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 
differ by 0.07. The corresponding test statistic indicates that the slope coefficient is statistically 
different from zero (t = 4.46, p < .001). Note that these estimates are numerically identical to 
those from Bayesian and maximum likelihood estimation. 

Finally, the Wald omnibus F statistic is shown in the output table below. The test statistic is 
statistically significant, thus refuting the null hypothesis that all population slopes equal 0. 
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Model comparison calculated from 20 imputed data sets. 
Combination method: D1 
 
    F.value     df1     df2   P(>F)     RIV  
      7.359       3 120.633   0.000   0.214 
 
Hypothesis test adjusted for small samples with df=[134] 
complete-data degrees of freedom. 
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EXAMPLE 8: REGRESSION WITH  
BINARY AND ORDINAL PREDICTORS 

This example illustrates a multiple regression analysis with incomplete categorical predictors. 
The analysis uses the mathachievement.dat data set taken from an educational intervention 
where 250 students were assigned to an intervention and comparison condition. The file includes 
pretest and posttest math achievement scores, a measure of math self-efficacy, standardized 
reading scores taken from a statewide assessment, and several sociodemographic variables. The 
analysis variables are as follows. 

Name Definition Missing % Scale 

Focal Variables 
MATHPOST Math achievement posttest  18.0 Numeric 

CONDITION Experimental condition 0 0 = Comparison, 1 = Intervention 

FRLUNCH Lunch assistance code 4.4 0 = None, 1 = Free/reduced lunch 
EFFICACY Math self-efficacy rating  9.6 Ordinal (1 to 6) 
MATHPRE Math achievement pretest  0 Numeric 

Auxiliary Variables 
ATRISK Behavioral disorder risk 5.2 0 = Low risk, 1 = At-risk 

STANREAD Standardized reading  9.2 Numeric 

Analysis Model 

The analysis model features math posttest scores regressed on the experimental condition and 
lunch assistance dummy codes, math self-efficacy ratings, and math pretest scores. 

𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇 = 𝛽0 + 𝛽1(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) + 𝛽2(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) 
(18) 

+ 𝛽3(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌) + 𝛽4(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜀 
 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. In this case, the predictor set includes incomplete binary 
and ordinal variables. Blimp uses a probit regression formulation that envisions discrete 
responses as arising from underlying continuous latent response variables. The software assumes 
that continuous predictors and the latent response variables are multivariate normal. 
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The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes 
that are predicted by the analysis variables and by each other. The additional regression 
equations are as follows. 

𝐴𝑇𝑅𝐼𝑆𝐾∗ = 𝛾01 + 𝛾11(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾21(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) 

(19) 
+ 𝛾31(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾41(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛾51(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷 = 𝛾02 + 𝛾12(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝛾22(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾32(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) 

+ 𝛾42(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾52(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛾62(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖2 
 

The ATRISK model is a probit regression, with the binary outcome model as a latent response 
variable (denoted by the asterisk superscript). Again, the entire collection of regressions can be 
viewed as a path model, where the focal regression is one part of a larger network (see the path 
diagram from Example 2). The key difference is that the path coefficients are just a tool for 
linking incomplete variables and do not represent a substantive theory. 

Blimp Script 

The code block below shows Blimp script Ex8.1.inp. The first five lines can be viewed as a set 
of commands that specify information about the data and variables. The DATA command 
specifies the name of the input text file. No file path is required when the data file is located in the 
same directory as the script, as it is here. Starting on line 2, the VARIABLES command names the 
data columns. The ORDINAL command on line 4 identifies binary and ordinal variables. Binary 
variables can be defined as ordinal or nominal, as the statistical models are identical. The 
MISSING command on line 5 defines a global missing value code as 999. 
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Blimp Script Ex8.1.imp 
 
 1  DATA: mathachievement.dat; 
 2  VARIABLES: id condition male frlunch atrisk stanread efficacy anxiety  
 3     mathpre mathpost; 
 4  ORDINAL: condition frlunch atrisk efficacy; 
 5  MISSING: 999; 
 6  FIXED: condition mathpre; 
 7  MODEL:  
 8  focal.model: 
 9  mathpost ~ condition@beta1 frlunch@beta2 efficacy@beta3 mathpre@beta4; 
10  auxiliary.models: 
11  stanread atrisk ~ mathpost condition frlunch efficacy mathpre; 
12  TEST: 
13  beta1:beta4 = 0; 
14  SEED: 90291; 
15  BURN: 5000; 
16  ITERATIONS: 10000; 
 

The FIXED, MODEL, and TEST blocks can be viewed as a set. The FIXED command identifies 
the two complete variables, which do not require a distribution or regression model. Beginning 
on line 7, the MODEL command lists the regression models, with outcome variables to the left of 
the tilde and predictors to the right. The code uses labels (focal.model and 
auxiliary.models) to order output tables, such that the focal model appears first followed by 
the auxiliary variable models. The focal model listed on line 9 assigns labels the slope coefficients 
using the @ symbol. Blimp automatically configures the explanatory variable models under the 
assumption that they are normally distributed. Line 11 is a syntax shortcut that produces the two 
auxiliary variable regression models in Equation 19; in the first model, READ2 is regressed on the 
focal variables, and the second model features STANREAD7 regressed on READ2 and the focal 
variables. The TEST command uses the parameter labels to specify a custom hypothesis test that 
all three slopes equal zero.  This command produces the Bayesian Wald test (Asparouhov & 
Muthén, 2021), which is essentially a chi-square statistic that captures the discrepancy between 
the Bayesian point estimates (posterior means) and the hypothesized values of zero.  

Finally, lines 14 through 16 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
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period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                          126 to 250             1.416            59   
                          251 to 500             1.425            57   
                          376 to 750             1.146            57   
                          501 to 1000            1.303            58   
                          626 to 1250            1.073            58   
                          751 to 1500            1.068            59   
                          876 to 1750            1.097            59   
                         1001 to 2000            1.052            59   
                                  ...              ...            .. 
                         2001 to 4000            1.022            56   
                         2126 to 4250            1.035            57   
                         2251 to 4500            1.040            57   
                         2376 to 4750            1.016            56   
                         2501 to 5000            1.009            56 
 



   

 

93 

The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Example 6. In the interest of 
space, we point readers to that example for additional details. 

Most software programs that fit regression models report an omnibus F test that evaluates the 
set of slope coefficients. The TEST command in the previous script requested an analogous 
Bayesian Wald chi-square statistic (Asparouhov & Muthén, 2021) that evaluates the null 
hypothesis that all population slopes equal zero. The chi-square statistic, degrees of freedom, and 
p-value appear near the bottom of the MODEL FIT section under the WALD TEST heading. The 
test statistic is statistically significant, thus refuting the null hypothesis. 

 
MODEL FIT: 

 

  ... 

 

  WALD TESTS (Asparouhov & Muthén, 2021) 

 

  Test #1 

 

    Full: 

      [1]  mathpost ~ Intercept condition@beta1 frlunch@beta2 efficacy@beta3  

                 mathpre@beta4 

 

    Restricted: 

      [1]  mathpost ~ Intercept condition@beta1 frlunch@beta2 efficacy@beta3  

                 mathpre@beta4 

 

    Constraints in Restricted: 

      [1]  beta1 = 0 

      [2]  beta2 = 0 

      [3]  beta3 = 0 

      [4]  beta4 = 0 

 

    Wald Statistic (Chi-Square)               142.310 

    Number of Parameters Tested (df)                4 

    Probability                                 0.000 
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The table summarizing the focal regression model is shown below. The table includes 
unstandardized coefficients, standardized slopes, and variance explained effect size estimates. 

 
OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  mathpost    
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
Variances:                       
  Residual Var.                      53.303      5.509     43.695     65.373      1.000   5636.603  
 
Coefficients:                    
  Intercept                          28.345      3.088     22.308     34.520      1.000   7012.232  
  condition                           2.263      1.047      0.202      4.312      1.000   6953.241  
  frlunch                            -5.502      1.095     -7.608     -3.324      1.000   5344.564  
  efficacy                            0.831      0.346      0.160      1.517      1.000   4712.974  
  mathpre                             0.530      0.062      0.408      0.653      1.000   6537.163  
 
Standardized Coefficients:       
  condition                           0.117      0.054      0.011      0.222      1.000   6897.665  
  frlunch                            -0.281      0.052     -0.378     -0.173      1.000   5652.427  
  efficacy                            0.139      0.057      0.027      0.248      1.000   4706.081  
  mathpre                             0.477      0.048      0.378      0.564      1.000   6400.853  
 
Proportion Variance Explained    
  by Coefficients                     0.426      0.046      0.328      0.510      1.000   5954.279  
  by Residual Variation               0.574      0.046      0.490      0.672      1.000   5954.279  
 
                                ------------------------------------------------------------------- 
Proportion Variance Explained    
  by Coefficients                     0.424      0.046      0.328      0.508      1.002   6225.855  
  by Residual Variation               0.576      0.046      0.492      0.672      1.002   6225.855  
 
                                ------------------------------------------------------------------- 
 

MCMC estimation produces a distribution for each parameter in the table. The median and 
standard deviation columns describe the center and spread of the posterior distributions; 
although they make no reference to drawing repeated samples, they are analogous—and 
numerically equivalent in most cases—to frequentist point estimates and standard errors. The 
95% credible intervals in the rightmost columns give a range that captures 95% of the 
parameter’s distribution. These are akin to confidence intervals, but the intervals describe 
parameter distributions rather than characteristics of repeated samples. The N_Eff values in 
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rightmost column of the table give the effective number of MCMC samples for each parameter. 
These quantities essentially represent the number of independent estimates on which the 
parameter summaries are based after removing autocorrelations from the MCMC process. 
Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in the example table 
exceed this recommended minimum. In cases where the N_Eff values are insufficient, increasing 
the value on the ITERATIONS command will remedy the issue. 

The results are interpreted in the same way as a complete-data regression analysis with 
categorical predictors. For example, consider the slope for the treatment assignment dummy 
code. The positive coefficient indicates that, for two students who share the same covariate 
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student 
in the experimental condition should score 2.26 points higher than the student in the control 
group. The 95% credible interval limits suggest this effect is statistically different from zero (p < 
.05) because the null value is well outside the interval. Note that the tabled values are numerically 
identical to the maximum likelihood estimates from Example 3. 

The Blimp output also includes tables of regression model parameters for the auxiliary 
variables as well as the auto-generated models for incomplete predictors. These additionally 
results are not of substantive interest and would not be reported. The auxiliary variable models 
appear in OUTCOME MODEL ESTIMATES section with the focal results, and the auto-generated 
predictor models are displayed under the heading PREDICTOR MODEL ESTIMATES.  

Saving Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex8.2.imp is identical Ex8.1.imp, but it adds the following lines at the bottom 
of the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
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The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to 
CHAINS saves a single filled-in data set from the final iteration of a unique MCMC process, thus 
avoiding autocorrelation among the imputations. The SAVE command provides a name for the 
imputed data sets. The script illustrates how to save data sets in two common formats. The 
stacked keyword creates a stacked file where all imputations are in a single file, and the separate 
keyword saves each imputed data set to a separate file with the asterisk replaced by a numeric 
index. To keep things organized, the ./imps part of the file path points to a subfolder named 
imps located within the same folder as the script and data. The separate keyword also creates a 
list of file names needed for analysis in Mplus (in this example, a filed called implist.dat 
located in the imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     id condition male frlunch atrisk stanread efficacy anxiety  
     mathpre mathpost 
 
   stacked = './imps/imps.dat' 
 
     imp# id condition male frlunch atrisk stanread efficacy  
     anxiety mathpre mathpost 
 

The imputed data sets are subsequently analyzed in another software package, and estimates 
and standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase 
does not utilize the auxiliary variables, as their information is embedded in the imputations. 
Scripts for analyzing the imputed data sets are found in the next subsections. 
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Analyzing Imputations in Mplus 

In lieu of the Bayesian estimates, Blimp’s SAVE command can be used to save multiple 
imputations for analysis in the frequentist framework. Returning to the previous Blimp script, 
the SAVE command and the separate keyword saved each imputed data set to a separate file 
with the asterisk replaced by a numeric index. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps subfolder). Example 6 shows the contents of this file. 

The Mplus input file for analyzing the imputations is Ex8.inp. The script is similar to the 
Ex3.inp file described in Example 3 with three exceptions. First, instead of naming the raw data 
set, the DATA command lists the text file containing the names of the imputed data sets (the 
implist.dat file located in the ./imps subdirectory). The type = imputation 
subcommand instructs Mplus that the input data is a list of file names. Second, the missing 
subcommand is omitted because the analysis variables are now complete. Finally, the MODEL 
section no longer specifies a normal distribution for the predictors or models for the auxiliary 
variables. Readers can refer back to Example 3 for a detailed description of the other commands. 
The code block below shows the analysis and pooling script. 

 
Mplus Script Ex8.inp 

 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id condition male frlunch atrisk stanread  
 6   efficacy anxiety mathpre mathpost; 
 7  usevariables = mathpost condition frlunch efficacy mathpre; 
 8  MODEL: 
 9  mathpost on condition frlunch efficacy mathpre (beta1-beta4); 
10  MODEL TEST: 
11  0 = beta1; 0 = beta2; 0 = beta3; 0 = beta4; 
12  OUTPUT: 
13  stdyx cinterval; 
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Mplus Output 

When fitting regression models to complete data sets, researchers often use an omnibus F test to 
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation 
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal 0 
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear 
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of 
Parameter Constraints heading. The test statistic is statistically significant, thus refuting the 
null hypothesis. 

 
MODEL FIT INFORMATION 
 
Number of Free Parameters                        6 
 
... 
 
Wald Test of Parameter Constraints 
 
          Value                            125.646 
          Degrees of Freedom                     4 
          P-Value                           0.0000 
 

The table of unstandardized parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown in 
bold typeface. The Rate of Missing column (also called the fraction of missing information in 
the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 
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MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 MATHPOST ON 
    CONDITION          2.206      1.047      2.107      0.035      0.215 
    FRLUNCH           -5.392      1.086     -4.965      0.000      0.267 
    EFFICACY           0.832      0.353      2.356      0.018      0.285 
    MATHPRE            0.532      0.062      8.515      0.000      0.226 
  
Intercepts 
    MATHPOST          28.301      3.158      8.962      0.000      0.233 
 
 Residual Variances 
    MATHPOST          52.070      5.500      9.467      0.000      0.287 
 

The results are interpreted in the same way as a complete-data regression analysis with 
categorical predictors. For example, consider the slope for the treatment assignment dummy 
code. The positive coefficient indicates that, for two students who share the same covariate 
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student 
in the experimental condition should score 2.21 points higher than the student in the control 
group. The corresponding test statistic indicates that the slope coefficient is statistically different 
from zero (z = 2.11, p = .04). Note that these estimates are virtually identical to those from 
Bayesian and maximum likelihood estimation. The output also includes a table with standardized 
coefficients and the R-squared statistic. 

Analyzing Imputations in R 

Returning to the previous Blimp script, the SAVE command and the stacked keyword saved the 
imputed data sets to a single stacked file with an index variable in the first column identifying the 
individual files. The stacked file is appropriate for analyzing data in R, SAS, SPSS, and Stata, 
among others. 

The R input file for the analysis is Ex8.R. The code block below shows the commands that 
import the data. 
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R Script Ex8.R 
 
1  library(fdir) 
2  library(mitml) 
3  set() 
4  imps <- read.table("./imps/imps.dat") 
5  names(imps) <- c("imputation", "id", "condition","male","frlunch", 
6   "atrisk", "stanread","efficacy", "anxiety", "mathpre", "mathpost") 
 

The example requires the fdir and lavaan packages, which are loaded on lines 1 and 2. On line 
3, the set() function of the fdir package identifies the file path of the folder containing the R 
script and sets this location as the working directory. On line 4, the read.table command 
imports the stacked data. It is only necessary to specify the name of the input data file. No file 
path is required when the data reside in the same folder as the R script as is the case here. Finally, 
variable names are listed beginning on line 5. Importantly, the first variable named IMPUTATION 
is the index that identifies the individual files. 

The next block of code relies on the mitml package to fit the model to each data set and pool 
the results using Rubin’s rules.  

 
R Script Ex8.R, continued 
 
 9  implist <- as.mitml.list(split(imps, imps$imputation)) 
10  fit <- with(implist, lm(mathpost ~ condition + frlunch  
11    + efficacy + mathpre)) 
12  estimates <- testEstimates(fit, extra.pars = T, df.com = 245) 
13  estimates 
14  confint(estimates) 
 

The implist command on line 9 unstacks the data and creates a list that contains the individual 
files. Line 10 fits the focal regression model using the lm function, and line 12 uses the 
testEstimates function in mitml to implement Rubin’s pooling rules and save the results in 
an object called estimates. The df.com parameter is the denominator degrees of freedom that 
would have resulted had there been no missing data (i.e., N–K–1 degrees of freedom, where K is 
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the number of predictors). This argument produces Barnard and Rubin degrees of freedom 
values. Finally, lines 13 and 14 print the estimates and confidence intervals. 

When fitting regression models to complete data sets, researchers often use an omnibus F test 
to evaluate the set of slope coefficients. The testModels command below specifies a multiple 
imputation Wald F statistic evaluating the null hypothesis that the population slopes equal 0 (Li 
et al., 1991). The test requires an additional model on line 15 that represents the null hypothesis, 
which in this case is an empty regression model with just an intercept. On line 16, the full model 
and null model objects passed into the testModels function, and the D1 keyword requests the 
Wald test. As before, the df.com parameter is the denominator degrees of freedom that would 
have resulted had there been no missing data. This argument produces the Barnard and Rubin 
(1999) degrees of freedom adjustment. 

 
R Script Ex8.R, continued 
 
15  null <- with(implist, lm(mathpost ~ 1)) 
16  testModels(fit, null, df.com = 245, method = "D1") 
 

R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown in bold 
typeface. The RIV column (relative increase in variance) is a fraction comparing imputation 
noise to complete-data sampling variation, and the FMI column (fraction of missing information 
in the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 
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> estimates 
 
Call: 
 
testEstimates(model = fit, extra.pars = T, df.com = 245) 
 
Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)    28.302     3.183     8.892   125.465     0.000     0.290     0.237  
condition       2.206     1.055     2.091   133.634     0.038     0.263     0.220  
frlunch        -5.392     1.094    -4.928   110.541     0.000     0.348     0.271  
efficacy        0.832     0.356     2.339   103.454     0.021     0.380     0.289  
mathpre         0.532     0.063     8.448   128.385     0.000     0.280     0.231  
 
                   Estimate  
Residual~~Residual   53.133  
 
Hypothesis test adjusted for small samples with df=[245] 
complete-data degrees of freedom. 

 
> confint(estimates) 
                 2.5 %     97.5 % 
(Intercept) 22.0026367 34.6005103 
condition    0.1192603  4.2925545 
frlunch     -7.5596123 -3.2237303 
efficacy     0.1266288  1.5376826 
mathpre      0.4071878  0.6562495 
 

The results are interpreted in the same way as a complete-data regression analysis with 
categorical predictors. For example, consider the slope for the treatment assignment dummy 
code. The positive coefficient indicates that, for two students who share the same covariate 
profile (i.e., lunch assistance, self-efficacy, and pretest scores), the model predicts that the student 
in the experimental condition should score 2.21 points higher than the student in the control 
group. The corresponding test statistic indicates that the slope coefficient is statistically different 
from zero (t = 2.09, p = .04). Note that these estimates are virtually identical to those from 
Bayesian and maximum likelihood estimation. Finally, the Wald omnibus F statistic is shown in 
the output table below. The test statistic is statistically significant, thus refuting the null 
hypothesis that all population slopes equal zero. 
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Model comparison calculated from 20 imputed data sets. 
Combination method: D1 
 
    F.value     df1     df2   P(>F)     RIV  
     33.796       4 197.183   0.000   0.332  
 
Hypothesis test adjusted for small samples with df=[245] 
complete-data degrees of freedom. 
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EXAMPLE 9: MULTIPLE REGRESSION WITH 
MULTICATEGORICAL PREDICTORS 

This example illustrates a multiple regression analysis with an incomplete multicategorical 
predictor. The analysis uses the behaviorachievement.dat data set taken from a longitudinal 
study that followed 138 students from primary through middle school. The file includes three 
annual assessments of broad reading and math achievement beginning in the first grade, seventh 
grade standardized achievement test scores taken from a statewide assessment, and a final 
measure of broad reading and math obtained in ninth grade. The data also contain teacher 
ratings of behavioral symptoms and learning problems were also obtained in the first grade. The 
data description at the beginning of this document provides additional details. The variables for 
this analysis are as follows. 

Name Definition Missing % Scale 

Focal Variables 
RISKGRP Emotional/behavioral disorder risk 2.2 1 = Low, 2 = Medium, 3 = High 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  
LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 
READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 
READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

Analysis Model 

The analysis model features ninth grade broad reading scores regressed on first grade reading 
achievement, teacher-rated learning problems and behavioral symptoms, and a three-category 
nominal variable indicating risk for emotional or behavioral disorders. 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) 
(20) 

+ 𝛽4(𝑀𝐸𝐷𝑅𝐼𝑆𝐾) + 𝛽5(𝐻𝐼𝐺𝐻𝑅𝐼𝑆𝐾) + 𝜀 
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The MEDRISK and HIGHRISK variables are dummy code variables that contrast the medium- and 
high-risk groups, respectively, against the low-risk reference group. Blimp uses a probit 
regression formulation that envisions multicategorical variables as arising from underlying 
continuous latent response difference scores. The software automatically assumes that 
continuous predictors and the latent response variables are multivariate normal. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following the same factored regression specification from earlier examples (e.g., Examples 
2 through 6), auxiliary variables enter the model as additional outcomes that are predicted by the 
analysis variables and by each other. The additional regression equations are as follows. 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) + 𝛾21(𝑅𝐸𝐴𝐷1) 

(21) 
+ 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) 

+ 𝛾32(𝑅𝐸𝐴𝐷1) + 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 
 

Along with the focal regression model from Equation 20, the collection of regressions can be 
viewed as a path model, where the focal regression is one part of a larger network (see the path 
diagram from Example 2). The key difference is that the path coefficients are just a tool for 
linking incomplete variables and do not represent a substantive theory. 

Blimp Script 

The code block below shows Blimp script Ex9.1.inp. The first five lines can be viewed as a set 
of commands that specify information about the data and variables. The DATA command 
specifies the name of the input text file. No file path is required when the data file is located in the 
same directory as the script, as it is here. Starting on line 2, the VARIABLES command names the 
data columns. The NOMINAL command on line 5 identifies the multicategorical nominal 
predictor. By default, the group with the lowest numeric code serves as the reference category (in 
this example, 1 = low risk), and the user can change this specification if desired. The MISSING 
command on line 6 defines a global missing value code as 999. 
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Blimp Script Ex9.1.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7 math1 math2  
 4   math3 math9 math9grp stanmath7; 
 5  NOMINAL: riskgrp; 
 6  MISSING: 999; 
 7  MODEL:  
 8  focal.model: 
 9  read9 ~ read1 lrnprob1 behsymp1 riskgrp; 
10  auxiliary.models: 
11  stanread7 read2 ~ read9 read1 lrnprob1 behsymp1 riskgrp; 
12  SEED: 90291; 
13  BURN: 2000; 
14  ITERATIONS: 10000; 
 

The MODEL and TEST blocks can be viewed as a set. Beginning on line 7, the MODEL command 
lists the regression models, with outcome variables to the left of the tilde and predictors to the 
right. The code uses labels (focal.model and auxiliary.models) to order output tables, such 
that the focal model appears first followed by the auxiliary variable models. The focal model 
listed on line 9 includes the multicategorical nominal variable, which Blimp represents as a pair 
of dummy codes. Blimp automatically configures the explanatory variable models under the 
assumption that the numeric predictors and latent response variables are normally distributed. 
Line 11 is a syntax shortcut that produces the two auxiliary variable regression models in 
Equation 21; in the first model, READ2 is regressed on the focal variables, and the second model 
features STANREAD7 regressed on READ2 and the focal variables.  

Finally, lines 12 through 14 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

Previous examples assigned labels to slope coefficients using the @ symbol, and these labels 
were subsequently used in the TEST command to specify custom hypothesis tests. With a 
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multicategorical nominal predictor, it is necessary to attach labels to individual dummy codes. To 
do this, you list the nominal variable’s name followed by a period and a numeric suffix with each 
category’s code value. For example, line 9 in the script would be modified as follows 

 
9  read9 ~ read1@b1 lrnprob1@b2 behsymp1@b3 riskgrp.2@b4 riskgrp.3@b5; 
 

where RISKGRP.2 and RISKGRP.3 reference the two dummy variables for the groups coded 2 
and 3 in the data. The TEST command would then be constructed following earlier examples. 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 

 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           51 to 100             1.305            77   
                          101 to 200             1.200            62   
                          151 to 300             1.064            56   
                                 ...               ...            .. 
                          901 to 1800            1.017            53   
                          951 to 1900            1.014            53   
                         1001 to 2000            1.017            56 
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The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Example 6. In the interest of 
space, we point readers to that example for additional details. Earlier examples also show how to 
implement the Bayesian Wald significance test. 

The table summarizing the focal regression model is shown below. The table includes 
unstandardized coefficients, standardized slopes, and variance explained effect size estimates. 

 
OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  read9       
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
Variances:                       
  Residual Var.                      91.703     13.152     70.497    121.927      1.000   5589.273  
 
Coefficients:                    
  Intercept                          68.621      6.614     55.480     81.686      1.000   5703.283  
  read1                               0.484      0.049      0.389      0.581      1.000   7086.883  
  lrnprob1                           -0.250      0.121     -0.485     -0.007      1.001   5583.683  
  behsymp1                           -0.170      0.107     -0.379      0.042      1.000   6010.276  
  riskgrp.2                          -1.682      1.991     -5.631      2.221      1.000   7073.237  
  riskgrp.3                          -2.814      2.707     -8.233      2.513      1.000   6138.228  
 
Standardized Coefficients:       
  read1                               0.658      0.052      0.544      0.751      1.000   6469.725  
  lrnprob1                           -0.178      0.085     -0.340     -0.005      1.001   5544.858  
  behsymp1                           -0.137      0.085     -0.300      0.033      1.000   5901.722  
  riskgrp.2                          -0.055      0.065     -0.182      0.073      1.000   7086.836  
  riskgrp.3                          -0.079      0.075     -0.225      0.072      1.000   6182.638  
 
Proportion Variance Explained    
  by Coefficients                     0.599      0.050      0.488      0.684      1.000   5849.961  
  by Residual Variation               0.401      0.050      0.316      0.512      1.000   5849.961  
 
                                ------------------------------------------------------------------- 
 

MCMC estimation produces a distribution for each parameter in the table. The median and 
standard deviation columns describe the center and spread of the posterior distributions; 
although they make no reference to drawing repeated samples, they are analogous—and 
numerically equivalent in most cases—to frequentist point estimates and standard errors. The 
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95% credible intervals in the rightmost columns give a range that captures 95% of the 
parameter’s distribution. These are akin to confidence intervals, but the intervals describe 
parameter distributions rather than characteristics of repeated samples. The N_Eff values in 
rightmost column of the table give the effective number of MCMC samples for each parameter. 
These quantities essentially represent the number of independent estimates on which the 
parameter summaries are based after removing autocorrelations from the MCMC process. 
Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in the example table 
exceed this recommended minimum. In cases where the N_Eff values are insufficient, increasing 
the value on the ITERATIONS command will remedy the issue. 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48 
points on READ9. The 95% credible interval limits suggest this effect is statistically different from 
zero (p < .05) because the null value is well outside the interval. The two dummy codes appear as 
RISKGRP.2 and RISKGRP.3, where the numeric suffices correspond to the numeric codes from 
the data. Consistent with a complete-data regression analysis, the dummy code slopes represent 
mean differences relative to the low-risk reference group. For example, holding all other 
predictors constant, the model predicts that a high-risk study would score 2.81 points lower than 
a low-risk student in the comparison group. 

The Blimp output also includes tables of regression model parameters for the auxiliary 
variables as well as the auto-generated models for incomplete predictors. These additionally 
results are not of substantive interest and would not be reported. The auxiliary variable models 
appear in OUTCOME MODEL ESTIMATES section with the focal results, and the auto-generated 
predictor models are displayed under the heading PREDICTOR MODEL ESTIMATES.  

Saving Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex9.2.imp is identical Ex9.1.imp, but it adds the following lines. 
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NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to 
CHAINS saves a single filled-in data set from the final iteration of a unique MCMC process, thus 
avoiding autocorrelation among the imputations. The SAVE command provides a name for the 
imputed data sets. The script illustrates how to save data sets in two common formats. The 
stacked keyword creates a stacked file where all imputations are in a single file, and the separate 
keyword saves each imputed data set to a separate file with the asterisk replaced by a numeric 
index. To keep things organized, the ./imps part of the file path points to a subfolder named 
imps located within the same folder as the script and data. The separate keyword also creates a 
list of file names needed for analysis in Mplus (in this example, a filed called implist.dat 
located in the imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 

 

separate = './imps/imp*.dat' 

 

   id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3  

     read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7 

 

stacked = './imps/imps.dat' 

 

   imp# id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3    

   read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7  
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The imputed data sets are subsequently analyzed in another software package, and estimates 
and standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase 
does not utilize the auxiliary variables, as their information is embedded in the imputations. 
Scripts for analyzing the imputed data sets are found in the next subsections. 

Analyzing Imputations in Mplus 

In lieu of the Bayesian estimates, Blimp’s SAVE command can be used to save multiple 
imputations for analysis in the frequentist framework. Returning to the previous Blimp script, 
the SAVE command and the separate keyword saved each imputed data set to a separate file 
with the asterisk replaced by a numeric index. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps subfolder). Example 6 shows the contents of this file. 

The Mplus input file for analyzing the imputations is Ex9.inp. The script is similar to 
previous Mplus scripts (e.g., the Ex1.1.inp file described in Example 1) with four exceptions. 
First, instead of naming the raw data set, the DATA command lists the text file containing the 
names of the imputed data sets (the implist.dat file located in the ./imps subdirectory). The 
type = imputation subcommand instructs Mplus that the input data is a list of file names. 
Second, the missing subcommand is omitted because the analysis variables are now complete. 
Third, the MODEL section no longer specifies a normal distribution for the predictors or models 
for the auxiliary variables. Finally, lines 9 through 13 use the DEFINE command to create a pair of 
dummy codes. Lines 10 and 11 initialize a pair of new variables (RISKGRP2 and RISKGRP3) with 
all 0s, and lines 12 and 13 recode these variables into dummy variables. Importantly, new 
variables computed with the DEFINE command must appear at the end of the usevariables list 
on line 8. The code block below shows the analysis and pooling script. 
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Mplus Script Ex9.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 6    read1 read2 read3 read9 read9grp stanread7  
 7    math1 math2 math3 math9 math9grp stanmath7; 
 8  usevariables = read9 read1 lrnprob1 behsymp1 riskgrp2 riskgrp3; 
 9  DEFINE: 
10  riskgrp2 = 0; 
11  riskgrp3 = 0; 
12  if(riskgrp eq 2) then riskgrp2 = 1; 
13  if(riskgrp eq 3) then riskgrp3 = 1; 
14  MODEL:   
15  read9 on read1 lrnprob1 behsymp1 riskgrp2 riskgrp3 (beta1-beta5); 
16  MODEL TEST: 
17  0 = beta1; 0 = beta2; 0 = beta3; 
18  OUTPUT: 
19  stdyx cinterval; 
 

Mplus Output 

When fitting regression models to complete data sets, researchers often use an omnibus F test to 
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation 
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal 0 
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear 
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of 
Parameter Constraints heading. The test statistic is statistically significant, thus refuting the 
null hypothesis. 
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MODEL FIT INFORMATION 
 
Number of Free Parameters                       7 
 
... 

 
Wald Test of Parameter Constraints 
 
          Value                            173.432 
          Degrees of Freedom                     5 
          P-Value                           0.0000 
 

The table of unstandardized parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown in 
bold typeface. The Rate of Missing column (also called the fraction of missing information in 
the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 READ9    ON 
    READ1              0.477      0.047     10.122      0.000      0.134 
    LRNPROB1          -0.250      0.115     -2.173      0.030      0.172 
    BEHSYMP1          -0.166      0.106     -1.566      0.117      0.228 
    RISKGRP2          -1.710      1.882     -0.908      0.364      0.076 
    RISKGRP3          -3.115      2.820     -1.105      0.269      0.272 
 
 Intercepts 
    READ9             69.174      6.218     11.125      0.000      0.154 
 
 Residual Variances 
    READ9             85.516     11.867      7.206      0.000      0.249 
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The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48 
points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 10.29, p < .001). The two dummy codes appear as RISKGRP2 
and RISKGRP3. Consistent with a complete-data regression analysis, the dummy code slopes 
represent mean differences relative to the low-risk reference group. For example, holding all 
other predictors constant, the model predicts that a high-risk study would score 3.12 points 
lower than a low-risk student in the comparison group. Note that these estimates are virtually 
identical to those from Bayesian estimation. The output also includes a table with standardized 
coefficients and the R-squared statistic. 

