

Química Inorgânica II

Augusto Leite Coelho

História

Artes Plásticas

Química

Química Inorgânica II

Augusto Leite Coelho

1ª edição Fortaleza - Ceará

2015

Educação Física

Copyright © 2015. Todos os direitos reservados desta edição à UAB/UECE. Nenhuma parte deste material poderá ser reproduzida, transmitida e gravada, por qualquer meio eletrônico, por fotocópia e outros, sem a prévia autorização, por escrito, dos autores.

Editora Filiada à

Presidenta da República Dilma Vana Rousseff Ministro da Educação Aloisio Mercadante Presidente da CAPES Carlos Afonso Nobre Diretor de Educação a Distância da CAPES Jean Marc Georges Mutzig Governador do Estado do Ceará Camilo Sobreira de Santana Reitor da Universidade Estadual do Ceará José Jackson Coelho Sampaio Vice-Reitor Hidelbrando dos Santos Soares Pró-Reitor de Pós-Graduação Jerffeson Teixeira de Souza Coordenador da SATE e UAB/UECE Francisco Fábio Castelo Branco Coordenadora Adjunta UAB/UECE Eloísa Maia Vidal Direção do CED/UECE José Albio Moreira de Sales Coordenadora da Licenciatura em Ouímica Evanise Batista Frota

Coordenação de Tutoria e Docência da Licenciatura em Química Solange de Oliveira Pinheiro Editor da EdUECE Erasmo Miessa Ruiz Coordenadora Editorial Rocylânia Isidio de Oliveira Projeto Gráfico e Capa Roberto Santos

> Diagramador Francisco Oliveira

Antônio Luciano Pontes Eduardo Diatahy Bezerra de Menezes Emanuel Ângelo da Rocha Fragoso Francisco Horácio da Silva Frota Francisco Josênio Camelo Parente Gisafran Nazareno Mota Jucá José Ferreira Nunes Liduina Farias Almeida da Costa Lucili Grangeiro Cortez Luiz Cruz Lima Manfredo Ramos Marcelo Gurgel Carlos da Silva Marcony Silva Cunha Maria do Socorro Ferreira Osterne Maria Salete Bessa Jorge Silvia Maria Nóbrega-Therrien

Conselho Consultivo

Antônio Torres Montenegro (UFPE) Eliane P. Zamith Brito (FGV) Homero Santiago (USP) Ieda Maria Alves (USP) Manuel Domingos Neto (UFF) Maria do Socorro Silva Aragão (UFC) Maria Lírida Callou de Araújo e Mendonça (UNIFOR) Pierre Salama (Universidade de Paris VIII) Romeu Gomes (FIOCRUZ) Túlio Batista Franco (UFF)

Dados Internacionais de Catalogação na Publicação Sistema de Bibliotecas Biblioteca Central Prof. Antônio Martins Filho Lúcia Oliveira – CRB-3/304 Bibliotecário

C691q Coelho, Augusto Leite Química inorgânica II / Augusto Leite Coelho. - Fortaleza : EdUECE, 2015. 145 p. - 20,0cm x 25,5cm. (Química) Inclui bibliografia. ISBN: 978-85-7826-621-9 1. Química. 2 . Química inorgânica. I. Título. II. Série. CDD: 546

Editora da Universidade Estadual do Ceará – EdUECE Av. Dr. Silas Munguba, 1700 – Campus do Itaperi – Reitoria – Fortaleza – Ceará CEP: 60714-903 – Fone: (85) 3101-9893 Internet: www.uece.br – E-mail: eduece@uece.br

> Secretaria de Apoio às Tecnologias Educacionais Fone: (85) 3101-9962

Conselho Editorial

Sumário

Apresentação	5
Capítulo 1 – Revisando a estrutura do átomo	7
Introdução	9
1. Solução e interpretação da equação de onda	9
Capítulo 2 – Compostos de coordenação	15
Introdução	
1. O desenvolvimento da teoria de Werner	
2. Definições de termos usados na Química dos compostos	
de coordenação	19
3. Tipos de ligantes	21
4. Estrutura e Isomeria	23
4.1. Estrutura e número de coordenação	23
4.2. Isomeria	25
5. Efeito quelato	
6. Nomenclatura	31
Capítulo 3 – Simetria molecular	39
Introdução	41
1. Relembrando conceitos de geometria	43
2. Elementos e operações de simetria	45
3. Grupos pontuais	51
4. Tabela de caracteres	
4.1. Representações irredutíveis e redutíveis	60
Capítulo 4 – Teoria da ligação de valência	65
Introdução	67
1. Desenvolvimento da teoria	67
2. Possíveis orbitais híbridos a partir de argumentos de simetria	70
Capítulo 5 – Teoria do campo cristalino	79
Introdução	
1. Diagrama de energia dos orbitais d para diferentes geometrias	
moleculares	83
1.1. Complexo octaédrico	83
1.2. Distorção tetragonal proveniente da simetria octaédrica	
e do efeito Jahn-Teller	90

1.3. Complexo Tetraédrico	92
1.4. Desdobramento do campo cristalino para diferentes geometrias	94
1.5. Energia de estabilização do campo cristalino para diferentes	
geometrias moleculares	96
2. Aplicações da teoria do campo cristalino	97
Capítulo 6 – Teoria dos orbitais moleculares	103
Introdução	105
1. Teoria dos Orbitais Moleculares	105
1.1 Orbitais moleculares para molécula diatômicas homonucleares	105
1.2. Orbitais moleculares para moléculas poliatômicas	
heteronucleares	110
Apêndices	125
Apêndice A – Alfabeto grego	127
Apêndice B – Elementos Químicos – Nome, Símbolo,	
Origem do Nome, Número Atômico e Data da Descoberta	128
Apêndice C – Tabelas de Caracteres dos Grupos	133
Sobre o autor	147

Apresentação

A Química Inorgânica pode ser dividida em duas partes: a Descritiva e a Teórica. Neste livro, estudaremos aspectos teóricos relacionados às teorias de ligação, principalmente aplicadas à Química dos Compostos de Coordenação. Iniciaremos este estudo revisando a Estrutura Atômica com ênfase na orientação dos orbitais atômicos, tendo em vista sua importância para o entendimento do desdobramento dos orbitais atômicos abordados na Teoria do Campo Cristalino.

O segundo capítulo envolve o estudo da Química dos Compostos de Coordenação desde a sua origem até os tempos atuais. Abordaremos os diferentes aspectos, tais como a estrutura molecular relacionada ao número de coordenação, a isomeria e a nomenclatura. Introduziremos, na terceira unidade, os conceitos de Simetria Molecular por considerarmos de grande importância para o estudo da química como um todo e para os assuntos que abordaremos nas unidades subsequentes. Discutiremos como determinar os elementos e as operações de simetria molecular, o grupo pontual da molecular e as aplicações da tabela de caracteres.

Os três últimos capítulos são sobre a Teoria de Ligação de Valência (TLV), a Teoria de Campo Cristalino e a Teoria dos Orbitais Moleculares. Iniciaremos com a TLV, em que ressaltaremos a determinação dos possíveis orbitais híbridos para uma determinada estrutura molecular usando os conhecimentos adquiridos nos estudos de simetria molecular. Chamamos a atenção para o fato de que a teoria prevê os possíveis orbitais híbridos, mas não decide qual será utilizado. Na Teoria do Campo Cristalino, mostramos a base teórica para explicar as propriedades dos compostos de coordenação, considerando a interação eletrostática entre os ligantes e os orbitais d que ocasiona o desdobramento dos orbitais e a perda de degenerescência da energia deles. Discutiremos a distribuição eletrônica dos elétrons d, a existência dos chamados compostos spin baixo e spin alto devido às duas maneiras de distribuição dos elétrons nestes orbitais. Aprenderemos também a calcular a energia de estabilização do campo cristalino.

O último capítulo será voltado para a Teoria dos Orbitais Moleculares que, apesar de ser muito completa, não é tão boa para o entendimento como a Teoria do Campo Cristalino. Usaremos novamente os nossos conhecimentos sobre simetria molecular para construir um diagrama de energia qualitativo para compostos de coordenação em diferentes simetrias.

Capítulo

Revisando a estrutura do átomo

Objetivos

- Revisar os conceitos da estrutura do átomo.
- Discutir funções de onda radial e angular.
- Mostrar a variação dos números quânticos oriundos da solução da equação de onda de Schrödinger.
- Discutir o poder de penetração dos orbitais atômicos.
- Analisar a orientação no espaço dos orbitais s, p e d.

Introdução

A estrutura atômica dos átomos tem um papel de fundamental importância para a compreensão da Química e, por essa razão, aprofundaremos esse estudo, objetivando fornecer subsídios suficientes para melhor entendimento da Química Inorgânica.

Daremos destaque à orientação espacial dos orbitais atômicos, em especial aos orbitais *d*, considerando que estudaremos a química dos metais de transição, ou seja, do bloco *d*.

Iniciaremos, relembrando que a estrutura atômica moderna baseia-se na solução da equação de ondas de Schrödinger.

A equação de onda foi resolvida apenas para o átomo de hidrogênio e, para tanto, dividimos a função de onda em função de onda radial e função de onda angular.

Para átomos polieletrônicos usaremos então aproximações conhecidas como funções de ondas hidrogenoides, isto é, como as do hidrogênio.

1. Solução e interpretação da equação de onda

Na solução da equação de onda radial para que a função de onda seja real e finita tem que admitir a existência dos números quânticos principal (n) e azimutal ℓ (secundário), variando conforme mostra o Quadro 1.

A solução da parte angular da equação de onda define o número quântico de momento magnético orbital, cuja variação é mostrada no Quadro 1, além do número quântico secundário (ℓ), que assume os valores já citados.

Quadro 1

VALORES ASSUMIDOS PELOS DIFERENTES NÚMEROS QUÂNTICOS			
Número Quântico	Símbolo	Valores assumidos	Significado físico
Principal	n	1, 2, 3, 4∞	Energia do sistema
Momento angular	I	0, 1, 2, 3n-1	Forma ou contorno
Momento magnético orbital	ml	- l ,0,+ l	Orientação no espaço

Pela solução da equação de onda radial e angular, podemos mostrar, no Quadro 2, o número de possíveis orbitais para cada número quântico principal. _{Quadro 2}

NÚMERO DE POSSÍVEIS ORBITAIS PARA ALGUNS NÚMEROS QUÂNTICOS PRINCIPAIS			
Número Quântico Principal, n (n=1, 2, 3, 4∞	Número Quântico azimutal (se- cundário) <i>l</i> . (I= 0, 1, 2, 3n-1)	Número Quântico Orbital ml	
1	0	0	
	0	0	
2	1	+1	
2	1	0	
	1	-1	
	0	0	
	1	+1	
	1	0	
	1	-1	
3	2	+2	
	2	+1	
	2	0	
	2	-1	
	2	-2	
	0	0	
	1	+1	
	1	0	
	1	-1	
	2	+1	
	2	0	
	2	-1	
4	2	-2	
	3	+3	
	3	+2	
	3	+1	
	3	0	
	3	-1	
	3	-2	
	3	-3	

A interpretação da equação de onda radial nos mostra que a energia dos orbitais aumenta com o aumento do número quântico principal (n) e que os orbitais têm diferentes poderes de penetração, ou seja, têm probabilidade de ir até bem próximo do núcleo. Este poder de penetração é o seguinte s > p > d > f, isto para os quatro primeiros números quânticos azimutal, ℓ .

Se analisarmos, por exemplo, a curva de densidade de probabilidade radial para os orbitais de número quântico principal 3 (n=3), verificamos que procede esta afirmação (Figura 1).

Figura 1 – Distribuição radial para elétrons 1s, 2s, 2p, 3s, 3p, 3d.

Observamos que a curva de probabilidade para o orbital 3s apresenta três máximos de probabilidade enquanto que os orbitais 3p e 3d apresentam dois e um máximo, respectivamente. Observe que os máximos para o 3s ocorrem em um raio de 1a_o, 4,8a_o e 14a_o, aproximadamente, ou seja, os elétrons 3s podem penetrar mais no átomo.

A solução da equação de onda angular nos dá a orientação espacial dos orbitais. Mostramos nas figuras seguintes (Figura 2, Figura 3, Figura 4, Figura 5) estas orientações.

Orbitais s de número quântico azimutal 0 possuem contorno esférico,

ou seja, não têm nenhuma orientação. Podemos afirmar que este orbital é totalmente simétrico (Figura 2).

Figura2 – Orbital atômico s

Os orbitais p, $\ell = 1$, que possuem os números quânticos orbital +1 0 -1, são orientados nas direções x, z, e y e possuem a forma de alteres, isto é, com dois lóbulos. (Figura 3).

Figura 3 – Orbitais atômicos p orientados em relação aos eixos cartesianos

Observamos que os px, py e pz situam-se na direção dos eixos x, y e z, respectivamente.

Os orbitais d, ℓ = 2, possuem a forma de dois alteres (quatro lóbulos) e, portanto, são orientados nos diferentes planos que compõem as coordenadas cartesianas, assim como nos seus eixos, conforme as figuras 4 e 5.

Os orbitais atômicos d_{xy} , d_{yz} e d_{xz} possuem os quatro lóbulos situados entre os eixos x e y, y e z, x e z, respectivamente.

Orbitais atômicos $d_{x^2-y^2}$ com dois lóbulos situados na direção do eixo x e dois lóbulos na direção y e d_{z^2} os lóbulos estão localizados sobre o eixo z e com uma contribuição no plano xy.

Figura 4 – Orbitais atômicos situados nos planos xy, xz, yz, respectivamente

Figura 5 – Forma e orientação dos orbitais atômicos dx2 – y2 e dz2, respectivamente.

COELHO, AUGUSTO LEITE

Para os nossos estudos subsequentes é importante que visualizemos essas orientações dos orbitais.

Síntese do Capítulo

Com o objetivo de revisar os conceitos sobre estrutura do átomo abordamos a solução da equação de onda de Schrödinger, dando ênfase a interpretação das funções de onda radial e angular assim como a variação dos números quânticos oriundos da solução da equação de onda.

Discutimos as informações dados pela densidade de probabilidade radial em relação a penetração dos elétrons no núcleo. No final da unidade analisamos a orientação espacial dos orbitais atômicos s, p e d.

6

Compostos de coordenação

Objetivos

- Distinguir entre compostos de coordenação e sais duplos.
- Definir termos utilizados para compostos de coordenação.
- Classificar os ligantes quanto ao número de átomos doadores.
- Analisar as geometrias moleculares de acordo com o número de coordenação.
- Discutir os tipos de isomeria.
- Apresentar a nomenclatura dos compostos de coordenação.

Introdução

O desenvolvimento da teoria da química dos compostos de coordenação remonta ao final do século XIX e início do século XX com os trabalhos Alfred Werner¹ e Sophus Mads Jörgensen. A motivação que tiveram estes pesquisadores deveu-se ao fato de ter-se detectado naquela época compostos que formalmente tinham características dos então conhecidos sais duplos. Ao serem analisadas, porém, algumas propriedades bem simples, como a solubilidade, apresentavam propriedades diferentes. Vejamos o comportamento de ambos os sais duplos e os compostos de coordenação quanto à solubilidade.

Sal duplo NaKSO₄(s) Na⁺(aq) + K⁺(aq) + SO₄²⁻(aq) Composto de Coordenação² CoCl₂.6NH₂(s) [Co(NH₂)₄]³⁺(aq) + 3Cl⁻

Podemos observar que, em solução, todos os íons do sal duplo dissociam-se enquanto que, nos compostos de coordenação, algumas moléculas neutras ou mesmo ânions permanecem ligados, ou seja, temos menos espécies em solução. Outras características, tais como condutividade, cor, compostos com a mesma composição molecular, mas com cor e momento de dipolo diferentes foram observadas nesta nova classe de compostos. Dentre as divergências encontradas, destaca-se o fato de que as regras de valência não eram respeitadas.

¹Filho de Jean-Adam A. Werner e Salomé Jeannette Thesché, Alfred Werner nasceu em 12 de dezembro de 1866 e faleceu em 15 de novembro de 1919. aos 53 anos. Em 1913, Werner tornou-se o primeiro químico suíço a receber um prêmio Nobel assim como também foi a primeira vez que um químico recebia este prêmio por trabalhos em Química Inorgânica. O prêmio foi dado em "reconhecimento pelos seus trabalhos sobre ligação de átomos em moléculas em que lancou uma luz sobre velhos problemas e abriu novos campos de pesquisa, particularmente em Química Inorgânica".

²A prata (I) reage quantitativamente com o íon cloreto, Cl⁻, formando o cloreto de prata, AgCl.

Por todos os motivos citados, estes compostos foram chamados de *complexos*. Atualmente, muitas vezes nos referimos a eles como complexos, mas é melhor denominá-los de **compostos de coordenação**.

1. O desenvolvimento da teoria de Werner

Segundo Kauffman (1959) e Farias (2001), Jörgensen foi uma grande pesquisador e realizou boas experiências envolvendo os compostos de coordenação. Werner assim também o fez, mas seus resultados ficaram aquém dos desenvolvidos por Jörgensen. Estas experiências envolveram a síntese e a caracterização de diferentes compostos com platina e cobalto. Podemos citar, por exemplo, que na série de $CoCl_3.n(NH_3)$, quando n variou de 4 até 6, obtivemos compostos com diferentes cores e condutividade e, quando n = 4, obtivemos dois compostos com cores diferentes.

Tabela 1

COMPLEXOS DE COBALTO (III)			
Complexo	Cor	Nome original	
CoCl ₃ .6NH ₃	Amarelo	Complexo Lúteo	
CoCl ₃ .5NH ₃	Púrpura	Complexo purpureo	
CoCl ₃ .4NH ₃	verde	Complexo praseo	
CoCl ₃ .4NH ₃	violeta	Complexo Violeta	

Com exceção dos dois últimos compostos da Tabela 1, todos têm condutividade diferente e a reação com nitrato de prata (AgNO₃) produz quantidade diferente de cloreto de prata (Quadro 3). Esta experiência demonstra que os íons cloretos têm um comportamento químico diferente nos compostos. Novamente, como na condutividade, os dois últimos eram bastante semelhantes. Werner então propôs que o cobalto (III) possuía, fugindo às regras de valência vigentes na época, seis espécies ligadas a ele que poderiam ser moléculas neutras ou ânions, além do íon cloreto que ainda estaria presente na forma livre.

Quadro 3

REATIVIDADE DOS COMPOSTOS DE COTALTO (III) COM O NITRATO DE PRATA			
Reação	Nome original		
$CoCl_{3}$.6NH $_{3}$ + AgNO $_{3}$ Co $_{3+}$.6NH $_{3}$ + 3AgCl	Complexo Lúteo		
$CoCl_3.5NH_3$ + AgNO $_3$ CoCl ²⁺ .5NH $_3$ + AgCl	Complexo purpureo		
$CoCl_{3}.4NH_{3} + AgNO_{3} CoCl_{2}^{+}.4NH_{3} + 2AgCl^{-}$	Complexo praseo		
$CoCl_3.4NH_3 + AgNO_3 CoCl_2^+.4NH_3 + 2AgCl^-$	Complexo Violeta		

Para complexos contendo seis espécies ligadas poderiam ser propostas as estruturas mostradas na Tabela 2. Cada uma delas comporta um número diferente de isômeros.

Tabela 2

ESTRUTURA GEOMETRICAS POSSIVEIS CONTENDO 6 ESPECIES LIGADAS AO ATOMO CENTRAL			
Forma geomé	Forma geométrica		
	Hexagonal plana	3 isômeros	
	Antiprisma	3 isômeros	
	Octaédrica	2 isômeros	

Como para o composto CoCl₂.4NH₂ foram isolados dois compostos com a mesma fórmula molecular, um de cor verde chamado na época de complexo praseo; e o composto chamado de violeta devido à sua cor, concluiu-se que a existência de dois isômeros é concordante com uma estrutura octaédrica. Werner então propôs que a espécie central possuía duas valências:

Valência primária: o estado de oxidação do metal naquele composto.

Valência secundária: o número de espécies ligadas covalentemente à espécie central.

Hoje, a valência primária continua sendo o estado de oxidação, apenas não usamos esta terminologia. Chamamos a valência secundária de número de coordenação, mas a definição é ligeiramente modificada para o número de átomos doadores ligados por covalência à espécie central.

Definições de termos usados na Química dos compostos de coordenação

Espécie Central: átomo ou íon (cátion ou ânion) ao qual estão ligados por covalência às outras espécies que compõem o composto de coordenação, como, por exemplo, Co(III), Fe(II), V(0); V(-I).

Ligantes: moléculas, ion simples ou compostos que estão ligados por covalência dativa à espécie central, como, por exemplo, NH₃, H₂O, Cl⁻, CN⁻. Para que uma destas espécies seja um ligante³, ela tem que ter pelo menos um par de elétron para doar ao metal.

Coordenação de um ligante: quando um ligante liga-se à espécie central, usamos a expressão - o ligante coordenou-se à espécie central.

³Considerando que o ligante doa um par de elétrons (Base de Lewis) e a espécie central recebe este par de elétrons (Ácido de Lewis), chamamos a reação de complexação de uma reação de ácido-base de Lewis.

Átomo doador: átomo pertencente a uma molécula ou íon composto que doa um par de elétrons, como, por exemplo, na amônia NH₃, o átomo doador é o nitrogênio; na água, é o oxigênio; no cianeto, tanto o carbono quanto o nitrogênio podem ser o átomo doador, pois possuem um par de elétrons livres para serem doados ao metal. No íon cloreto, ele é o próprio átomo doador.

Complexo e íon complexo: o conjunto formado pela espécie central e os ligantes, podendo ser uma molécula neutra, um cátion ou um ânion, por exemplo: [V(CO)₆], [Co(NH₃)₆]³⁺, [CoF₆]³⁻.

Contra-íon: cátion ou ânion usado para possibilitar a neutralização de um ion complexo formando um sal, como, por exemplo, [Co(NH₂)₂]Cl₂, Na₂[CoF₂], onde o Cl⁻ e o Na⁺ são os contra – íons.

Carga do íon complexo⁴: o resultado da soma das cargas negativas e positivas oriunda dos ligantes e da espécie central [Co(NH₂)₂]³⁺. Neste complexo é 3+, pois a amônia tem carga neutra e, portanto a carga do íon complexo fica igual à da espécie central Co³⁺. Para o [CoF₆]³⁻, a carga do íon complexo é -3 porque temos 6 F⁻, logo os ligantes dando uma contribuição de -6 e o cobalto uma carga +3, a soma será (-6) + (+3) = (-3).

Escrevendo a fórmula molecular: sempre a fórmula do íon complexo deve ser escrita entre colchetes [Co(NH₂)₂]³⁺, [CoF₂]³⁻; os ligantes quando são íons compostos e moléculas são escritas entre parênteses [Co(NH₂)₂]³⁺ [Fe(CN)₂]⁴⁻.

Ligantes presentes em um mesmo complexo

Podemos ter diferentes ligantes coordenados a um mesmo átomo central, como, por exemplo, $[CoCl_2(NH_3)_4]^+$, $[PtBrCl(NH_3)]$.

Para refletir

1. Escreva a fórmula molecular dos seguintes compostos a partir das informações dadas.

Espécie central	NC	Ligante
Co(II)	6	NH3
Cr(III)	6	4NH ₃ , XCI ⁻
Ni(II)	6	Cl
[Fe(II)	6	xCN ⁻ , NH ₃
Pt(II)	4	2CI ⁻ , xNH ₃
lr(l)	4	CO, CI ⁻ , x PF ₃

2. Escreva a estrutura de Lewis para as seguintes moléculas ou íons e explique quais as que podem atuar como ligantes.

- (a) CH₄,
- (b) NH₃,

(d) H₂N-CH₂-CH₂-NH₂, (e) C₂H₄

⁴A carga do íon complexo pode ser igual à carga da espécie central, mas nem sempre isto é verdade.

3. Tipos de ligantes

Os ligantes, como já observamos, podem ser **íons** mononucleares (Cl⁻, F⁻) ou polinucleares (SO₄²⁻, NO₃⁻, CN⁻) ou **moléculas** neutras dinucleares (Cl₂, O₂, CO) ou polinucleares (H₂O, H₂N-CH₂-CH₂-NH₂).

21

Quadro 4

Química Inorgânica II

Podemos classificar estes ligantes quanto ao número de átomos doadores que eles possuem. Quando um ligante tem apenas um átomo doador, ele é dito ser monodentado, como, por exemplo: amônia (NH₃), água (H₂O), íon cloreto (Cl⁻). Quando tivermos dois átomos doadores que podem ligar-se simultaneamente à espécie central, denominaremos de bidentado, e três ou mais átomos doadores chamaremos de polidentados (Quadro 4).

Alguns ligantes, que possuem dois átomos doadores, mas geometricamente estão impossibilitados de ligarem-se simultaneamente à espécie central, são chamados de ambidentados (Figura 6).

Figura6 - (a) Ligantes bidentados e monodentados; (b) Ligantes monodentados; (c) Ligantes monodentados e ambidentados

TIPOS DE LIGANTES QUANTO AO NÚMERO DE ÁTOMOS DOADORES				
Espécie	Fórmula molecular	Estrutura	Átomo(s) doador(es)	Classificação
Amônia	NH ₃	H×H	N	Monodentado
Água	H ₂ 0	н∕~́∖н	0	Monodentado
Íon cloreto	CI-	CI-	CI	Monodentado
Piridina	$C_5 NH_5$		Ν	Monodentado
Etilenodiamina (en)	NH ₂ CH ₂ CH ₂ NH ₂	CH ₂ NH ₂	2 N	Bidentado

Quadro 4

TIPOS DE LIGANTES QUANTO AO NÚMERO DE ÁTOMOS DOADORES				
Oxalato	C ₂ O ₄ ²⁻		2 0	Bidentado
2,2'- Bipiridil	$C_{10}N_2H_8$		2 N	Bidentado
Íon Tiocianato	SCN-	S ⁻ _CN	N ou S	Ambidentado
Íon Cianeto	CN-	C ⁻ N	C ou N	Ambidentado
Íon nitrito	NO2-		N ou O	Ambidentado ou bidentado quando coordenado por dois Oxigênios
N-(2-aminoetil)etano-1,2- diamino dietilenotriamina (dien)	HN(CH ₂ CH ₂ NH ₂) ₂	$CH_2 H CH_2$ $H_2 d CH_2$ $H_2 d CH_2$ $NH_2 H_2 N$	3 N	Tridentado
N,N-bis(2-aminoetil)etano-1,2- diamino Trietilenotetraamina trien	N(CH ₂ CH ₂ NH ₂) ₃	$\begin{array}{c} CH_{2} & CH_{2} \\ H_{2}C & H_{2}O \\ NH_{2} & NH_{2}H_{2}N \end{array}$	4-N	Tetradentado

Observe que, em ambos os exemplos da Figura 6, o número de coordenação é seis (6), pois temos seis átomos doadores ligados à espécie central, que é o cobalto (III), Co³⁺. Na Figura 6 (a), temos apenas cinco ligantes, mas como a etilenodiamina é bidentada, ou seja, apresenta dois átomos doadores, o número de coordenação é seis. Como já ressaltamos na Tabela 2, a estrutura mais comum para este número de coordenação 6 é um octaedro. Temos, portanto quatro ligantes no plano meridional do octaedro e dois no eixo perpendicular a este plano.

Para refletir

 Classifique os seguintes ligantes conforme o número de átomos doadores que ele possui e que podem ligar-se simultaneamente à espécie central:

(a) fluoreto;

(b) ion sulfato;

(c) monóxido de carbono;

(d) íon etilenodiaminatetraacético;

(e) trifenilfosfina.

4. Estrutura e Isomeria

4.1. Estrutura e número de coordenação

Dependendo do número de coordenação (NC) dos compostos de coordenação, teremos diferentes estruturas. Na Tabela 3, mostramos as estruturas mais favoráveis energeticamente para os números de coordenação, NC de 1 a 6, sendo que os compostos mais comumente encontrados são aqueles com NC iguais a 4, 5 e 6.

		Tabela 3
	ESTRUTURAS PROVÁVEIS PARA OS NC D	E 1 A 6
NC	Estrutura	Designação
1		Linear
2	LL	Linear
3	L-M	Triângulo plano
4		Tetraedro
4	Lingues Marchand	Quadrado plano

_			2
12	he	a	-≺
iu		LCI I	2

ESTRUTURAS PROVÁVEIS PARA OS NC DE 1 A 6		
5		Bipirâmide trigonal
5	L Indiana L Indiana L	Pirâmide de base quadrada
6		Octaédrica
6		Octaédrica anti-prisma
6		Prisma trigonal

O que caracteriza o NC que um composto pode assumir é geralmente a espécie central, mas, em se tratando de ligantes muito volumosos, estes podem então induzir a uma determinada estrutura. Os compostos de coordenação com o **NC 1** são raros e pouco importantes. Com o **número de coordenação dois** são também raros, encontrados, principalmente com metais de configuração d¹⁰, tais como os cátions Cu²⁺, Ag⁺, Au⁺ e Hg²⁺. Eles apresentam uma estrutura geométrica linear no lugar de angular. Com o **NC 3**, apesar de raros, são encontrados com ligantes volumosos, como, por exemplo, o N(SiMe₂)₂.

Os complexos formados com este ligante e metais do bloco d, como o ferro e o cromo, apresentam estrutura trigonal plana, e não na forma de T ou piramidal, como acontece com os elementos do bloco p. Os compostos com NC 4 já são mais comuns e apresentam duas possíveis estruturas: a quadrado plano e a tetraedral. Quando a espécie central tem a configuração eletrôni-

ca de **d**⁸ ou **s**¹**d**⁷, teremos preferencialmente a estrutura molecular como um quadrado planar. Para as configurações eletrônicas **d**⁵ ou **d**¹⁰ especialmente, teremos a estrutura tetraedral.

