

INTRODUCTION TO PROGRAMMING LANGUAGES

ANTHONY A. AABY

Theory
Introduction to

Programming Languages

Anthony A. Aaby

DRAFT Version 0.9. Edited July 15, 2004

Copyright c© 1992-2004 by Anthony A. Aaby

Walla Walla College
204 S. College Ave.
College Place, WA 99324
E-mail: aabyan@wwc.edu

This work is licensed under the Creative Commons Attribution License. To view
a copy of this license, visit http://creativecommons.org/licenses/by/2.0/ or send
a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California
94305, USA.

This book is distributed in the hope it will be useful, but without any warranty;
without even the implied warranty of merchantability or fitness for a particular
purpose.

No explicit permission is required from the author for reproduction of this book
in any medium, physical or electronic.

The author solicits collaboration with others on the elaboration and extension
of the material in this text. Users are invited to suggest and contribute material
for inclusion in future versions provided it is offered under compatible copyright
provisions. The most current version of this text and LATEXsource is available
at http://www.cs.wwc.edu/~aabyan/Logic/index.html.

To Ogden and Amy Aaby

iv

Preface

It is the purpose of this text to explain the concepts underlying programming
languages and to examine the major language paradigms that use these con-
cepts.

Programming languages can be understood in terms of a relatively small number
of concepts. In particular, a programming language is syntactic realization of
one or more computational models. The relationship between the syntax and
the computational model is provided by a semantic description. Semantics
provide meaning to programs. The computational model provides much of the
intuition behind the construction of programs. When a programming language
is faithful to the computational model, programs can be more easily written and
understood.

The fundamental concepts are supported bindings, abstraction and generaliza-
tion. Concepts so fundamental that they are included in virtually every pro-
gramming language. These concepts support the human facility for simile and
metaphor which are so necessary in problem solving and in managing complex-
ity.

Programming languages are also shaped by pragmatic considerations. Formost
among these considerations are safety, efficiency and applicability. In some
languages these external forces have played a more important role in shaping the
language than the computational model to the point of distorting the language
and actually limiting the applicability of the language. There are several distinct
computational models — imperative, functional, and logic. While these models
are equivalent (all computable functions may be defined in each model), there
are pragmatic reasons for prefering one model over the another.

This text is designed to formalize and consolidate the knowledge of programming
languages gained in the introductory courses a computer science curriculum
and to provide a base for further studies in the semantics and translation of
programming languages. It aims at covering the bulk of the subject area PL:
Programming Languages as described in the “ACM/IEEE Computing Curricula
1991.”

v

Special Features of the Text

The following are significant features of the text as compared to the standard
texts.

• Syntax: an introduction to regular expressions, scanning, context-free
grammars, parsing, attribute grammars and abstract grammars.

• Semantics: introductory treatment of algebraic, axiomatic, denotational
and operational semantics.

• Programming Paradigms: the major programming paradigms are promi-
nently featured.

– Functional: includes an introduction to the lambda calculus and uses
the programming languages Scheme and Haskell for examples

– Logic: includes an emphasis on the formal semantics of Prolog

– Concurrent: introduces both low- and high-level notations for con-
curency, stresses the importance of the logic and functional paradigms
in the debate on concurrency, and uses the programming language
SR for examples.

– Object-oriented: uses the programming language Modula-3 for ex-
amples

• Language design principles: Twenty some programming language design
principles are given prominence. In particular, the importance of abstrac-
tion and generalization is stressed.

Readership

This book is intended as an undergraduate text in the theory of programming
languages. To gain maximum benefit from the text, the reader should have ex-
perience in a high-level programming language such as Pascal, Modula-2, C++,
ML or Common Lisp, machine organization and programming, and discrete
mathematics.

Programming is not a spectator sport. To gain maximum benefit from the text,
the reader should construct programs in each of the paradigms, write semantic
specifications; and implement a small programming language.

Organization

Since the subject area PL: Programming Languages as described in the “ACM/IEEE
Computing Curricula 1991” consists of a minimum of 47 hours of lecture, the
text contains considerably more material than can be covered in a single course.

vi

The first part of the text consists of chapters 1–3. Chapter 1 is an overview
of the text, an introduction to the areas of discussion. It introduces the key
concepts: the models of computation, syntax, semantics, abstraction, general-
ization and pragmatics which are elaborated in the rest of the text. Chapter
2 introduces context-free grammars, regular expressions, and attribute gram-
mars. Context-free grammars are utilized throughout the text but the other
sections are optional. Chapter 3 introduces semantics: algebraic, axiomatic,
denotational and operational. While the chapter is optional, I introduce al-
gebraic semantics in conjunction with abstract types and axiomatic semantics
with imperative programming.

Chapter 4 is a formal treatment of abstraction and generalization as used in
programming languages.

Chapter 5 deals with values, types, type constructors and type systems. Chapter
6 deals with environments, block structure and scope rules. Chapter 7 deals
with the functional model of computation. It introduces the lambda calculus
and examines Scheme and Haskell. Chapter 8 deals with the logic model of
computation. It introduces Horn clause logic, resolution and unification and
examines Prolog. Chapter 9 deals with the imperative model of computation.
Features of several imperative programming languages are examined. Various
parameter passing mechanisms should be discussed in conjunction with this
chapter. Chapter 10 deals with the concurrent model of programming. Its
primary emphasis is from the imperative point of view. Chapter 11 is a further
elaboration of the concepts of abstraction and generalization in the module
concept. It is preparatory for Chapter 12. Chapter 12 deals with the object-
oriented model of programming. Its primary emphasis is from the imperative
point of view. Features of Smalltalk, C++ and Modula-3 provide examples.

Chapter 13 deals with pragmatic issues and implementation details. It may be
read in conjunction with earlier chapters. Chapter 14 deals with programming
environments, Chapter 15 deals with the evaluation of programming languages
and a review of programming language design principles. Chapter 16 contains
a short history of programming languages.

Pedagogy

The text provides pedagogical support through various exercises and labora-
tory projects. Some of the projects are suitable for small group assignments.
The exercises include programming exercises in various programming languages.
Some are designed to give the student familiarity with a programming concept
such as modules, others require the student to construct an implementation of a
programming language concept. For the student to gain maximum benefit from
the text, the student should have access to a logic programming language (such
as Prolog), a modern functional language (such as Scheme, ML or Haskell),
a concurrent programming language (Ada, SR, or Occam), an object-oriented
programming language (C++, Small-Talk, Eiffel, or Modula-3), and a modern

vii

programming environment and programming tools. Free versions of Prolog,
ML, Haskell, SR, and Modula-3 are available from one or more ftp sites and are
recommended.

The instructor’s manual contains lecture outlines and illustrations from the text
which may be transferred to transparencies. There is also a laboratory manual
which provides short introductions to Lex, Yacc, Prolog, Haskell, Modula-3, and
SR.

The text has been used as a semester course with a weekly two hour lab. Its
approach reflects the core area of programming languages as described in the re-
port Computing as a Discipline in CACM January 1989 Volume 32 Number
1.

Knowledge Unit Mapping

To assist in curriculum development, the follow mapping of the ACM knowledge
units to the text is provided.

Knowledge Unit Chapter(s)
PL1: History 6,7,8,9,11
PL2: Virtual Machines 2,6,7,8,13
PL3: Data Types 5,13
PL4: Sequence Control 9,10
PL5: Data Control 5,11,12
PL6: Run-time 2,13
PL7: Regular Expressions 2
PL8: Context-free grammars 2
PL9: Translation 2
PL10: Semantics 3
PL11: Programming Paradigms 1,7,8,9,10,12
PL12: Parallel Constructs 10
SE3: Specifications 3

Acknowledgements

There are several programming texts that have influenced this work in partic-
ular, texts by Hehner, Tennent, Pratt, and Sethi. I am grateful to my CS208
classes at Bucknell for their comments on preliminary versions of this material
and to Bucknell University for providing the excellent environment in and with
which to develop this text.

AA 1992

viii

Contents

Preface v

1 Introduction 1

1.1 Models of Computation . 3

1.2 Syntax and Semantics . 7

1.3 Pragmatics . 7

1.4 Language Design Principles . 8

1.5 Further Reading . 10

1.6 Exercises . 11

2 Syntax 13

2.1 Context-Free Grammars . 14

2.2 Regular Expressions . 21

2.3 Attribute Grammars and Static Semantics 23

2.4 Further Reading . 24

2.5 Exercises . 25

3 Semantics 27

3.1 Algebraic Semantics . 28

3.2 Axiomatic Semantics . 29

3.3 Denotational Semantics . 36

3.4 Operational Semantics . 37

3.5 Further Reading . 39

4 Abstraction and Generalization I 41

4.1 Abstraction . 43

ix

4.2 Generalization . 44

4.3 Substitution . 46

4.4 Abstraction and Generalization 46

4.5 Exercises . 47

5 Domains and Types 49

5.1 Primitive Domains . 52

5.2 Compound Domains . 52

5.3 Abstract Types . 60

5.4 Generic Types . 63

5.5 Type Systems . 64

5.6 Overloading and Polymorphism 67

5.7 Type Completeness . 69

5.8 Exercises . 69

6 Environment 71

6.1 Block structure . 72

6.2 Declarations . 74

6.3 Constants . 74

6.4 User Defined Types . 74

6.5 Variables . 78

6.6 Functions and Procedures . 78

6.7 Persistant Types . 78

6.8 Exercises . 79

7 Functional Programming 81

7.1 The Lambda Calculus . 83

7.2 Recursive Functions . 88

7.3 Lexical Scope Rules . 90

7.4 Functional Forms . 91

7.5 Evaluation Order . 92

7.6 Values and Types . 93

7.7 Type Systems and Polymorphism 93

7.8 Program Transformation . 93

7.9 Pattern matching . 94

x

7.10 Combinatorial Logic . 94

7.11 Scheme . 96

7.12 Haskell . 98

7.13 Discussion and Further Reading 100

7.14 Exercises . 101

8 Logic Programming 103

8.1 Inference Engine . 105

8.2 Syntax . 105

8.3 Semantics . 106

8.4 The Logical Variable . 114

8.5 Iteration vs Recursion . 117

8.6 Backtracking . 118

8.7 Exceptions . 118

8.8 Prolog 6= Logic Programming . 118

8.9 Database query languages . 124

8.10 Logic Programming vs Functional Programming 125

8.11 Further Reading . 125

8.12 Exercises . 125

9 Imperative Programming 127

9.1 Variables and Assignment . 128

9.2 Control Structures . 130

9.3 Sequencers . 135

9.4 Jumps . 136

9.5 Escape . 137

9.6 Exceptions . 138

9.7 Coroutines . 140

9.8 Processes . 140

9.9 Side effects . 140

9.10 Aliasing . 141

9.11 Reasoning about Imperative Programs 143

9.12 Expressions with side effects . 143

9.13 Sequential Expressions . 143

9.14 Structured Programming . 144

xi

9.15 Expression-oriented languages . 145

9.16 Further Reading . 145

10 Concurrent Programming 147

10.1 Concurrency . 148

10.2 Issues in Concurrent Programming 150

10.3 Syntax . 153

10.4 Interfering Processes . 153

10.5 Non-interfering Processes . 154

10.6 Cooperating Processes . 154

10.7 Synchronizing Processes . 155

10.8 Communicating Processes . 157

10.9 Occam . 158

10.10Semantics . 158

10.11Related issues . 159

10.12Examples . 159

10.13Further Reading . 159

11 PCN 161

11.1 Tutorial . 161

11.2 The PCN Language . 161

11.3 Examples . 162

12 Abstraction and Generalization II 163

12.1 Encapsulation . 164

12.2 ADTs . 165

12.3 Partitions . 165

12.4 Scope Rules . 166

12.5 Modules . 167

13 Object-Oriented Programming 169

13.1 History . 172

13.2 Subtypes (subranges) . 172

13.3 Objects . 172

13.4 Classes . 173

13.5 Inheritance . 174

xii

13.6 Types and Classes . 175

13.7 Examples . 176

13.8 Further Reading . 177

13.9 Exercises . 177

14 Pragmatics 179

14.1 Syntax . 179

14.2 Semantics . 179

14.3 Bindings and Binding Times . 180

14.4 Values and Types . 181

14.5 Computational Models . 182

14.6 Procedures and Functions . 182

14.7 Scope and Blocks . 183

14.8 Parameters and Arguments . 187

14.9 Safety . 189

14.10Further Reading . 190

14.11Exercises . 190

15 Translation 191

15.1 Parsing . 193

15.2 Scanning . 193

15.3 The Symbol Table . 193

15.4 Virtual Computers . 193

15.5 Optimization . 193

15.6 Code Generation . 195

15.7 Peephole Optimization . 199

15.8 Further Reading . 199

16 Evaluation of Programming Languages 201

16.1 Models of Computation . 201

16.2 Syntax . 201

16.3 Semantics . 202

16.4 Pragmatics . 202

16.5 Trends in Programming Language Design 205

17 History 207

xiii

17.1 Functional Programming . 207

17.2 Logic Programming . 208

17.3 Imperative Programming . 208

17.4 Concurrent Programming . 209

17.5 Object-Oriented Programming 209

A Logic 211

A.1 Sentential Logic . 211

A.1.1 Syntax . 211

A.1.2 Semantics . 212

A.2 Predicate Logic . 214

A.2.1 Syntax . 214

A.2.2 Semantics . 215

xiv

Chapter 1

Introduction

A complete description of a programming language includes the computational
model, the syntax, the semantics, and the pragmatic considerations that shape
the language.

Keywords and phrases: Computational model, computation, program, program-
ming language, syntax, semantics, pragmatics, binding, scope.

Suppose that we have the values 3.14 and 5, the operation of multiplication (×)
and we perform the computation specified by the following arithmetic expression

3.14× 5

the result of which is the value:
15.7

The value 3.14 is readily recognized as an approximation for π. The actual
numeric value may be less important than knowing that an approximation to π
is intended so we can replace 3.14 with π. abstracting the expression 3.14 × 5
to:

π × 5 where π = 3.14

We say that π is bound to 3.14 and is a constant. The “where” introduces a
local environment or block where additional definitions may occur.

If the 5 is intended to be the value of a diameter and the computation is intended
to derive the value of the circumference, then the expression can be generalized

1

2 CHAPTER 1. INTRODUCTION

by introducing a variable for the diameter:

π × diameter where π = 3.14

The expression may be further abstracted by assigning a name to the expression
as is done in this equation:

Circumference = π × diameter where π = 3.14

This definitions binds the name Circumference to the expression π× diameter.
The variable diameter is said to be free in the right hand side of the equation.
It is a variable since its value is not determined. π is not a variable, it is a
constant, the name of a particular value. Any context (scope) in which these
definitions appear and in which the variable diameter appears and is assigned
to a value determines a value for Circumference. A further generalization is
possible by parameterizing Circumference with the variable diameter

Circumference(diameter) = π × diameter where π = 3.14

The variable diameter appearing in the right hand side is no longer free. It is
bound to the parameter diameter. Circumference has a value (other than the
right hand side) only when the parameter is replaced with an expression. For
example,

Circumference(5) = 15.7

The parameter diameter is bound to the value 5 and, as a result, Circumfer-
ence(5) is bound to 15.7.

In this form, the definition is a recipe or program for computing the circum-
ference of a circle from the diameter of the circle. The mathematical notation
(syntax) provides the programming language and arithmetic provides the com-
putational model for the computation. The mapping from the syntax to the
computational model provides the meaning (semantics) for the program. The
notation employed in this example is based on the very pragmatic considera-
tions of ease of use and understanding. It is so similar to the usual mathematical
notation that it is difficult to distinguish between the notation and the compu-
tational model. This example serves to illustrate several key ideas in the study
of programming languages which are summarized in the following definitions:

Definition 1.1

1. A computational model is a collection of values and operations.

2. A computation is the application of a sequence of operations to a value to
yield another value.

3. A program is a specification of a computation.

1.1. MODELS OF COMPUTATION 3

4. A programming language is a notation for writing programs.

5. The syntax of a programming language refers to the structure or form of
programs.

6. The semantics of a programming language describe the relationship be-
tween the syntactical elements and the model of computation.

7. The pragmatics of a programming language describe the degree of success
with which a programming language meets its goals both in its faithful-
ness to the underlying model of computation and in its utility for human
programmers.

1.1 Models of Computation

Computational models begin with a set of values. The values can be separated
into two groups, primitive and composite. The primitive values (or types) are
usually numbers, boolean values, and characters. The composite values (or
types) are usually arrays, records, and recursively defined values. Strings may
occur as either primitive or composite values. Lists, stacks, trees, and queues are
examples of recursively defined values. Associated with the primitive values are
the usual operations (e.g., arithmetic operations for the numbers). Associated
with each composite type are operations to construct the values of that type
and operations to access component elements of the type.

In addition to the set of values and associated operations, each computational
model has a set of operations which are used to define computation. There
are three basic computational models—functional, logic, and imperative. In
addition, there are two programming techniques or programming paradigms
(concurrent programming and object-oriented programming); while they are not
models of computation, they are so influential that whey rank in importance
with computational models.

The Functional Model

The functional model of computation consists of a set of values, functions, and
the operation of function application. Functions may be named and may be
composed with other functions. Functions can take other functions as arguments
and return functions as results. Programs consist of definitions of functions
and computations are application of functions to values. For example, a linear
function y = 2x + 3 can be defined as follows:

f x = 2∗x + 3

4 CHAPTER 1. INTRODUCTION

A more interesting example is a program to compute the standard deviation of
a list of scores. The formula for standard deviation is:

σ =

√√√√∑N
i=1 x2

i −
(∑N

i=1
xi

)2

N

N

where xi is an individual score and N is the number of scores. An implementa-
tion in a functional programming language might look like this:

sd xs = sqrt((sumsqrs(xs) -
(sum(xs)^2 / length(xs))) / length(xs))

The functional model is important because it has been under development for
hundreds of years and its notation and methods form the base upon which a
large portion of our problem solving methodologies rest.

The Logic Model

The logic model of computation is based on relations and logical inference. Pro-
grams consist of definitions of relations and computations are inferences. For
example the linear function y = 2x + 3 can be represented as:

f(X,Y) if Y is 2∗X + 3.

The function is represented as a relation between X and Y. A more typical
application for logic programming is illustrated by a program to determine the
mortality of Socrates. Suppose we have the following set of sentences.

1. man(Socrates)
2. mortal(X) if man(X)

The first line is a translation of the statement Socrates is a man. The second
line is a translation of the phrase all men are mortal into the equivalent for all
X, if X is a man then X is mortal. To determine the mortality of Socrates. The
following sentence must be added to the set.

¬ mortal(Y)

This sentence is a translation of the phrase There are no mortals rather than
the usual phrase Socrates is not mortal. It can be viewed as the question, “Is
there a mortal?” The first step in the computation is illustrated here

1.1. MODELS OF COMPUTATION 5

1. man(Socrates)
2. mortal(X) if man(X)
3. ¬ mortal(Y)
4. ¬ man(Y)

The deduction of line 4 from lines 2 and 3 is to be understood from the fact that
if the conclusion of a rule is known to be false, then so is the hypothesis (modus
tollens). Using this new result, we get a contradiction with the first sentence.

1. man(Socrates)
2. mortal(X) if man(X)
3. ¬ mortal(Y)
4. ¬ man(Y)
5. Y = Socrates

From the resolvent and the first sentence, resolution and unification produce
Y=Socrates. That is, there is a mortal and one such mortal is Socrates. Res-
olution is the process of looking for a contradiction and it is facilitated by
unification which determines if there is a substitution which makes two terms
the same.

The logic model is important because it is a formalization of the reasoning
process. It is related to relational data bases and expert systems.

The Imperative Model

The imperative model of computation consists of a state and the operation of
assignment which is used to modify the state. Programs consist of sequences of
commands and computations are changes of the state. For example, the linear
function y = 2x + 3 written as:

Y := 2∗X + 3

requires the implementation to determine the value of X in the state and then
create a new state which differs from the old state in that the value of Y in the
new state is the value that 2∗X + 3 had in the old state.

Old State: X = 3, Y = -2, ...
Y := 2∗X+3

New State: X = 3, Y = 9, ...

The imperative model is important because it models change and changes are
part and parcel of our environment. In addition, it is the closest to modeling

6 CHAPTER 1. INTRODUCTION

the hardware on which programs are executed. This tends to make it the most
efficient model in terms of execution speed.

Other Models

Programs in the concurrent programming model consist of multiple processes
or tasks which may exchange information. The computations may occur con-
currently or in any order. Concurrent programming is primarily concerned
with methods for synchronization and communication between processes. The
concurrent programming model may be implemented within any of the other
computational models. Concurrency in the imperative model can be viewed as
a generalization of control. Concurrency within the functional and logic model
is particularly attractive since, subexpression evaluation and inferences may be
performed concurrently. For example, 3x and 4y may be simultaneously evalu-
ated in the expression 3x + 4y.

Programs in the object-oriented programming model consist of a set of objects
which compute by exchanging messages. Each object is bound up with a value
and a set of operations which determine the messages to which it can respond.
The objects are organized hierarchically and inherit operations from objects
higher up in the hierarchy. The object-oriented model may be implemented
within any of the other computational models.

Computability

The method of computation provided in a programming language is depen-
dent on the model of computation implemented by the programming language.
Most programming languages utilize more than one model of computation but
one model predominates. Lisp, Scheme, and ML are based on the functional
model of computation but provide imperative constructs as well while, Miranda
and Haskell provide a nearly pure implementation of the functional model of
computation. Prolog attempts to provide an implementation of the logic com-
putational model but, for reasons of efficiency and practicality, fails in several
areas and contains imperative constructs. Imperative programming languages
provide a severely limited implementation of the functional and logic model of
computation.

The functional, logic and imperative models of computation are equivalent in
the sense that any problem that has a solution in one model is solvable (in
principle) each of the other models. Other models of computation have been
proposed. The other models have been shown to be equivalent to these three
models. These are said to be universal models of computation.

1.2. SYNTAX AND SEMANTICS 7

1.2 Syntax and Semantics

The notation used in the functional and logic models tends to reflect common
mathematical practice and thus, it tends toward simplicity and regularity. On
the other hand, the notation used for the imperative model tends to be irregu-
lar and of greater complexity. The problem is that in the imperative model the
programmer must both manage storage and determine the appropriate compu-
tations. This tends to permit programs that are more efficient in their use of
time and space than equivalent functional and logic programs. The addition of
concurrency to imperative programs results in additional syntactic structures
while concurrency in functional and logic programs is more of an implementation
issue.

The relationship between the syntax and the computational model is provided
by semantic descriptions. The semantics of imperative programming languages
tends to receive more attention because changes to state need not be restricted
to local values. In fact, the bulk of the work done in the area of programming
language semantics deals with imperative programming languages.

Since semantics ties together the syntax and the computational model, there are
several programming language design principles which are deal with the interac-
tion between these three areas. Since syntax is the means by which computation
is specified, the following programming language design principle deals with the
relationship which must exist between syntax and the compuational model.

Principle of Clarity: The mechanisms used by the language should be well
defined, and the outcome of a particular section of code easily predicted.

1.3 Pragmatics

Pragmatics is concerned about the usability of the language, the application
areas, ease of implementation and use, and the language’s success in fulfilling
its design goals. For a language to have wide applicability it must make pro-
vision for abstraction, generalization and modularity. Abstraction permits the
suppression of detail and provides constructs which permit the extension of a
programming language. These extensions are necessary to reduce the complex-
ity of programs. Generalization permits the application of constructs to wider
classes of objects. Modularity is a partitioning of a program into sections usu-
ally for separate compilation and into libraries of reusable code. Abstraction,
generalization and modularity ease the burden on a programmer by permitting
the programmer to introduce levels of detail and logical partitioning of a pro-
gram. The implementation of the programming language should be faithful to
the underlying computational model and be an efficient implementation.

8 CHAPTER 1. INTRODUCTION

Programs are written and read by humans but are executed by computers.
Since both humans and computers must be able to understand programs, it is
necessary to understand the requirements of both classes of users.

Natural languages are not suitable for programming languages because humans
themselves do not use natural languages when they construct precise formula-
tions of concepts and principles of particular knowledge domains. Instead, they
use a mix of natural language and the formalized symbolic notations of math-
ematics and logic and various diagrams. The most successful of these symbolic
notations contain a few basic objects which may be combined through a few sim-
ple rules to produce objects of arbitrary levels of complexity. In these systems,
humans reduce complexity by the use of definitions, abstractions, generaliza-
tions and analogies. Benjamin Whorf[32] has postulated that one’s language
has considerable effect on the way that one thinks; indeed on what one can
think. This suggests that programming languages should cater to the natural
problem solving approaches used by humans. Miller[21] observes that people
can keep track of about seven things. This suggests that a programming lan-
guage should provide mechanisms which support abstraction and generalization.
Programming languages should approach the level at which humans reason and
should reflect the notational approaches that humans use in problem solving and
further must include ways of structuring programs to ease the tasks of program
understanding, debugging and maintenance.

The native programming languages of computers bear little resemblance to nat-
ural languages. Machine languages are unstructured and contain few, if any,
constructs resembling the level at which humans think. The instructions typ-
ically include arithmetic and logical operations, memory modification instruc-
tions and branching instructions. For example, the linear function y := 2∗x +
3 example might be written in assembly language as:

Load X R1
Mult R1 2 R1
Add R1 3 R1
Store R1 Y

This example indicates that machine languages tend to be difficult for humans
to read and write.

1.4 Language Design Principles

Programming languages are largely determined by the importance the language
designers attach to the areas of readability, writeability and efficient execution.
Some languages are largely determined by the necessity for efficient implemen-
tation and execution. Others are designed to be faithful to a computational

1.4. LANGUAGE DESIGN PRINCIPLES 9

model. As hardware and compiler technology evolves, there is a correspond-
ing evolution toward more efficient implementation and execution. As larger
programs are written and new applications are developed, it is the area of read-
ability and writability that must receive the most emphasis. It is this concern
for readability and writability that is driving the development of programming
languages.

All general purpose programming languages adhere to the following program-
ming language design principle.

Principle of Computational Completeness: The computational model for
a general purpose programming language must be universal.

The line of reasoning developed above may be summarized in the following
principle.

Principle of Programming Language Design: A programming language must
be designed to facilitate readability and writability for its human users and
efficient execution on the available hardware.

Readability and writeability are facilitated by the following principles.

Principle of Simplicity: The language should be based upon as few “basic
concepts” as possible.

Principle of Orthogonality: Independent functions should be controlled by
independent mechanisms.

Principle of Regularity: A set of objects is said to be regular with respect to
some condition if, and only if, the condition is applicable to each element
of the set.

Principle of Extensibility: New objects of each syntactic class may be con-
structed (defined) from the basic and defined constructs in a systematic
way.

The principle of regularity and and extensibility require that the basic concepts
of the language should be applied consistently and universally.

In the following pages we will study programming languages as the realization
of computational models, semantics as the relationship between computational
models and syntax, and associated pragmatic concerns.

10 CHAPTER 1. INTRODUCTION

1.5 Further Reading

For a programming languages text which presents programming languages from
the virtual machine point of view see Pratt[24]. For a programming languages
text which presents programming languages from the point of view of deno-
tational semantics see Tennent[30]. For a programming languages text which
presents programming languages from a programming methodology point of
view see Hehner[11].

1.6. EXERCISES 11

1.6 Exercises

1. Classify the following languages in terms of a computational model: Ada,
APL, BASIC, C, COBOL, FORTRAN, Haskell, Icon, LISP, Pascal, Pro-
log, SNOBOL.

2. For the following applications, determine an appropriate computational
model which might serve to provide a solution: automated teller machine,
flight-control system, a legal advice service, nuclear power station moni-
toring system, and an industrial robot.

3. Compare the syntactical form of the if-command/expression as found in
Ada, APL, BASIC, C, COBOL, FORTRAN, Haskell, Icon, LISP, Pascal,
Prolog, SNOBOL.

4. An extensible language is a language which can be extended after language
design time. Compare the extensibility features of C or Pascal with those
of LISP or Scheme.

5. What programming language constructs of C are dependent on the local
environment?

6. What languages provide for binding of type to a variable at run-time?

7. Discuss the advantages and disadvantages of early and late binding for the
following language features. The type of a variable, the size of an array,
the forms of expressions and commands.

8. Compare two programming languages from the same compuational paradigm
with respect to the programming language design principles.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Syntax

The syntax of a programming language describes the structure of programs.

Keywords and phrases: Regular expression, regular grammar, context-free gram-
mar, parse tree, ambiguity, BNF, context sensitivity, attribute grammar, inher-
ited and synthesized attributes, scanner, lexical analysis, parser, static seman-
tics.

Syntax is concerned with the appearance and structure of programs. The syn-
tactic elements of a programming language are largely determined by the com-
putation model and pragmatic concerns. There are well developed tools (reg-
ular, context-free and attribute grammars) for the description of the syntax of
programming languages. The grammars are rewriting rules and may be used
for both recognition and generation of programs. Grammars are independent
of computational models and are useful for the description of the structure of
languages in general.

This chapter provides an introduction to grammars and shows how they may be
used for the description of the syntax of programming languages. Context-free
grammars are used to describe the bulk of the language’s structure; regular ex-
pressions are used to describe the lexical units (tokens); attribute grammars are
used to describe the context sensitive portions of the language. Both concrete
and abstract grammars are presented.

13

14 CHAPTER 2. SYNTAX

Preliminary definitions

The following definitions are basic to the definition of regular expressions and
context-free grammars.

Definition 2.1 An alphabet is a nonempty, finite set of symbols.

The alphabet for the lexical tokens of programming language is the character
set. The alphabet for the context-free structure of a programming language is
the set of keywords, identifiers, constants and delimiters; the lexical tokens.

Definition 2.2 A language L over an alphabet Σ is a collection of finite strings
of elements of Σ

Definition 2.3 Let L0 and L1 be languages. L0L1 denotes the language {xy |
x is in L0, and y is in L1}. That is L0L1 consists of all possible concatenations
of a string from L0 followed by a string from L1.

Definition 2.4 Let Σ be an alphabet. The set of all possible finite strings of
elements of Σ is denoted by Σ∗. The set of all possible nonempty strings of Σ
is denoted by Σ+.

2.1 Context-Free Grammars

The structure of programming languages is described using context-free gram-
mars. Context-free grammars describe how lexical units (tokens) are grouped
into meaningful structures. The alphabet (the set of lexical units) consists of
the keywords, punctuation symbols, and various operators. Context-free gram-
mars are sufficient to describe most programming language constructs but they
cannot describe the context sensitive aspects of a programming language. For
example, context-free languages cannot be used to specify that a name must be
declared before reference and that the order and number of actual parameters
in a procedure call must match the order and number of formal arguments in a
procedure declaration.

Concrete Syntax

Definition 2.5 A context-free grammar is a quadruple (N,T,P,S) where N is
an alphabet of nonterminals, T is an alphabet of terminals disjoint from N, and
P is a finite set of rewriting rules (productions) of the form

2.1. CONTEXT-FREE GRAMMARS 15

N = {E}
T = {id,+, ∗, (,)}
P = {E → id, E → (E), E → E + E,E → E ∗ E}
S = E

Figure 2.1: An expression grammar

E [id + id ∗ id]
E + E [id] + [id ∗ id]
id + E id + [id ∗ id]
id + E ∗ E id + [id] ∗ [id]
id + id ∗ E id + id ∗ [id]
id + id ∗ id id + id ∗ id

Figure 2.2: Derivation and recognition of id + id ∗ id

A→ w where A ∈ N , w ∈ (N ∪ T)∗, and S ∈ N .

Figure 2.1 contains an example of a context-free grammar for arithmetic ex-
pressions. Notice that expressions are defined recursively.

Grammars may be used both for recognition and generation of strings. Recog-
nition and generation requires finding a rewriting sequence consisting of appli-
cations of the rewriting rules which begins with the grammar’s start symbol
and ends with the string in question. For example, a rewriting sequence for the
string

id + id ∗ id

is given in Figure 2.2. The first column is the rewriting sequence which
generates the string. The same rewriting sequence is used to recognize the
string in the second column. The bracketed portions of the string indicate the
unrecognized portions of the string and correspond to nonterminals in the first
column.

The recognition of a program in terms of the grammar is called parsing. An
algorithm which recognizes programs is called a parser.

Ambiguity

Figure 2.3 presents an alternative sequence of applications of the rewriting

16 CHAPTER 2. SYNTAX

E [id + id ∗ id]
E ∗ E [id + id] ∗ [id]
E + E ∗ E [id] + [id] ∗ [id]
id + E ∗ E id + [id] ∗ [id]
id + id ∗ E id + id ∗ [id]
id + id ∗ id id + id ∗ id

Figure 2.3: A second derivation and recognition of id + id ∗ id

rules for the derivation of the string id + id ∗ id. Note that the derivation in
Figure 2.3 suggests that addition is performed before multiplication in violation
of standard arithmetic practice. In these examples we have chosen to rewrite the
left-most non-terminal first. When there are two or more left-most derivations
of a string in a given grammar, the grammar is said to be ambiguous. In some
instances ambiguity may be eliminated by the selection of another grammar for
the language or by establishing precedences among the operators.

Parsers

Context-free grammars are equivalent to push-down automata. A push-down
automaton is a machine with a stack, an input string, and a finite control. The
input string is consumed as it is read so that the machine cannot reread an earlier
portion of the input. At each step of the machine, the action is determined by
the next symbol in the input, the top symbol on the stack and the state of the
finite control. An action of the machine consists of one or more of the following:
consume the next symbol of input, push a symbol onto the stack, pop the top
of the stack, change the state of its finite control.

Parsers for programming languages are examples of push-down automata. Parsers
are usually built in one of two ways. Either, the parser begins with the start
symbol of the grammar and uses the productions to generate a string matching
the input string or the parser tries to match the input with the right hand side of
a production and when a match is found, it replaces the portion of the matched
portion of the input with the left hand side of the production. The first kind
of parser is called a top down parser while the second is a called a bottom up
parser. To illustrate, consider parsing the string

id + id ∗ id

using a top down parser and a bottom up parser for the expression grammar
of Figure 2.1. Figure 2.4 shows the state of the stack and input string during
the top down parse. Parsing begins with the start symbol on top of the stack.

2.1. CONTEXT-FREE GRAMMARS 17

Stack Input
E] id+id*id]

E+E] id+id*id]
id+E] id+id*id]

+E] +id*id]
E] id*id]

E*E] id*id]
id*E] id*id]

E] *id]
E] id]
id] id]

]]

Figure 2.4: Top down parsing

Since the top of the stack does not match the input, it is popped and the right
hand side of the production E → E + E is pushed onto the stack. Still a match
is not found so the parser pops the top of the stack and pushes the right hand
side of the production E → id onto the stack. Now the top of the stack matches
the input symbol so the top of the stack is popped and the input symbol is
consumed. The parser continues until both the stack and the input are empty
in which case the input is accepted or an error state occurs. The finite control
follows the following algorithm:

1. Initialize the stack with the start symbol of the grammar.

2. Repeat until no further actions are possible

(a) If the top of the stack and the next input symbol are the same, pop
the top of the stack and consume the input symbol.