Analyzing Imputations in R 

Returning to the previous Blimp script, the SAVE command and the stacked keyword saved the 
imputed data sets to a single stacked file with an index variable in the first column identifying the 
individual files. The stacked file is appropriate for analyzing data in R, SAS, SPSS, and Stata, 
among others. 

The R input file for the analysis is Ex9.R. The code block below shows the commands that 
import the data. 

 
R Script Ex9.R 
 
1  library(fdir) 
2  library(mitml) 
3  set() 
4  imps <- read.table("./imps/imps.dat") 
5  names(imps) <- c("imputation","id","male","hispanic","riskgrp", 
6   "atrisk","behsymp1","lrnprob1","read1","read2","read3", 
7   "read9","read9grp","stanread7","math1","math2","math3", 
8   "math9","math9grp","stanmath7") 
9  imps$riskgrp <- factor(imps$riskgrp) 
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The example requires the fdir and lavaan packages, which are loaded on lines 1 and 2. On line 
3, the set() function of the fdir package identifies the file path of the folder containing the R 
script and sets this location as the working directory. On line 4, the read.table command 
imports the stacked data. It is only necessary to specify the name of the input data file. No file 
path is required when the data reside in the same folder as the R script as is the case here. 
Variable names are listed beginning on line 5. Importantly, the first variable named IMPUTATION 
is the index that identifies the individual files. Finally, line 9 defines the RISKGRP variable as a 
factor with qualitatively different levels. This specification will automatically introduce a set of 
dummy codes into the regression model. 

The next block of code relies on the mitml package to fit the model to each data set and pool 
the results using Rubin’s rules.  

 
R Script Ex9.R, continued 
 
10  implist <- as.mitml.list(split(imps, imps$imputation)) 

11  fit <- with(implist, lm(read9 ~ read1 + lrnprob1 + behsymp1 + riskgrp)) 

12  estimates <- testEstimates(fit, extra.pars = T, df.com = 132) 

13  estimates 

14  confint(estimates) 

 

The implist command on line 10 unstacks the data and creates a list that contains the 
individual files. Line 11 fits the focal regression model using the lm function, and line 12 uses the 
testEstimates function in mitml to implement Rubin’s pooling rules and save the results in 
an object called estimates. The df.com parameter is the denominator degrees of freedom that 
would have resulted had there been no missing data (i.e., N–K–1 degrees of freedom, where K is 
the number of predictors). This argument produces Barnard and Rubin degrees of freedom 
values. Finally, lines 13 and 14 print the estimates and confidence intervals. 

When fitting regression models to complete data sets, researchers often use an omnibus F test 
to evaluate the set of slope coefficients. The testModels command below specifies a multiple 
imputation Wald F statistic evaluating the null hypothesis that the population slopes equal 0 (Li 
et al., 1991). The test requires an additional model on line 15 that represents the null hypothesis, 
which in this case is an empty regression model with just an intercept. On line 16, the full model 
and null model objects passed into the testModels function, and the D1 keyword requests the 
Wald test. As before, the df.com parameter is the denominator degrees of freedom that would 
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have resulted had there been no missing data. This argument produces the Barnard and Rubin 
(1999) degrees of freedom adjustment. 

 
R Script Ex9.R, continued 
 
15  null <- with(implist, lm(read9 ~ 1)) 
16  testModels(fit, null, df.com = 132, method = "D1") 
 

R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown in bold 
typeface. The RIV column (relative increase in variance) is a fraction comparing imputation 
noise to complete-data sampling variation, and the FMI column (fraction of missing information 
in the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 

 
> estimates 
 
Call: 
 
testEstimates(model = fit, extra.pars = T, df.com = 132) 
 
Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)    69.174     6.337    10.916    98.577     0.000     0.172     0.164  
read1           0.477     0.048     9.928   103.392     0.000     0.146     0.144  
lrnprob1       -0.250     0.117    -2.133    94.276     0.036     0.196     0.181  
behsymp1       -0.166     0.108    -1.539    81.473     0.128     0.276     0.235  
riskgrp2       -1.710     1.921    -0.890   116.647     0.375     0.079     0.088  
riskgrp3       -3.115     2.867    -1.087    72.059     0.281     0.348     0.278  
 
                   Estimate  
Residual~~Residual   89.403  
 
Hypothesis test adjusted for small samples with df=[132] 
complete-data degrees of freedom.	  
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> confint(estimates) 
                 2.5 %      97.5 % 
(Intercept) 56.5999199 81.74779632 
read1        0.3820806  0.57283035 
lrnprob1    -0.4822008 -0.01730107 
behsymp1    -0.3796984  0.04849960 
riskgrp2    -5.5147538  2.09562507 
riskgrp3    -8.8300720  2.59967016 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48 
points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (t = 9.93, p < .001). The two dummy codes appear as RISKGRP2 
and RISKGRP3. Consistent with a complete-data regression analysis, the dummy code slopes 
represent mean differences relative to the low-risk reference group. For example, holding all 
other predictors constant, the model predicts that a high-risk study would score 3.12 points 
lower than a low-risk student in the comparison group. Note that these estimates are virtually 
identical to those from Bayesian and maximum likelihood estimation. 

Finally, the Wald omnibus F statistic is shown in the output table below. The test statistic is 
statistically significant, thus refuting the null hypothesis that all population slopes equal zero. 

 
Model comparison calculated from 20 imputed data sets. 
Combination method: D1 
 
    F.value     df1     df2   P(>F)     RIV  
     33.252       5 123.203   0.000   0.213  
 
Hypothesis test adjusted for small samples with df=[132] 
complete-data degrees of freedom. 
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EXAMPLE 10: MULTIPLE REGRESSION 
WITH AN INTERACTION EFFECT 

This example illustrates a multiple regression analysis with an incomplete interaction effect. The 
analysis uses the behaviorachievement.dat data set taken from a longitudinal study that 
followed 138 students from primary through middle school. The file includes three annual 
assessments of broad reading and math achievement beginning in the first grade, seventh grade 
standardized achievement test scores taken from a statewide assessment, and a final measure of 
broad reading and math obtained in ninth grade. The data also contain teacher ratings of 
behavioral symptoms and learning problems were also obtained in the first grade. The data 
description at the beginning of this document provides additional details. The variables for this 
analysis are as follows. 

Name Definition Missing % Scale 

Focal Variables 
BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  
LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 
READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 
READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

Analysis Model 

The analysis model features ninth grade broad reading scores regressed on first grade reading 
achievement, teacher-rated learning problems and behavioral symptoms, and the product of first 
grade reading scores and learning problems. 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) 
(22) 

+ 𝛽3(𝑅𝐸𝐴𝐷1)(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽4(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 
 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. Moderated regression models (and models with non-
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linearities more generally) require a factored regression specification that assigns separate 
distributions to the predictors and outcome. By default, Blimp invokes a multivariate normal 
distribution for incomplete predictors. Importantly, the product term does not require a unique 
distribution, as missing data imputation generates lower-order variables that preserve the 
interaction effect in the focal model. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes 
that are predicted by the analysis variables and by each other. The additional regression 
equations are as follows. 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) + 𝛾21(𝑅𝐸𝐴𝐷1) 

(23) 
+ 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) 

+ 𝛾32(𝑅𝐸𝐴𝐷1) + 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 
 

Along with the other models, the collection of regression equations can be viewed as a path 
model where the focal analysis is one part of a larger network (see the path diagram from 
Example 2). The key difference is that the path coefficients are just a tool for linking incomplete 
variables and do not represent a substantive theory. 

Blimp Script 

The code block below shows Blimp script Ex10.1.inp. The first five lines can be viewed as a set 
of commands that specify information about the data and variables. The DATA command 
specifies the name of the input text file. No file path is required when the data file is located in the 
same directory as the script, as it is here. Starting on line 2, the VARIABLES command names the 
data columns, and MISSING command on line 5 defines a global missing value code as 999. 
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Blimp Script Ex10.1.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5  MISSING: 999; 
 6  CENTER: read1 lrnprob1; 
 7  MODEL:  
 8  focal.model: 
 9  read9 ~ read1 lrnprob1 read1*lrnprob1@beta3 behsymp1; 
10  auxiliary.model:  
11  stanread7 read2 ~ read9 read1 lrnprob1 behsymp1; 
12  SIMPLE: read1 | lrnprob1; 
13  TEST: 
14  beta3 = 0; 
15  SEED: 90291; 
16  BURN: 5000; 
17  ITERATIONS: 10000;  
 

The CENTER, MODEL, SIMPLE, and TEST blocks can be viewed as a set. The CENTER command 
deviates the two interacting variables at their iteratively-estimated grand means. Beginning on 
line 7, the MODEL command lists the regression models, with outcome variables to the left of the 
tilde and predictors to the right. The code uses labels (focal.model and auxiliary.models) 
to order output tables, such that the focal model appears first followed by the auxiliary variable 
models. The focal model listed on line 9 includes a product term, which is specified by joining 
two variables with an asterisk. The product’s slope coefficient is labeled using the @ symbol. 
Blimp automatically configures the explanatory variable models under the assumption that they 
are normally distributed. Line 11 is a syntax shortcut that produces the two auxiliary variable 
regression models in Equation 23; in the first model, READ2 is regressed on the focal variables, 
and the second model features STANREAD7 regressed on READ2 and the focal variables. The 
SIMPLE command requests the conditional effects (i.e., simple slopes) of READ1 at different levels 
of LRNPROB1. By default, Blimp adopts a pick-a-point approach that uses standard deviation 
units of the moderator variable, although the user can specify custom values. Finally, the TEST 
command uses the parameter label to specify a custom hypothesis test that the interaction slope 
equals zero.  This command produces the Bayesian Wald test (Asparouhov & Muthén, 2021), 
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which is essentially a chi-square statistic that captures the discrepancy between the Bayesian 
point estimate (posterior means) and the hypothesized value of zero.  

Finally, lines 15 through 17 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                          126 to 250             1.291            47   
                          251 to 500             1.156            47   
                          376 to 750             1.053            43   
                          501 to 1000            1.042            43 
                                  ...              ...            ..   
                         2251 to 4500            1.015            43   
                         2376 to 4750            1.009            47   
                         2501 to 5000            1.016            47 
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The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Example 6. In the interest of 
space, we point readers to that example for additional details. 

Thus far, the examples have strictly used 95% credible intervals for evaluating the significance 
of individual slope coefficients. The TEST command in the previous script requested a Bayesian 
Wald chi-square statistic (Asparouhov & Muthén, 2021) that evaluates the null hypothesis that 
the population interaction effect equals zero. The chi-square statistic, degrees of freedom, and p-
value appear near the bottom of the MODEL FIT section under the WALD TEST heading. The 
test statistic is statistically significant, thus refuting the null hypothesis. 

 
MODEL FIT: 

 

  ... 

 

  WALD TESTS (Asparouhov & Muthén, 2021) 

 

  Test #1 

 

    Full: 

      [1]  read9 ~ Intercept read1 lrnprob1 behsymp1 read1*lrnprob1@beta3 

 

    Restricted: 

      [1]  read9 ~ Intercept read1 lrnprob1 behsymp1 read1*lrnprob1@beta3 

 

    Constraints in Restricted: 

      [1]  beta3 = 1 

 

    Wald Statistic (Chi-Square)                 7.050 

    Number of Parameters Tested (df)                1 

    Probability                                 0.008 

 

The table summarizing the focal regression model is shown below. The table includes 
unstandardized coefficients, standardized slopes, and variance explained effect size estimates. 
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OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  read9       
 
Grand Mean Centered: lrnprob1 read1 
 
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
Variances:                       
  Residual Var.                      84.845     12.207     65.395    113.644      1.000   5244.287  
 
Coefficients:                    
  Intercept                          95.043      5.232     84.708    105.341      1.000   3721.278  
  read1                               0.514      0.045      0.427      0.603      1.002   3166.488  
  lrnprob1                           -0.281      0.119     -0.513     -0.045      1.000   3866.502  
  behsymp1                           -0.146      0.103     -0.346      0.056      1.000   5731.723  
  read1*lrnprob1                      0.012      0.005      0.003      0.021      1.000   3214.340  
 
Standardized Coefficients:       
  read1                               0.687      0.042      0.596      0.760      1.002   2549.527  
  lrnprob1                           -0.200      0.083     -0.361     -0.032      1.000   3886.718  
  behsymp1                           -0.117      0.081     -0.275      0.044      1.000   5711.694  
  read1*lrnprob1                      0.167      0.059      0.049      0.280      1.000   4120.699  
 
Proportion Variance Explained    
  by Coefficients                     0.630      0.048      0.525      0.711      1.001   4765.860  
  by Residual Variation               0.370      0.048      0.289      0.475      1.001   4765.860  
 
                                ------------------------------------------------------------------- 
 

MCMC estimation produces a distribution for each parameter in the table. The median and 
standard deviation columns describe the center and spread of the posterior distributions; 
although they make no reference to drawing repeated samples, they are analogous—and 
numerically equivalent in most cases—to frequentist point estimates and standard errors. The 
95% credible intervals in the rightmost columns give a range that captures 95% of the 
parameter’s distribution. These are akin to confidence intervals, but the intervals describe 
parameter distributions rather than characteristics of repeated samples. The N_Eff values in 
rightmost column of the table give the effective number of MCMC samples for each parameter. 
These quantities essentially represent the number of independent estimates on which the 
parameter summaries are based after removing autocorrelations from the MCMC process. 
Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in the example table 
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exceed this recommended minimum. In cases where the N_Eff values are insufficient, increasing 
the value on the ITERATIONS command will remedy the issue. 

The lower-order terms in a moderated regression are conditional effects that depend on 
scaling or centering. Specifically, the lower-order slope of first grade reading scores (𝛽1 = 0.51) is 
the effect of that predictor at the mean of the first-grade learning problems, and the learning 
problems slope (𝛽2 = −0.28) similarly reflects the conditional effect at the reading score mean. 
The interaction slope captures the change in the first-grade reading slope for each one-unit 
increase in learning problems (and vice versa). Specifically, the positive coefficient (𝛽3 = 0.012) 
indicates that the association between first and ninth grade reading scores becomes stronger (i.e., 
more positive) as learning problems increase. That is, the predictive power of early reading on 
later reading is strongest for students with elevated learning problem ratings in first grade. 
Consistent with the Wald test statistic, the 95% credible interval limits suggest this effect is 
statistically different from zero (p < .05) because the null value is well outside the interval. 

The SIMPLE command prints a table of conditional effects (simple slopes) of READ1 at 
different standard deviation units of LRNPROB1. The output is shown below.  

 
Conditional Effects                  Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
  read1 | lrnprob1 @ +2 SD                                                                          
    Intercept                        88.906      7.322     74.527    103.228      1.000   3564.186  
    Slope                             0.775      0.115      0.560      1.012      1.001   2734.321  
                                                                                                    
  read1 | lrnprob1 @ +1 SD                                                                          
    Intercept                        91.999      6.229     79.633    104.181      1.000   3595.490  
    Slope                             0.645      0.071      0.510      0.791      1.002   2562.360  
                                                                                                    
  read1 | lrnprob1 @ 0                                                                              
    Intercept                        95.043      5.232     84.708    105.341      1.000   3721.278  
    Slope                             0.514      0.045      0.427      0.603      1.002   3166.488  
                                                                                                    
  read1 | lrnprob1 @ -1 SD                                                                          
    Intercept                        98.097      4.397     89.418    106.685      1.000   4067.215  
    Slope                             0.383      0.063      0.257      0.505      1.001   4977.884  
                                                                                                    
  read1 | lrnprob1 @ -2 SD                                                                          
    Intercept                       101.157      3.831     93.636    108.667      1.000   4939.955  
    Slope                             0.252      0.105      0.036      0.453      1.000   4319.446  
                                                                                                    
                                ------------------------------------------------------------------- 
                                NOTE: Intercepts are computed by setting all predictors 
                                      not involved in the conditional effect to zero. 
 



   

 

125 

Consistent with the positive interaction coefficient, the simple slopes increase in strength as 
learning problems ratings increase (and vice versa). All of the tabled conditional effects are 
statistically significant at p < .05 because the null value does not fall within the 95% credible 
intervals. 

The Blimp output also includes tables of regression model parameters for the auxiliary 
variables as well as the auto-generated models for incomplete predictors. These additionally 
results are not of substantive interest and would not be reported. The auxiliary variable models 
appear in OUTCOME MODEL ESTIMATES section with the focal results, and the auto-generated 
predictor models are displayed under the heading PREDICTOR MODEL ESTIMATES. 

Saving Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex10.2.imp is identical Ex10.1.imp, but it adds the following lines at the 
bottom of the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to 
CHAINS saves a single filled-in data set from the final iteration of a unique MCMC process, thus 
avoiding autocorrelation among the imputations. The SAVE command provides a name for the 
imputed data sets. The script illustrates how to save data sets in two common formats. The 
stacked keyword creates a stacked file where all imputations are in a single file, and the separate 
keyword saves each imputed data set to a separate file with the asterisk replaced by a numeric 
index. To keep things organized, the ./imps part of the file path points to a subfolder named 
imps located within the same folder as the script and data. The separate keyword also creates a 
list of file names needed for analysis in Mplus (in this example, a filed called implist.dat 
located in the imps folder). 
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When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 

 

separate = './imps/imp*.dat' 

 

   id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3  

     read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7 

 

stacked = './imps/imps.dat' 

 

   imp# id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3    

   read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7  
 

The imputed data sets are subsequently analyzed in another software package, and estimates 
and standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase 
does not utilize the auxiliary variables, as their information is embedded in the imputations. 
Scripts for analyzing the imputed data sets are found in the next subsections. 

Analyzing Imputations in Mplus 

In lieu of the Bayesian estimates, Blimp’s SAVE command can be used to save multiple 
imputations for analysis in the frequentist framework. Returning to the previous Blimp script, 
the SAVE command and the separate keyword saved each imputed data set to a separate file 
with the asterisk replaced by a numeric index. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps subfolder). Example 6 shows the contents of this file. 

The Mplus input file for analyzing the imputations is Ex10.inp. The major commands are 
similar to the Ex6.1.inp file described in Example 6. Consistent with previous multiple 
imputation analysis scripts, the DATA command lists the text file containing the names of the 
imputed data sets (the implist.dat file located in the ./imps subdirectory). The type = 
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imputation subcommand instructs Mplus that the input data is a list of file names. Second, the 
missing subcommand is omitted because the analysis variables are now complete. Third, the 
MODEL section no longer specifies a normal distribution for the predictors or models for the 
auxiliary variables. The code block below shows the analysis and pooling script. 

 
Mplus Script Ex10.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 6    read1 read2 read3 read9 read9grp stanread7  
 7    math1 math2 math3 math9 math9grp stanmath7; 
 8  usevariables = read9 read1 lrnprob1 behsymp1 product; 
 9  DEFINE: 
10  center read1 lrnprob1 (grandmean); 
11  product = read1 * lrnprob1; 
12  MODEL:   
13  read9 on read1 lrnprob1 product behsymp1 (beta1-beta4); 
14  MODEL CONSTRAINT: 
15  new(lrnprobvar slp_low slp_mean slp_high); 
16  lrnprobvar = 114.354; 
17  slp_high = beta1 + beta3*1*sqrt(lrnprobvar); 
18  slp_mean = beta1 + beta3*0*sqrt(lrnprobvar); 
19  slp_low =  beta1 - beta3*1*sqrt(lrnprobvar); 
19  OUTPUT: 
20  stdyx cinterval; 
 

The script also invokes several new features. On line 10, the center subcommand under the 
DEFINE command centers the two interacting predictors at their grand means, and line 11 
computes a new variable equal to the product of the centered scores. Importantly, new variables 
computed with the DEFINE command must appear at the end of the usevariables list on line 
8. Beginning on line 14, the MODEL CONSTRAINT command is used to compute conditional 
effects or simple slopes. First, line 15 assigns names to four new parameters (the variance of the 
moderator and three simple slopes). Line 16 inputs the variance of the moderator (obtained from 
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the descriptive statistics on the output), and lines 17 through 20 compute the conditional effect of 
READ1 at the mean of LRNPROB1 and at plus and minus one standard deviation from the mean. 

Mplus Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The focal model results are shown in bold 
typeface. The Rate of Missing column (also called the fraction of missing information in the 
literature) quantifies the imputation noise in each estimate as proportion of its squared standard 
error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 READ9    ON 
    READ1              0.513      0.041     12.423      0.000      0.166 
    LRNPROB1          -0.287      0.112     -2.568      0.010      0.198 
    READ1BYLPR         0.012      0.004      3.035      0.002      0.168 
    BEHSYMP1          -0.144      0.097     -1.479      0.139      0.161 
 
 Intercepts 
    READ9             94.885      4.913     19.314      0.000      0.172 
 
 Residual Variances 
    READ9             78.835     10.144      7.772      0.000      0.124 
 

The lower-order terms in a moderated regression are conditional effects that depend on 
scaling or centering. Specifically, the lower-order slope of first grade reading scores ( 𝛽1̂ = 0.51) is 
the effect of that predictor at the mean of the first-grade learning problems, and the learning 
problems slope (𝛽2̂ = −0.29) similarly reflects the conditional effect at the reading score mean. 
The interaction slope captures the change in the first-grade reading slope for each one-unit 
increase in learning problems (and vice versa). Specifically, the positive coefficient (𝛽3̂ = 0.012) 
indicates that the association between first and ninth grade reading scores becomes stronger (i.e., 
more positive) as learning problems increase. That is, the predictive power of early reading on 
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later reading is strongest for students with elevated learning problem ratings in first grade. Note 
that these estimates are numerically identical to those from Bayesian and maximum likelihood 
estimation. The output also includes a table with standardized coefficients and the R-squared 
statistic. 

Finally, the printed output also includes the table of conditional effects, which were computed 
using the MODEL CONSTRAINT command. The output is shown below. Consistent with the 
positive interaction coefficient, the simple slopes increase in strength as learning problems 
ratings increase (and vice versa). All of the tabled conditional effects are statistically significant at 
p < .05. 

 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
... 
 
New/Additional Parameters 
    LRNPROBV         114.354      0.022   5129.998      0.000      1.000 
    SLP_LOW            0.382      0.058      6.619      0.000      0.064 
    SLP_MEAN           0.513      0.041     12.423      0.000      0.166 
    SLP_HIGH           0.644      0.062     10.425      0.000      0.259 
 

Analyzing Imputations in R 

Returning to the previous Blimp script, the SAVE command and the stacked keyword saved the 
imputed data sets to a single stacked file with an index variable in the first column identifying the 
individual files. The stacked file is appropriate for analyzing data in R, SAS, SPSS, and Stata, 
among others. 

The R input file for the analysis is Ex10.R. The code block below shows the commands that 
import the data. The example requires the fdir and mitml packages, which are loaded on lines 1 
and 2. On line 3, the set() function of the fdir package identifies the file path of the folder 
containing the R script and sets this location as the working directory. On line 4, the 
read.table command imports the stacked data. It is only necessary to specify the name of the 
input data file. No file path is required when the data reside in the same folder as the R script as is 
the case here. Variable names are listed beginning on line 5. Importantly, the first variable named 
IMPUTATION is the index that identifies the individual files. Finally, lines 9 and 10 create new 
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centered variables called READ1.CGM and LRNPROB1.CGM, and line 10 computes the product of 
the centered variables. 

 
R Script Ex10.R 
 
 1  library(fdir) 
 2  library(mitml) 
 3  set() 
 4  imps <- read.table("./imps/imps.dat") 
 5  names(imps) <- c("imputation","id","male","hispanic","riskgrp", 
 6   "atrisk","behsymp1","lrnprob1","read1","read2","read3", 
 7   "read9","read9grp","stanread7","math1","math2","math3", 
 8   "math9","math9grp","stanmath7") 
 9  imps$read1.cgm <- imps$read1 - mean(imps$read1) 
10  imps$lrnprob1.cgm <- imps$lrnprob1 - mean(imps$lrnprob1) 
11  imps$product <- imps$read1.cgm * imps$lrnprob1.cgm 
 

The next block of code relies on the mitml package to fit the model to each data set and pool 
the results using Rubin’s rules.  

 
R Script Ex10.R, continued 
 
12  implist <- as.mitml.list(split(imps, imps$imputation)) 
13  fit <- with(implist, lm(read9 ~ read1.cgm + lrnprob1.cgm +  
14   product + behsymp1)) 
15  estimates <- testEstimates(fit, extra.pars = T, df.com = 133) 
16  estimates 
17  confint(estimates) 
 

The implist command on line 12 unstacks the data and creates a list that contains the 
individual files. Lines 13 and 14 fit the focal regression model using the lm function, and line 15 
uses the testEstimates function in mitml to implement Rubin’s pooling rules and save the 
results in an object called estimates. The df.com parameter is the denominator degrees of 
freedom that would have resulted had there been no missing data (i.e., N–K–1 degrees of 
freedom, where K is the number of predictors). This argument produces Barnard and Rubin 
degrees of freedom values. Finally, lines 16 and 17 print the estimates and confidence intervals. 
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The final code block below computes conditional effects or simple slopes. Line 18 computes 
the pooled standard deviation of the moderator (LRNPROB1.CGM). Line 19 prints the value, which 
equals 10.77. Lines 20, 22, and 24 define text strings that define the computation of the 
conditional effect of READ1 at the mean of LRNPROB1 and at plus and minus one standard 
deviation from the mean. Lines 21, 23, and 25 use the testConstraints function in mitml to 
compute the pooled coefficients and test statistics. 

 
R Script Ex10.R, continued 
 
18  lrnprob1.sd <- mean(unlist(lapply(implist, (function(x) sd(x$lrnprob1.cgm))))) 

19  lrnprob1.sd 

20  slp_high <- "read1.cgm + product*1*10.77" 

21  testConstraints(fit, constraints = slp_high, df.com = 133) 

22  slp_mean <- "read1.cgm + product*0*10.77" 

23  testConstraints(fit, constraints = slp_mean, df.com = 133) 

24  slp_low <- "read1.cgm + product*-1*10.77" 

25  testConstraints(fit, constraints = slp_low, df.com = 133) 

 

R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown in bold 
typeface. The RIV column (relative increase in variance) is a fraction comparing imputation 
noise to complete-data sampling variation, and the FMI column (fraction of missing information 
in the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 
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> estimates 
 
Call: 
 
testEstimates(model = fit, extra.pars = T, df.com = 133) 
 
Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
              Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)     94.885     4.993    19.005    94.305     0.000     0.199     0.183  
read1.cgm        0.513     0.042    12.226    95.990     0.000     0.190     0.176  
lrnprob1.cgm    -0.287     0.114    -2.524    87.532     0.013     0.240     0.211  
behsymp1        -0.144     0.099    -1.457    97.506     0.148     0.181     0.170  
product          0.012     0.004     2.989    95.632     0.004     0.192     0.178  
 
                   Estimate  
Residual~~Residual   81.798  
 
Hypothesis test adjusted for small samples with df=[133] 
complete-data degrees of freedom. 
 
> confint(estimates) 
                   2.5 %       97.5 % 
(Intercept)  84.97267773 104.79773864 
read1.cgm     0.42938742   0.59584085 
lrnprob1.cgm -0.51234117  -0.06092844 
behsymp1     -0.33979788   0.05214293 
product       0.00411505   0.02039524 
 

The lower-order terms in a moderated regression are conditional effects that depend on 
scaling or centering. Specifically, the lower-order slope of first grade reading scores ( 𝛽1̂ = 0.51) is 
the effect of that predictor at the mean of the first-grade learning problems, and the learning 
problems slope (𝛽2̂ = −0.29) similarly reflects the conditional effect at the reading score mean. 
The interaction slope captures the change in the first-grade reading slope for each one-unit 
increase in learning problems (and vice versa). Specifically, the positive coefficient (𝛽3̂ = 0.012) 
indicates that the association between first and ninth grade reading scores becomes stronger (i.e., 
more positive) as learning problems increase. That is, the predictive power of early reading on 
later reading is strongest for students with elevated learning problem ratings in first grade. Note 
that these estimates are numerically identical to those from Bayesian and maximum likelihood 
estimation. The output also includes a table with standardized coefficients and the R-squared 
statistic. 

Finally, the printed output also includes the table of conditional effects. The output is shown 
below. Consistent with the positive interaction coefficient, the simple slopes increase in strength 
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as learning problems ratings increase (and vice versa). All of the tabled conditional effects are 
statistically significant at p < .05. 

 

testConstraints(model = fit, constraints = slp_high, df.com = 133) 

 

Hypothesis test calculated from 20 imputed data sets. The following 

constraints were specified: 

 

                                  Estimate Std. Error  

   read1.cgm + product*1*10.77:      0.645      0.063  

 

Combination method: D1  

 

    F.value     df1     df2   P(>F)     RIV  

    105.076       1  77.758   0.000   0.330  

 

Hypothesis test adjusted for small samples with df=[133] 

complete-data degrees of freedom. 

 

testConstraints(model = fit, constraints = slp_mean, df.com = 133) 

 

Hypothesis test calculated from 20 imputed data sets. The following 

constraints were specified: 

 

                                  Estimate Std. Error  

   read1.cgm + product*0*10.77:      0.513      0.042  

 

Combination method: D1  

 

    F.value     df1     df2   P(>F)     RIV  

    149.476       1 101.581   0.000   0.190  

 

Hypothesis test adjusted for small samples with df=[133] 

complete-data degrees of freedom. 
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testConstraints(model = fit, constraints = slp_low, df.com = 133) 

 

Hypothesis test calculated from 20 imputed data sets. The following 

constraints were specified: 

 

                                   Estimate Std. Error  

   read1.cgm + product*-1*10.77:      0.381      0.059  

 

Combination method: D1  

 

    F.value     df1     df2   P(>F)     RIV  

     41.842       1 125.630   0.000   0.064  

 

Hypothesis test adjusted for small samples with df=[133] 

complete-data degrees of freedom. 
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EXAMPLE 11: CURVILINEAR REGRESSION 

This example illustrates a multiple regression analysis with an incomplete curvilinear effect. The 
analysis uses the mathachievement.dat data set taken from an educational intervention where 
250 students were assigned to an intervention and comparison condition. The file includes 
pretest and posttest math achievement scores, a measure of math self-efficacy, standardized 
reading scores taken from a statewide assessment, and several sociodemographic variables. The 
analysis variables are as follows. 

Name Definition Missing % Scale 

Focal Variables 
MATHPOST Math achievement posttest  18.0 Numeric 

ANXIETY Math anxiety composite 8.4 Numeric  

FRLUNCH Lunch assistance code 4.4 0 = None, 1 = Free/reduced lunch 
EFFICACY Math self-efficacy rating  9.6 Ordinal (1 to 6) 
MATHPRE Math achievement pretest  0 Numeric 

Auxiliary Variables 
ATRISK Behavioral disorder risk 5.2 0 = Low risk, 1 = At-risk 

STANREAD Standardized reading  9.2 Numeric 

Analysis Model 

The analysis model features math posttest scores regressed on anxiety and its square, the lunch 
assistance dummy code, math self-efficacy ratings, and math pretest scores. 

𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇 = 𝛽0 + 𝛽1(𝐴𝑁𝑋𝐼𝐸𝑇𝑌) + 𝛽2(𝐴𝑁𝑋𝐼𝐸𝑇𝑌 2) 
(24) 

+ 𝛽3(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛽4(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛽5(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜀 
 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. Curvilinear regression models (and models with non-
linearities more generally) require a factored regression specification that assigns separate 
distributions to the predictors and outcome. By default, Blimp invokes a multivariate normal 
distribution for numeric predictors and latent response scores. 
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The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following earlier examples, auxiliary variables enter the model as additional outcomes 
that are predicted by the analysis variables and by each other. The additional regression 
equations are as follows. 

𝐴𝑇𝑅𝐼𝑆𝐾∗ = 𝛾01 + 𝛾11(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾21(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) 

(25) 
+ 𝛾31(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾41(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛾51(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷 = 𝛾02 + 𝛾12(𝐴𝑇𝑅𝐼𝑆𝐾) + 𝛾22(𝑀𝐴𝑇𝐻𝑃𝑂𝑆𝑇) + 𝛾32(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁) 

+ 𝛾42(𝐹𝑅𝐿𝑈𝑁𝐶𝐻) + 𝛾52(𝐸𝐹𝐹𝐼𝐶𝐴𝐶𝑌 ) + 𝛾62(𝑀𝐴𝑇𝐻𝑃𝑅𝐸) + 𝜖2 
 

The ATRISK model is a probit regression, with the binary outcome model as a latent response 
variable (denoted by the asterisk superscript). Again, the entire collection of regressions can be 
viewed as a path model, where the focal regression is one part of a larger network (see the path 
diagram from Example 2). The key difference is that the path coefficients are just a tool for 
linking incomplete variables and do not represent a substantive theory. 