As estruturas de bipirâmide trigonal e pirâmide de base quadrada são encontradas para o NC 5, sendo energeticamente desfavoráveis, o que caracteriza que não existe uma estrutura predominante.

O número de coordenação que apresenta um maior número de compostos é seis⁵. Com este número de coordenação, são possíveis pelo menos três estruturas: octaédrica (a mais comum), octaédrica antiprismática trigonal e a prismática trigonal.

Para os números de coordenação maiores do que seis são pouco comuns e apresentam as estruturas de bipirâmide pentagonal ou octaédrica monoencapuzada para o NC 7, dodecaédrica, antiprismática quadrado, cúbica ou bipirâmide hexagonal para NC 8, para os NC 9, 10, 11 e 12, temos respectivamente as estruturas prisma trigonal tri-encapuzado, antiprisma quadrático biencapuzado e icosaedro. Os NC 7, 8 e 9 apresentam alguns exemplos no bloco *d*, com elementos da segunda e terceira série de transição. Para os números de coordenação 8 e 9, temos exemplos, principalmente com elementos do bloco *f*.

Para complexos com o número de coordenação seis, encontramos distorções ao longo do eixo do octaedro, conhecidas como distorções tetragonais para compostos do tipo trans-[MA₄B₂]. Em sistemas com configuração eletrônica assimétrica, como, por exemplo, compostos de Cu²⁺, d⁹, também encontramos a distorção tetragonal, mesmo que os seis ligantes sejam iguais. A explicação para esta distorção do octaedro regular é conhecida como efeito Jahn-Teller, o que será discutido posteriormente.

4.2. Isomeria

Abreviadamente, a isomeria é o fenômeno pelo qual duas substâncias compartilham a mesma fórmula molecular mas apresentam estruturas diferentes, ou seja, a forma como os mesmos átomos arranjam-se no espaço tri-dimensional é diferente em cada caso.

Os compostos de coordenação apresentam os seguintes tipos de isomeria: geométrica, ótica, de ligação, de coordenação, de ligante, de ionização e de solvatação.

a) Isomeria Geométrica

O composto do tipo $[MA_4B_2]$ pode apresentar dois tipos de isômeros. Quando os ligantes B estão em posição oposta um em relação ao outro, chamamos este isômero de *trans* (Figura 7a); quando os ligantes encontram-se vizinhos um do outro (Figura 7b) o isômero recebe a denominação de cis. ⁵Possíveis estruturas geométricas para o número de coordenação 6

Octaédrica trigonal = antiprismática

Prisma trigonal

(a) (b) Alongamento (a) ou compressão(b) do octaedro ao logo do eixo.

Figura 7 – Isômeros geométricos trans e cis

Para os complexos do tipo [MA₃L₃], teremos também dois isômeros, que são chamados de meridional (mer) e facial (fac) (Figura 8a e 8b), respectivamente.

(a) mer (b) fac

Figura 8 – Isômeros geométricos meridionais e faciais

Podemos observar na Figura 8a que os três ligantes A estão no mesmo plano. Marcamos o plano apenas para dar destaque que os ligantes A estão no mesmo plano, assim como os ligantes L também encontram-se em um mesmo plano. Na Figura 8b, podemos agora observar que os ligantes A estão compondo os vértices de uma das face do octaedro, o mesmo acontecendo com os ligantes L.

b) Isomeria Ótica

A isomeria⁷ ótica é observada quando os isômeros podem desviar a luz polarizada⁸ para a direita ou para a esquerda. Quando este desvio ocorre para a direita, estas substâncias são *dextrogiro (d)*; e quando o desvio é para a esquerda, elas são *levogiro (l)*. Estes isômeros são chamados de **enanciômeros**, e uma mistura deles é chamada de mistura racêmica. Quando temos uma mistura contendo 50% de cada um dos isômeros, não ocorre o desvio da luz polarizada. As propriedades físicas destes compostos são idênticas, portanto eles diferem um do outro apenas diante da luz polarizada.

Estes compostos, assim como nossas mãos, não podem ser superpostas (Figura 9), e um isômero é a imagem do outro em um espelho (Figura 10).

⁷Podemos definir **Isomeria** como sendo dois ou mais compostos que apresentam a mesma fórmula molecular, mas diferente estrutura molecular. **Isômeros** são os compostos que têm a mesma fórmula molecular.

⁸A luz propaga-se na forma de ondas eletromagnéticas em que as vibrações ocorrem em todas as direções, ou seja, a radiação eletromagnética ocorre em todos os planos. Usando filtros apropriados, podemos permitir que as vibrações ocorram em apenas um plano. Nesta situação dizemos que a luz é polarizada. Existem determinados compostos de coordenação e outras substâncias químicas compostas que podem desviar a luz polarizada.

Para podermos avaliar se um composto pode apresentar isômero ótico, é preciso que ele não apresente plano de simetria.

Para podermos verificar se uma molécula possui plano de simetria, devemos fazer um exercício de abstração. Usaremos os isômeros geométricos cis-trans do -[Co(NH₃)₂(en)₂]³⁺. Vamos imaginar que através das duas ligações M-NH₃ Figura11a temos um plano, ou seja, como se existisse um espelho tendo como objeto a metade da esquerda do íon complexo e, portanto a sua direita estaria a imagem que é exatamente igual ao objeto. Podemos então afirmar que após a reflexão a molécula permanece inalterada, logo possui plano de simetria. Observando a Figura11b verificamos que isto não acontece, ou seja, a imagem é diferente do objeto, portanto a molécula da Figura 11b não apresenta plano de simetria logo tem isômero ótico, conforme observamos na Figura 10.

Figura 11 – (a) trans-[Co(NH₃)₂(en)₂]³⁺

b) cis-[Co(NH₃)₂(en)₂]³⁺

Figura 12 – (a) Molécula original antes a da reflexão.

(b) após a reflexão

Através do íon complexo da Figura 12b, nenhum plano pode ser considerado de simetria porque todos eles deixam a molécula alterada. Vamos analisar a molécula da Figura 12b imaginando um plano na mesma situação da molécula trans. Na Figura 13a, mostramos então este plano e, na Figura 13b, como ela fica após a reflexão pelo plano.

Como a figura ficou alterada (Figura 13b), podemos então afirmar que o plano mostrado não é um plano de simetria⁹ e, portanto a molécula apresenta isômeros óticos, ou seja, o íon complexo é uma substância oticamente ativa.

Para refletir

- Quantos planos de simetria os isômeros geométricos da molécula do [PtCl₂(NH₃)₂] (estrutura quadrado plano) possui?
- 2. Para a molécula [CoBrCl(NH₃)₂(en)]⁺, determine o estado de oxidação da espécie central, o número de coordenação do íon cobalto, os ligantes e os átomos doadores. Quais os tipos de isomeria que estes compostos apresentam?

c) Isomerias de: coordenação, ligação, ligante, ionização e solvatação

Os isômeros a serem estudados não envolvem alterações na estrutura, como os casos citados nos itens a e b, mas estão mais diretamente relacionados com os ligantes.

Quando temos um ligante ambidentado, como, por exemplo, o SCN⁻e o íon nitrito NO₂⁻, a ligação com o metal pode ser pelo enxofre (M-SCN) ou nitrogênio (M-NCS) no íon tiocianato e pelo nitrogênio (M-NO₂) ou oxigênio (M-ONO) no íon nitrito, os dois isômeros formados constituem então um exemplo de **isomeria de ligação**.

Chamamos de **isomeria de coordenação** quando dois ligantes que formam compostos de coordenação com metais diferentes, sendo um deles um íon complexo catiônico, e o outro um íon complexo aniônico, podendo os dois comportar-se como contra-íons um do outro. Vejamos um exemplo para melhor compreensão: o CN⁻ forma complexo estável com o Co³⁺ [Co(CN)₆]³⁻ e com o Cr³⁺, [Cr(CN)₆]³⁻, o mesmo acontecendo com a amônia que forma os íons catiônicos [Co(NH₃)₆]³⁺ e [Cr(NH₃)₆]³⁺. Temos, portanto duas possibilidades de ligação dos metais tanto da amônia quanto do íon cianeto, ou seja, dois complexos podem ser formados: [Cr(NH₃)₆][Co(CN)₆] e [Co(NH₃)₆][Cr(CN)₆].

Isomeria de ligante: neste tipo de isomeria, teremos dois compostos formados com os isômeros do ligante, como, por exemplo, a propanodia⁹ Através da molécula podemos imaginar muitos planos, mas somente aqueles que após a reflexão deixam a molecula inalterada é que são considerados como plano de simetria.

¹⁰Quando escrevemos a fórmula de um sal, como o NaCl, primeiro escrevemos o cátion e depois o aníon. A mesma regra aplica-se aos compostos de coordenação: [Cr(NH₃)₆]Cl₃ onde o [Cr(NH₃)₆]^{3+...} é o cátion e para o Na₃[Co(CN)₆] onde o âníon é o íon complexo [Co(CN)₆]³⁻

propano-1,2-diamina

mina. Temos que os grupos amina podem ocupar as posições terminais 1,3- H₂NCH₂CH₂CH₂NH₂ ou as posições 1,2 {H₂CH₂CH(Me)NH₂}. Poderíamos pensar que temos dois ligantes diferentes, mas considerando que a fórmula molecular nos dois complexos é a mesma, temos dois isômeros de acordo com a definição de isomeria.

Isomeria de ionização: quando um dos ligantes e o contra-íon podem atuar tanto como ligante quanto como contra-íon, isto é ambos têm um par de elétrons para doar então podemos ter dois isômeros, como, por exemplo: $[CoBr(NH_3)_5]SO_4$ e $[Co(SO_4)(NH_3)_5]Br$.

Isomeria de solvatação ou de hidratação: os dois isômeros formados são muito semelhantes ao caso da isomeria de ionização, diferindo, entretanto porque estamos tendo como ligante a água e um íon que será contra-íon em um isômero e ligante no outro. A água será ligante no primeiro caso e, no segundo, teremos a água não como um contra-íon, mas como uma água de hidratação. Exemplo: No aquo complexo $[Cr(H_2O)_6]Cl_3 e o isômero de solvata-ção [CrCl(H_2O)_5]Cl_2.H_2O.$

5. Efeito quelato

C

Observa-se que compostos de coordenação, contendo ligantes bidentados ou polidentados, apresentam uma estabilidade maior do que os compostos do mesmo metal coordenado a um ligante monodentado através do mesmo átomo doador do ligante bidentado (Tabela 4).

Tabela 4

DNSTANTES DE EQUILÍBRIO EM COMPLEXO TENDO LIGANTES MONODENTADOS E POLIDENTADOS			
Complexo	Constante de equilíbrio, K		
[Ni(NH ₃) ₄ (H ₂ O) ₂] ²⁺	3 x 10 ⁷		
$[Ni(H_20)_2(en)_2]^{2+}$	1,1 x 10 ¹⁴		
$[Ni(H_2O)_2(trien)]^{2*}$	2 x 10 ¹⁴		
[Ni(NH ₃) ₆] ²⁺	4 x 10 ⁸		
[Ni(en) ₃] ²⁺	2 x 10 ¹⁸		
[Cd(MNH ₂) ₆] ²⁺	106,52		
[Cd(on) 12+	1010,6		

Como podemos observar, os complexos da Tabela 4 que estão grifados todos possuem o ligante etilenodiamina (en), e o trietilenotetraamina (trien) que são bidentado e tretradentado, respectivamente. Exemplificando: através do etilenodiamina, podemos observar (Figura 14) que, ao se coordenar ao metal, ele o faz através dos dois átomos doadores ao mesmo tempo, resultando em um anel, neste caso composto de cinco membros. A este anel denominamos de anel quelato.

Figura 14 – Formação do anel quelato

Intuitivamente, poderíamos concluir que o anel quelato será mais difícil de ser quebrado do que uma simples ligação, o que leva ao complexo ter uma maior estabilidade.

6. Nomenclatura

Neste capítulo, temos nos referido aos compostos de coordenação utilizando as suas fórmulas moleculares. Descreveremos agora regras normatizadas pela IUPAC¹¹ para darmos nomes aos compostos de coordenação. Inicialmente, poderemos sentir alguma dificuldade, mas veremos que são regras lógicas e de fácil compreensão precisando, entretanto, exercitá-las para aprender a usá-las.

As regras são divididas em duas: para íons complexos catiônicos e moléculas neutras e para íons complexos aniônicos. Iniciaremos com generalidades pertinentes às duas regras.

Para escrever a fórmula molecular de um complexo, a *espécie central* é escrita em primeiro lugar precedida de um *colchete* ([), **[Co**, seguida do nome dos *ligantes iônicos* em ordem alfabética **[CoBrCl**, e depois daqueles que são *moléculas neutras* também em ordem alfabética **[CoBr(NH**₃). Quando o ligante¹² é uma substância composta molécula neutra como amônia, água ou iônica, como o íon tiocianato (SCN⁻), o cianeto (CN⁻), são escritos entre parênteses. Após o símbolo do ligante, devemos incluir um índice que indica a quantidade de cada espécie presente no composto, **[CoBrCl(NH**₃)₂(**en)]**. Finalmente fechamos a fórmula com um colchete (]), seguido de um expoente que representa a carga do íon complexo quando for iônico. Exemplos: $[Co(NH_3)_6]^{3+}$, $[CoCl_2(NH_3)_4]^+$, $[CoCl_3(NH_3)_3]$, $[CoBrCl(NH_3)_2($ **en)]^+** $[Cr(CN)_6]^{3-}$.

a) Complexos catiônicos e moléculas neutras.

Para darmos nome aos compostos de coordenação a partir da fórmula molecular, seguiremos as seguintes observações:

Usaremos os prefixos di, tri, tetra, penta, hexa para designar a quantidade de um determinado ligante;

Os ligantes são escritos em ordem alfabética, sem levarmos em conta os

¹¹IUPAC - União Internacional de Química Pura e Aplicada abreviatura do nome em inglês: International Union of Pure and Applied Chemistry

¹²Para facilitar a compreensão, quando nos referimos aos ligantes, antes e após a formação dos complexos, usaremos a seguinte terminologia: **Pré-ligante** - a espécie antes de formar a ligação com a espécie central. **Ligante** - após a coordenação a espécie central. ¹³Para o composto [(CO)₅Cr-H-Cr(CO)₅]⁻. Temos para o cromo(0):
número de coordenação é 6
5 ligantes monodentados carbonil (CO)
1 ligante de ponte hidrido (H⁻) prefixos acima mencionados;

Escrevemos no final o próprio nome da espécie central, seguida do seu estado de oxidação escrito entre parênteses e em algarismos romanos, inclusive quando o estado de oxidação for zero;

Todos os nomes são escritos sem deixar espaço entre os nomes;

Não tem necessidade de especificar a carga do íon complexo e se é uma molécula neutra.

Quando o ligante tiver um nome composto, como, por exemplo, dimetilsulfóxido, etilenodiamina, não usamos os prefixos di, tri, tetra, etc., mas bis, tris, tetraquis, para indicar o número de ligantes presentes na fórmula.

b) Regras para designar os ligantes:

Haleto ou cianeto: substituímos a terminação <u>eto</u> por <u>o</u>, exemplo. Fluoreto é o pré-ligante, e fluoro é o ligante (Tabela 5).

		Tabela 5
ESPÉCIE	PRÉ-LIGANTE	LIGANTE
F	Fluoreto	Fluoro
CI	Cloreto	Cloro
Br	Brometo	Bromo
ľ	lodeto	lodo
CN-	Cianeto	Ciano

Oxiânios: geralmente mantemos o mesmo nome. (Tabela 6).

		Tabela 6
ESPÉCIE	PRÉ-LIGANTE	LIGANTE
CO ₃ ²⁻	Carbonato	Carbonato
S0 ₄ ²⁻	Sulfato	Sulfato
NO ₃ -	Nitrato	Nitrato
CH ₃ COO	Acetato	Acetato
	Oxalato	Oxalato(ox)
$\begin{bmatrix} H_3C & C & CH_3 \\ C & C & C \end{bmatrix}$	Acetilacetonato	Acetilacetonato (acac)

Radicais derivados de hidrocarbonetos: igualmente aos oxiânios, não existe alteração entre o nome do pré-ligante e o do ligante. Para o cálculo de estado de oxidação da espécie central, o radical do hidrocarboneto é considerado como um ânion de carga -1.

ESPÉCIE	PRÉ-LIGANTE	LIGANTE
CH3	Metil	Metil
C_2H_5	Etil	Etil
C_6H_5	Fenil	Fenil(pH ou f)
C_5H_5	Ciclopentadienil	Ciclopentadienil (Cp)

Os pré-ligantes, cujos nomes terminam pela letra <u>a</u>, são modificados para os ligantes terminarem pela letra <u>o</u>.

		Tabela 8
ESPÉCIE	PRÉ-LIGANTE	LIGANTE
$P(C_6H_5)_3$	Trifenilfosfina	Trifenilfosfino $\mathrm{PPh}_{\mathrm{3}}$ ou P_{3}
CH2_CH2	Etilenodiamina	Etilenodiamino
	Piridina	Piridino (py)
	2,2 [°] - dipiridina	2,2 ^- dipiridino
H ₃ C∕ ∖CH ₃	Dimetilsulfóxido	Dimetilsulfóxido

Alguns pré-ligantes não obedecem a nenhuma destas regras e os ligantes correspondentes a eles têm um nome especial.

		Tabela 9
ESPÉCIE	PRÉ-LIGANTE	LIGANTE
H_2^0	Água	Aqua ou aquo
NH3	Amônia	Amino ou Amim
CO	Monóxido de carbono	Carbonil
NO	Monóxido de nitrogênio	Nitrosil
02	(molécula de) oxigênio	Dioxigênio
N ₂	(molécula de) nitrogênio	Dinitrogênio
Cl ₂	(molécula de) cloro	Dicloro
H.	Hidreto	Hídrido
OH	Hidróxido	Hidroxo
02-	Óxido	Охо
022-	Peróxido	Peroxo
NH ₂ ⁻	Amideto	Amido

Os ligantes que são ambidentados, dependendo do átomo doador, têm nomes diferentes e, em especial, o íon nitrito que, além de atuar como ambidentado, também pode ser bidentado (Figura 15a). Outra possibilidade é a de atuar em compostos binucleares como ligante de ponte, coordenado simultaneamente através do nitrogênio e do oxigênio ou somente o oxigênio servindo de ponte (Figura 15b).

ESPÉCIE	PRÉ-LIGANTE	ÁTOMO DOADOR DO LIGANTE	LIGANTE
SCN ⁻	Tiocianato	S	Tiocianato
SCN ⁻	Tiocianato	N	Isotiocianato
NO ₂ -	Nitrito	0	Nitrito
NO ₂ -	Nitrito	Ν	Nitro

Tabela 10

Figura 15 – (a) Nitrito atuando como ambidentado e bidentado (quelato); (b) Nitrito sendo o ligante de ponte entre dois centros metálicos.

Exemplos de fixação

[Co(NH₃)₆]³⁺: hexaaminocobalto(III)

[CoCl₂(NH₃)₄]* tetraaminodiclorocobalto(III)

[CoCl₃(NH₃)₃] - triaminotriclorocobalto(III)

[CoBrCl(NH₃)₂(en)]⁺ diaminobromocloro(etilenodiamino)cobalto(III)

c) Complexos aniônicos¹⁴

Para este tipo de complexo, por exemplo [Co(CN)₆]⁴⁻, usamos todas as regras acima descritas, exceto na denominação da espécie central que usamos a terminação **ato** em substituição à última letra no nome do metal. Exemplos: [Co(CN)₆]⁴⁻hexacianocobalt**ato**(II).

Observe que, se tivéssemos o seguinte complexo $[Co(H_2O)_6]^{2+}$, o nome seria hexaaquocobalto(II).

¹⁴Em complexos que contêm ligantes aniônicos os mesmos são escritos na fórmula após o átomo central e em ordem alfabética. Quando escrevemos o nome do complexo colocamos todos os ligantes em ordem alfabética. Veja exemplo de fixação na página 33.

Tabela 11

Para alguns metais, usamos os eu nome latino, [AuCl₄]²⁻-tetracloro aurato(II); quando substituímos a terminação **um** do nome em latim e acrescentamos a terminação **ato**. (Veja no glossário o nome em latim ou grego dos elementos químicos e, à baixo, alguns exemplos).

ELEMENTO	SIMBOLO	NOME EM LATIM
Antimônio	Sb	Stibium
Cobre	Cu	Cuprum
Ouro	Au	Aurum
Ferro	Fe	Ferrum
Chumbo	Pb	Plumbum
Mercúrio	Hg	Hydragyrum
Potássio	К	Kalium
Prata	Ag	Argentum
Estanho	Sn	Stannum
Sódio	Na	Natrium
Tungstênio	W	Wolfram

d) Sal do íon complexo

Quando temos um íon complexo catiônico, necessitamos de um contraíon aniônico e, na fórmula, ele é escrito após a fórmula molecular do cátion ($[Co(NH_3)_6]CI_3$). Devemos acrescentar o número de ânions necessários para neutralizar a carga do cátion. Para ler o nome destes compostos, iniciamos citando o contra íon, sem mencionar a quantidade deles. Por exemplo: $[Co(NH_3)_6]CI_3$ cloreto de hexaaminocobalto(III).

Para o íon complexo aniônico, usamos um cátion como contra íon, sendo agora o contra íon escrito na fórmula molecular primeiro (Na₃[Fe(CN)₆]) e vamos iniciar a leitura através do aníon Hexacianoferrato(III) de sódio. Não escrevemos as cargas dos íons e tão pouco o número de contra íons usados.

e) Complexos binucleares

Chamamos de complexos binucleares aqueles que apresentam duas espécies centrais. Estes dois núcleos são ligados entre si através de ligações metal-metal ou tem um ou mais ligantes de ponte. Os ligantes de pontes são aqueles que podem ligar-se simultaneamente a dois átomos centrais formando assim um composto binuclear.

A nomenclatura utilizada para estes compostos de coordenação é a mesma descrita acima, apenas usaremos a letra grega (mi) para designar qual é o ligante de ponte. Vejamos o seguinte exemplo, [(CO)₅Cr--H-Cr(CO)₅]⁻. Como podemos observar, este é um íon complexo aniônico, portanto para o metal usaremos a terminação **ato** cromato. Os pré-ligantes são o monóxido de carbono e o hidreto que, quando coordenados ao me-
36

tal, assumem a denominação carbonil e hidrido, respectivamente. O ligante hidrido é o ligante de ponte. Para escrevermos o nome do complexo precisamos determinar o estado de oxidação do cromo (átomo central) que pode ser determinada montando uma equação com os estados de oxidação dos ligantes e da espécie central:

[(CO)₅ Cr --- H --- Cr ... (CO)₅]-5 x 0 + Y + (-1) + Y +5 x 0 = -1

O carbonil (CO) tem carga zero sendo 5 destes ligantes coordenados a cada cromo o primeiro termo da equação ser 5 x 0; para o cromo coordenado a estes primeiros carbonos chamaremos o estado de oxidação de Y; o hidreto que é o ligante de ponte assume a sua carga que -1; concluímos equação acrescentando outro Y referente ao segundo cromo e 5 x 0 para os demais ligantes carbonil; o íon complexo apresenta também carga -1.

Resolvendo a equação, teremos:

0 + 2Y = (-1) + 1, portanto Y = 0, isto é, o estado de oxidação do cromo é zero.

Podemos agora escrever o nome do composto: -hidrido-bis (pentacarbonilcromato(0).

Temos, no presente capítulo, um breve histórico da origem da teoria dos compostos de coordenação, destacando os trabalhos de Albert Werner e Sophus Mads Jorgensen. Uma relação de termos comumente encontrados na química dos compostos de coordenação são introduzidos para, a seguir, classificarmos os ligantes quanto à quantidade de átomos doadores, sendo então definido o efeito quelato.

Discutimos as geometrias moleculares possíveis dos mais comuns números de coordenação encontrados. Os tipos de isômeros encontrados nos complexos são mostrados. Discutimos no final da unidade a nomenclatura dos compostos de coordenação.

Atividades de avaliação

- 1. Determine para os seguintes compostos de coordenação:
- (a) número de coordenação;
- (b) estado de oxidação da espécie central;
- (c) quantos e quais os ligantes (dando o nome do pre-ligante) e o tipo de ligante (quanto ao número de átomos doadores);
- (d) qual o nome do composto ou a fórmula.
 - [Co BrCl(NH₃)₂(en)]
 - [Cr(OH)(NH₃)₂(H₂O)₃](NO₃)₂
 - Tetrafluorooxocromato(V) de potássio
 - •K₃[Fe(CN)₅(NO)]
 - \cdot [Ru(NH₃)₅(N₂)]Cl₂
 - $[OsCl_2F_4]^{2-}$,
 - oxo-bis(pentafluorotantalato(V)
 - $\cdot K_2[SbF_5]$
 - [(CO)₅Mn-Mn(CO)₅]
- Quais os possíveis isômeros geométricos dos seguintes compostos e quais apresentam isômero ótico?

(i) [CoBrCl(NH₃)₂(en)] (ii) [PtBrCl (NH₃)₂)]

- 3. Escreva o nome dos seguintes compostos:
- (a) [CoCI(NH₃)₅](NO₃)₂;
- (b) trans-[CoCl(NO₂)(en)₂]Cl;
- (c) [Ru(dipy)₃]³⁺.
- 4. Classifique os seguintes ligantes quanto ao número de átomos doadores.
- (a) PO₄³⁻;

```
(b) CH<sub>3</sub>-O-CH<sub>2</sub>-O-CH<sub>3</sub>,
```

- (c) (CH₃)₃N,
- (d) NO₃-,
- (e) $(NH_2CH_2CH_2NH_2)_3NH_2$ (f) $(NH_2CH_2CH_2NH_2)$.
- O efeito quelato é observado em composto de coordenação que apresenta que tipo de ligante? Justifique a sua resposta.
- 6. Qual dos dois possíveis complexos deve ter maior estabilidade e por quê? [M(LL)₃]ⁿ⁺ e [M(L)₆]ⁿ⁺, onde LL é um ligante bidentado e L é um ligante monodentado tem o mesmo átomo doador do ligante LL.

7. Utilize as informações dadas abaixo para escrever as fórmulas, as geometrias e o nome das espécies complexas. Discuta também os possíveis tipos de isomeria que podem ser esperados em cada caso.

ESPÉCIE METÁLICA	NC	LIGANTES
Cr(III)	6	x NH ₃ , 3CI-
Zn(II)	4	x NH ₃ , 2CI-
Au(I)	2	x CN-
lr(l)	4	CO, CI-, x P ₃
Cr(III)	6	CI-, NH ₃ , x en

3

Simetria molecular

Objetivos

Conhecer a razão por que estudar simetria molecular. Definir objetos simétricos. Definir elementos e operações de simetria. Determinar os elementos de simetria em uma molécula. Introduzir a Teoria dos Grupos. Determinar o grupo pontual de uma molécula. Apresentar e utilizar a Tabela de Caracteres.

Introdução

Quando olhamos para dois determinados objetos, como, por exemplo, as duas árvores (Figura 16), podemos avaliar qual a mais simétrica das duas somente pelo significado 3 da palavra simetria encontrada no dicionário Michaelis.

simetria

si.me.tri.a

sf (*símetro+ia*¹) **1** Qualidade de simétrico. **2** Correspondência em tamanho, forma ou arranjo, de partes em lados opostos de um plano, seta ou ponto, tendo cada parte em um lado a sua contraparte, em ordem reversa, no outro lado. **3** Proporção correta das partes de um corpo ou de um todo entre si, quanto a tamanho e forma. **4** *Bot* Disposição simétrica das partes de uma flor. http://michaelis.uol.com.br/moderno/portugues

carnaubeira Figura 16 – Pé de carnaúba e de caju Cajueiro

A definição 2 nos remete a um tratamento mais matemático. É preciso dizer que o tratamento matemático não ignora e não traduz a beleza encontrada nas plantas, nas flores (Figura 17a) e insetos, como na simetria maravilhosa vista na borboleta (Figura 17b). Imagine um plano de simetria como definimos na unidade II, passando através do corpo da borboleta, e observe a perfeita simetria existente entre as duas partes. A asa da esquerda seria o objeto e a sua imagem é a asa da direita.

Figura 17a – A simetria nas flores

Quando olhamos para as duas geometrias moleculares (Figura 18), temos dificuldade de afirmar qual a mais simétrica. O estudo de simetria molecular irá nos ensinar a decidir qual a molécula mais simétrica. Mas, qual o nosso interesse em saber qual a simetria de uma molécula?

Figura 18 – Geometrias moleculares

É cada vez mais importante entendermos se dois átomos são semelhantes em uma determinada estrutura de um composto orgânico ou inorgânico. Este conhecimento poderá nos ajudar, por exemplo, na modelagem de um produto de reação. A simetria molecular também nos auxilia na determinação das estruturas. Estas evidências surgem das medidas de estruturas cristalinas, de espetros na região do infravermelho, da espectroscopia eletrônica (uv-vis), de momentos dipolares e de atividade ótica. A simetria tem uma relação grande com a mecânica quântica e, para tanto, lançamos mão dos conhecimentos matemáticos da Teoria de Grupo.

Este estudo nos permite:

determinar as propriedades físicas;

orientar como as reações podem ocorrer;

justificar os orbitais híbridos que são possíveis em determinadas moléculas;

construir diagramas de energia de orbitais moleculares;

discutir estrutura eletrônica;

discutir vibrações moleculares;

atribuir transições em espectroscopia eletrônica.

1. Relembrando conceitos de geometria

Para iniciarmos o estudo da determinação dos elementos de simetria, relembraremos a definição de três conceitos básicos da geometria: ponto, reta e plano.

Ponto: É um conceito primitivo, não existindo uma definição, mas apenas o entendimento, por exemplo, um pingo de tinta, como uma estrela em uma distância muito grande, podemos conceituar o ponto, em um aspecto mais geométrico, como sendo uma posição no espaço, que pode ser localizado através das coordenadas cartesianas x, y, z (Figura 19).