(b) If the top of the stack is a non-terminal symbol, pop the stack and
push the right hand side of the corresponding grammar rule onto the
stack.

3. If both the stack and input are empty, accept the input otherwise, reject
the input.

Figure 2.5 shows the state of the stack and input string of a bottom up parser
for the expression grammar of Figure 2.1. Parsing begins with an empty stack.
Since there are no symbols in the stack, the first symbol of the input is shifted
to the stack. The top of the stack then corresponds to the right hand side
of the production E → id so the stack is reduced to the left hand side of the
production by popping the stack and pushing the symbol E onto the stack. The

18 CHAPTER 2. SYNTAX

Stack Input
] id+id*id]

id] +id*id]
E] +id*id]

+E] id*id]
id+E] *id]
E+E] *id]
E+E] id]

id*E+E]]
E*E+E]]

E+E]
E]]

Figure 2.5: Bottom-up parsing

parse continues by a series of shifts and reductions until the start symbol is the
only symbol left on the stack and the input is empty in which case the input
is accepted or an error state occurs. The finite control follows the following
algorithm:

1. Initially the stack is empty.

2. Repeat until no further actions are possible.

(a) If the top n stack symbols match the right hand side of a grammar
rule in reverse, then reduce the stack by replacing the n symbols with
the left hand symbol of the grammar rule.

(b) If no reduction is possible then shift the current input symbol to the
stack.

3. If the input is empty and the stack contains only the start symbol of the
grammar, then accept the input otherwise, reject the input.

In both these examples the choice of the which production to use appears to
be magical. In the case of a top down parser the grammar should be rewritten
to remove the ambiguity. Exercise 8 contains an appropriate grammar for a
top down parser for expressions. For bottom up parsers, there are techniques
for the analysis of the grammar to produce a set of unambiguous choices for
productions. Such techniques are beyond the scope of this text.

2.1. CONTEXT-FREE GRAMMARS 19

<Expression> ::= <Identifier> | <Number> |
<Expression> <Op> <Expression> |
(<Expression>)

<Op> ::= + | − | ∗ | /
<Identifier> ::= <Letter>
<Identifier> ::= <Identifier> <Letter>
<Number> ::= <Digit>
<Number> ::= <Number> <Digit>
<Letter> ::= A | ... | Z
<Digit> ::= 0 | ... | 9

Figure 2.6: BNF grammar for arithmetic expressions

Backus-Naur Form

The BNF is a notation for describing the productions of a context-free grammar.
The BNF uses the following symbols <, >, ::=, |. Nonterminals are enclosed
between < and >. The symbol → is replaced with ::=. The symbol | is used to
separate alternatives. Terminals are represented by themselves or are written in
a type face different from the symbols of the BNF. Figure 2.6 gives a BNF de-
scription of arithmetic expressions. The readability of a context-free grammar
may be improved by the following extensions to the BNF.

• Typeface: The names of BNF categories are written in italics and without
< and >.

• Zero or More: Zero or more repetitions of the previous syntactical unit
are indicated with ellipsis (...).

• Optional: Optional elements are enclosed between the brackets [and].

The previous grammar may be rewritten and the definition of identifiers im-
proved using these new conventions. The result is in Figure 2.7. As another
example, the context-free grammar for a simple imperative programming lan-
guage called Simp is found in Figure 2.8.

Abstract Syntax

The previous syntactic definitions are examples of concrete syntax. Concrete
syntactical descriptions are appropriate for the automatic generation of parsers
for the language. A more abstract description is appropriate for formal language
descriptions.

20 CHAPTER 2. SYNTAX

Expression ::= Identifier | Number |
Expression Op Expression |
(Expression)

Op ::= + | − | ∗ | /
Identifier ::= Letter [Letter | Digit]...
Number ::= Digit...

Figure 2.7: An EBNF grammar for expressions

program ::= command sequence

command sequence ::= ε | command sequence command ;

command := SKIP
| IDENT := exp
| IF boo exp THEN command sequence

ELSE command sequence FI
| WHILE bool exp DO command sequence END

exp ::= exp + term | exp - term | term
term :: term * factor | term / factor | factor
factor ::= factor↑primary | primary
primary ::= INT | IDENT | (exp)
bool exp ::= exp = exp | exp < exp | exp > exp

Figure 2.8: An EBNF grammar for Simp

2.2. REGULAR EXPRESSIONS 21

program ::= command...

command ::= SKIP | assignment | conditional | while

assignment ::= IDENT exp
conditional ::= exp then branch else branch

while ::= exp body

then branch ::= command...
else branch ::= command...
body ::= command...

exp ::= INT | IDENT | exp OP exp

Figure 2.9: An abstract grammar for Simp

Definition 2.6 An abstract syntax for a language consists of a set of syntactic
domains and a set of BNF rules describing the abstract structure.

The idea is to use only as much concrete notation as is necessary to convey the
structure of the objects under description. An abstract syntax for Simp is given
in Figure 2.9. A fully abstract syntax simply gives the components of each
language construct, leaving out the representation details. In the remainder of
the text we will use the term abstract syntax whenever some syntactic details
are left out.

2.2 Regular Expressions

The lexical units (tokens) of programming languages are defined using regular
expressions. Regular expression describe how characters are grouped to form
tokens. The alphabet consists of the character set chosen for the language.

Definition 2.7 Let Σ be an alphabet. The regular expressions over Σ and the
languages (sets of strings) that they denote are defined as follows:

1. ∅ is a regular expression and denotes the empty set. This language contains
no strings.

2. ε is a regular expression and denotes the set {ε}. This language contains
one string, the empty string.

22 CHAPTER 2. SYNTAX

A D
1 2
2 2 2

Figure 2.10: Finite state machine transitions for identifiers

3. For each a in Σ a is a regular expression and denotes the set {a}. This
language contains one string, the expression.

4. If r and s are regular expressions denoting the languages R and S, respec-
tively, then (r + s), (rs), and (r∗) are regular expressions that denote the
sets R ∪ S, RS, and R∗, respectively.

Identifiers and numbers are usually defined using regular expressions. If A rep-
resents any letter and D represents any digit, then identifiers and real numbers
may be defined using regular expressions as follows:

identifier = A (A + D)∗

real = (‘+’ + ‘-’ + ε) D+ (ε + (. D+)) (ε + E (‘+’ + ‘-’ + ε) D+)

A scanner is a program which groups the characters of an input stream into a
sequence of tokens. Scanners based on regular expressions are easy to write.

Finite State Machines

Regular expressions are equivalent to finite state machines. A finite state ma-
chine consists of a set of states (one of which is a start state and one or more
which are accepting states), a set of transitions from one state to another each
labeled with an input symbol, and an input string. Each step of the finite state
machine consists of comparing the current input symbol with the set of transi-
tions corresponding to the current state and then consuming the input symbol
and moving to the state corresponding to the selected transition. The transi-
tions for a finite state machine which recognizes identifiers given in Figure 2.10.
The start state is 1 and the accepting state is 2. In the start state if the input

is an alphabetic character, then it is consumed and the transition to state 2
occurs. The machine remains in state 2 as long as the input consists of either
alphabetic characters or digits.

2.3. ATTRIBUTE GRAMMARS AND STATIC SEMANTICS 23

2.3 Attribute Grammars and Static Semantics

Context-free grammars are not able to completely specify the structure of pro-
gramming languages. For example, declaration of names before reference, num-
ber and type of parameters in procedures and functions, the correspondence
between formal and actual parameters, name or structural equivalence, scope
rules, and the distinction between identifiers and reserved words are all struc-
tural aspects of programming languages which cannot be specified using context-
free grammars. These context-sensitive aspects of the grammar are often called
the static semantics of the language. The term dynamic semantics is used to
refer to semantics proper, that is, the relationship between the syntax and the
computational model. Even in a simple language like Simp, context-free gram-
mars are unable to specify that variables appearing in expressions must have
an assigned value. Context-free descriptions of syntax are supplemented with
natural language descriptions of the static semantics or are extended to become
attribute grammars.

Attribute grammars are an extension of context-free grammars which permit
the specification of context-sensitive properties of programming languages. At-
tribute grammars are actually much more powerful and are fully capable of
specifying the semantics of programming languages as well.

For an example, the following partial syntax of an imperative programming
language requires the declaration of variables before reference to the variables.

P ::= D B
D ::= V...
B ::= C ...
C ::= V := E | ...

However, this context-free syntax does not indicate this restriction. The dec-
larations define an environment in which the body of the program executes.
Attribute grammars permit the explicit description of the environment and its
interaction with the body of the program.

Since there is no generally accepted notation for attribute grammars, attribute
grammars will be represented as context-free grammars which permit the param-
eterization of non-terminals and the addition of where statements which provide
further restrictions on the parameters. Figure 2.3 is an attribute grammar for
declarations. The parameters marked with ↓ are called inherited attributes and
denote attributes which are passed down the parse tree while the parameters
marked with ↑ are called synthesized attributes and denote attributes which are
passed up the parse tree.

24 CHAPTER 2. SYNTAX

P ::= D(Env↑) B(Env↓)
D(Env↑) ::= ...Vi(Envi−1 ↓,Envi ↑)...

where Env0 = ∅, Env = Envn and
Envi = Envi−1 ∪ {Vi}

B(Env↓) ::= C(Env↓)...
C(Env↓) ::= V := E(Env↓) | ...

where V ∈ Env

Figure 2.11: An attribute grammar for declarations

Attribute grammars have considerable expressive power beyond there use to
specify context sensitive portions of the syntax and may be used to specify:

• context sensitive rules

• evaluation of expressions

• translation

2.4 Further Reading

For regular expressions and their relationship to finite automata and context-
free grammars and their relationship to push-down automata see texts on formal
languages and automata such as[14]. The original paper on attribute grammars
was by Knuth[15]. For a more recent source and their use in compiler construc-
tion and compiler generators see [8, 23]

2.5. EXERCISES 25

2.5 Exercises

1. Construct a scanner for arithmetic expressions.

2. Lex: scanner

3. Ambiguity: if then else,

4. Ambiguity: arithmetic expressions

5. CFG for ??

6. Abstract Grammar for Pascal excluding abbreviations such as multidi-
mensional arrays, label and forward declarations and packed types.

7. Construct a recursive descent parser for the simple imperative program-
ming language of this chapter.

8. Given a context-free grammar, a parser (or recognizer) for the correspond-
ing language may be written by providing a set of procedures; one pro-
cedure for each non-terminal in the grammar. Such a set of procedures
constitutes a recursive descent parser. The grammar for the simple imper-
ative programming language is not suitable for a recursive descent parser.
Why? Construct a calculator (using recursive descent) using the following
grammar for expressions.

exp ::= term exp′

exp′ ::= + term exp′ | - term exp′ | ε
term ::= factor term′

term′ ::= * factor term′ | / factor term′ | ε
factor ::= primary factor′

factor′ ::= ^ primary factor′ | ε
primary ::= INT | IDENT | (exp)

9. BNF

10. Yacc: parser

11. Context sensitivity

12. Attribute grammar: calculator

13. Construct and interpreter for BASIC.

26 CHAPTER 2. SYNTAX

Chapter 3

Semantics

The semantics of a programming language describe the relationship between the
syntactical elements and the model of computation.

Keywords and phrases: Algebraic semantics, axiomatic semantics, denotational
semantics, operational semantics, semantic algebra, semantic axiom, semantic
domain, semantic equation, semantic function, loop variant, loop invariant, val-
uation function, sort, signature, many-sorted algebra

Semantics is concerned with the interpretation or understanding of programs
and how to predict the outcome of program execution. The semantics of a pro-
gramming language describe the relation between the syntax and the model of
computation. Semantics can be thought of as a function which maps syntactical
constructs to the computational model.

semantics : syntax→ computational model

This approach is called syntax-directed semantics.

There are four widely used techniques (algebraic, axiomatic, denotational, and
operational) for the description of the semantics of programming languages.
Algebraic semantics describe the meaning of a program by defining an algebra
which defines algebraic relationships that exist among the language’s syntac-
tic elements. The relationships are described by axioms. Axiomatic semantics
method does not give the meaning of the program explicitly. Instead, proper-

27

28 CHAPTER 3. SEMANTICS

ties about language constructs are defined. The properties are expressed with
axioms and inference rules. A property about a program is deduced by using
the axioms and inference rules. Each program has a pre-condition which de-
scribes the initial conditions required by the program prior to execution and a
post-condition which describes, upon termination of the program, the desired
program property. Denotational semantics tell what is computed by giving a
mathematical object (typically a function) which is the meaning of the program.
Operational semantics tell how a computation is performed by defining how to
simulate the execution of the program. Operational semantics may describe
the syntactic transformations which mimic the execution of the program on an
abstract machine or define a translation of the program into recursive functions.

Much of the work in the semantics of programming languages is motivated by
the problems encountered in trying to construct and understand imperative
programs—programs with assignment commands. Since the assignment com-
mand reassigns values to variables, the assignment can have unexpected effects
in distant portions of the program.

3.1 Algebraic Semantics

An algebraic definition of a language is a definition of an algebra. An algebra
consists of a domain of values and a set of operations (functions) defined on the
domain.

Algebra = < set of values; operations >

Figure 3.1 is an example of an algebraic definition. It is an algebraic definition
of a fragment of Peano arithmetic. The semantic equations define equivalences
between syntactic elements. The equations specify the transformations that are
used to translate from one syntactic form to another.

The domain is often called a sort and the domain and the semantic function
sections constitute the signature of the algebra. Functions with zero, one, and
two operands are referred to as nullary, unary, and binary operations. Often
abstract data types require values from several different sorts. Such a type is
modeled using a many-sorted algebra. The signature of such an algebra is a
set of sorts and a set of functions taking arguments and returning values of
different sorts. For example, a stack may be modeled as a many-sorted algebra
with three sorts and four operations. An algebraic definition of a stack is found
in figure 3.2.

The stack example is more abstract than the previous one because the results
of the operations are not described. This is necessary because the syntactic
structure of the natural numbers and lists are not specified. To be more specific

3.2. AXIOMATIC SEMANTICS 29

Domain:

N ∈ Nat (the natural numbers
N ::= 0 | S(N)

Semantic functions:

+ : Nat→ Nat→ Nat
× : Nat→ Nat→ Nat

Semantic equations:

(n + 0) = n
(m + S(n)) = S(m + n)
(n× 0) = 0
(m× S(n)) = ((m× n) + m)

where m,n ∈ Nat

Figure 3.1: Peano Arithmetic

would require decisions to be made concerning the implementation of the stack
data structure. Decisions which would tend to obscure the algebraic proper-
ties of stacks. Thus, the operations are defined using semantic axioms instead
of semantic equations. The axioms describe the properties of the operations.
The axioms impose constraints on the stack operations that are sound in the
sense that they are consistent with the actual behavior of stacks reguardless of
the implementation. Finding axioms that are complete in the sense that they
completely specify stack behavior is more difficult.

The goal of algebraic semantics is to capture the semantics of behavior by a
set of axioms with purely syntactic properties. Algebraic definitions (semantic
algebras) are the favored method for defining the properties of abstract data
types.

3.2 Axiomatic Semantics

The axiomatic semantics of a programming language define properties about
language constructs. The axiomatic semantics of a programming language define
a mathematical theory of programs written in the language.

30 CHAPTER 3. SEMANTICS

Domains:

Nat (the natural numbers
Stack (of natural numbers)
Bool = {true, false} (boolean values)

Semantic functions:

create : ()→ Stack
push : Nat→ Stack→ Stack
pop : Stack→ Stack
top : Stack→ Nat
empty : Stack→ Bool

Semantic axioms:

pop(push(N,S)) = S
top(push(N,S)) = N
empty(push(N,S)) = false
empty(create()) = true

where N ∈ Nat and S ∈ Stack.

Figure 3.2: A Stack

3.2. AXIOMATIC SEMANTICS 31

A mathematical theory has three components.

• Syntactic rules: These determine the structure of formulas which are
the statements of interest.

• Axioms: These are basic theorems which are accepted without proof.

• Inference rules: These are the mechanisms for deducing new theorems
from axioms and previously proved theorems.

Formulas are triples of the form:

{P} c {Q}

where c is a command in the programming language, P and Q are assertions or
statements concerning the properties of program objects, which may be true or
false. P is called a pre-condition and Q is called a post-condition. The pre- and
post-conditions are formulas in some arbitrary logic and are used to summarize
the progress of the computation.

The meaning of
{P} c {Q}

is that if c is executed in a state in which assertion P is satisfied
and c terminates, then it terminates in a state in which assertion Q
is satisfied.

Figure 3.3 is an example of the use of axiomatic semantics in the verification of
programs. The program sums the values stored in an array and the program is
decorated with the assertions which help to verify the correctness of the code.
Lines 1 and 11 are the pre- and post-conditions respectively for the program.
The pre-condition asserts that the number of elements in the array is greater
than zero and that the sum of the first zero elements of an array is zero. The
post-condition asserts that S is sum of the values stored in the array. After the
first assignment we know that the partial sum is the sum of the first I elements
of the array and that I is less than or equal to the number of elements in the
array.

The only way into the body of the while command is if the number of elements
summed is less than the number of elements in the array. When this is the case,
The sum of the first I+1 elements of the array is equal to the sum of the first
I elements plus the I+1st element and I+1 is less than or equal to n. After the
assignment in the body of the loop, the loop entry assertion holds once more.
Upon termination of the loop, the loop index is equal to n.

To show that the program is correct, we must show that the assertions satisfy
some verification scheme. To verify the assignment commands on lines 2 and 7

32 CHAPTER 3. SEMANTICS

1. { 0 =
∑0

i=1A[i], 0 < n = |A| }
2. S,I := 0,0

3. { S =
∑I

i=1A[i], I ≤ n }
4. while I < n do

5. { S =
∑I

i=1A[i], I < n }
6. { S+A[I+1] =

∑I+1
i=1 A[i], I+1 ≤ n }

7. S,I := S+A[I+1],I+1

8. { S =
∑I

i=1A[i], I ≤ n }
9. end

10. { S =
∑I

i=1A[i], I ≤ n, I ≥ n }
11. { S =

∑n
i=1A[i] }

Figure 3.3: Verification of summation

we must use the following

Assignment Axiom:
{P [x : E]} x := E {P}

This axiom is read as follows:

If after the execution of the assignment command the environment
satisfies the condition P , then the environment prior to the execution
of the assignment command also satisfied the condition P but with
E substituted for x (In this and the following axioms we assume that
the evaluation of expressions does not produce side effects.).

Looking at lines 1, 2 and 3 and also at lines 6, 7 and 8, we can see that this
axiom is satisfied in both cases.

To verify the while command of lines 3 through 10, we must use the following

Loop Axiom:
{I ∧B ∧ V > 0} C {I ∧ V > V ′ ≥ 0}
{I} while B do C end {I ∧ ¬B}

The assertion above the bar is the condition that must be met before the axiom
(below the bar) can hold. In this rule, I is called the loop invariant. This axiom
is read as follows:

To verify a loop, there must be a loop invariant I which is part of
both the pre- and post-conditions of the body of the loop and the

3.2. AXIOMATIC SEMANTICS 33

conditional expression of the loop must be true to execute the body
of the loop and false upon exit from the loop.

The invariant for the loop is: S =
∑I

i=1A[i], I ≤ n. Lines 3, 5 and 8 satisfy
the condition for the application of the axiom. While lines 3 and 10 satisfy the
axiom.

To prove termination requires the existence of a loop variant. The loop variant
is an expression whose value is a natural number and whose value is decreased
on each iteration of the loop. The loop variant provides an upper bound on the
number of iterations of the loop.

A variant for a loop is a natural number valued expression V whose
run-time values satisfy the following two conditions:

• The value of V greater than zero prior to each execution of the
body of the loop.

• The execution of the body of the loop decreases the value of V
by at least one.

The loop variant for this example is the expression n - I. That it is non-negative
is guaranteed by the loop continuation condition and its value is decreased by
one in the assignment command found on line 7.

More general loop variants may be used; loop variants may be expressions in
any well-founded set (every decreasing sequence is finite). However, there is no
loss in generality in requiring the variant expression to be an integer. Recursion
is handled much like loops in that there must be an invariant and a variant.

The correctness requirement for loops is stated in the following:

Loop Correctness Principle: Each loop must have both an in-
variant and a variant.

Lines 6 and 7 and lines 10 and 11 are justified by the following

Rule of Consequence:

P → Q, {Q} C {R}, R→ S

{P} C {S}

The justification for the composition the assignment command in line 2 and the
while command in line 4 requires the following axiom.

34 CHAPTER 3. SEMANTICS

Sequential Composition Axiom:

{P} C0 {Q}, {Q} C1 {R}
{P} C0;C1 {R}

This axiom is read as follows:

The sequential composition of two commands is permitted when
the post-condition of the first command is the pre-condition of the
second command.

The following rules are required to provide a logically complete deductive sys-
tem.

Selection Axiom:

{P ∧B} C0 {Q}, {P ∧ ¬B} C1 {Q}
{P} if B then C0 else C1 fi {Q}

Conjunction Axiom:

{P} C {Q}, {P ′} C {Q′}
{P ∧ P ′} C {Q ∧Q′}

Disjunction Axiom:

{P} C {Q}, {P ′} C {Q′}
{P ∨ P ′} C {Q ∨Q′}

The axiomatic method is the most abstract of the semantic methods and yet,
from the programmer’s point of view, the most practical method. It is most
abstract in that it does not try to determine the meaning of a program, but
only what may be proved about the program. This makes it the most practical
since the programmer is concerned with things like, whether the program will
terminate and what kind of values will be computed.

Axiomatics semantics are the favored method by software engineers for program
verification and program derivation.

Assertions for program construction

The axiomatic techniques may be applied to the construction of software. Rather
than proving the correctness of an existing program, the proof is integrated with
the program construction process to insure correctness from the start. As the

3.2. AXIOMATIC SEMANTICS 35

1. S,I := 0,0
2. loop: if I < n then S,I := S+A[I+1],I+1; loop
3. else skip

Figure 3.4: Recursive version of summation

program and proof are developed together, the assertions themselves may pro-
vide suggestions which facilitate program construction.

Loops and recursion are two constructs that require invention on the part of
the programmer. The loop correctness principle requires the programmer to
come up with both a variant and an invariant. Recursion is a generalization
of loops so proofs of correctness for recursive programs also requires a loop
variant and a loop invariant. In the summation example, a loop variant is
readily appearent from an examination of the post-condition. Simply replace
the summation upper limit, which is a constant, with a variable. Initializing
the sum and index to zero establishes the invariant. Once the invariant is
established, either the index is equal to the upper limit in which case there
sum has been computed or the next value must be added to the sum and the
index incremented reestablishing the loop invariant. The position of the loop
invariants define a loop body and the second occurrence suggests a recursive
call. A recursive version of the summation program is given in figure 3.4.
The advantage of using recursion is that the loop variant and invariant may be
developed separately. First develop the invariant then the variant.

The summation program is developed from the post-condition by replacing a
constant by a variable. The initialization assigns some trivial value to the vari-
able to establish the invariant and each iteration of the loop moves the variable’s
value closer to the constant.

A program to perform integer division by repeated subtraction can be developed
from the post-condition { 0 ≤ r < d, (a = q × d + r) } by deleting a conjunct.
In this case the invariant is { 0 ≤ r, (a = q × d + r) } and is established by
setting the the quotient to zero and the remainder to a.

Another technique is called for in the construction of programs with multiple
loops. For example, the post condition of a sorting program might be specified
as:

{∀i.(0 < i < n→ A[i] ≤ A[i + 1]), s = perm(A)}

or the post condition of an array search routine might be specifies as:

{if∃i.(0 < i ≤ n and t = A[i] then location = i else location = 0}

To develop an invariant in these cases requires that the assertion be strengthened

36 CHAPTER 3. SEMANTICS

Abstract Syntax:

N ∈ Nat (the Natural Numbers)
N ::= 0 | S(N) | (N + N) | (N × N)

Semantic Algebra:

N = Nat (the natural numbers (0, 1, ...)
+ ∈ N→ N→ N

Valuation Function:

D ∈ Nat→ Nat

D[[(n + 0)]] = D[[n]]
D[[(m + S(n))]] = D[[(m + n)]]+ 1
D[[(n× 0)]] = 0
D[[(m× S(n))]] = D[[((m× n) + m)]]

where m,n ∈ Nat

Figure 3.5: Peano Arithmetic

by adding additional constraints. The additional constraints make assertions
about different parts of the array.

3.3 Denotational Semantics

A denotational definition of a language consists of three parts: the abstract
syntax of the language, a semantic algebra defining a computational model,
and valuation functions. The valuation functions map the syntactic constructs
of the language to the semantic algebra. Recursion and iteration are defined
using the notion of a limit. the programming language constructs are in the
syntactic domain while the mathematical entity is in the semantic domain and
the mapping between the various domains is provided by valuation functions.

Denotational semantics relies on defining an object in terms of its constituent
parts.

Figure 3.5 is an example of a denotational definition. It is is a denotational def-
inition of a fragment of Peano arithmetic. Notice the subtle distinction between

3.4. OPERATIONAL SEMANTICS 37

the syntactic and semantic domains. The syntactic expressions are mapped into
an algebra of the natural numbers by the valuation function. The denotational
definition almost seem to be unnecessary. Since the syntax so closely resem-
bles that of the semantic algebra. Programming languages are not as close to
their computational model. Figure 3.6 is denotational definition of the small
imperative programming language Simp encountered in the previous chapter.

Denotational definitions are favored for theoretical and comparative program-
ming language studies. Denotational definitions have been used for the auto-
matic construction of compilers for the programming language. Denotations
other than mathematical objects are possible. For example, a compiler writer
would prefer that the object denoted would be appropriate object code. Sys-
tems have been developed for the automatic construction of compilers from the
denotation specification of a programming language.

3.4 Operational Semantics

An operational definition of a language consists of two parts: an abstract syn-
tax and an interpreter. An interpreter defines how to perform a computation.
When the interpreter evaluates a program, it generates a sequence of machine
configurations that define the program’s operational semantics. The interpreter
is an evaluation relation that is defined by rewriting rules. The interpreter may
be an abstract machine or recursive functions.

Figure 3.7 an example of an operational definition. It is is an operational
definition of a fragment of Peano arithmetic.

The interpreter is used to rewrite natural number expressions to a standard
form (a form involving only S and 0) and the rewriting rules show how move
the + and × operators inward toward the base cases. Operational definitions
are favored by language implementors for the construction of compilers and by
language tutorials because operational definitions describe how the actions take
place.

The operational semantics of Simp is found in figure 3.8. The operational
semantics are defined by using two semantic functions, I which interprets com-
mands and ν which evaluates expressions. The interpreter is more complex since
there is an environment associated with the program with does not appear as
a syntactic element and the environment is the result of the computation. The
environment (variously called the store or referencing environment) is an associ-
ation between variables and the values to which they are assigned. Initially the
environment is empty since no variable has been assigned to a value. During
program execution each assignment updates the environment. The interpreter
has an auxiliary function which is used to evaluate expressions. The while com-

38 CHAPTER 3. SEMANTICS

Abstract Syntax:

C ∈ Command
E ∈ Expression
O ∈ Operator
N ∈ Numeral
V ∈ Variable

C ::= V := E | if E then C1 else C2 end | while E do C3 end | C1; C2 | skip
E ::= V | N | E1 O E2 | (E)
O ::= +| − | ∗ | /| = | < | > | <>

Semantic Algebra:
Domains:

τ ∈ T = {true, false} boolean values
ζ ∈ Z = {...-1,0,1,...} integers
σ ∈ S = Variable → Numeral state

Valuation Functions:

C ∈ C→ (S→ S)
E ∈ E→ E→ (N ∪T)

C[[skip]]σ = σ
C[[V := E]]σ = σ[V : E [[E]]σ]
C[[C1;C2]]σ = C[[C2]]C[[C1]]σ

C[[if E then C1 else C2 end]]σ =
{
C[[C1]]σ if E [[E]]σ = true
C[[C2]]σ if E [[E]]σ = false

C[[while E do C end]]σ= limn→∞ C[[(if E then C else skip end)n]]σ
E [[V]]σ = σ(V)
E [[N]] = N
E [[E1 + E2]] = E [[E]]σ + E [[E]]σ
...
E [[E1 = E2]]σ = E [[E]]σ = E [[E]]σ
...

Figure 3.6: Denotational semantics for Simp

3.5. FURTHER READING 39

Abstract Syntax:

N ∈ Nat (the natural numbers)

N ::= 0 | S(N) | (N + N) | (N × N)

Interpreter:

I : N→ N

I[[(n + 0)]] ⇒ n
I[[(m + S(n))]] ⇒ S(I[[(m + n)]])
I[[(n× 0)]] ⇒ 0
I[[(m× S(n))]] ⇒ I[[((m× n) + m)]]

where m,n ∈ Nat

Figure 3.7: Operational semantics for Peano arithmetic

mand is given a recursive definition but may be defined using the interpreter
instead.

Operational semantics are particularly useful in constructing an implementation
of a programming language.

3.5 Further Reading

Algebraic semantics

Gries [10] and Hehner [11] are excellent introductions to axiomatic semantics as
applied to program construction. For a description of denotational semantics
see Schmidt [26] or Scott [28]

Operational semantics??

40 CHAPTER 3. SEMANTICS

Interpreter:

I : C× Σ→ Σ
ν ∈ E ×Σ→ T ∪ Z

Semantic Equations:

I(skip,σ) = σ
I(V := E,σ) = σ[V:ν(E,σ)]
I(C1 ;C2,σ) = E(C2,E(C1,σ))

I(if E then C1 else C2 end,σ) =
{
I(C1,σ) if ν(E,σ) = true
I(C2,σ) if ν(E,σ) = false

while E do C end = if E then C;while E do C end else skip
ν(V,σ) = σ(V)
ν(N,σ) = N
ν(E1+E2,σ) = ν(E1,σ) + ν(E2,σ)
...

ν(E1=E2,σ) =

 true if ν(E,σ) = ν(E,σ)
false if ν(E,σ) 6= ν(E,σ)
otherwise

...

Figure 3.8: Operational semantics for Simp

Chapter 4

Abstraction and
Generalization I

Abstraction is an emphasis on the idea, qualities and properties rather than the
particulars (a suppression of detail).

Generalization is a broadening of application to encompass a larger domain of
objects of the same or different type.

A parameter is a quantity whose value varies with the circumstances of its
application.

Substitution—To put something in the place of another.

Keywords and phrases: Name, binding, abstract, definition, declaration, vari-
ables, parameters, arguments, formals, actuals.

The ability to abstract and to generalize is an essential part of any intellec-
tual activity. Abstraction and generalization are the basis for mathematics and
philosophy and are essential in computer science as well.

The importance of abstraction is derived from its ability to hide irrelevant de-
tails and from the use of names to reference objects. Programming languages
provide abstraction through procedures, functions, and modules which permit

41

42 CHAPTER 4. ABSTRACTION AND GENERALIZATION I

Abstraction name : abstract
Invocation name

Substitution E[x : a]

Generalization λx.E
Specialization (λx.E a) = E[x : a]

Abstraction and generalization name(x) : E
Invocation and specialization name(a)

Figure 4.1: Abstraction and Generalization

the programmer to distinguish between what a program does and how it is im-
plemented. The primary concern of the user of a program is with what it does.
This is in contrast with the writer of the program whose primary concern is
with how it is implemented. Abstraction is essential in the construction of pro-
grams. It places the emphasis on what an object is or does rather than how
it is represented or how it works. Thus, it is the primary means of managing
complexity in large programs.

Of no less importance is generalization. While abstraction reduces complex-
ity by hiding irrelevant detail, generalization reduces complexity by replacing
multiple entities which perform similar functions with a single construct. Pro-
gramming languages provide generalization through variables, parameterization,
generics and polymorphism. Generalization is essential in the construction of
programs. It places the emphasis on the similarities between objects. Thus, it
helps to manage complexity by collecting individuals into groups and providing
a representative which can be used to specify any individual of the group.

Abstraction and generalization are often used together. Abstracts are general-
ized through parameterization to provide greater utility. In parameterization,
one or more parts of an entity are replaced with a name which is new to the
entity. The name is used as a parameter. When the parameterized abstract is
invoked, it is invoked with a binding of the parameter to an argument. Figure 4.1
summarizes the notation which will be used for abstraction and generalization.

When an abstraction is fully parameterized (all free variables bound to param-
eters) the abstraction may be understood without looking beyond the abstrac-
tion.

Abstraction and generalization depend on the principle of referential trans-
parency.

4.1. ABSTRACTION 43

Principle of Referential Transparency: The meaning of an entity is un-
changed when a part of the entity is replaced with an equal part.

4.1 Abstraction

Principle of Abstraction: An abstract is a named entity which may be in-
voked by mentioning the name.

Giving an object a name gives permission to substitute the name for the thing
named (or vice versa) without changing the meaning. We use the notation

name : abstract

to denote the binding of a name to an abstract.

Abstraction permits the recognition and elimination of common subexpressions
as in the following example:

(x+y-z)*(x+y-z) =⇒ a*a where a = x+y-z

This example motivates the use of functions and procedures in programming
languages.

In addition to naming and substitution there is a third aspect to abstraction.
It is that the abstract is encapsulated, that is, the details of the abstract are
hidden so that the name is sufficient to represent the entity. This aspect of
abstraction is considered in more detail in a later chapter.

An object is said to be fully abstract if it can be understood without reference
to any thing external to the object.

Terminology: The naming aspect of abstraction is captured in the concepts
of binding, definition and declaration while the hiding of irrelevant details is
captured by the concept of encapsulation. 2

Binding

The concept of binding is common to all programming languages. A binding is
an association of two entities. The objects which may be bound to identifiers
are called the bindables of the language. The bindables may include: primitive
values, compound values, references to variables, types, and executable abstrac-
tions. While binding occurs in definitions and declarations, it also occurs at the
virtual and hardware machine levels.

44 CHAPTER 4. ABSTRACTION AND GENERALIZATION I

The imperative programming paradigm is characterized by permitting names
to be bound successively to different objects, this is accomplished by the as-
signment statement (often of the form; name := object) which means “let name
stand for object until further notice.” In other words, until it is reassigned.
This is in contrast with functional and logic programming paradigms in which
names may not be reassigned. Thus languages in these paradigms are often
called single assignment languages.

Terminology: We could equally well say identifier instead of name as in some
other texts. Among the various terms for abstracts found in other texts are mod-
ule, package, library, unit, subprogram, subroutine, routine, function, procedure,
abstract type, object. 2

4.2 Generalization

Principle of Generalization: A generic is an entity which may be elaborated
upon invocation.