Blimp Script 

The code block below shows Blimp script Ex11.1.inp. The first five lines can be viewed as a set 
of commands that specify information about the data and variables. The DATA command 
specifies the name of the input text file. No file path is required when the data file is located in the 
same directory as the script, as it is here. Starting on line 2, the VARIABLES command names the 
data columns. The ORDINAL command on line 4 identifies binary and ordinal variables. Binary 
variables can be defined as ordinal or nominal, as the statistical models are identical. The 
MISSING command on line 5 defines a global missing value code as 999. 
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Blimp Script Ex11.1.imp 
 
 1  DATA: mathachievement.dat; 
 2  VARIABLES: id condition male frlunch atrisk stanread efficacy anxiety  
 3     mathpre mathpost; 
 4  ORDINAL: frlunch atrisk efficacy; 
 5  MISSING: 999; 
 6  FIXED: mathpre; 
 7  CENTER: anxiety; 
 8  MODEL:  
 9  focal.model: 
10  mathpost ~ anxiety anxiety^2@beta2 frlunch mathpre efficacy; 
11  auxiliary.models: 
12  stanread atrisk ~ mathpost anxiety frlunch efficacy mathpre; 
13  TEST: 
14  beta2 = 0; 
15  SEED: 90291; 
16  BURN: 10000; 
17  ITERATIONS: 10000; 
 

The FIXED, CENTER, MODEL, and TEST blocks can be viewed as a set. The FIXED command 
identifies a complete predictor, which does not require a distribution or regression model. The 
CENTER command deviates anxiety scores (the variable with the non-linear term) at their 
iteratively-estimated grand mean. Beginning on line 8, the MODEL command lists the regression 
models, with outcome variables to the left of the tilde and predictors to the right. The code uses 
labels (focal.model and auxiliary.models) to order output tables, such that the focal model 
appears first followed by the auxiliary variable models. The focal model listed on line 10 includes 
a squared term, which is specified by appending ^2 to the variable name. The quadratic slope 
coefficient is labeled using the @ symbol. Blimp automatically configures the explanatory variable 
models under the assumption that they are normally distributed. Line 12 is a syntax shortcut that 
produces the two auxiliary variable regression models in Equation 25; in the first model, READ2 is 
regressed on the focal variables, and the second model features STANREAD7 regressed on READ2 
and the focal variables. The TEST command uses the parameter labels to specify a custom 
hypothesis test that the quadratic effect equals zero.  This command produces the Bayesian Wald 
test (Asparouhov & Muthén, 2021), which is essentially a chi-square statistic that captures the 
discrepancy between the Bayesian point estimates (posterior means) and the hypothesized value 
of zero.  
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Finally, lines 15 through 17 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                          251 to 500             1.045            61   
                          501 to 1000            1.087            58   
                          751 to 1500            1.042            58   
                         1001 to 2000            1.065            59   
                                  ...              ...            ..   
                         4501 to 9000            1.045            60   
                         4751 to 9500            1.009            58   
                         5001 to 10000           1.012            59 
 

The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Example 6. In the interest of 
space, we point readers to that example for additional details. 
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Thus far, the examples have generally used 95% credible intervals to evaluate the significance 
of individual slope coefficients. The TEST command in the previous script requested a Bayesian 
Wald chi-square statistic (Asparouhov & Muthén, 2021) that evaluates the null hypothesis that 
the population quadratic effect equals zero. The chi-square statistic, degrees of freedom, and p-
value appear near the bottom of the MODEL FIT section under the WALD TEST heading. The 
test statistic is statistically significant, thus refuting the null hypothesis. 

 
MODEL FIT: 

 

  ... 

 

  WALD TESTS (Asparouhov & Muthén, 2021) 

 

  Test #1 

 

    Full: 

      [1]  mathpost ~ Intercept anxiety frlunch efficacy mathpre anxiety^2@beta2 

 

    Restricted: 

      [1]  mathpost ~ Intercept anxiety frlunch efficacy mathpre anxiety^2@beta2 

 

    Constraints in Restricted: 

      [1]  beta2 = 0 

 

    Wald Statistic (Chi-Square)                11.705 

    Number of Parameters Tested (df)                1 

    Probability                                 0.001 

 

The table summarizing the focal regression model is shown below. The table includes 
unstandardized coefficients, standardized slopes, and variance explained effect size estimates. 
MCMC estimation produces a distribution for each parameter in the table. The median and 
standard deviation columns describe the center and spread of the posterior distributions; 
although they make no reference to drawing repeated samples, they are analogous—and 
numerically equivalent in most cases—to frequentist point estimates and standard errors. The 
95% credible intervals in the rightmost columns give a range that captures 95% of the 
parameter’s distribution. These are akin to confidence intervals, but the intervals describe 
parameter distributions rather than characteristics of repeated samples. The N_Eff values in 
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rightmost column of the table give the effective number of MCMC samples for each parameter. 
These quantities essentially represent the number of independent estimates on which the 
parameter summaries are based after removing autocorrelations from the MCMC process. 
Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in the example table 
exceed this recommended minimum. In cases where the N_Eff values are insufficient, increasing 
the value on the ITERATIONS command will remedy the issue. 

 
OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  mathpost    
 
Grand Mean Centered: anxiety 
 
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
Variances:                       
  Residual Var.                      50.966      5.388     41.845     63.021      1.000   5413.246  
 
Coefficients:                    
  Intercept                          32.689      3.457     25.968     39.571      1.000   6410.684  
  anxiety                             0.041      0.084     -0.121      0.206      1.000   4221.113  
  frlunch                            -5.840      1.073     -7.948     -3.750      1.000   4993.497  
  efficacy                            1.103      0.342      0.444      1.781      1.000   5838.380  
  mathpre                             0.471      0.067      0.338      0.602      1.000   6319.544  
  anxiety^2                          -0.021      0.006     -0.033     -0.009      1.000   5091.389  
 
Standardized Coefficients:       
  anxiety                             0.031      0.064     -0.093      0.157      1.000   4228.247  
  frlunch                            -0.298      0.051     -0.394     -0.195      1.000   5053.969  
  efficacy                            0.184      0.056      0.074      0.293      1.000   5698.632  
  mathpre                             0.423      0.055      0.310      0.523      1.000   6522.033  
  anxiety^2                          -0.204      0.058     -0.315     -0.087      1.000   5054.272  
 
Proportion Variance Explained    
  by Coefficients                     0.453      0.045      0.359      0.539      1.000   5780.687  
  by Residual Variation               0.547      0.045      0.462      0.641      1.000   5780.687  
 
                                ------------------------------------------------------------------- 
 

In a curvilinear regression model, the lower-order term for math anxiety is a conditional effect 
that depends on scaling or centering. The slope conveys the instantaneous linear change in the 
outcome at the anxiety mean, controlling for all other predictors (𝛽1 = 0.04). The negative 
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quadratic coefficient (𝛽2 = –0.02) indicates that the positive association at the mean decreases 
(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety, 
the association becomes negative, such that anxiety has a debilitating effect on math 
performance. 

The Blimp output also includes tables of regression model parameters for the auxiliary 
variables as well as the auto-generated models for incomplete predictors. These additionally 
results are not of substantive interest and would not be reported. The auxiliary variable models 
appear in OUTCOME MODEL ESTIMATES section with the focal results, and the auto-generated 
predictor models are displayed under the heading PREDICTOR MODEL ESTIMATES.  

Saving Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex11.2.imp is identical Ex11.1.imp, but it adds the following lines at the 
bottom of the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to 
CHAINS saves a single filled-in data set from the final iteration of a unique MCMC process, thus 
avoiding autocorrelation among the imputations. The SAVE command provides a name for the 
imputed data sets. The script illustrates how to save data sets in two common formats. The 
stacked keyword creates a stacked file where all imputations are in a single file, and the separate 
keyword saves each imputed data set to a separate file with the asterisk replaced by a numeric 
index. To keep things organized, the ./imps part of the file path points to a subfolder named 
imps located within the same folder as the script and data. The separate keyword also creates a 
list of file names needed for analysis in Mplus (in this example, a filed called implist.dat 
located in the imps folder). 
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When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 

VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     id condition male frlunch atrisk stanread efficacy anxiety  
     mathpre mathpost 
 
   stacked = './imps/imps.dat' 
 
     imp# id condition male frlunch atrisk stanread efficacy  
     anxiety mathpre mathpost 
 

The imputed data sets are subsequently analyzed in another software package, and estimates 
and standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase 
does not utilize the auxiliary variables, as their information is embedded in the imputations. 
Scripts for analyzing the imputed data sets are found in the next subsections. 

Analyzing Imputations in Mplus 

In lieu of the Bayesian estimates, Blimp’s SAVE command can be used to save multiple 
imputations for analysis in the frequentist framework. Returning to the previous Blimp script, 
the SAVE command and the separate keyword saved each imputed data set to a separate file 
with the asterisk replaced by a numeric index. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps subfolder). Example 6 shows the contents of this file. 

The Mplus input file for analyzing the imputations is Ex11.inp. The major commands are 
similar to the Ex8.inp file described in Example 8. Consistent with previous multiple 
imputation analysis scripts, the DATA command lists the text file containing the names of the 
imputed data sets (the implist.dat file located in the ./imps subdirectory). The type = 
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imputation subcommand instructs Mplus that the input data is a list of file names. Second, the 
missing subcommand is omitted because the analysis variables are now complete. Finally, the 
MODEL section no longer specifies a normal distribution for the predictors or models for the 
auxiliary variables.  

The script also invokes one new feature. On line 9, the center subcommand under the 
DEFINE command centers anxiety scores at their grand mean. Line 10 then computes a new 
variable equal to the square of the centered predictor. Importantly, new variables computed with 
the DEFINE command must appear at the end of the usevariables list on line 7. The script is 
shown below. 

 
Mplus Script Ex11.inp 

 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id condition male frlunch atrisk stanread  
 6   efficacy anxiety mathpre mathpost; 
 7  usevariables = mathpost anxiety frlunch efficacy mathpre anxietysq; 
 8  DEFINE: 
 9  center anxiety (grandmean); 
10  anxietysq = anxiety^2; 
11  MODEL:  
12  mathpost on anxiety anxietysq frlunch efficacy mathpre; 
13  OUTPUT: 
14  stdyx cinterval; 
 

Mplus Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The focal model results are shown in bold 
typeface. The Rate of Missing column (also called the fraction of missing information in the 
literature) quantifies the imputation noise in each estimate as proportion of its squared standard 
error. 
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MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 MATHPOST ON 
    ANXIETY            0.034      0.083      0.407      0.684      0.304 
    ANXIETYSQ         -0.021      0.006     -3.652      0.000      0.187 
    FRLUNCH           -5.687      1.138     -4.998      0.000      0.371 
    EFFICACY           1.052      0.341      3.085      0.002      0.276 
    MATHPRE            0.471      0.063      7.414      0.000      0.142 
 
 Intercepts 
    MATHPOST          32.944      3.283     10.035      0.000      0.135 
 
 Residual Variances 
    MATHPOST          49.149      5.588      8.795      0.000      0.388 
 

In a curvilinear regression model, the lower-order term for math anxiety is a conditional effect 
that depends on scaling or centering. The slope conveys the instantaneous linear change in the 
outcome at the anxiety mean, controlling for all other predictors (𝛽1̂ = 0.03). The negative 
quadratic coefficient (𝛽2̂ = –0.02) indicates that the positive association at the mean decreases 
(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety, 
the association becomes negative, such that anxiety has a debilitating effect on math 
performance. The output also includes a table with standardized coefficients and the R-squared 
statistic. Note that these estimates are numerically identical to those from Bayesian and 
maximum likelihood estimation. 

Analyzing Imputations in R 

Returning to the previous Blimp script, the SAVE command and the stacked keyword saved the 
imputed data sets to a single stacked file with an index variable in the first column identifying the 
individual files. The stacked file is appropriate for analyzing data in R, SAS, SPSS, and Stata, 
among others. 

The R input file for the analysis is Ex11.R. The code block below shows the commands that 
import the data. 
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R Script Ex11.R 
 
1  library(fdir) 
2  library(mitml) 
3  set() 
4  imps <- read.table("./imps/imps.dat") 
5  names(imps) <- c("imputation", "id", "condition","male","frlunch", 
6   "atrisk", "stanread","efficacy", "anxiety", "mathpre", "mathpost") 
7  imps$anxiety.cgm <- imps$anxiety - mean(imps$anxiety) 
8  imps$anxiety.sq <- imps$anxiety.cgm^2 
 

The example requires the fdir and mitml packages, which are loaded on lines 1 and 2. On line 
3, the set() function of the fdir package identifies the file path of the folder containing the R 
script and sets this location as the working directory. On line 4, the read.table command 
imports the stacked data. It is only necessary to specify the name of the input data file. No file 
path is required when the data reside in the same folder as the R script as is the case here. 
Importantly, the first variable named IMPUTATION is the index that identifies the individual files. 
Finally, line 7 creates a new centered variable called ANXIETY.CGM, and line 8 computes the 
square of the centered variable. 

The next block of code relies on the mitml package to fit the model to each data set and pool 
the results using Rubin’s rules.  

 
R Script Ex11.R, continued 
 
 9  implist <- as.mitml.list(split(imps, imps$imputation)) 
10  fit <- with(implist, lm(mathpost ~ anxiety.cgm + anxiety.sq +  
11   frlunch  + efficacy + mathpre)) 
12  estimates <- testEstimates(fit, extra.pars = T, df.com = 244) 
13  estimates 
14  confint(estimates) 
 

The implist command on line 9 unstacks the data and creates a list that contains the individual 
files. Line 10 fits the focal regression model using the lm function, and line 12 uses the 
testEstimates function in mitml to implement Rubin’s pooling rules and save the results in 
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an object called estimates. The df.com parameter is the denominator degrees of freedom that 
would have resulted had there been no missing data (i.e., N–K–1 degrees of freedom, where K is 
the number of predictors). This argument produces Barnard and Rubin degrees of freedom 
values. Finally, lines 13 and 14 print the estimates and confidence intervals. 

R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown in bold 
typeface. The RIV column (relative increase in variance) is a fraction comparing imputation 
noise to complete-data sampling variation, and the FMI column (fraction of missing information 
in the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 

 

> estimates 

 

Call: 

 

testEstimates(model = fit, extra.pars = T, df.com = 244) 

 

Final parameter estimates and inferences obtained from 20 imputed data sets. 

 

             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  

(Intercept)    32.943     3.318     9.929   177.001     0.000     0.150     0.140  

anxiety.cgm     0.034     0.084     0.404    96.483     0.687     0.415     0.307  

anxiety.sq     -0.021     0.006    -3.616   147.802     0.000     0.221     0.192  

frlunch        -5.687     1.147    -4.960    76.330     0.000     0.554     0.373  

efficacy        1.052     0.344     3.058   107.170     0.003     0.361     0.279  

mathpre         0.471     0.064     7.336   173.143     0.000     0.159     0.147  

 

                   Estimate  

Residual~~Residual   50.358  

 

Hypothesis test adjusted for small samples with df=[244] 

complete-data degrees of freedom.                                                             
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> confint(estimates) 

                  2.5 %       97.5 % 

(Intercept) 26.39566909 39.490858174 

anxiety.cgm -0.13268668  0.200544222 

anxiety.sq  -0.03287417 -0.009639516 

frlunch     -7.97089460 -3.403528840 

efficacy     0.37008949  1.734175237 

mathpre      0.34392328  0.597097949 

 

In a curvilinear regression model, the lower-order term for math anxiety is a conditional effect 
that depends on scaling or centering. The slope conveys the instantaneous linear change in the 
outcome at the anxiety mean, controlling for all other predictors (𝛽1̂ = 0.03). The negative 
quadratic coefficient (𝛽2̂ = –0.02) indicates that the positive association at the mean decreases 
(i.e., becomes less positive) as anxiety increases (and vice versa). At high enough levels of anxiety, 
the association becomes negative, such that anxiety has a debilitating effect on math 
performance. Note that these estimates are numerically identical to those from Bayesian and 
maximum likelihood estimation. 
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SECTION 3: MODEL-AGNOSTIC  
MULTIPLE IMPUTATION 
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EXAMPLE 12: FULLY CONDITIONAL SPECIFICATION 
IMPUTATION FOR A PAIRED-SAMPLES COMPARISON 

This example illustrates model-agnostic fully conditional specification multiple imputation for a 
paired-samples test involving pretest and posttest scores. The analysis uses the 
mathachievement.dat data set taken from an educational intervention where 250 students 
were assigned to an intervention and comparison condition. The file includes pretest and posttest 
math achievement scores, a measure of math self-efficacy, standardized reading scores taken 
from a statewide assessment, and several sociodemographic variables. The analysis variables are 
as follows. 

Name Definition Missing % Scale 

Focal Variables 
MATHPRE Math achievement pretest  0 Numeric 

MATHPOST Math achievement posttest  18.0 Numeric 
Auxiliary Variables 

FRLUNCH Lunch assistance code 4.4 0 = None, 1 = Free/reduced lunch 
STANREAD Standardized reading  9.2 Numeric 

EFFICACY Math self-efficacy rating  9.6 Ordinal (1 to 6) 

Imputation and Analysis Models 

Fully conditional specification uses a sequence of regression models to fill in missing values. 
Specifically, each MCMC iteration fits a series of models where one incomplete variable is 
regressed on all other variables. The predicted values and residual variance from each model 
define the center and spread of the imputed values, which are drawn at random from a normal 
distribution. After imputing the missing scores, the filled-in variable becomes a predictor in all 
other imputation models in the sequence. The imputation stage should include all variables and 
effects for the subsequent analyses, and it should incorporate auxiliary variables that either 
predict missingness or correlate with the incomplete variables (Collins et al., 2001). 

A common goal of model-agnostic imputation is to generate imputations for different 
purposes (e.g., descriptive summaries, several analyses within the same project). To illustrate an 
entire multiple imputation analysis, suppose that one use of the filled-in data sets involves a 
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paired-samples test of the changes between pretest and posttest. The analysis can be cast as an 
empty regression model with change scores as the outcome variable. 

𝐶𝐻𝐴𝑁𝐺𝐸 = 𝛽0 + 𝜀 (26) 

The variable CHANGE is computed as MATHPOST minus MATHPRE. 

Blimp Script 

The code block below shows Blimp script Ex12.inp. 

 
Blimp Script Ex12.imp 
 
1  DATA: mathachievement.dat; 
 2  VARIABLES: id condition male frlunch atrisk stanread efficacy anxiety  
 3     mathpre mathpost; 
 4  ORDINAL: frlunch efficacy; 
 5  MISSING: 999; 
 6  FIXED: mathpre; 
 7  FCS: mathpost mathpre frlunch stanread efficacy;  
 8  SEED: 90291; 
 9  BURN: 5000; 
10  ITERATIONS: 10000; 
11  NIMPS: 20; 
12  CHAINS: 20; 
13  SAVE:  
14  stacked = ./imps/imps.dat; 
15  separate = ./imps/imp*.dat; 
 

The first five lines can be viewed as a set of commands that specify information about the data 
and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is located in the same directory as the script, as it is here. Starting on 
line 2, the VARIABLES command names the data columns. The ORDINAL command on line 4 
identifies a pair of binary variables. Binary variables can alternatively be identified using the 
NOMINAL command because the underlying statistical models are identical. Finally, the MISSING 
command on line 5 defines a global missing value code as 999.  
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Next, the FCS command lists all variables—complete or incomplete—that are included in the 
imputation phase. The FIXED command identifies a complete variable that does not require 
imputation. This reduces computational time because complete variables do not require a 
regression model. Lines 8 through 10 can also be viewed as a block of commands that specify 
features of the MCMC algorithm: the SEED command gives an integer string that initializes the 
random number generator, the BURN command specifies the number of iterations for the warm-
up or burn-in period, and the ITERATIONS command gives the number of MCMC iterations on 
which the imputation model summaries are based (essentially, the total number of MCMC cycles 
across all chains following the warm-up period). 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to 
CHAINS saves a single filled-in data set from the final iteration of a unique MCMC process, thus 
avoiding autocorrelation among the imputations. The SAVE command provides a name for the 
imputed data sets. The script illustrates how to save data sets in two common formats. The 
stacked keyword creates a stacked file where all imputations are in a single file, and the separate 
keyword saves each imputed data set to a separate file with the asterisk replaced by a numeric 
index. To keep things organized, the ./imps part of the file path points to a subfolder named 
imps located within the same folder as the script and data. The separate keyword also creates a 
list of file names needed for analysis in Mplus (in this example, a filed called implist.dat 
located in the imps folder). 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 
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BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                          126 to 250             1.480            23   
                          251 to 500             1.395            24   
                          376 to 750             1.272            23   
                          501 to 1000            1.250            23   
                          626 to 1250            1.163            23   
                          751 to 1500            1.144            23   
                          876 to 1750            1.093            23   
                         1001 to 2000            1.101            23   
                         1126 to 2250            1.140            23   
                         1251 to 2500            1.097            24   
                         1376 to 2750            1.104            23   
                         1501 to 3000            1.116            23   
                         1626 to 3250            1.101            23   
                         1751 to 3500            1.075            23   
                         1876 to 3750            1.068            23   
                         2001 to 4000            1.076            23   
                         2126 to 4250            1.055            23   
                         2251 to 4500            1.048            22   
                         2376 to 4750            1.038            23   
                         2501 to 5000            1.042            23 
 

The next output excerpt shows information about the data and the variables in the imputation 
models. 
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DATA INFORMATION: 
 
  Sample Size:              250 
  Missing Data Rates: 
 
                  frlunch = 04.40 
                 stanread = 09.20 
                 efficacy = 09.60 
                 mathpost = 18.00 
 
VARIABLES IN IMPUTATION MODEL: 
 
  Fixed variables:        mathpre 
  Incomplete continuous:  stanread mathpost 
  Incomplete ordinal:     frlunch efficacy 
 
  NUMBER OF PARAMETERS 

    Imputation Models:      26 
 

MCMC estimation produces a distribution for each parameter in every unique imputation 
model. The median and standard deviation columns describe the center and spread of the 
posterior distributions; although they make no reference to drawing repeated samples, they are 
analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. The N_Eff 
values in rightmost column of the table give the effective number of MCMC samples for each 
parameter. These quantities essentially represent the number of independent estimates on which 
the parameter summaries are based after removing autocorrelations from the MCMC process. 
Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in the example table 
exceed this recommended minimum. In cases where the N_Eff values are insufficient, increasing 
the value on the ITERATIONS command will remedy the issue. 

The Blimp output includes tables of regression parameters for every incomplete variable’s 
imputation model. The imputation model parameters are not of substantive interest and would 
not be reported. An example table is shown below. 
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Missing variable:   mathpost    
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
 
Grand Mean                           56.504      0.555     55.397     57.567      1.005   4353.468  
 
Level 1:                                                                                            
  frlunch                            -2.188      0.575     -3.270     -1.038      1.006   3351.406  
  stanread                            0.189      0.060      0.073      0.306      1.004   4430.891  
  efficacy                            1.222      0.517      0.216      2.252      1.005   4406.012  
  mathpre                             0.476      0.062      0.354      0.596      1.002   6043.712  
  Residual Var.                      45.242      4.994     36.454     56.257      1.004   4585.610  
                                                                                                    
                                ------------------------------------------------------------------- 
 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     id condition male frlunch atrisk stanread efficacy anxiety  
     mathpre mathpost 
 
   stacked = './imps/imps.dat' 
 
     imp# id condition male frlunch atrisk stanread efficacy  
     anxiety mathpre mathpost  
 

The imputed data sets are subsequently analyzed in another software package, and estimates 
and standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase 
does not utilize the auxiliary variables, as their information is embedded in the imputations. 
Scripts for analyzing the imputed data sets are found in the next subsections. 
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Analyzing Imputations in Mplus 

Returning to the previous Blimp script, the SAVE command and the separate keyword saved 
each imputed data set to a separate file with the asterisk replaced by a numeric index. The 
separate keyword also creates a list of file names needed for analysis in Mplus (in this example, a 
filed called implist.dat located in the imps subfolder). The contents of this file are as follows. 

 
imp1.dat 
imp2.dat 
imp3.dat 
imp4.dat 
imp5.dat 
imp6.dat 
imp7.dat 
imp8.dat 
imp9.dat 
imp10.dat 
imp11.dat 
imp12.dat 
imp13.dat 
imp14.dat 
imp15.dat 
imp16.dat 
imp17.dat 
imp18.dat 
imp19.dat 
imp20.dat 
 

The Mplus input file for analyzing the imputations is Ex12.inp. Following previous 
imputation analysis examples, the DATA command lists the text file containing the names of the 
imputed data sets (the implist.dat file located in the ./imps subdirectory). The type = 
imputation subcommand instructs Mplus that the input data is a list of file names. The 
usevariables subcommand of the VARIABLE command selects variables for the analysis. The 
DEFINE command beginning on line 8 computes the change or difference score by subtracting 
the pretest from posttest. Importantly, new variables computed with the DEFINE command must 
appear at the end of the usevariables list on line 7. In this example, the new change score is 
the only variable in the model. Listing the change score variable in the MODEL section estimates 
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the mean and variance of the variable. Finally, listing the cinterval keyword after OPTION 
prints confidence intervals. The code block below shows the analysis and pooling script. 

 
Mplus Script Ex12.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id condition male frlunch lowach stanread efficacy  
 6   anxiety mathpre mathpost; 
 7  usevariables =  change; 
 8  DEFINE: 
 9  change = mathpost - mathpre; 
10  MODEL: 
11  change; 
12  OUTPUT: 
13  cinterval; 
 

Mplus Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The focal model results are shown in bold 
typeface. The Rate of Missing column (also called the fraction of missing information in the 
literature) quantifies the imputation noise in each estimate as proportion of its squared standard 
error. 
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MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 Means 
    CHANGE             6.418      0.577     11.131      0.000      0.130 
 
 Variances 
    CHANGE            72.439      6.864     10.554      0.000      0.109 
 

The results are interpreted in the same way as a complete-data paired-samples test. For 
example, the intercept represents the mean change from pretest to posttest. The corresponding 
test statistic indicates that the change is statistically different from zero (z = 11.13, p < .001).  

Analyzing Imputations in R 

Returning to the previous Blimp script, the SAVE command and the stacked keyword saved the 
imputed data sets to a single stacked file with an index variable in the first column identifying the 
individual files. The stacked file is appropriate for analyzing data in R, SAS, SPSS, and Stata, 
among others. The R input file for the analysis is Ex12.R. The code block below shows the 
commands that import the data. 

 
R Script Ex12.R 
 
1  library(fdir) 
2  library(mitml) 
3  set() 
4  imps <- read.table("./imps/imps.dat") 
5  names(imps) <- c("imputation", "id", "condition","male","frlunch", 
6   "atrisk", "stanread","efficacy", "anxiety", "mathpre", "mathpost") 
7   imps$change <- imps$mathpost - imps$mathpre 
 

The example requires the fdir and mitml packages, which are loaded on lines 1 and 2. On 
line 3, the set() function of the fdir package identifies the file path of the folder containing the 
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R script and sets this location as the working directory. On line 4, the read.table command 
imports the stacked data. It is only necessary to specify the name of the input data file. No file 
path is required when the data reside in the same folder as the R script as is the case here. Next, 
variable names are listed beginning on line 5. Importantly, the first variable named IMPUTATION 
is the index that identifies the individual files. Finally, line 7 computes a new variable named 
CHANGE that represents the gain from pretest to posttest. 

The next block of code relies on the mitml package to fit the model to each data set and pool 
the results using Rubin’s rules. The implist command on line 9 unstacks the data and creates a 
list that contains the individual files. Line 10 fits the focal regression model using the lm function, 
and line 11 uses the testEstimates function in mitml to implement Rubin’s pooling rules and 
save the results in an object called estimates. The df.com parameter is the denominator 
degrees of freedom that would have resulted had there been no missing data (i.e., N–K–1 degrees 
of freedom, where K is the number of predictors). This argument produces Barnard and Rubin 
degrees of freedom values. Finally, lines 12 and 13 print the estimates and confidence intervals. 

 
R Script Ex12.R, continued 
 
 9  implist <- as.mitml.list(split(imps, imps$imputation)) 
10  fit <- with(implist, lm(change ~ 1)) 
11  estimates <- testEstimates(fit, extra.pars = T, df.com = 249) 
12  estimates 
13  confint(estimates) 
 

R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown in bold 
typeface. The RIV column (relative increase in variance) is a fraction comparing imputation 
noise to complete-data sampling variation, and the FMI column (fraction of missing information 
in the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 
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> estimates 
 
Call: 
 
testEstimates(model = fit, extra.pars = T, df.com = 249) 
 
Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)     6.418     0.578    11.112   181.675     0.000     0.147     0.137  
 
                   Estimate  
Residual~~Residual   72.732  
 
Hypothesis test adjusted for small samples with df=[249] 
complete-data degrees of freedom. 
 
> confint(estimates) 
               2.5 %  97.5 % 
(Intercept) 5.278415 7.55776 
 

The results are interpreted in the same way as a complete-data paired-samples test. For 
example, the intercept represents the mean change from pretest to posttest. The corresponding 
test statistic indicates that the change is statistically different from zero (t = 11.11, p < .001).  
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EXAMPLE 13: FULLY CONDITIONAL SPECIFICATION 
IMPUTATION WITH MULTIVARIATE NORMAL DATA 

This example illustrates model-agnostic fully conditional specification multiple imputation with 
multivariate normal data. The analysis uses the behaviorachievement.dat data set taken 
from a longitudinal study that followed 138 students from primary through middle school. The 
file includes three annual assessments of broad reading and math achievement beginning in the 
first grade, seventh grade standardized achievement test scores taken from a statewide 
assessment, and a final measure of broad reading and math obtained in ninth grade. The data 
also contain teacher ratings of behavioral symptoms and learning problems were also obtained in 
the first grade. The data description at the beginning of this document provides additional 
details. The variables for this analysis are as follows. 

Name Definition Missing % Scale 

Focal Variables 
BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  
LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 
READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 
READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

Imputation and Analysis Models 

Fully conditional specification uses a sequence of regression models to fill in missing values. 
Specifically, each MCMC iteration fits a series of models where one incomplete variable is 
regressed on all other variables. The predicted values and residual variance from each model 
define the center and spread of the imputed values, which are drawn at random from a normal 
distribution. After imputing the missing scores, the filled-in variable becomes a predictor in all 
other imputation models in the sequence. The imputation stage should include all variables and 
effects for the subsequent analyses, and it should incorporate auxiliary variables that either 
predict missingness or correlate with the incomplete variables (Collins et al., 2001). 



   

 

161 

A common goal of model-agnostic imputation is to generate imputations for different 
purposes (e.g., descriptive summaries, several analyses within the same project). To illustrate an 
entire multiple imputation analysis, suppose that one use of the filled-in data sets involves a 
model where ninth grade broad reading scores are regressed on first grade reading achievement 
and teacher-rated learning problems and behavioral symptoms. 

 𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 (27) 

Examples 1 and 6 used the same analysis model to illustrate maximum likelihood estimation, 
Bayesian estimation, and model-based multiple imputation. 

Blimp Script 

The code block below shows Blimp script Ex13.inp. 

 
Blimp Script Ex13.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5  MISSING: 999; 
 6  FCS: read9 read1 lrnprob1 behsymp1 stanread7 read2; 
 7  SEED: 90291; 
 8  BURN: 2000; 
 9  ITERATIONS: 10000;  
10  NIMPS: 20; 
11  CHAINS: 20; 
12  SAVE:  
13  stacked = ./imps/imps.dat; 
14  separate = ./imps/imp*.dat; 
 

The first five lines can be viewed as a set of commands that specify information about the data 
and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is located in the same directory as the script, as it is here. Starting on 
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line 2, the VARIABLES command names the data columns, and the MISSING command on line 5 
defines a global missing value code as 999.  