Figura 19 – Conceito de ponto

Reta: Podemos definir uma reta como sendo um número infinito de pontos em sequência.

Plano: é um conjunto infinito de retas.

Outro conceito que devemos relembrar é o de perpendicularidade e está contido. Podemos dizer que uma reta é perpendicular a um plano quando ela está fazendo um ângulo de 90° com o plano ou com outra reta. Quando uma reta está contida no plano, ela faz parte daquelas infinitas retas que compõem o plano (Figura 21).

Bissetriz: segmento de reta que divide um ângulo ao meio. Na Figura 22, temos que AB é a bissetriz do ângulo porque divide este ângulo em duas partes iguais.

Figura 22 – AB é a bissetriz do ângulo

44 COELHO, AUGUSTO LEITE

Na Figura 23, como a interseção dos planos (B) e (C) é a reta (A), podemos afirmar que esta reta está contida em ambos os planos.

2. Elementos e operações de simetria

A determinação da simetria de uma molécula, como já discutimos, não poderá ser feita com base apenas em observações, como sugerimos nas árvores e nos insetos, mas através da determinação dos *elementos de simetria*, que são: identidade, rotação própria, plano de simetria, rotação imprópria e centro de inversão.

Estes *elementos de simetria* são caracterizados por conceitos geométricos: rotação é um eixo (segmento de reta); plano de simetria é um plano e centro de inversão, um ponto.

Chamaremos de operação de simetria a ação que se faz sobre um elemento de simetria de maneira tal que, após a ação, seja uma rotação, uma reflexão ou uma inversão, a molécula permanece inalterada.

Identidade (E): Usaremos o conceito descrito na unidade sobre compostos de coordenação para melhor entendermos o conceito de identidade que recebeu o símbolo E do nome unidade (Einheit), em alemão. Vamos considerar

46

¹⁵Usaremos para ligantes idênticos índices numéricos apenas para distinguir os ligantes que sofreram uma operação de simetria e trocaram de lugar com outros ligantes iguais. a molécula da amônia. Observamos que, através da ligação N-H, por H marcado por 2 podemos passar um plano de simetria. Se fizermos a operação de reflexão, a molécula permanece inalterada; se esta operação for repetida duas vezes, teremos novamente a posição original da molécula (Figura 24).

Figura 24 – Operação identidade - E

Chamamos de identidade a operação que deixa a molécula na mesma posição¹⁶.

Figura 25 – Rotação de 90° em torno do eixo C_4 . As figuras 5A e 5B são idênticas. As figuras 5C e 5D são idênticas, apenas marcamos os ligantes para melhor visualizarmos a operação C_4 .

Eixo de rotação própria (C,): Na Figura 25, mostramos a rotação de 90º em

¹⁶Podemos fazer uma rotação de 90º na molécula, mas observe que ela fica alterada em relação à posição original. Concluímos que esta rotação não é uma operação de simetria para a bipirâmide trigonal.

torno do eixo C₄. Observamos que as figuras 25A e 25B são idênticas, portanto não é possível afirmarmos que houve rotação. Se realmente giramos a molécula, podemos dizer que a ação de dar uma rotação de 90° nesta molécula nos leva a uma molécula inalterada, portanto este eixo é um elemento de simetria. Nas figuras 25C e 25D, marcamos os ligantes com a numeração de 1 a 6 apenas para demonstrar que, após a rotação, os ligantes realmente mudam de lugar. Como a numeração é apenas para marcar e não significa ligantes diferentes, podemos dizer que a molécula, após a rotação, permaneceu inalterada. Os ligantes L₁ e L₄ como estão situados no eixo de rotação, não mudam de posição.

No exemplo acima, descrevemos uma *rotação própria* que designaremos genericamente de eixo de rotação C_n . A denominação C_4 , dada na Figura 25, significa que n = 4 e que a rotação foi de 360°/4 = 90°. Uma rotação de 180° que chamaremos de C_2 porque 360°/2 = 180°. Pelo mesmo motivo uma rotação de 120° será chamada de C_3 .

O elemento de simetria é C_n e a operação de simetria é a rotação de 360/n, que também chamamos de C_n .

Uma molécula pode ter mais de um eixo de rotação¹⁷ C_n. Na Figura 26, mostramos a molécula do tetraaminoplatina (II), $[Pt(NH_3)_4]^{2+}$, que apresenta uma estrutura quadrado planar. Esta molécula apresenta quatro eixos de rotação C₂¹⁸, situados no plano molecular, sendo que dois passam por cada um dos ligantes amino opostos, como mostra a Figura 26 e mais dois eixos C₂, que passam pelas bissetrizes das ligações N – Pt – N₂ Temos um quinto eixo C₂, que é coincidente com o eixo C₄. Vamos definir como sendo o *eixo de maior ordem* aquele que apresenta um maior valor de n, portanto, neste exemplo, o eixo C₄ é o eixo de maior ordem.

¹⁷Podemos fazer uma rotação de 90° na molécula, mas observe que ela fica alterada em relação à posição original. Concluímos que esta rotação não é uma operação de simetria para a bipirâmide trigonal.

 ^{18}O eixo C_2 não apresenta a operação $\text{C}_2^{\,\text{m}}$ porque $\text{C}_2^{\,2}$ significa duas rotações de 180°, o que leva a molécula à situação original, ou seja, à identidade, E.

Através dos eixos de rotação própria (C_n) e imprópria (S_n), podemos realizar duas ou mais operações de simetria seguidas, que chamaremos de C_n^m e S_n^m onde m é o número de operações executadas consecutivamente na direção da direita para a esquerda, ou seja, na direção dos ponteiros do relógio, sendo sempre m menor do que n. Quando m = n,

48

COELHO, AUGUSTO LEITE

C₃² rotação de 240º ou -120º

Figura 27 – Operação C_{3}^{2} . O eixo C_{3} é perpendicular ao plano da molécula e passa pelo átomo de boro.

O eixo C₃ é perpendicular ao plano da molécula e passa apenas pelo átomo de boro.

Na Figura 27 primeiramente realizamos a operação C_3 (rotação de 120°) e em seguida uma nova rotação de 120º totalizando 240º denominamos a estas duas rotações seguida de C₃².

Plano de simetria: um plano será considerado um plano de simetria guando realizamos uma operação de reflexão através deste plano e a molécula permanece inalterada. Consideremos agora a molécula da água:

Figura 28 – O plano em análise é o plano da molécula

Para exemplificar vamos analisar o plano ´ que é o plano molecular.

O plano (Figura 28) é um plano de simetria porque, ao realizarmos a reflexão de um objeto que está situado neste plano, a imagem será o próprio objeto, ou seja, a molécula permanece inalterada. O mesmo acontece com o plano ", que passa pela bissetriz do ângulo de ligação H-O-H, portanto este também é um plano de simetria na molécula da água (Figura 29) porque após a reflexão a molécula fica inalterada.

Figura 29 – Plano que passa pela bissetriz do ângulo de ligação H-O-H

Os planos de simetria são classificados como: verticais, $_{\rm v}$, diedrais, $_{\rm d}$ e horizontais, $_{\rm h}.$

Os planos verticais $_{\rm v}$, e diedrais, $_{\rm d}$, são definidos como sendo os planos que contêm o eixo de maior ordem.

A molécula da água tem somente um único eixo de rotação própria que é o eixo C_2 e passa somente pelo átomo do oxigênio (Figura 30).

Figura 30 – Elementos de simetria da molécula da água.

Como podemos observar na Figura 30, o eixo C_2 encontra-se na interseção dos dois planos e está contido em ambos, logo estes são planos verticais.

O plano de simetria diedral é um plano que contém o eixo de maior ordem assim como o plano vertical. Consideremos como exemplo para mostrar o plano driedal a íon complexo $[Pt(NH_3)_4)^{2+}$, (Figura 31). Para diferenciarmos os dois, consideraremos como sendo o plano de simetria vertical aquele que passa sobre as ligações químicas ou pelos vértices do quadrado planar, neste exemplo e, portanto contém um maior número de átomos (Figura 31). Então o plano diedral passa pela bissetriz do ângulo de ligação N-Pt-N.

Figura 31 – Planos vertical e diedral

O plano de simetria horizontal é definido como sendo o plano que é perpendicular ao eixo de maior ordem (Figura32).

Figura 32 – Plano horizontal

Centro de inversão (i): Este elemento de simetria é definido como sendo um ponto que é o centro geométrico da molécula. A operação de simetria que é executada através deste elemento de simetria é descrita como sendo quando projetamos um determinado átomo através de uma linha reta que passa pelo centro geométrico da molécula e a igual distância do centro encontramos outro átomo idêntico ao que foi projetado. Se esta operação se repetir *para todos* os átomos, podemos afirmar que a molécula tem um centro de inversão. No íon complexo do tetraaminoplatina (II) no centro geométrico, temos o íon platina. Se projetamos em linha reta passando pelo centro geométrico do íon complexo, em quaisquer das moléculas de amônia, encontraremos outra molécula de amônia. Portanto este íon complexo tem um centro de inversão. Para o complexo cis-diaminodicloroplatina(II), este centro não é observado porque, quando projetamos uma molécula de amônia através do centro geométrico do molécula (Pt²⁺), encontraremos um íon cloreto.

Eixo de simetria de rotação impróprio $(S_n)^{19}$: este elemento de simetria origina uma operação dupla que consiste de uma rotação, seguida de uma reflexão em um plano perpendicular ao eixo de rotação. O valor de *n* no símbolo deste elemento de simetria tem a mesma conotação dada no símbolo do eixo de rotação próprio C_n . O eixo S_3 é composto de uma rotação de 120°, seguida de uma reflexão em um plano perpendicular a este eixo; do mesmo modo um eixo S_4 será uma rotação de 90°, seguido da reflexão no plano perpendicular ao eixo onde aconteceu a rotação. Na Figura 33, demonstramos esta operação dupla S_n usando a molécula do metano.

¹⁹O eixo de rotação e o plano que compõem o eixo de rotação impróprio não são necessariamente elementos de simetria, apenas as duas ações realizadas simultaneamente é que são o elemento de simetria.

Figura 33 – Representação da operação dupla S₄

3. Grupos pontuais

Existe um tratamento matemático chamado de Teoria dos Grupos, que consiste em agrupar elementos segundo determinadas regras (COTTON, 1971; OLIVEIRA, 2009). Observou-se que os elementos de simetria de uma molécula obedecem a estas regras e, portanto podemos assim classificá-las em grupos que têm os mesmos elementos em Grupos Pontuais. Por exemplo: a água e a piridina possuem os seguintes elementos E, C₂, ',", então pertencem ao mesmo grupo de pontos.

As moléculas são então classificadas entre os diferentes grupos pontuais que são designados de acordo com regras, sendo genericamente denominados de: Grupos não axiais – C_1 , C_s , C_i ; grupos - C_n ; grupos - D_n ; grupos - S_n ; grupos - C_{nv} ; grupos - C_{nh} ; grupos - D_{nh} ; grupos - D_{nd} ; grupos cúbicos - T_h , T_d , O e O_h ; grupos - C_v , D_h para moléculas lineares.

Para determinarmos a qual grupo pontual uma molécula pertence devemos ter capacidade para reconhecer os elementos de simetria das moléculas e percorrer o fluxograma (Figura 34) mostrado a seguir, respondendo as perguntas com **sim** ou **não**. Explicaremos o uso deste fluxograma com exemplos.

1. Qual o grupo pontual da molécula do CO?

Primeira pergunta: Esta molécula é linear²⁰?

A resposta é sim?

Segunda pergunta Esta molécula tem um plano horizontal?

Não, portanto ela pertence ao grupo C,

2. Qual o grupo pontual do [Co(NH₃)₂]³⁺?

Primeira pergunta: Esta molécula é linear?

Resposta – não

Segunda pergunta: A geometria desta molécula é de um sólido perfeito (tetraedro, octaedro, icosaedro)? ²⁰Toda molécula linear tem um eixo C_{∞} , porque ele pode girar de qualquer ângulo (∞ ângulos) através do eixo de ligação que a molécula permanece inalterada. Este é o eixo de maior ordem para as moléculas lineares. Plano horizontal é aquele que é perpendicular ao eixo de maior ordem.

- Resposta Como podemos observar, esta molécula tem o número de coordenação seis e, como todos os ligantes são iguais, a sua geometria é de um octaedro, logo o grupo pontual será o O_L. Qual o grupo pontual da água? Primeira pergunta: Esta molécula é linear? Resposta – não Seguimos agora na direção da resposta não do fluxograma. Segunda pergunta: A geometria desta molécula é de um sólido perfeito (tetraedro, octaedro, icosaedro)? Resposta – não Seguimos agora na direção da resposta não do fluxograma. Terceira pergunta: Ela tem um eixo de rotação própria C²¹? Resposta: sim, tem um C_{γ} Seguimos agora na direção da resposta sim. Quarta pergunta: Esta molécula tem 2 C_2 perpendicular a C_2 ?
 - Resposta: não
 - Seguimos agora na direção da resposta não do fluxograma.
 - Esta molécula tem plano horizontal ?
 - Resposta: não
 - Seguimos agora na direção da resposta não do fluxograma.
 - Esta molécula tem 2..?
 - Resposta: sim.
 - O grupo pontual é, portanto C_{2v} .
 - 4. Qual o grupo pontual do íon complexo trans- [CoCl₂(NH₃)₂]³⁺?
 - Primeira pergunta: Esta íon complexo é linear?
 - Resposta não.
 - Segunda pergunta: A geometria desta molécula é de um sólido perfeito (tetraedro, octaedro, icosaedro)?
 - Resposta não. Como podemos observar, esta molécula tem o número de coordenação seis, sendo quatro os ligantes amônia e dois os ligantes cloretos; a sua geometria é de um octaedro distorcido, logo não pertence ao grupo pontual O_L.
 - Seguimos agora na direção da resposta não do fluxograma.
 - Terceira pergunta: Ela tem um eixo de rotação própria C.?
 - Resposta: sim. Tem C₂ e C₄ que é o de maior ordem

²¹Quando respondemos que uma molécula tem um eixo C_{p} , por exemplo, C_{4} , para todas as perguntas no fluxograma que aparece a letra n significa que usaremos o numeral 4.

Seguimos agora na direção da resposta sim.

Quarta pergunta: Esta molécula tem 4 C₂ perpendicular ao eixo de maior ordem C₄?

Resposta: sim.

Esta molécula tem plano horizontal "?

Resposta: sim.

Seguimos agora na direção da resposta SIM do fluxograma.

O grupo pontual é, portanto, D_{4h}.

Figura 34 – Fluxograma usado para determinar o grupo pontual das moléculas

Ferroceno

Exemplos Ilustrativos

Qual o grupo pontual da amônia?
A molécula é linear? não.
É um sólido perfeito? não.
Tem eixo de rotação próprio? sim, tem um eixo C₃.
Tem 3 C₂ perpendicular a C₃? não.
Tem plano de simetria horizontal, _n? não.
Tem 3 planos de simetria vertical, _v? sim.
A molécula pertence, portanto, ao grupo C_{3v}.
Qual o grupo pontual do complexo trans-[PtCl₂(NH₃)₂] (geometria quadrado planar)?
A molécula é linear? não.
É um sólido perfeito? não.

Tem eixo de rotação próprio? sim, tem um eixo C2.

Tem 2 C, perpendicular a C,? sim.

Tem plano de simetria horizontal, "? sim.

A molécula pertence, portanto, ao grupo D_{2h}.

Qual o grupo pontual do complexo trans-[CoBrCl(NH $_3$) $_4$] (geometria octaedro distorcido)?

A molécula é linear? não.

É um sólido perfeito? não.

Tem eixo de rotação próprio? sim, tem um eixo C₄.

Tem 4 C_2 perpendicular a C_4 ? não.

Tem plano de simetria horizontal, "? não.

Tem 4 planos de simetria vertical? sim.

A molécula pertence, portanto, ao grupo C_{4V} .

Qual o grupo pontual do complexo ferroceno? (figura ao lado)

A molécula é linear? não.

É um sólido perfeito? não.

Tem eixo de rotação próprio? sim, tem um eixo C₅, passado no centro dos anéis e pelo átomo de ferro.

Tem 5 C₂ perpendicular a C₅? sim. Os eixos passam somente pelo ferro em posições paralelas a cada átomo de carbono idêntico nos dois anéis. (Veja numeração ilustrativa para carbonos e eixos).

Tem plano de simetria horizontal, $_{\rm h}?$ sim, passando pelo ferro e contendo os eixos $\rm C_{2^{\rm .}}$

A molécula pertence, portanto, ao grupo D_{sh} . Qual o grupo pontual do complexo abaixo?

Planar

A molécula é linear? não.

É um sólido perfeito? não.

Tem eixo de rotação próprio? sim, tem um eixo C_{3,} perpendicular ao plano da molécula.

Tem $3 C_2$ perpendicular a C_3 ? não.

Tem plano de simetria horizontal, _h? sim, o plano da molécula.

A molécula pertence, portanto, ao grupo $C_{_{3h}}$.

Na tabela 12, mostramos exemplos de moléculas para diversos grupos pontuais.

T-1-1-10

EXE	MPLOS DE COMPOSTOS	CLASSIFICADOS EM DIFERENTES GR	UPOS PONTUAIS
Grupo Pontual	Elementos de simetria do grupo	Geometria	Exemplos
C ₁	E	F-C, Br	CBrCIFH
C,	E, i		$C_2Br_2Cl_2H_2$
C _s	E, ,	F H F CI	NHF ₂ , NOCI
C ₂	E, C _{2' h}		$C_2 CI_2 H_2$, $H_2 O_2$
C ₃	E, C ₃ , C ₃ ²	HyN/Mark P	fac-[CoCl ₃ (NH ₃) ₃]

cont. Tabela 12

EXE	MPLOS DE COMPOSTOS	CLASSIFICADOS EM DIFERENTES GR	UPOS PONTUAIS
Grupo Pontual	Elementos de simetria do grupo	Geometria	Exemplos
C ₂ v	E, C ₂ , sv', sv"	H H	$\rm H_20$, Piridina ($\rm C_5 \rm NH_5$), $\rm SO_2 \rm Cl_2$
D ₃	E, 2 ₃ , 3 ₂	HIN CLD H2 H2C H HN CL2 H4C H HN CL2 H HN CL2	[Co(en) ₃] ³⁺
D _{3h}	E, 2C ₃ , 3C ₂ , h, 2S ₃ , 3v	FF	[PF ₅]
D _{4h}	E, $2C_4$, C_2 , $2C_2$ ', $2C_2$ ", i, $2S_4$, h, 2_{v} , 2_d	H ₃ N//////NH ₃ H ₃ N/////////NH ₃ CI	Trans -[CoCl ₂ (NH ₃) ₄]+, [PtCl ₄] ₂ -
0 _h	E, 8C ₃ , 6C ₂ , 6C ₄ , 3C ₂ (=C ₄ ²), i, 6S ₄ , 8S ₆ , 3h, 6d	$\begin{bmatrix} H_3 N_{III_{III_{III_{III_{III_{III_{III_{I$	[Co(NH ₃) ₆]³⁺, [Co(CN) ₆] ³ ·
T _d	E, 8C ₃ , 3C ₂ , 6S ₄ , 6d		[SiF ₄], [NH ₄]+, [BF ₄]-

4. Tabela de caracteres

As operações de simetria de uma molécula, como já vimos, pertencem a um grupo de pontos que, por ser um grupo matemático, possui inter-relações que são coerentes com determinados critérios. Devido a estas relações matemáticas no grupo de pontos, podemos decompor os elementos de simetria em um número fixo de representações irredutíveis que nos permitem analisar propriedades eletrônicas e moleculares.

Discutimos os elementos de simetria até o momento apenas para analisarmos a posição dos átomos quando realizamos as operações de simetria do grupo, mas a tabela de caracteres nos permite analisar outros parâmetros, tais como o movimento de translação nas três direções das coordenadas cartesianas assim como a rotação em torno destes eixos. Também podemos verificar o comportamento de quadrado e produto dos eixos **x**, **y** e **z** com relação às operações de simetria de um grupo de ponto. Como temos orbitais atômicos, vibrações moleculares, transições eletrônicas, polarizabilidade e outros que são representados pelas direções x, y e z assim como o quadrado e o produto destas direções, podemos então especificar qual a representação irredutível ou a simetria, por exemplo, de um determinado orbital atômico ou molecular.

Todas estas informações estão mostradas em uma tabela chamada de **Tabela de Caracteres**.

Discutiremos agora a composição desta tabela. Ela é constituída de seis campos, conforme mostrado na Figura 35.

Figura 35 – Divisão em partes da Tabela de Caracteres.

Campo I: Mostra a denominação do grupo, conforme os símbolos de Schoenflies para o grupo.

Campo II: Os elementos do grupo estão reunidos em classes. Os elementos de simetria pertencem a uma mesma classe quando estes elementos são conjugados, ou seja, eles comportam-se igualmente através de uma transformação de similaridade (COTTON, 1971, p.11, segunda edição).

Campo III: Encontramos a designação das diferentes representações irredutíveis de um grupo que são iguais em número à quantidade de classes deste grupo. Usamos atualmente a notação proposta por R. S. Mulliken que recebe a denominação de símbolos de Mulliken. Genericamente, podemos representá-las por i ou Γ_i . Os símbolos de Mulliken são denominados segundo as seguintes regras:

- Usamos as letras A e B para denominarmos as representações unidimensionais; a letra E²² e T para as representações bidimensionais e tridimensionais, respectivamente. Sabemos se uma representação é uni, bi ou tridimensional, se o caractere do elemento de simetria identidade (E) é 1, 2 e 3, respectivamente.
- Para as representações unidimensionais, usaremos a letra A, quando a representação é simétrica em relação ao eixo de maior ordem²³ e B quando for anti-simétrico;

²²Cuidado para não confundir o símbolo E do elemento de simetria identidade com o símbolo E que designa uma representação bidimensional.

²³Simétrico ao eixo de maior ordem significa que (C_n) = 1, e anti-simétrico que (C_n) = -1. Sempre que um caractere for positivo será simétrico e, se for negativo, será anti-simétrico. ²⁴Plica: Sinalzinho em forma de acento agudo, que se põe por cima ou ao lado de letras a que se quer dá acentuação aguda e que se usa também sobre letras algébricas. (Dicionário Michaelis)

²⁵Estes símbolos x, y e z, assim como os seus produtos ou quadrados, podem ser usados em outros estudos com diferente significado.

- Os índices 1 e 2 serão usados para diferenciar as representações quando forem simétricas ou anti-simétricas em relação ao eixo de rotação C₂, perpendicular ao eixo de maior ordem ou, quando este eixo não existir no grupo, será considerado o caractere do plano vertical _v;
- Um ou dupla plica²⁴ que se põe acima das letras (A', A'') são usadas para designar que a representação é simétrica ou anti-simétrica em relação ao plano horizontal _h, respectivamente;
- Quando o grupo de ponto tem como elemento de simetria um centro de inversão, usamos as letras **g** (do alemão gerade, que significa par) e **u** (do alemão ungerade, que significa ímpar) como índice dos símbolos para representações simétricas e anti-simétricas em relação ao centro de inversão respectivamente.
- Alguns símbolos numéricos que estão presentes nas representações bi e tri dimensionais são de mais difícil explicação e usaremos considerando-os símbolos arbitrários. Devemos ainda ressaltar que, para o nível deste livro, estes grupos serão pouco usados.

Campo IV: Nesta área estão os caracteres das representações presentes em um grupo. Elas assumem valores na maioria das vezes 0, 1, -1, 2, -2, 3 e -3. O sinal menos indica que ela é anti-simétrica para aquela operação de simetria. Ela é representada pela letra grega chi, (**R**).

Campo V: Os símbolos encontrados nesta área representam a translação nas direções x, y e z assim como a rotação em torno destes eixos (R_x , R_y e R_z). Usaremos estes símbolos para designarmos a representação irredutível ou simetria dos orbitais atômicos p_x , p_y e p_z .

Campo VI: Como podemos observar, nestes campos temos o produto binário entre os eixos x, y e z^{25} (xy, xz,yz, x^2-y^2 e outros) e/ou o quadrado (x^2 , y^2 , z^2) deles. Usaremos estes símbolos para representar a simetria ou a representação irredutível dos orbitais $d (d_{z2}, d_{x2-v2}, d_{xy}, d_{xz}, d_{yz})$.

Podemos exemplificar o exposto acima com o grupo de pontual, C_{3,,}

Tabela 13

	CAMPO I – DENOMINAÇÃO DO GRUPO PONTUAL							
С _{3v}	E	2C ₃	3v					
A1	1	1	1	Z	x ₂ + y ₂ , z ₂ ,			
A2	1	1	-1	Rz				
E	2	-1	0	(x, y), (Rx, Ry)	(X ₂ -y ₂ , xy) (yz, xz)			

Tabela 14

CAMPO II – OPERAÇÕES DE SIMETRIA E CLASSES (R)							
C _{3v}	E	2C ₃	3,				
A ₁	1	1	1	Z	x ² + y ² , z ² ,		
A ₂	1	1	-1	R _z			
E	2	-1	0	(x, y), (R, R)	(x ² -y ² xy) (yz, xz)		

Tabela 15

CAMPO III – REPRESENTAÇÕES IRREDUTÍVEIS (I)							
C_{3v} E $2C_{3}$ 3_{v}							
A ₁	1	1	1	Z	$x^{2}+y^{2}, z^{2},$		
A ₂	1	1	-1	R _z			
E	2	-1	0	(x, y), (R _x , R _y)	(x ² -y ² , xy) (yz, xz)		

Tabela 16

CAMPO IV – CARACTERES PARA AS DIFERENTES OPERAÇÕES DE SIMETRIA (R)							
C _{3v}	E	2C ₃	3,				
A ₁	1	1	1	Z	x ² + y ² , z ² ,		
A ₂	1	1	-1	R _z			
E	2	-1	0	(x, y), (R _x , R _y)	(x²-y², xy) (yz, xz)		

Tabela 17

CAMPO V – EIXOS DE TRANSLAÇÃO (ORBITAIS P) E EIXOS DE ROTAÇÃO							
С _{зv}	E	2C ₃	3,				
A ₁	1	1	1	Z	x ² + y ² , z ² ,		
A ₂	1	1	-1	R _z			
E	2	-1	0	(x, y), (R _x , R _y)	(x²-y² _, xy) (yz, xz)		

Tabela 18

CAM	CAMPO VI – PRODUTOS BINÁRIOS E QUADRADOS DOS EIXOS DE TRANSLAÇÃO (ORBITAIS D) ²⁶							
C _{3v}	E	2C ₃	3 _v					
A ₁	1	1	1	Z	$x^{2}+y^{2}, z^{2},$			
A ₂	1	1	-1	R _z				
E	2	-1	0	(x, y), (R _x , R _y)	(x²-y² _, xy) (yz, xz)			

Uma aplicação do uso dos campos V e VI é na determinação da simetria ou a representação irredutível dos orbitais atômicos s, p e d.

A simetria dos orbitais *s* é aquela em que todos os caracteres são simétricos para todas as classes (todas as operações de simetria). Para o grupo C_{3v} , a simetria do orbital s é dada pela representação irredutível A₁.

²⁶Os orbitais ($d_{x_2-y_2}$ e d_{xy}) e (d_{xz} e d_{yz}) são degenerados na ordem em que aparecem na tabela de caracteres, C_{3v} portanto **não é correto** dizer que d_{xy} e d_{xz} , por exemplo, são degenerados entre si. 60

Para os orbitais *p* que estão situados nas direções *x*, *y* e *z*, a simetria é dada pelas representações irredutíveis que contêm os eixos de translação *x*, *y* e *z*. No grupo de ponto C_{3V} temos que os orbitais p_z , p_x e p_y têm as seguintes simetrias, respectivamente, A_1 e E. Os orbitais p_x , e p_y são, portanto duplamente degenerados, isto é, têm o mesmo comportamento com relação às operações de simetria. Estas informações foram obtidas pela simples inspeção do campo V da tabela de caracteres para o grupo de pontos C_{3V} .

A simetria dos orbitais d é obtida então utilizando as informações do campo VI. O orbital d_{z2} tem simetria A₁ Os orbitais d_{x2-y2} e d_{xy} têm simetria E, e os orbitais d_{xz} e d_{yz} também têm simetria E.

4.1. Representações irredutíveis e redutíveis

Como podemos observar, o número de representações irredutíveis é igual ao número de classes, portanto nós temos um número fixo destas representações para cada grupo pontual. Entretanto, podemos ter muitas representações redutíveis que são constituídas de somatória de representações irredutíveis, como, por exemplo:

Tabela 19

С _{зv}	E	2C ₃	3 _v		
A ₁	1	1	1	Z	x ² + y ² , z ² ,
A_2	1	1	-1	R _z	
E	2	-1	0	(x, y), (Rx, Ry)	(x ² -y ² , xy) (yz, xz)
1	3	0	-1		
2	2	2	0		
3	4	-1	1		

A representação redutível ₁ contém as representações $A_2 e E$, ou seja, ₁ = $A_2 + E_2 = A_1 + A_2 e_3 = 2A_1 + E$. O caractere, () da representação redutível para cada operação de simetria é igual à soma dos caracteres das representações irredutíveis da operação de simetria correspondente.

Nos exemplos dados acima, podemos deduzir facilmente, por tentativa, quais as representações irredutíveis que estão contidas na representação redutível. Nas aplicações de teoria dos grupos relacionadas às teorias de ligação, aos estudos espectroscópicos e a outros, temos representações redutíveis, cuja decomposição em representações irredutíveis através de uma simples inspeção são mais difíceis. Neste caso, usaremos a expressão dada pela eq. 1.