Generalization permits the use of a single pattern to represent each member of
a group. We use the notation:

λx.B′

to denote the generalization of the object B where x is called a parameter and
B′ is the object B with x replacing any number of occurences of some part of B
by x. The parameter x is said to be bound in the expression but free in B′ and
the scope of x is said to be B′.

The symbol λ (lambda) is a quantifier. Quantifiers introduce variables into
objects.

Aside: The symbol λ was introduced by Church for variable introduction in
the lambda calculus. It roughly corrresponds to the symbol ∀, the universal
quantifier, of first-order logic. The appendix contains a brief introduction to
first-order logic. 2

Generalization is often combined with abstraction and takes the following form:

p(x) : B

where p is the name, x is the parameter, and B is the abstract. The invocation
of the abstract takes the form:

(p a) or p(a)

where p is the name and a is called the argument whose value (called the ar-
gument) is substituted for the parameter. Upon invocation of the abstract, the
argument is bound to the parameter.

4.2. GENERALIZATION 45

Most programming languages permit an implicit form of generalization in which
variables may be introduced without providing for an invocation procedure
which replaces the parameter with an argument. For example, consider the
following psudocode for a program which computes the circumference of a cir-
cle:

pi : 3.14

c : 2*pi*r

begin
r := 5
write c
r := 20
write c

end

The value of r depends on the context in which the function is defined. The
variable r is a global name and is said to be free. In the first write command,
the circumference is computed for a circle of radius 5 while in the second write
command the circumference is computed for a circle of radius 20. The write
commands cannot be understood with reference to both the definition of c and
to the environment (pi is viewed as a constant). Therefore, this program is not
“fully abstract”. In contrast, the following program is fully abstract:

pi : 3.14

c(r) : 2*pi*r

begin
FirstRadius := 5
write c(FirstRadius)
SecondRadius := 20
write c(SecondRadius)

end

The principle of generalization depends on the analogy principle.

Analogy Principle: When there is a conformation in pattern between two
different objects, the objects may be replaced with a single object param-
eterized to permit the reconstruction of the original objects.

It is the analogy principle which permits the introduction of a variable to rep-
resent an arbitrary element of a class.

46 CHAPTER 4. ABSTRACTION AND GENERALIZATION I

The Principle of Generalization makes no restrctions on parameters or the parts
of an entity that may be parameterized. Neither should programming lanauges.
This is emphasized in the following principle:

Principle of Parameterization: A parameter of a generic may be from any
domain.

Terminology: The terms formal parameters (formals) and actual parameters
(actuals) are sometimes used instead of the terms parameters and arguments
respectively. 2

4.3 Substitution

The utility of both abstraction and generalization depend on substitution. The
tie between the two is captured in the following principle:

Principle of Correspondence: Parameter binding mechanisms and defini-
tion mechanisms are equivalent.

The Principle of Correspondence is a formalization of that aspect of the Prin-
ciple of Abstraction that implies that definition and substitution are intimately
related.

We use the notation
E[x : a]

to denote the substitution of a for x in E. The notation is read as “E[x : a] is
the expression obtained from E by replacing all occurrences of x with a.”

Terminology: The notation for substitution was chosen to emphasize the re-
lationship between abstraction and substitution. Other texts use the notation
E[a/x] for substitution. That notation is motivated by the cancelation that
occurs when a number is multiplied by its inverse (x(a/x) = a). 2

4.4 Abstraction and Generalization

Together, abstraction and generalization provide a powerful mechanism for pro-
gram development. Generalization provides a mechanism for the construction
of common subexpressions and abstraction a mechanism for the factoring out
of the common subexpressions. In the following example, the factors are first
generalized to contain common subexpressions and then abstracted out.

4.5. EXERCISES 47

(a+b-c)*(x+y-z) =⇒ (λ i j k. i+j-k) a b c * (λ i j k. i+j-k) x y z
=⇒ f a b c * f x y z where f i j k = i+j-k

4.5 Exercises

1. Extend the compiler to handle constant, type, variable, function and pro-
cedure definitions and references to the same.

2. What is the effect of providing lazy evaluation in an imperative program-
ming language?

3. Extend the compiler to handle parameterization of functions and proce-
dures.

4. For a specific programming language, report on its provision for abstrac-
tion and generalization. Specifically, what entities may be named, what
entities may be parameterized, what entities may be passed as parame-
ters, and what entities may be returned as results (of functions). What
irregularities do you find in the language?

48 CHAPTER 4. ABSTRACTION AND GENERALIZATION I

Chapter 5

Domains and Types

A value is any thing that may be evaluated, stored, incorporated in a data struc-
ture, passed as an argument or returned as a result.

What is a type?

Realist: A type is a set of values.

Idealist: No. A type is a conceptual entity whose values are accessible only
through the interpretive filter of type.

Beginning Programmer: Isn’t a type a name for a set of values?

Intermediate Programmer: No. A type is a way to classify values by their
properties and behavior.

Advanced Programmer: No. A type is a set of values and operations.

Algebraist: Ah! So a type is an algebra, a set of values and operations defined
on the values.

Type checker: Types are more practical than that, they are constraints on
expressions to ensure compatibility between operators and their operand(s).

Type Inference System: Yes and more, since a type system is a set of rules
for associating with every expression a unique and most general type that
reflects the set of all meaningful contexts in which the expression may
occur.

Program verifier: Lets keep it simple, types are the behavioral invariants that
instances of the type must satisfy.

49

50 CHAPTER 5. DOMAINS AND TYPES

Software engineer: What is important to me is that types are a tool for man-
aging software development and evolution.

Compiler: All this talk confuses me, types specify the storage requirements for
variables of the type.

51

Keywords and phrases: value, domain, type, type constructor, Cartesian prod-
uct, disjoint union, map, power set, recursive type, binding, strong and weak
typing, static and dynamic type checking, type inference, type equivalence, name
and structural equivalence, abstract types, generic types.

A computation is a sequence of operations applied to a value to yield a value.
Thus values and operations are fundamental to computation. Values are the
subject of this chapter and operations are the subject of later chapters.

In mathematical terminology, the sets from which the arguments and results of
a function are taken are known as the function’s “domain” and “codomain”,
respectively. Consequently, the term domain will denote any set of values that
can be passed as arguments or returned as results. Associated with every domain
are certain “essential” operations. For example, the domain of natural numbers
is equipped with an the “constant” operation which produces the number zero
and the operation that constructs the successor of any number. Additional
operations (such as addition and multiplication) on the natural numbers may
be defined using these basic operations.

Programming languages utilize a rich set of domains. Truth values, charac-
ters, integers, reals, records, arrays, sets, files, pointers, procedure and function
abstractions, environments, commands, and definitions are but some of the do-
mains that are found in programming languages. There are two approaches
to domains. One approach is to assume the existence of a universal domain.
It contains all those objects which are of computational interest. The second
approach is to begin with a small set of values and some rules for combining the
values and then to construct the universe of values. Programming languages
follow the second approach by providing several basic sets of values and a set of
domain constructors from which additional domains may be constructed.

Domains are categorized as primitive or compound. A primitive domain is a set
that is fundamental to the application being studied. Its elements are atomic.
A compound domain is a set whose values are constructed from existing domains
by one or more domain constructors.

Aside: It is common in mathematics to define a set but fail to give an effective
method for determining membership in the set. Computer science on the other
hand is concerned with determining membership with in a finite number of
steps. In addition, a program is often constrained by requirements to complete
its work with in bounds of time and space. 2

Terminology: Domain theory is the study of structured sets and their
operations. A domain is a set of elements and an accompanying set of
operations defined on the domain.

52 CHAPTER 5. DOMAINS AND TYPES

The terms domain, type, and data type may be used interchangeably.

The term data refers to either an element of a domain or a collection of
elements from one or more domains.

The terms compound, composite and structured when applied to values, data,
domains, types are used interchangeably. 2

5.1 Primitive Domains

Among the primitive types provided by programming languages are

Truth-value = { false, true}
Integer = {..., -2, -1, 0, +1, +2, ...}
Real = {..., -1.0, ..., 0.0, ..., +1.0, ...}
Character = {..., a, b, ..., z, ...}

The values are represented as a particular pattern of bits in the storage of the
computer.

Aside: Programming language definitions do not place restrictions on the
primitive types. However hardware limitations and variation have considerable
influence on actual programs so that, Integer is an implementation defined range
of whole numbers, Real is an implementation defined subset of the rational
numbers and Character is an implementation defined set of characters. 2

Several languages permit the user to define additional primitive types. These
primitive types are called enumeration types.

5.2 Compound Domains

There are many compound domains that are useful in computer science: arrays,
tuples, records, variants, unions, sets, lists, trees, files, relations, definitions,
mappings, etc, are all examples of compound domains. Each of these domains
may be constructed from simpler domains by one or more applications of domain
constructors.

Compound domains are constructed by a domain builder. A domain builder
consists of a set of operations for assembling and disassembling elements of a
compound domain. The domain builders are:

• Product Domains

5.2. COMPOUND DOMAINS 53

Assembly operation: (a0,...,an) ∈ D0 × ...×Dn where ai ∈ Di and
D0 × ...×Dn = {(a0, ..., an) | ai ∈ Di}

Disassembly operation: (a0,...,an)↓i = ai for 0 ≤ i ≤ n

Figure 5.1: Product Domain: D0 × ...×Dn

• Sum Domains

• Function Domains

• Power Domains

• Recursive Domains

Product Domain

The domains constructed by the product domain builder are called tuples in
ML, records in Cobol, Pascal and Ada, and structures in C and C++. Product
domains form the basis for relational databases and logic programming.

In the binary case, the product domain builder × builds the domain A×B from
domains A and B. The domain builder includes the assembly operation, ordered
pair builder, and a set of disassembly operations called projection functions. The
assembly operation, ordered pair builder, is defined as follows:

if a is an element of A and b is an element of B then (a, b) is an
element of A×B. That is,

A×B = { (a, b) | a ∈ A, b ∈ B }

The disassembly operations fst and snd are projection functions which extract
elements from tuples. For example, fst extracts the first component and snd
extracts the second element.

fst(a, b) = a
snd(a, b) = b

The product domain is easily generalized (see Figure 5.1 to permit the product
of an arbitrary number of domains.

Both relational data bases and logic programming paradigm (Prolog) are based
on programming with tuples.

54 CHAPTER 5. DOMAINS AND TYPES

Elements of product domains are usually implemented as a contiguous block of
storage in which the components are stored in sequence. Component selection
is determined by an offset from the address of the first storage unit of the
storage block. An alternate implementation (possibly required in functional
or logic programming languages) is to implement the value as a list of values.
Component selection utilizes the available list operations.

Terminology: The product domain is also called the “Cartesian” or “cross”
product. 2

Sum Domain

Domains constructed by the sum domain builder are called variant records in
Pascal and Ada, unions in Algol-68, constructions in ML and algebraic types in
Miranda.

In the binary case, the sum domain builder + builds the domain A + B from
domains A and B. The domain builder includes a pair of assembly operations
and the disassembly operation. The two assembly operations of the sum builder
are defined as follows:

if a is an element of A and b is an element of B then (A,a) and (B,
b) are elements of A + B. That is,

A + B = {(A, a) | a ∈ A} ∪ {(B, b) | b ∈ B }

where the A and B are called tags and are used to distinguish between
the elements contributed by A and the elements contributed by B.

The disassembly operation returns the element iff the tag matches the request.

A(A, a) = a

The sum domain differs from ordinary set union in that the elements of the
union are labeled with the parent set. Thus even when two sets contain the
same element, the sum domain builder tags them differently.

The sum domain generalizes (see Figure 5.2) to sums of an arbitrary number
of domains.

Terminology: The sum domain is also called the disjoint union or co-product
domains. 2

5.2. COMPOUND DOMAINS 55

Assembly operations: (Di, di) ∈ D0 + ...+Dn and
D0 + ...+Dn = ∪n

i=0{(Di, d) | d ∈ Di}

Disassembly operations: Di(Di, di) = di

Figure 5.2: Sum Domain: D0 + ...+Dn

Assembly operation: (λx.E) ∈ A → B
where for all a ∈ A, E[x : a] is a unique value in B.

Disassembly operation: (g a) ∈ B, for g ∈ A → B and a ∈ A.

Figure 5.3: Function Domain: A → B

Function Domain

The domains constructed by the function domain builder are called functions in
Haskell, procedures in Modula-3, and procs in SR. Although their syntax differs
from functions, arrays are also examples of domains constructed by the function
domain builder.

The function domain builder creates the domain A → B from the domains A
and B. The domain A→ B consists of all the functions from A to B. A is called
the domain and B is called the co-domain.

The assembly operation is:

if e is an expression containing occurrences of an identifier x, such
that whenever a value a ∈ A replaces the occurrences of x in e, the
value e[a : x] ∈ B results, then (λx.e) is an element in A→ B.

The disassembly operation is function application. It takes two arguments, an
element f of A→ B and an element a of A and produces f(a) an element of B.
In the case of arrays, the disassembly operation is called subscripting.

The function domain is summarized in Figure 5.3.

Mappings (or functions) from one set to another are an extremely important
compositional method. The map m from a element x of S (called the domain)

56 CHAPTER 5. DOMAINS AND TYPES

to the corresponding element m(x) of T (called the range) is written as:

m : S → T

where if m(x) = a and m(y) = a then x = y. Mappings are more restricted
than the Cartesian product since, for each element of the domain there is a
unique range element. Often it is either difficult to specify the domain of a
function or an implementation does not support the full domain or range of
a function. In such cases the function is said to be a partial function. It is
for efficiency purposes that partial functions are permitted and it becomes the
programmer’s responsibility to inform the users of the program of the nature of
the unreliability.

Arrays are mappings from an index set to an array element type. An array is a
finite mapping. Apart from arrays, mappings occur as operations and function
abstractions. Array values are implemented by allocating a contiguous block
of storage where the size of the block is based on the product of the size of an
element of the array and the number of elements in the array.

The operations provided for the primitive types are maps. For example, the
addition operation is a mapping from the Cartesian product of numbers to
numbers.

+ : number × number → number

The functional programming paradigm is based on programming with maps.

Terminology: The function domain is also called the function space. 2

Power Domain

Set theory provides an elegant notation for the description of computation.
However, it is difficult to provide efficient implementation of the the set opera-
tions. SetL is a programming language based on sets and was used to provide
an early compiler for Ada. The Pascal family of languages provide for set union
and intersection and set membership. Set variables represent subsets of useroperations??
defined sets.

The set of all subsets of a set is the power set and is defined:

PS = { s | s ⊆ S }

Subtypes and subranges are examples of the power set constructor.

Functions are subsets of product domains. For example, the square function
can be represented as a subset of the product domain Nat×Nat.

sqr = {(0, 0), (1, 1), (2, 4), (3, 9), ...}

5.2. COMPOUND DOMAINS 57

Assembly operations: ∅ ∈ PD, {a} ∈ PD for a in D, and
Si ∪ Sj ∈ PD for Si, Sj ∈ PD

Figure 5.4: Power Domain: PD

Generalization helps to simplify this infinite list to:

sqr = {(x, x ∗ x) | x ∈ Nat}

The programming language SetL is based on computing with sets.

Set values may be implemented by using the underlying hardware for bit-strings.
This makes set operations efficient but constrains the size of sets to the num-
ber of bits(typically) in a word of storage. Alternatively, set values may be
implemented using software, in which case, hash-coding or lists may be used.

Some languages provide mechanisms for decomposing a type into subtypes

• one is the enumeration of the elements of the subtype.

• another subranges are another since, enumeration is tedious for large sub-
domains and many types have a natural ordering.

The power domain construction builds a domain of sets of elements. For a
domain A, the power domain builder P() creates the domain P(A), a collection
whose members are subsets of A.

Recursively Defined Domain

Recursively defined domains are domains whose definition is of the form:

D : ...D...

The definition is called recursive because the name of the domain “recurs” on
the right hand side of the definition. Recursively defined domains depend on
abstraction since the name of the domain is an essential part the definition of
the domain. The context-free grammars used in the definition of programming
languages contain recursive definitions so programming languages are examples
of recursive types.

More than one set may satisfy a recursive definition. However, it may be shown
that a recursive definition always has a least solution. The least solution is a
subset of every other solution.

58 CHAPTER 5. DOMAINS AND TYPES

D0 = null
Di+1 = e[D:Di] for i = 0...
D = limi→∞ Di

Figure 5.5: Limit construction

The least solution of a recursively defined domain is obtained through a sequence
of approximations (D0, D1,...) to the domain with the domain being the limit
of the sequence of approximations (D = limi→∞ Di). The limit is the smallest
solution to the recursive domain definition.

We illustrate the limit construction of Figure 5.5 with three examples.

The Natural Numbers

A representation of the natural numbers given earlier in the text was:

N ::= 0 | S(N)

The defining sequence for the natural numbers is:

N0 = Null
Ni+1 = 0 | S(Ni) for i = 0...

The definition results in the following:

N0 = Null
N1 = 0
N2 = 0 |S(0)
N3 = 0 |S(0) |S(S(0))
N4 = 0 |S(0)|S(S(0)) |S(S(S(0)))
...

The factorial function

For functions, Null can be replaced with ⊥ which means undefined.

The factorial function is often recursively defined as:

fac(n) =
{

1 ifn = 0
n× fac(n− 1) otherwise

5.2. COMPOUND DOMAINS 59

The factorial function is approximated by a sequence of functions where the
function fac0 is defined as

fac0(n) =⊥
And the function faci+1 is defined as

faci+1(n) =
{

1 ifn = 0
n× faci(n− 1) otherwise

Writing the functions as sets of ordered pairs helps us to understand the limit
construction.

fac0 = {}
fac1 = {(0, 1)}
fac2 = {(0, 1), (1, 1)}
fac3 = {(0, 1), (1, 1), (2, 2)}
fac4 = {(0, 1), (1, 1), (2, 2), (3, 6)}
...

Note that each function in the sequence includes the previously defined function
and the sequence suggests that

fac = lim
i→∞

faci

The proof of this last equation is beyond the scope of this text. This construction
suggests that recursive definitions can be understood in terms of a family of non-
recursive definitions and in format common to each member of the family.

Ancestors

For logical predicates, Null can be replaced with false. A recursive definition
of the ancestor relation is:

ancestor(A,D), if
{

parent(A,D) or
parent(A, I) & ancestor(I,D)

The ancestor relation is approximated by a sequence of relations:

ancestor0(A,D) = false

And the relation ancestori is defined as

ancestori+1(A,D), if
{

parent(A,D) or
parent(A, I) & ancestori(I,D)

Writing the relations as sets of order pairs helps us to understand the limit
construction. An example will help. Suppose we have the following:

parent(John, Mary)
parent(Mary, James)
parent(James, Alice)

60 CHAPTER 5. DOMAINS AND TYPES

then we have:

ancestor0 = {}
ancestor1 = {(John, Mary), (Mary, James), (James, Alice)}
ancestor2 = ancestor1 ∪ {(John, James), (Mary, Alice)}
ancestor3 = ancestor2 ∪ {(John,Alice)}

Again note that each predicate in the sequence includes the previously defined
predicate and the sequence suggests that

ancestor = lim
i→∞

ancestori

Linear Search

The final example of domain construction is a recursive variant of linear search.

Loop : if i < n → if a[i] 6= target → i := i + 1; Loop
fi

fi

Loop0 is defined as:
Loop0 =⊥

and Loopi+1 is defined as:

Loopi+1 : if i < n → if a[i] 6= target → i := i + 1; Loopi

fi
fi

with the result of unrolling the recursion into a sequence of if-commands.

Since recursively defined domains like lists, stacks and trees are unbounded (in
general may be infinite objects) they are implemented using pointers. In Pascal,
Ada and C such domains are defined in terms of pointers while Prolog and
functional languages like ML and Miranda allow recursive types to be defined
directly.

5.3 Abstract Types

An abstract type is a type which is defined by its operations rather than its values.

The data types provided in programming languages are abstract types. For
example, the representation of the integer type is hidden from the programmer.

5.3. ABSTRACT TYPES 61

The programmer is provided with a set of operations and a high-level represen-
tation of integers. The programmer only becomes aware of the lower level when
an arithmetic overflow occurs.

An Abstract data type consists of a type name and operations for creating and
manipulating objects of the type. A key idea is that of the separation of the
implementation from the type definition. The actual format of the data is hidden
(information hiding) from the user and the user gains access to the data only
through the type operations.

There are two advantages to defining an abstract type as a set of operations.
First, the separation of operations from the representation results in data in-
dependence. Second, the operations can be defined in a rigorous mathematical
manner. As indicated in Chapter 3, algebraic definitions provide appropriate
method for defining an abstract type. The formal specification of an abstract
type can be separated into two parts. A syntactic specification with gives the
signature of the operations and a semantic part in which axioms describe the
properties of the operations.

In order to be fully abstract, the user of the abstract type must not be per-
mitted access to the representation of values of the type. This is the case with
the primitive types. For example, integers might be represented in two’s com-
plement binary numbers but there is no way of finding out the representation
without going outside the language. Thus, a key concept of abstract types is
the hiding of the representation of the values of the type. This means that the
representation information must be local to the type definition.

Modula-3’s approach is typical. An abstract type is defined using Modules – a
definition module (called an interface), and an implementation module (called
a module).

Since the representation of the values of the type is hidden, abstract types
must be provided with constructor and destructor operations. A constructor
operation composes a value of the type from values from some other type or types
while a destructor operation extracts a constituent value from an abstract type.
For example, an abstract type for rational numbers might represent rational
numbers as pairs of integers. This means that the definition of the abstract
type would include an operation which given a pair of integers returns a rational
number (whose representation as an ordered pair is hidden) which corresponds
to the the quotient of the two numbers. The rational additive and multiplicative
identities corresponding to zero and one would be provided also.

Figure 5.6 is a definition definition module of an abstract type for complex
numbers using Modula-2 and 5.7 is the corresponding implementation module.

Terminology: The terms abstract data type and ADT are also used to denote
what we call an abstract type. 2

62 CHAPTER 5. DOMAINS AND TYPES

DEFINITION MODULE ComplexNumbers;

TYPE Complex;

PROCEDURE MakeComplex (firstNum, secondNum : Real) : Complex;

PROCEDURE AddComplex (firstNum, secondNum : Complex) : Complex;

PROCEDURE MultiplyComplex (firstNum, secondNum : Complex) : Complex;
...
END ComplexNumbers.

Figure 5.6: Complex numbers abstract type

IMPLEMENTATION MODULE ComplexNumbers;

TYPE
Complex = POINTER TO ComplexData
ComplexData = RECORD

RealPart, ImPart : REAL;
END;

PROCEDURE MakeComplex (firstNum, secondNum : Real) : Complex;
VAR result : Complex;

BEGIN
new(result);
result↑.RealPart := firstNum;
result↑.ImPart := secondNum
return result

END NewComplex;

PROCEDURE AddComplex (firstNum, secondNum : Complex) : Complex;
VAR result : Complex;

BEGIN
new(result);
result↑.RealPart := firstNum↑.RealPart + secondNum↑.RealPart;
result↑.ImPart := firstNum↑.ImPart + secondNum↑.ImPart
return result

END AddComplex;

...

BEGIN
...
END ComplexNumbers.

Figure 5.7: Complex numbers implementation

5.4. GENERIC TYPES 63

DEFINITION MODULE GenericStack;

TYPE stack(ElementType);

PROCEDURE Push (Element:ElementType; Var Stack : stack(ElementType));
...
END GenericStack

Figure 5.8: A Generic Stack

5.4 Generic Types

Given an abstract type stack, the stack items would be restricted to be a specific
type. This means that an abstract type definition is required for stacks which
differ only in the element type contained in the stack. Since the code required
by the stack operations is virtually identical, a programmer should be able to
write the code just once and share the code among the different types of stacks.
Generic types or generics are a mechanism to provide for sharing the code. The
sharing provided by generics is through permitting the parameterization of type
definitions. Figure 5.8 contains a Modula-2 definition module for a generic stack.
The definition differs from that of an abstract type in that the type name is

parameterized with the element type. At compile time, code appropriate to the
parameter is generated.

Type Checking type free languages, data type parameterization (polymorphism)

The problem of writing generic sorting routines points out some difficulties
with traditional programming languages. A sorting procedure must be able to
detect the boundaries between the items it is sorting and it must be able to
compare the items to determine the proper ordering among the items. The
first problem is solved by parameterizing the sort routine with the type of the
items and the second is solved by either parameterizing the sort routine with
a compare function or by overloading the relational operators to permit more
general comparisons.

Generic packages in Ada is a cheap way to obtain polymorphism. Generic
packages are not compiled at compile time, rather they are compiled whenever
they are parameterized with a type. So that if a programmer desires to sort a
array of integers and an array of reals, the compiler will generate two different
sort routines and the appropriate routine is selected at run-time.

64 CHAPTER 5. DOMAINS AND TYPES

5.5 Type Systems

Definition 5.1 A type system is a set of rules for associating a type with ex-
pression in the language. A type system rejects an expression if it does not
associate a type with the expression.

A type system is monomorphic if each constant, variable, parameter, and func-
tion result has a unique type. Type checking in a monomorphic system is
straightforward. But purely monomorphic type systems are unsatisfactory for
writing reuseable software. Many algorithms such as sorting and list and tree
manipulation routines are generic in the sense that they depend very little on
the type of the values being manipulated. For example, a general purpose array
sorting routine cannot be written in Pascal. Pascal requires that the element
type of the array be part of the declaration of the routine. This means that
different sorting routines must be written for each element type and array size.

A large percentage of errors in programs is due to the application of operations
to objects of incompatible types. To assist the programmer in the detection
of these errors, several schemes have been developed. If the errors are to be
detected at compile time then a static type checking system is required. One
approach to static type checking is to require the programmer to specify the
type of each object in the program. This permits the compiler to perform type
checking before the execution of the program and this is the approach taken by
languages like Pascal and Ada. Another approach to static type checking is to
add type inference capabilities to the compiler. In such a system the compiler
performs type checking by means of a set of type inference rules and is able to
flag type errors prior to runtime. This is the approach taken by Miranda and
Haskell but they also permit programmer to provide type specifications.

If the error detection is to be delayed until execution time, then dynamic type
checking is required. The programming languages Scheme and Prolog do not
require the programmer to provide any information concerning an object’s type
and type checking is necessarily delayed until run time.

Neither Prolog, Scheme or Miranda require type declarations. Types may be
declared in Miranda. For example the types for the arithmetic + operation are
declared as follows:

+ :: num -> num -> num

Modula-2, Ada, C++, Prolog, Scheme, Miranda – list primitive types

5.5. TYPE SYSTEMS 65

Type Equivalence

Two unnamed types (sets of objects) are the same if they contain the same
elements. The same cannot be said of named types for if they were, then there
would be no need for the disjoint union type. When types are named, there are
two major approaches to determining whether two types are equal.

Name Equivalence

In name equivalence two types are the same iff they have the same name. Name
equivalence was chosen for Modula-2, Ada, C (for records), and Miranda and
requires type definitions to be global. The predecessor of Modula-2, Pascal
violates name equivalence since file type names are not required to be shared
by different programs accessing the same file.

Structural Equivalence

In structural equivalence, the names of the types are ignored and the elements
of the types are compared for equality. Formally,

Definition 5.2 Two types T, T′ are structurally equivalent iff T, T′ have the
same set of values.

The following three rules may be used to determine if two types are structurally
equivalent.

• A type name is structurally equivalent to its self.

• Two types are structurally equivalent if they are formed by applying the
same type constructor to structurally equivalent types.

• After a type declaration , type n = T, the type name n is structurally
equivalent to T.

Structural equivalence was chosen by Algol-68 and C (except for records) be-
cause it is easy to implement and type definitions are not required to be global.

Strong vs. Weak Type Checking

Definition 5.3 A language is said to be strongly typed if it enforces type ab-
stractions. That is, operations may be applied only to objects of the appropriate
type.

66 CHAPTER 5. DOMAINS AND TYPES

The language is said to be weakly typed.

For example, if the boolean constants are represented by 0 and 1 and the lan-
guage permits a boolean to occur in arithmetic expressions, then the language
is not enforcing the boolean type abstraction.

Most languages are strongly typed with respect to the primitive types supported
by the language.

Strong typing helps to insure the security and portability of the code and it
often requires the programmer to explicitly define the types of each object in a
program.

SORT PROGRAMS

Weak type checking has the advantage of providing representation indepen-
dence.

SETS VS LISTS

Type Inference

Pascal constant declarations are an example of type inference, the type of the
name is inferred from the type of the constant. In Pascal’s for loop the type of
the loop index can be inferred from the types of the loop limits and thus the
loop index should be a variable local to the loop. The programming language
Miranda provides a powerful type inference system so that a programmer need
not declare any types. However, Miranda is strongly typed.

A type checker must be able to

• determine if a program is well typed and

• if the program is well typed, determine the type of any expression in the
program.

Type inference axioms

Axiom 5.1 given that: f is of type A → B and x is of type A
infer that: f(x) is type correct and has type B

Static vs Dynamic type checking

If a language requires that the type of all variables be known compile time,
then the a language is said to be statically typed. Pascal, Ada, and Haskell are

5.6. OVERLOADING AND POLYMORPHISM 67

examples of statically typed languages.

Static typing is widely recognized as a requirement for the production of safe
and reliable software.

If a language does not require that the type of a variable be known at compile
time, then a language is said to be dynamically typed. Lisp and Smalltalk are
examples of dynamically typed languages.

Dynamic type checking implies that the types are checked at execution time
and that every value is tagged to identify its type in order to make the type
checking possible. The penalty for dynamic type checking is additional space
and time overheads.

Dynamic typing is often justified on the assumption that its flexibility permits
the rapid prototyping of software.

Prolog relies on pattern matching to provide a semblance of type checking.
There is active research on adapting type checking systems for Prolog.

Modern functional programming languages such as Miranda and Haskell com-
bine the safety of static type checking with the flexibility of dynamic type check-
ing through polymorphic types.

5.6 Overloading and Polymorphism

Overloading

Completely monomorphic systems are rare. Most programming languages con-
tain some operators or procedures which permit arguments of more than one
type. For example, Pascal’s input and output procedures permit variation both
in type and in number of arguments. This is an example of overloading.

Definition 5.4 Overloading refers to the use of a single syntactic identifier to
refer to several different operations discriminated by the type and number of the
arguments to the operation.

The type of the plus operation defined for integer addition is

+ : int× int→ int

When the same operation symbol is used for the plus operation for rational
numbers and for set union, the symbol as in Pascal it is overloaded. Most
programming languages provide for the overloading of the arithmetic operators.

68 CHAPTER 5. DOMAINS AND TYPES

A few programming languages (Ada among others) provide for programmer
defined overloading of both built-in and programmer defined operators.

When overloaded operators are applied to mixed expressions such as plus to
an integer and a rational number there are two possible choices. Either the
evaluation of the expression fails or one or more of the subexpressions are coerced
into a corresponding object of another type. Integers are often coerced into
the corresponding rational number. This type of coercion is called widening.
When a language permits the coercion of a real number into an integer (by
truncation for example) the coercion is called narrowing. Narrowing is not
usually permitted in a programming language since information is usually lost.
Coercion is an issue in programming languages because numbers do not have
a uniform representation. This type of overloading is called context-dependent
overloading.

Many languages provide type transfer functions so that the programmer can
control where and when the type coercion is performed. Truncate and round
are examples of type transfer functions.

Overloading is sometimes called ad-hoc polymorphism.

Polymorphism

A type system is polymorphic if abstractions operate uniformly on arguments of
a family of related types.

Definition 5.5 A polymorphic operation is one that can be applied to different
but related types of arguments.

This type of polymorphism is sometimes called parametric polymorphism.

Generalization can be applied to may aspects of programming languages.

Sometimes there are several domains which share a common operation. For
example, the natural numbers, the integers, the rationals, and the reals all
share the operation of addition. So, most programming languages use the same
addition operator to denote addition in all of these domains. Pascal extends the
use of the addition operator to represent set union. The multiple use of a name
in different domains is called overloading. Ada permits user defined overloading
of built in operators.

Prolog permits the programmer to use the same functor name for predicates
of different arity thus permitting the overloading of functor names. This is an
example of data generalization or polymorphism.

5.7. TYPE COMPLETENESS 69

While the parameterization of an object gives the ability to deal with more than
one particular object, polymorphism is the ability of an operation to deal with
objects of more than a single type.

Generalization of control has focused on advanced control structures (RAM):
iterators, generators, backtracking, exception handling, coroutines, and parallel
execution (processes).

5.7 Type Completeness

5.8 Exercises

1. Define algebraic semantics for the following data types.

(a) Boolean

ADTBoolean

Operations

and(boolean,boolean) → boolean
or(boolean,boolean) → boolean
not(boolean) → boolean

Semantic Equations
and(true,true) = true
or(true,true) = true
not(true) = false
not(false) = true

Restrictions

(b) Integer

(c) Real

(d) Character

(e) String

2. Name or Structure equivalence (type checking)

3. Algebraic Semantics: stack, tree, queue, grade book etc

4. Abstraction

5. Generalization

70 CHAPTER 5. DOMAINS AND TYPES

6. Name or Structure equivalence (type checking)

7. Extend the compiler to handle additional types. This requires modifica-
tions to the syntax of the language with extensions of the scanner, parser,
symbol table and code generators.

Chapter 6

Environment

Keywords and phrases: block, garbage collection, static and dynamic links,
display, static and dynamic binding, activation record, environment, Static and
Dynamic Scope, aliasing, variables, value, result, value-result, reference, name,
unification, eager evaluation, lazy evaluation, strict, non-strict, Church-Rosser,
overloading, polymorphism, monomorphism, coercion, transfer functions.

An environment is a set of bindings.

Scope has to do with the range of visibility of names. For example, a na-
tional boundary may encapsulate a natural language. However, some words
used within the boundary are not native words. They are words borrowed from
some other language and are defined in that foreign language. So it is in a
program. A definition introduces a name and a boundary (the object). The
object may contain names for which there is no local definition (assuming defi-
nitions may be nested). These names are said to be free. The meaning assigned
to these names is to be found outside of the definition. The rules followed in
determining the meaning of these free names are called scope rules.

Scope is the portion of the program text over which a definition is effective.

It is concerned with name control.

71

72 CHAPTER 6. ENVIRONMENT

Binding Sequence

Typically the text of a program contains a number of bindings between names
and objects and the bindings may be composed collaterally, sequentially or
recursively.

Collateral

A collateral binding is to perform the bindings independently of each other and
then to combine the bindings to produce the completed set of bindings. Nether
binding can reference a name used in any other binding.

Collateral bindings are not vary common but occur in Scheme and ML.

Sequential

The most common way of composing bindings is sequentially. A sequential
binding is to perform the bindings in the sequence in which they occur. The
effect is to allow later bindings to use bindings produced earlier in the sequence.
It must be noted that sequential bindings do not permit mutually recursive
definitions.

