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PREFACE
Welcome to University Physics, an OpenStax
resource. This textbook was written to increase
student access to high-quality learning materials,
maintaining highest standards of academic rigor at
little to no cost.

About OpenStax
OpenStax is a nonprofit based at Rice University,
and it’s our mission to improve student access to
education. Our first openly licensed college textbook
was published in 2012 and our library has since
scaled to over 25 books used by hundreds of
thousands of students across the globe. OpenStax
Tutor, our low-cost personalized learning tool, is
being used in college courses throughout the
country. The OpenStax mission is made possible
through the generous support of philanthropic
foundations. Through these partnerships and with
the help of additional low-cost resources from our
OpenStax partners, OpenStax is breaking down the
most common barriers to learning and empowering
students and instructors to succeed.

About OpenStax's resources
Customization
University Physics is licensed under a Creative
Commons Attribution 4.0 International (CC BY)
license, which means that you can distribute, remix,
and build upon the content, as long as you provide
attribution to OpenStax and its content contributors.

Because our books are openly licensed, you are free
to use the entire book or pick and choose the
sections that are most relevant to the needs of your
course. Feel free to remix the content by assigning
your students certain chapters and sections in your
syllabus in the order that you prefer. You can even
provide a direct link in your syllabus to the sections
in the web view of your book.

Instructors also have the option of creating a
customized version of their OpenStax book. The
custom version can be made available to students in
low-cost print or digital form through their campus
bookstore. Visit your book page on OpenStax.org for
more information.

Errata
All OpenStax textbooks undergo a rigorous review
process. However, like any professional-grade
textbook, errors sometimes occur. Since our books

are web based, we can make updates periodically
when deemed pedagogically necessary. If you have a
correction to suggest, submit it through the link on
your book page on OpenStax.org. Subject matter
experts review all errata suggestions. OpenStax is
committed to remaining transparent about all
updates, so you will also find a list of past errata
changes on your book page on OpenStax.org.

Format
You can access this textbook for free in web view or
PDF through OpenStax.org, and for a low cost in
print.

About University Physics
University Physics is designed for the two- or three-
semester calculus-based physics course. The text
has been developed to meet the scope and sequence
of most university physics courses and provides a
foundation for a career in mathematics, science, or
engineering. The book provides an important
opportunity for students to learn the core concepts
of physics and understand how those concepts apply
to their lives and to the world around them.

Due to the comprehensive nature of the material, we
are offering the book in three volumes for flexibility
and efficiency.

Coverage and scope
Our University Physics textbook adheres to the
scope and sequence of most two- and three-
semester physics courses nationwide. We have
worked to make physics interesting and accessible
to students while maintaining the mathematical
rigor inherent in the subject. With this objective in
mind, the content of this textbook has been
developed and arranged to provide a logical
progression from fundamental to more advanced
concepts, building upon what students have already
learned and emphasizing connections between
topics and between theory and applications. The
goal of each section is to enable students not just to
recognize concepts, but to work with them in ways
that will be useful in later courses and future
careers. The organization and pedagogical features
were developed and vetted with feedback from
science educators dedicated to the project.

VOLUME I

Unit 1: Mechanics
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• Chapter 1: Units and Measurement
• Chapter 2: Vectors
• Chapter 3: Motion Along a Straight Line
• Chapter 4: Motion in Two and Three Dimensions
• Chapter 5: Newton’s Laws of Motion
• Chapter 6: Applications of Newton’s Laws
• Chapter 7: Work and Kinetic Energy
• Chapter 8: Potential Energy and Conservation of

Energy
• Chapter 9: Linear Momentum and Collisions
• Chapter 10: Fixed-Axis Rotation
• Chapter 11: Angular Momentum
• Chapter 12: Static Equilibrium and Elasticity
• Chapter 13: Gravitation
• Chapter 14: Fluid Mechanics

Unit 2: Waves and Acoustics

• Chapter 15: Oscillations
• Chapter 16: Waves
• Chapter 17: Sound

VOLUME II

Unit 1: Thermodynamics

• Chapter 1: Temperature and Heat
• Chapter 2: The Kinetic Theory of Gases
• Chapter 3: The First Law of Thermodynamics
• Chapter 4: The Second Law of Thermodynamics

Unit 2: Electricity and Magnetism

• Chapter 5: Electric Charges and Fields
• Chapter 6: Gauss’s Law
• Chapter 7: Electric Potential
• Chapter 8: Capacitance
• Chapter 9: Current and Resistance
• Chapter 10: Direct-Current Circuits
• Chapter 11: Magnetic Forces and Fields
• Chapter 12: Sources of Magnetic Fields
• Chapter 13: Electromagnetic Induction
• Chapter 14: Inductance
• Chapter 15: Alternating-Current Circuits
• Chapter 16: Electromagnetic Waves

VOLUME III

Unit 1: Optics

• Chapter 1: The Nature of Light
• Chapter 2: Geometric Optics and Image

Formation
• Chapter 3: Interference
• Chapter 4: Diffraction

Unit 2: Modern Physics

• Chapter 5: Relativity

• Chapter 6: Photons and Matter Waves
• Chapter 7: Quantum Mechanics
• Chapter 8: Atomic Structure
• Chapter 9: Condensed Matter Physics
• Chapter 10: Nuclear Physics
• Chapter 11: Particle Physics and Cosmology

Pedagogical foundation
Throughout University Physics you will find
derivations of concepts that present classical ideas
and techniques, as well as modern applications and
methods. Most chapters start with observations or
experiments that place the material in a context of
physical experience. Presentations and explanations
rely on years of classroom experience on the part of
long-time physics professors, striving for a balance
of clarity and rigor that has proven successful with
their students. Throughout the text, links enable
students to review earlier material and then return
to the present discussion, reinforcing connections
between topics. Key historical figures and
experiments are discussed in the main text (rather
than in boxes or sidebars), maintaining a focus on
the development of physical intuition. Key ideas,
definitions, and equations are highlighted in the text
and listed in summary form at the end of each
chapter. Examples and chapter-opening images
often include contemporary applications from daily
life or modern science and engineering that
students can relate to, from smart phones to the
internet to GPS devices.

Assessments that reinforce key concepts
In-chapter Examples generally follow a three-part
format of Strategy, Solution, and Significance to
emphasize how to approach a problem, how to work
with the equations, and how to check and generalize
the result. Examples are often followed by Check
Your Understanding questions and answers to help
reinforce for students the important ideas of the
examples. Problem-Solving Strategies in each
chapter break down methods of approaching
various types of problems into steps students can
follow for guidance. The book also includes
exercises at the end of each chapter so students can
practice what they’ve learned.

• Conceptual questions do not require
calculation but test student learning of the key
concepts.

• Problems categorized by section test student
problem-solving skills and the ability to apply
ideas to practical situations.

• Additional Problems apply knowledge across
the chapter, forcing students to identify what
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concepts and equations are appropriate for
solving given problems. Randomly located
throughout the problems are Unreasonable
Results exercises that ask students to evaluate
the answer to a problem and explain why it is
not reasonable and what assumptions made
might not be correct.

• Challenge Problems extend text ideas to
interesting but difficult situations.

Answers for selected exercises are available in an
Answer Key at the end of the book.

Additional resources
Student and instructor resources
We’ve compiled additional resources for both
students and instructors, including Getting Started
Guides, PowerPoint slides, and answer and solution
guides for instructors and students. Instructor
resources require a verified instructor account,
which you can apply for when you log in or create
your account on OpenStax.org. Take advantage of
these resources to supplement your OpenStax book.

Community Hubs
OpenStax partners with the Institute for the Study of
Knowledge Management in Education (ISKME) to
offer Community Hubs on OER Commons – a
platform for instructors to share community-created
resources that support OpenStax books, free of
charge. Through our Community Hubs, instructors
can upload their own materials or download
resources to use in their own courses, including
additional ancillaries, teaching material,
multimedia, and relevant course content. We
encourage instructors to join the hubs for the
subjects most relevant to your teaching and
research as an opportunity both to enrich your
courses and to engage with other faculty.

To reach the Community Hubs, visit
www.oercommons.org/hubs/OpenStax
(https://www.oercommons.org/hubs/OpenStax) .

Partner resources
OpenStax partners are our allies in the mission to
make high-quality learning materials affordable and
accessible to students and instructors everywhere.
Their tools integrate seamlessly with our OpenStax
titles at a low cost. To access the partner resources
for your text, visit your book page on OpenStax.org.

About the authors
Senior contributing authors
Samuel J. Ling, Truman State University

Dr. Samuel Ling has taught introductory and
advanced physics for over 25 years at Truman State
University, where he is currently Professor of
Physics and the Department Chair. Dr. Ling has two
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INTRODUCTION

CHAPTER 1
The Nature of Light

1.1 The Propagation of Light

1.2 The Law of Reflection

1.3 Refraction

1.4 Total Internal Reflection

1.5 Dispersion

1.6 Huygens’s Principle

1.7 Polarization

Our investigation of light revolves around two questions of fundamental importance: (1)
What is the nature of light, and (2) how does light behave under various circumstances? Answers to these
questions can be found in Maxwell’s equations (in Electromagnetic Waves), which predict the existence of
electromagnetic waves and their behavior. Examples of light include radio and infrared waves, visible light,
ultraviolet radiation, and X-rays. Interestingly, not all light phenomena can be explained by Maxwell’s theory.

Figure 1.1 Due to total internal reflection, an underwater swimmer’s image is reflected back into the water where
the camera is located. The circular ripple in the image center is actually on the water surface. Due to the viewing
angle, total internal reflection is not occurring at the top edge of this image, and we can see a view of activities on
the pool deck. (credit: modification of work by “jayhem”/Flickr)

Chapter Outline

mathified-book/col12067/7a0f9770-1c44-4acd-9920-1cd9a99f2a1e:dd738e1e-40be-4540-b114-e1a24eee0ca6.xhtml


Experiments performed early in the twentieth century showed that light has corpuscular, or particle-like,
properties. The idea that light can display both wave and particle characteristics is called wave-particle
duality, which is examined in Photons and Matter Waves.

In this chapter, we study the basic properties of light. In the next few chapters, we investigate the behavior of
light when it interacts with optical devices such as mirrors, lenses, and apertures.

1.1 The Propagation of Light
Learning Objectives
By the end of this section, you will be able to:

• Determine the index of refraction, given the speed of light in a medium
• List the ways in which light travels from a source to another location

The speed of light in a vacuum c is one of the fundamental constants of physics. As you will see when you reach
Relativity, it is a central concept in Einstein’s theory of relativity. As the accuracy of the measurements of the
speed of light improved, it was found that different observers, even those moving at large velocities with
respect to each other, measure the same value for the speed of light. However, the speed of light does vary in a
precise manner with the material it traverses. These facts have far-reaching implications, as we will see in
later chapters.

The Speed of Light: Early Measurements
The first measurement of the speed of light was made by the Danish astronomer Ole Roemer (1644–1710) in
1675. He studied the orbit of Io, one of the four large moons of Jupiter, and found that it had a period of
revolution of 42.5 h around Jupiter. He also discovered that this value fluctuated by a few seconds, depending
on the position of Earth in its orbit around the Sun. Roemer realized that this fluctuation was due to the finite
speed of light and could be used to determine c.

Roemer found the period of revolution of Io by measuring the time interval between successive eclipses by
Jupiter. Figure 1.2(a) shows the planetary configurations when such a measurement is made from Earth in the
part of its orbit where it is receding from Jupiter. When Earth is at point A, Earth, Jupiter, and Io are aligned.
The next time this alignment occurs, Earth is at point B, and the light carrying that information to Earth must
travel to that point. Since B is farther from Jupiter than A, light takes more time to reach Earth when Earth is at
B. Now imagine it is about 6 months later, and the planets are arranged as in part (b) of the figure. The
measurement of Io’s period begins with Earth at point and Io eclipsed by Jupiter. The next eclipse then
occurs when Earth is at point , to which the light carrying the information of this eclipse must travel. Since

is closer to Jupiter than , light takes less time to reach Earth when it is at . This time interval between
the successive eclipses of Io seen at and is therefore less than the time interval between the eclipses seen
at A and B. By measuring the difference in these time intervals and with appropriate knowledge of the distance
between Jupiter and Earth, Roemer calculated that the speed of light was which is 33% below
the value accepted today.

Figure 1.2 Roemer’s astronomical method for determining the speed of light. Measurements of Io’s period done with the configurations

of parts (a) and (b) differ, because the light path length and associated travel time increase from A to B (a) but decrease from to (b).

6 1 • The Nature of Light
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The first successful terrestrial measurement of the speed of light was made by Armand Fizeau (1819–1896) in
1849. He placed a toothed wheel that could be rotated very rapidly on one hilltop and a mirror on a second
hilltop 8 km away (Figure 1.3). An intense light source was placed behind the wheel, so that when the wheel
rotated, it chopped the light beam into a succession of pulses. The speed of the wheel was then adjusted until
no light returned to the observer located behind the wheel. This could only happen if the wheel rotated
through an angle corresponding to a displacement of teeth, while the pulses traveled down to the
mirror and back. Knowing the rotational speed of the wheel, the number of teeth on the wheel, and the
distance to the mirror, Fizeau determined the speed of light to be which is only 5% too high.

Figure 1.3 Fizeau’s method for measuring the speed of light. The teeth of the wheel block the reflected light upon return when the wheel

is rotated at a rate that matches the light travel time to and from the mirror.

The French physicist Jean Bernard Léon Foucault (1819–1868) modified Fizeau’s apparatus by replacing the
toothed wheel with a rotating mirror. In 1862, he measured the speed of light to be which is
within 0.6% of the presently accepted value. Albert Michelson (1852–1931) also used Foucault’s method on
several occasions to measure the speed of light. His first experiments were performed in 1878; by 1926, he
had refined the technique so well that he found c to be

Today, the speed of light is known to great precision. In fact, the speed of light in a vacuum c is so important
that it is accepted as one of the basic physical quantities and has the value

where the approximate value of is used whenever three-digit accuracy is sufficient.

Speed of Light in Matter
The speed of light through matter is less than it is in a vacuum, because light interacts with atoms in a
material. The speed of light depends strongly on the type of material, since its interaction varies with different
atoms, crystal lattices, and other substructures. We can define a constant of a material that describes the speed
of light in it, called the index of refraction n:

where v is the observed speed of light in the material.

Since the speed of light is always less than c in matter and equals c only in a vacuum, the index of refraction is
always greater than or equal to one; that is, . Table 1.1 gives the indices of refraction for some
representative substances. The values are listed for a particular wavelength of light, because they vary slightly
with wavelength. (This can have important effects, such as colors separated by a prism, as we will see in

1.1

1.2
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Dispersion.) Note that for gases, n is close to 1.0. This seems reasonable, since atoms in gases are widely
separated, and light travels at c in the vacuum between atoms. It is common to take for gases unless
great precision is needed. Although the speed of light v in a medium varies considerably from its value c in a
vacuum, it is still a large speed.

Medium n

Gases at , 1 atm

Air 1.000293

Carbon dioxide 1.00045

Hydrogen 1.000139

Oxygen 1.000271

Liquids at

Benzene 1.501

Carbon disulfide 1.628

Carbon tetrachloride 1.461

Ethanol 1.361

Glycerine 1.473

Water, fresh 1.333

Solids at

Diamond 2.419

Fluorite 1.434

Glass, crown 1.52

Glass, flint 1.66

Ice (at 1.309

Polystyrene 1.49

Plexiglas 1.51

Quartz, crystalline 1.544

Quartz, fused 1.458

Sodium chloride 1.544

8 1 • The Nature of Light
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Medium n

Zircon 1.923

Table 1.1 Index of Refraction in Various Media For light with a wavelength of 589 nm in a vacuum

EXAMPLE 1.1

Speed of Light in Jewelry
Calculate the speed of light in zircon, a material used in jewelry to imitate diamond.

Strategy
We can calculate the speed of light in a material v from the index of refraction n of the material, using the
equation

Solution
Rearranging the equation for v gives us

The index of refraction for zircon is given as 1.923 in Table 1.1, and c is given in Equation 1.1. Entering these
values in the equation gives

Significance
This speed is slightly larger than half the speed of light in a vacuum and is still high compared with speeds we
normally experience. The only substance listed in Table 1.1 that has a greater index of refraction than zircon is
diamond. We shall see later that the large index of refraction for zircon makes it sparkle more than glass, but
less than diamond.

CHECK YOUR UNDERSTANDING 1.1

Table 1.1 shows that ethanol and fresh water have very similar indices of refraction. By what percentage do the
speeds of light in these liquids differ?

The Ray Model of Light
You have already studied some of the wave characteristics of light in the previous chapter on Electromagnetic
Waves. In this chapter, we start mainly with the ray characteristics. There are three ways in which light can
travel from a source to another location (Figure 1.4). It can come directly from the source through empty space,
such as from the Sun to Earth. Or light can travel through various media, such as air and glass, to the observer.
Light can also arrive after being reflected, such as by a mirror. In all of these cases, we can model the path of
light as a straight line called a ray.

1.1 • The Propagation of Light 9
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Figure 1.4 Three methods for light to travel from a source to another location. (a) Light reaches the upper atmosphere of Earth, traveling

through empty space directly from the source. (b) Light can reach a person by traveling through media like air and glass. (c) Light can also

reflect from an object like a mirror. In the situations shown here, light interacts with objects large enough that it travels in straight lines, like

a ray.

Experiments show that when light interacts with an object several times larger than its wavelength, it travels in
straight lines and acts like a ray. Its wave characteristics are not pronounced in such situations. Since the
wavelength of visible light is less than a micron (a thousandth of a millimeter), it acts like a ray in the many
common situations in which it encounters objects larger than a micron. For example, when visible light
encounters anything large enough that we can observe it with unaided eyes, such as a coin, it acts like a ray,
with generally negligible wave characteristics.

In all of these cases, we can model the path of light as straight lines. Light may change direction when it
encounters objects (such as a mirror) or in passing from one material to another (such as in passing from air to
glass), but it then continues in a straight line or as a ray. The word “ray” comes from mathematics and here
means a straight line that originates at some point. It is acceptable to visualize light rays as laser rays. The ray
model of light describes the path of light as straight lines.

Since light moves in straight lines, changing directions when it interacts with materials, its path is described
by geometry and simple trigonometry. This part of optics, where the ray aspect of light dominates, is therefore
called geometric optics. Two laws govern how light changes direction when it interacts with matter. These are
the law of reflection, for situations in which light bounces off matter, and the law of refraction, for situations in
which light passes through matter. We will examine more about each of these laws in upcoming sections of this
chapter.

1.2 The Law of Reflection
Learning Objectives
By the end of this section, you will be able to:

• Explain the reflection of light from polished and rough surfaces
• Describe the principle and applications of corner reflectors

Whenever we look into a mirror, or squint at sunlight glinting from a lake, we are seeing a reflection. When you
look at a piece of white paper, you are seeing light scattered from it. Large telescopes use reflection to form an
image of stars and other astronomical objects.

The law of reflection states that the angle of reflection equals the angle of incidence, or

The law of reflection is illustrated in Figure 1.5, which also shows how the angle of incidence and angle of
reflection are measured relative to the perpendicular to the surface at the point where the light ray strikes.

1.3
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Figure 1.5 The law of reflection states that the angle of reflection equals the angle of incidence— The angles are measured

relative to the perpendicular to the surface at the point where the ray strikes the surface.

We expect to see reflections from smooth surfaces, but Figure 1.6 illustrates how a rough surface reflects light.
Since the light strikes different parts of the surface at different angles, it is reflected in many different
directions, or diffused. Diffused light is what allows us to see a sheet of paper from any angle, as shown in
Figure 1.7(a). People, clothing, leaves, and walls all have rough surfaces and can be seen from all sides. A
mirror, on the other hand, has a smooth surface (compared with the wavelength of light) and reflects light at
specific angles, as illustrated in Figure 1.7(b). When the Moon reflects from a lake, as shown in Figure 1.7(c), a
combination of these effects takes place.

Figure 1.6 Light is diffused when it reflects from a rough surface. Here, many parallel rays are incident, but they are reflected at many

different angles, because the surface is rough.

Figure 1.7 (a) When a sheet of paper is illuminated with many parallel incident rays, it can be seen at many different angles, because its

surface is rough and diffuses the light. (b) A mirror illuminated by many parallel rays reflects them in only one direction, because its surface

is very smooth. Only the observer at a particular angle sees the reflected light. (c) Moonlight is spread out when it is reflected by the lake,

because the surface is shiny but uneven. (credit c: modification of work by Diego Torres Silvestre)
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When you see yourself in a mirror, it appears that the image is actually behind the mirror (Figure 1.8). We see
the light coming from a direction determined by the law of reflection. The angles are such that the image is
exactly the same distance behind the mirror as you stand in front of the mirror. If the mirror is on the wall of a
room, the images in it are all behind the mirror, which can make the room seem bigger. Although these mirror
images make objects appear to be where they cannot be (like behind a solid wall), the images are not figments
of your imagination. Mirror images can be photographed and videotaped by instruments and look just as they
do with our eyes (which are optical instruments themselves). The precise manner in which images are formed
by mirrors and lenses is discussed in an upcoming chapter on Geometric Optics and Image Formation.

Figure 1.8 (a) Your image in a mirror is behind the mirror. The two rays shown are those that strike the mirror at just the correct angles to

be reflected into the eyes of the person. The image appears to be behind the mirror at the same distance away as (b) if you were looking at

your twin directly, with no mirror.

Corner Reflectors (Retroreflectors)
A light ray that strikes an object consisting of two mutually perpendicular reflecting surfaces is reflected back
exactly parallel to the direction from which it came (Figure 1.9). This is true whenever the reflecting surfaces
are perpendicular, and it is independent of the angle of incidence. (For proof, see Exercise 1.34 at the end of
this section.) Such an object is called a corner reflector, since the light bounces from its inside corner. Corner
reflectors are a subclass of retroreflectors, which all reflect rays back in the directions from which they came.
Although the geometry of the proof is much more complex, corner reflectors can also be built with three
mutually perpendicular reflecting surfaces and are useful in three-dimensional applications.

Figure 1.9 A light ray that strikes two mutually perpendicular reflecting surfaces is reflected back exactly parallel to the direction from

which it came.

Many inexpensive reflector buttons on bicycles, cars, and warning signs have corner reflectors designed to
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return light in the direction from which it originated. Rather than simply reflecting light over a wide angle,
retroreflection ensures high visibility if the observer and the light source are located together, such as a car’s
driver and headlights. The Apollo astronauts placed a true corner reflector on the Moon (Figure 1.10). Laser
signals from Earth can be bounced from that corner reflector to measure the gradually increasing distance to
the Moon of a few centimeters per year.

Figure 1.10 (a) Astronauts placed a corner reflector on the Moon to measure its gradually increasing orbital distance. (b) The bright spots

on these bicycle safety reflectors are reflections of the flash of the camera that took this picture on a dark night. (credit a: modification of

work by NASA; credit b: modification of work by “Julo”/Wikimedia Commons)

Working on the same principle as these optical reflectors, corner reflectors are routinely used as radar
reflectors (Figure 1.11) for radio-frequency applications. Under most circumstances, small boats made of
fiberglass or wood do not strongly reflect radio waves emitted by radar systems. To make these boats visible to
radar (to avoid collisions, for example), radar reflectors are attached to boats, usually in high places.

Figure 1.11 A radar reflector hoisted on a sailboat is a type of corner reflector. (credit: Tim Sheerman-Chase)

As a counterexample, if you are interested in building a stealth airplane, radar reflections should be minimized
to evade detection. One of the design considerations would then be to avoid building corners into the
airframe.

1.3 Refraction
Learning Objectives
By the end of this section, you will be able to:

• Describe how rays change direction upon entering a medium
• Apply the law of refraction in problem solving

You may often notice some odd things when looking into a fish tank. For example, you may see the same fish
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appearing to be in two different places (Figure 1.12). This happens because light coming from the fish to you
changes direction when it leaves the tank, and in this case, it can travel two different paths to get to your eyes.
The changing of a light ray’s direction (loosely called bending) when it passes through substances of different
refractive indices is called refraction and is related to changes in the speed of light, . Refraction is
responsible for a tremendous range of optical phenomena, from the action of lenses to data transmission
through optical fibers.

Figure 1.12 (a) Looking at the fish tank as shown, we can see the same fish in two different locations, because light changes directions

when it passes from water to air. In this case, the light can reach the observer by two different paths, so the fish seems to be in two

different places. This bending of light is called refraction and is responsible for many optical phenomena. (b) This image shows refraction of

light from a fish near the top of a fish tank.

Figure 1.13 shows how a ray of light changes direction when it passes from one medium to another. As before,
the angles are measured relative to a perpendicular to the surface at the point where the light ray crosses it.
(Some of the incident light is reflected from the surface, but for now we concentrate on the light that is
transmitted.) The change in direction of the light ray depends on the relative values of the indices of refraction
(The Propagation of Light) of the two media involved. In the situations shown, medium 2 has a greater index of
refraction than medium 1. Note that as shown in Figure 1.13(a), the direction of the ray moves closer to the
perpendicular when it progresses from a medium with a lower index of refraction to one with a higher index of
refraction. Conversely, as shown in Figure 1.13(b), the direction of the ray moves away from the perpendicular
when it progresses from a medium with a higher index of refraction to one with a lower index of refraction.
The path is exactly reversible.
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Figure 1.13 The change in direction of a light ray depends on how the index of refraction changes when it crosses from one medium to

another. In the situations shown here, the index of refraction is greater in medium 2 than in medium 1. (a) A ray of light moves closer to the

perpendicular when entering a medium with a higher index of refraction. (b) A ray of light moves away from the perpendicular when

entering a medium with a lower index of refraction.

The amount that a light ray changes its direction depends both on the incident angle and the amount that the
speed changes. For a ray at a given incident angle, a large change in speed causes a large change in direction
and thus a large change in angle. The exact mathematical relationship is the law of refraction, or Snell’s law,
after the Dutch mathematician Willebrord Snell (1591–1626), who discovered it in 1621. While the law has
been named after Snell, the Arabian physicist Ibn Sahl found the law of refraction in 984 and used it in his
work On Burning Mirrors and Lenses. The law of refraction is stated in equation form as

Here and are the indices of refraction for media 1 and 2, and and are the angles between the rays
and the perpendicular in media 1 and 2. The incoming ray is called the incident ray, the outgoing ray is called
the refracted ray, and the associated angles are the incident angle and the refracted angle, respectively.

Snell’s experiments showed that the law of refraction is obeyed and that a characteristic index of refraction n
could be assigned to a given medium and its value measured. Snell was not aware that the speed of light varied
in different media, a key fact used when we derive the law of refraction theoretically using Huygens’s principle
in Huygens’s Principle.

EXAMPLE 1.2

Determining the Index of Refraction
Find the index of refraction for medium 2 in Figure 1.13(a), assuming medium 1 is air and given that the
incident angle is and the angle of refraction is .

Strategy
The index of refraction for air is taken to be 1 in most cases (and up to four significant figures, it is 1.000).
Thus, here. From the given information, and With this information, the only
unknown in Snell’s law is so we can use Snell’s law to find it.

Solution
From Snell’s law we have

1.4
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Entering known values,

Significance
This is the index of refraction for water, and Snell could have determined it by measuring the angles and
performing this calculation. He would then have found 1.33 to be the appropriate index of refraction for water
in all other situations, such as when a ray passes from water to glass. Today, we can verify that the index of
refraction is related to the speed of light in a medium by measuring that speed directly.

INTERACTIVE

Explore bending of light (https://openstax.org/l/21bendoflight) between two media with different indices of
refraction. Use the “Intro” simulation and see how changing from air to water to glass changes the bending
angle. Use the protractor tool to measure the angles and see if you can recreate the configuration in Example
1.2. Also by measurement, confirm that the angle of reflection equals the angle of incidence.

EXAMPLE 1.3

A Larger Change in Direction
Suppose that in a situation like that in Example 1.2, light goes from air to diamond and that the incident angle
is . Calculate the angle of refraction in the diamond.

Strategy
Again, the index of refraction for air is taken to be , and we are given . We can look up the
index of refraction for diamond in Table 1.1, finding . The only unknown in Snell’s law is , which
we wish to determine.

Solution
Solving Snell’s law for yields

Entering known values,

The angle is thus

Significance
For the same angle of incidence, the angle of refraction in diamond is significantly smaller than in water

rather than —see Example 1.2). This means there is a larger change in direction in diamond. The
cause of a large change in direction is a large change in the index of refraction (or speed). In general, the larger
the change in speed, the greater the effect on the direction of the ray.

CHECK YOUR UNDERSTANDING 1.2

In Table 1.1, the solid with the next highest index of refraction after diamond is zircon. If the diamond in
Example 1.3 were replaced with a piece of zircon, what would be the new angle of refraction?
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1.4 Total Internal Reflection
Learning Objectives
By the end of this section, you will be able to:

• Explain the phenomenon of total internal reflection
• Describe the workings and uses of optical fibers
• Analyze the reason for the sparkle of diamonds

A good-quality mirror may reflect more than of the light that falls on it, absorbing the rest. But it would be
useful to have a mirror that reflects all of the light that falls on it. Interestingly, we can produce total reflection
using an aspect of refraction.

Consider what happens when a ray of light strikes the surface between two materials, as shown in Figure
1.14(a). Part of the light crosses the boundary and is refracted; the rest is reflected. If, as shown in the figure,
the index of refraction for the second medium is less than for the first, the ray bends away from the
perpendicular. (Since the angle of refraction is greater than the angle of incidence—that is,
Now imagine what happens as the incident angle increases. This causes to increase also. The largest the
angle of refraction can be is , as shown in part (b). The critical angle for a combination of materials is
defined to be the incident angle that produces an angle of refraction of . That is, is the incident angle
for which . If the incident angle is greater than the critical angle, as shown in Figure 1.14(c), then
all of the light is reflected back into medium 1, a condition called total internal reflection. (As the figure
shows, the reflected rays obey the law of reflection so that the angle of reflection is equal to the angle of
incidence in all three cases.)

Figure 1.14 (a) A ray of light crosses a boundary where the index of refraction decreases. That is, The ray bends away from the

perpendicular. (b) The critical angle is the angle of incidence for which the angle of refraction is (c) Total internal reflection occurs

when the incident angle is greater than the critical angle.

Snell’s law states the relationship between angles and indices of refraction. It is given by

When the incident angle equals the critical angle , the angle of refraction is . Noting
that Snell’s law in this case becomes

The critical angle for a given combination of materials is thus

Total internal reflection occurs for any incident angle greater than the critical angle , and it can only occur
when the second medium has an index of refraction less than the first. Note that this equation is written for a
light ray that travels in medium 1 and reflects from medium 2, as shown in Figure 1.14.

1.5
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EXAMPLE 1.4

Determining a Critical Angle
What is the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air? The
index of refraction for polystyrene is 1.49.

Strategy
The index of refraction of air can be taken to be 1.00, as before. Thus, the condition that the second medium
(air) has an index of refraction less than the first (plastic) is satisfied, and we can use the equation

to find the critical angle where and

Solution
Substituting the identified values gives

Significance
This result means that any ray of light inside the plastic that strikes the surface at an angle greater than
is totally reflected. This makes the inside surface of the clear plastic a perfect mirror for such rays, without any
need for the silvering used on common mirrors. Different combinations of materials have different critical
angles, but any combination with can produce total internal reflection. The same calculation as made
here shows that the critical angle for a ray going from water to air is , whereas that from diamond to air is

, and that from flint glass to crown glass is .

CHECK YOUR UNDERSTANDING 1.3

At the surface between air and water, light rays can go from air to water and from water to air. For which ray is
there no possibility of total internal reflection?

In the photo that opens this chapter, the image of a swimmer underwater is captured by a camera that is also
underwater. The swimmer in the upper half of the photograph, apparently facing upward, is, in fact, a reflected
image of the swimmer below. The circular ripple near the photograph’s center is actually on the water surface.
The undisturbed water surrounding it makes a good reflecting surface when viewed from below, thanks to total
internal reflection. However, at the very top edge of this photograph, rays from below strike the surface with
incident angles less than the critical angle, allowing the camera to capture a view of activities on the pool deck
above water.

Fiber Optics: Endoscopes to Telephones
Fiber optics is one application of total internal reflection that is in wide use. In communications, it is used to
transmit telephone, internet, and cable TV signals. Fiber optics employs the transmission of light down fibers
of plastic or glass. Because the fibers are thin, light entering one is likely to strike the inside surface at an angle
greater than the critical angle and, thus, be totally reflected (Figure 1.15). The index of refraction outside the
fiber must be smaller than inside. In fact, most fibers have a varying refractive index to allow more light to be
guided along the fiber through total internal refraction. Rays are reflected around corners as shown, making
the fibers into tiny light pipes.

18 1 • The Nature of Light

Access for free at openstax.org.



Figure 1.15 Light entering a thin optic fiber may strike the inside surface at large or grazing angles and is completely reflected if these

angles exceed the critical angle. Such rays continue down the fiber, even following it around corners, since the angles of reflection and

incidence remain large.

Bundles of fibers can be used to transmit an image without a lens, as illustrated in Figure 1.16. The output of a
device called an endoscope is shown in Figure 1.16(b). Endoscopes are used to explore the interior of the body
through its natural orifices or minor incisions. Light is transmitted down one fiber bundle to illuminate
internal parts, and the reflected light is transmitted back out through another bundle to be observed.

Figure 1.16 (a) An image “A” is transmitted by a bundle of optical fibers. (b) An endoscope is used to probe the body, both transmitting

light to the interior and returning an image such as the one shown of a human epiglottis (a structure at the base of the tongue). (credit b:

modification of work by “Med_Chaos”/Wikimedia Commons)

Fiber optics has revolutionized surgical techniques and observations within the body, with a host of medical
diagnostic and therapeutic uses. Surgery can be performed, such as arthroscopic surgery on a knee or
shoulder joint, employing cutting tools attached to and observed with the endoscope. Samples can also be
obtained, such as by lassoing an intestinal polyp for external examination. The flexibility of the fiber optic
bundle allows doctors to navigate it around small and difficult-to-reach regions in the body, such as the
intestines, the heart, blood vessels, and joints. Transmission of an intense laser beam to burn away obstructing
plaques in major arteries, as well as delivering light to activate chemotherapy drugs, are becoming
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commonplace. Optical fibers have in fact enabled microsurgery and remote surgery where the incisions are
small and the surgeon’s fingers do not need to touch the diseased tissue.

Optical fibers in bundles are surrounded by a cladding material that has a lower index of refraction than the
core (Figure 1.17). The cladding prevents light from being transmitted between fibers in a bundle. Without
cladding, light could pass between fibers in contact, since their indices of refraction are identical. Since no
light gets into the cladding (there is total internal reflection back into the core), none can be transmitted
between clad fibers that are in contact with one another. Instead, the light is propagated along the length of the
fiber, minimizing the loss of signal and ensuring that a quality image is formed at the other end. The cladding
and an additional protective layer make optical fibers durable as well as flexible.

Figure 1.17 Fibers in bundles are clad by a material that has a lower index of refraction than the core to ensure total internal reflection,

even when fibers are in contact with one another.

Special tiny lenses that can be attached to the ends of bundles of fibers have been designed and fabricated.
Light emerging from a fiber bundle can be focused through such a lens, imaging a tiny spot. In some cases, the
spot can be scanned, allowing quality imaging of a region inside the body. Special minute optical filters
inserted at the end of the fiber bundle have the capacity to image the interior of organs located tens of microns
below the surface without cutting the surface—an area known as nonintrusive diagnostics. This is particularly
useful for determining the extent of cancers in the stomach and bowel.

In another type of application, optical fibers are commonly used to carry signals for telephone conversations
and internet communications. Extensive optical fiber cables have been placed on the ocean floor and
underground to enable optical communications. Optical fiber communication systems offer several
advantages over electrical (copper)-based systems, particularly for long distances. The fibers can be made so
transparent that light can travel many kilometers before it becomes dim enough to require
amplification—much superior to copper conductors. This property of optical fibers is called low loss. Lasers
emit light with characteristics that allow far more conversations in one fiber than are possible with electric
signals on a single conductor. This property of optical fibers is called high bandwidth. Optical signals in one
fiber do not produce undesirable effects in other adjacent fibers. This property of optical fibers is called
reduced crosstalk. We shall explore the unique characteristics of laser radiation in a later chapter.

Corner Reflectors and Diamonds
Corner reflectors (The Law of Reflection) are perfectly efficient when the conditions for total internal reflection
are satisfied. With common materials, it is easy to obtain a critical angle that is less than One use of these
perfect mirrors is in binoculars, as shown in Figure 1.18. Another use is in periscopes found in submarines.

20 1 • The Nature of Light

Access for free at openstax.org.



Figure 1.18 These binoculars employ corner reflectors (prisms) with total internal reflection to get light to the observer’s eyes.

Total internal reflection, coupled with a large index of refraction, explains why diamonds sparkle more than
other materials. The critical angle for a diamond-to-air surface is only , so when light enters a diamond, it
has trouble getting back out (Figure 1.19). Although light freely enters the diamond, it can exit only if it makes
an angle less than . Facets on diamonds are specifically intended to make this unlikely. Good diamonds
are very clear, so that the light makes many internal reflections and is concentrated before exiting—hence the
bright sparkle. (Zircon is a natural gemstone that has an exceptionally large index of refraction, but it is not as
large as diamond, so it is not as highly prized. Cubic zirconia is manufactured and has an even higher index of
refraction , but it is still less than that of diamond.) The colors you see emerging from a clear diamond
are not due to the diamond’s color, which is usually nearly colorless. The colors result from dispersion, which
we discuss in Dispersion. Colored diamonds get their color from structural defects of the crystal lattice and the
inclusion of minute quantities of graphite and other materials. The Argyle Mine in Western Australia produces
around 90% of the world’s pink, red, champagne, and cognac diamonds, whereas around 50% of the world’s
clear diamonds come from central and southern Africa.

Figure 1.19 Light cannot easily escape a diamond, because its critical angle with air is so small. Most reflections are total, and the facets

are placed so that light can exit only in particular ways—thus concentrating the light and making the diamond sparkle brightly.

INTERACTIVE

Explore refraction and reflection of light (https://openstax.org/l/21bendoflight) between two media with
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different indices of refraction. Try to make the refracted ray disappear with total internal reflection. Use the
protractor tool to measure the critical angle and compare with the prediction from Equation 1.5.

1.5 Dispersion
Learning Objectives
By the end of this section, you will be able to:

• Explain the cause of dispersion in a prism
• Describe the effects of dispersion in producing rainbows
• Summarize the advantages and disadvantages of dispersion

Everyone enjoys the spectacle of a rainbow glimmering against a dark stormy sky. How does sunlight falling on
clear drops of rain get broken into the rainbow of colors we see? The same process causes white light to be
broken into colors by a clear glass prism or a diamond (Figure 1.20).

Figure 1.20 The colors of the rainbow (a) and those produced by a prism (b) are identical. (credit a: modification of work by

“Alfredo55”/Wikimedia Commons; credit b: modification of work by NASA)

We see about six colors in a rainbow—red, orange, yellow, green, blue, and violet; sometimes indigo is listed,
too. These colors are associated with different wavelengths of light, as shown in Figure 1.21. When our eye
receives pure-wavelength light, we tend to see only one of the six colors, depending on wavelength. The
thousands of other hues we can sense in other situations are our eye’s response to various mixtures of
wavelengths. White light, in particular, is a fairly uniform mixture of all visible wavelengths. Sunlight,
considered to be white, actually appears to be a bit yellow, because of its mixture of wavelengths, but it does
contain all visible wavelengths. The sequence of colors in rainbows is the same sequence as the colors shown
in the figure. This implies that white light is spread out in a rainbow according to wavelength. Dispersion is
defined as the spreading of white light into its full spectrum of wavelengths. More technically, dispersion
occurs whenever the propagation of light depends on wavelength.

Figure 1.21 Even though rainbows are associated with six colors, the rainbow is a continuous distribution of colors according to

wavelengths.

Any type of wave can exhibit dispersion. For example, sound waves, all types of electromagnetic waves, and
water waves can be dispersed according to wavelength. Dispersion may require special circumstances and can
result in spectacular displays such as in the production of a rainbow. This is also true for sound, since all
frequencies ordinarily travel at the same speed. If you listen to sound through a long tube, such as a vacuum
cleaner hose, you can easily hear it dispersed by interaction with the tube. Dispersion, in fact, can reveal a
great deal about what the wave has encountered that disperses its wavelengths. The dispersion of
electromagnetic radiation from outer space, for example, has revealed much about what exists between the
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stars—the so-called interstellar medium.

INTERACTIVE

Nick Moore’s video (https://openstax.org/l/21nickmoorevid) discusses dispersion of a pulse as he taps a long
spring. Follow his explanation as Moore replays the high-speed footage showing high frequency waves
outrunning the lower frequency waves.

Refraction is responsible for dispersion in rainbows and many other situations. The angle of refraction
depends on the index of refraction, as we know from Snell’s law. We know that the index of refraction n
depends on the medium. But for a given medium, n also depends on wavelength (Table 1.2). Note that for a
given medium, n increases as wavelength decreases and is greatest for violet light. Thus, violet light is bent
more than red light, as shown for a prism in Figure 1.22(b). White light is dispersed into the same sequence of
wavelengths as seen in Figure 1.20 and Figure 1.21.

Medium
Red

(660 nm)
Orange

(610 nm)
Yellow

(580 nm)
Green

(550 nm)
Blue

(470 nm)
Violet

(410 nm)

Water 1.331 1.332 1.333 1.335 1.338 1.342

Diamond 2.410 2.415 2.417 2.426 2.444 2.458

Glass, crown 1.512 1.514 1.518 1.519 1.524 1.530

Glass, flint 1.662 1.665 1.667 1.674 1.684 1.698

Polystyrene 1.488 1.490 1.492 1.493 1.499 1.506

Quartz, fused 1.455 1.456 1.458 1.459 1.462 1.468

Table 1.2 Index of Refraction n in Selected Media at Various Wavelengths

Figure 1.22 (a) A pure wavelength of light falls onto a prism and is refracted at both surfaces. (b) White light is dispersed by the prism

(shown exaggerated). Since the index of refraction varies with wavelength, the angles of refraction vary with wavelength. A sequence of red

to violet is produced, because the index of refraction increases steadily with decreasing wavelength.

EXAMPLE 1.5

Dispersion of White Light by Crown Glass
A beam of white light goes from air into crown glass at an incidence angle of . What is the angle between
the red (660 nm) and violet (410 nm) parts of the refracted light?
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Strategy
Values for the indices of refraction for crown glass at various wavelengths are listed in Table 1.2. Use these
values for calculate the angle of refraction for each color and then take the difference to find the dispersion
angle.

Solution
Applying the law of refraction for the red part of the beam

we can solve for the angle of refraction as

Similarly, the angle of incidence for the violet part of the beam is

The difference between these two angles is

Significance
Although may seem like a negligibly small angle, if this beam is allowed to propagate a long enough
distance, the dispersion of colors becomes quite noticeable.

CHECK YOUR UNDERSTANDING 1.4

In the preceding example, how much distance inside the block of crown glass would the red and the violet rays
have to progress before they are separated by 1.0 mm?

Rainbows are produced by a combination of refraction and reflection. You may have noticed that you see a
rainbow only when you look away from the Sun. Light enters a drop of water and is reflected from the back of
the drop (Figure 1.23). The light is refracted both as it enters and as it leaves the drop. Since the index of
refraction of water varies with wavelength, the light is dispersed, and a rainbow is observed (Figure 1.24(a)).
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(No dispersion occurs at the back surface, because the law of reflection does not depend on wavelength.) The
actual rainbow of colors seen by an observer depends on the myriad rays being refracted and reflected toward
the observer’s eyes from numerous drops of water. The effect is most spectacular when the background is
dark, as in stormy weather, but can also be observed in waterfalls and lawn sprinklers. The arc of a rainbow
comes from the need to be looking at a specific angle relative to the direction of the Sun, as illustrated in part
(b). If two reflections of light occur within the water drop, another “secondary” rainbow is produced. This rare
event produces an arc that lies above the primary rainbow arc, as in part (c), and produces colors in the
reverse order of the primary rainbow, with red at the lowest angle and violet at the largest angle.

Figure 1.23 A ray of light falling on this water drop enters and is reflected from the back of the drop. This light is refracted and dispersed

both as it enters and as it leaves the drop.

Figure 1.24 (a) Different colors emerge in different directions, and so you must look at different locations to see the various colors of a

rainbow. (b) The arc of a rainbow results from the fact that a line between the observer and any point on the arc must make the correct

angle with the parallel rays of sunlight for the observer to receive the refracted rays. (c) Double rainbow. (credit c: modification of work by

“Nicholas”/Wikimedia Commons)

Dispersion may produce beautiful rainbows, but it can cause problems in optical systems. White light used to
transmit messages in a fiber is dispersed, spreading out in time and eventually overlapping with other
messages. Since a laser produces a nearly pure wavelength, its light experiences little dispersion, an advantage
over white light for transmission of information. In contrast, dispersion of electromagnetic waves coming to us
from outer space can be used to determine the amount of matter they pass through.
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1.6 Huygens’s Principle
Learning Objectives
By the end of this section, you will be able to:

• Describe Huygens’s principle
• Use Huygens’s principle to explain the law of reflection
• Use Huygens’s principle to explain the law of refraction
• Use Huygens’s principle to explain diffraction

So far in this chapter, we have been discussing optical phenomena using the ray model of light. However, some
phenomena require analysis and explanations based on the wave characteristics of light. This is particularly
true when the wavelength is not negligible compared to the dimensions of an optical device, such as a slit in
the case of diffraction. Huygens’s principle is an indispensable tool for this analysis.

Figure 1.25 shows how a transverse wave looks as viewed from above and from the side. A light wave can be
imagined to propagate like this, although we do not actually see it wiggling through space. From above, we view
the wave fronts (or wave crests) as if we were looking down on ocean waves. The side view would be a graph of
the electric or magnetic field. The view from above is perhaps more useful in developing concepts about wave
optics.

Figure 1.25 A transverse wave, such as an electromagnetic light wave, as viewed from above and from the side. The direction of

propagation is perpendicular to the wave fronts (or wave crests) and is represented by a ray.

The Dutch scientist Christiaan Huygens (1629–1695) developed a useful technique for determining in detail
how and where waves propagate. Starting from some known position, Huygens’s principle states that every
point on a wave front is a source of wavelets that spread out in the forward direction at the same speed as the
wave itself. The new wave front is tangent to all of the wavelets.

Figure 1.26 shows how Huygens’s principle is applied. A wave front is the long edge that moves, for example,
with the crest or the trough. Each point on the wave front emits a semicircular wave that moves at the
propagation speed v. We can draw these wavelets at a time t later, so that they have moved a distance
The new wave front is a plane tangent to the wavelets and is where we would expect the wave to be a time t
later. Huygens’s principle works for all types of waves, including water waves, sound waves, and light waves. It
is useful not only in describing how light waves propagate but also in explaining the laws of reflection and
refraction. In addition, we will see that Huygens’s principle tells us how and where light rays interfere.
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Figure 1.26 Huygens’s principle applied to a straight wave front. Each point on the wave front emits a semicircular wavelet that moves a

distance The new wave front is a line tangent to the wavelets.

Reflection
Figure 1.27 shows how a mirror reflects an incoming wave at an angle equal to the incident angle, verifying the
law of reflection. As the wave front strikes the mirror, wavelets are first emitted from the left part of the mirror
and then from the right. The wavelets closer to the left have had time to travel farther, producing a wave front
traveling in the direction shown.

Figure 1.27 Huygens’s principle applied to a plane wave front striking a mirror. The wavelets shown were emitted as each point on the

wave front struck the mirror. The tangent to these wavelets shows that the new wave front has been reflected at an angle equal to the

incident angle. The direction of propagation is perpendicular to the wave front, as shown by the downward-pointing arrows.

Refraction
The law of refraction can be explained by applying Huygens’s principle to a wave front passing from one
medium to another (Figure 1.28). Each wavelet in the figure was emitted when the wave front crossed the
interface between the media. Since the speed of light is smaller in the second medium, the waves do not travel
as far in a given time, and the new wave front changes direction as shown. This explains why a ray changes
direction to become closer to the perpendicular when light slows down. Snell’s law can be derived from the
geometry in Figure 1.28 (Example 1.6).
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Figure 1.28 Huygens’s principle applied to a plane wave front traveling from one medium to another, where its speed is less. The ray

bends toward the perpendicular, since the wavelets have a lower speed in the second medium.

EXAMPLE 1.6

Deriving the Law of Refraction
By examining the geometry of the wave fronts, derive the law of refraction.

Strategy
Consider Figure 1.29, which expands upon Figure 1.28. It shows the incident wave front just reaching the
surface at point A, while point B is still well within medium 1. In the time it takes for a wavelet from B to
reach on the surface at speed a wavelet from A travels into medium 2 a distance of
where Note that in this example, is slower than because

Figure 1.29 Geometry of the law of refraction from medium 1 to medium 2.

Solution
The segment on the surface is shared by both the triangle inside medium 1 and the triangle
inside medium 2. Note that from the geometry, the angle is equal to the angle of incidence, .
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Similarly, is .

The length of is given in two ways as

Inverting the equation and substituting from above and similarly , we obtain

Cancellation of allows us to simplify this equation into the familiar form

Significance
Although the law of refraction was established experimentally by Snell and stated in Refraction, its derivation
here requires Huygens’s principle and the understanding that the speed of light is different in different media.

CHECK YOUR UNDERSTANDING 1.5

In Example 1.6, we had . If were decreased such that and the speed of light in medium 2 is
faster than in medium 1, what would happen to the length of ? What would happen to the wave front
and the direction of the refracted ray?

INTERACTIVE

This applet (https://openstax.org/l/21walfedaniref) by Walter Fendt shows an animation of reflection and
refraction using Huygens’s wavelets while you control the parameters. Be sure to click on “Next step” to
display the wavelets. You can see the reflected and refracted wave fronts forming.

Diffraction
What happens when a wave passes through an opening, such as light shining through an open door into a dark
room? For light, we observe a sharp shadow of the doorway on the floor of the room, and no visible light bends
around corners into other parts of the room. When sound passes through a door, we hear it everywhere in the
room and thus observe that sound spreads out when passing through such an opening (Figure 1.30). What is
the difference between the behavior of sound waves and light waves in this case? The answer is that light has
very short wavelengths and acts like a ray. Sound has wavelengths on the order of the size of the door and
bends around corners (for frequency of 1000 Hz,

about three times smaller than the width of the doorway).
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Figure 1.30 (a) Light passing through a doorway makes a sharp outline on the floor. Since light’s wavelength is very small compared with

the size of the door, it acts like a ray. (b) Sound waves bend into all parts of the room, a wave effect, because their wavelength is similar to

the size of the door.

If we pass light through smaller openings such as slits, we can use Huygens’s principle to see that light bends
as sound does (Figure 1.31). The bending of a wave around the edges of an opening or an obstacle is called
diffraction. Diffraction is a wave characteristic and occurs for all types of waves. If diffraction is observed for
some phenomenon, it is evidence that the phenomenon is a wave. Thus, the horizontal diffraction of the laser
beam after it passes through the slits in Figure 1.31 is evidence that light is a wave. You will learn about
diffraction in much more detail in the chapter on Diffraction.

Figure 1.31 Huygens’s principle applied to a plane wave front striking an opening. The edges of the wave front bend after passing through

the opening, a process called diffraction. The amount of bending is more extreme for a small opening, consistent with the fact that wave

characteristics are most noticeable for interactions with objects about the same size as the wavelength.

1.7 Polarization
Learning Objectives
By the end of this section, you will be able to:

• Explain the change in intensity as polarized light passes through a polarizing filter
• Calculate the effect of polarization by reflection and Brewster’s angle
• Describe the effect of polarization by scattering
• Explain the use of polarizing materials in devices such as LCDs

Polarizing sunglasses are familiar to most of us. They have a special ability to cut the glare of light reflected
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from water or glass (Figure 1.32). They have this ability because of a wave characteristic of light called
polarization. What is polarization? How is it produced? What are some of its uses? The answers to these
questions are related to the wave character of light.

Figure 1.32 These two photographs of a river show the effect of a polarizing filter in reducing glare in light reflected from the surface of

water. Part (b) of this figure was taken with a polarizing filter and part (a) was not. As a result, the reflection of clouds and sky observed in

part (a) is not observed in part (b). Polarizing sunglasses are particularly useful on snow and water. (credit a and credit b: modifications of

work by “Amithshs”/Wikimedia Commons)

Malus’s Law
Light is one type of electromagnetic (EM) wave. As noted in the previous chapter on Electromagnetic Waves,
EM waves are transverse waves consisting of varying electric and magnetic fields that oscillate perpendicular
to the direction of propagation (Figure 1.33). However, in general, there are no specific directions for the
oscillations of the electric and magnetic fields; they vibrate in any randomly oriented plane perpendicular to
the direction of propagation. Polarization is the attribute that a wave’s oscillations do have a definite direction
relative to the direction of propagation of the wave. (This is not the same type of polarization as that discussed
for the separation of charges.) Waves having such a direction are said to be polarized. For an EM wave, we
define the direction of polarization to be the direction parallel to the electric field. Thus, we can think of the
electric field arrows as showing the direction of polarization, as in Figure 1.33.

Figure 1.33 An EM wave, such as light, is a transverse wave. The electric and magnetic fields are perpendicular to the direction of

propagation. The direction of polarization of the wave is the direction of the electric field.

To examine this further, consider the transverse waves in the ropes shown in Figure 1.34. The oscillations in
one rope are in a vertical plane and are said to be vertically polarized. Those in the other rope are in a
horizontal plane and are horizontally polarized. If a vertical slit is placed on the first rope, the waves pass
through. However, a vertical slit blocks the horizontally polarized waves. For EM waves, the direction of the
electric field is analogous to the disturbances on the ropes.
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Figure 1.34 The transverse oscillations in one rope (a) are in a vertical plane, and those in the other rope (b) are in a horizontal plane. The

first is said to be vertically polarized, and the other is said to be horizontally polarized. Vertical slits pass vertically polarized waves and

block horizontally polarized waves.

The Sun and many other light sources produce waves that have the electric fields in random directions (Figure
1.35(a)). Such light is said to be unpolarized, because it is composed of many waves with all possible
directions of polarization. Polaroid materials—which were invented by the founder of the Polaroid Corporation,
Edwin Land—act as a polarizing slit for light, allowing only polarization in one direction to pass through.
Polarizing filters are composed of long molecules aligned in one direction. If we think of the molecules as
many slits, analogous to those for the oscillating ropes, we can understand why only light with a specific
polarization can get through. The axis of a polarizing filter is the direction along which the filter passes the
electric field of an EM wave.

Figure 1.35 The slender arrow represents a ray of unpolarized light. The bold arrows represent the direction of polarization of the

individual waves composing the ray. (a) If the light is unpolarized, the arrows point in all directions. (b) A polarizing filter has a polarization

axis that acts as a slit passing through electric fields parallel to its direction. The direction of polarization of an EM wave is defined to be the

direction of its electric field.

Figure 1.36 shows the effect of two polarizing filters on originally unpolarized light. The first filter polarizes the
light along its axis. When the axes of the first and second filters are aligned (parallel), then all of the polarized
light passed by the first filter is also passed by the second filter. If the second polarizing filter is rotated, only
the component of the light parallel to the second filter’s axis is passed. When the axes are perpendicular, no
light is passed by the second filter.
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Figure 1.36 The effect of rotating two polarizing filters, where the first polarizes the light. (a) All of the polarized light is passed by the

second polarizing filter, because its axis is parallel to the first. (b) As the second filter is rotated, only part of the light is passed. (c) When the

second filter is perpendicular to the first, no light is passed. (d) In this photograph, a polarizing filter is placed above two others. Its axis is

perpendicular to the filter on the right (dark area) and parallel to the filter on the left (lighter area). (credit d: modification of work by P.P.

Urone)

Only the component of the EM wave parallel to the axis of a filter is passed. Let us call the angle between the
direction of polarization and the axis of a filter . If the electric field has an amplitude E, then the transmitted
part of the wave has an amplitude (Figure 1.37). Since the intensity of a wave is proportional to its
amplitude squared, the intensity I of the transmitted wave is related to the incident wave by

where is the intensity of the polarized wave before passing through the filter. This equation is known as
Malus’s law.

Figure 1.37 A polarizing filter transmits only the component of the wave parallel to its axis, reducing the intensity of any light not

1.6
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polarized parallel to its axis.

INTERACTIVE

This Open Source Physics animation (https://openstax.org/l/21phyanielefie) helps you visualize the electric
field vectors as light encounters a polarizing filter. You can rotate the filter—note that the angle displayed is in
radians. You can also rotate the animation for 3D visualization.

EXAMPLE 1.7

Calculating Intensity Reduction by a Polarizing Filter
What angle is needed between the direction of polarized light and the axis of a polarizing filter to reduce its
intensity by ?

Strategy
When the intensity is reduced by , it is or 0.100 times its original value. That is,
Using this information, the equation can be used to solve for the needed angle.

Solution
Solving the equation for and substituting with the relationship between I and gives

Solving for yields

Significance
A fairly large angle between the direction of polarization and the filter axis is needed to reduce the intensity to

of its original value. This seems reasonable based on experimenting with polarizing films. It is
interesting that at an angle of , the intensity is reduced to of its original value. Note that is
from reducing the intensity to zero, and that at an angle of , the intensity is reduced to of its
original value, giving evidence of symmetry.

CHECK YOUR UNDERSTANDING 1.6

Although we did not specify the direction in Example 1.7, let’s say the polarizing filter was rotated clockwise by
to reduce the light intensity by . What would be the intensity reduction if the polarizing filter were

rotated counterclockwise by ?

Polarization by Reflection
By now, you can probably guess that polarizing sunglasses cut the glare in reflected light, because that light is
polarized. You can check this for yourself by holding polarizing sunglasses in front of you and rotating them
while looking at light reflected from water or glass. As you rotate the sunglasses, you will notice the light gets
bright and dim, but not completely black. This implies the reflected light is partially polarized and cannot be
completely blocked by a polarizing filter.

Figure 1.38 illustrates what happens when unpolarized light is reflected from a surface. Vertically polarized
light is preferentially refracted at the surface, so the reflected light is left more horizontally polarized. The
reasons for this phenomenon are beyond the scope of this text, but a convenient mnemonic for remembering
this is to imagine the polarization direction to be like an arrow. Vertical polarization is like an arrow
perpendicular to the surface and is more likely to stick and not be reflected. Horizontal polarization is like an
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arrow bouncing on its side and is more likely to be reflected. Sunglasses with vertical axes thus block more
reflected light than unpolarized light from other sources.

Figure 1.38 Polarization by reflection. Unpolarized light has equal amounts of vertical and horizontal polarization. After interaction with a

surface, the vertical components are preferentially absorbed or refracted, leaving the reflected light more horizontally polarized. This is akin

to arrows striking on their sides and bouncing off, whereas arrows striking on their tips go into the surface.

Since the part of the light that is not reflected is refracted, the amount of polarization depends on the indices of
refraction of the media involved. It can be shown that reflected light is completely polarized at an angle of
reflection given by

where is the medium in which the incident and reflected light travel and is the index of refraction of the
medium that forms the interface that reflects the light. This equation is known as Brewster’s law and is
known as Brewster’s angle, named after the nineteenth-century Scottish physicist who discovered them.

INTERACTIVE

This Open Source Physics animation (https://openstax.org/l/21phyaniincref) shows incident, reflected, and
refracted light as rays and EM waves. Try rotating the animation for 3D visualization and also change the angle
of incidence. Near Brewster’s angle, the reflected light becomes highly polarized.

EXAMPLE 1.8

Calculating Polarization by Reflection
(a) At what angle will light traveling in air be completely polarized horizontally when reflected from water? (b)
From glass?

Strategy
All we need to solve these problems are the indices of refraction. Air has water has and
crown glass has The equation can be directly applied to find in each case.

1.7
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Solution

a. Putting the known quantities into the equation

gives

Solving for the angle yields

b. Similarly, for crown glass and air,

Thus,

Significance
Light reflected at these angles could be completely blocked by a good polarizing filter held with its axis vertical.
Brewster’s angle for water and air are similar to those for glass and air, so that sunglasses are equally effective
for light reflected from either water or glass under similar circumstances. Light that is not reflected is
refracted into these media. Therefore, at an incident angle equal to Brewster’s angle, the refracted light is
slightly polarized vertically. It is not completely polarized vertically, because only a small fraction of the
incident light is reflected, so a significant amount of horizontally polarized light is refracted.

CHECK YOUR UNDERSTANDING 1.7

What happens at Brewster’s angle if the original incident light is already vertically polarized?

Atomic Explanation of Polarizing Filters
Polarizing filters have a polarization axis that acts as a slit. This slit passes EM waves (often visible light) that
have an electric field parallel to the axis. This is accomplished with long molecules aligned perpendicular to
the axis, as shown in Figure 1.39.

Figure 1.39 Long molecules are aligned perpendicular to the axis of a polarizing filter. In an EM wave, the component of the electric field

perpendicular to these molecules passes through the filter, whereas the component parallel to the molecules is absorbed.
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Figure 1.40 illustrates how the component of the electric field parallel to the long molecules is absorbed. An
EM wave is composed of oscillating electric and magnetic fields. The electric field is strong compared with the
magnetic field and is more effective in exerting force on charges in the molecules. The most affected charged
particles are the electrons, since electron masses are small. If an electron is forced to oscillate, it can absorb
energy from the EM wave. This reduces the field in the wave and, hence, reduces its intensity. In long
molecules, electrons can more easily oscillate parallel to the molecule than in the perpendicular direction. The
electrons are bound to the molecule and are more restricted in their movement perpendicular to the molecule.
Thus, the electrons can absorb EM waves that have a component of their electric field parallel to the molecule.
The electrons are much less responsive to electric fields perpendicular to the molecule and allow these fields
to pass. Thus, the axis of the polarizing filter is perpendicular to the length of the molecule.

Figure 1.40 Diagram of an electron in a long molecule oscillating parallel to the molecule. The oscillation of the electron absorbs energy

and reduces the intensity of the component of the EM wave that is parallel to the molecule.

Polarization by Scattering
If you hold your polarizing sunglasses in front of you and rotate them while looking at blue sky, you will see the
sky get bright and dim. This is a clear indication that light scattered by air is partially polarized. Figure 1.41
helps illustrate how this happens. Since light is a transverse EM wave, it vibrates the electrons of air molecules
perpendicular to the direction that it is traveling. The electrons then radiate like small antennae. Since they
are oscillating perpendicular to the direction of the light ray, they produce EM radiation that is polarized
perpendicular to the direction of the ray. When viewing the light along a line perpendicular to the original ray,
as in the figure, there can be no polarization in the scattered light parallel to the original ray, because that
would require the original ray to be a longitudinal wave. Along other directions, a component of the other
polarization can be projected along the line of sight, and the scattered light is only partially polarized.
Furthermore, multiple scattering can bring light to your eyes from other directions and can contain different
polarizations.
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Figure 1.41 Polarization by scattering. Unpolarized light scattering from air molecules shakes their electrons perpendicular to the

direction of the original ray. The scattered light therefore has a polarization perpendicular to the original direction and none parallel to the

original direction.

Photographs of the sky can be darkened by polarizing filters, a trick used by many photographers to make
clouds brighter by contrast. Scattering from other particles, such as smoke or dust, can also polarize light.
Detecting polarization in scattered EM waves can be a useful analytical tool in determining the scattering
source.

A range of optical effects are used in sunglasses. Besides being polarizing, sunglasses may have colored
pigments embedded in them, whereas others use either a nonreflective or reflective coating. A recent
development is photochromic lenses, which darken in the sunlight and become clear indoors. Photochromic
lenses are embedded with organic microcrystalline molecules that change their properties when exposed to
UV in sunlight, but become clear in artificial lighting with no UV.

Liquid Crystals and Other Polarization Effects in Materials
Although you are undoubtedly aware of liquid crystal displays (LCDs) found in watches, calculators, computer
screens, cellphones, flat screen televisions, and many other places, you may not be aware that they are based
on polarization. Liquid crystals are so named because their molecules can be aligned even though they are in a
liquid. Liquid crystals have the property that they can rotate the polarization of light passing through them by

. Furthermore, this property can be turned off by the application of a voltage, as illustrated in Figure 1.42. It
is possible to manipulate this characteristic quickly and in small, well-defined regions to create the contrast
patterns we see in so many LCD devices.

In flat screen LCD televisions, a large light is generated at the back of the TV. The light travels to the front
screen through millions of tiny units called pixels (picture elements). One of these is shown in Figure 1.42(a)
and (b). Each unit has three cells, with red, blue, or green filters, each controlled independently. When the
voltage across a liquid crystal is switched off, the liquid crystal passes the light through the particular filter. We
can vary the picture contrast by varying the strength of the voltage applied to the liquid crystal.
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Figure 1.42 (a) Polarized light is rotated by a liquid crystal and then passed by a polarizing filter that has its axis perpendicular to the

direction of the original polarization. (b) When a voltage is applied to the liquid crystal, the polarized light is not rotated and is blocked by

the filter, making the region dark in comparison with its surroundings. (c) LCDs can be made color specific, small, and fast enough to use in

laptop computers and TVs. (credit c: modification of work by Jane Whitney)

Many crystals and solutions rotate the plane of polarization of light passing through them. Such substances are
said to be optically active. Examples include sugar water, insulin, and collagen (Figure 1.43). In addition to
depending on the type of substance, the amount and direction of rotation depend on several other factors.
Among these is the concentration of the substance, the distance the light travels through it, and the wavelength
of light. Optical activity is due to the asymmetrical shape of molecules in the substance, such as being helical.
Measurements of the rotation of polarized light passing through substances can thus be used to measure
concentrations, a standard technique for sugars. It can also give information on the shapes of molecules, such
as proteins, and factors that affect their shapes, such as temperature and pH.

Figure 1.43 Optical activity is the ability of some substances to rotate the plane of polarization of light passing through them. The rotation

is detected with a polarizing filter or analyzer.

Glass and plastic become optically active when stressed: the greater the stress, the greater the effect. Optical
stress analysis on complicated shapes can be performed by making plastic models of them and observing
them through crossed filters, as seen in Figure 1.44. It is apparent that the effect depends on wavelength as
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well as stress. The wavelength dependence is sometimes also used for artistic purposes.

Figure 1.44 Optical stress analysis of a plastic lens placed between crossed polarizers. (credit: “Infopro”/Wikimedia Commons)

Another interesting phenomenon associated with polarized light is the ability of some crystals to split an
unpolarized beam of light into two polarized beams. This occurs because the crystal has one value for the
index of refraction of polarized light but a different value for the index of refraction of light polarized in the
perpendicular direction, so that each component has its own angle of refraction. Such crystals are said to be
birefringent, and, when aligned properly, two perpendicularly polarized beams will emerge from the crystal
(Figure 1.45). Birefringent crystals can be used to produce polarized beams from unpolarized light. Some
birefringent materials preferentially absorb one of the polarizations. These materials are called dichroic and
can produce polarization by this preferential absorption. This is fundamentally how polarizing filters and
other polarizers work.

Figure 1.45 Birefringent materials, such as the common mineral calcite, split unpolarized beams of light into two with two different values

of index of refraction.
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CHAPTER REVIEW
Key Terms
birefringent refers to crystals that split an

unpolarized beam of light into two beams
Brewster’s angle angle of incidence at which the

reflected light is completely polarized
Brewster’s law , where is the

medium in which the incident and reflected light
travel and is the index of refraction of the
medium that forms the interface that reflects the
light

corner reflector object consisting of two (or three)
mutually perpendicular reflecting surfaces, so
that the light that enters is reflected back exactly
parallel to the direction from which it came

critical angle incident angle that produces an
angle of refraction of

direction of polarization direction parallel to the
electric field for EM waves

dispersion spreading of light into its spectrum of
wavelengths

fiber optics field of study of the transmission of
light down fibers of plastic or glass, applying the
principle of total internal reflection

geometric optics part of optics dealing with the ray
aspect of light

horizontally polarized oscillations are in a
horizontal plane

Huygens’s principle every point on a wave front is
a source of wavelets that spread out in the
forward direction at the same speed as the wave
itself; the new wave front is a plane tangent to all
of the wavelets

index of refraction for a material, the ratio of the
speed of light in a vacuum to that in a material

law of reflection angle of reflection equals the
angle of incidence

law of refraction when a light ray crosses from
one medium to another, it changes direction by
an amount that depends on the index of
refraction of each medium and the sines of the
angle of incidence and angle of refraction

Malus’s law where is the intensity of the
polarized wave before passing through the filter

optically active substances that rotate the plane of
polarization of light passing through them

polarization attribute that wave oscillations have a
definite direction relative to the direction of
propagation of the wave

polarized refers to waves having the electric and
magnetic field oscillations in a definite direction

ray straight line that originates at some point
refraction changing of a light ray’s direction when

it passes through variations in matter
total internal reflection phenomenon at the

boundary between two media such that all the
light is reflected and no refraction occurs

unpolarized refers to waves that are randomly
polarized

vertically polarized oscillations are in a vertical
plane

wave optics part of optics dealing with the wave
aspect of light

Key Equations

Speed of light

Index of refraction

Law of reflection

Law of refraction (Snell’s law)

Critical angle

Malus’s law

Brewster’s law
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Summary
1.1 The Propagation of Light

• The speed of light in a vacuum is
.

• The index of refraction of a material is
where v is the speed of light in a material and c
is the speed of light in a vacuum.

• The ray model of light describes the path of light
as straight lines. The part of optics dealing with
the ray aspect of light is called geometric optics.

• Light can travel in three ways from a source to
another location: (1) directly from the source
through empty space; (2) through various
media; and (3) after being reflected from a
mirror.

1.2 The Law of Reflection

• When a light ray strikes a smooth surface, the
angle of reflection equals the angle of incidence.

• A mirror has a smooth surface and reflects light
at specific angles.

• Light is diffused when it reflects from a rough
surface.

1.3 Refraction

• The change of a light ray’s direction when it
passes through variations in matter is called
refraction.

• The law of refraction, also called Snell’s law,
relates the indices of refraction for two media at
an interface to the change in angle of a light ray
passing through that interface.

1.4 Total Internal Reflection

• The incident angle that produces an angle of
refraction of is called the critical angle.

• Total internal reflection is a phenomenon that
occurs at the boundary between two media,
such that if the incident angle in the first
medium is greater than the critical angle, then
all the light is reflected back into that medium.

• Fiber optics involves the transmission of light
down fibers of plastic or glass, applying the
principle of total internal reflection.

• Cladding prevents light from being transmitted
between fibers in a bundle.

• Diamonds sparkle due to total internal
reflection coupled with a large index of
refraction.

1.5 Dispersion

• The spreading of white light into its full

spectrum of wavelengths is called dispersion.
• Rainbows are produced by a combination of

refraction and reflection, and involve the
dispersion of sunlight into a continuous
distribution of colors.

• Dispersion produces beautiful rainbows but also
causes problems in certain optical systems.

1.6 Huygens’s Principle

• According to Huygens’s principle, every point on
a wave front is a source of wavelets that spread
out in the forward direction at the same speed
as the wave itself. The new wave front is tangent
to all of the wavelets.

• A mirror reflects an incoming wave at an angle
equal to the incident angle, verifying the law of
reflection.

• The law of refraction can be explained by
applying Huygens’s principle to a wave front
passing from one medium to another.

• The bending of a wave around the edges of an
opening or an obstacle is called diffraction.

1.7 Polarization

• Polarization is the attribute that wave
oscillations have a definite direction relative to
the direction of propagation of the wave. The
direction of polarization is defined to be the
direction parallel to the electric field of the EM
wave.

• Unpolarized light is composed of many rays
having random polarization directions.

• Unpolarized light can be polarized by passing it
through a polarizing filter or other polarizing
material. The process of polarizing light
decreases its intensity by a factor of 2.

• The intensity, I, of polarized light after passing
through a polarizing filter is ,
where is the incident intensity and is the
angle between the direction of polarization and
the axis of the filter.

• Polarization is also produced by reflection.
• Brewster’s law states that reflected light is

completely polarized at the angle of reflection
, known as Brewster’s angle.

• Polarization can also be produced by scattering.
• Several types of optically active substances

rotate the direction of polarization of light
passing through them.
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Conceptual Questions
1.1 The Propagation of Light

1. Under what conditions can light be modeled like
a ray? Like a wave?

2. Why is the index of refraction always greater than
or equal to 1?

3. Does the fact that the light flash from lightning
reaches you before its sound prove that the speed
of light is extremely large or simply that it is
greater than the speed of sound? Discuss how
you could use this effect to get an estimate of the
speed of light.

4. Speculate as to what physical process might be
responsible for light traveling more slowly in a
medium than in a vacuum.

1.2 The Law of Reflection

5. Using the law of reflection, explain how powder
takes the shine off of a person’s nose. What is the
name of the optical effect?

1.3 Refraction

6. Diffusion by reflection from a rough surface is
described in this chapter. Light can also be
diffused by refraction. Describe how this occurs
in a specific situation, such as light interacting
with crushed ice.

7. Will light change direction toward or away from
the perpendicular when it goes from air to water?
Water to glass? Glass to air?

8. Explain why an object in water always appears to
be at a depth shallower than it actually is?

9. Explain why a person’s legs appear very short
when wading in a pool. Justify your explanation
with a ray diagram showing the path of rays from
the feet to the eye of an observer who is out of the
water.

10. Explain why an oar that is partially submerged
in water appears bent.

1.4 Total Internal Reflection

11. A ring with a colorless gemstone is dropped into
water. The gemstone becomes invisible when
submerged. Can it be a diamond? Explain.

12. The most common type of mirage is an illusion
that light from faraway objects is reflected by a
pool of water that is not really there. Mirages are
generally observed in deserts, when there is a
hot layer of air near the ground. Given that the
refractive index of air is lower for air at higher

temperatures, explain how mirages can be
formed.

13. How can you use total internal reflection to
estimate the index of refraction of a medium?

1.5 Dispersion

14. Is it possible that total internal reflection plays a role
in rainbows? Explain in terms of indices of
refraction and angles, perhaps referring to that
shown below. Some of us have seen the formation of
a double rainbow; is it physically possible to observe
a triple rainbow?
(credit: "Chad"/Flickr)

15. A high-quality diamond may be quite clear and
colorless, transmitting all visible wavelengths
with little absorption. Explain how it can
sparkle with flashes of brilliant color when
illuminated by white light.

1.6 Huygens’s Principle

16. How do wave effects depend on the size of the
object with which the wave interacts? For
example, why does sound bend around the
corner of a building while light does not?

17. Does Huygens’s principle apply to all types of
waves?

18. If diffraction is observed for some
phenomenon, it is evidence that the
phenomenon is a wave. Does the reverse hold
true? That is, if diffraction is not observed, does
that mean the phenomenon is not a wave?

1.7 Polarization

19. Can a sound wave in air be polarized? Explain.
20. No light passes through two perfect polarizing

filters with perpendicular axes. However, if a
third polarizing filter is placed between the
original two, some light can pass. Why is this?
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Under what circumstances does most of the
light pass?

21. Explain what happens to the energy carried by
light that it is dimmed by passing it through two
crossed polarizing filters.

22. When particles scattering light are much
smaller than its wavelength, the amount of
scattering is proportional to . Does this mean
there is more scattering for small than large

? How does this relate to the fact that the sky is
blue?

23. Using the information given in the preceding
question, explain why sunsets are red.

24. When light is reflected at Brewster’s angle from
a smooth surface, it is polarized parallel
to the surface. Part of the light will be refracted
into the surface. Describe how you would do an
experiment to determine the polarization of the
refracted light. What direction would you expect
the polarization to have and would you expect it
to be ?

25. If you lie on a beach looking at the water with
your head tipped slightly sideways, your
polarized sunglasses do not work very well. Why
not?

Problems
1.1 The Propagation of Light

26. What is the speed of light in water? In glycerine?
27. What is the speed of light in air? In crown glass?
28. Calculate the index of refraction for a medium

in which the speed of light is
and identify the most likely substance based on
Table 1.1.

29. In what substance in Table 1.1 is the speed of
light

30. There was a major collision of an asteroid with
the Moon in medieval times. It was described by
monks at Canterbury Cathedral in England as a
red glow on and around the Moon. How long
after the asteroid hit the Moon, which is

away, would the light first arrive
on Earth?

31. Components of some computers communicate
with each other through optical fibers having an
index of refraction What time in
nanoseconds is required for a signal to travel
0.200 m through such a fiber?

32. Compare the time it takes for light to travel
1000 m on the surface of Earth and in outer
space.

33. How far does light travel underwater during a
time interval of ?

1.2 The Law of Reflection

34. Suppose a man stands in front of a mirror as
shown below. His eyes are 1.65 m above the
floor and the top of his head is 0.13 m higher.
Find the height above the floor of the top and
bottom of the smallest mirror in which he can
see both the top of his head and his feet. How is
this distance related to the man’s height?

35. Show that when light reflects from two mirrors
that meet each other at a right angle, the
outgoing ray is parallel to the incoming ray, as
illustrated below.

36. On the Moon’s surface, lunar astronauts placed
a corner reflector, off which a laser beam is
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periodically reflected. The distance to the Moon
is calculated from the round-trip time. What
percent correction is needed to account for the
delay in time due to the slowing of light in
Earth’s atmosphere? Assume the distance to the
Moon is precisely and Earth’s
atmosphere (which varies in density with
altitude) is equivalent to a layer 30.0 km thick
with a constant index of refraction

37. A flat mirror is neither converging nor diverging. To
prove this, consider two rays originating from the
same point and diverging at an angle (see below).
Show that after striking a plane mirror, the angle
between their directions remains

1.3 Refraction

Unless otherwise specified, for problems 1 through
10, the indices of refraction of glass and water
should be taken to be 1.50 and 1.333, respectively.

38. A light beam in air has an angle of incidence of
at the surface of a glass plate. What are the

angles of reflection and refraction?
39. A light beam in air is incident on the surface of

a pond, making an angle of with respect to
the surface. What are the angles of reflection
and refraction?

40. When a light ray crosses from water into glass, it
emerges at an angle of with respect to the
normal of the interface. What is its angle of
incidence?

41. A pencil flashlight submerged in water sends a
light beam toward the surface at an angle of
incidence of . What is the angle of refraction
in air?

42. Light rays from the Sun make a angle to the
vertical when seen from below the surface of a
body of water. At what angle above the horizon
is the Sun?

43. The path of a light beam in air goes from an

angle of incidence of to an angle of
refraction of when it enters a rectangular
block of plastic. What is the index of refraction
of the plastic?

44. A scuba diver training in a pool looks at his
instructor as shown below. What angle does the ray
from the instructor’s face make with the
perpendicular to the water at the point where the ray
enters? The angle between the ray in the water and
the perpendicular to the water is .

45. (a) Using information in the preceding problem,
find the height of the instructor’s head above
the water, noting that you will first have to
calculate the angle of incidence. (b) Find the
apparent depth of the diver’s head below water
as seen by the instructor.

1.4 Total Internal Reflection

46. Verify that the critical angle for light going from
water to air is , as discussed at the end of
Example 1.4, regarding the critical angle for
light traveling in a polystyrene (a type of plastic)
pipe surrounded by air.

47. (a) At the end of Example 1.4, it was stated that
the critical angle for light going from diamond
to air is Verify this. (b) What is the critical
angle for light going from zircon to air?

48. An optical fiber uses flint glass clad with crown
glass. What is the critical angle?

49. At what minimum angle will you get total
internal reflection of light traveling in water and
reflected from ice?

50. Suppose you are using total internal reflection
to make an efficient corner reflector. If there is
air outside and the incident angle is , what
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must be the minimum index of refraction of the
material from which the reflector is made?

51. You can determine the index of refraction of a
substance by determining its critical angle. (a)
What is the index of refraction of a substance
that has a critical angle of when
submerged in water? What is the substance,
based on Table 1.1? (b) What would the critical
angle be for this substance in air?

52. A ray of light, emitted beneath the surface of an
unknown liquid with air above it, undergoes total
internal reflection as shown below. What is the
index of refraction for the liquid and its likely
identification?

53. Light rays fall normally on the vertical surface
of the glass prism shown below. (a)
What is the largest value for such that the ray
is totally reflected at the slanted face? (b) Repeat
the calculation of part (a) if the prism is
immersed in water.

1.5 Dispersion

54. (a) What is the ratio of the speed of red light to
violet light in diamond, based on Table 1.2? (b)
What is this ratio in polystyrene? (c) Which is

more dispersive?
55. A beam of white light goes from air into water at

an incident angle of . At what angles are
the red (660 nm) and violet (410 nm) parts of
the light refracted?

56. By how much do the critical angles for red (660
nm) and violet (410 nm) light differ in a
diamond surrounded by air?

57. (a) A narrow beam of light containing yellow
(580 nm) and green (550 nm) wavelengths goes
from polystyrene to air, striking the surface at a

incident angle. What is the angle between
the colors when they emerge? (b) How far would
they have to travel to be separated by 1.00 mm?

58. A parallel beam of light containing orange (610
nm) and violet (410 nm) wavelengths goes from
fused quartz to water, striking the surface
between them at a incident angle. What is
the angle between the two colors in water?

59. A ray of 610-nm light goes from air into fused
quartz at an incident angle of . At what
incident angle must 470 nm light enter flint
glass to have the same angle of refraction?

60. A narrow beam of light containing red (660 nm)
and blue (470 nm) wavelengths travels from air
through a 1.00-cm-thick flat piece of crown
glass and back to air again. The beam strikes at
a incident angle. (a) At what angles do the
two colors emerge? (b) By what distance are the
red and blue separated when they emerge?

61. A narrow beam of white light enters a prism
made of crown glass at a incident angle, as
shown below. At what angles, and , do the
red (660 nm) and violet (410 nm) components
of the light emerge from the prism?

1.7 Polarization

62. What angle is needed between the direction of
polarized light and the axis of a polarizing filter
to cut its intensity in half?

63. The angle between the axes of two polarizing
filters is . By how much does the second
filter reduce the intensity of the light coming
through the first?
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64. Two polarizing sheets and are placed
together with their transmission axes oriented
at an angle to each other. What is when only

of the maximum transmitted light intensity
passes through them?

65. Suppose that in the preceding problem the light
incident on is unpolarized. At the
determined value of , what fraction of the
incident light passes through the combination?

66. If you have completely polarized light of
intensity , what will its intensity be
after passing through a polarizing filter with its
axis at an angle to the light’s polarization
direction?

67. What angle would the axis of a polarizing filter
need to make with the direction of polarized
light of intensity to reduce the
intensity to ?

68. At the end of Example 1.7, it was stated that the
intensity of polarized light is reduced to
of its original value by passing through a
polarizing filter with its axis at an angle of
to the direction of polarization. Verify this
statement.

69. Show that if you have three polarizing filters,
with the second at an angle of to the first
and the third at an angle of to the first, the
intensity of light passed by the first will be
reduced to of its value. (This is in
contrast to having only the first and third, which
reduces the intensity to zero, so that placing the

second between them increases the intensity of
the transmitted light.)

70. Three polarizing sheets are placed together
such that the transmission axis of the second
sheet is oriented at to the axis of the first,
whereas the transmission axis of the third sheet
is oriented at (in the same sense) to the
axis of the first. What fraction of the intensity of
an incident unpolarized beam is transmitted by
the combination?

71. In order to rotate the polarization axis of a beam
of linearly polarized light by , a student
places sheets and with their transmission
axes at and , respectively, to the
beam’s axis of polarization. (a) What fraction of
the incident light passes through and (b)
through the combination? (c) Repeat your
calculations for part (b) for transmission-axis
angles of and , respectively.

72. It is found that when light traveling in water
falls on a plastic block, Brewster’s angle is .
What is the refractive index of the plastic?

73. At what angle will light reflected from diamond
be completely polarized?

74. What is Brewster’s angle for light traveling in
water that is reflected from crown glass?

75. A scuba diver sees light reflected from the
water’s surface. At what angle relative to the
water’s surface will this light be completely
polarized?

Additional Problems
76. From his measurements, Roemer estimated

that it took 22 min for light to travel a distance
equal to the diameter of Earth’s orbit around the
Sun. (a) Use this estimate along with the known
diameter of Earth’s orbit to obtain a rough value
of the speed of light. (b) Light actually takes 16.5
min to travel this distance. Use this time to
calculate the speed of light.

77. Cornu performed Fizeau’s measurement of the
speed of light using a wheel of diameter 4.00 cm
that contained 180 teeth. The distance from the
wheel to the mirror was 22.9 km. Assuming he
measured the speed of light accurately, what
was the angular velocity of the wheel?

78. Suppose you have an unknown clear substance
immersed in water, and you wish to identify it
by finding its index of refraction. You arrange to
have a beam of light enter it at an angle of ,
and you observe the angle of refraction to be

. What is the index of refraction of the
substance and its likely identity?
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79. Shown below is a ray of light going from air through
crown glass into water, such as going into a fish tank.
Calculate the amount the ray is displaced by the
glass given that the incident angle is and
the glass is 1.00 cm thick.

80. Considering the previous problem, show that
is the same as it would be if the second medium
were not present.

81. At what angle is light inside crown glass
completely polarized when reflected from water,
as in a fish tank?

82. Light reflected at from a window is
completely polarized. What is the window’s
index of refraction and the likely substance of
which it is made?

83. (a) Light reflected at from a gemstone in a
ring is completely polarized. Can the gem be a
diamond? (b) At what angle would the light be
completely polarized if the gem was in water?

84. If is Brewster’s angle for light reflected from
the top of an interface between two substances,
and is Brewster’s angle for light reflected
from below, prove that .

85. Unreasonable results Suppose light travels
from water to another substance, with an angle
of incidence of and an angle of refraction
of . (a) What is the index of refraction of the
other substance? (b) What is unreasonable
about this result? (c) Which assumptions are
unreasonable or inconsistent?

86. Unreasonable results Light traveling from
water to a gemstone strikes the surface at an
angle of and has an angle of refraction of

. (a) What is the speed of light in the
gemstone? (b) What is unreasonable about this
result? (c) Which assumptions are unreasonable
or inconsistent?

87. If a polarizing filter reduces the intensity of
polarized light to of its original value, by
how much are the electric and magnetic fields
reduced?

88. Suppose you put on two pairs of polarizing
sunglasses with their axes at an angle of .
How much longer will it take the light to deposit
a given amount of energy in your eye compared
with a single pair of sunglasses? Assume the
lenses are clear except for their polarizing
characteristics.

89. (a) On a day when the intensity of sunlight is
, a circular lens 0.200 m in

diameter focuses light onto water in a black
beaker. Two polarizing sheets of plastic are
placed in front of the lens with their axes at an
angle of . Assuming the sunlight is
unpolarized and the polarizers are
efficient, what is the initial rate of heating of the
water in , assuming it is absorbed?
The aluminum beaker has a mass of 30.0 grams
and contains 250 grams of water. (b) Do the
polarizing filters get hot? Explain.

Challenge Problems
90. Light shows staged with lasers use moving

mirrors to swing beams and create colorful
effects. Show that a light ray reflected from a
mirror changes direction by when the mirror
is rotated by an angle .
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91. Consider sunlight entering Earth’s atmosphere
at sunrise and sunset—that is, at a
incident angle. Taking the boundary between
nearly empty space and the atmosphere to be
sudden, calculate the angle of refraction for
sunlight. This lengthens the time the Sun
appears to be above the horizon, both at sunrise
and sunset. Now construct a problem in which
you determine the angle of refraction for
different models of the atmosphere, such as
various layers of varying density. Your
instructor may wish to guide you on the level of
complexity to consider and on how the index of
refraction varies with air density.

92. A light ray entering an optical fiber surrounded by
air is first refracted and then reflected as shown
below. Show that if the fiber is made from crown
glass, any incident ray will be totally internally
reflected.

93. A light ray falls on the left face of a prism (see below)
at the angle of incidence for which the emerging
beam has an angle of refraction at the right face.
Show that the index of refraction n of the glass prism
is given by

where is the vertex angle of the prism and is the
angle through which the beam has been deviated. If

and the base angles of the prism are each
what is n?

94. If the apex angle in the previous problem is
and , what is the value of ?

95. The light incident on polarizing sheet is
linearly polarized at an angle of with
respect to the transmission axis of . Sheet
is placed so that its axis is parallel to the
polarization axis of the incident light, that is,
also at with respect to . (a) What
fraction of the incident light passes through ?
(b) What fraction of the incident light is passed
by the combination? (c) By rotating , a
maximum in transmitted intensity is obtained.
What is the ratio of this maximum intensity to
the intensity of transmitted light when is at

with respect to ?
96. Prove that if I is the intensity of light

transmitted by two polarizing filters with axes at
an angle and is the intensity when the axes
are at an angle then the
original intensity. (Hint: Use the trigonometric
identities and
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INTRODUCTION

CHAPTER 2
Geometric Optics and Image
Formation

2.1 Images Formed by Plane Mirrors

2.2 Spherical Mirrors

2.3 Images Formed by Refraction

2.4 Thin Lenses

2.5 The Eye

2.6 The Camera

2.7 The Simple Magnifier

2.8 Microscopes and Telescopes

This chapter introduces the major ideas of geometric optics, which describe the formation

Figure 2.1 Cloud Gate is a public sculpture by Anish Kapoor located in Millennium Park in Chicago. Its stainless
steel plates reflect and distort images around it, including the Chicago skyline. Dedicated in 2006, it has become a
popular tourist attraction, illustrating how art can use the principles of physical optics to startle and entertain.
(credit: modification of work by Dhilung Kirat)

Chapter Outline



of images due to reflection and refraction. It is called “geometric” optics because the images can be
characterized using geometric constructions, such as ray diagrams. We have seen that visible light is an
electromagnetic wave; however, its wave nature becomes evident only when light interacts with objects with
dimensions comparable to the wavelength (about 500 nm for visible light). Therefore, the laws of geometric
optics only apply to light interacting with objects much larger than the wavelength of the light.

2.1 Images Formed by Plane Mirrors
Learning Objectives
By the end of this section, you will be able to:

• Describe how an image is formed by a plane mirror.
• Distinguish between real and virtual images.
• Find the location and characterize the orientation of an image created by a plane mirror.

You only have to look as far as the nearest bathroom to find an example of an image formed by a mirror. Images
in a plane mirror are the same size as the object, are located behind the mirror, and are oriented in the same
direction as the object (i.e., “upright”).

To understand how this happens, consider Figure 2.2. Two rays emerge from point P, strike the mirror, and
reflect into the observer’s eye. Note that we use the law of reflection to construct the reflected rays. If the
reflected rays are extended backward behind the mirror (see dashed lines in Figure 2.2), they seem to
originate from point Q. This is where the image of point P is located. If we repeat this process for point , we
obtain its image at point . You should convince yourself by using basic geometry that the image height (the
distance from Q to ) is the same as the object height (the distance from P to ). By forming images of all
points of the object, we obtain an upright image of the object behind the mirror.

Figure 2.2 Two light rays originating from point P on an object are reflected by a flat mirror into the eye of an observer. The reflected rays

are obtained by using the law of reflection. Extending these reflected rays backward, they seem to come from point Q behind the mirror,

which is where the virtual image is located. Repeating this process for point gives the image point . The image height is thus the same

as the object height, the image is upright, and the object distance is the same as the image distance . (credit: modification of work by

Kevin Dufendach)

Notice that the reflected rays appear to the observer to come directly from the image behind the mirror. In
reality, these rays come from the points on the mirror where they are reflected. The image behind the mirror is
called a virtual image because it cannot be projected onto a screen—the rays only appear to originate from a
common point behind the mirror. If you walk behind the mirror, you cannot see the image, because the rays do
not go there. However, in front of the mirror, the rays behave exactly as if they come from behind the mirror, so
that is where the virtual image is located.
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Later in this chapter, we discuss real images; a real image can be projected onto a screen because the rays
physically go through the image. You can certainly see both real and virtual images. The difference is that a
virtual image cannot be projected onto a screen, whereas a real image can.

Locating an Image in a Plane Mirror
The law of reflection tells us that the angle of incidence is the same as the angle of reflection. Applying this to
triangles PAB and QAB in Figure 2.2 and using basic geometry shows that they are congruent triangles. This
means that the distance PB from the object to the mirror is the same as the distance BQ from the mirror to the
image. The object distance (denoted ) is the distance from the mirror to the object (or, more generally, from
the center of the optical element that creates its image). Similarly, the image distance (denoted ) is the
distance from the mirror to the image (or, more generally, from the center of the optical element that creates
it). If we measure distances from the mirror, then the object and image are in opposite directions, so for a plane
mirror, the object and image distances should have the opposite signs:

An extended object such as the container in Figure 2.2 can be treated as a collection of points, and we can
apply the method above to locate the image of each point on the extended object, thus forming the extended
image.

Multiple Images
If an object is situated in front of two mirrors, you may see images in both mirrors. In addition, the image in the
first mirror may act as an object for the second mirror, so the second mirror may form an image of the image. If
the mirrors are placed parallel to each other and the object is placed at a point other than the midpoint
between them, then this process of image-of-an-image continues without end, as you may have noticed when
standing in a hallway with mirrors on each side. This is shown in Figure 2.3, which shows three images
produced by the blue object. Notice that each reflection reverses front and back, just like pulling a right-hand
glove inside out produces a left-hand glove (this is why a reflection of your right hand is a left hand). Thus, the
fronts and backs of images 1 and 2 are both inverted with respect to the object, and the front and back of image
3 is inverted with respect to image 2, which is the object for image 3.

Figure 2.3 Two parallel mirrors can produce, in theory, an infinite number of images of an object placed off center between the mirrors.

Three of these images are shown here. The front and back of each image is inverted with respect to its object. Note that the colors are only

to identify the images. For normal mirrors, the color of an image is essentially the same as that of its object.

You may have noticed that image 3 is smaller than the object, whereas images 1 and 2 are the same size as the
object. The ratio of the image height with respect to the object height is called magnification. More will be said
about magnification in the next section.

Infinite reflections may terminate. For instance, two mirrors at right angles form three images, as shown in
part (a) of Figure 2.4. Images 1 and 2 result from rays that reflect from only a single mirror, but image 1,2 is
formed by rays that reflect from both mirrors. This is shown in the ray-tracing diagram in part (b) of Figure 2.4.
To find image 1,2, you have to look behind the corner of the two mirrors.

2.1
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Figure 2.4 Two mirrors can produce multiple images. (a) Three images of a plastic head are visible in the two mirrors at a right angle. (b) A

single object reflecting from two mirrors at a right angle can produce three images, as shown by the green, purple, and red images.

2.2 Spherical Mirrors
Learning Objectives
By the end of this section, you will be able to:

• Describe image formation by spherical mirrors.
• Use ray diagrams and the mirror equation to calculate the properties of an image in a spherical mirror.

The image in a plane mirror has the same size as the object, is upright, and is the same distance behind the
mirror as the object is in front of the mirror. A curved mirror, on the other hand, can form images that may be
larger or smaller than the object and may form either in front of the mirror or behind it. In general, any curved
surface will form an image, although some images make be so distorted as to be unrecognizable (think of fun
house mirrors).

Because curved mirrors can create such a rich variety of images, they are used in many optical devices that
find many uses. We will concentrate on spherical mirrors for the most part, because they are easier to
manufacture than mirrors such as parabolic mirrors and so are more common.

Curved Mirrors
We can define two general types of spherical mirrors. If the reflecting surface is the outer side of the sphere,
the mirror is called a convex mirror. If the inside surface is the reflecting surface, it is called a concave
mirror.

Symmetry is one of the major hallmarks of many optical devices, including mirrors and lenses. The symmetry
axis of such optical elements is often called the principal axis or optical axis. For a spherical mirror, the optical
axis passes through the mirror’s center of curvature and the mirror’s vertex, as shown in Figure 2.5.
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Figure 2.5 A spherical mirror is formed by cutting out a piece of a sphere and silvering either the inside or outside surface. A concave

mirror has silvering on the interior surface (think “cave”), and a convex mirror has silvering on the exterior surface.

Consider rays that are parallel to the optical axis of a parabolic mirror, as shown in part (a) of Figure 2.6.
Following the law of reflection, these rays are reflected so that they converge at a point, called the focal point.
Part (b) of this figure shows a spherical mirror that is large compared with its radius of curvature. For this
mirror, the reflected rays do not cross at the same point, so the mirror does not have a well-defined focal point.
This is called spherical aberration and results in a blurred image of an extended object. Part (c) shows a
spherical mirror that is small compared to its radius of curvature. This mirror is a good approximation of a
parabolic mirror, so rays that arrive parallel to the optical axis are reflected to a well-defined focal point. The
distance along the optical axis from the mirror to the focal point is called the focal length of the mirror.

Figure 2.6 (a) Parallel rays reflected from a parabolic mirror cross at a single point called the focal point F. (b) Parallel rays reflected from

a large spherical mirror do not cross at a common point. (c) If a spherical mirror is small compared with its radius of curvature, it better

approximates the central part of a parabolic mirror, so parallel rays essentially cross at a common point. The distance along the optical axis

from the mirror to the focal point is the focal length f of the mirror.

A convex spherical mirror also has a focal point, as shown in Figure 2.7. Incident rays parallel to the optical
axis are reflected from the mirror and seem to originate from point F at focal length f behind the mirror. Thus,
the focal point is virtual because no real rays actually pass through it; they only appear to originate from it.

2.2 • Spherical Mirrors 55



Figure 2.7 (a) Rays reflected by a convex spherical mirror: Incident rays of light parallel to the optical axis are reflected from a convex

spherical mirror and seem to originate from a well-defined focal point at focal distance f on the opposite side of the mirror. The focal point is

virtual because no real rays pass through it. (b) Photograph of a virtual image formed by a convex mirror. (credit b: modification of work by

Jenny Downing)

How does the focal length of a mirror relate to the mirror’s radius of curvature? Figure 2.8 shows a single ray
that is reflected by a spherical concave mirror. The incident ray is parallel to the optical axis. The point at
which the reflected ray crosses the optical axis is the focal point. Note that all incident rays that are parallel to
the optical axis are reflected through the focal point—we only show one ray for simplicity. We want to find how
the focal length FP (denoted by f) relates to the radius of curvature of the mirror, R, whose length is

. The law of reflection tells us that angles OXC and CXF are the same, and because the incident
ray is parallel to the optical axis, angles OXC and XCP are also the same. Thus, triangle CXF is an isosceles
triangle with . If the angle is small (so that ; this is called the “small-angle
approximation”), then or . Inserting this into the equation for the radius R, we get

Figure 2.8 Reflection in a concave mirror. In the small-angle approximation, a ray that is parallel to the optical axis CP is reflected through

the focal point F of the mirror.

In other words, in the small-angle approximation, the focal length f of a concave spherical mirror is half of its
radius of curvature, R:

2.2
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In this chapter, we assume that the small-angle approximation (also called the paraxial approximation) is
always valid. In this approximation, all rays are paraxial rays, which means that they make a small angle with
the optical axis and are at a distance much less than the radius of curvature from the optical axis. In this case,
their angles of reflection are small angles, so .

Using Ray Tracing to Locate Images
To find the location of an image formed by a spherical mirror, we first use ray tracing, which is the technique of
drawing rays and using the law of reflection to determine the reflected rays (later, for lenses, we use the law of
refraction to determine refracted rays). Combined with some basic geometry, we can use ray tracing to find the
focal point, the image location, and other information about how a mirror manipulates light. In fact, we already
used ray tracing above to locate the focal point of spherical mirrors, or the image distance of flat mirrors. To
locate the image of an object, you must locate at least two points of the image. Locating each point requires
drawing at least two rays from a point on the object and constructing their reflected rays. The point at which
the reflected rays intersect, either in real space or in virtual space, is where the corresponding point of the
image is located. To make ray tracing easier, we concentrate on four “principal” rays whose reflections are easy
to construct.

Figure 2.9 shows a concave mirror and a convex mirror, each with an arrow-shaped object in front of it. These
are the objects whose images we want to locate by ray tracing. To do so, we draw rays from point Q that is on
the object but not on the optical axis. We choose to draw our ray from the tip of the object. Principal ray 1 goes
from point Q and travels parallel to the optical axis. The reflection of this ray must pass through the focal point,
as discussed above. Thus, for the concave mirror, the reflection of principal ray 1 goes through focal point F, as
shown in part (b) of the figure. For the convex mirror, the backward extension of the reflection of principal ray
1 goes through the focal point (i.e., a virtual focus). Principal ray 2 travels first on the line going through the
focal point and then is reflected back along a line parallel to the optical axis. Principal ray 3 travels toward the
center of curvature of the mirror, so it strikes the mirror at normal incidence and is reflected back along the
line from which it came. Finally, principal ray 4 strikes the vertex of the mirror and is reflected symmetrically
about the optical axis.
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Figure 2.9 The four principal rays shown for both (a) a concave mirror and (b) a convex mirror. The image forms where the rays intersect

(for real images) or where their backward extensions intersect (for virtual images).

The four principal rays intersect at point , which is where the image of point Q is located. To locate point ,
drawing any two of these principle rays would suffice. We are thus free to choose whichever of the principal
rays we desire to locate the image. Drawing more than two principal rays is sometimes useful to verify that the
ray tracing is correct.

To completely locate the extended image, we need to locate a second point in the image, so that we know how
the image is oriented. To do this, we trace the principal rays from the base of the object. In this case, all four
principal rays run along the optical axis, reflect from the mirror, and then run back along the optical axis. The
difficulty is that, because these rays are collinear, we cannot determine a unique point where they intersect. All
we know is that the base of the image is on the optical axis. However, because the mirror is symmetrical from
top to bottom, it does not change the vertical orientation of the object. Thus, because the object is vertical, the
image must be vertical. Therefore, the image of the base of the object is on the optical axis directly above the
image of the tip, as drawn in the figure.

For the concave mirror, the extended image in this case forms between the focal point and the center of
curvature of the mirror. It is inverted with respect to the object, is a real image, and is smaller than the object.
Were we to move the object closer to or farther from the mirror, the characteristics of the image would change.
For example, we show, as a later exercise, that an object placed between a concave mirror and its focal point
leads to a virtual image that is upright and larger than the object. For the convex mirror, the extended image
forms between the focal point and the mirror. It is upright with respect to the object, is a virtual image, and is
smaller than the object.
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Summary of Ray-Tracing Rules
Ray tracing is very useful for mirrors. The rules for ray tracing are summarized here for reference:

• A ray travelling parallel to the optical axis of a spherical mirror is reflected along a line that goes through
the focal point of the mirror (ray 1 in Figure 2.9).

• A ray travelling along a line that goes through the focal point of a spherical mirror is reflected along a line
parallel to the optical axis of the mirror (ray 2 in Figure 2.9).

• A ray travelling along a line that goes through the center of curvature of a spherical mirror is reflected
back along the same line (ray 3 in Figure 2.9).

• A ray that strikes the vertex of a spherical mirror is reflected symmetrically about the optical axis of the
mirror (ray 4 in Figure 2.9).

We use ray tracing to illustrate how images are formed by mirrors and to obtain numerical information about
optical properties of the mirror. If we assume that a mirror is small compared with its radius of curvature, we
can also use algebra and geometry to derive a mirror equation, which we do in the next section. Combining ray
tracing with the mirror equation is a good way to analyze mirror systems.

Image Formation by Reflection—The Mirror Equation
For a plane mirror, we showed that the image formed has the same height and orientation as the object, and it
is located at the same distance behind the mirror as the object is in front of the mirror. Although the situation
is a bit more complicated for curved mirrors, using geometry leads to simple formulas relating the object and
image distances to the focal lengths of concave and convex mirrors.

Consider the object OP shown in Figure 2.10. The center of curvature of the mirror is labeled C and is a
distance R from the vertex of the mirror, as marked in the figure. The object and image distances are labeled
and , and the object and image heights are labeled and , respectively. Because the angles and are
alternate interior angles, we know that they have the same magnitude. However, they must differ in sign if we
measure angles from the optical axis, so . An analogous scenario holds for the angles and . The law
of reflection tells us that they have the same magnitude, but their signs must differ if we measure angles from
the optical axis. Thus, . Taking the tangent of the angles and , and using the property that

, gives us

Figure 2.10 Image formed by a concave mirror.

Similarly, taking the tangent of and gives

2.3
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Combining these two results gives

After a little algebra, this becomes

No approximation is required for this result, so it is exact. However, as discussed above, in the small-angle
approximation, the focal length of a spherical mirror is one-half the radius of curvature of the mirror, or

. Inserting this into Equation 2.3 gives the mirror equation:

The mirror equation relates the image and object distances to the focal distance and is valid only in the small-
angle approximation. Although it was derived for a concave mirror, it also holds for convex mirrors (proving
this is left as an exercise). We can extend the mirror equation to the case of a plane mirror by noting that a
plane mirror has an infinite radius of curvature. This means the focal point is at infinity, so the mirror
equation simplifies to

which is the same as Equation 2.1 obtained earlier.

Notice that we have been very careful with the signs in deriving the mirror equation. For a plane mirror, the
image distance has the opposite sign of the object distance. Also, the real image formed by the concave mirror
in Figure 2.10 is on the opposite side of the optical axis with respect to the object. In this case, the image height
should have the opposite sign of the object height. To keep track of the signs of the various quantities in the
mirror equation, we now introduce a sign convention.

Sign convention for spherical mirrors
Using a consistent sign convention is very important in geometric optics. It assigns positive or negative values
for the quantities that characterize an optical system. Understanding the sign convention allows you to
describe an image without constructing a ray diagram. This text uses the following sign convention:

1. The focal length f is positive for concave mirrors and negative for convex mirrors.
2. The image distance is positive for real images and negative for virtual images.

Notice that rule 1 means that the radius of curvature of a spherical mirror can be positive or negative. What
does it mean to have a negative radius of curvature? This means simply that the radius of curvature for a
convex mirror is defined to be negative.

Image magnification
Let’s use the sign convention to further interpret the derivation of the mirror equation. In deriving this
equation, we found that the object and image heights are related by

See Equation 2.3. Both the object and the image formed by the mirror in Figure 2.10 are real, so the object and
image distances are both positive. The highest point of the object is above the optical axis, so the object height
is positive. The image, however, is below the optical axis, so the image height is negative. Thus, this sign
convention is consistent with our derivation of the mirror equation.

Equation 2.7 in fact describes the linear magnification (often simply called “magnification”) of the image in
terms of the object and image distances. We thus define the dimensionless magnification m as follows:

2.4

2.5

2.6

2.7
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If m is positive, the image is upright, and if m is negative, the image is inverted. If , the image is larger
than the object, and if , the image is smaller than the object. With this definition of magnification, we
get the following relation between the vertical and horizontal object and image distances:

This is a very useful relation because it lets you obtain the magnification of the image from the object and
image distances, which you can obtain from the mirror equation.

EXAMPLE 2.1

Solar Electric Generating System
One of the solar technologies used today for generating electricity involves a device (called a parabolic trough
or concentrating collector) that concentrates sunlight onto a blackened pipe that contains a fluid. This heated
fluid is pumped to a heat exchanger, where the thermal energy is transferred to another system that is used to
generate steam and eventually generates electricity through a conventional steam cycle. Figure 2.11 shows
such a working system in southern California. The real mirror is a parabolic cylinder with its focus located at
the pipe; however, we can approximate the mirror as exactly one-quarter of a circular cylinder.

Figure 2.11 Parabolic trough collectors are used to generate electricity in southern California. (credit: “kjkolb”/Wikimedia Commons)

a. If we want the rays from the sun to focus at 40.0 cm from the mirror, what is the radius of the mirror?
b. What is the amount of sunlight concentrated onto the pipe, per meter of pipe length, assuming the

insolation (incident solar radiation) is 900 ?
c. If the fluid-carrying pipe has a 2.00-cm diameter, what is the temperature increase of the fluid per meter

of pipe over a period of 1 minute? Assume that all solar radiation incident on the reflector is absorbed by
the pipe, and that the fluid is mineral oil.

Strategy
First identify the physical principles involved. Part (a) is related to the optics of spherical mirrors. Part (b)
involves a little math, primarily geometry. Part (c) requires an understanding of heat and density.

Solution

a. The sun is the object, so the object distance is essentially infinity: . The desired image distance is
. We use the mirror equation to find the focal length of the mirror:

2.8

2.9
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Thus, the radius of the mirror is .
b. The insolation is 900 . You must find the cross-sectional area A of the concave mirror, since the

power delivered is 900 . The mirror in this case is estimated as a quarter-section of a cylinder,
so the area for a length L of the mirror is . The area for a length of 1.00 m is then

The insolation on the 1.00-m length of pipe is then

c. The increase in temperature is given by . The mass m of the mineral oil in the one-meter
section of pipe is

Therefore, the increase in temperature in one minute is

Significance
An array of such pipes in the California desert can provide a thermal output of 250 MW on a sunny day, with
fluids reaching temperatures as high as . We are considering only one meter of pipe here and ignoring
heat losses along the pipe.

EXAMPLE 2.2

Image in a Convex Mirror
A keratometer is a device used to measure the curvature of the cornea of the eye, particularly for fitting contact
lenses. Light is reflected from the cornea, which acts like a convex mirror, and the keratometer measures the
magnification of the image. The smaller the magnification, the smaller the radius of curvature of the cornea. If
the light source is 12 cm from the cornea and the image magnification is 0.032, what is the radius of curvature
of the cornea?

Strategy
If you find the focal length of the convex mirror formed by the cornea, then you know its radius of curvature
(it’s twice the focal length). The object distance is and the magnification is . First find the
image distance and then solve for the focal length f.

Solution
Start with the equation for magnification, . Solving for and inserting the given values yields

62 2 • Geometric Optics and Image Formation

Access for free at openstax.org.



where we retained an extra significant figure because this is an intermediate step in the calculation. Solve the
mirror equation for the focal length f and insert the known values for the object and image distances. The
result is

The radius of curvature is twice the focal length, so

Significance
The focal length is negative, so the focus is virtual, as expected for a concave mirror and a real object. The
radius of curvature found here is reasonable for a cornea. The distance from cornea to retina in an adult eye is
about 2.0 cm. In practice, corneas may not be spherical, which complicates the job of fitting contact lenses.
Note that the image distance here is negative, consistent with the fact that the image is behind the mirror.
Thus, the image is virtual because no rays actually pass through it. In the problems and exercises, you will
show that, for a fixed object distance, a smaller radius of curvature corresponds to a smaller the magnification.

PROBLEM-SOLVING STRATEGY

Spherical Mirrors
Step 1. First make sure that image formation by a spherical mirror is involved.

Step 2. Determine whether ray tracing, the mirror equation, or both are required. A sketch is very useful even
if ray tracing is not specifically required by the problem. Write symbols and known values on the sketch.

Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).

Step 4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).

Step 5. If ray tracing is required, use the ray-tracing rules listed near the beginning of this section.

Step 6. Most quantitative problems require using the mirror equation. Use the examples as guides for using the
mirror equation.

Step 7. Check to see whether the answer makes sense. Do the signs of object distance, image distance, and
focal length correspond with what is expected from ray tracing? Is the sign of the magnification correct? Are
the object and image distances reasonable?

Departure from the Small-Angle Approximation
The small-angle approximation is a cornerstone of the above discussion of image formation by a spherical
mirror. When this approximation is violated, then the image created by a spherical mirror becomes distorted.
Such distortion is called aberration. Here we briefly discuss two specific types of aberrations: spherical
aberration and coma.

Spherical aberration
Consider a broad beam of parallel rays impinging on a spherical mirror, as shown in Figure 2.12.
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Figure 2.12 (a) With spherical aberration, the rays that are farther from the optical axis and the rays that are closer to the optical axis are

focused at different points. Notice that the aberration gets worse for rays farther from the optical axis. (b) For comatic aberration, parallel

rays that are not parallel to the optical axis are focused at different heights and at different focal lengths, so the image contains a “tail” like

a comet (which is “coma” in Latin). Note that the colored rays are only to facilitate viewing; the colors do not indicate the color of the light.

The farther from the optical axis the rays strike, the worse the spherical mirror approximates a parabolic
mirror. Thus, these rays are not focused at the same point as rays that are near the optical axis, as shown in the
figure. Because of spherical aberration, the image of an extended object in a spherical mirror will be blurred.
Spherical aberrations are characteristic of the mirrors and lenses that we consider in the following section of
this chapter (more sophisticated mirrors and lenses are needed to eliminate spherical aberrations).

Coma or comatic aberration
Coma is similar to spherical aberration, but arises when the incoming rays are not parallel to the optical axis,
as shown in part (b) of Figure 2.12. Recall that the small-angle approximation holds for spherical mirrors that
are small compared to their radius. In this case, spherical mirrors are good approximations of parabolic
mirrors. Parabolic mirrors focus all rays that are parallel to the optical axis at the focal point. However, parallel
rays that are not parallel to the optical axis are focused at different heights and at different focal lengths, as
show in part (b) of Figure 2.12. Because a spherical mirror is symmetric about the optical axis, the various
colored rays in this figure create circles of the corresponding color on the focal plane.

Although a spherical mirror is shown in part (b) of Figure 2.12, comatic aberration occurs also for parabolic
mirrors—it does not result from a breakdown in the small-angle approximation. Spherical aberration, however,
occurs only for spherical mirrors and is a result of a breakdown in the small-angle approximation. We will
discuss both coma and spherical aberration later in this chapter, in connection with telescopes.
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2.3 Images Formed by Refraction
Learning Objectives
By the end of this section, you will be able to:

• Describe image formation by a single refracting surface
• Determine the location of an image and calculate its properties by using a ray diagram
• Determine the location of an image and calculate its properties by using the equation for a single refracting

surface

When rays of light propagate from one medium to another, these rays undergo refraction, which is when light
waves are bent at the interface between two media. The refracting surface can form an image in a similar
fashion to a reflecting surface, except that the law of refraction (Snell’s law) is at the heart of the process
instead of the law of reflection.

Refraction at a Plane Interface—Apparent Depth
If you look at a straight rod partially submerged in water, it appears to bend at the surface (Figure 2.13). The
reason behind this curious effect is that the image of the rod inside the water forms a little closer to the surface
than the actual position of the rod, so it does not line up with the part of the rod that is above the water. The
same phenomenon explains why a fish in water appears to be closer to the surface than it actually is.

Figure 2.13 Bending of a rod at a water-air interface. Point P on the rod appears to be at point Q, which is where the image of point P

forms due to refraction at the air-water interface.

To study image formation as a result of refraction, consider the following questions:

1. What happens to the rays of light when they enter or pass through a different medium?
2. Do the refracted rays originating from a single point meet at some point or diverge away from each other?

To be concrete, we consider a simple system consisting of two media separated by a plane interface (Figure
2.14). The object is in one medium and the observer is in the other. For instance, when you look at a fish from
above the water surface, the fish is in medium 1 (the water) with refractive index 1.33, and your eye is in
medium 2 (the air) with refractive index 1.00, and the surface of the water is the interface. The depth that you
“see” is the image height and is called the apparent depth. The actual depth of the fish is the object height

.
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Figure 2.14 Apparent depth due to refraction. The real object at point P creates an image at point Q. The image is not at the same depth

as the object, so the observer sees the image at an “apparent depth.”

The apparent depth depends on the angle at which you view the image. For a view from above (the so-called
“normal” view), we can approximate the refraction angle to be small, and replace sin in Snell’s law by tan .
With this approximation, you can use the triangles and to show that the apparent depth is given
by

The derivation of this result is left as an exercise. Thus, a fish appears at 3/4 of the real depth when viewed
from above.

Refraction at a Spherical Interface
Spherical shapes play an important role in optics primarily because high-quality spherical shapes are far
easier to manufacture than other curved surfaces. To study refraction at a single spherical surface, we assume
that the medium with the spherical surface at one end continues indefinitely (a “semi-infinite” medium).

Refraction at a convex surface
Consider a point source of light at point P in front of a convex surface made of glass (see Figure 2.15). Let R be
the radius of curvature, be the refractive index of the medium in which object point P is located, and be
the refractive index of the medium with the spherical surface. We want to know what happens as a result of
refraction at this interface.

Figure 2.15 Refraction at a convex surface .

Because of the symmetry involved, it is sufficient to examine rays in only one plane. The figure shows a ray of
light that starts at the object point P, refracts at the interface, and goes through the image point . We derive a
formula relating the object distance , the image distance , and the radius of curvature R.

2.10
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Applying Snell’s law to the ray emanating from point P gives . We work in the small-angle
approximation, so and Snell’s law then takes the form

From the geometry of the figure, we see that

Inserting these expressions into Snell’s law gives

Using the diagram, we calculate the tangent of the angles :

Again using the small-angle approximation, we find that , so the above relationships become

Putting these angles into Snell’s law gives

We can write this more conveniently as

If the object is placed at a special point called the first focus, or the object focus , then the image is formed
at infinity, as shown in part (a) of Figure 2.16.

Figure 2.16 (a) First focus (called the “object focus”) for refraction at a convex surface. (b) Second focus (called “image focus”) for

refraction at a convex surface.

We can find the location of the first focus by setting in the preceding equation.

Similarly, we can define a second focus or image focus where the image is formed for an object that is far
away [part (b)]. The location of the second focus is obtained from Equation 2.11 by setting :

2.11

2.12

2.13

2.3 • Images Formed by Refraction 67



Note that the object focus is at a different distance from the vertex than the image focus because .

Sign convention for single refracting surfaces
Although we derived this equation for refraction at a convex surface, the same expression holds for a concave
surface, provided we use the following sign convention:

1. if surface is convex toward object; otherwise,
2. if image is real and on opposite side from the object; otherwise,

2.4 Thin Lenses
Learning Objectives
By the end of this section, you will be able to:

• Use ray diagrams to locate and describe the image formed by a lens
• Employ the thin-lens equation to describe and locate the image formed by a lens

Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to a camera’s
zoom lens to the eye itself. In this section, we use the Snell’s law to explore the properties of lenses and how
they form images.

The word “lens” derives from the Latin word for a lentil bean, the shape of which is similar to a convex lens.
However, not all lenses have the same shape. Figure 2.17 shows a variety of different lens shapes. The
vocabulary used to describe lenses is the same as that used for spherical mirrors: The axis of symmetry of a
lens is called the optical axis, where this axis intersects the lens surface is called the vertex of the lens, and so
forth.

Figure 2.17 Various types of lenses: Note that a converging lens has a thicker “waist,” whereas a diverging lens has a thinner waist.

A convex or converging lens is shaped so that all light rays that enter it parallel to its optical axis intersect (or
focus) at a single point on the optical axis on the opposite side of the lens, as shown in part (a) of Figure 2.18.
Likewise, a concave or diverging lens is shaped so that all rays that enter it parallel to its optical axis diverge,
as shown in part (b). To understand more precisely how a lens manipulates light, look closely at the top ray
that goes through the converging lens in part (a). Because the index of refraction of the lens is greater than that
of air, Snell’s law tells us that the ray is bent toward the perpendicular to the interface as it enters the lens.
Likewise, when the ray exits the lens, it is bent away from the perpendicular. The same reasoning applies to the
diverging lenses, as shown in part (b). The overall effect is that light rays are bent toward the optical axis for a
converging lens and away from the optical axis for diverging lenses. For a converging lens, the point at which
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the rays cross is the focal point F of the lens. For a diverging lens, the point from which the rays appear to
originate is the (virtual) focal point. The distance from the center of the lens to its focal point is the focal length
f of the lens.

Figure 2.18 Rays of light entering (a) a converging lens and (b) a diverging lens, parallel to its axis, converge at its focal point F. The

distance from the center of the lens to the focal point is the lens’s focal length f. Note that the light rays are bent upon entering and exiting

the lens, with the overall effect being to bend the rays toward the optical axis.

A lens is considered to be thin if its thickness t is much less than the radii of curvature of both surfaces, as
shown in Figure 2.19. In this case, the rays may be considered to bend once at the center of the lens. For the
case drawn in the figure, light ray 1 is parallel to the optical axis, so the outgoing ray is bent once at the center
of the lens and goes through the focal point. Another important characteristic of thin lenses is that light rays
that pass through the center of the lens are undeviated, as shown by light ray 2.

Figure 2.19 In the thin-lens approximation, the thickness t of the lens is much, much less than the radii and of curvature of the

surfaces of the lens. Light rays are considered to bend at the center of the lens, such as light ray 1. Light ray 2 passes through the center of

the lens and is undeviated in the thin-lens approximation.

As noted in the initial discussion of Snell’s law, the paths of light rays are exactly reversible. This means that
the direction of the arrows could be reversed for all of the rays in Figure 2.18. For example, if a point-light
source is placed at the focal point of a convex lens, as shown in Figure 2.20, parallel light rays emerge from the
other side.
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Figure 2.20 A small light source, like a light bulb filament, placed at the focal point of a convex lens results in parallel rays of light

emerging from the other side. The paths are exactly the reverse of those shown in Figure 2.18 in converging and diverging lenses. This

technique is used in lighthouses and sometimes in traffic lights to produce a directional beam of light from a source that emits light in all

directions.

Ray Tracing and Thin Lenses
Ray tracing is the technique of determining or following (tracing) the paths taken by light rays.

Ray tracing for thin lenses is very similar to the technique we used with spherical mirrors. As for mirrors, ray
tracing can accurately describe the operation of a lens. The rules for ray tracing for thin lenses are similar to
those of spherical mirrors:

1. A ray entering a converging lens parallel to the optical axis passes through the focal point on the other side of
the lens (ray 1 in part (a) of Figure 2.21). A ray entering a diverging lens parallel to the optical axis exits along
the line that passes through the focal point on the same side of the lens (ray 1 in part (b) of the figure).

2. A ray passing through the center of either a converging or a diverging lens is not deviated (ray 2 in parts (a) and
(b)).

3. For a converging lens, a ray that passes through the focal point exits the lens parallel to the optical axis (ray 3
in part (a)). For a diverging lens, a ray that approaches along the line that passes through the focal point on the
opposite side exits the lens parallel to the axis (ray 3 in part (b)).
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Figure 2.21 Thin lenses have the same focal lengths on either side. (a) Parallel light rays from the object toward a converging lens cross at

its focal point on the right. (b) Parallel light rays from the object entering a diverging lens from the left seem to come from the focal point on

the left.

Thin lenses work quite well for monochromatic light (i.e., light of a single wavelength). However, for light that
contains several wavelengths (e.g., white light), the lenses work less well. The problem is that, as we learned in
the previous chapter, the index of refraction of a material depends on the wavelength of light. This
phenomenon is responsible for many colorful effects, such as rainbows. Unfortunately, this phenomenon also
leads to aberrations in images formed by lenses. In particular, because the focal distance of the lens depends
on the index of refraction, it also depends on the wavelength of the incident light. This means that light of
different wavelengths will focus at different points, resulting is so-called “chromatic aberrations.” In particular,
the edges of an image of a white object will become colored and blurred. Special lenses called doublets are
capable of correcting chromatic aberrations. A doublet is formed by gluing together a converging lens and a
diverging lens. The combined doublet lens produces significantly reduced chromatic aberrations.