 $a_i = 1/h g_{i}(R)(R)$ (eq. 1) onde:

 a, é o número de vezes que uma representação irredutível está contida na representação redutível;

h é a ordem do grupo;

g é o número de operações de simetria em uma classe;

 $_{i}(\mathbf{R})$ é o caractere da representação irredutível i para a operação de simetria R; (\mathbf{R}) é o caractere da representação redutível para a operação de simetria R. *Exemplo*: Vamos decompor a representação redutível ₄ do grupo de ponto C_{3v} nas representações irredutíveis. Poderíamos também dizer quais as representações irredutíveis que estão contidas na representação redutível.

Tabela 20

C _{3v}	E	2C ₃	3 _v		
A_1	1	1	1	Z	$x^{2}+y^{2}, z^{2},$
A_2	1	1	-1	R _z	
Ε	2	-1	0	(x, y), (Rx, Ry)	(x²-y², xy) (yz, xz)
4	5	-1	-1		

Usaremos a eq. 1 para resolvermos este exercício.

 $a_i = 1/h g_{i}(R)(R)$

Iniciaremos, verificando se a representação irredutível A₁ está contida na representação redutível ₄

 $a_{A1} = 1/h (g_{A1}(E)(E) + g_{A1}(C_3)(C_3) + g_{A1}(v)(v)$

a ordem do grupo (h) é a soma de todas as operações de simetria, portanto $1(E) + 2(C_3) + 3(.) = 6$; h = 6

Substituindo os valores numéricos, temos:

 $a_{A1} = 1/6[1 \times 1 \times 5 + 2 \times 1 \times (-1) + 3 \times 1 \times (-1)]$

 $a_{\Delta 1} = 1/6[5 + (-2) + (-3)] = 0$

Concluímos que a representação irredutível A₁ **não** está contida na representação redutível.

Verificação se a representação irredutível A_2 está contida na representação redutível $_{a}$

 $a_{A2} = 1/6[1 \times 1 \times 5 + 2 \times 1 \times (-1) \times 3 \times (-1) \times (-1)] = 6/6 = 1$

Concluímos que a representação irredutível A₂ está contida uma vez na representação redutível.

Verificação se a representação irredutível E está contida na representação redutível ₄

 $a_{AF} = 1/6[1 \times 2 \times 5 + 2 \times (-1) \times (-1) \times 3 \times 0 \times (-1)] = 12/6 = 2$

Concluímos que a representação irredutível E está contida duas vezes na representação redutível.

Podemos então escrever que $_{4}$ = A $_{2}$ + 2E.

Mostraremos aplicações sobre a decomposição de representações redutíveis nas próximas unidades quando estudaremos as teorias de ligação de valência, a teoria do campo cristalino e a teoria dos orbitais moleculares.

A simetria molecular é uma importante ferramenta para a interpretação de diferentes aspectos teóricos da química inorgânica em que podemos destacar a interpretação de polarizabilidade, espectros vibracionais e eletrônicos e construção de orbitais híbridos e moleculares entre outras aplicações.

Consideramos primeiramente uma visão cotidiana sobre simetria quando verificamos que existem na natureza diferentes exemplos de plantas, flores, insetos, que são simétricos, e outros que apresentam pouca simetria. Antes de definirmos os elementos de simetria, fizemos uma pequena revisão sobre os conceitos de geometria que utilizamos neste estudo.

A diferença entre operações de simetria e elementos de simetria é discutida e, posteriormente, aplicada na determinação dos elementos de simetria de várias moléculas. O conceito matemático de teoria dos grupos é introduzido e aplicado à química através da determinação de grupos de ponto das moléculas. Finalizamos a unidade com a análise e o uso da tabela de caracteres dos diferentes grupos de ponto.

- a) Qual o grupo pontual da molécula de fac-[MA₃B₃]? Quais os seus elementos de simetria?
 - b) Quais os elementos de simetria para a molécula abaixo?
- 2. a) Qual o grupo pontual da molécula de trans-C₂H₂Cl₂ (planar)? Quais os seus elementos de simetria?

b) Quais os elementos de simetria para a seguinte molécula.

3. a) Qual o grupo pontual da molécula de POCl₃? Quais os seus elementos de simetria?

b) Quais os elementos de simetria para a seguinte molécula?

- 4. Determine o grupo pontual das moléculas:
- a) cis-diaminodicloroplatina(II);
- b) Trans-tetraaminodiclorocobalto(III).
- Decomponha a seguinte representação redutível em suas componentes irredutíveis e diga quais orbitais atômicos transformam-se segundo estas representações irredutíveis.

- 6. Qual o grupo pontual e os elementos de simetria dos seguintes compostos:
 (a) SF₄ (estrutura da bipirâmide trigonal com um par de elétrons situado na região equatorial);
 - (b) tris(carbonato)cobalto(III).
- Quantas operações de simetria, qual a ordem, o número de classes e quais as representações irredutíveis dos seguintes grupos pontuais: (a) C_{6v}
 - (b) D_{4h}
 - (c) T_d
- Qual a simetria dos orbitais p e d do Ósmio (III) no complexo: trans--[OsCl₂(NH₃)₂]NO₃. Explique sua resposta.
- Qual a diferença entre ordem de um grupo e classes em um grupo de ponto. Dê exemplos
- Qual o grupo pontual e os elementos de simetria dos seguintes compostos:
 - (a) tris(oxalato)cromato(III);
 - (b) mer-triclorotris(trietilfosfino)rutênio(III).
- **11.** Qual a simetria dos orbitais *p* e *d* do cobalto (III) no complexo: trans--[CoCl₂(NH₃)₄]NO₃. Explique sua resposta.
- **12.** Quantas operações de simetria, qual a ordem, o número de classes e quais as representações irredutíveis dos seguintes grupos pontuais:

- (a) D_{5h} (b) C_{4v}?
- 13. O íon complexo tris(etilenodiamino)cobalto(III) pertence ao grupo de ponto D₃. Identifique quais os elementos de simetria, qual a ordem do grupo, quantas e quais são as representações irredutíveis e a simetria dos orbitais p e d.

Capítulo

Teoria da ligação de valência

Objetivos

- Apresentar o desenvolvimento da Teoria.
- Discutir a teoria usando o tratamento da mecânica quântica.
- Destacar as conclusões relacionadas a teoria de ligação de valência.
- Relacionar os orbitais híbridos com a geometria molecular.
- Determinar os possíveis orbitais híbridos para diversas geometrias moleculares usando os conceitos de simetria molecular.

Introdução

Heitler e London (1927), tomando como base a ideia de Lewis sobre a formação da ligação química através do emparelhamento de elétron, apresentaram uma explicação para a formação da ligação química, utilizando um tratamento da mecânica quântica. Posteriormente, Linus Pauling e J. C. Slater, assim como Coulson, aprofundaram-se neste assunto, que abordaremos a seguir.

1. Desenvolvimento da teoria

Na evolução desta teoria, primeiramente para a molécula de hidrogênio, supõe-se que a função de onda para a molécula após a formação da ligação química podia ser dada pela seguinte equação:

$$\Psi = \Psi_{A(1)} \Psi_{B(2)}$$

onde $\Psi_{A(1)}$ representava a função de onda do átomo A contendo o elétron **1** e $\Psi_{B(2)}$; consequentemente era a função de onda do átomo B contendo o elétron **2**.

Os cálculos de energia e comprimento de ligação, entretanto, deram resultados que não eram consistentes com os valores experimentais conhecidos E_(calculada)=24kJmol⁻¹, Distância_(calculada)= 24pm; E_(encontrada) = 458,0 kJmol⁻¹, Distância_(encontrada) = 74,1 pm.. (Huheey, 1993, p. 142). O resultado para a energia apresentava uma discrepância muito grande. A distância de ligação era razoável. O passo seguinte foi dado por Heitler e London quando incluíram neste cálculo a possibilidade de uma inversão da localização dos elétrons, tendo em vista que ambos poderiam estar na região do espaço representado pela função de onda do átomo A e B. O elétron 1 podia também estar no átomo B, e o elétron 2 ficar no átomo A, considerando-se que os elétrons estão compartilhados com os dois átomos. Desta maneira, a equação da função de onda seria:

$$\Psi = \Psi_{A(1)} \Psi_{B(2)} + \Psi_{A(2)} \Psi_{B(1)}$$

Novamente o valor da energia e da distância continuaram diferentes, 303 kJmol⁻¹ e 86,9 pm, respectivamente. Devemos ressaltar que esta variação da energia poderia ter sido considerada como uma energia de troca de posição dos elétrons, mas é talvez mais apropriado considerarmos como uma imperfeição em representarmos a função de onda da molécula. O passo seguinte foi considerar no cálculo da energia o efeito de proteção (blindagem) que os elétrons podem dar um ao outro em relação à carga nuclear. A atração que realmente é sentida pelos elétrons é a proveniente da carga nuclear efetiva Z_{ef}, de acordo com o que foi discutido quando estudamos a estrutura atômica (COELHO, 2010)

Por último, devemos corrigir a função de onda da molécula, considerando o caráter iônico que deve existir na molécula. Esta contribuição para a função de onda é porque não podemos deixar de considerar o fato de que os dois elétrons podem ocupar simultaneamente a mesma região do espaço que seria representado como o mesmo elétron, estando na função de onda do átomo A ou de átomo B. Podemos então escrever a equação da função de onda da molécula da seguinte maneira:

$$\Psi = \Psi_{A(1)}\Psi_{B(2)} + \Psi_{A(2)}\Psi_{B(1)} + \Psi_{A(1)}\Psi_{A(2)} + \Psi_{B(1)}\Psi_{B(2)}$$

A função de onda da molécula é representada, portanto, por uma parcela covalente (dois primeiros termos da equação acima) e uma parcela iônica (os dois últimos termos da citada equação). Devido à repulsão elétron-elétron, a probabilidade de encontramos elétrons ocupando a parcela iônica será muito pequena e, portanto, tem um peso pequeno para a função de onda da molécula.

Com estas duas últimas modificações, a energia e a distância de ligação assumiriam os seguintes valores 388 kJmol⁻¹ e 74,9 pm, respectivamente.

Algumas outras aproximações foram desenvolvidas levando a uma maior aproximação entre os valores calculados e experimentais, mas, se levarmos em conta apenas as considerações feitas acima, veremos que elas nos conduzem às seguintes conclusões sobre as ligações covalentes:

a) delocalização dos elétrons sobre dois ou mais núcleos;

- b) efeito de blindagem;
- c) parcial caráter iônico.

A teoria da ligação de valência nos leva à proposição de orbitais híbridos como parte fundamental para explicar a formação da ligação química.

Utilizaremos o átomo do carbono para introduzirmos este conceito. O carbono com a configuração eletrônica $1s^2$, $2s^2$, $2p_x^{-1}$, $2p_y^{-1}$ nos conduz a um estado divalente para o C. Entretanto observamos que, em sua grande maioria, os compostos se apresentam em um estado de valência IV. Para explicarmos a existência do carbono tetravalente, deveríamos considerar uma situação onde ocorre a formação de um estado excitado de configuração $1s^2$, $2s^1$, $2p_x^{-1}$, $2p_y^{-1}$, $2p_z^{-1}$. Para que ocorra este estado excitado, será preciso uma energia de 406 kJmol⁻¹. Isto porque para que o estado tetravalente passe a existir temos que ter energia para promover o elétron para o subnível superior e reorganizar o spin do elétron. Mesmo isto acontecendo, teremos, no caso do CH_4 , a formação de duas ligações adicionais, a energia será 895 kJmol⁻¹ mais estável do que a energia do $CH_2 + 2H$.

Na formação do CH₄, temos que as quatro ligações formadas são iguais e distribuídas em uma geometria tetraédrica. Como podemos ter esta geometria, se o orbital 2s é totalmente simétrico, os orbitais 2p estão a 90° uns dos outros e os ângulos entre as ligações C-H no tetraedro são de 109,5°? É então conveniente combinar os orbitais atômicos de forma a formarem orbitais híbridos que possuam características próprias e diferentes daquelas dos orbitais atômicos que lhes deram origem. A teoria da ligação de valência utilizou então este tipo de orbital não para explicar a ligação em si, mas para demonstrar a existência de 4 orbitais idênticos no caso de uma estrutura tetraédrica assim com as demais estruturas.

A promoção de um elétron do orbital 2s do carbono para um orbital 2p, conforme descrito acima, assim como a formação de um orbital híbrido, como explica a teoria da ligação de valência, devem ocorrer simultaneamente e nunca uma acontece sem a outra ocorrer, ou seja, ocorrem ao mesmo tempo.

Outro ponto que devemos destacar é que o metano é tetraédrico porque a energia da molécula é a mais baixa naquela configuração, principalmente porque aumenta a força de ligação e diminui a energia de repulsão. É incorreto atribuir a forma da molécula à hibridização. A hibridização proíbe certas estruturas e permite outras, mas não escolhe uma preferida. Por exemplo, para o carbono, podemos ter os seguintes orbitais híbridos: *sp, sp² e sp³* em diferentes compostos, e o fato do metano ser sp³ é porque esta hibridização resulta no tetraedro, que é a mais estável forma possível.

Os possíveis orbitais híbridos listados acima, *sp*, *sp*² *e sp*³, que correspondem à estrutura linear, ao triângulo plano e ao tetraedro, respectivamente, são construídos pela combinação linear dos orbitais atômicos de um mesmo átomo central. Abaixo, mostramos as combinações lineares para a construção desses orbitais.

Tabela 21

$\Psi_{\rm sp} = \sqrt{1/3}\Psi_{\rm s} + \sqrt{2/3}\Psi_{\rm px}$	Eq. 3.1
$\Psi_{\rm sp} = \sqrt{1/3}\Psi_{\rm s}$ - $\sqrt{2/3}\Psi_{\rm px}$	Eq. 3.2
$\Psi_{sp2} = \sqrt{1/3}\Psi_{s} + \sqrt{1/6}\Psi_{px} + \sqrt{1/6}\Psi_{py}$	Eq. 3.3
$\Psi_{sp2}=\sqrt{1/3}\Psi_{s}$ - $\sqrt{1/6}\Psi_{px}$ - $\sqrt{1/6}\Psi_{py}$	Eq. 3.4
$\Psi_{\rm sp2} = \sqrt{1/3}\Psi_{\rm s} - \sqrt{1/6}\Psi_{\rm px} + \sqrt{1/6}\Psi_{\rm py}$	Eq. 3.5
$\Psi_{sp3} = 1/2\Psi_{s} + 1/2\Psi_{px} + 1/2\Psi_{py} + 1/2\Psi_{pz}$	Eq. 3.6
Ψ_{sp3} = 1/2 Ψ_{s} - 1/2 Ψ_{px} - 1/2 Ψ_{py} + 1/2 Ψ_{pz}	Eq. 3.7
$\Psi_{sp3}=1/2\Psi_{s}$ + $1/2\Psi_{px}$ - $1/2\Psi_{py}$ - $1/2\Psi_{pz}$	Eq. 3.8
$\Psi_{sp3}=1/2\Psi_s$ - $1/2\Psi_{px}$ + $1/2\Psi_{py}$ - $1/2\Psi_{pz}$	Eq. 3.9

O quadrado das constantes que são apresentadas nas equações acima, por exemplo, $\sqrt{1/3} e \sqrt{2/3}$ nas equações 3.1 e 3.2 é proporcional à percentagem da contribuição de cada orbital do átomo central para a formação dos orbitais híbridos *sp*, ou seja, $\sqrt{1/3}$ do orbital *s* e $\sqrt{2/3}$ do orbital *p*. Hsu e Orchin mostram em seu trabalho que as funções de onda dos orbitais híbridos devem obedecer a três condições básicas:

- a) Normalização;
- b) Ortogonalidade;
- c) Contribuição de cada unidade atômica.

Com base nestes preceitos e, principalmente no último, eles demonstram como calcular os coeficientes que são apresentados nas equações 3.1 – 3.9. Neste mesmo artigo, Hsu e Orchin mostram também as funções de ondas para os orbitais dsp²(quadrado planar) e d²sp³(octaedro).

Devemos chamar a atenção que para as estruturas quadrado planar, bipirâmide trigonal e octaedro. Os orbitais híbridos não envolvem somente os orbitais atômicos s e p, mas também os orbitais atômicos d.

2. Possíveis orbitais híbridos a partir de argumentos de simetria

Os orbitais híbridos, como vimos anteriormente, são construídos como uma combinação linear de orbitais atômicos do átomo central que constitui a molécula e, portanto, é necessário que estes orbitais tenham simetria apropriada para representarem a estrutura proposta para a molécula e para as energias semelhantes. Para determinarmos quais orbitais atômicos apresentam esta condição de simetria, devemos primeiro encontrar a simetria que possuem as ligações químicas envolvidas.

COELHO, AUGUSTO LEITE

As ligações químicas na molécula em estudo são predominantemente do tipo sigma (σ), isto é, situam-se no eixo de ligação. Usando conhecimentos de simetria molecular e operadores de projeção, podemos determinar os orbitais atômicos que têm simetria apropriada para formar possíveis orbitais híbridos para aquele grupo de ponto da molécula.

Seguiremos o seguinte procedimento a fim de encontrarmos a simetria das ligações químicas e os orbitais atômicos de simetria igual. Primeiramente, devemos determinar o grupo pontual da molécula e, em seguida, determinarmos a representação redutível para as ligações sigma (σ) presentes na molécula. A partir desta representação, determinamos as representações irredutíveis contidas nela e, usando a tabela de caracteres do grupo de ponto, determinamos os orbitais atômicos com simetria igual às das ligações sigma. Para este fim, usaremos uma sequência de etapas para obter esta informação.

Usaremos um exemplo para determinarmos os possíveis orbitais híbridos de uma molécula. Vamos exemplificar esta metodologia usando a molécula do BF₃ que possui uma estrutura de um triângulo plano.

1. Qual o grupo pontual desta molécula?

D_{3h}

2. Quantas ligações sigma esta molécula tem?

A molécula do BF₃ possui 3 ligações B-F. Elas são consideradas ligações sigmas por estarem no eixo de ligação. Conforme a figura acima, denominamos as ligações sigma de σ_1 , σ_2 e σ_3 .

3. Qual a representação redutível das 3 ligações σ nesta molécula?

Devemos então realizar as operações de simetria do grupo D_{3h} em relação às ligações e construirmos, assim, a representação redutível das ligações σ (Γ_{σ}).

O caractere da representação redutível Γ_{σ} para uma dada operação de simetria será igual ao número de ligações que não mudam de posição após ter sido realizada a operação.

²⁷Eixo C₃ passando somente pelo átomo de boro e perpendicular ao plano da molécula.

²³Ler sobre Propriedades de Matrizes, principalmente sobre traço e multiplicação de matrizes. Portanto, para a operação identidade E, o caractere será 3 (χ (E) = 3) e, para a operação C₃, será igual a 0 (χ (C₃) = 0) porque para a identidade, E as ligações **não mudaram** de lugar e, para C₃, todas mudaram de lugar, isto é, permutaram entre si (esquemas acima).

Uma importante aplicação de matriz²⁸ é expressar a transformação de um ponto ou coleção de pontos que definem um corpo no espaço. As operações de simetria podem então ser representadas por uma matriz, como, por exemplo, a matriz identidade dada por

1	0	0	$\left\lceil \sigma_{1} \right\rceil$		σ_1
0	1	0	σ2	=	σ <mark>2</mark> '
0	0	1	σ 3		σ ₃ '

o que significa dizer que, após a operação ter sido realizada, as novas posições são σ_1 ', σ_2 ' e σ_3 ', determinadas através do produto das duas primeiras matrizes.

$$\begin{split} \sigma_{1}^{'} &= 1\sigma_{1}^{'} + 0\sigma_{2}^{'} + 0\sigma_{3}^{'} \text{ ou } \sigma_{1}^{'} = \sigma_{1}^{'}; \\ \sigma_{2}^{'} &= 0\sigma_{1}^{'} + 1\sigma_{2}^{'} + 0\sigma_{3}^{'} \text{ ou } \sigma_{2}^{'} = \sigma_{2}^{'}; \\ \sigma_{3}^{'} &= 0\sigma_{1}^{'} + 0\sigma_{2}^{'} + 1\sigma_{3}^{'} \text{ ou } \sigma_{3}^{'} = \sigma_{3}^{'} \end{split}$$

As novas posições permanecem iguais às originais, ou seja, σ_1 , σ_2 e σ_3 O traço da matriz é 3 por ser a somatória dos termos da diagonal da mesma; por esta razão afirmamos no item 3 que, como todas as ligações não mudam de posição, o caractere da representação redutível para a identidade $\chi(E)$ é igual a 3.

Para a rotação C₃ na molécula do BF₃, podemos observar que as ligações σ_1 ', σ_2 ' e σ_3 ', mudam, ou seja, as novas posições que representamos por σ_1 , σ_2 e σ_3 são iguais às ligações σ_3 , σ_1 e σ_2 , respectivamente. Representando na forma de matriz esta operação C₃, teremos:

0	1	0	$\left[\sigma_{1}\right]$		σ ₁ ']
0	0	1	σ2	=	σ ₂ '
1	0	0	σ_3		σ3'
			L –		

Nesta representação matricial da operação C_3 o traço da matriz é zero. Podemos então generalizar dizendo que quando a ligação muda de lugar, isto é, troca por outra ligação, ela não contribui para o traço e, por isso, podemos dizer que apenas aquelas que não mudam contribuem com o valor unitário para o traço da matriz. Vejamos agora a mesma análise para as operações C_2

²⁹Estamos considerando o eixo C₂ que está na direção da ligação 3.

Observe que $\sigma_1' = \sigma_2; \sigma_2' = \sigma_1; \sigma_3' = \sigma_3$. Somente a ligação σ_3 não muda de posição. Por esta razão o traço da matriz é 1, e o caractere da representação redutível das ligações é σ ; para a operação de simetria C₂ é igual a 1.

Mostramos a seguir a representação redutível das ligações sigmas na molécula do BF_3 ou de qualquer outra molécula do tipo AB_3 que seja triângulo plano e, portanto, pertença ao grupo de ponto D_{3h} .

 Quantas e quais as representações irredutíveis do grupo D_{3h} que estão contidas nesta representação redutível Γ_a?

Tabela 22

TABELA DE CARACTERES DO GRUPO PONTUAL D _{3H} e a representação redutível das ligações Σ ($\Gamma_{_2}$)								
D _{3h}	E	2C ₃	3C ₂	σ_{h}	2S ₃	3 σ,		
A,'	1	1	1	1	1	1		X ² +y ² , z ²
A ₂ ′	1	1	-1	1	1	-1	R _z	
E'	2	-1	0	2	-1	0	(x,y)	(x ² -y ² ,xy)
A ₁ ″	1	1	1	-1	-1	-1		
A ₂ "	1	1	-1	-1	-1	1	Z	
Ε″	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)
Γ_{σ}	3	0	1	3	0	1		

Para determinarmos quais são as representações irredutíveis, temos que aplicar o operador de projeções, que é dado pela seguinte expressão:

 $a_i = 1/h\Sigma g \chi_i(R) \chi_{\Gamma(r)}(R)$ onde

 a, número de vezes que uma representação irredutível i está contida em uma representação redutível;

h ordem do grupo;

g número de operações em uma classe;

χ_i(R) caractere de uma representação irredutível para uma dada operação R;

 $\chi_{\Gamma(\sigma)}(\textbf{R})$ caractere de uma representação redutível para uma dada operação R;

Para este exemplo do BF₃, cujo grupo de ponto é D₃h, teremos que a ordem do grupo é 12, porque a soma dos coeficientes de cada operação R ($1E^{30} + 2C_3 + 3C_2 + 1\sigma_h + 2S_3 + 3\sigma_y$).

 $\begin{aligned} \mathbf{a}(\mathbf{A}_{1}') &= 1/h[g(E) \chi_{A1'}(E) \chi_{\Gamma(\sigma)}(E) + g(C_{3}) \chi_{A1'}(C_{3}) \\ \chi_{\Gamma(\sigma)}(C_{3}) + g(C_{2}) \chi_{A1'}(C_{2}) \chi_{\Gamma(\sigma)}(C_{2}) + g(\sigma_{h}) \chi_{A1'}(\sigma_{h}) \\ \chi_{\Gamma(\sigma)}(\sigma_{h}) + g(S_{3}) \chi_{A1'}(S_{3}) \chi_{\Gamma(\sigma)}(S_{3}) + g(s_{v}) \chi_{A1'}(\sigma_{v}) \\ \chi_{\Gamma(\sigma)}(\sigma_{v})] \end{aligned}$

Substituindo os valores retirados da tabela de caracteres do grupo pontual D_{3h} e da última linha na Tabela 1, que é a representação redutível das ligações sigma, temos este calculo para as representações irredutíveis A_1 ', A_2 ' e E':

 $\mathbf{a(A_1')} = 1/12[1.1.3 + 2.1.0 + 2.1.1 + 1.1.3 + 2.1.0 + 3.1.1] = 12/12 = 1$ $\mathbf{a(A_2')} = 1/12[1.1.3 + 2.1.0 + 2.(-1).1 + 1.1.3 + 2.1.0 + 3.(-1).1] = 0/12 = 0$ $\mathbf{a(E')} = 1/12[1.2.3 + 2.(-1).0 + 2.0.1 + 1.2.3 + 2.(-1).0 + 3.0.1] = 12/12 = 1$

Aplicando a mesma equação do operador de projeções para as outras representações irredutíveis, teremos que: $a(A_1'') = 0$; $a(A_2'') = 0$; a(E'') = 0

³⁰Para alguns símbolos usamos a mesma letra, como a operação de simetria identidade que é representada por E, que é o mesmo símbolo para uma representação irredutível Podemos então concluir que apenas as representações irredutíveis A₁' e E' estão contidas na representação redutível das ligações sigma, portanto as três ligações sigma têm simetria A₁' e E'.

5. Quais os orbitais atômicos que têm simetria A₁' e E', ou seja, que são representados por estas representações irredutíveis?

Consultando a tabela de caracteres do grupo pontual $D_{_{3h}}$, encontramos quais orbitais atômicos possuem as simetrias A_1 ' e E' (Quadro 5):

	C OIDRNÓ					
ORBITAIS ATÔMICOS QUE POSSUEM AS SIMETRIAS A, ' E E' PARA O GRUPO DE PONTO D_{3H}						
A ₁ '	E'					
S	(p _x , p _{y)}					
d,2	$(d_{(2,2)}, d_{y})$					

6. De posse de todas estas informações, quais os possíveis orbitais³¹ híbridos que podem ser formados para a molécula do BF₃?

Como os orbitais híbridos são obtidos pela combinação linear de orbitais atômicos que devem satisfazer as condições de mesma simetria molecular das ligações sigmas, podemos escrever que as funções de onda dos orbitais híbridos serão:

$$\begin{split} \psi_{hib.} &= C_1 \psi^{A1'} + C_2 \psi_1^{E'} + C_3 \psi_2^{E'} & \text{Eq; 1} \\ \\ \psi_{hib.} &= C_1 \psi^{A1'} - C_2 \psi_1^{E'} - C_3 \psi_2^{E'} & \text{Eq. 2} \\ \\ \psi_{hib.} &= C_1 \psi^{A1'} + C_2 \psi_1^{E'} - C_3 \psi_2^{E'} & \text{Eq. 3} \end{split}$$

³¹Os orbitais s não constam nas tabelas de caracteres porque são totalmente simétricos e, portanto sua simetria é dada pela representação irredutível totalmente simétrica que, geralmente, aparece na primeira linha das tabelas de caracteres, isto é, logo abaixo da relação das operações de simetria.

Substituindo na eq. 1, as funções de ondas $\psi^{A1}, \psi_1^{E} e \psi_2^{E}$ pelos orbitais atômicos encontrados conforme o quadro 1, teremos as seguintes possibilidades:

$$\begin{split} \psi_{hib1} &= s + p_x + p_y = sp^3 \\ \psi_{hib2} &= s + d_{x2-y2} + dxy = sd^3 \\ \psi_{hib3} &= d_{z2} + p_x + p_y = p^2d \\ \psi_{hib4} &= d_{z2} + d_{x2-y2} + dxy = d_3 \end{split}$$

Devemos lembrar que temos três orbitais híbridos para cada uma das possibilidades listadas acima, conforme mostramos genericamente nas equações 1, 2 e 3. Vamos ilustrar esta afirmação para o orbital híbrido $\psi_{hib,1}$

$$\psi_{hib1...} = s + p_x + p_y = sp^3

 \psi_{hib1...} = s - p_x - p_y = sp^3

 \psi_{hib1} = s + p_x - p_y = sp^3$$

Sabemos que para um composto tetraédrico, temos os seguintes orbitais híbridos: sp³ e sd³. Vejamos por que. Como a molécula tem uma geometria tetraédrica, ela pertence ao grupo pontual T_d. Podemos determinar que esta molécula tem a seguinte representação redutível para as ligações sigma:

T _d	E	8C ₃	3C ₂	6S ₄	6 ත්	
Γ_{σ}	4	1	0	0	2	

Esta representação, como podemos comprovar, é uma representação redutível, pois por inspeção à tabela de caracteres para este grupo T_d , constatamos que, dentre as representações irredutíveis, ela não se encontra. Aplicando a equação dos operadores de projeção, podemos decompô-la em suas componentes irredutíveis, ou seja, $A_1 e T_1 (\Gamma_\sigma = A_1 + T_1)$. Novamente utilizando a tabela de caracteres para o citado grupo pontual, encontramos os orbitais atômicos que são representados por $A_1 e T_1$ conforme mostramos abaixo:

Orbitais A ₁	Orbitais T ₁
S	(p_x, p_y, p_z) (d_{xy}, d_{xz}, d_{yx})

Portanto as duas possíveis combinações são sp³ e sd³. Do ponto de vista de simetria molecular, não temos nenhuma diferença entre as duas possibilidades. Alguns exemplos, como para a molécula do metano $CH_{4,}$ é claro que a possibilidade sd³ não existe, porque para o número quântico principal n=2 não temos orbitais *d*, e o orbital 3d é o de maior energia.