In Pascal, constant, variable, and procedure and function bindings are sequen-
tial. To provide for mutually recursive definitions of functions and procedures,
Pascal provides for the separation of the signature of a function or procedure
from the body by the means of forward declarations so that so that mutually
recursive definitions may be constructed.

Recursive

A recursive binding is one that uses the very bindings that it produces itself.
In Pascal type definitions are recursive to permit the construction of recursive
types. However, there is a constraint to insure that recursive types are restricted
to pointer types.

6.1 Block structure

A block is a construct that delimits the scope of any declarations that it may
contain. It provides a local environment i.e., a opportunity for local definitions.
The block structure (the textual relationship between blocks) of a programming

6.1. BLOCK STRUCTURE 73

language has a great deal of influence over program structure and modularity.
There are three basic block structures–monolithic, flat and nested.

A program has a monolithic block structure if it consists of just one block. This
structure is typical of BASIC and early versions of COBOL. The monolithic
structure is suitable only for small programs. The scope of every definition is
the entire program. Typically all definitions are grouped in one place even if
they are used in different parts of the program.

A program has a flat block structure if it is partitioned into distinct blocks, an
outer all inclosing block one or more inner blocks. This structure is typical of
FORTRAN and C. In these languages, all subprograms (procedures and func-
tions) are separate, and each acts as a block. Variables can be declared inside
a subprogram are then local to that subprogram. Subprogram names are part
of the outer block and thus their scope is the entire program along with global
variables. All subprogram names and global variables must be unique. If a
variable cannot be local to a subprogram then it must be global and accessable
by all subprograms even though it is used in only a couple of subprograms.

A program has nested block structure if blocks may be nested inside other blocks.
This is typical of the block structure of the Algol-like languages. A block can
be located close to the point of use.

A local variable is one that is declared within a block for use only within that
block.

A global variable is a variable that is referenced within a block but declared
outside the block.

An activation of a block is a time interval during which that block is being
executed.

The three basic block structures are sufficient for what is called programming in
the small. These are programs which are comprehensible in their entirety by an
individual programmer. They are not general enough for very large programs.
Programs which are written by many individual and which must consist of
module which can be developed and tested independently of other modules.
Such programming is called programming in the large. The subject of modules
will be examined in a later chapter.

Activation Records

Each block

Storage for local variables.

74 CHAPTER 6. ENVIRONMENT

Scope Rules

Dynamic scope rules

A dynamic scope rule defines the dynamic scope of each association in terms of
the dynamic course of program execution. Lisp.

implementation ease, cheap generalization for parameterless functions.

Static scope rules

Cobol, BASIC, FORTRAN, Prolog, Lambda calculus, Scheme, Miranda, Algol-
60, Pascal

6.2 Declarations

6.3 Constants

literals

6.4 User Defined Types

Miranda’s universe of values is numbers, characters and boolean values while
Pascal provides boolean, integer, real, and char.

Declarations of variables of the primitive types have the following form in the
imperative languages.

I : T; { Modula-2: item I of type T}
T I; // C++: item I of type T

Declarations of enumeration types involve listing of the values in the type.

Here are the enumerations of the items I1, ..., In of type T.

T = {I1, ..., In}; { Modula-2}
enum T {I1, ..., In}; // C++
T ::= I1 | ... | In || Miranda

6.4. USER DEFINED TYPES 75

Modula-2, Ada, C++, Prolog, Scheme, Miranda – list primitive types

Haskell provides the built in functions fst and snd to extract the first and
second elements from binary tuples.

Imperative languages require that the elements of a tuple be named. Modula-2
is typical; product domains are defined by record types:

record
I1 : T1;
...
In : Tn;

end

The Iis are names for the component of the tuple. The individual components
of the record are accessed by the use of qualified names. for example, if MyRec is
a elment of the above type, then the first component is referenced by MyRec.I1
and the last component is referenced by MyRec.In.

C and C++ calls a product domain a structure and uses the following type
declaration:

struc name {
T1 I1;
...
Tn : In;

};

The Iis are names for the entries in the tuple.

Prolog does not require type declaration and elements of a product domain may
be represented in a number of ways, one way is by a term of the form:

name(I1,...In)

The Iis are the entries in the tuple. The entries are accessed by pattern match-
ing. Miranda does not require type declaration and the elements of a product
domain are represented by tuples.

(I1,...In)

The Iis are the entries in the tuple.

Here is an example of a variant record in Pascal.

76 CHAPTER 6. ENVIRONMENT

type Shape = (Square, Rectangle, Rhomboid, Trapezoid, Parallelogram);
Dimensions = record

case WhatShape : Shape of
Square : (Side1: real);
Rectangle : (Length, Width : real);
Rhomboid : (Side2: real; AcuteAngle: 0..360);
Trapezoid : (Top1, Bottom, Height: real);
Parallelogram : (Top2, Side3: real;

ObtuseAngle: 0..360)
end;

var FourSidedObject : Dimensions;

The initialization of the record should follow the sequence of assigning a value
to the tag and then to the appropriate subfields.

FourSidedObject.WhatShape := Rectangle;
FourSidedObject.Length := 4.3;
FourSidedObject.Width := 7.5;

The corresponding definition in Miranda is

Dimensions :: Square num |
Rectangle num num |
Rhomboid num num |
Trapezoid num num num |
Parallelogram num num num

area Square S = S*S
area Rectangle L W = L * W
...

Modula-2, Ada, C++, Prolog, Scheme, Miranda

Disjoint union values are implemented by allocating storage based on the largest
possible value and additional storage for the tag.

Modula-2

array[domain type] of range type {Modula-2}
range type identifier [natural number] // C++

Prolog and Miranda do not provide for an array type and while Scheme does,
it is not a part of the purely functional part of Scheme.

6.4. USER DEFINED TYPES 77

Modula-2, Ada, C++, Prolog, Scheme, Miranda – mapping type

In Pascal the notation [i..j] indicates the subset of an ordinal type from element
i to element j inclusive. In addition to subranges, Miranda provides infinite
lists [i..] and finite and infinite arithmetic series [a,b..c], [a,b..] (the interval is
(b-a)). Miranda also provides list comprehensions which are used to construct
lists (sets). A list comprehension has the form [exp | qualifier]

sqs = [n*n | n < −[1..]]
factors n = [r | r < −[1..n div 2]; n mod r = 0]
knights moves [i,j] = [[i+a,j+b] | a,b < −[−2..2]; a^2+^2=5]

Modula-2, Ada, C++, Prolog, Scheme, Miranda – power set

Prolog

[]

The Miranda syntax for lists is similar to that of Prolog however, elements of
lists must be all of the same type.

[*]

Recursive types in imperative programming languages are usually defined using
a pointer type. Pointer types are an additional primitive type. Pointers are
addresses.

{Modula-2: the pointer and the list}
type NextItem = ^ListType

ListType = record
item : Itemtype;
next : NextItem

end;

// C++: the list type
struc list {

ItemType Item;
list* Next; // pointer to list

};

|| Miranda: list of objects of type T and
|| a binary tree of type T

78 CHAPTER 6. ENVIRONMENT

[T]
tree ::= Niltree | Node T tree tree

Referencing/Dereferencing

type ListType = record
item : Itemtype;
next : ListType

end;

Recursive values are implemented using pointers. The run-time support system
for the functional and logic programming languages, provides for automatic
allocation and recovery of storage (garbage collection). The alternative is for
the language to provide access to the run-time system so that the programmer
can explicitly allocate and recover the linked structures.

6.5 Variables
state:store

It is frequently necessary to refer to an arbitrary element of a type. Such a
reference is provided through the use of variables. A variable is a name for an
arbitrary element of a type and it is a generalization of a value since it can be
the name of any element.

6.6 Functions and Procedures

6.7 Persistant Types

A persistent variable is one whose lifetime transcends an activation of any partic-
ular program. In contrast, a transient variable is one whose lifetime is bounded
by the activation of the program that created it. Local and heap variables are
transient variables.

Most programming languages provide different types for persistent and transient
variables. Typically files are the only type of persistent variable permitted in a
programming language. Files are not usually permitted to be transient variables.

Most programming languages provide different types for persistent and transient
The type completeness principle suggests that all the types of the programming
language should be allowed both for transient variables and persistent variables.
A language applying this principle would be simplified by having no special

6.8. EXERCISES 79

types, commands or procedures for input–output. The programmer would be
spared the effort of converting data from a persistent data type to a transient
data type on input and vice versa on output.

A persistent variable of array type corresponds to a direct file. If heap variables
were persistent then the storage of arbitrary data structures would be possible.

6.8 Exercises

1. Extend the compiler to handle constant, type, variable, function and pro-
cedure definitions and references to the same.

2. Static and dynamic scope

80 CHAPTER 6. ENVIRONMENT

Chapter 7

Functional Programming

Functional programming is characterized by the programming with values, func-
tions and functional forms.

Keywords and phrases: Lambda calculus, free and bound variables, scope, en-
vironment, functional programming, combinatorial logic, recursive functions,
functional, curried function.

Functional programming languages are the result of both abstracting and gen-
eralizing the data type of maps. Recall, the mapping m from each element x of
S (called the domain) to the corresponding element m(x) of T (called the range)
is written as:

m : S → T

For example, the squaring function is a function of type:

sqr : Num→ Num

and may be defined as:
x

sqr7−→ x ∗ x

A linear function f of type

f : Num→ Num

may be defined as:
x

f7−→ 3 ∗ x + 4

81

82 CHAPTER 7. FUNCTIONAL PROGRAMMING

The function:
x

g7−→ 3 ∗ x2 + 4

may be written as the composition of the functions f and sqr as:

f ◦ sqr

where
f ◦ sqr(x) = f(sqr(x)) = f(x ∗ x) = 3 ∗ x2 + 4

The compositional operator is an example of a functional form. Functional
programming is based on the mathematical concept of a function and functional
programming languages include the following:

• A set of primitive functions.

• A set of functional forms.

• The application operation.

• A set of data objects.

• A mechanism for binding a name to a function.

LISP, FP, Scheme, ML, Miranda and Haskell are just some of the languages to
implement this elegant computational paradigm.

The basic concepts of functional programming originated with LISP. Functional
programming languages are important for the following reasons.

• Functional programming dispenses with the assignment command freeing
the programmer from the rigidly sequential mode of thought required with
the assignment command.

• Functional programming encourages thinking at higher levels of abstrac-
tion by providing higher-order functions – functions that modify and com-
bine existing programs.

• Functional programming has natural implementation in concurrent pro-
gramming.

• Functional programming has important application areas. Artificial in-
telligence programming is done in functional programming languages and
the AI techniques migrate to real-world applications.

• Functional programming is useful for developing executable specifications
and prototype implementations.

7.1. THE LAMBDA CALCULUS 83

• Functional programming has a close relationship to computer science the-
ory. Functional programming is based on the lambda calculus which in
turn provides a framework for studying decidability questions of program-
ming and further, the essence of denotational semantics is the translation
of conventional programs into equivalent functional programs.

Terminology: Functional programming languages are called applicative since
the functions are applied to their arguments, declarative and non-procedural
since the definitions specify what is computed and not how it is computed. 2

7.1 The Lambda Calculus

Functional programming languages are based on the lambda calculus. The
lambda calculus grew out of an attempt by Church and Kleene in the early
1930s to formalize the notion of computability (also known as constructibility
and effective calculability). It is a formalization of the notion of functions as
rules (as opposed to functions as tuples). As with mathematical expressions, it
is characterized by the principle that the value of an expression depends only on
the values of its subexpressions. The lambda calculus is a simple language with
few constructs and a simple semantics. But, it is expressive; it is sufficiently
powerful to express all computable functions.

As an informal example of the lambda calculus, consider the polynomial expres-
sion x2 + 3x− 5. The lambda abstraction

λx.x2 + 3x− 5

is used to denote the polynomial function whose values are given by the polyno-
mial expression. Thus, the lambda abstraction is can be read as “the function
of x whose value is x2 + 3x− 5.”

Instead of writing p(x) = x2 + 3x− 5, we write

p = λx.x2 + 3x− 5

Instead of writing p(1) to designate the value of p at 1, we write (p 1) or

(λx.x2 + 3x− 5 1)

The value is obtained by applying the lambda abstraction to the 1. The appli-
cation of a lambda abstraction to a value entails the substitution of 1 for x to
obtain 12 + 3 · 1− 5 which evaluates to −1.

We say that the variable x is bound in the body B of the lambda expression
λx.B. A variable which is not bound in a lambda expression is said to be free.

84 CHAPTER 7. FUNCTIONAL PROGRAMMING

Abstract Syntax:

L ∈ Lambda Expressions
x ∈ Variables

L ::= x | (L1 L2) | (λx.L3)

where (L1 L2) is function application, and (λx.L3) is a lambda
abstraction which defines a function with argument x and body
L3.

Figure 7.1: The Lambda Calculus

The variable x is free in the lambda expression λy.x + y). The scope of the
variable introduced (or bound) by lambda is the entire body of the lambda
abstraction.

The lambda notation extends readily to functions of several arguments. Func-
tions of more than one argument can be curried to produce functions of single
arguments. For example, the polynomial expression xy can be written as

λx.λy.xy

When the lambda abstraction λx.λy.xy is applied to a single argument as in
(λx.λy.xy 5) the result is λy.5y, a function which multiplies its argument by 5. A
function of more than one argument is reguarded as a functional of one variable
whose value is a function of the remaining variables, in this case, “multiply by
a constant function.”

The special character of the lambda calculus is illustrated when it is recognized
that functions may be applied to other functions and even permit self applica-
tion. For example let C = λf.λx.(f (f x))

The pure lambda calculus has just three constructs: variables, function applica-
tion, and function creation. Figure 7.1 gives the syntax of the lambda calculus.
The notation λx.M is used to denote a function with parameter x and body

M . For example, λx.(+xx) denotes the function that maps 3 to 3 + 3. Notice
that functions are written in prefix form so in this instance the application of
the function to 3 would be written: λx.(+xx) 3.

Lambda expressions are simplified using the β-rule:

((λx.B) y)⇒ B[x : E]

which says that an occurrence of x in B can be replaced with E. All bound

7.1. THE LAMBDA CALCULUS 85

identifiers in B are renamed so as not to clash with the free identifiers in E.

The pure lambda calculus does not have any built-in functions or constants.
Therefore, it is appropriate to speak of the lambda calculi as a family of lan-
guages for computation with functions. Different languages are obtained for
different choices of constants.

We will extend the lambda calculus with common mathematical operations and
constants so that λx.((+ 3) x) defines a function that maps x to x + 3. We
will drop some of the parentheses to improve the readability of the lambda
expressions.

Operational Semantics

A lambda expression is executed by evaluating it. Evaluation proceeds by repeat-
edly selecting a reducible expression (or redex) and reducing it. For example,
the expression (+ (∗ 5 6) (∗ 8 3)) reduces to 54 in the following sequence of
reductions.

(+ (∗ 5 6) (∗ 8 3)) → (+ 30 (∗ 8 3))
→ (+ 30 24)
→ 54

When the expression is the application of a lambda abstraction to a term,
the term is substituted for the bound variable. This substitution is called β-
reduction. In the following sequence of reductions, the first step an example of
β-reduction. The second step is the reduction required by the addition operator.

(λx.((+ 3) x)) 4
((+ 3) 4)

7

The operational semantics of the lambda calculus define various operations on
lambda expressions which enable lambda expressions to be reduced (evaluated)
to a normal form (a form in which no further reductions are possible). Thus,
the operational semantics of the lambda calculus are based on the concept of
substitution.

A lambda abstraction denotes a function, to apply a lambda abstraction to an
argument we use what is called β-reduction.

The result of applying a lambda abstraction to an argument is an
instance of the body of the lambda abstraction in which (free) occur-
rences of the formal parameter in the body are replaced with (copies
of) the argument.

86 CHAPTER 7. FUNCTIONAL PROGRAMMING

The following formula is a formalization of β-reduction.

(λx.B M)↔ B[x : M]

The notation B[x : M] means the replacement of free occurrences of x in B
with M .

One problem which arises with β-reduction is the following. Suppose we apply
β-reduction as follows.

(λx.B M)↔ B[x : M]

where y is a free variable in M but y occurs bound in B. Then upon the
substitution of M for x, y becomes bound. To prevent this from occurring, we
need to do the following.

To prevent free variables from becoming bound requires the replace-
ment of free variables with new free variable name, a name which
does not occur in B.

This type of replacement is called α-reduction. The following formula is a for-
malization of α-reduction,

λx.B ↔ λy.B[x : y]

where y is not free in B.

Now we define replacement (substitution) as follows:

x[x : M] = M
c[x : M] = c where c is a variable or constant other than x.
(A B)[x : M] = (A[x : M] B[x : M])
(λx.B)[x : M] = (λx.B)
(λy.B)[x : M] = λz.(B[y : z][x : M]) where z is a new variable name

which does not occur free in B or M .

Figure 7.2 defines the operational semantics of the lambda calculus in terms of
β-reduction.

Reduction Order

Given a lambda expression, the previous section provides the tools required to
evaluate the expression but, the previous section did not tell us what order we
should use in reducing the lambda expressions.

Church-Rosser Theorem I If E1 ↔ E2 then there is an expression E, such that
E1 → E and E2 → E.

7.1. THE LAMBDA CALCULUS 87

Interpreter:

I ∈ L→ L

I[[c]] = c
I[[x]] = x
I[[(λx.B M)]] = I[[B[x : M]]]
I[[(L1 L2)]] = σ(φ)

where I[[L1]] = σ, I[[L2]] = φ

where

c is a constant
x is a variable
B, L1, L2, M are expressions

Figure 7.2: Operational semantics for the lambda calculus

An expression E is in normal form if it contains no redex.

Normal order reduction specifies that the leftmost outermost redex should be
reduced first.

Church-Rosser Theorem II If E1 → E2, and E2 is in normal form, then there
exists a normal order reduction sequence from E1 to E.

Denotational Semantics

In the previous sections we looked at the operational semantics of the lambda
calculus. It is called operational because it is ‘dynamic’, it sees a function as a
sequence of operations. A lambda expression was evaluated by purely syntactic
transformations without reference to what the expressions ‘mean’.

In denotational semantics a function is viewed as a fixed set of associations
between arguments and corresponding values.

We can express the semantics of the lambda calculus as a mathematical function,
Eval, from expressions to values. For example,

Eval[[+ 3 4]] = 7

defines the value of the expression + 3 4 to be 7. Actually something more

88 CHAPTER 7. FUNCTIONAL PROGRAMMING

is required, in the case of variables and function names, the function Eval
requires a second parameter containing the environment ρ which contains the
associations between variables and their values. Some programs go into infinite
loops, some abort with a runtime error. To handle these situations we introduce
the symbol ⊥ pronounced ‘bottom’.

Eval[[c]] = c
Eval[[x]] ρ = ρ x
Eval[[L1 L2]] ρ = (Eval[[L1]] ρ) (Eval[[L2]] ρ)
Eval[[λx.B]] ρ a = Eval[[λx.B]] ρ[x : a]
Eval[[E]] = ⊥

where c is a constant or built-in function, x is a variable, B, L1, L2 are expres-
sions and E is an expression which does not have a normal form.

Figure 7.3 gives a denotational semantics for the lambda calculus.

7.2 Recursive Functions

We extend the syntax of the lambda calculus to include named functions as
follows:

Lambda Expressions

L ::= ...| x = L′ | ...

Where x is the name of the lambda expression L. With the introduction of
named functions we obtain the potential for recursive definitions. The extended
syntax permits us to name lambda abstractions and then refer to them within
a lambda expression. Consider the following recursive definition of the factorial
function.

FAC = λn.(if (= n 0) 1 (∗ n (FAC (− n 1))))

We can treat the recursive call as a free variable and replace the previous defi-
nition with the following.

FAC = (λfac.(λn.(if (= n 0) 1 (∗ n (fac (− n 1))))) FAC)

Let
H = λfac.(λn.(if (= n 0) 1 (∗ n (fac (− n 1)))))

Note that H is not recursively defined. Now we can redefine FAC as

FAC = (H FAC)

7.2. RECURSIVE FUNCTIONS 89

Semantic Domains:

EV = Expressible values

Semantic Function:

E ∈ L→ L
B ∈ Constants→ EV

Semantic Equations:

E [[c]] = B[[c]]
E [[x]] = x
E [[(λx.B M)]] = E [[B[x : M]]]
E [[(L1 L2)]] = σ(φ)

where E [[L1]] = σ, E [[L2]] = φ
E [[E]] = ⊥

where

c is a constant
B, L1, L2, M are expressions
E is an expression which does not have a normal form

and

x[x : M] = M
vc[x : M] = vc where vc is a variable or constant other than x.
(A B)[x : M] = (A[x : M] B[x : M])
(λx.B)[x : M] = (λx.B)
(λy.B)[x : M] = λz.(B[y : z][x : M]) where z is a new variable name

which does not occur free in B or M .

Figure 7.3: Denotational semantics for the lambda calculus

90 CHAPTER 7. FUNCTIONAL PROGRAMMING

This equation is like a mathematical equation. It states that when the function
H is applied to FAC, the result is FAC. We say that FAC is a fixed point or
fixpoint of H. In general functions may have more than one fixed point. In this
case the desired fixed point is the mathematical function factorial. In general,
the ‘right’ fixed point turns out to be the unique least fixed point.

It is desirable that there be a function which applied to a lambda abstraction
returns the least fixed point of that abstraction. Suppose there is such a function
Y where,

FAC = Y H

Y is called a fixed point combinator. With the function Y this equation defines
FAC without the use of recursion. From the previous two equations, the function
Y has the property that

Y H = H (Y H)

As an example, here is the computation of FAC 1 using the Y combinator.

FAC 1 = (Y H) 1
= H (Y H)
= λfac.(λn.(if (= n 0) 1 (∗ n (fac (− n 1))))) (Y H) 1
= λn.(if (= n 0) 1 (∗ n ((Y H) (− n 1)))) 1
= if (= 1 0) 1 (∗ 1 ((Y H) (− 1 1)))
= (∗ 1 ((Y H) (− 1 1)))
= (∗ 1 ((Y H) 0))
= (∗ 1 (H (Y H) 0))
...
= (∗ 1 1)
= 1

The function Y can be defined in the lambda calculus.

Y = λh.(λx.(h (x x)) λx.(h (x x)))

It is especially interesting because it is defined as a lambda abstraction without
using recursion. To show that this lambda expression properly defines the Y
combinator, here it is applied to H.

(Y H) = (λh.(λx.(h (x x)) λx.(h (x x))) H)
= (λx.(H (x x)) λx.(H (x x)))
= H (λx.(H (x x)) λx.(H (x x)))
= H (Y H)

7.3 Lexical Scope Rules

Lexical scope rules vars refer to nearest enclosing environment, parameters are
passed, after renaming, by textual substitution

7.4. FUNCTIONAL FORMS 91

An aspect of abstraction is the ability to have local definitions. This is achieved
in the lambda calculus by the following syntactic extensions.

Lambda Expressions

L ∈ Lambda Expressions
x ∈ Variables

...

L ::= ...| let x0 = L0 in L′
0 | letrec x1 = L1... xn = Ln in L′ |...

The let extension is for non-recursive definitions and the letrec extension is for
recursive definitions Here is a simple let example.

let x = 3 in (∗ x x)

Lets may be used where ever a lambda expression is permitted. For example,

λy.let x = 3 in (∗ y x)

is equivalent to
λy.(∗ y 3)

Let expressions may be nested. Actually lets do not extend the lambda cal-
culus they are just an abstraction mechanism as this equivalence shows.

(let v = B in E) ≡ ((λv.E) B)

Letrecs do not extend the lambda calculus they are also just an abstraction
mechanism as this equivalence shows.

(letrec v = B in E) ≡ (let v = Y (λv.B) in E)

7.4 Functional Forms

Functional languages treat functions as first-class values: they can be passed as
parameters, returned as results, built into composite values, and so on. Func-
tions whos parameters are all non-functional are called first-order. A function
that has a functional parameter is called a higer-order function or functional.
Functional composition is an example of a functional.

92 CHAPTER 7. FUNCTIONAL PROGRAMMING

double (x) = x * x
quad = double ◦ double
twice (f) = f ◦ f
odd = not ◦ even

Functionals are often used to construct reusable code and to obtain much of the
power of imperative programming within the functional paradigm.

An important functional results from partial application For example, suppose
there is the function power defined as follows:

power (n, b) = if n = 0 then 1 else b*power(n-1, b)

As written power raises a base b to a positive integer power n. The expression
power(2) is a function of one argument which when applied to a value returns
the square of the value.

composition f ◦ g (x) = f(g(x))

dispatching f & g (x) = (f(x), g(x))

parallel

currying

apply apply(f,a) = f(a)

iterate iterate(f,n) (a) = f(f(...(f(a))...))

(λ x.λ y.((* x) y) 3 = λy.((* 3) y)

7.5 Evaluation Order

A function is strict if it is sure to need its argument. If a function is non-strict,
we say that it is lazy. Why???

parameter passing: by value, by name, and lazy evaluation

Infinite Data Structures

call by need

streams and perpetual processes

7.6. VALUES AND TYPES 93

A function f is strict if and only if (f ⊥) =⊥

Scheme evaluates its parameters before passing (eliminates need for renaming)
a space and time efficiency consideration.

Concurrent evaluation

7.6 Values and Types

Pre-defined Data Types

Integer, Real, Character, Tuples, Lists Enumerations, algebraic types (unions)

7.7 Type Systems and Polymorphism

Pattern matching, Product type, sequences, functions, ML, Miranda

7.8 Program Transformation

Since functional programs consist of function definitions and expression evalua-
tions they are suitable for program transformation and formal proof just like any
other mathematical system. It is the principle of referential transparency that
makes this possible. The basic proof rule is that: identifiers may be replaced by
their values.

For example,

f 0 = 1
f n+1 = (n+1)*(f n)

fp 0 fn = fn
fp n+1 in = fp n (n+1)*in

f n = fp n 1

f 0 = fp 0 1 by definition of f and fp

assume f n = fp n 1

94 CHAPTER 7. FUNCTIONAL PROGRAMMING

show f n+1 = fp n+1 1
f n+1 = (n+1)*f n

= (n+1)*fp n 1
and

k*fp m n = fp m k*n since

1*fp m n = fp m 1*n
and

(k+1)*fp m n = k*fp m n + fp m n = fp m k*n + fp m n

fold

unfold

7.9 Pattern matching

f 0 = 1
f (n+1) = (n+1)*f(n)

insert (item Empty Tree) = BST item Empty Tree Empty Tree
insert (item BST x LST RST) = BST x insert (item LST) RST if item < x

BST x LST insert(item RST) if item > x

7.10 Combinatorial Logic

The β reduction rule is expensive to implement. It requires the textual substitu-
tion of the argument for each occurrence of the parameter and further requires
that no free variable in the argument should become bound. This has lead to
the study of ways in which variables can be eliminated.

Curry, Feys, and Craig define a number of combinators among them the follow-
ing:

S = λf.(λg.(λx.fx(gx)))
K = λx.λy.x
I = λx.x
Y = λf.λx.(f (x x))λx.(f (x x))

These definitions lead to transformation rules for sequences of combinators. The
reduction rules for the SKI calculus are given in Figure 7.4. The reduction
rules require that reductions be performed left to right. If no S, K, I, or Y
reduction applies, then brackets are removed and reductions continue.

7.10. COMBINATORIAL LOGIC 95

• S f g x → f x (g x)

• K c x → c

• I x → x

• Y e → e (Y e)

• (A B) → A B

• (A B C)→ A B C

Figure 7.4: Reduction rules for SKI calculus

C[[CV]] → CV
C[[(E1 E2)]] → (C[[E1]] C[[E2]])
C[[λx.E]] → A[[(x, C[[E]])]]
A[[(x, x)]] → I
A[[(x, c)]] → (Kc)
A[[(x, (E1 E2))]] → ((S A[[(x,E1)]]) A[[(x, E2)]])

Where CV is a constant or a variable.

Figure 7.5: Translation rules for the lambda calculus to SKI code

The SKI calculus is computationally complete; that is, these three operations
are sufficient to implement any operation. This is demonstrated by the rules in
Figure 7.5 which translate lambda expressions to formulas in the SKI calculus.

Any functional programming language can be implemented by a machine that
implements the SKI combinators since, functional languages can be transformed
into lambda expressions and thus to SKI formulas.

Function application is relatively expensive on conventional computers. The
principle reason is the complexity of maintaining the data structures that sup-
port access to the bound identifiers. The problems are especially severe when
higher-order functions are permitted. Because a formula of the SKI calculus
contains no bound identifiers, its reduction rules can be implemented as simple
data structure manipulations. Further, the reduction rules can be applied in any
order, or in parallel. Thus it is possible to design massively parallel computers
(graph reduction machines) that execute functional languages efficiently.

Recursive functions may be defined with the Y operator.

96 CHAPTER 7. FUNCTIONAL PROGRAMMING

• S (K e) (K f) → K (e f)

• S (K e) I → e

• S (K e) f → (B e) f

• S e (K f) → (C e) f

The optimizations must be applied in the order given.

Figure 7.6: Optimizations for SKI code

Optimizations

Notice that the size of the SKI code grows quadratically in the number of bound
variables. Figure 7.6 contains a number of optimizations for SKI code. Among
the optimizations are two additional combinators, the B and C combinators.

Just as machine language (assembler) can be used for programming, combinato-
rial logic can be used as a programming language. The programming language
FP is a programming language based on the idea of combinatorial logic.

7.11 Scheme

Scheme, a descendent of LISP, is based on the lambda calculus. Although it has
imperative features, in this section we ignore those features and concentrate on
the lambda calculus like features of Scheme.

Scheme has two kinds of objects, atoms and lists. Atoms are represented by
strings of non-blank characters. A list is represented by a sequence of atoms
or lists separated by blanks and enclosed in parentheses. Functions in Scheme
are also represented by lists. This facilitates the creation of functions which
create other functions. A function can be created by another function and then
the function applied to a list of arguments. This is an important feature of
languages for AI applications.

Syntax

The syntax of Scheme is similar to that of the lambda calculus.

7.11. SCHEME 97

Scheme Syntax

E ∈ Expressions
A ∈ Atoms (variables and constants)
...

E ::= A | (E...) | (lambda (A...) E) | ...

Expressions are atoms which are variables or constants, lists of arbitrary length
(which are also function applications), lambda abstractions of one or more pa-
rameters, and other built-in functions. Scheme permits lambda abstractions of
more than one parameter.

Scheme provides a number of built in functions among which are +, −, ∗, /,
<, ≤, =, ≥, >, and not. Scheme provides for conditional expressions of the
form (if E0 E1 E2) and (if E0 E1). Among the constants provided in Scheme are
numbers, #f and the empty list () both of which count as false, and #t and any
thing other than #f and () which count as true. nil is also used to represent
the empty list.

Definitions

Scheme implements definitions with the following syntax

E ::= ...| (define I E) | ...

Cons, Car and Cdr

The list is the basic data structure. Among the built in functions for list ma-
nipulation provided in Scheme are cons for attaching an element to the head
of a list, car for extracting the first element of a list, and cdr which returns a
list minus its first element. Figure 7.7 contains an example of stack operations
writtem in Scheme. The figure illustrates definitions, the conditional expres-
sion, the list predicate null? for testing whether a list is empty, and the list
manipulation functions cons, car, and cdr.

98 CHAPTER 7. FUNCTIONAL PROGRAMMING

(define empty stack

(lambda (stack) (if (null? stack) #t #f)))

(define push

(lambda (element stack) (cons element stack)))

(define pop

(lambda (element stack) (cdr stack)))

(define top

(lambda (stack) (car stack)))

Figure 7.7: Stack operations defined in Scheme

Local Definitions

Scheme provides for local definitions with the following syntax

Scheme Syntax
...

B ∈ Bindings
...

E ::= ...| (let B0 E0) | (let* B1 E1) | (letrec B2 E2) |...
B ::= ((I E)...)

The let values are computed and bindings are done in parallel, the let* values
and bindings are computed sequentially and the letrec bindings are in effect
while values are being computed to permit mutually recursive definitions.

7.12 Haskell

In contrast with LISP and Scheme, Haskell is a modern functional programming
language.

Figure 7.8

module Qs where

7.12. HASKELL 99

module AStack(Stack, push, pop, top, size) where

data Stack a = Empty

| MkStack a (Stack a)

push :: a -> Stack a -> Stack a

push x s = MkStack x s

size :: Stack a -> Integer

size s = length (stkToLst s) where

stkToLst Empty = []

stktoLst (MkStack x s) = x:xs where xs = stkToLst s

pop :: Stack a -> (a, Stack a)

pop (MkStack x s) = (x, case s of r -> i r where i x = x)

top :: Stack a -> a

top (MkStack x s) = x

Figure 7.8: A sample program in Haskell

qs :: [Int] -> [Int]

qs [] = []

qs (a:as) = qs [x | x <- as, x <= a] ++ [a] ++ qs [x | x <- as, x > a]

module Primes where

primes :: [Int]

primes = map head (iterate sieve [2 ..])

sieve :: [Int] -> [Int]

sieve (p:ps) = [x | x <- ps, (x ‘mod‘ p) /= 0]

module Fact where

fact :: Integer -> Integer

fact 0 = 1

fact (n+1) = (n+1)*fact n -- * "Foo"

fact _ = error "Negative argument to factorial"

module Pascal where

pascal :: [[Int]]

pascal = [1] : [[x+y | (x,y) <- zip ([0]++r) (r++[0])] | r <- pascal]

tab :: Int -> ShowS

tab 0 = \x -> x

tab (n+1) = showChar ’ ’ . tab n

showRow :: [Int] -> ShowS

100 CHAPTER 7. FUNCTIONAL PROGRAMMING

showRow [] = showChar ’\n’

showRow (n:ns) = shows n . showChar ’ ’ . showRow ns

showTriangle 1 (t:_) = showRow t

showTriangle (n+1) (t:ts) = tab n . showRow t . showTriangle n ts

module Merge where

merge :: [Int] -> [Int] -> [Int]

merge [] x = x

merge x [] = x

merge l1@(a:b) l2@(c:d) = if a < c then a:(merge b l2)

else c:(merge l1 d)

half [] = []

half [x] = [x]

half (x:y:z) = x:r where r = half z

sort [] = []

sort [x] = [x]

sort l = merge (sort odds) (sort evens) where

odds = half l

evens = half (tail l)

this

7.13 Discussion and Further Reading

Functional programming languages have been presented in terms of a sequence of
virtual machines. Functional programming languages can be translated into the
lambda calculus, the lambda calculus into combinatorial logic and combinatorial
logic into the code for a graph reduction machine. All of these are virtual
machines.

Models of the lambda calculus.