Next, the FCS command lists all variables—complete or incomplete—that are included in the 
imputation phase. Using the FIXED command to identify complete variables reduces 
computational time because these variables do not require a regression model (see Example 12). 
Lines 7 through 9 can also be viewed as a block of commands that specify features of the MCMC 
algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
imputation model summaries are based (essentially, the total number of MCMC cycles across all 
chains following the warm-up period). 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to 
CHAINS saves a single filled-in data set from the final iteration of a unique MCMC process, thus 
avoiding autocorrelation among the imputations. The SAVE command provides a name for the 
imputed data sets. The script illustrates how to save data sets in two common formats. The 
stacked keyword creates a stacked file where all imputations are in a single file, and the separate 
keyword saves each imputed data set to a separate file with the asterisk replaced by a numeric 
index. To keep things organized, the ./imps part of the file path points to a subfolder named 
imps located within the same folder as the script and data. The separate keyword also creates a 
list of file names needed for analysis in Mplus (in this example, a filed called implist.dat 
located in the imps folder). 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 
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BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           51 to 100             1.436            22   
                          101 to 200             1.245            22   
                          151 to 300             1.132            22   
                          201 to 400             1.094            22   
                          251 to 500             1.070            22   
                          301 to 600             1.063            22   
                          351 to 700             1.060            22   
                          401 to 800             1.045            22   
                          451 to 900             1.060            22   
                          501 to 1000            1.045            22   
                          551 to 1100            1.046            22   
                          601 to 1200            1.051            22   
                          651 to 1300            1.049            22   
                          701 to 1400            1.044            22   
                          751 to 1500            1.032            22   
                          801 to 1600            1.037            22   
                          851 to 1700            1.038            22   
                          901 to 1800            1.031            22   
                          951 to 1900            1.024            22   
                         1001 to 2000            1.022            22 
 

The next output excerpt shows information about the data and the variables in the imputation 
models. 
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DATA INFORMATION: 
 
  Sample Size:              138 
  Missing Data Rates: 
 
                 behsymp1 = 03.62 
                 lrnprob1 = 02.17 
                    read1 = 06.52 
                    read2 = 09.42 
                    read9 = 17.39 
                stanread7 = 19.57 

 
VARIABLES IN IMPUTATION MODEL: 
 
  Incomplete continuous:  behsymp1 lrnprob1 read1 read2 read9 stanread7 
 
  NUMBER OF PARAMETERS 

    Imputation Models:      42 
 

MCMC estimation produces a distribution for each parameter in every unique imputation 
model. The median and standard deviation columns describe the center and spread of the 
posterior distributions; although they make no reference to drawing repeated samples, they are 
analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. The N_Eff 
values in rightmost column of the table give the effective number of MCMC samples for each 
parameter. These quantities essentially represent the number of independent estimates on which 
the parameter summaries are based after removing autocorrelations from the MCMC process. 
Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in the example table 
exceed this recommended minimum. In cases where the N_Eff values are insufficient, increasing 
the value on the ITERATIONS command will remedy the issue. 

The Blimp output includes tables of regression parameters for every incomplete variable’s 
imputation model. The imputation model parameters are not of substantive interest and would 
not be reported. An example table is shown below. 
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Missing variable:   behsymp1    
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
 
Grand Mean                           49.506      1.093     47.355     51.590      1.006   2075.694  
 
Level 1:                                                                                            
  lrnprob1                            0.731      0.071      0.591      0.872      1.002   8316.690  
  read1                              -0.274      0.077     -0.422     -0.121      1.002   8393.286  
  read2                               0.590      0.103      0.386      0.792      1.002   7435.432  
  read9                              -0.457      0.102     -0.657     -0.254      1.003   8587.332  
  stanread7                          -0.018      0.016     -0.048      0.014      1.003   6881.275  
  Residual Var.                      55.104      7.569     42.773     72.497      1.003   7269.684  
                                                                                                    
                                ------------------------------------------------------------------- 
 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 

 

separate = './imps/imp*.dat' 

 

   id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3  

     read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7 

 

stacked = './imps/imps.dat' 

 

   imp# id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3    

   read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7  
 

The imputed data sets are subsequently analyzed in another software package, and estimates 
and standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase 
does not utilize the auxiliary variables, as their information is embedded in the imputations. 
Scripts for analyzing the imputed data sets are found in the next subsections. 
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Analyzing Imputations in Mplus 

In lieu of the Bayesian estimates, Blimp’s SAVE command can be used to save multiple 
imputations for analysis in the frequentist framework. Returning to the previous Blimp script, 
the SAVE command and the separate keyword saved each imputed data set to a separate file 
with the asterisk replaced by a numeric index. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps subfolder). The contents of this file were shown in Example 12. 

The Mplus input file for analyzing the imputations is Ex15.inp. The script is virtually 
identical to the Ex6.1.inp file described in Example 1 with three exceptions. First, instead of 
naming the raw data set, the DATA command lists the text file containing the names of the 
imputed data sets (the implist.dat file located in the ./imps subdirectory). The type = 
imputation subcommand instructs Mplus that the input data is a list of file names. Second, the 
missing subcommand is omitted because the analysis variables are now complete. Finally, the 
MODEL section no longer specifies a normal distribution for the predictors. Readers can refer back 
to Example 1 for a detailed description of the other commands. The code block below shows the 
analysis and pooling script. 

 
Mplus Script Ex13.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 6    read1 read2 read3 read9 read9grp stanread7  
 7    math1 math2 math3 math9 math9grp stanmath7; 
 8  usevariables = read9 read1 lrnprob1 behsymp1; 
 9  MODEL:   
10  read9 on read1 lrnprob1 behsymp1 (beta1-beta3); 
11  MODEL TEST: 
12  0 = beta1; 0 = beta2; 0 = beta3; 
13  OUTPUT: 
14  stdyx cinterval; 
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Mplus Output 

When fitting regression models to complete data sets, researchers often use an omnibus F test to 
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation 
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal 0 
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear 
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of 
Parameter Constraints heading. The test statistic is statistically significant, thus refuting the 
null hypothesis. 
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MODEL FIT INFORMATION 
 
Number of Free Parameters                       5 
 
... 

 
Wald Test of Parameter Constraints 
 
          Value                            175.893 
          Degrees of Freedom                     3 
          P-Value                           0.0000 
 

The table of unstandardized parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown in 
bold typeface. The Rate of Missing column (also called the fraction of missing information in 
the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 READ9    ON 
    READ1              0.506      0.043     11.868      0.000      0.182 
    LRNPROB1          -0.231      0.113     -2.047      0.041      0.149 
    BEHSYMP1          -0.189      0.101     -1.864      0.062      0.160 
 
 Intercepts 
    READ9             65.487      5.803     11.284      0.000      0.150 
 
 Residual Variances 
    READ9             86.366     11.202      7.710      0.000      0.138 
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The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 11.87, p < .001). Note that these estimates are numerically 
identical to those from Bayesian and maximum likelihood estimation. 

Specifying the stdyx keyword with the OPTIONS command prints the table of standardized 
estimates and R -squared statistics shown below. The slope coefficients convey the expected 
change in standard deviation units for a one standard deviation increase in a given predictor. For 
example, the model predicts that two individuals who differ by one standard deviation on READ1 
but are the same on LRNPROB1 and BEHSYMP1 should differ by .70 standard deviations on READ9. 
Collectively, the predictors explain 61% of the variation in ninth-grade reading scores. 

 
STANDARDIZED MODEL RESULTS 
 
STDYX Standardization 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 READ9    ON 
    READ1              0.701      0.044     15.767      0.000      0.102 
    LRNPROB1          -0.168      0.082     -2.036      0.042      0.157 
    BEHSYMP1          -0.153      0.082     -1.861      0.063      0.159 
 
 Intercepts 
    READ9              4.424      0.531      8.332      0.000      0.152 
 
 Residual Variances 
    READ9              0.394      0.055      7.166      0.000      0.099 
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R-SQUARE 
 
    Observed                                        Two-Tailed   Rate of 
    Variable        Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
    READ9              0.606      0.055     11.033      0.000      0.099 
 

Analyzing Imputations in R 

Returning to the previous Blimp script, the SAVE command and the stacked keyword saved the 
imputed data sets to a single stacked file with an index variable in the first column identifying the 
individual files. The stacked file is appropriate for analyzing data in R, SAS, SPSS, and Stata, 
among others. 

The R input file for the analysis is Ex15.R. The code block below shows the commands that 
import the data. 

 
R Script Ex13.R 
 
1  library(fdir) 
2  library(mitml) 
3  set() 
4  imps <- read.table("./imps/imps.dat") 
5  names(imps) <- c("imputation","id","male","hispanic","riskgrp", 
6   "atrisk","behsymp1","lrnprob1","read1","read2","read3", 
7   "read9","read9grp","stanread7","math1","math2","math3", 
8   "math9","math9grp","stanmath7") 
 

The example requires the fdir and lavaan packages, which are loaded on lines 1 and 2. On line 
3, the set() function of the fdir package identifies the file path of the folder containing the R 
script and sets this location as the working directory. On line 4, the read.table command 
imports the stacked data. It is only necessary to specify the name of the input data file. No file 
path is required when the data reside in the same folder as the R script as is the case here. Finally, 
variable names are listed beginning on line 5. Importantly, the first variable named IMPUTATION 
is the index that identifies the individual files. 
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The next block of code relies on the mitml package to fit the model to each data set and pool 
the results using Rubin’s rules. The implist command on line 9 unstacks the data and creates a 
list that contains the individual files. Line 10 fits the focal regression model using the lm function, 
and line 11 uses the testEstimates function in mitml to implement Rubin’s pooling rules and 
save the results in an object called estimates. The df.com parameter is the denominator 
degrees of freedom that would have resulted had there been no missing data (i.e., N–K–1 degrees 
of freedom, where K is the number of predictors). This argument produces Barnard and Rubin 
degrees of freedom values. Finally, lines 12 and 13 print the estimates and confidence intervals. 

 
R Script Ex13.R, continued 
 
 9  implist <- as.mitml.list(split(imps, imps$imputation)) 
10  fit <- with(implist, lm(read9 ~ read1 + lrnprob1 + behsymp1)) 
11  estimates <- testEstimates(fit, extra.pars = T, df.com = 134) 
12  estimates 
13  confint(estimates) 
 

When fitting regression models to complete data sets, researchers often use an omnibus F test 
to evaluate the set of slope coefficients. The testModels command below specifies a multiple 
imputation Wald F statistic evaluating the null hypothesis that the population slopes equal 0 (Li 
et al., 1991). The test requires an additional model on line 14 that represents the null hypothesis, 
which in this case is an empty regression model with just an intercept. On line 15, the full model 
and null model objects passed into the testModels function, and the D1 keyword requests the 
Wald test. As before, the df.com parameter is the denominator degrees of freedom that would 
have resulted had there been no missing data. This argument produces the Barnard and Rubin 
(1999) degrees of freedom adjustment. 

 
R Script Ex13.R, continued 
 
14  null <- with(implist, lm(read9 ~ 1)) 
15  testModels(fit, null, df.com = 134, method = "D1") 
 

R Output 
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The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown in bold 
typeface. The RIV column (relative increase in variance) is a fraction comparing imputation 
noise to complete-data sampling variation, and the FMI column (fraction of missing information 
in the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 

 
> estimates 
 
Call: 
 
testEstimates(model = fit, extra.pars = T, df.com = 134) 
 
Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)    65.487     5.877    11.144   100.498     0.000     0.169     0.161  
read1           0.506     0.043    11.725    92.752     0.000     0.212     0.192  
lrnprob1       -0.231     0.114    -2.022   100.704     0.046     0.168     0.160  
behsymp1       -0.189     0.102    -1.841    97.962     0.069     0.182     0.171  
 
                   Estimate  
Residual~~Residual   88.944  
 
Hypothesis test adjusted for small samples with df=[134] 
complete-data degrees of freedom. 
 
> confint(estimates) 
                 2.5 %      97.5 % 
(Intercept) 53.8288728 77.14584684 
read1        0.4202903  0.59168880 
lrnprob1    -0.4581615 -0.00433096 
behsymp1    -0.3919669  0.01475078 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (t = 11.73, p < .001). Note that these estimates are numerically 
identical to those from Bayesian and maximum likelihood estimation. 

Finally, the Wald omnibus F statistic is shown in the output table below. The test statistic is 
statistically significant, thus refuting the null hypothesis that all population slopes equal zero. 
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Model comparison calculated from 20 imputed data sets. 
Combination method: D1 
 
    F.value     df1     df2   P(>F)     RIV  
     58.272       3 123.487   0.000   0.177  
 
Hypothesis test adjusted for small samples with df=[134] 
complete-data degrees of freedom. 
 

 

  



   174 

EXAMPLE 14: FULLY CONDITIONAL SPECIFICATION 
IMPUTATION WITH MIXED VARIABLE TYPES 

This example illustrates model-agnostic fully conditional specification multiple imputation with 
mixed variable types. The analysis uses the behaviorachievement.dat data set taken from a 
longitudinal study that followed 138 students from primary through middle school. The file 
includes three annual assessments of broad reading and math achievement beginning in the first 
grade, seventh grade standardized achievement test scores taken from a statewide assessment, 
and a final measure of broad reading and math obtained in ninth grade. The data also contain 
teacher ratings of behavioral symptoms and learning problems were also obtained in the first 
grade. The data description at the beginning of this document provides additional details. The 
variables for this analysis are as follows. 

Name Definition Missing % Scale 

Focal Variables 
RISKGRP Emotional/behavioral disorder risk 2.2 1 = Low, 2 = Medium, 3 = High 

BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  
LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 
READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 
READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

Imputation and Analysis Models 

Fully conditional specification uses a sequence of regression models to fill in missing values. 
Specifically, each MCMC iteration fits a series of models where one incomplete variable is 
regressed on all other variables. The predicted values and residual variance from each model 
define the center and spread of the imputed values, which are drawn at random from a normal 
distribution. After imputing the missing scores, the filled-in variable becomes a predictor in all 
other imputation models in the sequence. The imputation stage should include all variables and 
effects for the subsequent analyses, and it should incorporate auxiliary variables that either 
predict missingness or correlate with the incomplete variables (Collins et al., 2001). 
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A common goal of model-agnostic imputation is to generate imputations for different 
purposes (e.g., descriptive summaries, several analyses within the same project). To illustrate an 
entire multiple imputation analysis, suppose that one use of the filled-in data sets involves a 
model where ninth grade broad reading scores are regressed on first grade reading achievement, 
teacher-rated learning problems and behavioral symptoms, and a three-category nominal 
variable indicating risk for emotional or behavioral disorders. 

𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) 
(28) 

+ 𝛽4(𝑀𝐸𝐷𝑅𝐼𝑆𝐾) + 𝛽5(𝐻𝐼𝐺𝐻𝑅𝐼𝑆𝐾) + 𝜀 
 

The MEDRISK and HIGHRISK variables are dummy code variables that contrast the medium- and 
high-risk groups, respectively, against the low-risk reference group. Example 9 used the same 
analysis model to illustrate Bayesian estimation and model-based multiple imputation. 

Blimp Script 

The code block below shows Blimp script Ex14.inp. 

 
Blimp Script Ex14.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5   NOMINAL: riskgrp; 
 6  MISSING: 999; 
 7  FCS: read9 read1 lrnprob1 behsymp1 riskgrp stanread7 read2; 
 8  SEED: 90291; 
 9  BURN: 1000; 
10  ITERATIONS: 10000;  
11  NIMPS: 20; 
12  CHAINS: 20; 
13  SAVE:  
14  stacked = ./imps/imps.dat; 
15  separate = ./imps/imp*.dat; 
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The first six lines can be viewed as a set of commands that specify information about the data and 
variables. The DATA command specifies the name of the input text file. No file path is required 
when the data file is located in the same directory as the script, as it is here. Starting on line 2, the 
VARIABLES command names the data columns. The NOMINAL command on line 5 identifies the 
multicategorical nominal predictor, and the MISSING command on line 6 defines a global 
missing value code as 999.  

Next, the FCS command lists all variables—complete or incomplete—that are included in the 
imputation phase. Using the FIXED command to identify complete variables reduces 
computational time because these variables do not require a regression model (see Example 12). 
Lines 8 through 10 can also be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
imputation model summaries are based (essentially, the total number of MCMC cycles across all 
chains following the warm-up period). 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to 
CHAINS saves a single filled-in data set from the final iteration of a unique MCMC process, thus 
avoiding autocorrelation among the imputations. The SAVE command provides a name for the 
imputed data sets. The script illustrates how to save data sets in two common formats. The 
stacked keyword creates a stacked file where all imputations are in a single file, and the separate 
keyword saves each imputed data set to a separate file with the asterisk replaced by a numeric 
index. To keep things organized, the ./imps part of the file path points to a subfolder named 
imps located within the same folder as the script and data. The separate keyword also creates a 
list of file names needed for analysis in Mplus (in this example, a filed called implist.dat 
located in the imps folder). 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
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al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 

 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           51 to 100             1.417            45   
                          101 to 200             1.156            45   
                          151 to 300             1.243            45 
                                 ...               ...            .. 
                          901 to 1800            1.022            54   
                          951 to 1900            1.021            45   
                         1001 to 2000            1.021            45 
 

The next output excerpt shows information about the data and the variables in the imputation 
models. 

 
DATA INFORMATION: 
 
  Sample Size:              138 
  Missing Data Rates: 
 
                  riskgrp = 02.17 
                 behsymp1 = 03.62 
                 lrnprob1 = 02.17 
                    read1 = 06.52 
                    read2 = 09.42 
                    read9 = 17.39 
                stanread7 = 19.57 
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Nominal Dummy Codes: 
 
                  riskgrp = riskgrp.2 riskgrp.3 
 
 
VARIABLES IN IMPUTATION MODEL: 
 
  Incomplete continuous:  behsymp1 lrnprob1 read1 read2 read9 stanread7 
  Incomplete nominal:     riskgrp 
 
  NUMBER OF PARAMETERS 

    Imputation Models:      68 
 

MCMC estimation produces a distribution for each parameter in every unique imputation 
model. The median and standard deviation columns describe the center and spread of the 
posterior distributions; although they make no reference to drawing repeated samples, they are 
analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. The N_Eff 
values in rightmost column of the table give the effective number of MCMC samples for each 
parameter. These quantities essentially represent the number of independent estimates on which 
the parameter summaries are based after removing autocorrelations from the MCMC process. 
Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in the example table 
exceed this recommended minimum. In cases where the N_Eff values are insufficient, increasing 
the value on the ITERATIONS command will remedy the issue. 

The Blimp output includes tables of regression parameters for every incomplete variable’s 
imputation model. The imputation model parameters are not of substantive interest and would 
not be reported. An example table is shown below. 
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Missing variable:   behsymp1    
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
 
Grand Mean                           49.596      1.101     47.401     51.765      1.007   2184.881  
 
Level 1:                                                                                            
  riskgrp.2                          -0.581      1.093     -2.657      1.578      1.006   3551.667  
  riskgrp.3                           1.574      1.268     -1.031      3.876      1.009   1864.907  
  lrnprob1                            0.705      0.079      0.547      0.856      1.005   4786.167  
  read1                              -0.217      0.093     -0.393     -0.032      1.004   3349.964  
  read2                               0.593      0.108      0.381      0.807      1.004   5270.399  
  read9                              -0.447      0.105     -0.652     -0.242      1.004   5961.720  
  stanread7                          -0.016      0.016     -0.049      0.016      1.003   5148.240  
  Residual Var.                      52.691      7.826     39.338     70.152      1.005   4634.464  
                                                                                                    
                                ------------------------------------------------------------------- 
 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 
VARIABLE ORDER IN IMPUTED DATA: 

 

separate = './imps/imp*.dat' 

 

   id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3  

     read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7 

 

stacked = './imps/imps.dat' 

 

   imp# id male hispanic riskgrp atrisk behsymp1 lrnprob1 read1 read2 read3    

   read9 read9grp stanread7 math1 math2 math3 math9 math9grp stanmath7  
 

The imputed data sets are subsequently analyzed in another software package, and estimates 
and standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase 
does not utilize the auxiliary variables, as their information is embedded in the imputations. 
Scripts for analyzing the imputed data sets are found in the next subsections. 
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Analyzing Imputations in Mplus 

In lieu of the Bayesian estimates, Blimp’s SAVE command can be used to save multiple 
imputations for analysis in the frequentist framework. Returning to the previous Blimp script, 
the SAVE command and the separate keyword saved each imputed data set to a separate file 
with the asterisk replaced by a numeric index. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps subfolder). Example 6 shows the contents of this file. 

The Mplus input file for analyzing the imputations is Ex16.inp. The script is similar to 
previous Mplus scripts (e.g., the Ex1.1.inp file described in Example 1) with four exceptions. 
First, instead of naming the raw data set, the DATA command lists the text file containing the 
names of the imputed data sets (the implist.dat file located in the ./imps subdirectory). The 
type = imputation subcommand instructs Mplus that the input data is a list of file names. 
Second, the missing subcommand is omitted because the analysis variables are now complete. 
Third, the MODEL section no longer specifies a normal distribution for the predictors or models 
for the auxiliary variables. Finally, lines 9 through 13 use the DEFINE command to create a pair of 
dummy codes. Lines 10 and 11 initialize a pair of new variables (RISKGRP2 and RISKGRP3) with 
all 0s, and lines 12 and 13 recode these variables into dummy variables. Importantly, new 
variables computed with the DEFINE command must appear at the end of the usevariables list 
on line 8. The code block below shows the analysis and pooling script. 

 
Mplus Script Ex14.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:  
 5  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 6    read1 read2 read3 read9 read9grp stanread7  
 7    math1 math2 math3 math9 math9grp stanmath7; 
 8  usevariables = read9 read1 lrnprob1 behsymp1 riskgrp2 riskgrp3; 
 9  DEFINE: 
10  riskgrp2 = 0; 
11  riskgrp3 = 0; 
12  if(riskgrp eq 2) then riskgrp2 = 1; 
13  if(riskgrp eq 3) then riskgrp3 = 1; 
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14  MODEL:   
15  read9 on read1 lrnprob1 behsymp1 riskgrp2 riskgrp3 (beta1-beta5); 
16  MODEL TEST: 
17  0 = beta1; 0 = beta2; 0 = beta3; 
18  OUTPUT: 
19  stdyx cinterval; 
 

Mplus Output 

When fitting regression models to complete data sets, researchers often use an omnibus F test to 
evaluate the set of slope coefficients. The MODEL TEST command specified a multiple imputation 
Wald chi-square statistic evaluating the null hypothesis that the population slopes equal 0 
(Asparouhov & Muthén, 2010b). The chi-square statistic, degrees of freedom, and p-value appear 
near the bottom of the MODEL FIT INFORMATION section under the Wald Test of 
Parameter Constraints heading. The test statistic is statistically significant, thus refuting the 
null hypothesis. 

 
MODEL FIT INFORMATION 
 
Number of Free Parameters                       7 
 
... 

 
Wald Test of Parameter Constraints 
 
          Value                            173.432 
          Degrees of Freedom                     5 
          P-Value                           0.0000 
 

The table of unstandardized parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third and fourth 
columns display the corresponding z-statistics and p-values. The focal model results are shown in 
bold typeface. The Rate of Missing column (also called the fraction of missing information in 
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the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
 READ9    ON 
    READ1              0.477      0.047     10.122      0.000      0.134 
    LRNPROB1          -0.250      0.115     -2.173      0.030      0.172 
    BEHSYMP1          -0.166      0.106     -1.566      0.117      0.228 
    RISKGRP2          -1.710      1.882     -0.908      0.364      0.076 
    RISKGRP3          -3.115      2.820     -1.105      0.269      0.272 
 
 Intercepts 
    READ9             69.174      6.218     11.125      0.000      0.154 
 
 Residual Variances 
    READ9             85.516     11.867      7.206      0.000      0.249 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48 
points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 10.29, p < .001). The two dummy codes appear as RISKGRP2 
and RISKGRP3. Consistent with a complete-data regression analysis, the dummy code slopes 
represent mean differences relative to the low-risk reference group. For example, holding all 
other predictors constant, the model predicts that a high-risk study would score 3.12 points 
lower than a low-risk student in the comparison group. Note that these estimates are virtually 
identical to those from Bayesian estimation. The output also includes a table with standardized 
coefficients and the R-squared statistic. 

Analyzing Imputations in R 

Returning to the previous Blimp script, the SAVE command and the stacked keyword saved the 
imputed data sets to a single stacked file with an index variable in the first column identifying the 
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individual files. The stacked file is appropriate for analyzing data in R, SAS, SPSS, and Stata, 
among others. 

The R input file for the analysis is Ex16.R. The code block below shows the commands that 
import the data. 

 
R Script Ex14.R 
 
1  library(fdir) 
2  library(mitml) 
3  set() 
4  imps <- read.table("./imps/imps.dat") 
5  names(imps) <- c("imputation","id","male","hispanic","riskgrp", 
6   "atrisk","behsymp1","lrnprob1","read1","read2","read3", 
7   "read9","read9grp","stanread7","math1","math2","math3", 
8   "math9","math9grp","stanmath7") 
9  imps$riskgrp <- factor(imps$riskgrp) 
 

The example requires the fdir and lavaan packages, which are loaded on lines 1 and 2. On line 
3, the set() function of the fdir package identifies the file path of the folder containing the R 
script and sets this location as the working directory. On line 4, the read.table command 
imports the stacked data. It is only necessary to specify the name of the input data file. No file 
path is required when the data reside in the same folder as the R script as is the case here. 
Variable names are listed beginning on line 5. Importantly, the first variable named IMPUTATION 
is the index that identifies the individual files. Finally, line 9 defines the RISKGRP variable as a 
factor with qualitatively different levels. This specification will automatically introduce a set of 
dummy codes into the regression model. 

The next block of code relies on the mitml package to fit the model to each data set and pool 
the results using Rubin’s rules.  
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R Script Ex14.R, continued 
 
10  implist <- as.mitml.list(split(imps, imps$imputation)) 

11  fit <- with(implist, lm(read9 ~ read1 + lrnprob1 + behsymp1 + riskgrp)) 

12  estimates <- testEstimates(fit, extra.pars = T, df.com = 132) 

13  estimates 

14  confint(estimates) 

 

The implist command on line 10 unstacks the data and creates a list that contains the 
individual files. Line 11 fits the focal regression model using the lm function, and line 12 uses the 
testEstimates function in mitml to implement Rubin’s pooling rules and save the results in 
an object called estimates. The df.com parameter is the denominator degrees of freedom that 
would have resulted had there been no missing data (i.e., N–K–1 degrees of freedom, where K is 
the number of predictors). This argument produces Barnard and Rubin degrees of freedom 
values. Finally, lines 13 and 14 print the estimates and confidence intervals. 

When fitting regression models to complete data sets, researchers often use an omnibus F test 
to evaluate the set of slope coefficients. The testModels command below specifies a multiple 
imputation Wald F statistic evaluating the null hypothesis that the population slopes equal 0 (Li 
et al., 1991). The test requires an additional model on line 15 that represents the null hypothesis, 
which in this case is an empty regression model with just an intercept. On line 16, the full model 
and null model objects passed into the testModels function, and the D1 keyword requests the 
Wald test. As before, the df.com parameter is the denominator degrees of freedom that would 
have resulted had there been no missing data. This argument produces the Barnard and Rubin 
(1999) degrees of freedom adjustment. 

 
R Script Ex14.R, continued 
 
15  null <- with(implist, lm(read9 ~ 1)) 
16  testModels(fit, null, df.com = 132, method = "D1") 
 

R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 



   

 

185 

columns display the corresponding test statistics. The focal model results are shown in bold 
typeface. The RIV column (relative increase in variance) is a fraction comparing imputation 
noise to complete-data sampling variation, and the FMI column (fraction of missing information 
in the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 

 
> estimates 
 
Call: 
 
testEstimates(model = fit, extra.pars = T, df.com = 132) 
 
Final parameter estimates and inferences obtained from 20 imputed data sets. 
 
             Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  
(Intercept)    69.174     6.337    10.916    98.577     0.000     0.172     0.164  
read1           0.477     0.048     9.928   103.392     0.000     0.146     0.144  
lrnprob1       -0.250     0.117    -2.133    94.276     0.036     0.196     0.181  
behsymp1       -0.166     0.108    -1.539    81.473     0.128     0.276     0.235  
riskgrp2       -1.710     1.921    -0.890   116.647     0.375     0.079     0.088  
riskgrp3       -3.115     2.867    -1.087    72.059     0.281     0.348     0.278  
 
                   Estimate  
Residual~~Residual   89.403  
 
Hypothesis test adjusted for small samples with df=[132] 
complete-data degrees of freedom. 

 
> confint(estimates) 
                 2.5 %      97.5 % 
(Intercept) 56.5999199 81.74779632 
read1        0.3820806  0.57283035 
lrnprob1    -0.4822008 -0.01730107 
behsymp1    -0.3796984  0.04849960 
riskgrp2    -5.5147538  2.09562507 
riskgrp3    -8.8300720  2.59967016 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on all other predictors should differ by 0.48 
points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (t = 9.93, p < .001). The two dummy codes appear as RISKGRP2 
and RISKGRP3. Consistent with a complete-data regression analysis, the dummy code slopes 
represent mean differences relative to the low-risk reference group. For example, holding all 
other predictors constant, the model predicts that a high-risk study would score 3.12 points 
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lower than a low-risk student in the comparison group. Note that these estimates are virtually 
identical to those from Bayesian and maximum likelihood estimation. 

Finally, the Wald omnibus F statistic is shown in the output table below. The test statistic is 
statistically significant, thus refuting the null hypothesis that all population slopes equal zero. 

 
Model comparison calculated from 20 imputed data sets. 
Combination method: D1 
 
    F.value     df1     df2   P(>F)     RIV  
     33.252       5 123.203   0.000   0.213  
 
Hypothesis test adjusted for small samples with df=[132] 
complete-data degrees of freedom. 
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SECTION 4: MULTILEVEL MODELS 
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EXAMPLE 15: TWO-LEVEL REGRESSION  
WITH RANDOM INTERCEPTS 

This example illustrates a two-level multiple regression with random intercepts. The analysis uses 
the problemsolving2level.dat data set taken from a cluster-randomized educational 
intervention where 29 schools were assigned to an intervention and comparison condition. In 
addition to the intervention assignment indicator, school-level variables include the average 
years of teacher experience and the percentage of learners for whom English is a second 
language. The 928 student-level records include pretest and posttest math problem-solving and 
self-efficacy scores, standardized math scores taken from a statewide assessment, and several 
sociodemographic variables. The analysis variables are as follows. 

Name Definition Missing % Scale 

Identifier Variables 
SCHOOL School identifier 0 Integer index 

Focal Variables 

PSOLVEPRE Math problem-solving pretest  0 Numeric 
MALE Gender dummy code 0 0 = Female, 1 = Male 

FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Free/reduced lunch 
TEACHEXP Teacher years of experience 10.3 Numeric 

CONDITION Experimental condition 0 0 = Control, 1 = Experimental 
Auxiliary Variables 

LOWACH Low achievement code 2.1 0 = Typical, 1 = Low achieving 
STANMATH Standardized math scores  7.4 Numeric 

Analysis Model 

The analysis is a random intercept regression model featuring problem-solving posttest scores 
regressed on the experimental condition dummy code at level-2 and four covariates, all of which 
are grand mean centered: problem-solving pretest scores (level-1), gender and lunch assistance 
dummy codes (level-1), and years of teacher experience (level-2). To convey each variable’s level, 
the i and j subscripts denote students and schools, respectively. 

 



   

 

189 

𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑆𝑇𝑖𝑗 = (𝛽0 + 𝑏0𝑗) + 𝛽1(𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑅𝐸𝑖𝑗) + 𝛽2(𝑀𝐴𝐿𝐸𝑖𝑗) 
(29) 

+ 𝛽3(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑖𝑗) + 𝛽4(𝑇𝐸𝐴𝐶𝐻𝐸𝑋𝑃𝑗) + 𝛽5(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝜀𝑖𝑗  
 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. Blimp uses a factored regression specification that assigns 
separate distributions to the predictors and outcome. By default, Blimp invokes a multivariate 
normal distribution for numeric predictors and the latent response scores for discrete predictors. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following earlier examples, auxiliary variables enter the model as additional level-1 
outcomes that are predicted by the analysis variables and by each other. The additional 
regression equations are as follows. 

𝐿𝑂𝑊𝐴𝐶𝐻𝑖𝑗
∗ = 𝛾01 + 𝛾11(𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑆𝑇𝑖𝑗) + 𝛾21(𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑅𝐸𝑖𝑗) + 𝛾31(𝑀𝐴𝐿𝐸𝑖𝑗) 

(30) 
+ 𝛾41(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑖𝑗) + 𝛾51(𝑇𝐸𝐴𝐶𝐻𝐸𝑋𝑃𝑗) + 𝛾61(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝜖1𝑖𝑗  

𝑆𝑇𝐴𝑁𝑀𝐴𝑇𝐻 = 𝛾02 + 𝛾12(𝐿𝑂𝑊𝐴𝐶𝐻𝑖𝑗) + 𝛾22(𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑆𝑇𝑖𝑗) + 𝛾32(𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑅𝐸𝑖𝑗) 

+ 𝛾42(𝑀𝐴𝐿𝐸𝑖𝑗) + 𝛾52(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑖𝑗) + 𝛾62(𝑇𝐸𝐴𝐶𝐻𝐸𝑋𝑃𝑗) + 𝛾72(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝜖2 
 

The LOWACH model is a probit regression, with the binary outcome model as a latent response 
variable (denoted by the asterisk superscript). Again, the entire collection of regressions can be 
viewed as a path model, where the focal regression is one part of a larger network. The key 
difference is that the path coefficients are just a tool for linking incomplete variables and do not 
represent a substantive theory. 