Síntese do Capítulo

Apresentamos a Teoria de Ligação de Valência desde o seu desenvolvimento e aspectos teóricos de um tratamento que usa a mecânica quântica para explicar as ligações covalentes, através do emparelhamento de elétrons, conforme descrito por Lewis.

Destacamos as conclusões sobre estas ligações, tais como a delocalização dos elétrons sobre dois ou mais núcleos, o efeito de blindagem e o parcial caráter iônico. A teoria da ligação de valência explica a geometria das moléculas devido à diminuição de energia e às distâncias de ligação.

Chamamos a atenção para o fato de que a existência de orbitais híbridos não justifica sozinha determinadas estruturas moleculares, mas que a hibridização proíbe certas estruturas e permite outras, sem escolher uma preferida.

Finalmente mostramos como determinar os possíveis orbitais híbridos em uma determinada estrutura a partir de argumentos e usando a simetria molecular.

76

- Atividades de avaliação
- Mostre, aplicando a equação dos operadores de projeção para as representações irredutíveis A₁", A₂" e E" do grupo de ponto D_{3h}, que as mesmas não estão contidas na representação redutível Γ_σ mostrada para a molécula do BF₃
- Decomponha as seguintes representações redutíveis em suas componentes irredutíveis e diga que orbitais atômicos se transformam segundo estas representações irredutíveis.

3. Para a molécula do cis-tetraaminodiclorocobalto(III)

(a) qual o grupo pontual? (b) qual a representação redutível das ligações sigma? (c) quais os possíveis orbitais híbridos, sabendo-se que a representação redutível das ligações sigma contém as seguintes representações irredutíveis: $\Gamma_{\alpha} = 3A_1 + B_1 + 2B_2$?

- **4.** Qual a simetria dos orbitais *p* e *d* do Ósmio(III) no complexo: trans--[OsCl₂(NH₃)₄]NO₃. Explique sua resposta.
- 5. Sabendo-se que, para a molécula do [NiCl₄]²⁻, a representação redutível das ligações σ contém as seguintes representações irredutíveis: Γ_σ = A_{1g} + B_{1a} + E_u e que esta representação redutível tem os seguintes caracteres

D _{4h}	E	2C ₄	C ₂	2C' ₂	2C "2	i	2S ₄	σ_{h}	2 σ,	2 σ _d
Γ_{σ}	4	0	0	2	0	0	0	4	2	0

a) determine os possíveis orbitais híbridos do Ni(II) nesta molécula

b) prove porque a representação irredutível $\mathsf{E}_{\rm u}$ está contida na representação redutível $\Gamma_{\rm g}$

- 6. Determine os possíveis orbitais híbridos para o íon complexo [Fe(CN)₆]⁴.
- Sabendo-se que a representação das ligações sigma (σ) de uma dada molécula é a seguinte:

quais os possíveis orbitais híbridos?

Teoria do campo cristalino

Objetivos

- Conceituar a Teoria do Campo Cristalino.
- Mostrar o desdobramento do campo cristalino sobre diferentes orbitais d para diversas simetrias moleculares.
- Entender o efeito Jahn-Teller.
- Analisar os fatores que afetam o desdobramento do Campo Cristalino.
- Escrever a configuração eletrônica em orbitais 3d para complexos octaédricos.
- Diferenciar complexos spin alto e spin baixo
- Calcular a energia de estabilização do Campo Cristalino.
- Escrever a série espectroquímica
- Discutir as propriedades magnéticas.
- Entender as propriedades óticas.

Introdução

No capítulo em que estudamos a química dos compostos de coordenação, mostramos que este tipo de composto caracteriza-se por possuir propriedades bastante diferentes dos sais duplos e das outras classes de compostos conhecidos. Dentre estas características, podemos citar o fato de compostos com a mesma espécie central no mesmo estado de oxidação possuírem propriedades magnéticas diferentes; de todos eles apresentarem-se coloridos; de o comportamento da energia de hidratação para os íons hidratados fugir ao comportamento encontrado para os lantanídeos; e de apenas os íons Mn²⁺ e Zn²⁺ poderem apresentar um comportamento semelhante, como mostramos nas Figura 35 e 36.

Figura 35 – Variação da entalpia de rede em kJmol⁻¹ para os íons M²⁺ hidratados da primeira série de transição

Figura 36 – Variação da entalpia de hidratação em kJmol⁻¹ para os íons M²⁺ hidratados da série dos lantanídeos

A teoria da ligação de valência explicou as geometrias mais comuns para estes compostos. Uma análise envolvendo o uso de orbitais nd ou (n+1)d feita por Pauling mostra uma possibilidade de explicar as propriedades magnéticas nestes compostos.

A primeira teoria desenvolvida para explicar de uma maneira mais clara o comportamento destes compostos foi a *Teoria do Campo Cristalino*, desenvolvida em 1929 por Hans Bethe e ampliada por Van Vleck (1935). Era originalmente um modelo eletrostático que considerava os ligantes com cargas pontuais interagindo com os orbitais *d* dos metais. Esta teoria evoluiu para a Teoria do Campo Ligante, principalmente com os trabalhos de Van Vleck em que a covalência passa a ser levada em conta.

A Teoria do Campo Cristalino (TCC), considera os ligantes como cargas pontuais negativas que interagem eletrostáticas com os orbitais atômicos provocando perturbações na energia dos orbitais atômicos *d*.

Como os 5 orbitais *d* (Figura 37) estão orientados nos planos xy, xz e yz assim como na direção dos eixos x e y para o orbital $d_{x^2-y^2}$ e o orbital d_{z^2} na direção z, dependendo da geometria do complexo, teremos orbitais que irão interagir mais com certos ligantes do que com os outros, quebrando a degenerescência dos orbitais *d*³².

Z X d_{xy}
d_{xz}
d_{xz}
d_{yz}
d_{yz}
d_{yz}
d_{yz}
d_{yz}
d_{yz}
d_{z2y2}
d_{z2}

82

COELHO, AUGUSTO LEITE

Analisaremos esta interação para cada uma das geometrias mais comuns dependendo do número de coordenação do complexo.

1. Diagrama de energia dos orbitais d para diferentes geometrias moleculares

1.1. Complexo octaédrico

Na formação de um composto de coordenação como em qualquer outra reação química, temos os reagentes, os intermediários e os produtos. Vamos verificar a energia dos orbitais *d* nestes três estágios da reação. Inicialmente, o íon metálico estará livre da presença dos ligantes, temos então o *íon livre*. Nesta situação, os orbitais estão degenerados (Figura 38a). Quando os ligantes aproximam-se do íon livre, mas sem ainda definir qual a orientação, a simetria esférica, os orbitais *d* sofrem um aumento de energia, mas continuam degenerados (Figura 38b). Na última etapa, quando os ligantes estão orientados na formação do octaedro, teremos então o desdobramento dos orbitais *d*³³ em dois níveis de energia. O nível de maior energia sofre uma desestabilização em relação ao íon metálico com simetria esférica (campo cristalino simétrico) perturbado porque ocorre uma maior interação dos ligantes com os orbitais *d*₂₂ e d_{x2y2}³⁴, que estão orientados para os ligantes (Figura 38c).

Figura 38 – Diferentes etapas de formação de um complexo

³³Os orbitais *d* são degenerados, o que significa que têm a mesma energia.

³⁴Consultando a tabela de caracteres do grupo pontual Oh, obtemos que os orbitais atômicos d_{z2} e d_{x2-y2} são representados pela representação irredutível E_g e d_{xy} , d_{xz} , e d_{yz} T_{2g} . Quando nos referimos à simetria de orbital, usamos letras minúsculas.

Figura 39 – Ligantes orientados em relação aos orbitais d³⁵

Na Figura 39, podemos ver que, na direção z, temos dois ligantes, portanto apontando para o orbital d_{z2} . Este orbital possui uma contribuição também no plano xy. Nas direções x e y, temos quatro ligantes, logo estão orientados para o orbital d_{x2-y2} . Esta orientação justifica porque estes dois orbitais estão desestabilizados em relação ao íon quando submetido a um campo cristalino simétrico. Os demais orbitais, por terem os seus contornos (lóbulos) situados entre os eixos e não estarem direcionados para nenhum dos ligantes, terão suas energias estabilizadas em relação à energia dos orbitais no íon metálico livre.

Usando a notação que aprendemos no estudo de simetria molecular, podemos denominar os orbitais d_{z2} e d_{x2-y2} de e_g , e os orbitais $d_{xy'}$ $d_{xz'}$, e d_{yz} de \mathbf{t}_{2g} (Figura 39).

Chamamos a diferença de energia entre os orbitais e_g e t_{2g} de desdobramento do campo cristalino, sendo representado por Δ_{o} nos compostos octaédricos, e Δ_{t} , nos compostos tetraédricos. Para outras geometrias, simplesmente chamamos de Δ . Este desdobramento também pode ser representado pelo parâmetro D_a e Δ = 10D_a.

a) Fatores que afetam o desdobramento do campo cristalino

A grandeza e a maneira com que estes orbitais atômicos *d* desdobram--se dependem dos seguintes fatores:

- Geometria do complexo;
- Natureza do ligante;
- Estado de oxidação da espécie central;
- Localização nas três séries de transição da Tabela Periódica.

³⁵Cada orbital d é constituído de quatro lóbulos.

Como o desdobramento é ocasionado pela interação entre os ligantes e os orbitais atômicos, a geometria dos complexos faz com que diferentes orbitais apontem para os ligantes e, portanto, tenham outras posições relativas dos orbitais atômicos d.

Na Tabela 23, mostramos os valores da energia de desdobramento do campo cristalino para alguns compostos com simétrica O_h. Observe que usamos nesta tabela o mesmo íon metálico com o mesmo estado de oxidação, Cr(III). Estamos variando apenas o ligante.

		Tabela 23				
VARIAÇÃO DO DESDOBRAMENTO DO CAMPO CRISTALINO EM FUNÇÃO DO LIGANTE						
Complexo	∆o (cm-1)	∆o (kJmol-1)				
[CrCl ₆] ^{3.}	13.640	163				
[Cr(H ₂ 0) ₆] ³⁺	17.830	213				
[Cr(NH ₃) ₆] ³⁺	21.680	259				
[Cr(CN) ₆] ³⁻	26.280	314				

Podemos concluir que o valor do desdobramento varia dependendo do ligante.

Figura 40 – Diagrama da variação do desdobramento do campo cristalino em função do ligante (o diagrama não está em escala)

Vamos analisar a situação em que trabalhamos com o mesmo ligante e o íon metálico variando somente o estado de oxidação do íon metálico (Tabela 24).

Tabela 24

DESDOBRAMENTO DO CAMPO CRISTALINO DEVIDO A DIFERENTES ESTADOS DE OXIDAÇÃO DO Átomo central para hexaaquo complexos							
Estado de Oxidação V Cr Mn							
Ш	Sistema	V(II) d ³	Cr(II) d ⁴	Mn(II) d ⁵			
	Δ_{0} (cm ⁻¹)	12.600	13.600	7.800			
	Δ_{o} (kJmol ¹⁻)	151	(166)	93			
III		V(III) d ²	Cr(III) d ³	Mn(III) d ⁴			
	Δ_{0} (cm ⁻¹)	18.900	17.800	21.000			
	Δ_{o} (kJmol ¹⁻)	226	213	(251)			

Podemos concluir que quanto maior o estado de oxidação maior o desdobramento do campo cristalino.

Na Tabela 25, verificamos que, para um mesmo grupo da tabela periódica, o desdobramento é maior para os íons metálicos situados na terceira série de transição ou sexto período.

		Tabela 25			
DESDOBRAMENTO DO CAMPO CRISTALINO DEVIDO À POSIÇÃO DE ÍON METÁLICO EM GRUPO NA TABELA PERIÓDICA					
Complexo	∆o (cm-1)	∆o (kJmol-1)			
[Co(NH ₃) ₆] ³⁺	28.800	296			
[Rh(NH ₃) ₆] ³⁺	34.000	406			
[lr(NH ₃) ₆] ³⁺	41.000	490			

b) Distribuição eletrônica nos orbitais *d* sob influência do campo cristalino octédrico

A distribuição dos elétrons nos orbitais *d* sob a influência do campo cristalino segue o que foi estabelecido para o íon livre, isto é, a regra de Hund e o princípio de exclusão de Pauli, conforme está mostrado na Figura 41.

Química Inorgânica II 87

Figura 41 – Distribuição eletrônica para os elétrons d em um campo cristalino de simetria O_{h}

Na Figura 41A, a distribuição eletrônica é feita da mesma maneira que no íon livre, preenchendo os orbitais de menor energia com somente um elétron até a configuração d³. Para os outros sistemas, mesmo com a quebra da degene-rescência, isto é, os orbitais e_g com maior energia do que os orbitais t_{2g} , continu-amos preenchendo os orbitais com somente um elétron, de acordo com a regra de Hund. Entretanto, para os orbitais d^4 até d^7 , temos também a possibilidade mostrada na Figura 41B. Cabe, neste momento, a pergunta: Qual das duas possi-

bilidades iremos utilizar? A escolha é feita baseada na hipótese de que usaremos aquele que envolver menor gasto de energia. Veja a situação de um sistema *d*⁴. A diferença entre as duas possibilidades (Figura 41A' e Figura 41B) é a de que teremos um elétron emparelhado, como mostra a Figura 41B. Quando colocamos o quarto elétron nos orbitais e_g, teremos um gasto de energia equivalente ao valor de Δ_o e, quando emparelhamos o quarto elétron a um elétron já existente nos orbitais t_{2g}, isso implica no gasto de energia necessária para re-orientar o elétron e emparelhá-lo. Como na natureza, sempre prevalece a situação de menor energia. Devemos então comparar a energia do desdobramento do campo cristalino (Δ_o) com a energia de emparelhamento de elétron (EP). Quando Δ_o < **EP**, teremos os quarto elétrons desemparelhados e chamamos esta situação de campo fraco ou spin alto. Quando Δ_o > **EP**, teremos o quarto elétron emparelhado e chamamos esta situação de composto campo forte ou spin baixo. Na Figura 42, resumimos o exposto acima para um sistema d⁵.

Figura 42 – Sistema d⁵ representado em três situações: íon livre campo simétrico, campo fraco e campo forte.

c) Energia de estabilização do campo cristalino octaédrico

Devido ao desdobramento dos orbitais *d*, quando submetido a um campo cristalino, os elétrons passam a ocupar os orbitais t_{2g} , que são de menor energia do que os orbitais *d* no íon livre em um campo esférico, e de energia maior quando estão preenchendo os orbitais e_g. Para calcularmos quanto será a energia dos elétrons devido à nova posição, devemos proceder da seguinte maneira. Os orbitais t_{2g} vão se estabilizar de uma mesma quantidade em relação ao íon metálico com simetria esférica que os orbitais e_g, isto é, 1/5 Δ_o . Como temos três orbitais t_{2g} e somente dois orbitais e_g, para que seja mantido o baricentro em relação ao íon metálico com simetria esférica em um campo esférico teremos que os orbitais t_{2g} contribuem no total com (-2/5) Δ_o , e os orbitais e_g contribuem no total com (+3/5) Δ_o (Figura 43). A energia de estabilização do campo cristalino (EECC) será dada pela expressão:

$$EECC = x(-2/5)\Delta_0 + y(+3/5)\Delta_0$$
 Eq. 1

onde **x** e **y** são o número de elétrons nos orbitais t_{2a} e e_a , respectivamente.

No cálculo da EECC nos compostos de spin baixo (campo forte), devemos acrescentar na Eq. 1 nEP, onde **EP** é a energia de emparelhamento, e **n**, o número de pares de elétrons formados além dos pares que já existiam no íon metálico com simetria esférica. Na Figura 8, para um sistema d⁵, podemos ver que, no íon metálico com simetria esférica, temos cinco elétrons desemparelhados, mas, no composto de campo forte (spin baixo), temos dois pares de elétrons.

Figura 43 – Cálculo da energia de estabilização do campo cristalino

Na Tabela 26, encontramos os valores das energias de estabilização do campo cristalino (EECC) e o momento magnético de spin (μ) para as possíveis configurações eletrônicas dos orbitais *d*. O momento magnético de spin foi calculado pela expressão $\mu = \sqrt{n(n + 2)}$, onde **n** é o numero de elétrons desemparelhados.

Tabela 26

	EECC PARA COMPOSTOS OCTAEDRICOS									
		Campo fraco - spin a	lto			Campo forte - baixo spin				
d ⁿ	Configuração	Elétrons desemparelhados	EECC	μ	dn	Configuração	Elétrons desemparelhados	EECC	μ	
d1	t_{2g}^{1}	1	-0,4∆ _₀	1,73	d1	t_{2g}^{1}	1	-0,4∆ _₀	1,73	
d ²	t_{2g}^{2}	2	-0,8∆ _₀	2,83	d ²	t_{2g}^{2}	2	-0,8Δ _。	2,83	
d ³	t_{2g}^{3}	3	-1,2∆ _₀	3,87	d ³	t_2g ³	3	-1,2Δ _。	3,87	
d ⁴	$t_{2g}^{\ 3} e_{g}^{\ 1}$	4	-0,6∆ _₀	4,90	d ⁴	t_2g^4	2	-1,6∆ _。 + EP	2,83	
d5	t _{2g} ³ e _g ²	5	0,0A ₀	5,92	d ⁵	t_2g^5	1	-2,0∆ _₀ + 2EP	1,73	
d ⁶	$t_{2g}^{4} e_{g}^{2}$	4	-0,4∆ _₀	4,90	d ⁶	t_2g^6	0	-2,4∆ _。 + EP	0	
d ⁷	t _{2g} 5 e _g 2	3	-0,8∆ _₀	3,87	d ⁷	$t_{2g}^{\ \ 6} e_{g}^{\ 1}$	1	-1,8∆ _₀ + EP	1,73	
d ⁸	t _{2g} ⁶ e _g ²	2	-1,2∆ _₀	2,83	d ⁸	$t_{2g}^{\ \ 6} e_{g}^{\ \ 2}$	2	-1,2∆ _₀	2,83	
d9	t _{2g} ⁶ e _g ³	1	-0,6∆ ₀	1,73	d9	$t_{2g}^{\ \ 6} e_{g}^{\ \ 3}$	1	-0,6∆ _₀	1,73	
d ¹⁰	t _{2g} ⁶ e _g ⁴	0	0,0∆ _₀	0	d ¹⁰	$t_{2g}^{6} e_{g}^{4}$	0	0,0∆ _₀	0	

³⁶A Eq. 1 pode ser escrita na forma de números decimais assumindo o seguinte formato: EECC = $x(-0,4)_{o} + y(+0,6)_{o}$. Como sabemos que = $10D_{q}$, a expressão da EECC pode ser: EECC = $x(-4)D_{q} + y(+6)D_{q}$.

Para refletir

Qual a energia de estabilização do campo cristalino (EECC) para os complexos $[Fe(NH_3)_c]^{3+}$ e $[Fe(H_20)_6]^{3+}$, sabendo-se que estes compostos são campo forte e campo fraco, respectivamente?

Resolução do exercício

O primeiro passo é determinarmos a geometria dos compostos. Tendo ambos o mesmo número de coordenação, seis, é de se esperar que sejam octaédricos. Devemos agora escrever a configuração eletrônica do íon ferro, mas antes determinamos o estado de oxidação do íon central que, no caso, é III. Fe³⁺ \Rightarrow 1s², 2s², 2p⁶, 3s², 3d⁵. Para o complexo alto spin, teremos a seguinte configuração dos elétrons d: t_{2g}³, e_g². Usando a Eq. 1³⁶, teremos:

EECC = $3(-2/5)\Delta_0 + 2(3/5)\Delta_0$ portanto **EECC = 0**

Para o complexo baixo spin, a configuração eletrônica será t_{2g}^{5} , logo a EECC será: EECC = 5(-2/5) Δ_{o} + 0(3/5) Δ_{o} . + 2EP.

EECC = $(-10/5)\Delta_{o}$ + 2EP ou **EECC = -2\Delta_{o} + 2EP**

1.2. Distorção tetragonal proveniente da simetria octaédrica e do efeito Jahn-Teller

Discutimos no item 2.1 o efeito do campo cristalino sobre os orbitais d em uma simetria octaédrica [ML₆]. Vejamos agora o comportamento destes orbitais quando temos um complexo do tipo [ML₄A₂], estando os ligantes **A** em posição trans. Temos que a distorção tetragonal pode ser por um alongamento das ligações na direção **z** ou uma compressão (Figura 44).

Figura 44 – Distorção tetragonal para complexos do tipo ML₄A₂

Para o alongamento tetragonal, os orbitais que se orientam na direção **z** (d_{z2} , d_{xz} , d_{yz}) sofrem estabilização em relação aos orbitais $e_g e t_{2g}$, na simetria octaédrica, de $1/2\delta_1 e 1/2\delta_2$, respectivamente (Figura 9). Os orbitais $d_{x2-y2} e d_{xy}$

sofrem desestabilização do mesmo valor citado anteriormente em relações aos mesmos orbitais para a simetria octaédrica.

Alguns compostos de coordenação do tipo $[ML_6]$, portanto de simetria octaédrica, apresentam alongamento ou compressão axial semelhante à distorção tetragonal que descrevemos acima para compostos do tipo trans- $[ML_4A_2]$. Este efeito recebeu o nome de Teorema de Jahn-Teller em homenagem a estes cientistas que desenvolveram a explicação dele.

O teorema afirma que, para sistemas não lineares com orbitais degenerados que possuem um preenchimento de orbitais assimétricos, como o caso mais conhecido, o Cu(II), que tem um sistema d⁹, o complexo sofrerá uma distorção dos orbitais tornando-os de energias diferentes e, assim, ficando mais energeticamente estável. Na Tabela 27, mostramos quais as configurações que podem apresentar o efeito Jahn-Teller³⁷.

	Tabela 27				
CONFIGURAÇÕES ELETRÔNICAS EM COMPLEXOS OCTAÉDRICOS PARA AS QUAIS SÃO ESPERADOS O EFEITO JAHN-TELLER					
Configuração	Efeito Jahn-Teller				
d1	Sim				
d ²	Sim				
d ³	Não				
d ⁴ spin alto	Sim				
d ⁴ spin baixo	Sim				
d ⁵ spin alto	Não				
d⁵ spin baixo	Sim				
d ⁶ spin alto	Sim				
d ⁶ spin baixo	Não				
d ⁷ spin alto	Sim				
d ⁷ spin baixo	Sim				
d ⁸	Não				
d ₉	Sim				
d ¹⁰	Não				

³⁷Hermann Arthur Jahn (1907-1979) foi um cientista inglês de origem alemã. Ele e Edward Teller (1903 – 2003), um cientista americano de origem húngara, foram responsáveis pela explicação do hoje conhecido como efeito, distorção ou Teorema Jahn-Teller.

Examinando a Tabela 27, podemos dizer que as configurações eletrônicas sujeitas a apresentarem o Efeito Jahn-Teller têm a configuração eletrônica assimétrica nos orbitais $e_g e t_{2g}$. Observa-se que este efeito é mais acentuado quando os elétrons assimétricos estão localizados nos orbitais e_g . Alguns complexos com configurações eletrônicas assimétricas, tais como d⁴ e d⁶ spin alto, d⁷ spin baixo e d⁹, que exibem configuração $e_g^1 e e_g^3$, apresentam considerável distorção tetragonal, apresentando comprimento de ligação diferente, como é o caso de Cu(II), d⁹. Para analisarmos qual o desdobramentos do campo cristalino para um complexo do tipo do $[CoCl_4]$ cuja geometria molecular é de um tetraedro, devemos novamente verificar quais os orbitais atômicos *d* que interagem diretamente com os ligantes ou quais aqueles que estão mais próximos dos ligantes (Figura 45).

Figura 45 – Orientação dos orbitais d em uma simetria tetraédrica

Diferente da simetria octaédrica, os orbitais d_{z2} e d_{x2-y2} não estão orientados na direção de nenhum ligante, logo estão com suas energias estabilizadas em relação ao íon livre em simetria esférica. Os demais orbitais têm os lóbulos orientados para uma das arestas do cubo (Figura 46).

íon metálico livre simétrico

íon metálico coordenado com ligantes orientados em geometria tetraédrica

Figura 46 – Desdobramento dos orbitais d em um campo de simetria tetraédrico.

a) Distribuição eletrônica nos orbitais *d* sob influência do campo cristalino tetraédrico.

O preenchimento dos orbitais *d* sob um campo cristalino de simetria tetraédrica, assim como nos compostos octaédricos, seguem as regras de Hund e o princípio de exclusão de Pauli. A grande diferença em comparações com os complexos de simetria octaédrica é devido à inversão da estabilidade dos orbitais d_{z2} e d_{x2-y2} que passam a ser de menor energia, e os outros orbitais *d*, que são de maior energia do que o íon livre em simetria simétrica (Figura 46). Também como vimos na figura citada, nenhum orbital *d* tem uma interação grande como no sistema octaédrico, ocasionando, geralmente desdobramento de campo cristalino tetraédrico (Δ_{t}) menor do que a energia de emparelhamento de elétrons. Como consequência, temos, em sua grande maioria, compostos do tipo campo fraco, cujas distribuições eletrônicas são mostradas na Tabela 28.

CONFIGURAÇÃO ELETRÔNICA, ENERGIA DE ESTABILIZAÇÃO DO CAMPO CRISTALINO E MOMENTO Magnético de spin para um complexo tetraédrico				
ď	Configuração	Elétrons desemparelhados	EECC	μ
d1	e1	1	-0,6∆ _t	1,73
d ²	e ²	2	-1,2∆ _t	2,83
d ³	e² t¹	3	-0,8∆ _t	3,87
d ⁴	e² t²	4	-0,4∆ _t	4,90
d5	e² t³	5	0,0∆ _t	5,92
d6	e³t³	4	-0,6∆ _t	4,90
d ⁷	e ⁴ t ³	3	-1,2∆ _t	3,87
d ⁸	e ⁴ t ⁴	2	-0,8∆ _t	2,83
d9	e ⁴ t ⁵	1	-0,4∆ _t	1,73
d ¹⁰	e ⁴ t ⁶	0	0,0∆ _t	0

Tabela 28

b) Energia de estabilização do campo cristalino tetraédrico (EECC)

Para calcularmos a EECC, usaremos a eq. 2.

$$EECC = x(-0, 6\Delta_{i}) + y(0, 4\Delta_{i})$$

(eq. 2)

Sendo **x** e **y** o número de elétrons nos orbitais **e** e t_2^{38} , respectivamente. Os valores de $(-0,6\Delta_t)$ e $(+0,4\Delta_t)$ representam a contribuição que cada orbital dá em relação aos orbitais do íon livre em um campo cristalino simétrico. Na Tabela 6, encontramos os valores calculados para as diferentes configurações eletrônicas em um campo tetraédrico.

1.4. Desdobramento do campo cristalino para diferentes geometrias

Para determinarmos o desdobramento do campo cristalino para outras geometrias moleculares, devemos, como já fizemos para os compostos octaédricos e tetraédicos, verificar quais os orbitais que estão interagindo diretamente com os ligantes.

a) Compostos cuja geometria é de um quadrado planar

Figura 47 – Desdobramento dos orbitais d em um composto quadrado planar simetria D_{4b}

A ausência de ligantes no eixo Z leva a uma considerável estabilização do orbital d_{z2} , mas, devido à existência dos quatro ligantes no plano XY, provoca um considerável aumento na energia do orbital d_{xy} . O orbital d_{x2-y2} é o que fica mais desestabilizado devido à existência de ligantes nos eixos X e Y.

b) Compostos cuja geometria é de uma bipirâmide trigonal

Compostos cuja geometria é de uma bipirâmide trigonal pertencem ao grupo pontual D_{3h} e, neste caso, os ligantes equatoriais apontam para os orbitais d_{xv} e d_{x2-v2} (Figura 48).

³⁸As notações e e t_2 para os orbitais d_{z2} , e d_{x2-y2} e d_{xy} , d_{xz} e d_{yz} , respectivamente, são oriundas da teoria dos grupos para o grupo de ponto T_d .

Figura 48 – Detalhe da orientação dos orbitais *d* na simetria molecular de uma bipirâmide trigonal

O desdobramento dos orbitais vai assumir a distribuição mostrada na Figura 49.

Figura 49 – Desdobramento da energia dos orbitais d em um grupo pontual D_{3h}

Para outras estruturas, devemos proceder da mesma maneira e, assim, obteremos o desdobramento do campo cristalino.

1.5. Energia de estabilização do campo cristalino para diferentes geometrias moleculares

Na Tabela 29, mostramos as energias que cada orbital *d* passa a ter quando sujeito ao campo cristalino específico. Os valores são dados em função do parâmetro D_a , que é equivalente a um décimo do valor de Δ (Δ = 10 D_a).

Tabela 29

ENERGIA DOS ORBITAIS <i>D</i> PARA DIFERENTES GEOMETRIAS MOLECULARES SUJEITAS A UM DADO CAMPO CRISTALINO. VALORES DA TABELA DEVEM SER MULTIPLICADOS POR D _o						
CN	Estrutura	d ₂₂	d _{x2-y2}	d _{xy}	d _{xz}	d _{yz}
1	Linear	5,14	-3,14	-3,14	0,57	0,57
2	Linear	10,28	-6,28	-6,28	1,14	1,14
3	Trigonal	-3,21	5,46	5,46	-3,86	-3,86
4	Tetraedral	-6.0	-6.0	4.0	4.0	4.0
4	Quadrado Planar	-4,28	12,28	2,28	-5,14	-5,14
5	Bipirâmide Trigonal	7,07	-0,82	-0,82	-2,72	-2,72
5	Pirâmide quadrada	0,86	9,14	-0,86	-4,57	-4,57
6	Octaedro	6,0	6,0	-4,0	-4,0	-4,0
6	Prisma Trigonal	0,96	-5,84	-5,84	5,36	5,36
7	Bipirâmide Pentagonal	4,93	2,82	2,82	-5,28	-5,28
8	Cubo	-5,34	-5,34	3,56	3,56	3,56
8	Anti-prisma quadrado	-5,34	-0,89	-0,89	3,56	3,56
9	Estrutura do ReH ₉	-2,25	-0,38	-0,38	1,51	1,51
12	Icosaedro	0.00	0.00	0.00	0.00	0.00

Vejamos como podemos utilizar a Tabela 29. Vamos determinar a energia de estabilização de um complexo contendo um íon d⁶, com número de coordenação 5, cuja geometria molecular é uma pirâmide de base quadrada situada no plano xy. Mostramos abaixo os valores das energias dos orbitais *d*, conforme encontrados na Tabela 29.