History [18] For an easily accessable introduction to functional programming,
the lambda calculus, combinators and a graph machine implementation see [25].
For Backus’ Turing Award paper on functional programming see [2]. The com-
plete reference for the lambda calculus is [3]. For all you ever wanted to know
about combinatory logic see [6, 7, 13]. For an introduction to functional pro-
gramming see [12, 4, 20]. For an intoduction to LISP see [19] and for common
LISP see [29]. For a through introduction to Scheme see [1]. Haskell On the
relationship of the lambda calculus to programming languages see [17]. For the
implementation of functional programming languages see [12, 22].

7.14. EXERCISES 101

7.14 Exercises

1. Simplify the following expressions to a final (normal) form, if one exists.
If one does not exist, explain why.

(a) ((λx.(x y))(λz.z))

(b) ((λx.((λy.(x y)) x))(λz.w))

(c) ((((λf.(λg.(λx.((f x)(g x)))))(λm.(λn.(n m))))(λn.z))p)

(d) ((λx.(x x))(λx.(x x)))

(e) ((λf.((λg.((f f) g))(λh.(k h))))(λy.y)))

(f) (λg.((λf.((λx.(f (x x)))(λx.(f (x x))))) g))

(g) (λx.(λy.((− y) x))) 4 5

(h) ((λf.(f 3))(λx.((+ 1) x)))

2. In addition to the β-rule, the lambda calculus includes the following two
rules:

α-rule: (λx.E)⇒ (λy.E[x : y])
η-rule: (λx.E x)⇒ E where x does not occur free in E

Redo the previous exercise making use of the η-rule whenever possible.
What value is there in the α-rule?

3. The lambda calculus can be used to simulate computation on truth values
and numbers.

(a) Let true be the name of the lambda expression λx.λy.x and false be
the name of the lambda expression λx.λy.y. Show that ((true E1) E2)⇒
E1 and ((false E1) E2)⇒ E2. Define lambda expressions not, and,
and or that behave like their Boolean operation counterparts.

(b) Let 0 be the name of the lambda expression λx.λy.y, 1 be the name
of the lambda expression λx.λy.(x y), 2 be the name of the lambda
expression λx.λy.(x (x y)), 3 be the name of the lambda expression
λx.λy.(x; (x (x y))), and so on. Prove that the lambda expression
succ defined as λz.λx.λy.(x ((z x) y)) rewrites a number to its suc-
cessor.

4. Recursively defined functions can also be simulated in the lambda calculus.
Let Y be the name of the expression λf.λx.(f (x x))λx.(f (x x))

(a) Show that for any expression E, there exists an expression W such
that (Y E) ⇒ (W W), and that (W W) ⇒ (E (W W)). Hence,
(Y E)⇒ E(E(E(...E(W W)...)))

102 CHAPTER 7. FUNCTIONAL PROGRAMMING

(b) Using the lambda expressions that you defined in the previous parts
of this exercise, define a recursive lambda expression add that per-
forms addition on the numbers defined earlier, that is, ((add m) n)⇒
m + n.

5. Data constructors can be modeled in the lambda calculus. Let cons =
(λa.λb.λf.fab), head = (λc.c(λa.λb.a)) and tail = (λc.c(λa.λb.b)). Show
that

(a) head (cons a b) = a

(b) tail (cons a b) = b

6. Show that (((S(KK))I)S) is (KS).

7. What is (((SI)I)X) for any formula X?

8. Compile (λx. + x x) to SKI code.

9. Compile λx.(F (x x)) to SKI code.

10. Compile λx.λy.xy to SKI code. Check your answer by reducing both
((λx.λy.xy) a b) and the SKI code applied to a b.

11. Apply the optimizations to the SKI code for λx.λy.xy and compare the
result with the unoptimized code.

12. Apply the optimizations to the SKI code for λx.(F (x y)) and λy.(F (x y)).

13. Association lists etc

14. HOF

Chapter 8

Logic Programming

Logic programming is characterized by programming with relations and infer-
ence.

Keywords and phrases: Horn clause, Logic programming, inference, modus po-
nens, modus tollens, logic variable, unification, unifier, most general unifier,
occurs-check, backtracking, closed world assumption, meta programming, pat-
tern matching.

A logic program consists of a set of axioms and a goal statement. The rules of
inference are applied to determine whether the axioms are sufficient to ensure
the truth of the goal statement. The execution of a logic program corresponds
to the construction of a proof of the goal statement from the axioms.

In the logic programming model the programmer is responsible for specifying
the basic logical relationships and does not specify the manner in which the
inference rules are applied. Thus

Logic + Control = Algorithms

Logic programming is based on tuples. Predicates are abstractions and gener-
alization of the data type of tuples. Recall, a tuple is an element of

S0 × S1 × ...× Sn

103

104 CHAPTER 8. LOGIC PROGRAMMING

The squaring function for natural numbers may be written as a set of tuples as
follows:

{(0, 0), (1, 1), (2, 4)...}

Such a set of tuples is called a relation and in this case the tuples define the
squaring relation.

sqr = {(0, 0), (1, 1), (2, 4)...}

Abstracting to the name sqr and generalizing an individual tuple we can define
the squaring relation as:

sqr = (x, x2)

Parameterizing the name gives:

sqr(X, Y)← Y is X ∗X

In the logic programming language Prolog this would be written as:

sqr(X,Y) ← Y is X*X.

Note that the set of tuples is named sqr and that the parameters are X and Y.
Prolog does not evaluate its arguments unless required, so the expression Y is
X*X forces the evaluation of X*X and unifies the answer with Y. The Prolog
code

P ← Q.

may be read in a number of ways; it could be read P where Q or P if Q. In
this latter form it is a variant of the first-order predicate calculus known as
Horn clause logic. A complete reading of the sqr predicate the point of view of
logic is: for every X and Y, Y is the sqr of X if Y is X*X. From the point of
view of logic, we say that the variables are universally quantified. Horn clause
logic has a particularly simple inference rule which permits its use as a model
of computation. This computational paradigm is called Logic programming and
deals with relations rather than functions or assignments. It uses facts and
rules to represent information and deduction to answer queries. Prolog is the
most widely available programming language to implement this computational
paradigm.

Relations may be composed. For example, suppose we have the predicates,
male(X), siblingof(X,Y), and parentof(Y,Z) which define the obvious relations,
then we can define the predicate uncleof(X,Z) which implements the obvious
relation as follows:

uncleof(X,Z) ← male(X), siblingof(X,Y), parentof(Y,Z).

8.1. INFERENCE ENGINE 105

The logical reading of this rule is as follows: “for every X,Y and Z, X is the uncle
of Z, if X is a male who has a sibling Y which is the parent of Z.” Alternately,
“X is the uncle of Z, if X is a male and X is a sibing of Y and Y is a parent of
Z.”

The difference between logic programming and functional programming may be
illustrated as follows. The logic program

f(X,Y) ← Y = X*3+4

is an abreviation for

∀X, Y (f(X, Y)← Y = X ∗ 3 + 4)

which asserts a condition that must hold between the corresponding domain and
range elements of the function. In contrast, a functional definition introduces a
functional object to which functional operations such as functional composition
may be applied.

8.1 Inference Engine

The control portion of the the equation is provide by an inference engine
whose role is to derive theorems based on the set of axioms provided by the
programmer. The inference engine uses the operations of resolution and
unification to construct proofs.

Resolution says that given the axioms

f if a0, ..., am.

g if f, b0, ..., bn.

the fact

g if a0, ..., am, b0, ..., bn.

can be derived.

Unification is the binding of variables. For example

8.2 Syntax

There are just four constructs: constants, variables, function symbols, predicate
symbols, and two logical connectives, the comma (and) and the implication

106 CHAPTER 8. LOGIC PROGRAMMING

symbol.

Horn Clause Logic

P ∈ Programs
C ∈ Clauses
Q ∈ Queries
A ∈ Atoms
T ∈ Terms
X ∈ Variables

P ::= C... Q...
C ::= G [← G1 [∧ G2]...] .
G ::= A [(T [,T]...)]
T ::= X | A [(T [,T]...)]
Q ::= G [,G]... ?

CLAUSE, FACT, RULE, QUERY, FUNCTOR, ARITY, ORDER, UNIVER-
SAL QUANTIFICATION, EXISTENTIAL QUANTIFICATION, RELATIONS

In logic, relations are named by predicate symbols chosen from a prescribed
vocabulary. Knowledge about the relations is then expressed by sentences con-
structed from predicates, connectives, and formulas. An n-ary predicate is con-
structed from prefixing an n-tuple with an n-ary predicate symbol.

8.3 Semantics

The operational semantics of logic programs correspond to logical inference.
The declarative semantics of logic programs are derived from the term model
commonly referred to as the Herbrand base. The denotational semantics of
logic programs are defined in terms of a function which assigns meaning to the
program.

There is a close relation between the axiomatic semantics of imperative programs
and logic programs. A logic program to sum the elements of a list could be
written as follows.

sum([Nth],Nth).
sum([Ith|Rest],Ith + Sum Rest) ← sum(Rest,Sum Rest).

8.3. SEMANTICS 107

A proof of its correctness is trivial since the logic program is but a statement of
the mathematical properties of the sum.

{A[N] =
∑N

i=N A[i]}

sum([A[N]], A[N]).

{
∑N

i=I A[i] = A[I] + S if 0 < I,
∑N

i=I+1 A[i] = S}

sum([A[I], ..., A[N]], A[I] + S) ← sum([A[I + 1], ..., A[N]], S).

Operational Semantics

The operational semantics of a logic program can be described in terms of logical
inference using unification and the inference rule resolution. The following logic
program illustrates logical inference.

a.
b ← a.
b?

We can conclude b by modus ponens given that b← a and a. Alternatively, if b
is assume to be false then from b ← a and modus tollens we infer ¬ a but since
a is given we have a contradiction and b must hold. The following program
illustrates unification.

parent of(a,b).
parent of(b,c).
ancestor of(Anc,Desc) ← parent of(Anc,Desc).
ancestor of(Anc,Desc) ← parent of(Anc,Interm) ∧

ancestor of(Interm,Desc).
parent of(a,b)?
ancestor of(a,b)?
ancestor of(a,c)?
ancestor of(X,Y)?

Consider the query ‘ancestor of(a,b)?’. To answer the question “is a an ancestor
of b”, we must select the second rule for the ancestor relation and unify a with

108 CHAPTER 8. LOGIC PROGRAMMING

Anc and b with Desc. Interm then unifies with c in the relation parent of(b,c).
The query, ancestor of(b,c)? is answered by the first rule for the ancestor of
relation. The last query is asking the question, “Are there two persons such
that the first is an ancestor of the second.” The variables in queries are said to
be existentially quantified. In this case the X unifies with a and the Y unifies
with b through the parent of relation. Formally,

Definition 8.1 A unifier of two terms is a substitution making the terms iden-
tical. If two terms have a unifier, we say they unify.

For example, two identical terms unify with the identity substitution. con-
cat([1,2,3],[3,4],List) and concat([X|Xs],Ys,[X|Zs]) unify with the substitutions
{X = 1, Xs = [2,3], Ys = [3,4], List = [1|Zs]}

There is just one rule of inference which is resolution. Resolution is much like
proof by contradiction. An instance of a relation is “computed” by constructing
a refutation. During the course of the proof, a tree is constructed with the
statement to be proved at the root. When we construct proofs we will use the
symbol ¬ to mark formulas which we either assume are false or infer are false
and the symbol 2 for contradiction. Resolution is based on the inference rule
modus tollens and unification. This is the modus tollens inference rule.

From ¬B
and B ← A0, ..., An

infer ¬A0 or...or ¬An

Notice that as a result of the inference there are several choices. Each ¬Ai is a
formula marking a new branch in the proof tree. A contradiction occurs when
both a formula and its negation appear on the same path through the proof
tree. A path is said to be closed when it contains a contradiction otherwise a
path is said to be open. A formula has a proof if and only if each path in the
proof tree is closed. The following is a proof tree for the formula B under the
hypothesises A0 and B ← A0, A1.

1 From ¬B
2 and A0

3 and B ← A0, A1

4 infer ¬A0 or ¬A1

5 choose ¬A0

6 contradiction 2

7 choose ¬A1

8 no further possibilities open

There are two paths through the proof tree, 1-4, 5, 6 and 1-4, 7, 8. The first
path contains a contradiction while the second does not. The contradiction is
marked with 2.

8.3. SEMANTICS 109

As an example of computing in this system of logic suppose we have defined the
relations parent and ancestor as follows:

1. parent of(ogden, anthony)
2. parent of(anthony, mikko)
3. parent of(anthony, andra)
4. ancestor of(A,D)← parent of(A,D)
5. ancestor of(A,D)← parent of(A,X)
6. ancestor of(X, D)

where identifiers beginning with lower case letters designate constants and iden-
tifiers beginning with an upper case letter designate variables. We can infer that
ogden is an ancestor of mikko as follows.

¬ancestor(ogden,mikko) the assumption
¬parent(ogden,X) or ¬ancestor(X, mikko) resolution
¬parent(ogden,X) first choice
¬parent(ogden, anthony) unification with first entry
2 produces a contradiction
¬ancestor(anthony,mikko) second choice
¬parent(anthony,mikko) resolution
2 A contradiction of a

fact.

Notice that all choices result in contradictions and so this proof tree is a proof of
the proposition that ogden is an ancestor of mikko. In a proof, when unification
occurs, the result is a substitution. In the first branch of the previous example,
the term anthonoy is unified with the variable X and anthony is substituted
for all occurences of the variable X.

UNIVERSAL QUANTIFICATION, EXISTENTIAL QUANTIFICATION

The unification algorithm can be defined in Prolog. Figure 8.1 contains a formal
definition of unification in Prolog Unification subsumes

• single assignment

• parameter passing

• record allocation

• read/write-once field-access in records

To illustrate the inference rules, consider the following program consisting of a
rule, two facts and a query:

a ← b ∧ c .

110 CHAPTER 8. LOGIC PROGRAMMING

unify(X,Y) ← X == Y.
unify(X,Y) ← var(X), var(Y), X=Y.
unify(X,Y) ← var(X), nonvar(Y), \+ occurs(X,Y), X=Y.
unify(X,Y) ← var(Y), nonvar(X), \+ occurs(Y,X), Y=X.
unify(X,Y) ← nonvar(X), nonvar(Y), functor(X,F,N), functor(Y,F,N),

X =..[F|R], Y =..[F|T], unify lists(R,T).

unify lists([],[]).
unify lists([X|R],[H|T]) ← unify(X,H), unify lists(R,T).

occurs(X,Y) ← X==Y.
occurs(X,T) ← functor(T,F,N), T =..[F|Ts], occurs list(X,Ts).

occurs list(X,[Y|R]) ← occurs(X,Y).
occurs list(X,[Y|R]) ← occurs list(X,R).

Figure 8.1: Unification

A1 ← B., ?- A1, A2,...,An.
?- B, A2,...,An.

?- true, A1, A2,...,An.
?- A1, A2,...,An.

Figure 8.2: Inference Rules

8.3. SEMANTICS 111

is true(Goals) ← resolved(Goals).
is true(Goals) ← write(no), nl.

resolved([]).
resolved(Goals) ← select(Goal,Goals,RestofGoals),

% Goal unifies with head of some rule
clause(Head,Body), unify(Goal, Head),
add(Body,RestofGoals,NewGoals),
resolved(NewGoals).

prove(true).
prove((A,B)) ← prove(A), prove(B). % select first goal
prove(A) ← clause(A,B), prove(B). % select only goal and find a rule

Figure 8.3: A simple interpreter for pure Prolog

b ← d .
b ← e .
?- a .

By applying the inference rules to the program we derive the following additional
queries:

?- b ∧ c .
?- d ∧ c .
?- e ∧ c.
?- c.
?-

Among the queries is an empty query. The presence of the empty query indicates
that the original query is satisfiable, that is, the answer to the query is yes.
Alternatively, the query is a theorem, provable from the given facts and rules.

A simple interpreter for Pure Prolog

An interpreter for pure Prolog can be written in Prolog. Figure 8.3 is the
Prolog code for an interpreter.

The interpreter can be used as the starting point for the construction of a

112 CHAPTER 8. LOGIC PROGRAMMING

debugger for Prolog programs and a starting point for the construction of an
inference engine for an expert system.

The operational semantics for Prolog are given in Figure 8.4

Declarative Semantics

The declarative semantics of logic programs is based on the standard model-
theoretic semantics of first-order logic.

Definition 8.2 Let P be a logic program. The Herbrand universe of P , denoted
by U(P) is the set of ground terms that can be formed from the constants and
function symbols appearing in P

Definition 8.3 The Herbrand base, denoted by B(P), is the set of all ground
goals that can be formed from the predicates in P and the terms in the Herbrand
universe.

The Herbrand base is infinite if the Herbrand universe is.

Definition 8.4 An interpretation for a logic program is a subset of the Her-
brand base.

An interpretation assigns truth and falsity to the elements of the Herbrand base.
A goal in the Herbrand base is true with respect to an interpretation if it is a
member of it, false otherwise.

Definition 8.5 An interpretation I is a model for a logic program if for each
ground instance of a clause in the program A← B1, ..., Bn A is in I if B1, ..., Bn

are in I.

This approach to the semantics is often called the term model.

Denotational Semantics

Denotational semantics assignes meanings to programs based on associating
with the program a function over the domain computed by the program. The
meaning of the program is defined as the least fixed point 0f the function, if it
exists.

8.3. SEMANTICS 113

Logic Programming (Horn Clause Logic) – Operational Semantics
Abstract Syntax:

P ∈ Programs
C ∈ Clauses
Q ∈ Queries
T ∈ Terms
A ∈ Atoms
X ∈ Variables

P ::= (C | Q)...
C ::= G [← G1 [∧ G2]...] .
G ::= A [(T [,T]...)]
T ::= X | A [(T [,T]...)]
Q ::= G [,G]... ?

Semantic Domains:

β ∈ B = Bindings
ε ∈ E = Environment

Semantic Functions:

R ∈ Q→ B→ B + (B× { yes) + { no }
U ∈ C × C → B → B

Semantic Equations:

R[[?]]β, ε = (β, yes)

R[[G]]β, ε = β′

where
G′ ∈ ε, U [[G, G′]]β = β′

R[[G]]β, ε = R[[B]]β′, ε
where
(G′ ← B) ∈ ε, U [[G, G′]]β = β′

R[[G1, G2]]β, ε = R[[B,G2]](R[[G1]]β, ε), ε

R[[G]]β, ε = no
where no other rule applies

Figure 8.4: Operational semantics

114 CHAPTER 8. LOGIC PROGRAMMING

8.4 The Logical Variable

The logical variable, terms and lists are the basic data structures in logic pro-
gramming.

Here is a definition of the relation between the prefix and suffixes of a list. The
relation is named concat because it may be viewed as defining the result of
appending two lists to get the third list.

concat([],[])
concat([H|T],L,[H|TL]) ← concat(T,L,TL)

Logical variables operate in a way much different than variables in traditional
programming languages. By way of illustration, consider the following instances
of the concat relation.

1. ?- concat([a, b, c], [d, e], L).
L = [a, b, c, d, e] the expected use of the concat operation.

2. ?- concat([a, b, c], S, [a, b, c, d, e]).
S = [d, e] the suffix of L.

3. ?- concat(P, [d, e], [a, b, c, d, e]).
P = [a, b, c] the prefix of L.

4. ?- concat(P, S, [a, b, c, d, e]).
P = [], S = [a, b, c, d, e]
P = [a], S = [b, c, d, e]
P = [a, b], S = [c, d, e]
P = [a, b, c], S = [d, e]
P = [a, b, c, d], S = [e]
P = [a, b, c, d, e], S = []
the prefixes and sufixes of L.

5. ?- concat(,[c|], [a, b, c, d, e]).
answers Yes since c is the first element of some suffix of L.

Thus concat gives us 5 predicates for the price of one.

concat(L1,L2,L)
prefix(Pre,L) ← concat(Pre, ,L).
sufix(Suf,L) ← concat(,Suf,L).
split(L,Pre,Suf) ← concat(Pre,Suf,L).
member(X,L) ← concat(,[X|],L).

8.4. THE LOGICAL VARIABLE 115

The underscore designates an anonymous variable, it matches anything.

There two simple types of constants, string and numeric. Arrays may be repre-
sented as a relation. For example, the two dimensional matrix

data =

 mary 18.47
john 34.6
jane 64.4

may be written as

data(1,1,mary) data(1,2,18.47)
data(2,1,john) data(2,2,34.6)
data(3,1,jane) data(3,2,64.4)

Records may be represented as terms and the fields accessed through pattern
matching.

book(author(last(aaby), first(anthony), mi(a)),
title(’programming language concepts),
pub(wadsworth),
date(1991))

book(A,T,pub(W),D)

Lists are written between brackets [and], so [] is the empty list and [b, c] is
the list of two symbols b and c. If H is a symbol and T is a list then [H|T] is
a list with head H and tail T . Stacks may then be represented as a list. Trees
may be represented as lists of lists or as terms.

Lists may be used to simulate stacks, queues and trees. In addition, the logical
variable may be used to implement incomplete data structures.

Incomplete Data Structures

The following code implements a binary search tree as an incomplete data struc-
ture. It may be used both to construct the tree by inserting items into the tree
and to search the tree for a particular key and associated data.

116 CHAPTER 8. LOGIC PROGRAMMING

lookup(Key,Data,bt(Key,Data,LT,RT))
lookup(Key,Data,bt(Key0,Data0,LT,RT)) ← Key @< Key0,

lookup(Key,Data,LT)
lookup(Key,Data,bt(Key0,Data0,LT,RT)) ← Key @> Key0,

lookup(Key,Data,RT)

This is a sequence of calls. Note that the initial call is with the variable BT .

lookup(john,46,BT), lookup(jane,35,BT), lookup(allen,49,BT), lookup(jane,Age,BT).

The first three calls initialize the dictionary to contain those entries while the
last call extracts janes’s age from the dictionary.

The logical and the incomplete data structure can be used to append lists in
constant time. The programming technique is known as difference lists. The
empty difference list is X/X. The concat relation for difference lists is defined
as follows:

concat dl(Xs/Ys, Ys/Zs, Xs/Zs)

Here is an example of a use of the definition.

?- concat_dl([1,2,3|X]/X,[4,5,6|Y]/Y,Z).

_X = [4,5,6 | _11]
_Y = _11
_Z = [1,2,3,4,5,6 | _11] / _11

Yes

The relation between ordinary lists and difference lists is defined as follows:

ol dl([],X/X) ← var(X)
ol dl([F|R],[F|DL]/Y) ← ol dl(R,DL/Y)

Arithmetic

Terms are simply patterns they may not have a value in and of themselves.
For example, here is a definition of the relation between two numbers and their
product.

times(X,Y,X×Y)

8.5. ITERATION VS RECURSION 117

However, the product is a pattern rather than a value. In order to force the
evaluation of an expression, a Prolog definition of the same relation would be
written

times(X,Y,Z) ← Z is X×Y

8.5 Iteration vs Recursion

Not all recursive definitions require the runtime support usually associated with
recursive subprogram calls. Consider the following elegant mathematical defi-
nition of the factorial function.

n! =
{

1 if n = 0
n× (n− 1)! if n > 0

Here is a direct restatement of the definition in a relational form.

factorial(0,1)
factorial(N,N×F) ← factorial(N-1,F)

In Prolog this definition does not evaluate either of the expressions N-1 or N×F
thus the value 0 will not occur. To force evaluation of the expressions we rewrite
the definition as follows.

factorial(0,1)
factorial(N,F)← M is N-1, factorial(M,Fm), F is N×Fm

Note that in this last version, the call to the factorial predicate is not the last
call on the right-hand side of the definition. When the last call on the right-
hand side is a recursive call (tail recursion) then the definition is said to be an
iterative definition. An iterative version of the factorial relation may be defined
using an accumulator and tail recursion.

fac(N,F) ← fac(N,1,F)
fac(0,F,F)
fac(N,P,F) ← NP is N×P, M is N-1, fac(M,NP,F)

In this definition, there are two different fac relations, the first is a 2-ary rela-
tion, and the second is a 3-ary relation.

As a further example of the relation between recursive and iterative definitions,
here is a recursive version of the relation between a list and its reverse.

reverse([], [])
reverse([H|T], R)← reverse(T, Tr), concat(Tr, [H], R)

118 CHAPTER 8. LOGIC PROGRAMMING

and here is an iterative version.

rev(L,R)← rev(L, [], R)
rev([], R, R)
rev([H|T], L,R)← rev(T, [H|L], R)

Efficient implementation of recursion is possible when the recursion is tail re-
cursion. Tail recursion is implementable as iteration provided no backtracking
may be required (the only other predicate in the body are builtin predicates).

8.6 Backtracking

When there are multiple clauses defining a relation it is possible that either some
of the clauses defining the relation are not applicable in a particular instance or
that there are multiple solutions. The selection of alternate paths during the
construction of a proof tree is called backtracking.

8.7 Exceptions

Logic programming provides an unusually simple method for handling exception
conditions. Exceptions are handled by backtracking.

8.8 Prolog 6= Logic Programming

Prolog is not logic programming. The execution model for Prolog omits the oc-
curs check, searches the rules sequentially, and selects goals sequentially. Back-
tracking, infinite search trees ...

While there is no standard syntax for Prolog, most implementations recognize
the syntax given in Figure 8.5.

As in functional programming, lists are an important data structure logic pro-
gramming. The empty list is represented by [], a list of n elements by [X1, ..., Xn]
and the first i elements of a list and the rest of the list by [X1, ..., Xi|R]. In
addition, data structures of arbitrary complexity may be constructed from the
terms.

8.8. PROLOG 6= LOGIC PROGRAMMING 119

Prolog

P ∈ Programs
C ∈ Clauses
Q ∈ Query
H ∈ Head
B ∈ Body
A ∈ Atoms
T ∈ Terms
X ∈ Variable

P ::= C... Q...
C ::= H [← B] .
H ::= A [(T [,T]...)]
B ::= G [, G]...
G ::= A [([X | T]...)]
T ::= X | A [(T...)]
Q ::= ?- B .

Figure 8.5: Abstract Syntax

120 CHAPTER 8. LOGIC PROGRAMMING

Incompleteness

Incompleteness occurs when there is a solution but it cannot be found. The
depth first search of Prolog will never answer the query in the following logic
program.

p(a, b).
p(c, b).
p(X, Z) ← p(X, Y), p(Y, Z).
p(X, Y) ← p(Y, X).
?- p(a, c).

The result is an infinite loop. The first and fourth clauses imply p(b, c). The
first and third clauses with the p(b, c) imply the query. Prolog gets lost in an
infinite branch no matter how the clauses are ordered, how the literals in the
bodies are ordered or what search rule with a fixed order for trying the clauses
is used. Thus logical completeness requires a breadth-first search which is too
inefficient to be practical.

Unfairness

Unfairness occurs when a permissible value cannot be found.

concat([], L, L).
concat([H|L1], L2, [X|L]) ← concat(L1, L2, L).
concat3(L1, L2, L3, L) ← concat(L1, L2, L12),

concat(L12, L3 L).
?- concat3(X, Y, [2], L).

Result is that X is always []. Prologs depth-first search prevents it from finding
other values.

Unsoundness

Unsoundness occurs when there is a successful computation of a goal which is
not a logical consequence of the logic program.

8.8. PROLOG 6= LOGIC PROGRAMMING 121

test ← p(X, X).
p(Y, f(Y)).
?- test.

Lacking the occur check Prolog will succeed but test is not a logical consequence
of the logic program.

The execution of this logic program results in the construction of an infinite
data structure.

concat([], L, L).
concat([H|L1], L2, [X|L]) ← concat(L1, L2, L).
?- concat([], L, [1|L]).

In this instance Prolog will succeed (with some trouble printing the answer).
There are two solutions, the first is to change the logic and permit infinite terms,
the second is to introduce the occur check with the resulting loss of efficiency.

Negation

Negative information cannot be expressed in Horn clause logic. However, Prolog
provides the negation operator not and defines negation as failure to find a proof.

p(a).
r(b) ← not p(Y).
?- not p(b).

The goal succeeds but is not a logical consequence of the logic program.

q(a) ← r(a).
q(a) ← not r(a).
r(X) ← r(f(X)).
?- q (a).

122 CHAPTER 8. LOGIC PROGRAMMING

The query is a logical consequence of the first two clauses but Prolog cannot
determine that fact and enters an infinite derivation tree. However the closed
world assumption is useful from a pragmatic point of view.

Control Information

Cut (!): prunes the proof tree.

a(1).
a(2).
a(3).
p ← a(I),!,print(I),nl,fail.
?- p.
1

No

Extralogical Features

Input and output introduce side effects.

The extralogical primitives bagof, setof, assert, and retract are outside the
scope of first-order logic but are useful from the pragmatic point of view.

In Prolog there are builtin predicates to test for the various syntactic types,
lists, numbers, atoms, clauses. Some predicates which are commonly available
are the following.

var(X) X is a variable
atomic(A) A is an atom or a numeric constant
functor(P,F,N) P is an N-ary predicate with functor F
clause(Head,Body) Head ← Body is a formula.

L =..List, call(C), assert(C), retract(C),

bagof(X,P,B), setof(X,P,B)

Figure 8.6 contains an example of meta programming. The code implements
a facility for tracing the execution of a Prolog program. To trace a Prolog
program, instead of entering ?- P. enter ?- trace(P).

8.8. PROLOG 6= LOGIC PROGRAMMING 123

trace(Q) ← trace1([Q])
trace1([])
trace1([true|R]) ← !, trace1(R).
trace1([fail|R]) ← !, print(’< ’), print(fail), nl, fail.
trace1([B|R]) ← B =..[’,’|BL], !, concat(BL,R,NR), trace1(NR).
trace1([F|R]) ← builtin(F),

print(’> ’), print([F|R]), nl,
F,
trace1(R),
print(’<’), print(F), nl

trace1([F|R]) ← clause(F,B),
print(’>’), print([F|R]),nl,
trace1([B|R]),
print(’< ’), print(F), nl

trace1([F|R]) ← \+ builtin(F), \+ clause(F,B),
print(’> ’), print([F|R]),nl,
print(’< ’), print(F), print(’ ’), print(fail), nl, fail

Figure 8.6: Program tracer for Prolog

Multidirectionality

Computation of the inverse function must be restricted for efficiency and unde-
cidability reasons. For example consider the query

?- factorial(N,5678).

An implementation must either generate and test possible values for N (which
is much too inefficient) or if there is no such N the undecidability of first-order
logic implies that termination may not occur.

Rule Order

Rule order affects the order of search and thus the shape of the proof tree. In
the following program

124 CHAPTER 8. LOGIC PROGRAMMING

concat([],L,L).
concat([H|T],L,[H|R]) ← concat(T,L,R).
?- concat(L1,[2],L).

the query results in the sequence of answers.

L1 = [], L = [2]
L1 = [V1], L = [V1,2]
L1 = [V1,V2], L = [V1,V2,2]
...

However, if the order of the rules defining concat are interchanged,

concat([H|T],L,[H|R]) ← concat(T,L,R).
concat([],L,L).
?- concat(L1,[2],L).

then the execution fails to terminate, entering an infinite loop since the first
rule is always applicable.

8.9 Database query languages

The query languages of relational database management systems is another
approach to the logic model.

The fundamental entity in a relational database is a relation which is viewed
as a table of rows and columns, where each row, called a tuple, is an object
and each column is an attribute or propery of the object.

A database consists of one or more relations. The data stored in the relations is
manipulated using commands written in a query language. The operations
provided the query language include union, set difference, cartesian product,
projection, and selection.

8.10. LOGIC PROGRAMMING VS FUNCTIONAL PROGRAMMING 125

8.10 Logic Programming vs Functional Program-
ming

Functional composition vs composition of relations, backtracking, type checking

8.11 Further Reading

History
Kowalski’s paper[16]
Logic programming techniques
Implementation of Prolog
SQL
DCG

8.12 Exercises

1. Modify concat to include an explicit occurs check.

2. Construct a family data base f db(f,m,c,sex) and define the following re-
lations, f of, m of, son of, dau of, gf, gm, aunt, uncle, ancestor, half sis,
half bro.

3. Business Data base

4. Blocks World

5. CS Degree requirements; course(dept,name,prereq). don’t forget w1 and
w2 requirements.

6. Circuit analysis

7. Tail recursion

8. Compiler

9. Interpreter

10. Tic-Tac-Toe

11. DCG

12. Construct Prolog analogues of the relational operators for union, set dif-
ference, cartesian product, projection and selection.

13. Airline reservation system

126 CHAPTER 8. LOGIC PROGRAMMING

Chapter 9

Imperative Programming

Imperative programming is characterized by programming with a state and com-
mands which modify the state.

Imperative: a command or order

Procedure: a) the act, method or manner of proceeding in some process or course
of action b) a particular course of action or way of doing something.

Keywords and phrases: Assignment, goto, structured programming, command,
statement, procedure, control-flow, imperative language, assertions, axiomatic
semantics. state, variables, instructions, control structures.

Imperative programming languages are characterized by sequences of bindings.
Programs are sequences of bindings (state changes) in which a name may be
bound an object at one point in the program and later bound to a different
object. Since the order of the bindings affects the value of expressions, one of the
prime issue in the imperative paradigm is control over the sequence of bindings.
These bindings are commands which are issued to a machine. The machine may
not be an actual machine but a virtual machine. Thus, it is common to refer to
the Pascal machine or the Ada machine. The virtual machine provides access
to the hardware through the compiler and the operating system.

In the context of imperative programming languages, a state is more than just
the association between variables and values. It also includes the location of

127

128 CHAPTER 9. IMPERATIVE PROGRAMMING

control in the program. A portion of code cannot be understood by examining
its constituent parts. The reason is that during the execution of the code, control
may be transferred to an arbitrary point outside of the code. Thus, the whole
program may need to be examined in order to understand a small portion of
code.

The imperative programming paradigm is an abstraction of real computers
which in turn are based on Turing machines and the Von Neumann Machine
with its registers and memory. At the heart of each is the concept of a modifi-
able store. Variables and assignment are the programming language analog of
the modifiable store. Thus memory is the object that is manipulated and im-
perative programming languages provide a variety of commands to manipulate
memory.

9.1 Variables and Assignment
assignables–arrays records
etc

In imperative programming, a variable is a name that may be assigned to
a value and later reassigned to a value. The collection of variables and the
associated values constitute the state. The state is a logical model of storage
which is an association between memory locations and values. Aside: A
variable is not a storage cell, nor is it a name of a storage cell; it is the name
of a value. Most descriptions of imperative programming languages are tied to
hardware and implementation considerations where (name, variable, value) =
(address, storage cell, bit pattern). Thus, a name is tied to two bindings, a
binding to a location and to a value. The location is called the l-value and the
value is called the r-value. The necessity for this distinction follows from the
implementation of the assignment where in the assignment, X := X+2, the X on
the left of the assignment denotes a location while the X on the right hand side
denotes the value.