Blimp Script 

The code block below shows Blimp script Ex15.1.inp. The first six lines can be viewed as a set 
of commands that specify information about the data and variables. The DATA command 
specifies the name of the input text file. No file path is required when the data file is located in the 
same directory as the script, as it is here. Starting on line 2, the VARIABLES command names the 
data columns. The CLUSTERID command on line 4 lists the school-level identifier variable that 
indicates the clustering of the data records in schools. Including the CLUSTERID command 
automatically introduces random intercepts. The ORDINAL command on line 5 identifies binary 
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and ordinal variables. Binary variables can be defined as ordinal or nominal, as the statistical 
models are identical. The MISSING command on line 6 defines a global missing value code as 
999. 

 
Blimp Script Ex15.1.imp 
 
 1  DATA: problemsolving2level.dat; 

 2  VARIABLES: school student condition teachexp eslpct ethnic male  

 3   frlunch lowach stanmath efficacypre efficacypst psolvepre psolvepst;  

 4  CLUSTERID: school; 

 5  ORDINAL: condition male frlunch lowach; 

 6  MISSING: 999; 

 7  FIXED: condition male psolvepre; 

 8  CENTER: grandmean = psolvepre male frlunch teachexp; 

 9  MODEL:  

10  focal.model: 

11  psolvepst ~ psolvepre@b1 male@b2 frlunch@b3 teachexp@b4 condition@b5; 

12  auxiliary.models: 

13  stanmath lowach  ~ psolvepst psolvepre male frlunch teachexp condition; 

14  TEST: b1:b4 = 0; 

15  TEST: b5 = 0; 

16  SEED: 90291; 

17  BURN: 3000; 

18  ITERATIONS: 10000; 

 

The FIXED, CENTER, MODEL, and TEST blocks can be viewed as a set. The FIXED command 
identifies a complete predictor, which does not require a distribution or regression model. The 
CENTER command deviates the four covariates at their iteratively-estimated grand means. 
Beginning on line 9, the MODEL command lists the regression models, with outcome variables to 
the left of the tilde and predictors to the right. The code uses labels (focal.model and 
auxiliary.models) to order output tables, such that the focal model appears first followed by 
the auxiliary variable models. The focal model listed on line 11 assigns labels to the slope 
coefficients using the @ symbol. Blimp automatically configures the explanatory variable models 
under the assumption that the numeric variables and latent response scores (discrete predictors) 
are normally distributed. Line 13 is a syntax shortcut that produces the two auxiliary variable 
regression models in Equation 30; in the first model, LOWACH is regressed on the focal variables, 
and the second model features STANMATH regressed on LOWACH and the focal variables. The TEST 
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commands on lines 14 and 15 use the parameter labels to specify a pair of custom hypothesis test, 
one that evaluates the set of covariates, and another that evaluates the intervention effect. These 
commands produce the Bayesian Wald test (Asparouhov & Muthén, 2021), which is essentially a 
chi-square statistic that captures the discrepancy between the Bayesian point estimates (posterior 
means) and the hypothesized values of zero.  

Finally, lines 16 through 18 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           76 to 150             1.342            34   
                          151 to 300             1.553            35 
                                  ...              ...            ..   
                         1351 to 2700            1.027             8   
                         1426 to 2850            1.046            13   
                         1501 to 3000            1.040             8 
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The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Example 6, but it additionally 
reports the number of observations at each level. 

 
DATA INFORMATION: 
 
  Level-2 identifier:       school 
  Sample Size:              982 
  Level-2 Clusters:         29 
  Missing Data Rates: 
 
                psolvepst = 20.47 
                   lowach = 02.14 
                 stanmath = 07.43 
                 teachexp = 10.34 
                  frlunch = 04.68 
 

The pair of TEST commands in the previous script requested a Bayesian Wald chi-square 
statistic (Asparouhov & Muthén, 2021) that evaluates two different null hypotheses. The first test 
evaluates the hypothesis that all covariate slopes equal zero, and the second evaluates just the 
intervention group mean difference. The chi-square statistic, degrees of freedom, and p-value 
appear near the bottom of the MODEL FIT section under the WALD TEST heading. The latter 
test is shown in the output excerpt below. 
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MODEL FIT: 

 

  ... 

   

WALD TESTS (Asparouhov & Muthén, 2021) 

 

... 

 
Test #2 

 

    Full: 

      [1]  psolvepst ~ Intercept psolvepre@beta1 male@beta2  

           frlunch@beta3 teachexp@beta4 condition@beta5 

 

    Restricted: 

      [1]  psolvepst ~ Intercept psolvepre@beta1 male@beta2 frlunch@beta3  

           teachexp@beta4 condition@beta5 

 

    Constraints in Restricted: 

      [1]  b5 = 0 

 

 

    Wald Statistic (Chi-Square)                 4.088 

    Number of Parameters Tested (df)                1 

    Probability                                 0.043 

 

The table summarizing the focal regression model includes unstandardized coefficients, 
standardized slopes, and variance explained effect size estimates (Rights & Sterba, 2019). MCMC 
estimation produces a distribution for each parameter in the table. The median and standard 
deviation columns describe the center and spread of the posterior distributions; although they 
make no reference to drawing repeated samples, they are analogous—and numerically equivalent 
in most cases—to frequentist point estimates and standard errors. The 95% credible intervals in 
the rightmost columns give a range that captures 95% of the parameter’s distribution. These are 
akin to confidence intervals, but the intervals describe parameter distributions rather than 
characteristics of repeated samples. The N_Eff values in rightmost column of the table give the 
effective number of MCMC samples for each parameter. These quantities essentially represent 
the number of independent estimates on which the parameter summaries are based after 
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removing autocorrelations from the MCMC process. Gelman et al. (2014, p. 287) recommend 
values greater than 100.  All values in the example table exceed this recommended minimum. In 
cases where the N_Eff values are insufficient, increasing the value on the ITERATIONS command 
will remedy the issue. The table is shown below. 

 
OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  psolvepst   
 
Grand Mean Centered: frlunch psolvepre teachexp 
 
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
Variances:                       
  L2 : Var(Intercept)                 5.054      1.998      2.643     10.369      1.001   2647.814  
  Residual Var.                      20.651      1.062     18.768     22.907      1.000   6040.557  
 
Coefficients:                    
  Intercept                          52.876      0.725     51.402     54.243      1.002    611.789  
  psolvepre                           0.460      0.036      0.390      0.531      1.000   5377.366  
  male                                0.172      0.332     -0.490      0.807      1.000   5929.056  
  frlunch                            -0.719      0.455     -1.575      0.192      1.000   4325.570  
  teachexp                            0.120      0.115     -0.102      0.354      1.003    494.712  
  condition                           1.844      0.921      0.077      3.687      1.008    505.513  
 
Standardized Coefficients:       
  psolvepre                           0.394      0.030      0.332      0.452      1.000   2936.056  
  male                                0.015      0.028     -0.042      0.069      1.000   5918.541  
  frlunch                            -0.050      0.031     -0.109      0.013      1.000   4262.038  
  teachexp                            0.087      0.080     -0.073      0.240      1.003    504.074  
  condition                           0.157      0.075      0.007      0.300      1.008    501.389  
 
Proportion Variance Explained    
  by Coefficients                     0.217      0.037      0.150      0.293      1.005    816.605  
  by Level-2 Random Intercepts        0.153      0.048      0.085      0.272      1.002   2524.209  
  by Level-1 Residual Variation       0.626      0.046      0.522      0.703      1.000   1270.578 
                                ------------------------------------------------------------------- 
 

The results are interpreted in the same way as a complete-data multilevel analysis. The first 
section of the output table displays the variance estimates. The random intercept and within-
cluster residual variances are denoted L2:Var(Intercept) and Residual Var., respectively. 
Moving to the coefficients section, the primary focus is the 𝛽5 coefficient, the value of indicates 
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that intervention schools scored 1.84 points higher than control schools, on average, controlling 
for student- and school-level covariates. Consistent with the previous significance test, the 95% 
credible interval limits suggest this effect is statistically different from zero because the null value 
is outside the interval. The bottom portion of the table displays Rights and Sterba (2019) R-
squared effect size values. The fixed effects explain 22% of the total variation, and the random 
intercepts account for 15% of the variability. 

The Blimp output also includes tables of regression model parameters for the auxiliary 
variables as well as the auto-generated models for incomplete predictors. These additionally 
results are not of substantive interest and would not be reported. The auxiliary variable models 
appear in OUTCOME MODEL ESTIMATES section with the focal results, and the auto-generated 
predictor models are displayed under the heading PREDICTOR MODEL ESTIMATES.  

Saving Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex15.2.imp is identical Ex15.1.imp, but it adds the following lines at the 
bottom of the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to 
CHAINS saves a single filled-in data set from the final iteration of a unique MCMC process, thus 
avoiding autocorrelation among the imputations. The SAVE command provides a name for the 
imputed data sets. The script illustrates how to save data sets in two common formats. The 
stacked keyword creates a stacked file where all imputations are in a single file, and the separate 
keyword saves each imputed data set to a separate file with the asterisk replaced by a numeric 
index. To keep things organized, the ./imps part of the file path points to a subfolder named 
imps located within the same folder as the script and data. The separate keyword also creates a 
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list of file names needed for analysis in Mplus (in this example, a filed called implist.dat 
located in the imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 

VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     school student condition teachexp eslpct ethnic male frlunch  
     lowach stanmath efficacyp efficacy1 psolvepre psolvepst 
 
   stacked = './imps/imps.dat' 
 
     imp# school student condition teachexp eslpct ethnic male frlunch  
     lowach stanmath efficacyp efficacy1 psolvepre psolvepst 
 

The imputed data sets are subsequently analyzed in another software package, and estimates 
and standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase 
does not utilize the auxiliary variables, as their information is embedded in the imputations. 
Scripts for analyzing the imputed data sets are found in the next subsections. 

Analyzing Imputations in Mplus 

In lieu of the Bayesian estimates, Blimp’s SAVE command can be used to save multiple 
imputations for analysis in the frequentist framework. Returning to the previous Blimp script, 
the SAVE command and the separate keyword saved each imputed data set to a separate file 
with the asterisk replaced by a numeric index. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps subfolder). Example 6 shows the contents of this file. 
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The code block below shows Mplus script Ex15.inp that analyzes the imputations and pools 
estimates and standard errors. 

 
Mplus Script Ex15.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:   
 5  names = school student condition teachexp eslpct ethnic male frlunch  
 6   lowach stanmath efficacy1 efficacy2 psolvepre psolvepst; 
 7  usevariables = psolvepst psolvepre male frlunch teachexp condition; 
 8  cluster = school; 
 9  within = psolvepre male frlunch; 
10  between = teachexp condition; 
11  DEFINE: 
12  center psolvepre male frlunch teachexp (grandmean); 
13  ANALYSIS: 
14  type = twolevel; 
15  MODEL: 
16  %within% 
17  psolvepst on psolvepre male frlunch; 
18  %between% 
19  psolvepst on teachexp condition; 
20  OUTPUT: 
21  stdyx cinterval; 
 

The DATA command lists the text file containing the names of the imputed data sets (the 
implist.dat file located in the ./imps subdirectory). The type = imputation 
subcommand instructs Mplus that the input data is a list of file names. The VARIABLE command 
provides information about the data. Beginning on line 5, the names subcommand assigns names 
to the variables in the input data file, and the usevariables subcommand selects variables for 
the analysis. The cluster command on line 8 lists the school-level identifier variable that 
indicates the clustering of the data records in schools. The within and between subcommands 
on lines 9 and 10 identify level-1 and level-2 predictors, respectively. On line 12, the center 
subcommand under the DEFINE command centers the four covariates at their grand means. The 
ANALYSIS command and the type = twolevel subcommand is required for estimating two-
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level models. The MODEL section of the script consists of two sections: the %within% section 
specifies the regression of the outcome on level-1 predictors, and the %between% section 
specifies the regression of the random intercepts on the level-2 predictors. Finally, the OUTPUT 
command specifies two keywords on line 21 that request standardized coefficients and 
confidence intervals. 

Mplus Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The focal model results are shown in bold 
typeface. The Rate of Missing column (also called the fraction of missing information in the 
literature) quantifies the imputation noise in each estimate as proportion of its squared standard 
error. 

 
MODEL RESULTS 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
Within Level 
 
PSOLVEPST  ON 
    PSOLVEPRE          0.464      0.036     12.766      0.000      0.382 
    MALE               0.114      0.367      0.310      0.757      0.317 
    FRLUNCH           -0.710      0.463     -1.534      0.125      0.423 
 
 Residual Variances 
    PSOLVEPST         20.624      1.329     15.518      0.000      0.061 
 
Between Level 
 
 PSOLVEPST  ON 
    TEACHEXP           0.133      0.075      1.769      0.077      0.122 
    CONDITION          1.850      0.822      2.251      0.024      0.048 
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Intercepts 
    PSOLVEPST         52.879      0.533     99.185      0.000      0.051 
 
 Residual Variances 
    PSOLVEPST          3.991      1.166      3.422      0.001      0.072 
 

Mplus separates the level-1 and level-2 effects on the output (labeled Within Level and 
Between Level, respectively). The primary focus is the 𝛽5 coefficient, which indicates that 
intervention schools scored 1.85 points higher than control schools, on average, controlling for 
student- and school-level covariates. The corresponding test statistic indicates that the group 
mean difference is statistically different from zero (z = 2.25, p = .02). Note that these estimates 
are numerically identical to those from Bayesian estimation. 

Analyzing Imputations in R 

Returning to the previous Blimp script, the SAVE command and the stacked keyword saved the 
imputed data sets to a single stacked file with an index variable in the first column identifying the 
individual files. The stacked file is appropriate for analyzing data in R, SAS, SPSS, and Stata, 
among others. 

The R input file for the analysis is Ex12.R. The code block below shows the commands that 
import the data. 

 
R Script Ex15.R 
 
 1  library(fdir) 
 2  library(lme4) 
 3  library(mitml) 
 4  set() 
 5  imps <- read.table("./imps/imps.dat") 
 6  names(imps) <- c("imputation","school","student","condition", 
 7   "teachexp","eslpct","ethnic","male","frlunch","lowach", 
 8   "stanmath","efficacypre","efficacypst","psolvepre","psolvepst")  
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 9  imps$psolvepre.cgm <- imps$psolvepre - mean(imps$psolvepre) 
10  imps$male.cgm <- imps$male - mean(imps$male) 
11  imps$frlunch.cgm <- imps$frlunch - mean(imps$frlunch) 
12  imps$teachexp.cgm <- imps$teachexp - mean(imps$teachexp) 
 

The example requires the fdir, lme4, and mitml packages, which are loaded on lines 1 through 
3. On line 4, the set() function of the fdir package identifies the file path of the folder 
containing the R script and sets this location as the working directory. On line 5, the 
read.table command imports the stacked data. It is only necessary to specify the name of the 
input data file. No file path is required when the data reside in the same folder as the R script as is 
the case here. Variable names are listed beginning on line 6. Importantly, the first variable named 
IMPUTATION is the index that identifies the individual files. Finally, lines 9 through 12 create new 
centered versions of the covariates. 

The next block of code relies on the mitml package to fit the model to each data set and pool 
the results using Rubin’s rules.  

 
R Script Ex15.R, continued 
 
13  implist <- as.mitml.list(split(imps, imps$imputation)) 
14  fit <- with(implist, lmer(psolvepst ~ psolvepre.cgm + male.cgm +  
15   frlunch.cgm + teachexp.cgm + condition + (1 | school), REML = T)) 
16  estimates <- testEstimates(fit, extra.pars = T) 
17  estimates 
18  confint(estimates) 
 

The implist command on line 13 unstacks the data and creates a list that contains the 
individual files. Line 14 fits the focal regression model using the lmer function, and line 16 uses 
the testEstimates function in mitml to implement Rubin’s pooling rules and save the results 
in an object called estimates. Finally, lines 17 and 18 print the estimates and confidence 
intervals. 
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R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown in bold 
typeface. The RIV column (relative increase in variance) is a fraction comparing imputation 
noise to complete-data sampling variation, and the FMI column (fraction of missing information 
in the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 

 
> estimates 

 

Call: 

 

testEstimates(model = fit, extra.pars = T) 

 

Final parameter estimates and inferences obtained from 20 imputed data sets. 

 

               Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  

(Intercept)      52.865     0.655    80.699 14410.820     0.000     0.038     0.036  

psolvepre.cgm     0.463     0.038    12.057   168.177     0.000     0.506     0.344  

male.cgm          0.113     0.364     0.310   189.908     0.757     0.463     0.323  

frlunch.cgm      -0.701     0.495    -1.417   144.398     0.159     0.569     0.371  

teachexp.cgm      0.134     0.105     1.277  4885.049     0.202     0.067     0.063  

condition         1.850     0.879     2.105 10628.599     0.035     0.044     0.042 

 

                            Estimate  

Intercept~~Intercept|school    4.530  

Residual~~Residual            20.690  

ICC|school                     0.180 

 

Unadjusted hypothesis test as appropriate in larger samples. 
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> confint(estimates) 

                    2.5 %     97.5 % 

(Intercept)   51.58070589 54.1488180 

psolvepre.cgm  0.38737012  0.5390615 

male.cgm      -0.60546360  0.8314398 

frlunch.cgm   -1.68006958  0.2771710 

teachexp.cgm  -0.07188544  0.3407508 

condition      0.12740014  3.5730222 

 

The random intercept and within-cluster residual variances are denoted 
Intercept~~Intercept|school and Residual~~Residual, respectively. Moving to the 
coefficient section, the primary focus is the 𝛽5 coefficient, which indicates that intervention 
schools scored 1.85 points higher than control schools, on average, controlling for student- and 
school-level covariates. The corresponding test statistic indicates that the group mean difference 
is statistically different from zero (t = 2.11, p = .04). Note that these estimates are numerically 
identical to those from Bayesian estimation. 
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EXAMPLE 16: TWO-LEVEL REGRESSION WITH  
A CROSS-LEVEL INTERACTION EFFECT 

This example illustrates a two-level multiple regression with random intercepts. The analysis uses 
the problemsolving3level.dat data set taken from a cluster-randomized educational 
intervention where 29 schools were assigned to an intervention and comparison condition. In 
addition to the intervention assignment indicator, school-level variables include the average 
years of teacher experience and the percentage of learners for whom English is a second 
language. The 928 student-level records include pretest and posttest math problem-solving and 
self-efficacy scores, standardized math scores taken from a statewide assessment, and several 
sociodemographic variables. The analysis variables are as follows. 

Name Definition Missing % Scale 

Identifier Variables 
STUDENT Student identifier 0 Integer index 

Focal Variables 

PROBSOLVE Math problem-solving posttest  11.5 Numeric 

MONTH7 Math problem-solving pretest  0 Numeric 
MALE Gender dummy code 0 0 = Female, 1 = Male 

FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Free/reduced lunch 
TEACHEXP Teacher years of experience 10.8 Numeric 

CONDITION Experimental condition 0 0 = Control, 1 = Experimental 

Analysis Model 

The analysis is a linear growth model that features a repeatedly-measured problem-solving test 
regressed on time scores (months until the end of the school year, a level-1 predictor), 
experimental condition (level-2), the cross-level interaction of the two variables, and three grand 
mean centered covariates: gender and lunch assistance dummy codes (level-1), and years of 
teacher experience (level-2). To convey each variable’s level, the i and j subscripts denote 
repeated measurements and students, respectively. 
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𝑃𝑅𝑂𝐵𝑆𝑂𝐿𝑉𝐸𝑖𝑗 = (𝛽0 + 𝑏0𝑗) + (𝛽1 + 𝑏1𝑗)(𝑀𝑂𝑁𝑇𝐻7𝑖𝑗) + 𝛽2(𝑀𝐴𝐿𝐸𝑗) 

(31) + 𝛽3(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑗) + 𝛽4(𝑇𝐸𝐴𝐶𝐻𝐸𝑋𝑃𝑗) + 𝛽5(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) 

+ 𝛽6(𝑀𝑂𝑁𝑇𝐻7𝑖𝑗)(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝜀 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. Blimp uses a factored regression specification that assigns 
separate distributions to the predictors and outcome. By default, Blimp invokes a multivariate 
normal distribution for numeric predictors and the latent response scores for discrete predictors. 

Blimp Script 

The code block below shows Blimp script Ex16.1.inp. The first six lines can be viewed as a set 
of commands that specify information about the data and variables. The DATA command 
specifies the name of the input text file. No file path is required when the data file is located in the 
same directory as the script, as it is here. Starting on line 2, the VARIABLES command names the 
data columns. The CLUSTERID command on line 4 lists the student-level identifier variable that 
indicates the clustering of the repeated measurements within students. Including the CLUSTERID 
command automatically introduces random intercepts. The ORDINAL command on line 5 
identifies binary and ordinal variables. Binary variables can be defined as ordinal or nominal, as 
the statistical models are identical. The MISSING command on line 6 defines a global missing 
value code as 999. 

 
Blimp Script Ex16.1.imp 
 
 1  DATA: problemsolving3level.dat; 
 2  VARIABLES: school student wave condition teachexp eslpct ethnic  
 3   male frlunch lowach stanmath month0 month7 probsolve efficacy; 
 4  CLUSTERID: student; 
 5  ORDINAL: male frlunch condition; 
 6  MISSING: 999; 
 7  FIXED: month7 male condition; 
 8  CENTER: grandmean = male frlunch teachexp; 
 9  MODEL:  
10  probsolve ~ month7 male frlunch teachexp condition  
11   month7*condition  | month7; 
12  SIMPLE:  
13  month7 | condition; 
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14  SEED: 90291; 
15  BURN: 5000; 
16  ITERATIONS: 20000; 
 

The FIXED, CENTER, MODEL, and SIMPLE blocks can be viewed as a set. The FIXED command 
identifies a complete predictor, which does not require a distribution or regression model. The 
CENTER command deviates the three covariates at their iteratively-estimated grand means. 
Beginning on line 9, the MODEL command lists the regression model, with outcome variable to 
the left of the tilde and predictors to the right. The product term is specified by joining the 
interacting variables with an asterisk (i.e., MONTH7*CONDITION), and listing MONTH7 to the right 
of the vertical pipe specifies this variable as a random slope predictor. The SIMPLE command 
requests the conditional effects (i.e., simple slopes) of MONTH7 at each level of CONDITION. By 
default, Blimp computes the simple slope at each level of a binary moderator listed on the 
ORDINAL line. Blimp automatically configures the explanatory variable models under the 
assumption that the numeric variables and latent response scores (discrete predictors) are 
normally distributed. Custom significance tests can be specified using the TEST command, as 
shown in previous examples. 

Finally, lines 14 through 16 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 
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BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                          126 to 250             2.182            20   
                          251 to 500             1.657             3   
                          376 to 750             1.280            13   
                          501 to 1000            1.145             7 
                                  ...              ...            ..   
                         2126 to 4250            1.017             3   
                         2251 to 4500            1.034            20   
                         2376 to 4750            1.053             3   
                         2501 to 5000            1.033             3 
 

The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Example 6, but it additionally 
reports the number of observations at each level. Earlier examples also show how to implement 
the Bayesian Wald significance test. 

 
DATA INFORMATION: 
 
 
  Level-2 identifier:       student 
  Sample Size:              6874 
  Level-2 Clusters:         982 
  Missing Data Rates: 
 
                probsolve = 11.45 
                 teachexp = 10.79 
                  frlunch = 04.68 

 

MCMC estimation produces a distribution for each parameter in the table. The median and 
standard deviation columns describe the center and spread of the posterior distributions; 
although they make no reference to drawing repeated samples, they are analogous—and 
numerically equivalent in most cases—to frequentist point estimates and standard errors. The 
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95% credible intervals in the rightmost columns give a range that captures 95% of the 
parameter’s distribution. These are akin to confidence intervals, but the intervals describe 
parameter distributions rather than characteristics of repeated samples. The N_Eff values in 
rightmost column of the table give the effective number of MCMC samples for each parameter. 
These quantities essentially represent the number of independent estimates on which the 
parameter summaries are based after removing autocorrelations from the MCMC process. 
Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in the example table 
exceed this recommended minimum. In cases where the N_Eff values are insufficient, increasing 
the value on the ITERATIONS command will remedy the issue. Unlike previous examples, this 
analysis specified 20,000 iterations because the effective sample size for the random slope 
variance was less than 100 when using 10,000 iterations. The table summarizing the focal 
regression model is shown below. The table includes unstandardized coefficients, standardized 
slopes, and variance explained effect size estimates (Rights & Sterba, 2019). 

 
OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 20000 iterations using 2 chains. 
 
 
Outcome Variable:  probsolve   
 
Grand Mean Centered: frlunch male teachexp 
 
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
Variances:                       
  L2 : Var(Intercept)                17.147      1.117     15.071     19.448      1.002   1978.298  
  L2 : Cov(month7,Intercept)          0.807      0.149      0.534      1.117      1.007    491.594  
  L2 : Var(month7)                    0.115      0.030      0.065      0.180      1.012    216.488  
  Residual Var.                      12.586      0.273     12.061     13.133      1.001   1716.711  
 
Coefficients:                    
  Intercept                          52.952      0.260     52.448     53.465      1.001   1617.612  
  month7                              0.433      0.042      0.352      0.517      1.000   8418.593  
  male                                0.413      0.248     -0.078      0.903      1.000   1475.608  
  frlunch                            -0.918      0.328     -1.542     -0.265      1.002    998.341  
  teachexp                            0.021      0.033     -0.044      0.086      1.002   1043.099  
  condition                           1.548      0.335      0.878      2.196      1.003   1487.024  
  month7*condition                    0.348      0.053      0.245      0.452      1.000   8775.829 
  

    
   Standardized Coefficients:       

  month7                              0.162      0.016      0.132      0.194      1.000   8412.474  
  male                                0.038      0.023     -0.007      0.083      1.000   1473.307  
  frlunch                            -0.068      0.024     -0.114     -0.020      1.002   1000.682  
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  teachexp                            0.016      0.026     -0.034      0.066      1.002   1042.047  
  condition                           0.141      0.030      0.080      0.199      1.003   1509.932  
  month7*condition                    0.140      0.021      0.098      0.181      1.000   8890.546  
 
Proportion Variance Explained    
  by Coefficients                     0.075      0.007      0.063      0.089      1.002   2137.040  
  by Level-2 Random Intercepts        0.468      0.014      0.440      0.496      1.000   8311.275  
  by Level-2 Random Slopes            0.016      0.004      0.009      0.025      1.012    216.410  
  by Level-1 Residual Variation       0.441      0.013      0.415      0.467      1.001   2681.346  
 
                                ------------------------------------------------------------------- 
 

The results are interpreted in the same way as a complete-data multilevel analysis. The first 
section of the output table displays the variance estimates. The random intercept and slope 
variances are denoted L2:Var(Intercept) and L2:Var(month7), respectively, and their 
covariance is labeled L2 : Cov(month7,Intercept). The within-cluster residual variance is 
denoted Residual Var. Turning to the coefficients section, lower-order terms in a moderated 
regression are conditional effects that depend on scaling or centering. Specifically, the lower-
order slope of MONTH7 (𝛽1 = 0.43) is the monthly change rate for students in the comparison 
condition (CONDITION = 0), and the intervention slope (𝛽5 = 1.55) similarly reflects the mean 
difference when MONTH7 = 0 (at the final assessment). The interaction effect captures the growth 
rate difference for students in experimental schools. The positive coefficient (𝛽6 = 0.35) indicates 
that the growth rate for the experimental condition is greater (more positive) than that of the 
comparison condition. The 95% credible interval limits suggest this effect is statistically different 
from zero (p < .05) because the null value is outside the interval. The bottom portion of the table 
displays Rights and Sterba (2019) R-squared effect size values. The fixed effects explain 7.5% of 
the total variation, the random intercepts account for 46.8% of the variability, and the random 
slopes account for 1.6% of the variation. 

The SIMPLE command prints a table of conditional effects (simple slopes) of MONTH7 within each 
intervention condition. Consistent with the positive interaction coefficient, the simple slope for 
the experimental schools is higher (more positive) that the growth rate for controls. Both 
conditional effects are statistically significant at p < .05 because the null value does not fall within 
the 95% credible intervals. The output table is shown below.  
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Conditional Effects                  Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
  month7 | condition @ 0                                                                            
    Intercept                        52.952      0.260     52.448     53.465      1.001   1617.612  
    Slope                             0.433      0.042      0.352      0.517      1.000   8418.593  
                                                                                                    
  month7 | condition @ 1                                                                            
    Intercept                        54.503      0.204     54.103     54.904      1.006   1569.880  
    Slope                             0.782      0.032      0.719      0.845      1.001   8792.733  
                                                                                                    
                                ------------------------------------------------------------------- 
 
                                NOTE: Intercepts are computed by setting all predictors 
                                      not involved in the conditional effect to zero. 
 

The Blimp output also includes tables of regression model parameters for the auxiliary 
variables as well as the auto-generated models for incomplete predictors. These additionally 
results are not of substantive interest and would not be reported. The auxiliary variable models 
appear in OUTCOME MODEL ESTIMATES section with the focal results, and the auto-generated 
predictor models are displayed under the heading PREDICTOR MODEL ESTIMATES.  

Saving Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex16.2.imp is identical Ex16.1.imp, but it adds the following lines at the 
bottom of the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to 
CHAINS saves a single filled-in data set from the final iteration of a unique MCMC process, thus 
avoiding autocorrelation among the imputations. The SAVE command provides a name for the 
imputed data sets. The script illustrates how to save data sets in two common formats. The 
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stacked keyword creates a stacked file where all imputations are in a single file, and the separate 
keyword saves each imputed data set to a separate file with the asterisk replaced by a numeric 
index. To keep things organized, the ./imps part of the file path points to a subfolder named 
imps located within the same folder as the script and data. The separate keyword also creates a 
list of file names needed for analysis in Mplus (in this example, a filed called implist.dat 
located in the imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 

VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     school student wave condition teachexp eslpct ethnic male  
     frlunch lowach stanmath month0 month7 probsolve efficacy 
 
   stacked = './imps/imps.dat' 
 
     imp# school student wave condition teachexp eslpct ethnic male  
     frlunch lowach stanmath month0 month7 probsolve efficacy 
 

The imputed data sets are subsequently analyzed in another software package, and estimates 
and standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase 
does not utilize the auxiliary variables, as their information is embedded in the imputations. 
Scripts for analyzing the imputed data sets are found in the next subsections. 

Analyzing Imputations in Mplus 

In lieu of the Bayesian estimates, Blimp’s SAVE command can be used to save multiple 
imputations for analysis in the frequentist framework. Returning to the previous Blimp script, 
the SAVE command and the separate keyword saved each imputed data set to a separate file 
with the asterisk replaced by a numeric index. The separate keyword also creates a list of file 



   

 

211 

names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps subfolder). Example 6 shows the contents of this file. 

The Mplus input file for analyzing the imputations is Ex13.inp. The code block below shows 
the analysis and pooling script. The DATA command lists the text file containing the names of the 
imputed data sets (the implist.dat file located in the ./imps subdirectory). The type = 
imputation subcommand instructs Mplus that the input data is a list of file names. The 
VARIABLE command provides information about the data. Beginning on line 5, the names 
subcommand assigns names to the variables in the input data file, and the usevariables 
subcommand selects variables for the analysis. The cluster command on line 8 lists the school-
level identifier variable that indicates the clustering of the data records in schools. The within 
and between subcommands on lines 9 and 10 identify level-1 and level-2 predictors, 
respectively.  

 
Mplus Script Ex16.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:   
 5  names = school student wave condition teachexp eslpct ethnic  
 6   male frlunch lowach stanmath month0 month7 probsolve efficacy; 
 7  usevariables = probsolve month7 male frlunch teachexp condition; 
 8  cluster = student; 
 9  within = month7 male frlunch; 
10  between = male frlunch teachexp condition; 
11  DEFINE: 
12  center male frlunch teachexp (grandmean); 
13  ANALYSIS: 
14  type = twolevel random; 
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15  MODEL: 
16  %within% 
17  ranslope | probsolve on month7; 
18  %between% 
19  [ranslope] (beta1); 
20  probsolve on male frlunch teachexp condition; 
21  ranslope on condition (beta6); 
22  ranslope with probsolve; 
23  MODEL CONSTRAINT: 
24  new(slp_cond0 slp_cond1); 
25  slp_cond0 = beta1; 
26  slp_cond1 = beta1 + beta6; 
27  OUTPUT: 
28  cinterval; 
 

On line 12, the center subcommand under the DEFINE command centers the three 
covariates at their grand means. The ANALYSIS command and type = twolevel random 
subcommand is required for estimating two-level models with random slopes. The MODEL section 
of the script consists of two sections: the %within% section specifies the regression of the 
outcome on level-1 predictors, and the %between% section specifies the regression of the random 
intercepts on the level-2 predictors. In the %within% section, listing ranslope (an arbitrary 
name) to the left of the vertical pipe creates a level-2 latent variable capturing individual growth 
rates. Regressing this latent variable on CONDITION in the %between% model gives the cross-level 
interaction. Beginning on line 23, the MODEL CONSTRAINT command is used to compute 
conditional effects or simple slopes. First, line 24 assigns names to two new parameters (the 
group-specific growth rates). Lines 25 through 26 use parameter labels from the MODEL section 
to compute the conditional effect of MONTH7 in each experimental group. 