CN	ESTRUTURA	d _{z2}	d _{x2-y2}	d _{xy}	d _{xz}	d _{yz}
5	Pirâmide quadrada	0,86	9,14	-0,86	-4,57	-4,57

Com base nestes valores, podemos então construir o diagrama de energia do desdobramento dos orbitais *d* para a geometria molecular de uma pirâmide de base quadrada (Figura 50).

³⁹Esta molécula pertence ao grupo pontual C_{4v} e, portanto os orbitais d têm a seguinte simetria (d_{xz}, d_{yz}) e, $d_{xy} - b_2$, $d_{z2} - a_1$, $d_{x2-y2} - b_1$, cujas notações são encontradas consultando a tabela de caracteres deste grupo.

Figura 50 – Níveis de energia e configuração eletrônica para um complexo com geometria molecular de uma pirâmide de base quadrada

A energia de estabilização do campo cristalino será dada, portanto, por.

EECC = $x(-4,57D_{0}) + y(-0,86D_{0}) + z(0,86D_{0}) + w(9,14D_{0})$

onde **x**, **y**, **z** e **w** são os elétrons pertencentes aos orbitais e, b_2 , $a_1 e b_1$, respectivamente.

 $EECC = 3(-4.57D_q) + 1(-0.86D_q) + 1(0.86D_q) + 1(9.14D_q)$ $EECC = -4.57D_q$.

2. Aplicações da teoria do campo cristalino

Usaremos a teoria do campo cristalino para explicar algumas das propriedades dos compostos de coordenação.

A variação da energia de rede é explicada através da energia de estabilização do campo cristalino. Observando a Tabela 29, podemos verificar que essa energia varia da mesma maneira que as citadas energias de estabilização do campo cristalino. A EECC decresce do Sc²⁺ sistema d¹ até o V²⁺ sistema d³ e voltando a crescer para Cr²⁺, sistema d⁴ chegando ao valor zero para o Mn²⁺, que é um sistema d⁵. Temos o mesmo comportamento para o Fe²⁺ até o Ni²⁺ e terminando com zero para o Zn²⁺. Esta variação explica porque as energias de rede e de hidratação não têm uma variação linear como aquela esperada para os lantanídeos.

Outra aplicação importante da teoria do campo cristalino é explicar a existência de complexos diamagnéticos e paramagnéticos para um mesmo íon metálico com o mesmo estado de oxidação em dois complexos com ligantes diferentes. O [Fe(H₂O)₆]²⁺ é paramagnético enquanto que o [Fe(**CN**)₆]²⁻ é

⁴⁰Similar aos compostos octaédricos, o desdobramento também ocorre em outras geometrias moleculares, o que implica na existência de cor nestes compostos. diamagnético. Este fenômeno pode ser explicado devido ao fato de o desdobramento⁴⁰ do campo cristalino apresentar duas configurações dependendo do ligante ser um campo forte ou não. Neste exemplo, o CN⁻ é um ligante campo forte, portanto o complexo será baixo spin e diamagnético; já com o pré-ligante água, o campo é fraco, logo alto spin, paramagnético (Figura 51). Campo fraco - spin alto

Figura 51 – Desdobramento dos orbitais d em uma simetria octaédrica campo fraco e campo forte.

A cor, que é uma presença marcante nos compostos de coordenação, pode ser explicada também utilizando esta teoria. Como podemos observar na Figura 16, com a formação do complexo, os orbitais *d* perdem parcialmente a sua degenerescência, o que possibilita a existência de transições de elétrons entre os orbitais t_{2a} e e_a , como, por exemplo, para compostos octaédricos.

Através da espectroscopia eletrônica⁴¹, é possível determinarmos o parâmetro Δ_{o} para compostos com diferentes ligantes. Ordenando os valores de Δ_{o} em ordem crescente, construímos a série espectroquímica mostrada logo a seguir, que nos dá uma ordem de crescimento da força do campo cristalino devido a diferentes pré-ligantes.

Série espectroquímica

$$\begin{split} I^{-} < Br < S^{2-} < SCN^{-} < CI^{-} < N_{3}^{-}, \ F^{-} < urea, \ OH^{-} < ox, \ O^{2-} < H_{2}O < NCS^{-} < py, \ NH_{3} < en < < bpy, \ phen, \ < NO^{2-} < CH_{3}^{-}, \ C_{6}H_{5}^{-} < CN^{-} < CO. \end{split}$$

Devemos chamar a atenção para o fato de que não é possível construir

⁴¹Espectroscopia eletrônica – mede a radiação ultravioleta /visível absorvida por um composto devido à transição de elétrons de um estado eletrônico para outro. toda a série com um mesmo íon metálico, mas apenas com uma tendência já consagrada. Poderíamos generalizar que esta tendência do desdobramento do campo cristalino varia na seguinte ordem: halogênios < ligantes cujo átomo doador é o N < CN⁻.

Mostramos, na Tabela 30, os valores do desdobramento do campo cristalino para diferentes compostos octaédricos e tetraédricos. Chamamos a atenção para os valores de Δ_t que são *aproximadamente* iguais a 4/9 Δ_o para o complexo com o ligante em uma geometria octaédrica.

VALORES DO DESDOBRAMENTO DO CAMPO CRISTALINO PARA DIFERENTES ÍONS METÁLICOS NAS SIMETRIAS OCTAÉDRICAS E TETRAÉDRICAS			
Complexo	Estado de oxidação	Simetria	Δ (cm ⁻¹)
[VCI ₆] ²⁻	4	0,	15.400
[CrF ₆] ²⁻	4	0 _h	22.000
[CrF ₆] ³⁻	3	0 _h	15.060
[Cr(H ₂ 0) ₆] ³⁺	3	0 _h	17.400
[Cr(en) ₃] ³⁺	3	0 _h	22.300
[Cr(CN) ₆] ³⁻	3	0 _h	26.600
[Mo(H ₂ 0) ₆] ³⁺	3	0 _h	26.000
[MnF ₆] ²⁻	4	0 _h	21.800
[TcF ₆] ²⁻	4	0 _h	28.400
[Fe(H ₂ 0) ₆] ³⁺	3	0 _h	14.000
[Fe(H ₂ 0) ₆] ²⁺	2	0 _h	9.350
[Fe(ox) ₃] ³⁻	3	0 _h	14.140
[Fe(CN) ₆] ³⁻	3	0 _h	35.000
[Fe(CN) ₆] ⁴⁻	2	0 _h	32.200
[Ru(H ₂ O) ₆] ³⁺	3	0 _h	28.600
[Ru(ox) ₃] ³⁻	3	0 _h	28.700
$[Ru(H_2O)_6]^{2+}$	2	0 _h	19.800
[Ru(CN) ₆] ⁴⁻	2	0 _h	33.800
[CoF ₆] ²⁻	4	0 _h	20.300
[CrF ₆] ³⁻	3	0 _h	13.100
[Co(H ₂ O) ₆] ³⁺	3	0 _h	20.760
[Co(NH ₃) ₆] ³⁺	3	0 _h	22.870
$[Co(en)_3]^{3+}$	3	0 _h	23.100
$[Co(H_2O)_6]^{2+}$	2	0 _h	9.200
$[Co(NH_3)_6]^{2+}$	2	0 _h	10.200
$[Co(NH_3)_4]^{2+}$	2	T _d	5.900
[VCl ₄]	4	T _d	7.900
$[Co(H_2O)_6]^{2+}$	2	Τ _d	4.090ª
[Fe(H 0) 1 ²⁺	2	Т	9.350°

Tabela 30

A teoria do campo cristalino foi desenvolvida por Hans Bethe (1929) e ampliada por Van Vleck (1935). Esta teoria possibilita a explicação de diferentes propriedades dos compostos de coordenação. Abordamos inicialmente a teoria utilizando os compostos de coordenação de simetria octaédrica. Através da interação dos ligantes vistos como cargas pontuais, analisamos a quebra de degenerescência dos orbitais *d*, assim como os fatores que afetam os desdobramentos destes orbitais atômicos, ou seja, a geometria molecular, a natureza dos ligantes, o estado de oxidação da espécie central e a posição no grupo da tabela periódica que a espécie central ocupa.

Como o desdobramento muda conforme os fatores citados, podemos classificar a natureza do campo cristalino como forte ou fraco, dependendo se ele é maior ou menor do que a energia de emparelhamento dos elétrons. A existência do desdobramento dos orbitais ocasiona a estabilização na formação do complexo que é avaliada através do cálculo da energia de estabilização do campo cristalino. O cálculo desta energia é mostrado para diferentes geometrias moleculares.

Discutimos também o efeito Jahn-Teller e a série espectroquímica. Analisamos ainda algumas aplicações da teoria visando explicar as propriedades dos compostos de coordenação.

Atividades de avaliação

- Represente diagramas de níveis de energia e indique a ocupação dos orbitais nos seguintes complexos:
 - (a) d⁶, octaédrico, spin baixo.
 - (b) d⁹, octaédrico, com alongamento tetragonal.
 - (c) d⁸, quadrado planar.
 - (d) d⁶, tetraédrico.

Calcule, em função de Δ_{0} , a diferença na energia de estabilização do campo cristalino entre os complexos (a) e (b) supondo que os ligantes são campo forte.

3. O que é a série espectroquímica e qual a sua importância?

- 4. Por que os compostos de Ti⁴⁺ e Zn²⁺ são brancos?
- 5. Mostre o desdobramento do campo cristalino que o fósforo apresenta na molécula PF₅, sabendo-se que esta molécula tem uma estrutura de uma bipirâmide trigonal e pertence ao grupo de ponto D_{3b}.
- 6. Calcule o valor da EECC em função de Δ_o para os íons complexos [M(H₂O)₆]³⁺ e [M(CN)₆]³⁻ com base nos dados da tabela abaixo. Estime o valor Δ_t para os íons [M(H₂O)₄]³⁺ (tetraédrico) sabendo-se que Δ_t = 4/9Δ_o.

Íon	Sistema	6H ₂ O (KJ/mol)	6CN [.] (KJ/mol)
Cr³⁺	3d ³	213	314
C0 ³⁺	3d ⁶	222	406
Fe ²⁺	3d ⁶	126	393

- 7. O complexo [Ni(CN)₄]²⁻ é diamagnético, mas o [Ni(Cl)₄]²⁻ é paramagnético com dois elétrons desemparelhados. Igualmente, o [Fe(CN)₆]³⁻ tem somente um elétron desemparelhado, mas o [Fe(H₂O)₆]³⁻ tem cinco. Explique este fato com base na Teoria do Campo Cristalino.
- Com base nos valores dados de ∆_o para os compostos abaixo, explique quais os fatores que afetam a força do campo cristalino.

Íon complexo	Δ _° (cm ^{.1})	Íon complexo	Δ _° (cm ^{.1})
Hexaaquoniquel(II)	8.600	Hexafluorocobaltato(III)	13.000
Hexaaquocromo(II)	14.000	Hexaaquocobalto(III)	18.600
Hexaaquocobalto(II)	9.300	Hexaaminocobalto(III)	24.800
Hexacloromolibdênato(III)	19.200	Hexacloroiridiato(III)	25.000
Hexaaminoiridio(III)	41.000	Hexaaminorrodiato(III)	34.000

- 9. Explique o que você entende por Efeito Jahn-Teller.
- 10. Determine a energia de estabilização do campo cristalino para o sistema MA₅ (bipirâmide trigonal), sabendo-se que Δ = 10500 cm⁻¹ e a energia de emparelhamento de elétrons é igual a 16.500 cm⁻¹ e o metal (M) é um sistema d⁸. O valor de Δ é medido entre os orbitais e' (d_{yx}, d_{x2-y2}) e a₁'(d_{z2}). Observação Δ = 10D_a.
- 11. Qual a energia de estabilização do campo cristalino para um sistema d⁵ quadrado planar alto spin? Qual o momento magnético deste complexo?
- 12. Usando os valores de 10D_q abaixo estimados a partir de medidas espectroscópicas, calcule as energias de estabilização do campo cristalino para os seguintes complexos, em kJmol⁻¹ (considere que 1kJmol⁻¹ = 83cm⁻¹).
- (a)[Fe(ox),]³⁻; 10D_a = 14.140 cm⁻¹; EP = 357,4 kJmol⁻¹
- (b) $[Co(en)_3]^{2+}$ $10D_a = 23.160 \text{ cm}^{-1}$; EP = 250 kJmol⁻¹

Unidade de momento magnético de spin – magneto Bohr, µB

- 13. Sabendo-se que o complexo [Ni(acac)₂] é paramagnético e não é tetraédrico, qual a sua possível estrutura? Explique sua resposta com base na teoria do campo cristalino (acac – acetilacetonato).
- **14.** Todos os seguintes complexos $[Mn(H_2O)_6]^{2+}$, $[Fe(H_2O)_6]^{3+}$, $[MnCl_4]^{2-}$ e $[FeCl_4]^-$ apresentam um momento magnético próximo de 5,92 μ_B . O que podemos afirmar acerca da geometria e estrutura eletrônica destes complexos? Explique a sua resposta.
- 15. Usando os valores de 10D_q abaixo estimados a partir de medidas espectroscópicas, calcule as energias de estabilização do campo cristalino para os seguintes complexos, em kJmol⁻¹ (suponha uma energia de emparelhamento de 19.000cm⁻¹ e que 1kJmol⁻¹ = 83cm⁻¹)

 $(a)[Co(H_2O)_6]^{2+}; 10D_a = 13.000 \text{ cm}^1.$

(b) $[MnCl_6]^{4-}$ 10D_a = 15.000cm⁻¹

Teoria dos orbitais moleculares

Objetivos

- Conhecer as limitações da Teoria do Campo Cristalino.
- Reconhecer as condições para a formação de um orbital molecular.
- Compreender o método da combinação linear de orbitais atômicos.
- Usar a Teoria dos Grupos na construção dos orbitais moleculares.
- Diferenciar diagramas de nível de energia para complexos octaédricos e tetraédricos e outras geometrias.

Introdução

Como estudamos na unidade anterior, a *Teoria do Campo Cristalino* nos permite explicar diversas propriedades dos compostos de coordenação. Entretanto, considerando que a teoria envolve um modelo eletrostático, como poderíamos justificar que, na série espectroquímica, pré-ligantes como os haletos apresentem um desdobramento de campo cristalino menor do que o de moléculas neutras, como água, amônia, etilenodiamina e outras?

Outro questionamento também que se faz é por que o pré-ligante cianeto apresenta um campo tão forte? As aproximações feitas por Van Vleck introduzindo o caráter covalente na ligação como realmente existe minimizam estes problemas. A *Teoria do Orbital Molecular*, que considera naturalmente a ligação covalente, explica com muito mais racionalidade as lacunas deixadas pela teoria do campo cristalino.

1. Teoria dos Orbitais Moleculares

1.1 Orbitais moleculares para molécula diatômicas homonucleares

Iniciaremos a abordagem sobre a Teoria dos Orbitais Moleculares (TOM) aplicada aos compostos de coordenação, revisando alguns exemplos mais simples de moléculas diatômicas homonucleares e heteronucleares.

Os orbitais moleculares são denominados segundo o tipo de ligação que eles formam, ou seja, são denominados de sigma (σ), *pi* (π) ou delta (δ).

Conforme os orbitais atômicos que participam da ligação química estejam contidos no eixo de ligação, denominamos a ligação de sigma (σ), assim como o orbital molecular formado. Quando são ambos, *p* ou *d*, perpendiculares ao eixo de ligação, os orbitais moleculares recebem o nome de *pi* (π) e delta (δ), respectivamente, assim como o tipo de ligação química (Figura 52).

Figura 52 – Tipos de ligações, segundo a orientação em relação ao eixo de ligação molecular

Considerando a teoria de Lewis do compartilhamento de elétrons na formação de uma ligação química covalente ou a transferência de elétrons na ligação química iônica, a região do espaço ocupada por eles será o orbital molecular, que é visto como o interpenetramento dos orbitais atômicos dos átomos que estão participando da ligação química. A aproximação mais simples do orbital molecular pode ser dada pela combinação linear de orbitais atômicos. Temos então que o orbital molecular pode ser expresso por. $\Psi^{OM} = \Psi^{OA} + \Psi^{AO}$ ou $\Psi^{OM} = \Psi^{OA} - \Psi^{AO}$.

Os orbitais moleculares assim como os orbitais atômicos são representados por funções de onda que são determinadas a partir da solução da equação de onda de Schrödinger.

$$H\Psi = E\Psi$$

(eq. 1)

Para o exemplo do H_2 , como a configuração eletrônica do H é 1s¹, podemos escrever que

$\Psi^{OM} = \Psi_{1s}^{OA} + \Psi_{1s}^{OA}$	(eq. 2)
$\Psi^{OM} = \Psi_{1s}^{OA} - \Psi_{1s}^{OA}$	(eq. 3)

Substituindo Ψ na Eq. 1 por Ψ^{OM} , dado pelas eq. 2 e 3, e assim resolvendo a equação de onda de Schrödinger (eq. 1), teremos como solução da mesma as funções de onda que representam os orbitais moleculares e as suas respectivas energias. Estes estados de energia possuem valores iguais em módulo, ou seja, são de sinais opostos. Considerando o nível de energia do orbital atômico como igual a Ψ (Figura 53), as energias dos dois orbitais moleculares são: $\varepsilon + \alpha e \varepsilon - \alpha$. As funções de onda encontradas são denominadas de orbitais moleculares ligantes, $\Psi^{OM} = \Psi_{1s}^{OA} + \Psi_{1s}^{AO}$ ($\varepsilon - \alpha$), e de antiligantes $\Psi^{OM} = \Psi_{1s}^{OA} + \Psi_{1s}^{AO}$ ($\varepsilon + \alpha$). Os dois orbitais moleculares são chamados de σ_s e σ_s^* porque são formados pelo interpenetramento de orbitais **s**, portanto de simetria σ . Pelo diagrama mostrado na Figura 53, vemos que houve uma diminuição na energia dos orbitais atômicos, ou seja, uma estabilização devido à formação da ligação química.

Figura 53 – Diagrama de energia para a molécula do hidrogênio

No caso de átomos com número atômico maior do que 4, iniciamos o preenchimento dos orbitais p, como, por exemplo, ₅B 1s², 2s², 2p¹. Temos como elétrons de valência 2s², 2p¹, que participam da ligação química. Temos então que avaliar quais orbitais atômicos deverão participar na formação dos orbitais moleculares e, para tanto, devemos levar em conta dois fatores: energia e simetria. As energias dos orbitais atômicos 2s e 2p são diferentes o suficiente para que não exista um compartilhante de elétrons 2s com 2p. Os orbitais 2p, que são em número de três, são energeticamente favoráveis já que são degenerados. Analisando a simetria, podemos observar que temos um orbital que se localiza no eixo de ligação e outros dois perpendiculares a este eixo, portanto temos dois tipos de orbitais quanto à simetria.

Figura 54 – Condições para um interpenetramento efetivo
Mostramos na Figura 54(b) que dois orbitais de simetria diferente não apresentam um interpenetramento efetivo.

108

COELHO, AUGUSTO LEITE

Para a construção do diagrama de energia, é importante definirmos o eixo de ligação para que assim possamos verificar quais os orbitais que têm simetria *sigma, pi* ou *delta*. Vamos considerar para as moléculas diatômicas homonucleares o eixo de ligação como sendo o eixo x.

Na Figura 55, mostramos o diagrama de orbital molecular para o oxigênio molecular (O_2). Os orbitais $2p_x$ têm, portanto, simetria *sigma*, e os demais orbitais 2p são de simetria *pi*.

No diagrama de energia dos orbitais moleculares do nitrogênio molecular, observamos que existe uma inversão entre os orbitais σ_{2px} e π_{2pz} , π_{2py} em relação ao do oxigênio molecular que pode ser explicada com base nas energias dos orbitais atômicos do nitrogênio. A diferença de energia entre os orbitais 2s e 2p para o nitrogênio é pequena comparada ao do oxigênio, o que implica que a combinação linear envolve não apenas os orbitais 2p_x, mas também o orbital 2s (Figura 56 e eq. 4).

Figura 56 – Diagrama de energia dos orbitais moleculares para o nitrogênio

 $\Psi \sigma_{s,P} = (\Psi_{2s} + \Psi_{2p})^{A} + (\Psi_{2s} + \Psi_{2p})^{B}$ (eq. 4)

Como temos 4 orbitais atômicos de energias iguais e/ou semelhantes teremos 4 orbitais moleculares que designaremos por $\sigma_s \sigma_s^* \sigma_{px} \sigma_{px}^*$

Para o exemplo envolvendo o oxigênio molecular (Figura 55), a diferença entre as energias dos orbitais atômicos 2s e 2p é grande, o que implica em uma combinação linear somente entre os orbitais 2p dos dois átomos do oxigênio, formando os orbitais moleculares σ_{2px} , σ_{2px}^{*} , π_{2pz}^{*} , π_{2py}^{*} , π_{2py}^{*} . Está claro que os orbitais atômicos 2s formarão os orbitais moleculares σ_{2s}^{*} e σ_{2s}^{*} .

Podemos então concluir que a energia dos orbitais atômicos deve ser igual ou semelhante e de mesma simetria

Para o nitrogênio, como a diferença de energias dos orbitais atômicos 2s e 2p é pequena, ou seja, os orbitais atômicos têm energias semelhantes, podem ambos participarem na combinação linear para a formação dos orbitais moleculares $\sigma_s e \sigma_p$.

1.2. Orbitais moleculares para moléculas poliatômicas heteronucleares

O estudo de orbitais moleculares para moléculas do tipo AB_n é feito para $n \ge 3$, entretanto será objeto deste livro estudarmos o caso das estruturas mais comumente encontradas nos compostos de coordenação, ou seja, para **n** igual a seis (octaedro regular e distorção tetragonal) e quatro (tetraedro e quadrado planar).

a) Moléculas Octaédricas

As moléculas octaédricas a serem estudadas são aquelas dos compostos de coordenação, cujo átomo central é um metal de transição e os diferentes ligantes são monodentados, bidentados ou polidentados e cujos átomos doadores são principalmente haletos, oxigênio, nitrogênio, enxofre e fósforo. Usaremos, como nos exemplos anteriores, o método da Combinação Linear de Orbitais Atômicos (CLOA).

Nesse método, as condições para que os orbitais atômicos estejam envolvidos na ligação química são: (i) possuírem energias iguais ou semelhantes, (ii) possuírem a mesma simetria, (iii) possuírem o grau de recobrimento relativo. As energias dos orbitais atômicos de valência dos metais de transição e dos átomos doadores citados são semelhantes.

A determinação da simetria dos átomos pode ser feita utilizando-se artifícios de simetria molecular. Outra condição, que é o grau de recobrimento dos orbitais atômicos, também deve ser levada em consideração. Para os objetivos deste livro, usaremos uma aproximação na qual não analisaremos a simetria dos orbitais atômicos dos ligantes, mas determinaremos a qual simetria pertence cada uma das ligações químicas, *sigma* ou *pi*.

Diagrama de energia usando somente ligações sigma

Primeiramente, vamos considerar apenas as ligações *sigma* de uma molécula do tipo ML_6 que pertence ao grupo de ponto O_h (Figura 57).

Podemos verificar que a molécula tem 6 ligações *sigma* que podem representar os orbitais atômicos dos ligantes, ou seja, tem simetria permitida pela estrutura molecular. Através da Teoria dos Grupos, podemos determinar então a simetria destes orbitais sem termos que determinar exatamente quais são os orbitais atômicos que participam da combinação linear de orbitais atômicos.

Figura 57 – Representação e orientação das ligações sigma em uma simetria octaédrica

Usando a orientação mostrada na Figura 57, podemos determinar a representação redutível das ligações *sigma* executando as operações de simetria do grupo O_h, sobre todas as ligações citadas. A representação redutível é a seguinte:

0 _h	E	8C ₃	6C ₂	6C ₄	3C ₂	i	6S ₄	8S ₆	3s _h	6s _d
G	6	0	0	2	2	0	0	0	4	2

Usando o operador de projeções, podemos decompor a representação redutível Gs nas representações irredutíveis que estão contidas nela.

$$\Gamma_{\sigma} = A_{1g} + E_{g} + T_{1u}$$

Para construirmos o diagrama de energia dos orbitais moleculares de simetria *sigma*, devemos determinar qual a simetria dos orbitais de valência do metal, (n-1)d, ns e np, consultando a tabela de caracteres do grupo de ponto O_b.

Simetria	e _g	t _{2g}	a _{ig}	t _{iu}
(n-1)d	d_{z2}, d_{x2-y2}	d _{xy} ,d _{xz} ,d _{yz}		
ns			S	
np				p _x ,p _y , p _z

Sabendo que as energias são semelhantes e conhecendo a simetria dos orbitais de valência do metal assim como a das ligações *sigma* que representam a simetria dos orbitais atômicos dos ligantes que participam da ligação química, podemos então construir o diagrama de energia (qualitativo) para os orbitais moleculares de um composto de coordenação de simetria O_b.

Na Figura 58, temos o diagrama de energia dos orbitais moleculares para o composto de coordenação ML₆, que foi construído combinando-se os orbitais de mesma simetria do metal e dos ligantes.

Chamamos a atenção para o fato de que, no diagrama, temos três tipos de orbitais moleculares: ligantes, que são os de menor energia; antiligantes, que são os correspondentes em simetria aos dos ligantes, mas de maior ener-

gia e representados com um asterisco, por exemplo a_{1g}^* ; e não ligantes, que são aqueles orbitais do metal que não têm uma ligação sigma com energia e simetria correspondente no ligante ou vice-versa. Na Figura 58, temos que os orbitais moleculares $a_{1g}^{}$, $e_{g}^{}$, e $t_{1u}^{}$ são ligantes, os orbitais a_{1g}^{*} , e_{g}^{*} , t_{1u}^{*} são antiligantes, e o orbital $t_{2a}^{}$ é não ligante.

Figura 58 – Diagrama de energia dos orbitais moleculares de um composto de coordenação apenas para as ligações sigma

Este diagrama não está em escala, portanto é apenas uma representação relativa das energias dos orbitais moleculares.

Para refletir

Qual é o diagrama de orbital molecular do composto de coordenação $[Cr(NH_3)_6]^{3+}$, considerando-se apenas as ligações sigma?

Solução: Primeiramente, devemos verificar quantos elétrons estão envolvidos. O cromo número atômico 24 tem a seguinte configuração eletrônica $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$ $3d^5$, $4s^1$. Como o estado de oxidação do cromo é (III), a configuração eletrônica do íon é Cr^{3+} é $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$ $3d^3$. Como os ligantes são bases de Lewis, cada um vai doar um par de elétrons para cada ligação *sigma*, portanto temos um total de doze elétrons. Agora devemos preencher o diagrama de energia mostrado na Figura 7 com um total de quinze (15) elétrons.

Diagrama de energia usando somente ligações pi

Devemos proceder da mesma maneira que fizemos com os orbitais *sigma*. Não analisaremos os orbitais atômicos que têm simetria *pi*, mas sim as possíveis ligações *pi* que os ligantes, através do seu átomo, possam fazer.

Na Figura 59, mostramos a orientação das ligações *pi* em um complexo octaedro. Operando com todos os elementos de simetria do grupo de pontos O_h, determinamos a seguinte representação redutível para as ligações *pi*.

Figura 59 – Orientação dos orbitais p que participam na formação de ligações pi

0 _h	E	8C ₃	6C ₂	6C ₄	3C ₂	i	6S ₄	85 ₆	3s _h	6s _d
Гр	12	0	0	0	-4	0	0	0	0	0

Usando o operador de projeções, podemos decompor esta representação redutível nas representações irredutíveis do grupo O_h e obteremos o seguinte resultado.

$$\Gamma_{\pi} = T_{1g} + T_{2g} + T_{1u} + T_{2u}$$

Como já sabemos qual a simetria dos orbitais de valência do metal, podemos construir o diagrama de energia envolvendo apenas as ligações *pi* para ligantes doadores de elétron *pi*.(Figura 60).

Comparando o desdobramento do campo cristalino Δ_0 na Figura 60, observamos que, quando incluímos a participação das ligações *pi*, ou seja, assumindo a existência na ligação química de um caráter covalente, temos uma diminuição do valor de Δ_0 .

Figura 60 – Diagrama de energia dos orbitais moleculares de simetria *pi* para ligantes doadores de elétrons *pi*

Para refletir

Qual o diagrama de energia e a configuração eletrônica para o íon complexo [CoF₆]³⁻?

Devemos lembrar que o íon fluoreto é mais eletronegativo do que o Co^{3+} , contendo orbitais *s* e *p* de menor energia dos que os orbitais *s*, *p* e *d* do cobalto.

A configuração eletrônica do $Co^{3+}é 1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^6$, 6 elétrons d de valência.O F⁻ tem a seguinte configuração $1s^2$, $2s^2$, $2p^6$. 2 elétrons de valência p sigma e 4 elétrons de valência pi, totalizando para os seis íons fluoretos ligados ao Co^{3+} , portanto 24 elétrons pi. Sendo o valor de Δ_o pequeno, ou seja, menor do que a energia de emparelhamento, o composto é spin alto (campo cristalino fraco).