A variable may be bound to a hardware location at various times. It may
be bound at compile time (rarely), at load time (for languages with static al-
location) or at run time (for languages with dynamic allocation). From the
implementation point of view, variable declarations are used to determine the
amount of storage required by the program. 2

The following examples illustrate the general form for variable declarations in
imperative programming languages.

Modula-2: variable V of type T
var V : T;

// C: variable V of type T
T V;

9.1. VARIABLES AND ASSIGNMENT 129

A variable is bound to a value by an assignment. Binding of a variable V to
the value of an expression E.

−−Ada
V := E;

Modula-2
V := E;

//C
V = E;

APL
V ←
; Scheme (setq V E)

Aside: The use of the symbol (=) in C confuses the distinction between
definition, equality and assignment. The symbol (=) is used in mathematics in
two distinct ways. It is used to define and to assert the equality between two
values. In C it neither means define nor equality. In C the symbol (==) is used
for equality, while the form: Type Variable is used for definitions. 2

The assignment command is what distinguishes imperative programming lan-
guages from other programming languages. The assignment typically has the
form: ‘V := E’. The command is read “assign the name V to the value of the
expression E until the name V is reassigned to another value”. The assignment
binds a name to a value. Aside: The word “assign” is used in accordance
with its English meaning; a name is assigned to an object, not the reverse. This
is in contrast to the usual programming usage in which a value assigned to a
variable. 2

The assignment is not the same as a constant definition because it permits
redefinition. For example, the two assignments:

X := 3;
X := X + 1

are understood as follows: assign X to three and then reassign X to the value of
the expression X+1 which is four. Thus, after the sequence of assignments, the
value of X is four.

Several kinds of assignments are possible. Because of the frequent occurence of
assignments of the form: X := X <op> E Algol-68 and C provide an alternative
notation of the form: X <op> := E. A multiple assignment of the form: V0

:= V1 := ... := Vn := E causes several names to be assigned to the same
value. This form of the assignment is found in Algol-60 and in C. A simultaneous
assignment of the form: V0,...,Vn := E0,...,En causes several assignments of

130 CHAPTER 9. IMPERATIVE PROGRAMMING

names to values to occur simultaneously. The simultaneous assignment permits
the swapping of values without the explicit use of an auxiliary variable.

From the point of view of axiomatic semantics, the assignment the a predicate
transformer. It is a function from predicates to predicates. From the point
of view of denotational semantics, the assignment is a function from states to
states. From the point of view of operational semantics, the assignment changes
the state of an abstract machine.

9.2 Control Structures

Since the assignment can assign names to new values, the order in which as-
signments are executed is important. Control structures are syntactic structures
that allow assignments to be combined in useful ways.

Terminology: Imperative programming languages often call assignments and
control structures commands, statements or instructions. In ordinary English,
a statement is an expression of some fact or idea and thus is an inappropriate
designation. Commands and instructions refer to an action to be performed
by a computer. Lacking a more neutral term we will use command to refer to
assignments, skip, and control structures. 2

Terminology: Imperative programming is also called procedural programming.
In either case the implication is clear. Programs are directions or orders for
performing an action. 2

In addition to the simple assignment, imperative programming languages pro-
vide a rich assortment of sequence control mechanisms. Three types of com-
mands are required for sequence control: composition, alternation and iteration.

Composition. Composition is usually indicated by placing commands in textual
sequence and when it is necessary to determine the syntactic termination point
of a command either line separation or a special symbol (such as the semicolon)
is used. Operationally the ordering describes the order or sequence in which the
elements are to be executed. At a more abstract level, composition of commands
is indicated by using a composition operator such as the semicolon (C0;C1). In
PL/1 and C the semicolon is used as a terminator rather than as a composition
operator.

Selection: Selection permits the specification of a sequence of commands by
cases. The selection of a particular sequence is based on the value of an ex-
pression. The if and case commands are the most common representatives of
alternation.

9.2. CONTROL STRUCTURES 131

Iteration: A sequence of commands may be executed zero or more times. At
run time the sequence is repeatedly composed with itself. There is an expres-
sion which whose value at run time determines the number of compositions.
The while, repeat and for commands are the most common representative of
iteration.

Abstraction: A sequence of commmands may be named and the name used to
invoke the sequence of commands.

Skips

The simplest kind of command is the skip command. It has no effect.

Procedure Calls/Coroutines

A procedure is an abstraction of a sequence of commands. The procedure
call is a reference to the abstraction. The semantics of the procedure call is
determined by the semantics of the procedure body.

Parameters and arguments

Parameter passing

in, out, in/out, name

Composition

The most common sequence is the sequential composition of two or (more)
commands (often written ‘S0;S1’). Sequential composition is available in every
imperative programming language.

Alternation

An alternative command may contain a number of alternative sequences of
commands, from which exactly one is chosen to be executed.

Conditional execution discussion: if-then-else, case/switch

-- Ada

132 CHAPTER 9. IMPERATIVE PROGRAMMING

if condition then
commands

{ elsif condition then
commands }

[else
commands]

endif

case expression is
when choice {| choice} => commands

{when choice {| choice} => commands}
[when others => commands]

end case;

Often the case command is extended to include an alternative for unspecified
cases.

case <selector expression> of
...

<value> : <command>;
...

otherwise <command>
end

Iteration

An iterative command has a body which is to be executed repeatedly and
has an expression which determine when the execution will cease.

Loop discussion: while, repeat, for, escapes

[loop name:]
[iteration scheme]
loop

commands

end loop [loop name]

[loop name:]
while condition loop

commands

end loop [loop name]

[loop name:]
for identifier in [reverse] descrete range loop

9.2. CONTROL STRUCTURES 133

commands

end loop [loop name]

[loop name:]
for identifier in [reverse] descrete range loop

...
exit [loop name] [when condition];
...

end loop [loop name]

Iterators and Generators

Definition 9.1 A generator is an expression which generates a sequence of
values contained in a data structure.

The generator concept appears in functional programming languages as func-
tionals.

Definition 9.2 An iterator is a generalized looping structure whose iterations
are determined by a generator.

An iterator is used with the an extended form of the for loop where the iterator
replaces the initial and final values of the loop index. For example, given a binary
search tree and a generator which performs inorder tree traversal, an iterator
would iterate for each item in the tree following the inorder tree traversal.

FOR Item in [I..J] DO S;
FOR Item in List DO S;
FOR Item in Set DO S;
FOR Item in Tree DO S;
...

etc

Productive Use of Failure

1. Iterators and Generators in Icon (ML, Prolog...)

2. Backtracking in Prolog

In Prolog ... the form ... generator(P) ... fail . Backtracking produces the
successive elements of the generator.

134 CHAPTER 9. IMPERATIVE PROGRAMMING

% Generators

% Natural Numbers

nat(0).
nat(N) :- nat(M), N is M + 1.

% Infinite sequence from I

inf(I,I).
inf(I,N) :- I1 is I+1, inf(I1,N).

% An Alternate definition of natural numbers (more efficient)
alt_nat(N) :- inf(0,N).

% Sequence of Squares

square(N) :- alt_nat(X), N is X*X.

% Infinite Arithmetic Series

inf(I,J,I) :- I =< J.
inf(I,J,N) :- I < J, I1 is J + (J-I), inf(J,I1,N).

inf(I,J,I) :- I > J.
inf(I,J,N) :- I > J, I1 is J + (J-I), inf(J,I1,N).

% Finite Arithmetic Sequences

% Numbers between I and J increment by 1

between(I,J,I) :- I =< J.
between(I,J,N) :- I < J, I1 is I+1, between(I1,J,N).

between(I,J,I) :- I > J.
between(I,J,N) :- I > J, I1 is I-1, between(I1,J,N).

% Numbers between I and K increment by (J-I)

between(I,J,K,I) :- I =< K.
between(I,J,K,N) :- I < K, J1 is J + (J-I), between(J,J1,K,N).

between(I,J,K,I) :- I > K.
between(I,J,K,N) :- I > K, J1 is J + (J-I), between(J,J1,K,N).

% Infinite List -- Arithmetic Series the Prefixes

9.3. SEQUENCERS 135

inflist(N,[N]).
inflist(N,[N|L]) :- N1 is N+1, inflist(N1,L).

% Primes -- using the sieve

prime(N) :- primes(PL), last(PL,N).

% List of Primes

primes(PL) :- inflist(2,L2), sieve(L2,PL).
sieve([],[]).
sieve([P|L],[P|IDL]) :- sieveP(P,L,PL), sieve(PL,IDL).

sieveP(P,[],[]).
sieveP(P,[N|L],[N|IDL]) :- N mod P > 0, sieveP(P,L,IDL).
sieveP(P,[N|L], IDL) :- N mod P =:= 0, L \= [], sieveP(P,L,IDL).

last([N],N).
last([H|T],N) :- last(T,N).

% Primes -- using the sieve (no list)

sprime(N) :- inflist(2,L2), ssieve(L2,N).

ssieve([P],P).
ssieve([P|L],NP) :- L \= [], sieveP(P,L,PL), ssieve(PL,NP).

% B-Tree Generator -- Inorder traversal (Order important)
traverse(btree(Item,LB,RB),I) :- traverse(LB,I).
traverse(btree(Item,LB,RB),Item).
traverse(btree(Item,LB,RB),I) :- traverse(RB,I).

9.3 Sequencers

There are several common features of imperative programming languages that
tend to make reasoning about the program difficult. The goto command [9]
breaks the sequential continuity of the program. When when the use of the
goto command is undisciplined the breaks involve abrupt shifts of context.

In Ada, the exit sequencer terminates an enclosing loop. All enclosing loops
upto and including the named loop are exited and execution follows with the
command following the named loop.

136 CHAPTER 9. IMPERATIVE PROGRAMMING

Ada uses the return sequencer to terminate the execution of the body of a
procedure or function and in the case of a function, to return the result of the
computation.

Exception handers are sequencers that take control when an exception is raised.

A sequencer is a construct that allows more general control flows to be pro-
grammed.

• Jumps

• Exits

• Exceptions – propagation, raising, resumption, handler (implicit invoca-
tion)

• Coroutines

The machine languge of a typical computer includes instructions which allow any
instruction to be selected as the next instruction. A sequencer is a construct that
is provided to give high-level programming languages some of this flexibilty. We
consider three sequencers, jumps, escapes, and exceptions. The most powerful
sequencer (the goto) is also the most criticized. Sequencers can make it difficult
to understand a program by producing ‘spaghetti’ like code. So named because
the control seems to wander around in the code like the strands of spaghetti.

9.4 Jumps

A jump is an explicit transfer of control from one point in a progam to another
program point. Jumps come in unconditional and conditional forms:

goto L

if conditional expression goto L

At the machine level alternation and iteration may be implmented using labels
and goto commands. Goto commands often take two forms:

1. Unconditional goto. The unconditional goto command has the form:

goto LABELi

The sequence of instructions next executed begin with the command la-
beled with LABELi.

9.5. ESCAPE 137

2. Conditional goto. The conditional goto command has the form:

if conditional expression then goto LABELi

If the conditional expression is true then execution transfers to the se-
quence of commands headed by the command labeled with LABELi other-
wise it continues with the command following the conditional goto.

The goto commands have a number of advantages, they have direct hardware
support and are completely general purpose. There are also a number of disad-
vantages, programs are flat without hierarchical structure and the code may be
difficult to read and understand.

The term structured programming was coined to describe a style of programming
that emphasizes hierarchical program structures in which each command has one
entry point and one exit point.

9.5 Escape

An escape is a sequence which terminates the execution of a textually enclosing
construct.

An escape of the form:

return expr

is often used to exit a function call and return the value computed by the
function.

An escape of the form:

exit(n)

is used to exit n enclosing constructs. The exit command can be used in con-
junction with a general loop command to produce while and repeat as well as
more general looping constructs.

In C a break command sends control out of the enclosing loop to the com-
mand following the loop while the continue command transfers control to the
beginning of the enclosing loop.

138 CHAPTER 9. IMPERATIVE PROGRAMMING

9.6 Exceptions

There are many “exception” conditions that can arise in program execution.
Some exception conditions are normal for example, the end of an input file
marks the end of the input phase of a program. Other exception conditions
are genuine errors for example, division by zero. Exception handlers of various
forms can be found in PL/1, ML, CLU, Ada, Scheme and other languages.

There are two basic types of exceptions which arise during program execution.
They are domain failure, and range failure.

Domain failure occurs when the input parameters of an operation do not
satisfy the requirements of the operation. For example, end of file on a
read instruction, division by zero.

Range failure occurs when an operation is unable to produce a result for
values which are in the range. For example, division by numbers within
an ε of zero.

Definition 9.3 An exception condition is a condition that prevents the com-
pletion of an operation. The recognition of the exception is called raising the
exception.

Once an exception is raised it must be handled. Handling exceptions is impor-
tant for the constuction of robust programs. A program is said to be robust if it
recovers from exceptional conditions.

Definition 9.4 The action to resolve the exception is called handling the ex-
ception. The propagation of an exception is the passing of the exception to the
context where it can be handled.

The simplest method of handling exceptions is to ignore it and continue execu-
tion with the next instruction. This prevents programmer from learning about
the exception and may lead to erroneous results.

The most common method of handling exceptions is to abort execution. This
is not exceptable for file I/O but may be acceptable for an array index being
out of bounds or for division by zero.

The next level of error handling is to return a value outside the range of the
operation. This could be a global variable, a result parameter or a function
result. This approach requires explicit checking by the programmer for the
error values. For example, the eof boolean is set to true when the program
has read the last item in a file. The eof condition can then be checked before

9.6. EXCEPTIONS 139

attempting to read from a file. The disadvantage of this approach is that a
program tends to get cluttered with code to test the results. A more serious
consequence is that a programmer may forget to include a test with the result
that the exception is ignored.

Responses to an Exception

Return a label and execute a goto – Fortran

Issues

Resumption of Program Execution

Once an exception has been detected, control is passed to the handler that de-
fines the action to be taken when the exception is raised. The question remains,
what happens after handling the exception?

One approach is to treat exception handlers as subroutines to which control
is passed and after the execution of the handler control returns to the point
following the call to the handler. This is the approach taken in PL/1. It implies
that the handler “fixed” the state that raised the condition.

Another approach is that the exception handler’s function is to provide a clean-
up operation prior to termination. This is the approach taken in Ada. The
unit in which the exception occured terminates and control passes to the calling
unit. Exceptions are propagated until an exception handler is found.

Suppression of the Exception

Some exceptions are inefficient to implement (for example, run time range checks
on array bounds). The such exceptions are usually implemented in software
and may require considerable implementation overhead. Some languages give
the programmer control over whether such checks and the raising of the cor-
responding exception will be performed. This permits the checks to be turned
on during program development and testing and then turned off for normal
execution.

1. Handler Specification

2. Default Handlers

3. Propagation of Exception

140 CHAPTER 9. IMPERATIVE PROGRAMMING

Productive Use of Failure

Prolog, Icon

9.7 Coroutines

Multiple threads of control but control is passed from thread to thread under
the active thread’s control.

9.8 Processes

Multiple threads of control where each thread may be active concurrently.

9.9 Side effects

At the root of differences between mathematical notations and imperative pro-
grams is the notion of referential transparency (substitutivity of equals for
equals). Manipulation of formulas in algebra, arithmetic, and logic rely on
the principle of referential transparency. Imperative programming languages
violate the principle. For example:

function f(x:integer) : integer;
begin y := y+1; f := y + x end

This “function” in addition to computing a value also changes the value of
the global variable y. This change to a global variable is called a side effect. In
addition to modifying a global variable, it is difficult to reason with the function
itself. If at some point in the program it is known that y = z = 0 then f(z) =
1 in the sense that after the call f(z) will return 1. But, should the following
expression occur in the program,

1 + f(z) = f(z) + f(z)

it will be false.

As another example of side effects, consider the C function getint as used in the
following two expressions.

9.10. ALIASING 141

2 * getint ()
getint () + getint ()

The two expressions are different. The first multiplies the next integer read
from the input file by two while the second expression denotes the sum of the
next two successive integers read from the input file. And yet as mathematical
expressions they should denote the same value.

Side effects are a feature of imperative programming languages that make rea-
soning about the program difficult. Side effects are used to provide communi-
cation among program units. When undisciplined access to global variables is
permitted, the program becomes difficult to understand. The entire program
must be scanned to determine which program units access and modify the global
variables since the call command does not reveal what variables may be affected
by the call.

9.10 Aliasing

Two variables are aliases if they denote (share) the same data object during
a unit activation. Aliasing is another feature of imperative programming lan-
guages that makes programs harder to understand and harder to reason about.

The following assignments appear to be independent of each other.

x := a + b
y := c + d

But suppose x and c are aliases for the same object. In this case, the assign-
ments are interdependent and the order of evaluation is important. Often in
the optimization of code it is desireable to reorder steps or to delete unecessary
steps. This cannot be done when aliasing is possible.

Aliasing can occur in several ways.

The purpose of the equivalence command in FORTRAN is the creation of aliases.
It permits the efficient use of memory (historically a scarce commodity) and can
be used as a crude form of a variant record.

When a data object is passed by “reference” it is referenced both by its name in
the calling environment and its parameter name in the called environment. An-
other way in which aliasing can occur is when a data object may be a component
of several data objects (referenced through pointer linkages).

Aliasing can arise from variable definitions and from variable parameters. Con-
sider calls confuse(i, i) and confuse(a[i], a[j]) given the following

142 CHAPTER 9. IMPERATIVE PROGRAMMING

Pascal procedure

procedure confuse (var m, n : integer);
begin n := 1; n := m + n end

in the first call i is set to 2. The result of the second call depends on the values
of i and j. The second call shows that the detection of aliasing may be delayed
until run time. No compiler can detect aliasing in general.

• Formal and actual parameters share the same data object.

• Procedure calls have overlapping actual parameters.

• A formal parameter and a global variable denote the same data object.

Pointers are intrinsically generators of aliasing.

var p, q : ↑ T;
...
new(p);
q := p

Dangling References

type pointer = ^ Integer
var p : Pointer;

procedure Dangling;
var q : Pointer;

begin;
new(q); q^ := 23; p := q; dispose(q)

end;

begin
new(p); Dangling(p)

end;

The pointer p is left pointing to a non-existent value.

The problem of aliasing arises as soon as a language supports variables and
assignment. If more than one assignment is permitted on the same variable x,
the fact that x=a cannot be used at any other point in the program to infer a

9.11. REASONING ABOUT IMPERATIVE PROGRAMS 143

property of x from a property of a. Aliasing and global variables only magnify
the issue.

Imperative constructs jeopardize many of the fundamental techniques for rea-
soning about mathematical objects. Much of the work on the theory of program-
ming languages is an attempt to explain the “referentially opaque” features of
programming languages in terms of well-defined mathematical constructs.

9.11 Reasoning about Imperative Programs

Imperative constructs jeopardize many of the fundamental techniques for rea-
soning about mathematical objects. For example, the assignment axiom of
axiomatic semantics is valid only for languages without aliasing and side effects.
Much of the work on the theory of programming languages is an attempt to
explain the “referentially opaque” features of programming languages in terms
of well-defined mathematical constructs. By providing descriptions of program-
ming language features in terms of standard mathematical concepts, program-
ming language theory makes it possible to manipulate programs and reason
about them using precise and rigorous techniques. Unfortunately, the resulting
descriptions are complex and the notational machinery is difficult to use in all
but small examples. It is this complexity that provides a strong motivativation
to provide functional and logic programming as alternatives to the imperative
programming paradigm.

9.12 Expressions with side effects

Most imperative programming languges permit expressions to have side effects.

9.13 Sequential Expressions

Imperative programming languages with their emphasis on the sequential evalu-
ation of commands often fail to provide a similar sequentiality to the evaluation
of expressions. The following code illustrates a common programming situation
where there are two or more conditions which must remain true for iteration to
occur.

i := 1;
while (i <= length) and (list[i] <> value) do i := i+1

144 CHAPTER 9. IMPERATIVE PROGRAMMING

command := |IDENT := exp
|label : command

| GOTO label
| IF boo exp THEN GOTO label
| command; command

Figure 9.1: A set of structured commands

command := SKIP
| IDENT := exp
| IF guarded command alternative ... FI
| DO guarded command alternative ... OD
| command; command

guarded command := guard → command

alternative := [] guarded command

Figure 9.2: A set of structured commands

The code implements a sequential search for a value in a table and terminates
when either the entire table has been searched or the value is found. Assuming
that the subscript range for list is 1 to length it seems reasonable that the
termination of the loop should occur either when the index is out of bounds or
when the value is found. That is, the arguments to the and should be evaluated
sequentually and if the first argument is false the remaining argument need not
be evaluated since the value of the expression cannot be true. Such an evaluation
scheme is call short-circuit evaluation.

In most implementations, if the value is in the list, the program aborts with a
subscript out of range error.

The Ada language provides the special operators and then and or else so that
the programmer can specify short-circuit evaluation.

9.14 Structured Programming

Given the imporatance of sequence control, it is not suprizing that considerable
effort has been given to finding appropriate control structures. Figure 9.1 gives
a set of basic control structures. Figure 9.2 gives a set of structured commands.

9.15. EXPRESSION-ORIENTED LANGUAGES 145

9.15 Expression-oriented languages

An expression-oriented language is an imperative languge in which distinctions
between expressions and commands are eliminated. This permits a simplifi-
cation in the syntax in that the language does not need both procedure and
function abstraction nor conditional expressions and commands since he evalu-
ation of an expression may both yield a value and have a side effect of updating
variables. The assignment V := E can be defined to yield the value of the ex-
pression E and assign V to the value of E. Since the assignment is an expression,
expressions of the form V0 := ... := (Vn := E) are possible giving multiple
assigment for free. The assignment returns the 0-tuple () in ML.

The value of E0;E1 the value of E1. E0 is evaluated for its side-effect and the
value is discarded. There is no obvious result for iterative control structures.
Typically they are defined to return zero or a null value.

Expression-oriented languages achieve simplicity and regularity by eliminating
the distinction between expressions and commands. Often this can result in
an opaque programming style. Algol-68, Scheme, ML and C are examples of
expression oriented languages.

9.16 Further Reading

Exercises

1. Give all possible forms of assignment found in the programming language
C.

2. Give axiomatic, denotational and operational semantics for the simulta-
neous assignment. What is the effect on the semantic descriptions if ex-
pressions are permitted to have side effects?

3. Ambiguity of Pascal’s if command.

4. Compare the case command of Ada to the switch command of C++.

5. Compare the looping constructs of Ada and C++

6. Alternative control structures

7. Goto elimination

8. Axiomatic semantics

9. Denotational semantics

146 CHAPTER 9. IMPERATIVE PROGRAMMING

10. Operational semantics

11. Provide implementations of the alternative and iterative control structures
in terms of labels and gotos.

12. Classify the following common error/exception conditions as either domain
or range errors.

(a) overflow – value exceeds representational capabilities

(b) undefined value – variable value is undefined

(c) subscript error – array subscript out of range

(d) end of input – attempt to read past end of input file

(e) data error – data of the wrong type

Chapter 10

Concurrent Programming

Concurrent programming is characterized by programming with more than one
process.

Keywords and phrases Pipelines, parallel processes, message passing, monitors,
concurrent programming, safety, liveness, deadlock, livelock, fairness, commu-
nication, synchronization producer-consumer, dining philosophers.

Operations are sequential, if they occur one after the other, ordered in time.
Operations are concurrent, if they overlap in time. Operations in the source
text of a program are concurrent if they could be, but need not be, executed
in parallel. Concurrent programming involves the notations for expressing po-
tential parallelism and the techniques for solving the resulting synchronization
and communication problems. Notations for explicit concurrency are a pro-
gram structuring technique while parallelism is mode of execution provided by
the underlying hardware. Thus we can have parallel execution without explicit
concurrency in the language. This is the case when functional and logic pro-
gramming languages are executed on appropriate hardware or a program is
compiled by a parallelizing compiler. We can have concurrency in a language
without parallel execution. This is the case when a program (with or without
explicit concurrent sections) is executed on a single processor. In this case, the
program is executed by interleaving executions of concurrent operations in the
source text.

147

148 CHAPTER 10. CONCURRENT PROGRAMMING

PL/1

ALGOL 68

Ada

SR

10.1 Concurrency

Concurrency occurs in hardware when two or more operations overlap in time.
Concurrency in hardware dates back to the 1950s when special-purpose proces-
sors were developed for controlling input/output devices. This permitted the
overlapping of CPU instructions with I/O actions. For example, the execution
of an I/O instruction no longer delayed the execution of the next instruction.
The programmer was insulated from this concurrency by the operating sys-
tem. The problems presented to the operating systems by this concurrency and
the resulting solutions form the basis for constructs supporting concurrency
in programming languages. Hardware singnals called interrupts provided the
synchonization between the CPU and the I/O devices.

Interrupts together with a hardware clock made it possible to implemenent
multiprogramming systems which are designed to maximize the utilization of
the the computer systems resources (CPU, store, I/O devices) by running two
or more jobs concurrently. When one job was performing I/O another job could
be executing using the CPU.

Interrupts and the hardware clock also made possible the development of inter-
active systems where multiple users have simultaneous access to the system re-
sources. Such a system must provide for a large number of jobs whose combined
demands on the system may exceed the system resources. Various techniques of
swapping and paging meet this need by moving jobs in and out of the store to
the larger capacity of backing store devices. With the increase of jobs comes the
need to increase the capacity of the CPU. The solution was to develop multipro-
cessor systems in which several CPUs are available and simultaneously operate
on separate jobs in the shared store.

An alternate solution is to develop distributed systems consisting of several com-
plete computers (each containing both CPU and an associated store) that can
operate independently but also communicate efficiently. Such systems of local
area networks permit the efficient use of shared resources (such as printers and
large backing store via file servers) and increase the computational throughput
of the system.

Other advances in hardware have lead to the the development of alternative ar-

10.1. CONCURRENCY 149

chitectures. Pipeline processors which fetch the next instruction while the first
instruction is being decoded. Array processors provide a large number of iden-
tical processors that operate simultaneously on different parts of the same data
structure. Data flow computers aim at extracting maximum concurrency from
a computation by performing as much of the computation in parallel as possi-
ble. Connectionism based hardware models provide concurrency by modeling
computation after the neural networks found in the brain.

From the programmer’s point of view, concurrent programming facilities al-
low programs to be structured as a set of possibly interactive processes. Such
an organization is particularly useful for operating systems, real-time control
systems, simulation studies, and combinatorial search applications.

Concurrency occurs in a programming language when two or more operations
could (but need not) be executed in parallel. The two fundamental concepts in
concurrent programming are processes and resources. A process corresponds to
a sequential computation with its own thread of control. Concurrent programs
are distinguished from sequential programs in that unlike sequential programs
concurrent programs permit multiple processes. Processes may share resources.
Shared resources include program resources such as data structures and hard-
ware resources like printers. To permit the effective use of multiple processes
concurrent programming languages must provide three constructs.

1. Concurrent execution: Constructs that denote operations that could be,
but need not be, executed in parallel.

2. Communication: Constructs that permit processes to exchange informa-
tion usually either through shared variables (visible to each process) or a
message passing mechanism.

3. Synchronization: In general processes are not independent. Often a pro-
cess depends on data produced by another process. If the data is not
available the process must wait until the data is available.

Aside: The terms, concurrent, distributed and parallel have a been used at
various times to describe various types of concurrent programming. Multiple
processors and disjoint or shared store are implementation concepts and are not
important from the programming language point of view. What matters is the
notation used to indicate concurrent execution, communication and synchro-
nization. 2

Processes which communicate and synchronize characterize the computational
paradigm based on processes. C, Scheme, Ada and Occam are just some of
the programming languages that provide for processes. It is important to note
that the notion of processes is orthogonal to that of inference, functions and
assignments.

150 CHAPTER 10. CONCURRENT PROGRAMMING

10.2 Issues in Concurrent Programming

The basic correctness issues in the design of concurrent programs are safety and
liveness.

• Safety: nothing bad will happen. For example, access to a shared resource
like a printer requires that the user process have exclusive access to the
resource. So there must be a mechanism to provide mutual exclusion.

• Liveness: something good will happen. On the other hand, no process
should prevent other processes from eventual access to the printer. Thus
any process which wants the printer must eventually have access to the
printer.

Safety is related to the concept of a loop invariant. A program should produce
the “right” answer. Liveness is related to the concept of a loop variant. A
program is expected to make progress. Termination is an example of a liveness
property when a program is expected to terminate.

To illustrate the issues involved in concurrent programming we consider the
dining philosophers problem.

The Dinning Philosophers: Five philosophers sit at a circular
table, alternating between eating spaghetti and thinking. In order
to eat, a philosopher must have two forks. There is a single fork
between each philosopher, so if one philosopher is eating, a neigh-
boring philosopher cannot eat. A philosopher puts down the forks
before thinking.

The problem is to construct an algorithm that permits the philosophers to eat
and think.

The philosophers correspond to processes and the forks correspond to resources.

A safety property for this problem is that a fork is held by one and only one
philosopher at a time. A desireable liveness property is that whenever a philoso-
pher wants to eat, eventually the philosopher will get to eat.

Nondeterminism

Sequential programs are nearly always deterministic. A deterministic program
follows a sequence of step that can be predicted in advance. Its behavior is re-
producible and thus, deterministic programs are testable. Concurrent programs

10.2. ISSUES IN CONCURRENT PROGRAMMING 151

are likely to be nondeterministic because the order and speed of execution of
the processes is unpredicatable. This makes testing of concurrent programs a
difficult task.

Communication

Two processes are said to communicate if an action of one process must entirely
precede an action of a second process.

Synchronization

Synchronization is related to communication.

Mutual Exclusion

Often a process must have exclusive access to a resource. For example, when a
process is updating a data structure, no other process should have access to the
same data structure otherwise the accuracy of the data may be in doubt. The
necessity to restrict access is termed mutual exclusion and involves the following:

• At most one process has access

• If there are multiple requests for a resource, it must be granted to one of
the processes in finite time.

• When a process has exclusive access to a shared resource it release it in
finite time.

• When a process requests a resource it must obtain the resource in finite
time.

• A process should not consume processing time while waiting for a resource.

There are several solutions to the mutual exclusion problem. Among the solu-
tions are semiphores, critical regions and monitors.

Scheduling

When there are active requests for a resource there must be a mechanism for
granting the requests. Often a solution is to grant access on a first-come, first-
served basis. This may not always be desireable since there may be processes

152 CHAPTER 10. CONCURRENT PROGRAMMING

whose progress is more important. Such processes may be given a higher pri-
ority and their requests are processed first. When processes are prioritized,
some processes may be prevented from making progress (such a process is live-
locked). A fair scheduler insures that all processes eventually make progress
thus preventing live-lock.

Deadlock

Deadlock is a liveness problem; it is a situation in which a set of processes
are prevented from making any further progress by their mutually incompati-
ble demands for additional resources. For example, in the dining philosophers
problem, deadlock occurs if each philosopher picks up his/her left fork. No
philosoper can make further progress.

Deadlock can occur in a system of processes and resources if, and only if, the
following conditions all hold together.

• Mutual exclusion: processes have exclusive access to the resources.

• Wait and hold: processes continue to hold a resource while waiting for a
new resource request to be granted.

• No preemption: resources cannot be removed from a process.

• Circular wait: there is a cycle of processes, each is awaiting a resource
held by the next process in the cycle.

There are several approaches to the problem of deadlock.

A common approach is to ignore deadlock and hope that it will not happen.
If deadlock occurs, (much as when a program enters an infinite loop) the sys-
tem’s operators abort the program. This is not an adequate solution in highly
concurrent systems where reliablility is required.

A second approach is to allow deadlocks to occur but detect and recover auto-
matically. Once deadlock is detected, processes are selectively aborted or one or
more processes are rolled back to an earlier state and temporarily suspended un-
til the danger point is passed. This might not an acceptable solution in real-time
systems.

A third approach is to prevent deadlock by weaking one or more of the con-
ditions. The wait-and-hold condition may be modified to require a process to
request all needed resources at one time. The circular-wait condtion may be
modified by imposing a total ordering on resources and insisting that they be
requirested in that order.

10.3. SYNTAX 153

Another example of a liveness problem is livelock (or lockout or starvation).
Livelock occurs when a process is prevented from making progress (other pro-
cesses are running). This is an issue of fairness.

10.3 Syntax

In this section we develop a notation for the specification of concurrency, com-
munication and synchronization.

notation for explicit concurrency

[P1 ‖ P2 ‖ ... ‖ Pn]

notation for communication

Pi!E,Pj?X

notation for synchronization

wait(Pi), signal(Pj)

combined notation for communication and synchronization

10.4 Interfering Processes

Processes that access a common address space may interfere with each other.
In this program,

[i := 1 ‖ i := 2]

the resulting value of i could be either 1 or 2 depending on which process
executed last and in this program,

[i := 0; i := i + 1 ‖ i := 2]

the resulting value of i could be either 1, 2 or 3.

154 CHAPTER 10. CONCURRENT PROGRAMMING

multiply n by n matrices a and b in parallel

place result in matrix c
all matrices are global to multiply
process multiply(i := 1 to n, j := 1 to n)
var inner prod := 0
fa k := 1 to n →

inner prod := inner prod + a[i, k] ∗ b[k, j]
af
c[i, j] := inner prod

end

Figure 10.1: Matrix multiplication

10.5 Non-interfering Processes

Processes which have disjoint address spaces cannot interfere with each other
and thus can operate without fear of corrupting each other. For example, the
two processes in

[i := 1 ‖ j := 2]

do not share an address space therefore, the assignments may take place in
parallel.

Another example of non-interfering processes is found in matric multiplication.
When two matrices are multiplied, each entry in the product matrix is the result
of multiplying a row times a column and summing the products. This is called
an inner product. Each inner produce can be computed independently of the
others. Figure 10.1 is an example of a matrix multiplication routine written in
the SR programming language. This particular example also illustrated dynamic
process creation in that n2 processes are created to perform the multiplication.

10.6 Cooperating Processes

vs. message passing later.

The requirement for disjoint address space may be too severe a requirement.
What is required is that shared resources may need to be protected so that only
one process is permitted access to the resourse at a time. This permits processes
to cooperate, sharing the resource but maintaining the integrity of the resource.

10.7. SYNCHRONIZING PROCESSES 155

semiphore

critical section

monitor

In the following program there is a producer and a consumer process. The
producer process adds items to the queue and the consumer process removes
items from the queue. The safety condition that must be satisfied is that the
head and tail of the queue must not over run each other. The liveness condition
that must be satisfied is that when the queue contains an item, the consumer
process must be able to access the queue and when the queue contains space for
another item, the producer process must be able to access the queue.

const qsize = 10;
var count:integer;

queue : array[0..qsize-1] of integer;
procedure enqueue (x : integer);

begin
*[head=(tail+1) mod qsize → skip];
queue[tail],tail := x, (tail + 1) mod qsize

end;
procedure dequeue (var x : integer);

begin
*[head=tail → skip];
x,head := queue[head],(head + 1) mod qsize

end;
begin

head,tail := 0,0;
[*[produce(x); enqueue(x)] ‖ *[dequeue(y); consume(y)]]

end.