Mplus Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The focal model results are shown in bold 
typeface. The Rate of Missing column (also called the fraction of missing information in the 
literature) quantifies the imputation noise in each estimate as proportion of its squared standard 
error. 
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MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
Within Level 
 
 Residual Variances 
    PROBSOLVE         12.562      0.355     35.401      0.000      0.103 
 
Between Level 
 
 RANSLOPE   ON 
    CONDITION          0.343      0.053      6.477      0.000      0.168 
 
 PROBSOLVE  ON 
    MALE               0.412      0.250      1.649      0.099      0.018 
    FRLUNCH           -0.923      0.306     -3.011      0.003      0.071 
    TEACHEXP           0.027      0.034      0.814      0.416      0.166 
    CONDITION          1.527      0.334      4.565      0.000      0.102 
 
 RANSLOPE WITH 
    PROBSOLVE          0.802      0.155      5.161      0.000      0.216 
 
 Intercepts 
    PROBSOLVE         52.968      0.265    199.640      0.000      0.146 
    RANSLOPE           0.438      0.041     10.674      0.000      0.215 
 
 Residual Variances 
    PROBSOLVE         16.918      1.049     16.126      0.000      0.076 
    RANSLOPE           0.119      0.034      3.497      0.000      0.316 
 
New/Additional Parameters 
    SLP_COND           0.438      0.041     10.674      0.000      0.215 
    SLP_COND           0.780      0.034     22.766      0.000      0.141 
 

Mplus separates the level-1 and level-2 effects on the output (labeled Within Level and 
Between Level, respectively). Considering the coefficients, lower-order terms in a moderated 
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regression are conditional effects that depend on scaling or centering. Specifically, the lower-
order slope of MONTH7 (𝛽1̂ = 0.44) is the monthly change rate for students in the comparison 
condition (CONDITION = 0), and the intervention slope (𝛽5̂ = 1.53) similarly reflects the mean 
difference when MONTH7 = 0 (at the final assessment). The interaction effect captures the growth 
rate difference for students in experimental schools. The positive coefficient (𝛽6̂ = 0.34) indicates 
that the growth rate for the experimental condition is greater (more positive) than that of the 
comparison condition. The corresponding test statistic indicates that the interaction effect is 
statistically different from zero (z = 6.48, p < .001). Finally, the printed output also includes the 
table of conditional effects, which were computed using the MODEL CONSTRAINT command. 
Consistent with the positive interaction coefficient, the simple slope for the experimental schools 
is higher (more positive) that the growth rate for controls. Note that these estimates are 
numerically identical to those from Bayesian estimation. 

Analyzing Imputations in R 

Returning to the previous Blimp script, the SAVE command and the stacked keyword saved the 
imputed data sets to a single stacked file with an index variable in the first column identifying the 
individual files. The stacked file is appropriate for analyzing data in R, SAS, SPSS, and Stata, 
among others. 

The R input file for the analysis is Ex16.R. The code block below shows the commands that 
import the data. The example requires the fdir, lme4, and mitml packages, which are loaded on 
lines 1 through 3. On line 4, the set() function of the fdir package identifies the file path of the 
folder containing the R script and sets this location as the working directory. On line 5, the 
read.table command imports the stacked data. It is only necessary to specify the name of the 
input data, as no file path is required when the file resides in the same folder as the R script. 
Variable names are listed beginning on line 6. Importantly, the first variable named IMPUTATION 
is the index that identifies the individual files. Finally, lines 9 through 11 create new centered 
versions of the covariates, and line 12 computes the cross-level product term. 
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R Script Ex16.R 
 
 1  library(fdir) 
 2  library(lme4) 
 3  library(mitml) 
 4  set() 
 5  imps <- read.table("./imps/imps.dat") 
 6  names(imps) <- c("imputation","school","student","wave","condition", 
 7   "teachexp","eslpct","race","male","frlunch","lowach", 
 8   "stanmath","month0", "month7", "probsolve", "efficacy") 
 9  imps$male.cgm <- imps$male - mean(imps$male) 
10  imps$frlunch.cgm <- imps$frlunch - mean(imps$frlunch) 
11  imps$teachexp.cgm <- imps$teachexp - mean(imps$teachexp) 
12  imps$product <- imps$month7 * imps$condition 
 

The next block of code relies on the mitml package to fit the model to each data set and pool 
the results using Rubin’s rules.  

 
R Script Ex16.R, continued 
 
13  implist <- as.mitml.list(split(imps, imps$imputation)) 
14  fit <- with(implist, lmer(probsolve ~ month7  + male.cgm +  
15   frlunch.cgm + teachexp.cgm + condition + product + 
16   (1 + month7 | student), REML = T)) 
17  estimates <- testEstimates(fit, extra.pars = T) 
18  estimates 
19  confint(estimates) 
 

The implist command on line 13 unstacks the data and creates a list that contains the 
individual files. Line 14 fits the focal regression model using the lmer function, and line 17 uses 
the testEstimates function in mitml to implement Rubin’s pooling rules and save the results 
in an object called estimates. Finally, lines 18 and 19 print the estimates and confidence 
intervals. 
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The final code block below computes conditional effects or simple slopes. Lines 20 and 22 
define text strings that define the computation of the conditional effect of MONTH7 in each of the 
two experimental conditions, and lines 21 and 23 use the testConstraints function in mitml 
to compute the pooled coefficients and test statistics. 

 
R Script Ex16.R, continued 
 
20  slp_cond0 <- "month7 + product*0" 

21  testConstraints(fit, constraints = slp_cond0) 

22  slp_cond1 <- "month7 + product*1" 

23  testConstraints(fit, constraints = slp_cond1) 

 

R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown in bold 
typeface. The RIV column (relative increase in variance) is a fraction comparing imputation 
noise to complete-data sampling variation, and the FMI column (fraction of missing information 
in the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 

Focusing on the coefficient section, lower-order terms in a moderated regression are 
conditional effects that depend on scaling or centering. Specifically, the lower-order slope of 
MONTH7 (𝛽1̂ = 0.44) is the monthly change rate for students in the comparison condition 
(CONDITION = 0), and the intervention slope (𝛽5̂ = 1.53) similarly reflects the mean difference 
when MONTH7 equals zero (at the final assessment). The interaction effect captures the growth 
rate difference for students in experimental schools. The positive coefficient (𝛽6̂ = 0.34) indicates 
that the growth rate for the experimental condition is greater (more positive) than that of the 
comparison condition. The corresponding test statistic indicates that the interaction effect is 
statistically different from zero (t = 6.36, p < .001). Note that these estimates are numerically 
identical to those from Bayesian estimation. 

 

  



   

 

217 

 
> estimates 

 

Call: 

 

testEstimates(model = fit, extra.pars = T) 

 

Final parameter estimates and inferences obtained from 20 imputed data sets. 

 

              Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  

(Intercept)     52.968     0.268   197.999   904.060     0.000     0.170     0.147  

month7           0.438     0.043    10.164   515.783     0.000     0.238     0.195  

male.cgm         0.412     0.250     1.646 59548.781     0.100     0.018     0.018  

frlunch.cgm     -0.923     0.321    -2.877  4605.132     0.004     0.069     0.065  

teachexp.cgm     0.027     0.033     0.820   687.203     0.412     0.199     0.169  

condition        1.527     0.335     4.557  1869.028     0.000     0.112     0.102  

product          0.343     0.054     6.355   746.081     0.000     0.190     0.162  

 

                             Estimate  

Intercept~~Intercept|student   17.008  

month7~~month7|student          0.120  

Intercept~~month7|student       0.807  

Residual~~Residual             12.562  

ICC|student                     0.575  

 

Unadjusted hypothesis test as appropriate in larger samples. 

 

> confint(estimates) 

                   2.5 %      97.5 % 

(Intercept)  52.44296516 53.49301546 

month7        0.35296167  0.52209734 

male.cgm     -0.07866869  0.90255886 

frlunch.cgm  -1.55140239 -0.29405478 

teachexp.cgm -0.03829512  0.09324121 

condition     0.86953509  2.18370698 

product       0.23676192  0.44842949 
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Finally, the printed output also includes the table of conditional effects or simple slopes. 
Consistent with the positive interaction coefficient, the monthly growth rate for the experimental 
schools is higher (more positive) that the growth rate for controls. 

 
testConstraints(model = fit, constraints = slp_cond0) 
 
Hypothesis test calculated from 20 imputed data sets. The following 
constraints were specified: 
 
                         Estimate Std. Error  
   month7 + product*0:      0.438      0.043  
 
Combination method: D1  
 
    F.value     df1     df2   P(>F)     RIV  
    103.310       1 344.871   0.000   0.238  
 
Unadjusted hypothesis test as appropriate in larger samples. 
testConstraints(model = fit, constraints = slp_cond1) 
 
Hypothesis test calculated from 20 imputed data sets. The following 
constraints were specified: 
 
                         Estimate Std. Error  
   month7 + product*1:      0.780      0.033  
 
Combination method: D1  
 
    F.value     df1     df2   P(>F)     RIV  
    548.355       1 568.584   0.000   0.174  
 
Unadjusted hypothesis test as appropriate in larger samples. 
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EXAMPLE 17: THREE-LEVEL REGRESSION WITH  
A CROSS-LEVEL INTERACTION EFFECT 

This example illustrates a two-level multiple regression with random intercepts. The analysis uses 
the problemsolving3level.dat data set taken from a cluster-randomized educational 
intervention where 29 schools were assigned to an intervention and comparison condition. In 
addition to the intervention assignment indicator, school-level variables include the average 
years of teacher experience and the percentage of learners for whom English is a second 
language. The 928 student-level records include pretest and posttest math problem-solving and 
self-efficacy scores, standardized math scores taken from a statewide assessment, and several 
sociodemographic variables. The analysis variables are as follows. 

Name Definition Missing % Scale 

Identifier Variables 
SCHOOL School identifier 0 Integer index 

STUDENT Student identifier 0 Integer index 

Focal Variables 

PROBSOLVE Math problem-solving posttest  11.5 Numeric 

MONTH7 Math problem-solving pretest  0 Numeric 
MALE Gender dummy code 0 0 = Female, 1 = Male 

FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Free/reduced lunch 
TEACHEXP Teacher years of experience 10.8 Numeric 

CONDITION Experimental condition 0 0 = Control, 1 = Experimental 

Analysis Model 

The analysis is a linear growth model that features a repeatedly-measured problem-solving test 
regressed on time scores (months until the end of the school year, a level-1 predictor), 
experimental condition (level-2), the cross-level interaction of the two variables, and three grand 
mean centered covariates: gender and lunch assistance dummy codes (level-1), and years of 
teacher experience (level-2). To convey each variable’s level, the i and j subscripts denote 
repeated measurements and students, respectively, and k is the school-level identifier. 
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𝑃𝑅𝑂𝐵𝑆𝑂𝐿𝑉𝐸𝑖𝑗𝑘 = (𝛽0 + 𝑏0𝑗𝑘 + 𝑏0𝑘) + (𝛽1 + 𝑏1𝑗𝑘 + 𝑏1𝑘)(𝑀𝑂𝑁𝑇𝐻7𝑖𝑗) + 𝛽2(𝑀𝐴𝐿𝐸𝑗) 

(32) + 𝛽3(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑗) + 𝛽4(𝑇𝐸𝐴𝐶𝐻𝐸𝑋𝑃𝑗) + 𝛽5(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) 

+ 𝛽6(𝑀𝑂𝑁𝑇𝐻7𝑖𝑗)(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝜀 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. Blimp uses a factored regression specification that assigns 
separate distributions to the predictors and outcome. By default, Blimp invokes a multivariate 
normal distribution for numeric predictors and the latent response scores for discrete predictors. 

Blimp Script 

The code block below shows Blimp script Ex17.1.inp. The first six lines can be viewed as a set 
of commands that specify information about the data and variables. The DATA command 
specifies the name of the input text file. No file path is required when the data file is located in the 
same directory as the script, as it is here. Starting on line 2, the VARIABLES command names the 
data columns. The CLUSTERID command on line 4 lists the student- and school-level identifier 
variables that indicates the clustering of the data records. The order of the identifier variables 
does not matter. Including the CLUSTERID command automatically introduces random 
intercepts at level-2 and level-3. The ORDINAL command on line 5 identifies binary and ordinal 
variables. Binary variables can be defined as ordinal or nominal, as the statistical models are 
identical. The MISSING command on line 6 defines a global missing value code as 999. 

 
Blimp Script Ex17.1.imp 
 
 1  DATA: problemsolving3level.dat; 
 2  VARIABLES: school student wave condition teachexp eslpct ethnic  
 3   male frlunch lowach stanmath month0 month7 probsolve efficacy; 
 4  CLUSTERID: student school; 
 5  ORDINAL: male frlunch condition; 
 6  MISSING: 999; 
 7  FIXED: month7 male condition; 
 8  CENTER: grandmean = male frlunch teachexp; 
 9  MODEL:  
10  probsolve ~ month7 male frlunch teachexp condition  
11   month7*condition  | month7; 
12  SIMPLE:  
13  month7 | condition; 
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14  SEED: 90291; 
15  BURN: 20000; 
16  ITERATIONS: 50000; 
 

The FIXED, CENTER, MODEL, and SIMPLE blocks can be viewed as a set. The FIXED command 
identifies a complete predictor, which does not require a distribution or regression model. The 
CENTER command deviates the three covariates at their iteratively-estimated grand means. 
Beginning on line 9, the MODEL command lists the regression model, with outcome variable to 
the left of the tilde and predictors to the right. The product term is specified by joining the 
interacting variables with an asterisk (i.e., MONTH7*CONDITION), and listing MONTH7 to the right 
of the vertical pipe specifies this variable as a random slope predictor. The SIMPLE command 
requests the conditional effects (i.e., simple slopes) of MONTH7 at each level of CONDITION. By 
default, Blimp computes the simple slope at each level of a binary moderator listed on the 
ORDINAL line. Blimp automatically configures the explanatory variable models under the 
assumption that the numeric variables and latent response scores (discrete predictors) are 
normally distributed. Custom significance tests can be specified using the TEST command, as 
shown in previous examples. 

Finally, lines 14 through 16 can be viewed as a block of commands that specify features of the 
MCMC algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. This analysis required a 
much longer burn-in period that previous examples. 
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BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                          501 to 1000            1.938            18   
                         1001 to 2000            1.460             3   
                         1501 to 3000            1.159             8   
                         2001 to 4000            1.215             3 
                                  ...              ...            ..   
                         8501 to 17000           1.011             8   
                         9001 to 18000           1.019            23   
                         9501 to 19000           1.020            23   
                        10001 to 20000           1.010            27 
 

The next section of the output displays information about the variables in the analysis and the 
models used for estimation. This output table mimics the one from Example 6, but it additionally 
reports the number of observations at each level. Earlier examples also show how to implement 
the Bayesian Wald significance test. 

 
DATA INFORMATION: 
 
  Level-2 identifier:       student 
  Level-3 identifier:       school 
  Sample Size:              6874 
  Level-2 Clusters:         982 
  Level-3 Clusters:         29 
 

MCMC estimation produces a distribution for each parameter in the table. The median and 
standard deviation columns describe the center and spread of the posterior distributions; 
although they make no reference to drawing repeated samples, they are analogous—and 
numerically equivalent in most cases—to frequentist point estimates and standard errors. The 
95% credible intervals in the rightmost columns give a range that captures 95% of the 
parameter’s distribution. These are akin to confidence intervals, but the intervals describe 
parameter distributions rather than characteristics of repeated samples. The N_Eff values in 
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rightmost column of the table give the effective number of MCMC samples for each parameter. 
These quantities essentially represent the number of independent estimates on which the 
parameter summaries are based after removing autocorrelations from the MCMC process. 
Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in the example table 
exceed this recommended minimum. In cases where the N_Eff values are insufficient, increasing 
the value on the ITERATIONS command will remedy the issue. Unlike previous examples, this 
analysis specified 50,000 iterations to achieve acceptable values. The table summarizing the focal 
regression model is shown below. The table includes unstandardized coefficients, standardized 
slopes, and variance explained effect size estimates (Rights & Sterba, 2019). 

 
OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 50000 iterations using 2 chains. 
 
Outcome Variable:  probsolve   
 
Grand Mean Centered: frlunch male teachexp 
 
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
Variances:                       
  L2 : Var(Intercept)                11.082      0.841      9.536     12.831      1.002   1518.450  
  L2 : Cov(month7,Intercept)          0.319      0.118      0.110      0.569      1.015    294.347  
  L2 : Var(month7)                    0.048      0.025      0.009      0.103      1.049     93.299  
  L3 : Var(Intercept)                 7.682      3.015      4.162     15.828      1.003   2028.329  
  L3 : Cov(month7,Intercept)          0.641      0.298      0.272      1.428      1.001   4314.971  
  L3 : Var(month7)                    0.093      0.039      0.047      0.196      1.000  13688.553  
  Residual Var.                      12.569      0.272     12.048     13.116      1.007    805.665  
 
Coefficients:                    
  Intercept                          52.947      0.821     51.210     54.439      1.009    323.296  
  month7                              0.456      0.097      0.265      0.647      1.001    952.544  
  male                                0.329      0.226     -0.112      0.771      1.001   4104.664  
  frlunch                            -0.275      0.304     -0.870      0.320      1.001   3069.641  
  teachexp                            0.008      0.093     -0.192      0.178      1.005    321.412  
  condition                           1.517      1.083     -0.647      3.669      1.006    323.310    
  month7*condition                    0.295      0.129      0.035      0.546      1.001    972.799 
  

 

 
Standardized Coefficients:       
  month7                              0.167      0.036      0.096      0.237      1.002    936.322  
  male                                0.030      0.020     -0.010      0.070      1.002   4097.642  
  frlunch                            -0.020      0.022     -0.063      0.023      1.002   3051.944  
  teachexp                            0.006      0.070     -0.141      0.136      1.005    323.493  
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  condition                           0.136      0.094     -0.057      0.318      1.006    324.526  
  month7*condition                    0.116      0.050      0.014      0.211      1.001   1010.021  
 
Proportion Variance Explained    
  by Coefficients                     0.072      0.017      0.045      0.114      1.005    536.434  
  by Level-2 Random Intercepts        0.323      0.024      0.269      0.365      1.004   1830.280  
  by Level-2 Random Slopes            0.006      0.003      0.001      0.014      1.048     96.338  
  by Level-3 Random Intercepts        0.157      0.047      0.092      0.275      1.003   1823.019  
  by Level-3 Random Slopes            0.013      0.005      0.006      0.025      1.000  14140.962  
  by Level-1 Residual Variation       0.424      0.028      0.357      0.469      1.007   1356.065 
 
                                ------------------------------------------------------------------- 
 

The results are interpreted in the same way as a complete-data multilevel analysis. The first 
section of the output table displays the variance estimates. The level-2 random intercept and 
slope variances are denoted L2:Var(Intercept) and L2:Var(month7), respectively, and their 
covariance is labeled L2 : Cov(month7,Intercept). Similarly, the level-3 random intercept 
and slope variances are denoted L3:Var(Intercept) and L3:Var(month7), respectively, and 
their covariance is labeled L3 : Cov(month7,Intercept). The within-cluster residual 
variance is denoted Residual Var. Turning to the coefficients section, lower-order terms in a 
moderated regression are conditional effects that depend on scaling or centering. Specifically, the 
lower-order slope of MONTH7 (𝛽1 = 0.47) is the monthly change rate for students in the 
comparison condition (CONDITION = 0), and the intervention slope (𝛽5 = 1.52) similarly reflects 
the mean difference when MONTH7 = 0 (at the final assessment). The interaction effect captures 
the growth rate difference for students in experimental schools. The positive coefficient (𝛽6 = 
0.30) indicates that the growth rate for the experimental condition is greater (more positive) than 
that of the comparison condition. The 95% credible interval limits suggest this effect is 
statistically different from zero (p < .05) because the null value is outside the interval. The bottom 
portion of the table displays Rights and Sterba (2019) R-squared effect size values. The fixed 
effects explain 7.2% of the total variation, the random intercepts at level-2 and level-3 account for 
32.3% and 15.7% of the variability, respectively, and the level-2 and level-3 random slopes 
account for 0.6% and 1.6% of the variation. 

The SIMPLE command prints a table of conditional effects (simple slopes) of MONTH7 within each 
intervention condition. Consistent with the positive interaction coefficient, the simple slope for 
the experimental schools is higher (more positive) that the growth rate for controls. Both 
conditional effects are statistically significant at p < .05 because the null value does not fall within 
the 95% credible intervals. The output table is shown below.  

 
Conditional Effects                  Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
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  month7 | condition @ 0                                                                            
    Intercept                        52.947      0.821     51.210     54.439      1.009    323.296  
    Slope                             0.456      0.097      0.265      0.647      1.001    952.544  
                                                                                                    
  month7 | condition @ 1                                                                            
    Intercept                        54.437      0.765     52.894     55.929      1.002    209.317  
    Slope                             0.751      0.086      0.577      0.917      1.001    720.410 
                                                                                                    
                                ------------------------------------------------------------------- 
 
                                NOTE: Intercepts are computed by setting all predictors 
                                      not involved in the conditional effect to zero. 
 

The Blimp output also includes tables of regression model parameters for the auxiliary 
variables as well as the auto-generated models for incomplete predictors. These additionally 
results are not of substantive interest and would not be reported. The auxiliary variable models 
appear in OUTCOME MODEL ESTIMATES section with the focal results, and the auto-generated 
predictor models are displayed under the heading PREDICTOR MODEL ESTIMATES.  

Saving Multiple Imputations 

MCMC estimation imputes missing values at every iteration, such that the resulting Bayesian 
estimates average over thousands of plausible replacement scores (10,000 sets in this example). A 
subset of the imputations can be saved for reanalysis in the frequentist framework, if desired. The 
Blimp input file Ex17.2.imp is identical Ex17.1.imp, but it adds the following lines at the 
bottom of the script. 

 
NIMPS: 20; 
CHAINS: 20; 
SAVE:  
stacked = ./imps/imps.dat; 
separate = ./imps/imp*.dat; 
 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to 
CHAINS saves a single filled-in data set from the final iteration of a unique MCMC process, thus 
avoiding autocorrelation among the imputations. The SAVE command provides a name for the 
imputed data sets. The script illustrates how to save data sets in two common formats. The 
stacked keyword creates a stacked file where all imputations are in a single file, and the separate 
keyword saves each imputed data set to a separate file with the asterisk replaced by a numeric 
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index. To keep things organized, the ./imps part of the file path points to a subfolder named 
imps located within the same folder as the script and data. The separate keyword also creates a 
list of file names needed for analysis in Mplus (in this example, a filed called implist.dat 
located in the imps folder). 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 

VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     school student wave condition teachexp eslpct ethnic male  
     frlunch lowach stanmath month0 month7 probsolve efficacy 
 
   stacked = './imps/imps.dat' 
 
     imp# school student wave condition teachexp eslpct ethnic male  
     frlunch lowach stanmath month0 month7 probsolve efficacy 
 

The imputed data sets are subsequently analyzed in another software package, and estimates 
and standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase 
does not utilize the auxiliary variables, as their information is embedded in the imputations. 
Scripts for analyzing the imputed data sets are found in the next subsections. 

Analyzing Imputations in Mplus 

In lieu of the Bayesian estimates, Blimp’s SAVE command can be used to save multiple 
imputations for analysis in the frequentist framework. Returning to the previous Blimp script, 
the SAVE command and the separate keyword saved each imputed data set to a separate file 
with the asterisk replaced by a numeric index. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps subfolder). Example 6 shows the contents of this file. 
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The Mplus input file for analyzing the imputations is Ex17.inp. The code block below shows 
the analysis and pooling script. The DATA command lists the text file containing the names of the 
imputed data sets (the implist.dat file located in the ./imps subdirectory). The type = 
imputation subcommand instructs Mplus that the input data is a list of file names. The 
VARIABLE command provides information about the data. Beginning on line 5, the names 
subcommand assigns names to the variables in the input data file, and the usevariables 
subcommand selects variables for the analysis. The cluster subcommand on line 8 lists the 
school- and student-level identifier variables that indicate the clustering of the data records. The 
within and between subcommands on lines 9 and 10 identify level-1, level-2 ,and level-3 
predictors.  

 
Mplus Script Ex17.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:   
 5  names = school student wave condition teachexp eslpct ethnic  
 6   male frlunch lowach stanmath month0 month7 probsolve efficacy; 
 7  usevariables = probsolve month7 male frlunch teachexp condition; 
 8  cluster = school student; 
 9  within = month7; 
10  between = (student) male frlunch (school) teachexp condition; 
11  DEFINE: 
12  center male frlunch teachexp (grandmean); 
13  ANALYSIS: 
14  type = threelevel random; 
 

 

 
15  MODEL: 
16  %within% 
17  ranslope | probsolve on month7; 
18  %between student% 
19  probsolve on male frlunch; 
20  probsolve with ranslope; 
21  %between school% 



   228 

22  [ranslope] (beta1); 
23  probsolve on teachexp condition; 
24  ranslope on condition (beta6); 
25  ranslope with probsolve; 
26  MODEL CONSTRAINT: 
27  new(slp_cond0 slp_cond1); 
28  slp_cond0 = beta1; 
29  slp_cond1 = beta1 + beta6; 
30  OUTPUT: 
31  cinterval; 
 

On line 12, the center subcommand under the DEFINE command centers the three 
covariates at their grand means. The ANALYSIS command and type = threelevel random 
subcommand is required for estimating three-level models with random slopes at each level. The 
MODEL section of the script consists of three sections: the %within% section specifies the 
regression of the outcome on level-1 time scores, and the %between student% section specifies 
the regression of the random intercepts on the level-2 predictors, and the %between school% 
section specifies the regression of the random intercepts on the level-3 predictors. In the 
%within% section, listing ranslope (an arbitrary name) to the left of the vertical pipe creates 
level-2 and level-3 latent variable capturing growth rates. Regressing this latent variable on 
CONDITION in the %between school% model gives the cross-level interaction. Beginning on 
line 26, the MODEL CONSTRAINT command is used to compute conditional effects or simple 
slopes. First, line 27 assigns names to two new parameters (the group-specific growth rates). 
Lines 28 and 29 use parameter labels from the MODEL section to compute the conditional effect of 
MONTH7 in each experimental condition. 
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Mplus Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The focal model results are shown in bold 
typeface. The Rate of Missing column (also called the fraction of missing information in the 
literature) quantifies the imputation noise in each estimate as proportion of its squared standard 
error. 

 
MODEL RESULTS 
 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 

  Within Level 
 
Residual Variances 
    PROBSOLVE         12.563      0.812     15.467      0.000      0.013 
 
Between STUDENT Level 
 
 PROBSOLVE  ON 
    MALE               0.336      0.258      1.301      0.193      0.017 
    FRLUNCH           -0.304      0.308     -0.986      0.324      0.084 
 
 PROBSOLV WITH 
    RANSLOPE           0.300      0.144      2.084      0.037      0.101 
 
 Variances 
    RANSLOPE           0.042      0.028      1.464      0.143      0.143 
 
 Residual Variances 
    PROBSOLVE         10.970      0.827     13.272      0.000      0.098 
 
Between SCHOOL Level 
 
 RANSLOPE   ON 
    CONDITION          0.301      0.113      2.663      0.008      0.058 
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   PROBSOLVE  ON 

    TEACHEXP           0.014      0.073      0.191      0.848      0.033 
    CONDITION          1.558      0.949      1.642      0.101      0.015 
 
 RANSLOPE WITH 
    PROBSOLVE          0.490      0.180      2.717      0.007      0.052 
 
 Intercepts 
    PROBSOLVE         52.855      0.735     71.869      0.000      0.020 
    RANSLOPE           0.449      0.080      5.588      0.000      0.083 
 
 Residual Variances 
    PROBSOLVE          5.696      1.905      2.989      0.003      0.026 
    RANSLOPE           0.070      0.021      3.336      0.001      0.063 
 
New/Additional Parameters 
    SLP_COND           0.449      0.080      5.588      0.000      0.083 
    SLP_COND           0.749      0.079      9.545      0.000      0.017 
 

Mplus separates level-specific effects on the output (labeled Within Level and Between 
STUDENT Level, and Between SCHOOL Level). Considering the coefficients, lower-order 
terms in a moderated regression are conditional effects that depend on scaling or centering. 
Specifically, the lower-order slope of MONTH7 (𝛽1̂ = 0.45) is the monthly change rate for students 
in the comparison condition (CONDITION = 0), and the intervention slope (𝛽5̂ = 1.56) similarly 
reflects the mean difference when MONTH7 = 0 (at the final assessment). The interaction effect 
captures the growth rate difference for students in experimental schools. The positive coefficient 
(𝛽6̂ = 0.30) indicates that the growth rate for the experimental condition is greater (more 
positive) than that of the comparison condition. The corresponding test statistic indicates that 
the interaction is statistically different from zero (z = 2.66, p = .01). Finally, the printed output 
also includes the table of conditional effects, which were computed using the MODEL 
CONSTRAINT command. Consistent with the positive interaction coefficient, the simple slope for 
the experimental schools is higher (more positive) that the growth rate for controls. Note that 
these estimates are numerically identical to those from Bayesian estimation. 
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Analyzing Imputations in R 

Returning to the previous Blimp script, the SAVE command and the stacked keyword saved the 
imputed data sets to a single stacked file with an index variable in the first column identifying the 
individual files. The stacked file is appropriate for analyzing data in R, SAS, SPSS, and Stata, 
among others. 

The R input file for the analysis is Ex14.R. The code block below shows the commands that 
import the data. The example requires the fdir, lme4, and mitml packages, which are loaded on 
lines 1 through 3. On line 4, the set() function of the fdir package identifies the file path of the 
folder containing the R script and sets this location as the working directory. On line 5, the 
read.table command imports the stacked data. It is only necessary to specify the name of the 
input data, as no file path is required when the file resides in the same folder as the R script. 
Variable names are listed beginning on line 6. Importantly, the first variable named IMPUTATION 
is the index that identifies the individual files. Finally, lines 9 through 11 create new centered 
versions of the covariates, and line 12 computes the cross-level product term. 

 
R Script Ex17.R 
 
 1  library(fdir) 
 2  library(lme4) 
 3  library(mitml) 
 4  set() 
 5  imps <- read.table("./imps/imps.dat") 
 6  names(imps) <- c("imputation","school","student","wave","condition", 
 7   "teachexp","eslpct","race","male","frlunch","lowach", 
 8   "stanmath","month0", "month7", "probsolve", "efficacy") 
 9  imps$male.cgm <- imps$male - mean(imps$male) 
10  imps$frlunch.cgm <- imps$frlunch - mean(imps$frlunch) 
11  imps$teachexp.cgm <- imps$teachexp - mean(imps$teachexp) 
12  imps$product <- imps$month7 * imps$condition 
 

The next block of code relies on the mitml package to fit the model to each data set and pool 
the results using Rubin’s rules. The implist command on line 13 unstacks the data and creates a 
list that contains the individual files. Line 14 fits the focal regression model using the lmer 
function, and line 17 uses the testEstimates function in mitml to implement Rubin’s pooling 
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rules and save the results in an object called estimates. Finally, lines 18 and 19 print the 
estimates and confidence intervals. 

 
R Script Ex17.R, continued 
 
13  implist <- as.mitml.list(split(imps, imps$imputation)) 
14  fit <- with(implist, lmer(probsolve ~ month7  + male.cgm +  
15   frlunch.cgm + teachexp.cgm + condition + product + 
16   (1 + month7 | school/student), REML = T)) 
17  estimates <- testEstimates(fit, extra.pars = T) 
18  estimates 
19  confint(estimates) 
 

The final code block below computes conditional effects or simple slopes. Lines 20 and 22 
define text strings that define the computation of the conditional effect of MONTH7 in each of the 
two experimental conditions, and lines 21 and 23 use the testConstraints function in mitml 
to compute the pooled coefficients and test statistics. 

 
R Script Ex17.R, continued 
 
20  slp_cond0 <- "month7 + product*0" 

21  testConstraints(fit, constraints = slp_cond0) 

22  slp_cond1 <- "month7 + product*1" 

23  testConstraints(fit, constraints = slp_cond1) 

 

R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown in bold 
typeface. The RIV column (relative increase in variance) is a fraction comparing imputation 
noise to complete-data sampling variation, and the FMI column (fraction of missing information 
in the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 
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> estimates 

 

Call: 

 

mitml::testEstimates(model = fit, extra.pars = T) 

 

Final parameter estimates and inferences obtained from 20 imputed data sets. 