A simetria das ligações *sigma* e *pi* dos compostos de coordenação octaédricos com *ligantes receptores de elétrons pi* são $\Gamma_{\sigma} = A_{1g} + E_{g} + T_{1u} e \Gamma_{\pi} = T_{1g} + T_{2g} + T_{1u} + T_{2u}$. Cianeto e monóxido de carbono são os exemplos mais clássicos deste tipo de ligante. O diagrama de energia das ligações *sigma* é o mesmo que discutimos anteriormente. Mas, para as ligações *pi* é diferente, pois as energias dos orbitais *pi* são mais altas do que as energias dos orbitais *d* do metal. O diagrama de energia somente para as ligações *pi* está demonstrado na Figura 61.

Figura 61 – Diagrama de energia dos orbitais moleculares de simetria *pi* para ligantes receptores de elétrons *pi*

Na Figura 62, mostramos o diagrama de energia de orbitais moleculares para o $[Fe(CN)_{c}]^{4}$ contendo todas as ligações *sigma* e *pi*.

Figura 62 – Diagrama de energia do [Fe(CN)₆]⁴⁻

b) Compostos de coordenação tetraédricos

Pelos mesmos motivos citados, quando estudamos anteriormente os complexos octaédricos, consideramos inicialmente somente as ligações *sigma*, para depois incluirmos as ligações *pi*.

A molécula tetraédrica tem apenas quatro ligações *sigma* (Figura 63) que, quando submetidas a operações de simetria dos elementos do grupo de pontos T_{d} , apresentam a seguinte representação redutível (Γ_{a}).

T _d	E	8C ₃	3C ₂	6S ₄	6s _d
Γσ	4	1	0	0	2

Decompondo nas representações irredutíveis, temos: $\Gamma_{\sigma} = A_1 + T_2$.

Consultando a tabela de caracteres do grupo de ponto T_d , detectamos que os orbitais do metal têm a seguinte simetria: ns – a_1 ; np (p_x , p_y , p_z) – t_2 ; (d_{z2} , d_{x2y2}) – e; (d_{xy} , d_{xz} , d_{yz}) – t_2 .

Na Figura 62, mostramos a orientação das ligações *sigma* e o diagrama de energia dos orbitais moleculares σ.

A representação redutível das ligações $pi(\Gamma_{\pi})$ é a seguinte:

Td	E	8C3	3C2	6S4	6sd
Γπ	8	-1	0	0	0

Ela contém as seguintes representações irredutíveis: $\Gamma_{\pi} = E + T_1 + T_2$.

Na Figura 64, mostramos os diagramas de energia para os orbitais compostos tetraédricos com ligantes, doadores de elétrons (Figura 64a) e receptores de elétrons (Figura 64b).

(b) Ligantes π receptores

120

c) Compostos de coordenação quadrado planar

Seguindo o mesmo raciocínio descrito para os compostos octaédricos e tetraédricos, podemos construir o diagrama de energia dos orbitais moleculares para os compostos quadrado planar.

A representação redutível para as ligações *sigma*, que são em número de quatro (4); e das ligações *pi*, que são oito (8), são as seguintes:

D4h	E	2C4	C2	2C2'	2C2'	i	2S4	sh	2sv	2sd
Γσ	4	0	0	2	0	0	0	4	2	0
Γπ	8	0	0	-4	0	0	0	0	0	0

Elas contêm as seguintes representações irredutíveis: $\Gamma_{\sigma} = A_{1g} + B_{1g} + E_{u}$; $\Gamma_{\pi} = A_{2u} + B_{2u} + E_{g} + A_{2g} + B_{2g} + E_{u}$.

Os orbitais de valência do metal têm a seguinte simetria: ns $-a_{1g}$; np_z $-a_{2u}$; (np_x, np_y) $-e_{u}$; (n-1)d_{z2} $-a_{1g}$; (n-1)d_{x2-y2} $-b_{1g}$; (n-1)d_{xy} $-b_{2g}$; [(n-1) d_{xz}, (n-1)d_{yz}] $-e_{g}$.

De posse destas informações, podemos construir o diagrama de energia (Figura 65) sempre considerando que podemos fazer combinações lineares com orbitais atômicos de mesma simetria e energias semelhantes.

Figura 65 – Diagrama de energia de orbitais moleculares para compostos de coordenação quadrado planar

d) Ligações π em orbitais moleculares

Como já discutimos nos itens relativos à construção dos diagramas de energia, podemos justificar a série espectroquímica mostrando que, incluindo uma participação covalente através das ligações, encontramos a estabilização dos orbitais t_{2g} na simetria octaédrica e, assim, justificando um maior valor do desdobramento dos orbitais atômicos *d*.

Os orbitais π em compostos octaédricos apresentam simetria t_{1g} , t_{2g} , t_{1u} e t_{2u} , entretanto os metais têm apenas as simetrias t_{2g} (d_{xy} , d_{xz} , d_{yz}) e t_{1u} (p_x , p_y , p_z). Os orbitais atômicos p são utilizados na formação das ligações sigma porque o grau de recobrimento é mais apropriado para este tipo de ligação, isto é, eles são mais diretamente direcionados para os ligantes e, portanto, mais apropriados para ligações σ .

As ligações π , no que diz respeito aos ligantes, podem ser oriundas de orbitais atômicos $p \in d$ assim como orbitais moleculares antiligantes $\pi^* \in \sigma^*$ dos ligantes (Figura 66). Na Tabela 31, mostramos um exemplo de ligantes que apresentam as diferentes orbitais interagindo com os orbitais d do metal.

Tabela 31

Figura66 – Diferentes tipos de interação do orbital d com os orbitais dos ligantes

5							
Interação	Descrição	Exemplos					
d _π - p _π	Doação de elétrons dos orbitais p do ligante para orbitais d vazios do metal	R0 ⁻ , RS ⁻ , 0 ²⁻ , F ⁻ , Cl', Br, I ⁻ , R ₂ N ⁻					
$d_{\pi} - d_{\pi}$	Doação de elétrons dos orbitais d do metal para orbitais d vazios do ligante	R ₃ P, R ₃ As, R _{3s}					
d _π - π*	Doação de elétrons dos orbitais d do metal para orbitais p antiligantes vazios do ligante	CO, RNC, piridina, CN ⁻ , N ₂ , NO ₂ ⁻ , etileno					
d ^π - σ*	Doação de elétrons dos orbitais d do metal para orbitais $\boldsymbol{\sigma}$ antiligantes vazios do ligante	$H_2^{}$, $R_3^{}$ P, alcanos					

INTERAÇÕES DOS ORBITAIS D DO METAL COM OS DIFERENTES ORBITAIS DOS LIGANTES

Devemos dar um destaque especial para o caso $d_{\pi} - \pi^*$ em que encontramos uma doação de elétrons d_{π} do metal para orbitais π antiligantes vazios do ligante. Esta retrodoação é conhecida como ligação sinérgica. Através da teoria dos orbitais moleculares, podemos dizer que os orbitais t_{2g} de menor energia que contêm elétrons, têm caráter ligante, de modo que a carga *d* parece se expandir do metal em direção ao ligante, expansão esta que é conhecida como efeito nefelauxético.

Evidências experimentais são encontradas em espectros de RMN de P (ressonância magnética nuclear de fósforo), em compostos tendo ligantes contendo fósforo, estudos de difração de raio-X, cujas distâncias de ligação são medidas. Para esta técnica existem algumas preocupações sobre a interpretação dos resultados devido às variações serem muito pequenas e caírem dentro da faixa do erro experimental. A mais contundente observação da existência da ligação sinérgica é dada por estudos, utilizando a espectroscopia no infravermelho para complexos contendo CO.

Síntese do Capítulo

Neste capítulo, abordamos a Teoria dos Orbitais Moleculares aplicada aos compostos de coordenação de simetria octaédrica, tetraédrica e quadrado planar. Utilizamos o método da combinação dos orbitais atômicos simplificada. Usamos a Teoria dos Grupos para determinar a simetria dos orbitais atômicos envolvidos na formação das ligações químicas, através da determinação da simetria das ligações σ e π .

Abordamos a formação no complexo de somente ligações σ para, posteriormente, incluirmos o efeito das ligações π e, assim, explicarmos a série espectroquímica utilizada na unidade sobre teoria do campo cristalino. Finalizando a unidade, discutimos os diferentes orbitais envolvidos na interação com os orbitais *d* do metal.

Atividades de avaliação

- **1.** Explique o que cada uma das teorias de ligações covalentes esclareceu sobre as ligações e o que não foi possível esclarecer.
- 2. Desenhe os diagramas dos níveis energéticos dos orbitais moleculares nos compostos de N₂, O₂ e NO. Mostre quais os orbitais ocupados e determine as ordens de ligação e propriedades magnéticas dessas espécies. Explique por que os diagramas de energia para o nitrogênio e o oxigênio são diferentes em relação à posição dos orbitais moleculares σ_{2ne} π_{2n}.
- 3. Determine a simetria dos orbitais 3d, 4s e 4p de um átomo central em um

composto de coordenação que pertence a um grupo pontual D_{ar}.

- 4. Quais as condições que os orbitais atômicos devem satisfazer para que possamos encontrar os orbitais moleculares pelo método da combinação linear de orbitais atômicos?
- 5. Considere que o átomo A apresenta orbitais atômicos com as seguintes simetrias a_{1g}, b_{2u} e e_g, e que o átomo *B* possui os orbitais *s*, *p* e *d*. Considerando-se que a simetria do composto formado é octaédrica, quais destes orbitais formariam orbitais moleculares? Classifique estes orbitais em ligantes, antiligantes e não ligantes. Considere que os orbitais atômicos têm energia igual ou semelhante.
- Explique com base na Teoria dos Orbitais Moleculares por que a molécula diatômica do boro é paramagnética.
- Mostre a diferença entre os diagramas de orbitais moleculares para os seguintes exemplos:
 - (a) [lrBr₆]²⁻;
 - (b) [Cr(CO)₆]
- **8.** Sabendo-se que as ligações *π* para os complexos octaédricos e tetraédricos têm as seguintes representações redutíveis, qual a simetria delas?

0	h	E	8C ₃	6C ₂	6C ₄	3C ₂	1	6S ₄	85 ₆	3s _H	6s _D
Γ	π	12	0	0	0	-4	0	0	0	0	0
		-		-	00		0	00		C –	
		d		-	ð u ₃	•	50 ₂	054		00,	
		Г	5	2	-1		0	0		0	

Quais dessas simetrias formariam orbitais moleculares não ligantes e por quê? Observação – Consulte a unidade sobre Simetria Molecular.

- Discuta os diagramas de níveis de energia mostrados na Figura 13 (a) e 13(b).
- 10. Qual a diferença entre orbitais moleculares não ligantes e antiligantes?

Apêndice

PRONÚNCIA	MINÚSCULA	MAIÚSCULA	PRC
alfa	30	А	
beta	β	В	
gama	γ	Г	011
delta	δ	Δ	
épsilon	ω	Е	
dzeta	Ś	Z	si
eta	η	Η	
teta	θ	Θ	սյ
iota	l	Ι	
capa	к	K	
lâmbda	λ	Λ	
mi	μ	М	Ô

Apêndice A – Alfabeto grego

PRONUNCIA	MINUSCULA	MAIUSCULA
ni	ν	N
ksi	λ	[I]
omicron	0	0
рі	π	П
rho	ρ	Р
sigma	σ	Σ
tau	τ	Т
upsilon	υ	Y
phi	φ	Φ
khi	χ	Х
psi	Ψ	Ψ
ômega	ω	Ω

www.profwillian.com/_diversos/alfa_grego.asp acessado em 25/01/2010

Apêndice B – Elementos Químicos – Nome, Símbolo, Origem do Nome, Número Atômico e Data da Descoberta

ELEMENTO	SÍMBOLO	ORIGEM DO NOME	NÚMERO Atômico	DATA DA Descoberta
Chumbo	Pb	Do latim plumbum	82	a.C.
Cobre	Си	Do latim Cuprum = Chipre	29	a.C.
Enxofre	S	Do latim sulfur	16	a.C.
Estanho	Sn	Do latim stannum	50	a.C.
Ferro	ŀe	Do latim ferrum	26	a.C.
Mercúrio	Hg	Do Deus Mercúrio. O símbolo Hg vem do latim "hydrar- gyrum" que significa prata líquida	80	a.C.
Ouro	Au	Do latim aurum = brilhante	79	a.C.
Prata	Ag	Do latim argentum	47	a.C.
Arsênio	As	Do latin arsenium	33	1250
Antimônio	Sb	Do grego Anti Monos - Que não ocorre sozinho. A origem do símbolo é do nome em latim stibium	51	1450
Fósforo	Р	Do grego phosphoros = que leva luz	15	1669
Cobalto	Со	Do alemão kobold = duende demônio das minas	27	1735
Zinco	Zn	Do alemão zink	30	1746
Níquel	Ni	De "Velho Nick " da mitologia germanica	28	1751
Platina	Pt	Diminutivo de prata em Espanhol	78	1751
Bismuto	Bi	do alemão wissmuth = massa branca. Simbolo originado da forma latina de Wissmuth - bisemütum,	83	1753
Hidrogênio	Н	Do grego hydrogen = gerador de água	1	1766
Flúor	F	Do seu minério fluorita	9	1771
Nitrogênio	N	Do grego nitrogen = gerador de salitre	7	1772
Cloro	CI	Do grego chloros = Amarelo	17	1774
Manganês	Mn	Do latim magnes devido suas proprie- dades magnéticas	25	1774
Oxigênio	0	Do grego = gerador de ácidos	8	1774

ELEMENTO	SÍMBOLO	ORIGEM DO NOME	NÚMERO Atômico	DATA DA Descoberta
Molibdênio	Мо	Do grego molybdos = chubo	42	1781
Telúrio	Те	Do latin tellus = Terra	52	1782
Tungstênio	W	De Wolframita seu minério	74	1783
Urânio	U	do Planeta e do Deus Urano	92	1789
Zircônio	Zr	Do zircão, seu minério	40	1789
Titânio	Ti	de Titãs (Mitologia Grega)	22	1791
Ítrio	Y	Obtido do mimeral godolinita da região da Ytterby, Suécia	39	1794
Berílio	Ве	do arabe Ballur = Cristal	4	1798
Cromo	Cr	Do grego chroma = cor	24	1798
Nióbio	Nb	Da Deusa Niobe	41	1801
Magnésio	Mg	Magnesia, de onde é extraído	12	1802
Tantálio (tântalo)	Та	Rei Tantalus (mitologia Grega)	73	1802
Cério	Се	Ceres = deusa grega	58	1803
Paládio	Pd	Homenagem a Pallas	46	1803
Ródio	Rh	Do grego rhodon = Rosa	45	1803
Ósmio	Os	Do grego osme = odor	76	1804
Potássio		Do latim kalium e ingles Pot Ash = Cinzas Vegetais	19	1807
Sódio	Na	Do latim natrium = Soda Caustica	11	1807
Bário	Ва	Do grego barys = pesado	56	1808
Boro	В	borax	5	1808
Cálcio	Са	Do latim calx = cal	20	1808
Estrôncio	Sr	Região escocesa Strontian	38	1808
Irídio	lr	Do grego iris = devido seu sais coloridos	77	1808
lodo	I.	Do grego ioeides = violeta	53	1811
Cadmio	Cd	Corrupção do grego kadmia (antigo zinco)	48	1817
Lítio	Li	Do grego lithos = pedra	3	1817
Selênio	Se	Do grego selene = Lua	34	1818
Alumínio	AI	Do latim alumen	13	1825
Bromo	Br	Do grego bromos = mau cheiro	35	1826
Tório	Th	Thor (Deus do Trovão da Mitologia Nórdica)	90	1828

ELEMENTO	SIMBOLO	ORIGEM DO NOME	NÚMERO Atômico	DATA DA Descoberta
Vanádio	V	Deus Escandinava Vanadis	23	1830
Lantânio	La	Do grego lanthanien = sumido	57	1839
Érbio	Er	Ytterby, Suécia	68	1843
Térbio	Tb	Ytterby, Suécia	65	1843
Rutênio	Ru	Região Russa Rutenia de onde veio o mineral.	44	1844
Césio	Cs	Do latim caesius = azul celeste	55	1860
Rubídio	Rb	Do latim rubidus = vermelho escuro	37	1861
Tálio	TI	Do grego thallos = Talo, broto verde (seu espectro)	81	1861
Índio	In	azul indigo	49	1863
Gálio	Ga	homenagem à Gália (França)	31	1875
Itérbio	Yb	Ytterby, Suécia	70	1878
Escândio	Sc	Scandinavia	21	1879
Hólmio	Но	Do latim Holmia (nome latin de Esto- colmo)	67	1879
Samário	Sm	Engenheiro Russo Samarski	62	1879
Túlio	Tm	Thule (antigo nome da Escandinávia)	69	1879
Gadolínio	Gd	homenagem a Johan Gadolin	64	1880
Neodímio	Nd	Do grego neos didymos = gemeo	60	1885
Praseodímio	Pr	Do grego prasios = verde	59	1885
Disprósio	Dy	Do grego dysprositos = dificil de encontrar	66	1886
Germânio	Ge	homenagem à Alemanha	32	1886
Argônio	Ar	Do grego argon = inativo	18	1894
Hélio	Не	Do grego helios = Sol	2	1895
Criptônio	Kr	Do grego kryptos = escondido	36	1898
Neônio	Ne	Do grego neos = novo	10	1898
Polônio	Ро	Em homenagem a terra natal de Marie Currie Polônia	84	1898
Rádio	Ra	Do latim radius = raio	88	1898
Xenônio	Хе	Do grego xenos = estrangeiro	54	1898
Actínio	Ac	Corrupção do grego aktinos = Raio	89	1899
Radonio	Rn	Obtido do radio	86	1900
Európio	Eu	Europa	63	1901

ELEMENTO	SÍMBOLO	ORIGEM DO NOME	NÚMERO Atômico	DATA DA Descoberta
Lutécio	Lu	De Lutecia (antigo nome de Paris)	71	1907
Protactínio	Ра	Do grego = antes do actínio	91	1917
Háfnio	Hf	de Hafna (antigo nome de Kopenhagen)	72	1922
Silício	Si	Do latim silex = pedra	14	1923
Rênio	Re	Do rio Reno	75	1924
Promécio	Pm	Prometheus (mit. Grega)	61	1926
Tecnécio	Tc	Obtido através de técnica	43	1937
Frâncio	Fr	França	87	1939
Astato	At	Do grego astatos = instável	85	1940
Neptúnio	Np	do planeta e do Deus Netuno	93	1940
Plutônio	Pu	Do Planeta Anão e Deus Plutão	94	1940
Amerício	AM	Homenagem as Americas	95	1944
Cúrio	Cm	Homenagem a Pierre e Marie Curie	96	1944
Berquélio	Bk	Homenagem a Berkeley	97	1949
Califórnio	Cf	Homenagem ao Estado e Universidade da Califórnia	98	1950
Einstênio	Es	Homenagem a Albert Einstein	99	1952
Férmio	Fm	Homenagem a Enrico Fermi	100	1952
Mendelévio	Md	Homenagem Dmitri Mendeleyev	101	1955
Nobélio	No	Homenagem Alfred Nobel	102	1957
Laurêncio	Lr	Homenagem Ernest O. Lawrence	103	1961
Rutherfórdio	Rf	Homenagem Ernest Rutherford	104	1964
Dúbnio	Db	Homenagem Dubna, Rússia	105	1967
Seabórgio	Sg	Homenagem Glenn T. Seaborg	106	1974
Bóhrio	Bh	Homenagem Neils Bohr	107	1976
Meitnerio	MT	Homenagem Lise Meitner	109	1982
Hássio	Hs	Hesse, Alemanha	108	1984
Darmstádio	Ds	Darmstadt, Germany	110	1994
Roentgênio	Rg	Homenagem Wilhelm Conrad Röntgen	111	1994
Copernício	Cn	homenagem a Copernico	112	1996
Ununhexio	Uun	Do latim = 116	116	1999
Ununquadio	Uuq	Do latim = 114	114	1999
Ununoctio	Uuo	Do latim= 118	118	2002
Ununpentio	Uup	Do latim = 115	115	2004
Ununtrio	Uut	Do latim = 113	113	2004
ununseptium	Uus	Do latim = 117	117	2010

ELEMENTO	SÍMBOLO	NOME EM LATIM
Antimônio	Sb	Stibium
Cobre	Cu	Cuprum
Ouro	Au	Aurum
Ferro	Fe	Ferrum
Chumbo	Pb	Plumbum
Mercúrio	Hg	Hydragyrum
Potássio	К	Kalium
Prata	Ag	Argentum
Estanho	Sn	Stannum
Sódio	Na	Natrium
Tungstênio	W	Wolfram

Apêndice C – Tabelas de Caracteres dos Grupos

1. Grupos não axiais

<i>C</i> ₁		Ε		
Α		1		
C _s	E	σ_h		
A'	1	1	x, y, R _z	x ² , y ² ,
A″	1	-1	z, R _x , R _y	z², xy yz, xz
C_i	Ε	i		
A_{g}	1	1	$R_{x'} R_{y} R_{z}$	$x^2, y^2, z^2,$
				xy, yz, xz
A_{u}	1	-1	х, у,z,	

2. Grupos C_n

C_2	Ε	<i>C</i> ₂		
Α	1	1	z, R_z	x ² , y ² , z ² , xy
В	1	-1	$x, y, R_{x'} R_{y}$	yz, xz

<i>C</i> ₃	E	<i>C</i> ₃	C_{3}^{2}		ε = exp (2πi/3)
A E	$\left\{\begin{array}{c}1\\1\\1\end{array}\right.$	1 ε ε*	$\left. \begin{array}{c} 1 \\ \epsilon^* \\ \epsilon \end{array} \right\}$	z, R_z $(x, y)(R_{x'} R_y)$	$x^2 + y^2, z^2,$ $(x^2 - y^2 xy) (yz, xz)$

C_4	E	C_4	C_2	C_{4}^{2}		
Α	1	1	1	1	<i>z</i> , <i>R</i> _z	$x^2 + y^2, z^2,$
В	, 1	-1	1	-1		x²-y², xy
Ε	{ 1	i	-1	-i }	$(x,y)(R_{x'},R_{y})$	(yz, xz)
	1	-i	-1	_i J		

C_{5}	E	C_{5}	C_{5}^{2}	C_{5}^{3}	C_{5}	4			1	$\varepsilon = \exp(2\pi i/\epsilon)$
Α	1	1	1	1	1		z, R	z		$x^2 + y^2, z^2$
$E_{_1}$	$\left \left\{ \begin{array}{c} 1 \\ 1 \end{array} \right. \right.$	ε *3	ε² ε²*	ε ^{2*} ε ²	*ع ع	• } (x	, y), (I	$R_{x'} R_{y}$)	(<i>yz, xz</i>)
<i>E</i> ₂	$\left\{\begin{array}{c}1\\1\end{array}\right.$	ε ² ε ^{2*}	ε* ε	ع *ع	ε²> ε²	* }				(x^2-y^2,xy)
<i>C</i> ₆	E	$C_{_6}$	<i>C</i> ₃	<i>C</i> ₂	C_{3}^{2}	C_{6}^{5}			ε =	exp (2πi/6)
Α	1	1	1	1	1	1	z, I	R _z)	$x^{2} + y^{2}, z^{2}$
В	1	-1	1	-1	1	-1				
F	1	З	-ɛ*	-1	-٤	٤*	(x,	y)		
<i>L</i> ₁	1	٤*	-٤	-1	-ɛ*	ε	(R _{x'}	R_{y})		(<i>yz</i> , <i>xz</i>)
~	1	-ɛ*	-٤	1	-ɛ*	-٤			1.	2 . 2
E ₂	1	3-	-8*	1	3-	-٤*			()	(² - y², xy)
<i>C</i> ₇	E	<i>C</i> ₇	C_{7}^{2}	C_{7}^{3}	C_{7}^{4}	C_{7}^{5}	C_{7}^{6}			ε = exp (2
Α	1	1	1	1	1	1	1	Ζ,	R _z	$x^2 + y^2$, z
Ε.	1	3	ε ²	ε ³	ε ³ *	ε ² *	٤*	(<i>x</i> ,	<i>y</i>)	(xz, yz)
1	1	°3	ε ² *	£3*	E 3	ε2	3	$(R_{x'})$	R_{y})	
E_{2}	1	2 ²	* ^د ع	*ع	3	^د 3	٤ ² *			$(x^2 - y^2, x)$
-	1	ε²*	°ع	3	٤*	*دع	€²			
E_{3}		دع	£≁	°54	£-≁ 2	3	°°3			
5	1	°°8	З	ε²*	ε²	*ع	°3			

$C_{_8}$	Е	C ₈	C_4	<i>C</i> ₂	C_{4}^{3}	C_{8}^{3}	C_{8}^{5}	C_{8}^{7}		$\epsilon = \exp(2\pi i/8)$
Α	1	1	1	1	1	1	1	1	<i>z</i> , <i>R</i> _z	$x^2 + y^2, z^2$
В	1	-1	1	1	1	-1	-1	-1		
F	1	ε	i	-1	- <i>i</i>	-ɛ*	-8	٤*	(<i>x, y</i>)	
	1	ε*	- <i>i</i>	-1	i	-8	-ɛ*	ε	$(R_{x'}, R_{y})$	(XZ, YZ)
F	1	i	-1	1	-1	-i	i	- <i>i</i>		$(\chi^2 - \chi^2 - \chi_1)$
<i>L</i> ₂	1	-i	-1	1	-1	i	- <i>i</i>	i		$(x^2 - y^2, xy)$
F	1	-٤	i	-1	- <i>i</i>	ε*	ε	-ɛ*		
L ₃	1	-٤*	-i	-1	i	ε	٤*	-8		

3. Grupos D_n

D_2	Е	$C_2(z)$	$C_2(\gamma)$	$C_2(x)$		
Α	1	1	1	1		$x^2 + y^2, z^2$
$B_{_1}$	1	1	-1	-1	<i>z</i> , <i>R</i> _z	ху
B_2	1	-1	1	-1	y, R _y	XZ
<i>B</i> ₃	1	-1	-1	1	<i>x</i> , <i>R</i> _x	уz

	D ₃	Е	2 <i>C</i> ₃	3 <i>C</i> ₂		
	A ₁	1	1	1		$x^2 + y^2, z^2$
,	A ₂	1	1	-1	z, R _z	
	E	2	-1	0	$(x, y)(R_{x_{y}}R_{y})$	$(x^2 - y^2, xy)(xz, yz)$

<i>D</i> ₄	Е	2 <i>C</i> ₄	$C_2(=C_4^2)$	2 <i>C</i> ₂ ′	2 <i>C</i> ₂ "		
A_1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2	1	1	1	-1	-1	<i>z</i> , <i>R</i> _z	
B_{1}	1	-1	1	1	-1		x ² - y ²
<i>B</i> ₂	1	-1	1	-1	1		ху
Ε	2	0	-2	0	0	$(x, y)(R_{x,}R_{y})$	(<i>xz, yz</i>)

D_5	Ε	2 <i>C</i> ₅	$2C_{5}^{2}$	5 <i>C</i> ₂		
<i>A</i> ₁	1	1	1	1		$x^2 + y^2, z^2$
A_2	1	1	1	-1	z, R_z	
E_{1}	2	2 cos 72°	2 cos 144º	0	$(x, y)(R_{x}, R_{y})$	(<i>xz</i> , <i>yz</i>)
E_2	2	2 cos 144°	2 cos 72°	0		$(x^2 - y^2, xy)$

D_6	Е	2 <i>C</i> ₆	2 <i>C</i> ₃	<i>C</i> ₂	3 <i>C</i> ₂ ′	3 <i>C</i> ₂ "		
A_1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2	1	1	1	1	-1	-1	z, R _z	
B_{1}	1	-1	1	-1	1	-1		
B_2	1	-1	1	-1	-1	1		
E_{1}	2	1	-1	-2	0	0	$(x, y)(R_{x}, R_{y})$	(<i>xz, yz</i>)
E_2	2	-1	-1	2	0	0		$(x^2 - y^2, xy)$

4. Grupos C_{nv}

	_	<i>C</i> _{2v}	E	<i>C</i> ₂	$\sigma_v(xz)$	$\sigma'_{v}(yz)$				
		$\begin{array}{c} A_1 \\ A_2 \end{array}$	1 1	1 1	1 -1	1 -1	F	z R_	x², y², xy	, Z ²
		B_1 B_2	1 1	-1 -1	1 -1	-1 1	X, V,	R _y R.	xz Yz	
		2 1					, ,,	X	I	
		c	F	20	30					
	-	A.	1	1	1		7.)	$x^2 + v^2$, 7	-2
		A_2	1	1	-1		2, R,		,,_	
		B_1^2	2	-1	0	(x, y)	$(R_{x_r}R_y)$	(<i>x</i> ² -)	y², xy)(x	z, yz)
		$C_{4\nu}$	E	2 <i>C</i> ₄	<i>C</i> ₂	2σ,	2σ _d			
	-	A ₁	1	1 1 1		1	1	Z	2	$x^2 + y^2, z^2$
		A ₂ B			-1 1	-1	R	z	$x^2 - y^2$	
		$\begin{bmatrix} B_1\\ B_2 \end{bmatrix}$	1	-1	1	-1	1			x - y xy
		Ē	2	0	-2	0	0	(x, y)($(R_{x_{y}}R_{y})$	(<i>xz, yz</i>)
		$C_{\rm EV}$	Е	2	$2C_{r}$	2C ₅ ²	50	т <u>,</u>		
	-	<i>A</i> ₁	1		1	1	1	v	Ζ	$x^2 + y^2, z^2$
		A ₂	1		1	1	-1	L	R _z	
		<i>E</i> ₁	2	2 cc	os 72°	2 cos 14	14° 0	(<i>x</i> ,	$y)(R_{x_r}R_y)$) (<i>xz, yz</i>)
		E_2	2	2 co:	s 144°	2 cos 7	2° 0			$(x^2 - y^2, xy)$
C _{6v}	Ε	2 <i>C</i> ₆	20	-	<i>C</i> ₂	3σ _ν	3o _d			
<i>A</i> ₁	1	1	1		1	1	1	Z	<u> </u>	$x^{2} + y^{2}, z^{2}$
A ₂ B	1	1 -1	1	-	1 -1	-1 1	-1 -1	R	z	
B_2^1	1	-1	1		-1	-1	1			
E_1^{-}	2	1	-1	1	-2	0	0	(x, y)($R_{x_{y}}R_{y}$)	(xz, yz)
\boldsymbol{E}_2	2	-1		L	2	U	U			$(x^2 - y^2, xy)$