Since the processes access different portions of the queue and test for the pres-
ence or absence of items in the queue before accessing the queue, the desired
safety properties are satisfied. Note however, that busy waiting is involved.

10.7 Synchronizing Processes

In many applications it is necessary to order the actions of a set of processes
as well as interleave their access to shared resources. common address space,
critical section protected by a monitor, synchronization provided through wait
and signal.

156 CHAPTER 10. CONCURRENT PROGRAMMING

Some alternative synchronization primitives are

• Semaphores

• Critical Regions

• Monitors

• Synchronized Message Passing

If in the previous example another process where to be added, either a producer
or a consumer process, an unsafe condition could result. Two processes could
compete for access to the same item in the queue. The solution is to permit only
one process at a time to access the enqueue or dequeue routines. One approach
is to protect the critical section by a monitor. The monitor approach requires
that only one process at a time may execute in the monitor. The following
monitor solution is incorrect.

monitor Queue ADT
const qsize = 10;
var count:integer;

queue : array[0..qsize-1] of integer;
procedure enqueue (x : integer);

begin
*[head=(tail+1) mod qsize → skip];
queue[tail],tail := x, (tail + 1) mod qsize

end;
procedure dequeue (var x : integer);

begin
*[head=tail → skip];
x,head := queue[head],(head + 1) mod qsize

end;
begin

head,tail := 0,0;
end;

begin
[produce(x); enqueue(x) ‖ dequeue(y); consume(y) ‖ dequeue(y); consume(y)]

end.

Note that busy waiting is still involved and further once a process is in the mon-
itor and is waiting, no other process can get in and the program is deadlocked.

The solution is to put the waiting processes on a queue.

monitor Queue ADT

10.8. COMMUNICATING PROCESSES 157

const qsize = 10;
var head, tail : integer;

queue : array[0..qsize-1] of integer;
notempty, notfull : condition;

procedure enqueue (x : integer);
begin

[head=(tail+1) mod qsize → wait(notfull)
2 head6=(tail+1) mod qsize → skip];
queue[tail],tail := x, (tail + 1) mod qsize
signal(notempty)

end;
procedure dequeue (var x : integer);

begin
[head=tail → wait(notempty)
2 head6=tail → skip];
x,head := queue[head],(head + 1) mod qsize;
signal(notfull)

end;
begin

head,tail := 0,0;
end;

begin
[produce(x); enqueue(x) ‖ dequeue(y); consume(y) ‖ dequeue(y); consume(y)]

end.

Busy waiting is no longer involved.

Livelock may result if there are more than one waiting process and when the
signal is received access is not granted fairly.

Starvation: (livelock) multiple processes waiting for access but access is not
provided in a fair manner

Coroutines.

Real-time Programming language issues

10.8 Communicating Processes

In the previous solution, it was assumed that the processes shared the address
space and that synchronization was achieved by the use of monitor and con-
dition queues. If the address spaces are disjoint, then both communication
and synchronization must be achieved through message passing. There are two
choices, message passing can be synchronous or asynchronous. When message

158 CHAPTER 10. CONCURRENT PROGRAMMING

passing is asynchronous, synchronization can be obtained by requiring a reply
to a synchronizing message. In the examples that follow, synchronized message
passing is assumed.

Communication commands in the guards. Most communication based program-
ming languages permit input commands in the guards but not output com-
mands. The asymmetry is due to the resulting complexity required to imple-
ment output commands in the guards.

process Q;
const qsize = 10;
var head, tail : integer;

queue : array[0..qsize-1] of integer;

begin
head,tail := 0,0;
*[head 6= tail, C?X → C!queue[head]; head := (head + 1) mod qsize

2 head 6= (tail+1) mod qsize, P?X → queue[tail],tail := X, (tail + 1) mod qsize]
end;

process P;
begin

*[true → produce(X); Q!X]
end;

process C;
begin

*[true → Q!X, Q?X; consume(X)]
end;

begin
[P ‖ C ‖ Q]

end.

10.9 Occam

10.10 Semantics

Parallel processes must be...

1. Synchronization-coordination of tasks which are not completely indepen-

10.11. RELATED ISSUES 159

dent.

2. Communication-exchange of information

3. Scheduling-priority,

4. Nondeterminism-arbitrary selection of execution path

Explicit Parallelism (message passing, semaphores, monitors)

Languages which have been designed for concurrent execution include Concur-
rent Pascal, Ada and Occam. Application areas are typically operating systems
and distributed processing.

Ensemble activity

10.11 Related issues

Lazy evaluation vs Parallel execution

Backtracking vs Parallel execution

10.12 Examples

Pipelines

unix, pipeline sort, sieve

Systolic arrays

Dining Philosophers

10.13 Further Reading

Exercises

1. independent

2. pipe line

160 CHAPTER 10. CONCURRENT PROGRAMMING

3. synchronized

Chapter 11

PCN

11.1 Tutorial

Program Composition

Concurrent Programming Concepts

Getting Started

Example Program - compiling, linking, running

11.2 The PCN Language

PCN Syntax

Sequential Composition and Mutable Variables

Parallel Composition and Definitional Variables

Choice Composition

Definitional Variables as Communication Channels

Lists and Tuples

Stream Communication

Advanced Stream Handling

161

162 CHAPTER 11. PCN

11.3 Examples

Exercises

Chapter 12

Abstraction and
Generalization II

Encapsulate—To completely enclose.

Keywords and phrases: Modularity, encapsulation, function, procedure,
abstract type, generic, library, object, class, inheritance, partition, package,
unit, separate compilation, linking, import, export, instance, scope.

• Partitions

• Separate compilation

– Linking

– Name and Type consistency

• Scope rules

– Import

– Export

• Modules–collection of objects–definitions

• Package

163

164 CHAPTER 12. ABSTRACTION AND GENERALIZATION II

12.1 Encapsulation

The object part of a definition often contains other definitions which are said
to be local definitions. Such local definitions are not visible or available to be
referenced by other definitions. Thus the object part of a definition involves
“information hiding”. This hidden information is sometimes made available by
exporting the names.

The work of constructing large programs is divided among several people, each
of whom must produce a part of the whole. Each part is called a module and
each programmer must be able to construct his/her module without knowing
the internal details of the other parts. This is only possible when each module
is is separated into an interface part and an implementation part. The
interface part describes all the information required to use the module while
the implementation part describes the implementation. This idea is already
present in most programming languages in the manner in which functions and
procedures are defined. Function and procedure definitions usually are
separated into two parts. The first part gives the subprogram’s name and
parameter requirements and the second part describes the implementation. A
module is a generalization of the concept of abstraction in that a module is
permitted to contain a collection of definitions. An additional goal of modules
is to confine changes to a few modules rather than throughout the program.

While the concept of modules is a useful abstraction, the full advantages of
modules are gained only when modules may be written, compiled and possibly
executed separately. In many cases modules should be able to be tested
independently of other modules.

In this section we consider various language design considerations which can
be used as weapons in the war against complexity, the pragmatics of
programming. In particular, we discuss scope, modularity.

Advantages

• reduction in complexity

• team programming

• maintainability

• reusability of code

• project management

Implementation

• common storage area – Fortran

12.2. ADTS 165

• include directive – C++

• subroutine library

Typical applications:

• subroutine packages – mathematical, statistical etc

• ADTs

examples from Ada, C++, etc

12.2 ADTs

An even more effective approach is to separate the signatures of the operations
from the bodies of the operations and the type representation so that the
operation bodies and type representation can be compiled separately. This
facilitates the development of software in that when an abstract data type’s
representation is changed (e.g. to improve performance) the changes are
localized to the abstract data type.

name : adt
operation signatures
...

name : adt body
type representation definition
operation bodies
...

12.3 Partitions

Definition 12.1 A partition of a set is a collection of disjoint sets whose
union is the set.

There are a number of mechanisms for partitioning program text. Functions
and procedures are among the most common. However, the result is still a
single file. When the partitions of program text are arranged in separate files,
the partitions are called modules. Here are several program partitioning
mechanisms.

166 CHAPTER 12. ABSTRACTION AND GENERALIZATION II

• Separate declaration of data and code

• Procedures

• Functions

• ADTs

• Modules

Partitioning of program text is desirable to provide for separate compilation
and for pipeline processing of data.

There are a number of mechanisms for combining the partitions into a single
program for the purposes of compilation and execution. The include
statement is provided in a number of languages. It is a compiler directive with
directs the compiler to textually include the named file in the source program.
In some systems the partitions may be separately compiled and there is a
linking phase in which the compiled program modules are linked together for
execution. In other systems, at run-time any missing function or procedure
results in a run-time search for the missing module which if found is then
executed or if not found results in a run-time error.

12.4 Scope Rules

The act of partitioning a program raises the issue of the scope of names.
Which objects with in the module are to be visible outside the module? The
usual solution is to designate some names to be exported and others to be
private or local to the module and invisible to other modules. In case there
might be name conflict between exported names from modules, modules are
often permitted to designate names that are to be imported from designated
modules or to qualify the name with the module name.

The scope rules for modules define relationships among the names within the
modules. There are four choices.

• All local names visible globally.

• All external names visible locally.

• Only local explicitly exported names visible globally.

• Only external names explicitly imported are visible locally.

Name conflict is resolved via qualification with the module name.

12.5. MODULES 167

12.5 Modules

A module is a named program unit which is an (more or less) independent
entity. In program construction the module designer must answer the
following questions.

• What is the module’s purpose?

• How does it achieve that purpose?

Programming in the large is concerned with programs that are not
comprehensible by a single individual and are developed by teams of
programmers. At this level programs must consist of modules that can be
written, compiled, and tested independently of other modules. A module has a
single purpose, and has a narrow interface to other modules. It is likely to be
reuseable (able to be incorporated into may programs) and modifiable with
out forcing changes in other modules.

Modules must provide answers to two questions:

• What is the purpose of the module?

• How does it achieve that purpose?

The what is of concern to the user of the module while the how is of concern to
the implementer of the module.

Functions and procedures are simple modules. Their signature is a description
of what they do while their body describes how it is achieved. More typically a
module encapsulates a group of components such as types, constants,
variables, procedures, functions and so on.

To present a narrow interface to other modules, a module makes only a few
components visible outside. Such components are said to be exported by the
module. The other components are said to be hidden inside the module. The
hidden components are used to implement the exported components.

Access to the components is often by a qualified name – module name.
component name. When strong safety considerations are important, modules
using components of another module may be required to explicitly import the
required module and the desired components.

Exercises

1. Algebraic Semantics: stack, tree, queue, grade book etc

168 CHAPTER 12. ABSTRACTION AND GENERALIZATION II

2. Lexical Scope Rules

3. Dynamic Scope Rules

4. Parameter Passing

5. Run-time Stack

Chapter 13

Object-Oriented
Programming

Object-oriented programming is characterized by programming with objects,
messages, and hierarchies of objects.

Keywords and phrases: Abstract Data Type, object-based, object-oriented,
Inheritance, Object, sub-type, super-type, sub-range, sub-class, super-class,
polymorphism, overloading, dynamic type checking, Class, Instance, method,
message

• History

– Simula

– ADT

– Small-Talk

– Modula-2, C++, Eiffel

• Subtypes (subranges)

• Generic types

• Inheritance – Scope generalization

169

170 CHAPTER 13. OBJECT-ORIENTED PROGRAMMING

• OOP

– Objects–state + operations

– Object Classes– Class, Subclass

• Objects–state + operations

• Object Classes– Class, Subclass

• Inheritance mechanism

Object-oriented programming shifts the emphasis from data as passive
elements acted on by procedures to data as active elements interacting with
their environment. From control flow to interacting objects.

Object-oriented programming developed out of simulation programs. The
conceptual model used is that the structure of the simulation should reflect
the environement that is being simulated. For example, if an industrial process
is to be simulated, then there should be an object for each entity involved in
the process. The objects interact by sending messages.

Each object is designed around a data invariant.

is an abstraction and generalization of imperative programming. Imperative
programming involves a state and a set of operations to transform the state.
Object-oriented programming involves collections of objects each with a state
and a set of operations to transform the state. Thus, object-oriented
programming focuses on data rather than on control. As in the real world,
objects interact so object-oriented programming uses the metaphor of message
passing to capture the interaction of objects.

Functional objects are like values, imperative objects are like variables, active
objects are like processes.

Aternatively, OOP, an object is a parameter (function and logic), an object is
a mutable self (imperative).

Programming in an imperative programming language requires the
programmer to think in terms of data structures and algorithms for
manipulating the data structure. That is, data is placed in a data structure
and the data structure is manipulated by various procedures.

Programming in an object-oriented language requires the programmer to think
in terms of a hierarchy of objects and the properties possessed by the objects.
The emphasis is on generality and reusability.

Procedures and functions are the focus of programming in an imperative
language. Object-oriented programming focuses on data, the objects and the

171

operations required to satisfy a particular task.

Object-oriented programming, as typified by the Small-talk model, views the
programming task as dealing with objects which interact by sending messages
to each other. Concurrency is not necessarily implied by this model and
destructive assignment is provided. In particular, to the notion of an abstract
data type, OOP adds the notion of inheritance, a hierarchy of relationships
among types. The idea of data is generalized from simple items in a domain to
data type (a domain and associated operations) to an abstract data type (the
addition of information hiding) to OOP & inheritance.

Here are some definitions to enable us to speak the language of object-oriented
programming.

Definition 13.1

Object: Collection of private data and public operations.

Class: Description of a set of objects. (encapsulated type: partitioned into
private and public)

Instance: An instance of a class is an object of that class.

Method: A procedure body implementing an operation.

Message: A procedure call. Request to execute a method.

Inheritance: Extension of previously defined class. Single inheritance,
multiple inheritance

Subtype principle: a subtype can appear wherever an object of a supertype is
expected.

I think a classification which helps is to classify languages as object-based and
object-oriented. A report we recently prepared on OO technology trends
reported that object-based languages support to varying degrees: object-based
modularity, data abstraction (ADTs) encapsulation and garbage collection.
Object-oriented languages additionally include to varying degrees: grouping
objects into classes, relating those classes by inheritance, polymorphism and
dynamic binding, and genericity.

Dr. Bertrand Meyer in his book ’Object-oriented Software Construction’
(Prentice Hall) gives his ’seven steps to object-based (oriented) happiness’

1) Object-based modular structure 2) Data abstraction 3) Automatic memory
management 4) Classes 5) Inheritance 6) Polymorphism and Dynamic Binding
7) Multiple and Repeated Inheritance

172 CHAPTER 13. OBJECT-ORIENTED PROGRAMMING

13.1 History

• Simula

• Small-Talk

• Modula-2, C++, Eiffel

• Flavors, CLOS

13.2 Subtypes (subranges)

The subtype principle states that a subtype may appear wherever an element
of the super type is expected.

13.3 Objects

Objects are collections of operations that share a state. The operations
determine the messages (calls) to which the object can respond, while the
shared state is hidden from the outside world and is accessible only to the
object’s operations. Variables representing the internal state of an object are
called instance variables and its operations are called methods. Its collection of
methods determines its interface and its behavior.

Objects which are collections of functions but which do not have a state are
functional objects. Functional objects are like values, they have the object-like
interface but no identity that persists between changes of state. Functional
objects arise in logic and functional programming languages.

Syntactically, a functional object can be represented as:

name : object

methods

...

For example,

Objects which have an updateable state are imperative objects. Imperative
objects are like variables. They are the objects of Simula, Smalltalk and C++.
They have a name, a collection of methods which are activated by the receipt
of messages from other objects, and instance variables which are shared by the
methods of the object but inaccessible to other objects.

13.4. CLASSES 173

Syntactically, an imperative object can be represented as:

name : object

variables

...

methods

...

Objects which may be active when a message arrives are active objects. In
contrast, functional and imperative objects are passive unless activated by a
message. Active objects have three modes: when there is nothing to do the
object is dormant, when the agent is executing it is active, and when an object
is waiting for a resource or the completion of subtasks it is waiting. Messages
sent to an active object may have to wait in queue until the object finishes a
task. Message passing among objects may be synchronous or asynchronous.

13.4 Classes

Classes serve as templates from which objects can be created. Classes have the
same instance variables and operations as corresponding objects but their
interpretation is different. Instance variables in an object represent actual
variables while class instance variables are potential, being instantiated only
when an object is created.

We may think of a class as specifying a behavior common to all objects of the
class. The instance variables specify a structure (data structure) for realizing
the behavior. The public operations of a class determine its behavior while the
private instance variables determine its structure.

Private copies of a class can be created by a make-instance operation, which
creates a copy of the class instance variables that may be acted on by the class
operations.

Syntactically, a class can be represented as:

name : class

instance variables

...

class variables

...

174 CHAPTER 13. OBJECT-ORIENTED PROGRAMMING

instance methods

...

class methods

...

Classes specify the behavior common to all elements of the class. The
operations of a class determine the behavior while the instance variables
determine the structure.

Algebraic semantics

Many sorted algebras may be used to model classes.

13.5 Inheritance

Inheritance allows us to reuse the behavior of a class in the definition of new
classes. Subclasses of a class inherit the operations of their parent class and
may add new operations and new instance variables.

Inheritance captures a form of abstraction called super-abstraction, that
complements data abstraction. Inheritance can express relations among
behaviors such as classification, specialization, generalization, approximation,
and evolution.

Inheritance classifies classes in much the way classes classify values. The
ability to classify classes provides greater classification power and conceptual
modeling power. Classification of classes may be referred to as second-order
classification. Inheritance provides second-order sharing, management, and
manipulation of behavior that complements first-order management of objects
by classes.

Syntactically, inheritance may be specified in a class as:

name : class

super class

...

instance variables

{ as before }

13.6. TYPES AND CLASSES 175

What should be inherited? Should it be behavior or code: specification or
implementation? Behavior and code hierarchies are rarely compatible with
each other and are often negatively correlated because shared behavior and
shared code have different requirements.

Representation, Behavior, Code

DYNAMIC/STATIC/INHERITANCE

Inheritance and OOP

Type hierarchy

Semantics of inheritance in the functional paradigm.

type op params = case op of
f0 : f0 params

...
fn : fn params
otherwise : supertype op params
where
f0 params = def0

...
fn params = defn

inheritance in the logic programming paradigm.

object(structure,methodslist).

isa(type1,type2).

object(rectangle(Length,Width),[area(A is Length*Width)]).

Algebraic semantics

Order-sorted algebras are required to capture the ordering relations among
sorts that arise in subtypes and inheritance.

13.6 Types and Classes

The concept of a type and the concept of a class have much in common and
depending on the point of view, they may be indistinguishable. The
distinction between types and classes may be seen when we examine the

176 CHAPTER 13. OBJECT-ORIENTED PROGRAMMING

compare the inheritance relationship between types and subtypes with the
inheritance relationship between classes and subclasses.

Example 13.1 The natural numbers are a subtype of the integers but while
subtraction is defined for all pairs of integers it is not defined for all pairs of
natural numbers.

This is an example of subtype inheritance. Subtypes are defined by additional
constraints imposed on a type. The set of values satisfying a subtype is a
subset of the set of values satisfying the type and subtypes inherit a subset of
the behaviors of the type.

Example 13.2 The integers are a subclass of the natural numbers since, the
subtraction operation of the natural numbers can be extended to subtraction for
integers.

Example 13.3 The rational numbers are a subclass of the integers since, they
can be defined as pairs of natural numbers and the arithmetic operations on the
rational numbers can be defined in terms of the arithmetic operations on
natural numbers.

These are examples of subclass inheritance. Subclasses are defined by
extending the class behavior. This means that subclasses are more loosely
related to their parent than a subtype to a type. Both state and methods may
be extended.

Subtyping strongly contrains behavior while subclassing is an unconstrained
mechanism. It is the inheritance mechanism of OOP that distingushes
between types and classes.

These examples illustrate that subtype inheritance is different from subclass
inheritance. Subclasses may define behavior completely unrelated to the
parent class.

Types are used for type checking while classes are used for generating and
managing objects with uniform properties and behaviors. Every class is a
type. However, not every type is a class, since predicates do not necessaryly
determine object templates. We will use the term type to refer to structure
and values while the term class will be used to refer to behavior.

13.7 Examples

Queue – insert rear, delete front

13.8. FURTHER READING 177

Deque – insert front, delete front, insert rear, delete rear

Stack – push, pop

List – cons, head, tail

Binary tree – insert, remove, traverse

Doublely linked list –

Graph – linkto, path,

Natural numbers – Ds

Integers – (=-,Ds)

Rationals

Reals – (+-,Ds,Ds)

Complex (a,b) or (r,θ)

13.8 Further Reading

Much of this section follows Peter Wegner[31].

13.9 Exercises

• Stack

• Queue

• Tree

• Construct a “turtle graphics”

• Construct a table handler

• Grammar

• Prime number sieve

• Account, Checking, Savings

• Point, circle

178 CHAPTER 13. OBJECT-ORIENTED PROGRAMMING

Chapter 14

Pragmatics

14.1 Syntax

In view of abstract syntax it may seem that concrete syntax does not matter.
In fact, details such as placement of keywords, semicolons and case do matter.

In Pascal the semicolon is a statement separator. In C the semicolon is a
statement terminator. Pascal permits the empty statement. This may lead to
unintended results. A misplaced semicolon can change the meaning of a
program.

Algol-68 and Modula-2 require closing keywords. Modula-2 uses end while
Algol-68 uses the reverse of the opening keyword for example,

if < conditionalexpression > then < command > fi

The assignment operator varies among imperative programming languages. In
Pascal and Ada it is := while in FORTRAN and C it is = and in APL it is ←.
The choice in FORTRAN and C is unfortunate since assignment is different
from equality. This leads to the use of == for equality in C and .EQ. in
FORTRAN.

14.2 Semantics

The use of formal semantic description techniques is playing an increasing role
in software engineering.

179

180 CHAPTER 14. PRAGMATICS

Algebraic semantics are useful for the specification of abstract data types.

For effective use axiomatic semantics require support for program varification.

Denotational semantics are beginning to play a role in compiler construction
and a prescriptive rather than a descriptive role in the design of programming
languages.

Operational semantics –

14.3 Bindings and Binding Times

Bindings may occur at various times from the point of language definition
through program execution. The time at which the binding occurs is termed
the binding time.

Four distinct binding times may be distinguished.

1. Language design time. Much of the structure of a programming language
is fixed and language design time. Data types, data structures, command
and expression forms, and program structure are examples of language
features that are fixed at language design time. Most programming
languages make provision for extending the language by providing for
programmer defined data types, expressions and commands.

2. Language implementation time. Some language features are determined
by the implementation. Programs that run on one computer may not run
or give incorrect results when run on another machine. This occurs when
the hardware differs in its representation of numbers and arithmetic. For
example, the maxint of Pascal is determined by the implementation. The
C programming language provides access to the underlying machine and
therefore programs which depend on the characteristics of the underlying
machine may not perform as expected when moved to another machine.

3. Program translation time. The binding between the source code and the
object code occurs at program translation time. Programmer defined
variables and types are another example of bindings that occur at
program translation time.

4. Program execution time. Binding of values to variables and formal
parameters to actual parameters occur during program execution.

Early binding often permits more efficient execution of programs while late
binding permits more flexibility. The implementation of recursion may require
allocation of memory at run-time in contrast a one time to allocation of
memory at compile-time.

14.4. VALUES AND TYPES 181

14.4 Values and Types

The primitive types are implemented using both the underlying hardware and
special purpose software. So that only appropriate operations are applied to
values, the value’s type must be known. The type information is contained in
a descriptor. When the type of a value is known at compile time the type
descriptor is a part of the symbol table and is not needed at run-time and
therefore, the descriptor is discarded after compilation. When the type a value
is not known until run-time, the type descriptor must be associated with the
value to permit type checking.

Boolean values are implemented using a single bit of storage. Since single
bits are not usually addressable, the implementation is extended to be a single
addressable unit of memory. In this case either a single bit within the
addressable unit is used for the value or a zero value in the storage unit
designates false while any non-zero value designates true.

Integer values are most often implemented using a hardware defined integer
storage representation. The integer arithmetic and relational operations are
implemented using the set of hardware operations. The storage unit is divided
into a sign and a binary number. Since the integers form an infinite set, only a
subrange of integers is provided. Some languages (for example Lisp and
Scheme) provide for a greatly extended range by implementing integers in lists
and providing the integer operations in software. This provides for “infinite”
precision arithmetic.

Natural number values are most often implemented using the hardware
defined storage unit. The advantage of providing an natural number type is
that an additional bit of storage is available thus providing larger positive
values than are provided for integer values.

Rational number values may be implemented as pairs of integers. Rationals
are provided when it is desired to avoid the problems of roundoff and
truncation which occurs when floating-point numbers are used to represent
rational numbers.

Real number values are most often implemented using a hardware defined
floating-point representation. The floating-point arithmetic and relational
operations are implemented using the set of hardware operations. Some
floating-point operations such as exponentiation are provided in software. The
storage unit is divided into a mantissa and an exponent. Sometimes more than
one storage unit is used to provide greater precision.

Character values are almost always supported by the underlying hardware
and operating system.

Enumeration values are usually represented by a subsequence of the integers

182 CHAPTER 14. PRAGMATICS

and as such inherit an appropriate subset of the integer operations.

Where strings are treated as a primitive type, they are usually of fixed length
and their operations are implemented in hardware.

Abstract data types are best implemented with pointers. The user program
holds a pointer to a value of the abstract type. This use of pointers is quite
safe since the pointer manipuation is restricted to the implementation module
and the pointer is notationally hidden.

14.5 Computational Models

14.6 Procedures and Functions

In the discussion which follows, the term subprogram will be used to refer to
whole programs, procedures and functions.

A program may be composed of a main program which during execution may
call subprograms which in turn may call other subprograms and so on. When
a subprogram is called, the calling subprogram waits for the called subprogram
to terminate. Each subprogram is expected to eventually terminate and return
control to the calling subprogram. The execution of the calling subprogram
resumes at the point immediately following the point of call. Each subprogram
may have its own local data which is found in an activation record. An
activation record consists of an association between variables and the value to
which they are assigned. An activation record may be created each time a
subprogram is called and destroyed when the subprogram terminates.

The run time environment must keep track of the current instruction and the
referencing environment for each active or waiting program so that when a
subprogram terminates, the proper instruction and data environment may be
selected for the calling subprogram.

The current instruction of the calling subprogram is maintained on a stack.
When a subprogram is called, the address of the instruction following the call
of the calling program is pushed on the stack. When a subprogram terminates,
the instruction pointer is set to the address on the top of the stack and the
address popped off the stack. The stack is often called the return address stack.

The addresses of the current environment is also maintained on a stack. The
top of the stack always points to the current environment. When a subprogram
is called, the address of the new environment is pushed on the stack. When a
subprogram terminates, the stack is popped revealing the previous
environment. The stack is often called the dynamic links because the stack

14.7. SCOPE AND BLOCKS 183

contains links (pointers) which reveal the dynamic history of the program.

When a programming language does not permit recursive procedures and data
structure size is independent of computed or input data, the maximum storage
requirements of the program can be determined at compile time. This
simplifies the run time support required by the program and it is possible to
statically allocate the storage used during program execution.

14.7 Scope and Blocks

A variables declared within a block have a lifetime which extends from the
moment an activation record is created for the block until the activation
record for the block is destroyed. A variable is bound to an offset within the
activation record at compile time. It is bound to a specific storage location
when the block is activated and becomes a part of storage.

Dynamic Scope Rules

Conceptually the dynamic scope rules may be implemented as follows. Each
variable is assigned a stack to hold the current values of the variable.

When a subprogram is called, a new uninitialized stack element is pushed on
the stack corresponding to each variable in the block.

A reference to a variable involves the inspection or updating of the top
element of the appropriate stack. This provides access to the variable in
closest block with respect to the dynamic calling sequence.

When a subprogram terminates, the stacks corresponding to the variables of
the block are popped, restoring the calling environment.

Static Scope Rules

The static scope rules are implemented as follows. The data section of each
procedure is associated with an activation record. The activation records
are dynamically allocated space on a runtime stack. Each recursive call is
associated with it own activation record. Associated with each activation
record is a dynamic link which points to the previous activation records, a
return address which is the address of the instruction to be executed upon
return from the procedure and a static link which provides access to the
referencing environment.

184 CHAPTER 14. PRAGMATICS

An activation record consists of storage for local variables, the static and
dynamic links and the return address.

SL RA DL
Storage for local data

The runtime stack of activation records (local data, static and dynamic links).

Activation record for A
Activation record for B
Activation record for C
Activation record for D

Static Links Dynamic Links

Global data values are found by following the static chain to the appropriate
activation record.

An alternative method for the implementation of static scope rules is the
display. A display is a set of registers (in hardware or software) which
contain pointers to the current environment. On procedure call, the current
display is pushed onto the runtime stack and a new display is constructed
containing the revised environment. On procedure exit, the display is restored
from the copy on the stack.

Main
ProcA
ProcB
ProcC

...

Activation record for A
Activation record for B
Activation record for C
Activation record for D

Heaps and Pointers

Treating procedure and function abstractions as first-class values is another
potential cause of dangling references. (Watt)

A heap variable is one that can be created and deleted at any time. Heap
variables are anonymous and are accessed through pointers. A heap is a block
of storage within which pieces are allocated and freed in some relatively
unstructured mannner.

Initially the elements of the heap are linked together in some fashion to form a
free-space list. The creation of a heap variable is requested by an operation

14.7. SCOPE AND BLOCKS 185

called an allocator which returns a pointer to the newly created variable. To
allocate an element, the first element on the list is removed from the list and a
pointer to it is returned to the operation requesting the storage.

The heap variable’s lifetime extends from the time it is created until it is no
longer accessable.

Often there is an operation called a deallocator which forcibly deletes a given
heap variable. When an element is deallocated (freed), it is simply linked back
in at the head of the free-space list. If all references to heap variable are
destroyed, the heap variable is inaccessable and becomes garbage. When a
variable becomes garbage, its memory space is unusable by other variables
since a means of referencing it must exist in order to return the space to the
free-space list.

When deallocation is under the control of the programmer, it is a potential
source of problems. If a programmer deallocates a variable, any remaining
pointers to the deleted heap variable become dangling references.

Garbage and dangling references are potentially troublesome for the
programmer. If garbage accumulates, available storage is gradually reduced
until the program may be unable to continue for lack of known free space. If a
program attempts to modify through a dangling reference a structure that has
been deallocated (destroyed), the contents of an element of free-space may be
modified. This may cause the remainder of the free-space to become garbage
or a portion of the program to become linked to free-space. The deallocated
space could be reallocated to some other structure resulting in similar
problems.

The problem of dangling references can be eliminated.

One solution is to restrict assignment so that references to local variables may
not be assigned to variables with a longer lifetime. This restriction may
require runtime checks and sometimes restrict the programmer.

Another solution is to maintain reference counts with each heap variable. An
integer called the reference count is associated with each heap element. The
reference count indicates the number of pointers to the element that exist.
Initially the count is set to 1. Each time a pointer to the element is created
the reference count is increased and each time a pointer to the element is
destroyed the reference count is decreased. Its space is not deallocated until
the reference count reaches zero. The method of reference counting results in
substantial overhead in time and space.

Another solution is to provide garbage collection. The basic idea is to allow
garbage to be generated in order to avoid dangling references. When the
free-space list is exhausted and more storage is needed, computation is

186 CHAPTER 14. PRAGMATICS

suspended and a special procedure called a garbage collector is started which
identifies garbage and returns it to the free-space list.

There are two stages to garbage collection a marking phase and a collecting
phase.

Marking phase: The marking phase begins outside the heap with the
pointers that point to active heap elements. The chains of pointers are
followed and each heap element in the chain is marked to indicate that it
is active. When this phase is finished only active heap elements are
marked as active.

Collecting phase: Ub the collecting phase the heap is scanned and each
element which is not active is returned to the free-space list. During this
phase the marked bits are reset to prepare for a later garbage collection.

This unuseable space may be reclamed by a garbage collector. A heap variable
is alive as long as any reference to it exists.

Coroutines

Coroutines are used in discrete simulation languages and, for some problems,
provide a control structure that is more natural than the usual hierarchy of
subprogram calls.

Coroutines may be thought of as subprograms which are not required to
terminate before returning to the calling routine. At a later point the calling
program may “resume” execution of the coroutine at the point from which
execution was suspended. Coroutines then appear as equals with control
passing from one to the other as necessary. From two coroutines it is natural
to extend this to a set of coroutines.

From the description given of coroutines, it is apparent that coroutines should
not be recursive. This permits us to use just one activation record for each
coroutine and the address of each activation record can be statically
maintained.

Each activation record is extended to include a location to store the CI for the
corresponding coroutine. It is initialized with the location of the first
instruction of the coroutine. When coroutine encounters a resume operation, it
stores the address of its next instruction in it own activation record. The
address of the CI for the resumed coroutine is obtained from the activation
record of the resumed coroutine.

14.8. PARAMETERS AND ARGUMENTS 187

Concurrency

14.8 Parameters and Arguments

In the previous sections, the arguments to an invocation are textually
substituted for the parameters. That is, the body of the abstract is rewritten
with the arguments substituted for the parameters.

Eager vs Lazy evaluation

An abstraction is said to be strict in a parameter if it is sure to need the value
of the parameter and non-strict in a parameter it is not sure to require the
value of the parameter. The arithmetic operators are strict but the conditional
expression is not strict in its second and third arguments since the selection of
the second or third argument is dependent on the value of the first argument.

The programming language Scheme assumes that all functions are strict in
their parameters, therefore, the parameters are evaluated when the function is
called. This evaluation scheme is called eager evaluation. This is not always
desirable and so Scheme provides for the quote operator to inform a function
not to evaluate its parameters. Miranda evaluates the arguments only when
the value is required. This evaluation scheme is called normal-order evaluation
or lazy evaluation.

Argument Passing Mechanisms

With respect to functional and logic programming languages, the question of
how to pass parameters is relatively simple. The imperative programming
paradigm is another issue.

Copy Mechanisms

The copy mechanism requires values to be copied into an abstraction when it
is entered and copied out of the abstraction when the abstraction is exited.
The formal parameters are local variables. Therefore, the actual parameter is
copied into the local variable on entry to the abstraction and copied out of the
local variable to the actual parameter on exit from the abstraction.