Image Formation by Thin Lenses
We use ray tracing to investigate different types of images that can be created by a lens. In some
circumstances, a lens forms a real image, such as when a movie projector casts an image onto a screen. In
other cases, the image is a virtual image, which cannot be projected onto a screen. Where, for example, is the
image formed by eyeglasses? We use ray tracing for thin lenses to illustrate how they form images, and then we
develop equations to analyze quantitatively the properties of thin lenses.

Consider an object some distance away from a converging lens, as shown in Figure 2.22. To find the location
and size of the image, we trace the paths of selected light rays originating from one point on the object, in this
case, the tip of the arrow. The figure shows three rays from many rays that emanate from the tip of the arrow.
These three rays can be traced by using the ray-tracing rules given above.

• Ray 1 enters the lens parallel to the optical axis and passes through the focal point on the opposite side
(rule 1).

• Ray 2 passes through the center of the lens and is not deviated (rule 2).
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• Ray 3 passes through the focal point on its way to the lens and exits the lens parallel to the optical axis
(rule 3).

The three rays cross at a single point on the opposite side of the lens. Thus, the image of the tip of the arrow is
located at this point. All rays that come from the tip of the arrow and enter the lens are refracted and cross at
the point shown.

After locating the image of the tip of the arrow, we need another point of the image to orient the entire image of
the arrow. We chose to locate the image base of the arrow, which is on the optical axis. As explained in the
section on spherical mirrors, the base will be on the optical axis just above the image of the tip of the arrow
(due to the top-bottom symmetry of the lens). Thus, the image spans the optical axis to the (negative) height
shown. Rays from another point on the arrow, such as the middle of the arrow, cross at another common point,
thus filling in the rest of the image.

Although three rays are traced in this figure, only two are necessary to locate a point of the image. It is best to
trace rays for which there are simple ray-tracing rules.

Figure 2.22 Ray tracing is used to locate the image formed by a lens. Rays originating from the same point on the object are traced—the

three chosen rays each follow one of the rules for ray tracing, so that their paths are easy to determine. The image is located at the point

where the rays cross. In this case, a real image—one that can be projected on a screen—is formed.

Several important distances appear in the figure. As for a mirror, we define to be the object distance, or the
distance of an object from the center of a lens. The image distance is defined to be the distance of the image
from the center of a lens. The height of the object and the height of the image are indicated by and ,
respectively. Images that appear upright relative to the object have positive heights, and those that are inverted
have negative heights. By using the rules of ray tracing and making a scale drawing with paper and pencil, like
that in Figure 2.22, we can accurately describe the location and size of an image. But the real benefit of ray
tracing is in visualizing how images are formed in a variety of situations.

Oblique Parallel Rays and Focal Plane
We have seen that rays parallel to the optical axis are directed to the focal point of a converging lens. In the
case of a diverging lens, they come out in a direction such that they appear to be coming from the focal point
on the opposite side of the lens (i.e., the side from which parallel rays enter the lens). What happens to parallel
rays that are not parallel to the optical axis (Figure 2.23)? In the case of a converging lens, these rays do not
converge at the focal point. Instead, they come together on another point in the plane called the focal plane.
The focal plane contains the focal point and is perpendicular to the optical axis. As shown in the figure, parallel
rays focus where the ray through the center of the lens crosses the focal plane.
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Figure 2.23 Parallel oblique rays focus on a point in a focal plane.

Thin-Lens Equation
Ray tracing allows us to get a qualitative picture of image formation. To obtain numeric information, we derive
a pair of equations from a geometric analysis of ray tracing for thin lenses. These equations, called the thin-
lens equation and the lens maker’s equation, allow us to quantitatively analyze thin lenses.

Consider the thick bi-convex lens shown in Figure 2.24. The index of refraction of the surrounding medium is
(if the lens is in air, then ) and that of the lens is . The radii of curvatures of the two sides are

. We wish to find a relation between the object distance , the image distance , and the
parameters of the lens.

Figure 2.24 Figure for deriving the lens maker’s equation. Here, t is the thickness of lens, is the index of refraction of the exterior

medium, and is the index of refraction of the lens. We take the limit of to obtain the formula for a thin lens.

To derive the thin-lens equation, we consider the image formed by the first refracting surface (i.e., left surface)
and then use this image as the object for the second refracting surface. In the figure, the image from the first
refracting surface is , which is formed by extending backwards the rays from inside the lens (these rays
result from refraction at the first surface). This is shown by the dashed lines in the figure. Notice that this
image is virtual because no rays actually pass through the point . To find the image distance
corresponding to the image , we use Equation 2.11. In this case, the object distance is , the image distance
is , and the radius of curvature is . Inserting these into Equation 2.3 gives

The image is virtual and on the same side as the object, so and . The first surface is convex

2.14
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toward the object, so .

To find the object distance for the object Q formed by refraction from the second interface, note that the role of
the indices of refraction and are interchanged in Equation 2.11. In Figure 2.24, the rays originate in the
medium with index , whereas in Figure 2.15, the rays originate in the medium with index . Thus, we must
interchange and in Equation 2.11. In addition, by consulting again Figure 2.24, we see that the object
distance is and the image distance is . The radius of curvature is Inserting these quantities into
Equation 2.11 gives

The image is real and on the opposite side from the object, so and . The second surface is convex
away from the object, so . Equation 2.15 can be simplified by noting that , where we have
taken the absolute value because is a negative number, whereas both and t are positive. We can dispense
with the absolute value if we negate , which gives . Inserting this into Equation 2.15 gives

Summing Equation 2.14 and Equation 2.16 gives

In the thin-lens approximation, we assume that the lens is very thin compared to the first image distance, or
(or, equivalently, ). In this case, the third and fourth terms on the left-hand side of

Equation 2.17 cancel, leaving us with

Dividing by gives us finally

The left-hand side looks suspiciously like the mirror equation that we derived above for spherical mirrors. As
done for spherical mirrors, we can use ray tracing and geometry to show that, for a thin lens,

where f is the focal length of the thin lens (this derivation is left as an exercise). This is the thin-lens equation.
The focal length of a thin lens is the same to the left and to the right of the lens. Combining Equation 2.18 and
Equation 2.19 gives

which is called the lens maker’s equation. It shows that the focal length of a thin lens depends only of the radii
of curvature and the index of refraction of the lens and that of the surrounding medium. For a lens in air,

and , so the lens maker’s equation reduces to

2.15

2.16

2.17

2.18

2.19

2.20

2.21
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Sign conventions for lenses
To properly use the thin-lens equation, the following sign conventions must be obeyed:

1. is positive if the image is on the side opposite the object (i.e., real image); otherwise, is negative (i.e.,
virtual image).

2. f is positive for a converging lens and negative for a diverging lens.
3. R is positive for a surface convex toward the object, and negative for a surface concave toward object.

Magnification
By using a finite-size object on the optical axis and ray tracing, you can show that the magnification m of an
image is

(where the three lines mean “is defined as”). This is exactly the same equation as we obtained for mirrors (see
Equation 2.8). If , then the image has the same vertical orientation as the object (called an “upright”
image). If , then the image has the opposite vertical orientation as the object (called an “inverted” image).

Using the Thin-Lens Equation
The thin-lens equation and the lens maker’s equation are broadly applicable to situations involving thin
lenses. We explore many features of image formation in the following examples.

Consider a thin converging lens. Where does the image form and what type of image is formed as the object
approaches the lens from infinity? This may be seen by using the thin-lens equation for a given focal length to
plot the image distance as a function of object distance. In other words, we plot

for a given value of f. For , the result is shown in part (a) of Figure 2.25.

Figure 2.25 (a) Image distance for a thin converging lens with as a function of object distance. (b) Same thing but for a

diverging lens with .

An object much farther than the focal length f from the lens should produce an image near the focal plane,
because the second term on the right-hand side of the equation above becomes negligible compared to the first
term, so we have This can be seen in the plot of part (a) of the figure, which shows that the image
distance approaches asymptotically the focal length of 1 cm for larger object distances. As the object
approaches the focal plane, the image distance diverges to positive infinity. This is expected because an object
at the focal plane produces parallel rays that form an image at infinity (i.e., very far from the lens). When the

2.22
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object is farther than the focal length from the lens, the image distance is positive, so the image is real, on the
opposite side of the lens from the object, and inverted (because ). When the object is closer than
the focal length from the lens, the image distance becomes negative, which means that the image is virtual, on
the same side of the lens as the object, and upright.

For a thin diverging lens of focal length , a similar plot of image distance vs. object distance is
shown in part (b). In this case, the image distance is negative for all positive object distances, which means that
the image is virtual, on the same side of the lens as the object, and upright. These characteristics may also be
seen by ray-tracing diagrams (see Figure 2.26).

Figure 2.26 The red dots show the focal points of the lenses. (a) A real, inverted image formed from an object that is farther than the focal

length from a converging lens. (b) A virtual, upright image formed from an object that is closer than a focal length from the lens. (c) A virtual,

upright image formed from an object that is farther than a focal length from a diverging lens.

To see a concrete example of upright and inverted images, look at Figure 2.27, which shows images formed by
converging lenses when the object (the person’s face in this case) is place at different distances from the lens.
In part (a) of the figure, the person’s face is farther than one focal length from the lens, so the image is inverted.
In part (b), the person’s face is closer than one focal length from the lens, so the image is upright.

Figure 2.27 (a) When a converging lens is held farther than one focal length from the man’s face, an inverted image is formed. Note that

the image is in focus but the face is not, because the image is much closer to the camera taking this photograph than the face. (b) An

upright image of the man’s face is produced when a converging lens is held at less than one focal length from his face. (credit a:

modification of work by “DaMongMan”/Flickr; credit b: modification of work by Casey Fleser)

Work through the following examples to better understand how thin lenses work.
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PROBLEM-SOLVING STRATEGY

Lenses
Step 1. Determine whether ray tracing, the thin-lens equation, or both would be useful. Even if ray tracing is
not used, a careful sketch is always very useful. Write symbols and values on the sketch.

Step 2. Identify what needs to be determined in the problem (identify the unknowns).

Step 3. Make a list of what is given or can be inferred from the problem (identify the knowns).

Step 4. If ray tracing is required, use the ray-tracing rules listed near the beginning of this section.

Step 5. Most quantitative problems require the use of the thin-lens equation and/or the lens maker’s equation.
Solve these for the unknowns and insert the given quantities or use both together to find two unknowns.

Step 7. Check to see if the answer is reasonable. Are the signs correct? Is the sketch or ray tracing consistent
with the calculation?

EXAMPLE 2.3

Using the Lens Maker’s Equation
Find the radius of curvature of a biconcave lens symmetrically ground from a glass with index of refractive
1.55 so that its focal length in air is 20 cm (for a biconcave lens, both surfaces have the same radius of
curvature).

Strategy
Use the thin-lens form of the lens maker’s equation:

where and . Since we are making a symmetric biconcave lens, we have .

Solution
We can determine the radius R of curvature from

Solving for R and inserting gives

EXAMPLE 2.4

Converging Lens and Different Object Distances
Find the location, orientation, and magnification of the image for an 3.0 cm high object at each of the following
positions in front of a convex lens of focal length 10.0 cm. , , and

.

Strategy
We start with the thin-lens equation . Solve this for the image distance and insert the given

object distance and focal length.
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Solution

a. For , this gives

The image is positive, so the image, is real, is on the opposite side of the lens from the object, and is 12.6
cm from the lens. To find the magnification and orientation of the image, use

The negative magnification means that the image is inverted. Since , the image is smaller than the
object. The size of the image is given by

b. For

The image distance is negative, so the image is virtual, is on the same side of the lens as the object, and is
10 cm from the lens. The magnification and orientation of the image are found from

The positive magnification means that the image is upright (i.e., it has the same orientation as the object).
Since , the image is larger than the object. The size of the image is

c. For

The image distance is positive, so the image is real, is on the opposite side of the lens from the object, and
is 20.0 cm from the lens. The magnification is

The negative magnification means that the image is inverted. Since , the image is the same size as
the object.

When solving problems in geometric optics, we often need to combine ray tracing and the lens equations. The
following example demonstrates this approach.
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EXAMPLE 2.5

Choosing the Focal Length and Type of Lens
To project an image of a light bulb on a screen 1.50 m away, you need to choose what type of lens to use
(converging or diverging) and its focal length (Figure 2.28). The distance between the lens and the lightbulb is
fixed at 0.75 m. Also, what is the magnification and orientation of the image?

Strategy
The image must be real, so you choose to use a converging lens. The focal length can be found by using the
thin-lens equation and solving for the focal length. The object distance is and the image distance
is .

Solution
Solve the thin lens for the focal length and insert the desired object and image distances:

The magnification is

Significance
The minus sign for the magnification means that the image is inverted. The focal length is positive, as
expected for a converging lens. Ray tracing can be used to check the calculation (see Figure 2.28). As expected,
the image is inverted, is real, and is larger than the object.

Figure 2.28 A light bulb placed 0.75 m from a lens having a 0.50-m focal length produces a real image on a screen, as discussed in the

example. Ray tracing predicts the image location and size.

2.5 The Eye
Learning Objectives
By the end of this section, you will be able to:

• Understand the basic physics of how images are formed by the human eye
• Recognize several conditions of impaired vision as well as the optics principles for treating these conditions

The human eye is perhaps the most interesting and important of all optical instruments. Our eyes perform a
vast number of functions: They allow us to sense direction, movement, colors, and distance. In this section, we
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explore the geometric optics of the eye.

Physics of the Eye
The eye is remarkable in how it forms images and in the richness of detail and color it can detect. However, our
eyes often need some correction to reach what is called “normal” vision. Actually, normal vision should be
called “ideal” vision because nearly one-half of the human population requires some sort of eyesight
correction, so requiring glasses is by no means “abnormal.” Image formation by our eyes and common vision
correction can be analyzed with the optics discussed earlier in this chapter.

Figure 2.29 shows the basic anatomy of the eye. The cornea and lens form a system that, to a good
approximation, acts as a single thin lens. For clear vision, a real image must be projected onto the light-
sensitive retina, which lies a fixed distance from the lens. The flexible lens of the eye allows it to adjust the
radius of curvature of the lens to produce an image on the retina for objects at different distances. The center
of the image falls on the fovea, which has the greatest density of light receptors and the greatest acuity
(sharpness) in the visual field. The variable opening (i.e., the pupil) of the eye, along with chemical adaptation,
allows the eye to detect light intensities from the lowest observable to times greater (without damage).
This is an incredible range of detection. Processing of visual nerve impulses begins with interconnections in
the retina and continues in the brain. The optic nerve conveys the signals received by the eye to the brain.

Figure 2.29 The cornea and lens of the eye act together to form a real image on the light-sensing retina, which has its densest

concentration of receptors in the fovea and a blind spot over the optic nerve. The radius of curvature of the lens of an eye is adjustable to

form an image on the retina for different object distances. Layers of tissues with varying indices of refraction in the lens are shown here.

However, they have been omitted from other pictures for clarity.

The indices of refraction in the eye are crucial to its ability to form images. Table 2.1 lists the indices of
refraction relevant to the eye. The biggest change in the index of refraction, which is where the light rays are
most bent, occurs at the air-cornea interface rather than at the aqueous humor-lens interface. The ray diagram
in Figure 2.30 shows image formation by the cornea and lens of the eye. The cornea, which is itself a
converging lens with a focal length of approximately 2.3 cm, provides most of the focusing power of the eye.
The lens, which is a converging lens with a focal length of about 6.4 cm, provides the finer focus needed to
produce a clear image on the retina. The cornea and lens can be treated as a single thin lens, even though the
light rays pass through several layers of material (such as cornea, aqueous humor, several layers in the lens,
and vitreous humor), changing direction at each interface. The image formed is much like the one produced by
a single convex lens (i.e., a real, inverted image). Although images formed in the eye are inverted, the brain
inverts them once more to make them seem upright.

Material Index of Refraction

Water 1.33
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Material Index of Refraction

Air 1.0

Cornea 1.38

Aqueous humor 1.34

Lens 1.41*

Vitreous humor 1.34

Table 2.1 Refractive Indices Relevant to the Eye *This is an average value. The actual index of refraction
varies throughout the lens and is greatest in center of the lens.

Figure 2.30 In the human eye, an image forms on the retina. Rays from the top and bottom of the object are traced to show how a real,

inverted image is produced on the retina. The distance to the object is not to scale.

As noted, the image must fall precisely on the retina to produce clear vision—that is, the image distance
must equal the lens-to-retina distance. Because the lens-to-retina distance does not change, the image
distance must be the same for objects at all distances. The ciliary muscles adjust the shape of the eye lens
for focusing on nearby or far objects. By changing the shape of the eye lens, the eye changes the focal length of
the lens. This mechanism of the eye is called accommodation.

The nearest point an object can be placed so that the eye can form a clear image on the retina is called the near
point of the eye. Similarly, the far point is the farthest distance at which an object is clearly visible. A person
with normal vision can see objects clearly at distances ranging from 25 cm to essentially infinity. The near
point increases with age, becoming several meters for some older people. In this text, we consider the near
point to be 25 cm.

We can use the thin-lens equations to quantitatively examine image formation by the eye. First, we define the
optical power of a lens as

with the focal length f given in meters. The units of optical power are called “diopters” (D). That is,
. Optometrists prescribe common eyeglasses and contact lenses in units of diopters. With

this definition of optical power, we can rewrite the thin-lens equations as

2.23
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Working with optical power is convenient because, for two or more lenses close together, the effective optical
power of the lens system is approximately the sum of the optical power of the individual lenses:

EXAMPLE 2.6

Effective Focal Length of the Eye
The cornea and eye lens have focal lengths of 2.3 and 6.4 cm, respectively. Find the net focal length and optical
power of the eye.

Strategy
The optical powers of the closely spaced lenses add, so .

Solution
Writing the equation for power in terms of the focal lengths gives

Hence, the focal length of the eye (cornea and lens together) is

The optical power of the eye is

For clear vision, the image distance must equal the lens-to-retina distance. Normal vision is possible for
objects at distances to infinity. The following example shows how to calculate the image distance
for an object placed at the near point of the eye.

EXAMPLE 2.7

Image of an object placed at the near point
The net focal length of a particular human eye is 1.7 cm. An object is placed at the near point of the eye. How
far behind the lens is a focused image formed?

Strategy
The near point is 25 cm from the eye, so the object distance is . We determine the image distance
from the lens equation:

Solution

2.24

2.25
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Therefore, the image is formed 1.8 cm behind the lens.

Significance
From the magnification formula, we find . Since , the image is inverted in
orientation with respect to the object. From the absolute value of m we see that the image is much smaller than
the object; in fact, it is only 7% of the size of the object.

Vision Correction
The need for some type of vision correction is very common. Typical vision defects are easy to understand
with geometric optics, and some are simple to correct. Figure 2.31 illustrates two common vision defects.
Nearsightedness, or myopia, is the ability to see near objects, whereas distant objects are blurry. The eye
overconverges the nearly parallel rays from a distant object, and the rays cross in front of the retina. More
divergent rays from a close object are converged on the retina for a clear image. The distance to the farthest
object that can be seen clearly is called the far point of the eye (normally the far point is at infinity).
Farsightedness, or hyperopia, is the ability to see far objects clearly, whereas near objects are blurry. A
farsighted eye does not sufficiently converge the rays from a near object to make the rays meet on the retina.

Figure 2.31 (a) The nearsighted (myopic) eye converges rays from a distant object in front of the retina, so they have diverged when they

strike the retina, producing a blurry image. An eye lens that is too powerful can cause nearsightedness, or the eye may be too long. (b) The

farsighted (hyperopic) eye is unable to converge the rays from a close object on the retina, producing blurry near-field vision. An eye lens

with insufficient optical power or an eye that is too short can cause farsightedness.

Since the nearsighted eye overconverges light rays, the correction for nearsightedness consists of placing a
diverging eyeglass lens in front of the eye, as shown in Figure 2.32. This reduces the optical power of an eye
that is too powerful (recall that the focal length of a diverging lens is negative, so its optical power is negative).
Another way to understand this correction is that a diverging lens will cause the incoming rays to diverge more
to compensate for the excessive convergence caused by the lens system of the eye. The image produced by the
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diverging eyeglass lens serves as the (optical) object for the eye, and because the eye cannot focus on objects
beyond its far point, the diverging lens must form an image of distant (physical) objects at a point that is closer
than the far point.

Figure 2.32 Correction of nearsightedness requires a diverging lens that compensates for overconvergence by the eye. The diverging lens

produces an image closer to the eye than the physical object. This image serves as the optical object for the eye, and the nearsighted

person can see it clearly because it is closer than their far point.

EXAMPLE 2.8

Correcting Nearsightedness
What optical power of eyeglass lens is needed to correct the vision of a nearsighted person whose far point is
30.0 cm? Assume the corrective lens is fixed 1.50 cm away from the eye.

Strategy
You want this nearsighted person to be able to see distant objects clearly, which means that the eyeglass lens
must produce an image 30.0 cm from the eye for an object at infinity. An image 30.0 cm from the eye will be

from the eyeglass lens. Therefore, we must have when .
The image distance is negative because it is on the same side of the eyeglass lens as the object.

Solution
Since and are known, we can find the optical power of the eyeglass lens by using Equation 2.24:

Significance
The negative optical power indicates a diverging (or concave) lens, as expected. If you examine eyeglasses for
nearsighted people, you will find the lenses are thinnest in the center. Additionally, if you examine a
prescription for eyeglasses for nearsighted people, you will find that the prescribed optical power is negative
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and given in units of diopters.

Correcting farsightedness consists simply of using the opposite type of lens as for nearsightedness (i.e., a
converging lens), as shown in Figure 2.33.

Such a lens will produce an image of physical objects that are closer than the near point at a distance that is
between the near point and the far point, so that the person can see the image clearly. To determine the optical
power needed for correction, you must therefore know the person’s near point, as explained in Example 2.9.

Figure 2.33 Correction of farsightedness uses a converging lens that compensates for the underconvergence by the eye. The converging

lens produces an image farther from the eye than the object, so that the farsighted person can see it clearly.

EXAMPLE 2.9

Correcting Farsightedness
What optical power of eyeglass lens is needed to allow a farsighted person, whose near point is 1.00 m, to see
an object clearly that is 25.0 cm from the eye? Assume the corrective lens is fixed 1.5 cm from the eye.

Strategy
When an object is 25.0 cm from the person’s eyes, the eyeglass lens must produce an image 1.00 m away (the
near point), so that the person can see it clearly. An image 1.00 m from the eye will be

from the eyeglass lens because the eyeglass lens is 1.5 cm from the eye. Therefore,
, where the minus sign indicates that the image is on the same side of the lens as the object. The

object is from the eyeglass lens, so .

Solution
Since and are known, we can find the optical power of the eyeglass lens by using Equation 2.24:
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Significance
The positive optical power indicates a converging (convex) lens, as expected. If you examine eyeglasses of
farsighted people, you will find the lenses to be thickest in the center. In addition, prescription eyeglasses for
farsighted people have a prescribed optical power that is positive.

2.6 The Camera
Learning Objectives
By the end of this section, you will be able to:

• Describe the optics of a camera
• Characterize the image created by a camera

Cameras are very common in our everyday life. Between 1825 and 1827, French inventor Nicéphore Niépce
successfully photographed an image created by a primitive camera. Since then, enormous progress has been
achieved in the design of cameras and camera-based detectors.

Initially, photographs were recorded by using the light-sensitive reaction of silver-based compounds such as
silver chloride or silver bromide. Silver-based photographic paper was in common use until the advent of
digital photography in the 1980s, which is intimately connected to charge-coupled device (CCD) detectors. In
a nutshell, a CCD is a semiconductor chip that records images as a matrix of tiny pixels, each pixel located in a
“bin” in the surface. Each pixel is capable of detecting the intensity of light impinging on it. Color is brought
into play by putting red-, blue-, and green-colored filters over the pixels, resulting in colored digital images
(Figure 2.34). At its best resolution, one CCD pixel corresponds to one pixel of the image. To reduce the
resolution and decrease the size of the file, we can “bin” several CCD pixels into one, resulting in a smaller but
“pixelated” image.

Figure 2.34 A charge-coupled device (CCD) converts light signals into electronic signals, enabling electronic processing and storage of

visual images. This is the basis for electronic imaging in all digital cameras, from cell phones to movie cameras. (credit left: modification of

work by Bruce Turner)

Clearly, electronics is a big part of a digital camera; however, the underlying physics is basic optics. As a matter
of fact, the optics of a camera are pretty much the same as those of a single lens with an object distance that is
significantly larger than the lens’s focal distance (Figure 2.35).
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Figure 2.35 Modern digital cameras have several lenses to produce a clear image with minimal aberration and use red, blue, and green

filters to produce a color image.

For instance, let us consider the camera in a smartphone. An average smartphone camera is equipped with a
stationary wide-angle lens with a focal length of about 4–5 mm. (This focal length is about equal to the
thickness of the phone.) The image created by the lens is focused on the CCD detector mounted at the opposite
side of the phone. In a cell phone, the lens and the CCD cannot move relative to each other. So how do we make
sure that both the images of a distant and a close object are in focus?

Recall that a human eye can accommodate for distant and close images by changing its focal distance. A cell
phone camera cannot do that because the distance from the lens to the detector is fixed. Here is where the
small focal distance becomes important. Let us assume we have a camera with a 5-mm focal distance. What is
the image distance for a selfie? The object distance for a selfie (the length of the hand holding the phone) is
about 50 cm. Using the thin-lens equation, we can write

We then obtain the image distance:

Note that the object distance is 100 times larger than the focal distance. We can clearly see that the 1/(500 mm)
term is significantly smaller than 1/(5 mm), which means that the image distance is pretty much equal to the
lens’s focal length. An actual calculation gives us the image distance . This value is extremely
close to the lens’s focal distance.

Now let us consider the case of a distant object. Let us say that we would like to take a picture of a person
standing about 5 m from us. Using the thin-lens equation again, we obtain the image distance of 5.005 mm.
The farther the object is from the lens, the closer the image distance is to the focal distance. At the limiting
case of an infinitely distant object, we obtain the image distance exactly equal to the focal distance of the lens.

As you can see, the difference between the image distance for a selfie and the image distance for a distant
object is just about 0.05 mm or 50 microns. Even a short object distance such as the length of your hand is two
orders of magnitude larger than the lens’s focal length, resulting in minute variations of the image distance.
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(The 50-micron difference is smaller than the thickness of an average sheet of paper.) Such a small difference
can be easily accommodated by the same detector, positioned at the focal distance of the lens. Image analysis
software can help improve image quality.

Conventional point-and-shoot cameras often use a movable lens to change the lens-to-image distance.
Complex lenses of the more expensive mirror reflex cameras allow for superb quality photographic images.
The optics of these camera lenses is beyond the scope of this textbook.

2.7 The Simple Magnifier
Learning Objectives
By the end of this section, you will be able to:

• Understand the optics of a simple magnifier
• Characterize the image created by a simple magnifier

The apparent size of an object perceived by the eye depends on the angle the object subtends from the eye. As
shown in Figure 2.36, the object at A subtends a larger angle from the eye than when it is position at point B.
Thus, the object at A forms a larger image on the retina (see ) than when it is positioned at B (see ).
Thus, objects that subtend large angles from the eye appear larger because they form larger images on the
retina.

Figure 2.36 Size perceived by an eye is determined by the angle subtended by the object. An image formed on the retina by an object at A

is larger than an image formed on the retina by the same object positioned at B (compared image heights to ).

We have seen that, when an object is placed within a focal length of a convex lens, its image is virtual, upright,
and larger than the object (see part (b) of Figure 2.26). Thus, when such an image produced by a convex lens
serves as the object for the eye, as shown in Figure 2.37, the image on the retina is enlarged, because the image
produced by the lens subtends a larger angle in the eye than does the object. A convex lens used for this
purpose is called a magnifying glass or a simple magnifier.
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Figure 2.37 The simple magnifier is a convex lens used to produce an enlarged image of an object on the retina. (a) With no convex lens,

the object subtends an angle from the eye. (b) With the convex lens in place, the image produced by the convex lens subtends an

angle from the eye, with . Thus, the image on the retina is larger with the convex lens in place.

To account for the magnification of a magnifying lens, we compare the angle subtended by the image (created
by the lens) with the angle subtended by the object (viewed with no lens), as shown in Figure 2.37. We assume
that the object is situated at the near point of the eye, because this is the object distance at which the unaided
eye can form the largest image on the retina. We will compare the magnified images created by a lens with this
maximum image size for the unaided eye. The magnification of an image when observed by the eye is the
angular magnification M, which is defined by the ratio of the angle subtended by the image to the angle

subtended by the object:

Consider the situation shown in Figure 2.37. The magnifying lens is held a distance l from the eye, and the

image produced by the magnifier forms a distance L from the eye. We want to calculate the angular
magnification for any arbitrary L and l . In the small-angle approximation, the angular size of the image

is . The angular size of the object at the near point is . The angular magnification
is then

2.26

2.27
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Using Equation 2.8 for linear magnification

and the thin-lens equation

in Equation 2.27, we arrive at the following expression for the angular magnification of a magnifying lens:

From part (b) of the figure, we see that the absolute value of the image distance is l . Note that

because the image is virtual, so we can dispense with the absolute value by explicitly inserting the
minus sign: l . Inserting this into Equation 2.28 gives us the final equation for the angular

magnification of a magnifying lens:

Note that all the quantities in this equation have to be expressed in centimeters. Often, we want the image to be
at the near-point distance ( ) to get maximum magnification, and we hold the magnifying lens close
to the eye (l ). In this case, Equation 2.29 gives

which shows that the greatest magnification occurs for the lens with the shortest focal length. In addition,
when the image is at the near-point distance and the lens is held close to the eye l , then

and Equation 2.27 becomes

where m is the linear magnification (Equation 2.32) derived for spherical mirrors and thin lenses. Another
useful situation is when the image is at infinity . Equation 2.29 then takes the form

The resulting magnification is simply the ratio of the near-point distance to the focal length of the magnifying
lens, so a lens with a shorter focal length gives a stronger magnification. Although this magnification is smaller
by 1 than the magnification obtained with the image at the near point, it provides for the most comfortable
viewing conditions, because the eye is relaxed when viewing a distant object.

By comparing Equation 2.29 with Equation 2.32, we see that the range of angular magnification of a given
converging lens is

2.28

l
2.29

2.30

2.31

2.32

2.33
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EXAMPLE 2.10

Magnifying a Diamond
A jeweler wishes to inspect a 3.0-mm-diameter diamond with a magnifier. The diamond is held at the jeweler’s
near point (25 cm), and the jeweler holds the magnifying lens close to his eye.

(a) What should the focal length of the magnifying lens be to see a 15-mm-diameter image of the diamond?

(b) What should the focal length of the magnifying lens be to obtain magnification?

Strategy
We need to determine the requisite magnification of the magnifier. Because the jeweler holds the magnifying
lens close to his eye, we can use Equation 2.30 to find the focal length of the magnifying lens.

Solution

a. The required linear magnification is the ratio of the desired image diameter to the diamond’s actual
diameter (Equation 2.32). Because the jeweler holds the magnifying lens close to his eye and the image
forms at his near point, the linear magnification is the same as the angular magnification, so

The focal length f of the magnifying lens may be calculated by solving Equation 2.30 for f, which gives

b. To get an image magnified by a factor of ten, we again solve Equation 2.30 for f, but this time we use
. The result is

Significance
Note that a greater magnification is achieved by using a lens with a smaller focal length. We thus need to use a
lens with radii of curvature that are less than a few centimeters and hold it very close to our eye. This is not
very convenient. A compound microscope, explored in the following section, can overcome this drawback.

2.8 Microscopes and Telescopes
Learning Objectives
By the end of this section, you will be able to:

• Explain the physics behind the operation of microscopes and telescopes
• Describe the image created by these instruments and calculate their magnifications

Microscopes and telescopes are major instruments that have contributed hugely to our current understanding
of the micro- and macroscopic worlds. The invention of these devices led to numerous discoveries in
disciplines such as physics, astronomy, and biology, to name a few. In this section, we explain the basic physics
that make these instruments work.

Microscopes
Although the eye is marvelous in its ability to see objects large and small, it obviously is limited in the smallest
details it can detect. The desire to see beyond what is possible with the naked eye led to the use of optical
instruments. We have seen that a simple convex lens can create a magnified image, but it is hard to get large
magnification with such a lens. A magnification greater than is difficult without distorting the image. To
get higher magnification, we can combine the simple magnifying glass with one or more additional lenses. In
this section, we examine microscopes that enlarge the details that we cannot see with the naked eye.
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Microscopes were first developed in the early 1600s by eyeglass makers in The Netherlands and Denmark. The
simplest compound microscope is constructed from two convex lenses (Figure 2.38). The objective lens is a
convex lens of short focal length (i.e., high power) with typical magnification from to . The
eyepiece, also referred to as the ocular, is a convex lens of longer focal length.

The purpose of a microscope is to create magnified images of small objects, and both lenses contribute to the
final magnification. Also, the final enlarged image is produced sufficiently far from the observer to be easily
viewed, since the eye cannot focus on objects or images that are too close (i.e., closer than the near point of the
eye).

Figure 2.38 A compound microscope is composed of two lenses: an objective and an eyepiece. The objective forms the first image, which

is larger than the object. This first image is inside the focal length of the eyepiece and serves as the object for the eyepiece. The eyepiece

forms the final image that is further magnified. The do and di shown will be discussed with superscripts "obj" below to denote they are

measured from the objective lens, while the eye piece variables will have superscripts of "eye" to denote this lens.

To see how the microscope in Figure 2.38 forms an image, consider its two lenses in succession. The object is
just beyond the focal length of the objective lens, producing a real, inverted image that is larger than the
object. This first image serves as the object for the second lens, or eyepiece. The eyepiece is positioned so that
the first image is within its focal length , so that it can further magnify the image. In a sense, it acts as a
magnifying glass that magnifies the intermediate image produced by the objective. The image produced by the
eyepiece is a magnified virtual image. The final image remains inverted but is farther from the observer than
the object, making it easy to view.

The eye views the virtual image created by the eyepiece, which serves as the object for the lens in the eye. The
virtual image formed by the eyepiece is well outside the focal length of the eye, so the eye forms a real image on
the retina.

The magnification of the microscope is the product of the linear magnification by the objective and the
angular magnification by the eyepiece. These are given by
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Here, and are the focal lengths of the objective and the eyepiece, respectively. We assume that the
final image is formed at the near point of the eye, providing the largest magnification. Note that the angular
magnification of the eyepiece is the same as obtained earlier for the simple magnifying glass. This should not
be surprising, because the eyepiece is essentially a magnifying glass, and the same physics applies here. The
net magnification of the compound microscope is the product of the linear magnification of the
objective and the angular magnification of the eyepiece:

EXAMPLE 2.11

Microscope Magnification
Calculate the magnification of an object placed 6.20 mm from a compound microscope that has a 6.00 mm-
focal length objective and a 50.0 mm-focal length eyepiece. The objective and eyepiece are separated by 23.0
cm.

Strategy
This situation is similar to that shown in Figure 2.38. To find the overall magnification, we must know the
linear magnification of the objective and the angular magnification of the eyepiece. We can use Equation 2.34,
but we need to use the thin-lens equation to find the image distance of the objective.

Solution

Solving the thin-lens equation for gives

Inserting this result into Equation 2.34 along with the known values and
gives

Significance
Both the objective and the eyepiece contribute to the overall magnification, which is large and negative,
consistent with Figure 2.38, where the image is seen to be large and inverted. In this case, the image is virtual
and inverted, which cannot happen for a single element (see Figure 2.26).

2.34
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Figure 2.39 A compound microscope with the image created at infinity.

We now calculate the magnifying power of a microscope when the image is at infinity, as shown in Figure 2.39,
because this makes for the most relaxed viewing. The magnifying power of the microscope is the product of
linear magnification of the objective and the angular magnification of the eyepiece. The
magnification of the objective can be obtained from the thin-lens equation for magnification, which is

If the final image is at infinity, then the image created by the objective must be located at the focal point of the
eyepiece. This may be seen by considering the thin-lens equation with or by recalling that rays that
pass through the focal point exit the lens parallel to each other, which is equivalent to focusing at infinity. For
many microscopes, the distance between the image-side focal point of the objective and the object-side focal
point of the eyepiece is standardized at . This distance is called the tube length of the microscope. If
the length of the compound microscope L is roughly the focal length of the objective, we can substitute L in for
di

obj to get

We now need to calculate the angular magnification of the eyepiece with the image at infinity. To do so, we take
the ratio of the angle subtended by the image to the angle subtended by the object at the near
point of the eye (this is the closest that the unaided eye can view the object, and thus this is the position where
the object will form the largest image on the retina of the unaided eye). Using Figure 2.39 and working in the
small-angle approximation, we have and , where is the height of
the image formed by the objective, which is the object of the eyepiece. Thus, the angular magnification of the
eyepiece is

The net magnifying power of the compound microscope with the image at infinity is therefore

2.35

2.36

2.37
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The focal distances must be in centimeters. The minus sign indicates that the final image is inverted. Note that
the only variables in the equation are the focal distances of the eyepiece and the objective, which makes this
equation particularly useful.

Telescopes
Telescopes are meant for viewing distant objects and produce an image that is larger than the image produced
in the unaided eye. Telescopes gather far more light than the eye, allowing dim objects to be observed with
greater magnification and better resolution. Telescopes were invented around 1600, and Galileo was the first
to use them to study the heavens, with monumental consequences. He observed the moons of Jupiter, the
craters and mountains on the moon, the details of sunspots, and the fact that the Milky Way is composed of a
vast number of individual stars.

Figure 2.40 (a) Galileo made telescopes with a convex objective and a concave eyepiece. These produce an upright image and are used in

spyglasses. (b) Most simple refracting telescopes have two convex lenses. The objective forms a real, inverted image at (or just within) the

focal plane of the eyepiece. This image serves as the object for the eyepiece. The eyepiece forms a virtual, inverted image that is magnified.

Part (a) of Figure 2.40 shows a refracting telescope made of two lenses. The first lens, called the objective,

2.38
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forms a real image within the focal length of the second lens, which is called the eyepiece. The image of the
objective lens serves as the object for the eyepiece, which forms a magnified virtual image that is observed by
the eye. This design is what Galileo used to observe the heavens.

Although the arrangement of the lenses in a refracting telescope looks similar to that in a microscope, there
are important differences. In a telescope, the real object is far away and the intermediate image is smaller than
the object. In a microscope, the real object is very close and the intermediate image is larger than the object. In
both the telescope and the microscope, the eyepiece magnifies the intermediate image; in the telescope,
however, this is the only magnification.

The most common two-lens telescope is shown in part (b) of the figure. The object is so far from the telescope
that it is essentially at infinity compared with the focal lengths of the lenses , so the incoming rays
are essentially parallel and focus on the focal plane. Thus, the first image is produced at , as shown
in the figure, and is not large compared with what you might see by looking directly at the object. However, the
eyepiece of the telescope eyepiece (like the microscope eyepiece) allows you to get nearer than your near point
to this first image and so magnifies it (because you are near to it, it subtends a larger angle from your eye and
so forms a larger image on your retina). As for a simple magnifier, the angular magnification of a telescope is
the ratio of the angle subtended by the image [ in part (b)] to the angle subtended by the real object
[ in part (b)]:

To obtain an expression for the magnification that involves only the lens parameters, note that the focal plane
of the objective lens lies very close to the focal plan of the eyepiece. If we assume that these planes are
superposed, we have the situation shown in Figure 2.41.

Figure 2.41 The focal plane of the objective lens of a telescope is very near to the focal plane of the eyepiece. The angle

subtended by the image viewed through the eyepiece is larger than the angle subtended by the object when viewed with the

unaided eye.

We further assume that the angles and are small, so that the small-angle approximation holds
( ). If the image formed at the focal plane has height h, then

where the minus sign is introduced because the height is negative if we measure both angles in the

2.39
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counterclockwise direction. Inserting these expressions into Equation 2.39 gives

Thus, to obtain the greatest angular magnification, it is best to have an objective with a long focal length and an
eyepiece with a short focal length. The greater the angular magnification M, the larger an object will appear
when viewed through a telescope, making more details visible. Limits to observable details are imposed by
many factors, including lens quality and atmospheric disturbance. Typical eyepieces have focal lengths of 2.5
cm or 1.25 cm. If the objective of the telescope has a focal length of 1 meter, then these eyepieces result in
magnifications of and , respectively. Thus, the angular magnifications make the image appear 40
times or 80 times closer than the real object.

The minus sign in the magnification indicates the image is inverted, which is unimportant for observing the
stars but is a real problem for other applications, such as telescopes on ships or telescopic gun sights. If an
upright image is needed, Galileo’s arrangement in part (a) of Figure 2.40 can be used. But a more common
arrangement is to use a third convex lens as an eyepiece, increasing the distance between the first two and
inverting the image once again, as seen in Figure 2.42.

Figure 2.42 This arrangement of three lenses in a telescope produces an upright final image. The first two lenses are far enough apart

that the second lens inverts the image of the first. The third lens acts as a magnifier and keeps the image upright and in a location that is

easy to view.

The largest refracting telescope in the world is the 40-inch diameter Yerkes telescope located at Lake Geneva,
Wisconsin (Figure 2.43), and operated by the University of Chicago.

It is very difficult and expensive to build large refracting telescopes. You need large defect-free lenses, which in
itself is a technically demanding task. A refracting telescope basically looks like a tube with a support
structure to rotate it in different directions. A refracting telescope suffers from several problems. The
aberration of lenses causes the image to be blurred. Also, as the lenses become thicker for larger lenses, more
light is absorbed, making faint stars more difficult to observe. Large lenses are also very heavy and deform
under their own weight. Some of these problems with refracting telescopes are addressed by avoiding
refraction for collecting light and instead using a curved mirror in its place, as devised by Isaac Newton. These
telescopes are called reflecting telescopes.

2.40
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Figure 2.43 In 1897, the Yerkes Observatory in Wisconsin (USA) built a large refracting telescope with an objective lens that is 40 inches

in diameter and has a tube length of 62 feet. (credit: Yerkes Observatory, University of Chicago)

Reflecting Telescopes
Isaac Newton designed the first reflecting telescope around 1670 to solve the problem of chromatic aberration
that happens in all refracting telescopes. In chromatic aberration, light of different colors refracts by slightly
different amounts in the lens. As a result, a rainbow appears around the image and the image appears blurred.
In the reflecting telescope, light rays from a distant source fall upon the surface of a concave mirror fixed at the
bottom end of the tube. The use of a mirror instead of a lens eliminates chromatic aberration. The concave
mirror focuses the rays on its focal plane. The design problem is how to observe the focused image. Newton
used a design in which the focused light from the concave mirror was reflected to one side of the tube into an
eyepiece [part (a) of Figure 2.44]. This arrangement is common in many amateur telescopes and is called the
Newtonian design.

Some telescopes reflect the light back toward the middle of the concave mirror using a convex mirror. In this
arrangement, the light-gathering concave mirror has a hole in the middle [part (b) of the figure]. The light then
is incident on an eyepiece lens. This arrangement of the objective and eyepiece is called the Cassegrain
design. Most big telescopes, including the Hubble space telescope, are of this design. Other arrangements are
also possible. In some telescopes, a light detector is placed right at the spot where light is focused by the
curved mirror.

Figure 2.44 Reflecting telescopes: (a) In the Newtonian design, the eyepiece is located at the side of the telescope; (b) in the Cassegrain

design, the eyepiece is located past a hole in the primary mirror.

Most astronomical research telescopes are now of the reflecting type. One of the earliest large telescopes of
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this kind is the Hale 200-inch (or 5-meter) telescope built on Mount Palomar in southern California, which has
a 200 inch-diameter mirror. One of the largest telescopes in the world is the 10-meter Keck telescope at the
Keck Observatory on the summit of the dormant Mauna Kea volcano in Hawaii. The Keck Observatory operates
two 10-meter telescopes. Each is not a single mirror, but is instead made up of 36 hexagonal mirrors.
Furthermore, the two telescopes on the Keck can work together, which increases their power to an effective
85-meter mirror. The Hubble telescope (Figure 2.45) is another large reflecting telescope with a 2.4 meter-
diameter primary mirror. The Hubble was put into orbit around Earth in 1990.

Figure 2.45 The Hubble space telescope as seen from the Space Shuttle Discovery. (credit: modification of work by NASA)

The angular magnification M of a reflecting telescope is also given by Equation 2.36. For a spherical mirror, the
focal length is half the radius of curvature, so making a large objective mirror not only helps the telescope
collect more light but also increases the magnification of the image.
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CHAPTER REVIEW
Key Terms
aberration distortion in an image caused by

departures from the small-angle approximation
accommodation use of the ciliary muscles to

adjust the shape of the eye lens for focusing on
near or far objects

angular magnification ratio of the angle
subtended by an object observed with a magnifier
to that observed by the naked eye

apparent depth depth at which an object is
perceived to be located with respect to an
interface between two media

Cassegrain design arrangement of an objective
and eyepiece such that the light-gathering
concave mirror has a hole in the middle, and light
then is incident on an eyepiece lens

charge-coupled device (CCD) semiconductor chip
that converts a light image into tiny pixels that
can be converted into electronic signals of color
and intensity

coma similar to spherical aberration, but arises
when the incoming rays are not parallel to the
optical axis

compound microscope microscope constructed
from two convex lenses, the first serving as the
eyepiece and the second serving as the objective
lens

concave mirror spherical mirror with its reflecting
surface on the inner side of the sphere; the mirror
forms a “cave”

converging (or convex) lens lens in which light
rays that enter it parallel converge into a single
point on the opposite side

convex mirror spherical mirror with its reflecting
surface on the outer side of the sphere

curved mirror mirror formed by a curved surface,
such as spherical, elliptical, or parabolic

diverging (or concave) lens lens that causes light
rays to bend away from its optical axis

eyepiece lens or combination of lenses in an
optical instrument nearest to the eye of the
observer

far point furthest point an eye can see in focus
farsightedness (or hyperopia) visual defect in

which near objects appear blurred because their
images are focused behind the retina rather than
on the retina; a farsighted person can see far
objects clearly but near objects appear blurred

first focus or object focus object located at this
point will result in an image created at infinity on
the opposite side of a spherical interface between

two media
focal length distance along the optical axis from

the focal point to the optical element that focuses
the light rays

focal plane plane that contains the focal point and
is perpendicular to the optical axis

focal point for a converging lens or mirror, the
point at which converging light rays cross; for a
diverging lens or mirror, the point from which
diverging light rays appear to originate

image distance distance of the image from the
central axis of the optical element that produces
the image

linear magnification ratio of image height to
object height

magnification ratio of image size to object size
near point closest point an eye can see in focus
nearsightedness (or myopia) visual defect in

which far objects appear blurred because their
images are focused in front of the retina rather
than on the retina; a nearsighted person can see
near objects clearly but far objects appear
blurred

net magnification ( ) of the compound
microscope is the product of the linear
magnification of the objective and the angular
magnification of the eyepiece

Newtonian design arrangement of an objective
and eyepiece such that the focused light from the
concave mirror was reflected to one side of the
tube into an eyepiece

object distance distance of the object from the
central axis of the optical element that produces
its image

objective lens nearest to the object being
examined.

optical axis axis about which the mirror is
rotationally symmetric; you can rotate the mirror
about this axis without changing anything

optical power (P) inverse of the focal length of a
lens, with the focal length expressed in meters.
The optical power P of a lens is expressed in units
of diopters D; that is,

plane mirror plane (flat) reflecting surface
ray tracing technique that uses geometric

constructions to find and characterize the image
formed by an optical system

real image image that can be projected onto a
screen because the rays physically go through the
image
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second focus or image focus for a converging
interface, the point where a bundle of parallel
rays refracting at a spherical interface; for a
diverging interface, the point at which the
backward continuation of the refracted rays will
converge between two media will focus

simple magnifier (or magnifying glass)
converging lens that produces a virtual image of
an object that is within the focal length of the lens

small-angle approximation approximation that is
valid when the size of a spherical mirror is
significantly smaller than the mirror’s radius; in
this approximation, spherical aberration is

negligible and the mirror has a well-defined focal
point

spherical aberration distortion in the image
formed by a spherical mirror when rays are not
all focused at the same point

thin-lens approximation assumption that the lens
is very thin compared to the first image distance

vertex point where the mirror’s surface intersects
with the optical axis

virtual image image that cannot be projected on a
screen because the rays do not physically go
through the image, they only appear to originate
from the image

Key Equations

Image distance in a plane mirror

Focal length for a spherical mirror

Mirror equation

Magnification of a spherical mirror

Sign convention for mirrors

Focal length f

Object distance do

Image distance di

Magnification m

Apparent depth equation

Spherical interface equation

The thin-lens equation

The lens maker’s equation
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The magnification m of an object

Optical power

Optical power of thin, closely spaced lenses

Angular magnification M of a simple magnifier

Angular magnification of an object a distance
L from the eye for a convex lens of focal length
f held a distance ℓ from the eye

l

Range of angular magnification for a given
lens for a person with a near point of 25 cm

Net magnification of compound microscope

Summary
2.1 Images Formed by Plane Mirrors

• A plane mirror always forms a virtual image
(behind the mirror).

• The image and object are the same distance
from a flat mirror, the image size is the same as
the object size, and the image is upright.

2.2 Spherical Mirrors

• Spherical mirrors may be concave (converging)
or convex (diverging).

• The focal length of a spherical mirror is one-half
of its radius of curvature: .

• The mirror equation and ray tracing allow you to
give a complete description of an image formed
by a spherical mirror.

• Spherical aberration occurs for spherical
mirrors but not parabolic mirrors; comatic
aberration occurs for both types of mirrors.

2.3 Images Formed by Refraction

This section explains how a single refracting
interface forms images.

• When an object is observed through a plane
interface between two media, then it appears at
an apparent distance that differs from the
actual distance : .

• An image is formed by the refraction of light at a
spherical interface between two media of

indices of refraction and .
• Image distance depends on the radius of

curvature of the interface, location of the object,
and the indices of refraction of the media.

2.4 Thin Lenses

• Two types of lenses are possible: converging and
diverging. A lens that causes light rays to bend
toward (away from) its optical axis is a
converging (diverging) lens.

• For a converging lens, the focal point is where
the converging light rays cross; for a diverging
lens, the focal point is the point from which the
diverging light rays appear to originate.

• The distance from the center of a thin lens to its
focal point is called the focal length f.

• Ray tracing is a geometric technique to
determine the paths taken by light rays through
thin lenses.

• A real image can be projected onto a screen.
• A virtual image cannot be projected onto a

screen.
• A converging lens forms either real or virtual

images, depending on the object location; a
diverging lens forms only virtual images.

2.5 The Eye

• Image formation by the eye is adequately
described by the thin-lens equation.

• The eye produces a real image on the retina by
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adjusting its focal length in a process called
accommodation.

• Nearsightedness, or myopia, is the inability to
see far objects and is corrected with a diverging
lens to reduce the optical power of the eye.

• Farsightedness, or hyperopia, is the inability to
see near objects and is corrected with a
converging lens to increase the optical power of
the eye.

• In myopia and hyperopia, the corrective lenses
produce images at distances that fall between
the person’s near and far points so that images
can be seen clearly.

2.6 The Camera

• Cameras use combinations of lenses to create
an image for recording.

• Digital photography is based on charge-coupled
devices (CCDs) that break an image into tiny
“pixels” that can be converted into electronic
signals.

2.7 The Simple Magnifier

• A simple magnifier is a converging lens and
produces a magnified virtual image of an object
located within the focal length of the lens.

• Angular magnification accounts for
magnification of an image created by a
magnifier. It is equal to the ratio of the angle
subtended by the image to that subtended by the
object when the object is observed by the
unaided eye.

• Angular magnification is greater for magnifying
lenses with smaller focal lengths.

• Simple magnifiers can produce as great as
tenfold ( ) magnification.

2.8 Microscopes and Telescopes

• Many optical devices contain more than a single
lens or mirror. These are analyzed by
considering each element sequentially. The

image formed by the first is the object for the
second, and so on. The same ray-tracing and
thin-lens techniques developed in the previous
sections apply to each lens element.

• The overall magnification of a multiple-element
system is the product of the linear
magnifications of its individual elements times
the angular magnification of the eyepiece. For a
two-element system with an objective and an
eyepiece, this is

where is the linear magnification of the
objective and is the angular magnification
of the eyepiece.

• The microscope is a multiple-element system
that contains more than a single lens or mirror.
It allows us to see detail that we could not to see
with the unaided eye. Both the eyepiece and
objective contribute to the magnification. The
magnification of a compound microscope with
the image at infinity is

In this equation, 16 cm is the standardized
distance between the image-side focal point of
the objective lens and the object-side focal point
of the eyepiece, 25 cm is the normal near point
distance, and are the focal distances
for the objective lens and the eyepiece,
respectively.

• Simple telescopes can be made with two lenses.
They are used for viewing objects at large
distances.

• The angular magnification M for a telescope is
given by

where and are the focal lengths of the
objective lens and the eyepiece, respectively.

Conceptual Questions
2.1 Images Formed by Plane Mirrors

1. What are the differences between real and virtual
images? How can you tell (by looking) whether an
image formed by a single lens or mirror is real or
virtual?

2. Can you see a virtual image? Explain your
response.

3. Can you photograph a virtual image?
4. Can you project a virtual image onto a screen?

5. Is it necessary to project a real image onto a
screen to see it?

6. Devise an arrangement of mirrors allowing you to
see the back of your head. What is the minimum
number of mirrors needed for this task?

7. If you wish to see your entire body in a flat mirror
(from head to toe), how tall should the mirror be?
Does its size depend upon your distance away
from the mirror? Provide a sketch.

2.41

2.42

2.43
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2.2 Spherical Mirrors

8. At what distance is an image always located: at
or f ?

9. Under what circumstances will an image be
located at the focal point of a spherical lens or
mirror?

10. What is meant by a negative magnification?
What is meant by a magnification whose
absolute value is less than one?

11. Can an image be larger than the object even
though its magnification is negative? Explain.

2.3 Images Formed by Refraction

12. Derive the formula for the apparent depth of a
fish in a fish tank using Snell’s law.

13. Use a ruler and a protractor to find the image by
refraction in the following cases. Assume an air-
glass interface. Use a refractive index of 1 for air
and of 1.5 for glass. (Hint: Use Snell’s law at the
interface.)
(a) A point object located on the axis of a
concave interface located at a point within the
focal length from the vertex.
(b) A point object located on the axis of a
concave interface located at a point farther than
the focal length from the vertex.
(c) A point object located on the axis of a convex
interface located at a point within the focal
length from the vertex.
(d) A point object located on the axis of a convex
interface located at a point farther than the
focal length from the vertex.
(e) Repeat (a)–(d) for a point object off the axis.

2.4 Thin Lenses

14. You can argue that a flat piece of glass, such as
in a window, is like a lens with an infinite focal
length. If so, where does it form an image? That
is, how are and related?

15. When you focus a camera, you adjust the
distance of the lens from the film. If the camera
lens acts like a thin lens, why can it not be a
fixed distance from the film for both near and
distant objects?

16. A thin lens has two focal points, one on either

side of the lens at equal distances from its
center, and should behave the same for light
entering from either side. Look backward and
forward through a pair of eyeglasses and
comment on whether they are thin lenses.

17. Will the focal length of a lens change when it is
submerged in water? Explain.

2.5 The Eye

18. If the lens of a person’s eye is removed because
of cataracts (as has been done since ancient
times), why would you expect an eyeglass lens
of about 16 D to be prescribed?

19. When laser light is shone into a relaxed normal-
vision eye to repair a tear by spot-welding the
retina to the back of the eye, the rays entering
the eye must be parallel. Why?

20. Why is your vision so blurry when you open
your eyes while swimming under water? How
does a face mask enable clear vision?

21. It has become common to replace the cataract-
clouded lens of the eye with an internal lens.
This intraocular lens can be chosen so that the
person has perfect distant vision. Will the
person be able to read without glasses? If the
person was nearsighted, is the power of the
intraocular lens greater or less than the
removed lens?

22. If the cornea is to be reshaped (this can be done
surgically or with contact lenses) to correct
myopia, should its curvature be made greater or
smaller? Explain.

2.8 Microscopes and Telescopes

23. Geometric optics describes the interaction of
light with macroscopic objects. Why, then, is it
correct to use geometric optics to analyze a
microscope’s image?

24. The image produced by the microscope in
Figure 2.38 cannot be projected. Could extra
lenses or mirrors project it? Explain.

25. If you want your microscope or telescope to
project a real image onto a screen, how would
you change the placement of the eyepiece
relative to the objective?

Problems
2.1 Images Formed by Plane Mirrors

26. Consider a pair of flat mirrors that are
positioned so that they form an angle of 120 .

An object is placed on the bisector between the
mirrors. Construct a ray diagram as in Figure
2.4 to show how many images are formed.

27. Consider a pair of flat mirrors that are
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positioned so that they form an angle of 60 . An
object is placed on the bisector between the
mirrors. Construct a ray diagram as in Figure
2.4 to show how many images are formed.

28. By using more than one flat mirror, construct a
ray diagram showing how to create an inverted
image.

2.2 Spherical Mirrors

29. The following figure shows a light bulb between
two spherical mirrors. One mirror produces a
beam of light with parallel rays; the other keeps
light from escaping without being put into the
beam. Where is the filament of the light in relation
to the focal point or radius of curvature of each
mirror?

30. Why are diverging mirrors often used for
rearview mirrors in vehicles? What is the main
disadvantage of using such a mirror compared
with a flat one?

31. Some telephoto cameras use a mirror rather
than a lens. What radius of curvature mirror is
needed to replace a 800 mm-focal length
telephoto lens?

32. Calculate the focal length of a mirror formed by
the shiny back of a spoon that has a 3.00 cm
radius of curvature.

33. Electric room heaters use a concave mirror to
reflect infrared (IR) radiation from hot coils.
Note that IR radiation follows the same law of
reflection as visible light. Given that the mirror
has a radius of curvature of 50.0 cm and
produces an image of the coils 3.00 m away
from the mirror, where are the coils?

34. Find the magnification of the heater element in
the previous problem. Note that its large
magnitude helps spread out the reflected
energy.

35. What is the focal length of a makeup mirror that
produces a magnification of 1.50 when a

person’s face is 12.0 cm away? Explicitly show
how you follow the steps in the Example 2.2.

36. A shopper standing 3.00 m from a convex
security mirror sees his image with a
magnification of 0.250. (a) Where is his image?
(b) What is the focal length of the mirror? (c)
What is its radius of curvature?

37. An object 1.50 cm high is held 3.00 cm from a
person’s cornea, and its reflected image is
measured to be 0.167 cm high. (a) What is the
magnification? (b) Where is the image? (c) Find
the radius of curvature of the convex mirror
formed by the cornea. (Note that this technique
is used by optometrists to measure the
curvature of the cornea for contact lens fitting.
The instrument used is called a keratometer, or
curve measurer.)

38. Ray tracing for a flat mirror shows that the
image is located a distance behind the mirror
equal to the distance of the object from the
mirror. This is stated as , since this is a
negative image distance (it is a virtual image).
What is the focal length of a flat mirror?

39. Show that, for a flat mirror, , given that
the image is the same distance behind the
mirror as the distance of the object from the
mirror.

40. Use the law of reflection to prove that the focal
length of a mirror is half its radius of curvature.
That is, prove that . Note this is true for
a spherical mirror only if its diameter is small
compared with its radius of curvature.

41. Referring to the electric room heater considered
in problem 5, calculate the intensity of IR
radiation in projected by the concave
mirror on a person 3.00 m away. Assume that
the heating element radiates 1500 W and has an
area of , and that half of the radiated
power is reflected and focused by the mirror.

42. Two mirrors are inclined at an angle of 60 and
an object is placed at a point that is equidistant
from the two mirrors. Use a protractor to draw
rays accurately and locate all images. You may
have to draw several figures so that that rays for
different images do not clutter your drawing.

43. Two parallel mirrors are facing each other and
are separated by a distance of 3 cm. A point
object is placed between the mirrors 1 cm from
one of the mirrors. Find the coordinates of all
the images.

2.3 Images Formed by Refraction

44. An object is located in air 30 cm from the vertex
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of a concave surface made of glass with a radius
of curvature 10 cm. Where does the image by
refraction form and what is its magnification?
Use and .

45. An object is located in air 30 cm from the vertex
of a convex surface made of glass with a radius
of curvature 80 cm. Where does the image by
refraction form and what is its magnification?

46. An object is located in water 15 cm from the
vertex of a concave surface made of glass with a
radius of curvature 10 cm. Where does the
image by refraction form and what is its
magnification? Use and

.
47. An object is located in water 30 cm from the

vertex of a convex surface made of Plexiglas
with a radius of curvature of 80 cm. Where does
the image form by refraction and what is its
magnification? and

.
48. An object is located in air 5 cm from the vertex

of a concave surface made of glass with a radius
of curvature 20 cm. Where does the image form
by refraction and what is its magnification? Use

and .
49. Derive the spherical interface equation for

refraction at a concave surface. (Hint: Follow the
derivation in the text for the convex surface.)

2.4 Thin Lenses

50. How far from the lens must the film in a camera
be, if the lens has a 35.0-mm focal length and is
being used to photograph a flower 75.0 cm
away? Explicitly show how you follow the steps
in the Figure 2.27.

51. A certain slide projector has a 100 mm-focal
length lens. (a) How far away is the screen if a
slide is placed 103 mm from the lens and
produces a sharp image? (b) If the slide is 24.0
by 36.0 mm, what are the dimensions of the
image? Explicitly show how you follow the steps
in the Figure 2.27.

52. A doctor examines a mole with a 15.0-cm focal
length magnifying glass held 13.5 cm from the
mole. (a) Where is the image? (b) What is its
magnification? (c) How big is the image of a 5.00
mm diameter mole?

53. A camera with a 50.0-mm focal length lens is
being used to photograph a person standing
3.00 m away. (a) How far from the lens must the
film be? (b) If the film is 36.0 mm high, what
fraction of a 1.75-m-tall person will fit on it? (c)

Discuss how reasonable this seems, based on
your experience in taking or posing for
photographs.

54. A camera lens used for taking close-up
photographs has a focal length of 22.0 mm. The
farthest it can be placed from the film is 33.0
mm. (a) What is the closest object that can be
photographed? (b) What is the magnification of
this closest object?

55. Suppose your 50.0 mm-focal length camera
lens is 51.0 mm away from the film in the
camera. (a) How far away is an object that is in
focus? (b) What is the height of the object if its
image is 2.00 cm high?

56. What is the focal length of a magnifying glass
that produces a magnification of 3.00 when held
5.00 cm from an object, such as a rare coin?

57. The magnification of a book held 7.50 cm from
a 10.0 cm-focal length lens is 4.00. (a) Find the
magnification for the book when it is held 8.50
cm from the magnifier. (b) Repeat for the book
held 9.50 cm from the magnifier. (c) Comment
on how magnification changes as the object
distance increases as in these two calculations.

58. Suppose a 200 mm-focal length telephoto lens
is being used to photograph mountains 10.0 km
away. (a) Where is the image? (b) What is the
height of the image of a 1000 m high cliff on one
of the mountains?

59. A camera with a 100 mm-focal length lens is
used to photograph the sun. What is the height
of the image of the sun on the film, given the
sun is in diameter and is

away?
60. Use the thin-lens equation to show that the

magnification for a thin lens is determined by
its focal length and the object distance and is
given by .

61. An object of height 3.0 cm is placed 5.0 cm in
front of a converging lens of focal length 20 cm
and observed from the other side. Where and
how large is the image?

62. An object of height 3.0 cm is placed at 5.0 cm in
front of a diverging lens of focal length 20 cm
and observed from the other side. Where and
how large is the image?

63. An object of height 3.0 cm is placed at 25 cm in
front of a diverging lens of focal length 20 cm.
Behind the diverging lens, there is a converging
lens of focal length 20 cm. The distance
between the lenses is 5.0 cm. Find the location
and size of the final image.

64. Two convex lenses of focal lengths 20 cm and
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10 cm are placed 30 cm apart, with the lens
with the longer focal length on the right. An
object of height 2.0 cm is placed midway
between them and observed through each lens
from the left and from the right. Describe what
you will see, such as where the image(s) will
appear, whether they will be upright or inverted
and their magnifications.

2.5 The Eye

Unless otherwise stated, the lens-to-retina distance
is 2.00 cm.

65. What is the power of the eye when viewing an
object 50.0 cm away?

66. Calculate the power of the eye when viewing an
object 3.00 m away.

67. The print in many books averages 3.50 mm in
height. How high is the image of the print on the
retina when the book is held 30.0 cm from the
eye?

68. Suppose a certain person’s visual acuity is such
that he can see objects clearly that form an
image high on his retina. What is the
maximum distance at which he can read the
75.0-cm-high letters on the side of an airplane?

69. People who do very detailed work close up, such
as jewelers, often can see objects clearly at
much closer distance than the normal 25 cm.
(a) What is the power of the eyes of a woman
who can see an object clearly at a distance of
only 8.00 cm? (b) What is the image size of a
1.00-mm object, such as lettering inside a ring,
held at this distance? (c) What would the size of
the image be if the object were held at the
normal 25.0 cm distance?

70. What is the far point of a person whose eyes
have a relaxed power of 50.5 D?

71. What is the near point of a person whose eyes
have an accommodated power of 53.5 D?

72. (a) A laser reshaping the cornea of a myopic
patient reduces the power of his eye by 9.00 D,
with a uncertainty in the final correction.
What is the range of diopters for eyeglass lenses
that this person might need after this
procedure? (b) Was the person nearsighted or
farsighted before the procedure? How do you
know?

73. The power for normal close vision is 54.0 D. In a
vision-correction procedure, the power of a
patient’s eye is increased by 3.00 D. Assuming
that this produces normal close vision, what
was the patient’s near point before the

procedure?
74. For normal distant vision, the eye has a power

of 50.0 D. What was the previous far point of a
patient who had laser vision correction that
reduced the power of her eye by 7.00 D,
producing normal distant vision?

75. The power for normal distant vision is 50.0 D. A
severely myopic patient has a far point of 5.00
cm. By how many diopters should the power of
his eye be reduced in laser vision correction to
obtain normal distant vision for him?

76. A student’s eyes, while reading the blackboard,
have a power of 51.0 D. How far is the board
from his eyes?

77. The power of a physician’s eyes is 53.0 D while
examining a patient. How far from her eyes is
the object that is being examined?

78. The normal power for distant vision is 50.0 D. A
young woman with normal distant vision has a
10.0% ability to accommodate (that is, increase)
the power of her eyes. What is the closest object
she can see clearly?

79. The far point of a myopic administrator is 50.0
cm. (a) What is the relaxed power of his eyes?
(b) If he has the normal 8.00% ability to
accommodate, what is the closest object he can
see clearly?

80. A very myopic man has a far point of 20.0 cm.
What power contact lens (when on the eye) will
correct his distant vision?

81. Repeat the previous problem for eyeglasses held
1.50 cm from the eyes.

82. A myopic person sees that her contact lens
prescription is –4.00 D. What is her far point?

83. Repeat the previous problem for glasses that are
1.75 cm from the eyes.

84. The contact lens prescription for a mildly
farsighted person is 0.750 D, and the person has
a near point of 29.0 cm. What is the power of the
tear layer between the cornea and the lens if the
correction is ideal, taking the tear layer into
account?

2.7 The Simple Magnifier

85. If the image formed on the retina subtends an
angle of and the object subtends an angle of

, what is the magnification of the image?
86. What is the magnification of a magnifying lens

with a focal length of 10 cm if it is held 3.0 cm
from the eye and the object is 12 cm from the
eye?

87. How far should you hold a 2.1 cm-focal length
magnifying glass from an object to obtain a

2 • Chapter Review 107



magnification of ? Assume you place your
eye 5.0 cm from the magnifying glass.

88. You hold a 5.0 cm-focal length magnifying glass
as close as possible to your eye. If you have a
normal near point, what is the magnification?

89. You view a mountain with a magnifying glass of
focal length . What is the
magnification?

90. You view an object by holding a 2.5 cm-focal
length magnifying glass 10 cm away from it.
How far from your eye should you hold the
magnifying glass to obtain a magnification of

91. A magnifying glass forms an image 10 cm on
the opposite side of the lens from the object,
which is 10 cm away. What is the magnification
of this lens for a person with a normal near
point if their eye 12 cm from the object?

92. An object viewed with the naked eye subtends a
angle. If you view the object through a

magnifying glass, what angle is subtended by
the image formed on your retina?

93. For a normal, relaxed eye, a magnifying glass
produces an angular magnification of 4.0. What
is the largest magnification possible with this
magnifying glass?

94. What range of magnification is possible with a
7.0 cm-focal length converging lens?

95. A magnifying glass produces an angular
magnification of 4.5 when used by a young
person with a near point of 18 cm. What is the
maximum angular magnification obtained by
an older person with a near point of 45 cm?

2.8 Microscopes and Telescopes

96. A microscope with an overall magnification of
800 has an objective that magnifies by 200. (a)
What is the angular magnification of the
eyepiece? (b) If there are two other objectives
that can be used, having magnifications of 100
and 400, what other total magnifications are
possible?

97. (a) What magnification is produced by a 0.150
cm-focal length microscope objective that is
0.155 cm from the object being viewed? (b)
What is the overall magnification if an
eyepiece (one that produces an angular
magnification of 8.00) is used?

98. Where does an object need to be placed relative
to a microscope for its 0.50 cm-focal length
objective to produce a magnification of −400?

99. An amoeba is 0.305 cm away from the 0.300
cm-focal length objective lens of a microscope.

(a) Where is the image formed by the objective
lens? (b) What is this image’s magnification? (c)
An eyepiece with a 2.00-cm focal length is
placed 20.0 cm from the objective. Where is the
final image? (d) What angular magnification is
produced by the eyepiece? (e) What is the
overall magnification? (See Figure 2.39.)

100. Unreasonable Results Your friends show you
an image through a microscope. They tell you
that the microscope has an objective with a
0.500-cm focal length and an eyepiece with a
5.00-cm focal length. The resulting overall
magnification is 250,000. Are these viable
values for a microscope?

Unless otherwise stated, the lens-to-retina distance
is 2.00 cm.

101. What is the angular magnification of a
telescope that has a 100 cm-focal length
objective and a 2.50 cm-focal length eyepiece?

102. Find the distance between the objective and
eyepiece lenses in the telescope in the above
problem needed to produce a final image very
far from the observer, where vision is most
relaxed. Note that a telescope is normally used
to view very distant objects.

103. A large reflecting telescope has an objective
mirror with a 10.0-m radius of curvature.
What angular magnification does it produce
when a 3.00 m-focal length eyepiece is used?

104. A small telescope has a concave mirror with a
2.00-m radius of curvature for its objective. Its
eyepiece is a 4.00 cm-focal length lens. (a)
What is the telescope’s angular magnification?
(b) What angle is subtended by a 25,000 km-
diameter sunspot? (c) What is the angle of its
telescopic image?

105. A binocular produces an angular
magnification of −7.50, acting like a telescope.
(Mirrors are used to make the image upright.)
If the binoculars have objective lenses with a
75.0-cm focal length, what is the focal length
of the eyepiece lenses?

106. Construct Your Own Problem Consider a
telescope of the type used by Galileo, having a
convex objective and a concave eyepiece as
illustrated in part (a) of Figure 2.40. Construct
a problem in which you calculate the location
and size of the image produced. Among the
things to be considered are the focal lengths of
the lenses and their relative placements as
well as the size and location of the object.
Verify that the angular magnification is greater
than one. That is, the angle subtended at the
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eye by the image is greater than the angle
subtended by the object.

107. Trace rays to find which way the given ray will
emerge after refraction through the thin lens
in the following figure. Assume thin-lens
approximation. (Hint: Pick a point P on the
given ray in each case. Treat that point as an
object. Now, find its image Q. Use the rule: All
rays on the other side of the lens will either go
through Q or appear to be coming from Q.)

108. Copy and draw rays to find the final image in
the following diagram. (Hint: Find the
intermediate image through lens alone. Use
the intermediate image as the object for the
mirror and work with the mirror alone to find
the final image.)

109. A concave mirror of radius of curvature 10 cm
is placed 30 cm from a thin convex lens of
focal length 15 cm. Find the location and
magnification of a small bulb sitting 50 cm
from the lens by using the algebraic method.

110. An object of height 3 cm is placed at 25 cm in
front of a converging lens of focal length 20
cm. Behind the lens there is a concave mirror
of focal length 20 cm. The distance between
the lens and the mirror is 5 cm. Find the
location, orientation and size of the final
image.

111. An object of height 3 cm is placed at a distance
of 25 cm in front of a converging lens of focal
length 20 cm, to be referred to as the first lens.
Behind the lens there is another converging
lens of focal length 20 cm placed 10 cm from
the first lens. There is a concave mirror of focal
length 15 cm placed 50 cm from the second

lens. Find the location, orientation, and size of
the final image.

112. An object of height 2 cm is placed at 50 cm in
front of a converging lens of focal length 40
cm. Behind the lens, there is a convex mirror
of focal length 15 cm placed 30 cm from the
converging lens. Find the location, orientation,
and size of the final image.

113. Two concave mirrors are placed facing each other.
One of them has a small hole in the middle. A penny
is placed on the bottom mirror (see the following
figure). When you look from the side, a real image of
the penny is observed above the hole. Explain how
that could happen.

114. A lamp of height 5 cm is placed 40 cm in front
of a converging lens of focal length 20 cm.
There is a plane mirror 15 cm behind the lens.
Where would you find the image when you
look in the mirror?

115. Parallel rays from a faraway source strike a
converging lens of focal length 20 cm at an
angle of 15 degrees with the horizontal
direction. Find the vertical position of the real
image observed on a screen in the focal plane.

116. Parallel rays from a faraway source strike a
diverging lens of focal length 20 cm at an angle
of 10 degrees with the horizontal direction. As
you look through the lens, where in the vertical
plane the image would appear?

117. A light bulb is placed 10 cm from a plane
mirror, which faces a convex mirror of radius
of curvature 8 cm. The plane mirror is located
at a distance of 30 cm from the vertex of the
convex mirror. Find the location of two images
in the convex mirror. Are there other images?
If so, where are they located?

118. A point source of light is 50 cm in front of a
converging lens of focal length 30 cm. A
concave mirror with a focal length of 20 cm is
placed 25 cm behind the lens. Where does the
final image form, and what are its orientation
and magnification?

119. Copy and trace to find how a horizontal ray from S
comes out after the lens. Use for the
prism material.
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120. Copy and trace how a horizontal ray from S
comes out after the lens. Use for the
glass.

121. Copy and draw rays to figure out the final
image.

122. By ray tracing or by calculation, find the place

inside the glass where rays from S converge as
a result of refraction through the lens and the
convex air-glass interface. Use a ruler to
estimate the radius of curvature.

123. A diverging lens has a focal length of 20 cm.
What is the power of the lens in diopters?

124. Two lenses of focal lengths of and are
glued together with transparent material of
negligible thickness. Show that the total power
of the two lenses simply add.

125. What will be the angular magnification of a
convex lens with the focal length 2.5 cm?

126. What will be the formula for the angular
magnification of a convex lens of focal length f
if the eye is very close to the lens and the near
point is located a distance D from the eye?

Additional Problems
127. Use a ruler and a protractor to draw rays to

find images in the following cases.
(a) A point object located on the axis of a
concave mirror located at a point within the
focal length from the vertex.
(b) A point object located on the axis of a
concave mirror located at a point farther than
the focal length from the vertex.
(c) A point object located on the axis of a
convex mirror located at a point within the
focal length from the vertex.
(d) A point object located on the axis of a
convex mirror located at a point farther than
the focal length from the vertex.
(e) Repeat (a)–(d) for a point object off the axis.

128. Where should a 3 cm tall object be placed in
front of a concave mirror of radius 20 cm so
that its image is real and 2 cm tall?

129. A 3 cm tall object is placed 5 cm in front of a
convex mirror of radius of curvature 20 cm.
Where is the image formed? How tall is the
image? What is the orientation of the image?

130. You are looking for a mirror so that you can see
a four-fold magnified virtual image of an object
when the object is placed 5 cm from the vertex
of the mirror. What kind of mirror you will
need? What should be the radius of curvature
of the mirror?

131. Derive the following equation for a convex
mirror:

,
where VO is the distance to the object O from
vertex V, VI the distance to the image I from V,
and VF is the distance to the focal point F from
V. (Hint: use two sets of similar triangles.)

132. (a) Draw rays to form the image of a vertical
object on the optical axis and farther than the
focal point from a converging lens. (b) Use
plane geometry in your figure and prove that
the magnification m is given by

133. Use another ray-tracing diagram for the same
situation as given in the previous problem to
derive the thin-lens equation, .

134. You photograph a 2.0-m-tall person with a
camera that has a 5.0 cm-focal length lens.
The image on the film must be no more than
2.0 cm high. (a) What is the closest distance
the person can stand to the lens? (b) For this
distance, what should be the distance from the
lens to the film?
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135. Find the focal length of a thin plano-convex
lens. The front surface of this lens is flat, and
the rear surface has a radius of curvature of

. Assume that the index of
refraction of the lens is 1.5.

136. Find the focal length of a meniscus lens with
and . Assume that the

index of refraction of the lens is 1.5.
137. A nearsighted man cannot see objects clearly

beyond 20 cm from his eyes. How close must
he stand to a mirror in order to see what he is
doing when he shaves?

138. A mother sees that her child’s contact lens
prescription is 0.750 D. What is the child’s
near point?

139. Repeat the previous problem for glasses that
are 2.20 cm from the eyes.

140. The contact-lens prescription for a
nearsighted person is −4.00 D and the person
has a far point of 22.5 cm. What is the power of
the tear layer between the cornea and the lens
if the correction is ideal, taking the tear layer
into account?

141. Unreasonable Results A boy has a near point
of 50 cm and a far point of 500 cm. Will a −4.00
D lens correct his far point to infinity?

142. Find the angular magnification of an image by
a magnifying glass of if the object
is placed from the lens and the
lens is close to the eye.

143. Let objective and eyepiece of a compound
microscope have focal lengths of 2.5 cm and
10 cm, respectively and be separated by 12
cm. A object is placed 6.0 cm from the
objective. How large is the virtual image
formed by the objective-eyepiece system?

144. Draw rays to scale to locate the image at the
retina if the eye lens has a focal length 2.5 cm
and the near point is 24 cm. (Hint: Place an
object at the near point.)

145. The objective and the eyepiece of a microscope
have the focal lengths 3 cm and 10 cm
respectively. Decide about the distance
between the objective and the eyepiece if we
need a magnification from the objective/
eyepiece compound system.

146. A far-sighted person has a near point of 100
cm. How far in front or behind the retina does
the image of an object placed 25 cm from the
eye form? Use the cornea to retina distance of
2.5 cm.

147. A near-sighted person has afar point of 80 cm.
(a) What kind of corrective lens will the person
need assuming the distance to the contact lens
from the eye is zero? (b) What would be the
power of the contact lens needed?

148. In a reflecting telescope the objective is a
concave mirror of radius of curvature 2 m and
an eyepiece is a convex lens of focal length 5
cm. Find the apparent size of a 25-m tree at a
distance of 10 km that you would perceive
when looking through the telescope.

149. Two stars that are apart are viewed by a
telescope and found to be separated by an
angle of . If the eyepiece of the
telescope has a focal length of 1.5 cm and the
objective has a focal length of 3 meters, how
far away are the stars from the observer?

150. What is the angular size of the Moon if viewed
from a binocular that has a focal length of 1.2
cm for the eyepiece and a focal length of 8 cm
for the objective? Use the radius of the moon

and the distance of the moon
from the observer to be .

151. An unknown planet at a distance of
from Earth is observed by a telescope that has
a focal length of the eyepiece of 1 cm and a
focal length of the objective of 1 m. If the far
away planet is seen to subtend an angle of

at the eyepiece, what is the size of
the planet?
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INTRODUCTION

CHAPTER 3
Interference

3.1 Young's Double-Slit Interference

3.2 Mathematics of Interference

3.3 Multiple-Slit Interference

3.4 Interference in Thin Films

3.5 The Michelson Interferometer

The most certain indication of a wave is interference. This wave characteristic is most
prominent when the wave interacts with an object that is not large compared with the wavelength. Interference
is observed for water waves, sound waves, light waves, and, in fact, all types of waves.

If you have ever looked at the reds, blues, and greens in a sunlit soap bubble and wondered how straw-colored
soapy water could produce them, you have hit upon one of the many phenomena that can only be explained by
the wave character of light (see Figure 3.1). The same is true for the colors seen in an oil slick or in the light
reflected from a DVD disc. These and other interesting phenomena cannot be explained fully by geometric
optics. In these cases, light interacts with objects and exhibits wave characteristics. The branch of optics that
considers the behavior of light when it exhibits wave characteristics is called wave optics (sometimes called
physical optics). It is the topic of this chapter.

3.1 Young's Double-Slit Interference
Learning Objectives
By the end of this section, you will be able to:

• Explain the phenomenon of interference
• Define constructive and destructive interference for a double slit

The Dutch physicist Christiaan Huygens (1629–1695) thought that light was a wave, but Isaac Newton did not.

Figure 3.1 Soap bubbles are blown from clear fluid into very thin films. The colors we see are not due to any
pigmentation but are the result of light interference, which enhances specific wavelengths for a given thickness of
the film.

Chapter Outline



Newton thought that there were other explanations for color, and for the interference and diffraction effects
that were observable at the time. Owing to Newton’s tremendous reputation, his view generally prevailed; the
fact that Huygens’s principle worked was not considered direct evidence proving that light is a wave. The
acceptance of the wave character of light came many years later in 1801, when the English physicist and
physician Thomas Young (1773–1829) demonstrated optical interference with his now-classic double-slit
experiment.

If there were not one but two sources of waves, the waves could be made to interfere, as in the case of waves on
water (Figure 3.2). If light is an electromagnetic wave, it must therefore exhibit interference effects under
appropriate circumstances. In Young’s experiment, sunlight was passed through a pinhole on a board. The
emerging beam fell on two pinholes on a second board. The light emanating from the two pinholes then fell on
a screen where a pattern of bright and dark spots was observed. This pattern, called fringes, can only be
explained through interference, a wave phenomenon.

Figure 3.2 Photograph of an interference pattern produced by circular water waves in a ripple tank. Two thin plungers are vibrated up and

down in phase at the surface of the water. Circular water waves are produced by and emanate from each plunger.

We can analyze double-slit interference with the help of Figure 3.3, which depicts an apparatus analogous to
Young’s. Light from a monochromatic source falls on a slit . The light emanating from is incident on two
other slits and that are equidistant from . A pattern of interference fringes on the screen is then
produced by the light emanating from and . All slits are assumed to be so narrow that they can be
considered secondary point sources for Huygens’ wavelets (The Nature of Light). Slits and are a distance
d apart ( ), and the distance between the screen and the slits is , which is much greater than
d.
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Figure 3.3 The double-slit interference experiment using monochromatic light and narrow slits. Fringes produced by interfering Huygens

wavelets from slits and are observed on the screen.

Since is assumed to be a point source of monochromatic light, the secondary Huygens wavelets leaving
and always maintain a constant phase difference (zero in this case because and are equidistant from

) and have the same frequency. The sources and are then said to be coherent. By coherent waves, we
mean the waves are in phase or have a definite phase relationship. The term incoherent means the waves have
random phase relationships, which would be the case if and were illuminated by two independent light
sources, rather than a single source . Two independent light sources (which may be two separate areas
within the same lamp or the Sun) would generally not emit their light in unison, that is, not coherently. Also,
because and are the same distance from , the amplitudes of the two Huygens wavelets are equal.

Young used sunlight, where each wavelength forms its own pattern, making the effect more difficult to see. In
the following discussion, we illustrate the double-slit experiment with monochromatic light (single ) to
clarify the effect. Figure 3.4 shows the pure constructive and destructive interference of two waves having the
same wavelength and amplitude.

Figure 3.4 The amplitudes of waves add. (a) Pure constructive interference is obtained when identical waves are in phase. (b) Pure

destructive interference occurs when identical waves are exactly out of phase, or shifted by half a wavelength.

When light passes through narrow slits, the slits act as sources of coherent waves and light spreads out as
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semicircular waves, as shown in Figure 3.5(a). Pure constructive interference occurs where the waves are crest
to crest or trough to trough. Pure destructive interference occurs where they are crest to trough. The light must
fall on a screen and be scattered into our eyes for us to see the pattern. An analogous pattern for water waves is
shown in Figure 3.2. Note that regions of constructive and destructive interference move out from the slits at
well-defined angles to the original beam. These angles depend on wavelength and the distance between the
slits, as we shall see below.

Figure 3.5 Double slits produce two coherent sources of waves that interfere. (a) Light spreads out (diffracts) from each slit, because the

slits are narrow. These waves overlap and interfere constructively (bright lines) and destructively (dark regions). We can only see this if the

light falls onto a screen and is scattered into our eyes. (b) When light that has passed through double slits falls on a screen, we see a

pattern such as this.

To understand the double-slit interference pattern, consider how two waves travel from the slits to the screen
(Figure 3.6). Each slit is a different distance from a given point on the screen. Thus, different numbers of
wavelengths fit into each path. Waves start out from the slits in phase (crest to crest), but they may end up out
of phase (crest to trough) at the screen if the paths differ in length by half a wavelength, interfering
destructively. If the paths differ by a whole wavelength, then the waves arrive in phase (crest to crest) at the
screen, interfering constructively. More generally, if the path length difference between the two waves is
any half-integral number of wavelengths [(1 / 2) , (3 / 2) , (5 / 2) , etc.], then destructive interference occurs.
Similarly, if the path length difference is any integral number of wavelengths ( , 2 , 3 , etc.), then constructive
interference occurs. These conditions can be expressed as equations:

3.1

3.2
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Figure 3.6 Waves follow different paths from the slits to a common point P on a screen. Destructive interference occurs where one path is

a half wavelength longer than the other—the waves start in phase but arrive out of phase. Constructive interference occurs where one path

is a whole wavelength longer than the other—the waves start out and arrive in phase.

3.2 Mathematics of Interference
Learning Objectives
By the end of this section, you will be able to:

• Determine the angles for bright and dark fringes for double slit interference
• Calculate the positions of bright fringes on a screen

Figure 3.7(a) shows how to determine the path length difference for waves traveling from two slits to a
common point on a screen. If the screen is a large distance away compared with the distance between the slits,
then the angle between the path and a line from the slits to the screen [part (b)] is nearly the same for each
path. In other words, and are essentially parallel. The lengths of and differ by , as indicated by the
two dashed lines in the figure. Simple trigonometry shows

where d is the distance between the slits. Combining this result with Equation 3.1, we obtain constructive
interference for a double slit when the path length difference is an integral multiple of the wavelength, or

Similarly, to obtain destructive interference for a double slit, the path length difference must be a half-integral
multiple of the wavelength, or

where is the wavelength of the light, d is the distance between slits, and is the angle from the original
direction of the beam as discussed above. We call m the order of the interference. For example, is
fourth-order interference.

3.3

3.4

3.5
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Figure 3.7 (a) To reach P, the light waves from and must travel different distances. (b) The path difference between the two rays is

.

The equations for double-slit interference imply that a series of bright and dark lines are formed. For vertical
slits, the light spreads out horizontally on either side of the incident beam into a pattern called interference
fringes (Figure 3.8). The closer the slits are, the more the bright fringes spread apart. We can see this by
examining the equation

. For fixed and m, the smaller d is, the larger must be, since
. This is consistent with our contention that wave effects are most noticeable when the object the

wave encounters (here, slits a distance d apart) is small. Small d gives large , hence, a large effect.

Referring back to part (a) of the figure, is typically small enough that , where is the
distance from the central maximum to the mth bright fringe and D is the distance between the slit and the
screen. Equation 3.4 may then be written as

or

3.6
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Figure 3.8 The interference pattern for a double slit has an intensity that falls off with angle. The image shows multiple bright and dark

lines, or fringes, formed by light passing through a double slit.

EXAMPLE 3.1

Finding a Wavelength from an Interference Pattern
Suppose you pass light from a He-Ne laser through two slits separated by 0.0100 mm and find that the third
bright line on a screen is formed at an angle of relative to the incident beam. What is the wavelength of
the light?

Strategy
The phenomenon is two-slit interference as illustrated in Figure 3.8 and the third bright line is due to third-
order constructive interference, which means that . We are given and . The
wavelength can thus be found using the equation for constructive interference.

Solution
Solving for the wavelength gives

Substituting known values yields

Significance
To three digits, this is the wavelength of light emitted by the common He-Ne laser. Not by coincidence, this red
color is similar to that emitted by neon lights. More important, however, is the fact that interference patterns
can be used to measure wavelength. Young did this for visible wavelengths. This analytical techinque is still
widely used to measure electromagnetic spectra. For a given order, the angle for constructive interference
increases with , so that spectra (measurements of intensity versus wavelength) can be obtained.
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EXAMPLE 3.2

Calculating the Highest Order Possible
Interference patterns do not have an infinite number of lines, since there is a limit to how big m can be. What is
the highest-order constructive interference possible with the system described in the preceding example?

Strategy
The equation (for ) describes constructive interference from two slits. For
fixed values of , the larger m is, the larger is. However, the maximum value that can have is 1,
for an angle of . (Larger angles imply that light goes backward and does not reach the screen at all.) Let us
find what value of m corresponds to this maximum diffraction angle.

Solution
Solving the equation for m gives

Taking and substituting the values of from the preceding example gives

Therefore, the largest integer m can be is 15, or .

Significance
The number of fringes depends on the wavelength and slit separation. The number of fringes is very large for
large slit separations. However, recall (see The Propagation of Light and the introduction for this chapter) that
wave interference is only prominent when the wave interacts with objects that are not large compared to the
wavelength. Therefore, if the slit separation and the sizes of the slits become much greater than the
wavelength, the intensity pattern of light on the screen changes, so there are simply two bright lines cast by the
slits, as expected, when light behaves like rays. We also note that the fringes get fainter farther away from the
center. Consequently, not all 15 fringes may be observable.

CHECK YOUR UNDERSTANDING 3.1

In the system used in the preceding examples, at what angles are the first and the second bright fringes
formed?

3.3 Multiple-Slit Interference
Learning Objectives
By the end of this section, you will be able to:

• Describe the locations and intensities of secondary maxima for multiple-slit interference

Analyzing the interference of light passing through two slits lays out the theoretical framework of interference
and gives us a historical insight into Thomas Young’s experiments. However, much of the modern-day
application of slit interference uses not just two slits but many, approaching infinity for practical purposes.
The key optical element is called a diffraction grating, an important tool in optical analysis, which we discuss
in detail in Diffraction. Here, we start the analysis of multiple-slit interference by taking the results from our
analysis of the double slit ( ) and extending it to configurations with three, four, and much larger
numbers of slits.

Figure 3.9 shows the simplest case of multiple-slit interference, with three slits, or . The spacing
between slits is d, and the path length difference between adjacent slits is , same as the case for the
double slit. What is new is that the path length difference for the first and the third slits is . The
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condition for constructive interference is the same as for the double slit, that is

When this condition is met, is automatically a multiple of , so all three rays combine constructively,
and the bright fringes that occur here are called principal maxima. But what happens when the path length
difference between adjacent slits is only ? We can think of the first and second rays as interfering
destructively, but the third ray remains unaltered. Instead of obtaining a dark fringe, or a minimum, as we did
for the double slit, we see a secondary maximum with intensity lower than the principal maxima.

Figure 3.9 Interference with three slits. Different pairs of emerging rays can combine constructively or destructively at the same time,

leading to secondary maxima.

In general, for N slits, these secondary maxima occur whenever an unpaired ray is present that does not go
away due to destructive interference. This occurs at evenly spaced positions between the principal
maxima. The amplitude of the electromagnetic wave is correspondingly diminished to of the wave at the
principal maxima, and the light intensity, being proportional to the square of the wave amplitude, is
diminished to of the intensity compared to the principal maxima. As Figure 3.10 shows, a dark fringe is
located between every maximum (principal or secondary). As N grows larger and the number of bright and
dark fringes increase, the widths of the maxima become narrower due to the closely located neighboring dark
fringes. Because the total amount of light energy remains unaltered, narrower maxima require that each
maximum reaches a correspondingly higher intensity.

Figure 3.10 Interference fringe patterns for two, three and four slits. As the number of slits increases, more secondary maxima appear,
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but the principal maxima become brighter and narrower. (a) Graph and (b) photographs of fringe patterns.

3.4 Interference in Thin Films
Learning Objectives
By the end of this section, you will be able to:

• Describe the phase changes that occur upon reflection
• Describe fringes established by reflected rays of a common source
• Explain the appearance of colors in thin films

The bright colors seen in an oil slick floating on water or in a sunlit soap bubble are caused by interference.
The brightest colors are those that interfere constructively. This interference is between light reflected from
different surfaces of a thin film; thus, the effect is known as thin-film interference.

As we noted before, interference effects are most prominent when light interacts with something having a size
similar to its wavelength. A thin film is one having a thickness t smaller than a few times the wavelength of
light, . Since color is associated indirectly with and because all interference depends in some way on the
ratio of to the size of the object involved, we should expect to see different colors for different thicknesses of a
film, as in Figure 3.11.

Figure 3.11 These soap bubbles exhibit brilliant colors when exposed to sunlight. (credit: Scott Robinson)

What causes thin-film interference? Figure 3.12 shows how light reflected from the top and bottom surfaces of
a film can interfere. Incident light is only partially reflected from the top surface of the film (ray 1). The
remainder enters the film and is itself partially reflected from the bottom surface. Part of the light reflected
from the bottom surface can emerge from the top of the film (ray 2) and interfere with light reflected from the
top (ray 1). The ray that enters the film travels a greater distance, so it may be in or out of phase with the ray
reflected from the top. However, consider for a moment, again, the bubbles in Figure 3.11. The bubbles are
darkest where they are thinnest. Furthermore, if you observe a soap bubble carefully, you will note it gets dark
at the point where it breaks. For very thin films, the difference in path lengths of rays 1 and 2 in Figure 3.12 is
negligible, so why should they interfere destructively and not constructively? The answer is that a phase
change can occur upon reflection, as discussed next.
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Figure 3.12 Light striking a thin film is partially reflected (ray 1) and partially refracted at the top surface. The refracted ray is partially

reflected at the bottom surface and emerges as ray 2. These rays interfere in a way that depends on the thickness of the film and the

indices of refraction of the various media.

Changes in Phase due to Reflection
We saw earlier (Waves) that reflection of mechanical waves can involve a phase change. For example, a
traveling wave on a string is inverted (i.e., a phase change) upon reflection at a boundary to which a
heavier string is tied. However, if the second string is lighter (or more precisely, of a lower linear density), no
inversion occurs. Light waves produce the same effect, but the deciding parameter for light is the index of
refraction. Light waves undergo a or radians phase change upon reflection at an interface beyond which
is a medium of higher index of refraction. No phase change takes place when reflecting from a medium of
lower refractive index (Figure 3.13). Because of the periodic nature of waves, this phase change or inversion is
equivalent to in distance travelled, or path length. Both the path length and refractive indices are
important factors in thin-film interference.

Figure 3.13 Reflection at an interface for light traveling from a medium with index of refraction to a medium with index of refraction

, , causes the phase of the wave to change by radians.

If the film in Figure 3.12 is a soap bubble (essentially water with air on both sides), then a phase shift of
occurs for ray 1 but not for ray 2. Thus, when the film is very thin and the path length difference between the
two rays is negligible, they are exactly out of phase, and destructive interference occurs at all wavelengths.
Thus, the soap bubble is dark here. The thickness of the film relative to the wavelength of light is the other
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crucial factor in thin-film interference. Ray 2 in Figure 3.12 travels a greater distance than ray 1. For light
incident perpendicular to the surface, ray 2 travels a distance approximately 2t farther than ray 1. When this
distance is an integral or half-integral multiple of the wavelength in the medium , where is the
wavelength in vacuum and n is the index of refraction), constructive or destructive interference occurs,
depending also on whether there is a phase change in either ray.

EXAMPLE 3.3

Calculating the Thickness of a Nonreflective Lens Coating
Sophisticated cameras use a series of several lenses. Light can reflect from the surfaces of these various lenses
and degrade image clarity. To limit these reflections, lenses are coated with a thin layer of magnesium fluoride,
which causes destructive thin-film interference. What is the thinnest this film can be, if its index of refraction
is 1.38 and it is designed to limit the reflection of 550-nm light, normally the most intense visible wavelength?
Assume the index of refraction of the glass is 1.52.

Strategy
Refer to Figure 3.12 and use for air, , and . Both ray 1 and ray 2 have a shift
upon reflection. Thus, to obtain destructive interference, ray 2 needs to travel a half wavelength farther than
ray 1. For rays incident perpendicularly, the path length difference is 2t.

Solution
To obtain destructive interference here,

where is the wavelength in the film and is given by . Thus,

Solving for t and entering known values yields

Significance
Films such as the one in this example are most effective in producing destructive interference when the
thinnest layer is used, since light over a broader range of incident angles is reduced in intensity. These films
are called nonreflective coatings; this is only an approximately correct description, though, since other
wavelengths are only partially cancelled. Nonreflective coatings are also used in car windows and sunglasses.

Combining Path Length Difference with Phase Change
Thin-film interference is most constructive or most destructive when the path length difference for the two
rays is an integral or half-integral wavelength. That is, for rays incident perpendicularly,

To know whether interference is constructive or destructive, you must also determine if there is a phase
change upon reflection. Thin-film interference thus depends on film thickness, the wavelength of light, and the
refractive indices. For white light incident on a film that varies in thickness, you can observe rainbow colors of
constructive interference for various wavelengths as the thickness varies.
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EXAMPLE 3.4

Soap Bubbles
(a) What are the three smallest thicknesses of a soap bubble that produce constructive interference for red
light with a wavelength of 650 nm? The index of refraction of soap is taken to be the same as that of water. (b)
What three smallest thicknesses give destructive interference?

Strategy
Use Figure 3.12 to visualize the bubble, which acts as a thin film between two layers of air. Thus
for air, and for soap (equivalent to water). There is a shift for ray 1 reflected from the top surface
of the bubble and no shift for ray 2 reflected from the bottom surface. To get constructive interference, then,
the path length difference (2t) must be a half-integral multiple of the wavelength—the first three being

, and . To get destructive interference, the path length difference must be an integral multiple
of the wavelength—the first three being 0, , and .

Solution
a. Constructive interference occurs here when

Thus, the smallest constructive thickness is

The next thickness that gives constructive interference is , so that

Finally, the third thickness producing constructive interference is , so that

b. For destructive interference, the path length difference here is an integral multiple of the wavelength. The
first occurs for zero thickness, since there is a phase change at the top surface, that is,

the very thin (or negligibly thin) case discussed above. The first non-zero thickness producing destructive
interference is

Substituting known values gives

Finally, the third destructive thickness is , so that

Significance
If the bubble were illuminated with pure red light, we would see bright and dark bands at very uniform
increases in thickness. First would be a dark band at 0 thickness, then bright at 122 nm thickness, then dark at
244 nm, bright at 366 nm, dark at 488 nm, and bright at 610 nm. If the bubble varied smoothly in thickness,
like a smooth wedge, then the bands would be evenly spaced.

CHECK YOUR UNDERSTANDING 3.2
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Going further with Example 3.4, what are the next two thicknesses of soap bubble that would lead to (a)
constructive interference, and (b) destructive interference?

Another example of thin-film interference can be seen when microscope slides are separated (see Figure 3.14).
The slides are very flat, so that the wedge of air between them increases in thickness very uniformly. A phase
change occurs at the second surface but not the first, so a dark band forms where the slides touch. The
rainbow colors of constructive interference repeat, going from violet to red again and again as the distance
between the slides increases. As the layer of air increases, the bands become more difficult to see, because
slight changes in incident angle have greater effects on path length differences. If monochromatic light instead
of white light is used, then bright and dark bands are obtained rather than repeating rainbow colors.

Figure 3.14 (a) The rainbow-color bands are produced by thin-film interference in the air between the two glass slides. (b) Schematic of

the paths taken by rays in the wedge of air between the slides. (c) If the air wedge is illuminated with monochromatic light, bright and dark

bands are obtained rather than repeating rainbow colors.

An important application of thin-film interference is found in the manufacturing of optical instruments. A lens
or mirror can be compared with a master as it is being ground, allowing it to be shaped to an accuracy of less
than a wavelength over its entire surface. Figure 3.15 illustrates the phenomenon called Newton’s rings,
which occurs when the plane surfaces of two lenses are placed together. (The circular bands are called
Newton’s rings because Isaac Newton described them and their use in detail. Newton did not discover them;
Robert Hooke did, and Newton did not believe they were due to the wave character of light.) Each successive
ring of a given color indicates an increase of only half a wavelength in the distance between the lens and the
blank, so that great precision can be obtained. Once the lens is perfect, no rings appear.
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Figure 3.15 “Newton’s rings” interference fringes are produced when two plano-convex lenses are placed together with their plane

surfaces in contact. The rings are created by interference between the light reflected off the two surfaces as a result of a slight gap between

them, indicating that these surfaces are not precisely plane but are slightly convex. (credit: Ulf Seifert)

Thin-film interference has many other applications, both in nature and in manufacturing. The wings of certain
moths and butterflies have nearly iridescent colors due to thin-film interference. In addition to pigmentation,
the wing’s color is affected greatly by constructive interference of certain wavelengths reflected from its film-
coated surface. Some car manufacturers offer special paint jobs that use thin-film interference to produce
colors that change with angle. This expensive option is based on variation of thin-film path length differences
with angle. Security features on credit cards, banknotes, driving licenses, and similar items prone to forgery
use thin-film interference, diffraction gratings, or holograms. As early as 1998, Australia led the way with
dollar bills printed on polymer with a diffraction grating security feature, making the currency difficult to
forge. Other countries, such as Canada, New Zealand, and Taiwan, are using similar technologies, while US
currency includes a thin-film interference effect.

3.5 The Michelson Interferometer
Learning Objectives
By the end of this section, you will be able to:

• Explain changes in fringes observed with a Michelson interferometer caused by mirror movements
• Explain changes in fringes observed with a Michelson interferometer caused by changes in medium

The Michelson interferometer (invented by the American physicist Albert A. Michelson, 1852–1931) is a
precision instrument that produces interference fringes by splitting a light beam into two parts and then
recombining them after they have traveled different optical paths. Figure 3.16 depicts the interferometer and
the path of a light beam from a single point on the extended source S, which is a ground-glass plate that
diffuses the light from a monochromatic lamp of wavelength . The beam strikes the half-silvered mirror M,
where half of it is reflected to the side and half passes through the mirror. The reflected light travels to the
movable plane mirror , where it is reflected back through M to the observer. The transmitted half of the
original beam is reflected back by the stationary mirror and then toward the observer by M.
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Figure 3.16 (a) The Michelson interferometer. The extended light source is a ground-glass plate that diffuses the light from a laser. (b) A

planar view of the interferometer.

Because both beams originate from the same point on the source, they are coherent and therefore interfere.
Notice from the figure that one beam passes through M three times and the other only once. To ensure that
both beams traverse the same thickness of glass, a compensator plate C of transparent glass is placed in the
arm containing . This plate is a duplicate of M (without the silvering) and is usually cut from the same piece
of glass used to produce M. With the compensator in place, any phase difference between the two beams is due
solely to the difference in the distances they travel.

The path difference of the two beams when they recombine is , where is the distance between M
and , and is the distance between M and . Suppose this path difference is an integer number of
wavelengths . Then, constructive interference occurs and a bright image of the point on the source is seen
at the observer. Now the light from any other point on the source whose two beams have this same path
difference also undergoes constructive interference and produces a bright image. The collection of these point
images is a bright fringe corresponding to a path difference of (Figure 3.17). When is moved a
distance , this path difference changes by , and each fringe moves to the position previously
occupied by an adjacent fringe. Consequently, by counting the number of fringes m passing a given point as

is moved, an observer can measure minute displacements that are accurate to a fraction of a wavelength,
as shown by the relation

Figure 3.17 Fringes produced with a Michelson interferometer. (credit: “SILLAGESvideos”/YouTube)

3.7
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EXAMPLE 3.5

Precise Distance Measurements by Michelson Interferometer
A red laser light of wavelength 630 nm is used in a Michelson interferometer. While keeping the mirror
fixed, mirror is moved. The fringes are found to move past a fixed cross-hair in the viewer. Find the
distance the mirror is moved for a single fringe to move past the reference line.

Strategy
Refer to Figure 3.16 for the geometry. We use the result of the Michelson interferometer interference condition
to find the distance moved, .

Solution
For a 630-nm red laser light, and for each fringe crossing , the distance traveled by if you keep
fixed is

Significance
An important application of this measurement is the definition of the standard meter. As mentioned in Units
and Measurement, the length of the standard meter was once defined as the mirror displacement in a
Michelson interferometer corresponding to 1,650,763.73 wavelengths of the particular fringe of krypton-86 in
a gas discharge tube.

EXAMPLE 3.6

Measuring the Refractive Index of a Gas
In one arm of a Michelson interferometer, a glass chamber is placed with attachments for evacuating the inside
and putting gases in it. The space inside the container is 2 cm wide. Initially, the container is empty. As gas is
slowly let into the chamber, you observe that dark fringes move past a reference line in the field of observation.
By the time the chamber is filled to the desired pressure, you have counted 122 fringes move past the
reference line. The wavelength of the light used is 632.8 nm. What is the refractive index of this gas?

Strategy
The fringes observed compose the difference between the number of wavelengths that fit within the
empty chamber (vacuum) and the number of wavelengths that fit within the same chamber when it is gas-
filled. The wavelength in the filled chamber is shorter by a factor of n, the index of refraction.
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Solution
The ray travels a distance to the right through the glass chamber and another distance t to the left
upon reflection. The total travel is . When empty, the number of wavelengths that fit in this chamber is

where is the wavelength in vacuum of the light used. In any other medium, the wavelength is
and the number of wavelengths that fit in the gas-filled chamber is

The number of fringes observed in the transition is

Solving for gives

and .

Significance
The indices of refraction for gases are so close to that of vacuum, that we normally consider them equal to 1.
The difference between 1 and 1.0019 is so small that measuring it requires a correspondingly sensitive
technique such as interferometry. We cannot, for example, hope to measure this value using techniques based
simply on Snell’s law.

CHECK YOUR UNDERSTANDING 3.3

Although m, the number of fringes observed, is an integer, which is often regarded as having zero uncertainty,
in practical terms, it is all too easy to lose track when counting fringes. In Example 3.6, if you estimate that you
might have missed as many as five fringes when you reported fringes, (a) is the value for the index of
refraction worked out in Example 3.6 too large or too small? (b) By how much?

PROBLEM-SOLVING STRATEGY

Wave Optics
Step 1. Examine the situation to determine that interference is involved. Identify whether slits, thin films, or
interferometers are considered in the problem.

Step 2. If slits are involved, note that diffraction gratings and double slits produce very similar interference
patterns, but that gratings have narrower (sharper) maxima. Single-slit patterns are characterized by a large
central maximum and smaller maxima to the sides.

Step 3. If thin-film interference or an interferometer is involved, take note of the path length difference
between the two rays that interfere. Be certain to use the wavelength in the medium involved, since it differs
from the wavelength in vacuum. Note also that there is an additional phase shift when light reflects from a
medium with a greater index of refraction.

Step 4. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is
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useful. Draw a diagram of the situation. Labeling the diagram is useful.

Step 5. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).

Step 6. Solve the appropriate equation for the quantity to be determined (the unknown) and enter the knowns.
Slits, gratings, and the Rayleigh limit involve equations.

Step 7. For thin-film interference, you have constructive interference for a total shift that is an integral number
of wavelengths. You have destructive interference for a total shift of a half-integral number of wavelengths.
Always keep in mind that crest to crest is constructive whereas crest to trough is destructive.

Step 8. Check to see if the answer is reasonable: Does it make sense? Angles in interference patterns cannot be
greater than , for example.
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CHAPTER REVIEW
Key Terms
coherent waves waves are in phase or have a

definite phase relationship
fringes bright and dark patterns of interference
incoherent waves have random phase

relationships
interferometer instrument that uses interference

of waves to make measurements
monochromatic light composed of one wavelength

only
Newton’s rings circular interference pattern

created by interference between the light

reflected off two surfaces as a result of a slight
gap between them

order integer m used in the equations for
constructive and destructive interference for a
double slit

principal maximum brightest interference fringes
seen with multiple slits

secondary maximum bright interference fringes
of intensity lower than the principal maxima

thin-film interference interference between light
reflected from different surfaces of a thin film

Key Equations

Constructive interference for m = 0, ±1, ±2, ±3…

Destructive interference for m = 0, ±1, ±2, ±3…

Path length difference for waves from two slits to a
common point on a screen

Constructive interference

Destructive interference

Distance from central maximum to the mth bright fringe

Displacement measured by a Michelson interferometer

Summary
3.1 Young's Double-Slit Interference

• Young’s double-slit experiment gave definitive
proof of the wave character of light.

• An interference pattern is obtained by the
superposition of light from two slits.

3.2 Mathematics of Interference

• In double-slit diffraction, constructive
interference occurs when

, where d
is the distance between the slits, is the angle
relative to the incident direction, and m is the
order of the interference.

• Destructive interference occurs when
.

3.3 Multiple-Slit Interference

• Interference from multiple slits ( )
produces principal as well as secondary
maxima.

• As the number of slits is increased, the intensity
of the principal maxima increases and the width
decreases.

3.4 Interference in Thin Films

• When light reflects from a medium having an
index of refraction greater than that of the
medium in which it is traveling, a phase
change (or a shift) occurs.

• Thin-film interference occurs between the light
reflected from the top and bottom surfaces of a
film. In addition to the path length difference,
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there can be a phase change.

3.5 The Michelson Interferometer

• When the mirror in one arm of the

interferometer moves a distance of each
fringe in the interference pattern moves to the
position previously occupied by the adjacent
fringe.

Conceptual Questions
3.1 Young's Double-Slit Interference

1. Young’s double-slit experiment breaks a single
light beam into two sources. Would the same
pattern be obtained for two independent sources
of light, such as the headlights of a distant car?
Explain.

2. Is it possible to create a experimental setup in
which there is only destructive interference?
Explain.

3. Why won’t two small sodium lamps, held close
together, produce an interference pattern on a
distant screen? What if the sodium lamps were
replaced by two laser pointers held close
together?

3.2 Mathematics of Interference

4. Suppose you use the same double slit to perform
Young’s double-slit experiment in air and then
repeat the experiment in water. Do the angles to
the same parts of the interference pattern get
larger or smaller? Does the color of the light
change? Explain.

5. Why is monochromatic light used in the double
slit experiment? What would happen if white
light were used?

3.4 Interference in Thin Films

6. What effect does increasing the wedge angle have
on the spacing of interference fringes? If the
wedge angle is too large, fringes are not
observed. Why?

7. How is the difference in paths taken by two
originally in-phase light waves related to whether
they interfere constructively or destructively?
How can this be affected by reflection? By
refraction?

8. Is there a phase change in the light reflected from
either surface of a contact lens floating on a

person’s tear layer? The index of refraction of the
lens is about 1.5, and its top surface is dry.

9. In placing a sample on a microscope slide, a glass
cover is placed over a water drop on the glass
slide. Light incident from above can reflect from
the top and bottom of the glass cover and from
the glass slide below the water drop. At which
surfaces will there be a phase change in the
reflected light?

10. Answer the above question if the fluid between
the two pieces of crown glass is carbon
disulfide.

11. While contemplating the food value of a slice of
ham, you notice a rainbow of color reflected
from its moist surface. Explain its origin.

12. An inventor notices that a soap bubble is dark at
its thinnest and realizes that destructive
interference is taking place for all wavelengths.
How could she use this knowledge to make a
nonreflective coating for lenses that is effective
at all wavelengths? That is, what limits would
there be on the index of refraction and
thickness of the coating? How might this be
impractical?

13. A nonreflective coating like the one described in
Example 3.3 works ideally for a single
wavelength and for perpendicular incidence.
What happens for other wavelengths and other
incident directions? Be specific.

14. Why is it much more difficult to see interference
fringes for light reflected from a thick piece of
glass than from a thin film? Would it be easier if
monochromatic light were used?

3.5 The Michelson Interferometer

15. Describe how a Michelson interferometer can
be used to measure the index of refraction of a
gas (including air).

Problems
3.2 Mathematics of Interference

16. At what angle is the first-order maximum for
450-nm wavelength blue light falling on double
slits separated by 0.0500 mm?

17. Calculate the angle for the third-order
maximum of 580-nm wavelength yellow light
falling on double slits separated by 0.100 mm.

18. What is the separation between two slits for
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which 610-nm orange light has its first
maximum at an angle of ?

19. Find the distance between two slits that
produces the first minimum for 410-nm violet
light at an angle of

20. Calculate the wavelength of light that has its
third minimum at an angle of when falling
on double slits separated by . Explicitly
show how you follow the steps from the
Problem-Solving Strategy: Wave Optics, located
at the end of the chapter.

21. What is the wavelength of light falling on double
slits separated by if the third-order
maximum is at an angle of ?

22. At what angle is the second-order maximum for
the situation in the preceding problem?

23. What is the highest-order maximum for 400-nm
light falling on double slits separated by

?
24. Find the largest wavelength of light falling on

double slits separated by for which
there is a first-order maximum. Is this in the
visible part of the spectrum?

25. What is the smallest separation between two
slits that will produce a second-order maximum
for 720-nm red light?

26. (a) What is the smallest separation between two
slits that will produce a second-order maximum
for any visible light? (b) For all visible light?

27. (a) If the first-order maximum for
monochromatic light falling on a double slit is at
an angle of , at what angle is the second-
order maximum? (b) What is the angle of the
first minimum? (c) What is the highest-order
maximum possible here?

28. Shown below is a double slit located a distance x
from a screen, with the distance from the center of
the screen given by y. When the distance d
between the slits is relatively large, numerous
bright spots appear, called fringes. Show that, for
small angles (where , with in radians),
the distance between fringes is given by

29. Using the result of the preceding problem, (a)
calculate the distance between fringes for
633-nm light falling on double slits separated
by 0.0800 mm, located 3.00 m from a screen.
(b) What would be the distance between fringes
if the entire apparatus were submersed in
water, whose index of refraction is 1.33?

30. Using the result of the problem two problems
prior, find the wavelength of light that produces
fringes 7.50 mm apart on a screen 2.00 m from
double slits separated by 0.120 mm.

31. In a double-slit experiment, the fifth maximum
is 2.8 cm from the central maximum on a
screen that is 1.5 m away from the slits. If the
slits are 0.15 mm apart, what is the wavelength
of the light being used?

32. The source in Young’s experiment emits at two
wavelengths. On the viewing screen, the fourth
maximum for one wavelength is located at the
same spot as the fifth maximum for the other
wavelength. What is the ratio of the two
wavelengths?

33. If 500-nm and 650-nm light illuminates two
slits that are separated by 0.50 mm, how far
apart are the second-order maxima for these
two wavelengths on a screen 2.0 m away?

34. Red light of wavelength of 700 nm falls on a
double slit separated by 400 nm. (a) At what
angle is the first-order maximum in the
diffraction pattern? (b) What is unreasonable
about this result? (c) Which assumptions are
unreasonable or inconsistent?

3.3 Multiple-Slit Interference

35. Ten narrow slits are equally spaced 0.25 mm
apart and illuminated with yellow light of
wavelength 580 nm. (a) What are the angular
positions of the third and fourth principal
maxima? (b) What is the separation of these
maxima on a screen 2.0 m from the slits?
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36. The width of bright fringes can be calculated as
the separation between the two adjacent dark
fringes on either side. Find the angular widths
of the third- and fourth-order bright fringes
from the preceding problem.

37. For a three-slit interference pattern, find the
ratio of the peak intensities of a secondary
maximum to a principal maximum.

38. What is the angular width of the central fringe of
the interference pattern of (a) 20 slits separated
by ? (b) 50 slits with the
same separation? Assume that .

3.4 Interference in Thin Films

39. A soap bubble is 100 nm thick and illuminated
by white light incident perpendicular to its
surface. What wavelength and color of visible
light is most constructively reflected, assuming
the same index of refraction as water?

40. An oil slick on water is 120 nm thick and
illuminated by white light incident
perpendicular to its surface. What color does
the oil appear (what is the most constructively
reflected wavelength), given its index of
refraction is 1.40?

41. Calculate the minimum thickness of an oil slick
on water that appears blue when illuminated by
white light perpendicular to its surface. Take
the blue wavelength to be 470 nm and the index
of refraction of oil to be 1.40.

42. Find the minimum thickness of a soap bubble
that appears red when illuminated by white
light perpendicular to its surface. Take the
wavelength to be 680 nm, and assume the same
index of refraction as water.

43. A film of soapy water ( ) on top of a
plastic cutting board has a thickness of 233 nm.
What color is most strongly reflected if it is
illuminated perpendicular to its surface?

44. What are the three smallest non-zero
thicknesses of soapy water ( ) on
Plexiglas if it appears green (constructively
reflecting 520-nm light) when illuminated
perpendicularly by white light?

45. Suppose you have a lens system that is to be
used primarily for 700-nm red light. What is the
second thinnest coating of fluorite (magnesium
fluoride) that would be nonreflective for this
wavelength?

46. (a) As a soap bubble thins it becomes dark,
because the path length difference becomes
small compared with the wavelength of light
and there is a phase shift at the top surface. If it

becomes dark when the path length difference
is less than one-fourth the wavelength, what is
the thickest the bubble can be and appear dark
at all visible wavelengths? Assume the same
index of refraction as water. (b) Discuss the
fragility of the film considering the thickness
found.

47. To save money on making military aircraft
invisible to radar, an inventor decides to coat
them with a nonreflective material having an
index of refraction of 1.20, which is between
that of air and the surface of the plane. This, he
reasons, should be much cheaper than
designing Stealth bombers. (a) What thickness
should the coating be to inhibit the reflection of
4.00-cm wavelength radar? (b) What is
unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?

3.5 The Michelson Interferometer

48. A Michelson interferometer has two equal arms.
A mercury light of wavelength 546 nm is used
for the interferometer and stable fringes are
found. One of the arms is moved by . How
many fringes will cross the observing field?

49. What is the distance moved by the traveling
mirror of a Michelson interferometer that
corresponds to 1500 fringes passing by a point
of the observation screen? Assume that the
interferometer is illuminated with a 606 nm
spectral line of krypton-86.

50. When the traveling mirror of a Michelson
interferometer is moved , 90
fringes pass by a point on the observation
screen. What is the wavelength of the light
used?

51. In a Michelson interferometer, light of
wavelength 632.8 nm from a He-Ne laser is
used. When one of the mirrors is moved by a
distance D, 8 fringes move past the field of view.
What is the value of the distance D?

52. A chamber 5.0 cm long with flat, parallel windows at
the ends is placed in one arm of a Michelson
interferometer (see below). The light used has a
wavelength of 500 nm in a vacuum. While all the air
is being pumped out of the chamber, 29 fringes pass
by a point on the observation screen. What is the
refractive index of the air?
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Additional Problems
53. For 600-nm wavelength light and a slit

separation of 0.12 mm, what are the angular
positions of the first and third maxima in the
double slit interference pattern?

54. If the light source in the preceding problem is
changed, the angular position of the third
maximum is found to be . What is the
wavelength of light being used now?

55. Red light ( ) illuminates double slits
separated by a distance The
screen and the slits are 3.00 m apart. (a) Find
the distance on the screen between the central
maximum and the third maximum. (b) What is
the distance between the second and the fourth
maxima?

56. Two sources as in phase and emit waves with
. Determine whether constructive or

destructive interference occurs at points whose
distances from the two sources are (a) 0.84 and
0.42 m, (b) 0.21 and 0.42 m, (c) 1.26 and 0.42 m,
(d) 1.87 and 1.45 m, (e) 0.63 and 0.84 m and (f)
1.47 and 1.26 m.

57. Two slits apart are illuminated
by light of wavelength 600 nm. What is the
highest order fringe in the interference pattern?

58. Suppose that the highest order fringe that can
be observed is the eighth in a double-slit
experiment where 550-nm wavelength light is
used. What is the minimum separation of the
slits?

59. The interference pattern of a He-Ne laser light
passing through two slits 0.031

mm apart is projected on a screen 10.0 m away.
Determine the distance between the adjacent
bright fringes.

60. Young’s double-slit experiment is performed
immersed in water ( ). The light source
is a He-Ne laser, in vacuum. (a)
What is the wavelength of this light in water? (b)
What is the angle for the third order maximum
for two slits separated by 0.100 mm.

61. A double-slit experiment is to be set up so that
the bright fringes appear 1.27 cm apart on a
screen 2.13 m away from the two slits. The light
source was wavelength 500 nm. What should be
the separation between the two slits?

62. An effect analogous to two-slit interference can
occur with sound waves, instead of light. In an
open field, two speakers placed 1.30 m apart
are powered by a single-function generator
producing sine waves at 1200-Hz frequency. A
student walks along a line 12.5 m away and
parallel to the line between the speakers. She
hears an alternating pattern of loud and quiet,
due to constructive and destructive
interference. What is (a) the wavelength of this
sound and (b) the distance between the central
maximum and the first maximum (loud)
position along this line?

63. A hydrogen gas discharge lamp emits visible
light at four wavelengths, 410, 434, 486,
and 656 nm. (a) If light from this lamp falls on a
N slits separated by 0.025 mm, how far from the
central maximum are the third maxima when
viewed on a screen 2.0 m from the slits? (b) By
what distance are the second and third maxima
separated for ?

64. Monochromatic light of frequency
falls on 10 slits separated by

0.020 mm. What is the separation between the
first and third maxima on a screen that is 2.0 m
from the slits?
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65. Eight slits equally separated by 0.149 mm is
uniformly illuminated by a monochromatic
light at . What is the width of the
central principal maximum on a screen 2.35 m
away?

66. Eight slits equally separated by 0.149 mm is
uniformly illuminated by a monochromatic
light at . What is the intensity of a
secondary maxima compared to that of the
principal maxima?

67. A transparent film of thickness 250 nm and
index of refraction of 1.40 is surrounded by air.
What wavelength in a beam of white light at
near-normal incidence to the film undergoes
destructive interference when reflected?

68. An intensity minimum is found for 450 nm light
transmitted through a transparent film

in air. (a) What is minimum thickness
of the film? (b) If this wavelength is the longest
for which the intensity minimum occurs, what
are the next three lower values of for which
this happens?

69. A thin film with is surrounded by air.
What is the minimum thickness of this film
such that the reflection of normally incident
light with is minimized?