5. Grupos C_{nh}

$ \begin{array}{c} C_{2h} \\ $	E 1 1 1 1 1	C ₂ 1 -1 1 -1	<i>i</i> 1 -1 -1	-	D _h 1 ·1 ·1 ·1 ·1	R _z R _{x,} R _y z x, y	,	X ² ,	у ² х <i>z</i> ,	, z²,xy , yz	-
<u>C_{3h}</u> A' E' A'' E''	E 1 {1 1 1 {1 1 1 1 1	C ₃ 1 ε * 1 ε ε *	C ₃ ² 1 ε* ε 1 ε* ε ε	σ _h 1 1 -1 -1 -1	S ₃ 1 ε * -1 - ε -ε*	$ \begin{array}{c} S_{3}^{5} \\ 1 \\ \varepsilon^{*} \\ \varepsilon \\ -1 \\ -\varepsilon^{*} \\ -\varepsilon^{*} \end{array} $	F (x, (R _{x'}	R _z y) z R _y)	3	$= \exp (2x^{2} + y^{2})^{2}$ $(x^{2} - y^{2})^{2}$ $(xz, yz)^{2}$	πi/3) z ² (γ)
<i>C</i> _{4<i>h</i>}	Е	<i>C</i> ₄	C_2	C_{4}^{3}	i	<i>S</i> ₄ ³	σ_h	S_4			
A_{g}	1	1	1	1	1	1	1	1		R _z	$x^2 + y^2, z^2$
B_{g}	1	-1	1	-1	1	-1	1	-1			$x^2 - y^2, xy$
E _a	$\begin{cases} 1 \\ 1 \end{cases}$	i ;	-1	-i :	1	i ;	-1	-i :	Ì	$(R_{x'}, R_{v})$	
Δ	(<u>1</u>	-/ 1	-1	1	⊥ -1	-/ -1	-1 -1	-1	J	7	(xz, yz)
, т _и В.,	1	-1	1	-1	-1	1	-1	1		-	
	(1	i	-1	-i	-1	-i	1	i)		
E _u	1	-i	-1	i	-1	i	1	-i	}	(<i>x</i> , <i>y</i>)	

$C_{_{5h}}$	E	C_{5}	C_{5}^{2}	C_{5}^{3}	C_{5}^{4}	σ_h	S_{5}	S_{5}^{7}	S_{5}^{3}	S_{5}^{9}		$\varepsilon = \exp(2\pi i/5)$
A'	1	1	1	1	1	1	1	1	1	1	R _z	$x^2 + y^2, z^2$
F /	∫1	З	ε2	ε ² *	٤*	1	З	ε ²	ε ^{2*}	(*ع	(\mathbf{x}, \mathbf{y})	
L_1	$\left 1 \right $	٤*	ε ² *	ε2	ε	1	٤*	ε ^{2*}	ε ²	ε ∫	(x, y)	
E /	∫1	ε2	٤*	З	ε ² *	1	ε ²	٤*	З	ε ² *		$(x^2 - y^2, xy)$
<i>L</i> ₂	1	ε ² *	З	٤*	ε ²	1	ε ² *	З	ε*	ε ² }		
Α″	1	1	1	1	1	-1	-1	-1	-1	-1	z	
E "	∫1	З	ε ²	E ² *	٤*	-1	-8	-ε ²	-ε ^{2*}	-ε*)		
\boldsymbol{L}_1	$\left 1 \right $	٤*	ε ² *	ε ²	ε	-1	-ɛ*	-ε ² *	-ε ²	-ε }	$(R_{x'}, R_{y})$	(xz, yz)
Г "	∫ 1	ε ²	٤*	З	ε ² *	-1	-ε ²	-ɛ*	-8	-ε ² *		
<i>L</i> ₂	1	ε ^{2*}	ε	٤*	ε ²	-1	-ε ^{2*}	-8	-ɛ*	-ε² }		

$C_{_{6h}}$	E	C_{6}	<i>C</i> ₃	C_2	C_{3}^{2}	C_{6}^{5}	i	S_{3}^{5}	S_{6}^{5}	σ_h	$S_{_6}$	$S_{_3}$		$\varepsilon = \exp(2\pi i/6)$
A_{g}	1	1	1	1	1	1	1	1	1	1	1	1	R _z	$x^2 + y^2, z^2$
B_{g}	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1		
F	1	З	-ɛ*	-1	-8	٤*	1	З	-٤*	-1	-8	ε*		(<i>xz, yz</i>)
L _{1g}	1	٤*	-٤	-1	-ɛ*	З	1	٤*	-8	-1	-٤*	З	$(\kappa_{x'},\kappa_{y})$	
F	1	-٤*	-٤	1	-ɛ*	-٤	1	-ɛ*	-8	1	-ɛ*	-٤		
⊏ _{2g}	1	-8	-e*	1	-٤	-ɛ*	1	-٤	-ɛ*	1	-٤	-ɛ*		$(x^2 - y^2, xy)$
A_{u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	z	
B_{u}	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1		
F	1	ε	-e*	-1	-٤	٤*	-1	-٤	٤*	1	ε	-ɛ*		
\boldsymbol{L}_{1u}	1	٤*	-٤	-1	-ɛ*	З	-1	-ɛ*	З	1	٤*	-٤	(x, y)	
F	1	-ɛ*	-٤	1	-ɛ*	-٤	-1	٤*	З	-1	٤*	ε		
E _{2u}	1	-٤	-e*	1	-8	-ɛ*	-1	ε	٤*	-1	ε	٤*		

6. Grupos D_{nh}

ח	F	C(7)	$C(\mathbf{v})$	$C(\mathbf{x})$	i	$\sigma(xy)$	$\sigma(xz)$	$\sigma(vz)$		
2h	-	C ₂ (2)	C ₂ (y)		1					
A_{g}	T	T	T	T	T	T	T	T		x², y², z²
$B_{_{1g}}$	1	1	-1	-1	1	1	-1	-1	R _z	ху
$B_{_{2g}}$	1	-1	1	-1	1	-1	1	-1	R _y	XZ
$B_{_{3g}}$	1	-1	-1	1	1	-1	-1	1	R_{x}	уz
A_{u}	1	1	1	1	-1	-1	-1	-1		
B _{1u}	1	1	-1	-1	-1	-1	1	1	Z	
В _{2и}	1	-1	1	-1	-1	1	-1	1	У	
B _{3u}	1	-1	-1	1	-1	1	1	-1	x	

D _{3h}	Е	$2C_3$	3 <i>C</i> ₂	σ_h	$2S_3$	$3\sigma_h$		
A_1'	1	1	1	1	1	1		$x^2 + y^2, z^2$
A ₂ ′	1	1	-1	1	1	-1	R_{z}	
E'	2	-1	0	2	-1	0	(<i>x</i> , <i>y</i>)	$(x^2 - y^2, xy)$
A_1''	1	1	1	-1	-1	-1		
A ₂ "	1	1	-1	-1	-1	1	Z	
Ε″	2	-1	0	-2	1	0	$(R_{x_{y}}R_{y})$	(<i>xz</i> , <i>yz</i>)

	1										I	I
$D_{\rm 4h}$	E	2 <i>C</i> ₄	C_2	2 <i>C</i> ₂ ′	2 <i>C</i> ₂ "	i	$2S_{4}$	σ_h	$2\sigma_v$	$2\sigma_d$		
A_{1g}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	R _z	
$B_{_{1g}}$	1	-1	1	1	-1	1	-1	1	1	-1		x² - y²
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1		ху
E_{g}	2	0	-2	0	0	2	0	-2	0	0	$(R_{x'}, R_{y})$	(<i>xz, yz</i>)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A _{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	Ζ	
B_{1u}	1	-1	1	1	-1	-1	1	-1	-1	1		
B _{2u}	1	-1	1	-1	1	-1	1	-1	1	-1		
E_{u}	2	0	-2	0	0	-2	0	2	0	0	(<i>x</i> , <i>y</i>)	

$D_{\rm 5h}$	Ε	2 <i>C</i> ₅	$2C_{5}^{2}$	5 <i>C</i> ₂	σ_h	28 ₅	2S ₅ ³	5σ,		
A_1'	1	1	1	1	1	1	1	1^{a}		$x^2 + y^2, z^2$
A_{2}'	1	1	1	-1	1	1	1	-1	R _z	
E_{1}'	2	2 cos 72°	2 cos 144°	0	2	2 cos 72°	2 cos 144º	0	(<i>x</i> , <i>y</i>)	
E ₂ ′	2	2 cos 144º	2 cos 72°	0	2	2 cos 144°	2 cos 72°	0		$(x^2 - y^2, xy)$
A ₁ "	1	1	1	1	-1	-1	-1	-1		
A ₂ ″	1	1	1	-1	-1	-1	-1	1	z	
<i>E</i> 1"	2	2 cos 72°	2 cos 144°	0	-2	-2 cos 72°	-2 cos 144°	0	$(R_{x'}, R_{y})$	(xz, yz)
<i>E</i> ₂ ″	2	2 cos 144º	2 cos 72°	0	-2	-2 cos 144º	-2 cos 72°	0		

$D_{_{6h}}$	E	$2C_{6}$	2 <i>C</i> ₃	<i>C</i> ₂	3 <i>C</i> ₂ ′	3 <i>C</i> ₂ "	i	$2S_{3}$	2 <i>S</i> ₆	σ_h	3σ _d	3σ _v		
A_{1g}	1	1	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_{2g}	1	1	1	1	-1	-1	1	1	1	1	-1	-1	R _z	
B_{1g}	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1		
B_{2q}	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1		
E_{1q}	2	1	-1	-2	0	0	2	1	-1	-2	0	0	$(R_{x'}, R_{y})$	(xz, yz)
E_{2q}	2	-1	-1	2	0	0	2	-1	-1	2	0	0	,	x² - y², xy
A_{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1		
A_{2u}	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	z	
B_{1u}	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1		
B_{2u}	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1		
E_{1u}	2	1	-1	-2	0	0	-2	-1	1	2	0	0	(<i>x</i> , <i>y</i>)	
E_{2u}	2	-1	-1	2	0	0	-2	1	1	-2	0	0		

140

$D_{\rm 8h}$	E	2 <i>C</i> ₈	2 <i>C</i> ₈ ³	2 <i>C</i> ₄	C_2	4 <i>C</i> ₂ ′	4 <i>C</i> ₂ "	i	2 <i>S</i> ₈	2 <i>S</i> ₈ ³	$2S_{4}$	σ_h	$4\sigma_d$	$4\sigma_v$		
A_{1g}	1	1	1	1	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_{2g}	1	1	1	1	1	-1	-1	1	1	1	1	1	-1	-1	R _z	
$B_{_{1g}}$	1	-1	-1	1	1	1	-1	1	-1	-1	1	1	1	-1		
B_{2g}	1	-1	-1	1	1	-1	1	1	-1	-1	1	1	-1	1		
$E_{_{1g}}$	2	√2	-√2	0	-2	0	0	2	√2	-√2	0	-2	0	0	$(R_{x'}, R_{y})$	(<i>xz</i> , <i>yz</i>)
$E_{_{2g}}$	2	0	0	-2	2	0	0	2	0	0	-2	2	0	0		$(x^2 - y^2, xv)$
$E_{_{3g}}$	2	-√2	√2	0	-2	0	0	2	-√2	√2	0	-2	0	0		
A_{1u}	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1		
A_{2u}	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	1	1	z	
B_{1u}	1	-1	-1	1	1	1	-1	-1	1	1	-1	-1	-1	1		
B_{2u}	1	-1	-1	1	1	-1	1	-1	1	1	-1	-1	1	-1		
$E_{_{1u}}$	2	√2	-√2	0	-2	0	0	-2	-√2	√2	0	2	0	0	(<i>x</i> , <i>y</i>)	
E_{2u}	2	0	0	-2	2	0	0	-2	0	0	2	-2	0	0		
E _{3u}	2	-√2	√2	0	-2	0	0	-2	√2	-√2	0	2	0	0		

7. Grupos D_{nd}

	1					1	
D _{2d}	Е	2 <i>S</i> ₄	C_2	2 <i>C</i> ₂ ′	$2\sigma_d$		
<i>A</i> ₁	1	1	1	1	1		$x^2 + y^2, z^2$
A ₂	1	1	1	-1	-1	R _z	
B_{1}	1	-1	1	1	-1		X ² - Y ²
<i>B</i> ₂	1	-1	1	-1	1	Z	ху
Ε	2	0	-2	0	0	$(x,y); (R_{x_{y}}R_{y})$	(<i>xz, yz</i>)

		1							1
	$D_{_{3d}}$	Е	2 <i>C</i> ₃	3 <i>C</i> ₂	i	2 <i>S</i> ₆	$3\sigma_d$		
-	$A_{_{1g}}$	1	1	1	1	1	1		$x^2 + y^2, z^2$
	A_{2g}	1	1	-1	1	1	-1	R _z	
	E_{g}	2	-1	0	2	-1	0	$(R_{x_{r}}R_{y})$	$(x^2 - y^2, xy), (xz, yz)$
	A_{1u}	1	1	1	-1	-1	-1		
	A _{2u}	1	1	-1	-1	-1	1	z	
	E_{u}	2	-1	0	-2	1	0	(<i>x</i> , <i>y</i>)	
		1						I	I

4σ _d		
1	$x^2 + y^2, z^2$	

141

Química Inorgânica II

D _{4d}	E	2 <i>S</i> ₈	2 <i>C</i> ₄	2 <i>S</i> ₈ ³	<i>C</i> ₂	4 <i>C</i> ₂ ′	$4\sigma_d$		
A_1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2	1	1	1	1	1	-1	-1	R _z	
B_{1}	1	-1	1	-1	1	1	-1		
B_{2}	1	-1	1	-1	1	-1	1	z	
E_{1}	2	√2	0	-√2	-2	0	0	(<i>x</i> , <i>y</i>)	
E_2	2	0	-2	0	2	0	0		$(x^2 - y^2, xy)$
E_{3}	2	-√2	0	√2	-2	0	0	$(R_{x_{y}}R_{y})$	(<i>xz, yz</i>)

_	$D_{\rm 5d}$	E	2 <i>C</i> ₅	$2C_{5}^{2}$	$5C_2$	i	2 <i>S</i> ₁₀ ³	2 <i>S</i> ₁₀	5σ _d		
	A_{1g}	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
	A_{2g}	1	1	1	-1	1	1	1	-1	R _z	
	E_{1g}	2	2 cos 72°	2 cos 144°	0	2	2 cos 72°	2 cos 144º	0	$(R_{x'}, R_{y})$	(<i>xz, yz</i>)
	E_{2q}	2	2 cos 144º	2 cos 72°	0	2	2 cos 144º	2 cos 72°	0		$(x^2 - y^2, xy)$
	A_{1u}	1	1	1	1	-1	-1	-1	-1		
	A _{2u}	1	1	1	-1	-1	-1	-1	1	z	
	E_{1u}	2	2 cos 72°	2 cos 144º	0	-2	-2 cos 72°	-2 cos 144º	0	(<i>x, y</i>)	
	E_{2u}	2	2 cos 144º	2 cos 72°	0	-2	2 cos 144º	-2 cos 72°	0		

$D_{\rm 6d}$	Ε	2 <i>S</i> ₁₂	2 <i>C</i> ₆	2 <i>S</i> ₄	2 <i>C</i> ₃	2 <i>S</i> ₁₂ ⁵	<i>C</i> ₂	6 <i>C</i> ₂ ′	$6\sigma_d$		
A_{1}	1	1	1	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2	1	1	1	1	1	1	1	-1	-1	R _z	
B_{1}	1	-1	1	-1	1	-1	1	1	-1		
B_2	1	-1	1	-1	1	-1	1	-1	1	z	
E_{1}	2	√3	1	0	-1	-√3	-2	0	0	(<i>x, y</i>)	
E_2	2	1	-1	-2	-1	1	2	0	0		$(x^2 - y^2, xy)$
$E_{_3}$	2	0	-2	0	2	0	-2	0	0		
E_4	2	-1	-1	2	-1	-1	2	0	0		
E_{5}	2	-√3	1	0	-1	√3	-2	0	0	$(R_{x'}, R_{y})$	(<i>xz, yz</i>)

S_4	E	S_4	<i>C</i> ₂	S_{4}^{3}					
A	1	1	1	1		R _z	$x^2 + y^2$,	Z^2	
D	1	-1 i	-1	-1 - <i>i</i>)		2	x y-,	ху	
E	$ {1}$	- i	-1	i }	(<i>x,</i> y);	$(R_{x_r}R_y)$	xz, yz	Z	
C		C	6		C 5	C			aura (2, ; (2)
S ₆	E	C ₃	C ₃ ²		S ₆ ³	S ₆		ε=	$\exp(2\pi i/3)$
A_{g}	1	1	1	1	1	1	R _z		$x^2 + y^2, z^2$
F	$\int 1$	3	*ع	1	3	٤*)	(R R)	($x^{2} - v^{2} xv$
Lg	[1	*ع	З	1	*ع	ε∫	(n_{x_r}, n_{y})		
A_{u}	1	1	1	-1	-1	-1	Ζ		(<i>xz, yz</i>)
F	<u>1</u>	ε	٤*	-1	-8	-ε*)			
Eu	$ l_1$	*ع	3	-1	-ɛ*	-e }	(x,y)		
	1							I	
1							1	I	
S_8	E	S_8	<i>C</i> ₄	S_{8}^{3} C	$_{2}$ S_{8}^{5}	C_{4}^{3}	<i>S</i> ₈ ⁷	3	$= \exp(2\pi i/8)$
Α	1	1	1	1 1	1	1	1 R _z		$x^2 + y^2, z^2$
В	1	-1	1	1 1	-1	-1	1 <i>z</i>		
E.	∫ ¹	3	i	-ɛ* -1	ε- L	- <i>i</i>	ε*) (<i>x</i> , <i>y</i>	·);	
-1	<u> </u> 1	٤*	-i	-ε -1	L -ε*	i	ε∫ (R _{×'} Ι	R _y)	
E,	\int^1	i	-1	<i>-i</i> 1	i	-1	-i		$(x^2 - y^2, xy)$
2	(1	-i	-1	i 1	-i	-1	i∫		. , , , , ,
E,	\int_{-}^{1}	-ɛ*	-i	ε -1	L ε*	i	-E		(xz, yz)
3	(1	-8	i	ε* -1	lε	-i	-ε* <u>∫</u>		

9. Grupos cúbicos

Т	E	E 4C	3 4C	² 30	2				ε = exp (2πi/3)
A	1	L 1	1	1					$x^2 + y^2$	$+ z^2$
Ε		ع ا *ع ا	*ع ع	1					$(2z^2 - x^2 - y^2)$	$, x^2 - y^2)$
Т		3 0	0	-:	. (R _x , R _v	, R _z);(x	, y, z)	(<i>xy</i> , <i>xz</i> ,	yz)
						,				
1								1		I
T_h	Ε	4 <i>C</i> ₃	4C ₃ ²	3 <i>C</i> ₂	i	4 <i>S</i> ₆	4 <i>S</i> ₆ ⁵	3σ _h		$\varepsilon = \exp(2\pi i/3)$
A_{g}	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_u	1	1	1	1	-1	-1	-1	-1		
F	1	З	٤*	1	1	З	٤*	1		$(2\pi^2 - \chi^2 - \chi^2 - \chi^2)$
Lg	1	٤*	З	1	1	٤*	ε	1		(22 - x - y , x - y)
_	1	З	٤*	1	-1	-8	-٤*	-1		
	1	٤*	З	1	-1	-e*	-8	-1		
T_{q}	3	0	0	-1	3	0	0	-1	$(R_{x'}, R_{y'}, R_{z})$	(<i>xy</i> , <i>xz</i> , <i>yz</i>)
<i>T</i>	3	0	0	-1	-3	0	0	1	(x, y, z)	

T_d	Е	8 <i>C</i> ₃	3 <i>C</i> ₂	4 <i>S</i> ₄	$6\sigma_d$		
A_1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1		
Ε	2	-1	2	0	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_{1}	3	0	-1	1	-1	$(R_{x'}, R_{y'}, R_{z})$	
<i>T</i> ₂	3	0	-1	-1	1	(x, y, z)	(<i>xy, xz, yz</i>)

0	E	6 <i>C</i> ₄	$3C_2(=C_4^2)$	8 <i>C</i> ₃	6 <i>C</i> ₂							
A_1	1	1	1	1	1		$x^2 + y^2 + z^2$					
A_2	1	-1	1	1	-1							
Ε	2	0	2	-1	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$					
T_{1}	3	1	-1	0	-1	$(R_{x'}, R_{y'}, R_{z}); (x, y, z)$						
T_2	3	-1	-1	0	1		(<i>xy</i> , <i>xz</i> , <i>yz</i>)					
	ı										1	1
-----------------	---	-------------------------	-------------------------	-------------------------	----------------	----	-------------------------	----------	-------------	-------------	-------------------------	---------------------------------
O_h	E	8 <i>C</i> ₃	6 <i>C</i> ₂	6 <i>C</i> ₄	$3C_2(=C_4^2)$	i	6 <i>S</i> ₄	$8S_{6}$	$3\sigma_h$	$6\sigma_d$		
A_{1q}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1		$(2z^2 - x^2 - y^2, x^2 - y^2)$
E_q	2	-1	0	0	2	2	0	-1	2	0		
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1	$(R_{x'}, R_{y'}, R_z)$	
T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xy, xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A _{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
E_{u}	2	-1	0	0	2	-2	0	1	-2	0		
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T_{2u}	3	0	1	-1	-1	-3	1	0	1	-1		

10. Grupos $C_{_{\infty v}} e D_{_{\infty h}}$

$C_{\infty v}$	Ε	$2C_{\infty}^{\Phi}$	3 <i>C</i> ₂	$\infty \sigma_v$		
$A_1 \equiv \Sigma^+$	1	1		1	Z	$x^2 + y^2, z^2$
$A_2 \equiv \Sigma^-$	1	1		-1	R _z	
$E_1 \equiv \Pi$	2	2 cos Φ		0	$(x, y); (R_{x'}, R_{y})$	(<i>xz, yz</i>)
$E_2 = \Delta$	2	$2 \cos 2\Phi$		0		$(x^2 - y^2, xy)$
$E_3 \equiv \Phi$	2	2 cos 3Φ		0		

$D_{\infty v}$	Ε	$2C_{\infty}^{\Phi}$	 $\infty \sigma_v$	i	$2S_{\infty}^{\Phi}$	 ∞C_2		
Σ_q^+	1	1	 1	1	1	 1		$x^2 + y^2, z^2$
Σ_q^-	1	1	 -1	1	1	 -1	R_{z}	
Π_{g}	2	2 cos Φ	 0	2	-2 cos Φ	 0	$(R_{x'}, R_{y})$	(<i>xz, yz</i>)
Δ_{g}	2	$2 \cos 2\Phi$	 0	2	$2 \cos 2\Phi$	 0		$(x^2 - y^2, xy)$
Σ_{u}^{+}	1	1	 1	-1	-1	 -1	Z	
Σ_{u}^{-}	1	1	 -1	-1	-1	 1		
П	2	2 cos Φ	 0	-2	2 cos Φ	 0	(<i>x</i> , <i>y</i>)	
Δ_{u}	2	$2 \cos 2\Phi$	 0	-2	-2 cos 2 Φ	 0		

11. Grupo icosaédrico

I_h	Е	12 <i>C</i> ₅	12C ₅ ²	20 <i>C</i> ₃	15C ₂	i	12 <i>S</i> ₁₀	12S ₁₀ ³	20 <i>S</i> ₆	$15\sigma_d$		
A_{g}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
T_{1g}	3	1⁄2(1+√5)	1⁄2(1-√5)	0	-1	3	1⁄₂(1-√5)	1⁄2(1+√5)	0	-1	$(R_{x'}, R_{y'}, R_{z})$	
T_{2g}	3	1⁄2(1-√5)	1⁄₂(1+√5)	0	-1	3	1⁄2(1+√5)	1⁄2(1-√5)	0	-1		
G_{g}	4	-1	-1	1	0	4	-1	-1	1	0		
H_{g}	5	0	0	-1	1	5	0	0	-1	1		$(2z^2 - x^2 - y^2, x^2 - y^2,$
												xy, xz, yz)
						-						
A _u	1	1	1	1	1	-1	-1	-1	-1	-1		
T_{1u}	3	1⁄2(1+√5)	1⁄2(1-√5)	0	-1	-3	-½(1-√5)	-½(1+√5)	0	1	(x, y, z)	
T _{2u}	3	1⁄2(1-√5)	1⁄₂(1+√5)	0	-1	-3	-½(1+√5)	-½(1-√5)	0	1		
G_{u}	4	-1	-1	1	0	-4	1	1	-1	0		
H _u	5	0	0	-1	1	-5	0	0	1	-1		

A tabela de caracteres do grupo rotacional puro, l encontra-se destacado na tabela do grupo I_h . As representações irredutíveis não possuem a denominação g (A_1 , T_1 , T_2 , G, H). (x, y, z) pertencem a representação T_1 .

BARROS, H. L. C. **Química Inorgânica,** uma introdução. Belo Horizonte: Ed. UFMG, 1992

COELHO, A. L. **Química Inorgânica I**, UECE/UAB, Fortaleza, 2010, e as referências citadas na Unidade I – Estrutura do átomo

COTTON, F. Albert. **Chemical Applications of Group Theory**. 2a edição, Wiley – Intersience, New York, 1971

FARIAS, Robson F. de; Werner, Jørgensene. **O Papel da Intuição na Evolução do Conhecimento Químico**. São Paulo: Química Nova na Escola, 2001. Nº 13, 29-33.

JONES, Chris J. **A química dos elementos dos blocos d e f**. Bookman, Porto Alegre, 2002.

HUHEEY, J. E. Keiter, E. A. e Keiter, R. L. – Inorganic Chemistry, Principles of Structure and Reactivity, 4a edição, Harper, New York, 1993.

HSU, C Y, Orchim, M. Journal of Chemical Education. 1973, 50(2), p. 114.

KAUFFMAN, GEORGE B. Sophus Mads Jorgensen (1837-1914). A chapter in coordination chemistry history. **Journal of chemical Education**, v.36 (10), p. 521 – 527, 1959.

LEE, J. D. **Química Inorgânica:** não tão concisa. Tradução da 4a edição inglesa, Ed. Edgar Blucher Ltda, São Paulo, 1996.

OLIVEIRA, Gelson M., **Simetria de moléculas e cristais –** Fundamentos da espectroscopia vibracional. Bookman, Porto Alegre, 2009.

SHRIVER, D. F. e ATKINS, P. W. **Química Inorgânica**. 3a ed. Bookman, Porto Alegre, 2003.

Sobre o autor

Augusto Leite Coelho: Bacharel Química Industrial (1969) e Engenharia Química (1970) pela Universidade Federal do Ceará, mestre em Química Inorgânica pela Universidade de São Paulo (1973), doutor em Química Inorgânica pela Universidade de São Paulo (1979), pós-doutor em Química Inorgânica pela Universidade de York, Toronto, Canadá (1985). Professor Visitante (UECE/FUNCAP – 1996 – 1998), Professor Adjunto (aposentado) (UFC - 1970 - 1996) Professor Adjunto M (UECE - 1998 - 2010), Professor Associado (UECE - 2010 - 2015), Coordenador do Curso de Licenciatura em Química (UECE – 2005 – 2007), Coordenador do Projeto Aplicação de Metodologias para o Aprimoramento do Processo de Ensino-Aprendizagem de Ciências – UECIÊNCIAS (FINEP/UECE – 2005 – 2008), Coordenador do Curso de Especialização em Ensino de Química (2006 – 2009). Desenvolve pesquisa em Química de Compostos de Coordenação tendo publicado quatro livros, 11 artigos em periódicos e anais e 52 comunicações em congressos.

A não ser que indicado ao contrário a obra Química Inorgânica II, disponível em: http://educapes.capes.gov.br, está licenciada com uma licença Creative Commons Atribuição-Compartilha Igual 4.0 Internacional (CC BY-SA 4.0). Mais informações em: http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR. Qualquer parte ou a totalidade do conteúdo desta publicação pode ser reproduzida ou compartilhada. Obra sem fins lucrativos e com distribuição gratuita. O conteúdo do livro publicado é de inteira responsabilidade de seus autores, não representan-do a posição oficial da EdUECE.

iel a sua missão de interiorizar o ensino superior no estado Ceará, a UECE, como uma instituição que participa do Sistema Universidade Aberta do Brasil, vem ampliando a oferta de cursos de graduação e pós-graduação na modalidade de educação a distância, e gerando experiências e possibilidades inovadoras com uso das novas plataformas tecnológicas decorrentes da popularização da internet, funcionamento do cinturão digital e massificação dos computadores pessoais.

> Comprometida com a formação de professores em todos os níveis e a qualificação dos servidores públicos para bem servir ao Estado, os cursos da UAB/UECE atendem aos padrões de qualidade estabelecidos pelos normativos legais do Governo Federal e se articulam com as demandas de desenvolvimento das regiões do Ceará.