 

              Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  

(Intercept)     52.850     0.739    71.484 48272.908     0.000     0.020     0.020  

month7           0.449     0.089     5.051  4118.663     0.000     0.073     0.068  

male.cgm         0.336     0.225     1.491 36139.465     0.136     0.023     0.023  

frlunch.cgm     -0.296     0.306    -0.968  2653.706     0.333     0.092     0.085  

teachexp.cgm     0.014     0.080     0.175 23752.427     0.861     0.029     0.028  

condition        1.558     0.988     1.577 97549.706     0.115     0.014     0.014  

product          0.299     0.118     2.545  6592.702     0.011     0.057     0.054  

 

                                    Estimate  

Intercept~~Intercept|student:school   10.996  

month7~~month7|student:school          0.042  

Intercept~~month7|student:school       0.300  

Intercept~~Intercept|school            6.279  

month7~~month7|school                  0.077  

Intercept~~month7|school               0.532  

Residual~~Residual                    12.563  

 

Unadjusted hypothesis test as appropriate in larger samples. 

 

> confint(estimates) 

                   2.5 %     97.5 % 

(Intercept)  51.40094167 54.2991096 

month7        0.27493237  0.6237389 

male.cgm     -0.10566298  0.7767882 

frlunch.cgm  -0.89628585  0.3036326 

teachexp.cgm -0.14236201  0.1702211 

condition    -0.37855824  3.4938980 

product       0.06871323  0.5297675 
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Focusing on the coefficient section, lower-order terms in a moderated regression are 
conditional effects that depend on scaling or centering. Specifically, the lower-order slope of 
MONTH7 (𝛽1̂ = 0.45) is the monthly change rate for students in the comparison condition 
(CONDITION = 0), and the intervention slope (𝛽5̂ = 1.56) similarly reflects the mean difference 
when MONTH7 equals zero (at the final assessment). The interaction effect captures the growth 
rate difference for students in experimental schools. The positive coefficient (𝛽6̂ = 0.30) indicates 
that the growth rate for the experimental condition is greater (more positive) than that of the 
comparison condition. The corresponding test statistic indicates that the interaction effect is 
statistically different from zero (t = 2.55, p = .01). Note that these estimates are numerically 
identical to those from Bayesian estimation. 

Finally, the printed output also includes the table of conditional effects or simple slopes. 
Consistent with the positive interaction coefficient, the monthly growth rate for the experimental 
schools is higher (more positive) that the growth rate for controls. 

 
testConstraints(model = fit, constraints = slp_cond0) 
 
Hypothesis test calculated from 20 imputed data sets. The following 
constraints were specified: 
 
                         Estimate Std. Error  
   month7 + product*0:      0.449      0.089  
 
Combination method: D1  
 
     F.value      df1      df2    P(>F)      RIV  
      25.514        1 2648.828    0.000    0.073  
 
Unadjusted hypothesis test as appropriate in larger samples. 
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testConstraints(model = fit, constraints = slp_cond1) 
 
Hypothesis test calculated from 20 imputed data sets. The following 
constraints were specified: 
 
                         Estimate Std. Error  
   month7 + product*1:      0.749      0.076  
 
Combination method: D1  
 
      F.value       df1       df2     P(>F)       RIV  
       96.416         1 38733.604     0.000     0.018  
 
Unadjusted hypothesis test as appropriate in larger samples. 
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EXAMPLE 18: FULLY CONDITIONAL SPECIFICATION 
IMPUTATION FOR MULTILEVEL MODELS  

WITH RANDOM INTERCEPTS 

This example illustrates model-agnostic fully conditional specification multiple imputation for 
multilevel data with random intercepts. The analysis uses the problemsolving2level.dat 
data set taken from a cluster-randomized educational intervention where 29 schools were 
assigned to an intervention and comparison condition. In addition to the intervention 
assignment indicator, school-level variables include the average years of teacher experience and 
the percentage of learners for whom English is a second language. The 928 student-level records 
include pretest and posttest math problem-solving and self-efficacy scores, standardized math 
scores taken from a statewide assessment, and several sociodemographic variables. The analysis 
variables are as follows. 

Name Definition Missing % Scale 

Identifier Variables 
SCHOOL School identifier 0 Integer index 

Focal Variables 

PSOLVEPRE Math problem-solving pretest  0 Numeric 
MALE Gender dummy code 0 0 = Female, 1 = Male 

FRLUNCH Lunch assistance code 4.7 0 = None, 1 = Free/reduced lunch 
TEACHEXP Teacher years of experience 10.3 Numeric 

CONDITION Experimental condition 0 0 = Control, 1 = Experimental 
Auxiliary Variables 

LOWACH Low achievement code 2.1 0 = Typical, 1 = Low achieving 
STANMATH Standardized math scores  7.4 Numeric 

Imputation and Analysis Models 

Fully conditional specification uses a sequence of regression models to fill in missing values. 
Specifically, each MCMC iteration fits a series of models where one incomplete variable is 
regressed on all other variables. The predicted values and residual variance from each model 
define the center and spread of the imputed values, which are drawn at random from a normal 
distribution. After imputing the missing scores, the filled-in variable becomes a predictor in all 
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other imputation models in the sequence. The imputation stage should include all variables and 
effects for the subsequent analyses, and it should incorporate auxiliary variables that either 
predict missingness or correlate with the incomplete variables (Collins et al., 2001). 

A common goal of model-agnostic imputation is to generate imputations for different 
purposes (e.g., descriptive summaries, several analyses within the same project). To illustrate an 
entire multiple imputation analysis, suppose that one use of the filled-in data sets involves a 
random intercept regression model featuring problem-solving posttest scores regressed on the 
experimental condition dummy code at level-2 and four covariates, all of which are grand mean 
centered: problem-solving pretest scores (level-1), gender and lunch assistance dummy codes 
(level-1), and years of teacher experience (level-2). To convey each variable’s level, the i and j 
subscripts denote students and schools, respectively. 

𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑆𝑇𝑖𝑗 = (𝛽0 + 𝑏0𝑗) + 𝛽1(𝑃𝑆𝑂𝐿𝑉𝐸𝑃𝑅𝐸𝑖𝑗) + 𝛽2(𝑀𝐴𝐿𝐸𝑖𝑗) 
(33) 

+ 𝛽3(𝐹𝑅𝐿𝑈𝑁𝐶𝐻𝑖𝑗) + 𝛽4(𝑇𝐸𝐴𝐶𝐻𝐸𝑋𝑃𝑗) + 𝛽5(𝐶𝑂𝑁𝐷𝐼𝑇𝐼𝑂𝑁𝑗) + 𝜀𝑖𝑗  
 

Example 12 used the same analysis model to illustrate Bayesian estimation and model-based 
multiple imputation. 

Blimp Script 

The code block below shows Blimp script Ex18.inp. The first six lines can be viewed as a set of 
commands that specify information about the data and variables. The DATA command specifies 
the name of the input text file. No file path is required when the data file is located in the same 
directory as the script, as it is here. Starting on line 2, the VARIABLES command names the data 
columns. The CLUSTERID command on line 4 lists the school-level identifier variable that 
indicates the clustering of the data records in schools. Including the CLUSTERID command 
automatically introduces random intercepts for all level-1 variables. When a level-1 variable 
appears as a predictor of another level-1 variable, its random intercepts are used as a level-2 
covariate in the imputation model (i.e., imputation uses latent contextual effects). When a level-1 
variable appears as a predictor of a level-2 variable, just the random intercepts are in the 
imputation model. The ORDINAL command on line 5 identifies binary and ordinal variables. 
Binary variables can be defined as ordinal or nominal, as the statistical models are identical. The 
MISSING command on line 6 defines a global missing value code as 999. 

 
Blimp Script Ex18.imp 
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 1  DATA: problemsolving2level.dat; 
 2  VARIABLES: school student condition teachexp eslpct ethnic male  
 3   frlunch lowach stanmath efficacypre efficacypst psolvepre psolvepst;  
 4  CLUSTERID: school; 
 5  ORDINAL: condition male frlunch lowach; 
 6  MISSING: 999; 
 7  FIXED: condition male psolvepre; 
 8  FCS: psolvepst psolvepre male frlunch teachexp condition  
 9     stanmath lowach;  
10  SEED: 90291; 
11  BURN: 3000; 
12  ITERATIONS: 10000; 
13  NIMPS: 20; 
14  CHAINS: 20; 
15  SAVE:  
16  stacked = ./imps/imps.dat; 
17  separate = ./imps/imp*.dat; 
 

Next, the FCS command lists all variables—complete or incomplete at either level—that are 
included in the imputation phase. Using the FIXED command to identify complete variables 
reduces computational time because these variables do not require a regression model (see 
Example 17). Lines 10 through 12 can also be viewed as a block of commands that specify 
features of the MCMC algorithm: the SEED command gives an integer string that initializes the 
random number generator, the BURN command specifies the number of iterations for the warm-
up or burn-in period, and the ITERATIONS command gives the number of MCMC iterations on 
which the imputation model summaries are based (essentially, the total number of MCMC cycles 
across all chains following the warm-up period). 

The NIMPS, CHAINS and SAVE commands can be viewed as a set. Setting NIMPS equal to 
CHAINS saves a single filled-in data set from the final iteration of a unique MCMC process, thus 
avoiding autocorrelation among the imputations. The SAVE command provides a name for the 
imputed data sets. The script illustrates how to save data sets in two common formats. The 
stacked keyword creates a stacked file where all imputations are in a single file, and the separate 
keyword saves each imputed data set to a separate file with the asterisk replaced by a numeric 
index. To keep things organized, the ./imps part of the file path points to a subfolder named 
imps located within the same folder as the script and data. The separate keyword also creates a 
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list of file names needed for analysis in Mplus (in this example, a filed called implist.dat 
located in the imps folder). 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           51 to 100             1.490            24   
                          101 to 200             1.306            24   
                          151 to 300             1.146            24   
                          201 to 400             1.099            24  
                                  ...              ...            .. 
                          851 to 1700            1.022            24   
                          901 to 1800            1.020            24   
                          951 to 1900            1.020            17   
                         1001 to 2000            1.020            17 
 

The next output excerpt shows information about the data and the variables in the imputation 
models. 

 
DATA INFORMATION: 
 
  Level-2 identifier:       school 
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  Sample Size:              982 
  Level-2 Clusters:         29 
  Missing Data Rates: 
 
                 teachexp = 10.34 
                  frlunch = 04.68 
                   lowach = 02.14 
                 stanmath = 07.43 
                psolvepst = 20.47 
 
VARIABLES IN IMPUTATION MODEL: 
 
  Fixed variables:        condition male psolvepre 
  Incomplete continuous:  teachexp stanmath psolvepst 
  Incomplete ordinal:     frlunch lowach 
 
  NUMBER OF PARAMETERS 

    Imputation Models:      57 
   

MCMC estimation produces a distribution for each parameter in every unique imputation 
model. The median and standard deviation columns describe the center and spread of the 
posterior distributions; although they make no reference to drawing repeated samples, they are 
analogous—and numerically equivalent in most cases—to frequentist point estimates and 
standard errors. The 95% credible intervals in the rightmost columns give a range that captures 
95% of the parameter’s distribution. These are akin to confidence intervals, but the intervals 
describe parameter distributions rather than characteristics of repeated samples. The N_Eff 
values in rightmost column of the table give the effective number of MCMC samples for each 
parameter. These quantities essentially represent the number of independent estimates on which 
the parameter summaries are based after removing autocorrelations from the MCMC process. 
Gelman et al. (2014, p. 287) recommend values greater than 100.  All values in the example table 
exceed this recommended minimum. In cases where the N_Eff values are insufficient, increasing 
the value on the ITERATIONS command will remedy the issue. 

The Blimp output includes tables of regression parameters for every incomplete variable’s 
imputation model. The imputation model parameters are not of substantive interest and would 
not be reported. An example table is shown below. 

 
Missing variable:   stanmath    
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Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
 
Grand Mean                           50.368      0.800     48.832     51.925      1.020   1086.118  
 
Level 1:                                                                                            
  male                                1.475      0.574      0.371      2.607      1.006   4742.049  
  frlunch                            -0.731      0.411     -1.512      0.094      1.006   2248.736  
  lowach                              0.742      0.443     -0.138      1.589      1.011   1967.506  
  psolvepre                           0.755      0.062      0.633      0.877      1.005   5383.972  
  psolvepst                           0.523      0.063      0.398      0.643      1.004   5796.847  
  Residual Var.                      54.358      2.780     49.104     60.076      1.003   5982.807  
 
Level 2:                                                                                            
  condition                          -1.988      1.219     -4.409      0.450      1.005   2832.231  
  teachexp                            0.009      0.145     -0.286      0.295      1.011   2501.374  
  frlunch                            -2.089      1.307     -4.659      0.466      1.016   1607.934  
  lowach                              2.339      1.770     -1.333      5.652      1.019   1217.662  
  psolvepst                           0.535      0.305     -0.060      1.137      1.008   2187.522  
  Residual Var.                       3.991      2.116      1.296      9.440      1.019   1395.242  
                                                                                                    
                                ------------------------------------------------------------------- 
 

When saving imputations, the bottom of the Blimp output file displays a table listing the order 
of the variables in the output data sets. All variables are saved regardless of whether they 
appeared in the fitted models. When saving data to a stacked file (e.g., for analysis in R or other 
packages), the first variable in the file is an integer index that identifies which data set each row 
belongs to (e.g., an integer variable that ranges from 1 to 20 in this example). 

 

VARIABLE ORDER IN IMPUTED DATA: 
 
  separate = './imps/imp*.dat' 
 
     school student condition teachexp eslpct ethnic male frlunch  
     lowach stanmath efficacyp efficacy1 psolvepre psolvepst 
 
   stacked = './imps/imps.dat' 
 
     imp# school student condition teachexp eslpct ethnic male frlunch  
     lowach stanmath efficacyp efficacy1 psolvepre psolvepst 
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The imputed data sets are subsequently analyzed in another software package, and estimates 
and standard errors are combined using Rubin’s rules (Little & Rubin, 2020). The analysis phase 
does not utilize the auxiliary variables, as their information is embedded in the imputations. 
Scripts for analyzing the imputed data sets are found in the next subsections. 

Analyzing Imputations in Mplus 

In lieu of the Bayesian estimates, Blimp’s SAVE command can be used to save multiple 
imputations for analysis in the frequentist framework. Returning to the previous Blimp script, 
the SAVE command and the separate keyword saved each imputed data set to a separate file 
with the asterisk replaced by a numeric index. The separate keyword also creates a list of file 
names needed for analysis in Mplus (in this example, a filed called implist.dat located in the 
imps subfolder). Example 6 shows the contents of this file. 

The code block below shows Mplus script Ex18.inp that analyzes the imputations and pools 
estimates and standard errors. 

 
Mplus Script Ex18.inp 
 
 1  DATA:  
 2  file = ./imps/implist.dat; 
 3  type = imputation; 
 4  VARIABLE:   
 5  names = school student condition teachexp eslpct ethnic male frlunch  
 6   lowach stanmath efficacy1 efficacy2 psolvepre psolvepst; 
 7  usevariables = psolvepst psolvepre male frlunch teachexp condition; 
 8  cluster = school; 
 9  within = psolvepre male frlunch; 

 
10  between = teachexp condition; 
11  DEFINE: 
12  center psolvepre male frlunch teachexp (grandmean); 
13  ANALYSIS: 
14  type = twolevel; 
15  MODEL: 
16  %within% 
17  psolvepst on psolvepre male frlunch; 
18  %between% 
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19  psolvepst on teachexp condition; 
20  OUTPUT: 
21  stdyx cinterval; 
 

The DATA command lists the text file containing the names of the imputed data sets (the 
implist.dat file located in the ./imps subdirectory). The type = imputation 
subcommand instructs Mplus that the input data is a list of file names. The VARIABLE command 
provides information about the data. Beginning on line 5, the names subcommand assigns names 
to the variables in the input data file, and the usevariables subcommand selects variables for 
the analysis. The cluster command on line 8 lists the school-level identifier variable that 
indicates the clustering of the data records in schools. The within and between subcommands 
on lines 9 and 10 identify level-1 and level-2 predictors, respectively. On line 12, the center 
subcommand under the DEFINE command centers the four covariates at their grand means. The 
ANALYSIS command and the type = twolevel subcommand is required for estimating two-
level models. The MODEL section of the script consists of two sections: the %within% section 
specifies the regression of the outcome on level-1 predictors, and the %between% section 
specifies the regression of the random intercepts on the level-2 predictors. Finally, the OUTPUT 
command specifies two keywords on line 21 that request standardized coefficients and 
confidence intervals. 

Mplus Output 

The table of unstandardized parameter estimates is shown below. The first two columns display 
the pooled unstandardized estimates and standard errors, and the third and fourth columns 
display the corresponding z-statistics and p-values. The focal model results are shown in bold 
typeface. The Rate of Missing column (also called the fraction of missing information in the 
literature) quantifies the imputation noise in each estimate as proportion of its squared standard 
error. 

 
MODEL RESULTS 
                                                    Two-Tailed   Rate of 
                    Estimate       S.E.  Est./S.E.    P-Value    Missing 
 
Within Level 
 
 PSOLVEPST  ON 
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    PSOLVEPRE          0.467      0.031     15.234      0.000      0.163 
    MALE               0.155      0.348      0.445      0.656      0.187 
    FRLUNCH           -0.733      0.431     -1.700      0.089      0.351 
 
 Residual Variances 
    PSOLVEPST         20.497      1.351     15.168      0.000      0.150 
 
Between Level 
 
 PSOLVEPST  ON 
    TEACHEXP           0.133      0.074      1.784      0.074      0.158 
    CONDITION          1.840      0.813      2.263      0.024      0.040 

 
 Intercepts 
    PSOLVEPST         52.874      0.532     99.423      0.000      0.049 
 
 Residual Variances 
    PSOLVEPST          3.934      1.160      3.392      0.001      0.048 
 

Mplus separates the level-1 and level-2 effects on the output (labeled Within Level and 
Between Level, respectively). The primary focus is the 𝛽5 coefficient, which indicates that 
intervention schools scored 1.84 points higher than control schools, on average, controlling for 
student- and school-level covariates. The corresponding test statistic indicates that the group 
mean difference is statistically different from zero (z = 2.26, p = .02). Note that these estimates 
are numerically identical to those from Bayesian estimation. 
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Analyzing Imputations in R 

Returning to the previous Blimp script, the SAVE command and the stacked keyword saved the 
imputed data sets to a single stacked file with an index variable in the first column identifying the 
individual files. The stacked file is appropriate for analyzing data in R, SAS, SPSS, and Stata, 
among others. 

The R input file for the analysis is Ex18.R. The code block below shows the commands that 
import the data. 

 
R Script Ex18.R 
 
 1  library(fdir) 
 2  library(lme4) 
 3  library(mitml) 
 4  set() 
 5  imps <- read.table("./imps/imps.dat") 
 6  names(imps) <- c("imputation","school","student","condition", 
 7   "teachexp","eslpct","ethnic","male","frlunch","lowach", 
 8   "stanmath","efficacypre","efficacypst","psolvepre","psolvepst")  
 9  imps$psolvepre.cgm <- imps$psolvepre - mean(imps$psolvepre) 
10  imps$male.cgm <- imps$male - mean(imps$male) 
11  imps$frlunch.cgm <- imps$frlunch - mean(imps$frlunch) 
12  imps$teachexp.cgm <- imps$teachexp - mean(imps$teachexp) 
 

The example requires the fdir, lme4, and mitml packages, which are loaded on lines 1 through 
3. On line 4, the set() function of the fdir package identifies the file path of the folder 
containing the R script and sets this location as the working directory. On line 5, the 
read.table command imports the stacked data. It is only necessary to specify the name of the 
input data file. No file path is required when the data reside in the same folder as the R script as is 
the case here. Variable names are listed beginning on line 6. Importantly, the first variable named 
IMPUTATION is the index that identifies the individual files. Finally, lines 9 through 12 create new 
centered versions of the covariates. 

The next block of code relies on the mitml package to fit the model to each data set and pool 
the results using Rubin’s rules.  
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R Script Ex18.R, continued 
 
13  implist <- as.mitml.list(split(imps, imps$imputation)) 
14  fit <- with(implist, lmer(psolvepst ~ psolvepre.cgm + male.cgm +  
15   frlunch.cgm + teachexp.cgm + condition + (1 | school), REML = T)) 
16  estimates <- testEstimates(fit, extra.pars = T) 
17  estimates 
18  confint(estimates) 
 

The implist command on line 13 unstacks the data and creates a list that contains the 
individual files. Line 14 fits the focal regression model using the lmer function, and line 16 uses 
the testEstimates function in mitml to implement Rubin’s pooling rules and save the results 
in an object called estimates. Finally, lines 17 and 18 print the estimates and confidence 
intervals. 

R Output 

The table of unstandardized pooled parameter estimates is shown below. The first two columns 
display the pooled unstandardized estimates and standard errors, and the third through fifth 
columns display the corresponding test statistics. The focal model results are shown in bold 
typeface. The RIV column (relative increase in variance) is a fraction comparing imputation 
noise to complete-data sampling variation, and the FMI column (fraction of missing information 
in the literature) quantifies the imputation noise in each estimate as proportion of its squared 
standard error. 
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> estimates 

 

Call: 

 

testEstimates(model = fit, extra.pars = T) 

 

Final parameter estimates and inferences obtained from 20 imputed data sets. 

 

               Estimate Std.Error   t.value        df   P(>|t|)       RIV       FMI  

(Intercept)      52.856     0.648    81.598 23181.577     0.000     0.029     0.029  

psolvepre.cgm     0.466     0.034    13.897  1037.026     0.000     0.157     0.137  

male.cgm          0.154     0.335     0.460   479.459     0.646     0.249     0.202  

frlunch.cgm      -0.725     0.469    -1.547   220.114     0.123     0.416     0.300  

teachexp.cgm      0.134     0.105     1.267  3076.432     0.205     0.085     0.079  

condition         1.840     0.870     2.116 15147.975     0.034     0.037     0.036  

 

                            Estimate  

Intercept~~Intercept|school    4.462  

Residual~~Residual            20.563  

ICC|school                     0.178  

 

Unadjusted hypothesis test as appropriate in larger samples. 

 

> confint(estimates) 

                    2.5 %     97.5 % 

(Intercept)   51.58596983 54.1252528 

psolvepre.cgm  0.40053766  0.5322427 

male.cgm      -0.50500284  0.8133943 

frlunch.cgm   -1.64893668  0.1987823 

teachexp.cgm  -0.07312469  0.3404278 

condition      0.13526144  3.5440259 

 

The random intercept and within-cluster residual variances are denoted 
Intercept~~Intercept|school and Residual~~Residual, respectively. Moving to the 
coefficient section, the primary focus is the 𝛽5 coefficient, which indicates that intervention 
schools scored 1.84 points higher than control schools, on average, controlling for student- and 
school-level covariates. The corresponding test statistic indicates that the group mean difference 
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is statistically different from zero (t = 2.12, p = .03). Note that these estimates are numerically 
identical to those from Bayesian estimation. 
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SECTION 5: MODELS FOR  
MISSING NOT AT RANDOM PROCESSES 
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EXAMPLE 19: MULTIPLE REGRESSION  
WITH A SELECTION MODEL 

This example illustrates a multiple regression analysis with a selection model that invokes a 
missing not at random process for the outcome. The analysis uses the 
behaviorachievement.dat data set taken from a longitudinal study that followed 138 students 
from primary through middle school. The file includes three annual assessments of broad 
reading and math achievement beginning in the first grade, seventh grade standardized 
achievement test scores taken from a statewide assessment, and a final measure of broad reading 
and math obtained in ninth grade. The data also contain teacher ratings of behavioral symptoms 
and learning problems were also obtained in the first grade. The data description at the 
beginning of this document provides additional details. The variables for this analysis are as 
follows. 

Name Definition Missing % Scale 

Focal Variables 
BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  
LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 
READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 
READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

Missing Data Indicator 

READ9MIS 9th grade reading missingness indicator 0 0 = observed, 1 = missing 

Analysis Model 

The analysis model features ninth grade broad reading scores regressed on first grade reading 
achievement and teacher-rated learning problems and behavioral symptoms. 

 𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 (34) 
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Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following the same factored regression specification from earlier examples (e.g., Examples 
2 through 6), auxiliary variables enter the model as additional outcomes that are predicted by the 
analysis variables and by each other. The additional regression equations are as follows. 

𝑅𝐸𝐴𝐷2 = 𝛾01 + 𝛾11(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) + 𝛾21(𝑅𝐸𝐴𝐷1) 

(35) 
+ 𝛾31(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾41(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖1 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷2) + 𝛾22(𝑅𝐸𝐴𝐷9𝐺𝑅𝑃) 

+ 𝛾32(𝑅𝐸𝐴𝐷1) + 𝛾42(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾52(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜖2 
 

Along with the focal regression model from Equation 34, the collection of regressions can be 
viewed as a path model, where the focal regression is one part of a larger network (see the path 
diagram from Example 2). The key difference is that the path coefficients are just a tool for 
linking incomplete variables and do not represent a substantive theory. 

 A missing not at random process is invoked by specifying a selection model that links the 
missingness probabilities to the unseen outcome scores. This model features the binary missing 
data indicator regressed on the outcome variable and potentially other variables. To illustrate, the 
missingness model also incorporates teacher-rated learning problems from first grade.  

𝑅𝐸𝐴𝐷9𝑀𝐼𝑆∗ = 𝛾03 + 𝛾13(𝑅𝐸𝐴𝐷9) + 𝛾23(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝜖3 (36) 
 

The asterisk superscript denotes a normally distributed latent response variable (i.e., a probit 
regression). A path diagram of the focal and selection models is shown below, with dashed lines 
indicator the missingness model parameters. The auxiliary variable regressions follow the path 
diagram from Example 2. 
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Mplus Maximum Likelihood Estimation Script 

The code block below shows Mplus script Ex19.inp. 

 
Mplus Script Ex19.inp 
 
 1  DATA:  
 2  file = behaviorachievement.dat; 
 3  VARIABLE:  
 4  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 5    read1 read2 read3 read9 read9grp stanread7  
 6    math1 math2 math3 math9 math9grp stanmath7; 
 7  usevariables = read9 read1 lrnprob1 behsymp1 read2 stanread7 read9mis; 
 8  missing = all(999); 
 9  categorical = read9mis; 
10  DATA MISSING: 
11  names = read9; 
12  binary = read9mis; 
13  type = missing; 
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14  ANALYSIS: 
15  estimator = ml; 
16  link = probit; 
17  integration = montecarlo; 
18  MODEL:   
19  read1 lrnprob1 behsymp1;  
20  read9 on read1 lrnprob1 behsymp1; 
21  read9mis on read9 lrnprob1; 
22  read2 on read9 read1 lrnprob1 behsymp1; 
23  stanread7 on read2 read9 read1 lrnprob1 behsymp1; 
24  OUTPUT: 
25  patterns sampstat stdyx cinterval; 
 

The DATA command specifies the name of the input text file. No file path is required when the 
data set is located in the same directory as the script, as it is here. The VARIABLE command 
provides information about the data. Beginning on line 4, the names subcommand assigns names 
to the variables in the input data, the usevariables subcommand selects variables for the 
analysis, and the missing subcommand gives the global missing value code. Lines 10 through 13 
define a binary missing data indicator called READ9MIS, and the preceding categorical 
subcommand on line 9 identifies the new variable as categorical. 

The DATA MISSING command that begins on line 10 creates a binary missing data indicator. 
The names subcommand on line 11 identifies the variable to be recoded, and the binary 
command on line 12 provides a name for the new variable. Finally, the type subcommand on 
line 13 identifies the binary variable as a missing data indicator. As noted previously, the 
missingness indicator is identified as a categorical variable on line 9. 

The ANALYSIS command and estimator subcommand specify full information maximum 
likelihood estimation. The default setting for a binary outcome is logistic regression. For 
consistency with the Bayesian analysis in Blimp, line 16 specifies a probit link that defines the 
binary missing data indicator as a normally distributed latent response variable. Finally, the 
integration = montecarlo subcommand invokes an algorithmic method for models with 
mixed variable types. 

The MODEL section of the script consists of five lines. Listing all predictors by name on line 19 
is important because doing so invokes a multivariate normal distribution for these variables. As 
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mentioned previously, assigning distributional assumptions to predictors is necessary for missing 
data handling. On line 20, the outcome variable appears to the left of the on keyword, and the 
predictors appear to the right. The missingness model from Equation 36 appears on line 21, and 
the two auxiliary variable regressions from Equation 35 are on lines 22 and 23. Finally, the 
OUTPUT command specifies four keywords on line 25 that request a summary of the missing data 
patterns, maximum likelihood estimates of sample statistics, standardized coefficients, and 
confidence intervals. 

Mplus Output 

Information about the missing data patterns is found near the top of the output file. Following 
the missing data pattern table, the output displays a covariance coverage matrix that gives the 
proportion of observed data for each variable on the diagonal and the proportion of observed 
data for each variable pair on the off-diagonals. The format of these table is the same as those 
shown in Example 1. In the interest of space, we point readers to that example for additional 
details. 

The table of unstandardized parameter estimates is shown below. Because the analysis 
specifies a multivariate normal distribution for the predictors, the means, variances, and 
covariances of these variables are printed along with the focal model estimates. The table also 
reports regression models for auxiliary variables. These supporting parameters are not of 
substantive interest, and they do not need to be reported. The first two columns display the 
unstandardized estimates and their standard errors, and the third and fourth columns display the 
corresponding z-statistics and p-values. The focal model results are shown in bold typeface. 

 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 READ9      ON 
    READ1              0.507      0.042     12.201      0.000 
    LRNPROB1          -0.251      0.116     -2.170      0.030 
    BEHSYMP1          -0.180      0.101     -1.783      0.075 
  
READ9MIS   ON 
    READ9             -0.006      0.010     -0.633      0.527 
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    LRNPROB1           0.042      0.013      3.150      0.002 
  
READ2      ON 
    READ9              0.676      0.065     10.373      0.000 
    READ1              0.548      0.044     12.474      0.000 
    LRNPROB1          -0.284      0.083     -3.428      0.001 
    BEHSYMP1           0.412      0.076      5.395      0.000 

 
 STANREAD7  ON 
    READ2              1.903      0.924      2.060      0.039 
    READ9              1.559      0.842      1.852      0.064 
    READ1             -0.736      0.608     -1.210      0.226 
    LRNPROB1           0.540      0.662      0.817      0.414 
    BEHSYMP1          -0.753      0.658     -1.144      0.253 
 
 LRNPROB1 WITH 
    READ1            -11.635     19.119     -0.609      0.543 
 
 BEHSYMP1 WITH 
    READ1            -14.114     21.254     -0.664      0.507 
    LRNPROB1          91.527     13.505      6.777      0.000 
 
 Means 
    READ1             86.154      1.752     49.188      0.000 
    LRNPROB1          52.292      0.915     57.121      0.000 
    BEHSYMP1          49.483      1.034     47.851      0.000 

 
Intercepts 
    READ9             65.832      5.832     11.287      0.000 
    READ2            -19.011      5.741     -3.311      0.001 
    STANREAD7         19.329     50.325      0.384      0.701 
 
 Thresholds 
    READ9MIS$1         2.715      1.305      2.080      0.038 
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Variances 
    READ1            417.284     51.743      8.065      0.000 
    LRNPROB1         114.548     13.883      8.251      0.000 
    BEHSYMP1         145.486     17.587      8.272      0.000 
  
Residual Variances 
    READ9             86.368     11.474      7.528      0.000 
    READ2             38.774      5.663      6.847      0.000 
    STANREAD7       2206.056    303.868      7.260      0.000 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
0.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 12.20, p < .001). Comparing these results to the Example 1 
estimates that invoke a conditionally missing at random process provides a sensitivity check. 
Because the selection model estimates are virtually identical to those from Example 1, one can 
conclude that the regression parameters are somewhat robust to a different missingness process. 
This interpretation presupposes that the missingness model is correctly specified. A different set 
of predictors in the selection equation could change the estimates and the conclusion about 
robustness. 

The table also reports the missingness model parameters. The outcome variable is a latent 
response score that represents a normally distributed propensity for missingness. To establish a 
metric, the latent responses are approximately scaled as a z-score. Thus, the missingness model 
slope coefficients essentially represent the standardized change in the missingness propensities 
for a one-unit increase in the predictors. The negative coefficient for READ9 suggests that 
students with higher ninth grade reading scores have a lower probability of missing data in ninth 
grade, and the positive slope for LRNPROB1 indicates that students with elevated learning 
problems in first grade are more likely to have missing data in middle school. 

Blimp Bayesian Estimation Script 

The code block below shows Blimp script Ex19.inp.  
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Blimp Script Ex19.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5  MISSING: 999; 
 6  TRANSFORM: 
 7  read9mis = ismissing(read9); 
 8  ORDINAL:  read9mis; 
 9  MODEL:  
10  focal model: 
11  read9 ~ read1 lrnprob1 behsymp1; 
12  missingness.model: 
13  read9mis ~ read9 lrnprob1; 
14  auxiliary model: 
15  stanread7 read2 ~ read9 read1 lrnprob1 behsymp1; 
16  SEED: 90291; 
17  BURN: 1000; 
18  ITERATIONS: 10000;  
 

The first eight lines can be viewed as a set of commands that specify information about the data 
and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is located in the same directory as the script, as it is here. Starting on 
line 2, the VARIABLES command names the data columns, and the MISSING command on line 5 
defines a global missing value code as 999. The TRANSFORM command that starts on line 6 uses 
the ismissing function to create a binary missing data indicator called READ9MIS. The 
ORDINAL command on line 8 identifies the indicator as a binary variable. 