70. Repeat your calculation of the previous problem
with the thin film placed on a flat glass
( ) surface.

71. After a minor oil spill, a think film of oil
( ) of thickness 450 nm floats on the
water surface in a bay. (a) What predominant
color is seen by a bird flying overhead? (b) What
predominant color is seen by a seal swimming
underwater?

72. A microscope slide 10 cm long is separated from a
glass plate at one end by a sheet of paper. As
shown below, the other end of the slide is in
contact with the plate. The slide is illuminated
from above by light from a sodium lamp
( ), and 14 fringes per centimeter are
seen along the slide. What is the thickness of the
piece of paper?

73. Suppose that the setup of the preceding
problem is immersed in an unknown liquid. If
18 fringes per centimeter are now seen along
the slide, what is the index of refraction of the
liquid?

74. A thin wedge filled with air is produced when
two flat glass plates are placed on top of one
another and a slip of paper is inserted between
them at one edge. Interference fringes are
observed when monochromatic light falling
vertically on the plates are seen in reflection. Is
the first fringe near the edge where the plates
are in contact a bright fringe or a dark fringe?
Explain.

75. Two identical pieces of rectangular plate glass
are used to measure the thickness of a hair. The
glass plates are in direct contact at one edge and
a single hair is placed between them hear the
opposite edge. When illuminated with a sodium
lamp ( ), the hair is seen between the
180th and 181st dark fringes. What are the
lower and upper limits on the hair’s diameter?

76. Two microscope slides made of glass are
illuminated by monochromatic ( )
light incident perpendicularly. The top slide
touches the bottom slide at one end and rests on
a thin copper wire at the other end, forming a
wedge of air. The diameter of the copper wire is

. How many bright fringes are seen
across these slides?

77. A good quality camera “lens” is actually a
system of lenses, rather than a single lens, but a
side effect is that a reflection from the surface of
one lens can bounce around many times within
the system, creating artifacts in the photograph.
To counteract this problem, one of the lenses in
such a system is coated with a thin layer of
material ( ) on one side. The index of
refraction of the lens glass is 1.68. What is the
smallest thickness of the coating that reduces
the reflection at 640 nm by destructive
interference? (In other words, the coating’s
effect is to be optimized for .)

78. Constructive interference is observed from
directly above an oil slick for wavelengths (in
air) 440 nm and 616 nm. The index of refraction
of this oil is . What is the film’s
minimum possible thickness?

79. A soap bubble is blown outdoors. What colors
(indicate by wavelengths) of the reflected
sunlight are seen enhanced? The soap bubble
has index of refraction 1.36 and thickness 380
nm.
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80. A Michelson interferometer with a He-Ne laser
light source ( ) projects its
interference pattern on a screen. If the movable
mirror is caused to move by , how many
fringes will be observed shifting through a
reference point on a screen?

81. An experimenter detects 251 fringes when the
movable mirror in a Michelson interferometer
is displaced. The light source used is a sodium
lamp, wavelength 589 nm. By what distance did
the movable mirror move?

82. A Michelson interferometer is used to measure
the wavelength of light put through it. When the
movable mirror is moved by exactly 0.100 mm,
the number of fringes observed moving through
is 316. What is the wavelength of the light?

83. A 5.08-cm-long rectangular glass chamber is
inserted into one arm of a Michelson
interferometer using a 633-nm light source.
This chamber is initially filled with air

at standard atmospheric
pressure but the air is gradually pumped out
using a vacuum pump until a near perfect
vacuum is achieved. How many fringes are
observed moving by during the transition?

84. Into one arm of a Michelson interferometer, a
plastic sheet of thickness is inserted,
which causes a shift in the interference pattern
by 86 fringes. The light source has wavelength
of 610 nm in air. What is the index of refraction
of this plastic?

85. The thickness of an aluminum foil is measured
using a Michelson interferometer that has its
movable mirror mounted on a micrometer.
There is a difference of 27 fringes in the
observed interference pattern when the
micrometer clamps down on the foil compared
to when the micrometer is empty. The light
source is a He-Ne laser with wavelength 632.8
nm. Calculate the thickness of the foil.

86. The movable mirror of a Michelson
interferometer is attached to one end of a thin
metal rod of length 23.3 mm. The other end of
the rod is anchored so it does not move. As the
temperature of the rod changes from to

, a change of 14 fringes is observed. The
light source is a He Ne laser, .
What is the change in length of the metal bar,
and what is its thermal expansion coefficient?

87. In a thermally stabilized lab, a Michelson
interferometer is used to monitor the
temperature to ensure it stays constant. The
movable mirror is mounted on the end of a
1.00-m-long aluminum rod, held fixed at the
other end. The light source is a He Ne laser,

. The resolution of this apparatus
corresponds to the temperature difference
when a change of just one fringe is observed.
What is this temperature difference?

88. A 65-fringe shift results in a Michelson
interferometer when a film made of an
unknown material is placed in one arm. The
light source has wavelength 632.9 nm. Identify
the material using the indices of refraction
found in Table 1.1.

Challenge Problems
89. Determine what happens to the double-slit

interference pattern if one of the slits is covered
with a thin, transparent film whose thickness is

, where is the wavelength of the
incident light and n is the index of refraction of
the film.

90. Fifty-one narrow slits are equally spaced and
separated by 0.10 mm. The slits are illuminated
by blue light of wavelength 400 nm. What is
angular position of the twenty-fifth secondary
maximum? What is its peak intensity in
comparison with that of the primary maximum?

91. A film of oil on water will appear dark when it is
very thin, because the path length difference
becomes small compared with the wavelength
of light and there is a phase shift at the top
surface. If it becomes dark when the path length
difference is less than one-fourth the
wavelength, what is the thickest the oil can be
and appear dark at all visible wavelengths? Oil
has an index of refraction of 1.40.
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92. Figure 3.14 shows two glass slides illuminated
by monochromatic light incident
perpendicularly. The top slide touches the
bottom slide at one end and rests on a
0.100-mm-diameter hair at the other end,
forming a wedge of air. (a) How far apart are the
dark bands, if the slides are 7.50 cm long and
589-nm light is used? (b) Is there any difference
if the slides are made from crown or flint glass?
Explain.

93. Figure 3.14 shows two 7.50-cm-long glass slides
illuminated by pure 589-nm wavelength light
incident perpendicularly. The top slide touches
the bottom slide at one end and rests on some
debris at the other end, forming a wedge of air.
How thick is the debris, if the dark bands are
1.00 mm apart?

94. A soap bubble is 100 nm thick and illuminated
by white light incident at a angle to its
surface. What wavelength and color of visible
light is most constructively reflected, assuming
the same index of refraction as water?

95. An oil slick on water is 120 nm thick and
illuminated by white light incident at a
angle to its surface. What color does the oil
appear (what is the most constructively
reflected wavelength), given its index of
refraction is 1.40?
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INTRODUCTION

CHAPTER 4
Diffraction

4.1 Single-Slit Diffraction

4.2 Intensity in Single-Slit Diffraction

4.3 Double-Slit Diffraction

4.4 Diffraction Gratings

4.5 Circular Apertures and Resolution

4.6 X-Ray Diffraction

4.7 Holography

Imagine passing a monochromatic light beam through a narrow opening—a slit just a little
wider than the wavelength of the light. Instead of a simple shadow of the slit on the screen, you will see that an
interference pattern appears, even though there is only one slit.

In the chapter on interference, we saw that you need two sources of waves for interference to occur. How can

Figure 4.1 A steel ball bearing illuminated by a laser does not cast a sharp, circular shadow. Instead, a series of
diffraction fringes and a central bright spot are observed. Known as Poisson’s spot, the effect was first predicted by
Augustin-Jean Fresnel (1788–1827) as a consequence of diffraction of light waves. Based on principles of ray
optics, Siméon-Denis Poisson (1781–1840) argued against Fresnel’s prediction. (credit: modification of work by
Harvard Natural Science Lecture Demonstrations)

Chapter Outline



there be an interference pattern when we have only one slit? In The Nature of Light, we learned that, due to
Huygens’s principle, we can imagine a wave front as equivalent to infinitely many point sources of waves.
Thus, a wave from a slit can behave not as one wave but as an infinite number of point sources. These waves
can interfere with each other, resulting in an interference pattern without the presence of a second slit. This
phenomenon is called diffraction.

Another way to view this is to recognize that a slit has a small but finite width. In the preceding chapter, we
implicitly regarded slits as objects with positions but no size. The widths of the slits were considered
negligible. When the slits have finite widths, each point along the opening can be considered a point source of
light—a foundation of Huygens’s principle. Because real-world optical instruments must have finite apertures
(otherwise, no light can enter), diffraction plays a major role in the way we interpret the output of these optical
instruments. For example, diffraction places limits on our ability to resolve images or objects. This is a
problem that we will study later in this chapter.

4.1 Single-Slit Diffraction
Learning Objectives
By the end of this section, you will be able to:

• Explain the phenomenon of diffraction and the conditions under which it is observed
• Describe diffraction through a single slit

After passing through a narrow aperture (opening), a wave propagating in a specific direction tends to spread
out. For example, sound waves that enter a room through an open door can be heard even if the listener is in a
part of the room where the geometry of ray propagation dictates that there should only be silence. Similarly,
ocean waves passing through an opening in a breakwater can spread throughout the bay inside. (Figure 4.2).
The spreading and bending of sound and ocean waves are two examples of diffraction, which is the bending of
a wave around the edges of an opening or an obstacle—a phenomenon exhibited by all types of waves.

Figure 4.2 Because of the diffraction of waves, ocean waves entering through an opening in a breakwater can spread throughout the bay.

(credit: modification of map data from Google Earth)

The diffraction of sound waves is apparent to us because wavelengths in the audible region are approximately
the same size as the objects they encounter, a condition that must be satisfied if diffraction effects are to be
observed easily. Since the wavelengths of visible light range from approximately 390 to 770 nm, most objects
do not diffract light significantly. However, situations do occur in which apertures are small enough that the
diffraction of light is observable. For example, if you place your middle and index fingers close together and
look through the opening at a light bulb, you can see a rather clear diffraction pattern, consisting of light and
dark lines running parallel to your fingers.

Diffraction through a Single Slit
Light passing through a single slit forms a diffraction pattern somewhat different from those formed by double
slits or diffraction gratings, which we discussed in the chapter on interference. Figure 4.3 shows a single-slit
diffraction pattern. Note that the central maximum is larger than maxima on either side and that the intensity
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decreases rapidly on either side. In contrast, a diffraction grating (Diffraction Gratings) produces evenly
spaced lines that dim slowly on either side of the center.

Figure 4.3 Single-slit diffraction pattern. (a) Monochromatic light passing through a single slit has a central maximum and many smaller

and dimmer maxima on either side. The central maximum is six times higher than shown. (b) The diagram shows the bright central

maximum, and the dimmer and thinner maxima on either side.

The analysis of single-slit diffraction is illustrated in Figure 4.4. Here, the light arrives at the slit, illuminating it
uniformly and is in phase across its width. We then consider light propagating onwards from different parts of
the same slit. According to Huygens’s principle, every part of the wave front in the slit emits wavelets, as we
discussed in The Nature of Light. These are like rays that start out in phase and head in all directions. (Each ray
is perpendicular to the wave front of a wavelet.) Assuming the screen is very far away compared with the size
of the slit, rays heading toward a common destination are nearly parallel. When they travel straight ahead, as
in part (a) of the figure, they remain in phase, and we observe a central maximum. However, when rays travel
at an angle relative to the original direction of the beam, each ray travels a different distance to a common
location, and they can arrive in or out of phase. In part (b), the ray from the bottom travels a distance of one
wavelength farther than the ray from the top. Thus, a ray from the center travels a distance less than the
one at the bottom edge of the slit, arrives out of phase, and interferes destructively. A ray from slightly above
the center and one from slightly above the bottom also cancel one another. In fact, each ray from the slit
interferes destructively with another ray. In other words, a pair-wise cancellation of all rays results in a dark
minimum in intensity at this angle. By symmetry, another minimum occurs at the same angle to the right of
the incident direction (toward the bottom of the figure) of the light.
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Figure 4.4 Light passing through a single slit is diffracted in all directions and may interfere constructively or destructively, depending on

the angle. The difference in path length for rays from either side of the slit is seen to be a sin .

At the larger angle shown in part (c), the path lengths differ by for rays from the top and bottom of the slit.
One ray travels a distance different from the ray from the bottom and arrives in phase, interfering
constructively. Two rays, each from slightly above those two, also add constructively. Most rays from the slit
have another ray to interfere with constructively, and a maximum in intensity occurs at this angle. However,
not all rays interfere constructively for this situation, so the maximum is not as intense as the central
maximum. Finally, in part (d), the angle shown is large enough to produce a second minimum. As seen in the
figure, the difference in path length for rays from either side of the slit is a sin , and we see that a destructive
minimum is obtained when this distance is an integral multiple of the wavelength.

Thus, to obtain destructive interference for a single slit,

where a is the slit width, is the light’s wavelength, is the angle relative to the original direction of the light,
and m is the order of the minimum. Figure 4.5 shows a graph of intensity for single-slit interference, and it is
apparent that the maxima on either side of the central maximum are much less intense and not as wide. This
effect is explored in Double-Slit Diffraction.

4.1
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Figure 4.5 A graph of single-slit diffraction intensity showing the central maximum to be wider and much more intense than those to the

sides. In fact, the central maximum is six times higher than shown here.

EXAMPLE 4.1

Calculating Single-Slit Diffraction
Visible light of wavelength 550 nm falls on a single slit and produces its second diffraction minimum at an
angle of relative to the incident direction of the light, as in Figure 4.6. (a) What is the width of the slit? (b)
At what angle is the first minimum produced?

Figure 4.6 In this example, we analyze a graph of the single-slit diffraction pattern.

Strategy
From the given information, and assuming the screen is far away from the slit, we can use the equation

first to find D, and again to find the angle for the first minimum

Solution

a. We are given that , , and . Solving the equation for a and
substituting known values gives
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b. Solving the equation for and substituting the known values gives

Thus the angle is

Significance
We see that the slit is narrow (it is only a few times greater than the wavelength of light). This is consistent with
the fact that light must interact with an object comparable in size to its wavelength in order to exhibit
significant wave effects such as this single-slit diffraction pattern. We also see that the central maximum
extends on either side of the original beam, for a width of about . The angle between the first and
second minima is only about . Thus, the second maximum is only about half as wide as the
central maximum.

CHECK YOUR UNDERSTANDING 4.1

Suppose the slit width in Example 4.1 is increased to What are the new angular positions for
the first, second, and third minima? Would a fourth minimum exist?

4.2 Intensity in Single-Slit Diffraction
Learning Objectives
By the end of this section, you will be able to:

• Calculate the intensity relative to the central maximum of the single-slit diffraction peaks
• Calculate the intensity relative to the central maximum of an arbitrary point on the screen

To calculate the intensity of the diffraction pattern, we follow the phasor method used for calculations with ac
circuits in Alternating-Current Circuits. If we consider that there are N Huygens sources across the slit shown
in Figure 4.4, with each source separated by a distance a/N from its adjacent neighbors, the path difference
between waves from adjacent sources reaching the arbitrary point P on the screen is This distance
is equivalent to a phase difference of The phasor diagram for the waves arriving at the point
whose angular position is is shown in Figure 4.7. The amplitude of the phasor for each Huygens wavelet is

the amplitude of the resultant phasor is E, and the phase difference between the wavelets from the first
and the last sources is

With ∞ , the phasor diagram approaches a circular arc of length and radius r. Since the length of

the arc is for any , the radius r of the arc must decrease as increases (or equivalently, as the phasors
form tighter spirals).
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Figure 4.7 (a) Phasor diagram corresponding to the angular position in the single-slit diffraction pattern. The phase difference between

the wavelets from the first and last sources is . (b) The geometry of the phasor diagram.

The phasor diagram for (the center of the diffraction pattern) is shown in Figure 4.8(a) using . In
this case, the phasors are laid end to end in a straight line of length the radius r goes to infinity, and the
resultant has its maximum value The intensity of the light can be obtained using the relation

from Electromagnetic Waves. The intensity of the maximum is then

where . The phasor diagrams for the first two zeros of the diffraction pattern are shown in parts (b)
and (d) of the figure. In both cases, the phasors add to zero, after rotating through rad for and
rad for .

Figure 4.8 Phasor diagrams (with 30 phasors) for various points on the single-slit diffraction pattern. Multiple rotations around a given

circle have been separated slightly so that the phasors can be seen. (a) Central maximum, (b) first minimum, (c) first maximum beyond

central maximum, (d) second minimum, and (e) second maximum beyond central maximum.

The next two maxima beyond the central maxima are represented by the phasor diagrams of parts (c) and (e).
In part (c), the phasors have rotated through rad and have formed a resultant phasor of magnitude .
The length of the arc formed by the phasors is Since this corresponds to 1.5 rotations around a circle
of diameter , we have

so
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and

where

In part (e), the phasors have rotated through rad, corresponding to 2.5 rotations around a circle of
diameter and arc length This results in . The proof is left as an exercise for the
student (Exercise 4.119).

These two maxima actually correspond to values of slightly less than rad and rad. Since the total
length of the arc of the phasor diagram is always the radius of the arc decreases as increases. As a
result, and turn out to be slightly larger for arcs that have not quite curled through rad and rad,
respectively. The exact values of for the maxima are investigated in Exercise 4.120. In solving that problem,
you will find that they are less than, but very close to,

To calculate the intensity at an arbitrary point P on the screen, we return to the phasor diagram of Figure 4.7.
Since the arc subtends an angle at the center of the circle,

and

where E is the amplitude of the resultant field. Solving the second equation for E and then substituting r from
the first equation, we find

Now defining

we obtain

This equation relates the amplitude of the resultant field at any point in the diffraction pattern to the
amplitude at the central maximum. The intensity is proportional to the square of the amplitude, so

where is the intensity at the center of the pattern.

For the central maximum, , is also zero and we see from l’Hôpital’s rule that so
that For the next maximum, rad, we have rad and when substituted into
Equation 4.4, it yields

4.2

4.3

4.4
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in agreement with what we found earlier in this section using the diameters and circumferences of phasor
diagrams. Substituting rad into Equation 4.4 yields a similar result for .

A plot of Equation 4.4 is shown in Figure 4.9 and directly below it is a photograph of an actual diffraction
pattern. Notice that the central peak is much brighter than the others, and that the zeros of the pattern are
located at those points where which occurs when rad. This corresponds to

or

which is Equation 4.1.

Figure 4.9 (a) The calculated intensity distribution of a single-slit diffraction pattern. (b) The actual diffraction pattern.

EXAMPLE 4.2

Intensity in Single-Slit Diffraction
Light of wavelength 550 nm passes through a slit of width and produces a diffraction pattern similar
to that shown in Figure 4.9. (a) Find the locations of the first two minima in terms of the angle from the central
maximum and (b) determine the intensity relative to the central maximum at a point halfway between these
two minima.

Strategy
The minima are given by Equation 4.1, . The first two minima are for and Equation
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4.4 and Equation 4.2 can be used to determine the intensity once the angle has been worked out.

Solution

a. Solving Equation 4.1 for gives us so that

and

b. The halfway point between and is

Equation 4.2 gives

From Equation 4.4, we can calculate

Significance
This position, halfway between two minima, is very close to the location of the maximum, expected near

.

CHECK YOUR UNDERSTANDING 4.2

For the experiment in Example 4.2, at what angle from the center is the third maximum and what is its
intensity relative to the central maximum?

If the slit width a is varied, the intensity distribution changes, as illustrated in Figure 4.10. The central peak is
distributed over the region from to . For small , this corresponds to an angular
width Hence, an increase in the slit width results in a decrease in the width of the central peak.
For a slit with the central peak is very sharp, whereas if , it becomes quite broad.

Figure 4.10 Single-slit diffraction patterns for various slit widths. As the slit width a increases from and then to , the width

of the central peak decreases as the angles for the first minima decrease as predicted by Equation 4.1.
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INTERACTIVE

A diffraction experiment in optics can require a lot of preparation but this simulation (https://openstax.org/l/
21diffrexpoptsi) by Andrew Duffy offers not only a quick set up but also the ability to change the slit width
instantly. Run the simulation and select “Single slit.” You can adjust the slit width and see the effect on the
diffraction pattern on a screen and as a graph.

4.3 Double-Slit Diffraction
Learning Objectives
By the end of this section, you will be able to:

• Describe the combined effect of interference and diffraction with two slits, each with finite width
• Determine the relative intensities of interference fringes within a diffraction pattern
• Identify missing orders, if any

When we studied interference in Young’s double-slit experiment, we ignored the diffraction effect in each slit.
We assumed that the slits were so narrow that on the screen you saw only the interference of light from just
two point sources. If the slit is smaller than the wavelength, then Figure 4.10(a) shows that there is just a
spreading of light and no peaks or troughs on the screen. Therefore, it was reasonable to leave out the
diffraction effect in that chapter. However, if you make the slit wider, Figure 4.10(b) and (c) show that you
cannot ignore diffraction. In this section, we study the complications to the double-slit experiment that arise
when you also need to take into account the diffraction effect of each slit.

To calculate the diffraction pattern for two (or any number of) slits, we need to generalize the method we just
used for a single slit. That is, across each slit, we place a uniform distribution of point sources that radiate
Huygens wavelets, and then we sum the wavelets from all the slits. This gives the intensity at any point on the
screen. Although the details of that calculation can be complicated, the final result is quite simple:

In other words, the locations of the interference fringes are given by the equation , the same as
when we considered the slits to be point sources, but the intensities of the fringes are now reduced by
diffraction effects, according to Equation 4.4. [Note that in the chapter on interference, we wrote
and used the integer m to refer to interference fringes. Equation 4.1 also uses m, but this time to refer to
diffraction minima. If both equations are used simultaneously, it is good practice to use a different variable
(such as n) for one of these integers in order to keep them distinct.]

Interference and diffraction effects operate simultaneously and generally produce minima at different angles.
This gives rise to a complicated pattern on the screen, in which some of the maxima of interference from the
two slits are missing if the maximum of the interference is in the same direction as the minimum of the
diffraction. We refer to such a missing peak as a missing order. One example of a diffraction pattern on the
screen is shown in Figure 4.11. The solid line with multiple peaks of various heights is the intensity observed
on the screen. It is a product of the interference pattern of waves from separate slits and the diffraction of
waves from within one slit.

Two-Slit Diffraction Pattern

The diffraction pattern of two slits of width a that are separated by a distance d is the interference pattern
of two point sources separated by d multiplied by the diffraction pattern of a slit of width a.
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Figure 4.11 Diffraction from a double slit. The purple line with peaks of the same height are from the interference of the waves from two

slits; the blue line with one big hump in the middle is the diffraction of waves from within one slit; and the thick red line is the product of the

two, which is the pattern observed on the screen. The plot shows the expected result for a slit width and slit separation . The

maximum of order for the interference is missing because the minimum of the diffraction occurs in the same direction.

EXAMPLE 4.3

Intensity of the Fringes
Figure 4.11 shows that the intensity of the fringe for is zero, but what about the other fringes? Calculate
the intensity for the fringe at relative to the intensity of the central peak.

Strategy
Determine the angle for the double-slit interference fringe, using the equation from Interference, then
determine the relative intensity in that direction due to diffraction by using Equation 4.4.

Solution
From the chapter on interference, we know that the bright interference fringes occur at , or

From Equation 4.4,

Substituting from above,

For , , and ,

Then, the intensity is
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Significance
Note that this approach is relatively straightforward and gives a result that is almost exactly the same as the
more complicated analysis using phasors to work out the intensity values of the double-slit interference (thin
line in Figure 4.11). The phasor approach accounts for the downward slope in the diffraction intensity (blue
line) so that the peak near occurs at a value of ever so slightly smaller than we have shown here.

EXAMPLE 4.4

Two-Slit Diffraction
Suppose that in Young’s experiment, slits of width 0.020 mm are separated by 0.20 mm. If the slits are
illuminated by monochromatic light of wavelength 500 nm, how many bright fringes are observed in the
central peak of the diffraction pattern?

Solution
From Equation 4.1, the angular position of the first diffraction minimum is

Using for , we find

which is the maximum interference order that fits inside the central peak. We note that are missing
orders as matches exactly. Accordingly, we observe bright fringes for

for a total of 19 bright fringes.

CHECK YOUR UNDERSTANDING 4.3

For the experiment in Example 4.4, show that is also a missing order.

INTERACTIVE

Explore the effects of double-slit diffraction. In this simulation (https://openstax.org/l/21doubslitdiff) written
by Fu-Kwun Hwang, select using the slider and see what happens when you control the slit width, slit
separation and the wavelength. Can you make an order go “missing?”

4.4 Diffraction Gratings
Learning Objectives
By the end of this section, you will be able to:

• Discuss the pattern obtained from diffraction gratings
• Explain diffraction grating effects

Analyzing the interference of light passing through two slits lays out the theoretical framework of interference
and gives us a historical insight into Thomas Young’s experiments. However, most modern-day applications of
slit interference use not just two slits but many, approaching infinity for practical purposes. The key optical
element is called a diffraction grating, an important tool in optical analysis.

Diffraction Gratings: An Infinite Number of Slits
The analysis of multi-slit interference in Interference allows us to consider what happens when the number of
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slits N approaches infinity. Recall that secondary maxima appear between the principal maxima. We can
see there will be an infinite number of secondary maxima that appear, and an infinite number of dark fringes
between them. This makes the spacing between the fringes, and therefore the width of the maxima,
infinitesimally small. Furthermore, because the intensity of the secondary maxima is proportional to , it
approaches zero so that the secondary maxima are no longer seen. What remains are only the principal
maxima, now very bright and very narrow (Figure 4.12).

Figure 4.12 (a) Intensity of light transmitted through a large number of slits. When N approaches infinity, only the principal maxima

remain as very bright and very narrow lines. (b) A laser beam passed through a diffraction grating. (credit b: modification of work by

Sebastian Stapelberg)

In reality, the number of slits is not infinite, but it can be very large—large enough to produce the equivalent
effect. A prime example is an optical element called a diffraction grating. A diffraction grating can be
manufactured by carving glass with a sharp tool in a large number of precisely positioned parallel lines, with
untouched regions acting like slits (Figure 4.13). This type of grating can be photographically mass produced
rather cheaply. Because there can be over 1000 lines per millimeter across the grating, when a section as small
as a few millimeters is illuminated by an incoming ray, the number of illuminated slits is effectively infinite,
providing for very sharp principal maxima.
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Figure 4.13 A diffraction grating can be manufactured by carving glass with a sharp tool in a large number of precisely positioned parallel

lines.

Diffraction gratings work both for transmission of light, as in Figure 4.14, and for reflection of light, as on
butterfly wings and the Australian opal in Figure 4.15. Natural diffraction gratings also occur in the feathers of
certain birds such as the hummingbird. Tiny, finger-like structures in regular patterns act as reflection
gratings, producing constructive interference that gives the feathers colors not solely due to their
pigmentation. This is called iridescence.

Figure 4.14 (a) Light passing through a diffraction grating is diffracted in a pattern similar to a double slit, with bright regions at various

angles. (b) The pattern obtained for white light incident on a grating. The central maximum is white, and the higher-order maxima disperse

white light into a rainbow of colors.

4.4 • Diffraction Gratings 155



Figure 4.15 (a) This Australian opal and (b) butterfly wings have rows of reflectors that act like reflection gratings, reflecting different

colors at different angles. (credit a: modification of work by "Opals-On-Black"/Flickr; credit b: modification of work by “whologwhy”/Flickr)

Applications of Diffraction Gratings
Where are diffraction gratings used in applications? Diffraction gratings are commonly used for spectroscopic
dispersion and analysis of light. What makes them particularly useful is the fact that they form a sharper
pattern than double slits do. That is, their bright fringes are narrower and brighter while their dark regions are
darker. Diffraction gratings are key components of monochromators used, for example, in optical imaging of
particular wavelengths from biological or medical samples. A diffraction grating can be chosen to specifically
analyze a wavelength emitted by molecules in diseased cells in a biopsy sample or to help excite strategic
molecules in the sample with a selected wavelength of light. Another vital use is in optical fiber technologies
where fibers are designed to provide optimum performance at specific wavelengths. A range of diffraction
gratings are available for selecting wavelengths for such use.

EXAMPLE 4.5

Calculating Typical Diffraction Grating Effects
Diffraction gratings with 10,000 lines per centimeter are readily available. Suppose you have one, and you
send a beam of white light through it to a screen 2.00 m away. (a) Find the angles for the first-order diffraction
of the shortest and longest wavelengths of visible light (380 and 760 nm, respectively). (b) What is the distance
between the ends of the rainbow of visible light produced on the screen for first-order interference? (See
Figure 4.16.)
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Figure 4.16 (a) The diffraction grating considered in this example produces a rainbow of colors on a screen a distance from

the grating. The distances along the screen are measured perpendicular to the x-direction. In other words, the rainbow pattern extends out

of the page.

(b) In a bird’s-eye view, the rainbow pattern can be seen on a table where the equipment is placed.

Strategy
Once a value for the diffraction grating’s slit spacing d has been determined, the angles for the sharp lines can
be found using the equation

Since there are 10,000 lines per centimeter, each line is separated by 1/10,000 of a centimeter. Once we know
the angles, we an find the distances along the screen by using simple trigonometry.

Solution

a. The distance between slits is Let us call the two
angles for violet (380 nm) and for red (760 nm). Solving the equation

where for the first-order and Substituting these values gives

Thus the angle is

Similarly,

Thus the angle is
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Notice that in both equations, we reported the results of these intermediate calculations to four significant
figures to use with the calculation in part (b).

b. The distances on the secreen are labeled in Figure 4.16. Notice that We can solve
for That is,

and

The distance between them is therefore

Significance
The large distance between the red and violet ends of the rainbow produced from the white light indicates the
potential this diffraction grating has as a spectroscopic tool. The more it can spread out the wavelengths
(greater dispersion), the more detail can be seen in a spectrum. This depends on the quality of the diffraction
grating—it must be very precisely made in addition to having closely spaced lines.

CHECK YOUR UNDERSTANDING 4.4

If the line spacing of a diffraction grating d is not precisely known, we can use a light source with a well-
determined wavelength to measure it. Suppose the first-order constructive fringe of the emission line of
hydrogen is measured at using a spectrometer with a diffraction grating. What is the
line spacing of this grating?

INTERACTIVE

Take the same simulation (https://openstax.org/l/21doubslitdiff) we used for double-slit diffraction and try
increasing the number of slits from to . The primary peaks become sharper, and the
secondary peaks become less and less pronounced. By the time you reach the maximum number of ,
the system is behaving much like a diffraction grating.

4.5 Circular Apertures and Resolution
Learning Objectives
By the end of this section, you will be able to:

• Describe the diffraction limit on resolution
• Describe the diffraction limit on beam propagation

Light diffracts as it moves through space, bending around obstacles, interfering constructively and
destructively. This can be used as a spectroscopic tool—a diffraction grating disperses light according to
wavelength, for example, and is used to produce spectra—but diffraction also limits the detail we can obtain in
images.

Figure 4.17(a) shows the effect of passing light through a small circular aperture. Instead of a bright spot with
sharp edges, we obtain a spot with a fuzzy edge surrounded by circles of light. This pattern is caused by
diffraction, similar to that produced by a single slit. Light from different parts of the circular aperture
interferes constructively and destructively. The effect is most noticeable when the aperture is small, but the
effect is there for large apertures as well.
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Figure 4.17 (a) Monochromatic light passed through a small circular aperture produces this diffraction pattern. (b) Two point-light

sources that are close to one another produce overlapping images because of diffraction. (c) If the sources are closer together, they cannot

be distinguished or resolved.

How does diffraction affect the detail that can be observed when light passes through an aperture? Figure
4.17(b) shows the diffraction pattern produced by two point-light sources that are close to one another. The
pattern is similar to that for a single point source, and it is still possible to tell that there are two light sources
rather than one. If they are closer together, as in Figure 4.17(c), we cannot distinguish them, thus limiting the
detail or resolution we can obtain. This limit is an inescapable consequence of the wave nature of light.

Diffraction limits the resolution in many situations. The acuity of our vision is limited because light passes
through the pupil, which is the circular aperture of the eye. Be aware that the diffraction-like spreading of light
is due to the limited diameter of a light beam, not the interaction with an aperture. Thus, light passing through
a lens with a diameter D shows this effect and spreads, blurring the image, just as light passing through an
aperture of diameter D does. Thus, diffraction limits the resolution of any system having a lens or mirror.
Telescopes are also limited by diffraction, because of the finite diameter D of the primary mirror.

Just what is the limit? To answer that question, consider the diffraction pattern for a circular aperture, which
has a central maximum that is wider and brighter than the maxima surrounding it (similar to a slit) (Figure
4.18(a)). It can be shown that, for a circular aperture of diameter D, the first minimum in the diffraction pattern
occurs at (providing the aperture is large compared with the wavelength of light, which is the case
for most optical instruments). The accepted criterion for determining the diffraction limit to resolution based
on this angle is known as the Rayleigh criterion, which was developed by Lord Rayleigh in the nineteenth
century.

The first minimum is at an angle of , so that two point objects are just resolvable if they are
separated by the angle

where is the wavelength of light (or other electromagnetic radiation) and D is the diameter of the aperture,
lens, mirror, etc., with which the two objects are observed. In this expression, has units of radians. This angle
is also commonly known as the diffraction limit.

Rayleigh Criterion

The diffraction limit to resolution states that two images are just resolvable when the center of the
diffraction pattern of one is directly over the first minimum of the diffraction pattern of the other (Figure
4.18(b)).

4.5

4.5 • Circular Apertures and Resolution 159



Figure 4.18 (a) Graph of intensity of the diffraction pattern for a circular aperture. Note that, similar to a single slit, the central maximum

is wider and brighter than those to the sides. (b) Two point objects produce overlapping diffraction patterns. Shown here is the Rayleigh

criterion for being just resolvable. The central maximum of one pattern lies on the first minimum of the other.

All attempts to observe the size and shape of objects are limited by the wavelength of the probe. Even the small
wavelength of light prohibits exact precision. When extremely small wavelength probes are used, as with an
electron microscope, the system is disturbed, still limiting our knowledge. Heisenberg’s uncertainty principle
asserts that this limit is fundamental and inescapable, as we shall see in the chapter on quantum mechanics.

EXAMPLE 4.6

Calculating Diffraction Limits of the Hubble Space Telescope
The primary mirror of the orbiting Hubble Space Telescope has a diameter of 2.40 m. Being in orbit, this
telescope avoids the degrading effects of atmospheric distortion on its resolution. (a) What is the angle
between two just-resolvable point light sources (perhaps two stars)? Assume an average light wavelength of
550 nm. (b) If these two stars are at a distance of 2 million light-years, which is the distance of the Andromeda
Galaxy, how close together can they be and still be resolved? (A light-year, or ly, is the distance light travels in 1
year.)

Strategy
The Rayleigh criterion stated in Equation 4.5, , gives the smallest possible angle between point
sources, or the best obtainable resolution. Once this angle is known, we can calculate the distance between the
stars, since we are given how far away they are.

Solution

a. The Rayleigh criterion for the minimum resolvable angle is

Entering known values gives

b. The distance s between two objects a distance r away and separated by an angle is
Substituting known values gives
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Significance
The angle found in part (a) is extraordinarily small (less than 1/50,000 of a degree), because the primary
mirror is so large compared with the wavelength of light. As noticed, diffraction effects are most noticeable
when light interacts with objects having sizes on the order of the wavelength of light. However, the effect is still
there, and there is a diffraction limit to what is observable. The actual resolution of the Hubble Telescope is not
quite as good as that found here. As with all instruments, there are other effects, such as nonuniformities in
mirrors or aberrations in lenses that further limit resolution. However, Figure 4.19 gives an indication of the
extent of the detail observable with the Hubble because of its size and quality, and especially because it is
above Earth’s atmosphere.

Figure 4.19 These two photographs of the M82 Galaxy give an idea of the observable detail using (a) a ground-based telescope and (b)

the Hubble Space Telescope. (credit a: modification of work by “Ricnun”/Wikimedia Commons; credit b: modification of work by NASA,

ESA, and The Hubble Heritage Team (STScI/AURA))

The answer in part (b) indicates that two stars separated by about half a light-year can be resolved. The
average distance between stars in a galaxy is on the order of five light-years in the outer parts and about one
light-year near the galactic center. Therefore, the Hubble can resolve most of the individual stars in
Andromeda Galaxy, even though it lies at such a huge distance that its light takes 2 million years to reach us.
Figure 4.20 shows another mirror used to observe radio waves from outer space.

Figure 4.20 A 305-m-diameter paraboloid at Arecibo in Puerto Rico is lined with reflective material, making it into a radio telescope. It is

the largest curved focusing dish in the world. Although D for Arecibo is much larger than for the Hubble Telescope, it detects radiation of a

much longer wavelength and its diffraction limit is significantly poorer than Hubble’s. The Arecibo telescope is still very useful, because

important information is carried by radio waves that is not carried by visible light. (credit: Jeff Hitchcock)

CHECK YOUR UNDERSTANDING 4.5

What is the angular resolution of the Arecibo telescope shown in Figure 4.20 when operated at 21-cm
wavelength? How does it compare to the resolution of the Hubble Telescope?
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Diffraction is not only a problem for optical instruments but also for the electromagnetic radiation itself. Any
beam of light having a finite diameter D and a wavelength exhibits diffraction spreading. The beam spreads
out with an angle given by Equation 4.5, . Take, for example, a laser beam made of rays as
parallel as possible (angles between rays as close to as possible) instead spreads out at an angle

, where D is the diameter of the beam and is its wavelength. This spreading is impossible to
observe for a flashlight because its beam is not very parallel to start with. However, for long-distance
transmission of laser beams or microwave signals, diffraction spreading can be significant (Figure 4.21). To
avoid this, we can increase D. This is done for laser light sent to the moon to measure its distance from Earth.
The laser beam is expanded through a telescope to make D much larger and smaller.

Figure 4.21 The beam produced by this microwave transmission antenna spreads out at a minimum angle due to

diffraction. It is impossible to produce a near-parallel beam because the beam has a limited diameter.

In most biology laboratories, resolution is an issue when the use of the microscope is introduced. The smaller
the distance x by which two objects can be separated and still be seen as distinct, the greater the resolution.
The resolving power of a lens is defined as that distance x. An expression for resolving power is obtained from
the Rayleigh criterion. Figure 4.22(a) shows two point objects separated by a distance x. According to the
Rayleigh criterion, resolution is possible when the minimum angular separation is

where d is the distance between the specimen and the objective lens, and we have used the small angle
approximation (i.e., we have assumed that x is much smaller than d), so that Therefore, the
resolving power is

Another way to look at this is by the concept of numerical aperture (NA), which is a measure of the maximum
acceptance angle at which a lens will take light and still contain it within the lens. Figure 4.22(b) shows a lens
and an object at point P. The NA here is a measure of the ability of the lens to gather light and resolve fine
detail. The angle subtended by the lens at its focus is defined to be . From the figure and again using the
small angle approximation, we can write

The NA for a lens is , where n is the index of refraction of the medium between the objective lens
and the object at point P. From this definition for NA, we can see that

In a microscope, NA is important because it relates to the resolving power of a lens. A lens with a large NA is
able to resolve finer details. Lenses with larger NA are also able to collect more light and so give a brighter
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image. Another way to describe this situation is that the larger the NA, the larger the cone of light that can be
brought into the lens, so more of the diffraction modes are collected. Thus the microscope has more
information to form a clear image, and its resolving power is higher.

Figure 4.22 (a) Two points separated by a distance x and positioned a distance d away from the objective. (b) Terms and symbols used in

discussion of resolving power for a lens and an object at point P (credit a: modification of work by “Infopro”/Wikimedia Commons).

One of the consequences of diffraction is that the focal point of a beam has a finite width and intensity
distribution. Imagine focusing when only considering geometric optics, as in Figure 4.23(a). The focal point is
regarded as an infinitely small point with a huge intensity and the capacity to incinerate most samples,
irrespective of the NA of the objective lens—an unphysical oversimplification. For wave optics, due to
diffraction, we take into account the phenomenon in which the focal point spreads to become a focal spot
(Figure 4.23(b)) with the size of the spot decreasing with increasing NA. Consequently, the intensity in the focal
spot increases with increasing NA. The higher the NA, the greater the chances of photodegrading the
specimen. However, the spot never becomes a true point.

Figure 4.23 (a) In geometric optics, the focus is modelled as a point, but it is not physically possible to produce such a point because it

implies infinite intensity. (b) In wave optics, the focus is an extended region.

In a different type of microscope, molecules within a specimen are made to emit light through a mechanism
called fluorescence. By controlling the molecules emitting light, it has become possible to construct images
with resolution much finer than the Rayleigh criterion, thus circumventing the diffraction limit. The
development of super-resolved fluorescence microscopy led to the 2014 Nobel Prize in Chemistry.

INTERACTIVE

In this Optical Resolution Model, two diffraction patterns for light through two circular apertures are shown
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side by side in this simulation (https://openstax.org/l/21optresmodsim) by Fu-Kwun Hwang. Watch the
patterns merge as you decrease the aperture diameters.

4.6 X-Ray Diffraction
Learning Objectives
By the end of this section, you will be able to:

• Describe interference and diffraction effects exhibited by X-rays in interaction with atomic-scale structures

Since X-ray photons are very energetic, they have relatively short wavelengths, on the order of m to
m. Thus, typical X-ray photons act like rays when they encounter macroscopic objects, like teeth, and produce
sharp shadows. However, since atoms are on the order of 0.1 nm in size, X-rays can be used to detect the
location, shape, and size of atoms and molecules. The process is called X-ray diffraction, and it involves the
interference of X-rays to produce patterns that can be analyzed for information about the structures that
scattered the X-rays.

Perhaps the most famous example of X-ray diffraction is the discovery of the double-helical structure of DNA
in 1953 by an international team of scientists working at England’s Cavendish Laboratory—American James
Watson, Englishman Francis Crick, and New Zealand-born Maurice Wilkins. Using X-ray diffraction data
produced by Rosalind Franklin, they were the first to model the double-helix structure of DNA that is so crucial
to life. For this work, Watson, Crick, and Wilkins were awarded the 1962 Nobel Prize in Physiology or Medicine.
(There is some debate and controversy over the issue that Rosalind Franklin was not included in the prize,
although she died in 1958, before the prize was awarded.)

Figure 4.24 shows a diffraction pattern produced by the scattering of X-rays from a crystal. This process is
known as X-ray crystallography because of the information it can yield about crystal structure, and it was the
type of data Rosalind Franklin supplied to Watson and Crick for DNA. Not only do X-rays confirm the size and
shape of atoms, they give information about the atomic arrangements in materials. For example, more recent
research in high-temperature superconductors involves complex materials whose lattice arrangements are
crucial to obtaining a superconducting material. These can be studied using X-ray crystallography.

Figure 4.24 X-ray diffraction from the crystal of a protein (hen egg lysozyme) produced this interference pattern. Analysis of the pattern

yields information about the structure of the protein. (credit: “Del45”/Wikimedia Commons)

Historically, the scattering of X-rays from crystals was used to prove that X-rays are energetic electromagnetic
(EM) waves. This was suspected from the time of the discovery of X-rays in 1895, but it was not until 1912 that
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the German Max von Laue (1879–1960) convinced two of his colleagues to scatter X-rays from crystals. If a
diffraction pattern is obtained, he reasoned, then the X-rays must be waves, and their wavelength could be
determined. (The spacing of atoms in various crystals was reasonably well known at the time, based on good
values for Avogadro’s number.) The experiments were convincing, and the 1914 Nobel Prize in Physics was
given to von Laue for his suggestion leading to the proof that X-rays are EM waves. In 1915, the unique father-
and-son team of Sir William Henry Bragg and his son Sir William Lawrence Bragg were awarded a joint Nobel
Prize for inventing the X-ray spectrometer and the then-new science of X-ray analysis.

In ways reminiscent of thin-film interference, we consider two plane waves at X-ray wavelengths, each one
reflecting off a different plane of atoms within a crystal’s lattice, as shown in Figure 4.25. From the geometry,
the difference in path lengths is . Constructive interference results when this distance is an integer
multiple of the wavelength. This condition is captured by the Bragg equation,

where m is a positive integer and d is the spacing between the planes. Following the Law of Reflection, both the
incident and reflected waves are described by the same angle, but unlike the general practice in geometric
optics, is measured with respect to the surface itself, rather than the normal.

Figure 4.25 X-ray diffraction with a crystal. Two incident waves reflect off two planes of a crystal. The difference in path lengths is

indicated by the dashed line.

EXAMPLE 4.7

X-Ray Diffraction with Salt Crystals
Common table salt is composed mainly of NaCl crystals. In a NaCl crystal, there is a family of planes 0.252 nm
apart. If the first-order maximum is observed at an incidence angle of , what is the wavelength of the X-
ray scattering from this crystal?

Strategy
Use the Bragg equation, Equation 4.6, , to solve for .

Solution
For first-order, and the plane spacing d is known. Solving the Bragg equation for wavelength yields

Significance
The determined wavelength fits within the X-ray region of the electromagnetic spectrum. Once again, the wave
nature of light makes itself prominent when the wavelength is comparable to the size of the
physical structures it interacts with.

CHECK YOUR UNDERSTANDING 4.6

4.6
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For the experiment described in Example 4.7, what are the two other angles where interference maxima may
be observed? What limits the number of maxima?

Although Figure 4.25 depicts a crystal as a two-dimensional array of scattering centers for simplicity, real
crystals are structures in three dimensions. Scattering can occur simultaneously from different families of
planes at different orientations and spacing patterns known as called Bragg planes, as shown in Figure 4.26.
The resulting interference pattern can be quite complex.

Figure 4.26 Because of the regularity that makes a crystal structure, one crystal can have many families of planes within its geometry,

each one giving rise to X-ray diffraction.

4.7 Holography
Learning Objectives
By the end of this section, you will be able to:

• Describe how a three-dimensional image is recorded as a hologram
• Describe how a three-dimensional image is formed from a hologram

A hologram, such as the one in Figure 4.27, is a true three-dimensional image recorded on film by lasers.
Holograms are used for amusement; decoration on novelty items and magazine covers; security on credit
cards and driver’s licenses (a laser and other equipment are needed to reproduce them); and for serious three-
dimensional information storage. You can see that a hologram is a true three-dimensional image because
objects change relative position in the image when viewed from different angles.

Figure 4.27 Credit cards commonly have holograms for logos, making them difficult to reproduce. (credit: Dominic Alves)

The name hologram means “entire picture” (from the Greek holo, as in holistic) because the image is three-
dimensional. Holography is the process of producing holograms and, although they are recorded on
photographic film, the process is quite different from normal photography. Holography uses light interference
or wave optics, whereas normal photography uses geometric optics. Figure 4.28 shows one method of
producing a hologram. Coherent light from a laser is split by a mirror, with part of the light illuminating the
object. The remainder, called the reference beam, shines directly on a piece of film. Light scattered from the
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object interferes with the reference beam, producing constructive and destructive interference. As a result, the
exposed film looks foggy, but close examination reveals a complicated interference pattern stored on it. Where
the interference was constructive, the film (a negative actually) is darkened. Holography is sometimes called
lens-less photography, because it uses the wave characteristics of light, as contrasted to normal photography,
which uses geometric optics and requires lenses.

Figure 4.28 Production of a hologram. Single-wavelength coherent light from a laser produces a well-defined interference pattern on a

piece of film. The laser beam is split by a partially silvered mirror, with part of the light illuminating the object and the remainder shining

directly on the film. (credit: modification of work by Mariana Ruiz Villarreal)

Light falling on a hologram can form a three-dimensional image of the original object. The process is
complicated in detail, but the basics can be understood, as shown in Figure 4.29, in which a laser of the same
type that exposed the film is now used to illuminate it. The myriad tiny exposed regions of the film are dark
and block the light, whereas less exposed regions allow light to pass. The film thus acts much like a collection
of diffraction gratings with various spacing patterns. Light passing through the hologram is diffracted in
various directions, producing both real and virtual images of the object used to expose the film. The
interference pattern is the same as that produced by the object. Moving your eye to various places in the
interference pattern gives you different perspectives, just as looking directly at the object would. The image
thus looks like the object and is three dimensional like the object.

Figure 4.29 A transmission hologram is one that produces real and virtual images when a laser of the same type as that which exposed

the hologram is passed through it. Diffraction from various parts of the film produces the same interference pattern that was produced by

the object that was used to expose it. (credit: modification of work by Mariana Ruiz Villarreal)

The hologram illustrated in Figure 4.29 is a transmission hologram. Holograms that are viewed with reflected
light, such as the white light holograms on credit cards, are reflection holograms and are more common. White
light holograms often appear a little blurry with rainbow edges, because the diffraction patterns of various
colors of light are at slightly different locations due to their different wavelengths. Further uses of holography
include all types of three-dimensional information storage, such as of statues in museums, engineering
studies of structures, and images of human organs.
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Invented in the late 1940s by Dennis Gabor (1900–1970), who won the 1971 Nobel Prize in Physics for his
work, holography became far more practical with the development of the laser. Since lasers produce coherent
single-wavelength light, their interference patterns are more pronounced. The precision is so great that it is
even possible to record numerous holograms on a single piece of film by just changing the angle of the film for
each successive image. This is how the holograms that move as you walk by them are produced—a kind of lens-
less movie.

In a similar way, in the medical field, holograms have allowed complete three-dimensional holographic
displays of objects from a stack of images. Storing these images for future use is relatively easy. With the use of
an endoscope, high-resolution, three-dimensional holographic images of internal organs and tissues can be
made.
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CHAPTER REVIEW
Key Terms
Bragg planes families of planes within crystals

that can give rise to X-ray diffraction
destructive interference for a single slit occurs

when the width of the slit is comparable to the
wavelength of light illuminating it

diffraction bending of a wave around the edges of
an opening or an obstacle

diffraction grating large number of evenly spaced
parallel slits

diffraction limit fundamental limit to resolution
due to diffraction

hologram three-dimensional image recorded on
film by lasers; the word hologram means entire
picture (from the Greek word holo, as in holistic)

holography process of producing holograms with
the use of lasers

missing order interference maximum that is not
seen because it coincides with a diffraction

minimum
Rayleigh criterion two images are just-resolvable

when the center of the diffraction pattern of one
is directly over the first minimum of the
diffraction pattern of the other

resolution ability, or limit thereof, to distinguish
small details in images

two-slit diffraction pattern diffraction pattern of
two slits of width D that are separated by a
distance d is the interference pattern of two point
sources separated by d multiplied by the
diffraction pattern of a slit of width D

width of the central peak angle between the
minimum for and

X-ray diffraction technique that provides the
detailed information about crystallographic
structure of natural and manufactured materials

Key Equations

Destructive interference for a single slit

Half phase angle

Field amplitude in the diffraction pattern

Intensity in the diffraction pattern

Rayleigh criterion for circular apertures

Bragg equation

Summary
4.1 Single-Slit Diffraction

• Diffraction can send a wave around the edges of
an opening or other obstacle.

• A single slit produces an interference pattern
characterized by a broad central maximum with
narrower and dimmer maxima to the sides.

4.2 Intensity in Single-Slit Diffraction

• The intensity pattern for diffraction due to a
single slit can be calculated using phasors as

where , a is the slit width, is
the wavelength, and is the angle from the
central peak.

4.3 Double-Slit Diffraction

• With real slits with finite widths, the effects of
interference and diffraction operate
simultaneously to form a complicated intensity
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pattern.
• Relative intensities of interference fringes

within a diffraction pattern can be determined.
• Missing orders occur when an interference

maximum and a diffraction minimum are
located together.

4.4 Diffraction Gratings

• A diffraction grating consists of a large number
of evenly spaced parallel slits that produce an
interference pattern similar to but sharper than
that of a double slit.

• Constructive interference occurs when
where d is

the distance between the slits, is the angle
relative to the incident direction, and m is the
order of the interference.

4.5 Circular Apertures and Resolution

• Diffraction limits resolution.

• The Rayleigh criterion states that two images
are just resolvable when the center of the
diffraction pattern of one is directly over the
first minimum of the diffraction pattern of the
other.

4.6 X-Ray Diffraction

• X-rays are relatively short-wavelength EM
radiation and can exhibit wave characteristics
such as interference when interacting with
correspondingly small objects.

4.7 Holography

• Holography is a technique based on wave
interference to record and form three-
dimensional images.

• Lasers offer a practical way to produce sharp
holographic images because of their
monochromatic and coherent light for
pronounced interference patterns.

Conceptual Questions
4.1 Single-Slit Diffraction

1. As the width of the slit producing a single-slit
diffraction pattern is reduced, how will the
diffraction pattern produced change?

2. Compare interference and diffraction.
3. If you and a friend are on opposite sides of a hill,

you can communicate with walkie-talkies but not
with flashlights. Explain.

4. What happens to the diffraction pattern of a
single slit when the entire optical apparatus is
immersed in water?

5. In our study of diffraction by a single slit, we
assume that the length of the slit is much larger
than the width. What happens to the diffraction
pattern if these two dimensions were
comparable?

6. A rectangular slit is twice as wide as it is high. Is
the central diffraction peak wider in the vertical
direction or in the horizontal direction?

4.2 Intensity in Single-Slit Diffraction

7. In Equation 4.4, the parameter looks like an
angle but is not an angle that you can measure
with a protractor in the physical world. Explain
what represents.

4.3 Double-Slit Diffraction

8. Shown below is the central part of the interference
pattern for a pure wavelength of red light projected

onto a double slit. The pattern is actually a
combination of single- and double-slit interference.
Note that the bright spots are evenly spaced. Is this a
double- or single-slit characteristic? Note that some
of the bright spots are dim on either side of the
center. Is this a single- or double-slit characteristic?
Which is smaller, the slit width or the separation
between slits? Explain your responses.
(credit: PASCO)

4.5 Circular Apertures and Resolution

9. Is higher resolution obtained in a microscope
with red or blue light? Explain your answer.

10. The resolving power of refracting telescope
increases with the size of its objective lens.
What other advantage is gained with a larger
lens?

11. The distance between atoms in a molecule is
about . Can visible light be used to
“see” molecules?

12. A beam of light always spreads out. Why can a
beam not be created with parallel rays to
prevent spreading? Why can lenses, mirrors, or
apertures not be used to correct the spreading?
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4.6 X-Ray Diffraction

13. Crystal lattices can be examined with X-rays but
not UV. Why?

4.7 Holography

14. How can you tell that a hologram is a true three-
dimensional image and that those in three-
dimensional movies are not?

15. If a hologram is recorded using monochromatic
light at one wavelength but its image is viewed
at another wavelength, say shorter, what
will you see? What if it is viewed using light of
exactly half the original wavelength?

16. What image will one see if a hologram is
recorded using monochromatic light but its
image is viewed in white light? Explain.

Problems
4.1 Single-Slit Diffraction

17. (a) At what angle is the first minimum for
550-nm light falling on a single slit of width

? (b) Will there be a second minimum?
18. (a) Calculate the angle at which a -wide

slit produces its first minimum for 410-nm
violet light. (b) Where is the first minimum for
700-nm red light?

19. (a) How wide is a single slit that produces its
first minimum for 633-nm light at an angle of

? (b) At what angle will the second
minimum be?

20. (a) What is the width of a single slit that
produces its first minimum at for 600-nm
light? (b) Find the wavelength of light that has
its first minimum at .

21. Find the wavelength of light that has its third
minimum at an angle of when it falls on a
single slit of width .

22. (a) Sodium vapor light averaging 589 nm in
wavelength falls on a single slit of width

. At what angle does it produces its
second minimum? (b) What is the highest-order
minimum produced?

23. Consider a single-slit diffraction pattern for
, projected on a screen that is 1.00

m from a slit of width 0.25 mm. How far from
the center of the pattern are the centers of the
first and second dark fringes?

24. (a) Find the angle between the first minima for
the two sodium vapor lines, which have
wavelengths of 589.1 and 589.6 nm, when they
fall upon a single slit of width . (b) What
is the distance between these minima if the
diffraction pattern falls on a screen 1.00 m from
the slit? (c) Discuss the ease or difficulty of
measuring such a distance.

25. (a) What is the minimum width of a single slit
(in multiples of ) that will produce a first
minimum for a wavelength ? (b) What is its
minimum width if it produces 50 minima? (c)

1000 minima?
26. (a) If a single slit produces a first minimum at

at what angle is the second-order
minimum? (b) What is the angle of the third-
order minimum? (c) Is there a fourth-order
minimum? (d) Use your answers to illustrate
how the angular width of the central maximum
is about twice the angular width of the next
maximum (which is the angle between the first
and second minima).

27. If the separation between the first and the
second minima of a single-slit diffraction
pattern is 6.0 mm, what is the distance between
the screen and the slit? The light wavelength is
500 nm and the slit width is 0.16 mm.

28. A water break at the entrance to a harbor
consists of a rock barrier with a 50.0-m-wide
opening. Ocean waves of 20.0-m wavelength
approach the opening straight on. At what
angles to the incident direction are the boats
inside the harbor most protected against wave
action?

29. An aircraft maintenance technician walks past a
tall hangar door that acts like a single slit for
sound entering the hangar. Outside the door, on
a line perpendicular to the opening in the door,
a jet engine makes a 600-Hz sound. At what
angle with the door will the technician observe
the first minimum in sound intensity if the
vertical opening is 0.800 m wide and the speed
of sound is 340 m/s?

4.2 Intensity in Single-Slit Diffraction

30. A single slit of width is illuminated by a
sodium yellow light of wavelength 589 nm. Find
the intensity at a angle to the axis in terms
of the intensity of the central maximum.

31. A single slit of width 0.1 mm is illuminated by a
mercury light of wavelength 576 nm. Find the
intensity at a angle to the axis in terms of
the intensity of the central maximum.
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32. The width of the central peak in a single-slit
diffraction pattern is 5.0 mm. The wavelength of
the light is 600 nm, and the screen is 2.0 m from
the slit. (a) What is the width of the slit? (b)
Determine the ratio of the intensity at 4.5 mm
from the center of the pattern to the intensity at
the center.

33. Consider the single-slit diffraction pattern for
, , and . Find

the intensity in terms of at , ,
, , and .

4.3 Double-Slit Diffraction

34. Two slits of width each in an opaque
material, are separated by a center-to-center
distance of A monochromatic light of
wavelength 450 nm is incident on the double-
slit. One finds a combined interference and
diffraction pattern on the screen.
(a) How many peaks of the interference will be
observed in the central maximum of the
diffraction pattern?
(b) How many peaks of the interference will be
observed if the slit width is doubled while
keeping the distance between the slits same?
(c) How many peaks of interference will be
observed if the slits are separated by twice the
distance, that is, while keeping the
widths of the slits same?
(d) What will happen in (a) if instead of 450-nm
light another light of wavelength 680 nm is
used?
(e) What is the value of the ratio of the intensity
of the central peak to the intensity of the next
bright peak in (a)?
(f) Does this ratio depend on the wavelength of
the light?
(g) Does this ratio depend on the width or
separation of the slits?

35. A double slit produces a diffraction pattern that
is a combination of single- and double-slit
interference. Find the ratio of the width of the
slits to the separation between them, if the first
minimum of the single-slit pattern falls on the
fifth maximum of the double-slit pattern. (This
will greatly reduce the intensity of the fifth
maximum.)

36. For a double-slit configuration where the slit
separation is four times the slit width, how
many interference fringes lie in the central peak
of the diffraction pattern?

37. Light of wavelength 500 nm falls normally on 50
slits that are wide and spaced

apart. How many interference
fringes lie in the central peak of the diffraction
pattern?

38. A monochromatic light of wavelength 589 nm
incident on a double slit with slit width
and unknown separation results in a diffraction
pattern containing nine interference peaks
inside the central maximum. Find the
separation of the slits.

39. When a monochromatic light of wavelength 430
nm incident on a double slit of slit separation

, there are 11 interference fringes in its
central maximum. How many interference
fringes will be in the central maximum of a light
of the same wavelength and slit widths, but a
new slit separation of ?

40. Determine the intensities of two interference
peaks other than the central peak in the central
maximum of the diffraction, if possible, when a
light of wavelength 628 nm is incident on a
double slit of width 500 nm and separation
1500 nm. Use the intensity of the central spot to
be .

4.4 Diffraction Gratings

41. A diffraction grating has 2000 lines per
centimeter. At what angle will the first-order
maximum be for 520-nm-wavelength green
light?

42. Find the angle for the third-order maximum for
580-nm-wavelength yellow light falling on a
difraction grating having 1500 lines per
centimeter.

43. How many lines per centimeter are there on a
diffraction grating that gives a first-order
maximum for 470-nm blue light at an angle of

?
44. What is the distance between lines on a

diffraction grating that produces a second-order
maximum for 760-nm red light at an angle of

?
45. Calculate the wavelength of light that has its

second-order maximum at when falling
on a diffraction grating that has 5000 lines per
centimeter.

46. An electric current through hydrogen gas
produces several distinct wavelengths of visible
light. What are the wavelengths of the hydrogen
spectrum, if they form first-order maxima at
angles and when
projected on a diffraction grating having 10,000
lines per centimeter?

47. (a) What do the four angles in the preceding
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problem become if a 5000-line per centimeter
diffraction grating is used? (b) Using this
grating, what would the angles be for the
second-order maxima? (c) Discuss the
relationship between integral reductions in
lines per centimeter and the new angles of
various order maxima.

48. What is the spacing between structures in a
feather that acts as a reflection grating, giving
that they produce a first-order maximum for
525-nm light at a angle?

49. An opal such as that shown in Figure 4.15 acts
like a reflection grating with rows separated by
about If the opal is illuminated normally,
(a) at what angle will red light be seen and (b) at
what angle will blue light be seen?

50. At what angle does a diffraction grating produce
a second-order maximum for light having a
first-order maximum at ?

51. (a) Find the maximum number of lines per
centimeter a diffraction grating can have and
produce a maximum for the smallest
wavelength of visible light. (b) Would such a
grating be useful for ultraviolet spectra? (c) For
infrared spectra?

52. (a) Show that a 30,000 line per centimeter
grating will not produce a maximum for visible
light. (b) What is the longest wavelength for
which it does produce a first-order maximum?
(c) What is the greatest number of line per
centimeter a diffraction grating can have and
produce a complete second-order spectrum for
visible light?

53. The analysis shown below also applies to diffraction
gratings with lines separated by a distance d. What
is the distance between fringes produced by a
diffraction grating having 125 lines per centimeter
for 600-nm light, if the screen is 1.50 m away? (Hint:
The distance between adjacent fringes is
assuming the slit separation d is comparable to )

4.5 Circular Apertures and Resolution

54. The 305-m-diameter Arecibo radio telescope
pictured in Figure 4.20 detects radio waves with
a 4.00-cm average wavelength. (a) What is the
angle between two just-resolvable point sources
for this telescope? (b) How close together could
these point sources be at the 2 million light-year
distance of the Andromeda Galaxy?

55. Assuming the angular resolution found for the
Hubble Telescope in Example 4.6, what is the
smallest detail that could be observed on the
moon?

56. Diffraction spreading for a flashlight is
insignificant compared with other limitations in
its optics, such as spherical aberrations in its
mirror. To show this, calculate the minimum
angular spreading of a flashlight beam that is
originally 5.00 cm in diameter with an average
wavelength of 600 nm.

57. (a) What is the minimum angular spread of a
633-nm wavelength He-Ne laser beam that is
originally 1.00 mm in diameter? (b) If this laser
is aimed at a mountain cliff 15.0 km away, how
big will the illuminated spot be? (c) How big a
spot would be illuminated on the moon,
neglecting atmospheric effects? (This might be
done to hit a corner reflector to measure the
round-trip time and, hence, distance.)

58. A telescope can be used to enlarge the diameter
of a laser beam and limit diffraction spreading.
The laser beam is sent through the telescope in
opposite the normal direction and can then be
projected onto a satellite or the moon. (a) If this
is done with the Mount Wilson telescope,
producing a 2.54-m-diameter beam of 633-nm
light, what is the minimum angular spread of
the beam? (b) Neglecting atmospheric effects,
what is the size of the spot this beam would
make on the moon, assuming a lunar distance
of ?

59. The limit to the eye’s acuity is actually related to
diffraction by the pupil. (a) What is the angle
between two just-resolvable points of light for a
3.00-mm-diameter pupil, assuming an average
wavelength of 550 nm? (b) Take your result to
be the practical limit for the eye. What is the
greatest possible distance a car can be from you
if you can resolve its two headlights, given they
are 1.30 m apart? (c) What is the distance
between two just-resolvable points held at an
arm’s length (0.800 m) from your eye? (d) How
does your answer to (c) compare to details you
normally observe in everyday circumstances?
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60. What is the minimum diameter mirror on a
telescope that would allow you to see details as
small as 5.00 km on the moon some 384,000
km away? Assume an average wavelength of
550 nm for the light received.

61. Find the radius of a star’s image on the retina of
an eye if its pupil is open to 0.65 cm and the
distance from the pupil to the retina is 2.8 cm.
Assume .

62. (a) The dwarf planet Pluto and its moon,
Charon, are separated by 19,600 km. Neglecting
atmospheric effects, should the 5.08-m-
diameter Palomar Mountain telescope be able to
resolve these bodies when they are

from Earth? Assume an average
wavelength of 550 nm. (b) In actuality, it is just
barely possible to discern that Pluto and Charon
are separate bodies using a ground-based
telescope. What are the reasons for this?

63. A spy satellite orbits Earth at a height of 180
km. What is the minimum diameter of the
objective lens in a telescope that must be used
to resolve columns of troops marching 2.0 m
apart? Assume

64. What is the minimum angular separation of two
stars that are just-resolvable by the 8.1-m
Gemini South telescope, if atmospheric effects
do not limit resolution? Use 550 nm for the
wavelength of the light from the stars.

65. The headlights of a car are 1.3 m apart. What is
the maximum distance at which the eye can
resolve these two headlights? Take the pupil
diameter to be 0.40 cm.

66. When dots are placed on a page from a laser
printer, they must be close enough so that you
do not see the individual dots of ink. To do this,
the separation of the dots must be less than
Raleigh’s criterion. Take the pupil of the eye to
be 3.0 mm and the distance from the paper to
the eye of 35 cm; find the minimum separation
of two dots such that they cannot be resolved.
How many dots per inch (dpi) does this
correspond to?

67. Suppose you are looking down at a highway
from a jetliner flying at an altitude of 6.0 km.
How far apart must two cars be if you are able to
distinguish them? Assume that and
that the diameter of your pupils is 4.0 mm.

68. Can an astronaut orbiting Earth in a satellite at
a distance of 180 km from the surface
distinguish two skyscrapers that are 20 m
apart? Assume that the pupils of the astronaut’s
eyes have a diameter of 5.0 mm and that most of

the light is centered around 500 nm.
69. The characters of a stadium scoreboard are

formed with closely spaced lightbulbs that
radiate primarily yellow light. (Use )
How closely must the bulbs be spaced so that an
observer 80 m away sees a display of
continuous lines rather than the individual
bulbs? Assume that the pupil of the observer’s
eye has a diameter of 5.0 mm.

70. If a microscope can accept light from objects at
angles as large as , what is the smallest
structure that can be resolved when illuminated
with light of wavelength 500 nm and (a) the
specimen is in air? (b) When the specimen is
immersed in oil, with index of refraction of
1.52?

71. A camera uses a lens with aperture 2.0 cm.
What is the angular resolution of a photograph
taken at 700 nm wavelength? Can it resolve the
millimeter markings of a ruler placed 35 m
away?

4.6 X-Ray Diffraction

72. X-rays of wavelength 0.103 nm reflects off a
crystal and a second-order maximum is
recorded at a Bragg angle of . What is the
spacing between the scattering planes in this
crystal?

73. A first-order Bragg reflection maximum is
observed when a monochromatic X-ray falls on
a crystal at a angle to a reflecting plane.
What is the wavelength of this X-ray?

74. An X-ray scattering experiment is performed on
a crystal whose atoms form planes separated by
0.440 nm. Using an X-ray source of wavelength
0.548 nm, what is the angle (with respect to the
planes in question) at which the experimenter
needs to illuminate the crystal in order to
observe a first-order maximum?

75. The structure of the NaCl crystal forms
reflecting planes 0.541 nm apart. What is the
smallest angle, measured from these planes, at
which X-ray diffraction can be observed, if X-
rays of wavelength 0.085 nm are used?

76. On a certain crystal, a first-order X-ray
diffraction maximum is observed at an angle of

relative to its surface, using an X-ray
source of unknown wavelength. Additionally,
when illuminated with a different, this time of
known wavelength 0.137 nm, a second-order
maximum is detected at Determine (a)
the spacing between the reflecting planes, and
(b) the unknown wavelength.
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77. Calcite crystals contain scattering planes
separated by 0.30 nm. What is the angular
separation between first and second-order
diffraction maxima when X-rays of 0.130 nm

wavelength are used?
78. The first-order Bragg angle for a certain crystal

is . What is the second-order angle?

Additional Problems
79. White light falls on two narrow slits separated

by 0.40 mm. The interference pattern is
observed on a screen 3.0 m away. (a) What is the
separation between the first maxima for red
light and violet light

(b) At what point nearest the
central maximum will a maximum for yellow
light coincide with a maximum for
violet light? Identify the order for each
maximum.

80. Microwaves of wavelength 10.0 mm fall
normally on a metal plate that contains a slit 25
mm wide. (a) Where are the first minima of the
diffraction pattern? (b) Would there be minima
if the wavelength were 30.0 mm?

81. Quasars, or quasi-stellar radio sources, are
astronomical objects discovered in 1960. They
are distant but strong emitters of radio waves
with angular size so small, they were originally
unresolved, the same as stars. The quasar
3C405 is actually two discrete radio sources that
subtend an angle of 82 arcsec. If this object is
studied using radio emissions at a frequency of
410 MHz, what is the minimum diameter of a
radio telescope that can resolve the two
sources?

82. Two slits each of width 1800 nm and separated
by the center-to-center distance of 1200 nm are
illuminated by plane waves from a krypton ion
laser-emitting at wavelength 461.9 nm. Find the
number of interference peaks in the central
diffraction peak.

83. A microwave of an unknown wavelength is
incident on a single slit of width 6 cm. The
angular width of the central peak is found to be

. Find the wavelength.
84. Red light (wavelength 632.8 nm in air) from a

Helium-Neon laser is incident on a single slit of
width 0.05 mm. The entire apparatus is
immersed in water of refractive index 1.333.
Determine the angular width of the central
peak.

85. A light ray of wavelength 461.9 nm emerges
from a 2-mm circular aperture of a krypton ion
laser. Due to diffraction, the beam expands as it
moves out. How large is the central bright spot
at (a) 1 m, (b) 1 km, (c) 1000 km, and (d) at the
surface of the moon at a distance of 400,000 km
from Earth.

86. How far apart must two objects be on the moon
to be distinguishable by eye if only the
diffraction effects of the eye’s pupil limit the
resolution? Assume 550 nm for the wavelength
of light, the pupil diameter 5.0 mm, and
400,000 km for the distance to the moon.

87. How far apart must two objects be on the moon
to be resolvable by the 8.1-m-diameter Gemini
North telescope at Mauna Kea, Hawaii, if only
the diffraction effects of the telescope aperture
limit the resolution? Assume 550 nm for the
wavelength of light and 400,000 km for the
distance to the moon.

88. A spy satellite is reputed to be able to resolve
objects 10. cm apart while operating 197 km
above the surface of Earth. What is the diameter
of the aperture of the telescope if the resolution
is only limited by the diffraction effects? Use
550 nm for light.

89. Monochromatic light of wavelength 530 nm
passes through a horizontal single slit of width

in an opaque plate. A screen of
dimensions is 1.2 m away from
the slit. (a) Which way is the diffraction pattern
spread out on the screen? (b) What are the
angles of the minima with respect to the center?
(c) What are the angles of the maxima? (d) How
wide is the central bright fringe on the screen?
(e) How wide is the next bright fringe on the
screen?

90. A monochromatic light of unknown wavelength
is incident on a slit of width . A diffraction
pattern is seen at a screen 2.5 m away where the
central maximum is spread over a distance of
10.0 cm. Find the wavelength.

91. A source of light having two wavelengths 550
nm and 600 nm of equal intensity is incident on
a slit of width . Find the separation of the

bright spots of the two wavelengths on a
screen 30.0 cm away.
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92. A single slit of width 2100 nm is illuminated
normally by a wave of wavelength 632.8 nm.
Find the phase difference between waves from
the top and one third from the bottom of the slit
to a point on a screen at a horizontal distance of
2.0 m and vertical distance of 10.0 cm from the
center.

93. A single slit of width is illuminated by a
sodium yellow light of wavelength 589 nm. Find
the intensity at a angle to the axis in terms
of the intensity of the central maximum.

94. A single slit of width 0.10 mm is illuminated by
a mercury lamp of wavelength 576 nm. Find the
intensity at a angle to the axis in terms of
the intensity of the central maximum.

95. A diffraction grating produces a second
maximum that is 89.7 cm from the central
maximum on a screen 2.0 m away. If the grating
has 600 lines per centimeter, what is the
wavelength of the light that produces the
diffraction pattern?

96. A grating with 4000 lines per centimeter is used
to diffract light that contains all wavelengths
between 400 and 650 nm. How wide is the first-
order spectrum on a screen 3.0 m from the
grating?

97. A diffraction grating with 2000 lines per
centimeter is used to measure the wavelengths
emitted by a hydrogen gas discharge tube. (a) At
what angles will you find the maxima of the two
first-order blue lines of wavelengths 410 and
434 nm? (b) The maxima of two other first-
order lines are found at and

. What are the wavelengths of
these lines?

98. For white light falling
normally on a diffraction grating, show that the
second and third-order spectra overlap no
matter what the grating constant d is.

99. How many complete orders of the visible
spectrum can be
produced with a diffraction grating that
contains 5000 lines per centimeter?

100. Two lamps producing light of wavelength 589
nm are fixed 1.0 m apart on a wooden plank.
What is the maximum distance an observer
can be and still resolve the lamps as two
separate sources of light, if the resolution is
affected solely by the diffraction of light
entering the eye? Assume light enters the eye
through a pupil of diameter 4.5 mm.

101. On a bright clear day, you are at the top of a
mountain and looking at a city 12 km away.
There are two tall towers 20.0 m apart in the
city. Can your eye resolve the two towers if the
diameter of the pupil is 4.0 mm? If not, what
should be the minimum magnification power
of the telescope needed to resolve the two
towers? In your calculations use 550 nm for
the wavelength of the light.

102. Radio telescopes are telescopes used for the
detection of radio emission from space. Because
radio waves have much longer wavelengths than
visible light, the diameter of a radio telescope must
be very large to provide good resolution. For
example, the radio telescope in Penticton, BC in
Canada, has a diameter of 26 m and can be operated
at frequencies as high as 6.6 GHz. (a) What is the
wavelength corresponding to this frequency? (b)
What is the angular separation of two radio sources
that can be resolved by this telescope? (c) Compare
the telescope’s resolution with the angular size of the
moon.

Figure 4.30 (credit: modification of work by Jason Nishiyama)

103. Calculate the wavelength of light that produces
its first minimum at an angle of when
falling on a single slit of width .

104. (a) Find the angle of the third diffraction
minimum for 633-nm light falling on a slit of
width . (b) What slit width would place
this minimum at ?
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105. As an example of diffraction by apertures of
everyday dimensions, consider a doorway of
width 1.0 m. (a) What is the angular position of
the first minimum in the diffraction pattern of
600-nm light? (b) Repeat this calculation for a
musical note of frequency 440 Hz (A above
middle C). Take the speed of sound to be 343
m/s.

106. What are the angular positions of the first and
second minima in a diffraction pattern
produced by a slit of width 0.20 mm that is
illuminated by 400 nm light? What is the
angular width of the central peak?

107. How far would you place a screen from the slit
of the previous problem so that the second
minimum is a distance of 2.5 mm from the
center of the diffraction pattern?

108. How narrow is a slit that produces a diffraction
pattern on a screen 1.8 m away whose central
peak is 1.0 m wide? Assume .

109. Suppose that the central peak of a single-slit
diffraction pattern is so wide that the first
minima can be assumed to occur at angular
positions of . For this case, what is the
ratio of the slit width to the wavelength of the
light?

110. The central diffraction peak of the double-slit
interference pattern contains exactly nine
fringes. What is the ratio of the slit separation
to the slit width?

111. Determine the intensities of three interference
peaks other than the central peak in the
central maximum of the diffraction, if
possible, when a light of wavelength 500 nm is
incident normally on a double slit of width
1000 nm and separation 1500 nm. Use the
intensity of the central spot to be .

112. The yellow light from a sodium vapor lamp
seems to be of pure wavelength, but it
produces two first-order maxima at
and when projected on a 10,000 line
per centimeter diffraction grating. What are
the two wavelengths to an accuracy of 0.1 nm?

113. Structures on a bird feather act like a
reflection grating having 8000 lines per
centimeter. What is the angle of the first-order
maximum for 600-nm light?

114. If a diffraction grating produces a first-order
maximum for the shortest wavelength of
visible light at , at what angle will the
first-order maximum be for the largest
wavelength of visible light?

115. (a) What visible wavelength has its fourth-
order maximum at an angle of when
projected on a 25,000-line per centimeter
diffraction grating? (b) What is unreasonable
about this result? (c) Which assumptions are
unreasonable or inconsistent?

116. Consider a spectrometer based on a diffraction
grating. Construct a problem in which you
calculate the distance between two
wavelengths of electromagnetic radiation in
your spectrometer. Among the things to be
considered are the wavelengths you wish to be
able to distinguish, the number of lines per
meter on the diffraction grating, and the
distance from the grating to the screen or
detector. Discuss the practicality of the device
in terms of being able to discern between
wavelengths of interest.

117. An amateur astronomer wants to build a
telescope with a diffraction limit that will allow
him to see if there are people on the moons of
Jupiter. (a) What diameter mirror is needed to
be able to see 1.00-m detail on a Jovian moon
at a distance of from Earth?
The wavelength of light averages 600 nm. (b)
What is unreasonable about this result? (c)
Which assumptions are unreasonable or
inconsistent?

Challenge Problems
118. Blue light of wavelength 450 nm falls on a slit

of width 0.25 mm. A converging lens of focal
length 20 cm is placed behind the slit and
focuses the diffraction pattern on a screen. (a)
How far is the screen from the lens? (b) What
is the distance between the first and the third
minima of the diffraction pattern?
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119. (a) Assume that the maxima are halfway
between the minima of a single-slit diffraction
pattern. The use the diameter and
circumference of the phasor diagram, as
described in Intensity in Single-Slit
Diffraction, to determine the intensities of the
third and fourth maxima in terms of the
intensity of the central maximum. (b) Do the
same calculation, using Equation 4.4.

120. (a) By differentiating Equation 4.4, show that
the higher-order maxima of the single-slit
diffraction pattern occur at values of that
satisfy . (b) Plot and
versus and find the intersections of these two
curves. What information do they give you
about the locations of the maxima? (c)
Convince yourself that these points do not
appear exactly at where

but are quite close to these
values.

121. What is the maximum number of lines per
centimeter a diffraction grating can have and
produce a complete first-order spectrum for
visible light?

122. Show that a diffraction grating cannot produce
a second-order maximum for a given
wavelength of light unless the first-order
maximum is at an angle less than .

123. A He-Ne laser beam is reflected from the
surface of a CD onto a wall. The brightest spot
is the reflected beam at an angle equal to the
angle of incidence. However, fringes are also
observed. If the wall is 1.50 m from the CD, and
the first fringe is 0.600 m from the central
maximum, what is the spacing of grooves on
the CD?

124. Objects viewed through a microscope are
placed very close to the focal point of the
objective lens. Show that the minimum
separation x of two objects resolvable through
the microscope is given by

where is the focal length and D is the
diameter of the objective lens as shown below.

4.7
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INTRODUCTION

CHAPTER 5
Relativity

5.1 Invariance of Physical Laws

5.2 Relativity of Simultaneity

5.3 Time Dilation

5.4 Length Contraction

5.5 The Lorentz Transformation

5.6 Relativistic Velocity Transformation

5.7 Doppler Effect for Light

5.8 Relativistic Momentum

5.9 Relativistic Energy

The special theory of relativity was proposed in 1905 by Albert Einstein (1879–1955). It
describes how time, space, and physical phenomena appear in different frames of reference that are moving at
constant velocity with respect to each other. This differs from Einstein’s later work on general relativity, which

Figure 5.1 Special relativity explains how time passes slightly differently on Earth and within the rapidly moving
global positioning satellite (GPS). GPS units in vehicles could not find their correct location on Earth without taking
this correction into account. (credit: modification of work by U.S. Air Force)
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deals with any frame of reference, including accelerated frames.

The theory of relativity led to a profound change in the way we perceive space and time. The “common sense”
rules that we use to relate space and time measurements in the Newtonian worldview differ seriously from the
correct rules at speeds near the speed of light. For example, the special theory of relativity tells us that
measurements of length and time intervals are not the same in reference frames moving relative to one
another. A particle might be observed to have a lifetime of in one reference frame, but a lifetime
of in another; and an object might be measured to be 2.0 m long in one frame and 3.0 m long in
another frame. These effects are usually significant only at speeds comparable to the speed of light, but even at
the much lower speeds of the global positioning satellite, which requires extremely accurate time
measurements to function, the different lengths of the same distance in different frames of reference are
significant enough that they need to be taken into account.

Unlike Newtonian mechanics, which describes the motion of particles, or Maxwell's equations, which specify
how the electromagnetic field behaves, special relativity is not restricted to a particular type of phenomenon.
Instead, its rules on space and time affect all fundamental physical theories.

The modifications of Newtonian mechanics in special relativity do not invalidate classical Newtonian
mechanics or require its replacement. Instead, the equations of relativistic mechanics differ meaningfully
from those of classical Newtonian mechanics only for objects moving at relativistic speeds (i.e., speeds less
than, but comparable to, the speed of light). In the macroscopic world that you encounter in your daily life, the
relativistic equations reduce to classical equations, and the predictions of classical Newtonian mechanics
agree closely enough with experimental results to disregard relativistic corrections.

5.1 Invariance of Physical Laws
Learning Objectives
By the end of this section, you will be able to:

• Describe the theoretical and experimental issues that Einstein’s theory of special relativity addressed.
• State the two postulates of the special theory of relativity.

Suppose you calculate the hypotenuse of a right triangle given the base angles and adjacent sides. Whether you
calculate the hypotenuse from one of the sides and the cosine of the base angle, or from the Pythagorean
theorem, the results should agree. Predictions based on different principles of physics must also agree,
whether we consider them principles of mechanics or principles of electromagnetism.

Albert Einstein pondered a disagreement between predictions based on electromagnetism and on
assumptions made in classical mechanics. Specifically, suppose an observer measures the velocity of a light
pulse in the observer’s own rest frame; that is, in the frame of reference in which the observer is at rest.
According to the assumptions long considered obvious in classical mechanics, if an observer measures a
velocity in one frame of reference, and that frame of reference is moving with velocity past a second

reference frame, an observer in the second frame measures the original velocity as This sum of
velocities is often referred to as Galilean relativity. If this principle is correct, the pulse of light that the
observer measures as traveling with speed c travels at speed c + u measured in the frame of the second
observer. If we reasonably assume that the laws of electrodynamics are the same in both frames of reference,
then the predicted speed of light (in vacuum) in both frames should be Each observer should
measure the same speed of the light pulse with respect to that observer’s own rest frame. To reconcile
difficulties of this kind, Einstein constructed his special theory of relativity, which introduced radical new
ideas about time and space that have since been confirmed experimentally.

Inertial Frames
All velocities are measured relative to some frame of reference. For example, a car’s motion is measured
relative to its starting position on the road it travels on; a projectile’s motion is measured relative to the surface
from which it is launched; and a planet’s orbital motion is measured relative to the star it orbits. The frames of
reference in which mechanics takes the simplest form are those that are not accelerating. Newton’s first law,
the law of inertia, holds exactly in such a frame.
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For example, to a passenger inside a plane flying at constant speed and constant altitude, physics seems to
work exactly the same as when the passenger is standing on the surface of Earth. When the plane is taking off,
however, matters are somewhat more complicated. In this case, the passenger at rest inside the plane
concludes that a net force F on an object is not equal to the product of mass and acceleration, ma. Instead, F is
equal to ma plus a fictitious force. This situation is not as simple as in an inertial frame. Special relativity
handles accelerating frames as a constant and velocities as relative to the observer. General relativity treats
both velocity and acceleration as relative to the observer, thus making the use of curved space-time.

Einstein’s First Postulate
Not only are the principles of classical mechanics simplest in inertial frames, but they are the same in all
inertial frames. Einstein based the first postulate of his theory on the idea that this is true for all the laws of
physics, not merely those in mechanics.

This postulate denies the existence of a special or preferred inertial frame. The laws of nature do not give us a
way to endow any one inertial frame with special properties. For example, we cannot identify any inertial
frame as being in a state of “absolute rest.” We can only determine the relative motion of one frame with
respect to another.

There is, however, more to this postulate than meets the eye. The laws of physics include only those that satisfy
this postulate. We will see that the definitions of energy and momentum must be altered to fit this postulate.
Another outcome of this postulate is the famous equation which relates energy to mass.

Einstein’s Second Postulate
The second postulate upon which Einstein based his theory of special relativity deals with the speed of light.
Late in the nineteenth century, the major tenets of classical physics were well established. Two of the most
important were the laws of electromagnetism and Newton’s laws. Investigations such as Young’s double-slit
experiment in the early 1800s had convincingly demonstrated that light is a wave. Maxwell’s equations of
electromagnetism implied that electromagnetic waves travel at in a vacuum, but they do
not specify the frame of reference in which light has this speed. Many types of waves were known, and all
travelled in some medium. Scientists therefore assumed that some medium carried the light, even in a
vacuum, and that light travels at a speed c relative to that medium (often called “the aether”).

Starting in the mid-1880s, the American physicist A.A. Michelson, later aided by E.W. Morley, made a series of
direct measurements of the speed of light. They intended to deduce from their data the speed v at which Earth
was moving through the mysterious medium for light waves. The speed of light measured on Earth should
have been c + v when Earth’s motion was opposite to the medium’s flow at speed u past the Earth, and c – v
when Earth was moving in the same direction as the medium. The results of their measurements were
startling.

Inertial Reference Frame

An inertial frame of reference is a reference frame in which a body at rest remains at rest and a body in
motion moves at a constant speed in a straight line unless acted upon by an outside force.

First Postulate of Special Relativity

The laws of physics are the same in all inertial frames of reference.

Michelson-Morley Experiment

The Michelson-Morley experiment demonstrated that the speed of light in a vacuum is independent of the
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The eventual conclusion derived from this result is that light, unlike mechanical waves such as sound, does not
need a medium to carry it. Furthermore, the Michelson-Morley results implied that the speed of light c is
independent of the motion of the source relative to the observer. That is, everyone observes light to move at
speed c regardless of how they move relative to the light source or to one another. For several years, many
scientists tried unsuccessfully to explain these results within the framework of Newton’s laws.

In addition, there was a contradiction between the principles of electromagnetism and the assumption made
in Newton’s laws about relative velocity. Classically, the velocity of an object in one frame of reference and the
velocity of that object in a second frame of reference relative to the first should combine like simple vectors to
give the velocity seen in the second frame. If that were correct, then two observers moving at different speeds
would see light traveling at different speeds. Imagine what a light wave would look like to a person traveling
along with it (in vacuum) at a speed c. If such a motion were possible, then the wave would be stationary
relative to the observer. It would have electric and magnetic fields whose strengths varied with position but
were constant in time. This is not allowed by Maxwell’s equations. So either Maxwell’s equations are different
in different inertial frames, or an object with mass cannot travel at speed c. Einstein concluded that the latter
is true: An object with mass cannot travel at speed c. Maxwell’s equations are correct, but Newton’s addition of
velocities is not correct for light.

Not until 1905, when Einstein published his first paper on special relativity, was the currently accepted
conclusion reached. Based mostly on his analysis that the laws of electricity and magnetism would not allow
another speed for light, and only slightly aware of the Michelson-Morley experiment, Einstein detailed his
second postulate of special relativity.

In other words, the speed of light has the same definite speed for any observer, regardless of the relative
motion of the source. This deceptively simple and counterintuitive postulate, along with the first postulate,
leave all else open for change. Among the changes are the loss of agreement on the time between events, the
variation of distance with speed, and the realization that matter and energy can be converted into one another.
We describe these concepts in the following sections.

CHECK YOUR UNDERSTANDING 5.1

Explain how special relativity differs from general relativity.

5.2 Relativity of Simultaneity
Learning Objectives
By the end of this section, you will be able to:

• Show from Einstein's postulates that two events measured as simultaneous in one inertial frame are not
necessarily simultaneous in all inertial frames.

• Describe how simultaneity is a relative concept for observers in different inertial frames in relative motion.

Do time intervals depend on who observes them? Intuitively, it seems that the time for a process, such as the
elapsed time for a foot race (Figure 5.2), should be the same for all observers. In everyday experiences,
disagreements over elapsed time have to do with the accuracy of measuring time. No one would be likely to
argue that the actual time interval was different for the moving runner and for the stationary clock displayed.
Carefully considering just how time is measured, however, shows that elapsed time does depends on the
relative motion of an observer with respect to the process being measured.

motion of Earth about the Sun.

Second Postulate of Special Relativity

Light travels in a vacuum with the same speed c in any direction in all inertial frames.
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Figure 5.2 Elapsed time for a foot race is the same for all observers, but at relativistic speeds, elapsed time depends on the motion of the

observer relative to the location where the process being timed occurs. (credit: "Jason Edward Scott Bain"/Flickr)

Consider how we measure elapsed time. If we use a stopwatch, for example, how do we know when to start and
stop the watch? One method is to use the arrival of light from the event. For example, if you’re in a moving car
and observe the light arriving from a traffic signal change from green to red, you know it’s time to step on the
brake pedal. The timing is more accurate if some sort of electronic detection is used, avoiding human reaction
times and other complications.

Now suppose two observers use this method to measure the time interval between two flashes of light from
flash lamps that are a distance apart (Figure 5.3). An observer A is seated midway on a rail car with two flash
lamps at opposite sides equidistant from her. A pulse of light is emitted from each flash lamp and moves
toward observer A, shown in frame (a) of the figure. The rail car is moving rapidly in the direction indicated by
the velocity vector in the diagram. An observer B standing on the platform is facing the rail car as it passes and
observes both flashes of light reach him simultaneously, as shown in frame (c). He measures the distances
from where he saw the pulses originate, finds them equal, and concludes that the pulses were emitted
simultaneously.

However, because of Observer A’s motion, the pulse from the right of the railcar, from the direction the car is
moving, reaches her before the pulse from the left, as shown in frame (b). She also measures the distances
from within her frame of reference, finds them equal, and concludes that the pulses were not emitted
simultaneously.

The two observers reach conflicting conclusions about whether the two events at well-separated locations
were simultaneous. Both frames of reference are valid, and both conclusions are valid. Whether two events at
separate locations are simultaneous depends on the motion of the observer relative to the locations of the
events.
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Figure 5.3 (a) Two pulses of light are emitted simultaneously relative to observer B. (c) The pulses reach observer B’s position

simultaneously. (b) Because of A’s motion, she sees the pulse from the right first and concludes the bulbs did not flash simultaneously.

Both conclusions are correct.

Here, the relative velocity between observers affects whether two events a distance apart are observed to be
simultaneous. Simultaneity is not absolute. We might have guessed (incorrectly) that if light is emitted
simultaneously, then two observers halfway between the sources would see the flashes simultaneously. But
careful analysis shows this cannot be the case if the speed of light is the same in all inertial frames.

This type of thought experiment (in German, “Gedankenexperiment”) shows that seemingly obvious
conclusions must be changed to agree with the postulates of relativity. The validity of thought experiments can
only be determined by actual observation, and careful experiments have repeatedly confirmed Einstein’s
theory of relativity.
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5.3 Time Dilation
Learning Objectives
By the end of this section, you will be able to:

• Explain how time intervals can be measured differently in different reference frames.
• Describe how to distinguish a proper time interval from a dilated time interval.
• Describe the significance of the muon experiment.
• Explain why the twin paradox is not a contradiction.
• Calculate time dilation given the speed of an object in a given frame.

The analysis of simultaneity shows that Einstein’s postulates imply an important effect: Time intervals have
different values when measured in different inertial frames. Suppose, for example, an astronaut measures the
time it takes for a pulse of light to travel a distance perpendicular to the direction of his ship’s motion (relative
to an earthbound observer), bounce off a mirror, and return (Figure 5.4). How does the elapsed time that the
astronaut measures in the spacecraft compare with the elapsed time that an earthbound observer measures
by observing what is happening in the spacecraft?

Examining this question leads to a profound result. The elapsed time for a process depends on which observer
is measuring it. In this case, the time measured by the astronaut (within the spaceship where the astronaut is
at rest) is smaller than the time measured by the earthbound observer (to whom the astronaut is moving). The
time elapsed for the same process is different for the observers, because the distance the light pulse travels in
the astronaut’s frame is smaller than in the earthbound frame, as seen in Figure 5.4. Light travels at the same
speed in each frame, so it takes more time to travel the greater distance in the earthbound frame.
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Figure 5.4 (a) An astronaut measures the time for light to travel distance 2D in the astronaut’s frame. (b) A NASA scientist on Earth

sees the light follow the longer path 2s and take a longer time (c) These triangles are used to find the relationship between the two

distances D and s.

To quantitatively compare the time measurements in the two inertial frames, we can relate the distances in
Figure 5.4 to each other, then express each distance in terms of the time of travel (respectively either or )
of the pulse in the corresponding reference frame. The resulting equation can then be solved for in terms of

The lengths D and L in Figure 5.4 are the sides of a right triangle with hypotenuse s. From the Pythagorean
theorem,

The lengths 2s and 2L are, respectively, the distances that the pulse of light and the spacecraft travel in time
in the earthbound observer’s frame. The length D is the distance that the light pulse travels in time in the

Time Dilation

Time dilation is the lengthening of the time interval between two events for an observer in an inertial
frame that is moving with respect to the rest frame of the events (in which the events occur at the same
location).
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astronaut’s frame. This gives us three equations:

Note that we used Einstein’s second postulate by taking the speed of light to be c in both inertial frames. We
substitute these results into the previous expression from the Pythagorean theorem:

Then we rearrange to obtain

Finally, solving for in terms of gives us

This is equivalent to

where is the relativistic factor (often called the Lorentz factor) given by

and v and c are the speeds of the moving observer and light, respectively.

Note the asymmetry between the two measurements. Only one of them is a measurement of the time interval
between two events—the emission and arrival of the light pulse—at the same position. It is a measurement of
the time interval in the rest frame of a single clock. The measurement in the earthbound frame involves
comparing the time interval between two events that occur at different locations. The time interval between
events that occur at a single location has a separate name to distinguish it from the time measured by the
earthbound observer, and we use the separate symbol to refer to it throughout this chapter.

The equation relating and is truly remarkable. First, as stated earlier, elapsed time is not the same for
different observers moving relative to one another, even though both are in inertial frames. A proper time
interval for an observer who, like the astronaut, is moving with the apparatus, is smaller than the time
interval for other observers. It is the smallest possible measured time between two events. The earthbound
observer sees time intervals within the moving system as dilated (i.e., lengthened) relative to how the observer
moving relative to Earth sees them within the moving system. Alternatively, according to the earthbound
observer, less time passes between events within the moving frame. Note that the shortest elapsed time
between events is in the inertial frame in which the observer sees the events (e.g., the emission and arrival of
the light signal) occur at the same point.

This time effect is real and is not caused by inaccurate clocks or improper measurements. Time-interval
measurements of the same event differ for observers in relative motion. The dilation of time is an intrinsic
property of time itself. All clocks moving relative to an observer, including biological clocks, such as a person’s
heartbeat, or aging, are observed to run more slowly compared with a clock that is stationary relative to the

5.1

5.2

Proper Time

The proper time interval between two events is the time interval measured by an observer for whom
both events occur at the same location.
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observer.

Note that if the relative velocity is much less than the speed of light then is extremely small, and
the elapsed times and are nearly equal. At low velocities, physics based on modern relativity approaches
classical physics—everyday experiences involve very small relativistic effects. However, for speeds near the
speed of light, is close to one, so is very small and becomes significantly larger than

Half-Life of a Muon
There is considerable experimental evidence that the equation is correct. One example is found in
cosmic ray particles that continuously rain down on Earth from deep space. Some collisions of these particles
with nuclei in the upper atmosphere result in short-lived particles called muons. The half-life (amount of time
for half of a material to decay) of a muon is 1.52 μs when it is at rest relative to the observer who measures the
half-life. This is the proper time interval This short time allows very few muons to reach Earth’s surface
and be detected if Newtonian assumptions about time and space were correct. However, muons produced by
cosmic ray particles have a range of velocities, with some moving near the speed of light. It has been found that
the muon’s half-life as measured by an earthbound observer ( ) varies with velocity exactly as predicted by
the equation The faster the muon moves, the longer it lives. We on Earth see the muon last much
longer than its half-life predicts within its own rest frame. As viewed from our frame, the muon decays more
slowly than it does when at rest relative to us. A far larger fraction of muons reach the ground as a result.

Before we present the first example of solving a problem in relativity, we state a strategy you can use as a
guideline for these calculations.

PROBLEM-SOLVING STRATEGY

Relativity
1. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Look in

particular for information on relative velocity v.
2. Identify exactly what needs to be determined in the problem (identify the unknowns).
3. Make certain you understand the conceptual aspects of the problem before making any calculations

(express the answer as an equation). Decide, for example, which observer sees time dilated or length
contracted before working with the equations or using them to carry out the calculation. If you have
thought about who sees what, who is moving with the event being observed, who sees proper time, and so
on, you will find it much easier to determine if your calculation is reasonable.

4. Determine the primary type of calculation to be done to find the unknowns identified above (do the
calculation). You will find the section summary helpful in determining whether a length contraction,
relativistic kinetic energy, or some other concept is involved.

Note that you should not round off during the calculation. As noted in the text, you must often perform your
calculations to many digits to see the desired effect. You may round off at the very end of the problem solution,
but do not use a rounded number in a subsequent calculation. Also, check the answer to see if it is reasonable:
Does it make sense? This may be more difficult for relativity, which has few everyday examples to provide
experience with what is reasonable. But you can look for velocities greater than c or relativistic effects that are
in the wrong direction (such as a time contraction where a dilation was expected).

EXAMPLE 5.1

Time Dilation in a High-Speed Vehicle
The Hypersonic Technology Vehicle 2 (HTV-2) is an experimental rocket vehicle capable of traveling at 21,000
km/h (5830 m/s). If an electronic clock in the HTV-2 measures a time interval of exactly 1-s duration, what
would observers on Earth measure the time interval to be?
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Strategy
Apply the time dilation formula to relate the proper time interval of the signal in HTV-2 to the time interval
measured on the ground.

Solution

a. Identify the knowns:
b. Identify the unknown:
c. Express the answer as an equation:

d. Do the calculation. Use the expression for to determine from :

Significance
The very high speed of the HTV-2 is still only 10-5 times the speed of light. Relativistic effects for the HTV-2 are
negligible for almost all purposes, but are not zero.

EXAMPLE 5.2

What Speeds are Relativistic?
How fast must a vehicle travel for 1 second of time measured on a passenger’s watch in the vehicle to differ by
1% for an observer measuring it from the ground outside?

Strategy
Use the time dilation formula to find v/c for the given ratio of times.

Solution

a. Identify the known:

b. Identify the unknown: v/c.
c. Express the answer as an equation:

d. Do the calculation:

Significance
The result shows that an object must travel at very roughly 10% of the speed of light for its motion to produce
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significant relativistic time dilation effects.

EXAMPLE 5.3

Calculating for a Relativistic Event
Suppose a cosmic ray colliding with a nucleus in Earth’s upper atmosphere produces a muon that has a
velocity The muon then travels at constant velocity and lives 2.20 μs as measured in the muon’s
frame of reference. (You can imagine this as the muon’s internal clock.) How long does the muon live as
measured by an earthbound observer (Figure 5.5)?

Figure 5.5 A muon in Earth’s atmosphere lives longer as measured by an earthbound observer than as measured by the muon’s internal

clock.

As we will discuss later, in the muon’s reference frame, it travels a shorter distance than measured in Earth’s
reference frame.

Strategy
A clock moving with the muon measures the proper time of its decay process, so the time we are given is

The earthbound observer measures as given by the equation Because the velocity
is given, we can calculate the time in Earth’s frame of reference.

Solution

a. Identify the knowns:
b. Identify the unknown:
c. Express the answer as an equation. Use:

with

d. Do the calculation. Use the expression for to determine from
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Remember to keep extra significant figures until the final answer.

Significance
One implication of this example is that because at 95.0% of the speed of light the
relativistic effects are significant. The two time intervals differ by a factor of 3.20, when classically they would
be the same. Something moving at 0.950c is said to be highly relativistic.

EXAMPLE 5.4

Relativistic Television
A non-flat screen, older-style television display (Figure 5.6) works by accelerating electrons over a short
distance to relativistic speed, and then using electromagnetic fields to control where the electron beam strikes
a fluorescent layer at the front of the tube. Suppose the electrons travel at through a distance
of from the start of the beam to the screen. (a) What is the time of travel of an electron in the rest frame
of the television set? (b) What is the electron’s time of travel in its own rest frame?

Figure 5.6 The electron beam in a cathode ray tube television display.

Strategy for (a)
(a) Calculate the time from Even though the speed is relativistic, the calculation is entirely in one frame
of reference, and relativity is therefore not involved.
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Solution

a. Identify the knowns:

b. Identify the unknown: the time of travel
c. Express the answer as an equation:

d. Do the calculation:

Significance
The time of travel is extremely short, as expected. Because the calculation is entirely within a single frame of
reference, relativity is not involved, even though the electron speed is close to c.

Strategy for (b)
(b) In the frame of reference of the electron, the vacuum tube is moving and the electron is stationary. The
electron-emitting cathode leaves the electron and the front of the vacuum tube strikes the electron with the
electron at the same location. Therefore we use the time dilation formula to relate the proper time in the
electron rest frame to the time in the television frame.

Solution

a. Identify the knowns (from part a):

b. Identify the unknown:
c. Express the answer as an equation:

d. Do the calculation:

Significance
The time of travel is shorter in the electron frame of reference. Because the problem requires finding the time
interval measured in different reference frames for the same process, relativity is involved. If we had tried to
calculate the time in the electron rest frame by simply dividing the 0.200 m by the speed, the result would be
slightly incorrect because of the relativistic speed of the electron.

CHECK YOUR UNDERSTANDING 5.2

What is if

The Twin Paradox
An intriguing consequence of time dilation is that a space traveler moving at a high velocity relative to Earth
would age less than the astronaut’s earthbound twin. This is often known as the twin paradox. Imagine the
astronaut moving at such a velocity that as in Figure 5.7. A trip that takes 2.00 years in her frame
would take 60.0 years in the earthbound twin’s frame. Suppose the astronaut travels 1.00 year to another star
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system, briefly explores the area, and then travels 1.00 year back. An astronaut who was 40 years old at the
start of the trip would be would be 42 when the spaceship returns. Everything on Earth, however, would have
aged 60.0 years. The earthbound twin, if still alive, would be 100 years old.

The situation would seem different to the astronaut in Figure 5.7. Because motion is relative, the spaceship
would seem to be stationary and Earth would appear to move. (This is the sensation you have when flying in a
jet.) Looking out the window of the spaceship, the astronaut would see time slow down on Earth by a factor of

Seen from the spaceship, the earthbound sibling will have aged only 2/30, or 0.07, of a year, whereas
the astronaut would have aged 2.00 years.

Figure 5.7 The twin paradox consists of the conflicting conclusions about which twin ages more as a result of a long space journey at

relativistic speed.

The paradox here is that the two twins cannot both be correct. As with all paradoxes, conflicting conclusions
come from a false premise. In fact, the astronaut’s motion is significantly different from that of the earthbound
twin. The astronaut accelerates to a high velocity and then accelerates opposite to the motion to view the star
system. To return to Earth, she again accelerates and decelerates. The spacecraft is not in a single inertial
frame to which the time dilation formula can be directly applied. That is, the astronaut twin changes inertial
references. The earthbound twin does not experience these accelerations and remains in the same inertial
frame. Thus, the situation is not symmetric, and it is incorrect to claim that the astronaut observes the same
effects as her twin. The lack of symmetry between the twins will be still more evident when we analyze the
journey later in this chapter in terms of the path the astronaut follows through four-dimensional space-time.

In 1971, American physicists Joseph Hafele and Richard Keating verified time dilation at low relative velocities
by flying extremely accurate atomic clocks around the world on commercial aircraft. They measured elapsed
time to an accuracy of a few nanoseconds and compared it with the time measured by clocks left behind.
Hafele and Keating’s results were within experimental uncertainties of the predictions of relativity. Both
special and general relativity had to be taken into account, because gravity and accelerations were involved as
well as relative motion.

CHECK YOUR UNDERSTANDING 5.3

a. A particle travels at and lives when at rest relative to an observer. How long
does the particle live as viewed in the laboratory?

b. Spacecraft A and B pass in opposite directions at a relative speed of An internal clock in
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spacecraft A causes it to emit a radio signal for 1.00 s. The computer in spacecraft B corrects for the beginning
and end of the signal having traveled different distances, to calculate the time interval during which ship A was
emitting the signal. What is the time interval that the computer in spacecraft B calculates?

5.4 Length Contraction
Learning Objectives
By the end of this section, you will be able to:

• Explain how simultaneity and length contraction are related.
• Describe the relation between length contraction and time dilation and use it to derive the length-contraction

equation.

The length of the train car in Figure 5.8 is the same for all the passengers. All of them would agree on the
simultaneous location of the two ends of the car and obtain the same result for the distance between them. But
simultaneous events in one inertial frame need not be simultaneous in another. If the train could travel at
relativistic speeds, an observer on the ground would see the simultaneous locations of the two endpoints of the
car at a different distance apart than observers inside the car. Measured distances need not be the same for
different observers when relativistic speeds are involved.

Figure 5.8 People might describe distances differently, but at relativistic speeds, the distances really are different. (credit:

“russavia”/Flickr)

Proper Length
Two observers passing each other always see the same value of their relative speed. Even though time dilation
implies that the train passenger and the observer standing alongside the tracks measure different times for
the train to pass, they still agree that relative speed, which is distance divided by elapsed time, is the same. If
an observer on the ground and one on the train measure a different time for the length of the train to pass the
ground observer, agreeing on their relative speed means they must also see different distances traveled.

The muon discussed in Example 5.3 illustrates this concept (Figure 5.9). To an observer on Earth, the muon
travels at 0.950c for 7.05 μs from the time it is produced until it decays. Therefore, it travels a distance relative
to Earth of:

In the muon frame, the lifetime of the muon is 2.20 μs. In this frame of reference, the Earth, air, and ground
have only enough time to travel:

The distance between the same two events (production and decay of a muon) depends on who measures it and
how they are moving relative to it.
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The earthbound observer measures the proper length because the points at which the muon is produced
and decays are stationary relative to Earth. To the muon, Earth, air, and clouds are moving, so the distance L it
sees is not the proper length.

Figure 5.9 (a) The earthbound observer sees the muon travel 2.01 km. (b) The same path has length 0.627 km seen from the muon’s

frame of reference. The Earth, air, and clouds are moving relative to the muon in its frame, and have smaller lengths along the direction of

travel.

Length Contraction
To relate distances measured by different observers, note that the velocity relative to the earthbound observer
in our muon example is given by

The time relative to the earthbound observer is because the object being timed is moving relative to this
observer. The velocity relative to the moving observer is given by

The moving observer travels with the muon and therefore observes the proper time The two velocities are
identical; thus,

We know that Substituting this equation into the relationship above gives

Substituting for gives an equation relating the distances measured by different observers.

Proper Length

Proper length is the distance between two points measured by an observer who is at rest relative to
both of the points.

5.3

Length Contraction

Length contraction is the decrease in the measured length of an object from its proper length when
measured in a reference frame that is moving with respect to the object:

5.4
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If we measure the length of anything moving relative to our frame, we find its length L to be smaller than the
proper length that would be measured if the object were stationary. For example, in the muon’s rest frame,
the distance Earth moves between where the muon was produced and where it decayed is shorter than the
distance traveled as seen from the Earth’s frame. Those points are fixed relative to Earth but are moving
relative to the muon. Clouds and other objects are also contracted along the direction of motion as seen from
muon’s rest frame.

Thus, two observers measure different distances along their direction of relative motion, depending on which
one is measuring distances between objects at rest.

But what about distances measured in a direction perpendicular to the relative motion? Imagine two observers
moving along their x-axes and passing each other while holding meter sticks vertically in the y-direction.
Figure 5.10 shows two meter sticks M and that are at rest in the reference frames of two boys S and
respectively. A small paintbrush is attached to the top (the 100-cm mark) of stick Suppose that is
moving to the right at a very high speed v relative to S, and the sticks are oriented so that they are
perpendicular, or transverse, to their relative velocity vector. The sticks are held so that as they pass each
other, their lower ends (the 0-cm marks) coincide. Assume that when S looks at his stick M afterwards, he finds
a line painted on it, just below the top of the stick. Because the brush is attached to the top of the other boy’s
stick S can only conclude that stick is less than 1.0 m long.

Figure 5.10 Meter sticks M and are stationary in the reference frames of observers S and respectively. As the sticks pass, a small

brush attached to the 100-cm mark of paints a line on M.

Now when the boys approach each other, like S, sees a meter stick moving toward him with speed v.
Because their situations are symmetric, each boy must make the same measurement of the stick in the other
frame. So, if S measures stick to be less than 1.0 m long, must measure stick M to be also less than 1.0 m
long, and must see his paintbrush pass over the top of stick M and not paint a line on it. In other words, after
the same event, one boy sees a painted line on a stick, while the other does not see such a line on that same
stick!

Einstein’s first postulate requires that the laws of physics (as, for example, applied to painting) predict that S
and who are both in inertial frames, make the same observations; that is, S and must either both see a
line painted on stick M, or both not see that line. We are therefore forced to conclude our original assumption
that S saw a line painted below the top of his stick was wrong! Instead, S finds the line painted right at the
100-cm mark on M. Then both boys will agree that a line is painted on M, and they will also agree that both
sticks are exactly 1 m long. We conclude then that measurements of a transverse length must be the same in
different inertial frames.

where is the length of the object in its rest frame, and L is the length in the frame moving with velocity v.
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EXAMPLE 5.5

Calculating Length Contraction
Suppose an astronaut, such as the twin in the twin paradox discussion, travels so fast that (a) The
astronaut travels from Earth to the nearest star system, Alpha Centauri, 4.300 light years (ly) away as
measured by an earthbound observer. How far apart are Earth and Alpha Centauri as measured by the
astronaut? (b) In terms of c, what is the astronaut’s velocity relative to Earth? You may neglect the motion of
Earth relative to the sun (Figure 5.11).

Figure 5.11 (a) The earthbound observer measures the proper distance between Earth and Alpha Centauri. (b) The astronaut observes a

length contraction because Earth and Alpha Centauri move relative to her ship. She can travel this shorter distance in a smaller time (her

proper time) without exceeding the speed of light.

Strategy
First, note that a light year (ly) is a convenient unit of distance on an astronomical scale—it is the distance light
travels in a year. For part (a), the 4.300-ly distance between Alpha Centauri and Earth is the proper distance

because it is measured by an earthbound observer to whom both stars are (approximately) stationary. To
the astronaut, Earth and Alpha Centauri are moving past at the same velocity, so the distance between them is
the contracted length L. In part (b), we are given so we can find v by rearranging the definition of to express
v in terms of c.

Solution for (a)
For part (a):

a. Identify the knowns:
b. Identify the unknown: L.

c. Express the answer as an equation:
d. Do the calculation:
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Solution for (b)
For part (b):

a. Identify the known:
b. Identify the unknown: v in terms of c.
c. Express the answer as an equation. Start with:

Then solve for the unknown v/c by first squaring both sides and then rearranging:

d. Do the calculation:

or

Significance
Remember not to round off calculations until the final answer, or you could get erroneous results. This is
especially true for special relativity calculations, where the differences might only be revealed after several
decimal places. The relativistic effect is large here and we see that v is approaching (not equaling)
the speed of light. Because the distance as measured by the astronaut is so much smaller, the astronaut can
travel it in much less time in her frame.

People traveling at extremely high velocities could cover very large distances (thousands or even millions of
light years) and age only a few years on the way. However, like emigrants in past centuries who left their home,
these people would leave the Earth they know forever. Even if they returned, thousands to millions of years
would have passed on Earth, obliterating most of what now exists. There is also a more serious practical
obstacle to traveling at such velocities; immensely greater energies would be needed to achieve such high
velocities than classical physics predicts can be attained. This will be discussed later in the chapter.

Why don’t we notice length contraction in everyday life? The distance to the grocery store does not seem to

depend on whether we are moving or not. Examining the equation we see that at low

velocities the lengths are nearly equal, which is the classical expectation. But length contraction is
real, if not commonly experienced. For example, a charged particle such as an electron traveling at relativistic
velocity has electric field lines that are compressed along the direction of motion as seen by a stationary
observer (Figure 5.12). As the electron passes a detector, such as a coil of wire, its field interacts much more
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briefly, an effect observed at particle accelerators such as the 3-km-long Stanford Linear Accelerator (SLAC). In
fact, to an electron traveling down the beam pipe at SLAC, the accelerator and Earth are all moving by and are
length contracted. The relativistic effect is so great that the accelerator is only 0.5 m long to the electron. It is
actually easier to get the electron beam down the pipe, because the beam does not have to be as precisely
aimed to get down a short pipe as it would to get down a pipe 3 km long. This, again, is an experimental
verification of the special theory of relativity.

Figure 5.12 The electric field lines of a high-velocity charged particle are compressed along the direction of motion by length contraction,

producing an observably different signal as the particle goes through a coil.

CHECK YOUR UNDERSTANDING 5.4

A particle is traveling through Earth’s atmosphere at a speed of 0.750c. To an earthbound observer, the
distance it travels is 2.50 km. How far does the particle travel as viewed from the particle’s reference frame?

5.5 The Lorentz Transformation
Learning Objectives

• Describe the Galilean transformation of classical mechanics, relating the position, time, velocities, and
accelerations measured in different inertial frames

• Derive the corresponding Lorentz transformation equations, which, in contrast to the Galilean
transformation, are consistent with special relativity

• Explain the Lorentz transformation and many of the features of relativity in terms of four-dimensional space-
time

We have used the postulates of relativity to examine, in particular examples, how observers in different frames
of reference measure different values for lengths and the time intervals. We can gain further insight into how
the postulates of relativity change the Newtonian view of time and space by examining the transformation
equations that give the space and time coordinates of events in one inertial reference frame in terms of those
in another. We first examine how position and time coordinates transform between inertial frames according
to the view in Newtonian physics. Then we examine how this has to be changed to agree with the postulates of
relativity. Finally, we examine the resulting Lorentz transformation equations and some of their consequences
in terms of four-dimensional space-time diagrams, to support the view that the consequences of special
relativity result from the properties of time and space itself, rather than electromagnetism.

The Galilean Transformation Equations
An event is specified by its location and time (x, y, z, t) relative to one particular inertial frame of reference S.
As an example, (x, y, z, t) could denote the position of a particle at time t, and we could be looking at these
positions for many different times to follow the motion of the particle. Suppose a second frame of reference
moves with velocity v with respect to the first. For simplicity, assume this relative velocity is along the x-axis.
The relation between the time and coordinates in the two frames of reference is then
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Implicit in these equations is the assumption that time measurements made by observers in both S and are
the same. That is,

These four equations are known collectively as the Galilean transformation.

We can obtain the Galilean velocity and acceleration transformation equations by differentiating these
equations with respect to time. We use u for the velocity of a particle throughout this chapter to distinguish it
from v, the relative velocity of two reference frames. Note that, for the Galilean transformation, the increment
of time used in differentiating to calculate the particle velocity is the same in both frames,
Differentiation yields

and

We denote the velocity of the particle by u rather than v to avoid confusion with the velocity v of one frame of
reference with respect to the other. Velocities in each frame differ by the velocity that one frame has as seen
from the other frame. Observers in both frames of reference measure the same value of the acceleration.
Because the mass is unchanged by the transformation, and distances between points are uncharged,
observers in both frames see the same forces acting between objects and the same form of Newton’s
second and third laws in all inertial frames. The laws of mechanics are consistent with the first postulate of
relativity.

The Lorentz Transformation Equations
The Galilean transformation nevertheless violates Einstein’s postulates, because the velocity equations state
that a pulse of light moving with speed c along the x-axis would travel at speed in the other inertial frame.
Specifically, the spherical pulse has radius at time t in the unprimed frame, and also has radius
at time in the primed frame. Expressing these relations in Cartesian coordinates gives

The left-hand sides of the two expressions can be set equal because both are zero. Because and
we obtain

This cannot be satisfied for nonzero relative velocity v of the two frames if we assume the Galilean
transformation results in with

To find the correct set of transformation equations, assume the two coordinate systems S and in Figure
5.13. First suppose that an event occurs at in and at in S, as depicted in the figure.

5.5
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Figure 5.13 An event occurs at (x, 0, 0, t) in S and at in The Lorentz transformation equations relate events in the two

systems.

Suppose that at the instant that the origins of the coordinate systems in S and coincide, a flash bulb emits a
spherically spreading pulse of light starting from the origin. At time t, an observer in S finds the origin of to
be at With the help of a friend in , the S observer also measures the distance from the event to the
origin of and finds it to be This follows because we have already shown the postulates of
relativity to imply length contraction. Thus the position of the event in S is

and

The postulates of relativity imply that the equation relating distance and time of the spherical wave front:

must apply both in terms of primed and unprimed coordinates, which was shown above to lead to Equation
5.5:

We combine this with the equation relating x and to obtain the relation between t and

The equations relating the time and position of the events as seen in S are then

This set of equations, relating the position and time in the two inertial frames, is known as the Lorentz
transformation. They are named in honor of H.A. Lorentz (1853–1928), who first proposed them.
Interestingly, he justified the transformation on what was eventually discovered to be a fallacious hypothesis.
The correct theoretical basis is Einstein’s special theory of relativity.

The reverse transformation expresses the variables in S in terms of those in Simply interchanging the
primed and unprimed variables and substituting gives:
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EXAMPLE 5.6

Using the Lorentz Transformation for Time
Spacecraft is at rest, eventually heading toward Alpha Centauri, when Spacecraft S passes it at relative
speed c/2. The captain of sends a radio signal that lasts 1.2 s according to that ship’s clock. Use the Lorentz
transformation to find the time interval of the signal measured by the communications officer of spaceship S.

Solution

a. Identify the known:
b. Identify the unknown:
c. Express the answer as an equation. The time signal starts as and stops at Note that the

coordinate of both events is the same because the clock is at rest in Write the first Lorentz
transformation equation in terms of and similarly for the primed coordinates,
as:

Because the position of the clock in is fixed, and the time interval becomes:

d. Do the calculation.
With this gives:

Note that the Lorentz transformation reproduces the time dilation equation.

EXAMPLE 5.7

Using the Lorentz Transformation for Length
A surveyor measures a street to be long in Earth frame S. Use the Lorentz transformation to obtain
an expression for its length measured from a spaceship moving by at speed 0.20c, assuming the x
coordinates of the two frames coincide at time

Solution

a. Identify the known:
b. Identify the unknown:
c. Express the answer as an equation. The surveyor in frame S has measured the two ends of the stick

simultaneously, and found them at rest at and a distance apart. The spaceship
crew measures the simultaneous location of the ends of the sticks in their frame. To relate the lengths
recorded by observers in and S, respectively, write the second of the four Lorentz transformation
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equations as:

d. Do the calculation. Because the length of the moving stick is equal to:

Note that the Lorentz transformation gave the length contraction equation for the street.

EXAMPLE 5.8

Lorentz Transformation and Simultaneity
The observer shown in Figure 5.14 standing by the railroad tracks sees the two bulbs flash simultaneously at
both ends of the 26 m long passenger car when the middle of the car passes him at a speed of c/2. Find the
separation in time between when the bulbs flashed as seen by the train passenger seated in the middle of the
car.

Figure 5.14 An person watching a train go by observes two bulbs flash simultaneously at opposite ends of a passenger car. There is

another passenger inside of the car observing the same flashes but from a different perspective.

Solution

a. Identify the known:
Note that the spatial separation of the two events is between the two lamps, not the distance of the lamp to
the passenger.

b. Identify the unknown:
Again, note that the time interval is between the flashes of the lamps, not between arrival times for
reaching the passenger.

c. Express the answer as an equation:

d. Do the calculation:
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Significance
The sign indicates that the event with the larger namely, the flash from the right, is seen to occur first in
the frame, as found earlier for this example, so that

Space-time
Relativistic phenomena can be analyzed in terms of events in a four-dimensional space-time. When
phenomena such as the twin paradox, time dilation, length contraction, and the dependence of simultaneity
on relative motion are viewed in this way, they are seen to be characteristic of the nature of space and time,
rather than specific aspects of electromagnetism.

In three-dimensional space, positions are specified by three coordinates on a set of Cartesian axes, and the
displacement of one point from another is given by:

The distance between the points is

The distance is invariant under a rotation of axes. If a new set of Cartesian axes rotated around the origin
relative to the original axes are used, each point in space will have new coordinates in terms of the new axes,
but the distance given by

That has the same value that had. Something similar happens with the Lorentz transformation in space-
time.

Define the separation between two events, each given by a set of x, y, z¸ and ct along a four-dimensional
Cartesian system of axes in space-time, as

Also define the space-time interval between the two events as

If the two events have the same value of ct in the frame of reference considered, would correspond to the
distance between points in space.

The path of a particle through space-time consists of the events (x, y, z¸ ct) specifying a location at each time of
its motion. The path through space-time is called the world line of the particle. The world line of a particle that
remains at rest at the same location is a straight line that is parallel to the time axis. If the particle moves at
constant velocity parallel to the x-axis, its world line would be a sloped line corresponding to a simple
displacement vs. time graph. If the particle accelerates, its world line is curved. The increment of s along the
world line of the particle is given in differential form as

Just as the distance is invariant under rotation of the space axes, the space-time interval:

is invariant under the Lorentz transformation. This follows from the postulates of relativity, and can be seen
also by substitution of the previous Lorentz transformation equations into the expression for the space-time
interval:
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In addition, the Lorentz transformation changes the coordinates of an event in time and space similarly to how
a three-dimensional rotation changes old coordinates into new coordinates:

where

Lorentz transformations can be regarded as generalizations of spatial rotations to space-time. However, there
are some differences between a three-dimensional axis rotation and a Lorentz transformation involving the
time axis, because of differences in how the metric, or rule for measuring the displacements and differ.
Although is invariant under spatial rotations and is invariant also under Lorentz transformation, the
Lorentz transformation involving the time axis does not preserve some features, such as the axes remaining
perpendicular or the length scale along each axis remaining the same.