The parameters of C++, the value parameter of Modula-2 and the in
parameter of Ada are examples of parameters which may be passed by using
the copy mechanism. The value of the actual parameter is copied into the

188 CHAPTER 14. PRAGMATICS

formal parameter on entry but the value of the formal parameter is not copied
to the actual parameter on exit. In imperative languages, copying is
unnecessary if the language prohibits assignment to the formal parameter. In
such a case, the parameter may be passed by reference. This form of
parameter passing is often referred to as passing by value

Ada’s out parameter, and function results in general are examples of
parameters which may be passed by using the copy mechanism. The value of
the actual parameter is not copied into the formal parameter on entry but the
value of the formal parameter is copied into the actual parameter upon exit.
In Pascal the function name is used as the formal parameter and assignments
may be made to the function name. This form of parameter passing is often
referred to as passing by result.

When the passing by value and result are combined, the passing mechanism is
referred to as passing by value-result. Ada’s in out parameter is an
example of a parameter which may be passed by this form of the copy
mechanism. The value of the actual parameter is copied into the formal
parameter on entry and the value of the formal parameter is copied into the
actual parameter upon exit.

The copy mechanism has some disadvantages. The copying of large composite
values (arrays etc) is expensive and the parameters must be assignable (eg file
types in Pascal are not assignable).

Definitional Mechanisms

The effect is as if the abstraction body were surrounded by a block, in which
there is a definition that binds the formal parameter to the actual parameter.

The reference parameter of Modula-2, the array and structure parameters of
C++ are passed using this mechanism.

Name

Algol-60 provides a parameter passing mechanism which is based on that of
the functional model however it does not provide the generality that is
required in the imperative model as the following example shows.

Algol-60, Jensen’s device

procedure swap(x,y:sometype);
var x:sometype
begin

14.9. SAFETY 189

t := x; x := y; y := t
end;
...
I := 1
a[I] := 3
swap(I,a[I])

Parameter passing by name with assignment and when there are two
parameters one of which references the other.

aliasing

procedure confuse (var m, n : Integer);
begin

n := 1; n := m + n
end;

...
confuse(i,i)

Unification

14.9 Safety

The purpose of declarations is two fold. The requirement that all names be
declared is essential to provide a check on spelling. It is not unusual for a
programmer to mispell a name. When declarations are not required, there is
no way to determine if a name is new or if it is a misspelling of a privious
name.

The second purpose of declarations is assist the type checking algorithm. The
type checker can determine if the intended type of a variable matches the use
of the variable. This sort of type checking can be performed at compile time
permitting the generation of more efficient code since run time type checks
need not be performed.

type checking–static, dynamic

import/export

Declarations and strong type checking facilitate safety by providing
redundancy. When the programmar has to specify the type of every entity,
and may declare only one entity with a given identifier within a given scope;
the compiler then simply checks each the usage of each entity against rigid
type rules. With overloading or type inference, the compiler must deduce

190 CHAPTER 14. PRAGMATICS

information not supplied by the programmer. This is error prone since slight
errors may radically affect what the compiler does.

Overloading and type inference lack redundancy.

14.10 Further Reading

14.11 Exercises

Chapter 15

Translation

A language translator is a program which translates programs from source
language into an equivalent program in an object language. The source
language is usually a high-level programming language and the object
language is usually the machine language of an actual computer. From the
pragmatic point of view, the translator defines the semantics of the
programming language, it transforms operations specified by the syntax into
operations of the computational model—in this case, to some virtual machine.
This chapter shows how context-free grammars are used in the construction of
language translators. Since the translation is base on the syntax of the source
language, the translation is said to be syntax-directed.

A compiler is a translator whose source language is a high-level language and
whose object language is close to the machine language of an actual computer.
The typical compiler consists of several phases each of which passes its output
to the next phase

• The lexical phase (scanner) groups characters into lexical units or tokens.
The input to the lexical phase is a character stream. The output is a
stream of tokens. Regular expressions are used to define the tokens
recognized by a scanner (or lexical analyzer). The scanner is
implemented as a finite state machine.

• The parser groups tokens into syntactical units. The output of the
parser is a parse tree representation of the program. Context-free
grammars are used to define the program structure recognized by a
parser. The parser is implemented as a push-down automata.

• The semantic analysis phase analyzes the parse tree for context-sensitive
information often called the static semantics. The output of the

191

192 CHAPTER 15. TRANSLATION

semantic analysis phase is an annotated parse tree. Attribute grammars
are used to describe the static semantics of a program.

• The optimizer applies semantics preserving transformation to the
annotated parse tree to simplify the structure of the tree and to facilitate
the generation of more efficient code.

• The code generator transforms the simplified annotated parse tree into
object code using rules which denote the semantics of the source
language.

• The peep-hole optimizer examines the object code, a few instructions at
a time, and attempts to do machine dependent code improvements.

There are several other types of translators that are often used in conjunction
with a compiler to facilitate the execution of programs. An assembler is a
translator whose source language (an assembly language) represents a
one-to-one transliteration of the object machine code. Some compilers
generate assembly code which is then assembled into machine code by an
assembler. A loader is a translator whose source and object languages are
machine language. The source language programs contain tables of data
specifying points in the program which must be modified if the program is to
be executed. A link editor takes collections of executable programs and links
them together for actual execution. A preprocessor is a translator whose
source language is an extended form of some high-level language and whose
object language is the standard form of the high-level language.

In contrast with compilers an interpreter is a program which simulates the
execution of programs written in a source language. Interpreters may be used
either at the source program level or an interpreter may be used it interpret an
object code for an idealized machine. This is the case when a compiler
generates code for an idealized machine whose architecture more closely
resembles the source code.

15.1. PARSING 193

15.1 Parsing

15.2 Scanning

15.3 The Symbol Table

15.4 Virtual Computers
add stack machine

A computer constructed from actual physical devices is termed an actual
computer or hardware computer. From the programming point of view, it is
the instruction set of the hardware that defines a machine. An operating
system is built on top of a machine to manage access to the machine and to
provide additional services. The services provided by the operating system
constitute another machine, a virtual machine.

A programming language provides a set of operations. Thus, for example, it is
possible to speak of a Pascal computer or a Scheme computer. For the
programmer, the programming language is the computer; the programming
language defines a virtual computer. The virtual machine for Simp consists of
a data area which contains the association between variables and values and
the program which manipulates the data area.

Between the programmer’s view of the program and the virtual machine
provided by the operating system is another virtual machine. It consists of the
data structures and algorithms necessary to support the execution of the
program. This virtual machine is the run time system of the language. Its
complexity may range in size from virtually nothing, as in the case of
FORTRAN, to an extremely sophisticated system supporting memory
management and inter process communication as in the case of a concurrent
programming language like SR. The run time system for Simp as includes the
processing unit capable of executing the code and a data area in which the
values assigned to variables are accessed through an offset into the data area.

User programs constitute another class of virtual machines.

15.5 Optimization

It may be possible to restructure the parse tree to reduce its size or to present
a parse to the code generator from which the code generator is able to produce
more efficient code. Some optimizations that can be applied to the parse tree

194 CHAPTER 15. TRANSLATION

are illustrated using source code rather than the parse tree.

Constant folding:

I := 4 + J - 5; --> I := J - 1;
or
I := 3; J := I + 2; --> I := 3; J := 5

Loop-Constant code motion:

From:
while (count < limit) do

INPUT SALES;
VALUE := SALES * (MARK_UP + TAX);
OUTPUT := VALUE;
COUNT := COUNT + 1;

end; -->
to:

TEMP := MARK_UP + TAX;
while (COUNT < LIMIT) do

INPUT SALES;
VALUE := SALES * TEMP;
OUTPUT := VALUE;
COUNT := COUNT + 1;

end;

Induction variable elimination: Most program time is spent in the body
of loops so loop optimization can result in significant performance
improvement. Often the induction variable of a for loop is used only
within the loop. In this case, the induction variable may be stored in a
register rather than in memory. And when the induction variable of a for
loop is referenced only as an array subscript, it may be initialized to the
initial address of the array and incremented by only used for address
calculation. In such cases, its initial value may be set

From:
For I := 1 to 10 do

A[I] := A[I] + E
to:

For I := address of first element in A
to address of last element in A
increment by size of an element of A do

A[I] := A[I] + E

Common subexpression elimination:

15.6. CODE GENERATION 195

From:
A := 6 * (B+C);
D := 3 + 7 * (B+C);
E := A * (B+C);

to:
TEMP := B + C;
A := 6 * TEMP;
D := 3 * 7 * TEMP;
E := A * TEMP;

Strength reduction:

2*x --> x + x
2*x --> shift left x

Mathematical identities:

a*b + a*c --> a*(b+c)
a - b --> a + (- b)

We do not illustrate an optimizer in the parser for Simp.

15.6 Code Generation

As the source program is processed, it is converted to an internal form. The
internal representation in the example is that of an implicit parse tree. Other
internal forms may be used which resemble assembly code. The internal form is
translated by the code generator into object code. Typically, the object code is
a program for a virtual machine. The virtual machine chosen for Simp consists
of three segments. A data segment, a code segment and an expression stack.

The data segment contains the values associated with the variables. Each
variable is assigned to a location which holds the associated value. Thus, part
of the activity of code generation is to associate an address with each variable.
The code segment consists of a sequence of operations. Program constants are
incorporated in the code segment since their values do not change. The
expression stack is a stack which is used to hold intermediate values in the
evaluation of expressions. The presence of the expression stack indicates that
the virtual machine for Simp is a “stack machine”.

As an example of code generation, we extend our Lex and Yacc files for Simp
to generate code for a stack machine. First, we must extend the Yacc and Lex
files to pass the values of constants from the scanner to the parser. The
definition of the semantic record in the Yacc file is modified that the constant
may be returned as part of the semantic record.

196 CHAPTER 15. TRANSLATION

%union semrec /* The Semantic Records */
{
int intval; /* Integer values */
char *id; /* Identifiers */

...

Then the Lex file is extended to place the value of the constant into the
semantic record.

%{
#include <string.h> /* for strdup */
#include <stdlib.h> /* for atoi */
#include "simple.tab.h" /* for token definitions and yylval */
%}
DIGIT [0-9]
ID [a-z][a-z0-9]*
%%
{DIGIT}+ { yylval.intval = atoi(yytext);

return(INT); }
...
{ID} { yylval.id = (char *) strdup(yytext);

return(IDENT); }
[\t\n]+ /* eat up whitespace */
. { return(yytext[0]);}
%%

The symbol table record is extended to contain the offset from the base
address of the data segment (the storage area which is to contain the values
associated with each variable) and the putsym function is extended to place
the offset into the record associated with the variable.

struct symrec
{
char *name; /* name of symbol */
int offset; /* data offset */
struct symrec *next; /* link field */

};
typedef struct symrec symrec;
symrec *sym_table = (symrec *)0; /* Ptr to symbol table */
symrec *st_entry; /* Ptr to an entry */
symrec *putsym ();
symrec *getsym ();
symrec *
putsym (sym_name)

15.6. CODE GENERATION 197

char *sym_name;
{
symrec *ptr;
ptr = (symrec *) malloc (sizeof(symrec));
ptr->name = (char *) malloc (strlen(sym_name)+1);
strcpy (ptr->name,sym_name);
ptr->offset = data_offset++;
ptr->next = (struct symrec *)sym_table;
sym_table = ptr;
return ptr;

}
...

The parser is extended to generate and assembly code. The code
implementing the if and while commands must contain the correct jump
addresses. In this example, the jump destinations are labels. Since the
destinations are not known until the entire command is processed,
back-patching of the destination information is required. In this example, the
label identifier is generated when it is known that an address is required. The
label is placed into the code when its position is known. An alternative
solution is to store the code in an array and back-patch actual addresses.

%{
#include <stdio.h> /* For I/O */
#include <stdlib.h> /* for malloc here and in symbol table */
#include <string.h> /* for strcmp in symbol table */
int data_offset = 0; /* for data area address offsets */
int label_count = 0; /* for label identifiers */
#include "ST.h"
#define YYDEBUG 1
%}
%union semrec /* The Semantic Records */
{
int intval; /* Integer values */
char *id; /* Identifiers */
struct lbs /* Labels for if and while */
{
int label0;
int label1;
} *lbls;

}
%token <intval> INT /* Simple integer */
%token <id> IDENT /* Simple identifier */
%token <lbls> IF WHILE /* For back-patching labels */

198 CHAPTER 15. TRANSLATION

The semantic record is extended to hold two label identifiers since two labels
will be required for the if and while commands.

The remainder of the file contains the actions associated with code generation
for a stack-machine based architecture.

%token SKIP THEN ELSE FI DO END
%left ’-’ ’+’
%left ’*’ ’/’
%right ’^’ /* Exponentiation */
%%
program : command_sequence { /* print code */ }
;
command_sequence : /* empty */

| command_sequence command ’;’
;
command : SKIP

| IDENT ’:’ ’=’ exp { install($1, IDENT);
printf("assign %ld\n", st_entry->offset); }

| IF exp { $1 = (struct lbs *) malloc(sizeof(struct lbs));
$1->label0 = label_count++;
printf("jmp_false label %ld\n",$1->label0); }

THEN command_sequence { $1->label1 = label_count++;
printf("goto label %ld\n",$1->label1); }

ELSE { printf("label %ld\n",$1->label0); }
command_sequence

FI { printf("label %ld\n",$1->label1); }

| WHILE { $1 = (struct lbs *) malloc(sizeof(struct lbs));
$1->label0 = label_count++;
printf("label %ld\n", $1->label0); }

exp { $1->label1 = label_count++;
printf("jmp_false label %ld\n",$1->label1); }

DO
command_sequence

END { printf("goto label%ld\n",$1->label0);
printf("label%ld\n",$1->label1); }

;
exp : INT { printf("load_int %ld\n", $1); }

| IDENT { if (getsym($1) == 0)
printf("Undefined variable: %s\n", $1);

else
printf("load_var %ld\n", getsym($1)->offset); }

| exp ’<’ exp { printf("less_than%\n"); }
| exp ’=’ exp { printf("equal%\n"); }

15.7. PEEPHOLE OPTIMIZATION 199

n := 1;
if n < 10 then x := 1; else skip; fi;
while n < 10 do x := 5; n := n+1; end;
skip;

Figure 15.1: A Simp program

| exp ’>’ exp { printf("greater_than%\n"); }

| exp ’+’ exp { printf("add%\n"); }
| exp ’-’ exp { printf("sub%\n"); }
| exp ’*’ exp { printf("mult%\n"); }
| exp ’/’ exp { printf("div%\n"); }
| exp ’^’ exp { printf("power%\n"); }
| ’(’ exp ’)’

;
%%
...

To illustrate the code generation capabilities of the compiler, Figure 15.1 is a
program in Simp and Figure 15.2.

15.7 Peephole Optimization

Following code generation there are further optimizations that are possible.
The code is scanned a few instructions at a time (the peephole) looking for
combinations of instructions that may be replaced by more efficient
combinations. Typical optimizations performed by a peephole optimizer
include copy propagation across register loads and stores, strength reduction
in arithmetic operators and memory access, and branch chaining.

We do not illustrate a peephole optimizer for Simp.

15.8 Further Reading

For information on compiler construction using Lex and Yacc see[27]. Pratt
[24] emphasizes virtual machines.

200 CHAPTER 15. TRANSLATION

load_int 1
assign 0
load_var 0
load_int 10
less_than
jmp_false label 0
load_int 1
assign 1
goto label 1
label 0
label 1
label 2
load_var 0
load_int 10
less_than
jmp_false label 3
load_int 5
assign 1
load_var 0
load_int 1
add
assign 0
goto label 2
label 3

Figure 15.2: Stack code

Chapter 16

Evaluation of Programming
Languages

16.1 Models of Computation

The first requirement for a general purpose programming languge is that its
computational model must be universal. That is, every problem that has an
algorithmic solution must be solvable in the computational model. This
requirement is easily met as the lambda calculus and the imperative model
show.

The computational model must be implementatable on a computer.

Functional Programming:

Logic Programming:

Imperative Programming:

Object-Oriented Programming:

Concurrent Programming:

16.2 Syntax

1 Principle of Simplicity: The language should be based upon as few
“basic concepts” as possible.

201

202 CHAPTER 16. EVALUATION OF PROGRAMMING LANGUAGES

2 Principle of Orthogonality: Independent functions should be controlled
by independent mechanisms.

3 Principle of Regularity: A set of objects is said to be regular with
respect to some condition if, and only if, the condition is applicable to each
element of the set. The basic concepts of the language should be applied
consistently and universally.

4 Principle of Type Completeness: There should be no arbitrary
restriction on the use of the types of values. All types have equal status. For
example, functions and procedures should be able to have any type as
parameter and result. This is also called the principle of regularity.

5 Principle of Parameterization: A formal parameter to an abstract may
be from any syntactic class.

6 Principle of Analogy: An analogy is a conformation in pattern between
unrelated objects. Analogies are generalizations which are formed when
constants are replaced with variables resulting in similarities in structure.
Analogous operations should be performed by the same code parameterized by
the type of the objects.

7 Principle of Correspondence: For each form of definition there exists a
corresponding parameter mechanism and vice versa.

16.3 Semantics

8 Principle of Clarity: The mechanisms used by the language should be
well defined, and the outcome of a particular section of code easily predicted.

9 Principle of Referential Transparency: Any part of a syntactic class
may be replaced with an equal part without changing the meaning of the
syntactic class (substitutivity of equals for equals).

10 Principle of Sub-types: A sub-type may appear wherever an element of
the super-type is expected.

16.4 Pragmatics

• Naturalness for the application (relations, functions, objects, processes)

16.4. PRAGMATICS 203

• Support for abstraction

• Ease of program verification

• Programming environment (editors, debuggers, verifiers, test data
generators, pretty printers, version control)

• Operating Environment (batch, interactive, embedded-system)

• Portability

• Cost of use (execution, translation, programming, maintenance)

Applicability

11 Principle of Expressivity: The language should allow us to construct
as wide a variety of programs as possible.

12 Principle of Extensibility: New objects of each syntactic class may be
constructed (defined) from the basic and defined constructs in a systematic
way.

Example: user defined data types, functions and procedures.

Binding, Scope, Lifetime,

Safety

13 Principle of Safety: Mechanisms should be available to allow errors to
be detected.

Type checking-static and dynamic, range checking

14 Principle of the Data Invariant: A data invariant is a property of an
object that holds whenever control is not in the object. Objects should be
designed around a data invariant.

15 Principle of Information Hiding: Each “basic program unit” should
only have access to the information that it requires.

16 Principle of Explicit Interfaces: Interfaces between basic program
units should be stated explicitly.

204 CHAPTER 16. EVALUATION OF PROGRAMMING LANGUAGES

17 Principle of Privacy: The private members of a class are inaccessible
from code outside the class.

Abstraction

18 Principle of Abstraction: Abstraction is an emphasis on the idea,
qualities and properties rather than the particulars (a suppression of detail).
An abstract is a named syntactic construct which may be invoked by
mentioning the name. Each syntactic class may be referenced as an
abstraction. Functions and procedures are abstractions of expressions and
commands respectively and there should be abstractions over declarations
(generics) and types (parameterized types). Abstractions permit the
suppression of detail by encapsulation or naming. Mechanisms should be
available to allow recurring patterns in the code to be factored out.

19 Principle of Qualification: A block may be introduced in each syntactic
class for the purpose of admitting local declarations. For example, block
commands, block expressions, block definitions.

20 Principle of Representation Independence: A program should be
designed so that the representation of an object can be changed without
affecting the rest of the program.

Generalization

21 Principle of Generalization: Generalization is a broadening of
application to encompass a larger domain of objects of the same or different
type. Each syntactic class may be generalized by replacing a constituent
element with a variable. The idea is to enlarge of domain of applicability of a
construct. Mechanisms should be available to allow analogous operations to be
performed by the same code.

polymorphism, overloading, generics

Implementation

22 Principle of Efficiency: The language should not preclude the
production of efficient code. It should allow the programmer to provide the
compiler with any information which may improve the resultant code.

16.5. TRENDS IN PROGRAMMING LANGUAGE DESIGN 205

23 Principle of Modularity: Objects of each syntactic class may be
compiled separately from the rest of the program.

Novice users of a programming language require language tutorials which
provide examples and intuitive explanations. More sophisticated users require
reference manuals which catalogue all the features of a programming language.
Even more sophisticated students of a programming language require complete
and formal descriptions which eliminate all ambiguity from the language
description.

16.5 Trends in Programming Language Design

streams, lazy evaluation, reactive systems, knowledge based systems,
concurrency, efficient logic and functional languages, OOP.

206 CHAPTER 16. EVALUATION OF PROGRAMMING LANGUAGES

Chapter 17

History

17.1 Functional Programming

LISP (LISt Processing) was designed by John McCarthy in 1958. LISP grew
out of interest in symbolic computation. In particular, interest in areas such as
mechanizing theorem proving, modeling human intelligence, and natural
language processing. In each of these areas, list processing was seen as a
fundamental requirement. LISP was developed as a system for list processing
based on recursive functions. It provided for recursion, first-class functions,
and garbage collection. All new concepts at the time. LISP was inadvertantly
implemented with dynamic rather than static scope rules. Scheme is a modern
incarnation of LISP. It is a relatively small language with static rather than
dynamic scope rules. LISP was adopted as the language of choice for artificial
intelligence applications and continues to be in wide use in the aritficial
intelligence community.

ML

Miranda

Haskell is a modern language named after the logician Haskell B. Curry, and
designed by a 15-member international committee. The design goals for
Haskell are have a functional language which incorporates all recent “good
ideas” in functional language research and which is suitable for for teaching,
research and application. Haskell contains an overloading facility which is
incorporated with the polymorphic type system, purely functional i/o, arrays,
data abstraction, and information hiding.

207

208 CHAPTER 17. HISTORY

17.2 Logic Programming

1969 J Robinson and Resolution 1972 Alain Colmerauer

17.3 Imperative Programming

Imperative languages have a rich and varied history. The first imperative
programming languages were machine instructions. Machine instructions were
soon replaced with Assembly languages, essentially transliterations of machine
code.

FORTRAN (FORmula TRANslation) was the first high level language to gain
wide acceptance. It was designed for scientific applications and featured an
algebraic notation, types subprograms and formatted input/output. It was
implemented in 1956 by John Backus at IBM specifically for the IBM 704
machine. Efficient execution was a major concern consequently, its structure
and commands have much in common with assembly languages. FORTRAN
won wide acceptance and continues to be in wide use in the scientific
computing community.

COBOL (COmmon Business Oriented Language) was designed (by a
committee of representatives of computer manufactures and the Department of
Defense) at the initiative of the U. S. Department of Defense in 1959 and
implemented in 1960 to meet the need for business data processing
applications. COBOL featured records, files and fixed decimal data. It also
provided a “natural language” like syntax so that programs would be able to
be read and understood by non-programmers. COBOL won wide acceptance
in the business data processing community and continues to be in wide use.

ALGOL 60 (ALGorithmic Oriented Language) was designed in 1960 by an
international committee for use in scientific problem solving. Unlike
FORTRAN it was designed independently of an implementation, a choice
which lead to an elegant language. The description of ALGOL 60 introduced
the BNF notation for the definition of syntax and is a model of clarity and
completeness. Although ALGOL 60 failed to win wide acceptance, it
introduced block structure, structured control statements and recursive
procedures into the imperative programming paradigm.

PL/I (Programming Languge I) was developed at IBM in the mid 1960s. It
was designed as a general purpose language to replace the specific purpose
languages like FORTRAN, ALGOL 60, COBOL, LISP, and APL (APL and
LISP were consdered in chapter 7). PL/I incorporated block structure,
structured control statements, and recursion from ALGOL 60, subprograms
and formatted input/output from FORTRAN, file manipulation and the

17.4. CONCURRENT PROGRAMMING 209

record structure from COBOL, dynamic storage allocation and linked
structures from LISP, and some array operations from APL. PL/I introduced
exception handling and multitasking for concurrent programming. PL/I was
complex, difficult to learn, and difficult to implement. For these and other
reasons PL/I failed to win wide acceptance.

Simula 67

ALGOL 68 was designed to be a general purpose language which remedied
PL/I’s defects by using a small number of constructs and rules for combining
the any of the constructs with predictable results–orthogonality. The
description of ALGOL 68 issued in 1969 was difficult to understand since it
introduced a notation and terminology that was foreign to the computing
community. ALGOL 68 introduced orthogonality and data extensibility as a
way to produce a compact but powerful language. The “ALGOL 68 Report”
considered to be one of the most unreadable documents ever printed and
implementation difficulties prevented ALGOL 68’s acceptance.

Pascal was developed partly as a reaction to the problems encountered with
ALGOL 68 and as an attempt to provide a small and efficient implementation
of a language suitable for teaching good programming style.

C is an attempt to provide an efficient language for systems programming.

Modula-2

Ada was developed as the result of a Department of Defense initiative. Like
PL/1 and Algol-68, Ada represents an attempt to produce a complete
langauge representing the full range of programming tasks.

17.4 Concurrent Programming

17.5 Object-Oriented Programming

210 CHAPTER 17. HISTORY

Appendix A

Logic

A.1 Sentential Logic

A.1.1 Syntax

The formulas of sentential logic are defined as follows.

1. true, false, P0, P1... are (atomic) formulas.

2. If A and B are formulas, than the following are (compound) formulas
¬A, A ∧ B, A ∨ B, A → B, A ↔ B.

The compound formulas of sentential logic (with the exception of the negation
of an atomic formula) are classified as of type α with subformulas α1 and α2

α α1 α2

¬¬A A A
A ∧B A B
¬(A ∨B) ¬A ¬B
¬(A→ B) A ¬B

A↔ B A→ B B → A

or of type β with subformulas β1 and β2 as follows.

211

212 APPENDIX A. LOGIC

β β1 β2

A ∨B A B
¬(A ∧B) ¬A ¬B
A→ B ¬A B
¬(A↔ B) ¬(A→ B) ¬(B → A)

The formulas of sentential logic are often called: sentential formulas, sentential
expressions, propositional formulas, propositional expressions, or simply
sentence or proposition.

A.1.2 Semantics

The semantics of sentential logic are the rules for classifying a sentence as true
or false. The semantic rules that we give here are analytic rules because the
truth of a compound formula is determined by the truth of its subformulas. A
type α formula is classified as true iff both of its subformulas are true. A type
β formula classified as false iff one of its subformulas is true. Here are some
essential definitions.

Definition A.1 A formal system is a set of formulas.

Definition A.2 An axiom is a sentence given as true.

Definition A.3 A formal system is complete iff every sentence is either
true or false.

Definition A.4 A formal system is consistent iff no sentence is both true
and false.

Definition A.5 A sentence that is true reguardless of the classification of its
subformulas is called a tautology.

Definition A.6 A sentence that can be true for some classification of its
subformulas is called satisfiable.

Definition A.7 A sentence that is false reguardless of the classification of its
subformulas is called a contradiction.

Definition A.8 A theorem is a sentence that is true either because it is a
tautology or by inference from axioms.

A.1. SENTENTIAL LOGIC 213

Figure A.1: Configuration Reduction Rules for Sentential Logic

A:
C S, α

C S, α1, α2

B:
C S,β

C S,β1 , S,β2

where C is the rest of the configuration, S is the set of the rest of the
elements of the block, and α and β indicate the type of the compound formula.

Definition A.9 A model is a classification of sentences such that each
sentence is either true or false (not both).

These definitions and the α and β rules form the base for the method of proof
using analytic tableaux. The method involves searching for contradictions
among the formulas generated by application of the analytic properties.

Definition A.10 By a configuration C we shall mean a finite collection of
finite sets of sentences.

If C = {B1, ..., Bn} we also write C in the form

B1 ,..., Bn

and we refer to the elements B1, ..., Bn of C as the blocks of the configuration.

Definition A.11 C2 is a reduction of C1 if C2 can be obtained from C2 by
finitely many applications of configuration reduction rules.

The configuration reduction rules have the form

C Bi

C B′
i

The rule is read as “replace block Bi in the configuration with block B′
i.” The

configuration reduction rules are based on the analytic properties and are
found in Table A.1. Each reduction rule corresponds to one of the analytic

214 APPENDIX A. LOGIC

properties. Given a block with a formula of type α or β the reduction rules
specify the replacement of a block with one or more blocks in which the
formula is replaced with its subformulas. For example, rule A permits the
replacement of a conjunction with the conjuncts and rule B requires the block
to be replaced with two blocks each containing one of the disjuncts.

The configuration reduction rules may be used to construct a model under
which a given formula is satisfiable. For example, the configuration reduction
rules generate the following sequence of configurations given the propositional
formula, ¬[(p ∨ q)→ (p ∧ q)].

¬[(p ∨ q)→ (p ∧ q)]

(p ∨ q), ¬(p ∧ q)

p, ¬(p ∧ q) , q, ¬(p ∧ q)

p, ¬p , p, ¬q , q, ¬p , q, ¬q

Note that the outer two blocks of the last line are contradictory and the inner
two define an interpretation under which the formula is satisfiable.

A.2 Predicate Logic

Predicate Logic (or Predicate Calculus or First-Order Logic) is a generalization
of Sentential Logic. Generalization requires the introduction of variables and
the variables of Predicate Logic are of two kinds: free and bound.

A.2.1 Syntax

1. A sentence is also a predicate with no free variables.

2. If p is a predicate and x is a variable but not a variable in p and T is a
type then the following are also predicates. ∀x.T : p(x) and ∃x.T : p(x)
which have the same free variables as p but have in addition the bound
variable x. p(x) is formed from p by replacing any number of occurrences
of some constant of type T in p with x. x is said to be free in p(x) and is
said to be bound in ∀x.T : p(x) and ∃x.T : p(x).

The additional formulas of Predicate Logic are compound formulas and the
universally quantified formulas are of type γ with subformula γ(c). A type γ
formula holds iff its subformula holds for each constant of the appropriate type.

A.2. PREDICATE LOGIC 215

Figure A.2: Configuration Reduction Rules for Predicate Logic

C:
C S,γ

C S,γ(c), γ
some constant c

D:
C S,δ

C S,δ(c)
a constant c new to C S,δ

where C is the rest of the configuration, S is the set of the rest of the
elements of the block, and γ and δ are the types of compound formulas.

γ γ(c)
∀x.T : P (x) P (c)
¬∃x.T : P (x) ¬P (c)

Existentially quantified formulas are of type δ with subformula δ(c).

δ δ(c)
∃x.T : P (x) P (c)
¬∀x.T : P (x) ¬P (c)

A.2.2 Semantics

A type γ formula holds iff its subformula holds for each constant in the
universe of discourse. A type δ formula holds iff its subformula holds for some
constant in the universe of discourse. Here are some essential definitions. The
configuration reduction rules for these formulas are based on the analytic
properties and are found in Table A.2.

216 APPENDIX A. LOGIC

Bibliography

[1] Abelson, H., Sussman, G.J., and Sussman, J. Structure and Interpretation
of Computer Programs. MIT Press, Cambridge, Massachusetts, 1985.

[2] Backus, J. W., “Can Programming Be Liberated from the von Neumann
Style?” CACM, vol. 21, no. 8, pp. 613-614.

[3] Barendregt, H. P., The Lambda Calculus: Its Syntax and Semantics. 2d
ed. North-Holland, 1984.

[4] Bird, R.A. and Wadler, P.L., Introduction to Functional Programming.
Prentice/Hall International, 1988.

[5] Boehm, C. and Jacopini, G., “Flow Diagrams, Turnign Machines, and
Languages with Only Two Foramation Rules.” CACM, vol. 9, no. 5, pp.
366-371.

[6] Curry. H. B. and Feys, R., Combinatory Logic, Vol. I. North-Holland,
1968.

[7] Curry. H. B., Hindley, J. R., and Seldin, J. P., Combinatory Logic, Vol. II.
North-Holland, 1972.

[8] Deransart, P., Jourdan, M., and Lorho, B., Attribute Grammars:
Definitions, Systems and Bibliography. Lecture Notes in Computer
Science 323. Springer-Verlag, 1988.

[9] Dijkstra, E. W., “Goto Statement Considered Harmful.” Communications
of the ACM vol. 11 no. 5 (May 1968): pp. 147-149.

[10] Gries, D., The Science of Programming Springer-Verlag, New York, 1981.

[11] Hehner, E. C. R., The Logic of Programming. Prentice/Hall International,
1984.

[12] Henderson, Peter, Functional Programming: Application and
Implementation. Prentice/Hall International, 1980.

217

218 BIBLIOGRAPHY

[13] Hindley, J. R., and Seldin, J. P., Introduction to Combinators and λ
Calculus, Cambridge University Press, London, 1986.

[14] Hopcroft, J. E. and Ullman, J. D., Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[15] Knuth, D. E., “Semantics of context-free languages.” Mathematical
Systems Theory, vol. 2, 1968, pp. 127-145. Correction in Mathematical
Systems Theory, vol. 5, 1971, p. 95.

[16] Kowalski, R. A., “Algorithm = Logic + Control”. CACM vol. 22 no. 7,
pp. 424-436, 1979.

[17] Landin, P. J., The next 700 programming languages, Communications of
the ACM 9, 157-64 1966.

[18] McCarthy, J., “Recursive functions of symbolic expressions and their
computation by machine, Part I.” CACM vol. 3 no. 4, pp. 184-195, 10,
1960.

[19] McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P., and Levin,
M., LISP 1.5 Programmer’s Manual. 2d ed. MIT Press, Cambridge, MA.
1965.

[20] MacLennan, Bruce J., Functional programming: practice and theory.
Addison-Wesley Publishing Company, Inc. 1990.

[21] Miller, G. A., The Psychology of Communication. Basic Books, New York,
1967.

[22] Peyton Jones, Simon L., The Implementation of Functional Programming
Languages. Prentice/Hall International, 1987.

[23] Pittman, T. and Peters, J., The Art of Compiler Design: Theory and
Practice. Prentice-Hall, 1992.

[24] Pratt, T. W., Programming Languages: Design and Implementation.
Printice-Hall, 1984.

[25] Révész, G, E., Lambda-Calculus, Combinators, and Functional
Programming. Cambridge University Press, Cambridge, 1988.

[26] Schmidt, D. A., Denotational Semantics: A Methodology for Language
Development. Wm. C. Brown, Dubuque, Iowa, 1988.

[27] Schreiner, A. T. and Freidman, H. G., Introduction to Compiler
Construction with Unix Prentice-Hall, 1985.

[28] Scott, D. S., Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, 1987.

BIBLIOGRAPHY 219

[29] Steele, G. L., Jr., Common Lisp. Digital Press, Burlington, MA. 1984.

[30] Tennent, R. D., Principles of Programming Languages, Prentice-Hall
International, 1981.

[31] Wegner, Peter, “Concepts and Paradigms of Object-Oriented
Programming.” OOPS Messenger vol. 1 no. 1 (August 1990): pp. 7-87.

[32] Worf, Benjamin, Language thought and reality, MIT Press, Cambridge
Mass., 1956.