The MODEL command that begins on line 9 lists the regression models, with outcome variables 
to the left of the tilde and predictors to the right. The focal model is listed on line 11, and the 
missingness (selection) model is on line 13. Line 15 is a syntax shortcut that produces the two 
auxiliary variable regression models in Equation 35; in the first model, READ2 is regressed on the 
focal variables, and the second model features STANREAD7 regressed on READ2 and the focal 
variables. Finally, note that the MODEL block uses labels to order the regression summary tables 
on the output.  
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Lines 16 through 18 can be viewed as a block of commands that specify features of the MCMC 
algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 

 
BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           26 to 50              1.273            23   
                           51 to 100             1.074            40   
                           76 to 150             1.081            12   
                                 ...               ...            ..   
                          451 to 900             1.011            14   
                          476 to 950             1.007            12   
                          501 to 1000            1.015            17 
 

The tables summarizing the focal regression model includes unstandardized coefficients, 
standardized slopes, and variance explained effect size estimates. MCMC estimation produces a 
distribution for each parameter in the table. The median and standard deviation columns 
describe the center and spread of the posterior distributions; although they make no reference to 
drawing repeated samples, they are analogous—and numerically equivalent in most cases—to 
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frequentist point estimates and standard errors. The 95% credible intervals in the rightmost 
columns give a range that captures 95% of the parameter’s distribution. These are akin to 
confidence intervals, but the intervals describe parameter distributions rather than characteristics 
of repeated samples. The N_Eff values in rightmost column of the table give the effective 
number of MCMC samples for each parameter. These quantities essentially represent the 
number of independent estimates on which the parameter summaries are based after removing 
autocorrelations from the MCMC process. Gelman et al. (2014, p. 287) recommend values 
greater than 100.  All values in the example table exceed this recommended minimum. In cases 
where the N_Eff values are insufficient, increasing the value on the ITERATIONS command will 
remedy the issue. The table summarizing the focal regression model is shown below. 

 
OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  read9       
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
Variances:                       
  Residual Var.                      91.235     12.946     70.572    120.760      1.001   6045.308  

 
Coefficients:                    
  Intercept                          66.305      6.001     54.459     78.066      1.000   6237.610  
  read1                               0.505      0.043      0.421      0.590      1.000   6200.956  
  lrnprob1                           -0.255      0.120     -0.493     -0.017      1.000   5450.488  
  behsymp1                           -0.183      0.104     -0.386      0.021      1.000   6652.942  

 
Standardized Coefficients:       
  read1                               0.687      0.040      0.599      0.755      1.000   6201.749  
  lrnprob1                           -0.183      0.085     -0.346     -0.013      1.000   5371.142  
  behsymp1                           -0.147      0.082     -0.306      0.017      1.000   6702.299  
 
Proportion Variance Explained    
  by Coefficients                     0.596      0.050      0.489      0.681      1.000   5971.386  
  by Residual Variation               0.404      0.050      0.319      0.511      1.000   5971.386  
 
                                ------------------------------------------------------------------- 
 

The results are interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
0.51 points on READ9. The 95% credible interval limits suggest this effect is statistically different 
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from zero (p < .05) because the null value is well outside the interval. Comparing these results to 
the Example 6 estimates that invoke a conditionally missing at random process provides a 
sensitivity check. Because the selection model estimates are virtually identical to those from 
Example 1, one can conclude that the regression parameters are somewhat robust to a different 
missingness process. This interpretation presupposes that the missingness model is correctly 
specified. A different set of predictors in the selection equation could change the estimates and 
the conclusion about robustness. 

The table also reports the missingness model parameters. The outcome variable is a latent 
response score that represents a normally distributed propensity for missingness. To establish a 
metric, the latent responses are approximately scaled as a z-score. Thus, the missingness model 
slope coefficients essentially represent the standardized change in the missingness propensities 
for a one-unit increase in the predictors. The negative coefficient for READ9 suggests that 
students with higher ninth grade reading scores have a lower probability of missing data in ninth 
grade, and the positive slope for LRNPROB1 indicates that students with elevated learning 
problems in first grade are more likely to have missing data in middle school. Note that an 
unusually large R-squared value in the missingness model (e.g., greater than 70%) is often a 
symptom of overfitting the selection equation with too many predictors. This analysis does not 
exhibit that symptom. 

 
  missingness.model block: 
 
Outcome Variable:  read9mis    
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
Variances:                       
  Residual Var.                       1.000      0.000      1.000      1.000        nan        nan  
 
Coefficients:                    
  Intercept                           2.046      1.145     -0.198      4.271      1.000   2324.038  
  read9                               0.011      0.009     -0.007      0.030      1.000   2053.127  
  lrnprob1                           -0.038      0.012     -0.062     -0.014      1.000   2263.530  
 
Thresholds:                      
  Tau 1                               0.000      0.000      0.000      0.000        nan        nan  

 
Standardized Coefficients:       
  
  read9                               0.146      0.119     -0.093      0.372      1.000   2089.379  
  lrnprob1                           -0.362      0.104     -0.544     -0.140      1.000   2401.394  
Proportion Variance Explained    
  by Coefficients                     0.199      0.082      0.058      0.374      1.000   1871.736  
  by Residual Variation               0.801      0.082      0.626      0.942      1.000   1871.736  
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                                ------------------------------------------------------------------- 
 

Finally, the Blimp output also includes tables of regression model parameters for the auxiliary 
variables as well as the auto-generated models for incomplete predictors. These additionally 
results are not of substantive interest and would not be reported. The auxiliary variable models 
appear in OUTCOME MODEL ESTIMATES section with the focal results, and the auto-generated 
predictor models are displayed under the heading PREDICTOR MODEL ESTIMATES.  
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EXAMPLE 20: MULTIPLE REGRESSION  
WITH A PATTERN MIXTURE MODEL 

This example illustrates a pattern mixture regression model that invokes a missing not at random 
process for the outcome. The analysis uses the behaviorachievement.dat data set taken from 
a longitudinal study that followed 138 students from primary through middle school. The file 
includes three annual assessments of broad reading and math achievement beginning in the first 
grade, seventh grade standardized achievement test scores taken from a statewide assessment, 
and a final measure of broad reading and math obtained in ninth grade. The data also contain 
teacher ratings of behavioral symptoms and learning problems were also obtained in the first 
grade. The data description at the beginning of this document provides additional details. The 
variables for this analysis are as follows. 

Name Definition Missing % Scale 

Focal Variables 
BEHSYMP1 1st grade behavioral symptoms  3.6 Numeric  
LRNPROB1 1st grade learning problems 2.2 Numeric 

READ1 1st grade broad reading composite 6.5 Numeric 
READ9 9th grade broad reading composite 17.4 Numeric 

Auxiliary Variables 
READ2 2nd grade broad reading composite 9.4 Numeric 

STANREAD7 7th grade standardized math 19.6 Numeric 

Missing Data Indicator 

READ9MIS 9th grade reading missingness indicator 0 0 = observed, 1 = missing 

Analysis Model 

The population-level analysis model features ninth grade broad reading scores regressed on first 
grade reading achievement and teacher-rated learning problems and behavioral symptoms. 

 𝑅𝐸𝐴𝐷9 = 𝛽0 + 𝛽1(𝑅𝐸𝐴𝐷1) + 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 (37) 

Unlike a complete-data regression analysis, all incomplete variables require distributional 
assumptions, including the predictors. 
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 A missing not at random process is invoked by specifying a pattern mixture model that links 
the missingness probabilities to the unseen outcome scores. This model features the binary 
missing data indicator as a predictor and possibly a moderator. The basic idea is that the missing 
data patterns define subgroups with different parameter values. This example illustrates a process 
where students with missing scores in ninth grade have a lower reading mean. It is also possible 
for the regression coefficients to differ by pattern (see Enders, 2022, Section 9.8).  

To invoke a missing data pattern-specific mean difference, the fitted model includes the 
binary missing data indicator as a predictor 

𝑅𝐸𝐴𝐷9 = 𝛽0(com) + 𝛽0(diff)(𝑅𝐸𝐴𝐷9𝑀𝐼𝑆) + 𝛽1(𝑅𝐸𝐴𝐷1) 
(38) 

+ 𝛽2(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛽3(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝜀 
 

such that 𝛽0(com) is the intercept (mean level) for students with complete reading scores, and 
𝛽0(diff) is outcome mean difference for students with missing data. The intercept coefficient from 
Equation 37 is a weighted average of the group-specific intercepts 

 𝛽0 = 𝑝(com)𝛽0(com) + 𝑝(mis)(𝛽0(com) + 𝛽0(diff)) = 𝑝(com)𝛽0(com) + 𝑝(mis)𝛽0(mis) (39) 

 

where 𝑝(com)  and 𝑝(mis)  are the proportions of complete and missing outcome scores, 
respectively. Importantly, 𝛽0(diff) is not estimable from the data, and researchers must provide a 
value that induces the posited missing not at random process (e.g., students with missing 
outcome data have lower reading levels). Following the procedure described in Enders (2022), 
the scripts below set 𝛽0(diff) to a value that is 0.20 standard deviation units below 𝛽0(com). That is, 
the average reading level for students with missing outcome scores is lower by an amount 
commensurate with Cohen’s (1988) small effect size benchmark. 

Unlike a complete-data regression analysis, incomplete predictor variables also require 
distributional assumptions and models that define those distributions. The analysis uses a 
factored regression specification that uses a sequence of univariate regression models to link 
incomplete predictors. This specification was introduced in Examples 2 through 5. The 
additional regression equations are as follows. 

𝑅𝐸𝐴𝐷9𝑀𝐼𝑆∗ = 𝛾01 + 𝜖1 (40) 
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𝐵𝐸𝐻𝑆𝑌𝑀𝑃1 = 𝛾02 + 𝛾12(𝑅𝐸𝐴𝐷9𝑀𝐼𝑆) + 𝜖2 

𝐿𝑅𝑁𝑃𝑅𝑂𝐵1 = 𝛾03 + 𝛾13(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝛾23(𝑅𝐸𝐴𝐷9𝑀𝐼𝑆) + 𝜖3 

𝑅𝐸𝐴𝐷1 = 𝛾04 + 𝛾14(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾24(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝛾34(𝑅𝐸𝐴𝐷9𝑀𝐼𝑆) + 𝜖4 
 

The asterisk subscript in the READ9MIS model denotes a latent response variable (i.e., probit 
regression). Listing the missing data indicator first in the sequence is important because pattern 
proportions needed for Equation 39 are a function of the empty model’s regression intercept. 

The missing data literature often recommends an inclusive strategy that incorporates auxiliary 
variables that either predict missingness or correlate with the incomplete variables (Collins et al., 
2001). Following the same factored regression specification from earlier examples (e.g., Examples 
2 through 6), auxiliary variables enter the model as additional outcomes that are predicted by the 
analysis variables and by each other. The additional regression equations are as follows. 

𝑅𝐸𝐴𝐷2 = 𝛾05 + 𝛾15(𝑅𝐸𝐴𝐷9) + 𝛾25(𝑅𝐸𝐴𝐷1) 

(41) 
+ 𝛾35(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾45(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝛾55(𝑅𝐸𝐴𝐷9𝑀𝐼𝑆) + 𝜖5 

𝑆𝑇𝐴𝑁𝑅𝐸𝐴𝐷7 = 𝛾06 + 𝛾16(𝑅𝐸𝐴𝐷2) + 𝛾26(𝑅𝐸𝐴𝐷9) + 𝛾36(𝑅𝐸𝐴𝐷1) 

+𝛾46(𝐿𝑅𝑁𝑃𝑅𝑂𝐵1) + 𝛾56(𝐵𝐸𝐻𝑆𝑌𝑀𝑃1) + 𝛾66(𝑅𝐸𝐴𝐷9𝑀𝐼𝑆) + 𝜖6 
 

Along with the focal regression from Equation 37 and the predictor models from Equation 40, 
the collection of regressions can be viewed as a path model, where the focal regression is one part 
of a larger network (see the path diagram from Example 2). The key difference is that the path 
coefficients are just a tool for linking incomplete variables and do not represent a substantive 
theory. 

Mplus Maximum Likelihood Estimation Script 

The code block below shows Mplus script Ex20.inp. 

 
Mplus Script Ex20.inp 
 
 1  DATA:  
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 2  file = behaviorachievement.dat; 
 3  VARIABLE:  
 4  names = id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 5    read1 read2 read3 read9 read9grp stanread7  
 6    math1 math2 math3 math9 math9grp stanmath7; 
 7  usevariables = read9 read1 lrnprob1 behsymp1 read2 stanread7 read9mis; 
 8  missing = all(999); 
 9  categorical = read9mis; 
10  DATA MISSING: 
11  names = read9; 
12  binary = read9mis; 
13  type = missing; 
14  ANALYSIS: 
15  estimator = ml; 
16  link = probit; 
17  integration = montecarlo; 
18  MODEL:  
19  [read9mis$1] (missmean); 
20  behsymp1 on read9mis; 
21  lrnprob1 on behsymp1 read9mis; 
22  read1 on lrnprob1 behsymp1 read9mis; 
23  read9 on read9mis (beta0diff) 
24     read1 lrnprob1 behsymp1; 
25  [read9] (beta0com); read9 (resvar); 
26  read2 on read9 read1 lrnprob1 behsymp1 read9mis; 
27  stanread7 on read2 read9 read1 lrnprob1 behsymp1 read9mis; 
28  MODEL CONSTRAINT: 
29  new(cohensd pcom pmis beta0); 
 
30  cohensd = -.20; 
31  beta0diff = cohensd * sqrt(resvar); 
32  pmis = phi(-missmean); 
33  pcom = 1 - pmis; 
34  beta0 = (beta0com * pcom) + ((beta0com + beta0diff) * pmis); 
35  OUTPUT: 
36  patterns sampstat stdyx cinterval; 
 

The DATA command specifies the name of the input text file. No file path is required when the 
data set is located in the same directory as the script, as it is here. The VARIABLE command 
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provides information about the data. Beginning on line 4, the names subcommand assigns names 
to the variables in the input data, the usevariables subcommand selects variables for the 
analysis, and the missing subcommand gives the global missing value code. Lines 10 through 13 
define a binary missing data indicator called READ9MIS, and the preceding categorical 
subcommand on line 9 identifies the new variable as categorical. 

The DATA MISSING command that begins on line 10 creates a binary missing data indicator. 
The names subcommand on line 11 identifies the variable to be recoded, and the binary 
command on line 12 provides a name for the new variable. Finally, the type subcommand on 
line 13 identifies the binary variable as a missing data indicator. As noted previously, the 
missingness indicator is identified as a categorical variable on line 9. 

The ANALYSIS command and estimator subcommand specify full information maximum 
likelihood estimation. The default setting for a binary outcome is logistic regression. For 
consistency with the Bayesian analysis in Blimp, line 16 specifies a probit link that defines the 
binary missing data indicator as a normally distributed latent response variable. Finally, the 
integration = montecarlo subcommand invokes an algorithmic method for models with 
mixed variable types. 

The MODEL command that begins on line 18 lists the regression models, with outcome 
variables to the left of the on keyword and predictors to the right. An empty model for the 
missing data indicator is listed on line 19. The label on the threshold parameter from this model 
(missmean) is used later in the code to compute the missing data pattern proportions. The 
remaining predictor models from Equation 40 appear on lines 20 through 22. Next, lines 23 
through 25 list the focal model parameters.  Line 23 assigns a label to the pattern mean difference 
(i.e., the 𝛽0(diff) coefficient from Equation 38), and line 25 labels the complete-case intercept and 
residual variance, respectively. Collectively, the labels are used later in the code to induce the 
desired effect size difference for the missing scores. Finally, lines 26 and 27 produce the two 
auxiliary variable regression models from Equation 41; in the first model, READ2 is regressed on 
the focal variables, and the second model features STANREAD7 regressed on READ2 and the focal 
variables. 

The MODEL CONSTRAINT section of the script from lines 28 through 34 includes commands 
that define new parameters and impose constraints. First, line 29 assigns names to four new 
parameters. Line 30 provides the desired effect size difference for the group with missing data, 
and line 31 defines a mean difference parameter beta0diff that is a function of the effect size 
and residual standard deviation (see Enders, 2022, Eq. 9.29). Lines 32 and 33 use the threshold 
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parameter from the missing data indicator’s model to compute the missing data pattern 
proportions. Line 34 computes the weighted intercept that averages over the missing data 
patterns (see Equation 39). Finally, the OUTPUT command specifies four keywords on line 36 that 
request a summary of the missing data patterns, maximum likelihood estimates of sample 
statistics, standardized coefficients, and confidence intervals. 

Mplus Output 

Information about the missing data patterns is found near the top of the output file. Following 
the missing data pattern table, the output displays a covariance coverage matrix that gives the 
proportion of observed data for each variable on the diagonal and the proportion of observed 
data for each variable pair on the off-diagonals. The format of these table is the same as those 
shown in Example 1. In the interest of space, we point readers to that example for additional 
details. 

The table of unstandardized parameter estimates is shown below. The table reports regression 
models for predictor variables and auxiliary variables. These supporting parameters are not of 
substantive interest, and they do not need to be reported. The first two columns display the 
unstandardized estimates and their standard errors, and the third and fourth columns display the 
corresponding z-statistics and p-values. The focal model results are shown in bold typeface. 

 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 BEHSYMP1   ON 
    READ9MIS           7.692      2.654      2.898      0.004 
 
 LRNPROB1   ON 
    BEHSYMP1           0.597      0.054     10.967      0.000 
    READ9MIS           4.241      1.728      2.454      0.014 
 
READ1      ON 
    LRNPROB1          -0.012      0.244     -0.048      0.961 
    BEHSYMP1          -0.064      0.208     -0.306      0.760 
    READ9MIS          -3.230      4.861     -0.664      0.506 
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 READ9      ON 
    READ9MIS          -1.862      0.124    -14.959      0.000 
    READ1              0.504      0.042     11.990      0.000 
    LRNPROB1          -0.248      0.117     -2.108      0.035 
    BEHSYMP1          -0.181      0.101     -1.790      0.073 
 
 READ2      ON 
    READ9              0.674      0.065     10.344      0.000 
    READ1              0.551      0.044     12.563      0.000 
    LRNPROB1          -0.290      0.084     -3.440      0.001 
    BEHSYMP1           0.414      0.077      5.415      0.000 
    READ9MIS           1.124      2.244      0.501      0.617 
 
 STANREAD7  ON 
    READ2              1.891      0.923      2.048      0.041 
    READ9              1.590      0.841      1.891      0.059 
    READ1             -0.733      0.609     -1.205      0.228 
    LRNPROB1           0.493      0.678      0.728      0.467 
    BEHSYMP1          -0.737      0.659     -1.118      0.264 
    READ9MIS           6.119     13.186      0.464      0.643 
 
 Intercepts 
    READ9             66.040      5.887     11.218      0.000 
    READ1             90.485      9.209      9.826      0.000 
    LRNPROB1          21.999      2.715      8.103      0.000 
    BEHSYMP1          48.148      1.104     43.610      0.000 
    READ2            -19.003      5.776     -3.290      0.001 
    STANREAD7         18.400     50.557      0.364      0.716 
 
 Thresholds 
    READ9MIS$1         0.939      0.126      7.472      0.000 

    
   Residual Variances 

    READ9             86.643     11.584      7.480      0.000 
    READ1            414.570     51.322      8.078      0.000 
    LRNPROB1          54.545      6.727      8.109      0.000 
    BEHSYMP1         137.009     16.565      8.271      0.000 
    READ2             38.759      5.658      6.850      0.000 
    STANREAD7       2200.450    303.283      7.255      0.000 
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New/Additional Parameters 
    COHENSD           -0.200      0.000  *********      0.000 
    PCOM               0.826      0.032     25.608      0.000 
    PMIS               0.174      0.032      5.389      0.000 
    BETA0             65.716      5.887     11.162      0.000 
 

The regression slopes interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
0.51 points on READ9. The corresponding test statistic indicates that the slope coefficient is 
statistically different from zero (z = 11.99, p < .001). The read9mis coefficient from the same 
table is the pattern mean difference 𝛽0(diff)  (see Equation 38). The MODEL CONSTRAINT 
command defined a set of new model parameters, including weighted average intercept. The 
table summarizing the additional parameters is shown below. These quantities are found under 
the table labeled New/Additional Parameters. The weighted intercept coefficient that 
averages over the missing data patterns is labeled beta0.  

Comparing these results to the Example 1 estimates that invoke a conditionally missing at 
random process provides a sensitivity check that conveys the impact of a missing not at random 
process where students with missing data have lower mean reading levels in ninth grade. This 
comparison presupposes that the missingness model is correctly specified. The missing data 
indicator could also moderate associations in the regression model, in which case the estimates 
and conclusions about robustness could change. 

Blimp Bayesian Estimation Script 

The code block below shows Blimp script Ex20.inp. 

 
Blimp Script Ex20.imp 
 
 1  DATA: behaviorachievement.dat; 
 2  VARIABLES: id male hispanic riskgrp atrisk behsymp1 lrnprob1  
 3   read1 read2 read3 read9 read9grp stanread7  
 4   math1 math2 math3 math9 math9grp stanmath7; 
 5  MISSING: 999; 
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 6  TRANSFORM: 
 7  read9mis = ismissing(read9); 
 8  ORDINAL:  read9mis; 
 9  MODEL:  
10  focal model: 
11  read9 ~ 1@beta0com read9mis@beta0diff read1 lrnprob1 behsymp1; 
12  read9 ~~ read9@resvar; 
13  indicator.model: 
14  read9mis ~ 1@missmean; 
15  predictor.model: 
16  read1 lrnprob1 behsymp1 ~ read9mis; 
17  auxiliary model: 
18  stanread7 read2 ~ read9 read1 lrnprob1 behsymp1; 
19  PARAMETERS: 
20  cohensd = -.20; 
21  beta0diff = cohensd * sqrt(resvar); 
22  pmis = phi(missmean); 
23  pcom = 1 - pmis; 
24  beta0 = (beta0com * pcom) + ((beta0com + beta0diff) * pmis); 
25  SEED: 90291; 
26  BURN: 1000; 
27  ITERATIONS: 10000;  
 

The first eight lines can be viewed as a set of commands that specify information about the data 
and variables. The DATA command specifies the name of the input text file. No file path is 
required when the data file is located in the same directory as the script, as it is here. Starting on 
line 2, the VARIABLES command names the data columns, and the MISSING command on line 5 
defines a global missing value code as 999. The TRANSFORM command that starts on line 6 uses 
the ismissing function to create a binary missing data indicator called READ9MIS. The 
ORDINAL command on line 8 identifies the indicator as a binary variable. 

The MODEL command that begins on line 9 lists the regression models, with outcome variables 
to the left of the tilde and predictors to the right. The code uses model block labels 
(focal.model, indicator.model, predictor.model, and auxiliary.model) to group the 
regressions and order output tables. The focal model listed on line 11 assigns labels to intercept 
and the pattern mean difference (i.e., the 𝛽0(com) and 𝛽0(diff) coefficients from Equation 38) 
using the @ symbol. The residual variance is also labeled on line 12. Collectively, the labels are 
used later in the code to induce the desired effect size difference for the missing scores. An empty 
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model for the missing data indicator is listed on line 14. The label on the intercept parameter is 
used later in the code to compute the missing data pattern proportions. Line 16 is a syntax 
shortcut that produces the predictor regression models in Equation 40; in the first model, 
BEHSYMP1 is regressed on the binary missing data indicator READ9MIS, the second model 
features LRNPROB1 regressed on BEHSYMP1 and the indicator, and the third regression features 
READ1 regressed on all other predictors. Line 18 is a similar syntax shortcut that produces the 
two auxiliary variable regression models in Equation 41; in the first model, READ2 is regressed on 
the focal variables, and the second model features STANREAD7 regressed on READ2 and the focal 
variables. 

The PARAMETERS section of the script from lines 19 through 25 includes commands that 
define new parameters and impose constraints. Line 20 provides the desired effect size difference 
for the group with missing data, and line 21 defines a mean difference parameter beta0diff 
that is a function of the effect size and residual standard deviation (see Enders, 2022, Eq. 9.29). 
Lines 22 and 23 use the intercept parameter from the missing data indicator’s model to compute 
the missing data pattern proportions. Finally, line 24 computes the weighted intercept that 
averages over the missing data patterns (see Equation 39). 

Lines 25 through 27 can be viewed as a block of commands that specify features of the MCMC 
algorithm: the SEED command gives an integer string that initializes the random number 
generator, the BURN command specifies the number of iterations for the warm-up or burn-in 
period, and the ITERATIONS command gives the number of MCMC iterations on which the 
analysis summaries are based (essentially, the number of MCMC cycles following the warm-up 
period). 

Blimp Output 

Prior to inspecting the parameter estimates, it is important to investigate the potential scale 
reduction (PSR) factor diagnostics (Gelman & Rubin, 1992) to determine whether MCMC has 
converged. Blimp divides the burn-in period into 20 equal segments, and it computes the PSR 
diagnostic for every parameter. The table located near the top of the output reports the highest 
(worst) PSR value across all parameters in every model. A common recommendation is that 
these values should be less than 1.05 or perhaps 1.10 (Asparouhov & Muthén, 2010a; Gelman et 
al., 2014). If the PSR in the bottom row of the table (the final check of the burn-in period) is 
above these cutoffs, then rerun the analysis with a longer burn-in period. 
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BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT: 
 
  NOTE: Split chain PSR is being used. This splits each chain's 
        iterations to create twice as many chains. 
 
  Comparing iterations across 2 chains     Highest PSR   Parameter #   
                           26 to 50              1.200            48   
                           51 to 100             1.118            60   
                           76 to 150             1.190            45 
                                 ...               ...            ..   
                          451 to 900             1.010            58   
                          476 to 950             1.026            50   
                          501 to 1000            1.014            50 
 

The tables summarizing the focal regression model includes unstandardized coefficients, 
standardized slopes, and variance explained effect size estimate. MCMC estimation produces a 
distribution for each parameter in the table. The median and standard deviation columns 
describe the center and spread of the posterior distributions; although they make no reference to 
drawing repeated samples, they are analogous—and numerically equivalent in most cases—to 
frequentist point estimates and standard errors. The 95% credible intervals in the rightmost 
columns give a range that captures 95% of the parameter’s distribution. These are akin to 
confidence intervals, but the intervals describe parameter distributions rather than characteristics 
of repeated samples. The N_Eff values in rightmost column of the table give the effective 
number of MCMC samples for each parameter. These quantities essentially represent the 
number of independent estimates on which the parameter summaries are based after removing 
autocorrelations from the MCMC process. Gelman et al. (2014, p. 287) recommend values 
greater than 100.  All values in the example table exceed this recommended minimum. In cases 
where the N_Eff values are insufficient, increasing the value on the ITERATIONS command will 
remedy the issue. The table summarizing the focal regression model is shown below. 

 
OUTCOME MODEL ESTIMATES: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
  focal.model block: 
 
Outcome Variable:  read9       
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
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Variances:                       
  Residual Var.                      91.981     12.979     70.576    120.994      1.000   6177.696  
 
Coefficients:                    
  Intercept                          65.956      6.068     54.052     77.845      1.000   6431.847  
  read9mis                           -1.918      0.133     -2.200     -1.680      1.000   6164.704  
  read1                               0.505      0.043      0.419      0.589      1.001   6801.698  
  lrnprob1                           -0.248      0.122     -0.488     -0.006      1.000   5902.838  
  behsymp1                           -0.180      0.104     -0.385      0.026      1.000   7368.217  
 
Standardized Coefficients:       
  read9mis                           -0.048      0.004     -0.057     -0.041      1.000  11312.195  
  read1                               0.684      0.040      0.597      0.750      1.000   6796.046  
  lrnprob1                           -0.176      0.085     -0.344     -0.004      1.000   5997.788  
  behsymp1                           -0.144      0.083     -0.304      0.020      1.000   7364.186  
 
Proportion Variance Explained    
  by Coefficients                     0.600      0.049      0.494      0.684      1.000   6470.849  
  by Residual Variation               0.400      0.049      0.316      0.506      1.000   6470.849  
 
                                ------------------------------------------------------------------- 
 

The regression slopes interpreted in the same way as a complete-data regression analysis. For 
example, consider the first-grade reading score slope. The model predicts that two individuals 
who differ by one point on READ1 but are the same on LRNPROB1 and BEHSYMP1 should differ by 
0.51 points on READ9. The 95% credible interval limits suggest this effect is statistically different 
from zero (p < .05) because the null value is well outside the interval. This table does not display 
the regression intercept. Rather, Intercept and read9mis coefficients are the pattern-specific 
parameters, 𝛽0(com) and 𝛽0(diff) (see Equation 38).  

The PARAMETERS command defined a set of new model parameters, including weighted 
average intercept. The table summarizing the additional parameters is shown below. 

 
GENERATED PARAMETERS: 
 
  Summaries based on 10000 iterations using 2 chains. 
 
 
Parameters                           Median     StdDev       2.5%      97.5%        PSR      N_Eff  
                                ------------------------------------------------------------------- 
 
  cohensd                            -0.200      0.000     -0.200     -0.200      1.000      2.001  
  beta0diff                          -1.918      0.133     -2.200     -1.680      1.000   6165.475  
  pmis                                0.174      0.032      0.117      0.243      1.000   2800.948  
  pcom                                0.826      0.032      0.757      0.883      1.000   2800.948  
  beta0                              65.611      6.068     53.728     77.519      1.000   6424.868  



   274 

 
                                ------------------------------------------------------------------- 
 

The weighted intercept coefficient that averages over the missing data patterns is labeled beta0. 
Comparing these results to the Example 6 estimates that invoke a conditionally missing at 
random process provides a sensitivity check that conveys the impact of a missing not at random 
process where students with missing data have lower mean reading levels in ninth grade. This 
comparison presupposes that the missingness model is correctly specified. The missing data 
indicator could also moderate associations in the regression model, in which case the estimates 
and conclusions about robustness could change. Finally, the Blimp output also includes summary 
tables for the predictor and auxiliary variable models. These additionally results are not of 
substantive interest and would not be reported. 

 



   

 

275 

REFERENCES 

Asparouhov, T., & Muthén, B. (2010a). Bayesian analysis using Mplus: Technical implementation. 

https://www.statmodel.com/download/Bayes3.pdf 

Asparouhov, T., & Muthén, B. (2010b). Chi-square statistics with multiple imputation. Retrieved 

2/4/2016, from https://www.statmodel.com/download/MI7.pdf 

Asparouhov, T., & Muthén, B. (2021). Advances in Bayesian model fit evaluation for structural 

equation models. Structural Equation Modeling: A Multidisciplinary Journal, 28, 1–14.  

Barnard, J., & Rubin, D. B. (1999). Small-sample degrees of freedom with multiple imputation. 

Biometrika, 86, 948–955. https://doi.org/DOI 10.1093/biomet/86.4.948  

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.  

Collins, L. M., et al. (2001). A comparison of inclusive and restrictive strategies in modern 

missing data procedures. Psychological Methods, 6, 330–351. 

https://doi.org/10.1037/1082-989X.6.4.330  

Enders, C. K. (2022). Applied Missing Data Analysis (2nd ed.). Guilford Press.  

Gelman, A., et al. (2014). Bayesian data analysis (3rd ed.). CRC Press.  

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. 

Statistical Science, 7, 457–472. https://doi.org/10.1214/ss/1177011136  

Graham, J. W. (2003). Adding missing-data-relevant variables to FIML-based structural equation 

models. Structural Equation Modeling: A Multidisciplinary Journal, 10, 80–100. 

https://doi.org/10.1207/S15328007sem1001_4  

Li, K. H., et al. (1991). Large-sample significance levels from multiply imputed data using 

moment-based statistics and an F reference distribution. Journal of the American 

Statistical Association, 86, 1065–1073. https://doi.org/Doi 10.2307/2290525  

Little, R. J. A., & Rubin, D. B. (2020). Statistical analysis with missing data (3rd ed.). Wiley.  



   276 

Montague, M., et al. (2005). Academic and behavioral outcomes for students at risk for 

emotional and behavioral disorders. Behavioral Disorders, 31, 84–94.  

Montague, M., et al. (2014). The effects of cognitive strategy instruction on math problem solving 

of middle-school students of varying ability. Journal of Educational Psychology, 106, 469–

481.  

Rights, J. D., & Sterba, S. K. (2019). Quantifying explained variance in multilevel models: An 

integrative framework for defining R-squared measures. Psychological Methods, 24, 309–

338. https://doi.org/dx.doi.org/10.1037/met0000184  

 