Note that the quantity can have either sign, depending on the coordinates of the space-time events
involved. For pairs of events that give it a negative sign, it is useful to define as The significance
of as just defined follows by noting that in a frame of reference where the two events occur at the same
location, we have and therefore (from the equation for

Therefore is the time interval in the frame of reference where both events occur at the same
location. It is the same interval of proper time discussed earlier. It also follows from the relation between
and that that because is Lorentz invariant, the proper time is also Lorentz invariant. All observers in
all inertial frames agree on the proper time intervals between the same two events.

CHECK YOUR UNDERSTANDING 5.5

Show that if a time increment dt elapses for an observer who sees the particle moving with velocity v, it
corresponds to a proper time particle increment for the particle of

The light cone
We can deal with the difficulty of visualizing and sketching graphs in four dimensions by imagining the three
spatial coordinates to be represented collectively by a horizontal axis, and the vertical axis to be the ct-axis.
Starting with a particular event in space-time as the origin of the space-time graph shown, the world line of a
particle that remains at rest at the initial location of the event at the origin then is the time axis. Any plane
through the time axis parallel to the spatial axes contains all the events that are simultaneous with each other
and with the intersection of the plane and the time axis, as seen in the rest frame of the event at the origin.

It is useful to picture a light cone on the graph, formed by the world lines of all light beams passing through the
origin event A, as shown in Figure 5.15. The light cone, according to the postulates of relativity, has sides at an
angle of if the time axis is measured in units of ct, and, according to the postulates of relativity, the light
cone remains the same in all inertial frames. Because the event A is arbitrary, every point in the space-time
diagram has a light cone associated with it.
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Figure 5.15 The light cone consists of all the world lines followed by light from the event A at the vertex of the cone.

Consider now the world line of a particle through space-time. Any world line outside of the cone, such as one
passing from A through C, would involve speeds greater than c, and would therefore not be possible. Events
such as C that lie outside the light cone are said to have a space-like separation from event A. They are
characterized in one dimension by:

An event like B that lies in the upper cone is reachable without exceeding the speed of light in vacuum, and is
characterized in one dimension by

The event is said to have a time-like separation from A. Time-like events that fall into the upper half of the light
cone occur at greater values of t than the time of the event A at the vertex and are in the future relative to A.
Events that have time-like separation from A and fall in the lower half of the light cone are in the past, and can
affect the event at the origin. The region outside the light cone is labeled as neither past nor future, but rather
as “elsewhere.”

For any event that has a space-like separation from the event at the origin, it is possible to choose a time axis
that will make the two events occur at the same time, so that the two events are simultaneous in some frame of
reference. Therefore, which of the events with space-like separation comes before the other in time also
depends on the frame of reference of the observer. Since space-like separations can be traversed only by
exceeding the speed of light; this violation of which event can cause the other provides another argument for
why particles cannot travel faster than the speed of light, as well as potential material for science fiction about
time travel. Similarly for any event with time-like separation from the event at the origin, a frame of reference
can be found that will make the events occur at the same location. Because the relations

and

are Lorentz invariant, whether two events are time-like and can be made to occur at the same place or space-
like and can be made to occur at the same time is the same for all observers. All observers in different inertial
frames of reference agree on whether two events have a time-like or space-like separation.

The twin paradox seen in space-time
The twin paradox discussed earlier involves an astronaut twin traveling at near light speed to a distant star
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system, and returning to Earth. Because of time dilation, the space twin is predicted to age much less than the
earthbound twin. This seems paradoxical because we might have expected at first glance for the relative
motion to be symmetrical and naively thought it possible to also argue that the earthbound twin should age
less.

To analyze this in terms of a space-time diagram, assume that the origin of the axes used is fixed in Earth. The
world line of the earthbound twin is then along the time axis.

The world line of the astronaut twin, who travels to the distant star and then returns, must deviate from a
straight line path in order to allow a return trip. As seen in Figure 5.16, the circumstances of the two twins are
not at all symmetrical. Their paths in space-time are of manifestly different length. Specifically, the world line
of the earthbound twin has length which then gives the proper time that elapses for the earthbound twin
as The distance to the distant star system is The proper time that elapses for the space twin is

where

This is considerably shorter than the proper time for the earthbound twin by the ratio

consistent with the time dilation formula. The twin paradox is therefore seen to be no paradox at all. The
situation of the two twins is not symmetrical in the space-time diagram. The only surprise is perhaps that the
seemingly longer path on the space-time diagram corresponds to the smaller proper time interval, because of
how and depend on and

Figure 5.16 The space twin and the earthbound twin, in the twin paradox example, follow world lines of different length through space-

time.

Lorentz transformations in space-time
We have already noted how the Lorentz transformation leaves

unchanged and corresponds to a rotation of axes in the four-dimensional space-time. If the S and frames
are in relative motion along their shared x-direction the space and time axes of are rotated by an angle as
seen from S, in the way shown in shown in Figure 5.17, where:

This differs from a rotation in the usual three-dimension sense, insofar as the two space-time axes rotate
toward each other symmetrically in a scissors-like way, as shown. The rotation of the time and space axes are
both through the same angle. The mesh of dashed lines parallel to the two axes show how coordinates of an
event would be read along the primed axes. This would be done by following a line parallel to the and one
parallel to the -axis, as shown by the dashed lines. The length scale of both axes are changed by:
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The line labeled at to the x-axis corresponds to the edge of the light cone, and is unaffected by the
Lorentz transformation, in accordance with the second postulate of relativity. The line, and the light
cone it represents, are the same for both the S and frame of reference.

Figure 5.17 The Lorentz transformation results in new space and time axes rotated in a scissors-like way with respect to the original axes.

Simultaneity
Simultaneity of events at separated locations depends on the frame of reference used to describe them, as
given by the scissors-like “rotation” to new time and space coordinates as described. If two events have the
same t values in the unprimed frame of reference, they need not have the same values measured along the

and would then not be simultaneous in the primed frame.

As a specific example, consider the near-light-speed train in which flash lamps at the two ends of the car have
flashed simultaneously in the frame of reference of an observer on the ground. The space-time graph is shown
Figure 5.18. The flashes of the two lamps are represented by the dots labeled “Left flash lamp” and “Right flash
lamp” that lie on the light cone in the past. The world line of both pulses travel along the edge of the light cone
to arrive at the observer on the ground simultaneously. Their arrival is the event at the origin. They therefore
had to be emitted simultaneously in the unprimed frame, as represented by the point labeled as t(both). But
time is measured along the in the frame of reference of the observer seated in the middle of the train
car. So in her frame of reference, the emission event of the bulbs labeled as (left) and (right) were not
simultaneous.
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Figure 5.18 The train example revisited. The flashes occur at the same time t(both) along the time axis of the ground observer, but at

different times, along the time axis of the passenger.

In terms of the space-time diagram, the two observers are merely using different time axes for the same events
because they are in different inertial frames, and the conclusions of both observers are equally valid. As the
analysis in terms of the space-time diagrams further suggests, the property of how simultaneity of events
depends on the frame of reference results from the properties of space and time itself, rather than from
anything specifically about electromagnetism.

5.6 Relativistic Velocity Transformation
Learning Objectives
By the end of this section, you will be able to:

• Derive the equations consistent with special relativity for transforming velocities in one inertial frame of
reference into another.

• Apply the velocity transformation equations to objects moving at relativistic speeds.
• Examine how the combined velocities predicted by the relativistic transformation equations compare with

those expected classically.

Remaining in place in a kayak in a fast-moving river takes effort. The river current pulls the kayak along.
Trying to paddle against the flow can move the kayak upstream relative to the water, but that only accounts for
part of its velocity relative to the shore. The kayak’s motion is an example of how velocities in Newtonian
mechanics combine by vector addition. The kayak’s velocity is the vector sum of its velocity relative to the
water and the water’s velocity relative to the riverbank. However, the relativistic addition of velocities is quite
different.

Velocity Transformations
Imagine a car traveling at night along a straight road, as in Figure 5.19. The driver sees the light leaving the
headlights at speed c within the car’s frame of reference. If the Galilean transformation applied to light, then
the light from the car’s headlights would approach the pedestrian at a speed contrary to Einstein’s
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postulates.

Figure 5.19 According to experimental results and the second postulate of relativity, light from the car’s headlights moves away from the

car at speed c and toward the observer on the sidewalk at speed c.

Both the distance traveled and the time of travel are different in the two frames of reference, and they must
differ in a way that makes the speed of light the same in all inertial frames. The correct rules for transforming
velocities from one frame to another can be obtained from the Lorentz transformation equations.

Relativistic Transformation of Velocity
Suppose an object P is moving at constant velocity as measured in the frame. The frame
is moving along its at velocity v. In an increment of time , the particle is displaced by along the

Applying the Lorentz transformation equations gives the corresponding increments of time and
displacement in the unprimed axes:

The velocity components of the particle seen in the unprimed coordinate system are then

We thus obtain the equations for the velocity components of the object as seen in frame S:
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Compare this with how the Galilean transformation of classical mechanics says the velocities transform, by
adding simply as vectors:

When the relative velocity of the frames is much smaller than the speed of light, that is, when the
special relativity velocity addition law reduces to the Galilean velocity law. When the speed v of relative to S
is comparable to the speed of light, the relativistic velocity addition law gives a much smaller result than the
classical (Galilean) velocity addition does.

EXAMPLE 5.9

Velocity Transformation Equations for Light
Suppose a spaceship heading directly toward Earth at half the speed of light sends a signal to us on a laser-
produced beam of light (Figure 5.20). Given that the light leaves the ship at speed c as observed from the ship,
calculate the speed at which it approaches Earth.

Figure 5.20 How fast does a light signal approach Earth if sent from a spaceship traveling at 0.500c?

Strategy
Because the light and the spaceship are moving at relativistic speeds, we cannot use simple velocity addition.
Instead, we determine the speed at which the light approaches Earth using relativistic velocity addition.

Solution

a. Identify the knowns:
b. Identify the unknown: u.
c. Express the answer as an equation:

d. Do the calculation:

Significance
Relativistic velocity addition gives the correct result. Light leaves the ship at speed c and approaches Earth at
speed c. The speed of light is independent of the relative motion of source and observer, whether the observer
is on the ship or earthbound.

Velocities cannot add to greater than the speed of light, provided that v is less than c and does not exceed c.
The following example illustrates that relativistic velocity addition is not as symmetric as classical velocity
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addition.

EXAMPLE 5.10

Relativistic Package Delivery
Suppose the spaceship in the previous example approaches Earth at half the speed of light and shoots a
canister at a speed of 0.750c (Figure 5.21). (a) At what velocity does an earthbound observer see the canister if
it is shot directly toward Earth? (b) If it is shot directly away from Earth?

Figure 5.21 A canister is fired at 0.7500c toward Earth or away from Earth.

Strategy
Because the canister and the spaceship are moving at relativistic speeds, we must determine the speed of the
canister by an earthbound observer using relativistic velocity addition instead of simple velocity addition.

Solution for (a)

a. Identify the knowns:
b. Identify the unknown: u.
c. Express the answer as an equation:

d. Do the calculation:

Solution for (b)

a. Identify the knowns:
b. Identify the unknown: u.
c. Express the answer as an equation:

d. Do the calculation:

Significance
The minus sign indicates a velocity away from Earth (in the opposite direction from v), which means the
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canister is heading toward Earth in part (a) and away in part (b), as expected. But relativistic velocities do not
add as simply as they do classically. In part (a), the canister does approach Earth faster, but at less than the
vector sum of the velocities, which would give 1.250c. In part (b), the canister moves away from Earth at a
velocity of which is faster than the −0.250c expected classically. The differences in velocities are not
even symmetric: In part (a), an observer on Earth sees the canister and the ship moving apart at a speed of
0.409c, and at a speed of 0.900c in part (b).

CHECK YOUR UNDERSTANDING 5.6

Distances along a direction perpendicular to the relative motion of the two frames are the same in both frames.
Why then are velocities perpendicular to the x-direction different in the two frames?

5.7 Doppler Effect for Light
Learning Objectives
By the end of this section, you will be able to:

• Explain the origin of the shift in frequency and wavelength of the observed wavelength when observer and
source moved toward or away from each other

• Derive an expression for the relativistic Doppler shift
• Apply the Doppler shift equations to real-world examples

As discussed in the chapter on sound, if a source of sound and a listener are moving farther apart, the listener
encounters fewer cycles of a wave in each second, and therefore lower frequency, than if their separation
remains constant. For the same reason, the listener detects a higher frequency if the source and listener are
getting closer. The resulting Doppler shift in detected frequency occurs for any form of wave. For sound waves,
however, the equations for the Doppler shift differ markedly depending on whether it is the source, the
observer, or the air, which is moving. Light requires no medium, and the Doppler shift for light traveling in
vacuum depends only on the relative speed of the observer and source.

The Relativistic Doppler Effect
Suppose an observer in S sees light from a source in moving away at velocity v (Figure 5.22). The
wavelength of the light could be measured within —for example, by using a mirror to set up standing waves
and measuring the distance between nodes. These distances are proper lengths with as their rest frame,
and change by a factor when measured in the observer’s frame S, where the ruler measuring the
wavelength in is seen as moving.
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Figure 5.22 (a) When a light wave is emitted by a source fixed in the moving inertial frame the observer in S sees the wavelength

measured in to be shorter by a factor (b) Because the observer sees the source moving away within S, the wave pattern

reaching the observer in S is also stretched by the factor

If the source were stationary in S, the observer would see a length of the wave pattern in time But
because of the motion of relative to S, considered solely within S, the observer sees the wave pattern, and
therefore the wavelength, stretched out by a factor of

as illustrated in (b) of Figure 5.22. The overall increase from both effects gives

where is the wavelength of the light seen by the source in and is the wavelength that the observer
detects within S.

Red Shifts and Blue Shifts
The observed wavelength of electromagnetic radiation is longer (called a “red shift”) than that emitted by
the source when the source moves away from the observer. Similarly, the wavelength is shorter (called a “blue
shift”) when the source moves toward the observer. The amount of change is determined by

where is the wavelength in the frame of reference of the source, and v is the relative velocity of the two
frames S and The velocity v is positive for motion away from an observer and negative for motion toward an
observer. In terms of source frequency and observed frequency, this equation can be written as
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Notice that the signs are different from those of the wavelength equation.

EXAMPLE 5.11

Calculating a Doppler Shift
Suppose a galaxy is moving away from Earth at a speed 0.825c. It emits radio waves with a wavelength of
0.525 m. What wavelength would we detect on Earth?

Strategy
Because the galaxy is moving at a relativistic speed, we must determine the Doppler shift of the radio waves
using the relativistic Doppler shift instead of the classical Doppler shift.

Solution

a. Identify the knowns:
b. Identify the unknown:
c. Express the answer as an equation:

d. Do the calculation:

Significance
Because the galaxy is moving away from Earth, we expect the wavelengths of radiation it emits to be
redshifted. The wavelength we calculated is 1.70 m, which is redshifted from the original wavelength of 0.525
m. You will see in Particle Physics and Cosmology that detecting redshifted radiation led to present-day
understanding of the origin and evolution of the universe.

CHECK YOUR UNDERSTANDING 5.7

Suppose a space probe moves away from Earth at a speed 0.350c. It sends a radio-wave message back to Earth
at a frequency of 1.50 GHz. At what frequency is the message received on Earth?

The relativistic Doppler effect has applications ranging from Doppler radar storm monitoring to providing
information on the motion and distance of stars. We describe some of these applications in the exercises.
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5.8 Relativistic Momentum
Learning Objectives
By the end of this section, you will be able to:

• Define relativistic momentum in terms of mass and velocity
• Show how relativistic momentum relates to classical momentum
• Show how conservation of relativistic momentum limits objects with mass to speeds less than

Momentum is a central concept in physics. The broadest form of Newton’s second law is stated in terms of
momentum. Momentum is conserved whenever the net external force on a system is zero. This makes
momentum conservation a fundamental tool for analyzing collisions (Figure 5.23). Much of what we know
about subatomic structure comes from the analysis of collisions of accelerator-produced relativistic particles,
and momentum conservation plays a crucial role in this analysis.

Figure 5.23 Momentum is an important concept for these football players from the University of California at Berkeley and the University

of California at Davis. A player with the same velocity but greater mass collides with greater impact because his momentum is greater. For

objects moving at relativistic speeds, the effect is even greater.

The first postulate of relativity states that the laws of physics are the same in all inertial frames. Does the law of
conservation of momentum survive this requirement at high velocities? It can be shown that the momentum
calculated as merely even if it is conserved in one frame of reference, may not be conserved in
another after applying the Lorentz transformation to the velocities. The correct equation for momentum can
be shown, instead, to be the classical expression in terms of the increment of proper time of the particle,
observed in the particle’s rest frame:

Relativistic Momentum

Relativistic momentum is classical momentum multiplied by the relativistic factor γ:

5.6
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Note that we use u for velocity here to distinguish it from relative velocity v between observers. The factor
that occurs here has the same form as the previous relativistic factor except that it is now in terms of the
velocity of the particle u instead of the relative velocity v of two frames of reference.

With p expressed in this way, total momentum is conserved whenever the net external force is zero, just as
in classical physics. Again we see that the relativistic quantity becomes virtually the same as the classical
quantity at low velocities, where u/c is small and is very nearly equal to 1. Relativistic momentum has the
same intuitive role as classical momentum. It is greatest for large masses moving at high velocities, but
because of the factor relativistic momentum approaches infinity as u approaches c (Figure 5.24). This is
another indication that an object with mass cannot reach the speed of light. If it did, its momentum would
become infinite—an unreasonable value.

Figure 5.24 Relativistic momentum approaches infinity as the velocity of an object approaches the speed of light.

The relativistically correct definition of momentum as is sometimes taken to imply that mass varies
with velocity: particularly in older textbooks. However, note that m is the mass of the object as
measured by a person at rest relative to the object. Thus, m is defined to be the rest mass, which could be
measured at rest, perhaps using gravity. When a mass is moving relative to an observer, the only way that its
mass can be determined is through collisions or other means involving momentum. Because the mass of a
moving object cannot be determined independently of momentum, the only meaningful mass is rest mass.
Therefore, when we use the term “mass,” assume it to be identical to “rest mass.”

Relativistic momentum is defined in such a way that conservation of momentum holds in all inertial frames.
Whenever the net external force on a system is zero, relativistic momentum is conserved, just as is the case for
classical momentum. This has been verified in numerous experiments.

CHECK YOUR UNDERSTANDING 5.8

What is the momentum of an electron traveling at a speed 0.985c? The rest mass of the electron is

where m is the rest mass of the object, is its velocity relative to an observer, and γ is the relativistic
factor:

5.7
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5.9 Relativistic Energy
Learning Objectives
By the end of this section, you will be able to:

• Explain how the work-energy theorem leads to an expression for the relativistic kinetic energy of an object
• Show how the relativistic energy relates to the classical kinetic energy, and sets a limit on the speed of any

object with mass
• Describe how the total energy of a particle is related to its mass and velocity
• Explain how relativity relates to energy-mass equivalence, and some of the practical implications of energy-

mass equivalence

The tokamak in Figure 5.25 is a form of experimental fusion reactor, which can change mass to energy.
Nuclear reactors are proof of the relationship between energy and matter.

Conservation of energy is one of the most important laws in physics. Not only does energy have many
important forms, but each form can be converted to any other. We know that classically, the total amount of
energy in a system remains constant. Relativistically, energy is still conserved, but energy-mass equivalence
must now be taken into account, for example, in the reactions that occur within a nuclear reactor. Relativistic
energy is intentionally defined so that it is conserved in all inertial frames, just as is the case for relativistic
momentum. As a consequence, several fundamental quantities are related in ways not known in classical
physics. All of these relationships have been verified by experimental results and have fundamental
consequences. The altered definition of energy contains some of the most fundamental and spectacular new
insights into nature in recent history.

Figure 5.25 The National Spherical Torus Experiment (NSTX) is a fusion reactor in which hydrogen isotopes undergo fusion to produce

helium. In this process, a relatively small mass of fuel is converted into a large amount of energy. (credit: Princeton Plasma Physics

Laboratory)

Kinetic Energy and the Ultimate Speed Limit
The first postulate of relativity states that the laws of physics are the same in all inertial frames. Einstein
showed that the law of conservation of energy of a particle is valid relativistically, but for energy expressed in
terms of velocity and mass in a way consistent with relativity.

Consider first the relativistic expression for the kinetic energy. We again use u for velocity to distinguish it
from relative velocity v between observers. Classically, kinetic energy is related to mass and speed by the
familiar expression The corresponding relativistic expression for kinetic energy can be obtained
from the work-energy theorem. This theorem states that the net work on a system goes into kinetic energy.

Specifically, if a force, expressed as accelerates a particle from rest to its final velocity, the
work done on the particle should be equal to its final kinetic energy. In mathematical form, for one-
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dimensional motion:

Integrate this by parts to obtain

When an object is motionless, its speed is and

so that at rest, as expected. But the expression for relativistic kinetic energy (such as total energy and
rest energy) does not look much like the classical To show that the expression for reduces to the
classical expression for kinetic energy at low speeds, we use the binomial expansion to obtain an
approximation for valid for small :

by neglecting the very small terms in and higher powers of Choosing and leads to the
conclusion that γ at nonrelativistic speeds, where is small, satisfies

A binomial expansion is a way of expressing an algebraic quantity as a sum of an infinite series of terms. In
some cases, as in the limit of small speed here, most terms are very small. Thus, the expression derived here
for is not exact, but it is a very accurate approximation. Therefore, at low speed:

Relativistic Kinetic Energy

Relativistic kinetic energy of any particle of mass m is

5.8
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Entering this into the expression for relativistic kinetic energy gives

That is, relativistic kinetic energy becomes the same as classical kinetic energy when

It is even more interesting to investigate what happens to kinetic energy when the speed of an object
approaches the speed of light. We know that becomes infinite as u approaches c, so that also becomes
infinite as the velocity approaches the speed of light (Figure 5.26). The increase in is far larger than in

as v approaches c. An infinite amount of work (and, hence, an infinite amount of energy input) is
required to accelerate a mass to the speed of light.

The speed of light is the ultimate speed limit for any particle having mass. All of this is consistent with the fact
that velocities less than c always add to less than c. Both the relativistic form for kinetic energy and the
ultimate speed limit being c have been confirmed in detail in numerous experiments. No matter how much
energy is put into accelerating a mass, its velocity can only approach—not reach—the speed of light.

Figure 5.26 This graph of versus velocity shows how kinetic energy increases without bound as velocity approaches the speed of

light. Also shown is the classical kinetic energy.

EXAMPLE 5.12

Comparing Kinetic Energy
An electron has a velocity (a) Calculate the kinetic energy in MeV of the electron. (b) Compare this
with the classical value for kinetic energy at this velocity. (The mass of an electron is )

Strategy
The expression for relativistic kinetic energy is always correct, but for (a), it must be used because the velocity
is highly relativistic (close to c). First, we calculate the relativistic factor and then use it to determine the
relativistic kinetic energy. For (b), we calculate the classical kinetic energy (which would be close to the
relativistic value if v were less than a few percent of c) and see that it is not the same.

The Speed of Light

No object with mass can attain the speed of light.
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Solution for (a)
For part (a):

a. Identify the knowns:
b. Identify the unknown:
c. Express the answer as an equation: with

d. Do the calculation. First calculate Keep extra digits because this is an intermediate calculation:

Now use this value to calculate the kinetic energy:

e. Convert units:

Solution for (b)
For part (b):

a. List the knowns:
b. List the unknown:
c. Express the answer as an equation:
d. Do the calculation:

e. Convert units:

Significance
As might be expected, because the velocity is 99.0% of the speed of light, the classical kinetic energy differs
significantly from the correct relativistic value. Note also that the classical value is much smaller than the
relativistic value. In fact, in this case. This illustrates how difficult it is to get a mass moving
close to the speed of light. Much more energy is needed than predicted classically. Ever-increasing amounts of
energy are needed to get the velocity of a mass a little closer to that of light. An energy of 3 MeV is a very small
amount for an electron, and it can be achieved with present-day particle accelerators. SLAC, for example, can
accelerate electrons to over

Is there any point in getting v a little closer to c than 99.0% or 99.9%? The answer is yes. We learn a great deal
by doing this. The energy that goes into a high-velocity mass can be converted into any other form, including
into entirely new particles. In the Large Hadron Collider in Figure 5.27, charged particles are accelerated
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before entering the ring-like structure. There, two beams of particles are accelerated to their final speed of
about 99.7% the speed of light in opposite directions, and made to collide, producing totally new species of
particles. Most of what we know about the substructure of matter and the collection of exotic short-lived
particles in nature has been learned this way. Patterns in the characteristics of these previously unknown
particles hint at a basic substructure for all matter. These particles and some of their characteristics will be
discussed in a later chapter on particle physics.

Figure 5.27 The European Organization for Nuclear Research (called CERN after its French name) operates the largest particle

accelerator in the world, straddling the border between France and Switzerland. (credit: modification of work by NASA)

Total Relativistic Energy
The expression for kinetic energy can be rearranged to:

Einstein argued in a separate article, also later published in 1905, that if the energy of a particle changes by
its mass changes by Abundant experimental evidence since then confirms that

corresponds to the energy that the particle of mass m has when at rest. For example, when a neutral pion of
mass m at rest decays into two photons, the photons have zero mass but are observed to have total energy
corresponding to for the pion. Similarly, when a particle of mass m decays into two or more particles with
smaller total mass, the observed kinetic energy imparted to the products of the decay corresponds to the
decrease in mass. Thus, E is the total relativistic energy of the particle, and is its rest energy.

Total Energy

Total energy E of a particle is

where m is mass, c is the speed of light, and u is the velocity of the mass relative to an

observer.

5.9
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This is the correct form of Einstein’s most famous equation, which for the first time showed that energy is
related to the mass of an object at rest. For example, if energy is stored in the object, its rest mass increases.
This also implies that mass can be destroyed to release energy. The implications of these first two equations
regarding relativistic energy are so broad that they were not completely recognized for some years after
Einstein published them in 1905, nor was the experimental proof that they are correct widely recognized at
first. Einstein, it should be noted, did understand and describe the meanings and implications of his theory.

EXAMPLE 5.13

Calculating Rest Energy
Calculate the rest energy of a 1.00-g mass.

Strategy
One gram is a small mass—less than one-half the mass of a penny. We can multiply this mass, in SI units, by
the speed of light squared to find the equivalent rest energy.

Solution

a. Identify the knowns:
b. Identify the unknown:
c. Express the answer as an equation:
d. Do the calculation:

e. Convert units. Noting that we see the rest energy is:

Significance
This is an enormous amount of energy for a 1.00-g mass. Rest energy is large because the speed of light c is a
large number and is a very large number, so that is huge for any macroscopic mass. The
rest mass energy for 1.00 g is about twice the energy released by the Hiroshima atomic bomb and about
10,000 times the kinetic energy of a large aircraft carrier.

Today, the practical applications of the conversion of mass into another form of energy, such as in nuclear
weapons and nuclear power plants, are well known. But examples also existed when Einstein first proposed
the correct form of relativistic energy, and he did describe some of them. Nuclear radiation had been
discovered in the previous decade, and it had been a mystery as to where its energy originated. The
explanation was that, in some nuclear processes, a small amount of mass is destroyed and energy is released
and carried by nuclear radiation. But the amount of mass destroyed is so small that it is difficult to detect that
any is missing. Although Einstein proposed this as the source of energy in the radioactive salts then being
studied, it was many years before there was broad recognition that mass could be and, in fact, commonly is,
converted to energy (Figure 5.28).

Rest Energy

Rest energy of an object is

5.10
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Figure 5.28 (a) The sun and (b) the Susquehanna Steam Electric Station both convert mass into energy—the sun via nuclear fusion, and

the electric station via nuclear fission. (credit a: modification of work by NASA/SDO (AIA) )

Because of the relationship of rest energy to mass, we now consider mass to be a form of energy rather than
something separate. There had not been even a hint of this prior to Einstein’s work. Energy-mass equivalence
is now known to be the source of the sun’s energy, the energy of nuclear decay, and even one of the sources of
energy keeping Earth’s interior hot.

Stored Energy and Potential Energy
What happens to energy stored in an object at rest, such as the energy put into a battery by charging it, or the
energy stored in a toy gun’s compressed spring? The energy input becomes part of the total energy of the
object and thus increases its rest mass. All stored and potential energy becomes mass in a system. In seeming
contradiction, the principle of conservation of mass (meaning total mass is constant) was one of the great laws
verified by nineteenth-century science. Why was it not noticed to be incorrect? The following example helps
answer this question.

EXAMPLE 5.14

Calculating Rest Mass
A car battery is rated to be able to move 600 ampere-hours of charge at 12.0 V. (a) Calculate the increase
in rest mass of such a battery when it is taken from being fully depleted to being fully charged, assuming none
of the chemical reactants enter or leave the battery. (b) What percent increase is this, given that the battery’s
mass is 20.0 kg?

Strategy
In part (a), we first must find the energy stored as chemical energy in the battery, which equals the
electrical energy the battery can provide. Because we have to calculate the charge q in
which is the product of the current I and the time t. We then multiply the result by 12.0 V. We can then
calculate the battery’s increase in mass using Part (b) is a simple ratio converted into a
percentage.

Solution for (a)

a. Identify the knowns:
b. Identify the unknown:
c. Express the answer as an equation:
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d. Do the calculation:

Write amperes A as coulombs per second (C/s), and convert hours into seconds:

where we have used the conversion

Solution for (b)
For part (b):

a. Identify the knowns:
b. Identify the unknown: % change.
c. Express the answer as an equation:
d. Do the calculation:

Significance
Both the actual increase in mass and the percent increase are very small, because energy is divided by a
very large number. We would have to be able to measure the mass of the battery to a precision of a billionth of a
percent, or 1 part in to notice this increase. It is no wonder that the mass variation is not readily
observed. In fact, this change in mass is so small that we may question how anyone could verify that it is real.
The answer is found in nuclear processes in which the percentage of mass destroyed is large enough to be
measured accurately. The mass of the fuel of a nuclear reactor, for example, is measurably smaller when its
energy has been used. In that case, stored energy has been released (converted mostly into thermal energy to
power electric generators) and the rest mass has decreased. A decrease in mass also occurs from using the
energy stored in a battery, except that the stored energy is much greater in nuclear processes, making the
change in mass measurable in practice as well as in theory.

Relativistic Energy and Momentum
We know classically that kinetic energy and momentum are related to each other, because:

Relativistically, we can obtain a relationship between energy and momentum by algebraically manipulating
their defining equations. This yields:

where E is the relativistic total energy, and p is the relativistic momentum. This

5.11
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relationship between relativistic energy and relativistic momentum is more complicated than the classical
version, but we can gain some interesting new insights by examining it. First, total energy is related to
momentum and rest mass. At rest, momentum is zero, and the equation gives the total energy to be the rest
energy (so this equation is consistent with the discussion of rest energy above). However, as the mass is
accelerated, its momentum p increases, thus increasing the total energy. At sufficiently high velocities, the rest
energy term becomes negligible compared with the momentum term thus, at extremely
relativistic velocities.

If we consider momentum p to be distinct from mass, we can determine the implications of the equation
for a particle that has no mass. If we take m to be zero in this equation, then

Massless particles have this momentum. There are several massless particles found in
nature, including photons (which are packets of electromagnetic radiation). Another implication is that a
massless particle must travel at speed c and only at speed c. It is beyond the scope of this text to examine the
relationship in the equation in detail, but you can see that the relationship has important
implications in special relativity.

CHECK YOUR UNDERSTANDING 5.9

What is the kinetic energy of an electron if its speed is 0.992c?
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CHAPTER REVIEW
Key Terms
classical (Galilean) velocity addition method of

adding velocities when velocities add like
regular numbers in one-dimensional motion:

where v is the velocity between two
observers, u is the velocity of an object relative to
one observer, and is the velocity relative to the
other observer

event occurrence in space and time specified by its
position and time coordinates (x, y, z, t) measured
relative to a frame of reference

first postulate of special relativity laws of physics
are the same in all inertial frames of reference

Galilean relativity if an observer measures a
velocity in one frame of reference, and that frame
of reference is moving with a velocity past a
second reference frame, an observer in the
second frame measures the original velocity as
the vector sum of these velocities

Galilean transformation relation between
position and time coordinates of the same events
as seen in different reference frames, according
to classical mechanics

inertial frame of reference reference frame in
which a body at rest remains at rest and a body in
motion moves at a constant speed in a straight
line unless acted on by an outside force

length contraction decrease in observed length of
an object from its proper length to length L
when its length is observed in a reference frame
where it is traveling at speed v

Lorentz transformation relation between position
and time coordinates of the same events as seen
in different reference frames, according to the
special theory of relativity

Michelson-Morley experiment investigation
performed in 1887 that showed that the speed of
light in a vacuum is the same in all frames of
reference from which it is viewed

proper length the distance between two points
measured by an observer who is at rest relative to
both of the points; for example, earthbound
observers measure proper length when

measuring the distance between two points that
are stationary relative to Earth

proper time is the time interval measured by
an observer who sees the beginning and end of
the process that the time interval measures occur
at the same location

relativistic kinetic energy kinetic energy of an
object moving at relativistic speeds

relativistic momentum the momentum of an
object moving at relativistic velocity;

relativistic velocity addition method of adding
velocities of an object moving at a relativistic
speeds

rest energy energy stored in an object at rest:

rest frame frame of reference in which the
observer is at rest

rest mass mass of an object as measured by an
observer at rest relative to the object

second postulate of special relativity light travels
in a vacuum with the same speed c in any
direction in all inertial frames

special theory of relativity theory that Albert
Einstein proposed in 1905 that assumes all the
laws of physics have the same form in every
inertial frame of reference, and that the speed of
light is the same within all inertial frames

speed of light ultimate speed limit for any particle
having mass

time dilation lengthening of the time interval
between two events when seen in a moving
inertial frame rather than the rest frame of the
events (in which the events occur at the same
location)

total energy sum of all energies for a particle,
including rest energy and kinetic energy, given
for a particle of mass m and speed u by

where

world line path through space-time

Key Equations

Time dilation
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Lorentz factor

Length contraction

Galilean transformation

Lorentz transformation

Inverse Lorentz transformation

Space-time invariants

Relativistic velocity addition

Relativistic Doppler effect for wavelength

Relativistic Doppler effect for frequency

Relativistic momentum

Relativistic total energy
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Relativistic kinetic energy

Summary
5.1 Invariance of Physical Laws

• Relativity is the study of how observers in
different reference frames measure the same
event.

• Modern relativity is divided into two parts.
Special relativity deals with observers in
uniform (unaccelerated) motion, whereas
general relativity includes accelerated relative
motion and gravity. Modern relativity is
consistent with all empirical evidence thus far
and, in the limit of low velocity and weak
gravitation, gives close agreement with the
predictions of classical (Galilean) relativity.

• An inertial frame of reference is a reference
frame in which a body at rest remains at rest
and a body in motion moves at a constant speed
in a straight line unless acted upon by an
outside force.

• Modern relativity is based on Einstein’s two
postulates. The first postulate of special
relativity is that the laws of physics are the same
in all inertial frames of reference. The second
postulate of special relativity is that the speed of
light c is the same in all inertial frames of
reference, independent of the relative motion of
the observer and the light source.

• The Michelson-Morley experiment
demonstrated that the speed of light in a
vacuum is independent of the motion of Earth
about the sun.

5.2 Relativity of Simultaneity

• Two events are defined to be simultaneous if an
observer measures them as occurring at the
same time (such as by receiving light from the
events).

• Two events at locations a distance apart that are
simultaneous for an observer at rest in one
frame of reference are not necessarily
simultaneous for an observer at rest in a
different frame of reference.

5.3 Time Dilation

• Two events are defined to be simultaneous if an
observer measures them as occurring at the
same time. They are not necessarily

simultaneous to all observers—simultaneity is
not absolute.

• Time dilation is the lengthening of the time
interval between two events when seen in a
moving inertial frame rather than the rest frame
of the events (in which the events occur at the
same location).

• Observers moving at a relative velocity v do not
measure the same elapsed time between two
events. Proper time is the time measured in
the reference frame where the start and end of
the time interval occur at the same location. The
time interval measured by an observer who
sees the frame of events moving at speed v is
related to the proper time interval of the
events by the equation:

where

• The premise of the twin paradox is faulty
because the traveling twin is accelerating. The
journey is not symmetrical for the two twins.

• Time dilation is usually negligible at low relative
velocities, but it does occur, and it has been
verified by experiment.

• The proper time is the shortest measure of any
time interval. Any observer who is moving
relative to the system being observed measures
a time interval longer than the proper time.

5.4 Length Contraction

• All observers agree upon relative speed.
• Distance depends on an observer’s motion.

Proper length is the distance between two
points measured by an observer who is at rest
relative to both of the points.

• Length contraction is the decrease in observed
length of an object from its proper length to
length L when its length is observed in a
reference frame where it is traveling at speed v.

• The proper length is the longest measurement
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of any length interval. Any observer who is
moving relative to the system being observed
measures a length shorter than the proper
length.

5.5 The Lorentz Transformation

• The Galilean transformation equations describe
how, in classical nonrelativistic mechanics, the
position, velocity, and accelerations measured
in one frame appear in another. Lengths remain
unchanged and a single universal time scale is
assumed to apply to all inertial frames.

• Newton’s laws of mechanics obey the principle
of having the same form in all inertial frames
under a Galilean transformation, given by

The concept that times and distances are the
same in all inertial frames in the Galilean
transformation, however, is inconsistent with
the postulates of special relativity.

• The relativistically correct Lorentz
transformation equations are

We can obtain these equations by requiring an
expanding spherical light signal to have the
same shape and speed of growth, c, in both
reference frames.

• Relativistic phenomena can be explained in
terms of the geometrical properties of four-
dimensional space-time, in which Lorentz
transformations correspond to rotations of axes.

• The Lorentz transformation corresponds to a
space-time axis rotation, similar in some ways
to a rotation of space axes, but in which the
invariant spatial separation is given by
rather than distances and that the Lorentz
transformation involving the time axis does not
preserve perpendicularity of axes or the scales
along the axes.

• The analysis of relativistic phenomena in terms
of space-time diagrams supports the conclusion
that these phenomena result from properties of
space and time itself, rather than from the laws
of electromagnetism.

5.6 Relativistic Velocity Transformation

• With classical velocity addition, velocities add
like regular numbers in one-dimensional
motion: where v is the velocity
between two observers, u is the velocity of an
object relative to one observer, and is the
velocity relative to the other observer.

• Velocities cannot add to be greater than the
speed of light.

• Relativistic velocity addition describes the
velocities of an object moving at a relativistic
velocity.

5.7 Doppler Effect for Light

• An observer of electromagnetic radiation sees
relativistic Doppler effects if the source of the
radiation is moving relative to the observer. The
wavelength of the radiation is longer (called a
red shift) than that emitted by the source when
the source moves away from the observer and
shorter (called a blue shift) when the source
moves toward the observer. The shifted
wavelength is described by the equation:

where is the observed wavelength, is the
source wavelength, and v is the relative velocity
of the source to the observer.

5.8 Relativistic Momentum

• The law of conservation of momentum is valid
for relativistic momentum whenever the net
external force is zero. The relativistic
momentum is where m is the rest
mass of the object, u is its velocity relative to an
observer, and the relativistic factor is

• At low velocities, relativistic momentum is
equivalent to classical momentum.

• Relativistic momentum approaches infinity as u
approaches c. This implies that an object with
mass cannot reach the speed of light.

5.9 Relativistic Energy

• The relativistic work-energy theorem is

• Relativistically, where is the
relativistic kinetic energy.

• An object of mass m at velocity u has kinetic
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energy where

• At low velocities, relativistic kinetic energy
reduces to classical kinetic energy.

• No object with mass can attain the speed of
light, because an infinite amount of work and an
infinite amount of energy input is required to
accelerate a mass to the speed of light.

• Relativistic energy is conserved as long as we
define it to include the possibility of mass
changing to energy.

• The total energy of a particle with mass m
traveling at speed u is defined as
where and u denotes the velocity of

the particle.
• The rest energy of an object of mass m is

meaning that mass is a form of
energy. If energy is stored in an object, its mass
increases. Mass can be destroyed to release
energy.

• We do not ordinarily notice the increase or
decrease in mass of an object because the
change in mass is so small for a large increase
in energy. The equation
relates the relativistic total energy E and the
relativistic momentum p. At extremely high
velocities, the rest energy becomes
negligible, and

Conceptual Questions
5.1 Invariance of Physical Laws

1. Which of Einstein’s postulates of special relativity
includes a concept that does not fit with the ideas
of classical physics? Explain.

2. Is Earth an inertial frame of reference? Is the
sun? Justify your response.

3. When you are flying in a commercial jet, it may
appear to you that the airplane is stationary and
Earth is moving beneath you. Is this point of view
valid? Discuss briefly.

5.3 Time Dilation

4. (a) Does motion affect the rate of a clock as
measured by an observer moving with it? (b)
Does motion affect how an observer moving
relative to a clock measures its rate?

5. To whom does the elapsed time for a process
seem to be longer, an observer moving relative to
the process or an observer moving with the
process? Which observer measures the interval
of proper time?

6. (a) How could you travel far into the future of
Earth without aging significantly? (b) Could this
method also allow you to travel into the past?

5.4 Length Contraction

7. To whom does an object seem greater in length,
an observer moving with the object or an
observer moving relative to the object? Which
observer measures the object’s proper length?

8. Relativistic effects such as time dilation and
length contraction are present for cars and
airplanes. Why do these effects seem strange to

us?
9. Suppose an astronaut is moving relative to Earth

at a significant fraction of the speed of light. (a)
Does he observe the rate of his clocks to have
slowed? (b) What change in the rate of
earthbound clocks does he see? (c) Does his ship
seem to him to shorten? (d) What about the
distance between two stars that lie in the
direction of his motion? (e) Do he and an
earthbound observer agree on his velocity
relative to Earth?

5.7 Doppler Effect for Light

10. Explain the meaning of the terms “red shift”
and “blue shift” as they relate to the relativistic
Doppler effect.

11. What happens to the relativistic Doppler effect
when relative velocity is zero? Is this the
expected result?

12. Is the relativistic Doppler effect consistent with
the classical Doppler effect in the respect that

is larger for motion away?
13. All galaxies farther away than about

exhibit a red shift in their emitted
light that is proportional to distance, with those
farther and farther away having progressively
greater red shifts. What does this imply,
assuming that the only source of red shift is
relative motion?

5.8 Relativistic Momentum

14. How does modern relativity modify the law of
conservation of momentum?

15. Is it possible for an external force to be acting
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on a system and relativistic momentum to be
conserved? Explain.

5.9 Relativistic Energy

16. How are the classical laws of conservation of
energy and conservation of mass modified by
modern relativity?

17. What happens to the mass of water in a pot
when it cools, assuming no molecules escape or
are added? Is this observable in practice?
Explain.

18. Consider a thought experiment. You place an
expanded balloon of air on weighing scales
outside in the early morning. The balloon stays
on the scales and you are able to measure
changes in its mass. Does the mass of the
balloon change as the day progresses? Discuss
the difficulties in carrying out this experiment.

19. The mass of the fuel in a nuclear reactor
decreases by an observable amount as it puts
out energy. Is the same true for the coal and
oxygen combined in a conventional power
plant? If so, is this observable in practice for the
coal and oxygen? Explain.

20. We know that the velocity of an object with mass
has an upper limit of c. Is there an upper limit
on its momentum? Its energy? Explain.

21. Given the fact that light travels at c , can it have
mass? Explain.

22. If you use an Earth-based telescope to project a
laser beam onto the moon, you can move the
spot across the moon’s surface at a velocity
greater than the speed of light. Does this violate
modern relativity? (Note that light is being sent
from the Earth to the moon, not across the
surface of the moon.)

Problems
5.3 Time Dilation

23. (a) What is if (b) If
24. (a) What is if (b) If
25. Particles called -mesons are produced by

accelerator beams. If these particles travel at
and live when at

rest relative to an observer, how long do they
live as viewed in the laboratory?

26. Suppose a particle called a kaon is created by
cosmic radiation striking the atmosphere. It
moves by you at and it lives

when at rest relative to an
observer. How long does it live as you observe
it?

27. A neutral -meson is a particle that can be
created by accelerator beams. If one such
particle lives as measured in
the laboratory, and when at
rest relative to an observer, what is its velocity
relative to the laboratory?

28. A neutron lives 900 s when at rest relative to an
observer. How fast is the neutron moving
relative to an observer who measures its life
span to be 2065 s?

29. If relativistic effects are to be less than 1%, then
must be less than 1.01. At what relative

velocity is
30. If relativistic effects are to be less than 3%, then

must be less than 1.03. At what relative
velocity is

5.4 Length Contraction

31. A spaceship, 200 m long as seen on board,
moves by the Earth at 0.970c. What is its length
as measured by an earthbound observer?

32. How fast would a 6.0 m-long sports car have to
be going past you in order for it to appear only
5.5 m long?

33. (a) How far does the muon in Example 5.3 travel
according to the earthbound observer? (b) How
far does it travel as viewed by an observer
moving with it? Base your calculation on its
velocity relative to the Earth and the time it lives
(proper time). (c) Verify that these two distances
are related through length contraction

34. (a) How long would the muon in Example 5.3
have lived as observed on Earth if its velocity
was (b) How far would it have traveled
as observed on Earth? (c) What distance is this
in the muon’s frame?

35. Unreasonable Results A spaceship is heading
directly toward Earth at a velocity of 0.800c. The
astronaut on board claims that he can send a
canister toward the Earth at 1.20c relative to
Earth. (a) Calculate the velocity the canister
must have relative to the spaceship. (b) What is
unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?

5.5 The Lorentz Transformation

36. Describe the following physical occurrences as
events, that is, in the form (x, y, z, t): (a) A
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postman rings a doorbell of a house precisely at
noon. (b) At the same time as the doorbell is
rung, a slice of bread pops out of a toaster that is
located 10 m from the door in the east direction
from the door. (c) Ten seconds later, an airplane
arrives at the airport, which is 10 km from the
door in the east direction and 2 km to the south.

37. Describe what happens to the angle
and therefore to the transformed

axes in Figure 5.17, as the relative velocity v of
the S and frames of reference approaches c.

38. Describe the shape of the world line on a space-
time diagram of (a) an object that remains at
rest at a specific position along the x-axis; (b) an
object that moves at constant velocity u in the
x-direction; (c) an object that begins at rest and
accelerates at a constant rate of in the positive
x-direction.

39. A man standing still at a train station watches
two boys throwing a baseball in a moving train.
Suppose the train is moving east with a constant
speed of 20 m/s and one of the boys throws the
ball with a speed of 5 m/s with respect to
himself toward the other boy, who is 5 m west
from him. What is the velocity of the ball as
observed by the man on the station?

40. When observed from the sun at a particular
instant, Earth and Mars appear to move in
opposite directions with speeds 108,000 km/h
and 86,871 km/h, respectively. What is the
speed of Mars at this instant when observed
from Earth?

41. A man is running on a straight road
perpendicular to a train track and away from
the track at a speed of 12 m/s. The train is
moving with a speed of 30 m/s with respect to
the track. What is the speed of the man with
respect to a passenger sitting at rest in the
train?

42. A man is running on a straight road that makes
with the train track. The man is running in

the direction on the road that is away from the
track at a speed of 12 m/s. The train is moving
with a speed of 30 m/s with respect to the track.
What is the speed of the man with respect to a
passenger sitting at rest in the train?

43. In a frame at rest with respect to the billiard
table, a billiard ball of mass m moving with
speed v strikes another billiard ball of mass m
at rest. The first ball comes to rest after the
collision while the second ball takes off with
speed v in the original direction of the motion of
the first ball. This shows that momentum is

conserved in this frame. (a) Now, describe the
same collision from the perspective of a frame
that is moving with speed v in the direction of
the motion of the first ball. (b) Is the momentum
conserved in this frame?

44. In a frame at rest with respect to the billiard
table, two billiard balls of same mass m are
moving toward each other with the same speed
v. After the collision, the two balls come to rest.
(a) Show that momentum is conserved in this
frame. (b) Now, describe the same collision from
the perspective of a frame that is moving with
speed v in the direction of the motion of the first
ball. (c) Is the momentum conserved in this
frame?

45. In a frame S, two events are observed: event 1: a
pion is created at rest at the origin and event 2:
the pion disintegrates after time . Another
observer in a frame is moving in the positive
direction along the positive x-axis with a
constant speed v and observes the same two
events in his frame. The origins of the two
frames coincide at (a) Find the
positions and timings of these two events in the
frame (a) according to the Galilean
transformation, and (b) according to the Lorentz
transformation.

5.6 Relativistic Velocity Transformation

46. If two spaceships are heading directly toward
each other at 0.800c, at what speed must a
canister be shot from the first ship to approach
the other at 0.999c as seen by the second ship?

47. Two planets are on a collision course, heading
directly toward each other at 0.250c. A
spaceship sent from one planet approaches the
second at 0.750c as seen by the second planet.
What is the velocity of the ship relative to the
first planet?

48. When a missile is shot from one spaceship
toward another, it leaves the first at 0.950c and
approaches the other at 0.750c. What is the
relative velocity of the two ships?

49. What is the relative velocity of two spaceships if
one fires a missile at the other at 0.750c and the
other observes it to approach at 0.950c?

50. Prove that for any relative velocity v between
two observers, a beam of light sent from one to
the other will approach at speed c (provided
that v is less than c, of course).

51. Show that for any relative velocity v between
two observers, a beam of light projected by one
directly away from the other will move away at
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the speed of light (provided that v is less than c,
of course).

5.7 Doppler Effect for Light

52. A highway patrol officer uses a device that
measures the speed of vehicles by bouncing
radar off them and measuring the Doppler shift.
The outgoing radar has a frequency of 100 GHz
and the returning echo has a frequency 15.0
kHz higher. What is the velocity of the vehicle?
Note that there are two Doppler shifts in echoes.
Be certain not to round off until the end of the
problem, because the effect is small.

5.8 Relativistic Momentum

53. Find the momentum of a helium nucleus having
a mass of that is moving at
0.200c.

54. What is the momentum of an electron traveling
at 0.980c?

55. (a) Find the momentum of a
asteroid heading towards Earth at 30.0 km/s. (b)
Find the ratio of this momentum to the classical
momentum. (Hint: Use the approximation that

at low velocities.)
56. (a) What is the momentum of a 2000-kg satellite

orbiting at 4.00 km/s? (b) Find the ratio of this
momentum to the classical momentum. (Hint:
Use the approximation that
at low velocities.)

57. What is the velocity of an electron that has a
momentum of ? Note
that you must calculate the velocity to at least
four digits to see the difference from c.

58. Find the velocity of a proton that has a
momentum of

5.9 Relativistic Energy

59. What is the rest energy of an electron, given its
mass is Give your answer in
joules and MeV.

60. Find the rest energy in joules and MeV of a
proton, given its mass is

61. If the rest energies of a proton and a neutron
(the two constituents of nuclei) are 938.3 and
939.6 MeV, respectively, what is the difference
in their mass in kilograms?

62. The Big Bang that began the universe is
estimated to have released of energy.
How many stars could half this energy create,
assuming the average star’s mass is

?
63. A supernova explosion of a star

produces of energy. (a) How
many kilograms of mass are converted to
energy in the explosion? (b) What is the ratio

of mass destroyed to the original mass of
the star?

64. (a) Using data from Potential Energy of a
System, calculate the mass converted to energy
by the fission of 1.00 kg of uranium. (b) What is
the ratio of mass destroyed to the original mass,

65. (a) Using data from Potential Energy of a
System, calculate the amount of mass converted
to energy by the fusion of 1.00 kg of hydrogen.
(b) What is the ratio of mass destroyed to the
original mass, ? (c) How does this
compare with for the fission of 1.00 kg of
uranium?

66. There is approximately of energy
available from fusion of hydrogen in the world’s
oceans. (a) If of this energy were utilized,
what would be the decrease in mass of the
oceans (ignoring the loss of mass from the
leftover oxygen)? (b) How great a volume of
water does this correspond to? (c) Comment on
whether this is a significant fraction of the total
mass of the oceans.

67. A muon has a rest mass energy of 105.7 MeV,
and it decays into an electron and a massless
particle. (a) If all the lost mass is converted into
the electron’s kinetic energy, find for the
electron. (b) What is the electron’s velocity?

68. A -meson is a particle that decays into a muon
and a massless particle. The -meson has a rest
mass energy of 139.6 MeV, and the muon has a
rest mass energy of 105.7 MeV. Suppose the

-meson is at rest and all of the missing mass
goes into the muon’s kinetic energy. How fast
will the muon move?

69. (a) Calculate the relativistic kinetic energy of a
1000-kg car moving at 30.0 m/s if the speed of
light were only 45.0 m/s. (b) Find the ratio of the
relativistic kinetic energy to classical.

70. Alpha decay is nuclear decay in which a helium
nucleus is emitted. If the helium nucleus has a
mass of and is given 5.00 MeV
of kinetic energy, what is its velocity?

71. (a) Beta decay is nuclear decay in which an
electron is emitted. If the electron is given 0.750
MeV of kinetic energy, what is its velocity? (b)
Comment on how the high velocity is consistent
with the kinetic energy as it compares to the
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rest mass energy of the electron.

Additional Problems
72. (a) At what relative velocity is (b) At

what relative velocity is
73. (a) At what relative velocity is (b) At

what relative velocity is
74. Unreasonable Results (a) Find the value of

required for the following situation. An
earthbound observer measures 23.9 h to have
passed while signals from a high-velocity space
probe indicate that 24.0 h have passed on
board. (b) What is unreasonable about this
result? (c) Which assumptions are unreasonable
or inconsistent?

75. (a) How long does it take the astronaut in
Example 5.5 to travel 4.30 ly at (as
measured by the earthbound observer)? (b)
How long does it take according to the
astronaut? (c) Verify that these two times are
related through time dilation with as
given.

76. (a) How fast would an athlete need to be
running for a 100- race to look 100 yd long?
(b) Is the answer consistent with the fact that
relativistic effects are difficult to observe in
ordinary circumstances? Explain.

77. (a) Find the value of for the following situation.
An astronaut measures the length of his
spaceship to be 100 m, while an earthbound
observer measures it to be 25.0 m. (b) What is
the speed of the spaceship relative to Earth?

78. A clock in a spaceship runs one-tenth the rate at
which an identical clock on Earth runs. What is
the speed of the spaceship?

79. An astronaut has a heartbeat rate of 66 beats
per minute as measured during his physical
exam on Earth. The heartbeat rate of the
astronaut is measured when he is in a
spaceship traveling at 0.5c with respect to Earth
by an observer (A) in the ship and by an
observer (B) on Earth. (a) Describe an
experimental method by which observer B on
Earth will be able to determine the heartbeat
rate of the astronaut when the astronaut is in
the spaceship. (b) What will be the heartbeat
rate(s) of the astronaut reported by observers A
and B?

80. A spaceship (A) is moving at speed c/2 with
respect to another spaceship (B). Observers in A
and B set their clocks so that the event at (x, y, z,
t) of turning on a laser in spaceship B has
coordinates (0, 0, 0, 0) in A and also (0, 0, 0, 0) in
B. An observer at the origin of B turns on the
laser at and turns it off at in his time.
What is the time duration between on and off as
seen by an observer in A?

81. Same two observers as in the preceding
exercise, but now we look at two events
occurring in spaceship A. A photon arrives at
the origin of A at its time and another
photon arrives at at in
the frame of ship A. (a) Find the coordinates and
times of the two events as seen by an observer
in frame B. (b) In which frame are the two
events simultaneous and in which frame are
they are not simultaneous?

82. Same two observers as in the preceding
exercises. A rod of length 1 m is laid out on the
x-axis in the frame of B from origin to

What is the length of the rod
observed by an observer in the frame of
spaceship A?

83. An observer at origin of inertial frame S sees a
flashbulb go off at
and at time At
what time and position in the S system did the
flash occur, if S is moving along shared
x-direction with S at a velocity

84. An observer sees two events apart
at a separation of 800 m. How fast must a
second observer be moving relative to the first
to see the two events occur simultaneously?

85. An observer standing by the railroad tracks sees
two bolts of lightning strike the ends of a
500-m-long train simultaneously at the instant
the middle of the train passes him at 50 m/s.
Use the Lorentz transformation to find the time
between the lightning strikes as measured by a
passenger seated in the middle of the train.

86. Two astronomical events are observed from
Earth to occur at a time of 1 s apart and a
distance separation of from each
other. (a) Determine whether separation of the
two events is space like or time like. (b) State
what this implies about whether it is consistent
with special relativity for one event to have
caused the other?
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87. Two astronomical events are observed from
Earth to occur at a time of 0.30 s apart and a
distance separation of from each
other. How fast must a spacecraft travel from
the site of one event toward the other to make
the events occur at the same time when
measured in the frame of reference of the
spacecraft?

88. A spacecraft starts from being at rest at the
origin and accelerates at a constant rate g, as
seen from Earth, taken to be an inertial frame,
until it reaches a speed of c/2. (a) Show that the
increment of proper time is related to the
elapsed time in Earth’s frame by:

(b) Find an expression for the elapsed time to
reach speed c/2 as seen in Earth’s frame. (c) Use
the relationship in (a) to obtain a similar
expression for the elapsed proper time to reach
c/2 as seen in the spacecraft, and determine the
ratio of the time seen from Earth with that on
the spacecraft to reach the final speed.

89. (a) All but the closest galaxies are receding from
our own Milky Way Galaxy. If a galaxy

away is receding from us at
0.900c, at what velocity relative to us must we
send an exploratory probe to approach the
other galaxy at 0.990c as measured from that
galaxy? (b) How long will it take the probe to
reach the other galaxy as measured from Earth?
You may assume that the velocity of the other
galaxy remains constant. (c) How long will it
then take for a radio signal to be beamed back?
(All of this is possible in principle, but not
practical.)

90. Suppose a spaceship heading straight toward
the Earth at 0.750c can shoot a canister at
0.500c relative to the ship. (a) What is the
velocity of the canister relative to Earth, if it is
shot directly at Earth? (b) If it is shot directly
away from Earth?

91. Repeat the preceding problem with the ship
heading directly away from Earth.

92. If a spaceship is approaching the Earth at
0.100c and a message capsule is sent toward it
at 0.100c relative to Earth, what is the speed of
the capsule relative to the ship?

93. (a) Suppose the speed of light were only 3000
m/s. A jet fighter moving toward a target on the
ground at 800 m/s shoots bullets, each having a
muzzle velocity of 1000 m/s. What are the
bullets’ velocity relative to the target? (b) If the
speed of light was this small, would you observe
relativistic effects in everyday life? Discuss.

94. If a galaxy moving away from the Earth has a
speed of 1000 km/s and emits 656 nm light
characteristic of hydrogen (the most common
element in the universe). (a) What wavelength
would we observe on Earth? (b) What type of
electromagnetic radiation is this? (c) Why is the
speed of Earth in its orbit negligible here?

95. A space probe speeding towards the nearest
star moves at and sends radio
information at a broadcast frequency of 1.00
GHz. What frequency is received on Earth?

96. Near the center of our galaxy, hydrogen gas is
moving directly away from us in its orbit about a
black hole. We receive 1900 nm
electromagnetic radiation and know that it was
1875 nm when emitted by the hydrogen gas.
What is the speed of the gas?

97. (a) Calculate the speed of a particle of
dust that has the same momentum as a proton
moving at 0.999c. (b) What does the small speed
tell us about the mass of a proton compared to
even a tiny amount of macroscopic matter?

98. (a) Calculate for a proton that has a
momentum of (b) What is its
speed? Such protons form a rare component of
cosmic radiation with uncertain origins.

99. Show that the relativistic form of Newton’s
second law is (a) (b)

Find the force needed to accelerate a mass of 1
kg by 1 when it is traveling at a velocity of
c/2.

100. A positron is an antimatter version of the
electron, having exactly the same mass. When
a positron and an electron meet, they
annihilate, converting all of their mass into
energy. (a) Find the energy released, assuming
negligible kinetic energy before the
annihilation. (b) If this energy is given to a
proton in the form of kinetic energy, what is its
velocity? (c) If this energy is given to another
electron in the form of kinetic energy, what is
its velocity?
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101. What is the kinetic energy in MeV of a π-meson
that lives as measured in the
laboratory, and when at rest
relative to an observer, given that its rest
energy is 135 MeV?

102. Find the kinetic energy in MeV of a neutron
with a measured life span of 2065 s, given its
rest energy is 939.6 MeV, and rest life span is
900s.

103. (a) Show that This
means that at large velocities (b) Is

when as for the astronaut
discussed in the twin paradox?

104. One cosmic ray neutron has a velocity of
relative to the Earth. (a) What is the

neutron’s total energy in MeV? (b) Find its
momentum. (c) Is in this situation?
Discuss in terms of the equation given in part
(a) of the previous problem.

105. What is for a proton having a mass energy of
938.3 MeV accelerated through an effective
potential of 1.0 TV (teravolt)?

106. (a) What is the effective accelerating potential
for electrons at the Stanford Linear
Accelerator, if for them? (b)
What is their total energy (nearly the same as
kinetic in this case) in GeV?

107. (a) Using data from Potential Energy of a
System, find the mass destroyed when the
energy in a barrel of crude oil is released. (b)
Given these barrels contain 200 liters and
assuming the density of crude oil is
what is the ratio of mass destroyed to original
mass,

108. (a) Calculate the energy released by the
destruction of 1.00 kg of mass. (b) How many
kilograms could be lifted to a 10.0 km height
by this amount of energy?

109. A Van de Graaff accelerator utilizes a 50.0 MV
potential difference to accelerate charged
particles such as protons. (a) What is the
velocity of a proton accelerated by such a
potential? (b) An electron?

110. Suppose you use an average of of
electric energy per month in your home. (a)
How long would 1.00 g of mass converted to
electric energy with an efficiency of 38.0% last
you? (b) How many homes could be supplied at
the per month rate for one year by
the energy from the described mass
conversion?

111. (a) A nuclear power plant converts energy
from nuclear fission into electricity with an
efficiency of 35.0%. How much mass is
destroyed in one year to produce a continuous
1000 MW of electric power? (b) Do you think it
would be possible to observe this mass loss if
the total mass of the fuel is

112. Nuclear-powered rockets were researched for
some years before safety concerns became
paramount. (a) What fraction of a rocket’s
mass would have to be destroyed to get it into a
low Earth orbit, neglecting the decrease in
gravity? (Assume an orbital altitude of 250 km,
and calculate both the kinetic energy
(classical) and the gravitational potential
energy needed.) (b) If the ship has a mass of

(100 tons), what total yield
nuclear explosion in tons of TNT is needed?

113. The sun produces energy at a rate of
W by the fusion of hydrogen.

About 0.7% of each kilogram of hydrogen goes
into the energy generated by the Sun. (a) How
many kilograms of hydrogen undergo fusion
each second? (b) If the sun is 90.0% hydrogen
and half of this can undergo fusion before the
sun changes character, how long could it
produce energy at its current rate? (c) How
many kilograms of mass is the sun losing per
second? (d) What fraction of its mass will it
have lost in the time found in part (b)?

114. Show that for a particle is invariant
under Lorentz transformations.
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INTRODUCTION

CHAPTER 6
Photons and Matter Waves

6.1 Blackbody Radiation

6.2 Photoelectric Effect

6.3 The Compton Effect

6.4 Bohr’s Model of the Hydrogen Atom

6.5 De Broglie’s Matter Waves

6.6 Wave-Particle Duality

Two of the most revolutionary concepts of the twentieth century were the description of
light as a collection of particles, and the treatment of particles as waves. These wave properties of matter have
led to the discovery of technologies such as electron microscopy, which allows us to examine submicroscopic
objects such as grains of pollen, as shown above.

In this chapter, you will learn about the energy quantum, a concept that was introduced in 1900 by the German
physicist Max Planck to explain blackbody radiation. We discuss how Albert Einstein extended Planck’s

Figure 6.1 In this image of pollen taken with an electron microscope, the bean-shaped grains are about
long. Electron microscopes can have a much higher resolving power than a conventional light microscope because
electron wavelengths can be 100,000 times shorter than the wavelengths of visible-light photons. (credit:
modification of work by Dartmouth College Electron Microscope Facility)

Chapter Outline



concept to a quantum of light (a “photon”) to explain the photoelectric effect. We also show how American
physicist Arthur H. Compton used the photon concept in 1923 to explain wavelength shifts observed in X-rays.
After a discussion of Bohr’s model of hydrogen, we describe how matter waves were postulated in 1924 by
Louis-Victor de Broglie to justify Bohr’s model and we examine the experiments conducted in 1923–1927 by
Clinton Davisson and Lester Germer that confirmed the existence of de Broglie’s matter waves.

6.1 Blackbody Radiation
Learning Objectives
By the end of this section, you will be able to:

• Apply Wien’s and Stefan’s laws to analyze radiation emitted by a blackbody
• Explain Planck’s hypothesis of energy quanta

All bodies emit electromagnetic radiation over a range of wavelengths. In an earlier chapter, we learned that a
cooler body radiates less energy than a warmer body. We also know by observation that when a body is heated
and its temperature rises, the perceived wavelength of its emitted radiation changes from infrared to red, and
then from red to orange, and so forth. As its temperature rises, the body glows with the colors corresponding to
ever-smaller wavelengths of the electromagnetic spectrum. This is the underlying principle of the
incandescent light bulb: A hot metal filament glows red, and when heating continues, its glow eventually
covers the entire visible portion of the electromagnetic spectrum. The temperature (T) of the object that emits
radiation, or the emitter, determines the wavelength at which the radiated energy is at its maximum. For
example, the Sun, whose surface temperature is in the range between 5000 K and 6000 K, radiates most
strongly in a range of wavelengths about 560 nm in the visible part of the electromagnetic spectrum. Your
body, when at its normal temperature of about 300 K, radiates most strongly in the infrared part of the
spectrum.

Radiation that is incident on an object is partially absorbed and partially reflected. At thermodynamic
equilibrium, the rate at which an object absorbs radiation is the same as the rate at which it emits it. Therefore,
a good absorber of radiation (any object that absorbs radiation) is also a good emitter. A perfect absorber
absorbs all electromagnetic radiation incident on it; such an object is called a blackbody.

Although the blackbody is an idealization, because no physical object absorbs 100% of incident radiation, we
can construct a close realization of a blackbody in the form of a small hole in the wall of a sealed enclosure
known as a cavity radiator, as shown in Figure 6.2. The inside walls of a cavity radiator are rough and
blackened so that any radiation that enters through a tiny hole in the cavity wall becomes trapped inside the
cavity. At thermodynamic equilibrium (at temperature T), the cavity walls absorb exactly as much radiation as
they emit. Furthermore, inside the cavity, the radiation entering the hole is balanced by the radiation leaving it.
The emission spectrum of a blackbody can be obtained by analyzing the light radiating from the hole.
Electromagnetic waves emitted by a blackbody are called blackbody radiation.

240 6 • Photons and Matter Waves

Access for free at openstax.org.



Figure 6.2 A blackbody is physically realized by a small hole in the wall of a cavity radiator.

The intensity of blackbody radiation depends on the wavelength of the emitted radiation and on the
temperature T of the blackbody (Figure 6.3). The function is the power intensity that is radiated per
unit wavelength; in other words, it is the power radiated per unit area of the hole in a cavity radiator per unit
wavelength. According to this definition, is the power per unit area that is emitted in the wavelength
interval from to The intensity distribution among wavelengths of radiation emitted by cavities was
studied experimentally at the end of the nineteenth century. Generally, radiation emitted by materials only
approximately follows the blackbody radiation curve (Figure 6.4); however, spectra of common stars do follow
the blackbody radiation curve very closely.

Figure 6.3 The intensity of blackbody radiation versus the wavelength of the emitted radiation. Each curve corresponds to a different

blackbody temperature, starting with a low temperature (the lowest curve) to a high temperature (the highest curve).
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Figure 6.4 The spectrum of radiation emitted from a quartz surface (blue curve) and the blackbody radiation curve (black curve) at 600 K.

Two important laws summarize the experimental findings of blackbody radiation: Wien’s displacement law
and Stefan’s law. Wien’s displacement law is illustrated in Figure 6.3 by the curve connecting the maxima on
the intensity curves. In these curves, we see that the hotter the body, the shorter the wavelength corresponding
to the emission peak in the radiation curve. Quantitatively, Wien’s law reads

where is the position of the maximum in the radiation curve. In other words, is the wavelength at
which a blackbody radiates most strongly at a given temperature T. Note that in Equation 6.1, the temperature
is in kelvins. Wien’s displacement law allows us to estimate the temperatures of distant stars by measuring the
wavelength of radiation they emit.

EXAMPLE 6.1

Temperatures of Distant Stars
On a clear evening during the winter months, if you happen to be in the Northern Hemisphere and look up at
the sky, you can see the constellation Orion (The Hunter). One star in this constellation, Rigel, flickers in a blue
color and another star, Betelgeuse, has a reddish color, as shown in Figure 6.5. Which of these two stars is
cooler, Betelgeuse or Rigel?

Strategy
We treat each star as a blackbody. Then according to Wien’s law, its temperature is inversely proportional to
the wavelength of its peak intensity. The wavelength of blue light is shorter than the wavelength of
red light. Even if we do not know the precise wavelengths, we can still set up a proportion.

Solution
Writing Wien’s law for the blue star and for the red star, we have

When simplified, Equation 6.2 gives

6.1

6.2
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Therefore, Betelgeuse is cooler than Rigel.

Significance
Note that Wien’s displacement law tells us that the higher the temperature of an emitting body, the shorter the
wavelength of the radiation it emits. The qualitative analysis presented in this example is generally valid for
any emitting body, whether it is a big object such as a star or a small object such as the glowing filament in an
incandescent lightbulb.

CHECK YOUR UNDERSTANDING 6.1

The flame of a peach-scented candle has a yellowish color and the flame of a Bunsen’s burner in a chemistry
lab has a bluish color. Which flame has a higher temperature?

Figure 6.5 In the Orion constellation, the red star Betelgeuse, which usually takes on a yellowish tint, appears as the figure’s right

shoulder (in the upper left). The giant blue star on the bottom right is Rigel, which appears as the hunter’s left foot. (credit left: modification

of work by Matthew Spinelli, NASA APOD)

The second experimental relation is Stefan’s law, which concerns the total power of blackbody radiation
emitted across the entire spectrum of wavelengths at a given temperature. In Figure 6.3, this total power is
represented by the area under the blackbody radiation curve for a given T. As the temperature of a blackbody
increases, the total emitted power also increases. Quantitatively, Stefan’s law expresses this relation as

where is the surface area of a blackbody, T is its temperature (in kelvins), and is the Stefan–Boltzmann
constant, Stefan’s law enables us to estimate how much energy a star is
radiating by remotely measuring its temperature.

6.3

6.4
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EXAMPLE 6.2

Power Radiated by Stars
A star such as our Sun will eventually evolve to a “red giant” star and then to a “white dwarf” star. A typical
white dwarf is approximately the size of Earth, and its surface temperature is about A typical red
giant has a surface temperature of and a radius ~100,000 times larger than that of a white dwarf.
What is the average radiated power per unit area and the total power radiated by each of these types of stars?
How do they compare?

Strategy
If we treat the star as a blackbody, then according to Stefan’s law, the total power that the star radiates is
proportional to the fourth power of its temperature. To find the power radiated per unit area of the surface, we
do not need to make any assumptions about the shape of the star because P/A depends only on temperature.
However, to compute the total power, we need to make an assumption that the energy radiates through a
spherical surface enclosing the star, so that the surface area is where R is its radius.

Solution
A simple proportion based on Stefan’s law gives

The power emitted per unit area by a white dwarf is about 5000 times that the power emitted by a red giant.
Denoting this ratio by Equation 6.5 gives

We see that the total power emitted by a white dwarf is a tiny fraction of the total power emitted by a red giant.
Despite its relatively lower temperature, the overall power radiated by a red giant far exceeds that of the white
dwarf because the red giant has a much larger surface area. To estimate the absolute value of the emitted
power per unit area, we again use Stefan’s law. For the white dwarf, we obtain

The analogous result for the red giant is obtained by scaling the result for a white dwarf:

Significance
To estimate the total power emitted by a white dwarf, in principle, we could use Equation 6.7. However, to find
its surface area, we need to know the average radius, which is not given in this example. Therefore, the
solution stops here. The same is also true for the red giant star.

CHECK YOUR UNDERSTANDING 6.2

An iron poker is being heated. As its temperature rises, the poker begins to glow—first dull red, then bright red,
then orange, and then yellow. Use either the blackbody radiation curve or Wien’s law to explain these changes
in the color of the glow.

CHECK YOUR UNDERSTANDING 6.3

6.5

6.6

6.7

6.8
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Suppose that two stars, and radiate exactly the same total power. If the radius of star is three times that of
star what is the ratio of the surface temperatures of these stars? Which one is hotter?

The term “blackbody” was coined by Gustav R. Kirchhoff in 1862. The blackbody radiation curve was known
experimentally, but its shape eluded physical explanation until the year 1900. The physical model of a
blackbody at temperature T is that of the electromagnetic waves enclosed in a cavity (see Figure 6.2) and at
thermodynamic equilibrium with the cavity walls. The waves can exchange energy with the walls. The
objective here is to find the energy density distribution among various modes of vibration at various
wavelengths (or frequencies). In other words, we want to know how much energy is carried by a single
wavelength or a band of wavelengths. Once we know the energy distribution, we can use standard statistical
methods (similar to those studied in a previous chapter) to obtain the blackbody radiation curve, Stefan’s law,
and Wien’s displacement law. When the physical model is correct, the theoretical predictions should be the
same as the experimental curves.

In a classical approach to the blackbody radiation problem, in which radiation is treated as waves (as you have
studied in previous chapters), the modes of electromagnetic waves trapped in the cavity are in equilibrium and
continually exchange their energies with the cavity walls. There is no physical reason why a wave should do
otherwise: Any amount of energy can be exchanged, either by being transferred from the wave to the material
in the wall or by being received by the wave from the material in the wall. This classical picture is the basis of
the model developed by Lord Rayleigh and, independently, by Sir James Jeans. The result of this classical
model for blackbody radiation curves is known as the Rayleigh–Jeans law. However, as shown in Figure 6.6,
the Rayleigh–Jeans law fails to correctly reproduce experimental results. In the limit of short wavelengths, the
Rayleigh–Jeans law predicts infinite radiation intensity, which is inconsistent with the experimental results in
which radiation intensity has finite values in the ultraviolet region of the spectrum. This divergence between
the results of classical theory and experiments, which came to be called the ultraviolet catastrophe, shows how
classical physics fails to explain the mechanism of blackbody radiation.

Figure 6.6 The ultraviolet catastrophe: The Rayleigh–Jeans law does not explain the observed blackbody emission spectrum.

The blackbody radiation problem was solved in 1900 by Max Planck. Planck used the same idea as the
Rayleigh–Jeans model in the sense that he treated the electromagnetic waves between the walls inside the
cavity classically, and assumed that the radiation is in equilibrium with the cavity walls. The innovative idea
that Planck introduced in his model is the assumption that the cavity radiation originates from atomic
oscillations inside the cavity walls, and that these oscillations can have only discrete values of energy.
Therefore, the radiation trapped inside the cavity walls can exchange energy with the walls only in discrete
amounts. Planck’s hypothesis of discrete energy values, which he called quanta, assumes that the oscillators
inside the cavity walls have quantized energies. This was a brand new idea that went beyond the classical
physics of the nineteenth century because, as you learned in a previous chapter, in the classical picture, the
energy of an oscillator can take on any continuous value. Planck assumed that the energy of an oscillator ( )
can have only discrete, or quantized, values:
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In Equation 6.9, f is the frequency of Planck’s oscillator. The natural number n that enumerates these discrete
energies is called a quantum number. The physical constant h is called Planck’s constant:

Each discrete energy value corresponds to a quantum state of a Planck oscillator. Quantum states are
enumerated by quantum numbers. For example, when Planck’s oscillator is in its first quantum state, its
energy is when it is in the quantum state, its energy is when it is in the
quantum state, and so on.

Note that Equation 6.9 shows that there are infinitely many quantum states, which can be represented as a
sequence {hf, 2hf, 3hf,…, (n – 1)hf, nhf, (n + 1)hf,…}. Each two consecutive quantum states in this sequence are
separated by an energy jump, An oscillator in the wall can receive energy from the radiation in the
cavity (absorption), or it can give away energy to the radiation in the cavity (emission). The absorption process
sends the oscillator to a higher quantum state, and the emission process sends the oscillator to a lower
quantum state. Whichever way this exchange of energy goes, the smallest amount of energy that can be
exchanged is hf. There is no upper limit to how much energy can be exchanged, but whatever is exchanged
must be an integer multiple of hf. If the energy packet does not have this exact amount, it is neither absorbed
nor emitted at the wall of the blackbody.

Recall that the frequency of electromagnetic radiation is related to its wavelength and to the speed of light by
the fundamental relation This means that we can express Equation 6.10 equivalently in terms of
wavelength When included in the computation of the energy density of a blackbody, Planck’s hypothesis
gives the following theoretical expression for the power intensity of emitted radiation per unit wavelength:

where c is the speed of light in vacuum and is Boltzmann’s constant, The
theoretical formula expressed in Equation 6.11 is called Planck’s blackbody radiation law. This law is in
agreement with the experimental blackbody radiation curve (see Figure 6.7). In addition, Wien’s displacement
law and Stefan’s law can both be derived from Equation 6.11. To derive Wien’s displacement law, we use
differential calculus to find the maximum of the radiation intensity curve To derive Stefan’s law and
find the value of the Stefan–Boltzmann constant, we use integral calculus and integrate to find the total
power radiated by a blackbody at one temperature in the entire spectrum of wavelengths from to ∞
This derivation is left as an exercise later in this chapter.

6.9

6.10

Planck’s Quantum Hypothesis

Planck’s hypothesis of energy quanta states that the amount of energy emitted by the oscillator is carried
by the quantum of radiation,

6.11
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Figure 6.7 Planck’s theoretical result (continuous curve) and the experimental blackbody radiation curve (dots).

EXAMPLE 6.3

Planck’s Quantum Oscillator
A quantum oscillator in the cavity wall in Figure 6.2 is vibrating at a frequency of Calculate the
spacing between its energy levels.

Strategy
Energy states of a quantum oscillator are given by Equation 6.9. The energy spacing is obtained by finding
the energy difference between two adjacent quantum states for quantum numbers n + 1 and n.

Solution
We can substitute the given frequency and Planck’s constant directly into the equation:

Significance
Note that we do not specify what kind of material was used to build the cavity. Here, a quantum oscillator is a
theoretical model of an atom or molecule of material in the wall.

CHECK YOUR UNDERSTANDING 6.4

A molecule is vibrating at a frequency of What is the smallest spacing between its vibrational
energy levels?

EXAMPLE 6.4

Quantum Theory Applied to a Classical Oscillator
A 1.0-kg mass oscillates at the end of a spring with a spring constant of 1000 N/m. The amplitude of these
oscillations is 0.10 m. Use the concept of quantization to find the energy spacing for this classical oscillator. Is
the energy quantization significant for macroscopic systems, such as this oscillator?

Strategy
We use Equation 6.10 as though the system were a quantum oscillator, but with the frequency f of the mass
vibrating on a spring. To evaluate whether or not quantization has a significant effect, we compare the
quantum energy spacing with the macroscopic total energy of this classical oscillator.
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Solution
For the spring constant, the frequency f of the mass, is

The energy quantum that corresponds to this frequency is

When vibrations have amplitude the energy of oscillations is

Significance
Thus, for a classical oscillator, we have We see that the separation of the energy levels is
immeasurably small. Therefore, for all practical purposes, the energy of a classical oscillator takes on
continuous values. This is why classical principles may be applied to macroscopic systems encountered in
everyday life without loss of accuracy.

CHECK YOUR UNDERSTANDING 6.5

Would the result in Example 6.4 be different if the mass were not 1.0 kg but a tiny mass of 1.0 µg, and the
amplitude of vibrations were 0.10 µm?

When Planck first published his result, the hypothesis of energy quanta was not taken seriously by the physics
community because it did not follow from any established physics theory at that time. It was perceived, even
by Planck himself, as a useful mathematical trick that led to a good theoretical “fit” to the experimental curve.
This perception was changed in 1905 when Einstein published his explanation of the photoelectric effect, in
which he gave Planck’s energy quantum a new meaning: that of a particle of light.

6.2 Photoelectric Effect
Learning Objectives
By the end of this section, you will be able to:

• Describe physical characteristics of the photoelectric effect
• Explain why the photoelectric effect cannot be explained by classical physics
• Describe how Einstein’s idea of a particle of radiation explains the photoelectric effect

When a metal surface is exposed to a monochromatic electromagnetic wave of sufficiently short wavelength
(or equivalently, above a threshold frequency), the incident radiation is absorbed and the exposed surface
emits electrons. This phenomenon is known as the photoelectric effect. Electrons that are emitted in this
process are called photoelectrons.

The experimental setup to study the photoelectric effect is shown schematically in Figure 6.8. The target
material serves as the cathode, which becomes the emitter of photoelectrons when it is illuminated by
monochromatic radiation. We call this electrode the photoelectrode. Photoelectrons are collected at the
anode, which is kept at a higher potential with respect to the cathode. The potential difference between the
electrodes can be increased or decreased, or its polarity can be reversed. The electrodes are enclosed in an
evacuated glass tube so that photoelectrons do not lose their kinetic energy on collisions with air molecules in
the space between electrodes.

When the target material is not exposed to radiation, no current is registered in this circuit because the circuit
is broken (note, there is a gap between the electrodes). But when the target material is connected to the
negative terminal of a battery and exposed to radiation, a current is registered in this circuit; this current is
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called the photocurrent. Suppose that we now reverse the potential difference between the electrodes so that
the target material now connects with the positive terminal of a battery, and then we slowly increase the
voltage. The photocurrent gradually dies out and eventually stops flowing completely at some value of this
reversed voltage. The potential difference at which the photocurrent stops flowing is called the stopping
potential.

Figure 6.8 An experimental setup to study the photoelectric effect. The anode and cathode are enclosed in an evacuated glass tube. The

voltmeter measures the electric potential difference between the electrodes, and the ammeter measures the photocurrent. The incident

radiation is monochromatic.

Characteristics of the Photoelectric Effect
The photoelectric effect has three important characteristics that cannot be explained by classical physics: (1)
the absence of a lag time, (2) the independence of the kinetic energy of photoelectrons on the intensity of
incident radiation, and (3) the presence of a cut-off frequency. Let’s examine each of these characteristics.

The absence of lag time
When radiation strikes the target material in the electrode, electrons are emitted almost instantaneously, even
at very low intensities of incident radiation. This absence of lag time contradicts our understanding based on
classical physics. Classical physics predicts that for low-energy radiation, it would take significant time before
irradiated electrons could gain sufficient energy to leave the electrode surface; however, such an energy
buildup is not observed.

The intensity of incident radiation and the kinetic energy of photoelectrons
Typical experimental curves are shown in Figure 6.9, in which the photocurrent is plotted versus the applied
potential difference between the electrodes. For the positive potential difference, the current steadily grows
until it reaches a plateau. Furthering the potential increase beyond this point does not increase the
photocurrent at all. A higher intensity of radiation produces a higher value of photocurrent. For the negative
potential difference, as the absolute value of the potential difference increases, the value of the photocurrent
decreases and becomes zero at the stopping potential. For any intensity of incident radiation, whether the
intensity is high or low, the value of the stopping potential always stays at one value.
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To understand why this result is unusual from the point of view of classical physics, we first have to analyze the
energy of photoelectrons. A photoelectron that leaves the surface has kinetic energy K. It gained this energy
from the incident electromagnetic wave. In the space between the electrodes, a photoelectron moves in the
electric potential and its energy changes by the amount where is the potential difference and
Because no forces are present but electric force, by applying the work-energy theorem, we obtain the energy
balance for the photoelectron, where is the change in the photoelectron’s kinetic energy.
When the stopping potential is applied, the photoelectron loses its initial kinetic energy and comes
to rest. Thus, its energy balance becomes so that In the presence of the
stopping potential, the largest kinetic energy that a photoelectron can have is its initial kinetic energy,
which it has at the surface of the photoelectrode. Therefore, the largest kinetic energy of photoelectrons can be
directly measured by measuring the stopping potential:

At this point we can see where the classical theory is at odds with the experimental results. In classical theory,
the photoelectron absorbs electromagnetic energy in a continuous way; this means that when the incident
radiation has a high intensity, the kinetic energy in Equation 6.12 is expected to be high. Similarly, when the
radiation has a low intensity, the kinetic energy is expected to be low. But the experiment shows that the
maximum kinetic energy of photoelectrons is independent of the light intensity.

Figure 6.9 The detected photocurrent plotted versus the applied potential difference shows that for any intensity of incident radiation,

whether the intensity is high (upper curve) or low (lower curve), the value of the stopping potential is always the same.

The presence of a cut-off frequency
For any metal surface, there is a minimum frequency of incident radiation below which photocurrent does not
occur. The value of this cut-off frequency for the photoelectric effect is a physical property of the metal:
Different materials have different values of cut-off frequency. Experimental data show a typical linear trend
(see Figure 6.10). The kinetic energy of photoelectrons at the surface grows linearly with the increasing
frequency of incident radiation. Measurements for all metal surfaces give linear plots with one slope. None of
these observed phenomena is in accord with the classical understanding of nature. According to the classical
description, the kinetic energy of photoelectrons should not depend on the frequency of incident radiation at
all, and there should be no cut-off frequency. Instead, in the classical picture, electrons receive energy from
the incident electromagnetic wave in a continuous way, and the amount of energy they receive depends only
on the intensity of the incident light and nothing else. So in the classical understanding, as long as the light is
shining, the photoelectric effect is expected to continue.

6.12
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Figure 6.10 Kinetic energy of photoelectrons at the surface versus the frequency of incident radiation. The photoelectric effect can only

occur above the cut-off frequency Measurements for all metal surfaces give linear plots with one slope. Each metal surface has its own

cut-off frequency.

The Work Function
The photoelectric effect was explained in 1905 by A. Einstein. Einstein reasoned that if Planck’s hypothesis
about energy quanta was correct for describing the energy exchange between electromagnetic radiation and
cavity walls, it should also work to describe energy absorption from electromagnetic radiation by the surface of
a photoelectrode. He postulated that an electromagnetic wave carries its energy in discrete packets. Einstein’s
postulate goes beyond Planck’s hypothesis because it states that the light itself consists of energy quanta. In
other words, it states that electromagnetic waves are quantized.

In Einstein’s approach, a beam of monochromatic light of frequency f is made of photons. A photon is a
particle of light. Each photon moves at the speed of light and carries an energy quantum A photon’s energy
depends only on its frequency f. Explicitly, the energy of a photon is

where is Planck’s constant. In the photoelectric effect, photons arrive at the metal surface and each photon
gives away all of its energy to only one electron on the metal surface. This transfer of energy from photon to
electron is of the “all or nothing” type, and there are no fractional transfers in which a photon would lose only
part of its energy and survive. The essence of a quantum phenomenon is either a photon transfers its entire
energy and ceases to exist or there is no transfer at all. This is in contrast with the classical picture, where
fractional energy transfers are permitted. Having this quantum understanding, the energy balance for an
electron on the surface that receives the energy from a photon is

where is the kinetic energy, given by Equation 6.12, that an electron has at the very instant it gets
detached from the surface. In this energy balance equation, is the energy needed to detach a photoelectron
from the surface. This energy is called the work function of the metal. Each metal has its characteristic work
function, as illustrated in Table 6.1. To obtain the kinetic energy of photoelectrons at the surface, we simply
invert the energy balance equation and use Equation 6.13 to express the energy of the absorbed photon. This
gives us the expression for the kinetic energy of photoelectrons, which explicitly depends on the frequency of
incident radiation:

This equation has a simple mathematical form but its physics is profound. We can now elaborate on the
physical meaning behind Equation 6.14.

6.13

6.14
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Typical Values of the Work Function for Some Common Metals

Metal (eV)

Na 2.46

Al 4.08

Pb 4.14

Zn 4.31

Fe 4.50

Cu 4.70

Ag 4.73

Pt 6.35

Table 6.1

In Einstein’s interpretation, interactions take place between individual electrons and individual photons. The
absence of a lag time means that these one-on-one interactions occur instantaneously. This interaction time
cannot be increased by lowering the light intensity. The light intensity corresponds to the number of photons
arriving at the metal surface per unit time. Even at very low light intensities, the photoelectric effect still
occurs because the interaction is between one electron and one photon. As long as there is at least one photon
with enough energy to transfer it to a bound electron, a photoelectron will appear on the surface of the
photoelectrode.

The existence of the cut-off frequency for the photoelectric effect follows from Equation 6.14 because the
kinetic energy of the photoelectron can take only positive values. This means that there must be some
threshold frequency for which the kinetic energy is zero, In this way, we obtain the explicit
formula for cut-off frequency:

Cut-off frequency depends only on the work function of the metal and is in direct proportion to it. When the
work function is large (when electrons are bound fast to the metal surface), the energy of the threshold photon
must be large to produce a photoelectron, and then the corresponding threshold frequency is large. Photons
with frequencies larger than the threshold frequency always produce photoelectrons because they have

Photons with frequencies smaller than do not have enough energy to produce photoelectrons.
Therefore, when incident radiation has a frequency below the cut-off frequency, the photoelectric effect is not
observed. Because frequency f and wavelength of electromagnetic waves are related by the fundamental
relation (where is the speed of light in vacuum), the cut-off frequency has its corresponding cut-off
wavelength

In this equation, Our observations can be restated in the following equivalent way: When
the incident radiation has wavelengths longer than the cut-off wavelength, the photoelectric effect does not
occur.

6.15

6.16
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EXAMPLE 6.5

Photoelectric Effect for Silver
Radiation with wavelength 300 nm is incident on a silver surface. Will photoelectrons be observed?

Strategy
Photoelectrons can be ejected from the metal surface only when the incident radiation has a shorter
wavelength than the cut-off wavelength. The work function of silver is (Table 6.1). To make the
estimate, we use Equation 6.16.

Solution
The threshold wavelength for observing the photoelectric effect in silver is

The incident radiation has wavelength 300 nm, which is longer than the cut-off wavelength; therefore,
photoelectrons are not observed.

Significance
If the photoelectrode were made of sodium instead of silver, the cut-off wavelength would be 504 nm and
photoelectrons would be observed.

Equation 6.14 in Einstein’s model tells us that the maximum kinetic energy of photoelectrons is a linear
function of the frequency of incident radiation, which is illustrated in Figure 6.10. For any metal, the slope of
this plot has a value of Planck’s constant. The intercept with the -axis gives us a value of the work
function that is characteristic for the metal. On the other hand, can be directly measured in the
experiment by measuring the value of the stopping potential (see Equation 6.12) at which the
photocurrent stops. These direct measurements allow us to determine experimentally the value of Planck’s
constant, as well as work functions of materials.

Einstein’s model also gives a straightforward explanation for the photocurrent values shown in Figure 6.9. For
example, doubling the intensity of radiation translates to doubling the number of photons that strike the
surface per unit time. The larger the number of photons, the larger is the number of photoelectrons, which
leads to a larger photocurrent in the circuit. This is how radiation intensity affects the photocurrent. The
photocurrent must reach a plateau at some value of potential difference because, in unit time, the number of
photoelectrons is equal to the number of incident photons and the number of incident photons does not
depend on the applied potential difference at all, but only on the intensity of incident radiation. The stopping
potential does not change with the radiation intensity because the kinetic energy of photoelectrons (see
Equation 6.14) does not depend on the radiation intensity.

EXAMPLE 6.6

Work Function and Cut-Off Frequency
When a 180-nm light is used in an experiment with an unknown metal, the measured photocurrent drops to
zero at potential – 0.80 V. Determine the work function of the metal and its cut-off frequency for the
photoelectric effect.

Strategy
To find the cut-off frequency we use Equation 6.15, but first we must find the work function To find we
use Equation 6.12 and Equation 6.14. Photocurrent drops to zero at the stopping value of potential, so we
identify
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Solution
We use Equation 6.12 to find the kinetic energy of the photoelectrons:

Now we solve Equation 6.14 for

Finally, we use Equation 6.15 to find the cut-off frequency:

Significance
In calculations like the one shown in this example, it is convenient to use Planck’s constant in the units of

and express all energies in eV instead of joules.

EXAMPLE 6.7

The Photon Energy and Kinetic Energy of Photoelectrons
A 430-nm violet light is incident on a calcium photoelectrode with a work function of 2.71 eV.

Find the energy of the incident photons and the maximum kinetic energy of ejected electrons.

Strategy
The energy of the incident photon is where we use To obtain the maximum energy of
the ejected electrons, we use Equation 6.16.

Solution

Significance
In this experimental setup, photoelectrons stop flowing at the stopping potential of 0.17 V.

CHECK YOUR UNDERSTANDING 6.6

A yellow 589-nm light is incident on a surface whose work function is 1.20 eV. What is the stopping potential?
What is the cut-off wavelength?

CHECK YOUR UNDERSTANDING 6.7

Cut-off frequency for the photoelectric effect in some materials is When the incident light has a
frequency of the stopping potential is measured as – 0.16 V. Estimate a value of Planck’s
constant from these data (in units and ) and determine the percentage error of your estimation.

6.3 The Compton Effect
Learning Objectives
By the end of this section, you will be able to:

• Describe Compton’s experiment
• Explain the Compton wavelength shift
• Describe how experiments with X-rays confirm the particle nature of radiation
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Two of Einstein’s influential ideas introduced in 1905 were the theory of special relativity and the concept of a
light quantum, which we now call a photon. Beyond 1905, Einstein went further to suggest that freely
propagating electromagnetic waves consisted of photons that are particles of light in the same sense that
electrons or other massive particles are particles of matter. A beam of monochromatic light of wavelength (or
equivalently, of frequency f) can be seen either as a classical wave or as a collection of photons that travel in a
vacuum with one speed, c (the speed of light), and all carrying the same energy, This idea proved
useful for explaining the interactions of light with particles of matter.

Momentum of a Photon
Unlike a particle of matter that is characterized by its rest mass a photon is massless. In a vacuum, unlike a
particle of matter that may vary its speed but cannot reach the speed of light, a photon travels at only one
speed, which is exactly the speed of light. From the point of view of Newtonian classical mechanics, these two
characteristics imply that a photon should not exist at all. For example, how can we find the linear momentum
or kinetic energy of a body whose mass is zero? This apparent paradox vanishes if we describe a photon as a
relativistic particle. According to the theory of special relativity, any particle in nature obeys the relativistic
energy equation

This relation can also be applied to a photon. In Equation 6.17, E is the total energy of a particle, p is its linear
momentum, and is its rest mass. For a photon, we simply set in this equation. This leads to the
expression for the momentum of a photon

Here the photon’s energy is the same as that of a light quantum of frequency f, which we introduced to
explain the photoelectric effect:

The wave relation that connects frequency f with wavelength and speed c also holds for photons:

Therefore, a photon can be equivalently characterized by either its energy and wavelength, or its frequency
and momentum. Equation 6.19 and Equation 6.20 can be combined into the explicit relation between a
photon’s momentum and its wavelength:

Notice that this equation gives us only the magnitude of the photon’s momentum and contains no information
about the direction in which the photon is moving. To include the direction, it is customary to write the
photon’s momentum as a vector:

In Equation 6.22, ℏ is the reduced Planck’s constant (pronounced “h-bar”), which is just Planck’s

constant divided by the factor Vector is called the “wave vector” or propagation vector (the direction in
which a photon is moving). The propagation vector shows the direction of the photon’s linear momentum
vector. The magnitude of the wave vector is and is called the wave number. Notice that this

6.17
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equation does not introduce any new physics. We can verify that the magnitude of the vector in Equation 6.22
is the same as that given by Equation 6.18.

The Compton Effect
The Compton effect is the term used for an unusual result observed when X-rays are scattered on some
materials. By classical theory, when an electromagnetic wave is scattered off atoms, the wavelength of the
scattered radiation is expected to be the same as the wavelength of the incident radiation. Contrary to this
prediction of classical physics, observations show that when X-rays are scattered off some materials, such as
graphite, the scattered X-rays have different wavelengths from the wavelength of the incident X-rays. This
classically unexplainable phenomenon was studied experimentally by Arthur H. Compton and his
collaborators, and Compton gave its explanation in 1923.

To explain the shift in wavelengths measured in the experiment, Compton used Einstein’s idea of light as a
particle. The Compton effect has a very important place in the history of physics because it shows that
electromagnetic radiation cannot be explained as a purely wave phenomenon. The explanation of the Compton
effect gave a convincing argument to the physics community that electromagnetic waves can indeed behave
like a stream of photons, which placed the concept of a photon on firm ground.

The schematics of Compton’s experimental setup are shown in Figure 6.11. The idea of the experiment is
straightforward: Monochromatic X-rays with wavelength are incident on a sample of graphite (the “target”),
where they interact with atoms inside the sample; they later emerge as scattered X-rays with wavelength A
detector placed behind the target can measure the intensity of radiation scattered in any direction with
respect to the direction of the incident X-ray beam. This scattering angle, is the angle between the direction
of the scattered beam and the direction of the incident beam. In this experiment, we know the intensity and
the wavelength of the incoming (incident) beam; and for a given scattering angle we measure the intensity
and the wavelength of the outgoing (scattered) beam. Typical results of these measurements are shown in
Figure 6.12, where the x-axis is the wavelength of the scattered X-rays and the y-axis is the intensity of the
scattered X-rays, measured for different scattering angles (indicated on the graphs). For all scattering angles
(except for we measure two intensity peaks. One peak is located at the wavelength which is the
wavelength of the incident beam. The other peak is located at some other wavelength, The two peaks are
separated by which depends on the scattering angle of the outgoing beam (in the direction of
observation). The separation is called the Compton shift.

Figure 6.11 Experimental setup for studying Compton scattering.
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Figure 6.12 Experimental data show the Compton effect for X-rays scattering off graphite at various angles: The intensity of the scattered

beam has two peaks. One peak appears at the wavelength of the incident radiation and the second peak appears at wavelength The

separation between the peaks depends on the scattering angle which is the angular position of the detector in Figure 6.11. The

experimental data in this figure are plotted in arbitrary units so that the height of the profile reflects the intensity of the scattered beam

above background noise.

Compton Shift
As given by Compton, the explanation of the Compton shift is that in the target material, graphite, valence
electrons are loosely bound in the atoms and behave like free electrons. Compton assumed that the incident X-
ray radiation is a stream of photons. An incoming photon in this stream collides with a valence electron in the
graphite target. In the course of this collision, the incoming photon transfers some part of its energy and
momentum to the target electron and leaves the scene as a scattered photon. This model explains in
qualitative terms why the scattered radiation has a longer wavelength than the incident radiation. Put simply, a
photon that has lost some of its energy emerges as a photon with a lower frequency, or equivalently, with a
longer wavelength. To show that his model was correct, Compton used it to derive the expression for the
Compton shift. In his derivation, he assumed that both photon and electron are relativistic particles and that
the collision obeys two commonsense principles: (1) the conservation of linear momentum and (2) the
conservation of total relativistic energy.

In the following derivation of the Compton shift, and denote the energy and momentum, respectively,
of an incident photon with frequency f. The photon collides with a relativistic electron at rest, which means
that immediately before the collision, the electron’s energy is entirely its rest mass energy, Immediately
after the collision, the electron has energy E and momentum both of which satisfy Equation 6.19.
Immediately after the collision, the outgoing photon has energy momentum and frequency The
direction of the incident photon is horizontal from left to right, and the direction of the outgoing photon is at
the angle as illustrated in Figure 6.11. The scattering angle is the angle between the momentum vectors

and and we can write their scalar product:

Following Compton’s argument, we assume that the colliding photon and electron form an isolated system.
This assumption is valid for weakly bound electrons that, to a good approximation, can be treated as free
particles. Our first equation is the conservation of energy for the photon-electron system:

The left side of this equation is the energy of the system at the instant immediately before the collision, and the
right side of the equation is the energy of the system at the instant immediately after the collision. Our second
equation is the conservation of linear momentum for the photon–electron system where the electron is at rest
at the instant immediately before the collision:

6.23
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The left side of this equation is the momentum of the system right before the collision, and the right side of the
equation is the momentum of the system right after collision. The entire physics of Compton scattering is
contained in these three preceding equations––the remaining part is algebra. At this point, we could jump to
the concluding formula for the Compton shift, but it is beneficial to highlight the main algebraic steps that lead
to Compton’s formula, which we give here as follows.

We start with rearranging the terms in Equation 6.24 and squaring it:

In the next step, we substitute Equation 6.19 for simplify, and divide both sides by to obtain

Now we can use Equation 6.21 to express this form of the energy equation in terms of momenta. The result is

To eliminate we turn to the momentum equation Equation 6.25, rearrange its terms, and square it to obtain

The product of the momentum vectors is given by Equation 6.23. When we substitute this result for in
Equation 6.26, we obtain the energy equation that contains the scattering angle

With further algebra, this result can be simplified to

Now recall Equation 6.21 and write: and When these relations are substituted into
Equation 6.27, we obtain the relation for the Compton shift:

The factor is called the Compton wavelength of the electron:

Denoting the shift as the concluding result can be rewritten as

This formula for the Compton shift describes outstandingly well the experimental results shown in Figure
6.12. Scattering data measured for molybdenum, graphite, calcite, and many other target materials are in
accord with this theoretical result. The nonshifted peak shown in Figure 6.12 is due to photon collisions with
tightly bound inner electrons in the target material. Photons that collide with the inner electrons of the target
atoms in fact collide with the entire atom. In this extreme case, the rest mass in Equation 6.29 must be
changed to the rest mass of the atom. This type of shift is four orders of magnitude smaller than the shift
caused by collisions with electrons and is so small that it can be neglected.

Compton scattering is an example of inelastic scattering, in which the scattered radiation has a longer
wavelength than the wavelength of the incident radiation. In today’s usage, the term “Compton scattering” is
used for the inelastic scattering of photons by free, charged particles. In Compton scattering, treating photons
as particles with momenta that can be transferred to charged particles provides the theoretical background to
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explain the wavelength shifts measured in experiments; this is the evidence that radiation consists of photons.

EXAMPLE 6.8

Compton Scattering
An incident 71-pm X-ray is incident on a calcite target. Find the wavelength of the X-ray scattered at a
angle. What is the largest shift that can be expected in this experiment?

Strategy
To find the wavelength of the scattered X-ray, first we must find the Compton shift for the given scattering
angle, We use Equation 6.30. Then we add this shift to the incident wavelength to obtain the scattered
wavelength. The largest Compton shift occurs at the angle when has the largest value, which is for
the angle

Solution
The shift at is

This gives the scattered wavelength:

The largest shift is

Significance
The largest shift in wavelength is detected for the backscattered radiation; however, most of the photons from
the incident beam pass through the target and only a small fraction of photons gets backscattered (typically,
less than 5%). Therefore, these measurements require highly sensitive detectors.

CHECK YOUR UNDERSTANDING 6.8

An incident 71-pm X-ray is incident on a calcite target. Find the wavelength of the X-ray scattered at a
angle. What is the smallest shift that can be expected in this experiment?

6.4 Bohr’s Model of the Hydrogen Atom
Learning Objectives
By the end of this section, you will be able to:

• Explain the difference between the absorption spectrum and the emission spectrum of radiation emitted by
atoms

• Describe the Rutherford gold foil experiment and the discovery of the atomic nucleus
• Explain the atomic structure of hydrogen
• Describe the postulates of the early quantum theory for the hydrogen atom
• Summarize how Bohr’s quantum model of the hydrogen atom explains the radiation spectrum of atomic

hydrogen

Historically, Bohr’s model of the hydrogen atom is the very first model of atomic structure that correctly
explained the radiation spectra of atomic hydrogen. The model has a special place in the history of physics
because it introduced an early quantum theory, which brought about new developments in scientific thought
and later culminated in the development of quantum mechanics. To understand the specifics of Bohr’s model,
we must first review the nineteenth-century discoveries that prompted its formulation.

When we use a prism to analyze white light coming from the sun, several dark lines in the solar spectrum are
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observed (Figure 6.13). Solar absorption lines are called Fraunhofer lines after Joseph von Fraunhofer, who
accurately measured their wavelengths. During 1854–1861, Gustav Kirchhoff and Robert Bunsen discovered
that for the various chemical elements, the line emission spectrum of an element exactly matches its line
absorption spectrum. The difference between the absorption spectrum and the emission spectrum is
explained in Figure 6.14. An absorption spectrum is observed when light passes through a gas. This spectrum
appears as black lines that occur only at certain wavelengths on the background of the continuous spectrum of
white light (Figure 6.13). The missing wavelengths tell us which wavelengths of the radiation are absorbed by
the gas. The emission spectrum is observed when light is emitted by a gas. This spectrum is seen as colorful
lines on the black background (see Figure 6.15 and Figure 6.16). Positions of the emission lines tell us which
wavelengths of the radiation are emitted by the gas. Each chemical element has its own characteristic emission
spectrum. For each element, the positions of its emission lines are exactly the same as the positions of its
absorption lines. This means that atoms of a specific element absorb radiation only at specific wavelengths
and radiation that does not have these wavelengths is not absorbed by the element at all. This also means that
the radiation emitted by atoms of each element has exactly the same wavelengths as the radiation they absorb.

Figure 6.13 In the solar emission spectrum in the visible range from 380 nm to 710 nm, Fraunhofer lines are observed as vertical black

lines at specific spectral positions in the continuous spectrum. Highly sensitive modern instruments observe thousands of such lines.

Figure 6.14 Observation of line spectra: (a) setup to observe absorption lines; (b) setup to observe emission lines. (a) White light passes

through a cold gas that is contained in a glass flask. A prism is used to separate wavelengths of the passed light. In the spectrum of the

passed light, some wavelengths are missing, which are seen as black absorption lines in the continuous spectrum on the viewing screen.

(b) A gas is contained in a glass discharge tube that has electrodes at its ends. At a high potential difference between the electrodes, the

gas glows and the light emitted from the gas passes through the prism that separates its wavelengths. In the spectrum of the emitted light,

only specific wavelengths are present, which are seen as colorful emission lines on the screen.

Figure 6.15 The emission spectrum of atomic hydrogen: The spectral positions of emission lines are characteristic for hydrogen atoms.

(credit: “Merikanto”/Wikimedia Commons)
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Figure 6.16 The emission spectrum of atomic iron: The spectral positions of emission lines are characteristic for iron atoms.

Emission spectra of the elements have complex structures; they become even more complex for elements with
higher atomic numbers. The simplest spectrum, shown in Figure 6.15, belongs to the hydrogen atom. Only
four lines are visible to the human eye. As you read from right to left in Figure 6.15, these lines are: red (656
nm), called the H- line; aqua (486 nm), blue (434 nm), and violet (410 nm). The lines with wavelengths shorter
than 400 nm appear in the ultraviolet part of the spectrum (Figure 6.15, far left) and are invisible to the human
eye. There are infinitely many invisible spectral lines in the series for hydrogen.

An empirical formula to describe the positions (wavelengths) of the hydrogen emission lines in this series
was discovered in 1885 by Johann Balmer. It is known as the Balmer formula:

The constant is called the Rydberg constant for hydrogen. In Equation 6.31, the
positive integer n takes on values for the four visible lines in this series. The series of emission
lines given by the Balmer formula is called the Balmer series for hydrogen. Other emission lines of hydrogen
that were discovered in the twentieth century are described by the Rydberg formula, which summarizes all of
the experimental data:

When the series of spectral lines is called the Lyman series. When the series is called the
Balmer series, and in this case, the Rydberg formula coincides with the Balmer formula. When the
series is called the Paschen series. When the series is called the Brackett series. When the
series is called the Pfund series. When we have the Humphreys series. As you may guess, there are
infinitely many such spectral bands in the spectrum of hydrogen because can be any positive integer
number.

The Rydberg formula for hydrogen gives the exact positions of the spectral lines as they are observed in a
laboratory; however, at the beginning of the twentieth century, nobody could explain why it worked so well. The
Rydberg formula remained unexplained until the first successful model of the hydrogen atom was proposed in
1913.

EXAMPLE 6.9

Limits of the Balmer Series
Calculate the longest and the shortest wavelengths in the Balmer series.

Strategy
We can use either the Balmer formula or the Rydberg formula. The longest wavelength is obtained when
is largest, which is when because for the Balmer series. The smallest wavelength is

obtained when is smallest, which is when ∞
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Solution
The long-wave limit:

The short-wave limit:

Significance
Note that there are infinitely many spectral lines lying between these two limits.

CHECK YOUR UNDERSTANDING 6.9

What are the limits of the Lyman series? Can you see these spectral lines?

The key to unlocking the mystery of atomic spectra is in understanding atomic structure. Scientists have long
known that matter is made of atoms. According to nineteenth-century science, atoms are the smallest
indivisible quantities of matter. This scientific belief was shattered by a series of groundbreaking experiments
that proved the existence of subatomic particles, such as electrons, protons, and neutrons.

The electron was discovered and identified as the smallest quantity of electric charge by J.J. Thomson in 1897
in his cathode ray experiments, also known as β-ray experiments: A β-ray is a beam of electrons. In 1904,
Thomson proposed the first model of atomic structure, known as the “plum pudding” model, in which an atom
consisted of an unknown positively charged matter with negative electrons embedded in it like plums in a
pudding. Around 1900, E. Rutherford, and independently, Paul Ulrich Villard, classified all radiation known at
that time as -rays, β-rays, and γ-rays (a γ-ray is a beam of highly energetic photons). In 1907, Rutherford and
Thomas Royds used spectroscopy methods to show that positively charged particles of -radiation (called

-particles) are in fact doubly ionized atoms of helium. In 1909, Rutherford, Ernest Marsden, and Hans Geiger
used -particles in their famous scattering experiment that disproved Thomson’s model (see Linear
Momentum and Collisions).

In the Rutherford gold foil experiment (also known as the Geiger–Marsden experiment), -particles were
incident on a thin gold foil and were scattered by gold atoms inside the foil (see Types of Collisions). The
outgoing particles were detected by a scintillation screen surrounding the gold target (for a detailed
description of the experimental setup, see Linear Momentum and Collisions). When a scattered particle struck
the screen, a tiny flash of light (scintillation) was observed at that location. By counting the scintillations seen
at various angles with respect to the direction of the incident beam, the scientists could determine what
fraction of the incident particles were scattered and what fraction were not deflected at all. If the plum pudding
model were correct, there would be no back-scattered -particles. However, the results of the Rutherford
experiment showed that, although a sizable fraction of -particles emerged from the foil not scattered at all as
though the foil were not in their way, a significant fraction of -particles were back-scattered toward the
source. This kind of result was possible only when most of the mass and the entire positive charge of the gold
atom were concentrated in a tiny space inside the atom.

In 1911, Rutherford proposed a nuclear model of the atom. In Rutherford’s model, an atom contained a
positively charged nucleus of negligible size, almost like a point, but included almost the entire mass of the
atom. The atom also contained negative electrons that were located within the atom but relatively far away
from the nucleus. Ten years later, Rutherford coined the name proton for the nucleus of hydrogen and the
name neutron for a hypothetical electrically neutral particle that would mediate the binding of positive
protons in the nucleus (the neutron was discovered in 1932 by James Chadwick). Rutherford is credited with
the discovery of the atomic nucleus; however, the Rutherford model of atomic structure does not explain the
Rydberg formula for the hydrogen emission lines.
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Bohr’s model of the hydrogen atom, proposed by Niels Bohr in 1913, was the first quantum model that
correctly explained the hydrogen emission spectrum. Bohr’s model combines the classical mechanics of
planetary motion with the quantum concept of photons. Once Rutherford had established the existence of the
atomic nucleus, Bohr’s intuition that the negative electron in the hydrogen atom must revolve around the
positive nucleus became a logical consequence of the inverse-square-distance law of electrostatic attraction.
Recall that Coulomb’s law describing the attraction between two opposite charges has a similar form to
Newton’s universal law of gravitation in the sense that the gravitational force and the electrostatic force are
both decreasing as where r is the separation distance between the bodies. In the same way as Earth
revolves around the sun, the negative electron in the hydrogen atom can revolve around the positive nucleus.
However, an accelerating charge radiates its energy. Classically, if the electron moved around the nucleus in a
planetary fashion, it would be undergoing centripetal acceleration, and thus would be radiating energy that
would cause it to spiral down into the nucleus. Such a planetary hydrogen atom would not be stable, which is
contrary to what we know about ordinary hydrogen atoms that do not disintegrate. Moreover, the classical
motion of the electron is not able to explain the discrete emission spectrum of hydrogen.

To circumvent these two difficulties, Bohr proposed the following three postulates of Bohr’s model:

1. The negative electron moves around the positive nucleus (proton) in a circular orbit. All electron orbits are
centered at the nucleus. Not all classically possible orbits are available to an electron bound to the nucleus.

2. The allowed electron orbits satisfy the first quantization condition: In the nth orbit, the angular
momentum of the electron can take only discrete values:

This postulate says that the electron’s angular momentum is quantized. Denoted by and
respectively, the radius of the nth orbit and the electron’s speed in it, the first quantization condition can
be expressed explicitly as

3. An electron is allowed to make transitions from one orbit where its energy is to another orbit where its
energy is When an atom absorbs a photon, the electron makes a transition to a higher-energy orbit.
When an atom emits a photon, the electron transits to a lower-energy orbit. Electron transitions with the
simultaneous photon absorption or photon emission take place instantaneously. The allowed electron
transitions satisfy the second quantization condition:

where is the energy of either an emitted or an absorbed photon with frequency f. The second
quantization condition states that an electron’s change in energy in the hydrogen atom is quantized.

These three postulates of the early quantum theory of the hydrogen atom allow us to derive not only the
Rydberg formula, but also the value of the Rydberg constant and other important properties of the hydrogen
atom such as its energy levels, its ionization energy, and the sizes of electron orbits. Note that in Bohr’s model,
along with two nonclassical quantization postulates, we also have the classical description of the electron as a
particle that is subjected to the Coulomb force, and its motion must obey Newton’s laws of motion. The
hydrogen atom, as an isolated system, must obey the laws of conservation of energy and momentum in the way
we know from classical physics. Having this theoretical framework in mind, we are ready to proceed with our
analysis.

Electron Orbits
To obtain the size of the electron’s nth orbit and the electron’s speed in it, we turn to Newtonian
mechanics. As a charged particle, the electron experiences an electrostatic pull toward the positively charged
nucleus in the center of its circular orbit. This electrostatic pull is the centripetal force that causes the electron
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to move in a circle around the nucleus. Therefore, the magnitude of centripetal force is identified with the
magnitude of the electrostatic force:

Here, denotes the value of the elementary charge. The negative electron and positive proton have the same
value of charge, When Equation 6.36 is combined with the first quantization condition given by
Equation 6.34, we can solve for the speed, and for the radius,

Note that these results tell us that the electron’s speed as well as the radius of its orbit depend only on the
index n that enumerates the orbit because all other quantities in the preceding equations are fundamental
constants. We see from Equation 6.38 that the size of the orbit grows as the square of n. This means that the
second orbit is four times as large as the first orbit, and the third orbit is nine times as large as the first orbit,
and so on. We also see from Equation 6.37 that the electron’s speed in the orbit decreases as the orbit size
increases. The electron’s speed is largest in the first Bohr orbit, for which is the orbit closest to the
nucleus. The radius of the first Bohr orbit is called the Bohr radius of hydrogen, denoted as Its value is
obtained by setting in Equation 6.38:

We can substitute in Equation 6.38 to express the radius of the nth orbit in terms of

This result means that the electron orbits in hydrogen atom are quantized because the orbital radius takes on
only specific values of given by Equation 6.40, and no other values are allowed.

Electron Energies
The total energy of an electron in the nth orbit is the sum of its kinetic energy and its electrostatic
potential energy Utilizing Equation 6.37, we find that

Recall that the electrostatic potential energy of interaction between two charges and that are separated
by a distance is Here, is the charge of the nucleus in the hydrogen atom (the
charge of the proton), is the charge of the electron and is the radius of the nth orbit. Now we
use Equation 6.38 to find the potential energy of the electron:

The total energy of the electron is the sum of Equation 6.41 and Equation 6.42:

6.36

ℏ 6.37

ℏ
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ℏ
6.39
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Note that the energy depends only on the index n because the remaining symbols in Equation 6.43 are
physical constants. The value of the constant factor in Equation 6.43 is

It is convenient to express the electron’s energy in the nth orbit in terms of this energy, as

Now we can see that the electron energies in the hydrogen atom are quantized because they can have only
discrete values of given by Equation 6.45, and no other energy values are
allowed. This set of allowed electron energies is called the energy spectrum of hydrogen (Figure 6.17). The
index n that enumerates energy levels in Bohr’s model is called the energy quantum number. We identify the
energy of the electron inside the hydrogen atom with the energy of the hydrogen atom. Note that the smallest
value of energy is obtained for so the hydrogen atom cannot have energy smaller than that. This
smallest value of the electron energy in the hydrogen atom is called the ground state energy of the hydrogen
atom and its value is

The hydrogen atom may have other energies that are higher than the ground state. These higher energy states
are known as excited energy states of a hydrogen atom.

There is only one ground state, but there are infinitely many excited states because there are infinitely many
values of n in Equation 6.45. We say that the electron is in the “first exited state” when its energy is (when

), the second excited state when its energy is (when ) and, in general, in the nth exited state
when its energy is There is no highest-of-all excited state; however, there is a limit to the sequence of
excited states. If we keep increasing n in Equation 6.45, we find that the limit is

∞
In this limit,

the electron is no longer bound to the nucleus but becomes a free electron. An electron remains bound in the
hydrogen atom as long as its energy is negative. An electron that orbits the nucleus in the first Bohr orbit,
closest to the nucleus, is in the ground state, where its energy has the smallest value. In the ground state, the
electron is most strongly bound to the nucleus and its energy is given by Equation 6.46. If we want to remove
this electron from the atom, we must supply it with enough energy, ∞ to at least balance out its ground state

energy

The energy that is needed to remove the electron from the atom is called the ionization energy. The ionization
energy ∞ that is needed to remove the electron from the first Bohr orbit is called the ionization limit of the

hydrogen atom. The ionization limit in Equation 6.47 that we obtain in Bohr’s model agrees with experimental
value.

ℏ 6.44

6.45

6.46

∞ ∞ 6.47

6.4 • Bohr’s Model of the Hydrogen Atom 265



Figure 6.17 The energy spectrum of the hydrogen atom. Energy levels (horizontal lines) represent the bound states of an electron in the

atom. There is only one ground state, and infinite quantized excited states. The states are enumerated by the quantum number

Vertical lines illustrate the allowed electron transitions between the states. Downward arrows illustrate transitions with

an emission of a photon with a wavelength in the indicated spectral band.

Spectral Emission Lines of Hydrogen
To obtain the wavelengths of the emitted radiation when an electron makes a transition from the nth orbit to
the mth orbit, we use the second of Bohr’s quantization conditions and Equation 6.45 for energies. The
emission of energy from the atom can occur only when an electron makes a transition from an excited state to
a lower-energy state. In the course of such a transition, the emitted photon carries away the difference of
energies between the states involved in the transition. The transition cannot go in the other direction because
the energy of a photon cannot be negative, which means that for emission we must have and
Therefore, the third of Bohr’s postulates gives

Now we express the photon’s energy in terms of its wavelength, and divide both sides of Equation
6.48 by The result is

6.48
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The value of the constant in this equation is

This value is exactly the Rydberg constant in the Rydberg heuristic formula Equation 6.32. In fact,
Equation 6.49 is identical to the Rydberg formula, because for a given m, we have In this
way, the Bohr quantum model of the hydrogen atom allows us to derive the experimental Rydberg constant
from first principles and to express it in terms of fundamental constants. Transitions between the allowed
electron orbits are illustrated in Figure 6.17.

We can repeat the same steps that led to Equation 6.49 to obtain the wavelength of the absorbed radiation; this
again gives Equation 6.49 but this time for the positions of absorption lines in the absorption spectrum of
hydrogen. The only difference is that for absorption, the quantum number m is the index of the orbit occupied
by the electron before the transition (lower-energy orbit) and the quantum number n is the index of the orbit to
which the electron makes the transition (higher-energy orbit). The difference between the electron energies in
these two orbits is the energy of the absorbed photon.

EXAMPLE 6.10

Size and Ionization Energy of the Hydrogen Atom in an Excited State
If a hydrogen atom in the ground state absorbs a 93.7-nm photon, corresponding to a transition line in the
Lyman series, how does this affect the atom’s energy and size? How much energy is needed to ionize the atom
when it is in this excited state? Give your answers in absolute units, and relative to the ground state.

Strategy
Before the absorption, the atom is in its ground state. This means that the electron transition takes place from
the orbit to some higher nth orbit. First, we must determine for the absorbed wavelength
Then, we can use Equation 6.45 to find the energy of the excited state and its ionization energy ∞ and

use Equation 6.40 to find the radius of the atom in the excited state. To estimate n, we use Equation 6.49.

Solution
Substitute and in Equation 6.49 and solve for You should not expect to obtain a perfect
integer answer because of rounding errors, but your answer will be close to an integer, and you can estimate n
by taking the integral part of your answer:

The radius of the orbit is

Thus, after absorbing the 93.7-nm photon, the size of the hydrogen atom in the excited state is 36 times
larger than before the absorption, when the atom was in the ground state. The energy of the fifth excited state
( ) is:

After absorbing the 93.7-nm photon, the energy of the hydrogen atom is larger than it was before the
absorption. Ionization of the atom when it is in the fifth excited state ( ) requites 36 times less energy than
is needed when the atom is in the ground state:

∞
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Significance
We can analyze any spectral line in the spectrum of hydrogen in the same way. Thus, the experimental
measurements of spectral lines provide us with information about the atomic structure of the hydrogen atom.

CHECK YOUR UNDERSTANDING 6.10

When an electron in a hydrogen atom is in the first excited state, what prediction does the Bohr model give
about its orbital speed and kinetic energy? What is the magnitude of its orbital angular momentum?

Bohr’s model of the hydrogen atom also correctly predicts the spectra of some hydrogen-like ions. Hydrogen-
like ions are atoms of elements with an atomic number Z larger than one ( for hydrogen) but with all
electrons removed except one. For example, an electrically neutral helium atom has an atomic number
This means it has two electrons orbiting the nucleus with a charge of When one of the orbiting
electrons is removed from the helium atom (we say, when the helium atom is singly ionized), what remains is a
hydrogen-like atomic structure where the remaining electron orbits the nucleus with a charge of
This type of situation is described by the Bohr model. Assuming that the charge of the nucleus is not but

we can repeat all steps, beginning with Equation 6.36, to obtain the results for a hydrogen-like ion:

where is the Bohr orbit of hydrogen, and

where is the ionization limit of a hydrogen atom. These equations are good approximations as long as the
atomic number Z is not too large.

The Bohr model is important because it was the first model to postulate the quantization of electron orbits in
atoms. Thus, it represents an early quantum theory that gave a start to developing modern quantum theory. It
introduced the concept of a quantum number to describe atomic states. The limitation of the early quantum
theory is that it cannot describe atoms in which the number of electrons orbiting the nucleus is larger than
one. The Bohr model of hydrogen is a semi-classical model because it combines the classical concept of
electron orbits with the new concept of quantization. The remarkable success of this model prompted many
physicists to seek an explanation for why such a model should work at all, and to seek an understanding of the
physics behind the postulates of early quantum theory. This search brought about the onset of an entirely new
concept of “matter waves.”

6.5 De Broglie’s Matter Waves
Learning Objectives
By the end of this section, you will be able to:

• Describe de Broglie’s hypothesis of matter waves
• Explain how the de Broglie’s hypothesis gives the rationale for the quantization of angular momentum in

Bohr’s quantum theory of the hydrogen atom
• Describe the Davisson–Germer experiment
• Interpret de Broglie’s idea of matter waves and how they account for electron diffraction phenomena

Compton’s formula established that an electromagnetic wave can behave like a particle of light when
interacting with matter. In 1924, Louis de Broglie proposed a new speculative hypothesis that electrons and
other particles of matter can behave like waves. Today, this idea is known as de Broglie’s hypothesis of matter
waves. In 1926, De Broglie’s hypothesis, together with Bohr’s early quantum theory, led to the development of
a new theory of wave quantum mechanics to describe the physics of atoms and subatomic particles. Quantum
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mechanics has paved the way for new engineering inventions and technologies, such as the laser and magnetic
resonance imaging (MRI). These new technologies drive discoveries in other sciences such as biology and
chemistry.

According to de Broglie’s hypothesis, massless photons as well as massive particles must satisfy one common
set of relations that connect the energy E with the frequency f, and the linear momentum p with the
wavelength We have discussed these relations for photons in the context of Compton’s effect. We are
recalling them now in a more general context. Any particle that has energy and momentum is a de Broglie
wave of frequency f and wavelength

Here, E and p are, respectively, the relativistic energy and the momentum of a particle. De Broglie’s relations
are usually expressed in terms of the wave vector and the wave frequency as we usually
do for waves:

Wave theory tells us that a wave carries its energy with the group velocity. For matter waves, this group
velocity is the velocity u of the particle. Identifying the energy E and momentum p of a particle with its
relativistic energy and its relativistic momentum mu, respectively, it follows from de Broglie relations that
matter waves satisfy the following relation:

where When a particle is massless we have and Equation 6.57 becomes

EXAMPLE 6.11

How Long Are de Broglie Matter Waves?
Calculate the de Broglie wavelength of: (a) a 0.65-kg basketball thrown at a speed of 10 m/s, (b) a nonrelativistic
electron with a kinetic energy of 1.0 eV, and (c) a relativistic electron with a kinetic energy of

Strategy
We use Equation 6.57 to find the de Broglie wavelength. When the problem involves a nonrelativistic object
moving with a nonrelativistic speed u, such as in (a) when we use nonrelativistic momentum p.
When the nonrelativistic approximation cannot be used, such as in (c), we must use the relativistic momentum

where the rest mass energy of a particle is and is the Lorentz factor
The total energy E of a particle is given by Equation 6.53 and the kinetic energy is

When the kinetic energy is known, we can invert Equation 6.18 to find the

momentum and substitute in Equation 6.57 to obtain

Depending on the problem at hand, in this equation we can use the following values for hc:

6.53

6.54

ℏ 6.55

ℏ 6.56

ℏ

ℏ
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Solution

a. For the basketball, the kinetic energy is

and the rest mass energy is

We see that and use

b. For the nonrelativistic electron,

and when we have so we can use the nonrelativistic
formula. However, it is simpler here to use Equation 6.58:

If we use nonrelativistic momentum, we obtain the same result because 1 eV is much smaller than the rest
mass of the electron.

c. For a fast electron with relativistic effects cannot be neglected because its total energy is
and is not negligible:

Significance
We see from these estimates that De Broglie’s wavelengths of macroscopic objects such as a ball are
immeasurably small. Therefore, even if they exist, they are not detectable and do not affect the motion of
macroscopic objects.

CHECK YOUR UNDERSTANDING 6.11

What is de Broglie’s wavelength of a nonrelativistic proton with a kinetic energy of 1.0 eV?

Using the concept of the electron matter wave, de Broglie provided a rationale for the quantization of the
electron’s angular momentum in the hydrogen atom, which was postulated in Bohr’s quantum theory. The
physical explanation for the first Bohr quantization condition comes naturally when we assume that an
electron in a hydrogen atom behaves not like a particle but like a wave. To see it clearly, imagine a stretched
guitar string that is clamped at both ends and vibrates in one of its normal modes. If the length of the string is l
(Figure 6.18), the wavelengths of these vibrations cannot be arbitrary but must be such that an integer k
number of half-wavelengths fit exactly on the distance l between the ends. This is the condition
for a standing wave on a string. Now suppose that instead of having the string clamped at the walls, we bend its
length into a circle and fasten its ends to each other. This produces a circular string that vibrates in normal
modes, satisfying the same standing-wave condition, but the number of half-wavelengths must now be an even
number and the length l is now connected to the radius of the circle. This means that the radii are
not arbitrary but must satisfy the following standing-wave condition:

If an electron in the nth Bohr orbit moves as a wave, by Equation 6.59 its wavelength must be equal to
Assuming that Equation 6.58 is valid, the electron wave of this wavelength corresponds to the

6.59
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electron’s linear momentum, ℏ In a circular orbit, therefore, the electron’s

angular momentum must be

This equation is the first of Bohr’s quantization conditions, given by Equation 6.36. Providing a physical
explanation for Bohr’s quantization condition is a convincing theoretical argument for the existence of matter
waves.

Figure 6.18 Standing-wave pattern: (a) a stretched string clamped at the walls; (b) an electron wave trapped in the third Bohr orbit in the

hydrogen atom.

EXAMPLE 6.12

The Electron Wave in the Ground State of Hydrogen
Find the de Broglie wavelength of an electron in the ground state of hydrogen.

Strategy
We combine the first quantization condition in Equation 6.60 with Equation 6.36 and use Equation 6.38 for the
first Bohr radius with

Solution

When and the Bohr quantization condition gives ℏ ℏ The

electron wavelength is:

ℏ

Significance
We obtain the same result when we use Equation 6.58 directly.

CHECK YOUR UNDERSTANDING 6.12

Find the de Broglie wavelength of an electron in the third excited state of hydrogen.

Experimental confirmation of matter waves came in 1927 when C. Davisson and L. Germer performed a series
of electron-scattering experiments that clearly showed that electrons do behave like waves. Davisson and
Germer did not set up their experiment to confirm de Broglie’s hypothesis: The confirmation came as a
byproduct of their routine experimental studies of metal surfaces under electron bombardment.

In the particular experiment that provided the very first evidence of electron waves (known today as the
Davisson–Germer experiment), they studied a surface of nickel. Their nickel sample was specially prepared

ℏ
ℏ 6.60
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in a high-temperature oven to change its usual polycrystalline structure to a form in which large single-crystal
domains occupy the volume. Figure 6.19 shows the experimental setup. Thermal electrons are released from a
heated element (usually made of tungsten) in the electron gun and accelerated through a potential difference

becoming a well-collimated beam of electrons produced by an electron gun. The kinetic energy K of the
electrons is adjusted by selecting a value of the potential difference in the electron gun. This produces a beam
of electrons with a set value of linear momentum, in accordance with the conservation of energy:

The electron beam is incident on the nickel sample in the direction normal to its surface. At the surface, it
scatters in various directions. The intensity of the beam scattered in a selected direction is measured by a
highly sensitive detector. The detector’s angular position with respect to the direction of the incident beam can
be varied from to The entire setup is enclosed in a vacuum chamber to prevent electron
collisions with air molecules, as such thermal collisions would change the electrons’ kinetic energy and are not
desirable.

Figure 6.19 Schematics of the experimental setup of the Davisson–Germer diffraction experiment. A well-collimated beam of electrons is

scattered off the nickel target. The kinetic energy of electrons in the incident beam is selected by adjusting a variable potential, in the

electron gun. Intensity of the scattered electron beam is measured for a range of scattering angles whereas the distance between the

detector and the target does not change.

When the nickel target has a polycrystalline form with many randomly oriented microscopic crystals, the
incident electrons scatter off its surface in various random directions. As a result, the intensity of the scattered
electron beam is much the same in any direction, resembling a diffuse reflection of light from a porous
surface. However, when the nickel target has a regular crystalline structure, the intensity of the scattered
electron beam shows a clear maximum at a specific angle and the results show a clear diffraction pattern (see
Figure 6.20). Similar diffraction patterns formed by X-rays scattered by various crystalline solids were studied
in 1912 by father-and-son physicists William H. Bragg and William L. Bragg. The Bragg law in X-ray
crystallography provides a connection between the wavelength of the radiation incident on a crystalline
lattice, the lattice spacing, and the position of the interference maximum in the diffracted radiation (see
Diffraction).

The lattice spacing of the Davisson–Germer target, determined with X-ray crystallography, was measured to be
Unlike X-ray crystallography in which X-rays penetrate the sample, in the original

Davisson–Germer experiment, only the surface atoms interact with the incident electron beam. For the
surface diffraction, the maximum intensity of the reflected electron beam is observed for scattering angles
that satisfy the condition (see Figure 6.21). The first-order maximum (for ) is measured at a
scattering angle of at which gives the wavelength of the incident radiation as

On the other hand, a 54-V potential accelerates the incident electrons to kinetic
energies of Their momentum, calculated from Equation 6.61, is When
we substitute this result in Equation 6.58, the de Broglie wavelength is obtained as

6.61
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The same result is obtained when we use in Equation 6.61. The proximity of this theoretical result
to the Davisson–Germer experimental value of is a convincing argument for the existence of de
Broglie matter waves.

Figure 6.20 The experimental results of electron diffraction on a nickel target for the accelerating potential in the electron gun of about

The intensity maximum is registered at the scattering angle of about

Figure 6.21 In the surface diffraction of a monochromatic electromagnetic wave on a crystalline lattice structure, the in-phase incident

beams are reflected from atoms on the surface. A ray reflected from the left atom travels an additional distance to the detector,

where a is the lattice spacing. The reflected beams remain in-phase when D is an integer multiple of their wavelength The intensity of the

reflected waves has pronounced maxima for angles satisfying

Diffraction lines measured with low-energy electrons, such as those used in the Davisson–Germer experiment,
are quite broad (see Figure 6.20) because the incident electrons are scattered only from the surface. The
resolution of diffraction images greatly improves when a higher-energy electron beam passes through a thin
metal foil. This occurs because the diffraction image is created by scattering off many crystalline planes inside
the volume, and the maxima produced in scattering at Bragg angles are sharp (see Figure 6.22).

6.62
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Figure 6.22 Diffraction patterns obtained in scattering on a crystalline solid: (a) with X-rays, and (b) with electrons. The observed pattern

reflects the symmetry of the crystalline structure of the sample.

Since the work of Davisson and Germer, de Broglie’s hypothesis has been extensively tested with various
experimental techniques, and the existence of de Broglie waves has been confirmed for numerous elementary
particles. Neutrons have been used in scattering experiments to determine crystalline structures of solids
from interference patterns formed by neutron matter waves. The neutron has zero charge and its mass is
comparable with the mass of a positively charged proton. Both neutrons and protons can be seen as matter
waves. Therefore, the property of being a matter wave is not specific to electrically charged particles but is true
of all particles in motion. Matter waves of molecules as large as carbon have been measured. All physical
objects, small or large, have an associated matter wave as long as they remain in motion. The universal
character of de Broglie matter waves is firmly established.

EXAMPLE 6.13

Neutron Scattering
Suppose that a neutron beam is used in a diffraction experiment on a typical crystalline solid. Estimate the
kinetic energy of a neutron (in eV) in the neutron beam and compare it with kinetic energy of an ideal gas in
equilibrium at room temperature.

Strategy
We assume that a typical crystal spacing a is of the order of 1.0 Å. To observe a diffraction pattern on such a
lattice, the neutron wavelength must be on the same order of magnitude as the lattice spacing. We use
Equation 6.61 to find the momentum p and kinetic energy K. To compare this energy with the energy of
ideal gas in equilibrium at room temperature we use the relation where

is the Boltzmann constant.

Solution
We evaluate pc to compare it with the neutron’s rest mass energy

We see that so and we can use the nonrelativistic kinetic energy:

274 6 • Photons and Matter Waves

Access for free at openstax.org.



Kinetic energy of ideal gas in equilibrium at 300 K is:

We see that these energies are of the same order of magnitude.

Significance
Neutrons with energies in this range, which is typical for an ideal gas at room temperature, are called “thermal
neutrons.”

EXAMPLE 6.14

Wavelength of a Relativistic Proton
In a supercollider at CERN, protons can be accelerated to velocities of 0.75c. What are their de Broglie
wavelengths at this speed? What are their kinetic energies?

Strategy

The rest mass energy of a proton is When

the proton’s velocity is known, we have and We obtain the
wavelength and kinetic energy K from relativistic relations.

Solution

Significance
Notice that because a proton is 1835 times more massive than an electron, if this experiment were performed
with electrons, a simple rescaling of these results would give us the electron’s wavelength of

and its kinetic energy of

CHECK YOUR UNDERSTANDING 6.13

Find the de Broglie wavelength and kinetic energy of a free electron that travels at a speed of 0.75c.

6.6 Wave-Particle Duality
Learning Objectives
By the end of this section, you will be able to:

• Identify phenomena in which electromagnetic waves behave like a beam of photons and particles behave
like waves

• Describe the physics principles behind electron microscopy
• Summarize the evolution of scientific thought that led to the development of quantum mechanics

The energy of radiation detected by a radio-signal receiving antenna comes as the energy of an
electromagnetic wave. The same energy of radiation detected by a photocurrent in the photoelectric effect
comes as the energy of individual photon particles. Therefore, the question arises about the nature of
electromagnetic radiation: Is a photon a wave or is it a particle? Similar questions may be asked about other
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known forms of energy. For example, an electron that forms part of an electric current in a circuit behaves like
a particle moving in unison with other electrons inside the conductor. The same electron behaves as a wave
when it passes through a solid crystalline structure and forms a diffraction image. Is an electron a wave or is it
a particle? The same question can be extended to all particles of matter—elementary particles, as well as
compound molecules—asking about their true physical nature. At our present state of knowledge, such
questions about the true nature of things do not have conclusive answers. All we can say is that wave-particle
duality exists in nature: Under some experimental conditions, a particle appears to act as a particle, and
under different experimental conditions, a particle appears to act a wave. Conversely, under some physical
circumstances electromagnetic radiation acts as a wave, and under other physical circumstances, radiation
acts as a beam of photons.

This dualistic interpretation is not a new physics concept brought about by specific discoveries in the
twentieth century. It was already present in a debate between Isaac Newton and Christiaan Huygens about the
nature of light, beginning in the year 1670. According to Newton, a beam of light is a collection of corpuscles of
light. According to Huygens, light is a wave. The corpuscular hypothesis failed in 1803, when Thomas Young
announced his double-slit interference experiment with light (see Figure 6.23), which firmly established
light as a wave. In James Clerk Maxwell’s theory of electromagnetism (completed by the year 1873), light is an
electromagnetic wave. Maxwell’s classical view of radiation as an electromagnetic wave is still valid today;
however, it is unable to explain blackbody radiation and the photoelectric effect, where light acts as a beam of
photons.

Figure 6.23 Young’s double-slit experiment explains the interference of light by making an analogy with the interference of water waves.

Two waves are generated at the positions of two slits in an opaque screen. The waves have the same wavelengths. They travel from their

origins at the slits to the viewing screen placed to the right of the slits. The waves meet on the viewing screen. At the positions marked

“Max” on the screen, the meeting waves are in-phase and the combined wave amplitude is enhanced. At positions marked “Min,” the

combined wave amplitude is zero. For light, this mechanism creates a bright-and-dark fringe pattern on the viewing screen.

A similar dichotomy existed in the interpretation of electricity. From Benjamin Franklin’s observations of
electricity in 1751 until J.J. Thomson’s discovery of the electron in 1897, electric current was seen as a flow in
a continuous electric medium. Within this theory of electric fluid, the present theory of electric circuits was
developed, and electromagnetism and electromagnetic induction were discovered. Thomson’s experiment
showed that the unit of negative electric charge (an electron) can travel in a vacuum without any medium to
carry the charge around, as in electric circuits. This discovery changed the way in which electricity is
understood today and gave the electron its particle status. In Bohr’s early quantum theory of the hydrogen
atom, both the electron and the proton are particles of matter. Likewise, in the Compton scattering of X-rays on
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electrons, the electron is a particle. On the other hand, in electron-scattering experiments on crystalline
structures, the electron behaves as a wave.

A skeptic may raise a question that perhaps an electron might always be nothing more than a particle, and that
the diffraction images obtained in electron-scattering experiments might be explained within some
macroscopic model of a crystal and a macroscopic model of electrons coming at it like a rain of ping-pong
balls. As a matter of fact, to investigate this question, we do not need a complex model of a crystal but just a
couple of simple slits in a screen that is opaque to electrons. In other words, to gather convincing evidence
about the nature of an electron, we need to repeat the Young double-slit experiment with electrons. If the
electron is a wave, we should observe the formation of interference patterns typical for waves, such as those
described in Figure 6.23, even when electrons come through the slits one by one. However, if the electron is a
not a wave but a particle, the interference fringes will not be formed.

The very first double-slit experiment with a beam of electrons, performed by Claus Jönsson in Germany in
1961, demonstrated that a beam of electrons indeed forms an interference pattern, which means that
electrons collectively behave as a wave. The first double-slit experiments with single electrons passing through
the slits one-by-one were performed by Giulio Pozzi in 1974 in Italy and by Akira Tonomura in 1989 in Japan.
They show that interference fringes are formed gradually, even when electrons pass through the slits
individually. This demonstrates conclusively that electron-diffraction images are formed because of the wave
nature of electrons. The results seen in double-slit experiments with electrons are illustrated by the images of
the interference pattern in Figure 6.24.

Figure 6.24 Computer-simulated interference fringes seen in the Young double-slit experiment with electrons. One pattern is gradually

formed on the screen, regardless of whether the electrons come through the slits as a beam or individually one-by-one.

EXAMPLE 6.15

Double-Slit Experiment with Electrons
In one experimental setup for studying interference patterns of electron waves, two slits are created in a gold-
coated silicon membrane. Each slit is 62-nm wide and long, and the separation between the slits is 272
nm. The electron beam is created in an electron gun by heating a tungsten element and by accelerating the
electrons across a 600-V potential. The beam is subsequently collimated using electromagnetic lenses, and the
collimated beam of electrons is sent through the slits. Find the angular position of the first-order bright fringe
on the viewing screen.

Strategy
Recall that the angular position of the nth order bright fringe that is formed in Young’s two-slit interference
pattern (discussed in a previous chapter) is related to the separation, d, between the slits and to the
wavelength, of the incident light by the equation where The separation is
given and is equal to For the first-order fringe, we take The only thing we now need is the
wavelength of the incident electron wave.

Since the electron has been accelerated from rest across a potential difference of its kinetic
energy is The rest-mass energy of the electron is

We compute its de Broglie wavelength as that of a nonrelativistic electron because its kinetic energy is much
smaller than its rest energy

Solution
The electron’s wavelength is

6.6 • Wave-Particle Duality 277



This is used to obtain the position of the first bright fringe:

Significance
Notice that this is also the angular resolution between two consecutive bright fringes up to about For
example, between the zero-order fringe and the first-order fringe, between the first-order fringe and the
second-order fringe, and so on.

CHECK YOUR UNDERSTANDING 6.14

For the situation described in Example 6.15, find the angular position of the fifth-order bright fringe on the
viewing screen.

The wave-particle dual nature of matter particles and of radiation is a declaration of our inability to describe
physical reality within one unified classical theory because separately neither a classical particle approach nor
a classical wave approach can fully explain the observed phenomena. This limitation of the classical approach
was realized by the year 1928, and a foundation for a new statistical theory, called quantum mechanics, was
put in place by Bohr, Edwin Schrödinger, Werner Heisenberg, and Paul Dirac. Quantum mechanics takes de
Broglie’s idea of matter waves to be the fundamental property of all particles and gives it a statistical
interpretation. According to this interpretation, a wave that is associated with a particle carries information
about the probable positions of the particle and about its other properties. A single particle is seen as a moving
wave packet such as the one shown in Figure 6.25. We can intuitively sense from this example that if a particle
is a wave packet, we will not be able to measure its exact position in the same sense as we cannot pinpoint a
location of a wave packet in a vibrating guitar string. The uncertainty, in measuring the particle’s position
is connected to the uncertainty, in the simultaneous measuring of its linear momentum by Heisenberg’s
uncertainty principle:

Heisenberg’s principle expresses the law of nature that, at the quantum level, our perception is limited. For
example, if we know the exact position of a body (which means that in Equation 6.63) at the same time
we cannot know its momentum, because then the uncertainty in its momentum becomes infinite (because

ℏ in Equation 6.63). The Heisenberg uncertainty principle sets the limit on the precision of

simultaneous measurements of position and momentum of a particle; it shows that the best precision we can
obtain is when we have an equals sign ( ) in Equation 6.63, and we cannot do better than that, even with the
best instruments of the future. Heisenberg’s principle is a consequence of the wave nature of particles.

ℏ 6.63
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Figure 6.25 In this graphic, a particle is shown as a wave packet and its position does not have an exact value.

We routinely use many electronic devices that exploit wave-particle duality without even realizing the
sophistication of the physics underlying their operation. One example of a technology based on the particle
properties of photons and electrons is a charge-coupled device, which is used for light detection in any
instrumentation where high-quality digital data are required, such as in digital cameras or in medical sensors.
An example in which the wave properties of electrons is exploited is an electron microscope.

In 1931, physicist Ernst Ruska—building on the idea that magnetic fields can direct an electron beam just as
lenses can direct a beam of light in an optical microscope—developed the first prototype of the electron
microscope. This development originated the field of electron microscopy. In the transmission electron
microscope (TEM), shown in Figure 6.26, electrons are produced by a hot tungsten element and accelerated by
a potential difference in an electron gun, which gives them up to 400 keV in kinetic energy. After leaving the
electron gun, the electron beam is focused by electromagnetic lenses (a system of condensing lenses) and
transmitted through a specimen sample to be viewed. The image of the sample is reconstructed from the
transmitted electron beam. The magnified image may be viewed either directly on a fluorescent screen or
indirectly by sending it, for example, to a digital camera or a computer monitor. The entire setup consisting of
the electron gun, the lenses, the specimen, and the fluorescent screen are enclosed in a vacuum chamber to
prevent the energy loss from the beam. Resolution of the TEM is limited only by spherical aberration
(discussed in a previous chapter). Modern high-resolution models of a TEM can have resolving power greater
than 0.5 Å and magnifications higher than 50 million times. For comparison, the best resolving power
obtained with light microscopy is currently about 97 nm. A limitation of the TEM is that the samples must be
about 100-nm thick and biological samples require a special preparation involving chemical “fixing” to
stabilize them for ultrathin slicing.
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Figure 6.26 TEM: An electron beam produced by an electron gun is collimated by condenser lenses and passes through a specimen. The

transmitted electrons are projected on a screen and the image is sent to a camera. (credit: modification of work by Dr. Graham Beards)

Such limitations do not appear in the scanning electron microscope (SEM), which was invented by Manfred
von Ardenne in 1937. In an SEM, a typical energy of the electron beam is up to 40 keV and the beam is not
transmitted through a sample but is scattered off its surface. Surface topography of the sample is
reconstructed by analyzing back-scattered electrons, transmitted electrons, and the emitted radiation
produced by electrons interacting with atoms in the sample. The resolving power of an SEM is better than 1
nm, and the magnification can be more than 250 times better than that obtained with a light microscope. The
samples scanned by an SEM can be as large as several centimeters but they must be specially prepared,
depending on electrical properties of the sample.

High magnifications of the TEM and SEM allow us to see individual molecules. High resolving powers of the
TEM and SEM allow us to see fine details, such as those shown in the SEM micrograph of pollen at the
beginning of this chapter (Figure 6.1).

EXAMPLE 6.16

Resolving Power of an Electron Microscope
If a 1.0-pm electron beam of a TEM passes through a circular opening, what is the angle between the
two just-resolvable point sources for this microscope?

Solution
We can directly use a formula for the resolving power, of a microscope (discussed in a previous chapter)
when the wavelength of the incident radiation is and the diameter of the aperture is

Significance
Note that if we used a conventional microscope with a 400-nm light, the resolving power would be only
which means that all of the fine details in the image would be blurred.

CHECK YOUR UNDERSTANDING 6.15
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Suppose that the diameter of the aperture in Example 6.16 is halved. How does it affect the resolving power?
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CHAPTER REVIEW
Key Terms
absorber any object that absorbs radiation
absorption spectrum wavelengths of absorbed

radiation by atoms and molecules
Balmer formula describes the emission spectrum

of a hydrogen atom in the visible-light range
Balmer series spectral lines corresponding to

electron transitions to/from the state of the
hydrogen atom, described by the Balmer formula

blackbody perfect absorber/emitter
blackbody radiation radiation emitted by a

blackbody
Bohr radius of hydrogen radius of the first Bohr’s

orbit
Bohr’s model of the hydrogen atom first quantum

model to explain emission spectra of hydrogen
Brackett series spectral lines corresponding to

electron transitions to/from the state
Compton effect the change in wavelength when an

X-ray is scattered by its interaction with some
materials

Compton shift difference between the wavelengths
of the incident X-ray and the scattered X-ray

Compton wavelength physical constant with the
value

cut-off frequency frequency of incident light
below which the photoelectric effect does not
occur

cut-off wavelength wavelength of incident light
that corresponds to cut-off frequency

Davisson–Germer experiment historically first
electron-diffraction experiment that revealed
electron waves

de Broglie wave matter wave associated with any
object that has mass and momentum

de Broglie’s hypothesis of matter waves particles
of matter can behave like waves

double-slit interference experiment Young’s
double-slit experiment, which shows the
interference of waves

electron microscopy microscopy that uses
electron waves to “see” fine details of nano-size
objects

emission spectrum wavelengths of emitted
radiation by atoms and molecules

emitter any object that emits radiation
energy of a photon quantum of radiant energy,

depends only on a photon’s frequency
energy spectrum of hydrogen set of allowed

discrete energies of an electron in a hydrogen
atom

excited energy states of the H atom energy state
other than the ground state

Fraunhofer lines dark absorption lines in the
continuum solar emission spectrum

ground state energy of the hydrogen atom energy
of an electron in the first Bohr orbit of the
hydrogen atom

group velocity velocity of a wave, energy travels
with the group velocity

Heisenberg uncertainty principle sets the limits
on precision in simultaneous measurements of
momentum and position of a particle

Humphreys series spectral lines corresponding to
electron transitions to/from the state

hydrogen-like atom ionized atom with one
electron remaining and nucleus with charge

inelastic scattering scattering effect where kinetic
energy is not conserved but the total energy is
conserved

ionization energy energy needed to remove an
electron from an atom

ionization limit of the hydrogen atom ionization
energy needed to remove an electron from the
first Bohr orbit

Lyman series spectral lines corresponding to
electron transitions to/from the ground state

nuclear model of the atom heavy positively
charged nucleus at the center is surrounded by
electrons, proposed by Rutherford

Paschen series spectral lines corresponding to
electron transitions to/from the state

Pfund series spectral lines corresponding to
electron transitions to/from the state

photocurrent in a circuit, current that flows when
a photoelectrode is illuminated

photoelectric effect emission of electrons from a
metal surface exposed to electromagnetic
radiation of the proper frequency

photoelectrode in a circuit, an electrode that emits
photoelectrons

photoelectron electron emitted from a metal
surface in the presence of incident radiation

photon particle of light
Planck’s hypothesis of energy quanta energy

exchanges between the radiation and the walls
take place only in the form of discrete energy
quanta

postulates of Bohr’s model three assumptions
that set a frame for Bohr’s model

power intensity energy that passes through a unit
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surface per unit time
propagation vector vector with magnitude

that has the direction of the photon’s linear
momentum

quantized energies discrete energies; not
continuous

quantum number index that enumerates energy
levels

quantum phenomenon in interaction with matter,
photon transfers either all its energy or nothing

quantum state of a Planck’s oscillator any mode
of vibration of Planck’s oscillator, enumerated by
quantum number

reduced Planck’s constant Planck’s constant
divided by

Rutherford’s gold foil experiment first
experiment to demonstrate the existence of the
atomic nucleus

Rydberg constant for hydrogen physical constant
in the Balmer formula

Rydberg formula experimentally found positions
of spectral lines of hydrogen atom

scattering angle angle between the direction of the
scattered beam and the direction of the incident
beam

Stefan–Boltzmann constant physical constant in
Stefan’s law

stopping potential in a circuit, potential difference
that stops photocurrent

wave number magnitude of the propagation vector
wave quantum mechanics theory that explains

the physics of atoms and subatomic particles
wave-particle duality particles can behave as

waves and radiation can behave as particles
work function energy needed to detach

photoelectron from the metal surface
-particle doubly ionized helium atom
-ray beam of -particles (alpha-particles)

β-ray beam of electrons
γ-ray beam of highly energetic photons

Key Equations

Wien’s displacement law

Stefan’s law

Planck’s constant

Energy quantum of radiation

Planck’s blackbody radiation law

Maximum kinetic energy
of a photoelectron

Energy of a photon

Energy balance for photoelectron

Cut-off frequency

Relativistic invariant
energy equation

Energy-momentum relation
for photon

Energy of a photon
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Magnitude of photon’s momentum

Photon’s linear
momentum vector

ℏ

The Compton wavelength
of an electron

The Compton shift

The Balmer formula

The Rydberg formula

Bohr’s first quantization condition ℏ

Bohr’s second quantization condition

Bohr’s radius of hydrogen ℏ

Bohr’s radius of the nth orbit

Ground-state energy value,
ionization limit

Electron’s energy in
the nth orbit

Ground state energy of
hydrogen

The nth orbit of
hydrogen-like ion

The nth energy
of hydrogen-like ion

Energy of a matter wave

The de Broglie wavelength

The frequency-wavelength relation
for matter waves

Heisenberg’s uncertainty principle ℏ

284 6 • Chapter Review

Access for free at openstax.org.



Summary
6.1 Blackbody Radiation

• All bodies radiate energy. The amount of
radiation a body emits depends on its
temperature. The experimental Wien’s
displacement law states that the hotter the body,
the shorter the wavelength corresponding to the
emission peak in the radiation curve. The
experimental Stefan’s law states that the total
power of radiation emitted across the entire
spectrum of wavelengths at a given temperature
is proportional to the fourth power of the Kelvin
temperature of the radiating body.

• Absorption and emission of radiation are
studied within the model of a blackbody. In the
classical approach, the exchange of energy
between radiation and cavity walls is
continuous. The classical approach does not
explain the blackbody radiation curve.

• To explain the blackbody radiation curve,
Planck assumed that the exchange of energy
between radiation and cavity walls takes place
only in discrete quanta of energy. Planck’s
hypothesis of energy quanta led to the
theoretical Planck’s radiation law, which agrees
with the experimental blackbody radiation
curve; it also explains Wien’s and Stefan’s laws.

6.2 Photoelectric Effect

• The photoelectric effect occurs when
photoelectrons are ejected from a metal surface
in response to monochromatic radiation
incident on the surface. It has three
characteristics: (1) it is instantaneous, (2) it
occurs only when the radiation is above a cut-off
frequency, and (3) kinetic energies of
photoelectrons at the surface do not depend of
the intensity of radiation. The photoelectric
effect cannot be explained by classical theory.

• We can explain the photoelectric effect by
assuming that radiation consists of photons
(particles of light). Each photon carries a
quantum of energy. The energy of a photon
depends only on its frequency, which is the
frequency of the radiation. At the surface, the
entire energy of a photon is transferred to one
photoelectron.

• The maximum kinetic energy of a photoelectron
at the metal surface is the difference between
the energy of the incident photon and the work
function of the metal. The work function is the
binding energy of electrons to the metal surface.

Each metal has its own characteristic work
function.

6.3 The Compton Effect

• In the Compton effect, X-rays scattered off some
materials have different wavelengths than the
wavelength of the incident X-rays. This
phenomenon does not have a classical
explanation.

• The Compton effect is explained by assuming
that radiation consists of photons that collide
with weakly bound electrons in the target
material. Both electron and photon are treated
as relativistic particles. Conservation laws of the
total energy and of momentum are obeyed in
collisions.

• Treating the photon as a particle with
momentum that can be transferred to an
electron leads to a theoretical Compton shift
that agrees with the wavelength shift measured
in the experiment. This provides evidence that
radiation consists of photons.

• Compton scattering is an inelastic scattering, in
which scattered radiation has a longer
wavelength than that of incident radiation.

6.4 Bohr’s Model of the Hydrogen Atom

• Positions of absorption and emission lines in the
spectrum of atomic hydrogen are given by the
experimental Rydberg formula. Classical
physics cannot explain the spectrum of atomic
hydrogen.

• The Bohr model of hydrogen was the first model
of atomic structure to correctly explain the
radiation spectra of atomic hydrogen. It was
preceded by the Rutherford nuclear model of
the atom. In Rutherford’s model, an atom
consists of a positively charged point-like
nucleus that contains almost the entire mass of
the atom and of negative electrons that are
located far away from the nucleus.

• Bohr’s model of the hydrogen atom is based on
three postulates: (1) an electron moves around
the nucleus in a circular orbit, (2) an electron’s
angular momentum in the orbit is quantized,
and (3) the change in an electron’s energy as it
makes a quantum jump from one orbit to
another is always accompanied by the emission
or absorption of a photon. Bohr’s model is semi-
classical because it combines the classical
concept of electron orbit (postulate 1) with the
new concept of quantization (postulates 2 and
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3).
• Bohr’s model of the hydrogen atom explains the

emission and absorption spectra of atomic
hydrogen and hydrogen-like ions with low
atomic numbers. It was the first model to
introduce the concept of a quantum number to
describe atomic states and to postulate
quantization of electron orbits in the atom.
Bohr’s model is an important step in the
development of quantum mechanics, which
deals with many-electron atoms.

6.5 De Broglie’s Matter Waves

• De Broglie’s hypothesis of matter waves
postulates that any particle of matter that has
linear momentum is also a wave. The
wavelength of a matter wave associated with a
particle is inversely proportional to the
magnitude of the particle’s linear momentum.
The speed of the matter wave is the speed of the
particle.

• De Broglie’s concept of the electron matter wave
provides a rationale for the quantization of the
electron’s angular momentum in Bohr’s model
of the hydrogen atom.

• In the Davisson–Germer experiment, electrons
are scattered off a crystalline nickel surface.
Diffraction patterns of electron matter waves are
observed. They are the evidence for the
existence of matter waves. Matter waves are
observed in diffraction experiments with

various particles.

6.6 Wave-Particle Duality

• Wave-particle duality exists in nature: Under
some experimental conditions, a particle acts as
a particle; under other experimental conditions,
a particle acts as a wave. Conversely, under
some physical circumstances, electromagnetic
radiation acts as a wave, and under other
physical circumstances, radiation acts as a
beam of photons.

• Modern-era double-slit experiments with
electrons demonstrated conclusively that
electron-diffraction images are formed because
of the wave nature of electrons.

• The wave-particle dual nature of particles and of
radiation has no classical explanation.

• Quantum theory takes the wave property to be
the fundamental property of all particles. A
particle is seen as a moving wave packet. The
wave nature of particles imposes a limitation on
the simultaneous measurement of the particle’s
position and momentum. Heisenberg’s
uncertainty principle sets the limits on
precision in such simultaneous measurements.

• Wave-particle duality is exploited in many
devices, such as charge-couple devices (used in
digital cameras) or in the electron microscopy of
the scanning electron microscope (SEM) and the
transmission electron microscope (TEM).

Conceptual Questions
6.1 Blackbody Radiation

1. Which surface has a higher temperature – the
surface of a yellow star or that of a red star?

2. Describe what you would see when looking at a
body whose temperature is increased from 1000
K to 1,000,000 K.

3. Explain the color changes in a hot body as its
temperature is increased.

4. Speculate as to why UV light causes sunburn,
whereas visible light does not.

5. Two cavity radiators are constructed with walls
made of different metals. At the same
temperature, how would their radiation spectra
differ?

6. Discuss why some bodies appear black, other
bodies appear red, and still other bodies appear
white.

7. If everything radiates electromagnetic energy,
why can we not see objects at room temperature

in a dark room?
8. How much does the power radiated by a

blackbody increase when its temperature (in K)
is tripled?

6.2 Photoelectric Effect

9. For the same monochromatic light source, would
the photoelectric effect occur for all metals?

10. In the interpretation of the photoelectric effect,
how is it known that an electron does not absorb
more than one photon?

11. Explain how you can determine the work
function from a plot of the stopping potential
versus the frequency of the incident radiation in
a photoelectric effect experiment. Can you
determine the value of Planck’s constant from
this plot?

12. Suppose that in the photoelectric-effect
experiment we make a plot of the detected
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current versus the applied potential difference.
What information do we obtain from such a
plot? Can we determine from it the value of
Planck’s constant? Can we determine the work
function of the metal?

13. Speculate how increasing the temperature of a
photoelectrode affects the outcomes of the
photoelectric effect experiment.

14. Which aspects of the photoelectric effect cannot
be explained by classical physics?

15. Is the photoelectric effect a consequence of the
wave character of radiation or is it a
consequence of the particle character of
radiation? Explain briefly.

16. The metals sodium, iron, and molybdenum
have work functions 2.5 eV, 3.9 eV, and 4.2 eV,
respectively. Which of these metals will emit
photoelectrons when illuminated with 400 nm
light?

6.3 The Compton Effect

17. Discuss any similarities and differences
between the photoelectric and the Compton
effects.

18. Which has a greater momentum: an UV photon
or an IR photon?

19. Does changing the intensity of a
monochromatic light beam affect the
momentum of the individual photons in the
beam? Does such a change affect the net
momentum of the beam?

20. Can the Compton effect occur with visible light?
If so, will it be detectable?

21. Is it possible in the Compton experiment to
observe scattered X-rays that have a shorter
wavelength than the incident X-ray radiation?

22. Show that the Compton wavelength has the
dimension of length.

23. At what scattering angle is the wavelength shift
in the Compton effect equal to the Compton
wavelength?

6.4 Bohr’s Model of the Hydrogen Atom

24. Explain why the patterns of bright emission
spectral lines have an identical spectral
position to the pattern of dark absorption
spectral lines for a given gaseous element.

25. Do the various spectral lines of the hydrogen
atom overlap?

26. The Balmer series for hydrogen was discovered
before either the Lyman or the Paschen series.
Why?

27. When the absorption spectrum of hydrogen at
room temperature is analyzed, absorption lines
for the Lyman series are found, but none are
found for the Balmer series. What does this tell
us about the energy state of most hydrogen
atoms at room temperature?

28. Hydrogen accounts for about 75% by mass of
the matter at the surfaces of most stars.
However, the absorption lines of hydrogen are
strongest (of highest intensity) in the spectra of
stars with a surface temperature of about 9000
K. They are weaker in the sun spectrum and are
essentially nonexistent in very hot
(temperatures above 25,000 K) or rather cool
(temperatures below 3500 K) stars. Speculate as
to why surface temperature affects the
hydrogen absorption lines that we observe.

29. Discuss the similarities and differences
between Thomson’s model of the hydrogen
atom and Bohr’s model of the hydrogen atom.

30. Discuss the way in which Thomson’s model is
nonphysical. Support your argument with
experimental evidence.

31. If, in a hydrogen atom, an electron moves to an
orbit with a larger radius, does the energy of the
hydrogen atom increase or decrease?

32. How is the energy conserved when an atom
makes a transition from a higher to a lower
energy state?

33. Suppose an electron in a hydrogen atom makes
a transition from the (n+1)th orbit to the nth
orbit. Is the wavelength of the emitted photon
longer for larger values of n, or for smaller
values of n?

34. Discuss why the allowed energies of the
hydrogen atom are negative.

35. Can a hydrogen atom absorb a photon whose
energy is greater than 13.6 eV?

36. Why can you see through glass but not through
wood?

37. Do gravitational forces have a significant effect
on atomic energy levels?

38. Show that Planck’s constant has the dimensions
of angular momentum.

6.5 De Broglie’s Matter Waves

39. Which type of radiation is most suitable for the
observation of diffraction patterns on
crystalline solids; radio waves, visible light, or
X-rays? Explain.

40. Speculate as to how the diffraction patterns of a
typical crystal would be affected if were
used instead of X-rays.
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41. If an electron and a proton are traveling at the
same speed, which one has the shorter de
Broglie wavelength?

42. If a particle is accelerating, how does this affect
its de Broglie wavelength?

43. Why is the wave-like nature of matter not
observed every day for macroscopic objects?

44. What is the wavelength of a neutron at rest?
Explain.

45. Why does the setup of Davisson–Germer
experiment need to be enclosed in a vacuum
chamber? Discuss what result you expect when
the chamber is not evacuated.

6.6 Wave-Particle Duality

46. Give an example of an experiment in which
light behaves as waves. Give an example of an
experiment in which light behaves as a stream
of photons.

47. Discuss: How does the interference of water
waves differ from the interference of electrons?
How are they analogous?

48. Give at least one argument in support of the
matter-wave hypothesis.

49. Give at least one argument in support of the
particle-nature of radiation.

50. Explain the importance of the Young double-slit
experiment.

51. Does the Heisenberg uncertainty principle
allow a particle to be at rest in a designated
region in space?

52. Can the de Broglie wavelength of a particle be
known exactly?

53. Do the photons of red light produce better
resolution in a microscope than blue light
photons? Explain.

54. Discuss the main difference between an SEM
and a TEM.

Problems
6.1 Blackbody Radiation

55. A 200-W heater emits a 1.5-µm radiation. (a)
What value of the energy quantum does it emit?
(b) Assuming that the specific heat of a 4.0-kg
body is how many of these
photons must be absorbed by the body to
increase its temperature by 2 K? (c) How long
does the heating process in (b) take, assuming
that all radiation emitted by the heater gets
absorbed by the body?

56. A 900-W microwave generator in an oven
generates energy quanta of frequency 2560
MHz. (a) How many energy quanta does it emit
per second? (b) How many energy quanta must
be absorbed by a pasta dish placed in the
radiation cavity to increase its temperature by
45.0 K? Assume that the dish has a mass of 0.5
kg and that its specific heat is
(c) Assume that all energy quanta emitted by the
generator are absorbed by the pasta dish. How
long must we wait until the dish in (b) is ready?

57. (a) For what temperature is the peak of
blackbody radiation spectrum at 400 nm? (b) If
the temperature of a blackbody is 800 K, at what
wavelength does it radiate the most energy?

58. The tungsten elements of incandescent light
bulbs operate at 3200 K. At what wavelength
does the filament radiate maximum energy?

59. Interstellar space is filled with radiation of
wavelength This radiation is considered

to be a remnant of the “big bang.” What is the
corresponding blackbody temperature of this
radiation?

60. The radiant energy from the sun reaches its
maximum at a wavelength of about 500.0 nm.
What is the approximate temperature of the
sun’s surface?

6.2 Photoelectric Effect

61. A photon has energy 20 keV. What are its
frequency and wavelength?

62. The wavelengths of visible light range from
approximately 400 to 750 nm. What is the
corresponding range of photon energies for
visible light?

63. What is the longest wavelength of radiation that
can eject a photoelectron from silver? Is it in the
visible range?

64. What is the longest wavelength of radiation that
can eject a photoelectron from potassium, given
the work function of potassium 2.24 eV? Is it in
the visible range?

65. Estimate the binding energy of electrons in
magnesium, given that the wavelength of 337
nm is the longest wavelength that a photon may
have to eject a photoelectron from magnesium
photoelectrode.

66. The work function for potassium is 2.26 eV.
What is the cutoff frequency when this metal is
used as photoelectrode? What is the stopping
potential when for the emitted electrons when

288 6 • Chapter Review

Access for free at openstax.org.



this photoelectrode is exposed to radiation of
frequency 1200 THz?

67. Estimate the work function of aluminum, given
that the wavelength of 304 nm is the longest
wavelength that a photon may have to eject a
photoelectron from aluminum photoelectrode.

68. What is the maximum kinetic energy of
photoelectrons ejected from sodium by the
incident radiation of wavelength 450 nm?

69. A 120-nm UV radiation illuminates a silver-
plated electrode. What is the maximum kinetic
energy of the ejected photoelectrons?

70. A 400-nm violet light ejects photoelectrons with
a maximum kinetic energy of 0.860 eV from
sodium photoelectrode. What is the work
function of sodium?

71. A 600-nm light falls on a photoelectric surface
and electrons with the maximum kinetic energy
of 0.17 eV are emitted. Determine (a) the work
function and (b) the cutoff frequency of the
surface. (c) What is the stopping potential when
the surface is illuminated with light of
wavelength 400 nm?

72. The cutoff wavelength for the emission of
photoelectrons from a particular surface is 500
nm. Find the maximum kinetic energy of the
ejected photoelectrons when the surface is
illuminated with light of wavelength 600 nm.

73. Find the wavelength of radiation that can eject
2.00-eV electrons from calcium electrode. The
work function for calcium is 2.71 eV. In what
range is this radiation?

74. Find the wavelength of radiation that can eject
0.10-eV electrons from potassium electrode.
The work function for potassium is 2.24 eV. In
what range is this radiation?

75. Find the maximum velocity of photoelectrons
ejected by an 80-nm radiation, if the work
function of photoelectrode is 4.73 eV.

6.3 The Compton Effect

76. What is the momentum of a 589-nm yellow
photon?

77. What is the momentum of a 4-cm microwave
photon?

78. In a beam of white light (wavelengths from 400
to 750 nm), what range of momentum can the
photons have?

79. What is the energy of a photon whose
momentum is ?

80. What is the wavelength of (a) a 12-keV X-ray
photon; (b) a 2.0-MeV -ray photon?

81. Find the momentum and energy of a 1.0-Å

photon.
82. Find the wavelength and energy of a photon

with momentum
83. A -ray photon has a momentum of

Find its wavelength and
energy.

84. (a) Calculate the momentum of a photon.
(b) Find the velocity of an electron with the
same momentum. (c) What is the kinetic energy
of the electron, and how does it compare to that
of the photon?

85. Show that and are consistent
with the relativistic formula

86. Show that the energy E in eV of a photon is given
by where is its
wavelength in meters.

87. For collisions with free electrons, compare the
Compton shift of a photon scattered as an angle
of to that of a photon scattered at

88. X-rays of wavelength 12.5 pm are scattered
from a block of carbon. What are the
wavelengths of photons scattered at (a) (b)

and, (c) ?

6.4 Bohr’s Model of the Hydrogen Atom

89. Calculate the wavelength of the first line in the
Lyman series and show that this line lies in the
ultraviolet part of the spectrum.

90. Calculate the wavelength of the fifth line in the
Lyman series and show that this line lies in the
ultraviolet part of the spectrum.

91. Calculate the energy changes corresponding to
the transitions of the hydrogen atom: (a) from

to (b) from to and (c)
from to ∞

92. Determine the wavelength of the third Balmer
line (transition from to ).

93. What is the frequency of the photon absorbed
when the hydrogen atom makes the transition
from the ground state to the state?

94. When a hydrogen atom is in its ground state,
what are the shortest and longest wavelengths
of the photons it can absorb without being
ionized?

95. When a hydrogen atom is in its third excided
state, what are the shortest and longest
wavelengths of the photons it can emit?

96. What is the longest wavelength that light can
have if it is to be capable of ionizing the
hydrogen atom in its ground state?

97. For an electron in a hydrogen atom in the
state, compute: (a) the angular momentum; (b)
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the kinetic energy; (c) the potential energy; and
(d) the total energy.

98. Find the ionization energy of a hydrogen atom
in the fourth energy state.

99. It has been measured that it required 0.850 eV
to remove an electron from the hydrogen atom.
In what state was the atom before the ionization
happened?

100. What is the radius of a hydrogen atom when
the electron is in the first excited state?

101. Find the shortest wavelength in the Balmer
series. In what part of the spectrum does this
line lie?

102. Show that the entire Paschen series lies in the
infrared part of the spectrum.

103. Do the Balmer series and the Lyman series
overlap? Why? Why not? (Hint: calculate the
shortest Balmer line and the longest Lyman
line.)

104. (a) Which line in the Balmer series is the first
one in the UV part of the spectrum? (b) How
many Balmer lines lie in the visible part of the
spectrum? (c) How many Balmer lines lie in
the UV?

105. A emission line of atomic hydrogen
corresponds to transition between the states

and Find

6.5 De Broglie’s Matter Waves

106. At what velocity will an electron have a
wavelength of 1.00 m?

107. What is the de Broglie wavelength of an
electron travelling at a speed of
?

108. What is the de Broglie wavelength of an
electron that is accelerated from rest through a
potential difference of 20 kV?

109. What is the de Broglie wavelength of a proton
whose kinetic energy is 2.0 MeV? 10.0 MeV?

110. What is the de Broglie wavelength of a 10-kg
football player running at a speed of 8.0 m/s?

111. (a) What is the energy of an electron whose de
Broglie wavelength is that of a photon of yellow
light with wavelength 590 nm? (b) What is the
de Broglie wavelength of an electron whose
energy is that of the photon of yellow light?

112. The de Broglie wavelength of a neutron is 0.01
nm. What is the speed and energy of this
neutron?

113. What is the wavelength of an electron that is
moving at a 3% of the speed of light?

114. At what velocity does a proton have a 6.0-fm
wavelength (about the size of a nucleus)? Give

your answer in units of c.
115. What is the velocity of a 0.400-kg billiard ball if

its wavelength is 7.50 fm?
116. Find the wavelength of a proton that is moving

at 1.00% of the speed of light (when

6.6 Wave-Particle Duality

117. An AM radio transmitter radiates 500 kW at a
frequency of 760 kHz. How many photons per
second does the emitter emit?

118. Find the Lorentz factor and de Broglie’s
wavelength for a 50-GeV electron in a particle
accelerator.

119. Find the Lorentz factor and de Broglie’s
wavelength for a 1.0-TeV proton in a particle
accelerator.

120. What is the kinetic energy of a 0.01-nm
electron in a TEM?

121. If electron is to be diffracted significantly by a
crystal, its wavelength must be about equal to
the spacing, d, of crystalline planes. Assuming

estimate the potential
difference through which an electron must be
accelerated from rest if it is to be diffracted by
these planes.

122. X-rays form ionizing radiation that is
dangerous to living tissue and undetectable to
the human eye. Suppose that a student
researcher working in an X-ray diffraction
laboratory is accidentally exposed to a fatal
dose of radiation. Calculate the temperature
increase of the researcher under the following
conditions: the energy of X-ray photons is 200
keV and the researcher absorbs
photons per each kilogram of body weight
during the exposure. Assume that the specific
heat of the student’s body is

123. Solar wind (radiation) that is incident on the
top of Earth’s atmosphere has an average
intensity of Suppose that you are
building a solar sail that is to propel a small toy
spaceship with a mass of 0.1 kg in the space
between the International Space Station and
the moon. The sail is made from a very light
material, which perfectly reflects the incident
radiation. To assess whether such a project is
feasible, answer the following questions,
assuming that radiation photons are incident
only in normal direction to the sail reflecting
surface. (a) What is the radiation pressure
(force per ) of the radiation falling on the
mirror-like sail? (b) Given the radiation
pressure computed in (a), what will be the
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acceleration of the spaceship when the sail has
of an area of ? (c) Given the
acceleration estimate in (b), how fast will the
spaceship be moving after 24 hours when it
starts from rest?

124. Treat the human body as a blackbody and
determine the percentage increase in the total
power of its radiation when its temperature
increases from 98.6 F to 103 F.

125. Show that Wien’s displacement law results
from Planck’s radiation law. (Hint: substitute

and write Planck’s law in the form
where

Now, for fixed T, find

the position of the maximum in I(x,T) by
solving for x in the equation )

126. Show that Stefan’s law results from Planck’s
radiation law. Hint: To compute the total power
of blackbody radiation emitted across the
entire spectrum of wavelengths at a given
temperature, integrate Planck’s law over the

entire spectrum
∞

Use

the substitution and the tabulated
value of the integral

∞

Additional Problems
127. Determine the power intensity of radiation per

unit wavelength emitted at a wavelength of
500.0 nm by a blackbody at a temperature of
10,000 K.

128. The HCl molecule oscillates at a frequency of
87.0 THz. What is the difference (in eV)
between its adjacent energy levels?

129. A quantum mechanical oscillator vibrates at a
frequency of 250.0 THz. What is the minimum
energy of radiation it can emit?

130. In about 5 billion years, the sun will evolve to a
red giant. Assume that its surface temperature
will decrease to about half its present value of
6000 K, while its present radius of

will increase to
(which is the current Earth-sun distance).
Calculate the ratio of the total power emitted
by the sun in its red giant stage to its present
power.

131. A sodium lamp emits 2.0 W of radiant energy,
most of which has a wavelength of about 589
nm. Estimate the number of photons emitted
per second by the lamp.

132. Photoelectrons are ejected from a
photoelectrode and are detected at a distance
of 2.50 cm away from the photoelectrode. The
work function of the photoelectrode is 2.71 eV
and the incident radiation has a wavelength of
420 nm. How long does it take a photoelectron
to travel to the detector?

133. If the work function of a metal is 3.2 eV, what is
the maximum wavelength that a photon can
have to eject a photoelectron from this metal
surface?

134. The work function of a photoelectric surface is
2.00 eV. What is the maximum speed of the
photoelectrons emitted from this surface
when a 450-nm light falls on it?

135. A 400-nm laser beam is projected onto a
calcium electrode. The power of the laser
beam is 2.00 mW and the work function of
calcium is 2.31 eV. (a) How many
photoelectrons per second are ejected? (b)
What net power is carried away by
photoelectrons?

136. (a) Calculate the number of photoelectrons per
second that are ejected from a 1.00-mm2 area
of sodium metal by a 500-nm radiation with
intensity (the intensity of sunlight
above Earth’s atmosphere). (b) Given the work
function of the metal as 2.28 eV, what power is
carried away by these photoelectrons?

137. A laser with a power output of 2.00 mW at a
400-nm wavelength is used to project a beam
of light onto a calcium photoelectrode. (a) How
many photoelectrons leave the calcium
surface per second? (b) What power is carried
away by ejected photoelectrons, given that the
work function of calcium is 2.31 eV? (c)
Calculate the photocurrent. (d) If the
photoelectrode suddenly becomes electrically
insulated and the setup of two electrodes in
the circuit suddenly starts to act like a 2.00-pF
capacitor, how long will current flow before the
capacitor voltage stops it?
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138. The work function for barium is 2.48 eV. Find
the maximum kinetic energy of the ejected
photoelectrons when the barium surface is
illuminated with: (a) radiation emitted by a
100-kW radio station broadcasting at 800 kHz;
(b) a 633-nm laser light emitted from a
powerful He-Ne laser; and (c) a 434-nm blue
light emitted by a small hydrogen gas
discharge tube.

139. (a) Calculate the wavelength of a photon that
has the same momentum as a proton moving
with 1% of the speed of light in a vacuum. (b)
What is the energy of this photon in MeV? (c)
What is the kinetic energy of the proton in
MeV?

140. (a) Find the momentum of a 100-keV X-ray
photon. (b) Find the velocity of a neutron with
the same momentum. (c) What is the neutron’s
kinetic energy in eV?

141. The momentum of light, as it is for particles, is
exactly reversed when a photon is reflected
straight back from a mirror, assuming
negligible recoil of the mirror. The change in
momentum is twice the photon’s incident
momentum, as it is for the particles. Suppose
that a beam of light has an intensity

and falls on a area of a
mirror and reflects from it. (a) Calculate the
energy reflected in 1.00 s. (b) What is the
momentum imparted to the mirror? (c) Use
Newton’s second law to find the force on the
mirror. (d) Does the assumption of no-recoil
for the mirror seem reasonable?

142. A photon of energy 5.0 keV collides with a
stationary electron and is scattered at an angle
of What is the energy acquired by the
electron in the collision?

143. A 0.75-nm photon is scattered by a stationary
electron. The speed of the electron’s recoil is

(a) Find the wavelength shift of
the photon. (b) Find the scattering angle of the
photon.

144. Find the maximum change in X-ray
wavelength that can occur due to Compton
scattering. Does this change depend on the
wavelength of the incident beam?

145. A photon of wavelength 700 nm is incident on
a hydrogen atom. When this photon is
absorbed, the atom becomes ionized. What is
the lowest possible orbit that the electron
could have occupied before being ionized?

146. What is the maximum kinetic energy of an
electron such that a collision between the
electron and a stationary hydrogen atom in its
ground state is definitely elastic?

147. Singly ionized atomic helium is a
hydrogen-like ion. (a) What is its ground-state
radius? (b) Calculate the energies of its four
lowest energy states. (c) Repeat the
calculations for the ion.

148. A triply ionized atom of beryllium is a
hydrogen-like ion. When is in one of its
excited states, its radius in this nth state is
exactly the same as the radius of the first Bohr
orbit of hydrogen. Find n and compute the
ionization energy for this state of

149. In extreme-temperature environments, such
as those existing in a solar corona, atoms may
be ionized by undergoing collisions with other
atoms. One example of such ionization in the
solar corona is the presence of ions,
detected in the Fraunhofer spectrum. (a) By
what factor do the energies of the ion
scale compare to the energy spectrum of a
hydrogen atom? (b) What is the wavelength of
the first line in the Paschen series of ? (c)
In what part of the spectrum are these lines
located?

150. (a) Calculate the ionization energy for (b)
What is the minimum frequency of a photon
capable of ionizing ?

151. Experiments are performed with ultracold
neutrons having velocities as small as 1.00 m/
s. Find the wavelength of such an ultracold
neutron and its kinetic energy.

152. Find the velocity and kinetic energy of a
6.0-fm neutron. (Rest mass energy of neutron
is

153. The spacing between crystalline planes in the
NaCl crystal is 0.281 nm, as determined by X-
ray diffraction with X-rays of wavelength 0.170
nm. What is the energy of neutrons in the
neutron beam that produces diffraction peaks
at the same locations as the peaks obtained
with the X-rays?

154. What is the wavelength of an electron
accelerated from rest in a 30.0-kV potential
difference?

155. Calculate the velocity of a electron and
a potential difference used to accelerate it
from rest to this velocity.
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156. In a supercollider at CERN, protons are
accelerated to velocities of 0.25c. What are
their wavelengths at this speed? What are their
kinetic energies? If a beam of protons were to
gain its kinetic energy in only one pass
through a potential difference, how high would
this potential difference have to be? (Rest mass
energy of a proton is

157. Find the de Broglie wavelength of an electron
accelerated from rest in an X-ray tube in the
potential difference of 100 keV. (Rest mass
energy of an electron is

158. The cutoff wavelength for the emission of
photoelectrons from a particular surface is
500 nm. Find the maximum kinetic energy of
the ejected photoelectrons when the surface is
illuminated with light of wavelength 450 nm.

159. Compare the wavelength shift of a photon
scattered by a free electron to that of a photon
scattered at the same angle by a free proton.

160. The spectrometer used to measure the
wavelengths of the scattered X-rays in the
Compton experiment is accurate to

What is the minimum
scattering angle for which the X-rays
interacting with the free electrons can be
distinguished from those interacting with the
atoms?

161. Consider a hydrogen-like ion where an
electron is orbiting a nucleus that has charge

Derive the formulas for the energy
of the electron in nth orbit and the orbital

radius
162. Assume that a hydrogen atom exists in the

excited state for before decaying
to the ground state. How many times does the
electron orbit the proton nucleus during this
time? How long does it take Earth to orbit the
sun this many times?

163. An atom can be formed when a negative muon
is captured by a proton. The muon has the
same charge as the electron and a mass 207
times that of the electron. Calculate the
frequency of the photon emitted when this
atom makes the transition from to the

state. Assume that the muon is orbiting a
stationary proton.
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INTRODUCTION

CHAPTER 7
Quantum Mechanics

7.1 Wave Functions

7.2 The Heisenberg Uncertainty Principle

7.3 The Schrӧdinger Equation

7.4 The Quantum Particle in a Box

7.5 The Quantum Harmonic Oscillator

7.6 The Quantum Tunneling of Particles through Potential Barriers

Quantum mechanics is a powerful framework for understanding the motions and
interactions of particles at small scales, such as atoms and molecules. The ideas behind quantum mechanics
often appear quite strange. In many ways, our everyday experience with the macroscopic physical world does
not prepare us for the microscopic world of quantum mechanics. The purpose of this chapter is to introduce
you to this exciting world.

Pictured above is a quantum-computer processor. This device is the “brain” of a quantum computer that
operates at near-absolute zero temperatures. Unlike a digital computer, which encodes information in binary
digits (definite states of either zero or one), a quantum computer encodes information in quantum bits or

Figure 7.1 A D-wave qubit processor: The brain of a quantum computer that encodes information in quantum bits
to perform complex calculations. (credit: modification of work by D-Wave Systems, Inc.)

Chapter Outline



qubits (mixed states of zero and one). Quantum computers are discussed in the first section of this chapter.

7.1 Wave Functions
Learning Objectives
By the end of this section, you will be able to:

• Describe the statistical interpretation of the wave function
• Use the wave function to determine probabilities
• Calculate expectation values of position, momentum, and kinetic energy

In the preceding chapter, we saw that particles act in some cases like particles and in other cases like waves.
But what does it mean for a particle to “act like a wave”? What precisely is “waving”? What rules govern how
this wave changes and propagates? How is the wave function used to make predictions? For example, if the
amplitude of an electron wave is given by a function of position and time, , defined for all x, where
exactly is the electron? The purpose of this chapter is to answer these questions.

Using the Wave Function
A clue to the physical meaning of the wave function is provided by the two-slit interference of
monochromatic light (Figure 7.2). (See also Electromagnetic Waves and Interference.) The wave function of a
light wave is given by E(x,t), and its energy density is given by , where E is the electric field strength. The
energy of an individual photon depends only on the frequency of light, so is proportional to
the number of photons. When light waves from interfere with light waves from at the viewing screen (a
distance D away), an interference pattern is produced (part (a) of the figure). Bright fringes correspond to
points of constructive interference of the light waves, and dark fringes correspond to points of destructive
interference of the light waves (part (b)).

Suppose the screen is initially unexposed to light. If the screen is exposed to very weak light, the interference
pattern appears gradually (Figure 7.2(c), left to right). Individual photon hits on the screen appear as dots. The
dot density is expected to be large at locations where the interference pattern will be, ultimately, the most
intense. In other words, the probability (per unit area) that a single photon will strike a particular spot on the
screen is proportional to the square of the total electric field, at that point. Under the right conditions, the
same interference pattern develops for matter particles, such as electrons.
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Figure 7.2 Two-slit interference of monochromatic light. (a) Schematic of two-slit interference; (b) light interference pattern; (c)

interference pattern built up gradually under low-intensity light (left to right).

INTERACTIVE

Visit this interactive simulation (https://openstax.org/l/21intquawavint) to learn more about quantum wave
interference.

The square of the matter wave in one dimension has a similar interpretation as the square of the electric
field . It gives the probability that a particle will be found at a particular position and time per unit length,
also called the probability density. The probability (P) a particle is found in a narrow interval (x, x + dx) at time
t is therefore

(Later, we define the magnitude squared for the general case of a function with “imaginary parts.”) This
probabilistic interpretation of the wave function is called the Born interpretation. Examples of wave functions
and their squares for a particular time t are given in Figure 7.3.

7.1
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Figure 7.3 Several examples of wave functions and the corresponding square of their wave functions.

If the wave function varies slowly over the interval , the probability a particle is found in the interval is
approximately

Notice that squaring the wave function ensures that the probability is positive. (This is analogous to squaring
the electric field strength—which may be positive or negative—to obtain a positive value of intensity.) However,
if the wave function does not vary slowly, we must integrate:

This probability is just the area under the function between x and . The probability of finding
the particle “somewhere” (the normalization condition) is

For a particle in two dimensions, the integration is over an area and requires a double integral; for a particle in
three dimensions, the integration is over a volume and requires a triple integral. For now, we stick to the
simple one-dimensional case.

EXAMPLE 7.1

Where Is the Ball? (Part I)
A ball is constrained to move along a line inside a tube of length L. The ball is equally likely to be found
anywhere in the tube at some time t. What is the probability of finding the ball in the left half of the tube at that

7.2

7.3

∞ ∞

∞

∞

7.4
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time? (The answer is 50%, of course, but how do we get this answer by using the probabilistic interpretation of
the quantum mechanical wave function?)

Strategy
The first step is to write down the wave function. The ball is equally like to be found anywhere in the box, so
one way to describe the ball with a constant wave function (Figure 7.4). The normalization condition can be
used to find the value of the function and a simple integration over half of the box yields the final answer.

Figure 7.4 Wave function for a ball in a tube of length L.

Solution
The wave function of the ball can be written as where C is a constant, and
otherwise. We can determine the constant C by applying the normalization condition (we set to simplify
the notation):

∞ ∞

∞

∞

This integral can be broken into three parts: (1) negative infinity to zero, (2) zero to L, and (3) L to infinity. The
particle is constrained to be in the tube, so outside the tube and the first and last integrations are zero.
The above equation can therefore be written

The value C does not depend on x and can be taken out of the integral, so we obtain

Integration gives

To determine the probability of finding the ball in the first half of the box we have
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Significance
The probability of finding the ball in the first half of the tube is 50%, as expected. Two observations are
noteworthy. First, this result corresponds to the area under the constant function from to L/2 (the area of
a square left of L/2). Second, this calculation requires an integration of the square of the wave function. A
common mistake in performing such calculations is to forget to square the wave function before integration.

EXAMPLE 7.2

Where Is the Ball? (Part II)
A ball is again constrained to move along a line inside a tube of length L. This time, the ball is found
preferentially in the middle of the tube. One way to represent its wave function is with a simple cosine function
(Figure 7.5). What is the probability of finding the ball in the last one-quarter of the tube?

Figure 7.5 Wave function for a ball in a tube of length L, where the ball is preferentially in the middle of the tube.

Strategy
We use the same strategy as before. In this case, the wave function has two unknown constants: One is
associated with the wavelength of the wave and the other is the amplitude of the wave. We determine the
amplitude by using the boundary conditions of the problem, and we evaluate the wavelength by using the
normalization condition. Integration of the square of the wave function over the last quarter of the tube yields
the final answer. The calculation is simplified by centering our coordinate system on the peak of the wave
function.

Solution
The wave function of the ball can be written

where A is the amplitude of the wave function and is its wave number. Beyond this interval, the
amplitude of the wave function is zero because the ball is confined to the tube. Requiring the wave function to
terminate at the right end of the tube gives

Evaluating the wave function at gives
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This equation is satisfied if the argument of the cosine is an integral multiple of and so on. In
this case, we have

or

Applying the normalization condition gives , so the wave function of the ball is

To determine the probability of finding the ball in the last quarter of the tube, we square the function and
integrate:

Significance
The probability of finding the ball in the last quarter of the tube is 9.1%. The ball has a definite wavelength

. If the tube is of macroscopic length , the momentum of the ball is

This momentum is much too small to be measured by any human instrument.

An Interpretation of the Wave Function
We are now in position to begin to answer the questions posed at the beginning of this section. First, for a
traveling particle described by , what is “waving?” Based on the above discussion, the
answer is a mathematical function that can, among other things, be used to determine where the particle is
likely to be when a position measurement is performed. Second, how is the wave function used to make
predictions? If it is necessary to find the probability that a particle will be found in a certain interval, square
the wave function and integrate over the interval of interest. Soon, you will learn soon that the wave function
can be used to make many other kinds of predictions, as well.

Third, if a matter wave is given by the wave function , where exactly is the particle? Two answers exist:
(1) when the observer is not looking (or the particle is not being otherwise detected), the particle is everywhere

∞ ∞ ; and (2) when the observer is looking (the particle is being detected), the particle “jumps into” a

particular position state with a probability given by —a process called
state reduction or wave function collapse. This answer is called the Copenhagen interpretation of the wave
function, or of quantum mechanics.

To illustrate this interpretation, consider the simple case of a particle that can occupy a small container either
at or (Figure 7.6). In classical physics, we assume the particle is located either at or when the
observer is not looking. However, in quantum mechanics, the particle may exist in a state of indefinite
position—that is, it may be located at and when the observer is not looking. The assumption that a
particle can only have one value of position (when the observer is not looking) is abandoned. Similar
comments can be made of other measurable quantities, such as momentum and energy.
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Figure 7.6 A two-state system of position of a particle.

The bizarre consequences of the Copenhagen interpretation of quantum mechanics are illustrated by a
creative thought experiment first articulated by Erwin Schrödinger (National Geographic, 2013) (Figure 7.7):

“A cat is placed in a steel box along with a Geiger counter, a vial of poison, a hammer, and a radioactive
substance. When the radioactive substance decays, the Geiger detects it and triggers the hammer to release
the poison, which subsequently kills the cat. The radioactive decay is a random [probabilistic] process, and
there is no way to predict when it will happen. Physicists say the atom exists in a state known as a
superposition—both decayed and not decayed at the same time. Until the box is opened, an observer doesn’t
know whether the cat is alive or dead—because the cat’s fate is intrinsically tied to whether or not the atom has
decayed and the cat would [according to the Copenhagen interpretation] be “living and dead ... in equal parts”
until it is observed.”

Figure 7.7 Schrödinger’s cat.

Schrödinger took the absurd implications of this thought experiment (a cat simultaneously dead and alive) as
an argument against the Copenhagen interpretation. However, this interpretation remains the most commonly
taught view of quantum mechanics.

Two-state systems (left and right, atom decays and does not decay, and so on) are often used to illustrate the
principles of quantum mechanics. These systems find many applications in nature, including electron spin
and mixed states of particles, atoms, and even molecules. Two-state systems are also finding application in the
quantum computer, as mentioned in the introduction of this chapter. Unlike a digital computer, which encodes
information in binary digits (zeroes and ones), a quantum computer stores and manipulates data in the form
of quantum bits, or qubits. In general, a qubit is not in a state of zero or one, but rather in a mixed state of zero
and one. If a large number of qubits are placed in the same quantum state, the measurement of an individual
qubit would produce a zero with a probability p, and a one with a probability Many scientists believe
that quantum computers are the future of the computer industry.
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Complex Conjugates
Later in this section, you will see how to use the wave function to describe particles that are “free” or bound by
forces to other particles. The specific form of the wave function depends on the details of the physical system.
A peculiarity of quantum theory is that these functions are usually complex functions. A complex function is
one that contains one or more imaginary numbers . Experimental measurements produce real
(nonimaginary) numbers only, so the above procedure to use the wave function must be slightly modified. In
general, the probability that a particle is found in the narrow interval (x, x + dx) at time t is given by

where is the complex conjugate of the wave function. The complex conjugate of a function is obtaining
by replacing every occurrence of in that function with . This procedure eliminates complex
numbers in all predictions because the product is always a real number.

CHECK YOUR UNDERSTANDING 7.1

If , what is the product ?

Consider the motion of a free particle that moves along the x-direction. As the name suggests, a free particle
experiences no forces and so moves with a constant velocity. As we will see in a later section of this chapter, a
formal quantum mechanical treatment of a free particle indicates that its wave function has real and complex
parts. In particular, the wave function is given by

where A is the amplitude, k is the wave number, and is the angular frequency. Using Euler’s formula,
this equation can be written in the form

where is the phase angle. If the wave function varies slowly over the interval the probability of finding
the particle in that interval is

If A has real and complex parts , where a and b are real constants), then

Notice that the complex numbers have vanished. Thus,

is a real quantity. The interpretation of as a probability density ensures that the predictions of
quantum mechanics can be checked in the “real world.”

CHECK YOUR UNDERSTANDING 7.2

Suppose that a particle with energy E is moving along the x-axis and is confined in the region between 0 and L.
One possible wave function is

ℏ

Determine the normalization constant.

7.5
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Expectation Values
In classical mechanics, the solution to an equation of motion is a function of a measurable quantity, such as
x(t), where x is the position and t is the time. Note that the particle has one value of position for any time t. In
quantum mechanics, however, the solution to an equation of motion is a wave function, The particle
has many values of position for any time t, and only the probability density of finding the particle, ,
can be known. The average value of position for a large number of particles with the same wave function is
expected to be

This is called the expectation value of the position. It is usually written

where the x is sandwiched between the wave functions. The reason for this will become apparent soon.
Formally, x is called the position operator.

At this point, it is important to stress that a wave function can be written in terms of other quantities as well,
such as velocity (v), momentum (p), and kinetic energy (K). The expectation value of momentum, for example,
can be written

Where dp is used instead of dx to indicate an infinitesimal interval in momentum. In some cases, we know the
wave function in position, but seek the expectation of momentum. The procedure for doing this is

where the quantity in parentheses, sandwiched between the wave functions, is called the momentum
operator in the x-direction. [The momentum operator in Equation 7.9 is said to be the position-space
representation of the momentum operator.] The momentum operator must act (operate) on the wave function
to the right, and then the result must be multiplied by the complex conjugate of the wave function on the left,
before integration. The momentum operator in the x-direction is sometimes denoted

Momentum operators for the y- and z-directions are defined similarly. This operator and many others are
derived in a more advanced course in modern physics. In some cases, this derivation is relatively simple. For
example, the kinetic energy operator is just

∞

∞

∞

∞

7.6

∞

∞

7.7

∞

∞

7.8

∞

∞

ℏ 7.9

ℏ 7.10
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Thus, if we seek an expectation value of kinetic energy of a particle in one dimension, two successive ordinary
derivatives of the wave function are required before integration.

Expectation-value calculations are often simplified by exploiting the symmetry of wave functions. Symmetric
wave functions can be even or odd. An even function is a function that satisfies

In contrast, an odd function is a function that satisfies

An example of even and odd functions is shown in Figure 7.8. An even function is symmetric about the y-axis.
This function is produced by reflecting for x > 0 about the vertical y-axis. By comparison, an odd function
is generated by reflecting the function about the y-axis and then about the x-axis. (An odd function is also
referred to as an anti-symmetric function.)

Figure 7.8 Examples of even and odd wave functions.

In general, an even function times an even function produces an even function. A simple example of an even

function is the product (even times even is even). Similarly, an odd function times an odd function
produces an even function, such as x sin x (odd times odd is even). However, an odd function times an even

function produces an odd function, such as (odd times even is odd). The integral over all space of an odd
function is zero, because the total area of the function above the x-axis cancels the (negative) area below it. As
the next example shows, this property of odd functions is very useful.

EXAMPLE 7.3

Expectation Value (Part I)
The normalized wave function of a particle is

Find the expectation value of position.

Strategy
Substitute the wave function into Equation 7.7 and evaluate. The position operator introduces a multiplicative
factor only, so the position operator need not be “sandwiched.”

Solution
First multiply, then integrate:

ℏ ℏ 7.11

7.12

7.13
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∞

∞
 

∞

∞
 

∞

∞

Significance

The function in the integrand is odd since it is the product of an odd function (x) and an even
function . The integral vanishes because the total area of the function about the x-axis cancels the
(negative) area below it. The result is not surprising since the probability density function is
symmetric about .

EXAMPLE 7.4

Expectation Value (Part II)
The time-dependent wave function of a particle confined to a region between 0 and L is

where is angular frequency and E is the energy of the particle. (Note: The function varies as a sine because of
the limits (0 to L). When the sine factor is zero and the wave function is zero, consistent with the
boundary conditions.) Calculate the expectation values of position, momentum, and kinetic energy.

Strategy
We must first normalize the wave function to find A. Then we use the operators to calculate the expectation
values.

Solution
Computation of the normalization constant:

The expectation value of position is

The expectation value of momentum in the x-direction also requires an integral. To set this integral up, the
associated operator must— by rule—act to the right on the wave function :

ℏ ℏ  

Therefore, the expectation value of momentum is

The function in the integral is a sine function with a wavelength equal to the width of the well, L—an odd
function about . As a result, the integral vanishes.

The expectation value of kinetic energy in the x-direction requires the associated operator to act on the wave
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function:

ℏ ℏ ℏ

Thus, the expectation value of the kinetic energy is

 

Significance
The average position of a large number of particles in this state is L/2. The average momentum of these
particles is zero because a given particle is equally likely to be moving right or left. However, the particle is not
at rest because its average kinetic energy is not zero. Finally, the probability density is

 

This probability density is largest at location L/2 and is zero at and at Note that these conclusions
do not depend explicitly on time.

CHECK YOUR UNDERSTANDING 7.3

For the particle in the above example, find the probability of locating it between positions 0 and L/4

Quantum mechanics makes many surprising predictions. However, in 1920, Niels Bohr (founder of the Niels
Bohr Institute in Copenhagen, from which we get the term “Copenhagen interpretation”) asserted that the
predictions of quantum mechanics and classical mechanics must agree for all macroscopic systems, such as
orbiting planets, bouncing balls, rocking chairs, and springs. This correspondence principle is now generally
accepted. It suggests the rules of classical mechanics are an approximation of the rules of quantum mechanics
for systems with very large energies. Quantum mechanics describes both the microscopic and macroscopic
world, but classical mechanics describes only the latter.

7.2 The Heisenberg Uncertainty Principle
Learning Objectives
By the end of this section, you will be able to:

• Describe the physical meaning of the position-momentum uncertainty relation
• Explain the origins of the uncertainty principle in quantum theory
• Describe the physical meaning of the energy-time uncertainty relation

Heisenberg’s uncertainty principle is a key principle in quantum mechanics. Very roughly, it states that if we
know everything about where a particle is located (the uncertainty of position is small), we know nothing about
its momentum (the uncertainty of momentum is large), and vice versa. Versions of the uncertainty principle
also exist for other quantities as well, such as energy and time. We discuss the momentum-position and
energy-time uncertainty principles separately.
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Momentum and Position
To illustrate the momentum-position uncertainty principle, consider a free particle that moves along the
x-direction. The particle moves with a constant velocity u and momentum . According to de Broglie’s
relations, ℏ and ℏ . As discussed in the previous section, the wave function for this particle is

given by

and the probability density
 

is uniform and independent of time. The particle is equally likely

to be found anywhere along the x-axis but has definite values of wavelength and wave number, and therefore
momentum. The uncertainty of position is infinite (we are completely uncertain about position) and the
uncertainty of the momentum is zero (we are completely certain about momentum). This account of a free
particle is consistent with Heisenberg’s uncertainty principle.

Similar statements can be made of localized particles. In quantum theory, a localized particle is modeled by a
linear superposition of free-particle (or plane-wave) states called a wave packet. An example of a wave packet
is shown in Figure 7.9. A wave packet contains many wavelengths and therefore by de Broglie’s relations many
momenta—possible in quantum mechanics! This particle also has many values of position, although the
particle is confined mostly to the interval . The particle can be better localized can be decreased) if
more plane-wave states of different wavelengths or momenta are added together in the right way is
increased). According to Heisenberg, these uncertainties obey the following relation.

This relation expresses Heisenberg’s uncertainty principle. It places limits on what we can know about a
particle from simultaneous measurements of position and momentum. If is large, is small, and vice
versa. Equation 7.15 can be derived in a more advanced course in modern physics. Reflecting on this relation
in his work The Physical Principles of the Quantum Theory, Heisenberg wrote “Any use of the words ‘position’
and ‘velocity’ with accuracy exceeding that given by [the relation] is just as meaningless as the use of words
whose sense is not defined.”

Figure 7.9 Adding together several plane waves of different wavelengths can produce a wave that is relatively localized.

                    7.14

The Heisenberg Uncertainty Principle

The product of the uncertainty in position of a particle and the uncertainty in its momentum can never be
less than one-half of the reduced Planck constant:

  ℏ 7.15
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Note that the uncertainty principle has nothing to do with the precision of an experimental apparatus. Even for
perfect measuring devices, these uncertainties would remain because they originate in the wave-like nature of
matter. The precise value of the product depends on the specific form of the wave function.
Interestingly, the Gaussian function (or bell-curve distribution) gives the minimum value of the uncertainty
product:   ℏ

EXAMPLE 7.5

The Uncertainty Principle Large and Small
Determine the minimum uncertainties in the positions of the following objects if their speeds are known with a
precision of : (a) an electron and (b) a bowling ball of mass 6.0 kg.

Strategy
Given the uncertainty in speed , we have to first determine the uncertainty in momentum

  and then invert Equation 7.15 to find the uncertainty in position ℏ .

Solution

a. For the electron:
 

ℏ

 

b. For the bowling ball:
 

ℏ

 

Significance
Unlike the position uncertainty for the electron, the position uncertainty for the bowling ball is immeasurably
small. Planck’s constant is very small, so the limitations imposed by the uncertainty principle are not
noticeable in macroscopic systems such as a bowling ball.

EXAMPLE 7.6

Uncertainty and the Hydrogen Atom
Estimate the ground-state energy of a hydrogen atom using Heisenberg’s uncertainty principle. (Hint:
According to early experiments, the size of a hydrogen atom is approximately 0.1 nm.)

Strategy
An electron bound to a hydrogen atom can be modeled by a particle bound to a one-dimensional box of length

The ground-state wave function of this system is a half wave, like that given in Example 7.1. This
is the largest wavelength that can “fit” in the box, so the wave function corresponds to the lowest energy state.
Note that this function is very similar in shape to a Gaussian (bell curve) function. We can take the average
energy of a particle described by this function (E) as a good estimate of the ground state energy . This
average energy of a particle is related to its average of the momentum squared, which is related to its
momentum uncertainty.

Solution
To solve this problem, we must be specific about what is meant by “uncertainty of position” and “uncertainty
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of momentum.” We identify the uncertainty of position with the standard deviation of position , and
the uncertainty of momentum with the standard deviation of momentum . For the Gaussian function,
the uncertainty product is

ℏ

where

The particle is equally likely to be moving left as moving right, so . Also, the uncertainty of position is
comparable to the size of the box, so The estimated ground state energy is therefore

ℏ ℏ ℏ

Multiplying numerator and denominator by gives

ℏ

Significance
Based on early estimates of the size of a hydrogen atom and the uncertainty principle, the ground-state energy
of a hydrogen atom is in the eV range. The ionization energy of an electron in the ground-state energy is
approximately 10 eV, so this prediction is roughly confirmed. (Note: The product ℏ is often a useful value in

performing calculations in quantum mechanics.)

Energy and Time
Another kind of uncertainty principle concerns uncertainties in simultaneous measurements of the energy of
a quantum state and its lifetime,

where is the uncertainty in the energy measurement and is the uncertainty in the lifetime
measurement. The energy-time uncertainty principle does not result from a relation of the type expressed
by Equation 7.15 for technical reasons beyond this discussion. Nevertheless, the general meaning of the
energy-time principle is that a quantum state that exists for only a short time cannot have a definite energy.
The reason is that the frequency of a state is inversely proportional to time and the frequency connects with
the energy of the state, so to measure the energy with good precision, the state must be observed for many
cycles.

To illustrate, consider the excited states of an atom. The finite lifetimes of these states can be deduced from the
shapes of spectral lines observed in atomic emission spectra. Each time an excited state decays, the emitted
energy is slightly different and, therefore, the emission line is characterized by a distribution of spectral
frequencies (or wavelengths) of the emitted photons. As a result, all spectral lines are characterized by spectral
widths. The average energy of the emitted photon corresponds to the theoretical energy of the excited state
and gives the spectral location of the peak of the emission line. Short-lived states have broad spectral widths
and long-lived states have narrow spectral widths.

ℏ
7.16
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EXAMPLE 7.7

Atomic Transitions
An atom typically exists in an excited state for about . Estimate the uncertainty   in the

frequency of emitted photons when an atom makes a transition from an excited state with the simultaneous
emission of a photon with an average frequency of . Is the emitted radiation
monochromatic?

Strategy

We invert Equation 7.16 to obtain the energy uncertainty ℏ and combine it with the photon energy

  to obtain   . To estimate whether or not the emission is monochromatic, we evaluate .

Solution

The spread in photon energies is     . Therefore,

ℏ ℏ

Significance
Because the emitted photons have their frequencies within percent of the average frequency, the
emitted radiation can be considered monochromatic.

CHECK YOUR UNDERSTANDING 7.4

A sodium atom makes a transition from the first excited state to the ground state, emitting a 589.0-nm photon
with energy 2.105 eV. If the lifetime of this excited state is , what is the uncertainty in energy of
this excited state? What is the width of the corresponding spectral line?

7.3 The Schrӧdinger Equation
Learning Objectives
By the end of this section, you will be able to:

• Describe the role Schrӧdinger’s equation plays in quantum mechanics
• Explain the difference between time-dependent and -independent Schrӧdinger’s equations
• Interpret the solutions of Schrӧdinger’s equation

In the preceding two sections, we described how to use a quantum mechanical wave function and discussed
Heisenberg’s uncertainty principle. In this section, we present a complete and formal theory of quantum
mechanics that can be used to make predictions. In developing this theory, it is helpful to review the wave
theory of light. For a light wave, the electric field E(x,t) obeys the relation

where c is the speed of light and the symbol represents a partial derivative. (Recall from Oscillations that a
partial derivative is closely related to an ordinary derivative, but involves functions of more than one variable.
When taking the partial derivative of a function by a certain variable, all other variables are held constant.) A
light wave consists of a very large number of photons, so the quantity can interpreted as a probability
density of finding a single photon at a particular point in space (for example, on a viewing screen).

There are many solutions to this equation. One solution of particular importance is

7.17
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where A is the amplitude of the electric field, k is the wave number, and is the angular frequency. Combing
this equation with Equation 7.17 gives

According to de Broglie’s equations, we have ℏ and ℏ . Substituting these equations in Equation

7.19 gives

or

Therefore, according to Einstein’s general energy-momentum equation (Equation 5.11), Equation 7.17
describes a particle with a zero rest mass. This is consistent with our knowledge of a photon.

This process can be reversed. We can begin with the energy-momentum equation of a particle and then ask
what wave equation corresponds to it. The energy-momentum equation of a nonrelativistic particle in one
dimension is

where p is the momentum, m is the mass, and U is the potential energy of the particle. The wave equation that
goes with it turns out to be a key equation in quantum mechanics, called Schrӧdinger’s time-dependent
equation.

As described in Potential Energy and Conservation of Energy, the force on the particle described by this
equation is given by

This equation plays a role in quantum mechanics similar to Newton’s second law in classical mechanics. Once
the potential energy of a particle is specified—or, equivalently, once the force on the particle is specified—we
can solve this differential equation for the wave function. The solution to Newton’s second law equation (also a
differential equation) in one dimension is a function x(t) that specifies where an object is at any time t. The
solution to Schrӧdinger’s time-dependent equation provides a tool—the wave function—that can be used to
determine where the particle is likely to be. This equation can be also written in two or three dimensions.
Solving Schrӧdinger’s time-dependent equation often requires the aid of a computer.

Consider the special case of a free particle. A free particle experiences no force Based on Equation
7.24, this requires only that

For simplicity, we set . Schrӧdinger’s equation then reduces to

7.18

7.19

7.20

7.21

7.22

The Schrӧdinger Time-Dependent Equation

The equation describing the energy and momentum of a wave function is known as the Schrӧdinger
equation:

ℏ
ℏ 7.23

7.24

7.25
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A valid solution to this equation is

Not surprisingly, this solution contains an imaginary number because the differential equation
itself contains an imaginary number. As stressed before, however, quantum-mechanical predictions depend
only on , which yields completely real values. Notice that the real plane-wave solutions,

and do not obey Schrödinger’s equation. The temptation
to think that a wave function can be seen, touched, and felt in nature is eliminated by the appearance of an
imaginary number. In Schrӧdinger’s theory of quantum mechanics, the wave function is merely a tool for
calculating things.

If the potential energy function (U) does not depend on time, it is possible to show that

satisfies Schrӧdinger’s time-dependent equation, where is a time-independent function and is a
space-independent function. In other words, the wave function is separable into two parts: a space-only part
and a time-only part. The factor is sometimes referred to as a time-modulation factor since it modifies
the space-only function. According to de Broglie, the energy of a matter wave is given by ℏ , where E is

its total energy. Thus, the above equation can also be written as

Any linear combination of such states (mixed state of energy or momentum) is also valid solution to this
equation. Such states can, for example, describe a localized particle (see Figure 7.9)

CHECK YOUR UNDERSTANDING 7.5

A particle with mass m is moving along the x-axis in a potential given by the potential energy function
. Compute the product Express your answer in terms of the time-

independent wave function,

Combining Equation 7.23 and Equation 7.28, Schrödinger’s time-dependent equation reduces to

where E is the total energy of the particle (a real number). This equation is called Schrӧdinger’s time-
independent equation. Notice that we use “big psi” for the time-dependent wave function and “little psi”

for the time-independent wave function. The wave-function solution to this equation must be multiplied
by the time-modulation factor to obtain the time-dependent wave function.

In the next sections, we solve Schrӧdinger’s time-independent equation for three cases: a quantum particle in
a box, a simple harmonic oscillator, and a quantum barrier. These cases provide important lessons that can be
used to solve more complicated systems. The time-independent wave function solutions must satisfy
three conditions:

• must be a continuous function.
• The first derivative of with respect to space, , must be continuous, unless ∞ .

• must not diverge (“blow up”) at ∞

ℏ
ℏ 7.26

7.27

7.28

ℏ 7.29

ℏ
7.30
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The first condition avoids sudden jumps or gaps in the wave function. The second condition requires the wave
function to be smooth at all points, except in special cases. (In a more advanced course on quantum
mechanics, for example, potential spikes of infinite depth and height are used to model solids). The third
condition requires the wave function be normalizable. This third condition follows from Born’s interpretation
of quantum mechanics. It ensures that is a finite number so we can use it to calculate probabilities.

CHECK YOUR UNDERSTANDING 7.6

Which of the following wave functions is a valid wave-function solution for Schrӧdinger’s equation?

7.4 The Quantum Particle in a Box
Learning Objectives
By the end of this section, you will be able to:

• Describe how to set up a boundary-value problem for the stationary Schrӧdinger equation
• Explain why the energy of a quantum particle in a box is quantized
• Describe the physical meaning of stationary solutions to Schrӧdinger’s equation and the connection of these

solutions with time-dependent quantum states
• Explain the physical meaning of Bohr’s correspondence principle

In this section, we apply Schrӧdinger’s equation to a particle bound to a one-dimensional box. This special
case provides lessons for understanding quantum mechanics in more complex systems. The energy of the
particle is quantized as a consequence of a standing wave condition inside the box.

Consider a particle of mass that is allowed to move only along the x-direction and its motion is confined to
the region between hard and rigid walls located at and at (Figure 7.10). Between the walls, the
particle moves freely. This physical situation is called the infinite square well, described by the potential
energy function

Combining this equation with Schrӧdinger’s time-independent wave equation gives

where E is the total energy of the particle. What types of solutions do we expect? The energy of the particle is a
positive number, so if the value of the wave function is positive (right side of the equation), the curvature of the
wave function is negative, or concave down (left side of the equation). Similarly, if the value of the wave
function is negative (right side of the equation), the curvature of the wave function is positive or concave up
(left side of equation). This condition is met by an oscillating wave function, such as a sine or cosine wave.
Since these waves are confined to the box, we envision standing waves with fixed endpoints at and

.

∞ 7.31

ℏ
7.32
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Figure 7.10 The potential energy function that confines the particle in a one-dimensional box.

Solutions to this equation have a probabilistic interpretation. In particular, the square represents
the probability density of finding the particle at a particular location x. This function must be integrated to
determine the probability of finding the particle in some interval of space. We are therefore looking for a
normalizable solution that satisfies the following normalization condition:

The walls are rigid and impenetrable, which means that the particle is never found beyond the wall.
Mathematically, this means that the solution must vanish at the walls:

We expect oscillating solutions, so the most general solution to this equation is

where k is the wave number, and and are constants. Applying the boundary condition expressed by
Equation 7.34 gives

Because we have , the solution must be

If is zero, for all values of x and the normalization condition, Equation 7.33, cannot be satisfied.
Assuming , Equation 7.34 for then gives

We discard the solution because for this quantum number would be zero everywhere—an un-
normalizable and therefore unphysical solution. Substituting Equation 7.37 into Equation 7.32 gives

Computing these derivatives leads to

According to de Broglie, ℏ so this expression implies that the total energy is equal to the kinetic energy,

consistent with our assumption that the “particle moves freely.” Combining the results of Equation 7.38 and
Equation 7.40 gives

7.33

7.34

7.35

7.36

7.37

7.38

ℏ
7.39

ℏ
7.40
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Strange! A particle bound to a one-dimensional box can only have certain discrete (quantized) values of
energy. Further, the particle cannot have a zero kinetic energy—it is impossible for a particle bound to a box to
be “at rest.”

To evaluate the allowed wave functions that correspond to these energies, we must find the normalization
constant . We impose the normalization condition Equation 7.33 on the wave function

Hence, the wave functions that correspond to the energy values given in Equation 7.41 are

For the lowest energy state or ground state energy, we have

All other energy states can be expressed as

The index n is called the energy quantum number or principal quantum number. The state for is the
first excited state, the state for is the second excited state, and so on. The first three quantum states (for

of a particle in a box are shown in Figure 7.11.

The wave functions in Equation 7.45 are sometimes referred to as the “states of definite energy.” Particles in
these states are said to occupy energy levels, which are represented by the horizontal lines in Figure 7.11.
Energy levels are analogous to rungs of a ladder that the particle can “climb” as it gains or loses energy.

The wave functions in Equation 7.45 are also called stationary states and standing wave states. These
functions are “stationary,” because their probability density functions, , do not vary in time, and
“standing waves” because their real and imaginary parts oscillate up and down like a standing wave—like a
rope waving between two children on a playground. Stationary states are states of definite energy [Equation
7.45], but linear combinations of these states, such as (also solutions to Schrӧdinger’s
equation) are states of mixed energy.

ℏ
7.41

7.42

7.43

ℏ
7.44

7.45
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Figure 7.11 The first three quantum states of a quantum particle in a box for principal quantum numbers : (a) standing

wave solutions and (b) allowed energy states.

Energy quantization is a consequence of the boundary conditions. If the particle is not confined to a box but
wanders freely, the allowed energies are continuous. However, in this case, only certain energies

…) are allowed. The energy difference between adjacent energy levels is given by

Conservation of energy demands that if the energy of the system changes, the energy difference is carried in
some other form of energy. For the special case of a charged particle confined to a small volume (for example,
in an atom), energy changes are often carried away by photons. The frequencies of the emitted photons give us
information about the energy differences (spacings) of the system and the volume of containment—the size of
the “box” [see Equation 7.44].

EXAMPLE 7.8

A Simple Model of the Nucleus
Suppose a proton is confined to a box of width (a typical nuclear radius). What are the
energies of the ground and the first excited states? If the proton makes a transition from the first excited state
to the ground state, what are the energy and the frequency of the emitted photon?

Strategy
If we assume that the proton confined in the nucleus can be modeled as a quantum particle in a box, all we
need to do is to use Equation 7.41 to find its energies and . The mass of a proton is

The emitted photon carries away the energy difference We can use the
relation to find its frequency f.

Solution
The ground state:

ℏ

7.46
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The first excited state: .

The energy of the emitted photon is .

The frequency of the emitted photon is

Significance
This is the typical frequency of a gamma ray emitted by a nucleus. The energy of this photon is about 10
million times greater than that of a visible light photon.

The expectation value of the position for a particle in a box is given by

We can also find the expectation value of the momentum or average momentum of a large number of particles
in a given state:

Thus, for a particle in a state of definite energy, the average position is in the middle of the box and the average
momentum of the particle is zero—as it would also be for a classical particle. Note that while the minimum
energy of a classical particle can be zero (the particle can be at rest in the middle of the box), the minimum
energy of a quantum particle is nonzero and given by Equation 7.44. The average particle energy in the nth
quantum state—its expectation value of energy—is

The result is not surprising because the standing wave state is a state of definite energy. Any energy
measurement of this system must return a value equal to one of these allowed energies.

Our analysis of the quantum particle in a box would not be complete without discussing Bohr’s
correspondence principle. This principle states that for large quantum numbers, the laws of quantum physics
must give identical results as the laws of classical physics. To illustrate how this principle works for a quantum
particle in a box, we plot the probability density distribution

for finding the particle around location x between the walls when the particle is in quantum state . Figure
7.12 shows these probability distributions for the ground state, for the first excited state, and for a highly
excited state that corresponds to a large quantum number. We see from these plots that when a quantum
particle is in the ground state, it is most likely to be found around the middle of the box, where the probability

7.47
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distribution has the largest value. This is not so when the particle is in the first excited state because now the
probability distribution has the zero value in the middle of the box, so there is no chance of finding the particle
there. When a quantum particle is in the first excited state, the probability distribution has two maxima, and
the best chance of finding the particle is at positions close to the locations of these maxima. This quantum
picture is unlike the classical picture.

Figure 7.12 The probability density distribution for a quantum particle in a box for: (a) the ground state, ; (b) the first

excited state, ; and, (c) the nineteenth excited state, .

The probability density of finding a classical particle between x and depends on how much time the
particle spends in this region. Assuming that its speed u is constant, this time is which is also
constant for any location between the walls. Therefore, the probability density of finding the classical particle
at x is uniform throughout the box, and there is no preferable location for finding a classical particle. This
classical picture is matched in the limit of large quantum numbers. For example, when a quantum particle is
in a highly excited state, shown in Figure 7.12, the probability density is characterized by rapid fluctuations
and then the probability of finding the quantum particle in the interval does not depend on where this
interval is located between the walls.

EXAMPLE 7.9

A Classical Particle in a Box
A small 0.40-kg cart is moving back and forth along an air track between two bumpers located 2.0 m apart. We
assume no friction; collisions with the bumpers are perfectly elastic so that between the bumpers, the car
maintains a constant speed of 0.50 m/s. Treating the cart as a quantum particle, estimate the value of the
principal quantum number that corresponds to its classical energy.

Strategy
We find the kinetic energy K of the cart and its ground state energy as though it were a quantum particle.
The energy of the cart is completely kinetic, so (Equation 7.45). Solving for n gives .

Solution
The kinetic energy of the cart is
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The ground state of the cart, treated as a quantum particle, is

ℏ

Therefore, .

Significance
We see from this example that the energy of a classical system is characterized by a very large quantum
number. Bohr’s correspondence principle concerns this kind of situation. We can apply the formalism of
quantum mechanics to any kind of system, quantum or classical, and the results are correct in each case. In
the limit of high quantum numbers, there is no advantage in using quantum formalism because we can obtain
the same results with the less complicated formalism of classical mechanics. However, we cannot apply
classical formalism to a quantum system in a low-number energy state.

CHECK YOUR UNDERSTANDING 7.7

(a) Consider an infinite square well with wall boundaries and . What is the probability of finding a
quantum particle in its ground state somewhere between and ? (b) Repeat question (a) for a
classical particle.

Having found the stationary states and the energies by solving the time-independent Schrӧdinger
equation Equation 7.32, we use Equation 7.28 to write wave functions that are solutions of the time-
dependent Schrӧdinger’s equation given by Equation 7.23. For a particle in a box this gives

where the energies are given by Equation 7.41.

The quantum particle in a box model has practical applications in a relatively newly emerged field of
optoelectronics, which deals with devices that convert electrical signals into optical signals. This model also
deals with nanoscale physical phenomena, such as a nanoparticle trapped in a low electric potential bounded
by high-potential barriers.

7.5 The Quantum Harmonic Oscillator
Learning Objectives
By the end of this section, you will be able to:

• Describe the model of the quantum harmonic oscillator
• Identify differences between the classical and quantum models of the harmonic oscillator
• Explain physical situations where the classical and the quantum models coincide

Oscillations are found throughout nature, in such things as electromagnetic waves, vibrating molecules, and
the gentle back-and-forth sway of a tree branch. In previous chapters, we used Newtonian mechanics to study
macroscopic oscillations, such as a block on a spring and a simple pendulum. In this chapter, we begin to study
oscillating systems using quantum mechanics. We begin with a review of the classic harmonic oscillator.

The Classic Harmonic Oscillator
A simple harmonic oscillator is a particle or system that undergoes harmonic motion about an equilibrium
position, such as an object with mass vibrating on a spring. In this section, we consider oscillations in one-
dimension only. Suppose a mass moves back-and-forth along the

ℏ 7.51
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x-direction about the equilibrium position, . In classical mechanics, the particle moves in response to a
linear restoring force given by where x is the displacement of the particle from its equilibrium
position. The motion takes place between two turning points, , where A denotes the amplitude of the
motion. The position of the object varies periodically in time with angular frequency which
depends on the mass m of the oscillator and on the force constant k of the net force, and can be written as

The total energy E of an oscillator is the sum of its kinetic energy and the elastic potential energy of
the force  

At turning points , the speed of the oscillator is zero; therefore, at these points, the energy of oscillation

is solely in the form of potential energy     . The plot of the potential energy U(x) of the oscillator

versus its position x is a parabola (Figure 7.13). The potential-energy function is a quadratic function of x,
measured with respect to the equilibrium position. On the same graph, we also plot the total energy E of the
oscillator, as a horizontal line that intercepts the parabola at . Then the kinetic energy K is represented
as the vertical distance between the line of total energy and the potential energy parabola.

Figure 7.13 The potential energy well of a classical harmonic oscillator: The motion is confined between turning points at and at

. The energy of oscillations is

In this plot, the motion of a classical oscillator is confined to the region where its kinetic energy is nonnegative,
which is what the energy relation Equation 7.53 says. Physically, it means that a classical oscillator can never
be found beyond its turning points, and its energy depends only on how far the turning points are from its
equilibrium position. The energy of a classical oscillator changes in a continuous way. The lowest energy that a
classical oscillator may have is zero, which corresponds to a situation where an object is at rest at its
equilibrium position. The zero-energy state of a classical oscillator simply means no oscillations and no
motion at all (a classical particle sitting at the bottom of the potential well in Figure 7.13). When an object
oscillates, no matter how big or small its energy may be, it spends the longest time near the turning points,
because this is where it slows down and reverses its direction of motion. Therefore, the probability of finding a
classical oscillator between the turning points is highest near the turning points and lowest at the equilibrium
position. (Note that this is not a statement of preference of the object to go to lower energy. It is a statement
about how quickly the object moves through various regions.)

     7.52

7.53
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The Quantum Harmonic Oscillator
One problem with this classical formulation is that it is not general. We cannot use it, for example, to describe
vibrations of diatomic molecules, where quantum effects are important. A first step toward a quantum

formulation is to use the classical expression     to limit mention of a “spring” constant between the

atoms. In this way the potential energy function can be written in a more general form,

Combining this expression with the time-independent Schrӧdinger equation gives

To solve Equation 7.55—that is, to find the allowed energies E and their corresponding wave functions
—we require the wave functions to be symmetric about (the bottom of the potential well) and to be

normalizable. These conditions ensure that the probability density   must be finite when integrated

over the entire range of x from ∞ to ∞ . How to solve Equation 7.55 is the subject of a more advanced course

in quantum mechanics; here, we simply cite the results. The allowed energies are

The wave functions that correspond to these energies (the stationary states or states of definite energy) are

where    ℏ , is the normalization constant, and is a polynomial of degree n called a

Hermite polynomial. The first four Hermite polynomials are

A few sample wave functions are given in Figure 7.14. As the value of the principal number increases, the
solutions alternate between even functions and odd functions about .

    7.54

ℏ  
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Figure 7.14 The first five wave functions of the quantum harmonic oscillator. The classical limits of the oscillator’s motion are indicated

by vertical lines, corresponding to the classical turning points at of a classical particle with the same energy as the energy of a

quantum oscillator in the state indicated in the figure.

EXAMPLE 7.10

Classical Region of Harmonic Oscillations
Find the amplitude A of oscillations for a classical oscillator with energy equal to the energy of a quantum
oscillator in the quantum state n.

Strategy

To determine the amplitude A, we set the classical energy   equal to given by

Equation 7.56.

Solution
We obtain

 
 

       
ℏ

ℏ

 

Significance
As the quantum number n increases, the energy of the oscillator and therefore the amplitude of oscillation
increases (for a fixed natural angular frequency. For large n, the amplitude is approximately proportional to
the square root of the quantum number.

Several interesting features appear in this solution. Unlike a classical oscillator, the measured energies of a
quantum oscillator can have only energy values given by Equation 7.56. Moreover, unlike the case for a
quantum particle in a box, the allowable energy levels are evenly spaced,

When a particle bound to such a system makes a transition from a higher-energy state to a lower-energy state,
the smallest-energy quantum carried by the emitted photon is necessarily hf. Similarly, when the particle
makes a transition from a lower-energy state to a higher-energy state, the smallest-energy quantum that can

ℏ ℏ ℏ   7.58
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be absorbed by the particle is hf. A quantum oscillator can absorb or emit energy only in multiples of this
smallest-energy quantum. This is consistent with Planck’s hypothesis for the energy exchanges between
radiation and the cavity walls in the blackbody radiation problem.

EXAMPLE 7.11

Vibrational Energies of the Hydrogen Chloride Molecule
The HCl diatomic molecule consists of one chlorine atom and one hydrogen atom. Because the chlorine atom
is 35 times more massive than the hydrogen atom, the vibrations of the HCl molecule can be quite well
approximated by assuming that the Cl atom is motionless and the H atom performs harmonic oscillations due
to an elastic molecular force modeled by Hooke’s law. The infrared vibrational spectrum measured for

hydrogen chloride has the lowest-frequency line centered at   . What is the spacing
between the vibrational energies of this molecule? What is the force constant k of the atomic bond in the HCl
molecule?

Strategy
The lowest-frequency line corresponds to the emission of lowest-frequency photons. These photons are
emitted when the molecule makes a transition between two adjacent vibrational energy levels. Assuming that
energy levels are equally spaced, we use Equation 7.58 to estimate the spacing. The molecule is well
approximated by treating the Cl atom as being infinitely heavy and the H atom as the mass m that performs the
oscillations. Treating this molecular system as a classical oscillator, the force constant is found from the

classical relation     .

Solution
The energy spacing is

     

The force constant is

         

Significance
The force between atoms in an HCl molecule is surprisingly strong. The typical energy released in energy
transitions between vibrational levels is in the infrared range. As we will see later, transitions in between
vibrational energy levels of a diatomic molecule often accompany transitions between rotational energy levels.

CHECK YOUR UNDERSTANDING 7.8

The vibrational frequency of the hydrogen iodide HI diatomic molecule is   . (a) What is the
force constant of the molecular bond between the hydrogen and the iodine atoms? (b) What is the energy of the
emitted photon when this molecule makes a transition between adjacent vibrational energy levels?

The quantum oscillator differs from the classic oscillator in three ways:

First, the ground state of a quantum oscillator is ℏ not zero. In the classical view, the lowest energy

is zero. The nonexistence of a zero-energy state is common for all quantum-mechanical systems because of
omnipresent fluctuations that are a consequence of the Heisenberg uncertainty principle. If a quantum
particle sat motionless at the bottom of the potential well, its momentum as well as its position would have to
be simultaneously exact, which would violate the Heisenberg uncertainty principle. Therefore, the lowest-
energy state must be characterized by uncertainties in momentum and in position, so the ground state of a
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quantum particle must lie above the bottom of the potential well.

Second, a particle in a quantum harmonic oscillator potential can be found with nonzero probability outside
the interval . In a classic formulation of the problem, the particle would not have any energy to
be in this region. The probability of finding a ground-state quantum particle in the classically forbidden region
is about 16%.

Third, the probability density distributions   for a quantum oscillator in the ground low-energy state,

, is largest at the middle of the well . For the particle to be found with greatest probability at the
center of the well, we expect that the particle spends the most time there as it oscillates. This is opposite to the
behavior of a classical oscillator, in which the particle spends most of its time moving with relative small
speeds near the turning points.

CHECK YOUR UNDERSTANDING 7.9

Find the expectation value of the position for a particle in the ground state of a harmonic oscillator using
symmetry.

Quantum probability density distributions change in character for excited states, becoming more like the
classical distribution when the quantum number gets higher. We observe this change already for the first

excited state of a quantum oscillator because the distribution
 

peaks up around the turning points

and vanishes at the equilibrium position, as seen in Figure 7.13. In accordance with Bohr’s correspondence
principle, in the limit of high quantum numbers, the quantum description of a harmonic oscillator converges
to the classical description, which is illustrated in Figure 7.15. The classical probability density distribution
corresponding to the quantum energy of the state is a reasonably good approximation of the quantum
probability distribution for a quantum oscillator in this excited state. This agreement becomes increasingly
better for highly excited states.

Figure 7.15 The probability density distribution for finding the quantum harmonic oscillator in its quantum state. The dashed

curve shows the probability density distribution of a classical oscillator with the same energy.
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7.6 The Quantum Tunneling of Particles through Potential
Barriers
Learning Objectives
By the end of this section, you will be able to:

• Describe how a quantum particle may tunnel across a potential barrier
• Identify important physical parameters that affect the tunneling probability
• Identify the physical phenomena where quantum tunneling is observed
• Explain how quantum tunneling is utilized in modern technologies

Quantum tunneling is a phenomenon in which particles penetrate a potential energy barrier with a height
greater than the total energy of the particles. The phenomenon is interesting and important because it violates
the principles of classical mechanics. Quantum tunneling is important in models of the Sun and has a wide
range of applications, such as the scanning tunneling microscope and the tunnel diode.

Tunneling and Potential Energy
To illustrate quantum tunneling, consider a ball rolling along a surface with a kinetic energy of 100 J. As the
ball rolls, it encounters a hill. The potential energy of the ball placed atop the hill is 10 J. Therefore, the ball
(with 100 J of kinetic energy) easily rolls over the hill and continues on. In classical mechanics, the probability
that the ball passes over the hill is exactly 1—it makes it over every time. If, however, the height of the hill is
increased—a ball placed atop the hill has a potential energy of 200 J—the ball proceeds only part of the way up
the hill, stops, and returns in the direction it came. The total energy of the ball is converted entirely into
potential energy before it can reach the top of the hill. We do not expect, even after repeated attempts, for the
100-J ball to ever be found beyond the hill. Therefore, the probability that the ball passes over the hill is exactly
0, and probability it is turned back or “reflected” by the hill is exactly 1. The ball never makes it over the hill.
The existence of the ball beyond the hill is an impossibility or “energetically forbidden.”

However, according to quantum mechanics, the ball has a wave function and this function is defined over all
space. The wave function may be highly localized, but there is always a chance that as the ball encounters the
hill, the ball will suddenly be found beyond it. Indeed, this probability is appreciable if the “wave packet” of the
ball is wider than the barrier.

INTERACTIVE

View this interactive simulation (https://openstax.org/l/21intquatanvid) for a simulation of tunneling.

In the language of quantum mechanics, the hill is characterized by a potential barrier. A finite-height square
barrier is described by the following potential-energy function:

The potential barrier is illustrated in Figure 7.16. When the height of the barrier is infinite, the wave packet
representing an incident quantum particle is unable to penetrate it, and the quantum particle bounces back
from the barrier boundary, just like a classical particle. When the width L of the barrier is infinite and its height
is finite, a part of the wave packet representing an incident quantum particle can filter through the barrier
boundary and eventually perish after traveling some distance inside the barrier.

7.59
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Figure 7.16 A potential energy barrier of height creates three physical regions with three different wave behaviors. In region I where

, an incident wave packet (incident particle) moves in a potential-free zone and coexists with a reflected wave packet (reflected

particle). In region II, a part of the incident wave that has not been reflected at moves as a transmitted wave in a constant potential

and tunnels through to region III at . In region III for , a wave packet (transmitted particle) that has tunneled

through the potential barrier moves as a free particle in potential-free zone. The energy E of the incident particle is indicated by the

horizontal line.

When both the width L and the height are finite, a part of the quantum wave packet incident on one side of
the barrier can penetrate the barrier boundary and continue its motion inside the barrier, where it is gradually
attenuated on its way to the other side. A part of the incident quantum wave packet eventually emerges on the
other side of the barrier in the form of the transmitted wave packet that tunneled through the barrier. How
much of the incident wave can tunnel through a barrier depends on the barrier width L and its height , and
on the energy E of the quantum particle incident on the barrier. This is the physics of tunneling.

Barrier penetration by quantum wave functions was first analyzed theoretically by Friedrich Hund in 1927,
shortly after Schrӧdinger published the equation that bears his name. A year later, George Gamow used the
formalism of quantum mechanics to explain the radioactive -decay of atomic nuclei as a quantum-tunneling
phenomenon. The invention of the tunnel diode in 1957 made it clear that quantum tunneling is important to
the semiconductor industry. In modern nanotechnologies, individual atoms are manipulated using a
knowledge of quantum tunneling.

Tunneling and the Wave Function
Suppose a uniform and time-independent beam of electrons or other quantum particles with energy E
traveling along the x-axis (in the positive direction to the right) encounters a potential barrier described by
Equation 7.59. The question is: What is the probability that an individual particle in the beam will tunnel
through the potential barrier? The answer can be found by solving the boundary-value problem for the time-
independent Schrӧdinger equation for a particle in the beam. The general form of this equation is given by
Equation 7.60, which we reproduce here:

In Equation 7.60, the potential function U(x) is defined by Equation 7.59. We assume that the given energy E of
the incoming particle is smaller than the height of the potential barrier, , because this is the
interesting physical case. Knowing the energy E of the incoming particle, our task is to solve Equation 7.60 for
a function that is continuous and has continuous first derivatives for all x. In other words, we are looking
for a “smooth-looking” solution (because this is how wave functions look) that can be given a probabilistic
interpretation so that is the probability density.

ℏ
∞ ∞ 7.60
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We divide the real axis into three regions with the boundaries defined by the potential function in Equation
7.59 (illustrated in Figure 7.16) and transcribe Equation 7.60 for each region. Denoting by the solution in
region I for , by the solution in region II for , and by the solution in region III for

, the stationary Schrӧdinger equation has the following forms in these three regions:

The continuity condition at region boundaries requires that:

and

The “smoothness” condition requires the first derivative of the solution be continuous at region boundaries:

and

In what follows, we find the functions , , and .

We can easily verify (by substituting into the original equation and differentiating) that in regions I and III, the
solutions must be in the following general forms:

where ℏ is a wave number and the complex exponent denotes oscillations,

The constants A, B, F, and G in Equation 7.68 and Equation 7.69 may be complex. These solutions are
illustrated in Figure 7.16. In region I, there are two waves—one is incident (moving to the right) and one is
reflected (moving to the left)—so none of the constants A and B in Equation 7.68 may vanish. In region III, there
is only one wave (moving to the right), which is the transmitted wave, so the constant G must be zero in
Equation 7.69, . We can write explicitly that the incident wave is and that the reflected
wave is , and that the transmitted wave is . The amplitude of the incident
wave is

Similarly, the amplitude of the reflected wave is and the amplitude of the transmitted wave is
. We know from the theory of waves that the square of the wave amplitude is directly

proportional to the wave intensity. If we want to know how much of the incident wave tunnels through the
barrier, we need to compute the square of the amplitude of the transmitted wave. The transmission
probability or tunneling probability is the ratio of the transmitted intensity to the incident intensity

ℏ
∞ 7.61

ℏ
7.62

ℏ
∞ 7.63

7.64

7.65

7.66

7.67

7.68

7.69

7.70
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, written as

where L is the width of the barrier and E is the total energy of the particle. This is the probability an individual
particle in the incident beam will tunnel through the potential barrier. Intuitively, we understand that this
probability must depend on the barrier height .

In region II, the terms in equation Equation 7.62 can be rearranged to

where is positive because and the parameter is a real number,

The general solution to Equation 7.72 is not oscillatory (unlike in the other regions) and is in the form of
exponentials that describe a gradual attenuation of ,

The two types of solutions in the three regions are illustrated in Figure 7.17.

Figure 7.17 Three types of solutions to the stationary Schrӧdinger equation for the quantum-tunneling problem: Oscillatory behavior in

regions I and III where a quantum particle moves freely, and exponential-decay behavior in region II (the barrier region) where the particle

moves in the potential .

Now we use the boundary conditions to find equations for the unknown constants. Equation 7.68 and Equation
7.74 are substituted into Equation 7.64 to give

Equation 7.74 and Equation 7.69 are substituted into Equation 7.65 to give

Similarly, we substitute Equation 7.68 and Equation 7.74 into Equation 7.66, differentiate, and obtain

7.71

7.72

ℏ 7.73

7.74

7.75

7.76

7.77
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Similarly, the boundary condition Equation 7.67 reads explicitly

We now have four equations for five unknown constants. However, because the quantity we are after is the
transmission coefficient, defined in Equation 7.71 by the fraction F/A, the number of equations is exactly right
because when we divide each of the above equations by A, we end up having only four unknown fractions: B/A,
C/A, D/A, and F/A, three of which can be eliminated to find F/A. The actual algebra that leads to expression for
F/A is pretty lengthy, but it can be done either by hand or with a help of computer software. The end result is

In deriving Equation 7.79, to avoid the clutter, we use the substitutions ,

We substitute Equation 7.79 into Equation 7.71 and obtain the exact expression for the transmission
coefficient for the barrier,

or

where

For a wide and high barrier that transmits poorly, Equation 7.80 can be approximated by

Whether it is the exact expression Equation 7.80 or the approximate expression Equation 7.81, we see that the
tunneling effect very strongly depends on the width L of the potential barrier. In the laboratory, we can adjust
both the potential height and the width L to design nano-devices with desirable transmission coefficients.

EXAMPLE 7.12

Transmission Coefficient
Two copper nanowires are insulated by a copper oxide nano-layer that provides a 10.0-eV potential barrier.
Estimate the tunneling probability between the nanowires by 7.00-eV electrons through a 5.00-nm thick oxide
layer. What if the thickness of the layer were reduced to just 1.00 nm? What if the energy of electrons were
increased to 9.00 eV?

Strategy
Treating the insulating oxide layer as a finite-height potential barrier, we use Equation 7.81. We identify

, , , , and . We use Equation 7.73 to
compute the exponent. Also, we need the rest mass of the electron and Planck’s constant
ℏ . It is typical for this type of estimate to deal with very small quantities that are often not

7.78

7.79

7.80

7.81
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suitable for handheld calculators. To make correct estimates of orders, we make the conversion .

Solution
Constants:

ℏ

ℏ

For a lower-energy electron with :

For a higher-energy electron with :

For a broad barrier with :

For a narrower barrier with :

Significance
We see from these estimates that the probability of tunneling is affected more by the width of the potential
barrier than by the energy of an incident particle. In today’s technologies, we can manipulate individual atoms
on metal surfaces to create potential barriers that are fractions of a nanometer, giving rise to measurable
tunneling currents. One of many applications of this technology is the scanning tunneling microscope (STM),
which we discuss later in this section.

CHECK YOUR UNDERSTANDING 7.10

A proton with kinetic energy 1.00 eV is incident on a square potential barrier with height 10.00 eV. If the
proton is to have the same transmission probability as an electron of the same energy, what must the width of
the barrier be relative to the barrier width encountered by an electron?

Radioactive Decay
In 1928, Gamow identified quantum tunneling as the mechanism responsible for the radioactive decay of
atomic nuclei. He observed that some isotopes of thorium, uranium, and bismuth disintegrate by emitting

-particles (which are doubly ionized helium atoms or, simply speaking, helium nuclei). In the process of
emitting an -particle, the original nucleus is transformed into a new nucleus that has two fewer neutrons and
two fewer protons than the original nucleus. The -particles emitted by one isotope have approximately the
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same kinetic energies. When we look at variations of these energies among isotopes of various elements, the
lowest kinetic energy is about 4 MeV and the highest is about 9 MeV, so these energies are of the same order of
magnitude. This is about where the similarities between various isotopes end.

When we inspect half-lives (a half-life is the time in which a radioactive sample loses half of its nuclei due to
decay), different isotopes differ widely. For example, the half-life of polonium-214 is and the half-life of
uranium is 4.5 billion years. Gamow explained this variation by considering a ‘spherical-box’ model of the
nucleus, where -particles can bounce back and forth between the walls as free particles. The confinement is
provided by a strong nuclear potential at a spherical wall of the box. The thickness of this wall, however, is not
infinite but finite, so in principle, a nuclear particle has a chance to escape this nuclear confinement. On the
inside wall of the confining barrier is a high nuclear potential that keeps the -particle in a small confinement.
But when an -particle gets out to the other side of this wall, it is subject to electrostatic Coulomb repulsion
and moves away from the nucleus. This idea is illustrated in Figure 7.18. The width L of the potential barrier
that separates an -particle from the outside world depends on the particle’s kinetic energy E. This width is the
distance between the point marked by the nuclear radius R and the point where an -particle emerges on
the other side of the barrier, . At the distance , its kinetic energy must at least match the
electrostatic energy of repulsion, (where is the charge of the nucleus). In this way
we can estimate the width of the nuclear barrier,

We see from this estimate that the higher the energy of -particle, the narrower the width of the barrier that it
is to tunnel through. We also know that the width of the potential barrier is the most important parameter in
tunneling probability. Thus, highly energetic -particles have a good chance to escape the nucleus, and, for
such nuclei, the nuclear disintegration half-life is short. Notice that this process is highly nonlinear, meaning a
small increase in the -particle energy has a disproportionately large enhancing effect on the tunneling
probability and, consequently, on shortening the half-life. This explains why the half-life of polonium that
emits 8-MeV -particles is only hundreds of milliseconds and the half-life of uranium that emits 4-MeV

-particles is billions of years.
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Figure 7.18 The potential energy barrier for an -particle bound in the nucleus: To escape from the nucleus, an -particle with energy E

must tunnel across the barrier from distance R to distance away from the center.

Field Emission
Field emission is a process of emitting electrons from conducting surfaces due to a strong external electric
field that is applied in the direction normal to the surface (Figure 7.19). As we know from our study of electric
fields in earlier chapters, an applied external electric field causes the electrons in a conductor to move to its
surface and stay there as long as the present external field is not excessively strong. In this situation, we have a
constant electric potential throughout the inside of the conductor, including its surface. In the language of
potential energy, we say that an electron inside the conductor has a constant potential energy
(here, the x means inside the conductor). In the situation represented in Figure 7.19, where the external
electric field is uniform and has magnitude , if an electron happens to be outside the conductor at a distance
x away from its surface, its potential energy would have to be (here, x denotes distance to the
surface). Taking the origin at the surface, so that is the location of the surface, we can represent the
potential energy of conduction electrons in a metal as the potential energy barrier shown in Figure 7.20. In the
absence of the external field, the potential energy becomes a step barrier defined by and by

.
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Figure 7.19 A normal-direction external electric field at the surface of a conductor: In a strong field, the electrons on a conducting surface

may get detached from it and accelerate against the external electric field away from the surface.

Figure 7.20 The potential energy barrier at the surface of a metallic conductor in the presence of an external uniform electric field

normal to the surface: It becomes a step-function barrier when the external field is removed. The work function of the metal is indicated by

When an external electric field is strong, conduction electrons at the surface may get detached from it and
accelerate along electric field lines in a direction antiparallel to the external field, away from the surface. In
short, conduction electrons may escape from the surface. The field emission can be understood as the
quantum tunneling of conduction electrons through the potential barrier at the conductor’s surface. The
physical principle at work here is very similar to the mechanism of -emission from a radioactive nucleus.

Suppose a conduction electron has a kinetic energy E (the average kinetic energy of an electron in a metal is
the work function for the metal and can be measured, as discussed for the photoelectric effect in Photons
and Matter Waves), and an external electric field can be locally approximated by a uniform electric field of
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strength . The width L of the potential barrier that the electron must cross is the distance from the
conductor’s surface to the point outside the surface where its kinetic energy matches the value of its potential
energy in the external field. In Figure 7.20, this distance is measured along the dashed horizontal line

from to the intercept with , so the barrier width is

We see that L is inversely proportional to the strength of an external field. When we increase the strength of
the external field, the potential barrier outside the conductor becomes steeper and its width decreases for an
electron with a given kinetic energy. In turn, the probability that an electron will tunnel across the barrier
(conductor surface) becomes exponentially larger. The electrons that emerge on the other side of this barrier
form a current (tunneling-electron current) that can be detected above the surface. The tunneling-electron
current is proportional to the tunneling probability. The tunneling probability depends nonlinearly on the
barrier width L, and L can be changed by adjusting . Therefore, the tunneling-electron current can be tuned
by adjusting the strength of an external electric field at the surface. When the strength of an external electric
field is constant, the tunneling-electron current has different values at different elevations L above the surface.

The quantum tunneling phenomenon at metallic surfaces, which we have just described, is the physical
principle behind the operation of the scanning tunneling microscope (STM), invented in 1981 by Gerd Binnig
and Heinrich Rohrer. The STM device consists of a scanning tip (a needle, usually made of tungsten, platinum-
iridium, or gold); a piezoelectric device that controls the tip’s elevation in a typical range of 0.4 to 0.7 nm above
the surface to be scanned; some device that controls the motion of the tip along the surface; and a computer to
display images. While the sample is kept at a suitable voltage bias, the scanning tip moves along the surface
(Figure 7.21), and the tunneling-electron current between the tip and the surface is registered at each position.
The amount of the current depends on the probability of electron tunneling from the surface to the tip, which,
in turn, depends on the elevation of the tip above the surface. Hence, at each tip position, the distance from the
tip to the surface is measured by measuring how many electrons tunnel out from the surface to the tip. This
method can give an unprecedented resolution of about 0.001 nm, which is about 1% of the average diameter of
an atom. In this way, we can see individual atoms on the surface, as in the image of a carbon nanotube in
Figure 7.22.

Figure 7.21 In STM, a surface at a constant potential is being scanned by a narrow tip moving along the surface. When the STM tip moves

close to surface atoms, electrons can tunnel from the surface to the tip. This tunneling-electron current is continually monitored while the

tip is in motion. The amount of current at location (x,y) gives information about the elevation of the tip above the surface at this location. In
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this way, a detailed topographical map of the surface is created and displayed on a computer monitor.

Figure 7.22 An STM image of a carbon nanotube: Atomic-scale resolution allows us to see individual atoms on the surface. STM images

are in gray scale, and coloring is added to bring up details to the human eye. (credit: Taner Yildirim, NIST)

Resonant Quantum Tunneling
Quantum tunneling has numerous applications in semiconductor devices such as electronic circuit
components or integrated circuits that are designed at nanoscales; hence, the term ‘nanotechnology.’ For
example, a diode (an electric-circuit element that causes an electron current in one direction to be different
from the current in the opposite direction, when the polarity of the bias voltage is reversed) can be realized by
a tunneling junction between two different types of semiconducting materials. In such a tunnel diode,
electrons tunnel through a single potential barrier at a contact between two different semiconductors. At the
junction, tunneling-electron current changes nonlinearly with the applied potential difference across the
junction and may rapidly decrease as the bias voltage is increased. This is unlike the Ohm’s law behavior that
we are familiar with in household circuits. This kind of rapid behavior (caused by quantum tunneling) is
desirable in high-speed electronic devices.

Another kind of electronic nano-device utilizes resonant tunneling of electrons through potential barriers
that occur in quantum dots. A quantum dot is a small region of a semiconductor nanocrystal that is grown, for
example, in a silicon or aluminum arsenide crystal. Figure 7.23(a) shows a quantum dot of gallium arsenide
embedded in an aluminum arsenide wafer. The quantum-dot region acts as a potential well of a finite height
(shown in Figure 7.23(b)) that has two finite-height potential barriers at dot boundaries. Similarly, as for a
quantum particle in a box (that is, an infinite potential well), lower-lying energies of a quantum particle
trapped in a finite-height potential well are quantized. The difference between the box and the well potentials
is that a quantum particle in a box has an infinite number of quantized energies and is trapped in the box
indefinitely, whereas a quantum particle trapped in a potential well has a finite number of quantized energy
levels and can tunnel through potential barriers at well boundaries to the outside of the well. Thus, a quantum
dot of gallium arsenide sitting in aluminum arsenide is a potential well where low-lying energies of an electron
are quantized, indicated as in part (b) in the figure. When the energy of an electron in the outside
region of the dot does not match its energy that it would have in the dot, the electron does not tunnel
through the region of the dot and there is no current through such a circuit element, even if it were kept at an
electric voltage difference (bias). However, when this voltage bias is changed in such a way that one of the
barriers is lowered, so that and become aligned, as seen in part (c) of the figure, an electron
current flows through the dot. When the voltage bias is now increased, this alignment is lost and the current
stops flowing. When the voltage bias is increased further, the electron tunneling becomes improbable until the
bias voltage reaches a value for which the outside electron energy matches the next electron energy level in the
dot. The word ‘resonance’ in the device name means that the tunneling-electron current occurs only when a
selected energy level is matched by tuning an applied voltage bias, such as in the operation mechanism of the
resonant-tunneling diode just described. Resonant-tunneling diodes are used as super-fast nano-switches.
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Figure 7.23 Resonant-tunneling diode: (a) A quantum dot of gallium arsenide embedded in aluminum arsenide. (b) Potential well

consisting of two potential barriers of a quantum dot with no voltage bias. Electron energies in aluminum arsenide are not aligned

with their energy levels in the quantum dot, so electrons do not tunnel through the dot. (c) Potential well of the dot with a voltage bias

across the device. A suitably tuned voltage difference distorts the well so that electron-energy levels in the dot are aligned with their

energies in aluminum arsenide, causing the electrons to tunnel through the dot.
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CHAPTER REVIEW
Key Terms
anti-symmetric function odd function
Born interpretation states that the square of a

wave function is the probability density
complex function function containing both real

and imaginary parts
Copenhagen interpretation states that when an

observer is not looking or when a measurement is
not being made, the particle has many values of
measurable quantities, such as position

correspondence principle in the limit of large
energies, the predictions of quantum mechanics
agree with the predictions of classical mechanics

energy levels states of definite energy, often
represented by horizontal lines in an energy
“ladder” diagram

energy quantum number index that labels the
allowed energy states

energy-time uncertainty principle energy-time
relation for uncertainties in the simultaneous
measurements of the energy of a quantum state
and of its lifetime

even function in one dimension, a function
symmetric with the origin of the coordinate
system

expectation value average value of the physical
quantity assuming a large number of particles
with the same wave function

field emission electron emission from conductor
surfaces when a strong external electric field is
applied in normal direction to conductor’s
surface

ground state energy lowest energy state in the
energy spectrum

Heisenberg’s uncertainty principle places limits
on what can be known from a simultaneous
measurements of position and momentum; states
that if the uncertainty on position is small then
the uncertainty on momentum is large, and vice
versa

infinite square well potential function that is zero
in a fixed range and infinitely beyond this range

momentum operator operator that corresponds to
the momentum of a particle

nanotechnology technology that is based on
manipulation of nanostructures such as
molecules or individual atoms to produce nano-
devices such as integrated circuits

normalization condition requires that the
probability density integrated over the entire
physical space results in the number one

odd function in one dimension, a function
antisymmetric with the origin of the coordinate
system

position operator operator that corresponds to the
position of a particle

potential barrier potential function that rises and
falls with increasing values of position

principal quantum number energy quantum
number

probability density square of the particle’s wave
function

quantum dot small region of a semiconductor
nanocrystal embedded in another semiconductor
nanocrystal, acting as a potential well for
electrons

quantum tunneling phenomenon where particles
penetrate through a potential energy barrier with
a height greater than the total energy of the
particles

resonant tunneling tunneling of electrons through
a finite-height potential well that occurs only
when electron energies match an energy level in
the well, occurs in quantum dots

resonant-tunneling diode quantum dot with an
applied voltage bias across it

scanning tunneling microscope (STM) device that
utilizes quantum-tunneling phenomenon at
metallic surfaces to obtain images of nanoscale
structures

Schrӧdinger’s time-dependent equation equation
in space and time that allows us to determine
wave functions of a quantum particle

Schrӧdinger’s time-independent equation
equation in space that allows us to determine
wave functions of a quantum particle; this wave
function must be multiplied by a time-
modulation factor to obtain the time-dependent
wave function

standing wave state stationary state for which the
real and imaginary parts of oscillate up
and down like a standing wave (often modeled
with sine and cosine functions)

state reduction hypothetical process in which an
observed or detected particle “jumps into” a
definite state, often described in terms of the
collapse of the particle’s wave function

stationary state state for which the probability
density function, , does not vary in time

time-modulation factor factor that
multiplies the time-independent wave function
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when the potential energy of the particle is time
independent

transmission probability also called tunneling
probability, the probability that a particle will
tunnel through a potential barrier

tunnel diode electron tunneling-junction between
two different semiconductors

tunneling probability also called transmission
probability, the probability that a particle will

tunnel through a potential barrier
wave function function that represents the

quantum state of a particle (quantum system)
wave function collapse equivalent to state

reduction
wave packet superposition of many plane matter

waves that can be used to represent a localized
particle

Key Equations

Normalization condition in one dimension ∞ ∞

∞

∞

Probability of finding a particle in a narrow interval of
position in one dimension

Expectation value of position in one dimension

∞

∞

Heisenberg’s position-momentum uncertainty principle ℏ

Heisenberg’s energy-time uncertainty principle ℏ

Schrӧdinger’s time-dependent equation ℏ
ℏ

General form of the wave function for a time-independent
potential in one dimension

Schrӧdinger’s time-independent equation ℏ

Schrӧdinger’s equation (free particle) ℏ

Allowed energies (particle in box of length L) ℏ

Stationary states (particle in a box of length L)
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Potential-energy function of a harmonic oscillator

Schrӧdinger equation (harmonic oscillator) ℏ

The energy spectrum ℏ

The energy wave functions

Potential barrier

Definition of the transmission coefficient

A parameter in the transmission coefficient ℏ

Transmission coefficient, exact

Transmission coefficient, approximate

Summary
7.1 Wave Functions

• In quantum mechanics, the state of a physical
system is represented by a wave function.

• In Born’s interpretation, the square of the
particle’s wave function represents the
probability density of finding the particle
around a specific location in space.

• Wave functions must first be normalized before
using them to make predictions.

• The expectation value is the average value of a
quantity that requires a wave function and an
integration.

7.2 The Heisenberg Uncertainty Principle

• The Heisenberg uncertainty principle states that
it is impossible to simultaneously measure the
x-components of position and of momentum of
a particle with an arbitrarily high precision. The
product of experimental uncertainties is always
larger than or equal to ℏ

• The limitations of this principle have nothing to
do with the quality of the experimental

apparatus but originate in the wave-like nature
of matter.

• The energy-time uncertainty principle
expresses the experimental observation that a
quantum state that exists only for a short time
cannot have a definite energy.

7.3 The Schrӧdinger Equation

• The Schrӧdinger equation is the fundamental
equation of wave quantum mechanics. It allows
us to make predictions about wave functions.

• When a particle moves in a time-independent
potential, a solution of the time-dependent
Schrӧdinger equation is a product of a time-
independent wave function and a time-
modulation factor.

• The Schrӧdinger equation can be applied to
many physical situations.

7.4 The Quantum Particle in a Box

• Energy states of a quantum particle in a box are
found by solving the time-independent
Schrӧdinger equation.
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• To solve the time-independent Schrӧdinger
equation for a particle in a box and find the
stationary states and allowed energies, we
require that the wave function terminate at the
box wall.

• Energy states of a particle in a box are quantized
and indexed by principal quantum number.

• The quantum picture differs significantly from
the classical picture when a particle is in a low-
energy state of a low quantum number.

• In the limit of high quantum numbers, when the
quantum particle is in a highly excited state, the
quantum description of a particle in a box
coincides with the classical description, in the
spirit of Bohr’s correspondence principle.

7.5 The Quantum Harmonic Oscillator

• The quantum harmonic oscillator is a model
built in analogy with the model of a classical
harmonic oscillator. It models the behavior of
many physical systems, such as molecular
vibrations or wave packets in quantum optics.

• The allowed energies of a quantum oscillator are
discrete and evenly spaced. The energy spacing
is equal to Planck’s energy quantum.

• The ground state energy is larger than zero. This
means that, unlike a classical oscillator, a
quantum oscillator is never at rest, even at the
bottom of a potential well, and undergoes
quantum fluctuations.

• The stationary states (states of definite energy)
have nonzero values also in regions beyond
classical turning points. When in the ground
state, a quantum oscillator is most likely to be
found around the position of the minimum of
the potential well, which is the least-likely

position for a classical oscillator.
• For high quantum numbers, the motion of a

quantum oscillator becomes more similar to the
motion of a classical oscillator, in accordance
with Bohr’s correspondence principle.

7.6 The Quantum Tunneling of Particles
through Potential Barriers

• A quantum particle that is incident on a
potential barrier of a finite width and height
may cross the barrier and appear on its other
side. This phenomenon is called ‘quantum
tunneling.’ It does not have a classical analog.

• To find the probability of quantum tunneling, we
assume the energy of an incident particle and
solve the stationary Schrӧdinger equation to
find wave functions inside and outside the
barrier. The tunneling probability is a ratio of
squared amplitudes of the wave past the barrier
to the incident wave.

• The tunneling probability depends on the
energy of the incident particle relative to the
height of the barrier and on the width of the
barrier. It is strongly affected by the width of the
barrier in a nonlinear, exponential way so that a
small change in the barrier width causes a
disproportionately large change in the
transmission probability.

• Quantum-tunneling phenomena govern
radioactive nuclear decays. They are utilized in
many modern technologies such as STM and
nano-electronics. STM allows us to see
individual atoms on metal surfaces. Electron-
tunneling devices have revolutionized
electronics and allow us to build fast electronic
devices of miniature sizes.

Conceptual Questions
7.1 Wave Functions

1. What is the physical unit of a wave function,
What is the physical unit of the square of

this wave function?
2. Can the magnitude of a wave function

be a negative number? Explain.
3. What kind of physical quantity does a wave

function of an electron represent?
4. What is the physical meaning of a wave function

of a particle?
5. What is the meaning of the expression

“expectation value?” Explain.

7.2 The Heisenberg Uncertainty Principle

6. If the formalism of quantum mechanics is ‘more
exact’ than that of classical mechanics, why don’t
we use quantum mechanics to describe the
motion of a leaping frog? Explain.

7. Can the de Broglie wavelength of a particle be
known precisely? Can the position of a particle be
known precisely?

8. Can we measure the energy of a free localized
particle with complete precision?

9. Can we measure both the position and
momentum of a particle with complete
precision?
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7.3 The Schrӧdinger Equation

10. What is the difference between a wave function
and a wave function for

the same particle?
11. If a quantum particle is in a stationary state,

does it mean that it does not move?
12. Explain the difference between time-dependent

and -independent Schrӧdinger’s equations.
13. Suppose a wave function is discontinuous at

some point. Can this function represent a
quantum state of some physical particle? Why?
Why not?

7.4 The Quantum Particle in a Box

14. Using the quantum particle in a box model,
describe how the possible energies of the
particle are related to the size of the box.

15. Is it possible that when we measure the energy
of a quantum particle in a box, the
measurement may return a smaller value than
the ground state energy? What is the highest
value of the energy that we can measure for this
particle?

16. For a quantum particle in a box, the first excited
state has zero value at the midpoint
position in the box, so that the probability
density of finding a particle at this point is
exactly zero. Explain what is wrong with the
following reasoning: “If the probability of
finding a quantum particle at the midpoint is
zero, the particle is never at this point, right?
How does it come then that the particle can
cross this point on its way from the left side to
the right side of the box?

7.5 The Quantum Harmonic Oscillator

17. Is it possible to measure energy of ℏ for a

quantum harmonic oscillator? Why? Why not?
Explain.

18. Explain the connection between Planck’s
hypothesis of energy quanta and the energies of
the quantum harmonic oscillator.

19. If a classical harmonic oscillator can be at rest,
why can the quantum harmonic oscillator never
be at rest? Does this violate Bohr’s
correspondence principle?

20. Use an example of a quantum particle in a box
or a quantum oscillator to explain the physical
meaning of Bohr’s correspondence principle.

21. Can we simultaneously measure position and
energy of a quantum oscillator? Why? Why not?

7.6 The Quantum Tunneling of Particles
through Potential Barriers

22. When an electron and a proton of the same
kinetic energy encounter a potential barrier of
the same height and width, which one of them
will tunnel through the barrier more easily?
Why?

23. What decreases the tunneling probability most:
doubling the barrier width or halving the kinetic
energy of the incident particle?

24. Explain the difference between a box-potential
and a potential of a quantum dot.

25. Can a quantum particle ‘escape’ from an infinite
potential well like that in a box? Why? Why not?

26. A tunnel diode and a resonant-tunneling diode
both utilize the same physics principle of
quantum tunneling. In what important way are
they different?

Problems
7.1 Wave Functions

27. Compute   for the function

   , where is a real

constant.
28. Given the complex-valued function

, calculate
  .

29. Which one of the following functions, and why,
qualifies to be a wave function of a particle that
can move along the entire real axis? (a)

 
;

(b) ; (c) ;
(d) ; (e) .

30. A particle with mass m moving along the x-axis
and its quantum state is represented by the
following wave function:

      ℏ

where   . (a) Find the
normalization constant. (b) Find the probability
that the particle can be found on the interval

. (c) Find the expectation value of
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position. (d) Find the expectation value of
kinetic energy.

31. A wave function of a particle with mass m is
given by

where . (a) Find the
normalization constant. (b) Find the probability
that the particle can be found on the interval

. (c) Find the particle’s
average position. (d) Find its average
momentum. (e) Find its average kinetic energy

.

7.2 The Heisenberg Uncertainty Principle

32. A velocity measurement of an -particle has
been performed with a precision of 0.02 mm/s.
What is the minimum uncertainty in its
position?

33. A gas of helium atoms at 273 K is in a cubical
container with 25.0 cm on a side. (a) What is the
minimum uncertainty in momentum
components of helium atoms? (b) What is the
minimum uncertainty in velocity components?
(c) Find the ratio of the uncertainties in (b) to
the mean speed of an atom in each direction.

34. If the uncertainty in the -component of a
proton’s position is 2.0 pm, find the minimum
uncertainty in the simultaneous measurement
of the proton’s -component of velocity. What is
the minimum uncertainty in the simultaneous
measurement of the proton’s -component of
velocity?

35. Some unstable elementary particle has a rest
energy of 80.41 GeV and an uncertainty in rest
energy of 2.06 GeV. Estimate the lifetime of this
particle.

36. An atom in a metastable state has a lifetime of
5.2 ms. Find the minimum uncertainty in the
measurement of energy of the excited state.

37. Measurements indicate that an atom remains in
an excited state for an average time of 50.0 ns
before making a transition to the ground state
with the simultaneous emission of a 2.1-eV
photon. (a) Estimate the uncertainty in the
frequency of the photon. (b) What fraction of the
photon’s average frequency is this?

38. Suppose an electron is confined to a region of
length 0.1 nm (of the order of the size of a
hydrogen atom). (a) What is the minimum
uncertainty of its momentum? (b) What would
the uncertainty in momentum be if the confined

length region doubled to 0.2 nm?

7.3 The Schrӧdinger Equation

39. Combine Equation 7.17 and Equation 7.18 to

show

40. Show that is a valid
solution to Schrӧdinger’s time-dependent
equation.

41. Show that and
do not obey

Schrӧdinger’s time-dependent equation.
42. Show that when and are

solutions to the time-dependent Schrӧdinger
equation and A,B are numbers, then a function

that is a superposition of these functions
is also a solution:

.
43. A particle with mass m is described by the

following wave function:
, where A, B, and k

are constants. Assuming that the particle is free,
show that this function is the solution of the
stationary Schrӧdinger equation for this
particle and find the energy that the particle has
in this state.

44. Find the expectation value of the kinetic energy
for the particle in the state,

. What conclusion can you
draw from your solution?

45. Find the expectation value of the square of the
momentum squared for the particle in the state,

. What conclusion can you
draw from your solution?

46. A free proton has a wave function given by
    .

The coefficient of x is inverse meters and
the coefficient on t is inverse seconds
Find its momentum and energy.

7.4 The Quantum Particle in a Box

47. Assume that an electron in an atom can be
treated as if it were confined to a box of width

. What is the ground state energy of the
electron? Compare your result to the ground
state kinetic energy of the hydrogen atom in the
Bohr’s model of the hydrogen atom.

48. Assume that a proton in a nucleus can be
treated as if it were confined to a one-
dimensional box of width 10.0 fm. (a) What are
the energies of the proton when it is in the
states corresponding to , , and ?
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(b) What are the energies of the photons emitted
when the proton makes the transitions from the
first and second excited states to the ground
state?

49. An electron confined to a box has the ground
state energy of 2.5 eV. What is the width of the
box?

50. What is the ground state energy (in eV) of a
proton confined to a one-dimensional box the
size of the uranium nucleus that has a radius of
approximately 15.0 fm?

51. What is the ground state energy (in eV) of an
-particle confined to a one-dimensional box

the size of the uranium nucleus that has a
radius of approximately 15.0 fm?

52. To excite an electron in a one-dimensional box
from its first excited state to its third excited
state requires 20.0 eV. What is the width of the
box?

53. An electron confined to a box of width 0.15 nm
by infinite potential energy barriers emits a
photon when it makes a transition from the first
excited state to the ground state. Find the
wavelength of the emitted photon.

54. If the energy of the first excited state of the
electron in the box is 25.0 eV, what is the width
of the box?

55. Suppose an electron confined to a box emits
photons. The longest wavelength that is
registered is 500.0 nm. What is the width of the
box?

56. Hydrogen molecules are kept at 300.0 K in a
cubical container with a side length of 20.0 cm.
Assume that you can treat the molecules as
though they were moving in a one-dimensional
box. (a) Find the ground state energy of the
hydrogen molecule in the container. (b) Assume
that the molecule has a thermal energy given by

and find the corresponding quantum
number n of the quantum state that would
correspond to this thermal energy.

57. An electron is confined to a box of width 0.25
nm. (a) Draw an energy-level diagram
representing the first five states of the electron.
(b) Calculate the wavelengths of the emitted
photons when the electron makes transitions
between the fourth and the second excited
states, between the second excited state and the
ground state, and between the third and the
second excited states.

58. An electron in a box is in the ground state with
energy 2.0 eV. (a) Find the width of the box. (b)
How much energy is needed to excite the

electron to its first excited state? (c) If the
electron makes a transition from an excited
state to the ground state with the simultaneous
emission of 30.0-eV photon, find the quantum
number of the excited state?

7.5 The Quantum Harmonic Oscillator

59. Show that the two lowest energy states of the
simple harmonic oscillator, and
from Equation 7.57, satisfy Equation 7.55.

60. If the ground state energy of a simple harmonic
oscillator is 1.25 eV, what is the frequency of its
motion?

61. When a quantum harmonic oscillator makes a
transition from the state to the n state
and emits a 450-nm photon, what is its
frequency?

62. Vibrations of the hydrogen molecule can be
modeled as a simple harmonic oscillator with
the spring constant and
mass . (a) What is the
vibrational frequency of this molecule? (b) What
are the energy and the wavelength of the
emitted photon when the molecule makes
transition between its third and second excited
states?

63. A particle with mass 0.030 kg oscillates back-
and-forth on a spring with frequency 4.0 Hz. At
the equilibrium position, it has a speed of 0.60
m/s. If the particle is in a state of definite
energy, find its energy quantum number.

64. Find the expectation value   of the

square of the position for a quantum harmonic
oscillator in the ground state. Note:

∞

∞
           

.

65. Determine the expectation value of the potential
energy for a quantum harmonic oscillator in the
ground state. Use this to calculate the
expectation value of the kinetic energy.

66. Verify that given by Equation 7.57 is a
solution of Schrӧdinger’s equation for the
quantum harmonic oscillator.

67. Estimate the ground state energy of the
quantum harmonic oscillator by Heisenberg’s
uncertainty principle. Start by assuming that
the product of the uncertainties and is at
its minimum. Write in terms of and
assume that for the ground state and

then write the ground state energy in
terms of x. Finally, find the value of x that
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minimizes the energy and find the minimum of
the energy.

68. A mass of 0.250 kg oscillates on a spring with
the force constant 110 N/m. Calculate the
ground energy level and the separation between
the adjacent energy levels. Express the results
in joules and in electron-volts. Are quantum
effects important?

7.6 The Quantum Tunneling of Particles
through Potential Barriers

69. Show that the wave function in (a) Equation 7.68
satisfies Equation 7.61, and (b) Equation 7.69
satisfies Equation 7.63.

70. A 6.0-eV electron impacts on a barrier with
height 11.0 eV. Find the probability of the
electron to tunnel through the barrier if the
barrier width is (a) 0.80 nm and (b) 0.40 nm.

71. A 5.0-eV electron impacts on a barrier of with
0.60 nm. Find the probability of the electron to
tunnel through the barrier if the barrier height
is (a) 7.0 eV; (b) 9.0 eV; and (c) 13.0 eV.

72. A 12.0-eV electron encounters a barrier of
height 15.0 eV. If the probability of the electron
tunneling through the barrier is 2.5 %, find its
width.

73. A quantum particle with initial kinetic energy

32.0 eV encounters a square barrier with height
41.0 eV and width 0.25 nm. Find probability
that the particle tunnels through this barrier if
the particle is (a) an electron and, (b) a proton.

74. A simple model of a radioactive nuclear decay
assumes that -particles are trapped inside a
well of nuclear potential that walls are the
barriers of a finite width 2.0 fm and height 30.0
MeV. Find the tunneling probability across the
potential barrier of the wall for -particles
having kinetic energy (a) 29.0 MeV and (b) 20.0
MeV. The mass of the -particle is

.
75. A muon, a quantum particle with a mass

approximately 200 times that of an electron, is
incident on a potential barrier of height 10.0 eV.
The kinetic energy of the impacting muon is 5.5
eV and only about 0.10% of the squared
amplitude of its incoming wave function filters
through the barrier. What is the barrier’s width?

76. A grain of sand with mass 1.0 mg and kinetic
energy 1.0 J is incident on a potential energy
barrier with height 1.000001 J and width 2500
nm. How many grains of sand have to fall on
this barrier before, on the average, one passes
through?

Additional Problems
77. Show that if the uncertainty in the position of a

particle is on the order of its de Broglie’s
wavelength, then the uncertainty in its
momentum is on the order of the value of its
momentum.

78. The mass of a -meson is measured to be
with an uncertainty of .

Estimate the lifetime of this meson.
79. A particle of mass m is confined to a box of

width L. If the particle is in the first excited
state, what are the probabilities of finding the
particle in a region of width 0.020 L around the
given point x: (a) ; (b) ; (c)

; and (d) .
80. A particle in a box [0;L] is in the third excited

state. What are its most probable positions?

81. A 0.20-kg billiard ball bounces back and forth
without losing its energy between the cushions
of a 1.5 m long table. (a) If the ball is in its
ground state, how many years does it need to
get from one cushion to the other? You may
compare this time interval to the age of the
universe. (b) How much energy is required to
make the ball go from its ground state to its first
excited state? Compare it with the kinetic
energy of the ball moving at 2.0 m/s.

82. Find the expectation value of the position
squared when the particle in the box is in its
third excited state and the length of the box is L.

83. Consider an infinite square well with wall
boundaries and Show that the
function is the solution to the
stationary Schrӧdinger equation for the particle
in a box only if ℏ Explain why this

is an acceptable wave function only if k is an
integer multiple of
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84. Consider an infinite square well with wall
boundaries and Explain why the
function is not a solution to the
stationary Schrӧdinger equation for the particle
in a box.

85. Atoms in a crystal lattice vibrate in simple
harmonic motion. Assuming a lattice atom has a
mass of , what is the force
constant of the lattice if a lattice atom makes a
transition from the ground state to first excited
state when it absorbs a photon?

86. A diatomic molecule behaves like a quantum
harmonic oscillator with the force constant 12.0
N/m and mass . (a) What is the
wavelength of the emitted photon when the
molecule makes the transition from the third
excited state to the second excited state? (b)
Find the ground state energy of vibrations for
this diatomic molecule.

87. An electron with kinetic energy 2.0 MeV
encounters a potential energy barrier of height
16.0 MeV and width 2.00 nm. What is the
probability that the electron emerges on the
other side of the barrier?

88. A beam of mono-energetic protons with energy
2.0 MeV falls on a potential energy barrier of
height 20.0 MeV and of width 1.5 fm. What
percentage of the beam is transmitted through
the barrier?

Challenge Problems
89. An electron in a long, organic molecule used in

a dye laser behaves approximately like a
quantum particle in a box with width 4.18 nm.
Find the emitted photon when the electron
makes a transition from the first excited state to
the ground state and from the second excited
state to the first excited state.

90. In STM, an elevation of the tip above the surface
being scanned can be determined with a great
precision, because the tunneling-electron
current between surface atoms and the atoms of
the tip is extremely sensitive to the variation of
the separation gap between them from point to
point along the surface. Assuming that the
tunneling-electron current is in direct
proportion to the tunneling probability and that
the tunneling probability is to a good
approximation expressed by the exponential
function with , determine
the ratio of the tunneling current when the tip is
0.500 nm above the surface to the current when
the tip is 0.515 nm above the surface.

91. If STM is to detect surface features with local
heights of about 0.00200 nm, what percent
change in tunneling-electron current must the
STM electronics be able to detect? Assume that
the tunneling-electron current has
characteristics given in the preceding problem.

92. Use Heisenberg’s uncertainty principle to
estimate the ground state energy of a particle
oscillating on an spring with angular frequency,

, where k is the spring constant and
m is the mass.

93. Suppose an infinite square well extends from
to . Solve the time-independent

Schrӧdinger’s equation to find the allowed
energies and stationary states of a particle with
mass m that is confined to this well. Then show
that these solutions can be obtained by making
the coordinate transformation for
the solutions obtained for the well extending
between 0 and L.

94. A particle of mass m confined to a box of width
L is in its first excited state . (a) Find its
average position (which is the expectation value
of the position). (b) Where is the particle most
likely to be found?
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INTRODUCTION

CHAPTER 8
Atomic Structure

8.1 The Hydrogen Atom

8.2 Orbital Magnetic Dipole Moment of the Electron

8.3 Electron Spin

8.4 The Exclusion Principle and the Periodic Table

8.5 Atomic Spectra and X-rays

8.6 Lasers

In this chapter, we use quantum mechanics to study the structure and properties of atoms.
This study introduces ideas and concepts that are necessary to understand more complex systems, such as
molecules, crystals, and metals. As we deepen our understanding of atoms, we build on things we already
know, such as Rutherford’s nuclear model of the atom, Bohr’s model of the hydrogen atom, and de Broglie’s
wave hypothesis.

Figure 8.1 is NGC1763, an emission nebula in the small galaxy known as the Large Magellanic Cloud, which is
a satellite of the Milky Way Galaxy. Ultraviolet light from hot stars ionizes the hydrogen atoms in the nebula. As

Figure 8.1 NGC1763 is an emission nebula in the Large Magellanic Cloud, which is a satellite galaxy to our Milky
Way Galaxy. The colors we see can be explained by applying the ideas of quantum mechanics to atomic structure.
(credit: modification of work by NASA, ESA, and Josh Lake)
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protons and electrons recombine, radiation of different frequencies is emitted. The details of this process can
be correctly predicted by quantum mechanics and are examined in this chapter.

8.1 The Hydrogen Atom
Learning Objectives
By the end of this section, you will be able to:

• Describe the hydrogen atom in terms of wave function, probability density, total energy, and orbital angular
momentum

• Identify the physical significance of each of the quantum numbers ( ) of the hydrogen atom
• Distinguish between the Bohr and Schrödinger models of the atom
• Use quantum numbers to calculate important information about the hydrogen atom

The hydrogen atom is the simplest atom in nature and, therefore, a good starting point to study atoms and
atomic structure. The hydrogen atom consists of a single negatively charged electron that moves about a
positively charged proton (Figure 8.2). In Bohr’s model, the electron is pulled around the proton in a perfectly
circular orbit by an attractive Coulomb force. The proton is approximately 1800 times more massive than the
electron, so the proton moves very little in response to the force on the proton by the electron. (This is
analogous to the Earth-Sun system, where the Sun moves very little in response to the force exerted on it by
Earth.) An explanation of this effect using Newton’s laws is given in Photons and Matter Waves.

Figure 8.2 A representation of the Bohr model of the hydrogen atom.

With the assumption of a fixed proton, we focus on the motion of the electron.

In the electric field of the proton, the potential energy of the electron is

where and r is the distance between the electron and the proton. As we saw earlier, the force on an
object is equal to the negative of the gradient (or slope) of the potential energy function. For the special case of
a hydrogen atom, the force between the electron and proton is an attractive Coulomb force.

Notice that the potential energy function U(r) does not vary in time. As a result, Schrödinger’s equation of the
hydrogen atom reduces to two simpler equations: one that depends only on space (x, y, z) and another that
depends only on time (t). (The separation of a wave function into space- and time-dependent parts for time-
independent potential energy functions is discussed in Quantum Mechanics.) We are most interested in the
space-dependent equation:

where is the three-dimensional wave function of the electron, is the mass of the electron,
and E is the total energy of the electron. Recall that the total wave function is the product of the
space-dependent wave function and the time-dependent wave function .

8.1

ℏ
8.2
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In addition to being time-independent, U(r) is also spherically symmetrical. This suggests that we may solve
Schrödinger’s equation more easily if we express it in terms of the spherical coordinates instead of
rectangular coordinates . A spherical coordinate system is shown in Figure 8.3. In spherical
coordinates, the variable r is the radial coordinate, is the polar angle (relative to the vertical z-axis), and is
the azimuthal angle (relative to the x-axis). The relationship between spherical and rectangular coordinates is

Figure 8.3 The relationship between the spherical and rectangular coordinate systems.

The factor is the magnitude of a vector formed by the projection of the polar vector onto the xy-plane.
Also, the coordinates of x and y are obtained by projecting this vector onto the x- and y-axes, respectively. The
inverse transformation gives

Schrödinger’s wave equation for the hydrogen atom in spherical coordinates is discussed in more advanced
courses in modern physics, so we do not consider it in detail here. However, due to the spherical symmetry of
U(r), this equation reduces to three simpler equations: one for each of the three coordinates
Solutions to the time-independent wave function are written as a product of three functions:

where R is the radial function dependent on the radial coordinate r only; is the polar function dependent on
the polar coordinate only; and is the phi function of only. Valid solutions to Schrödinger’s equation

are labeled by the quantum numbers n, l, and m.

(The reasons for these names will be explained in the next section.) The radial function R depends only on n
and l; the polar function depends only on l and m; and the phi function depends only on m. The
dependence of each function on quantum numbers is indicated with subscripts:

Not all sets of quantum numbers (n, l, m) are possible. For example, the orbital angular quantum number l can
never be greater or equal to the principal quantum number . Specifically, we have
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Notice that for the ground state, , , and . In other words, there is only one quantum state with
the wave function for , and it is . However, for , we have

Therefore, the allowed states for the state are , , and . Example wave functions for
the hydrogen atom are given in Table 8.1. Note that some of these expressions contain the letter i, which
represents . When probabilities are calculated, these complex numbers do not appear in the final answer.

Table 8.1 Wave Functions of the Hydrogen Atom

Physical Significance of the Quantum Numbers
Each of the three quantum numbers of the hydrogen atom (n, l, m) is associated with a different physical
quantity. The principal quantum number n is associated with the total energy of the electron, . According
to Schrödinger’s equation:

where Notice that this expression is identical to that of Bohr’s model. As in the Bohr model,
the electron in a particular state of energy does not radiate.

EXAMPLE 8.1

How Many Possible States?
For the hydrogen atom, how many possible quantum states correspond to the principal number ? What
are the energies of these states?

Strategy
For a hydrogen atom of a given energy, the number of allowed states depends on its orbital angular
momentum. We can count these states for each value of the principal quantum number, However,
the total energy depends on the principal quantum number only, which means that we can use Equation 8.3
and the number of states counted.

Solution
If , the allowed values of l are 0, 1, and 2. If , (1 state). If , (3 states); and if

, (5 states). In total, there are allowed states. Because the total energy
depends only on the principal quantum number, , the energy of each of these states is

8.3
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Significance
An electron in a hydrogen atom can occupy many different angular momentum states with the very same
energy. As the orbital angular momentum increases, the number of the allowed states with the same energy
increases.

The angular momentum orbital quantum number l is associated with the orbital angular momentum of the
electron in a hydrogen atom. Quantum theory tells us that when the hydrogen atom is in the state , the
magnitude of its orbital angular momentum is

where

This result is slightly different from that found with Bohr’s theory, which quantizes angular momentum
according to the rule

Quantum states with different values of orbital angular momentum are distinguished using spectroscopic
notation (Table 8.2). The designations s, p, d, and f result from early historical attempts to classify atomic
spectral lines. (The letters stand for sharp, principal, diffuse, and fundamental, respectively.) After f, the letters
continue alphabetically.

The ground state of hydrogen is designated as the 1s state, where “1” indicates the energy level and “s”
indicates the orbital angular momentum state ( ). When , l can be either 0 or 1. The , state
is designated “2s.” The , state is designated “2p.” When , l can be 0, 1, or 2, and the states are
3s, 3p, and 3d, respectively. Notation for other quantum states is given in Table 8.3.

The angular momentum projection quantum number m is associated with the azimuthal angle (see Figure
8.3) and is related to the z-component of orbital angular momentum of an electron in a hydrogen atom. This
component is given by

where

The z-component of angular momentum is related to the magnitude of angular momentum by

where is the angle between the angular momentum vector and the z-axis. Note that the direction of the z-axis
is determined by experiment—that is, along any direction, the experimenter decides to measure the angular
momentum. For example, the z-direction might correspond to the direction of an external magnetic field. The
relationship between is given in Figure 8.4.

ℏ 8.4

ℏ 8.5

8.6
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Figure 8.4 The z-component of angular momentum is quantized with its own quantum number m.

Orbital Quantum Number l Angular Momentum State Spectroscopic Name

0 0 s Sharp

1 p Principal

2 d Diffuse

3 f Fundamental

4 g

5 h

Table 8.2 Spectroscopic Notation and Orbital Angular Momentum

1s

2s 2p

3s 3p 3d

4s 4p 4d 4f

5s 5p 5d 5f 5g

6s 6p 6d 6f 6g 6h

Table 8.3 Spectroscopic Description of Quantum States

The quantization of is equivalent to the quantization of . Substituting ℏ for L and m for into

this equation, we find
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Thus, the angle is quantized with the particular values

Notice that both the polar angle ( ) and the projection of the angular momentum vector onto an arbitrary
z-axis ( ) are quantized.

The quantization of the polar angle for the state is shown in Figure 8.5. The orbital angular momentum
vector lies somewhere on the surface of a cone with an opening angle relative to the z-axis (unless in
which case and the vector points are perpendicular to the z-axis).

Figure 8.5 The quantization of orbital angular momentum. Each vector lies on the surface of a cone with axis along the z-axis.

A detailed study of angular momentum reveals that we cannot know all three components simultaneously. In
the previous section, the z-component of orbital angular momentum has definite values that depend on the
quantum number m. This implies that we cannot know both x- and y-components of angular momentum,
and , with certainty. As a result, the precise direction of the orbital angular momentum vector is unknown.

EXAMPLE 8.2

What Are the Allowed Directions?
Calculate the angles that the angular momentum vector can make with the z-axis for , as shown in
Figure 8.6.

ℏ ℏ 8.7

8.8
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Figure 8.6 The component of a given angular momentum along the z-axis (defined by the direction of a magnetic field) can have only

certain values. These are shown here for , for which The direction of is quantized in the sense that it can have

only certain angles relative to the z-axis.

Strategy

The vectors and (in the z-direction) form a right triangle, where is the hypotenuse and is the
adjacent side. The ratio of to | | is the cosine of the angle of interest. The magnitudes and are

given by

ℏ ℏ

Solution
We are given , so ml can be Thus, L has the value given by

ℏ ℏ

The quantity can have three values, given by ℏ .

ℏ
ℏ

ℏ

As you can see in Figure 8.6, so for , we have

ℏ

ℏ

Thus,
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Similarly, for , we find this gives

Then for :

ℏ

ℏ

so that

Significance
The angles are consistent with the figure. Only the angle relative to the z-axis is quantized. L can point in any
direction as long as it makes the proper angle with the z-axis. Thus, the angular momentum vectors lie on
cones, as illustrated. To see how the correspondence principle holds here, consider that the smallest angle (
in the example) is for the maximum value of namely For that smallest angle,

which approaches 1 as l becomes very large. If , then . Furthermore, for large l, there are many
values of , so that all angles become possible as l gets very large.

CHECK YOUR UNDERSTANDING 8.1

Can the magnitude of ever be equal to L?

Using the Wave Function to Make Predictions
As we saw earlier, we can use quantum mechanics to make predictions about physical events by the use of
probability statements. It is therefore proper to state, “An electron is located within this volume with this
probability at this time,” but not, “An electron is located at the position (x, y, z) at this time.” To determine the
probability of finding an electron in a hydrogen atom in a particular region of space, it is necessary to integrate
the probability density over that region:

where dV is an infinitesimal volume element. If this integral is computed for all space, the result is 1, because
the probability of the particle to be located somewhere is 100% (the normalization condition). In a more
advanced course on modern physics, you will find that where is the complex

conjugate. This eliminates the occurrences of in the above calculation.

Consider an electron in a state of zero angular momentum ( ). In this case, the electron’s wave function
depends only on the radial coordinate r. (Refer to the states and in Table 8.1.) The infinitesimal
volume element corresponds to a spherical shell of radius r and infinitesimal thickness dr, written as

The probability of finding the electron in the region r to (“at approximately r”) is

Here P(r) is called the radial probability density function (a probability per unit length). For an electron in the

8.9

8.10

8.11
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ground state of hydrogen, the probability of finding an electron in the region r to is

where angstroms. The radial probability density function P(r) is plotted in Figure 8.7. The area under
the curve between any two radial positions, say and , gives the probability of finding the electron in that
radial range. To find the most probable radial position, we set the first derivative of this function to zero
( ) and solve for r. The most probable radial position is not equal to the average or expectation value
of the radial position because is not symmetrical about its peak value.

Figure 8.7 The radial probability density function for the ground state of hydrogen.

If the electron has orbital angular momentum ( ), then the wave functions representing the electron
depend on the angles and that is, (r, , ). Atomic orbitals for three states with and
are shown in Figure 8.8. An atomic orbital is a region in space that encloses a certain percentage (usually
90%) of the electron probability. (Sometimes atomic orbitals are referred to as “clouds” of probability.) Notice
that these distributions are pronounced in certain directions. This directionality is important to chemists
when they analyze how atoms are bound together to form molecules.

Figure 8.8 The probability density distributions for three states with and . The distributions are directed along the (a) x-axis,

(b) y-axis, and (c) z-axis.

A slightly different representation of the wave function is given in Figure 8.9. In this case, light and dark
regions indicate locations of relatively high and low probability, respectively. In contrast to the Bohr model of
the hydrogen atom, the electron does not move around the proton nucleus in a well-defined path. Indeed, the
uncertainty principle makes it impossible to know how the electron gets from one place to another.

8.12
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Figure 8.9 Probability clouds for the electron in the ground state and several excited states of hydrogen. The probability of finding the

electron is indicated by the shade of color; the lighter the coloring, the greater the chance of finding the electron.

8.2 Orbital Magnetic Dipole Moment of the Electron
Learning Objectives
By the end of this section, you will be able to:

• Explain why the hydrogen atom has magnetic properties
• Explain why the energy levels of a hydrogen atom associated with orbital angular momentum are split by an

external magnetic field
• Use quantum numbers to calculate the magnitude and direction of the orbital magnetic dipole moment of a

hydrogen atom

In Bohr’s model of the hydrogen atom, the electron moves in a circular orbit around the proton. The electron
passes by a particular point on the loop in a certain time, so we can calculate a current . An electron
that orbits a proton in a hydrogen atom is therefore analogous to current flowing through a circular wire
(Figure 8.10). In the study of magnetism, we saw that a current-carrying wire produces magnetic fields. It is
therefore reasonable to conclude that the hydrogen atom produces a magnetic field and interacts with other
magnetic fields.
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Figure 8.10 (a) Current flowing through a circular wire is analogous to (b) an electron that orbits a proton in a hydrogen atom.

The orbital magnetic dipole moment is a measure of the strength of the magnetic field produced by the
orbital angular momentum of an electron. From Force and Torque on a Current Loop, the magnitude of the
orbital magnetic dipole moment for a current loop is

where I is the current and A is the area of the loop. (For brevity, we refer to this as the magnetic moment.) The
current I associated with an electron in orbit about a proton in a hydrogen atom is

where e is the magnitude of the electron charge and T is its orbital period. If we assume that the electron
travels in a perfectly circular orbit, the orbital period is

where r is the radius of the orbit and v is the speed of the electron in its orbit. Given that the area of a circle is
, the absolute magnetic moment is

It is helpful to express the magnetic momentum in terms of the orbital angular momentum
Because the electron orbits in a circle, the position vector and the momentum vector form a right angle.
Thus, the magnitude of the orbital angular momentum is

Combining these two equations, we have

In full vector form, this expression is written as

The negative sign appears because the electron has a negative charge. Notice that the direction of the magnetic
moment of the electron is antiparallel to the orbital angular momentum, as shown in Figure 8.10(b). In the
Bohr model of the atom, the relationship between and in Equation 8.19 is independent of the radius of the
orbit.

The magnetic moment can also be expressed in terms of the orbital angular quantum number l. Combining
Equation 8.18 and Equation 8.15, the magnitude of the magnetic moment is

8.13

8.14

8.15

8.16

8.17
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The z-component of the magnetic moment is

The quantity is a fundamental unit of magnetism called the Bohr magneton, which has the value
(J/T) or Quantization of the magnetic moment is the result of

quantization of the orbital angular momentum.

As we will see in the next section, the total magnetic dipole moment of the hydrogen atom is due to both the
orbital motion of the electron and its intrinsic spin. For now, we ignore the effect of electron spin.

EXAMPLE 8.3

Orbital Magnetic Dipole Moment
What is the magnitude of the orbital dipole magnetic moment of an electron in the hydrogen atom in the (a) s
state, (b) p state, and (c) d state? (Assume that the spin of the electron is zero.)

Strategy
The magnetic momentum of the electron is related to its orbital angular momentum L. For the hydrogen atom,
this quantity is related to the orbital angular quantum number l. The states are given in spectroscopic
notation, which relates a letter (s, p, d, etc.) to a quantum number.

Solution
The magnitude of the magnetic moment is given in Equation 8.20:

ℏ

a. For the s state, so we have and
b. For the p state, and we have

c. For the d state, and we obtain

Significance
In the s state, there is no orbital angular momentum and therefore no magnetic moment. This does not mean
that the electron is at rest, just that the overall motion of the electron does not produce a magnetic field. In the
p state, the electron has a magnetic moment with three possible values for the z-component of this magnetic
moment; this means that magnetic moment can point in three different polar directions—each antiparallel to
the orbital angular momentum vector. In the d state, the electron has a magnetic moment with five possible
values for the z-component of this magnetic moment. In this case, the magnetic moment can point in five

ℏ 8.20

ℏ 8.21
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different polar directions.

A hydrogen atom has a magnetic field, so we expect the hydrogen atom to interact with an external magnetic
field—such as the push and pull between two bar magnets. From Force and Torque on a Current Loop, we know
that when a current loop interacts with an external magnetic field , it experiences a torque given by

where I is the current, is the area of the loop, is the magnetic moment, and is the external magnetic field.
This torque acts to rotate the magnetic moment vector of the hydrogen atom to align with the external
magnetic field. Because mechanical work is done by the external magnetic field on the hydrogen atom, we can
talk about energy transformations in the atom. The potential energy of the hydrogen atom associated with this
magnetic interaction is given by Equation 8.23:

If the magnetic moment is antiparallel to the external magnetic field, the potential energy is large, but if the
magnetic moment is parallel to the field, the potential energy is small. Work done on the hydrogen atom to
rotate the atom’s magnetic moment vector in the direction of the external magnetic field is therefore
associated with a drop in potential energy. The energy of the system is conserved, however, because a drop in
potential energy produces radiation (the emission of a photon). These energy transitions are quantized
because the magnetic moment can point in only certain directions.

If the external magnetic field points in the positive z-direction, the potential energy associated with the orbital
magnetic dipole moment is

where is the Bohr magneton and m is the angular momentum projection quantum number (or magnetic
orbital quantum number), which has the values

For example, in the electron state, the total energy of the electron is split into three distinct energy levels
corresponding to

The splitting of energy levels by an external magnetic field is called the Zeeman effect. Ignoring the effects of
electron spin, transitions from the state to a common lower energy state produce three closely spaced
spectral lines (Figure 8.11, left column). Likewise, transitions from the state produce five closely spaced
spectral lines (right column). The separation of these lines is proportional to the strength of the external
magnetic field. This effect has many applications. For example, the splitting of lines in the hydrogen spectrum
of the Sun is used to determine the strength of the Sun’s magnetic field. Many such magnetic field
measurements can be used to make a map of the magnetic activity at the Sun’s surface called a magnetogram
(Figure 8.12).
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Figure 8.11 The Zeeman effect refers to the splitting of spectral lines by an external magnetic field. In the left column, the energy

splitting occurs due to transitions from the state ) to a lower energy state; and in the right column, energy splitting occurs due

to transitions from the state to a lower-energy state. The separation of these lines is proportional to the strength of the

external magnetic field.

Figure 8.12 A magnetogram of the Sun. The bright and dark spots show significant magnetic activity at the surface of the Sun. (credit:

NASA, SDO)

8.3 Electron Spin
Learning Objectives
By the end of this section, you will be able to:

• Express the state of an electron in a hydrogen atom in terms of five quantum numbers
• Use quantum numbers to calculate the magnitude and direction of the spin and magnetic moment of an

electron
• Explain the fine and hyperfine structure of the hydrogen spectrum in terms of magnetic interactions inside

the hydrogen atom

In this section, we consider the effects of electron spin. Spin introduces two additional quantum numbers to
our model of the hydrogen atom. Both were discovered by looking at the fine structure of atomic spectra. Spin
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is a fundamental characteristic of all particles, not just electrons, and is analogous to the intrinsic spin of
extended bodies about their own axes, such as the daily rotation of Earth.

Spin is quantized in the same manner as orbital angular momentum. It has been found that the magnitude of
the intrinsic spin angular momentum S of an electron is given by

where s is defined to be the spin quantum number. This is similar to the quantization of L given in Equation
8.4, except that the only value allowed for s for an electron is The electron is said to be a “spin-half
particle.” The spin projection quantum number is associated with the z-components of spin, expressed by

In general, the allowed quantum numbers are

For the special case of an electron ( ),

Directions of intrinsic spin are quantized, just as they were for orbital angular momentum. The
state is called the “spin-down” state and has a z-component of spin, ; state is called
the “spin-up” state and has a z-component of spin, These states are shown in Figure 8.13.

Figure 8.13 The two possible states of electron spin.

The intrinsic magnetic dipole moment of an electron can also be expressed in terms of the spin quantum
number. In analogy to the orbital angular momentum, the magnitude of the electron magnetic moment is

According to the special theory of relativity, this value is low by a factor of 2. Thus, in vector form, the spin
magnetic moment is

ℏ 8.26

ℏ 8.27
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The z-component of the magnetic moment is

The spin projection quantum number has just two values so the z-component of the magnetic
moment also has just two values:

where is one Bohr magneton. An electron is magnetic, so we expect the electron to interact with other
magnetic fields. We consider two special cases: the interaction of a free electron with an external (nonuniform)
magnetic field, and an electron in a hydrogen atom with a magnetic field produced by the orbital angular
momentum of the electron.

EXAMPLE 8.4

Electron Spin and Radiation
A hydrogen atom in the ground state is placed in an external uniform magnetic field ( ). Determine
the frequency of radiation produced in a transition between the spin-up and spin-down states of the electron.

Strategy
The spin projection quantum number is , so the z-component of the magnetic moment is

ℏ

The potential energy associated with the interaction between the electron magnetic moment and the external
magnetic field is

The frequency of light emitted is proportional to the energy ( ) difference between these two states.

Solution
The energy difference between these states is , so the frequency of radiation produced is

Significance
The electron magnetic moment couples with the external magnetic field. The energy of this system is different
whether the electron is aligned or not with the proton. The frequency of radiation produced by a transition
between these states is proportional to the energy difference. If we double the strength of the magnetic field,
holding all other things constant, the frequency of the radiation doubles and its wavelength is cut in half.

In a hydrogen atom, the electron magnetic moment can interact with the magnetic field produced by the
orbital angular momentum of the electron, a phenomenon called spin-orbit coupling. The orbital angular
momentum ( ), orbital magnetic moment ( ), spin angular momentum ( ), and spin magnetic moment ( )
vectors are shown together in Figure 8.14.

Just as the energy levels of a hydrogen atom can be split by an external magnetic field, so too are the energy

8.31
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levels of a hydrogen atom split by internal magnetic fields of the atom. If the magnetic moment of the electron
and orbital magnetic moment of the electron are antiparallel, the potential energy from the magnetic
interaction is relatively high, but when these moments are parallel, the potential energy is relatively small.
Transition from each of these two states to a lower-energy level results in the emission of a photon of slightly
different frequency. That is, the spin-orbit coupling “splits” the spectral line expected from a spin-less
electron. The fine structure of the hydrogen spectrum is explained by spin-orbit coupling.

Figure 8.14 Spin-orbit coupling is the interaction of an electron’s spin magnetic moment with its orbital magnetic moment .

The Stern-Gerlach experiment provides experimental evidence that electrons have spin angular momentum.
The experiment passes a stream of silver (Ag) atoms through an external, nonuniform magnetic field. The Ag
atom has an orbital angular momentum of zero and contains a single unpaired electron in the outer shell.
Therefore, the total angular momentum of the Ag atom is due entirely to the spin of the outer electron
( . Due to electron spin, the Ag atoms act as tiny magnets as they pass through the magnetic field. These
“magnets” have two possible orientations, which correspond to the spin-up and -down states of the electron.
The magnetic field diverts the spin up atoms in one direction and the spin-down atoms in another direction.
This produces two distinct bands on a screen (Figure 8.15).

Figure 8.15 In the Stern-Gerlach experiment, an external, nonuniform magnetic field diverts a beam of electrons in two different

directions. This result is due to the quantization of spin angular momentum.

According to classical predictions, the angular momentum (and, therefore, the magnetic moment) of the Ag
atom can point in any direction, so one expects, instead, a continuous smudge on the screen. The resulting two
bands of the Stern-Gerlach experiment provide startling support for the ideas of quantum mechanics.

INTERACTIVE

Visit PhET Explorations: Stern-Gerlach Experiment (https://openstax.org/l/21sterngerlach) to learn more
about the Stern-Gerlach experiment.
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CHECK YOUR UNDERSTANDING 8.2

If the Stern-Gerlach experiment yielded four distinct bands instead of two, what might be concluded about the
spin quantum number of the charged particle?

Just like an electron, a proton is spin 1/2 and has a magnetic moment. (According to nuclear theory, this
moment is due to the orbital motion of quarks within the proton.) The hyperfine structure of the hydrogen
spectrum is explained by the interaction between the magnetic moment of the proton and the magnetic
moment of the electron, an interaction known as spin-spin coupling. The energy of the electron-proton system
is different depending on whether or not the moments are aligned. Transitions between these states (spin-flip
transitions) result in the emission of a photon with a wavelength of (in the radio range). The 21-cm
line in atomic spectroscopy is a “fingerprint” of hydrogen gas. Astronomers exploit this spectral line to map
the spiral arms of galaxies, which are composed mostly of hydrogen (Figure 8.16).

Figure 8.16 The magnetic interaction between the electron and proton in the hydrogen atom is used to map the spiral arms of the

Pinwheel Galaxy (NGC 5457). (a) The galaxy seen in visible light; (b) the galaxy seen in 21-cm hydrogen radiation; (c) the composite image

of (a) and (b). Notice how the hydrogen emission penetrates dust in the galaxy to show the spiral arms very clearly, whereas the galactic

nucleus shows up better in visible light (credit a: modification of work by ESA & NASA; credit b: modification of work by Fabian Walter).

A complete specification of the state of an electron in a hydrogen atom requires five quantum numbers: n, l, m,
s, and . The names, symbols, and allowed values of these quantum numbers are summarized in Table 8.4.

Name Symbol Allowed values

Principal quantum number n 1, 2, 3, …

Angular momentum l 0, 1, 2, … n – 1

Angular momentum projection m

Spin s 1/2 (electrons)

Spin projection

Table 8.4 Summary of Quantum Numbers of an Electron in a Hydrogen Atom

Note that the intrinsic quantum numbers introduced in this section (s and ms) are valid for many particles, not
just electrons. For example, quarks within an atomic nucleus are also spin-half particles. As we will see later,
quantum numbers help to classify subatomic particles and enter into scientific models that attempt to explain
how the universe works.
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8.4 The Exclusion Principle and the Periodic Table
Learning Objectives
By the end of this section, you will be able to:

• Explain the importance of Pauli’s exclusion principle to an understanding of atomic structure and molecular
bonding

• Explain the structure of the periodic table in terms of the total energy, orbital angular momentum, and spin of
individual electrons in an atom

• Describe the electron configuration of atoms in the periodic table

So far, we have studied only hydrogen, the simplest chemical element. We have found that an electron in the
hydrogen atom can be completely specified by five quantum numbers:

To construct the ground state of a neutral multi-electron atom, imagine starting with a nucleus of charge Ze
(that is, a nucleus of atomic number Z) and then adding Z electrons one by one. Assume that each electron
moves in a spherically symmetrical electric field produced by the nucleus and all other electrons of the atom.
The assumption is valid because the electrons are distributed randomly around the nucleus and produce an
average electric field (and potential) that is spherically symmetrical. The electric potential U(r) for each
electron does not follow the simple form because of interactions between electrons, but it turns out that
we can still label each individual electron state by quantum numbers, . (The spin quantum
number s is the same for all electrons, so it will not be used in this section.)

The structure and chemical properties of atoms are explained in part by Pauli’s exclusion principle: No two
electrons in an atom can have the same values for all four quantum numbers This principle is
related to two properties of electrons: All electrons are identical (“when you’ve seen one electron, you’ve seen
them all”) and they have half-integral spin Sample sets of quantum numbers for the electrons in an
atom are given in Table 8.5. Consistent with Pauli’s exclusion principle, no two rows of the table have the exact
same set of quantum numbers.

n l m Subshell symbol No. of electrons: subshell No. of electrons: shell

1 0 0 ½
1s 2 2

1 0 0 –½

2 0 0 ½
2s 2

8

2 0 0 –½

2 1 –1 ½

2p 6
2 1 –1 –½

2 1 0 ½

2 1 0 –½
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n l m Subshell symbol No. of electrons: subshell No. of electrons: shell

2 1 1 ½

2 1 1 –½

3 0 0 ½
3s 2

18

3 0 0 –½

3 1 –1 ½

3p 6

3 1 –1 –½

3 1 0 ½

3 1 0 –½

3 1 1 ½

3 1 1 –½

3 2 –2 ½

3d 10

3 2 –2 –½

3 2 –1 ½

3 2 –1 –½

3 2 0 ½

3 2 0 –½

3 2 1 ½

3 2 1 –½

3 2 2 ½

3 2 2 –½

Table 8.5 Electron States of Atoms Because of Pauli’s exclusion principle, no two electrons in an atom have
the same set of four quantum numbers.

Electrons with the same principal quantum number n are said to be in the same shell, and those that have the
same value of l are said to occupy the same subshell. An electron in the state of a hydrogen atom is
denoted 1s, where the first digit indicates the shell and the letter indicates the subshell

Two electrons in the state are denoted as where the
superscript indicates the number of electrons. An electron in the state with is denoted 2p. The
combination of two electrons in the and state, and three electrons in the and state is
written as and so on. This representation of the electron state is called the electron configuration of

8.4 • The Exclusion Principle and the Periodic Table 367



the atom. The electron configurations for several atoms are given in Table 8.6. Electrons in the outer shell of an
atom are called valence electrons. Chemical bonding between atoms in a molecule are explained by the
transfer and sharing of valence electrons.

Element Electron Configuration Spin Alignment

H

He

Li

Be

B

C

N

O

F

Ne

Na

Mg

Al

Table 8.6 Electron Configurations of Electrons in an Atom The symbol indicates an unpaired electron in
the outer shell, whereas the symbol indicates a pair of spin-up and -down electrons in an outer shell.

The maximum number of electrons in a subshell depends on the value of the angular momentum quantum
number, l. For a given a value l, there are orbital angular momentum states. However, each of these
states can be filled by two electrons (spin up and down, ). Thus, the maximum number of electrons in a
subshell is

In the 2s subshell, the maximum number of electrons is 2. In the 2p ( ) subshell, the maximum
number of electrons is 6. Therefore, the total maximum number of electrons in the shell (including both
the and 1 subshells) is or 8. In general, the maximum number of electrons in the nth shell is

EXAMPLE 8.5

Subshells and Totals for
How many subshells are in the shell? Identify each subshell and calculate the maximum number of
electrons that will fill each. Show that the maximum number of electrons that fill an atom is .
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Strategy
Subshells are determined by the value of l; thus, we first determine which values of l are allowed, and then we
apply the equation “maximum number of electrons that can be in a subshell ” to find the number
of electrons in each subshell.

Solution
Because we know that l can be 0, 1, or 2; thus, there are three possible subshells. In standard notation,
they are labeled the 3s, 3p, and 3d subshells. We have already seen that two electrons can be in an s state, and
six in a p state, but let us use the equation “maximum number of electrons that can be in a subshell

” to calculate the maximum number in each:

The equation “maximum number of electrons that can be in a shell ” gives the maximum number in the
shell to be

Significance
The total number of electrons in the three possible subshells is thus the same as the formula . In standard
(spectroscopic) notation, a filled shell is denoted as . Shells do not fill in a simple manner.
Before the shell is completely filled, for example, we begin to find electrons in the shell.

The structure of the periodic table (Figure 8.17) can be understood in terms of shells and subshells, and,
ultimately, the total energy, orbital angular momentum, and spin of the electrons in the atom. A detailed
discussion of the periodic table is left to a chemistry course—we sketch only its basic features here. In this
discussion, we assume that the atoms are electrically neutral; that is, they have the same number of electrons
and protons. (Recall that the total number of protons in an atomic nucleus is called the atomic number, Z.)

First, the periodic table is arranged into columns and rows. The table is read left to right and top to bottom in
the order of increasing atomic number Z. Atoms that belong to the same column or chemical group share
many of the same chemical properties. For example, the Li and Na atoms (in the first column) bond to other
atoms in a similar way. The first row of the table corresponds to the 1s ( ) shell of an atom.

Consider the hypothetical procedure of adding electrons, one by one, to an atom. For hydrogen (H) (upper left),
the 1s shell is filled with either a spin up or down electron ( ). This lone electron is easily shared with
other atoms, so hydrogen is chemically active. For helium (He) (upper right), the 1s shell is filled with both a
spin up and a spin down ( ) electron. This “fills” the 1s shell, so a helium atom tends not to share electrons
with other atoms. The helium atom is said to be chemically inactive, inert, or noble; likewise, helium gas is said
to be an inert gas or noble gas.

INTERACTIVE

Build an atom by adding and subtracting protons, neutrons, and electrons. How does the element, charge, and
mass change? Visit PhET Explorations: Build an Atom (https://openstax.org/l/21buildanatom) to explore the
answers to these questions.
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Figure 8.17 The periodic table of elements, showing the structure of shells and subshells.

The second row corresponds to the 2s and 2p subshells. For lithium (Li) (upper left), the 1s shell is filled with a
spin-up and spin-down electron ( ) and the 2s shell is filled with either a spin-up or -down electron ( ).
Its electron configuration is therefore or [He]2s, where [He] indicates a helium core. Like hydrogen, the
lone electron in the outermost shell is easily shared with other atoms. For beryllium (Be), the 2s shell is filled
with a spin-up and -down electron ( ), and has the electron configuration [He] .

Next, we look at the right side of the table. For boron (B), the 1s and 2s shells are filled and the 2p ( ) shell
contains either a spin up or down electron ( ). From carbon (C) to neon (N), we the fill the 2p shell. The
maximum number of electrons in the 2p shells is . For neon (Ne), the 1s shell is filled
with a spin-up and spin-down electron ( ), and the 2p shell is filled with six electrons ( . This “fills”
the 1s, 2s, and 2p subshells, so like helium, the neon atom tends not to share electrons with other atoms.

The process of electron filling repeats in the third row. However, beginning in the fourth row, the pattern is
broken. The actual order of order of electron filling is given by

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s,...

Notice that the 3d, 4d, 4f, and 5d subshells (in bold) are filled out of order; this occurs because of interactions
between electrons in the atom, which so far we have neglected. The transition metals are elements in the gap
between the first two columns and the last six columns that contain electrons that fill the d ( ) subshell. As
expected, these atoms are arranged in columns. The structure of the periodic table can
be understood in terms of the quantization of the total energy (n), orbital angular momentum (l), and spin (s).
The first two columns correspond to the s ) subshell, the next six columns correspond to the p ( )
subshell, and the gap between these columns corresponds to the d ( ) subshell.
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The periodic table also gives information on molecular bonding. To see this, consider atoms in the left-most
column (the so-called alkali metals including: Li, Na, and K). These atoms contain a single electron in the 2s
subshell, which is easily donated to other atoms. In contrast, atoms in the second-to-right column (the
halogens: for example, Cl, F, and Br) are relatively stingy in sharing electrons. These atoms would much rather
accept an electron, because they are just one electron shy of a filled shell (“of being noble”).

Therefore, if a Na atom is placed in close proximity to a Cl atom, the Na atom freely donates its 2s electron and
the Cl atom eagerly accepts it. In the process, the Na atom (originally a neutral charge) becomes positively
charged and the Cl (originally a neutral charge) becomes negatively charged. Charged atoms are called ions. In
this case, the ions are and , where the superscript indicates charge of the ion. The electric (Coulomb)
attraction between these atoms forms a NaCl (salt) molecule. A chemical bond between two ions is called an
ionic bond. There are many kinds of chemical bonds. For example, in an oxygen molecule electrons are
equally shared between the atoms. The bonding of oxygen atoms is an example of a covalent bond.

8.5 Atomic Spectra and X-rays
Learning Objectives
By the end of this section, you will be able to:

• Describe the absorption and emission of radiation in terms of atomic energy levels and energy differences
• Use quantum numbers to estimate the energy, frequency, and wavelength of photons produced by atomic

transitions in multi-electron atoms
• Explain radiation concepts in the context of atomic fluorescence and X-rays

The study of atomic spectra provides most of our knowledge about atoms. In modern science, atomic spectra
are used to identify species of atoms in a range of objects, from distant galaxies to blood samples at a crime
scene.

The theoretical basis of atomic spectroscopy is the transition of electrons between energy levels in atoms. For
example, if an electron in a hydrogen atom makes a transition from the to the shell, the atom emits
a photon with a wavelength

where is energy carried away by the photon and . After this radiation passes
through a spectrometer, it appears as a sharp spectral line on a screen. The Bohr model of this process is
shown in Figure 8.18. If the electron later absorbs a photon with energy , the electron returns to the
shell. (We examined the Bohr model earlier, in Photons and Matter Waves.)

8.36
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Figure 8.18 An electron transition from the to the shell of a hydrogen atom.

To understand atomic transitions in multi-electron atoms, it is necessary to consider many effects, including
the Coulomb repulsion between electrons and internal magnetic interactions (spin-orbit and spin-spin
couplings). Fortunately, many properties of these systems can be understood by neglecting interactions
between electrons and representing each electron by its own single-particle wave function .

Atomic transitions must obey selection rules. These rules follow from principles of quantum mechanics and
symmetry. Selection rules classify transitions as either allowed or forbidden. (Forbidden transitions do occur,
but the probability of the typical forbidden transition is very small.) For a hydrogen-like atom, atomic
transitions that involve electromagnetic interactions (the emission and absorption of photons) obey the
following selection rule:

where l is associated with the magnitude of orbital angular momentum,

For multi-electron atoms, similar rules apply. To illustrate this rule, consider the observed atomic transitions
in hydrogen (H), sodium (Na), and mercury (Hg) (Figure 8.19). The horizontal lines in this diagram correspond
to atomic energy levels, and the transitions allowed by this selection rule are shown by lines drawn between
these levels. The energies of these states are on the order of a few electron volts, and photons emitted in
transitions are in the visible range. Technically, atomic transitions can violate the selection rule, but such
transitions are uncommon.

8.37
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Figure 8.19 Energy-level diagrams for (a) hydrogen, (b) sodium, and (c) mercury. For comparison, hydrogen energy levels are shown in

the sodium diagram.

The hydrogen atom has the simplest energy-level diagram. If we neglect electron spin, all states with the same
value of n have the same total energy. However, spin-orbit coupling splits the states into two angular
momentum states (s and p) of slightly different energies. (These levels are not vertically displaced, because the
energy splitting is too small to show up in this diagram.) Likewise, spin-orbit coupling splits the states
into three angular momentum states (s, p, and d).
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The energy-level diagram for hydrogen is similar to sodium, because both atoms have one electron in the outer
shell. The valence electron of sodium moves in the electric field of a nucleus shielded by electrons in the inner
shells, so it does not experience a simple 1/r Coulomb potential and its total energy depends on both n and l.
Interestingly, mercury has two separate energy-level diagrams; these diagrams correspond to two net spin
states of its 6s (valence) electrons.

EXAMPLE 8.6

The Sodium Doublet
The spectrum of sodium is analyzed with a spectrometer. Two closely spaced lines with wavelengths 589.00
nm and 589.59 nm are observed. (a) If the doublet corresponds to the excited (valence) electron that
transitions from some excited state down to the 3s state, what was the original electron angular momentum?
(b) What is the energy difference between these two excited states?

Strategy
Sodium and hydrogen belong to the same column or chemical group of the periodic table, so sodium is
“hydrogen-like.” The outermost electron in sodium is in the 3s ( ) subshell and can be excited to higher
energy levels. As for hydrogen, subsequent transitions to lower energy levels must obey the selection rule:

We must first determine the quantum number of the initial state that satisfies the selection rule. Then, we can
use this number to determine the magnitude of orbital angular momentum of the initial state.

Solution

a. Allowed transitions must obey the selection rule. If the quantum number of the initial state is , the
transition is forbidden because . If the quantum number of the initial state is ,…the
transition is forbidden because Therefore, the quantum of the initial state must be . The
orbital angular momentum of the initial state is

ℏ ℏ

b. Because the final state for both transitions is the same (3s), the difference in energies of the photons is
equal to the difference in energies of the two excited states. Using the equation

we have

Significance
To understand the difficulty of measuring this energy difference, we compare this difference with the average
energy of the two photons emitted in the transition. Given an average wavelength of 589.30 nm, the average
energy of the photons is

The energy difference is about 0.1% (1 part in 1000) of this average energy. However, a sensitive
spectrometer can measure the difference.
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Atomic Fluorescence
Fluorescence occurs when an electron in an atom is excited several steps above the ground state by the
absorption of a high-energy ultraviolet (UV) photon. Once excited, the electron “de-excites” in two ways. The
electron can drop back to the ground state, emitting a photon of the same energy that excited it, or it can drop
in a series of smaller steps, emitting several low-energy photons. Some of these photons may be in the visible
range. Fluorescent dye in clothes can make colors seem brighter in sunlight by converting UV radiation into
visible light. Fluorescent lights are more efficient in converting electrical energy into visible light than
incandescent filaments (about four times as efficient). Figure 8.20 shows a scorpion illuminated by a UV lamp.
Proteins near the surface of the skin emit a characteristic blue light.

Figure 8.20 A scorpion glows blue under a UV lamp. (credit: Ken Bosma)

X-rays
The study of atomic energy transitions enables us to understand X-rays and X-ray technology. Like all
electromagnetic radiation, X-rays are made of photons. X-ray photons are produced when electrons in the
outermost shells of an atom drop to the inner shells. (Hydrogen atoms do not emit X-rays, because the electron
energy levels are too closely spaced together to permit the emission of high-frequency radiation.) Transitions
of this kind are normally forbidden because the lower states are already filled. However, if an inner shell has a
vacancy (an inner electron is missing, perhaps from being knocked away by a high-speed electron), an
electron from one of the outer shells can drop in energy to fill the vacancy. The energy gap for such a transition
is relatively large, so wavelength of the radiated X-ray photon is relatively short.

X-rays can also be produced by bombarding a metal target with high-energy electrons, as shown in Figure
8.21. In the figure, electrons are boiled off a filament and accelerated by an electric field into a tungsten target.
According to the classical theory of electromagnetism, any charged particle that accelerates emits radiation.
Thus, when the electron strikes the tungsten target, and suddenly slows down, the electron emits braking
radiation. (Braking radiation refers to radiation produced by any charged particle that is slowed by a medium.)
In this case, braking radiation contains a continuous range of frequencies, because the electrons will collide
with the target atoms in slightly different ways.

Braking radiation is not the only type of radiation produced in this interaction. In some cases, an electron
collides with another inner-shell electron of a target atom, and knocks the electron out of the atom—billiard
ball style. The empty state is filled when an electron in a higher shell drops into the state (drop in energy level)
and emits an X-ray photon.
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Figure 8.21 A sketch of an X-ray tube. X-rays are emitted from the tungsten target.

Historically, X-ray spectral lines were labeled with letters (K, L, M, N, …). These letters correspond to the atomic
shells ( ). X-rays produced by a transition from any higher shell to the K ( ) shell are labeled
as K X-rays. X-rays produced in a transition from the L ( ) shell are called X-rays; X-rays produced in a
transition from the M ( ) shell are called X-rays; X-rays produced in a transition from the N ( )
shell are called X-rays; and so forth. Transitions from higher shells to L and M shells are labeled similarly.
These transitions are represented by an energy-level diagram in Figure 8.22.

Figure 8.22 X-ray transitions in an atom.

The distribution of X-ray wavelengths produced by striking metal with a beam of electrons is given in Figure
8.23. X-ray transitions in the target metal appear as peaks on top of the braking radiation curve. Photon
frequencies corresponding to the spikes in the X-ray distribution are called characteristic frequencies,
because they can be used to identify the target metal. The sharp cutoff wavelength (just below the peak)
corresponds to an electron that loses all of its energy to a single photon. Radiation of shorter wavelengths is
forbidden by the conservation of energy.
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Figure 8.23 X-ray spectrum from a silver target. The peaks correspond to characteristic frequencies of X-rays emitted by silver when

struck by an electron beam.

EXAMPLE 8.7

X-Rays from Aluminum
Estimate the characteristic energy and frequency of the X-ray for aluminum ( ).

Strategy
A X-ray is produced by the transition of an electron in the L ( ) shell to the K ( ) shell. An electron
in the L shell “sees” a charge because one electron in the K shell shields the nuclear charge.
(Recall, two electrons are not in the K shell because the other electron state is vacant.) The frequency of the
emitted photon can be estimated from the energy difference between the L and K shells.

Solution
The energy difference between the L and K shells in a hydrogen atom is 10.2 eV. Assuming that other electrons
in the L shell or in higher-energy shells do not shield the nuclear charge, the energy difference between the L
and K shells in an atom with is approximately

Based on the relationship , the frequency of the X-ray is

Significance
The wavelength of the typical X-ray is 0.1–10 nm. In this case, the wavelength is:

Hence, the transition L K in aluminum produces X-ray radiation.

X-ray production provides an important test of quantum mechanics. According to the Bohr model, the energy
of a X-ray depends on the nuclear charge or atomic number, Z. If Z is large, Coulomb forces in the atom are
large, energy differences ( ) are large, and, therefore, the energy of radiated photons is large. To illustrate,
consider a single electron in a multi-electron atom. Neglecting interactions between the electrons, the allowed
energy levels are

8.39
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where n = 1, 2, …and Z is the atomic number of the nucleus. However, an electron in the L ( ) shell “sees” a
charge , because one electron in the K shell shields the nuclear charge. (Recall that there is only one
electron in the K shell because the other electron was “knocked out.”) Therefore, the approximate energies of
the electron in the L and K shells are

The energy carried away by a photon in a transition from the L shell to the K shell is therefore

where Z is the atomic number. In general, the X-ray photon energy for a transition from an outer shell to the K
shell is

or

where f is the frequency of a X-ray. This equation is Moseley’s law. For large values of Z, we have
approximately

This prediction can be checked by measuring f for a variety of metal targets. This model is supported if a plot
of Z versus data (called a Moseley plot) is linear. Comparison of model predictions and experimental
results, for both the K and L series, is shown in Figure 8.24. The data support the model that X-rays are
produced when an outer shell electron drops in energy to fill a vacancy in an inner shell.

CHECK YOUR UNDERSTANDING 8.3

X-rays are produced by bombarding a metal target with high-energy electrons. If the target is replaced by
another with two times the atomic number, what happens to the frequency of X-rays?

8.41
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Figure 8.24 A Moseley plot. These data were adapted from Moseley’s original data (H. G. J. Moseley, Philos. Mag. (6) 77:703, 1914).

EXAMPLE 8.8

Characteristic X-Ray Energy
Calculate the approximate energy of a X-ray from a tungsten anode in an X-ray tube.

Strategy
Two electrons occupy a filled K shell. A vacancy in this shell would leave one electron, so the effective charge
for an electron in the L shell would be Z − 1 rather than Z. For tungsten, so the effective charge is 73.
This number can be used to calculate the energy-level difference between the L and K shells, and, therefore,
the energy carried away by a photon in the transition

Solution
The effective Z is 73, so the X-ray energy is given by

where

and
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Thus,

Significance
This large photon energy is typical of X-rays. X-ray energies become progressively larger for heavier elements
because their energy increases approximately as . An acceleration voltage of more than 50,000 volts is
needed to “knock out” an inner electron from a tungsten atom.

X-ray Technology
X-rays have many applications, such as in medical diagnostics (Figure 8.25), inspection of luggage at airports
(Figure 8.26), and even detection of cracks in crucial aircraft components. The most common X-ray images are
due to shadows. Because X-ray photons have high energy, they penetrate materials that are opaque to visible
light. The more energy an X-ray photon has, the more material it penetrates. The depth of penetration is
related to the density of the material, as well as to the energy of the photon. The denser the material, the fewer
X-ray photons get through and the darker the shadow. X-rays are effective at identifying bone breaks and
tumors; however, overexposure to X-rays can damage cells in biological organisms.

Figure 8.25 (a) An X-ray image of a person’s teeth. (b) A typical X-ray machine in a dentist’s office produces relatively low-energy

radiation to minimize patient exposure. (credit a: modification of work by “Dmitry G”/Wikimedia Commons)

Figure 8.26 An X-ray image of a piece of luggage. The denser the material, the darker the shadow. Object colors relate to material

composition—metallic objects show up as blue in this image. (credit: “IDuke”/Wikimedia Commons)

A standard X-ray image provides a two-dimensional view of the object. However, in medical applications, this
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view does not often provide enough information to draw firm conclusions. For example, in a two-dimensional
X-ray image of the body, bones can easily hide soft tissues or organs. The CAT (computed axial tomography)
scanner addresses this problem by collecting numerous X-ray images in “slices” throughout the body.
Complex computer-image processing of the relative absorption of the X-rays, in different directions, can
produce a highly detailed three-dimensional X-ray image of the body.

X-rays can also be used to probe the structures of atoms and molecules. Consider X-rays incident on the
surface of a crystalline solid. Some X-ray photons reflect at the surface, and others reflect off the “plane” of
atoms just below the surface. Interference between these photons, for different angles of incidence, produces a
beautiful image on a screen (Figure 8.27). The interaction of X-rays with a solid is called X-ray diffraction. The
most famous example using X-ray diffraction is the discovery of the double-helix structure of DNA.

Figure 8.27 X-ray diffraction from the crystal of a protein (hen egg lysozyme) produced this interference pattern. Analysis of the pattern

yields information about the structure of the protein. (credit: “Del45”/Wikimedia Commons)

8.6 Lasers
Learning Objectives
By the end of this section, you will be able to:

• Describe the physical processes necessary to produce laser light
• Explain the difference between coherent and incoherent light
• Describe the application of lasers to a CD and Blu-Ray player

A laser is device that emits coherent and monochromatic light. The light is coherent if photons that compose
the light are in-phase, and monochromatic if the photons have a single frequency (color). When a gas in the
laser absorbs radiation, electrons are elevated to different energy levels. Most electrons return immediately to
the ground state, but others linger in what is called a metastable state. It is possible to place a majority of these
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atoms in a metastable state, a condition called a population inversion.

When a photon of energy disturbs an electron in a metastable state (Figure 8.28), the electron drops to the
lower-energy level and emits an addition photon, and the two photons proceed off together. This process is
called stimulated emission. It occurs with relatively high probability when the energy of the incoming photon
is equal to the energy difference between the excited and “de-excited” energy levels of the electron ( ).
Hence, the incoming photon and the photon produced by de-excitation have the same energy, hf. These
photons encounter more electrons in the metastable state, and the process repeats. The result is a cascade or
chain reaction of similar de-excitations. Laser light is coherent because all light waves in laser light share the
same frequency (color) and the same phase (any two points of along a line perpendicular to the direction of
motion are on the “same part” of the wave”). A schematic diagram of coherent and incoherent light wave
pattern is given in Figure 8.29.

Figure 8.28 The physics of a laser. An incident photon of frequency f causes a cascade of photons of the same frequency.

Figure 8.29 A coherent light wave pattern contains light waves of the same frequency and phase. An incoherent light wave pattern

contains light waves of different frequencies and phases.

Lasers are used in a wide range of applications, such as in communication (optical fiber phone lines),
entertainment (laser light shows), medicine (removing tumors and cauterizing vessels in the retina), and in
retail sales (bar code readers). Lasers can also be produced by a large range of materials, including solids (for
example, the ruby crystal), gases (helium-gas mixture), and liquids (organic dyes). Recently, a laser was even
created using gelatin—an edible laser! Below we discuss two practical applications in detail: CD players and
Blu-Ray Players.

CD Player
A CD player reads digital information stored on a compact disc (CD). A CD is 6-inch diameter disc made of
plastic that contains small “bumps” and “pits” nears its surface to encode digital or binary data (Figure 8.30).
The bumps and pits appear along a very thin track that spirals outwards from the center of the disc. The width
of the track is smaller than 1/20th the width of a human hair, and the heights of the bumps are even smaller
yet.
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Figure 8.30 A compact disc is a plastic disc that uses bumps near its surface to encode digital information. The surface of the disc

contains multiple layers, including a layer of aluminum and one of polycarbonate plastic.

A CD player uses a laser to read this digital information. Laser light is suited to this purpose, because coherent
light can be focused onto an incredibly small spot and therefore distinguish between bumps and pits in the CD.
After processing by player components (including a diffraction grating, polarizer, and collimator), laser light is
focused by a lens onto the CD surface. Light that strikes a bump (“land”) is merely reflected, but light that
strikes a “pit” destructively interferes, so no light returns (the details of this process are not important to this
discussion). Reflected light is interpreted as a “1” and unreflected light is interpreted as a “0.” The resulting
digital signal is converted into an analog signal, and the analog signal is fed into an amplifier that powers a
device such as a pair of headphones. The laser system of a CD player is shown in Figure 8.31.

Figure 8.31 A CD player and its laser component.

Blu-Ray Player
Like a CD player, a Blu-Ray player reads digital information (video or audio) stored on a disc, and a laser is used
to record this information. The pits on a Blu-Ray disc are much smaller and more closely packed together than
for a CD, so much more information can be stored. As a result, the resolving power of the laser must be greater.
This is achieved using short wavelength blue laser light—hence, the name “Blu-” Ray. (CDs and
DVDs use red laser light.) The different pit sizes and player-hardware configurations of a CD, DVD, and Blu-Ray
player are shown in Figure 8.32. The pit sizes of a Blu-Ray disk are more than twice as small as the pits on a
DVD or CD. Unlike a CD, a Blu-Ray disc store data on a polycarbonate layer, which places the data closer to the
lens and avoids readability problems. A hard coating is used to protect the data since it is so close to the
surface.
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Figure 8.32 Comparison of laser resolution in a CD, DVD, and Blu-Ray Player.
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CHAPTER REVIEW
Key Terms
angular momentum orbital quantum number (l)

quantum number associated with the orbital
angular momentum of an electron in a hydrogen
atom

angular momentum projection quantum number
(m) quantum number associated with the
z-component of the orbital angular momentum of
an electron in a hydrogen atom

atomic orbital region in space that encloses a
certain percentage (usually 90%) of the electron
probability

Bohr magneton magnetic moment of an electron,
equal to or

braking radiation radiation produced by targeting
metal with a high-energy electron beam (or
radiation produced by the acceleration of any
charged particle in a material)

chemical group group of elements in the same
column of the periodic table that possess similar
chemical properties

coherent light light that consists of photons of the
same frequency and phase

covalent bond chemical bond formed by the
sharing of electrons between two atoms

electron configuration representation of the state
of electrons in an atom, such as for
lithium

fine structure detailed structure of atomic spectra
produced by spin-orbit coupling

fluorescence radiation produced by the excitation
and subsequent, gradual de-excitation of an
electron in an atom

hyperfine structure detailed structure of atomic
spectra produced by spin-orbit coupling

ionic bond chemical bond formed by the electric
attraction between two oppositely charged ions

laser coherent light produced by a cascade of
electron de-excitations

magnetic orbital quantum number another term
for the angular momentum projection quantum
number

magnetogram pictoral representation, or map, of
the magnetic activity at the Sun’s surface

metastable state state in which an electron
“lingers” in an excited state

monochromatic light that consists of photons with
the same frequency

Moseley plot plot of the atomic number versus the
square root of X-ray frequency

Moseley’s law relationship between the atomic
number and X-ray photon frequency for X-ray
production

orbital magnetic dipole moment measure of the
strength of the magnetic field produced by the
orbital angular momentum of the electron

Pauli’s exclusion principle no two electrons in an
atom can have the same values for all four
quantum numbers

population inversion condition in which a
majority of atoms contain electrons in a
metastable state

principal quantum number (n) quantum number
associated with the total energy of an electron in a
hydrogen atom

radial probability density function function use
to determine the probability of a electron to be
found in a spatial interval in r

selection rules rules that determine whether
atomic transitions are allowed or forbidden (rare)

spin projection quantum number ( ) quantum
number associated with the z-component of the
spin angular momentum of an electron

spin quantum number (s) quantum number
associated with the spin angular momentum of
an electron

spin-flip transitions atomic transitions between
states of an electron-proton system in which the
magnetic moments are aligned and not aligned

spin-orbit coupling interaction between the
electron magnetic moment and the magnetic field
produced by the orbital angular momentum of
the electron

stimulated emission when a photon of energy
triggers an electron in a metastable state to drop
in energy emitting an additional photon

transition metal element that is located in the gap
between the first two columns and the last six
columns of the table of elements that contains
electrons that fill the d subshell

valence electron electron in the outer shell of an
atom that participates in chemical bonding

Zeeman effect splitting of energy levels by an
external magnetic field
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Key Equations

Orbital angular momentum ℏ

z-component of orbital angular momentum ℏ

Radial probability density function

Spin angular momentum ℏ

z-component of spin angular momentum ℏ

Electron spin magnetic moment

Electron orbital magnetic dipole moment

Potential energy associated with the magnetic
interaction between the orbital magnetic dipole
moment and an external magnetic field

Maximum number of electrons in a subshell of
a hydrogen atom

Selection rule for atomic transitions in a
hydrogen-like atom

Moseley’s law for X-ray production

Summary
8.1 The Hydrogen Atom

• A hydrogen atom can be described in terms of
its wave function, probability density, total
energy, and orbital angular momentum.

• The state of an electron in a hydrogen atom is
specified by its quantum numbers (n, l, m).

• In contrast to the Bohr model of the atom, the
Schrödinger model makes predictions based on
probability statements.

• The quantum numbers of a hydrogen atom can
be used to calculate important information
about the atom.

8.2 Orbital Magnetic Dipole Moment of the
Electron

• A hydrogen atom has magnetic properties
because the motion of the electron acts as a
current loop.

• The energy levels of a hydrogen atom associated
with orbital angular momentum are split by an
external magnetic field because the orbital
angular magnetic moment interacts with the
field.

• The quantum numbers of an electron in a
hydrogen atom can be used to calculate the
magnitude and direction of the orbital magnetic
dipole moment of the atom.

8.3 Electron Spin

• The state of an electron in a hydrogen atom can
be expressed in terms of five quantum numbers.

• The spin angular momentum quantum of an
electron is = . The spin angular momentum
projection quantum number is ms
(spin up or spin down).

• The fine and hyperfine structures of the
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hydrogen spectrum are explained by magnetic
interactions within the atom.

8.4 The Exclusion Principle and the Periodic
Table

• Pauli’s exclusion principle states that no two
electrons in an atom can have all the same
quantum numbers.

• The structure of the periodic table of elements
can be explained in terms of the total energy,
orbital angular momentum, and spin of
electrons in an atom.

• The state of an atom can be expressed by its
electron configuration, which describes the
shells and subshells that are filled in the atom.

8.5 Atomic Spectra and X-rays

• Radiation is absorbed and emitted by atomic
energy-level transitions.

• Quantum numbers can be used to estimate the

energy, frequency, and wavelength of photons
produced by atomic transitions.

• Atomic fluorescence occurs when an electron in
an atom is excited several steps above the
ground state by the absorption of a high-energy
ultraviolet (UV) photon.

• X-ray photons are produced when a vacancy in
an inner shell of an atom is filled by an electron
from the outer shell of the atom.

• The frequency of X-ray radiation is related to the
atomic number Z of an atom.

8.6 Lasers

• Laser light is coherent (monochromatic and
“phase linked”) light.

• Laser light is produced by population inversion
and subsequent de-excitation of electrons in a
material (solid, liquid, or gas).

• CD and Blu-Ray players uses lasers to read
digital information stored on discs.

Conceptual Questions
8.1 The Hydrogen Atom

1. Identify the physical significance of each of the
quantum numbers of the hydrogen atom.

2. Describe the ground state of hydrogen in terms of
wave function, probability density, and atomic
orbitals.

3. Distinguish between Bohr’s and Schrödinger’s
model of the hydrogen atom. In particular,
compare the energy and orbital angular
momentum of the ground states.

8.2 Orbital Magnetic Dipole Moment of the
Electron

4. Explain why spectral lines of the hydrogen atom
are split by an external magnetic field. What
determines the number and spacing of these
lines?

5. A hydrogen atom is placed in a magnetic field.
Which of the following quantities are affected? (a)
total energy; (b) angular momentum; (c) z-
component of angular momentum; (d) polar
angle.

6. On what factors does the orbital magnetic dipole
moment of an electron depend?

8.3 Electron Spin

7. Explain how a hydrogen atom in the ground state
) can interact magnetically with an external

magnetic field.

8. Compare orbital angular momentum with spin
angular momentum of an electron in the
hydrogen atom.

9. List all the possible values of s and for an
electron. Are there particles for which these
values are different?

10. Are the angular momentum vectors and
necessarily aligned?

11. What is spin-orbit coupling?

8.4 The Exclusion Principle and the Periodic
Table

12. What is Pauli’s exclusion principle? Explain the
importance of this principle for the
understanding of atomic structure and
molecular bonding.

13. Compare the electron configurations of the
elements in the same column of the periodic
table.

14. Compare the electron configurations of the
elements that belong in the same row of the
periodic table of elements.

8.5 Atomic Spectra and X-rays

15. Atomic and molecular spectra are discrete.
What does discrete mean, and how are discrete
spectra related to the quantization of energy
and electron orbits in atoms and molecules?

16. Discuss the process of the absorption of light by
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matter in terms of the atomic structure of the
absorbing medium.

17. NGC1763 is an emission nebula in the Large
Magellanic Cloud just outside our Milky Way
Galaxy. Ultraviolet light from hot stars ionize
the hydrogen atoms in the nebula. As protons
and electrons recombine, light in the visible
range is emitted. Compare the energies of the
photons involved in these two transitions.

18. Why are X-rays emitted only for electron
transitions to inner shells? What type of photon
is emitted for transitions between outer shells?

19. How do the allowed orbits for electrons in atoms
differ from the allowed orbits for planets around

the sun?

8.6 Lasers

20. Distinguish between coherent and
monochromatic light.

21. Why is a metastable state necessary for the
production of laser light?

22. How does light from an incandescent light bulb
differ from laser light?

23. How is a Blu-Ray player able to read more
information that a CD player?

24. What are the similarities and differences
between a CD player and a Blu-Ray player?

Problems
8.1 The Hydrogen Atom

25. The wave function is evaluated at rectangular
coordinates ( ) (2, 1, 1) in arbitrary units.
What are the spherical coordinates of this
position?

26. If an atom has an electron in the state
with , what are the possible values of l?

27. What are the possible values of m for an
electron in the state?

28. What, if any, constraints does a value of
place on the other quantum numbers for an
electron in an atom?

29. How many possible states are there for the
state?

30. (a) How many angles can L make with the z-axis
for an electron? (b) Calculate the value of
the smallest angle.

31. The force on an electron is “negative the
gradient of the potential energy function.” Use
this knowledge and Equation 8.1 to show that
the force on the electron in a hydrogen atom is
given by Coulomb’s force law.

32. What is the total number of states with orbital
angular momentum ? (Ignore electron
spin.)

33. The wave function is evaluated at spherical

coordinates where

the value of the radial coordinate is given in
arbitrary units. What are the rectangular
coordinates of this position?

34. Coulomb’s force law states that the force
between two charged particles is:

Use this expression to determine the

potential energy function.
35. Write an expression for the total number of

states with orbital angular momentum l.
36. Consider hydrogen in the ground state, . (a)

Use the derivative to determine the radial
position for which the probability density, P(r),
is a maximum.
(b) Use the integral concept to determine the
average radial position. (This is called the
expectation value of the electron’s radial
position.) Express your answers into terms of
the Bohr radius, . Hint: The expectation value
is the just average value. (c) Why are these
values different?

37. What is the probability that the 1s electron of a
hydrogen atom is found outside the Bohr
radius?

38. How many polar angles are possible for an
electron in the state?

39. What is the maximum number of orbital
angular momentum electron states in the
shell of a hydrogen atom? (Ignore electron spin.)

40. What is the maximum number of orbital
angular momentum electron states in the
shell of a hydrogen atom? (Ignore electron spin.)

8.2 Orbital Magnetic Dipole Moment of the
Electron

41. Find the magnitude of the orbital magnetic
dipole moment of the electron in in the 3p state.
(Express your answer in terms of )

42. A current of flows through a square-
shaped wire with 2-cm side lengths. What is the
magnetic moment of the wire?

43. Estimate the ratio of the electron magnetic
moment to the muon magnetic moment for the
same state of orbital angular momentum. (Hint:
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44. Find the magnitude of the orbital magnetic
dipole moment of the electron in in the 4d state.
(Express your answer in terms of )

45. For a 3d electron in an external magnetic field
of , find (a) the current
associated with the orbital angular momentum,
and (b) the maximum torque.

46. An electron in a hydrogen atom is in the ,
state. Find the smallest angle the magnetic

moment makes with the z-axis. (Express your
answer in terms of )

47. Find the minimum torque magnitude | that
acts on the orbital magnetic dipole of a 3p
electron in an external magnetic field of

.
48. An electron in a hydrogen atom is in 3p state.

Find the smallest angle the magnetic moment
makes with the z-axis. (Express your answer in
terms of )

49. Show that .
(Hint: An infinitesimal amount of work is done
to align the magnetic moment with the external
field. This work rotates the magnetic moment
vector through an angle (toward the
positive z-direction), where is a positive
angle change.)

8.3 Electron Spin

50. What is the magnitude of the spin momentum
of an electron? (Express you answer in terms of
ℏ

51. What are the possible polar orientations of the
spin momentum vector for an electron?

52. For write all the possible sets of quantum
numbers (n, l, m, ).

53. A hydrogen atom is placed in an external
uniform magnetic field ( ). Calculate
the wavelength of light produced in a transition
from a spin up to spin down state.

54. If the magnetic field in the preceding problem is
quadrupled, what happens to the wavelength of
light produced in a transition from a spin up to
spin down state?

55. If the magnetic moment in the preceding
problem is doubled, what happens to the
frequency of light produced in a transition from
a spin-up to spin-down state?

56. For , write all the possible sets of quantum
numbers (n, l, m, ).

8.4 The Exclusion Principle and the Periodic
Table

57. (a) How many electrons can be in the
shell?
(b) What are its subshells, and how many
electrons can be in each?

58. (a) What is the minimum value of l for a subshell
that contains 11 electrons?
(b) If this subshell is in the shell, what is
the spectroscopic notation for this atom?

59. Unreasonable result. Which of the following
spectroscopic notations are not allowed? (a)
(b) (c) (d) (e) . State which rule
is violated for each notation that is not allowed.

60. Write the electron configuration for potassium.
61. Write the electron configuration for iron.
62. The valence electron of potassium is excited to a

5d state. (a) What is the magnitude of the
electron’s orbital angular momentum? (b) How
many states are possible along a chosen
direction?

63. (a) If one subshell of an atom has nine electrons
in it, what is the minimum value of l? (b) What is
the spectroscopic notation for this atom, if this
subshell is part of the shell?

64. Write the electron configuration for
magnesium.

65. Write the electron configuration for carbon.
66. The magnitudes of the resultant spins of the

electrons of the elements B through Ne when in
the ground state are: ℏ ℏ ,

ℏ ℏ , ℏ and 0, respectively.

Argue that these spins are consistent with
Hund’s rule.

8.5 Atomic Spectra and X-rays

67. What is the minimum frequency of a photon
required to ionize: (a) a ion in its ground
state? (b) A ion in its first excited state?

68. The ion makes an atomic transition from
an state to an state. (a) What is the
energy of the photon emitted during the
transition? (b) What is the wavelength of the
photon?

69. The red light emitted by a ruby laser has a
wavelength of 694.3 nm. What is the difference
in energy between the initial state and final
state corresponding to the emission of the light?

70. The yellow light from a sodium-vapor street
lamp is produced by a transition of sodium
atoms from a 3p state to a 3s state. If the
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difference in energies of those two states is 2.10
eV, what is the wavelength of the yellow light?

71. Estimate the wavelength of the X-ray from
calcium.

72. Estimate the frequency of the X-ray from
cesium.

73. X-rays are produced by striking a target with a
beam of electrons. Prior to striking the target,
the electrons are accelerated by an electric field
through a potential energy difference:

where e is the charge of an electron and is
the voltage difference. If volts,
what is the minimum wavelength of the emitted
radiation?

74. For the preceding problem, what happens to the
minimum wavelength if the voltage across the
X-ray tube is doubled?

75. Suppose the experiment in the preceding
problem is conducted with muons. What
happens to the minimum wavelength?

76. An X-ray tube accelerates an electron with an
applied voltage of 50 kV toward a metal target.
(a) What is the shortest-wavelength X-ray
radiation generated at the target? (b) Calculate
the photon energy in eV. (c) Explain the
relationship of the photon energy to the applied
voltage.

77. A color television tube generates some X-rays
when its electron beam strikes the screen. What
is the shortest wavelength of these X-rays, if a
30.0-kV potential is used to accelerate the
electrons? (Note that TVs have shielding to
prevent these X-rays from exposing viewers.)

78. An X-ray tube has an applied voltage of 100 kV.
(a) What is the most energetic X-ray photon it
can produce? Express your answer in electron
volts and joules. (b) Find the wavelength of such
an X-ray.

79. The maximum characteristic X-ray photon

energy comes from the capture of a free
electron into a K shell vacancy. What is this
photon energy in keV for tungsten, assuming
that the free electron has no initial kinetic
energy?

80. What are the approximate energies of the
and X-rays for copper?

81. Compare the X-ray photon wavelengths for
copper and gold.

82. The approximate energies of the and X-
rays for copper are and

respectively. Determine the

ratio of X-ray frequencies of gold to copper, then
use this value to estimate the corresponding
energies of and X-rays for gold.

8.6 Lasers

83. A carbon dioxide laser used in surgery emits
infrared radiation with a wavelength of .
In 1.00 ms, this laser raised the temperature of

of flesh to and evaporated it. (a)
How many photons were required? You may
assume that flesh has the same heat of
vaporization as water. (b) What was the
minimum power output during the flash?

84. An excimer laser used for vision correction
emits UV radiation with a wavelength of 193
nm. (a) Calculate the photon energy in eV. (b)
These photons are used to evaporate corneal
tissue, which is very similar to water in its
properties. Calculate the amount of energy
needed per molecule of water to make the phase
change from liquid to gas. That is, divide the
heat of vaporization in kJ/kg by the number of
water molecules in a kilogram. (c) Convert this
to eV and compare to the photon energy.
Discuss the implications.

Additional Problems
85. For a hydrogen atom in an excited state with

principal quantum number n, show that the
smallest angle that the orbital angular
momentum vector can make with respect to the

z-axis is

86. What is the probability that the 1s electron of a
hydrogen atom is found between and

∞

87. Sketch the potential energy function of an
electron in a hydrogen atom. (a) What is the
value of this function at ? in the limit that

∞? (b) What is unreasonable or inconsistent

with the former result?
88. Find the value of , the orbital angular

momentum quantum number, for the Moon
around Earth.
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89. Show that the maximum number of orbital
angular momentum electron states in the nth
shell of an atom is . (Ignore electron spin.)
(Hint: Make a table of the total number of orbital
angular momentum states for each shell and
find the pattern.)

90. What is the magnitude of an electron magnetic
moment?

91. What is the maximum number of electron states
in the shell?

92. A ground-state hydrogen atom is placed in a
uniform magnetic field, and a photon is emitted
in the transition from a spin-up to spin-down
state. The wavelength of the photon is .
What is the strength of the magnetic field?

93. Show that the maximum number of electron
states in the nth shell of an atom is .

94. The valence electron of chlorine is excited to a
3p state. (a) What is the magnitude of the
electron’s orbital angular momentum? (b) What
are possible values for the z-component of
angular measurement?

95. Which of the following notations are allowed
(that is, which violate none of the rules
regarding values of quantum numbers)? (a)
(b) (c) (d) (e)

96. The ion makes an atomic transition from
an state to an state. (a) What is the
energy of the photon emitted during the
transition? (b) What is the wavelength of the
photon?

97. The maximum characteristic X-ray photon
energy comes from the capture of a free
electron into a K shell vacancy. What is this
photon frequency for tungsten, assuming that
the free electron has no initial kinetic energy?

98. Derive an expression for the ratio of X-ray
photon frequency for two elements with atomic
numbers and

99. Compare the X-ray photon wavelengths for
copper and silver.

100. (a) What voltage must be applied to an X-ray
tube to obtain 0.0100-fm-wavelength X-rays
for use in exploring the details of nuclei? (b)
What is unreasonable about this result? (c)
Which assumptions are unreasonable or
inconsistent?

101. A student in a physics laboratory observes a
hydrogen spectrum with a diffraction grating
for the purpose of measuring the wavelengths
of the emitted radiation. In the spectrum, she
observes a yellow line and finds its wavelength
to be 589 nm. (a) Assuming that this is part of
the Balmer series, determine the principal
quantum number of the initial state. (b) What
is unreasonable about this result? (c) Which
assumptions are unreasonable or
inconsistent?
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INTRODUCTION

CHAPTER 9
Condensed Matter Physics

9.1 Types of Molecular Bonds

9.2 Molecular Spectra

9.3 Bonding in Crystalline Solids

9.4 Free Electron Model of Metals

9.5 Band Theory of Solids

9.6 Semiconductors and Doping

9.7 Semiconductor Devices

9.8 Superconductivity

In this chapter, we examine applications of quantum mechanics to more complex systems,
such as molecules, metals, semiconductors, and superconductors. We review and develop concepts of the
previous chapters, including wave functions, orbitals, and quantum states. We also introduce many new
concepts, including covalent bonding, rotational energy levels, Fermi energy, energy bands, doping, and
Cooper pairs.

The main topic in this chapter is the crystal structure of solids. For centuries, crystalline solids have been
prized for their beauty, including gems like diamonds and emeralds, as well as geological crystals of quartz
and metallic ores. But the crystalline structures of semiconductors such as silicon have also made possible the
electronics industry of today. In this chapter, we study how the structures of solids give them properties from
strength and transparency to electrical conductivity.

Figure 9.1 The crystalline structure of quartz allows it to cleave into smooth planes that refract light, making it
suitable for jewelry. Silicon, the main element in quartz, also forms crystals in its pure form, and these crystals form
the basis for the worldwide semiconductor electronics industry. (credit left: modification of work by the United
States Geological Survey)
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9.1 Types of Molecular Bonds
Learning Objectives
By the end of this section, you will be able to:

• Distinguish between the different types of molecular bonds
• Determine the dissociation energy of a molecule using the concepts ionization energy, electron affinity, and

Coulomb force
• Describe covalent bonding in terms of exchange symmetry
• Explain the physical structure of a molecule in terms of the concept of hybridization

Quantum mechanics has been extraordinarily successful at explaining the structure and bonding in
molecules, and is therefore the foundation for all of chemistry. Quantum chemistry, as it is sometimes called,
explains such basic questions as why molecules exist, why the bonding angle between hydrogen atoms in
this molecule is precisely , and why these molecules bind together to form liquid water at room
temperature. Applying quantum mechanics to molecules can be very difficult mathematically, so our
discussion will be qualitative only.

As we study molecules and then solids, we will use many different scientific models. In some cases, we look at
a molecule or crystal as a set of point nuclei with electrons whizzing around the outside in well-defined
trajectories, as in the Bohr model. In other cases, we employ our full knowledge of quantum mechanics to
study these systems using wave functions and the concept of electron spin. It is important to remember that
we study modern physics with models, and that different models are useful for different purposes. We do not
always use the most powerful model, when a less-powerful, easier-to-use model will do the job.

Types of Bonds
Chemical units form by many different kinds of chemical bonds. An ionic bond forms when an electron
transfers from one atom to another. A covalent bond occurs when two or more atoms share electrons. A van
der Waals bond occurs due to the attraction of charge-polarized molecules and is considerably weaker than
ionic or covalent bonds. Many other types of bonding exist as well. Often, bonding occurs via more than one
mechanism. The focus of this section is ionic and covalent bonding.

Ionic bonds
The ionic bond is perhaps the easiest type of bonding to understand. It explains the formation of salt
compounds, such as sodium chloride, NaCl. The sodium atom (symbol Na) has the same electron arrangement
as a neon atom plus one 3s electron. Only 5.14 eV of energy is required to remove this one electron from the
sodium atom. Therefore, Na can easily give up or donate this electron to an adjacent (nearby) atom, attaining a
more stable arrangement of electrons. Chlorine (symbol Cl) requires just one electron to complete its valence
shell, so it readily accepts this electron if it is near the sodium atom. We therefore say that chlorine has a large
electron affinity, which is the energy associated with an accepted electron. The energy given up by the
chlorine atom in this process is 3.62 eV. After the electron transfers from the sodium atom to the chlorine
atom, the sodium atom becomes a positive ion and the chlorine atom becomes a negative ion. The total energy
required for this transfer is given by

The positive sodium ion and negative chloride ion experience an attractive Coulomb force. The potential
energy associated with this force is given by

where and is the distance between the ions.

As the sodium and chloride ions move together (“descend the potential energy hill”), the force of attraction
between the ions becomes stronger. However, if the ions become too close, core-electron wave functions in the
two ions begin to overlap. Due to the exclusion principle, this action promotes the core electrons—and

9.1
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therefore the entire molecule—into a higher energy state. The equilibrium separation distance (or bond
length) between the ions occurs when the molecule is in its lowest energy state. For diatomic NaCl, this
distance is 0.236 nm. Figure 9.2 shows the total energy of NaCl as a function of the distance of separation
between ions.

Figure 9.2 Graph of energy versus ionic separation for sodium chloride. Equilibrium separation occur when the total energy is a minimum

.

The total energy required to form a single salt unit is

where is the energy associated with the repulsion between core electrons due to Pauli’s exclusion
principle. The value of must be negative for the bond to form spontaneously. The dissociation energy is
defined as the energy required to separate the unit into its constituent ions, written

Every diatomic formula unit has its own characteristic dissociation energy and equilibrium separation length.
Sample values are given in Table 9.1.

Molecule Dissociation Energy Equilibrium Separation

9.2

9.3
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Molecule Dissociation Energy Equilibrium Separation

Table 9.1 Bond Length

EXAMPLE 9.1

The Energy of Salt
What is the dissociation energy of a salt formula unit (NaCl)?

Strategy
Sodium chloride (NaCl) is a salt formed by ionic bonds. The energy change associated with this bond depends
on three main processes: the ionization of Na; the acceptance of the electron from a Na atom by a Cl atom; and
Coulomb attraction of the resulting ions ( ). If the ions get too close, they repel due to the exclusion
principle (0.32 eV). The equilibrium separation distance is

Solution
The energy change associated with the transfer of an electron from Na to Cl is 1.52 eV, as discussed earlier in
this section. At equilibrium separation, the atoms are apart. The electrostatic potential energy
of the atoms is

The total energy difference associated with the formation of a NaCl formula unit is

Therefore, the dissociated energy of NaCl is 4.26 eV.

Significance
The formation of a NaCl formula unit by ionic bonding is energetically favorable. The dissociation energy, or
energy required to separate the NaCl unit into ions is 4.26 eV, consistent with Figure 9.2.
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CHECK YOUR UNDERSTANDING 9.1

Why is the potential energy associated with the exclusion principle positive in Example 9.1?

For a sodium ion in an ionic NaCl crystal, the expression for Coulomb potential energy must be modified
by a factor known as the Madelung constant. This factor takes into account the interaction of the sodium ion
with all nearby chloride and sodium ions. The Madelung constant for a NaCl crystal is about 1.75. This value
implies an equilibrium separation distance between ions of 0.280 nm—slightly larger than for
diatomic NaCl. We will return to this point again later.

Covalent bonds
In an ionic bond, an electron transfers from one atom to another. However, in a covalent bond, an electron is
shared between two atoms. The ionic bonding mechanism cannot explain the existence of such molecules as

and CO, since no separation distance exists for which the negative potential energy of attraction is
greater in magnitude than the energy needed to create ions. Understanding precisely how such molecules are
covalently bonded relies on a deeper understanding of quantum mechanics that goes beyond the coverage of
this book, but we will qualitatively describe the mechanisms in the following section.

Covalent bonds can be understood using the simple example of a molecule, which consists of one electron
in the electric field of two protons. This system can be modeled by an electron in a double square well (Figure
9.3). The electron is equally likely to be found in each well, so the wave function is either symmetric or
antisymmetric about a point midway between the wells.

Figure 9.3 A one-dimensional model of covalent bonding in a molecule. (a) The symmetric wave function of the electron shared by

the two positively charged protons (represented by the two finite square wells). (b) The corresponding antisymmetric wave function.

Now imagine that the two wells are separated by a large distance. In the ground state, the wave function exists
in one of two possible states: either a single positive peak (a sine wave-like “hump”) in both wells (symmetric
case), or a positive peak in one well and a negative peak in the other (antisymmetric case). These states have
the same energy. However, when the wells are brought together, the symmetric wave function becomes the
ground state and the antisymmetric state becomes the first excited state—in other words, the energy level of
the electron is split. Notice, the space-symmetric state becomes the energetically favorable (lower energy)
state.

The same analysis is appropriate for an electron bound to two hydrogen atoms. Here, the shapes of the ground-
state wave functions have the form or in one dimension. The energetically favorable, space-
symmetric state implies a high charge density midway between the protons where the electrons are likely to
pull the positively charged protons together.

If a second electron is added to this system to form a molecule, the wave function must describe both
particles, including their spatial relationship and relative spins. This wave function must also respect the
indistinguishability of electrons. (“If you’ve seen one electron, you’ve seen them all.”) In particular, switching
or exchanging the electrons should not produce an observable effect, a property called exchange symmetry.
Exchange symmetry can be symmetric, producing no change in the wave function, or antisymmetric,
producing an overall change in the sign of the wave function—neither of which is observable.

As we discuss later, the total wave function of two electrons must be antisymmetric on exchange. For example,
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two electrons bound to a hydrogen molecule can be in a space-symmetric state with antiparallel spins or
space-antisymmetric state with parallel spins . The state with antiparallel spins is energetically favorable
and therefore used in covalent bonding. If the protons are drawn too closely together, however, repulsion
between the protons becomes important. (In other molecules, this effect is supplied by the exclusion
principle.) As a result, reaches an equilibrium separation of about 0.074 nm with a binding energy is 4.52
eV.

INTERACTIVE

Visit this PBS Learning Media tutorial and interactive simulation (https://openstax.org/l/21covalentbond) to
explore the attractive and repulsive forces that act on atomic particles and covalent bonding in a molecule.

Quantum mechanics excludes many types of molecules. For example, the molecule does not form, because
if a third H atom approaches diatomic hydrogen, the wave function of the electron in this atom overlaps the
electrons in the other two atoms. If all three electrons are in the ground states of their respective atoms, one
pair of electrons shares all the same quantum numbers, which is forbidden by the exclusion principle. Instead,
one of the electrons is forced into a higher energy state. No separation between three protons exists for which
the total energy change of this process is negative—that is, where bonding occurs spontaneously. Similarly,

is not covalently bonded under normal conditions, because these atoms have no valence electrons to
share. As the atoms are brought together, the wave functions of the core electrons overlap, and due to the
exclusion principle, the electrons are forced into a higher energy state. No separation exists for which such a
molecule is energetically favorable.

Bonding in Polyatomic Molecules
A polyatomic molecule is a molecule made of more than two atoms. Examples range from a simple water
molecule to a complex protein molecule. The structures of these molecules can often be understood in terms
of covalent bonding and hybridization. Hybridization is a change in the energy structure of an atom in which
mixed states (states that can be written as a linear superposition of others) participate in bonding.

To illustrate hybridization, consider the bonding in a simple water molecule, The electron configuration
of oxygen is The 1s and 2s electrons are in “closed shells” and do not participate in bonding. The
remaining four electrons are the valence electrons. These electrons can fill six possible states ( , ,

, plus spin up and down). The energies of these states are the same, so the oxygen atom can exploit any
linear combination of these states in bonding with the hydrogen atoms. These linear combinations (which you
learned about in the chapter on atomic structure) are called atomic orbitals, and they are denoted by
and The electron charge distributions for these orbitals are given in Figure 9.4.

Figure 9.4 Oxygen has four valence electrons. In the context of a water molecule, two valence electrons fill the orbital and one

electron fills each of the and orbitals. The and orbitals are used in bonding with hydrogen atoms to form . Without

repulsion of H atoms, the bond angle between hydrogen atoms would be 90 degrees.

The transformation of the electron wave functions of oxygen to and orbitals in the presence of the
hydrogen atoms is an example of hybridization. Two electrons are found in the orbital with paired spins

. One electron is found in each of the and orbitals, with unpaired spins. The latter orbitals participate
in bonding with the hydrogen atoms. Based on Figure 9.4, we expect the bonding angle for to be .
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However, if we include the effects of repulsion between atoms, the bond angle is . The same arguments
can be used to understand the tetrahedral shape of methane and other molecules.

9.2 Molecular Spectra
Learning Objectives
By the end of this section, you will be able to:

• Use the concepts of vibrational and rotational energy to describe energy transitions in a diatomic molecule
• Explain key features of a vibrational-rotational energy spectrum of a diatomic molecule
• Estimate allowed energies of a rotating molecule
• Determine the equilibrium separation distance between atoms in a diatomic molecule from the vibrational-

rotational absorption spectrum

Molecular energy levels are more complicated than atomic energy levels because molecules can also vibrate
and rotate. The energies associated with such motions lie in different ranges and can therefore be studied
separately. Electronic transitions are of order 1 eV, vibrational transitions are of order and rotational
transitions are of order For complex molecules, these energy changes are difficult to characterize, so
we begin with the simple case of a diatomic molecule.

According to classical mechanics, the energy of rotation of a diatomic molecule is given by

where I is the moment of inertia and L is the angular momentum. According to quantum mechanics, the
rotational angular momentum is quantized:

where l is the orbital angular quantum number. The allowed rotational energy level of a diatomic molecule is
therefore

where the characteristic rotational energy of a molecule is defined as

For a diatomic molecule, the moment of inertia with reduced mass is

where is the total distance between the atoms. The energy difference between rotational levels is therefore

A detailed study of transitions between rotational energy levels brought about by the absorption or emission of
radiation (a so-called electric dipole transition) requires that

This rule, known as a selection rule, limits the possible transitions from one quantum state to another.
Equation 9.10 is the selection rule for rotational energy transitions. It applies only to diatomic molecules that
have an electric dipole moment. For this reason, symmetric molecules such as and do not experience
rotational energy transitions due to the absorption or emission of electromagnetic radiation.
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EXAMPLE 9.2

The Rotational Energy of HCl
Determine the lowest three rotational energy levels of a hydrogen chloride (HCl) molecule.

Strategy
Hydrogen chloride (HCl) is a diatomic molecule with an equilibrium separation distance of 0.127 nm.
Rotational energy levels depend only on the momentum of inertia I and the orbital angular momentum
quantum number l (in this case, , 1, and 2). The momentum of inertia depends, in turn, on the
equilibrium separation distance (which is given) and the reduced mass, which depends on the masses of the H
and Cl atoms.

Solution
First, we compute the reduced mass. If Particle 1 is hydrogen and Particle 2 is chloride, we have

The corresponding rest mass energy is therefore

This allows us to calculate the characteristic energy:

ℏ ℏ ℏ

(Notice how this expression is written in terms of the rest mass energy. This technique is common in modern
physics calculations.) The rotational energy levels are given by

ℏ

where l is the orbital quantum number. The three lowest rotational energy levels of an HCl molecule are
therefore

Significance
The rotational spectrum is associated with weak transitions (1/1000 to 1/100 of an eV). By comparison, the
energy of an electron in the ground state of hydrogen is .

CHECK YOUR UNDERSTANDING 9.2

What does the energy separation between absorption lines in a rotational spectrum of a diatomic molecule tell
you?

The vibrational energy level, which is the energy level associated with the vibrational energy of a molecule, is
more difficult to estimate than the rotational energy level. However, we can estimate these levels by assuming
that the two atoms in the diatomic molecule are connected by an ideal spring of spring constant k. The
potential energy of this spring system is
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Where is a change in the “natural length” of the molecule along a line that connects the atoms. Solving
Schrödinger’s equation for this potential gives

Where is the natural angular frequency of vibration and n is the vibrational quantum number. The

prediction that vibrational energy levels are evenly spaced ℏ turns out to be good at lower energies.

A detailed study of transitions between vibrational energy levels induced by the absorption or emission of
radiation (and the specifically so-called electric dipole transition) requires that

Equation 9.13 represents the selection rule for vibrational energy transitions. As mentioned before, this rule
applies only to diatomic molecules that have an electric dipole moment. Symmetric molecules do not
experience such transitions.

Due to the selection rules, the absorption or emission of radiation by a diatomic molecule involves a transition
in vibrational and rotational states. Specifically, if the vibrational quantum number (n) changes by one unit,
then the rotational quantum number (l) changes by one unit. An energy-level diagram of a possible transition
is given in Figure 9.5. The absorption spectrum for such transitions in hydrogen chloride (HCl) is shown in
Figure 9.6. The absorption peaks are due to transitions from the to vibrational states. Energy
differences for the band of peaks at the left and right are, respectively,

ℏ ℏ ℏ ℏ and

ℏ ℏ ℏ ℏ

The moment of inertia can then be determined from the energy spacing between individual peaks or
from the gap between the left and right bands . The frequency at the center of this gap is the frequency
of vibration.

Figure 9.5 Three types of energy levels in a diatomic molecule: electronic, vibrational, and rotational. If the vibrational quantum number

(n) changes by one unit, then the rotational quantum number (l) changes by one unit.

9.11

ℏ 9.12

9.13
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Figure 9.6 Absorption spectrum of hydrogen chloride (HCl) from the vibrational levels. The discrete peaks indicate a

quantization of the angular momentum of the molecule. The bands to the left indicate a decrease in angular momentum, whereas those to

the right indicate an increase in angular momentum.

9.3 Bonding in Crystalline Solids
Learning Objectives
By the end of this section, you will be able to:

• Describe the packing structures of common solids
• Explain the difference between bonding in a solid and in a molecule
• Determine the equilibrium separation distance given crystal properties
• Determine the dissociation energy of a salt given crystal properties

Beginning in this section, we study crystalline solids, which consist of atoms arranged in an extended regular
pattern called a lattice. Solids that do not or are unable to form crystals are classified as amorphous solids.
Although amorphous solids (like glass) have a variety of interesting technological applications, the focus of this
chapter will be on crystalline solids.

Atoms arrange themselves in a lattice to form a crystal because of a net attractive force between their
constituent electrons and atomic nuclei. The crystals formed by the bonding of atoms belong to one of three
categories, classified by their bonding: ionic, covalent, and metallic. Molecules can also bond together to form
crystals; these bonds, not discussed here, are classified as molecular. Early in the twentieth century, the atomic
model of a solid was speculative. We now have direct evidence of atoms in solids (Figure 9.7).
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Figure 9.7 An image made with a scanning tunneling microscope of the surface of graphite. The peaks represent the atoms, which are

arranged in hexagons. The scale is in angstroms.

Ionic Bonding in Solids
Many solids form by ionic bonding. A prototypical example is the sodium chloride crystal, as we discussed
earlier. Electrons transfer from sodium atoms to adjacent chlorine atoms, since the valence electrons in
sodium are loosely bound and chlorine has a large electron affinity. The positively charged sodium ions and
negatively charged chlorine (chloride) ions organize into an extended regular array of atoms (Figure 9.8).

Figure 9.8 Structure of the sodium chloride crystal. The sodium and chloride ions are arranged in a face-centered cubic (FCC) structure.

The charge distributions of the sodium and chloride ions are spherically symmetric, and the chloride ion is
about two times the diameter of the sodium ion. The lowest energy arrangement of these ions is called the
face-centered cubic (FCC) structure. In this structure, each ion is closest to six ions of the other species. The
unit cell is a cube—an atom occupies the center and corners of each “face” of the cube. The attractive potential
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energy of the ion due to the fields of these six ions is written

where the minus sign designates an attractive potential (and we identify ). At a distance are its
next-nearest neighbors: twelve ions of the same charge. The total repulsive potential energy associated
with these ions is

Next closest are eight ions a distance from the ion. The potential energy of the ion in the
field of these eight ions is

Continuing in the same manner with alternate sets of and ions, we find that the net attractive
potential energy of the single ion can be written as

where is the Madelung constant, introduced earlier. From this analysis, we can see that this constant is the
infinite converging sum

Distant ions make a significant contribution to this sum, so it converges slowly, and many terms must be used
to calculate accurately. For all FCC ionic solids, is approximately 1.75.

Other possible packing arrangements of atoms in solids include simple cubic and body-centered cubic (BCC).
These three different packing structures of solids are compared in Figure 9.9. The first row represents the
location, but not the size, of the ions; the second row indicates the unit cells of each structure or lattice; and the
third row represents the location and size of the ions. The BCC structure has eight nearest neighbors, with a
Madelung constant of about 1.76—only slightly different from that for the FCC structure. Determining the
Madelung constant for specific solids is difficult work and the subject of current research.
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Figure 9.9 Packing structures for solids from left to right: (a) simple cubic, (b) body-centered cubic (BCC), and (c) face-centered cubic

(FCC). Each crystal structure minimizes the energy of the system.

The energy of the sodium ions is not entirely due to attractive forces between oppositely charged ions. If the
ions are bought too close together, the wave functions of core electrons of the ions overlap, and the electrons
repel due to the exclusion principle. The total potential energy of the ion is therefore the sum of the
attractive Coulomb potential and the repulsive potential associated with the exclusion principle
Calculating this repulsive potential requires powerful computers. Fortunately, however, this energy can be
described accurately by a simple formula that contains adjustable parameters:

where the parameters A and n are chosen to give predictions consistent with experimental data. For the
problem at the end of this chapter, the parameter n is referred to as the repulsion constant. The total potential
energy of the ion is therefore

At equilibrium, there is no net force on the ion, so the distance between neighboring and ions must
be the value for which U is a minimum. Setting , we have

9.19
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Thus,

Inserting this expression into the expression for the total potential energy, we have

Notice that the total potential energy now has only one adjustable parameter, n. The parameter A has been
replaced by a function involving , the equilibrium separation distance, which can be measured by a
diffraction experiment (you learned about diffraction in a previous chapter). The total potential energy is
plotted in Figure 9.10 for , the approximate value of n for NaCl.

Figure 9.10 The potential energy of a sodium ion in a NaCl crystal for . The equilibrium bond length occurs when the energy is a

minimized.

As long as , the curve for U has the same general shape: U approaches infinity as and U approaches
zero as ∞ . The minimum value of the potential energy is given by

The energy per ion pair needed to separate the crystal into ions is therefore

This is the dissociation energy of the solid. The dissociation energy can also be used to describe the total
energy needed to break a mole of a solid into its constituent ions, often expressed in kJ/mole. The dissociation
energy can be determined experimentally using the latent heat of vaporization. Sample values are given in the
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following table.

Table 9.2 Lattice Energy for Alkali Metal Halides

Thus, we can determine the Madelung constant from the crystal structure and n from the lattice energy. For
NaCl, we have , , and This dissociation energy is relatively large. The
most energetic photon from the visible spectrum, for example, has an energy of approximately

Because the ions in crystals are so tightly bound, ionic crystals have the following general characteristics:

1. They are fairly hard and stable.
2. They vaporize at relatively high temperatures (1000 to 2000 K).
3. They are transparent to visible radiation, because photons in the visible portion of the spectrum are not

energetic enough to excite an electron from its ground state to an excited state.
4. They are poor electrical conductors, because they contain effectively no free electrons.
5. They are usually soluble in water, because the water molecule has a large dipole moment whose electric field is

strong enough to break the electrostatic bonds between the ions.

EXAMPLE 9.3

The Dissociation Energy of Salt
Determine the dissociation energy of sodium chloride (NaCl) in kJ/mol. (Hint: The repulsion constant n of NaCl
is approximately 8.)

Strategy
A sodium chloride crystal has an equilibrium separation of 0.282 nm. (Compare this value with 0.236 nm for a
free diatomic unit of NaCl.) The dissociation energy depends on the separation distance, repulsion constant,
and Madelung constant for an FCC structure. The separation distance depends in turn on the molar mass and
measured density. We can determine the separation distance, and then use this value to determine the
dissociation energy for one mole of the solid.

Solution
The atomic masses of Na and Cl are 23.0 u and 58.4 u, so the molar mass of NaCl is 58.4 g/mol. The density of
NaCl is . The relationship between these quantities is

where M is the mass of one mole of salt, is Avogadro’s number, and is the equilibrium separation
distance. The factor 2 is needed since both the sodium and chloride ions represent a cubic volume . Solving
for the distance, we get

9.3 • Bonding in Crystalline Solids 407



or

The potential energy of one ion pair is

where is the Madelung constant, is the equilibrium separation distance, and n is the repulsion constant.
NaCl is FCC, so the Madelung constant is Substituting these values, we get

The dissociation energy of one mole of sodium chloride is therefore

Significance
This theoretical value of the dissociation energy of 766 kJ/mol is close to the accepted experimental value of
787 kJ/mol. Notice that for larger density, the equilibrium separation distance between ion pairs is smaller, as
expected. This small separation distance drives up the force between ions and therefore the dissociation
energy. The conversion at the end of the equation took advantage of the conversion factor

CHECK YOUR UNDERSTANDING 9.3

If the dissociation energy were larger, would that make it easier or more difficult to break the solid apart?

Covalent Bonding in Solids
Crystals can also be formed by covalent bonding. For example, covalent bonds are responsible for holding
carbon atoms together in diamond crystals. The electron configuration of the carbon atom is —a He
core plus four valence electrons. This electron configuration is four electrons short of a full shell, so by sharing
these four electrons with other carbon atoms in a covalent bond, the shells of all carbon atoms are filled.
Diamond has a more complicated structure than most ionic crystals (Figure 9.11). Each carbon atom is the
center of a regular tetrahedron, and the angle between the bonds is This angle is a direct consequence of
the directionality of the p orbitals of carbon atoms.
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Figure 9.11 Structure of the diamond crystal. (a) The single carbon atom represented by the dark blue sphere is covalently bonded to the

four carbon atoms represented by the light blue spheres. (b) Gem-quality diamonds can be cleaved along smooth planes, which gives a

large number of angles that cause total internal reflection of incident light, and thus gives diamonds their prized brilliance.

Covalently bonded crystals are not as uniform as ionic crystals but are reasonably hard, difficult to melt, and
are insoluble in water. For example, diamond has an extremely high melting temperature (4000 K) and is
transparent to visible light. In comparison, covalently bonded tin (also known as alpha-tin, which is
nonmetallic) is relatively soft, melts at 600 K, and reflects visible light. Two other important examples of
covalently bonded crystals are silicon and germanium. Both of these solids are used extensively in the
manufacture of diodes, transistors, and integrated circuits. We will return to these materials later in our
discussion of semiconductors.

Metallic Bonding in Solids
As the name implies, metallic bonding is responsible for the formation of metallic crystals. The valence
electrons are essentially free of the atoms and are able to move relatively easily throughout the metallic
crystal. Bonding is due to the attractive forces between the positive ions and the conduction electrons. Metallic
bonds are weaker than ionic or covalent bonds, with dissociation energies in the range .

9.4 Free Electron Model of Metals
Learning Objectives
By the end of this section, you will be able to:

• Describe the classical free electron model of metals in terms of the concept electron number density
• Explain the quantum free-electron model of metals in terms of Pauli’s exclusion principle
• Calculate the energy levels and energy-level spacing of a free electron in a metal

Metals, such as copper and aluminum, are held together by bonds that are very different from those of
molecules. Rather than sharing and exchanging electrons, a metal is essentially held together by a system of
free electrons that wander throughout the solid. The simplest model of a metal is the free electron model.
This model views electrons as a gas. We first consider the simple one-dimensional case in which electrons
move freely along a line, such as through a very thin metal rod. The potential function U(x) for this case is a
one-dimensional infinite square well where the walls of the well correspond to the edges of the rod. This model
ignores the interactions between the electrons but respects the exclusion principle. For the special case of

N electrons fill up the energy levels, from lowest to highest, two at a time (spin up and spin down),
until the highest energy level is filled. The highest energy filled is called the Fermi energy.

The one-dimensional free electron model can be improved by considering the three-dimensional case:
electrons moving freely in a three-dimensional metal block. This system is modeled by a three-dimensional
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infinite square well. Determining the allowed energy states requires us to solve the time-independent
Schrödinger equation

where we assume that the potential energy inside the box is zero and infinity otherwise. The allowed wave
functions describing the electron’s quantum states can be written as

where and are positive integers representing quantum numbers corresponding to the motion in the
x-, y-, and z-directions, respectively, and are the dimensions of the box in those directions.
Equation 9.27 is simply the product of three one-dimensional wave functions. The allowed energies of an
electron in a cube are

Associated with each set of quantum numbers are two quantum states, spin up and spin down. In a
real material, the number of filled states is enormous. For example, in a cubic centimeter of metal, this
number is on the order of Counting how many particles are in which state is difficult work, which often
requires the help of a powerful computer. The effort is worthwhile, however, because this information is often
an effective way to check the model.

EXAMPLE 9.4

Energy of a Metal Cube
Consider a solid metal cube of edge length 2.0 cm. (a) What is the lowest energy level for an electron within the
metal? (b) What is the spacing between this level and the next energy level?

Strategy
An electron in a metal can be modeled as a wave. The lowest energy corresponds to the largest wavelength and
smallest quantum number: Equation 9.28 supplies this “ground state” energy value.
Since the energy of the electron increases with the quantum number, the next highest level involves the
smallest increase in the quantum numbers, or or (1, 1, 2).

Solution
The lowest energy level corresponds to the quantum numbers From Equation 9.28, the
energy of this level is

The next-higher energy level is reached by increasing any one of the three quantum numbers by 1. Hence,
there are actually three quantum states with the same energy. Suppose we increase by 1. Then the energy
becomes
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The energy spacing between the lowest energy state and the next-highest energy state is therefore

Significance
This is a very small energy difference. Compare this value to the average kinetic energy of a particle, ,
where is Boltzmann’s constant and T is the temperature. The product is about 1000 times greater than
the energy spacing.

CHECK YOUR UNDERSTANDING 9.4

What happens to the ground state energy of an electron if the dimensions of the solid increase?

Often, we are not interested in the total number of particles in all states, but rather the number of particles dN
with energies in a narrow energy interval. This value can be expressed by

where n(E) is the electron number density, or the number of electrons per unit volume; g(E) is the density of
states, or the number of allowed quantum states per unit energy; dE is the size of the energy interval; and F is
the Fermi factor. The Fermi factor is the probability that the state will be filled. For example, if g(E)dE is 100
available states, but F is only , then the number of particles in this narrow energy interval is only five.
Finding g(E) requires solving Schrödinger’s equation (in three dimensions) for the allowed energy levels. The
calculation is involved even for a crude model, but the result is simple:

where V is the volume of the solid, is the mass of the electron, and E is the energy of the state. Notice that
the density of states increases with the square root of the energy. More states are available at high energy than
at low energy. This expression does not provide information of the density of the electrons in physical space,
but rather the density of energy levels in “energy space.” For example, in our study of the atomic structure, we
learned that the energy levels of a hydrogen atom are much more widely spaced for small energy values (near
than ground state) than for larger values.

This equation tells us how many electron states are available in a three-dimensional metallic solid. However, it
does not tell us how likely these states will be filled. Thus, we need to determine the Fermi factor, F. Consider
the simple case of . From classical physics, we expect that all the electrons would
simply go into the ground state to achieve the lowest possible energy. However, this violates Pauli’s exclusion
principle, which states that no two electrons can be in the same quantum state. Hence, when we begin filling
the states with electrons, the states with lowest energy become occupied first, then states with progressively
higher energies. The last electron we put in has the highest energy. This energy is the Fermi energy of the
free electron gas. A state with energy is occupied by a single electron, and a state with energy
is unoccupied. To describe this in terms of a probability F(E) that a state of energy E is occupied, we write for

:
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The density of states, Fermi factor, and electron number density are plotted against energy in Figure 9.12.

Figure 9.12 (a) Density of states for a free electron gas; (b) probability that a state is occupied at ; (c) density of occupied states

at .

A few notes are in order. First, the electron number density (last row) distribution drops off sharply at the
Fermi energy. According to the theory, this energy is given by

Fermi energies for selected materials are listed in the following table.

Element Conduction Band Electron Density Free-Electron Model Fermi Energy

Table 9.3 Conduction Electron Densities and Fermi Energies for Some Metals

Note also that only the graph in part (c) of the figure, which answers the question, “How many particles are
found in the energy range?” is checked by experiment. The Fermi temperature or effective “temperature” of
an electron at the Fermi energy is

EXAMPLE 9.5

Fermi Energy of Silver
Metallic silver is an excellent conductor. It has conduction electrons per cubic meter. (a) Calculate
its Fermi energy. (b) Compare this energy to the thermal energy of the electrons at a room temperature of
300 K.

Solution

a. From Equation 9.31, the Fermi energy is
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This is a typical value of the Fermi energy for metals, as can be seen from Table 9.3.
b. We can associate a Fermi temperature with the Fermi energy by writing We then find for

the Fermi temperature

which is much higher than room temperature and also the typical melting point of a metal. The
ratio of the Fermi energy of silver to the room-temperature thermal energy is

To visualize how the quantum states are filled, we might imagine pouring water slowly into a glass, such as that
of Figure 9.13. The first drops of water (the electrons) occupy the bottom of the glass (the states with lowest
energy). As the level rises, states of higher and higher energy are occupied. Furthermore, since the glass has a
wide opening and a narrow stem, more water occupies the top of the glass than the bottom. This reflects the
fact that the density of states g(E) is proportional to , so there is a relatively large number of higher energy
electrons in a free electron gas. Finally, the level to which the glass is filled corresponds to the Fermi energy.

Figure 9.13 An analogy of how electrons fill energy states in a metal. As electrons fill energy states, lowest to highest, the number of

available states increases. The highest energy state (corresponding to the water line) is the Fermi energy. (credit: modification of work by

“Didriks”/Flickr)

Suppose that at , the number of conduction electrons per unit volume in our sample is . Since each
field state has one electron, the number of filled states per unit volume is the same as the number of electrons
per unit volume.
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9.5 Band Theory of Solids
Learning Objectives
By the end of this section, you will be able to:

• Describe two main approaches to determining the energy levels of an electron in a crystal
• Explain the presence of energy bands and gaps in the energy structure of a crystal
• Explain why some materials are good conductors and others are good insulators
• Differentiate between an insulator and a semiconductor

The free electron model explains many important properties of conductors but is weak in at least two areas.
First, it assumes a constant potential energy within the solid. (Recall that a constant potential energy is
associated with no forces.) Figure 9.14 compares the assumption of a constant potential energy (dotted line)
with the periodic Coulomb potential, which drops as at each lattice point, where r is the distance from the
ion core (solid line). Second, the free electron model assumes an impenetrable barrier at the surface. This
assumption is not valid, because under certain conditions, electrons can escape the surface—such as in the
photoelectric effect. In addition to these assumptions, the free electron model does not explain the dramatic
differences in electronic properties of conductors, semiconductors, and insulators. Therefore, a more
complete model is needed.

Figure 9.14 The periodic potential used to model electrons in a conductor. Each ion in the solid is the source of a Coulomb potential.

Notice that the free electron model is productive because the average of this field is approximately constant.

We can produce an improved model by solving Schrödinger’s equation for the periodic potential shown in
Figure 9.14. However, the solution requires technical mathematics far beyond our scope. We again seek a
qualitative argument based on quantum mechanics to find a way forward.

We first review the argument used to explain the energy structure of a covalent bond. Consider two identical
hydrogen atoms so far apart that there is no interaction whatsoever between them. Further suppose that the
electron in each atom is in the same ground state: a 1s electron with an energy of (ignore spin). When
the hydrogen atoms are brought closer together, the individual wave functions of the electrons overlap and, by
the exclusion principle, can no longer be in the same quantum state, which splits the original equivalent
energy levels into two different energy levels. The energies of these levels depend on the interatomic distance,

(Figure 9.15).

If four hydrogen atoms are brought together, four levels are formed from the four possible symmetries—a
single sine wave “hump” in each well, alternating up and down, and so on. In the limit of a very large number N
of atoms, we expect a spread of nearly continuous bands of electronic energy levels in a solid (see Figure
9.15(c)). Each of these bands is known as an energy band. (The allowed states of energy and wave number are
still technically quantized, but for large numbers of atoms, these states are so close together that they are
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consider to be continuous or “in the continuum.”)

Energy bands differ in the number of electrons they hold. In the 1s and 2s energy bands, each energy level
holds up to two electrons (spin up and spin down), so this band has a maximum occupancy of 2N electrons. In
the 2p energy band, each energy level holds up to six electrons, so this band has a maximum occupancy of 6N
electrons (Figure 9.16).

Figure 9.15 The dependence of energy-level splitting on the average distance between (a) two atoms, (b) four atoms, and (c) a large

number of atoms. For a large number of electrons, a continuous band of energies is produced.

Figure 9.16 A simple representation of the energy structure of a solid. Electrons belong to energy bands separated by energy gaps.

Each energy band is separated from the other by an energy gap. The electrical properties of conductors and
insulators can be understood in terms of energy bands and gaps. The highest energy band that is filled is
known as a valence band. The next available band in the energy structure is known as a conduction band. In a
conductor, the highest energy band that contains electrons is partially filled, whereas in an insulator, the
highest energy band containing electrons is completely filled. The difference between a conductor and
insulator is illustrated in Figure 9.17.

A conductor differs from an insulator in how its electrons respond to an applied electric field. If a significant
number of electrons are set into motion by the field, the material is a conductor. In terms of the band model,
electrons in the partially filled conduction band gain kinetic energy from the electric field by filling higher
energy states in the conduction band. By contrast, in an insulator, electrons belong to completely filled bands.
When the field is applied, the electrons cannot make such transitions (acquire kinetic energy from the electric
field) due to the exclusion principle. As a result, the material does not conduct electricity.

9.5 • Band Theory of Solids 415



Figure 9.17 Comparison of a conductor and insulator. The highest energy band is partially filled in a conductor but completely filled in an

insulator.

INTERACTIVE

Visit this simulation (https://openstax.org/l/21bandstructure) to learn about the origin of energy bands in
crystals of atoms and how the structure of bands determines how a material conducts electricity. Explore how
band structure creates a lattice of many wells.

A semiconductor has a similar energy structure to an insulator except it has a relatively small energy gap
between the lowest completely filled band and the next available unfilled band. This type of material forms the
basis of modern electronics. At , the semiconductor and insulator both have completely filled bands.
The only difference is in the size of the energy gap (or band gap) Eg between the highest energy band that is
filled (the valence band) and the next-higher empty band (the conduction band). In a semiconductor, this gap is
small enough that a substantial number of electrons from the valence band are thermally excited into the
conduction band at room temperature. These electrons are then in a nearly empty band and can respond to an
applied field. As a general rule of thumb, the band gap of a semiconductor is about 1 eV. (See Table 9.4 for
silicon.) A band gap of greater than approximately 1 eV is considered an insulator. For comparison, the energy
gap of diamond (an insulator) is several electron-volts.

Material Energy Gap
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Material Energy Gap

Table 9.4 Energy Gap for Various Materials at 300 K Note: Except for diamond, the materials listed are all
semiconductors.

9.6 Semiconductors and Doping
Learning Objectives
By the end of this section, you will be able to:

• Describe changes to the energy structure of a semiconductor due to doping
• Distinguish between an n-type and p-type semiconductor
• Describe the Hall effect and explain its significance
• Calculate the charge, drift velocity, and charge carrier number density of a semiconductor using information

from a Hall effect experiment

In the preceding section, we considered only the contribution to the electric current due to electrons
occupying states in the conduction band. However, moving an electron from the valence band to the
conduction band leaves an unoccupied state or hole in the energy structure of the valence band, which a
nearby electron can move into. As these holes are filled by other electrons, new holes are created. The electric
current associated with this filling can be viewed as the collective motion of many negatively charged electrons
or the motion of the positively charged electron holes.

To illustrate, consider the one-dimensional lattice in Figure 9.18. Assume that each lattice atom contributes
one valence electron to the current. As the hole on the right is filled, this hole moves to the left. The current can
be interpreted as the flow of positive charge to the left. The density of holes, or the number of holes per unit
volume, is represented by p. Each electron that transitions into the conduction band leaves behind a hole. If
the conduction band is originally empty, the conduction electron density p is equal to the hole density, that is,

.

Figure 9.18 The motion of holes in a crystal lattice. As electrons shift to the right, an electron hole moves to the left.

As mentioned, a semiconductor is a material with a filled valence band, an unfilled conduction band, and a
relatively small energy gap between the bands. Excess electrons or holes can be introduced into the material
by the substitution into the crystal lattice of an impurity atom, which is an atom of a slightly different valence
number. This process is known as doping. For example, suppose we add an arsenic atom to a crystal of silicon
(Figure 9.19(a)).
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Figure 9.19 (a) A donor impurity and (b) an acceptor impurity. The introduction to impurities and acceptors into a semiconductor

significantly changes the electronic properties of this material.

Arsenic has five valence electrons, whereas silicon has only four. This extra electron must therefore go into the
conduction band, since there is no room in the valence band. The arsenic ion left behind has a net positive
charge that weakly binds the delocalized electron. The binding is weak because the surrounding atomic lattice
shields the ion’s electric field. As a result, the binding energy of the extra electron is only about 0.02 eV. In
other words, the energy level of the impurity electron is in the band gap below the conduction band by 0.02 eV,
a much smaller value than the energy of the gap, 1.14 eV. At room temperature, this impurity electron is easily
excited into the conduction band and therefore contributes to the conductivity (Figure 9.20(a)). An impurity
with an extra electron is known as a donor impurity, and the doped semiconductor is called an n-type
semiconductor because the primary carriers of charge (electrons) are negative.

Figure 9.20 (a) The extra electron from a donor impurity is excited into the conduction band; (b) formation of an impurity band in an

n-type semiconductor.

By adding more donor impurities, we can create an impurity band, a new energy band created by
semiconductor doping, as shown in Figure 9.20(b). The Fermi level is now between this band and the
conduction band. At room temperature, many impurity electrons are thermally excited into the conduction
band and contribute to the conductivity. Conduction can then also occur in the impurity band as vacancies are
created there. Note that changes in the energy of an electron correspond to a change in the motion (velocities
or kinetic energy) of these charge carriers with the semiconductor, but not the bulk motion of the
semiconductor itself.

Doping can also be accomplished using impurity atoms that typically have one fewer valence electron than the
semiconductor atoms. For example, Al, which has three valence electrons, can be substituted for Si, as shown
in Figure 9.19(b). Such an impurity is known as an acceptor impurity, and the doped semiconductor is called
a p-type semiconductor, because the primary carriers of charge (holes) are positive. If a hole is treated as a
positive particle weakly bound to the impurity site, then an empty electron state is created in the band gap just
above the valence band. When this state is filled by an electron thermally excited from the valence band
(Figure 9.21(a)), a mobile hole is created in the valence band. By adding more acceptor impurities, we can
create an impurity band, as shown in Figure 9.21(b).
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Figure 9.21 (a) An electron from the conduction band is excited into the empty state resulting from the acceptor impurity; (b) formation of

an impurity band in a p-type semiconductor.

The electric current of a doped semiconductor can be due to the motion of a majority carrier, in which holes
are contributed by an impurity atom, or due to a minority carrier, in which holes are contributed purely by
thermal excitations of electrons across the energy gap. In an n-type semiconductor, majority carriers are free
electrons contributed by impurity atoms, and minority carriers are free electrons produced by thermal
excitations from the valence to the conduction band. In a p-type semiconductor, the majority carriers are free
holes contributed by impurity atoms, and minority carriers are free holes left by the filling of states due to
thermal excitation of electrons across the gap. In general, the number of majority carriers far exceeds the
minority carriers. The concept of a majority and minority carriers will be used in the next section to explain
the operation of diodes and transistors.

In studying p- and n-type doping, it is natural to ask: Do “electron holes” really act like particles? The existence
of holes in a doped p-type semiconductor is demonstrated by the Hall effect. The Hall effect is the production
of a potential difference due to the motion of a conductor through an external magnetic field (see The Hall
Effect). A schematic of the Hall effect is shown in Figure 9.22(a). A semiconductor strip is bathed in a uniform
magnetic field (which points into the paper). As the electron holes move from left to right through the
semiconductor, a Lorentz force drives these charges toward the upper end of the strip. (Recall that the motion
of the positively charged carriers is determined by the right-hand rule.) Positive charge continues to collect on
the upper edge of the strip until the force associated with the downward electric field between the upper and
lower edges of the strip just balances the upward magnetic force . Setting these forces
equal to each other, we have . The voltage that develops across the strip is therefore

where is the Hall voltage; v is the hole’s drift velocity, or average velocity of a particle that moves in a
partially random fashion; B is the magnetic field strength; and w is the width of the strip. Note that the Hall
voltage is transverse to the voltage that initially produces current through the material. A measurement of the
sign of this voltage (or potential difference) confirms the collection of holes on the top side of the strip. The
magnitude of the Hall voltage yields the drift velocity (v) of the majority carriers.

Additional information can also be extracted from the Hall voltage. Note that the electron current density (the
amount of current per unit cross-sectional area of the semiconductor strip) is

where q is the magnitude of the charge, n is the number of charge carriers per unit volume, and v is the drift
velocity. The current density is easily determined by dividing the total current by the cross-sectional area of
the strip, q is charge of the hole (the magnitude of the charge of a single electron), and u is determined by the
Hall effect Equation 9.34. Hence, the above expression for the electron current density gives the number of
charge carriers per unit volume, n. A similar analysis can be conducted for negatively charged carriers in an
n-type material (see Figure 9.22).

9.33

9.34
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Figure 9.22 The Hall effect. (a) Positively charged electron holes are drawn to the left by a uniform magnetic field that points downward.

An electric field is generated to the right. (b) Negative charged electrons are drawn to the left by a magnetic field that points up. An electric

field is generated to the left.

9.7 Semiconductor Devices
Learning Objectives
By the end of this section, you will be able to:

• Describe what occurs when n- and p-type materials are joined together using the concept of diffusion and
drift current (zero applied voltage)

• Explain the response of a p-n junction to a forward and reverse bias voltage
• Describe the function of a transistor in an electric circuit
• Use the concept of a p-n junction to explain its applications in audio amplifiers and computers

Semiconductors have many applications in modern electronics. We describe some basic semiconductor
devices in this section. A great advantage of using semiconductors for circuit elements is the fact that many
thousands or millions of semiconductor devices can be combined on the same tiny piece of silicon and
connected by conducting paths. The resulting structure is called an integrated circuit (ic), and ic chips are the
basis of many modern devices, from computers and smartphones to the internet and global communications
networks.

Diodes
Perhaps the simplest device that can be created with a semiconductor is a diode. A diode is a circuit element
that allows electric current to flow in only one direction, like a one-way valve (see Model of Conduction in
Metals). A diode is created by joining a p-type semiconductor to an n-type semiconductor (Figure 9.23). The
junction between these materials is called a p-n junction. A comparison of the energy bands of a silicon-based
diode is shown in Figure 9.23(b). The positions of the valence and conduction bands are the same, but the
impurity levels are quite different. When a p-n junction is formed, electrons from the conduction band of the
n-type material diffuse to the p-side, where they combine with holes in the valence band. This migration of
charge leaves positive ionized donor ions on the n-side and negative ionized acceptor ions on the p-side,
producing a narrow double layer of charge at the p-n junction called the depletion layer. The electric field
associated with the depletion layer prevents further diffusion. The potential energy for electrons across the p-
n junction is given by Figure 9.24.
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Figure 9.23 (a) Representation of a p-n junction. (b) A comparison of the energy bands of p-type and n-type silicon prior to equilibrium.
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Figure 9.24 At equilibrium, (a) excess charge resides near the interface and the net current is zero, and (b) the potential energy difference

for electrons (in light blue) prevents further diffusion of electrons into the p-side.

The behavior of a semiconductor diode can now be understood. If the positive side of the battery is connected
to the n-type material, the depletion layer is widened, and the potential energy difference across the p-n
junction is increased. Few or none of the electrons (holes) have enough energy to climb the potential barrier,
and current is significantly reduced. This is called the reverse bias configuration. On the other hand, if the
positive side of a battery is connected to the p-type material, the depletion layer is narrowed, the potential
energy difference across the p-n junction is reduced, and electrons (holes) flow easily. This is called the
forward bias configuration of the diode. In sum, the diode allows current to flow freely in one direction but
prevents current flow in the opposite direction. In this sense, the semiconductor diode is a one-way valve.

We can estimate the mathematical relationship between the current and voltage for a diode using the electric
potential concept. Consider N negatively charged majority carriers (electrons donated by impurity atoms) in
the n-type material and a potential barrier V across the p-n junction. According to the Maxwell-Boltzmann
distribution, the fraction of electrons that have enough energy to diffuse across the potential barrier is

. However, if a battery of voltage is applied in the forward-bias configuration, this fraction
improves to . The electric current due to the majority carriers from the n-side to the p-side is
therefore

where is the current with no applied voltage and T is the temperature. Current due to the minority carriers
(thermal excitation of electrons from the valence band to the conduction band on the p-side and subsequent
attraction to the n-side) is , independent of the bias voltage. The net current is therefore
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A sample graph of the current versus bias voltage is given in Figure 9.25. In the forward bias configuration,
small changes in the bias voltage lead to large changes in the current. In the reverse bias configuration, the
current is . For extreme values of reverse bias, the atoms in the material are ionized which triggers
an avalanche of current. This case occurs at the breakdown voltage.

Figure 9.25 Current versus voltage across a p-n junction (diode). In the forward bias configuration, electric current flows easily. However,

in the reverse bias configuration, electric current flow very little.

EXAMPLE 9.6

Diode Current
Attaching the positive end of a battery to the p-side and the negative end to the n-side of a semiconductor
diode produces a current of The reverse saturation current is (The reverse
saturation current is the current of a diode in a reverse bias configuration such as this.) The battery voltage is
0.12 V. What is the diode temperature?

Strategy
The first arrangement is a forward bias configuration, and the second is the reverse bias configuration. In
either case, Equation 9.2 gives the current.

Solution
The current in the forward and reverse bias configurations is given by

The current with no bias is related to the reverse saturation current by

Therefore

Equation 9.2 can be written as

This ratio is much greater than one, so the second term on the left-hand side of the equation vanishes. Taking
the natural log of both sides gives
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The temperature is therefore

Significance
The current moving through a diode in the forward and reverse bias configuration is sensitive to the
temperature of the diode. If the potential energy supplied by the battery is large compared to the thermal
energy of the diode’s surroundings, then the forward bias current is very large compared to the reverse
saturation current.

CHECK YOUR UNDERSTANDING 9.5

How does the magnitude of the forward bias current compare with the reverse bias current?

INTERACTIVE

Create a p-n junction and observe the behavior of a simple circuit for forward and reverse bias voltages. Visit
this site (https://openstax.org/l/21semiconductor) to learn more about semiconductor diodes.

Junction Transistor
If diodes are one-way valves, transistors are one-way valves that can be carefully opened and closed to control
current. A special kind of transistor is a junction transistor. A junction transistor has three parts, including an
n-type semiconductor, also called the emitter; a thin p-type semiconductor, which is the base; and another
n-type semiconductor, called the collector (Figure 9.26). When a positive terminal is connected to the p-type
layer (the base), a small current of electrons, called the base current flows to the terminal. This causes a
large collector current to flow through the collector. The base current can be adjusted to control the large
collector current. The current gain is therefore

Figure 9.26 A junction transistor has three parts: emitter, base, and collector. Voltage applied to the base acts as a valve to control

electric current from the emitter to the collector.

A junction transistor can be used to amplify the voltage from a microphone to drive a loudspeaker. In this
application, sound waves cause a diaphragm inside the microphone to move in and out rapidly (Figure 9.27).
When the diaphragm is in the “in” position, a tiny positive voltage is applied to the base of the transistor. This

9.37
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opens the transistor “valve” and allows a large electrical current flow to the loudspeaker. When the diaphragm
is in the “out” position, a tiny negative voltage is applied to the base of the transistor, which shuts off the
transistor valve so that no current flows to the loudspeaker. This shuts the transistor “valve” off so no current
flows to the loudspeaker. In this way, current to the speaker is controlled by the sound waves, and the sound is
amplified. Any electric device that amplifies a signal is called an amplifier.

Figure 9.27 An audio amplifier based on a junction transistor. Voltage applied to the base by a microphone acts as a valve to control a

larger electric current that passes through a loudspeaker.

In modern electronic devices, digital signals are used with diodes and transistors to perform tasks such as data
manipulation. Electric circuits carry two types of electrical signals: analog and digital (Figure 9.28). An analog
signal varies continuously, whereas a digital signal switches between two fixed voltage values, such as plus 1
volt and zero volts. In digital circuits like those found in computers, a transistor behaves like an on-off switch.
The transistor is either on, meaning the valve is completely open, or it is off, meaning the valve is completely
closed. Integrated circuits contain vast collections of transistors on a single piece of silicon. They are designed
to handle digital signals that represent ones and zeroes, which is also known as binary code. The invention of
the ic helped to launch the modern computer revolution.

Figure 9.28 Real-world data are often analog, meaning data can vary continuously. Intensity values of sound or visual images are usually

analog. These data are converted into digital signals for electronic processing in recording devices or computers. The digital signal is

generated from the analog signal by requiring certain voltage cut-off value.
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9.8 Superconductivity
Learning Objectives
By the end of this section, you will be able to:

• Describe the main features of a superconductor
• Describe the BCS theory of superconductivity
• Determine the critical magnetic field for T = 0 K from magnetic field data
• Calculate the maximum emf or current for a wire to remain superconducting

Electrical resistance can be considered as a measure of the frictional force in electrical current flow. Thus,
electrical resistance is a primary source of energy dissipation in electrical systems such as electromagnets,
electric motors, and transmission lines. Copper wire is commonly used in electrical wiring because it has one
of the lowest room-temperature electrical resistivities among common conductors. (Actually, silver has a lower
resistivity than copper, but the high cost and limited availability of silver outweigh its savings in energy over
copper.)

Although our discussion of conductivity seems to imply that all materials must have electrical resistance, we
know that this is not the case. When the temperature decreases below a critical value for many materials, their
electrical resistivity drops to zero, and the materials become superconductors (see Superconductors).

INTERACTIVE

Watch this NOVA video (https://openstax.org/l/21NOVA) excerpt, Making Stuff Colder, as an introduction to the
topic of superconductivity and its many applications.

Properties of Superconductors
In addition to zero electrical resistance, superconductors also have perfect diamagnetism. In other words, in
the presence of an applied magnetic field, the net magnetic field within a superconductor is always zero
(Figure 9.29). Therefore, any magnetic field lines that pass through a superconducting sample when it is in its
normal state are expelled once the sample becomes superconducting. These are manifestations of the
Meissner effect, which you learned about in the chapter on current and resistance.

Figure 9.29 (a) In the Meissner effect, a magnetic field is expelled from a material once it becomes superconducting. (b) A magnet can

levitate above a superconducting material, supported by the force expelling the magnetic field. (credit b: modification of work by Kevin

Jarrett)

Interestingly, the Meissner effect is not a consequence of the resistance being zero. To see why, suppose that a
sample placed in a magnetic field undergoes a transition in which its resistance drops to zero. From Ohm’s law,
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the current density, j, in the sample is related to the net internal electric field, E, and the resistivity by
. If is zero, E must also be zero so that j can remain finite. Now E and the magnetic flux through

the sample are related by Faraday’s law as

If E is zero, is also zero, that is, the magnetic flux through the sample cannot change. The magnetic
field lines within the sample should therefore not be expelled when the transition occurs. Hence, it does not
follow that a material whose resistance goes to zero has to exhibit the Meissner effect. Rather, the Meissner
effect is a special property of superconductors.

Another important property of a superconducting material is its critical temperature, , the temperature
below which the material is superconducting. The known range of critical temperatures is from a fraction of 1
K to slightly above 100 K. Superconductors with critical temperatures near this higher limit are commonly
known as “high-temperature” superconductors. From a practical standpoint, superconductors for which

are very important. At present, applications involving superconductors often still require that
superconducting materials be immersed in liquid helium (4.2 K) in order to keep them below their critical
temperature. The liquid helium baths must be continually replenished because of evaporation, and cooling
costs can easily outweigh the savings in using a superconductor. However, 77 K is the temperature of liquid
nitrogen, which is far more abundant and inexpensive than liquid helium. It would be much more cost-
effective if we could easily fabricate and use high-temperature superconductor components that only need to
be kept in liquid nitrogen baths to maintain their superconductivity.

High-temperature superconducting materials are presently in use in various applications. An example is the
production of magnetic fields in some particle accelerators. The ultimate goal is to discover materials that are
superconducting at room temperature. Without any cooling requirements, the bulk of electronic components
and transmission lines could be superconducting, resulting in dramatic and unprecedented increases in
efficiency and performance.

Another important property of a superconducting material is its critical magnetic field which is the
maximum applied magnetic field at a temperature T that will allow a material to remain superconducting. An
applied field that is greater than the critical field will destroy the superconductivity. The critical field is zero at
the critical temperature and increases as the temperature decreases. Plots of the critical field versus
temperature for several superconducting materials are shown in Figure 9.30. The temperature dependence of
the critical field can be described approximately by

where is the critical field at absolute zero temperature. Table 9.5 lists the critical temperatures and fields
for two classes of superconductors: type I superconductor and type II superconductor. In general, type I
superconductors are elements, such as aluminum and mercury. They are perfectly diamagnetic below a
critical field BC(T), and enter the normal non-superconducting state once that field is exceeded. The critical
fields of type I superconductors are generally quite low (well below one tesla). For this reason, they cannot be
used in applications requiring the production of high magnetic fields, which would destroy their
superconducting state.
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Figure 9.30 The temperature dependence of the critical field for several superconductors. Superconductivity occurs for magnetic fields

and temperatures below the curves shown.

Material Critical Temperature Critical Magnetic Field

Type I

Type II
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Material Critical Temperature Critical Magnetic Field

Table 9.5 Critical Temperature and Critical Magnetic Field at for Various Superconductors

Type II superconductors are generally compounds or alloys involving transition metals or actinide series
elements. Almost all superconductors with relatively high critical temperatures are type II. They have two
critical fields, represented by and . When the field is below type II superconductors are
perfectly diamagnetic, and no magnetic flux penetration into the material can occur. For a field exceeding

they are driven into their normal state. When the field is greater than but less than
type II superconductors are said to be in a mixed state. Although there is some magnetic flux penetration in
the mixed state, the resistance of the material is zero. Within the superconductor, filament-like regions exist
that have normal electrical and magnetic properties interspersed between regions that are superconducting
with perfect diamagnetism. A representation of this state is given in Figure 9.31. The magnetic field is expelled
from the superconducting regions but exists in the normal regions. In general, is very large compared
with the critical fields of type I superconductors, so wire made of type II superconducting material is suitable
for the windings of high-field magnets.

Figure 9.31 A schematic representation of the mixed state of a type II superconductor. Superconductors (the gray squares) expel

magnetic fields in their vicinity.

EXAMPLE 9.7

Niobium Wire
In an experiment, a niobium (Nb) wire of radius 0.25 mm is immersed in liquid helium ( ) and
required to carry a current of 300 A. Does the wire remain superconducting?

Strategy
The applied magnetic field can be determined from the radius of the wire and current. The critical magnetic
field can be determined from Equation 9.1, the properties of the superconductor, and the temperature. If the
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applied magnetic field is greater than the critical field, then superconductivity in the Nb wire is destroyed.

Solution
At the critical field for Nb is, from Equation 9.1 and Table 9.5,

In an earlier chapter, we learned the magnetic field inside a current-carrying wire of radius a is given by

where r is the distance from the central axis of the wire. Thus, the field at the surface of the wire is For
the niobium wire, this field is

Since this exceeds the critical 0.16 T, the wire does not remain superconducting.

Significance
Superconductivity requires low temperatures and low magnetic fields. These simultaneous conditions are met
less easily for Nb than for many other metals. For example, aluminum superconducts at temperatures 7 times
lower and magnetic fields 18 times lower.

CHECK YOUR UNDERSTANDING 9.6

What conditions are necessary for superconductivity?

Theory of Superconductors
A successful theory of superconductivity was developed in the 1950s by John Bardeen, Leon Cooper, and J.
Robert Schrieffer, for which they received the Nobel Prize in 1972. This theory is known as the BCS theory.
BCS theory is complex, so we summarize it qualitatively below.

In a normal conductor, the electrical properties of the material are due to the most energetic electrons near the
Fermi energy. In 1956, Cooper showed that if there is any attractive interaction between two electrons at the
Fermi level, then the electrons can form a bound state in which their total energy is less than . Two such
electrons are known as a Cooper pair.

It is hard to imagine two electrons attracting each other, since they have like charge and should repel. However,
the proposed interaction occurs only in the context of an atomic lattice. A depiction of the attraction is shown
in Figure 9.32. Electron 1 slightly displaces the positively charged atomic nuclei toward itself as it travels past
because of the Coulomb attraction. Electron 2 “sees” a region with a higher density of positive charge relative
to the surroundings and is therefore attracted into this region and, therefore indirectly, to electron 1. Because
of the exclusion principle, the two electrons of a Cooper pair must have opposite spin.
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Figure 9.32 A Cooper pair can form as a result of the displacement of positive atomic nuclei. Electron 1 slightly displaces the positively

charged atomic nuclei toward itself as it travels past because of the Coulomb attraction. Electron 2 “sees” a region with a higher density of

positive charge relative to the surroundings and is therefore attracted into this region.

The BCS theory extends Cooper’s ideas, which are for a single pair of electrons, to the entire free electron gas.
When the transition to the superconducting state occurs, all the electrons pair up to form Cooper pairs. On an
atomic scale, the distance between the two electrons making up a Cooper pair is quite large. Between these
electrons are typically about other electrons, each also pairs with a distant electron. Hence, there is
considerable overlap between the wave functions of the individual Cooper pairs, resulting in a strong
correlation among the motions of the pairs. They all move together “in step,” like the members of a marching
band. In the superconducting transition, the density of states becomes drastically changed near the Fermi
level. As shown in Figure 9.33, an energy gap appears around because the collection of Cooper pairs has
lower ground state energy than the Fermi gas of noninteracting electrons. The appearance of this gap
characterizes the superconducting state. If this state is destroyed, then the gap disappears, and the density of
states reverts to that of the free electron gas.

Figure 9.33 A relatively large energy gap is formed around the Fermi energy when a material becomes superconducting. If this state is

destroyed, then the gap disappears, and the density of states reverts to that of the free electron gas.

The BCS theory is able to predict many of the properties observed in superconductors. Examples include the
Meissner effect, the critical temperature, the critical field, and, perhaps most importantly, the resistivity
becoming zero at a critical temperature. We can think about this last phenomenon qualitatively as follows. In a
normal conductor, resistivity results from the interaction of the conduction electrons with the lattice. In this
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interaction, the energy exchanged is on the order of the thermal energy. In a superconductor, electric
current is carried by the Cooper pairs. The only way for a lattice to scatter a Cooper pair is to break it up. The
destruction of one pair then destroys the collective motion of all the pairs. This destruction requires energy on
the order of , which is the size of the energy gap. Below the critical temperature, there is not enough
thermal energy available for this process, so the Cooper pairs travel unimpeded throughout the
superconductor.

Finally, it is interesting to note that no evidence of superconductivity has been found in the best normal
conductors, such as copper and silver. This is not unexpected, given the BCS theory. The basis for the
formation of the superconducting state is an interaction between the electrons and the lattice. In the best
conductors, the electron-lattice interaction is weakest, as evident from their minimal resistivity. We might
expect then that in these materials, the interaction is so weak that Cooper pairs cannot be formed, and
superconductivity is therefore precluded.
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CHAPTER REVIEW
Key Terms
acceptor impurity atom substituted for another in

a semiconductor that results in a free electron
amplifier electrical device that amplifies an

electric signal
base current current drawn from the base n-type

material in a transistor
BCS theory theory of superconductivity based on

electron-lattice-electron interactions
body-centered cubic (BCC) crystal structure in

which an ion is surrounded by eight nearest
neighbors located at the corners of a unit cell

breakdown voltage in a diode, the reverse bias
voltage needed to cause an avalanche of current

collector current current drawn from the collector
p-type material

conduction band above the valence band, the next
available band in the energy structure of a crystal

Cooper pair coupled electron pair in a
superconductor

covalent bond bond formed by the sharing of one
or more electrons between atoms

critical magnetic field maximum field required to
produce superconductivity

critical temperature maximum temperature to
produce superconductivity

density of states number of allowed quantum
states per unit energy

depletion layer region near the p-n junction that
produces an electric field

dissociation energy amount of energy needed to
break apart a molecule into atoms; also, total
energy per ion pair to separate the crystal into
isolated ions

donor impurity atom substituted for another in a
semiconductor that results in a free electron hole

doping alteration of a semiconductor by the
substitution of one type of atom with another

drift velocity average velocity of a randomly
moving particle

electric dipole transition transition between
energy levels brought by the absorption or
emission of radiation

electron affinity energy associated with an
accepted (bound) electron

electron number density number of electrons per
unit volume

energy band nearly continuous band of electronic
energy levels in a solid

energy gap gap between energy bands in a solid
equilibrium separation distance distance

between atoms in a molecule
exchange symmetry how a total wave function

changes under the exchange of two electrons
face-centered cubic (FCC) crystal structure in

which an ion is surrounded by six nearest
neighbors located at the faces at the faces of a
unit cell

Fermi energy largest energy filled by electrons in a
metal at

Fermi factor number that expresses the
probability that a state of given energy will be
filled

Fermi temperature effective temperature of
electrons with energies equal to the Fermi energy

forward bias configuration diode configuration
that results in high current

free electron model model of a metal that views
electrons as a gas

hole unoccupied states in an energy band
hybridization change in the energy structure of an

atom in which energetically favorable mixed
states participate in bonding

impurity atom acceptor or donor impurity atom
impurity band new energy band create by

semiconductor doping
ionic bond bond formed by the Coulomb attraction

of a positive and negative ions
junction transistor electrical valve based on a p-n-

p junction
lattice regular array or arrangement of atoms into

a crystal structure
Madelung constant constant that depends on the

geometry of a crystal used to determine the total
potential energy of an ion in a crystal

majority carrier free electrons (or holes)
contributed by impurity atoms

minority carrier free electrons (or holes) produced
by thermal excitations across the energy gap

n-type semiconductor doped semiconductor that
conducts electrons

p-n junction junction formed by joining p- and
n-type semiconductors

p-type semiconductor doped semiconductor that
conducts holes

polyatomic molecule molecule formed of more
than one atom

repulsion constant experimental parameter
associated with a repulsive force between ions
brought so close together that the exclusion
principle is important
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reverse bias configuration diode configuration
that results in low current

rotational energy level energy level associated
with the rotational energy of a molecule

selection rule rule that limits the possible
transitions from one quantum state to another

semiconductor solid with a relatively small energy
gap between the lowest completely filled band
and the next available unfilled band

simple cubic basic crystal structure in which each
ion is located at the nodes of a three-dimensional
grid

type I superconductor superconducting element,
such as aluminum or mercury

type II superconductor superconducting
compound or alloy, such as a transition metal or
an actinide series element

valence band highest energy band that is filled in
the energy structure of a crystal

van der Waals bond bond formed by the attraction
of two electrically polarized molecules

vibrational energy level energy level associated
with the vibrational energy of a molecule

Key Equations

Electrostatic energy for equilibrium separation distance between atoms

Energy change associated with ionic bonding

Critical magnetic field of a superconductor

Rotational energy of a diatomic molecule ℏ

Characteristic rotational energy of a molecule ℏ

Potential energy associated with the exclusion principle

Dissociation energy of a solid

Moment of inertia of a diatomic molecule with reduced mass

Electron energy in a metal ℏ

Electron density of states of a metal

Fermi energy

Fermi temperature

Hall effect

Current versus bias voltage across p-n junction
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Current gain

Selection rule for rotational energy transitions

Selection rule for vibrational energy transitions

Summary
9.1 Types of Molecular Bonds

• Molecules form by two main types of bonds: the
ionic bond and the covalent bond. An ionic bond
transfers an electron from one atom to another,
and a covalent bond shares the electrons.

• The energy change associated with ionic
bonding depends on three main processes: the
ionization of an electron from one atom, the
acceptance of the electron by the second atom,
and the Coulomb attraction of the resulting ions.

• Covalent bonds involve space-symmetric wave
functions.

• Atoms use a linear combination of wave
functions in bonding with other molecules
(hybridization).

9.2 Molecular Spectra

• Molecules possess vibrational and rotational
energy.

• Energy differences between adjacent vibrational
energy levels are larger than those between
rotational energy levels.

• Separation between peaks in an absorption
spectrum is inversely related to the moment of
inertia.

• Transitions between vibrational and rotational
energy levels follow selection rules.

9.3 Bonding in Crystalline Solids

• Packing structures of common ionic salts
include FCC and BCC.

• The density of a crystal is inversely related to
the equilibrium constant.

• The dissociation energy of a salt is large when
the equilibrium separation distance is small.

• The densities and equilibrium radii for common
salts (FCC) are nearly the same.

9.4 Free Electron Model of Metals

• Metals conduct electricity, and electricity is
composed of large numbers of randomly
colliding and approximately free electrons.

• The allowed energy states of an electron are

quantized. This quantization appears in the
form of very large electron energies, even at

.
• The allowed energies of free electrons in a metal

depend on electron mass and on the electron
number density of the metal.

• The density of states of an electron in a metal
increases with energy, because there are more
ways for an electron to fill a high-energy state
than a low-energy state.

• Pauli’s exclusion principle states that only two
electrons (spin up and spin down) can occupy
the same energy level. Therefore, in filling these
energy levels (lowest to highest at the
last and largest energy level to be occupied is
called the Fermi energy.

9.5 Band Theory of Solids

• The energy levels of an electron in a crystal can
be determined by solving Schrödinger’s
equation for a periodic potential and by
studying changes to the electron energy
structure as atoms are pushed together from a
distance.

• The energy structure of a crystal is
characterized by continuous energy bands and
energy gaps.

• The ability of a solid to conduct electricity relies
on the energy structure of the solid.

9.6 Semiconductors and Doping

• The energy structure of a semiconductor can be
altered by substituting one type of atom with
another (doping).

• Semiconductor n-type doping creates and fills
new energy levels just below the conduction
band.

• Semiconductor p-type doping creates new
energy levels just above the valence band.

• The Hall effect can be used to determine charge,
drift velocity, and charge carrier number
density of a semiconductor.
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9.7 Semiconductor Devices

• A diode is produced by an n-p junction. A diode
allows current to move in just one direction. In
forward biased configuration of a diode, the
current increases exponentially with the
voltage.

• A transistor is produced by an n-p-n junction. A
transistor is an electric valve that controls the
current in a circuit.

• A transistor is a critical component in audio
amplifiers, computers, and many other devices.

9.8 Superconductivity

• A superconductor is characterized by two
features: the conduction of electrons with zero
electrical resistance and the repelling of
magnetic field lines.

• A minimum temperature is required for
superconductivity to occur.

• A strong magnetic field destroys
superconductivity.

• Superconductivity can be explain in terms of
Cooper pairs.

Conceptual Questions
9.1 Types of Molecular Bonds

1. What is the main difference between an ionic
bond, a covalent bond, and a van der Waals
bond?

2. For the following cases, what type of bonding is
expected? (a) KCl molecule; (b) molecule.

3. Describe three steps to ionic bonding.
4. What prevents a positive and negative ion from

having a zero separation?
5. For the molecule, why must the spins the

electron spins be antiparallel?

9.2 Molecular Spectra

6. Does the absorption spectrum of the diatomic
molecule HCl depend on the isotope of chlorine
contained in the molecule? Explain your
reasoning.

7. Rank the energy spacing of the following
transitions from least to greatest: an electron
energy transition in an atom (atomic energy), the
rotational energy of a molecule, or the vibrational
energy of a molecule?

8. Explain key features of a vibrational-rotation
energy spectrum of the diatomic molecule.

9.3 Bonding in Crystalline Solids

9. Why is the equilibrium separation distance
between different for a diatomic
molecule than for solid KCl?

10. Describe the difference between a face-centered
cubic structure (FCC) and a body-centered
cubic structure (BCC).

11. In sodium chloride, how many atoms are
“nearest neighbors” of ? How many
atoms are “nearest neighbors” of ?

12. In cesium iodide, how many atoms are
“nearest neighbors” of ? How many

atoms are “nearest neighbors” of ?
13. The NaCl crystal structure is FCC. The

equilibrium spacing is . If each
ion occupies a cubic volume of , estimate the
distance between “nearest neighbor” ions
(center-to-center)?

9.4 Free Electron Model of Metals

14. Why does the Fermi energy increase with
the number of electrons in a metal?

15. If the electron number density (N/V) of a metal
increases by a factor 8, what happens to the
Fermi energy

16. Why does the horizontal line in the graph in
Figure 9.12 suddenly stop at the Fermi energy?

17. Why does the graph in Figure 9.12 increase
gradually from the origin?

18. Why are the sharp transitions at the Fermi
energy “smoothed out” by increasing the
temperature?

9.5 Band Theory of Solids

19. What are the two main approaches used to
determine the energy levels of electrons in a
crystal?

20. Describe two features of energy levels for an
electron in a crystal.

21. How does the number of energy levels in a band
correspond to the number, N, of atoms.

22. Why are some materials very good conductors
and others very poor conductors?

23. Why are some materials semiconductors?
24. Why does the resistance of a semiconductor

decrease as the temperature increases?

9.6 Semiconductors and Doping

25. What kind of semiconductor is produced if
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germanium is doped with (a) arsenic, and (b)
gallium?

26. What kind of semiconductor is produced if
silicon is doped with (a) phosphorus, and (b)
indium?

27. What is the Hall effect and what is it used for?
28. For an n-type semiconductor, how do impurity

atoms alter the energy structure of the solid?
29. For a p-type semiconductor, how do impurity

atoms alter the energy structure of the solid?

9.7 Semiconductor Devices

30. When p- and n-type materials are joined, why is
a uniform electric field generated near the
junction?

31. When p- and n-type materials are joined, why
does the depletion layer not grow indefinitely?

32. How do you know if a diode is in the forward

biased configuration?
33. Why does the reverse bias configuration lead to

a very small current?
34. What happens in the extreme case that where

the n- and p-type materials are heavily doped?
35. Explain how an audio amplifier works, using the

transistor concept.

9.8 Superconductivity

36. Describe two main features of a
superconductor.

37. How does BCS theory explain
superconductivity?

38. What is the Meissner effect?
39. What impact does an increasing magnetic field

have on the critical temperature of a
semiconductor?

Problems
9.1 Types of Molecular Bonds

40. The electron configuration of carbon is
Given this electron configuration,

what other element might exhibit the same type
of hybridization as carbon?

41. Potassium chloride (KCl) is a molecule formed
by an ionic bond. At equilibrium separation the
atoms are apart. Determine the
electrostatic potential energy of the atoms.

42. The electron affinity of Cl is 3.89 eV and the
ionization energy of K is 4.34 eV. Use the
preceding problem to find the dissociation
energy. (Neglect the energy of repulsion.)

43. The measured energy dissociated energy of KCl
is 4.43 eV. Use the results of the preceding
problem to determine the energy of repulsion of
the ions due to the exclusion principle.

9.2 Molecular Spectra

44. In a physics lab, you measure the vibrational-
rotational spectrum of HCl. The estimated
separation between absorption peaks is

. The central frequency of
the band is . (a) What is the
moment of inertia (I)? (b) What is the energy of
vibration for the molecule?

45. For the preceding problem, find the equilibrium
separation of the H and Cl atoms. Compare this
with the actual value.

46. The separation between oxygen atoms in an
molecule is about 0.121 nm. Determine the

characteristic energy of rotation in eV.
47. The characteristic energy of the molecule is

. Determine the separation
distance between the nitrogen atoms

48. The characteristic energy for KCl is
(a) Determine for the KCl

molecule. (b) Find the separation distance
between the K and Cl atoms.

49. A diatomic molecule is in the state. (a)
What is the energy of the molecule? (b) How
much energy is radiated in a transition from a

to a state?
50. In a physics lab, you measure the vibrational-

rotational spectrum of potassium bromide
(KBr). The estimated separation between
absorption peaks is . The
central frequency of the band is

. (a) What is the moment
of inertia (I)? (b) What is the energy of vibration
for the molecule?

9.3 Bonding in Crystalline Solids

51. The CsI crystal structure is BCC. The
equilibrium spacing is approximately

. If ion occupies a cubic
volume of , what is the distance of this ion to
its “nearest neighbor” ion?

52. The potential energy of a crystal is /ion
pair. Find the dissociation energy for four moles
of the crystal.

53. The measured density of a NaF crystal is
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. What is the equilibrium separate
distance of and ions?

54. What value of the repulsion constant, n, gives
the measured dissociation energy of 221 kcal/
mole for NaF?

55. Determine the dissociation energy of 12 moles
of sodium chloride (NaCl). (Hint: the repulsion
constant n is approximately 8.)

56. The measured density of a KCl crystal is
What is the equilibrium separation

distance of and ions?
57. What value of the repulsion constant, n, gives

the measured dissociation energy of 171 kcal/
mol for KCl?

58. The measured density of a CsCl crystal is
. What is the equilibrium separate

distance of and ions?

9.4 Free Electron Model of Metals

59. What is the difference in energy between the
state and the state with the

next higher energy? What is the percentage
change in the energy between the

state and the state with the
next higher energy? (b) Compare these with the
difference in energy and the percentage change
in the energy between the
state and the state with the next higher energy.

60. An electron is confined to a metal cube of
on each side. Determine the density

of states at (a) ; (b) ; and
(c) .

61. What value of energy corresponds to a density
of states of ?

62. Compare the density of states at 2.5 eV and 0.25
eV.

63. Consider a cube of copper with edges 1.50 mm
long. Estimate the number of electron quantum
states in this cube whose energies are in the
range 3.75 to 3.77 eV.

64. If there is one free electron per atom of copper,
what is the electron number density of this
metal?

65. Determine the Fermi energy and temperature
for copper at .

9.5 Band Theory of Solids

66. For a one-dimensional crystal, write the lattice
spacing (a) in terms of the electron wavelength.

67. What is the main difference between an
insulator and a semiconductor?

68. What is the longest wavelength for a photon that

can excite a valence electron into the
conduction band across an energy gap of 0.80
eV?

69. A valence electron in a crystal absorbs a photon
of wavelength, . This is just
enough energy to allow the electron to jump
from the valence band to the conduction band.
What is the size of the energy gap?

9.6 Semiconductors and Doping

70. An experiment is performed to demonstrate the
Hall effect. A thin rectangular strip of
semiconductor with width 10 cm and length 30
cm is attached to a battery and immersed in a
1.50-T field perpendicular to its surface. This
produced a Hall voltage of 12 V. What is the drift
velocity of the charge carriers?

71. Suppose that the cross-sectional area of the
strip (the area of the face perpendicular to the
electric current) presented to the in the
preceding problem is and the current is
independently measured to be 2 mA. What is
the number density of the charge carriers?

72. A current-carrying copper wire with cross-
section has a drift velocity of 0.02
cm/s. Find the total current running through
the wire.

73. The Hall effect is demonstrated in the
laboratory. A thin rectangular strip of
semiconductor with width 5 cm and cross-
sectional area is attached to a battery
and immersed in a field perpendicular to its
surface. The Hall voltage reads 12.5 V and the
measured drift velocity is 50 m/s. What is the
magnetic field?

9.7 Semiconductor Devices

74. Show that for V less than zero,
75. A p-n diode has a reverse saturation current

. It is forward biased so that it
has a current of moving through
it. What bias voltage is being applied if the
temperature is 300 K?

76. The collector current of a transistor is 3.4 A for
a base current of 4.2 mA. What is the current
gain?

77. Applying the positive end of a battery to the
p-side and the negative end to the n-side of a p-
n junction, the measured current is

. Reversing this polarity give a
reverse saturation current of .
What is the temperature if the bias voltage is 1.2
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V?
78. The base current of a transistor is 4.4 A, and its

current gain 1126. What is the collector
current?

9.8 Superconductivity

79. At what temperature, in terms of , is the
critical field of a superconductor one-half its
value at ?

80. What is the critical magnetic field for lead at
?

81. A Pb wire wound in a tight solenoid of diameter
of 4.0 mm is cooled to a temperature of 5.0 K.
The wire is connected in series with a
resistor and a variable source of emf. As the emf
is increased, what value does it have when the
superconductivity of the wire is destroyed?

82. A tightly wound solenoid at 4.0 K is 50 cm long
and is constructed from Nb wire of radius 1.5
mm. What maximum current can the solenoid
carry if the wire is to remain superconducting?

Additional Problems
83. Potassium fluoride (KF) is a molecule formed by

an ionic bond. At equilibrium separation the
atoms are apart. Determine the
electrostatic potential energy of the atoms. The
electron affinity of F is 3.40 eV and the
ionization energy of K is 4.34 eV. Determine
dissociation energy. (Neglect the energy of
repulsion.)

84. For the preceding problem, sketch the potential
energy versus separation graph for the bonding
of ions. (a) Label the graph with the
energy required to transfer an electron from K
to Fl. (b) Label the graph with the dissociation
energy.

85. The separation between hydrogen atoms in a
molecule is about 0.075 nm. Determine the

characteristic energy of rotation in eV.
86. The characteristic energy of the molecule is

. Determine the separation
distance between the nitrogen atoms.

87. Determine the lowest three rotational energy
levels of

88. A carbon atom can hybridize in the
configuration. (a) What is the angle between the
hybrid orbitals?

89. List five main characteristics of ionic crystals
that result from their high dissociation energy.

90. Why is bonding in favorable? Express your
answer in terms of the symmetry of the electron
wave function.

91. Astronomers claim to find evidence of from
light spectra of a distant star. Do you believe
them?

92. Show that the moment of inertia of a diatomic
molecule is , where is the reduced
mass, and is the distance between the
masses.

93. Show that the average energy of an electron in a
one-dimensional metal is related to the Fermi

energy by
94. Measurements of a superconductor’s critical

magnetic field (in T) at various temperatures (in
K) are given below. Use a line of best fit to
determine Assume

T (in K)

3.0 0.18

4.0 0.16

5.0 0.14

6.0 0.12

7.0 0.09

8.0 0.05

9.0 0.01

Table 9.6

95. Estimate the fraction of Si atoms that must be
replaced by As atoms in order to form an
impurity band.

96. Transition in the rotation spectrum are
observed at ordinary room temperature
( ). According to your lab partner, a
peak in the spectrum corresponds to a
transition from the to the state. Is
this possible? If so, determine the momentum
of inertia of the molecule.

97. Determine the Fermi energies for (a) Mg, (b) Na,
and (c) Zn.
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98. Find the average energy of an electron in a Zn
wire.

99. What value of the repulsion constant, n, gives
the measured dissociation energy of 158 kcal/
mol for CsCl?

100. A physical model of a diamond suggests a BCC
packing structure. Why is this not possible?

Challenge Problems
101. For an electron in a three-dimensional metal,

show that the average energy is given by

Where N is the total number electrons in the
metal.
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INTRODUCTION

CHAPTER 10
Nuclear Physics

10.1 Properties of Nuclei

10.2 Nuclear Binding Energy

10.3 Radioactive Decay

10.4 Nuclear Reactions

10.5 Fission

10.6 Nuclear Fusion

10.7 Medical Applications and Biological Effects of Nuclear Radiation

In this chapter, we study the composition and properties of the atomic nucleus. The nucleus
lies at the center of an atom, and consists of protons and neutrons. A deep understanding of the nucleus leads
to numerous valuable technologies, including devices to date ancient rocks, map the galactic arms of the Milky

Figure 10.1 The Sun is powered by nuclear fusion in its core. The core converts approximately protons/
second into helium at a temperature of 14 million K. This process releases energy in the form of photons, neutrinos,
and other particles. (credit: modification of work by EIT SOHO Consortium, ESA, NASA)

Chapter Outline



Way, and generate electrical power.

The Sun is the main source of energy in the solar system. The Sun is 109 Earth diameters across, and accounts
for more than of the total mass of the solar system. The Sun shines by fusing hydrogen
nuclei—protons—deep inside its interior. Once this fuel is spent, the Sun will burn helium and, later, other
nuclei. Nuclear fusion in the Sun is discussed toward the end of this chapter. In the meantime, we will
investigate nuclear properties that govern all nuclear processes, including fusion.

10.1 Properties of Nuclei
Learning Objectives
By the end of this section, you will be able to:

• Describe the composition and size of an atomic nucleus
• Use a nuclear symbol to express the composition of an atomic nucleus
• Explain why the number of neutrons is greater than protons in heavy nuclei
• Calculate the atomic mass of an element given its isotopes

The atomic nucleus is composed of protons and neutrons (Figure 10.2). Protons and neutrons have
approximately the same mass, but protons carry one unit of positive charge and neutrons carry no
charge. These particles are packed together into an extremely small space at the center of an atom. According
to scattering experiments, the nucleus is spherical or ellipsoidal in shape, and about 1/100,000th the size of a
hydrogen atom. If an atom were the size of a major league baseball stadium, the nucleus would be roughly the
size of the baseball. Protons and neutrons within the nucleus are called nucleons.

Figure 10.2 The atomic nucleus is composed of protons and neutrons. Protons are shown in blue, and neutrons are shown in red.

Counts of Nucleons
The number of protons in the nucleus is given by the atomic number, Z. The number of neutrons in the
nucleus is the neutron number, N. The total number of nucleons is the mass number, A. These numbers are
related by

A nucleus is represented symbolically by

where X represents the chemical element, A is the mass number, and Z is the atomic number. For example,
represents the carbon nucleus with six protons and six neutrons (or 12 nucleons).

A graph of the number N of neutrons versus the number Z of protons for a range of stable nuclei (nuclides) is
shown in Figure 10.3. For a given value of Z, multiple values of N (blue points) are possible. For small values of

10.1

10.2
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Z, the number of neutrons equals the number of protons and the data fall on the red line. For large
values of Z, the number of neutrons is greater than the number of protons and the data points fall
above the red line. The number of neutrons is generally greater than the number of protons for

Figure 10.3 This graph plots the number of neutrons N against the number of protons Z for stable atomic nuclei. Larger nuclei, have more

neutrons than protons.

A chart based on this graph that provides more detailed information about each nucleus is given in Figure
10.4. This chart is called a chart of the nuclides. Each cell or tile represents a separate nucleus. The nuclei are
arranged in order of ascending Z (along the horizontal direction) and ascending N (along the vertical
direction).
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Figure 10.4 Partial chart of the nuclides. For stable nuclei (dark blue backgrounds), cell values represent the percentage of nuclei found

on Earth with the same atomic number (percent abundance). For the unstable nuclei, the number represents the half-life.

Atoms that contain nuclei with the same number of protons (Z) and different numbers of neutrons (N) are
called isotopes. For example, hydrogen has three isotopes: normal hydrogen (1 proton, no neutrons),
deuterium (one proton and one neutron), and tritium (one proton and two neutrons). Isotopes of a given atom
share the same chemical properties, since these properties are determined by interactions between the outer
electrons of the atom, and not the nucleons. For example, water that contains deuterium rather than hydrogen
(“heavy water”) looks and tastes like normal water. The following table shows a list of common isotopes.

Element Symbol Mass Number Mass (Atomic Mass Units) Percent Abundance* Half-life**

Hydrogen

H 1 1.0078 99.99 stable

2 2.0141 0.01 stable

3 3.0160 − 12.32 y

Carbon

12 12.0000 98.91 stable

13 13.0034 1.1 stable

14 14.0032 − 5730 y

Nitrogen
14 14.0031 99.6 stable

15 15.0001 0.4 stable
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Element Symbol Mass Number Mass (Atomic Mass Units) Percent Abundance* Half-life**

16 16.0061 − 7.13 s

Oxygen

16 15.9949 99.76 stable

17 16.9991 0.04 stable

18 17.9992 0.20 stable

19 19.0035 − 26.46 s

Table 10.1 Common Isotopes *No entry if less than 0.001 (trace amount).
**Stable if half-life > 10 seconds.

Why do neutrons outnumber protons in heavier nuclei (Figure 10.5)? The answer to this question requires an
understanding of forces inside the nucleus. Two types of forces exist: (1) the long-range electrostatic
(Coulomb) force that makes the positively charged protons repel one another; and (2) the short-range strong
nuclear force that makes all nucleons in the nucleus attract one another. You may also have heard of a “weak”
nuclear force. This force is responsible for some nuclear decays, but as the name implies, it does not play a role
in stabilizing the nucleus against the strong Coulomb repulsion it experiences. We discuss strong nuclear force
in more detail in the next chapter when we cover particle physics. Nuclear stability occurs when the attractive
forces between nucleons compensate for the repulsive, long-range electrostatic forces between all protons in
the nucleus. For heavy nuclei excess neutrons are necessary to keep the electrostatic interactions
from breaking the nucleus apart, as shown in Figure 10.3.

Figure 10.5 (a) The electrostatic force is repulsive and has long range. The arrows represent outward forces on protons (in blue) at the

nuclear surface by a proton (also in blue) at the center. (b) The strong nuclear force acts between neighboring nucleons. The arrows

represent attractive forces exerted by a neutron (in red) on its nearest neighbors.

Because of the existence of stable isotopes, we must take special care when quoting the mass of an element.
For example, Copper (Cu) has two stable isotopes:

Given these two “versions” of Cu, what is the mass of this element? The atomic mass of an element is defined
as the weighted average of the masses of its isotopes. Thus, the atomic mass of Cu is

The mass of an individual nucleus is
often expressed in atomic mass units (u), where . (An atomic mass unit is defined as
1/12th the mass of a nucleus.) In atomic mass units, the mass of a helium nucleus (A = 4) is approximately
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4 u. A helium nucleus is also called an alpha (α) particle.

Nuclear Size
The simplest model of the nucleus is a densely packed sphere of nucleons. The volume V of the nucleus is
therefore proportional to the number of nucleons A, expressed by

where r is the radius of a nucleus and k is a constant with units of volume. Solving for r, we have

where is a constant. For hydrogen ( ), corresponds to the radius of a single proton. Scattering
experiments support this general relationship for a wide range of nuclei, and they imply that neutrons have
approximately the same radius as protons. The experimentally measured value for is approximately 1.2
femtometer (recall that ).

EXAMPLE 10.1

The Iron Nucleus
Find the radius (r) and approximate density ( ) of a Fe-56 nucleus. Assume the mass of the Fe-56 nucleus is
approximately 56 u.

Strategy
(a) Finding the radius of is a straightforward application of , given (b) To find the
approximate density of this nucleus, assume the nucleus is spherical. Calculate its volume using the radius
found in part (a), and then find its density from

Solution

a. The radius of a nucleus is given by

Substituting the values for and A yields

b. Density is defined to be which for a sphere of radius r is

Substituting known values gives

Converting to units of we find

Significance

a. The radius of the Fe-56 nucleus is found to be approximately 5 fm, so its diameter is about 10 fm, or
In previous discussions of Rutherford’s scattering experiments, a light nucleus was estimated to

be in diameter. Therefore, the result shown for a mid-sized nucleus is reasonable.
b. The density found here may seem incredible. However, it is consistent with earlier comments about the

nucleus containing nearly all of the mass of the atom in a tiny region of space. One cubic meter of nuclear
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matter has the same mass as a cube of water 61 km on each side.

CHECK YOUR UNDERSTANDING 10.1

Nucleus X is two times larger than nucleus Y. What is the ratio of their atomic masses?

10.2 Nuclear Binding Energy
Learning Objectives
By the end of this section, you will be able to:

• Calculate the mass defect and binding energy for a wide range of nuclei
• Use a graph of binding energy per nucleon (BEN) versus mass number graph to assess the relative

stability of a nucleus
• Compare the binding energy of a nucleon in a nucleus to the ionization energy of an electron in an atom

The forces that bind nucleons together in an atomic nucleus are much greater than those that bind an electron
to an atom through electrostatic attraction. This is evident by the relative sizes of the atomic nucleus and the
atom respectively). The energy required to pry a nucleon from the nucleus is therefore
much larger than that required to remove (or ionize) an electron in an atom. In general, all nuclear changes
involve large amounts of energy per particle undergoing the reaction. This has numerous practical
applications.

Mass Defect
According to nuclear particle experiments, the total mass of a nucleus is less than the sum of the
masses of its constituent nucleons (protons and neutrons). The mass difference, or mass defect, is given by

where is the total mass of the protons, is the total mass of the neutrons, and is the mass
of the nucleus. According to Einstein’s special theory of relativity, mass is a measure of the total energy of a
system ( ). Thus, the total energy of a nucleus is less than the sum of the energies of its constituent
nucleons. The formation of a nucleus from a system of isolated protons and neutrons is therefore an
exothermic reaction—meaning that it releases energy. The energy emitted, or radiated, in this process is

Now imagine this process occurs in reverse. Instead of forming a nucleus, energy is put into the system to
break apart the nucleus (Figure 10.6). The amount of energy required is called the total binding energy (BE),

Experimental results indicate that the binding energy for a nucleus with mass number is roughly
proportional to the total number of nucleons in the nucleus, A. The binding energy of a magnesium nucleus
( ), for example, is approximately two times greater than for the carbon nucleus ( ).

10.4

Binding Energy

The binding energy is equal to the amount of energy released in forming the nucleus, and is therefore
given by

10.5

10.2 • Nuclear Binding Energy 447



Figure 10.6 The binding energy is the energy required to break a nucleus into its constituent protons and neutrons. A system of separated

nucleons has a greater mass than a system of bound nucleons.

EXAMPLE 10.2

Mass Defect and Binding Energy of the Deuteron
Calculate the mass defect and the binding energy of the deuteron. The mass of the deuteron is

or

Solution
From Equation 10.4, the mass defect for the deuteron is

The binding energy of the deuteron is then

Over two million electron volts are needed to break apart a deuteron into a proton and a neutron. This very
large value indicates the great strength of the nuclear force. By comparison, the greatest amount of energy
required to liberate an electron bound to a hydrogen atom by an attractive Coulomb force (an electromagnetic
force) is about 10 eV.

Graph of Binding Energy per Nucleon
In nuclear physics, one of the most important experimental quantities is the binding energy per nucleon
(BEN), which is defined by

This quantity is the average energy required to remove an individual nucleon from a nucleus—analogous to the
ionization energy of an electron in an atom. If the BEN is relatively large, the nucleus is relatively stable. BEN
values are estimated from nuclear scattering experiments.

A graph of binding energy per nucleon versus mass number A is given in Figure 10.7. This graph is considered
by many physicists to be one of the most important graphs in physics. Two notes are in order. First, typical
BEN values range from 6–10 MeV, with an average value of about 8 MeV. In other words, it takes several million
electron volts to pry a nucleon from a typical nucleus, as compared to just 13.6 eV to ionize an electron in the
ground state of hydrogen. This is why nuclear force is referred to as the “strong” nuclear force.

Second, the graph rises at low A, peaks very near iron and then tapers off at high A. The peak
value suggests that the iron nucleus is the most stable nucleus in nature (it is also why nuclear fusion in the
cores of stars ends with Fe). The reason the graph rises and tapers off has to do with competing forces in the
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nucleus. At low values of A, attractive nuclear forces between nucleons dominate over repulsive electrostatic
forces between protons. But at high values of A, repulsive electrostatic forces between forces begin to
dominate, and these forces tend to break apart the nucleus rather than hold it together.

Figure 10.7 In this graph of binding energy per nucleon for stable nuclei, the BEN is greatest for nuclei with a mass near . Therefore,

fusion of nuclei with mass numbers much less than that of Fe, and fission of nuclei with mass numbers greater than that of Fe, are

exothermic processes.

As we will see, the BEN-versus-A graph implies that nuclei divided or combined release an enormous amount
of energy. This is the basis for a wide range of phenomena, from the production of electricity at a nuclear
power plant to sunlight.

EXAMPLE 10.3

Tightly Bound Alpha Nuclides
Calculate the binding energy per nucleon of an .

Strategy
Determine the total binding energy (BE) using the equation where is the mass defect. The
binding energy per nucleon (BEN) is BE divided by A.

Solution
For , we have The total binding energy is

These masses are and Thus we have,

Noting that we find
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Since the total binding energy per nucleon is

Significance
Notice that the binding energy per nucleon for is much greater than for the hydrogen isotopes

Therefore, helium nuclei cannot break down hydrogen isotopes without energy
being put into the system.

CHECK YOUR UNDERSTANDING 10.2

If the binding energy per nucleon is large, does this make it harder or easier to strip off a nucleon from a
nucleus?

10.3 Radioactive Decay
Learning Objectives
By the end of this section, you will be able to:

• Describe the decay of a radioactive substance in terms of its decay constant and half-life
• Use the radioactive decay law to estimate the age of a substance
• Explain the natural processes that allow the dating of living tissue using

In 1896, Antoine Becquerel discovered that a uranium-rich rock emits invisible rays that can darken a
photographic plate in an enclosed container. Scientists offer three arguments for the nuclear origin of these
rays. First, the effects of the radiation do not vary with chemical state; that is, whether the emitting material is
in the form of an element or compound. Second, the radiation does not vary with changes in temperature or
pressure—both factors that in sufficient degree can affect electrons in an atom. Third, the very large energy of
the invisible rays (up to hundreds of eV) is not consistent with atomic electron transitions (only a few eV).
Today, this radiation is explained by the conversion of mass into energy deep within the nucleus of an atom.
The spontaneous emission of radiation from nuclei is called nuclear radioactivity (Figure 10.8).

Figure 10.8 The international ionizing radiation symbol is universally recognized as the warning symbol for nuclear radiation.

Radioactive Decay Law
When an individual nucleus transforms into another with the emission of radiation, the nucleus is said to
decay. Radioactive decay occurs for all nuclei with and also for some unstable isotopes with
The decay rate is proportional to the number of original (undecayed) nuclei N in a substance. The number of
nuclei lost to decay, in time interval dt, is written

10.7
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where is called the decay constant. (The minus sign indicates the number of original nuclei decreases over
time.) In other words, the more nuclei available to decay, the more that do decay (in time dt). This equation can
be rewritten as

Integrating both sides of the equation, and defining to be the number of nuclei at , we obtain

This gives us

Taking the left and right sides of the equation as a power of e, we have the radioactive decay law.

The total number of nuclei drops very rapidly at first, and then more slowly (Figure 10.9).

Figure 10.9 A plot of the radioactive decay law demonstrates that the number of nuclei remaining in a decay sample drops dramatically

during the first moments of decay.

The half-life of a radioactive substance is defined as the time for half of the original nuclei to decay (or
the time at which half of the original nuclei remain). The half-lives of unstable isotopes are shown in the chart
of nuclides in Figure 10.4. The number of radioactive nuclei remaining after an integer (n) number of half-lives
is therefore

If the decay constant ( ) is large, the half-life is small, and vice versa. To determine the relationship between

10.8

10.9

10.10

Radioactive Decay Law

The total number N of radioactive nuclei remaining after time t is

where is the decay constant for the particular nucleus.

10.11

10.12
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these quantities, note that when , then . Thus, Equation 10.10 can be rewritten as

Dividing both sides by and taking the natural logarithm yields

which reduces to

Thus, if we know the half-life T1/2 of a radioactive substance, we can find its decay constant. The lifetime of a
radioactive substance is defined as the average amount of time that a nucleus exists before decaying. The
lifetime of a substance is just the reciprocal of the decay constant, written as

The activity A is defined as the magnitude of the decay rate, or

The infinitesimal change dN in the time interval dt is negative because the number of parent (undecayed)
particles is decreasing, so the activity (A) is positive. Defining the initial activity as , we have

Thus, the activity A of a radioactive substance decreases exponentially with time (Figure 10.10).

Figure 10.10 (a) A plot of the activity as a function of time (b) If we measure the activity at different times, we can plot ln A versus t, and

obtain a straight line.
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EXAMPLE 10.4

Decay Constant and Activity of Strontium-90
The half-life of strontium-90, , is 28.8 y. Find (a) its decay constant and (b) the initial activity of 1.00 g of
the material.

Strategy
We can find the decay constant directly from Equation 10.15. To determine the activity, we first need to find the
number of nuclei present.

Solution

a. The decay constant is found to be

b. The atomic mass of is 89.91 g. Using Avogadro’s number atoms/mol, we find the
initial number of nuclei in 1.00 g of the material:

From this, we find that the activity at for 1.00 g of strontium-90 is

Expressing in terms of the half-life of the substance, we get

Therefore, the activity is halved after one half-life. We can determine the decay constant by measuring the
activity as a function of time. Taking the natural logarithm of the left and right sides of Equation 10.17, we get

This equation follows the linear form . If we plot ln A versus t, we expect a straight line with slope
and y-intercept (Figure 10.10(b)). Activity A is expressed in units of becquerels (Bq), where one

. This quantity can also be expressed in decays per minute or decays per year. One of
the most common units for activity is the curie (Ci), defined to be the activity of 1 g of . The relationship
between the Bq and Ci is

EXAMPLE 10.5

What is Activity in Living Tissue?
Approximately of the human body by mass is carbon. Calculate the activity due to in 1.00 kg of carbon
found in a living organism. Express the activity in units of Bq and Ci.

Strategy
The activity of is determined using the equation , where λ is the decay constant and is the
number of radioactive nuclei. The number of nuclei in a 1.00-kg sample is determined in two steps. First,
we determine the number of nuclei using the concept of a mole. Second, we multiply this value by

10.19
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(the known abundance of in a carbon sample from a living organism) to determine the
number of nuclei in a living organism. The decay constant is determined from the known half-life of
(available from Figure 10.4).

Solution
One mole of carbon has a mass of 12.0 g, since it is nearly pure . Thus, the number of carbon nuclei in a
kilogram is

The number of nuclei in 1 kg of carbon is therefore

Now we can find the activity A by using the equation Entering known values gives us

or decays per year. To convert this to the unit Bq, we simply convert years to seconds. Thus,

or 250 decays per second. To express A in curies, we use the definition of a curie,

Thus,

Significance
Approximately of the human body by weight is carbon. Hundreds of decays take place in the human
body every second. Carbon-14 and other naturally occurring radioactive substances in the body compose a
person’s background exposure to nuclear radiation. As we will see later in this chapter, this activity level is well
below the maximum recommended dosages.

Radioactive Dating
Radioactive dating is a technique that uses naturally occurring radioactivity to determine the age of a
material, such as a rock or an ancient artifact. The basic approach is to estimate the original number of nuclei
in a material and the present number of nuclei in the material (after decay), and then use the known value of
the decay constant and Equation 10.10 to calculate the total time of the decay, t.

An important method of radioactive dating is carbon-14 dating. Carbon-14 nuclei are produced when high-
energy solar radiation strikes nuclei in the upper atmosphere and subsequently decay with a half-life of
5730 years. Radioactive carbon has the same chemistry as stable carbon, so it combines with the ecosphere
and eventually becomes part of every living organism. Carbon-14 has an abundance of 1.3 parts per trillion of
normal carbon. Therefore, if you know the number of carbon nuclei in an object, you multiply that number by

to find the number of nuclei in that object. When an organism dies, carbon exchange with the
environment ceases, and is not replenished as it decays.

By comparing the abundance of in an artifact, such as mummy wrappings, with the normal abundance in
living tissue, it is possible to determine the mummy’s age (or the time since the person’s death). Carbon-14
dating can be used for biological tissues as old as 50,000 years, but is generally most accurate for younger
samples, since the abundance of nuclei in them is greater. Very old biological materials contain no at
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all. The validity of carbon dating can be checked by other means, such as by historical knowledge or by tree-
ring counting.

EXAMPLE 10.6

An Ancient Burial Cave
In an ancient burial cave, your team of archaeologists discovers ancient wood furniture. Only of the
original remains in the wood. How old is the furniture?

Strategy
The problem statement implies that Therefore, the equation can be used to find
the product, . We know the half-life of is 5730 y, so we also know the decay constant, and therefore the
total decay time t.

Solution
Solving the equation for gives us

Thus,

Taking the natural logarithm of both sides of the equation yields

so that

Rearranging the equation to isolate t gives us

where

Combining this information yields

Significance
The furniture is almost 2000 years old—an impressive discovery. The typical uncertainty on carbon-14 dating
is about , so the furniture is anywhere between 1750 and 1950 years old. This date range must be
confirmed by other evidence, such as historical records.

CHECK YOUR UNDERSTANDING 10.3

A radioactive nuclide has a high decay rate. What does this mean for its half-life and activity?

INTERACTIVE

Visit the Radioactive Dating Game (https://openstax.org/l/21raddatgame) to learn about the types of
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radiometric dating and try your hand at dating some ancient objects.

10.4 Nuclear Reactions
Learning Objectives
By the end of this section, you will be able to:

• Describe and compare three types of nuclear radiation
• Use nuclear symbols to describe changes that occur during nuclear reactions
• Describe processes involved in the decay series of heavy elements

Early experiments revealed three types of nuclear “rays” or radiation: alpha ( ) rays, beta ( ) rays, and
gamma ( ) rays. These three types of radiation are differentiated by their ability to penetrate matter. Alpha
radiation is barely able to pass through a thin sheet of paper. Beta radiation can penetrate aluminum to a depth
of about 3 mm, and gamma radiation can penetrate lead to a depth of 2 or more centimeters (Figure 10.11).

Figure 10.11 A comparison of the penetration depths of alpha ( ), beta ( ), and gamma ( ) radiation through various materials.

The electrical properties of these three types of radiation are investigated by passing them through a uniform
magnetic field, as shown in Figure 10.12. According to the magnetic force equation positively
charged particles are deflected upward, negatively charged particles are deflected downward, and particles
with no charge pass through the magnetic field undeflected. Eventually, rays were identified with helium
nuclei rays with electrons and positrons (positively charged electrons or antielectrons), and rays
with high-energy photons. We discuss alpha, beta, and gamma radiation in detail in the remainder of this
section.
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Figure 10.12 The effect of a magnetic field on alpha ( ), beta ( ), and gamma ( ) radiation. This figure is a schematic only. The relative

paths of the particles depend on their masses and initial kinetic energies.

Alpha Decay
Heavy unstable nuclei emit radiation. In -particle decay (or alpha decay), the nucleus loses two protons and
two neutrons, so the atomic number decreases by two, whereas its mass number decreases by four. Before the
decay, the nucleus is called the parent nucleus. The nucleus or nuclei produced in the decay are referred to as
the daughter nucleus or daughter nuclei. We represent an decay symbolically by

where is the parent nucleus, is the daughter nucleus, and is the particle. In decay, a nucleus
of atomic number Z decays into a nucleus of atomic number and atomic mass Interestingly, the
dream of the ancient alchemists to turn other metals into gold is scientifically feasible through the alpha-decay
process. The efforts of the alchemists failed because they relied on chemical interactions rather than nuclear
interactions.

INTERACTIVE

Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random
decay times relate to the half-life. To try a simulation of alpha decay, visit alpha particles (https://openstax.org/
l/21alphaparvid)

An example of alpha decay is uranium-238:

The atomic number has dropped from 92 to 90. The chemical element with is thorium. Hence,
Uranium-238 has decayed to Thorium-234 by the emission of an particle, written

Subsequently, decays by emission with a half-life of 24 days. The energy released in this alpha decay
takes the form of kinetic energies of the thorium and helium nuclei, although the kinetic energy of thorium is
smaller than helium due to its heavier mass and smaller velocity.

10.21
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EXAMPLE 10.7

Plutonium Alpha Decay
Find the energy emitted in the decay of .

Strategy
The energy emitted in the decay of can be found using the equation We must first find

the difference in mass between the parent nucleus and the products of the decay.

Solution
The decay equation is

Thus, the pertinent masses are those of , , and the particle or , all of which are known. The
initial mass was The final mass is the sum

Thus,

Now we can find E by entering into the equation:

We know so we have

Significance
The energy released in this decay is in the MeV range, many times greater than chemical reaction energies.
Most of this energy becomes kinetic energy of the particle (or nucleus), which moves away at high speed.
The energy carried away by the recoil of the nucleus is much smaller due to its relatively large mass. The

nucleus can be left in an excited state to later emit photons ( rays).

Beta Decay
In most particle decays (or beta decay), either an electron ( ) or positron ( ) is emitted by a nucleus. A
positron has the same mass as the electron, but its charge is . For this reason, a positron is sometimes
called an antielectron. How does decay occur? A possible explanation is the electron (positron) is confined to
the nucleus prior to the decay and somehow escapes. To obtain a rough estimate of the escape energy, consider
a simplified model of an electron trapped in a box (or in the terminology of quantum mechanics, a one-
dimensional square well) that has the width of a typical nucleus ( ). According to the Heisenberg
uncertainty principle in Quantum Mechanics, the uncertainty of the momentum of the electron is:
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Taking this momentum value (an underestimate) to be the “true value,” the kinetic energy of the electron on
escape is approximately

Experimentally, the electrons emitted in decay are found to have kinetic energies of the order of only a few
MeV. We therefore conclude that the electron is somehow produced in the decay rather than escaping the
nucleus. Particle production (annihilation) is described by theories that combine quantum mechanics and
relativity, a subject of a more advanced course in physics.

Nuclear beta decay involves the conversion of one nucleon into another. For example, a neutron can decay to a
proton by the emission of an electron ( ) and a nearly massless particle called an antineutrino ( ):

The notation is used to designate the electron. Its mass number is 0 because it is not a nucleon, and its
atomic number is to signify that it has a charge of . The proton is represented by because its mass
number and atomic number are 1. When this occurs within an atomic nucleus, we have the following equation
for beta decay:

As discussed in another chapter, this process occurs due to the weak nuclear force.

INTERACTIVE

Watch beta decay (https://openstax.org/l/21betadecayvid) occur for a collection of nuclei or for an individual
nucleus.

As an example, the isotope is unstable and decays by emission with a half-life of 24 days. Its decay
can be represented as

Since the chemical element with atomic number 91 is protactinium (Pa), we can write the decay of thorium
as

The reverse process is also possible: A proton can decay to a neutron by the emission of a positron ( ) and a
nearly massless particle called a neutrino (v). This reaction is written as

The positron is emitted with the neutrino v, and the neutron remains in the nucleus. (Like decay, the
positron does not precede the decay but is produced in the decay.) For an isolated proton, this process is
impossible because the neutron is heavier than the proton. However, this process is possible within the
nucleus because the proton can receive energy from other nucleons for the transition. As an example, the
isotope of aluminum decays by emission with a half-life of The decay is written as

The atomic number 12 corresponds to magnesium. Hence,

As a nuclear reaction, positron emission can be written as

10.22
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The neutrino was not detected in the early experiments on decay. However, the laws of energy and
momentum seemed to require such a particle. Later, neutrinos were detected through their interactions with
nuclei.

EXAMPLE 10.8

Bismuth Alpha and Beta Decay
The nucleus undergoes both and decay. For each case, what is the daughter nucleus?

Strategy
We can use the processes described by Equation 10.21 and Equation 10.22, as well as the Periodic Table, to
identify the resulting elements.

Solution
The atomic number and the mass number for the particle are 2 and 4, respectively. Thus, when a
bismuth-211 nucleus emits an particle, the daughter nucleus has an atomic number of 81 and a mass
number of 207. The element with an atomic number of 81 is thallium, so the decay is given by

In decay, the atomic number increases by 1, while the mass number stays the same. The element with an
atomic number of 84 is polonium, so the decay is given by

CHECK YOUR UNDERSTANDING 10.4

In radioactive beta decay, does the atomic mass number, A, increase or decrease?

Gamma Decay
A nucleus in an excited state can decay to a lower-level state by the emission of a “gamma-ray” photon, and
this is known as gamma decay. This is analogous to de-excitation of an atomic electron. Gamma decay is
represented symbolically by

where the asterisk (*) on the nucleus indicates an excited state. In decay, neither the atomic number nor the
mass number changes, so the type of nucleus does not change.

Radioactive Decay Series
Nuclei with are unstable and decay naturally. Many of these nuclei have very short lifetimes, so they
are not found in nature. Notable exceptions include (or Th-232) with a half-life of years,
and (or U-238) with a half-life of years. When a heavy nucleus decays to a lighter one, the
lighter daughter nucleus can become the parent nucleus for the next decay, and so on. This process can
produce a long series of nuclear decays called a decay series. The series ends with a stable nucleus.

To illustrate the concept of a decay series, consider the decay of Th-232 series (Figure 10.13). The neutron
number, N, is plotted on the vertical y-axis, and the atomic number, Z, is plotted on the horizontal x-axis, so
Th-232 is found at the coordinates Th-232 decays by emission with a half-life of

years. Alpha decay decreases the atomic number by 2 and the mass number by 4, so we have
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The neutron number for Radium-228 is 140, so it is found in the diagram at the coordinates
Radium-228 is also unstable and decays by emission with a half-life of 5.76 years to

Actinum-228. The atomic number increases by 1, the mass number remains the same, and the neutron
number decreases by 1. Notice that in the graph, emission appears as a line sloping downward to the left,
with both N and Z decreasing by 2. Beta emission, on the other hand, appears as a line sloping downward to
the right with N decreasing by 1, and Z increasing by 1. After several additional alpha and beta decays, the
series ends with the stable nucleus Pb-208.

The relative frequency of different types of radioactive decays (alpha, beta, and gamma) depends on many
factors, including the strength of the forces involved and the number of ways a given reaction can occur
without violating the conservation of energy and momentum. How often a radioactive decay occurs often
depends on a sensitive balance of the strong and electromagnetic forces. These forces are discussed in Particle
Physics and Cosmology.

Figure 10.13 In the thorium decay series, alpha decays reduce the atomic number, as indicated by the red arrows. Beta ( )

decays increase the atomic number, as indicated by the blue arrows. The series ends at the stable nucleus Pb-208.

As another example, consider the U-238 decay series shown in Figure 10.14. After numerous alpha and beta
decays, the series ends with the stable nucleus Pb-206. An example of a decay whose parent nucleus no longer
exists naturally is shown in Figure 10.15. It starts with Neptunium-237 and ends in the stable nucleus
Bismuth-209. Neptunium is called a transuranic element because it lies beyond uranium in the periodic
table. Uranium has the highest atomic number of any element found in nature. Elements with

can be produced only in the laboratory. They most probably also existed in nature at the time of the
formation of Earth, but because of their relatively short lifetimes, they have completely decayed. There is
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nothing fundamentally different between naturally occurring and artificial elements.

Figure 10.14 In the Uranium-238 decay series, alpha ( ) decays reduce the atomic number, as indicated by the red arrows. Beta ( )

decays increase the atomic number, as indicated by the blue arrows. The series ends at the stable nucleus Pb-206.

Notice that for Bi (21), the decay may proceed through either alpha or beta decay.
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Figure 10.15 In the Neptunium-237 decay series, alpha ( ) decays reduce the atomic number, as indicated by the red arrows. Beta ( )

decays increase the atomic number, as indicated by the blue arrows. The series ends at the stable nucleus Bi-209.

Radioactivity in the Earth
According to geologists, if there were no heat source, Earth should have cooled to its present temperature in no
more than 1 billion years. Yet, Earth is more than 4 billion years old. Why is Earth cooling so slowly? The
answer is nuclear radioactivity, that is, high-energy particles produced in radioactive decays heat Earth from
the inside (Figure 10.16).
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Figure 10.16 Earth is heated by nuclear reactions (alpha, beta, and gamma decays). Without these reactions, Earth’s core and mantle

would be much cooler than it is now.

Candidate nuclei for this heating model are , which possess half-lives similar to or longer than
the age of Earth. The energy produced by these decays (per second per cubic meter) is small, but the energy
cannot escape easily, so Earth’s core is very hot. Thermal energy in Earth’s core is transferred to Earth’s
surface and away from it through the processes of convection, conduction, and radiation.

10.5 Fission
Learning Objectives
By the end of this section, you will be able to:

• Describe the process of nuclear fission in terms of its product and reactants
• Calculate the energies of particles produced by a fission reaction
• Explain the fission concept in the context of fission bombs and nuclear reactions

In 1934, Enrico Fermi bombarded chemical elements with neutrons in order to create isotopes of other
elements. He assumed that bombarding uranium with neutrons would make it unstable and produce a new
element. Unfortunately, Fermi could not determine the products of the reaction. Several years later, Otto Hahn
and Fritz Strassman reproduced these experiments and discovered that the products of these reactions were
smaller nuclei. From this, they concluded that the uranium nucleus had split into two smaller nuclei.

The splitting of a nucleus is called fission. Interestingly, U-235 fission does not always produce the same
fragments. Example fission reactions include:

In each case, the sum of the masses of the product nuclei are less than the masses of the reactants, so the
fission of uranium is an exothermic process This is the idea behind the use of fission reactors as
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sources of energy (Figure 10.17). The energy carried away by the reaction takes the form of particles with
kinetic energy. The percent yield of fragments from a U-235 fission is given in Figure 10.18.

Figure 10.17 The Phillipsburg Nuclear Power Plant in Germany uses a fission reactor to generate electricity.

Figure 10.18 In this graph of fission fragments from U-235, the peaks in the graph indicate nuclei that are produced in the greatest

abundance by the fission process.

Energy changes in a nuclear fission reaction can be understood in terms of the binding energy per nucleon
curve (Figure 10.7). The BEN value for uranium is slightly lower than its daughter nuclei, which lie
closer to the iron (Fe) peak. This means that nucleons in the nuclear fragments are more tightly bound than
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those in the U-235 nucleus. Therefore, a fission reaction results in a drop in the average energy of a nucleon.
This energy is carried away by high-energy neutrons.

Niels Bohr and John Wheeler developed the liquid drop model to understand the fission process. According to
this model, firing a neutron at a nucleus is analogous to disturbing a droplet of water (Figure 10.19). The
analogy works because short-range forces between nucleons in a nucleus are similar to the attractive forces
between water molecules in a water droplet. In particular, forces between nucleons at the surface of the
nucleus result in a surface tension similar to that of a water droplet. A neutron fired into a uranium nucleus
can set the nucleus into vibration. If this vibration is violent enough, the nucleus divides into smaller nuclei
and also emits two or three individual neutrons.

Figure 10.19 In the liquid drop model of nuclear fission, the uranium nucleus is split into two lighter nuclei by a high-energy neutron.

U-235 fission can produce a chain reaction. In a compound consisting of many U-235 nuclei, neutrons in the
decay of one U-235 nucleus can initiate the fission of additional U-235 nuclei (Figure 10.20). This chain
reaction can proceed in a controlled manner, as in a nuclear reactor at a power plant, or proceed
uncontrollably, as in an explosion.
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Figure 10.20 In a U-235 fission chain reaction, the fission of the uranium nucleus produces high-energy neutrons that go on to split more

nuclei. The energy released in this process can be used to produce electricity.

INTERACTIVE

View a simulation on nuclear fission (https://openstax.org/l/21nuclrfissvid) to start a chain reaction, or
introduce nonradioactive isotopes to prevent one. Control energy production in a nuclear reactor.

The Atomic Bomb
The possibility of a chain reaction in uranium, with its extremely large energy release, led nuclear scientists to
conceive of making a bomb—an atomic bomb. (These discoveries were taking place in the years just prior to
the Second World War and many of the European physicists involved in these discoveries came from countries
that were being overrun.) Natural uranium contains U-238 and only U-235, and does not produce
a chain reaction. To produce a controlled, sustainable chain reaction, the percentage of U-235 must be
increased to about . In addition, the uranium sample must be massive enough so a typical neutron is more
likely to induce fission than it is to escape. The minimum mass needed for the chain reaction to occur is called
the critical mass. When the critical mass reaches a point at which the chain reaction becomes self-sustaining,
this is a condition known as criticality. The original design required two pieces of U-235 below the critical
mass. When one piece in the form of a bullet is fired into the second piece, the critical mass is exceeded and a
chain reaction is produced.

An important obstacle to the U-235 bomb is the production of a critical mass of fissionable material. Therefore,
scientists developed a plutonium-239 bomb because Pu-239 is more fissionable than U-235 and thus requires
a smaller critical mass. The bomb was made in the form of a sphere with pieces of plutonium, each below the
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critical mass, at the edge of the sphere. A series of chemical explosions fired the plutonium pieces toward the
center of the sphere simultaneously. When all these pieces of plutonium came together, the combination
exceeded the critical mass and produced a chain reaction. Both the U-235 and Pu-239 bombs were used in
World War II. Whether to develop and use atomic weapons remain two of the most important questions faced
by human civilization.

EXAMPLE 10.9

Calculating Energy Released by Fission
Calculate the energy released in the following rare spontaneous fission reaction:

The atomic masses are and

Strategy
As always, the energy released is equal to the mass destroyed times , so we must find the difference in mass
between the parent and the fission products.

Solution
The products have a total mass of

The mass lost is the mass of or

Therefore, the energy released is

Significance
Several important things arise in this example. The energy release is large but less than it would be if the
nucleus split into two equal parts, since energy is carried away by neutrons. However, this fission reaction
produces neutrons and does not split the nucleus into two equal parts. Fission of a given nuclide, such as ,
does not always produce the same products. Fission is a statistical process in which an entire range of
products are produced with various probabilities. Most fission produces neutrons, although the number varies.
This is an extremely important aspect of fission, because neutrons can induce more fission, enabling self-
sustaining chain reactions.

Fission Nuclear Reactors
The first nuclear reactor was built by Enrico Fermi on a squash court on the campus of the University of
Chicago on December 2, 1942. The reactor itself contained U-238 enriched with U-235. Neutrons
produced by the chain reaction move too fast to initiate fission reactions. One way to slow them down is to
enclose the entire reactor in a water bath under high pressure. The neutrons collide with the water molecules
and are slowed enough to be used in the fission process. The slowed neutrons split more U-235 nuclei and a
chain reaction occurs. The rate at which the chain reaction proceeds is controlled by a series of “control” rods
made of cadmium inserted into the reactor. Cadmium is capable of absorbing a large number of neutrons
without becoming unstable.

A nuclear reactor design, called a pressurized water reactor, can also be used to generate electricity (Figure
10.21). A pressurized water reactor (on the left in the figure) is designed to control the fission of large amounts
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of . The energy released in this process is absorbed by water flowing through pipes in the system (the
“primary loop”) and steam is produced. Cadmium control rods adjust the neutron flux (the rate of flow of
neutrons passing through the system) and therefore control the reaction. In case the reactor overheats and the
water boils away, the chain reaction terminates, because water is used to thermalize the neutrons. (This safety
feature can be overwhelmed in extreme circumstances.) The hot, high-pressure water then passes through a
pipe to a second tank of water at normal pressure in the steam generator. The steam produced at one end of
the steam generator fills a chamber that contains a turbine. This steam is at a very high pressure. Meanwhile, a
steam condenser connected to the other side of the turbine chamber maintains steam at low pressure. The
pressure differences force steam through the chamber, which turns the turbine. The turbine, in turn, powers
an electric generator.

Figure 10.21 A nuclear reactor uses the energy produced in the fission of U-235 to produce electricity. Energy from a nuclear fission

reaction produces hot, high-pressure steam that turns a turbine. As the turbine turns, electricity is produced.

The major drawback to a fission reactor is nuclear waste. U-235 fission produces nuclei with long half-lives
such as that must be stored. These products cannot be dumped into oceans or left in any place where
they will contaminate the environment, such as through the soil, air, or water. Many scientists believe that the
best place to store nuclear waste is the bottom of old salt mines or inside of stable mountains.

Many people are fearful that a nuclear reactor may explode like an atomic bomb. However, a nuclear reactor
does not contain enough U-235 to do this. Also, a nuclear reactor is designed so that failure of any mechanism
of the reactor causes the cadmium control rods to fall fully into the reactor, stopping the fission process. As
evidenced by the Fukushima and Chernobyl disasters, such systems can fail. Systems and procedures to avoid
such disasters is an important priority for advocates of nuclear energy.

If all electrical power were produced by nuclear fission of U-235, Earth’s known reserves of uranium would be
depleted in less than a century. However, Earth’s supply of fissionable material can be expanded considerably
using a breeder reactor. A breeder reactor operates for the first time using the fission of U-235 as just
described for the pressurized water reactor. But in addition to producing energy, some of the fast neutrons
originating from the fission of U-235 are absorbed by U-238, resulting in the production of Pu-239 via the set
of reactions

The Pu-239 is itself highly fissionable and can therefore be used as a nuclear fuel in place of U-235. Since
of naturally occurring uranium is the U-238 isotope, the use of breeder reactors should increase our

supply of nuclear fuel by roughly a factor of 100. Breeder reactors are now in operation in Great Britain,
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France, and Russia. Breeder reactors also have drawbacks. First, breeder reactors produce plutonium, which
can, if leaked into the environment, produce serious public health problems. Second, plutonium can be used
to build bombs, thus increasing significantly the risk of nuclear proliferation.

EXAMPLE 10.10

Calculating Energy of Fissionable Fuel
Calculate the amount of energy produced by the fission of 1.00 kg of given that the average fission
reaction of produces 200 MeV.

Strategy
The total energy produced is the number of atoms times the given energy per fission. We should
therefore find the number of atoms in 1.00 kg.

Solution
The number of atoms in 1.00 kg is Avogadro’s number times the number of moles. One mole of has
a mass of 235.04 g; thus, there are The number of atoms is
therefore

Thus, the total energy released is

Significance
This is another impressively large amount of energy, equivalent to about 14,000 barrels of crude oil or 600,000
gallons of gasoline. However, it is only one-fourth the energy produced by the fusion of a kilogram mixture of
deuterium and tritium. Even though each fission reaction yields about 10 times the energy of a fusion reaction,
the energy per kilogram of fission fuel is less, because there are far fewer moles per kilogram of the heavy
nuclides. Fission fuel is also much scarcer than fusion fuel, and less than of uranium (the ) is readily
usable.

CHECK YOUR UNDERSTANDING 10.5

Which has a larger energy yield per fission reaction, a large or small sample of pure

10.6 Nuclear Fusion
Learning Objectives
By the end of this section, you will be able to:

• Describe the process of nuclear fusion in terms of its product and reactants
• Calculate the energies of particles produced by a fusion reaction
• Explain the fission concept in the context of fusion bombs, the production of energy by the Sun, and

nucleosynthesis

The process of combining lighter nuclei to make heavier nuclei is called nuclear fusion. As with fission
reactions, fusion reactions are exothermic—they release energy. Suppose that we fuse a carbon and helium
nuclei to produce oxygen:

The energy changes in this reaction can be understood using a graph of binding energy per nucleon (Figure
10.7). Comparing the binding energy per nucleon for oxygen, carbon, and helium, the oxygen nucleus is much
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more tightly bound than the carbon and helium nuclei, indicating that the reaction produces a drop in the
energy of the system. This energy is released in the form of gamma radiation. Fusion reactions are said to be
exothermic when the amount of energy released (known as the Q value) in each reaction is greater than zero

An important example of nuclear fusion in nature is the production of energy in the Sun. In 1938, Hans Bethe
proposed that the Sun produces energy when hydrogen nuclei ( ) fuse into stable helium nuclei in the
Sun’s core (Figure 10.22). This process, called the proton-proton chain, is summarized by three reactions:

Thus, a stable helium nucleus is formed from the fusion of the nuclei of the hydrogen atom. These three
reactions can be summarized by

The net Q value is about 26 MeV. The release of this energy produces an outward thermal gas pressure that
prevents the Sun from gravitational collapse. Astrophysicists find that hydrogen fusion supplies the energy
stars require to maintain energy balance over most of a star's life span.

Figure 10.22 The Sun produces energy by fusing hydrogen into helium at the Sun’s core. The red arrows show outward pressure due to

thermal gas, which tends to make the Sun expand. The blue arrows show inward pressure due to gravity, which tends to make the Sun

contract. These two influences balance each other.

Nucleosynthesis
Scientist now believe that many heavy elements found on Earth and throughout the universe were originally
synthesized by fusion within the hot cores of the stars. This process is known as nucleosynthesis. For
example, in lighter stars, hydrogen combines to form helium through the proton-proton chain. Once the
hydrogen fuel is exhausted, the star enters the next stage of its life and fuses helium. An example of a nuclear
reaction chain that can occur is:
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Carbon and oxygen nuclei produced in such processes eventually reach the star’s surface by convection. Near
the end of its lifetime, the star loses its outer layers into space, thus enriching the interstellar medium with the
nuclei of heavier elements (Figure 10.23).

Figure 10.23 A planetary nebula is produced at the end of the life of a star. The greenish color of this planetary nebula comes from oxygen

ions. (credit: Hubble Heritage Team (STScI/AURA/NASA/ESA) )

Stars similar in mass to the Sun do not become hot enough to fuse nuclei as heavy (or heavier) than oxygen
nuclei. However, in massive stars whose cores become much hotter even more complex
nuclei are produced. Some representative reactions are

Nucleosynthesis continues until the core is primarily iron-nickel metal. Now, iron has the peculiar property
that any fusion or fission reaction involving the iron nucleus is endothermic, meaning that energy is absorbed
rather than produced. Hence, nuclear energy cannot be generated in an iron-rich core. Lacking an outward
pressure from fusion reactions, the star begins to contract due to gravity. This process heats the core to a
temperature on the order of Expanding shock waves generated within the star due to the collapse
cause the star to quickly explode. The luminosity of the star can increase temporarily to nearly that of an entire
galaxy. During this event, the flood of energetic neutrons reacts with iron and the other nuclei to produce
elements heavier than iron. These elements, along with much of the star, are ejected into space by the
explosion. Supernovae and the formation of planetary nebulas together play a major role in the dispersal of
chemical elements into space.

Eventually, much of the material lost by stars is pulled together through the gravitational force, and it
condenses into a new generation of stars and accompanying planets. Recent images from the Hubble Space
Telescope provide a glimpse of this magnificent process taking place in the constellation Serpens (Figure
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10.24). The new generation of stars begins the nucleosynthesis process anew, with a higher percentage of
heavier elements. Thus, stars are “factories” for the chemical elements, and many of the atoms in our bodies
were once a part of stars.

Figure 10.24 This image taken by NASA’s Spitzer Space Telescope and the Two Micron All Sky Survey (2MASS), shows the Serpens Cloud

Core, a star-forming region in the constellation Serpens (the “Serpent”). Located about 750 light-years away, this cluster of stars is formed

from cooling dust and gases. Infrared light has been used to reveal the youngest stars in orange and yellow. (credit: NASA/JPL-Caltech/

2MASS)

EXAMPLE 10.11

Energy of the Sun
The power output of the Sun is approximately Most of this energy is produced in the Sun’s core
by the proton-proton chain. This energy is transmitted outward by the processes of convection and radiation.
(a) How many of these fusion reactions per second must occur to supply the power radiated by the Sun? (b)
What is the rate at which the mass of the Sun decreases? (c) In about five billion years, the central core of the
Sun will be depleted of hydrogen. By what percentage will the mass of the Sun have decreased from its present
value when the core is depleted of hydrogen?

Strategy
The total energy output per second is given in the problem statement. If we know the energy released in each
fusion reaction, we can determine the rate of the fusion reactions. If the mass loss per fusion reaction is
known, the mass loss rate is known. Multiplying this rate by five billion years gives the total mass lost by the
Sun. This value is divided by the original mass of the Sun to determine the percentage of the Sun’s mass that
has been lost when the hydrogen fuel is depleted.

Solution

a. The decrease in mass for the fusion reaction is

The energy released per fusion reaction is

Thus, to supply there must be

b. The Sun’s mass decreases by per fusion reaction, so the rate at which its mass
decreases is
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c. In the Sun’s mass will therefore decrease by

The current mass of the Sun is about so the percentage decrease in its mass when its
hydrogen fuel is depleted will be

Significance
After five billion years, the Sun is very nearly the same mass as it is now. Hydrogen burning does very little to
change the mass of the Sun. This calculation assumes that only the proton-proton decay change is responsible
for the power output of the Sun.

CHECK YOUR UNDERSTANDING 10.6

Where does the energy from the Sun originate?

The Hydrogen Bomb
In 1942, Robert Oppenheimer suggested that the extremely high temperature of an atomic bomb could be used
to trigger a fusion reaction between deuterium and tritium, thus producing a fusion (or hydrogen) bomb. The
reaction between deuterium and tritium, both isotopes of hydrogen, is given by

Deuterium is relatively abundant in ocean water but tritium is scarce. However, tritium can be generated in a
nuclear reactor through a reaction involving lithium. The neutrons from the reactor cause the reaction

to produce the desired tritium. The first hydrogen bomb was detonated in 1952 on the remote island of
Eniwetok in the Marshall Islands. A hydrogen bomb has never been used in war. Modern hydrogen bombs are
approximately 1000 times more powerful than the fission bombs dropped on Hiroshima and Nagasaki in
World War II.

The Fusion Reactor
The fusion chain believed to be the most practical for use in a nuclear fusion reactor is the following two-step
process:

This chain, like the proton-proton chain, produces energy without any radioactive by-product. However, there
is a very difficult problem that must be overcome before fusion can be used to produce significant amounts of
energy: Extremely high temperatures are needed to drive the fusion process. To meet this challenge,
test fusion reactors are being developed to withstand temperatures 20 times greater than the Sun’s core
temperature. An example is the Joint European Torus (JET) shown in Figure 10.25. A great deal of work still
has to be done on fusion reactor technology, but many scientists predict that fusion energy will power the
world’s cities by the end of the twentieth century.
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Figure 10.25 The Joint European Torus (JET) tokamak fusion detector uses magnetic fields to fuse deuterium and tritium nuclei (credit:

EUROfusion).

10.7 Medical Applications and Biological Effects of Nuclear
Radiation
Learning Objectives
By the end of this section, you will be able to:

• Describe two medical uses of nuclear technology
• Explain the origin of biological effects due to nuclear radiation
• List common sources of radiation and their effects
• Estimate exposure for nuclear radiation using common dosage units

Nuclear physics is an integral part of our everyday lives (Figure 10.26). Radioactive compounds are used to
identify cancer, study ancient artifacts, and power our cities. Nuclear fusion also powers the Sun, the primary
source of energy on Earth. The focus of this chapter is nuclear radiation. In this section, we ask such questions
as: How is nuclear radiation used to benefit society? What are its health risks? How much nuclear radiation is
the average person exposed to in a lifetime?
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Figure 10.26 Dr. Tori Randall, a curator at the San Diego Museum of Man, uses nuclear radiation to study a 500-year-old Peruvian child

mummy. The origin of this radiation is the transformation of one nucleus to another. (credit: Samantha A. Lewis, U.S. Navy)

Medical Applications
Medical use of nuclear radiation is quite common in today’s hospitals and clinics. One of the most important
uses of nuclear radiation is the location and study of diseased tissue. This application requires a special drug
called a radiopharmaceutical. A radiopharmaceutical contains an unstable radioactive isotope. When the
drug enters the body, it tends to concentrate in inflamed regions of the body. (Recall that the interaction of the
drug with the body does not depend on whether a given nucleus is replaced by one of its isotopes, since this
interaction is determined by chemical interactions.) Radiation detectors used outside the body use nuclear
radiation from the radioisotopes to locate the diseased tissue. Radiopharmaceuticals are called radioactive
tags because they allow doctors to track the movement of drugs in the body. Radioactive tags are for many
purposes, including the identification of cancer cells in the bones, brain tumors, and Alzheimer’s disease
(Figure 10.27). Radioactive tags are also used to monitor the function of body organs, such as blood flow, heart
muscle activity, and iodine uptake in the thyroid gland.

Figure 10.27 These brain images are produced using a radiopharmaceutical. The colors indicate relative metabolic or biochemical activity

(red indicates high activity and blue indicates low activity). The figure on the left shows the normal brain of an individual and the figure on
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the right shows the brain of someone diagnosed with Alzheimer’s disease. The brain image of the normal brain indicates much greater

metabolic activity (a larger fraction of red and orange areas). (credit: modification of works by National Institutes of Health)

Table 10.2 lists some medical diagnostic uses of radiopharmaceuticals, including isotopes and typical activity
(A) levels. One common diagnostic test uses iodine to image the thyroid, since iodine is concentrated in that
organ. Another common nuclear diagnostic is the thallium scan for the cardiovascular system, which reveals
blockages in the coronary arteries and examines heart activity. The salt TlCl can be used because it acts like
NaCl and follows the blood. Note that Table 10.2 lists many diagnostic uses for , where “m” stands for a
metastable state of the technetium nucleus. This isotope is used in many compounds to image the skeleton,
heart, lungs, and kidneys. About of all radiopharmaceuticals employ because it produces a single,
easily identified, 0.142-MeV ray and has a short 6.0-h half-life, which reduces radiation exposure.

Procedure,
Isotope

Activity (mCi), where Procedure,
Isotope

Activity (mCi), where

Brain scan Thyroid scan

7.5 0.05

(PET) 50 0.07

Lung scan Liver scan

7.5
(colloid)

0.1

2
(colloid)

2

Cardiovascular blood pool Bone scan

0.2 0.1

2 10

Cardiovascular arterial flow Kidney scan

3 0.1

7.5 1.5

Table 10.2 Diagnostic Uses of Radiopharmaceuticals

The first radiation detectors produced two-dimensional images, like a photo taken from a camera. However, a
circular array of detectors that can be rotated can be used to produce three-dimensional images. This
technique is similar to that used in X-ray computed tomography (CT) scans. One application of this technique
is called single-photon-emission CT (SPECT) (Figure 10.28). The spatial resolution of this technique is about
1 cm.

10.7 • Medical Applications and Biological Effects of Nuclear Radiation 477



Figure 10.28 The SPECT machine uses radiopharmaceutical compounds to produce an image of the human body. The machine takes

advantage of the physics of nuclear beat decays and electron-positron collisions. (credit: “Woldo”/Wikimedia Commons)

Improved image resolution is achieved by a technique known as positron emission tomography (PET). This
technique use radioisotopes that decay by radiation. When a positron encounters an electron, these
particle annihilate to produce two gamma-ray photons. This reaction is represented by

These -ray photons have identical 0.511-MeV energies and move directly away from one another (Figure
10.29). This easily identified decay signature can be used to identify the location of the radioactive isotope.
Examples of -emitting isotopes used in PET include . The nuclei have the advantage
of being able to function as tags for natural body compounds. Its resolution of 0.5 cm is better than that of
SPECT.

Figure 10.29 A PET system takes advantage of the two identical -ray photons produced by positron-electron annihilation. These rays

are emitted in opposite directions, so that the line along which each pair is emitted is determined.
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PET scans are especially useful to examine the brain’s anatomy and function. For example, PET scans can be
used to monitor the brain’s use of oxygen and water, identify regions of decreased metabolism (linked to
Alzheimer’s disease), and locate different parts of the brain responsible for sight, speech, and fine motor
activity

INTERACTIVE

Is it a tumor? View an animation (https://openstax.org/l/21simmagresimg) of simplified magnetic resonance
imaging (MRI) to see if you can tell. Your head is full of tiny radio transmitters (the nuclear spins of the
hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their
positions, giving a detailed picture of the inside of your head.

Biological Effects
Nuclear radiation can have both positive and negative effects on biological systems. However, it can also be
used to treat and even cure cancer. How do we understand these effects? To answer this question, consider
molecules within cells, particularly DNA molecules.

Cells have long, double-helical DNA molecules containing chemical codes that govern the function and
processes of the cell. Nuclear radiation can alter the structural features of the DNA chain, leading to changes in
the genetic code. In human cells, we can have as many as a million individual instances of damage to DNA per
cell per day. DNA contains codes that check whether the DNA is damaged and can repair itself. This repair
ability of DNA is vital for maintaining the integrity of the genetic code and for the normal functioning of the
entire organism. It should be constantly active and needs to respond rapidly. The rate of DNA repair depends
on various factors such as the type and age of the cell. If nuclear radiation damages the ability of the cell to
repair DNA, the cell can

1. Retreat to an irreversible state of dormancy (known as senescence);
2. Commit suicide (known as programmed cell death); or
3. Progress into unregulated cell division, possibly leading to tumors and cancers.

Nuclear radiation can harm the human body is many other ways as well. For example, high doses of nuclear
radiation can cause burns and even hair loss.

Biological effects of nuclear radiation are expressed by many different physical quantities and in many
different units. A common unit to express the biological effects of nuclear radiation is the rad or radiation
dose unit. One rad is equal to 1/100 of a joule of nuclear energy deposited per kilogram of tissue, written:

For example, if a 50.0-kg person is exposed to nuclear radiation over her entire body and she absorbs 1.00 J,
then her whole-body radiation dose is

Nuclear radiation damages cells by ionizing atoms in the cells as they pass through the cells (Figure 10.30).
The effects of ionizing radiation depend on the dose in rads, but also on the type of radiation (alpha, beta,
gamma, or X-ray) and the type of tissue. For example, if the range of the radiation is small, as it is for rays,
then the ionization and the damage created is more concentrated and harder for the organism to repair. To
account for such affects, we define the relative biological effectiveness (RBE). Sample RBE values for several
types of ionizing nuclear radiation are given in Table 10.3.
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Figure 10.30 The image shows ionization created in cells by and radiation. Because of its shorter range, the ionization and damage

created by rays is more concentrated and harder for the organism to repair. Thus, the RBE for rays is greater than the RBE for rays,

even though they create the same amount of ionization at the same energy.

Type and Energy of Radiation RBE[1]

X-rays 1

rays 1

rays greater than 32 keV 1

rays less than 32 keV 1.7

Neutrons, thermal to slow (<20 keV) 2–5

Neutrons, fast (1–10 MeV) 10 (body), 32 (eyes)

Protons (1–10 MeV) 10 (body), 32 (eyes)

rays from radioactive decay 10–20

Heavy ions from accelerators 10–20

Table 10.3 Relative Biological Effectiveness [1] Values approximate. Difficult to determine.

A dose unit more closely related to effects in biological tissue is called the roentgen equivalent man (rem) and
is defined to be the dose (in rads) multiplied by the relative biological effectiveness (RBE). Thus, if a person had
a whole-body dose of 2.00 rad of radiation, the dose in rem would be rem for the whole
body. If the person had a whole-body dose of 2.00 rad of radiation, then the dose in rem would be

rem for the whole body. The rays would have 20 times the effect on the person than the
rays for the same deposited energy. The SI equivalent of the rem, and the more standard term, is the sievert

(Sv) is

The RBEs given in Table 10.3 are approximate but reflect an understanding of nuclear radiation and its
interaction with living tissue. For example, neutrons are known to cause more damage than rays, although
both are neutral and have large ranges, due to secondary radiation. Any dose less than 100 mSv (10 rem) is
called a low dose, 0.1 Sv to 1 Sv (10 to 100 rem) is called a moderate dose, and anything greater than 1 Sv (100
rem) is called a high dose. It is difficult to determine if a person has been exposed to less than 10 mSv.

Biological effects of different levels of nuclear radiation on the human body are given in Table 10.4. The first
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clue that a person has been exposed to radiation is a change in blood count, which is not surprising since
blood cells are the most rapidly reproducing cells in the body. At higher doses, nausea and hair loss are
observed, which may be due to interference with cell reproduction. Cells in the lining of the digestive system
also rapidly reproduce, and their destruction causes nausea. When the growth of hair cells slows, the hair
follicles become thin and break off. High doses cause significant cell death in all systems, but the lowest doses
that cause fatalities do so by weakening the immune system through the loss of white blood cells.

Dose in Sv[1] Effect

0–0.10 No observable effect.

0.1–1 Slight to moderate decrease in white blood cell counts.

0.5 Temporary sterility; 0.35 for women, 0.50 for men.

1–2 Significant reduction in blood cell counts, brief nausea and vomiting. Rarely fatal.

2–5 Nausea, vomiting, hair loss, severe blood damage, hemorrhage, fatalities.

4.5 Lethal to of the population within 32 days after exposure if not treated.

5–20 Worst effects due to malfunction of small intestine and blood systems. Limited survival.

>20 Fatal within hours due to collapse of central nervous system.

Table 10.4 Immediate Effects of Radiation (Adults, Whole-Body, Single Exposure) [1] Multiply by 100 to obtain
dose in rem.

Sources of Radiation
Human are also exposed to many sources of nuclear radiation. A summary of average radiation doses for
different sources by country is given in Table 10.5. Earth emits radiation due to the isotopes of uranium,
thorium, and potassium. Radiation levels from these sources depend on location and can vary by a factor of 10.
Fertilizers contain isotopes of potassium and uranium, which we digest in the food we eat. Fertilizers have
more than 3000 Bq/kg radioactivity, compared to just 66 Bq/kg for Carbon-14.

Source Dose (mSv/y)[1]

Australia Germany US World

Natural radiation – external

Cosmic rays 0.30 0.28 0.30 0.39

Soil, building materials 0.40 0.40 0.30 0.48

Radon gas 0.90 1.1 2.0 1.2

Natural radiation – internal

0.24 0.28 0.40 0.29
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Source Dose (mSv/y)[1]

Artificial radiation

Medical and dental 0.80 0.90 0.53 0.40

TOTAL 2.6 3.0 3.5 2.8

Table 10.5 Background Radiation Sources and Average Doses [1] Multiply by 100 to obtain does in mrem/y.

Medical visits are also a source of nuclear radiation. A sample of common nuclear radiation doses is given in
Table 10.6. These doses are generally low and can be lowered further with improved techniques and more
sensitive detectors. With the possible exception of routine dental X-rays, medical use of nuclear radiation is
used only when the risk-benefit is favorable. Chest X-rays give the lowest doses—about 0.1 mSv to the tissue
affected, with less than scattering into tissues that are not directly imaged. Other X-ray procedures range
upward to about 10 mSv in a CT scan, and about 5 mSv (0.5 rem) per dental X-ray, again both only affecting the
tissue imaged. Medical images with radiopharmaceuticals give doses ranging from 1 to 5 mSv, usually
localized.

Procedure Effective Dose (mSv)

Chest 0.02

Dental 0.01

Skull 0.07

Leg 0.02

Mammogram 0.40

Barium enema 7.0

Upper GI 3.0

CT head 2.0

CT abdomen 10.0

Table 10.6 Typical Doses Received During Diagnostic X-Ray Exams

EXAMPLE 10.12

What Mass of Escaped Chernobyl?
The Chernobyl accident in Ukraine (formerly in the Soviet Union) exposed the surrounding population to a
large amount of radiation through the decay of . The initial radioactivity level was approximately

Calculate the total mass of involved in this accident.

Strategy
The total number of nuclei, N, can be determined from the known half-life and activity of (30.2 y). The
mass can be calculated from N using the concept of a mole.
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Solution
Solving the equation for N gives

Entering the given values yields

To convert from curies to becquerels and years to seconds, we write

One mole of a nuclide has a mass of A grams, so that one mole of has a mass of 137 g. A mole has
nuclei. Thus the mass of released was

Significance
The mass of involved in the Chernobyl accident is a small material compared to the typical amount of
fuel used in a nuclear reactor. However, approximately 250 people were admitted to local hospitals
immediately after the accident, and diagnosed as suffering acute radiation syndrome. They received external
radiation dosages between 1 and 16 Sv. Referring to biological effects in Table 10.4, these dosages are
extremely hazardous. The eventual death toll is estimated to be around 4000 people, primarily due to
radiation-induced cancer.

CHECK YOUR UNDERSTANDING 10.7

Radiation propagates in all directions from its source, much as electromagnetic radiation from a light bulb. Is
activity concept more analogous to power, intensity, or brightness?
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CHAPTER REVIEW
Key Terms
activity magnitude of the decay rate for radioactive

nuclides
alpha (α) rays one of the types of rays emitted

from the nucleus of an atom as alpha particles
alpha decay radioactive nuclear decay associated

with the emission of an alpha particle
antielectrons another term for positrons
antineutrino antiparticle of an electron’s neutrino

in decay
atomic mass total mass of the protons, neutrons,

and electrons in a single atom
atomic mass unit unit used to express the mass of

an individual nucleus, where

atomic nucleus tightly packed group of nucleons
at the center of an atom

atomic number number of protons in a nucleus
becquerel (Bq) SI unit for the decay rate of a

radioactive material, equal to 1 decay/second
beta ( ) rays one of the types of rays emitted from

the nucleus of an atom as beta particles
beta decay radioactive nuclear decay associated

with the emission of a beta particle
binding energy (BE) energy needed to break a

nucleus into its constituent protons and neutrons
binding energy per nucleon (BEN) energy need to

remove a nucleon from a nucleus
breeder reactor reactor that is designed to make

plutonium
carbon-14 dating method to determine the age of

formerly living tissue using the ratio
chart of the nuclides graph comprising stable and

unstable nuclei
critical mass minimum mass required of a given

nuclide in order for self-sustained fission to occur
criticality condition in which a chain reaction

easily becomes self-sustaining
curie (Ci) unit of decay rate, or the activity of 1 g of

, equal to
daughter nucleus nucleus produced by the decay

of a parent nucleus
decay process by which an individual atomic

nucleus of an unstable atom loses mass and
energy by emitting ionizing particles

decay constant quantity that is inversely
proportional to the half-life and that is used in
equation for number of nuclei as a function of
time

decay series series of nuclear decays ending in a
stable nucleus

fission splitting of a nucleus
gamma ( ) rays one of the types of rays emitted

from the nucleus of an atom as gamma particles
gamma decay radioactive nuclear decay

associated with the emission of gamma radiation
half-life time for half of the original nuclei to decay

(or half of the original nuclei remain)
high dose dose of radiation greater than 1 Sv (100

rem)
isotopes nuclei having the same number of

protons but different numbers of neutrons
lifetime average time that a nucleus exists before

decaying
liquid drop model model of nucleus (only to

understand some of its features) in which
nucleons in a nucleus act like atoms in a drop

low dose dose of radiation less than 100 mSv (10
rem)

mass defect difference between the mass of a
nucleus and the total mass of its constituent
nucleons

mass number number of nucleons in a nucleus
moderate dose dose of radiation from 0.1 Sv to 1

Sv (10 to 100 rem)
neutrino subatomic elementary particle which has

no net electric charge
neutron number number of neutrons in a nucleus
nuclear fusion process of combining lighter nuclei

to make heavier nuclei
nuclear fusion reactor nuclear reactor that uses

the fusion chain to produce energy
nucleons protons and neutrons found inside the

nucleus of an atom
nucleosynthesis process of fusion by which all

elements on Earth are believed to have been
created

nuclide nucleus
parent nucleus original nucleus before decay
positron electron with positive charge
positron emission tomography (PET) tomography

technique that uses emitters and detects the
two annihilation rays, aiding in source
localization

proton-proton chain combined reactions that fuse
hydrogen nuclei to produce He nuclei

radiation dose unit (rad) ionizing energy
deposited per kilogram of tissue

radioactive dating application of radioactive decay
in which the age of a material is determined by
the amount of radioactivity of a particular type
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that occurs
radioactive decay law describes the exponential

decrease of parent nuclei in a radioactive sample
radioactive tags special drugs

(radiopharmaceuticals) that allow doctors to track
movement of other drugs in the body

radioactivity spontaneous emission of radiation
from nuclei

radiopharmaceutical compound used for medical
imaging

radius of a nucleus radius of a nucleus is defined
as

relative biological effectiveness (RBE) number

that expresses the relative amount of damage that
a fixed amount of ionizing radiation of a given
type can inflict on biological tissues

roentgen equivalent man (rem) dose unit more
closely related to effects in biological tissue

sievert (Sv) SI equivalent of the rem
single-photon-emission computed tomography

(SPECT) tomography performed with
-emitting radiopharmaceuticals

strong nuclear force force that binds nucleons
together in the nucleus

transuranic element element that lies beyond
uranium in the periodic table

Key Equations

Atomic mass number

Standard format for expressing an isotope

Nuclear radius, where r0 is the radius of a single proton

Mass defect

Binding energy

Binding energy per nucleon

Radioactive decay rate

Radioactive decay law

Decay constant

Lifetime of a substance

Activity of a radioactive substance

Activity of a radioactive substance (linear form)

Alpha decay

Beta decay

Positron emission

Gamma decay
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Summary
10.1 Properties of Nuclei

• The atomic nucleus is composed of protons and
neutrons.

• The number of protons in the nucleus is given
by the atomic number, Z. The number of
neutrons in the nucleus is the neutron number,
N. The number of nucleons is mass number, A.

• Atomic nuclei with the same atomic number, Z,
but different neutron numbers, N, are isotopes
of the same element.

• The atomic mass of an element is the weighted
average of the masses of its isotopes.

10.2 Nuclear Binding Energy

• The mass defect of a nucleus is the difference
between the total mass of a nucleus and the sum
of the masses of all its constituent nucleons.

• The binding energy (BE) of a nucleus is equal to
the amount of energy released in forming the
nucleus, or the mass defect multiplied by the
speed of light squared.

• A graph of binding energy per nucleon (BEN)
versus atomic number A implies that nuclei
divided or combined release an enormous
amount of energy.

• The binding energy of a nucleon in a nucleus is
analogous to the ionization energy of an
electron in an atom.

10.3 Radioactive Decay

• In the decay of a radioactive substance, if the
decay constant ( ) is large, the half-life is small,
and vice versa.

• The radioactive decay law, uses
the properties of radioactive substances to
estimate the age of a substance.

• Radioactive carbon has the same chemistry as
stable carbon, so it mixes into the ecosphere
and eventually becomes part of every living
organism. By comparing the abundance of
in an artifact with the normal abundance in
living tissue, it is possible to determine the
artifact’s age.

10.4 Nuclear Reactions

• The three types of nuclear radiation are alpha (
) rays, beta ( ) rays, and gamma ( ) rays.

• We represent decay symbolically by
. There are two types of

decay: either an electron ( ) or a positron ( )
is emitted by a nucleus. decay is represented

symbolically by .
• When a heavy nucleus decays to a lighter one,

the lighter daughter nucleus can become the
parent nucleus for the next decay, and so on,
producing a decay series.

10.5 Fission

• Nuclear fission is a process in which the sum of
the masses of the product nuclei are less than
the masses of the reactants.

• Energy changes in a nuclear fission reaction can
be understood in terms of the binding energy
per nucleon curve.

• The production of new or different isotopes by
nuclear transformation is called breeding, and
reactors designed for this purpose are called
breeder reactors.

10.6 Nuclear Fusion

• Nuclear fusion is a reaction in which two nuclei
are combined to form a larger nucleus; energy is
released when light nuclei are fused to form
medium-mass nuclei.

• The amount of energy released by a fusion
reaction is known as the Q value.

• Nuclear fusion explains the reaction between
deuterium and tritium that produces a fusion
(or hydrogen) bomb; fusion also explains the
production of energy in the Sun, the process of
nucleosynthesis, and the creation of the heavy
elements.

10.7 Medical Applications and Biological
Effects of Nuclear Radiation

• Nuclear technology is used in medicine to locate
and study diseased tissue using special drugs
called radiopharmaceuticals. Radioactive tags
are used to identify cancer cells in the bones,
brain tumors, and Alzheimer’s disease, and to
monitor the function of body organs, such as
blood flow, heart muscle activity, and iodine
uptake in the thyroid gland.

• The biological effects of ionizing radiation are
due to two effects it has on cells: interference
with cell reproduction and destruction of cell
function.

• Common sources of radiation include that
emitted by Earth due to the isotopes of uranium,
thorium, and potassium; natural radiation from
cosmic rays, soils, and building materials, and
artificial sources from medical and dental
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diagnostic tests.
• Biological effects of nuclear radiation are

expressed by many different physical quantities

and in many different units, including the rad or
radiation dose unit.

Conceptual Questions
10.1 Properties of Nuclei

1. Define and make clear distinctions between the
terms neutron, nucleon, nucleus, and nuclide.

2. What are isotopes? Why do isotopes of the same
atom share the same chemical properties?

10.2 Nuclear Binding Energy

3. Explain why a bound system should have less
mass than its components. Why is this not
observed traditionally, say, for a building made of
bricks?

4. Why is the number of neutrons greater than the
number of protons in stable nuclei that have an A
greater than about 40? Why is this effect more
pronounced for the heaviest nuclei?

5. To obtain the most precise value of the binding
energy per nucleon, it is important to take into
account forces between nucleons at the surface
of the nucleus. Will surface effects increase or
decrease estimates of BEN?

10.3 Radioactive Decay

6. How is the initial activity rate of a radioactive
substance related to its half-life?

7. For the carbon dating described in this chapter,
what important assumption is made about the
time variation in the intensity of cosmic rays?

10.4 Nuclear Reactions

8. What is the key difference and the key similarity
between beta ( ) decay and alpha decay?

9. What is the difference between rays and
characteristic X-rays and visible light?

10. What characteristics of radioactivity show it to
be nuclear in origin and not atomic?

11. Consider Figure 10.12. If the magnetic field is
replaced by an electric field pointed in toward
the page, in which directions will the -, -,
and rays bend?

12. Why is Earth’s core molten?

10.5 Fission

13. Should an atomic bomb really be called nuclear
bomb?

14. Why does a chain reaction occur during a
fission reaction?

15. In what way is an atomic nucleus like a liquid
drop?

10.6 Nuclear Fusion

16. Explain the difference between nuclear fission
and nuclear fusion.

17. Why does the fusion of light nuclei into heavier
nuclei release energy?

10.7 Medical Applications and Biological
Effects of Nuclear Radiation

18. Why is a PET scan more accurate than a SPECT
scan?

19. Isotopes that emit radiation are relatively safe
outside the body and exceptionally hazardous
inside. Explain why.

20. Ionizing radiation can impair the ability of a cell
to repair DNA. What are the three ways the cell
can respond?

Problems
10.1 Properties of Nuclei

21. Find the atomic numbers, mass numbers, and
neutron numbers for (a) (b) (c)

(d) and (e) .
22. Silver has two stable isotopes. The nucleus,

has atomic mass 106.905095 g/mol with
an abundance of ; whereas has
atomic mass 108.904754 g/mol with an
abundance of . Find the atomic mass of

the element silver.
23. The mass (M) and the radius (r) of a nucleus can

be expressed in terms of the mass number, A.
(a) Show that the density of a nucleus is
independent of A. (b) Calculate the density of a
gold (Au) nucleus. Compare your answer to that
for iron (Fe).

24. A particle has a mass equal to 10 u. If this mass
is converted completely into energy, how much
energy is released? Express your answer in
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mega-electron volts (MeV). (Recall that
.)

25. Find the length of a side of a cube having a mass
of 1.0 kg and the density of nuclear matter.

26. The detail that you can observe using a probe is
limited by its wavelength. Calculate the energy
of a particle that has a wavelength of

, small enough to detect details
about one-tenth the size of a nucleon.

10.2 Nuclear Binding Energy

27. How much energy would be released if six
hydrogen atoms and six neutrons were
combined to form

28. Find the mass defect and the binding energy for
the helium-4 nucleus.

29. is among the most tightly bound of all
nuclides. It makes up more than of natural
iron. Note that has even numbers of
protons and neutrons. Calculate the binding
energy per nucleon for and compare it
with the approximate value obtained from the
graph in Figure 10.7.

30. is the heaviest stable nuclide, and its BEN
is low compared with medium-mass nuclides.
Calculate BEN for this nucleus and compare it
with the approximate value obtained from the
graph in Figure 10.7.

31. (a) Calculate BEN for , the rarer of the two
most common uranium isotopes; (b) Calculate
BEN for . (Most of uranium is .)

32. The fact that BEN peaks at roughly
implies that the range of the strong nuclear
force is about the diameter of this nucleus.
(a) Calculate the diameter of nucleus.
(b) Compare BEN for . The first is
one of the most tightly bound nuclides, whereas
the second is larger and less tightly bound.

10.3 Radioactive Decay

33. A sample of radioactive material is obtained
from a very old rock. A plot lnA verses t yields a
slope value of (see Figure 10.10(b)).
What is the half-life of this material?

34. Show that: .

35. The half-life of strontium-91, is 9.70 h.
Find (a) its decay constant and (b) for an initial
1.00-g sample, the activity after 15 hours.

36. A sample of pure carbon-14 has
an activity of What is the mass of the
sample?

37. A radioactive sample initially contains
mol of a radioactive material

whose half-life is 6.00 h. How many moles of the
radioactive material remain after 6.00 h? After
12.0 h? After 36.0 h?

38. An old campfire is uncovered during an
archaeological dig. Its charcoal is found to
contain less than 1/1000 the normal amount of

. Estimate the minimum age of the charcoal,
noting that

39. Calculate the activity , in curies of 1.00 g of
(b) Explain why your answer is not

exactly 1.00 Ci, given that the curie was
originally supposed to be exactly the activity of
a gram of radium.

40. Natural uranium consists of
,

and
,

What were the values for
percent abundance of and when
Earth formed years ago?

41. World War II aircraft had instruments with
glowing radium-painted dials. The activity of
one such instrument was Bq when
new. (a) What mass of was present? (b)
After some years, the phosphors on the dials
deteriorated chemically, but the radium did not
escape. What is the activity of this instrument
57.0 years after it was made?

42. The source used in a physics laboratory is
labeled as having an activity of on the
date it was prepared. A student measures the
radioactivity of this source with a Geiger
counter and observes 1500 counts per minute.
She notices that the source was prepared 120
days before her lab. What fraction of the decays
is she observing with her apparatus?

43. Armor-piercing shells with depleted uranium
cores are fired by aircraft at tanks. (The high
density of the uranium makes them effective.)
The uranium is called depleted because it has
had its removed for reactor use and is
nearly pure . Depleted uranium has been
erroneously called nonradioactive. To
demonstrate that this is wrong: (a) Calculate the
activity of 60.0 g of pure . (b) Calculate the
activity of 60.0 g of natural uranium, neglecting
the and all daughter nuclides.

10.4 Nuclear Reactions

44. undergoes alpha decay. (a) Write the
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reaction equation. (b) Find the energy released
in the decay.

45. (a) Calculate the energy released in the decay
of . (b) What fraction of the mass of a single

is destroyed in the decay? The mass of
is 234.043593 u. (c) Although the

fractional mass loss is large for a single nucleus,
it is difficult to observe for an entire
macroscopic sample of uranium. Why is this?

46. The particles emitted in the decay of
(tritium) interact with matter to create light in a
glow-in-the-dark exit sign. At the time of
manufacture, such a sign contains 15.0 Ci of .
(a) What is the mass of the tritium? (b) What is
its activity 5.00 y after manufacture?

47. (a) Write the complete decay equation for
a major waste product of nuclear reactors.

(b) Find the energy released in the decay.
48. Write a nuclear decay reaction that produces

the nucleus. (Hint: The parent nuclide is a
major waste product of reactors and has
chemistry similar to calcium, so that it is
concentrated in bones if ingested.)

49. Write the complete decay equation in the
complete notation for the beta ( ) decay
of (tritium), a manufactured isotope of
hydrogen used in some digital watch displays,
and manufactured primarily for use in
hydrogen bombs.

50. If a 1.50-cm-thick piece of lead can absorb
of the rays from a radioactive source, how

many centimeters of lead are needed to absorb
all but of the rays?

51. An electron can interact with a nucleus through
the beta-decay process:

.
(a) Write the complete reaction equation for
electron capture by .
(b) Calculate the energy released.

52. (a) Write the complete reaction equation for
electron capture by
(b) Calculate the energy released.

53. A rare decay mode has been observed in which
emits a nucleus. (a) The decay

equation is . Identify the
nuclide . (b) Find the energy emitted in the
decay. The mass of is 222.015353 u.

10.5 Fission

54. A large power reactor that has been in operation
for some months is turned off, but residual
activity in the core still produces 150 MW of

power. If the average energy per decay of the
fission products is 1.00 MeV, what is the core
activity?

55. (a) Calculate the energy released in this rare
neutron-induced fission

, given
and

.
(b) This result is about 6 MeV greater than the
result for spontaneous fission. Why?
(c) Confirm that the total number of nucleons
and total charge are conserved in this reaction.

56. (a) Calculate the energy released in the neutron-
induced fission reaction

, given
and

. (b) Confirm that the
total number of nucleons and total charge are
conserved in this reaction.

57. The electrical power output of a large nuclear
reactor facility is 900 MW. It has a
efficiency in converting nuclear power to
electrical power.
(a) What is the thermal nuclear power output in
megawatts?
(b) How many nuclei fission each second,
assuming the average fission produces 200
MeV?
(c) What mass of is fissioned in 1 year of
full-power operation?

58. Find the total energy released if 1.00 kg of
were to undergo fission.

10.6 Nuclear Fusion

59. Verify that the total number of nucleons, and
total charge are conserved for each of the
following fusion reactions in the proton-proton
chain.
(i) ,
(ii) , and (iii)

.
(List the value of each of the conserved
quantities before and after each of the
reactions.)

60. Calculate the energy output in each of the fusion
reactions in the proton-proton chain, and verify
the values determined in the preceding
problem.

61. Show that the total energy released in the
proton-proton chain is 26.7 MeV, considering
the overall effect in ,
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, and
. Be sure to

include the annihilation energy.
62. Two fusion reactions mentioned in the text are

and . Both
reactions release energy, but the second also
creates more fuel. Confirm that the energies
produced in the reactions are 20.58 and 2.22
MeV, respectively. Comment on which product
nuclide is most tightly bound, or .

63. The power output of the Sun is (a)
If of this energy is supplied by the proton-
proton chain, how many protons are consumed
per second? (b) How many neutrinos per second
should there be per square meter at the surface
of Earth from this process?

64. Another set of reactions that fuses hydrogen
into helium in the Sun and especially in hotter
stars is called the CNO cycle:

This process is a “cycle” because appears at
the beginning and end of these reactions. Write
down the overall effect of this cycle (as done for
the proton-proton chain in

). Assume that
the positrons annihilate electrons to form more

rays.
65. (a) Calculate the energy released by the fusion

of a 1.00-kg mixture of deuterium and tritium,
which produces helium. There are equal
numbers of deuterium and tritium nuclei in the
mixture.
(b) If this process takes place continuously over
a period of a year, what is the average power
output?

10.7 Medical Applications and Biological
Effects of Nuclear Radiation

66. What is the dose in mSv for: (a) a 0.1-Gy X-ray?
(b) 2.5 mGy of neutron exposure to the eye? (c)
1.5m Gy of exposure?

67. Find the radiation dose in Gy for: (a) A 10-mSv
fluoroscopic X-ray series. (b) 50 mSv of skin
exposure by an emitter. (c) 160 mSv of and

rays from the in your body.
68. Find the mass of that has an activity of

.
69. In the 1980s, the term picowave was used to

describe food irradiation in order to overcome
public resistance by playing on the well-known
safety of microwave radiation. Find the energy
in MeV of a photon having a wavelength of a
picometer.

70. What is the dose in Sv in a cancer treatment that
exposes the patient to 200 Gy of rays?

71. One half the rays from are absorbed by
a 0.170-mm-thick lead shielding. Half of the
rays that pass through the first layer of lead are
absorbed in a second layer of equal thickness.
What thickness of lead will absorb all but one in
1000 of these rays?

72. How many Gy of exposure is needed to give a
cancerous tumor a dose of 40 Sv if it is exposed
to activity?

73. A plumber at a nuclear power plant receives a
whole-body dose of 30 mSv in 15 minutes while
repairing a crucial valve. Find the radiation-
induced yearly risk of death from cancer and
the chance of genetic defect from this
maximum allowable exposure.

74. Calculate the dose in rem/y for the lungs of a
weapons plant employee who inhales and
retains an activity of in an
accident. The mass of affected lung tissue is
2.00 kg and the plutonium decays by emission
of a 5.23-MeV particle. Assume a RBE value of
20.

Additional Problems
75. The wiki-phony site states that the atomic mass

of chlorine is 40 g/mol. Check this result. Hint:
The two, most common stable isotopes of
chlorine are: and . (The abundance of
Cl-35 is , and the abundance of Cl-37 is

.)

76. A particle physicist discovers a neutral particle
with a mass of 2.02733 u that he assumes is two
neutrons bound together.
(a) Find the binding energy.
(b) What is unreasonable about this result?
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77. A nuclear physicist finds of in a
piece of uranium ore (T1/2 = ). (a)
Use the decay law to determine how much
would had to have been on Earth when it
formed ago for to be left
today. (b) What is unreasonable about this
result? (c) How is this unreasonable result
resolved?

78. A group of scientists use carbon dating to date a
piece of wood to be 3 billion years old. Why
doesn’t this make sense?

79. According to your lab partner, a 2.00-cm-thick
sodium-iodide crystal absorbs all but of
rays from a radioactive source and a 4.00-cm
piece of the same material absorbs all but
Is this result reasonable?

80. In the science section of the newspaper, an
article reports the efforts of a group of scientists
to create a new nuclear reactor based on the
fission of iron (Fe). Is this a good idea?

81. The ceramic glaze on a red-orange “Fiestaware”
plate is and contains 50.0 grams of ,
but very little . (a) What is the activity of the
plate? (b) Calculate the total energy that will be
released by the decay. (c) If energy is
worth 12.0 cents per , what is the
monetary value of the energy emitted? (These
brightly-colored ceramic plates went out of
production some 30 years ago, but are still
available as collectibles.)

82. Large amounts of depleted uranium are
available as a by-product of uranium processing
for reactor fuel and weapons. Uranium is very
dense and makes good counter weights for
aircraft. Suppose you have a 4000-kg block of

. (a) Find its activity. (b) How many calories
per day are generated by thermalization of the
decay energy? (c) Do you think you could detect
this as heat? Explain.

83. A piece of wood from an ancient Egyptian tomb
is tested for its carbon-14 activity. It is found to
have an activity per gram of carbon of

. What is the age of the
wood?

Challenge Problems
84. This problem demonstrates that the binding

energy of the electron in the ground state of a
hydrogen atom is much smaller than the rest
mass energies of the proton and electron.
(a) Calculate the mass equivalent in u of the
13.6-eV binding energy of an electron in a
hydrogen atom, and compare this with the
known mass of the hydrogen atom.
(b) Subtract the known mass of the proton from
the known mass of the hydrogen atom.
(c) Take the ratio of the binding energy of the
electron (13.6 eV) to the energy equivalent of
the electron’s mass (0.511 MeV).
(d) Discuss how your answers confirm the stated
purpose of this problem.

85. The Galileo space probe was launched on its
long journey past Venus and Earth in 1989, with
an ultimate goal of Jupiter. Its power source is
11.0 kg of a by-product of nuclear
weapons plutonium production. Electrical
energy is generated thermoelectrically from the
heat produced when the 5.59-MeV particles
emitted in each decay crash to a halt inside the
plutonium and its shielding. The half-life of

is 87.7 years.
(a) What was the original activity of the in
becquerels?
(b) What power was emitted in kilowatts?
(c) What power was emitted 12.0 y after launch?
You may neglect any extra energy from
daughter nuclides and any losses from escaping

rays.
86. Find the energy emitted in the decay of

.
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87. Engineers are frequently called on to inspect
and, if necessary, repair equipment in nuclear
power plants. Suppose that the city lights go out.
After inspecting the nuclear reactor, you find a
leaky pipe that leads from the steam generator
to turbine chamber. (a) How do the pressure
readings for the turbine chamber and steam
condenser compare? (b) Why is the nuclear
reactor not generating electricity?

88. If two nuclei are to fuse in a nuclear reaction,
they must be moving fast enough so that the
repulsive Coulomb force between them does not
prevent them for getting within of
one another. At this distance or nearer, the
attractive nuclear force can overcome the
Coulomb force, and the nuclei are able to fuse.
(a) Find a simple formula that can be used to
estimate the minimum kinetic energy the nuclei
must have if they are to fuse. To keep the
calculation simple, assume the two nuclei are
identical and moving toward one another with
the same speed v. (b) Use this minimum kinetic
energy to estimate the minimum temperature a
gas of the nuclei must have before a significant
number of them will undergo fusion. Calculate
this minimum temperature first for hydrogen
and then for helium. (Hint: For fusion to occur,
the minimum kinetic energy when the nuclei
are far apart must be equal to the Coulomb
potential energy when they are a distance R
apart.)

89. For the reaction, , find the
amount of energy transfers to and (on the
right side of the equation). Assume the
reactants are initially at rest. (Hint: Use
conservation of momentum principle.)

90. Engineers are frequently called on to inspect
and, if necessary, repair equipment in medical
hospitals. Suppose that the PET system
malfunctions. After inspecting the unit, you
suspect that one of the PET photon detectors is
misaligned. To test your theory you position one
detector at the location
relative to a radioactive test sample at the
center of the patient bed. (a) If the second
photon detector is properly aligned where
should it be located? (b) What energy reading is
expected?
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INTRODUCTION

CHAPTER 11
Particle Physics and Cosmology

11.1 Introduction to Particle Physics

11.2 Particle Conservation Laws

11.3 Quarks

11.4 Particle Accelerators and Detectors

11.5 The Standard Model

11.6 The Big Bang

11.7 Evolution of the Early Universe

At the very beginning of this text we discussed the wide range of scales that physics
encompasses, from the very smallest particles to the largest scale possible—the universe itself. In this final
chapter we examine some of the frontiers of research at these extreme scales. Particle physics deals with the
most basic building blocks of matter and the forces that hold them together. Cosmology is the study of the
stars, galaxies, and galactic structures that populate our universe, as well as their past history and future

Figure 11.1 The Large Hadron Collider (LHC) is located over 150 meters (500 feet) underground on the border of
Switzerland and France near Geneva, Switzerland. The LHC is the most powerful machine ever developed to test our
understanding of elementary particle interactions. Shown here is the ATLAS detector, which helps identify new
particles formed in collisions. (credit: modification of work by Maximilien Brice, CERN)

Chapter Outline



evolution.

These two areas of physics are not as disconnected as you might think. The study of elementary particles
requires enormous energies to produce isolated particles, involving some of the largest machines humans
have ever built. But such high energies were present in the earliest stages of the universe and the universe we
see around us today was shaped in part by the nature and interactions of the elementary particles created
then. Bear in mind that particle physics and cosmology are both areas of intense current research, subject to
much speculation on the part of physicists (as well science-fiction writers). In this chapter we try to emphasize
what is known on the basis of deductions from observational evidence, and identify ideas that are conjectured
but still unproven.

11.1 Introduction to Particle Physics
Learning Objectives
By the end of this section, you will be able to:

• Describe the four fundamental forces and what particles participate in them
• Identify and describe fermions and bosons
• Identify and describe the quark and lepton families
• Distinguish between particles and antiparticles, and describe their interactions

Elementary particle physics is the study of fundamental particles and their interactions in nature. Those who
study elementary particle physics—the particle physicists—differ from other physicists in the scale of the
systems that they study. A particle physicist is not content to study the microscopic world of cells, molecules,
atoms, or even atomic nuclei. They are interested in physical processes that occur at scales even smaller than
atomic nuclei. At the same time, they engage the most profound mysteries in nature: How did the universe
begin? What explains the pattern of masses in the universe? Why is there more matter than antimatter in the
universe? Why are energy and momentum conserved? How will the universe evolve?

Four Fundamental Forces
An important step to answering these questions is to understand particles and their interactions. Particle
interactions are expressed in terms of four fundamental forces. In order of decreasing strength, these forces
are the strong nuclear force, the electromagnetic force, the weak nuclear force, and the gravitational force.

1. Strong nuclear force. The strong nuclear force is a very strong attractive force that acts only over very short
distances (about ). The strong nuclear force is responsible for binding protons and neutrons together
in atomic nuclei. Not all particles participate in the strong nuclear force; for instance, electrons and neutrinos
are not affected by it. As the name suggests, this force is much stronger than the other forces.

2. Electromagnetic force. The electromagnetic force can act over very large distances (it has an infinite range)
but is only 1/100 the strength of the strong nuclear force. Particles that interact through this force are said to
have “charge.” In the classical theory of static electricity (Coulomb’s law), the electric force varies as the
product of the charges of the interacting particles, and as the inverse square of the distances between them. In
contrast to the strong force, the electromagnetic force can be attractive or repulsive (opposite charges attract
and like charges repel). The magnetic force depends in a more complicated way on the charges and their
motions. The unification of the electric and magnetic force into a single electromagnetic force (an achievement
of James Clerk Maxwell) stands as one of the greatest intellectual achievements of the nineteenth century. This
force is central to scientific models of atomic structure and molecular bonding.

3. Weak nuclear force. The weak nuclear force acts over very short distances and, as its name
suggest, is very weak. It is roughly the strength of the strong nuclear force. This force is manifested most
notably in decays of elementary particles and neutrino interactions. For example, the neutron can decay to a
proton, electron, and electron neutrino through the weak force. The weak force is vitally important because it
is essential for understanding stellar nucleosynthesis—the process that creates new atomic nuclei in the cores
of stars.

4. Gravitational force. Like the electromagnetic force, the gravitational force can act over infinitely large
distances; however, it is only as strong as the strong nuclear force. In Newton’s classical theory of
gravity, the force of gravity varies as the product of the masses of the interacting particles and as the inverse

494 11 • Particle Physics and Cosmology

Access for free at openstax.org.



square of the distance between them. This force is an attractive force that acts between all particles with mass.
In modern theories of gravity, this force behavior is considered a special case for low-energy macroscopic
interactions. Compared with the other forces of nature, gravity is by far the weakest.

The fundamental forces may not be truly “fundamental” but may actually be different aspects of the same
force. Just as the electric and magnetic forces were unified into an electromagnetic force, physicists in the
1970s unified the electromagnetic force with the weak nuclear force into an electroweak force. Any scientific
theory that attempts to unify the electroweak force and strong nuclear force is called a grand unified theory,
and any theory that attempts to unify all four forces is called a theory of everything. We will return to the
concept of unification later in this chapter.

Classifications of Elementary Particles
A large number of subatomic particles exist in nature. These particles can be classified in two ways: the
property of spin and participation in the four fundamental forces. Recall that the spin of a particle is analogous
to the rotation of a macroscopic object about its own axis. These types of classification are described
separately below.

Classification by spin
Particles of matter can be divided into fermions and bosons. Fermions have half-integral spin ℏ ℏ
and bosons have integral spin ℏ ℏ ℏ Familiar examples of fermions are electrons, protons, and

neutrons. A familiar example of a boson is a photon. Fermions and bosons behave very differently in groups.
For example, when electrons are confined to a small region of space, Pauli’s exclusion principle states that no
two electrons can occupy the same quantum-mechanical state. However, when photons are confined to a small
region of space, there is no such limitation.

The behavior of fermions and bosons in groups can be understood in terms of the property of
indistinguishability. Particles are said to be “indistinguishable” if they are identical to one another. For
example, electrons are indistinguishable because every electron in the universe has exactly the same mass
and spin as all other electrons—“when you’ve seen one electron, you’ve seen them all.” If you switch two
indistinguishable particles in the same small region of space, the square of the wave function that describes
this system and can be measured is unchanged. If this were not the case, we could tell whether or not
the particles had been switched and the particle would not be truly indistinguishable. Fermions and bosons
differ by whether the sign of the wave function ( )— not directly observable—flips:

Fermions are said to be “antisymmetric on exchange” and bosons are “symmetric on exchange.” Pauli’s
exclusion principle is a consequence of exchange symmetry of fermions—a connection developed in a more
advanced course in modern physics. The electronic structure of atoms is predicated on Pauli’s exclusion
principle and is therefore directly related to the indistinguishability of electrons.

Classification by force interactions
Fermions can be further divided into quarks and leptons. The primary difference between these two types of
particles is that quarks interact via the strong force and leptons do not. Quarks and leptons (as well as bosons
to be discussed later) are organized in Figure 11.2. The upper two rows (first three columns in purple) contain
six quarks. These quarks are arranged into two particle families: up, charm, and top (u, c, t), and down,
strange, and bottom (d, s, b). Members of the same particle family share the same properties but differ in mass
(given in ). For example, the mass of the top quark is much greater than the charm quark, and the mass
of the charm quark is much greater than the up quark. All quarks interact with one another through the strong
nuclear force.
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Figure 11.2 The families of subatomic particles, categorized by the types of forces with which they interact. (credit: modification of work

by “MissMJ”/Wikimedia Commons)

Ordinary matter consists of two types of quarks: the up quark (elementary charge, ) and the down
quark Heavier quarks are unstable and quickly decay to lighter ones via the weak force. Quarks
bind together in groups of twos and threes called hadrons via the strong force. Hadrons that consist of two
quarks are called mesons, and those that consist of three quarks are called baryons. Examples of mesons
include the pion and kaon, and examples of baryons include the familiar proton and neutron. A proton is two
up quarks and a down quark and a neutron is one up quark and two down quarks ( ,

). Properties of sample mesons and baryons are given in Table 11.1. Quarks participate in all four
fundamental forces: strong, weak, electromagnetic, and gravitational.

The lower two rows in the figure (in green) contain six leptons arranged into two particle families: electron,
muon, and tau ( ), and electron neutrino, muon neutrino, and tau neutrino ( ). The muon is over
200 times heavier than an electron, but is otherwise similar to the electron. The tau is about 3500 times
heavier than the electron, but is otherwise similar to the muon and electron. Once created, the muon and tau
quickly decay to lighter particles via the weak force. Leptons do not participate in the strong force. Quarks and
leptons will be discussed later in this chapter. Leptons participate in the weak, electromagnetic, and
gravitational forces, but do not participate in the strong force.

Bosons (shown in red) are the force carriers of the fermions. In this model, leptons and quarks interact with
each other by sending and receiving bosons. For example, Coulombic interaction occurs when two positively
charged particles send and receive (exchange) photons. The photons are said to “carry” the force between
charged particles. Likewise, attraction between two quarks in an atomic nucleus occurs when two quarks send
and receive gluons. Additional examples include W and Z bosons (which carry weak nuclear force) and
gravitons (which carry gravitational force). The Higgs boson is a special particle: When it interacts with other
particles, it endows them not with force but with mass. In other words, the Higgs boson helps to explains why
particles have mass. These assertions are part of a tentative but very productive scientific model (the Standard
Model) discussed later.

Particles and Antiparticles
In the late 1920s, the special theory of relativity and quantum mechanics were combined into a relativistic
quantum theory of the electron. A surprising result of this theory was the prediction of two energy states for
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each electron: One is associated with the electron, and the other is associated with another particle with the
same mass of an electron but with a charge of . This particle is called the antielectron or positron. The
positron was discovered experimentally in the 1930s.

Soon it was discovered that for every particle in nature, there is a corresponding antiparticle. An antiparticle
has the same mass and lifetime as its associated particle, and the opposite sign of electric charge. These
particles are produced in high-energy reactions. Examples of high-energy particles include the antimuon ( ),

anti-up quark ( ), and anti-down quark (Note that antiparticles for quarks are designated with an over-

bar.) Many mesons and baryons contain antiparticles. For example, the antiproton ( ) is and the positively

charged pion is . Some neutral particles, such as the photon and the meson, are their own
antiparticles. Sample particles, antiparticles, and their properties are listed in Table 11.1.

Particle name Symbol Antiparticle Mass Average lifetime (s)

Leptons

Electron 0.511 Stable

Electron neutrino Stable

Muon 105.7

Muon neutrino Stable

Tau 1784

Tau neutrino Stable

Hadrons

Baryons Proton p 938.3 Stable

Neutron n 939.6 920

Lambda 1115.6

Sigma 1189.4

Xi 1315

Omega 1672

Mesons Pion 139.6

-Zero 135.0

Kaon 493.7

k-Short 497.6
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Particle name Symbol Antiparticle Mass Average lifetime (s)

k-Long 497.6

J/ J/ J/ 3100

Upsilon 9460

Table 11.1 Particles and their Properties

The same forces that hold ordinary matter together also hold antimatter together. Under the right conditions, it
is possible to create antiatoms such as antihydrogen, antioxygen, and even antiwater. In antiatoms, positrons
orbit a negatively charged nucleus of antiprotons and antineutrons. Figure 11.3 compares atoms and
antiatoms.

Figure 11.3 A comparison of the simplest atoms of matter and antimatter. (a) In the Bohr model, an antihydrogen atom consists of a

positron that orbits an antiproton. (b) An antihelium atom consists of two positrons that orbit a nucleus of two antiprotons and two

antineutrons.

Antimatter cannot exist for long in nature because particles and antiparticles annihilate each other to produce
high-energy radiation. A common example is electron-positron annihilation. This process proceeds by the
reaction

The electron and positron vanish completely and two photons are produced in their place. (It turns out that the
production of a single photon would violate conservation of energy and momentum.) This reaction can also
proceed in the reverse direction: Two photons can annihilate each other to produce an electron and positron
pair. Or, a single photon can produce an electron-positron pair in the field of a nucleus, a process called pair
production. Reactions of this kind are measured routinely in modern particle detectors. The existence of
antiparticles in nature is not science fiction.
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INTERACTIVE

Watch this video (https://openstax.org/l/21matter) to learn more about matter and antimatter particles.

11.2 Particle Conservation Laws
Learning Objectives
By the end of this section, you will be able to:

• Distinguish three conservation laws: baryon number, lepton number, and strangeness
• Use rules to determine the total baryon number, lepton number, and strangeness of particles before and

after a reaction
• Use baryon number, lepton number, and strangeness conservation to determine if particle reactions or

decays occur

Conservation laws are critical to an understanding of particle physics. Strong evidence exists that energy,
momentum, and angular momentum are all conserved in all particle interactions. The annihilation of an
electron and positron at rest, for example, cannot produce just one photon because this violates the
conservation of linear momentum. As discussed in Relativity, the special theory of relativity modifies
definitions of momentum, energy, and other familiar quantities. In particular, the relativistic momentum of a
particle differs from its classical momentum by a factor that varies from 1 to ∞ depending

on the speed of the particle.

In previous chapters, we encountered other conservation laws as well. For example, charge is conserved in all
electrostatic phenomena. Charge lost in one place is gained in another because charge is carried by particles.
No known physical processes violate charge conservation. In the next section, we describe three less-familiar
conservation laws: baryon number, lepton number, and strangeness. These are by no means the only
conservation laws in particle physics.

Baryon Number Conservation
No conservation law considered thus far prevents a neutron from decaying via a reaction such as

This process conserves charge, energy, and momentum. However, it does not occur because it violates the law
of baryon number conservation. This law requires that the total baryon number of a reaction is the same
before and after the reaction occurs. To determine the total baryon number, every elementary particle is
assigned a baryon number B. The baryon number has the value for baryons, –1 for antibaryons, and 0
for all other particles. Returning to the above case (the decay of the neutron into an electron-positron pair), the
neutron has a value whereas the electron and the positron each has a value of 0. Thus, the decay does
not occur because the total baryon number changes from 1 to 0. However, the proton-antiproton collision
process

does satisfy the law of conservation of baryon number because the baryon number is zero before and after the
interaction. The baryon number for several common particles is given in Table 11.2.

Particle
name

Symbol
Lepton

number
Lepton

number
Lepton

number
Baryon

number (B)
Strange-ness

number

Electron 1 0 0 0 0

Electron
neutrino

1 0 0 0 0
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Particle
name

Symbol
Lepton

number
Lepton

number
Lepton

number
Baryon

number (B)
Strange-ness

number

Muon 0 1 0 0 0

Muon
neutrino

0 1 0 0 0

Tau 0 0 1 0 0

Tau
neutrino

0 0 1 0 0

Pion 0 0 0 0 0

Positive
kaon

0 0 0 0 1

Negative
kaon

0 0 0 0 –1

Proton p 0 0 0 1 0

Neutron n 0 0 0 1 0

Lambda
zero

0 0 0 1 –1

Positive
sigma

0 0 0 1 –1

Negative
sigma

0 0 0 1 –1

Xi zero 0 0 0 1 –2

Negative xi 0 0 0 1 –2

Omega 0 0 0 1 –3

Table 11.2 Conserved Properties of Particles

EXAMPLE 11.1

Baryon Number Conservation
Based on the law of conservation of baryon number, which of the following reactions can occur?
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Strategy
Determine the total baryon number for the reactants and products, and require that this value does not change
in the reaction. Solution

For reaction (a), the net baryon number of the two reactants is and the net baryon number of the
four products is Since the net baryon numbers of the reactants and products are equal, this
reaction is allowed on the basis of the baryon number conservation law.

For reaction (b), the net baryon number of the reactants is and the net baryon number of the
proposed products is Since the net baryon numbers of the reactants and proposed products
are not equal, this reaction cannot occur.

Significance
Baryon number is conserved in the first reaction, but not in the second. Baryon number conservation
constrains what reactions can and cannot occur in nature.

CHECK YOUR UNDERSTANDING 11.1

What is the baryon number of a hydrogen nucleus?

Lepton Number Conservation
Lepton number conservation states that the sum of lepton numbers before and after the interaction must be
the same. There are three different lepton numbers: the electron-lepton number the muon-lepton
number and the tau-lepton number In any interaction, each of these quantities must be conserved
separately. For electrons and electron neutrinos, for their antiparticles, all other particles
have Similarly, for muons and muon neutrinos, for their antiparticles, and
for all other particles. Finally, , or 0, depending on whether we have a tau or tau neutrino, their
antiparticles, or any other particle, respectively. Lepton number conservation guarantees that the number of
electrons and positrons in the universe stays relatively constant. (Note: The total lepton number is, as far as we
know, conserved in nature. However, observations have shown variations of family lepton number (for
example, in a phenomenon called neutrino oscillations.)

To illustrate the lepton number conservation law, consider the following known two-step decay process:

In the first decay, all of the lepton numbers for are 0. For the products of this decay, for and
for Therefore, muon-lepton number is conserved. Neither electrons nor tau are involved in this

decay, so and for the initial particle and all decay products. Thus, electron-lepton and tau-
lepton numbers are also conserved. In the second decay, has a muon-lepton number whereas
the net muon-lepton number of the decay products is . Thus, the muon-lepton number is
conserved. Electron-lepton number is also conserved, as for , whereas the net electron-lepton
number of the decay products is . Finally, since no taus or tau-neutrinos are involved in this
decay, the tau-lepton number is also conserved.
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EXAMPLE 11.2

Lepton Number Conservation
Based on the law of conservation of lepton number, which of the following decays can occur?

Strategy
Determine the total lepton number for the reactants and products, and require that this value does not change
in the reaction.

Solution
For decay (a), the electron-lepton number of the neutron is 0, and the net electron-lepton number of the decay
products is . Since the net electron-lepton numbers before and after the decay are the same,
the decay is possible on the basis of the law of conservation of electron-lepton number. Also, since there are no
muons or taus involved in this decay, the muon-lepton and tauon-lepton numbers are conserved.

For decay (b), the muon-lepton number of the is 0, and the net muon-lepton number of the proposed decay
products is . Thus, on the basis of the law of conservation of muon-lepton number, this decay
cannot occur.

Significance
Lepton number is conserved in the first reaction, but not in the second. Lepton number conservation
constrains what reactions can and cannot occur in nature.

CHECK YOUR UNDERSTANDING 11.2

What is the lepton number of an electron-positron pair?

Strangeness Conservation
In the late 1940s and early 1950s, cosmic-ray experiments revealed the existence of particles that had never
been observed on Earth. These particles were produced in collisions of pions with protons or neutrons in the
atmosphere. Their production and decay were unusual. They were produced in the strong nuclear interactions
of pions and nucleons, and were therefore inferred to be hadrons; however, their decay was mediated by the
much more slowly acting weak nuclear interaction. Their lifetimes were on the order of to
whereas a typical lifetime for a particle that decays via the strong nuclear reaction is These particles
were also unusual because they were always produced in pairs in the pion-nucleon collisions. For these
reasons, these newly discovered particles were described as strange. The production and subsequent decay of
a pair of strange particles is illustrated in Figure 11.4 and follows the reaction

The lambda particle then decays through the weak nuclear interaction according to

and the kaon decays via the weak interaction
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Figure 11.4 The interactions of hadrons. (a) Bubble chamber photograph; (b) sketch that represents the photograph.

To rationalize the behavior of these strange particles, particle physicists invented a particle property
conserved in strong interactions but not in weak interactions. This property is called strangeness and, as the
name suggests, is associated with the presence of a strange quark. The strangeness of a particle is equal to the
number of strange quarks of the particle. Strangeness conservation requires the total strangeness of a reaction
or decay (summing the strangeness of all the particles) is the same before and after the interaction.
Strangeness conservation is not absolute: It is conserved in strong interactions and electromagnetic
interactions but not in weak interactions. The strangeness number for several common particles is given in
Table 11.2.

EXAMPLE 11.3

Strangeness Conservation
(a) Based on the conservation of strangeness, can the following reaction occur?

(b) The following decay is mediated by the weak nuclear force:

Does the decay conserve strangeness? If not, can the decay occur?

Strategy
Determine the strangeness of the reactants and products and require that this value does not change in the
reaction.
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Solution

a. The net strangeness of the reactants is and the net strangeness of the products is
Thus, the strong nuclear interaction between a pion and a proton is not forbidden by the

law of conservation of strangeness. Notice that baryon number is also conserved in the reaction.
b. The net strangeness before and after this decay is 1 and 0, so the decay does not conserve strangeness.

However, the decay may still be possible, because the law of conservation of strangeness does not apply to
weak decays.

Significance
Strangeness is conserved in the first reaction, but not in the second. Strangeness conservation constrains what
reactions can and cannot occur in nature.

CHECK YOUR UNDERSTANDING 11.3

What is the strangeness number of a muon?

11.3 Quarks
Learning Objectives
By the end of this section, you will be able to:

• Compare and contrast the six known quarks
• Use quark composition of hadrons to determine the total charge of these particles
• Explain the primary evidence for the existence of quarks

In the 1960s, particle physicists began to realize that hadrons are not elementary particles but are made of
particles called quarks. (The name ‘quark’ was coined by the physicist Murray Gell-Mann, from a phrase in the
James Joyce novel Finnegans Wake.) Initially, it was believed there were only three types of quarks, called up
(u), down (d), and strange (s). However, this number soon grew to six—interestingly, the same as the number of
leptons—to include charmed (c), bottom (b), and top (t).

All quarks are spin-half fermions have a fractional charge , and have baryon number
Each quark has an antiquark with the same mass but opposite charge and baryon number. The

names and properties of the six quarks are listed in Table 11.3.

Quark Charge (units of e) Spin (s) Baryon number Strangeness number

Down (d) 1/2 1/3 0

Up (u) 1/2 1/3 0

Strange (s) 1/2 1/3

Charm (c) 1/2 1/3 0

Bottom (b) 1/2 1/3 0

Top (t) 1/2 1/3 0

Table 11.3 Quarks

Quark Combinations
As mentioned earlier, quarks bind together in groups of two or three to form hadrons. Baryons are formed

504 11 • Particle Physics and Cosmology

Access for free at openstax.org.



from three quarks. Sample baryons, including quark content and properties, are given in Table 11.4.
Interestingly, the delta plus ( ) baryon is formed from the same three quarks as the proton, but the total spin
of the particle is 3/2 rather than 1/2. Similarly, the mass of with spin 3/2 is 1.3 times the mass of the
proton, and the delta zero ( ) baryon with a spin 3/2 is 1.3 times the neutron mass. Evidently, the energy
associated with the spin (or angular momentum) of the particle contributes to its mass energy. It is also
interesting that no baryons are believed to exist with top quarks, because top quarks decay too quickly to bind
to the other quarks in their production.

Name Symbol Quarks Charge (unit of e) Spin (s) Mass ( )

Proton p u u d 1 1/2 0.938

Neutron n u d d 0 1/2 0.940

Delta plus plus ∆++ u u u 2 3/2 1.232

Delta plus ∆+ u u d 1 3/2 1.232

Delta zero ∆0 u d d 0 3/2 1.232

Delta minus ∆− d d d 3/2 1.232

Lambda zero u d s 0 1/2 1.116

Positive sigma u u s 1 1/2 1.189

Neutral sigma u d s 0 1/2 1.192

Negative xi s d s 1/2 1.321

Neutral xi s u s 0 1/2 1.315

Omega minus s s s 3/2 1.672

Charmed lambda u d c 1 1/2 2.281

Bottom lambda u d b 0 1/2 5.619

Table 11.4 Baryon Quarks

Mesons are formed by two quarks—a quark-antiquark pair. Sample mesons, including quark content and

properties, are given in Table 11.5. Consider the formation of the pion ( ). Based on its quark content,
the charge of the pion is

Both quarks are spin-half ( ), so the resultant spin is either 0 or 1. The spin of the meson is 0. The
same quark-antiquark combination gives the rho ( ) meson with spin 1. This meson has a mass approximately
5.5 times that of the meson.
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EXAMPLE 11.4

Quark Structure
Show that the quark composition given in Table 11.5 for is consistent with the known charge, spin, and
strangeness of this baryon.

Strategy
is composed of two strange quarks and an up quark (s u s). We can add together the properties of quarks to

predict the resulting properties of the baryon.

Solution
The charge of the s quark is and the charge of the u quark is 2e/3. Thus, the combination (s u s) has no net
charge, in agreement with the known charge of . Since three spin quarks can combine to produce a
particle with spin of either 1/2 or 3/2, the quark composition is consistent with the known spin ( ) of .
Finally, the net strangeness of the (s u s) combination is which also agrees with
experiment.

Significance
The charge, spin, and strangeness of the particle can be determined from the properties of its constituent
quarks. The great diversity of baryons and mesons can be traced to the properties of just six quarks: up, down,
charge, strange, top, and bottom.

CHECK YOUR UNDERSTANDING 11.4

What is the baryon number of a pion?

Name Symbol Quarks Charge (e) Spin Mass

Positive pion 1 0 0.140

Positive rho 1 1 0.768

Negative pion 0 0.140

Negative rho 1 0.768

Neutral Pion or 0 0 0.135

Neutral eta , or 0 0 0.547

Positive kaon 1 0 0.494

Neutral kaon 0 0 0.498

Negative kaon 0 0.494

J/Psi 0 1 3.10
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Name Symbol Quarks Charge (e) Spin Mass

Charmed eta 0 0 2.98

Neutral D 0 0 1.86

Neutral D 0 1 2.01

Positive D 1 0 1.87

Neutral B 0 0 5.26

Upsilon 0 1 9.46

Table 11.5 Meson Quarks

Color
Quarks are fermions that obey Pauli’s exclusion principle, so it might be surprising to learn that three quarks
can bind together within a nucleus. For example, how can two up quarks exist in the same small region of
space within a proton? The solution is to invent a third new property to distinguish them. This property is
called color, and it plays the same role in the strong nuclear interaction as charge does in electromagnetic
interactions. For this reason, quark color is sometimes called “strong charge.”

Quarks come in three colors: red, green, and blue. (These are just labels—quarks are not actually colored.)
Each type of quark can possess any other colors. For example, three strange quarks exist: a red
strange quark, a green strange quark, and a blue strange quark. Antiquarks have anticolor. Quarks that bind
together to form hadrons (baryons and mesons) must be color neutral, colorless, or “white.” Thus, a baryon
must contain a red, blue, and green quark. Likewise, a meson contains either a red-antired, blue-antiblue, or
green-antigreen quark pair. Thus, two quarks can be found in the same spin state in a hadron, without
violating Pauli’s exclusion principle, because their colors are different.

Quark Confinement
The first strong evidence for the existence of quarks came from a series of experiments performed at the
Stanford Linear Accelerator Center (SLAC) and at CERN around 1970. This experiment was designed to probe
the structure of the proton, much like Rutherford studied structure inside the atom with his -particle
scattering experiments. Electrons were collided with protons with energy in excess of 20 GeV. At this energy,

, so the de Broglie wavelength of an electron is

The wavelength of the electron is much smaller than the diameter of the proton (about Thus, like an
automobile traveling through a rocky mountain range, electrons can be used to probe the structure of the
nucleus.

The SLAC experiments found that some electrons were deflected at very large angles, indicating small
scattering centers within the proton. The scattering distribution was consistent with electrons being scattered
from sites with spin 1/2, the spin of quarks. The experiments at CERN used neutrinos instead of electrons. This
experiment also found evidence for the tiny scattering centers. In both experiments, the results suggested that
the charges of the scattering particles were either or , in agreement with the quark model.

11.1
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INTERACTIVE

Watch this video (https://openstax.org/l/21quarks) to learn more about quarks.

The quark model has been extremely successful in organizing the complex world of subatomic particles.
Interestingly, however, no experiment has ever produced an isolated quark. All quarks have fractional charge
and should therefore be easily distinguishable from the known elementary particles, whose charges are all an
integer multiple of e. Why are isolated quarks not observed? In current models of particle interactions, the
answer is expressed in terms of quark confinement. Quark confinement refers to the confinement of quarks in
groups of two or three in a small region of space. The quarks are completely free to move about in this space,
and send and receive gluons (the carriers of the strong force). However, if these quarks stray too far from one
another, the strong force pulls them back it. This action is likened to a bola, a weapon used for hunting (Figure
11.5). The stones are tied to a central point by a string, so none of the rocks can move too far from the others.
The bola corresponds to a baryon, the stones correspond to quarks, and the string corresponds to the gluons
that hold the system together.

Figure 11.5 A baryon is analogous to a bola, a weapon used for hunting. The rocks in this image correspond to the baryon quarks. The

quarks are free to move about but must remain close to the other quarks.

11.4 Particle Accelerators and Detectors
Learning Objectives
By the end of this section, you will be able to:

• Compare and contrast different types of particle accelerators
• Describe the purpose, components, and function of a typical colliding beam machine
• Explain the role of each type of subdetector of a typical multipurpose particle detector
• Use the curvature of a charge track to determine the momentum of a particle

The goal of experimental particle physics is to accurately measure elementary particles. The primary method
used to achieve this end is to produce these particles in high-energy collisions and then measure the products
of using highly sensitive particle detectors. These experiments are used to test and revise scientific models of
particle interactions. The purpose of this section is to describe particle accelerators and detectors. Modern
machines are based on earlier ones, so it is helpful to present a brief history of accelerators and detectors.

Early Particle Accelerators
A particle accelerator is a machine designed to accelerate charged particles. This acceleration is usually
achieved with strong electric fields, magnetic fields, or both. A simple example of a particle accelerator is the
Van de Graaff accelerator (see Electric Potential). This type of accelerator collects charges on a hollow metal
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sphere using a moving belt. When the electrostatic potential difference of the sphere is sufficiently large, the
field is used to accelerate particles through an evacuated tube. Energies produced by a Van de Graaff
accelerator are not large enough to create new particles, but the machine was important for early exploration
of the atomic nucleus.

Larger energies can be produced by a linear accelerator (called a “linac”). Charged particles produced at the
beginning of the linac are accelerated by a continuous line of charged hollow tubes. The voltage between a
given pair of tubes is set to draw the charged particle in, and once the particle arrives, the voltage between the
next pair of tubes is set to push the charged particle out. In other words, voltages are applied in such a way that
the tubes deliver a series of carefully synchronized electric kicks (Figure 11.6). Modern linacs employ radio
frequency (RF) cavities that set up oscillating electromagnetic fields, which propel the particle forward like a
surfer on an ocean wave. Linacs can accelerate electrons to over 100 MeV. (Electrons with kinetic energies
greater than 2 MeV are moving very close to the speed of light.) In modern particle research, linear
accelerators are often used in the first stage of acceleration.

Figure 11.6 In a linear accelerator, charged tubes accelerate particles in a series of electromagnetic kicks. Each tube is longer than the

preceding tube because the particle is moving faster as it accelerates.

EXAMPLE 11.5

Accelerating Tubes
A linear accelerator designed to produce a beam of 800-MeV protons has 2000 accelerating tubes separated by
gaps. What average voltage must be applied between tubes to achieve the desired energy? (Hint:

Strategy
The energy given to the proton in each gap between tubes is where q is the proton’s charge and V is
the potential difference (voltage) across the gap. Since and
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the proton gains 1 eV in energy for each volt across the gap that it passes
through. The ac voltage applied to the tubes is timed so that it adds to the energy in each gap. The effective
voltage is the sum of the gap voltages and equals 800 MV to give each proton an energy of 800 MeV.

Solution
There are 2000 gaps and the sum of the voltages across them is 800 MV. Therefore, the average voltage applied
is 0.4 MV or 400 kV.

Significance
A voltage of this magnitude is not difficult to achieve in a vacuum. Much larger gap voltages would be required
for higher energy, such as those at the 50-GeV SLAC facility. Synchrotrons are aided by the circular path of the
accelerated particles, which can orbit many times, effectively multiplying the number of accelerations by the
number of orbits. This makes it possible to reach energies greater than 1 TeV.

CHECK YOUR UNDERSTANDING 11.5

How much energy does an electron receive in accelerating through a 1-V potential difference?

The next-generation accelerator after the linac is the cyclotron (Figure 11.7). A cyclotron uses alternating
electric fields and fixed magnets to accelerate particles in a circular spiral path. A particle at the center of the
cyclotron is first accelerated by an electric field in a gap between two D-shaped magnets (Dees). As the particle
crosses over the D-shaped magnet, the particle is bent into a circular path by a Lorentz force. (The Lorentz
force was discussed in Magnetic Forces and Fields.) Assuming no energy losses, the momentum of the particle
is related to its radius of curvature by

where p is the momentum in GeV/c, B is in teslas, and r is the radius of the trajectory (“orbit”) in meters. This
expression is valid to classical and relativistic velocities. The circular trajectory returns the particle to the
electric field gap, the electric field is reversed, and the process continues. As the particle is accelerated, the
radius of curvature gets larger and larger—spirally outward—until the electrons leave the device.

Figure 11.7 Cyclotrons use a magnetic field to cause particles to move in circular orbits. As the particles pass between the plates of the

“Dees,” the voltage across the gap is reversed so the particles are accelerated twice in each orbit.

INTERACTIVE

Watch this video (https://openstax.org/l/21cyclotron) to learn more about cyclotrons.

A synchrotron is a circular accelerator that uses alternating voltage and increasing magnetic field strength to
accelerate particles to higher energies. Charged particles are accelerated by RF cavities, and steered and
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focused by magnets. RF cavities are synchronized to deliver “kicks” to the particles as they pass by, hence the
name. Steering high-energy particles requires strong magnetic fields, so superconducting magnets are often
used to reduce heat losses. As the charged particles move in a circle, they radiate energy: According to classical
theory, any charged particle that accelerates (and circular motion is an accelerated motion) also radiates. In a
synchrotron, such radiation is called synchrotron radiation. This radiation is useful for many other purposes,
such as medical and materials research.

EXAMPLE 11.6

The Energy of an Electron in a Cyclotron
An electron is accelerated using a cyclotron. If the magnetic field is 1.5 T and the radius of the “Dees” is 1.2 m,
what is the kinetic energy of the outgoing particle?

Strategy
If the radius of orbit of the electron exceeds the radius of the “Dees,” the electron exits the device. So, the radius
of the “Dees” places an upper limit on the radius and, therefore, the momentum and energy of the accelerated
particle. The exit momentum of the particle is determined using the radius of orbit and strength of the
magnetic field. The exit energy of the particle can be determined the particle momentum (Relativity).

Solution
Assuming no energy losses, the momentum of the particle in the cyclotron is

The momentum energy is much larger than the rest mass energy of the electron,
so relativistic expression for the energy of the electron must be used (see Relativity). The

total energy of the electron is

Significance
The total energy of the electron is much larger than its rest mass energy. In other words, the total energy of the
electron is almost all in the form of kinetic energy. Cyclotrons can be used to conduct nuclear physics
experiments or in particle therapy to treat cancer.

CHECK YOUR UNDERSTANDING 11.6

A charged particle of a certain momentum travels in an arc through a uniform magnetic field. What happens if
the magnetic field is doubled?

Colliding Beam Machines
New particles can be created by colliding particles at high energies. According to Einstein’s mass-energy
relation, the energies of the colliding particles are converted into mass energy of the created particle. The most
efficient way to do this is with particle-colliding beam machines. A colliding beam machine creates two
counter-rotating beams in a circular accelerator, stores the beams at constant energy, and then at the desired
moment, focuses the beams on one another at the center of a sensitive detector.

The prototypical colliding beam machine is the Cornell Electron Storage Ring, located in Ithaca, New York
(Figure 11.8). Electrons ( ) and positrons ( ) are created at the beginning of the linear accelerator and are
accelerated up to 150 MeV. The particles are then injected into the inner synchrotron ring, where they are
accelerated by RF cavities to 4.5 to 6 GeV. When the beams are up to speed, they are transferred and “stored”
in an outer storage ring at the same energy. The two counter-rotating beams travel through the same
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evacuated pipe, but are kept apart until collisions are desired. The electrons and positrons circle the machine
in bunches 390,000 times every second.

Figure 11.8 The Cornell Electron Storage Ring uses a linear accelerator and a synchrotron to accelerate electrons and positrons to 4.5–6

GeV. The particles are held in the outer storage ring at that energy until they are made to collide in a particle detector. (credit: modification

of work by Laboratory of Nuclear Studies, Cornell Electron Storage Ring)

When an electron and positron collide, they annihilate each other to produce a photon, which exists for too
short a time to be detected. The photon produces either a lepton pair (e.g., an electron and position, muon or

antimuon, or tau and antitau) or a quark pair. If quarks are produced, mesons form, such as and These
mesons are created nearly at rest since the initial total momentum of the electron-positron system is zero.
Note, mesons cannot be created at just any colliding energy but only at “resonant” energies that correspond to
the unique masses of the mesons (Table 11.5). The mesons created in this way are highly unstable and decay
quickly into lighter particles, such as electrons, protons, and photons. The collision “fragments” provide
valuable information about particle interactions.

As the field of particle physics advances, colliding beam machines are becoming more powerful. The Large
Hadron Collider (LHC), currently the largest accelerator in the world, collides protons at beam energies
exceeding 6 TeV. The center-of-mass energy (W) refers to the total energy available to create new particles in a
colliding machine, or the total energy of incoming particles in the center-of-mass frame. (The concept of a
center-of-mass frame of reference is discussed in Linear Momentum and Collisions.) Therefore, the LHC is
able to produce one or more particles with a total mass exceeding 12 TeV. The center-of-mass energy is given
by:

where and are the total energies of the incoming particles (1 and 2), and are the magnitudes of
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their momenta, and and are their rest masses.

EXAMPLE 11.7

Creating a New Particle

The mass of the upsilon meson ( ) is created in a symmetric electron-positron collider. What beam
energy is required?

Strategy
The Particle Data Group (https://openstax.org/l/21particledata) has stated that the rest mass energy of this
meson is approximately 10.58 GeV. The above expression for the center-of-mass energy can be simplified
because a symmetric collider implies Also, the rest masses of the colliding electrons and positrons
are identical and much smaller than the mass of the energy particle created. Thus, the
center-of-mass energy (W) can be expressed completely in terms of the beam energy,

Solution
Based on the above assumptions, we have

The beam energy is therefore

The rest mass energy of the particle created in the collision is equal to the center-of-mass energy, so

Significance
Given the energy scale of this problem, the rest mass energy of the upsilon meson is due almost entirely
due to the initial kinetic energies of the electron and positrons. This meson is highly unstable and quickly
decays to lighter and more stable particles. The existence of the upsilon particle appears as a dramatic
increase of such events at 5.29 GeV.

CHECK YOUR UNDERSTANDING 11.7

Why is a symmetric collider “symmetric?”

Higher beam energies require larger accelerators, so modern colliding beam machines are very large. The
LHC, for example, is 17 miles in circumference (Figure 5.27). (In the 1940s, Enrico Fermi envisioned an
accelerator that encircled all of Earth!) An important scientific challenge of the twenty-first century is to
reduce the size of particle accelerators.

Particle Detectors
The purpose of a particle detector is to accurately measure the outcome of collisions created by a particle
accelerator. The detectors are multipurpose. In other words, the detector is divided into many subdetectors,
each designed to measure a different aspect of the collision event. For example, one detector might be
designed to measure photons and another might be designed to measure muons. To illustrate how
subdetectors contribute to an understanding of an entire collision event, we describe the subdetectors of the
Compact Muon Solenoid (CMS), which was used to discover the Higgs Boson at the LHC (Figure 11.9).
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Figure 11.9 Compact Muon Solenoid detector. The detector consists of several layers, each responsible for measuring different types of

particles. (credit: modification of work by David Barney/CERN)

The beam pipe of the detector is out of (and into) the page at the left. Particles produced by pp collisions (the
“collision fragments”) stream out of the detector in all directions. These particles encounter multiple layers of
subdetectors. A subdetector is a particle detector within a larger system of detectors designed to measure
certain types of particles. There are several main types of subdetectors. Tracking devices determine the path
and therefore momentum of a particle; calorimeters measure a particle’s energy; and particle-identification
detectors determine a particle’s identity (mass).

The first set of subdetectors that particles encounter is the silicon tracking system. This system is designed to
measure the momentum of charged particles (such as electrons and protons). The detector is bathed in a
uniform magnetic field, so the charged particles are bent in a circular path by a Lorentz force (as for the
cyclotron). If the momentum of the particle is large, the radius of the trajectory is large, and the path is almost
straight. But if the momentum is small, the radius of the trajectory is small, and the path is tightly curved. As
the particles pass through the detector, they interact with silicon microstrip detectors at multiple points. These
detectors produce small electrical signals as the charged particles pass near the detector elements. The signals
are then amplified and recorded. A series of electrical “hits” is used to determine the trajectory of the particle
in the tracking system. A computer-generated “best fit” to this trajectory gives the track radius and therefore
the particle momentum. At the LHC, a large number of tracks are recorded for the same collision event. Fits to
the tracks are shown by the blue and green lines in Figure 11.10.
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Figure 11.10 A three-dimensional view of a heavy-ion collision event in the LHC as seen by the ALICE detector. (credit: LHC/CERN)

Beyond the tracking layers is the electromagnetic calorimeter. This detector is made of clear, lead-based
crystals. When electrons interact with the crystals, they radiate high-energy photons. The photons interact
with the crystal to produce electron-positron pairs. Then, these particles radiate more photons. The process
repeats, producing a particle shower (the crystal “glows”). A crude model of this process is as follows.

An electron with energy strikes the crystal and loses half of its energy in the form of a photon. The photon
produces an electron-positron pair, and each particle proceeds away with half the energy of the photon.
Meanwhile, the original electron radiates again. So, we are left with four particles: two electrons, one positron,
and one photon, each with an energy The number of particles in the shower increases geometrically.
After n radiation events, there are particles. Hence, the total energy per particle after n radiation
events is

where is the incident energy and E(t) is the amount of energy per particle after n events. An incoming
photon triggers a similar chain of events (Figure 11.11). If the energy per particle drops below a particular
threshold value, other types of radiative processes become important and the particle shower ceases.
Eventually, the total energy of the incoming particle is absorbed and converted into an electrical signal.

Figure 11.11 (a) A particle shower produced in a crystal calorimeter. (b) A diagram showing a typical sequence of reactions in a particle

shower.

Beyond the crystal calorimeter is the hadron calorimeter. As the name suggests, this subdetector measures

11.4 • Particle Accelerators and Detectors 515



hadrons such as protons and pions. The hadron calorimeter consists of layers of brass and steel separated by
plastic scintillators. Its purpose is to absorb the particle energy and convert it into an electronic signal. Beyond
this detector is a large magnetic coil used to produce a uniform field for tracking.

The last subdetector is the muon detector, which consists of slabs of iron that only muons (and neutrinos) can
penetrate. Between the iron slabs are multiple types of muon-tracking elements that accurately measure the
momentum of the muon. The muon detectors are important because the Higgs boson (discussed soon) can be
detected through its decays to four muons—hence the name of the detector.

Once data is collected from each of the particle subdetectors, the entire collision event can be assessed. The
energy of the ith particle is written

where is the absolute magnitude of the momentum of the ith particle, and is its rest mass.

The total energy of all particles is therefore

If all particles are detected, the total energy should be equal to the center-of-mass energy of the colliding beam
machine (W). In practice, not all particles are identified, either because these particles are too difficult to
detect (neutrinos) or because these particles “slip through.” In many cases, whole chains of decays can be
“reconstructed,” like putting back together a watch that has been smashed to pieces. Information about these
decay chains are critical to the evaluation of models of particle interactions.

11.5 The Standard Model
Learning Objectives
By the end of this section, you will be able to:

• Describe the Standard Model in terms of the four fundamental forces and exchange particles
• Draw a Feynman diagram for a simple particle interaction
• Use Heisenberg’s uncertainty principle to determine the range of forces described by the Standard Model
• Explain the rationale behind grand unification theories

The chief intellectual activity of any scientist is the development and revision of scientific models. A particle
physicist seeks to develop models of particle interactions. This work builds directly on work done on gravity
and electromagnetism in the seventeenth, eighteenth, and nineteenth centuries. The ultimate goal of physics
is a unified “theory of everything” that describes all particle interactions in terms of a single elegant equation
and a picture. The equation itself might be complex, but many scientists suspect the idea behind the equation
will make us exclaim: “How could we have missed it? It was so obvious!”

In this section, we introduce the Standard Model, which is the best current model of particle interactions. We
describe the Standard Model in detail in terms of electromagnetic, weak nuclear, and strong forces. At the end
of this section, we review unification theories in particle physics.

Introduction to the Standard Model
The Standard Model of particle interactions contains two ideas: electroweak theory and quantum
chromodynamics (QCD) (the force acting between color charges). Electroweak theory unifies the theory of
quantum electrodynamics (QED), the modern equivalent of classical electromagnetism, and the theory of
weak nuclear interactions. The Standard Model combines the theory of relativity and quantum mechanics.

In the Standard Model, particle interactions occur through the exchange of bosons, the “force carriers.” For
example, the electrostatic force is communicated between two positively charged particles by sending and
receiving massless photons. This can occur at a theoretical infinite range. The result of these interactions is
Coulomb repulsion (or attraction). Similarly, quarks bind together through the exchange of massless gluons.
Leptons scatter off other leptons (or decay into lighter particles) through the exchange of massive W and Z
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bosons. A summary of forces as described by the Standard Model is given in Table 11.6. The gravitational
force, mediated by the exchange of massless gravitations, is added in this table for completeness but is not part
of the Standard Model.

Force
Relative
strength

Exchange particle
(bosons)

Particles acted upon Range

Strong 1 Gluon Quarks

Electromagnetic 1/137 photon Charged particles ∞

Weak Z bosons
Quarks, leptons,
neutrinos

Gravitational graviton All particles ∞

Table 11.6 Four Forces and the Standard Model

The Standard Model can be expressed in terms of equations and diagrams. The equations are complex and are
usually covered in a more advanced course in modern physics. However, the essence of the Standard Model
can be captured using Feynman diagrams. A Feynman diagram, invented by American physicist Richard
Feynman (1918–1988), is a space-time diagram that describes how particles move and interact. Different
symbols are used for different particles. Particle interactions in one dimension are shown as a time-position
graph (not a position-time graph). As an example, consider the scattering of an electron and electron-neutrino
(Figure 11.12). The electron moves toward positive values of x (to the right) and collides with an electron
neutrino moving to the left. The electron exchanges a Z boson (charge zero). The electron scatters to the left
and the neutrino scatters to the right. This exchange is not instantaneous. The Z boson travels from one
particle to the other over a short period of time. The interaction of the electron and neutrino is said to occur via
the weak nuclear force. This force cannot be explained by classical electromagnetism because the charge of
the neutrino is zero. The weak nuclear force is discussed again later in this section.

Figure 11.12 In this Feynman diagram, the exchange of a virtual carries the weak nuclear force between an electron and a neutrino.

Electromagnetic Force
According to QED, the electromagnetic force is transmitted between charged particles through the exchange of
photons. The theory is based on three basic processes: An electron travels from one place to the next, emits or
absorbs a photon, and travels from one place to another again. When two electrons interact, one electron emits
the photon and the other receives it (Figure 11.13). Photons transfer energy and momentum from one electron
to the other. The net result in this case is a repulsive force. The photons exchanged are virtual. A virtual
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particle is a particle that exists for too short a time to be observable. Since the photon transit time is
extremely small, Heisenberg’s uncertainty principle states that the uncertainty in the photon’s energy,
may be very large.

Figure 11.13 Feynman diagram of two electrons interacting through the exchange of a photon.

To estimate the range of the electromagnetic interaction, assume that the uncertainty on the energy is
comparable to the energy of the photon itself, written

The Heisenberg uncertainly principle states that

Combining these equations, we have

The energy of a photon is given by , so

The distance d that the photon can move in this time is therefore

The energy of the virtual photon can be arbitrarily small, so its wavelength can be arbitrarily large—in
principle, even infinitely large. The electromagnetic force is therefore a long-range force.

Weak Nuclear Force
The weak nuclear force is responsible for radioactive decay. The range of the weak nuclear force is very short
(only about m) and like the other forces in the Standard Model, the weak force can be described in terms
of particle exchange. (There is no simple function like the Coulomb force to describe these interactions.) The
particle exchanged is one of three bosons: and . The Standard Model predicts the existence of
these spin-1 particles and also predicts their specific masses. In combination with previous experiments, the
mass of the charged W bosons was predicted to be and that of the was predicted to be

. A CERN experiment discovered particles in the 1980s with precisely these masses—an impressive
victory for the model.

The weak nuclear force is most frequently associated with scattering and decays of unstable particles to light
particles. For example, neutrons decay to protons through the weak nuclear force. This reaction is written

where n is the neutron, p is a proton, is an electron, and is a nearly massless electron neutrino. This
process, called beta decay, is important in many physical processes. A Feynman diagram of beta decay is given
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in Figure 11.14(a). The neutron emits a and becomes a proton, then the produces an electron and an
antineutrino. This process is similar to the scattering event

In this process, the proton emits a and is converted into a neutron (b). The then combines with the
electron, forming a neutrino. Other electroweak interactions are considered in the exercises.

Figure 11.14 Feynman diagram of particles interacting through the exchange of a W boson: (a) beta decay; (b) conversion of a proton into

a neutron.

The range of the weak nuclear force can be estimated with an argument similar to the one before. Assuming
the uncertainty on the energy is comparable to the energy of the exchange particle by we have

The maximum distance d that the exchange particle can travel (assuming it moves at a speed close to c) is
therefore

For one of the charged vector bosons with we obtain
Hence, the range of the force mediated by this boson is

Strong Nuclear Force
Strong nuclear interactions describe interactions between quarks. Details of these interactions are described
by QCD. According to this theory, quarks bind together by sending and receiving gluons. Just as quarks carry
electric charge [either or that determines the strength of electromagnetic interactions
between the quarks, quarks also carry “color charge” (either red, blue, or green) that determines the strength
of strong nuclear interactions. As discussed before, quarks bind together in groups in color neutral (or “white”)
combinations, such as red-blue-green and red-antired.

Interestingly, the gluons themselves carry color charge. Eight known gluons exist: six that carry a color and
anticolor, and two that are color neutral (Figure 11.15(a)). To illustrate the interaction between quarks through
the exchange of charged gluons, consider the Feynman diagram in part (b). As time increases, a red down
quark moves right and a green strange quark moves left. (These appear at the lower edge of the graph.) The up
quark exchanges a red-antigreen gluon with the strange quark. (Anticolors are shown as secondary colors. For
example, antired is represented by cyan because cyan mixes with red to form white light.) According to QCD,
all interactions in this process—identified with the vertices—must be color neutral. Therefore, the down quark
transforms from red to green, and the strange quark transforms from green to red.
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Figure 11.15 (a) Eight types of gluons carry the strong nuclear force. The white gluons are mixtures of color-anticolor pairs. (b) An

interaction between two quarks through the exchange of a gluon.

As suggested by this example, the interaction between quarks in an atomic nucleus can be very complicated.
Figure 11.16 shows the interaction between a proton and neutron. Notice that the proton converts into a
neutron and the neutron converts into a proton during the interaction. The presence of quark-antiquark pairs
in the exchange suggest that bonding between nucleons can be modeled as an exchange of pions.

Figure 11.16 A Feynman diagram that describes a strong nuclear interaction between a proton and a neutron.

In practice, QCD predictions are difficult to produce. This difficulty arises from the inherent strength of the
force and the inability to neglect terms in the equations. Thus, QCD calculations are often performed with the
aid of supercomputers. The existence of gluons is supported by electron-nucleon scattering experiments. The
estimated quark momenta implied by these scattering events are much smaller than we would expect without
gluons because the gluons carry away some of the momentum of each collision.

Unification Theories
Physicists have long known that the strength of an interaction between particles depends on the distance of
the interaction. For example, two positively charged particles experience a larger repulsive force at a short
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distance then at a long distance. In scattering experiments, the strength of an interaction depends on the
energy of the interacting particle, since larger energy implies both closer and stronger interactions.

Particle physicists now suspect that the strength of all particle interactions (the four forces) merge at high
energies, and the details of particle interactions at these energies can be described in terms of a single force
(Figure 11.17). A unified theory describes what these interactions are like and explains why this description
breaks down at low-energy scales. A grand unified theory is a theory that attempts to describe strong and
electroweak interaction in terms of just one force. A theory of everything (TOE) takes the unification concept
one step further. A TOE combines all four fundamental forces (including gravity) into one theory.

Figure 11.17 Grand unification of forces at high energies.

11.6 The Big Bang
Learning Objectives
By the end of this section, you will be able to:

• Explain the expansion of the universe in terms of a Hubble graph and cosmological redshift
• Describe the analogy between cosmological expansion and an expanding balloon
• Use Hubble’s law to make predictions about the measured speed of distant galaxies

We have been discussing elementary particles, which are some of the smallest things we can study. Now we are
going to examine what we know about the universe, which is the biggest thing we can study. The link between
these two topics is high energy: The study of particle interactions requires very high energies, and the highest
energies we know about existed during the early evolution of the universe. Some physicists think that the
unified force theories we described in the preceding section may actually have governed the behavior of the
universe in its earliest moments.

Hubble’s Law
In 1929, Edwin Hubble published one of the most important discoveries in modern astronomy. Hubble
discovered that (1) galaxies appear to move away from Earth and (2) the velocity of recession (v) is proportional
to the distance (d) of the galaxy from Earth. Both v and d can be determined using stellar light spectra. A best
fit to the sample illustrative data is given in Figure 11.18. (Hubble’s original plot had a considerable scatter but
a general trend was still evident.)
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Figure 11.18 This graph of red shift versus distance for galaxies shows a linear relationship, with larger red shifts at greater distances,

implying an expanding universe. The slope gives an approximate value for the expansion rate. (credit: John Cub)

The trend in the data suggests the simple proportional relationship:

where is known as Hubble’s constant. (Note: 1 Mpc is one megaparsec or one million
parsecs, where one parsec is 3.26 light-years.) This relationship, called Hubble’s law, states that distant stars
and galaxies recede away from us at a speed of 70 km/s for every one megaparsec of distance from us.
Hubble’s constant corresponds to the slope of the line in Figure 11.18. Hubble’s constant is a bit of a misnomer,
because it varies with time. The value given here is only its value today.

INTERACTIVE

Watch this video (https://openstax.org/l/21hubble) to learn more about the history of Hubble’s constant.

Hubble’s law describes an average behavior of all but the closest galaxies. For example, a galaxy 100 Mpc away
(as determined by its size and brightness) typically moves away from us at a speed of

This speed may vary due to interactions with neighboring galaxies. Conversely, if a galaxy is found to be
moving away from us at speed of 100,000 km/s based on its red shift, it is at a distance

This last calculation is approximate because it assumes the expansion rate was the same 5 billion years ago as
it is now.

Big Bang Model
Scientists who study the origin, evolution, and ultimate fate of the universe (cosmology) believe that the
universe began in an explosion, called the Big Bang, approximately 13.7 billion years ago. This explosion was
not an explosion of particles through space, like fireworks, but a rapid expansion of space itself. The distances
and velocities of the outward-going stars and galaxies permit us to estimate when all matter in the universe
was once together—at the beginning of time.

Scientists often explain the Big Bang expansion using an inflated-balloon model (Figure 11.19). Dots marked
on the surface of the balloon represent galaxies, and the balloon skin represents four-dimensional space-time
(Relativity). As the balloon is inflated, every dot “sees” the other dots moving away. This model yields two
insights. First, the expansion is observed by all observers in the universe, no matter where they are located.
The “center of expansion” does not exist, so Earth does not reside at the “privileged” center of the expansion
(see Exercise 11.24).

11.12
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Figure 11.19 An analogy to the expanding universe: The dots move away from each other as the balloon expands; compare (a) to (b) after

expansion.

Second, as mentioned already, the Big Bang expansion is due to the expansion of space, not the increased
separation of galaxies in ordinary (static) three-dimensional space. This cosmological expansion affects all
things: dust, stars, planets, and even light. Thus, the wavelength of light emitted by distant galaxies is
“stretched” out. This makes the light appear “redder” (lower energy) to the observer—a phenomenon called
cosmological redshift. Cosmological redshift is measurable only for galaxies farther away than 50 million
light-years.

EXAMPLE 11.8

Calculating Speeds and Galactic Distances
A galaxy is observed to have a redshift:

This value indicates a galaxy moving close to the speed of light. Using the relativistic redshift formula (given in
Relativity), determine (a) How fast is the galaxy receding with respect to Earth? (b) How far away is the galaxy?

Strategy
We need to use the relativistic Doppler formula to determine speed from redshift and then use Hubble’s law to
find the distance from the speed.

Solution

a. According to the relativistic redshift formula:
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where Substituting the value for z and solving for , we get This value implies that the
speed of the galaxy is .

b. Using Hubble’s law, we can find the distance to the galaxy if we know its
recession velocity:

Significance
Distant galaxies appear to move very rapidly away from Earth. The redshift of starlight from these galaxies can
be used to determine the precise speed of recession, over of the speed of light in this case. This motion is
not due to the motion of galaxy through space but by the expansion of space itself.

CHECK YOUR UNDERSTANDING 11.8

The light of a galaxy that moves away from us is “redshifted.” What occurs to the light of a galaxy that moves
toward us?

INTERACTIVE

View this video (https://openstax.org/l/21expansion) to learn more about the cosmological expansion.

Structure and Dynamics of the Universe
At large scales, the universe is believed to be both isotropic and homogeneous. The universe is believed to
isotropic because it appears to be the same in all directions, and homogeneous because it appears to be the
same in all places. A universe that is isotropic and homogeneous is said to be smooth. The assumption of a
smooth universe is supported by the Automated Plate Measurement Galaxy Survey conducted in the 1980s
and 1900s (Figure 11.20). However, even before these data were collected, the assumption of a smooth
universe was used by theorists to simplify models of the expansion of the universe. This assumption of a
smooth universe is sometimes called the cosmological principle.

Figure 11.20 The Automated Plate Measurement (APM) Galaxy Survey. Over 2 million galaxies are depicted in a region 100 degrees

524 11 • Particle Physics and Cosmology

Access for free at openstax.org.

https://openstax.org/l/21expansion


across centered toward the Milky Way’s south pole. (credit: 2MASS/T. H. Jarrett, J. Carpenter, & R. Hurt)

The fate of this expanding and smooth universe is an open question. According to the general theory of
relativity, an important way to characterize the state of the universe is through the space-time metric:

where c is the speed of light, a is a scale factor (a function of time), and is the length element of the space. In
spherical coordinates ( , this length element can be written

where k is a constant with units of inverse area that describes the curvature of space. This constant
distinguishes between open, closed, and flat universes:

• (flat universe)
• (closed universe, such as a sphere)
• (open universe, such as a hyperbola)

In terms of the scale factor a, this metric also distinguishes between static, expanding, and shrinking
universes:

• (static universe)
• (expanding universe)
• (shrinking universe)

The scale factor a and the curvature k are determined from Einstein’s general theory of relativity. If we treat
the universe as a gas of galaxies of density and pressure p, and assume (a flat universe), than the scale
factor a is given by

where G is the universal gravitational constant. (For ordinary matter, we expect the quantity to be
greater than zero.) If the scale factor is positive ( ), the value of the scale factor “decelerates”
( ), and the expansion of the universe slows down over time. If the numerator is less than zero
(somehow, the pressure of the universe is negative), the value of the scale factor “accelerates,” and the
expansion of the universe speeds up over time. According to recent cosmological data, the universe appears to
be expanding. Many scientists explain the current state of the universe in terms of a very rapid expansion in
the early universe. This expansion is called inflation.

11.7 Evolution of the Early Universe
Learning Objectives
By the end of this section, you will be able to:

• Describe the evolution of the early universe in terms of the four fundamental forces
• Use the concept of gravitational lensing to explain astronomical phenomena
• Provide evidence of the Big Bang in terms of cosmic background radiation
• Distinguish between dark matter and dark energy

In the previous section, we discussed the structure and dynamics of universe. In particular, the universe
appears to be expanding and even accelerating. But what was the universe like at the beginning of time? In this
section, we discuss what evidence scientists have been able to gather about the early universe and its evolution
to present time.

The Early Universe
Before the short period of cosmic inflation, cosmologists believe that all matter in the universe was squeezed
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into a space much smaller than an atom. Cosmologists further believe that the universe was extremely dense
and hot, and interactions between particles were governed by a single force. In other words, the four
fundamental forces (strong nuclear, electromagnetic, weak nuclear, and gravitational) merge into one at these
energies (Figure 11.21). How and why this “unity” breaks down at lower energies is an important unsolved
problem in physics.

Figure 11.21 The separation of the four fundamental forces in the early universe.

Scientific models of the early universe are highly speculative. Figure 11.22 shows a sketch of one possible
timeline of events.

Figure 11.22 An approximate timeline for the evolution of the universe from the Big Bang to the present.

1. Big Bang The current laws of physics break down. At the end of the initial Big Bang event, the
temperature of the universe is approximately

2. Inflationary phase The universe expands exponentially, and gravity separates from the
other forces. The universe cools to approximately

3. Age of leptons As the universe continues to expand, the strong nuclear force separates
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from the electromagnetic and weak nuclear forces (or electroweak force). Soon after, the weak nuclear force
separates from the electromagnetic force. The universe is a hot soup of quarks, leptons, photons, and other
particles.

4. Age of nucleons The universe consists of leptons and hadrons (such as protons, neutrons,
and mesons) in thermal equilibrium. Pair production and pair annihilation occurs with equal ease, so photons
remain in thermal equilibrium:

The number of protons is approximately equal to the number of neutrons through interactions with neutrinos:

The temperature of the universe settles to approximately —much too cool for the continued production
of nucleon-antinucleon pairs. The numbers of protons and neutrons begin to dominate over their anti-

particles, so proton-antiproton and neutron-antineutron ( ) annihilations decline. Deuterons (proton-

neutron pairs) begin to form.
5. Age of nucleosynthesis ( to 1000 years): As the universe continues to expand, deuterons react with

protons and neutrons to form larger nuclei; these larger nuclei react with protons and neutrons to form still
larger nuclei. At the end of this period, about 1/4 of the mass of the universe is helium. (This explains the
current amount of helium in the universe.) Photons lack the energy to continue electron-positron production,
so electrons and positrons annihilate each other to photons only.

6. Age of ions ( to 3000 years): The universe is hot enough to ionize any atoms formed. The universe
consists of electrons, positrons, protons, light nuclei, and photons.

7. Age of atoms ( to 300,000 years): The universe cools below and atoms form. Photons do not
interact strongly with neutral atoms, so they “decouple” (separate) from atoms. These photons constitute the
cosmic microwave background radiation to be discussed later.

8. Age of stars and galaxies ( years to present): The atoms and particles are pulled together by gravity
and form large lumps. The atoms and particles in stars undergo nuclear fusion reaction.

INTERACTIVE

Watch this video (https://openstax.org/l/21bigbang) to learn more about Big Bang cosmology.

To describe the conditions of the early universe quantitatively, recall the relationship between the average
thermal energy of particle (E) in a system of interacting particles and equilibrium temperature (T) of that
system:

where is Boltzmann’s constant. In the hot conditions of the early universe, particle energies were
unimaginably large.
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EXAMPLE 11.9

What Was the Average Thermal Energy of a Particle just after the Big Bang?

Strategy
The average thermal energy of a particle in a system of interacting particles depends on the equilibrium
temperature of that system Equation 11.1. We are given this approximate temperature in the above timeline.

Solution
Cosmologists think the temperature of the universe just after the Big Bang was approximately
Therefore, the average thermal energy of a particle would have been

Significance
This energy is many orders of magnitude larger than particle energies produced by human-made particle
accelerators. Currently, these accelerators operate at energies less than

CHECK YOUR UNDERSTANDING 11.9

Compare the abundance of helium by mass 10,000 years after the Big Bang and now.

Nucleons form at energies approximately equal to the rest mass of a proton, or 1000 MeV. The temperature
corresponding to this energy is therefore

Temperatures of this value or higher existed within the first second of the early universe. A similar analysis
can be done for atoms. Atoms form at an energy equal to the ionization energy of ground-state hydrogen (13
eV). The effective temperature for atom formation is therefore

This occurs well after the four fundamental forces have separated, including forces necessary to bind the
protons and neutrons in the nucleus (strong nuclear force), and bind electrons to the nucleus (electromagnetic
force).

Nucleosynthesis of Light Elements
The relative abundances of the light elements hydrogen, helium, lithium, and beryllium in the universe
provide key evidence for the Big Bang. The data suggest that much of the helium in the universe is primordial.
For instance, it turns out that that 25% of the matter in the universe is helium, which is too high an abundance
and cannot be explained based on the production of helium in stars.

How much of the elements in the universe were created in the Big Bang? If you run the clock backward, the
universe becomes more and more compressed, and hotter and hotter. Eventually, temperatures are reached
that permit nucleosynthesis, the period of formation of nuclei, similar to what occurs at the core of the Sun.
Big Bang nucleosynthesis is believed to have occurred within a few hundred seconds of the Big Bang.

How did Big Bang nucleosynthesis occur? At first, protons and neutrons combined to form deuterons, . The
deuteron captured a neutron to form triton, —the nucleus of the radioactive hydrogen called tritium.
Deuterons also captured protons to make helium . When captures a proton or captures a neutron,
helium results. At this stage in the Big Bang, the ratio of protons to neutrons was about 7:1. Thus, the
process of conversion to used up almost all neutrons. The process lasted about 3 minutes and almost
of all the matter turned into , along with small percentages of , , and . Tiny amounts of and
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were also formed. The expansion during this time cooled the universe enough that the nuclear reactions
stopped. The abundances of the light nuclei , , and created after the Big Bang are very dependent on
the matter density.

The predicted abundances of the elements in the universe provide a stringent test of the Big Bang and the Big
Bang nucleosynthesis. Recent experimental estimates of the matter density from the Wilkinson Microwave
Anisotropy Probe (WMAP) agree with model predictions. This agreement provides convincing evidence of the
Big Bang model.

Cosmic Microwave Background Radiation
According to cosmological models, the Big Bang event should have left behind thermal radiation called the
cosmic microwave background radiation (CMBR). The intensity of this radiation should follow the blackbody
radiation curve (Photons and Matter Waves). Wien’s law states that the wavelength of the radiation at peak
intensity is

where T is temperature in kelvins. Scientists expected the expansion of the universe to “stretch the light,” and
the temperature to be very low, so cosmic background radiation should be long-wavelength and low energy.

In the 1960s, Arno Penzias and Robert Wilson of Bell Laboratories noticed that no matter what they did, they
could not get rid of a faint background noise in their satellite communication system. The noise was due to
radiation with wavelengths in the centimeter range (the microwave region). Later, this noise was associated
with the cosmic background radiation. An intensity map of the cosmic background radiation appears in Figure
11.23. The thermal spectrum is modeled well by a blackbody curve that corresponds to a temperature

(Figure 11.24).

Figure 11.23 This map of the sky uses color to show fluctuations, or wrinkles, in the cosmic microwave background observed with the

WMAP spacecraft. The Milky Way has been removed for clarity. Red represents higher temperature and higher density, whereas blue

indicates lower temperature and density. This map does not contradict the earlier claim of smoothness because the largest fluctuations are

only one part in one million. (credit: NASA/WMAP Science Team)
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Figure 11.24 Intensity distribution of cosmic microwave background radiation. The model predictions (the line) agree extremely well with

the experimental results (the dots). Frequency and brightness values are shown on a log axis. (credit: modification of work by George

Smoot/NASA COBE Project)

The formation of atoms in the early universe makes these atoms less likely to interact with light. Therefore,
photons that belong to the cosmic background radiation must have separated from matter at a temperature T
associated with 1 eV (the approximate ionization energy of an atom) . The temperature of the universe at this
point was

According to cosmological models, the time when photons last scattered off charged particles was
approximately 380,000 years after the Big Bang. Before that time, matter in the universe was in the plasma
form and the photons were “thermalized.”

Antimatter and Matter
We know from direct observation that antimatter is rare. Earth and the solar system are nearly pure matter,
and most of the universe also seems dominated by matter. This is proven by the lack of annihilation radiation
coming to us from space, particularly the relative absence of 0.511-MeV rays created by the mutual
annihilation of electrons and positrons. (Antimatter in nature is created in particle collisions and in decays,
but only in small amounts that quickly annihilate, leaving almost pure matter surviving.)

Despite the observed dominance of matter over antimatter in the universe, the Standard Model of particle
interactions and experimental measurement suggests only small differences in the ways that matter and
antimatter interact. For example, neutral kaon decays produce only slightly more matter than antimatter. Yet,
if through such decay, slightly more matter than antimatter was produced in the early universe, the rest could
annihilate pair by pair, leaving mostly ordinary matter to form the stars and galaxies. In this way, the vast
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number of stars we observe may be only a tiny remnant of the original matter created in the Big Bang.

Dark Matter and Dark Energy
In the last two decades, new and more powerful techniques have revealed that the universe is filled with dark
matter. This type of matter is interesting and important because, currently, scientists do not know what it is!
However, we can infer its existence by the deflection of distant starlight. For example, if light from a distant
galaxy is bent by the gravitational field of a clump of dark matter between us and the galaxy, it is possible that
two images of the same galaxy can be produced (Figure 11.25). The bending of light by the gravitational field of
matter is called gravitational lensing. In some cases, the starlight travels to an observer by multiple paths
around the galaxy, producing a ring (Figure 11.26).

Based on current research, scientist know only that dark matter is cold, slow moving, and interacts weakly
with ordinary matter. Dark matter candidates include neutralinos (partners of Z bosons, photons, and Higgs
bosons in “supersymmetry theory”) and particles that circulate in tiny rings set up by extra spatial
dimensions.

Figure 11.25 Light from a distant star is bent around a galaxy. Under the right conditions, two duplicate images of the same star can be

seen.

Figure 11.26 Light from a distant star is bent around a galaxy. Under the right conditions, we can see a ring of light instead of a single star.
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(credit: modification of work by ESA/Hubble & NASA)

Increasingly precise astronomical measurements of the expanding universe also reveal the presence of a new
form of energy called dark energy. This energy is thought to explain larger-than-expected values for the
observed galactic redshifts for distant galaxies. These redshifts suggest that the universe is not only
expanding, but expanding at an increasing rate. Virtually nothing is known about the nature and properties of
dark energy. Together, dark energy and dark matter represent two of the most interesting and unsolved
puzzles of modern physics. Scientists attribute of the energy of the universe to dark energy, to
dark matter, and just to the mass-energy of ordinary particles (Figure 11.27). Given the current great
mystery over the nature of dark matter and dark energy, Isaac Newton’s humble words are as true now as they
were centuries ago:

“I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the
sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary,
whilst the great ocean of truth lay all undiscovered before me.”

Figure 11.27 Estimated distribution of matter and energy in the universe. (credit: NASA/WMAP Science Team)
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CHAPTER REVIEW
Key Terms
antiparticle subatomic particle with the same

mass and lifetime as its associated particle, but
opposite electric charge

baryon number baryon number has the value
for baryons, for antibaryons, and 0 for

all other particles and is conserved in particle
interactions

baryons group of three quarks
Big Bang rapid expansion of space that marked the

beginning of the universe
boson particle with integral spin that are

symmetric on exchange
color property of particles and that plays the same

role in strong nuclear interactions as electric
charge does in electromagnetic interactions

cosmic microwave background radiation (CMBR)
thermal radiation produced by the Big Bang event

cosmology study of the origin, evolution, and
ultimate fate of the universe

dark energy form of energy believed to be
responsible for the observed acceleration of the
universe

dark matter matter in the universe that does not
interact with other particles but that can be
inferred by deflection of distance star light

electroweak force unification of electromagnetic
force and weak-nuclear force interactions

exchange symmetry property of a system of
indistinguishable particles that requires the
exchange of any two particles to be unobservable

fermion particle with half-integral spin that is
antisymmetric on exchange

Feynman diagram space-time diagram that
describes how particles move and interact

fundamental force one of four forces that act
between bodies of matter: the strong nuclear,
electromagnetic, weak nuclear, and gravitational
forces

gluon particle that that carry the strong nuclear
force between quarks within an atomic nucleus

grand unified theory theory of particle
interactions that unifies the strong nuclear,
electromagnetic, and weak nuclear forces

hadron a meson or baryon
Hubble’s constant constant that relates speed and

distance in Hubble’s law
Hubble’s law relationship between the speed and

distance of stars and galaxies
lepton a fermion that participates in the

electroweak force

lepton number electron-lepton number the
muon-lepton number and the tau-lepton
number are conserved separately in every
particle interaction

mesons a group of two quarks
nucleosynthesis creation of heavy elements,

occurring during the Big Bang
particle accelerator machine designed to

accelerate charged particles; this acceleration is
usually achieved with strong electric fields,
magnetic fields, or both

particle detector detector designed to accurately
measure the outcome of collisions created by a
particle accelerator; particle detectors are
hermetic and multipurpose

positron antielectron
quantum chromodynamics (QCD) theory that

describes strong interactions between quarks
quantum electrodynamics (QED) theory that

describes the interaction of electrons with
photons

quark a fermion that participates in the
electroweak and strong nuclear force

redshift lengthening of the wavelength of light (or
reddening) due to cosmological expansion

Standard Model model of particle interactions that
contains the electroweak theory and quantum
chromodynamics (QCD)

strangeness particle property associated with the
presence of a strange quark

strong nuclear force relatively strong attractive
force that acts over short distances (about
m) responsible for binding protons and neutrons
together in atomic nuclei

synchrotron circular accelerator that uses
alternating voltage and increasing magnetic field
strengths to accelerate particles to higher and
higher energies

synchrotron radiation high-energy radiation
produced in a synchrotron accelerator by the
circular motion of a charged beam

theory of everything a theory of particle
interactions that unifies all four fundamental
forces

virtual particle particle that exists for too short of
time to be observable

W and Z boson particle with a relatively large mass
that carries the weak nuclear force between
leptons and quarks

weak nuclear force relative weak force (about
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the strength of the strong nuclear force)
responsible for decays of elementary particles

and neutrino interactions

Key Equations

Momentum of a charged particle in a cyclotron

Center-of-mass energy of a colliding beam machine

Approximate time for exchange of a virtual particle
between two other particles

Hubble’s law

Cosmological space-time metric

Summary
11.1 Introduction to Particle Physics

• The four fundamental forces of nature are, in
order of strength: strong nuclear,
electromagnetic, weak nuclear, and
gravitational. Quarks interact via the strong
force, but leptons do not. Both quark and
leptons interact via the electromagnetic, weak,
and gravitational forces.

• Elementary particles are classified into
fermions and boson. Fermions have half-
integral spin and obey the exclusion principle.
Bosons have integral spin and do not obey this
principle. Bosons are the force carriers of
particle interactions.

• Quarks and leptons belong to particle families
composed of three members each. Members of a
family share many properties (charge, spin,
participation in forces) but not mass.

• All particles have antiparticles. Particles share
the same properties as their antimatter
particles, but carry opposite charge.

11.2 Particle Conservation Laws

• Elementary particle interactions are governed
by particle conservation laws, which can be
used to determine what particle reactions and
decays are possible (or forbidden).

• The baryon number conservation law and the
three lepton number conversation law are valid
for all physical processes. However,
conservation of strangeness is valid only for
strong nuclear interactions and electromagnetic
interactions.

11.3 Quarks

• Six known quarks exist: up (u), down (d), charm
(c), strange (s), top (t), and bottom (b). These
particles are fermions with half-integral spin
and fractional charge.

• Baryons consist of three quarks, and mesons
consist of a quark-antiquark pair. Due to the
strong force, quarks cannot exist in isolation.

• Evidence for quarks is found in scattering
experiments.

11.4 Particle Accelerators and Detectors

• Many types of particle accelerators have been
developed to study particles and their
interactions. These include linear accelerators,
cyclotrons, synchrotrons, and colliding beams.

• Colliding beam machines are used to create
massive particles that decay quickly to lighter
particles.

• Multipurpose detectors are used to design all
aspects of high-energy collisions. These include
detectors to measure the momentum and
energies of charge particles and photons.

• Charged particles are measured by bending
these particles in a circle by a magnetic field.

• Particles are measured using calorimeters that
absorb the particles.

11.5 The Standard Model

• The Standard Model describes interactions
between particles through the strong nuclear,
electromagnetic, and weak nuclear forces.

• Particle interactions are represented by
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Feynman diagrams. A Feynman diagram
represents interactions between particles on a
space-time graph.

• Electromagnetic forces act over a long range,
but strong and weak forces act over a short
range. These forces are transmitted between
particles by sending and receiving bosons.

• Grand unified theories seek an understanding of
the universe in terms of just one force.

11.6 The Big Bang

• The universe is expanding like a balloon—every
point is receding from every other point.

• Distant galaxies move away from us at a velocity
proportional to its distance. This rate is
measured to be approximately 70 km/s/Mpc.

Thus, the farther galaxies are from us, the
greater their speeds. These “recessional
velocities” can be measure using the Doppler
shift of light.

• According to current cosmological models, the
universe began with the Big Bang approximately
13.7 billion years ago.

11.7 Evolution of the Early Universe

• The early universe was hot and dense.
• The universe is isotropic and expanding.
• Cosmic background radiation is evidence for the

Big Bang.
• The vast portion of the mass and energy of the

universe is not well understood.

Conceptual Questions
11.1 Introduction to Particle Physics

1. What are the four fundamental forces? Briefly
describe them.

2. Distinguish fermions and bosons using the
concepts of indistiguishability and exchange
symmetry.

3. List the quark and lepton families
4. Distinguish between elementary particles and

antiparticles. Describe their interactions.

11.2 Particle Conservation Laws

5. What are six particle conservation laws? Briefly
describe them.

6. In general, how do we determine if a particle
reaction or decay occurs?

7. Why might the detection of particle interaction
that violates an established particle conservation
law be considered a good thing for a scientist?

11.3 Quarks

8. What are the six known quarks? Summarize their
properties.

9. What is the general quark composition of a
baryon? Of a meson?

10. What evidence exists for the existence of
quarks?

11. Why do baryons with the same quark
composition sometimes differ in their rest mass
energies?

11.4 Particle Accelerators and Detectors

12. Briefly compare the Van de Graaff accelerator,

linear accelerator, cyclotron, and synchrotron
accelerator.

13. Describe the basic components and function of
a typical colliding beam machine.

14. What are the subdetectors of the Compact Muon
Solenoid experiment? Briefly describe them.

15. What is the advantage of a colliding-beam
accelerator over one that fires particles into a
fixed target?

16. An electron appears in the muon detectors of
the CMS. How is this possible?

11.5 The Standard Model

17. What is the Standard Model? Express your
answer in terms of the four fundamental forces
and exchange particles.

18. Draw a Feynman diagram to represents
annihilation of an electron and positron into a
photon.

19. What is the motivation behind grand unification
theories?

20. If a theory is developed that unifies all four
forces, will it still be correct to say that the orbit
of the Moon is determined by the gravitational
force? Explain why.

21. If the Higgs boson is discovered and found to
have mass, will it be considered the ultimate
carrier of the weak force? Explain your
response.

22. One of the common decay modes of the
Even though only hadrons

are involved in this decay, it occurs through the
weak nuclear force. How do we know that this
decay does not occur through the strong
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nuclear force?

11.6 The Big Bang

23. What is meant by cosmological expansion?
Express your answer in terms of a Hubble graph
and the red shift of distant starlight.

24. Describe the balloon analogy for cosmological
expansion. Explain why it only appears that we
are at the center of expansion of the universe.

25. Distances to local galaxies are determined by
measuring the brightness of stars, called
Cepheid variables, that can be observed
individually and that have absolute
brightnesses at a standard distance that are well
known. Explain how the measured brightness
would vary with distance, as compared with the
absolute brightness.

11.7 Evolution of the Early Universe

26. What is meant by a “cosmological model of the

early universe?” Briefly describe this model in
terms of the four fundamental forces.

27. Describe two pieces of evidence that support the
Big Bang model.

28. In what sense are we, as Newton once said, “a
boy playing on the sea-shore”? Express your
answer in terms of the concepts of dark matter
and dark energy.

29. If some unknown cause of redshift—such as
light becoming “tired” from traveling long
distances through empty space—is discovered,
what effect would that have on cosmology?

30. In the past, many scientists believed the
universe to be infinite. However, if the universe
is infinite, then any line of sight should
eventually fall on a star’s surface and the night
sky should be very bright. How is this paradox
resolved in modern cosmology?

Problems
11.1 Introduction to Particle Physics

31. How much energy is released when an electron
and a positron at rest annihilate each other?
(For particle masses, see Table 11.1.)

32. If of energy is released in the
annihilation of a sphere of matter and
antimatter, and the spheres are equal mass,
what are the masses of the spheres?

33. When both an electron and a positron are at
rest, they can annihilate each other according to
the reaction

In this case, what are the energy, momentum,
and frequency of each photon?

34. What is the total kinetic energy carried away by
the particles of the following decays?

11.2 Particle Conservation Laws

35. Which of the following decays cannot occur because
the law of conservation of lepton number is violated?

36. Which of the following reactions cannot because the law
of conservation of strangeness is violated?

37. Identify one possible decay for each of the
following antiparticles:

(a) , (b) , (c) , (d) , and (e) .
38. Each of the following strong nuclear reactions is

forbidden. Identify a conservation law that is
violated for each one.

11.3 Quarks

39. Based on quark composition of a proton, show

536 11 • Chapter Review

Access for free at openstax.org.



that its charge is .
40. Based on the quark composition of a neutron,

show that is charge is 0.
41. Argue that the quark composition given in Table

11.5 for the positive kaon is consistent with the
known charge, spin, and strangeness of this
baryon.

42. Mesons are formed from the following
combinations of quarks (subscripts indicate

color and ): , ( ),

and ( ).
(a) Determine the charge and strangeness of
each combination. (b) Identify one or more
mesons formed by each quark-antiquark
combination.

43. Why can’t either set of quarks shown below
form a hadron?

44. Experimental results indicate an isolate particle
with charge —an isolated quark. What
quark could this be? Why would this discovery
be important?

45. Express the decays and
in terms of decays of quarks.

Check to see that the conservation laws for
charge, lepton number, and baryon number are
satisfied by the quark decays.

11.4 Particle Accelerators and Detectors

46. A charged particle in a 2.0-T magnetic field is
bent in a circle of radius 75 cm. What is the
momentum of the particle?

47. A proton track passes through a magnetic field
with radius of 50 cm. The magnetic field
strength is 1.5 T. What is the total energy of the
proton?

48. Derive the equation using the
concepts of centripetal acceleration (Motion in
Two and Three Dimensions) and relativistic
momentum (Relativity)

49. Assume that beam energy of an electron-

positron collider is approximately 4.73 GeV.
What is the total mass (W) of a particle
produced in the annihilation of an electron and
positron in this collider? What meson might be
produced?

50. At full energy, protons in the 2.00-km-diameter
Fermilab synchrotron travel at nearly the speed
of light, since their energy is about 1000 times
their rest mass energy. (a) How long does it take
for a proton to complete one trip around? (b)
How many times per second will it pass through
the target area?

51. Suppose a created in a particle detector
lives for . What distance does it
move in this time if it is traveling at 0.900c?
(Note that the time is longer than the given
lifetime, which can be due to the statistical
nature of decay or time dilation.)

52. What length track does a traveling at 0.100c
leave in a bubble chamber if it is created there
and lives for ? (Those moving
faster or living longer may escape the detector
before decaying.)

53. The 3.20-km-long SLAC produces a beam of
50.0-GeV electrons. If there are 15,000
accelerating tubes, what average voltage must
be across the gaps between them to achieve this
energy?

11.5 The Standard Model

54. Using the Heisenberg uncertainly principle,
determine the range of the weak force if this
force is produced by the exchange of a Z boson.

55. Use the Heisenberg uncertainly principle to
estimate the range of a weak nuclear decay
involving a graviton.

56. (a) The following decay is mediated by the
electroweak force:

Draw the Feynman diagram for the decay.
(b) The following scattering is mediated by the
electroweak force:

Draw the Feynman diagram for the scattering.
57. Assuming conservation of momentum, what is

the energy of each ray produced in the decay
of a neutral pion at rest, in the reaction

?
58. What is the wavelength of a 50-GeV electron,

which is produced at SLAC? This provides an
idea of the limit to the detail it can probe.

59. The primary decay mode for the negative pion
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is (a) What is the energy release
in MeV in this decay? (b) Using conservation of
momentum, how much energy does each of the
decay products receive, given the is at rest
when it decays? You may assume the muon
antineutrino is massless and has momentum

, just like a photon.
60. Suppose you are designing a proton decay

experiment and you can detect 50 percent of
the proton decays in a tank of water. (a) How
many kilograms of water would you need to see
one decay per month, assuming a lifetime of

(b) How many cubic meters of water is
this? (c) If the actual lifetime is , how long
would you have to wait on an average to see a
single proton decay?

11.6 The Big Bang

61. If the speed of a distant galaxy is 0.99c, what is
the distance of the galaxy from an Earth-bound
observer?

62. The distance of a galaxy from our solar system
is 10 Mpc. (a) What is the recessional velocity of
the galaxy? (b) By what fraction is the starlight
from this galaxy redshifted (that is, what is its z
value)?

63. If a galaxy is 153 Mpc away from us, how fast do
we expect it to be moving and in what direction?

64. On average, how far away are galaxies that are
moving away from us at of the speed of
light?

65. Our solar system orbits the center of the Milky
Way Galaxy. Assuming a circular orbit 30,000 ly

in radius and an orbital speed of 250 km/s, how
many years does it take for one revolution? Note
that this is approximate, assuming constant
speed and circular orbit, but it is representative
of the time for our system and local stars to
make one revolution around the galaxy.

66. (a) What is the approximate velocity relative to
us of a galaxy near the edge of the known
universe, some 10 Gly away? (b) What fraction
of the speed of light is this? Note that we have
observed galaxies moving away from us at
greater than 0.9c.

67. (a) Calculate the approximate age of the
universe from the average value of the Hubble
constant, . To do this,
calculate the time it would take to travel 0.307
Mpc at a constant expansion rate of 20 km/s. (b)
If somehow acceleration occurs, would the
actual age of the universe be greater or less than
that found here? Explain.

68. The Andromeda Galaxy is the closest large
galaxy and is visible to the naked eye. Estimate
its brightness relative to the Sun, assuming it
has luminosity times that of the Sun and
lies 0.613 Mpc away.

69. Show that the velocity of a star orbiting its
galaxy in a circular orbit is inversely
proportional to the square root of its orbital
radius, assuming the mass of the stars inside its
orbit acts like a single mass at the center of the
galaxy. You may use an equation from a
previous chapter to support your conclusion,
but you must justify its use and define all terms
used.

Additional Problems
70. Experimental results suggest that a muon

decays to an electron and photon. How is this
possible?

71. Each of the following reactions is missing a
single particle. Identify the missing particle for
each reaction.

72. Because of energy loss due to synchrotron
radiation in the LHC at CERN, only 5.00 MeV is
added to the energy of each proton during each
revolution around the main ring. How many
revolutions are needed to produce 7.00-TeV
(7000 GeV) protons, if they are injected with an
initial energy of 8.00 GeV?

73. A proton and an antiproton collide head-on,
with each having a kinetic energy of 7.00 TeV
(such as in the LHC at CERN). How much
collision energy is available, taking into account
the annihilation of the two masses? (Note that
this is not significantly greater than the
extremely relativistic kinetic energy.)
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74. When an electron and positron collide at the
SLAC facility, they each have 50.0-GeV kinetic
energies. What is the total collision energy
available, taking into account the annihilation
energy? Note that the annihilation energy is
insignificant, because the electrons are highly
relativistic.

75. The core of a star collapses during a supernova,
forming a neutron star. Angular momentum of
the core is conserved, so the neutron star spins
rapidly. If the initial core radius is

and it collapses to 10.0 km, find
the neutron star’s angular velocity in
revolutions per second, given the core’s angular
velocity was originally 1 revolution per 30.0
days.

76. Using the solution from the previous problem,
find the increase in rotational kinetic energy,
given the core’s mass is 1.3 times that of our
Sun. Where does this increase in kinetic energy
come from?

77. (a) What Hubble constant corresponds to an
approximate age of the universe of y? To
get an approximate value, assume the
expansion rate is constant and calculate the
speed at which two galaxies must move apart to
be separated by 1 Mly (present average galactic
separation) in a time of y. (b) Similarly,
what Hubble constant corresponds to a
universe approximately years old?

Challenge Problems
78. Electrons and positrons are collided in a

circular accelerator. Derive the expression for
the center-of-mass energy of the particle.

79. The intensity of cosmic ray radiation decreases
rapidly with increasing energy, but there are
occasionally extremely energetic cosmic rays
that create a shower of radiation from all the
particles they create by striking a nucleus in the
atmosphere. Suppose a cosmic ray particle
having an energy of converts its
energy into particles with masses averaging

.
(a) How many particles are created? (b) If the
particles rain down on a area, how
many particles are there per square meter?

80. (a) Calculate the relativistic quantity
for 1.00-TeV protons produced at

Fermilab. (b) If such a proton created a
having the same speed, how long would its life
be in the laboratory? (c) How far could it travel
in this time?

81. Plans for an accelerator that produces a
secondary beam of K mesons to scatter from
nuclei, for the purpose of studying the strong
force, call for them to have a kinetic energy of
500 MeV. (a) What would the relativistic quantity

be for these particles? (b) How

long would their average lifetime be in the
laboratory? (c) How far could they travel in this
time?

82. In supernovae, neutrinos are produced in huge
amounts. They were detected from the 1987A
supernova in the Magellanic Cloud, which is
about 120,000 light-years away from Earth
(relatively close to our Milky Way Galaxy). If
neutrinos have a mass, they cannot travel at the
speed of light, but if their mass is small, their
velocity would be almost that of light. (a)
Suppose a neutrino with a mass has a
kinetic energy of 700 keV. Find the relativistic
quantity for it. (b) If the neutrino

leaves the 1987A supernova at the same time as
a photon and both travel to Earth, how much
sooner does the photon arrive? This is not a
large time difference, given that it is impossible
to know which neutrino left with which photon
and the poor efficiency of the neutrino
detectors. Thus, the fact that neutrinos were
observed within hours of the brightening of the
supernova only places an upper limit on the
neutrino’s mass. (Hint: You may need to use a
series expansion to find v for the neutrino, since
its is so large.)

83. Assuming a circular orbit for the Sun about the
center of the Milky Way Galaxy, calculate its
orbital speed using the following information:
The mass of the galaxy is equivalent to a single
mass times that of the Sun (or

), located 30,000 ly away.
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84. (a) What is the approximate force of gravity on a
70-kg person due to the Andromeda Galaxy,
assuming its total mass is that of our Sun
and acts like a single mass 0.613 Mpc away? (b)
What is the ratio of this force to the person’s
weight? Note that Andromeda is the closest
large galaxy.

85. (a) A particle and its antiparticle are at rest
relative to an observer and annihilate
(completely destroying both masses), creating
two rays of equal energy. What is the
characteristic -ray energy you would look for if
searching for evidence of proton-antiproton
annihilation? (The fact that such radiation is
rarely observed is evidence that there is very
little antimatter in the universe.) (b) How does
this compare with the 0.511-MeV energy
associated with electron-positron annihilation?

86. The peak intensity of the CMBR occurs at a
wavelength of 1.1 mm. (a) What is the energy in
eV of a 1.1-mm photon? (b) There are
approximately photons for each massive
particle in deep space. Calculate the energy of

such photons. (c) If the average massive
particle in space has a mass half that of a
proton, what energy would be created by
converting its mass to energy? (d) Does this
imply that space is “matter dominated”?
Explain briefly.

87. (a) Use the Heisenberg uncertainty principle to
calculate the uncertainty in energy for a
corresponding time interval of . (b)
Compare this energy with the
unification-of-forces energy and discuss why
they are similar.
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APPENDIX A
Units

Quantity Common Symbol Unit Unit in Terms of Base SI Units

Acceleration m/s2 m/s2

Amount of substance n mole mol

Angle radian (rad)

Angular acceleration rad/s2 s−2

Angular frequency rad/s s−1

Angular momentum

Angular velocity rad/s s−1

Area A m2 m2

Atomic number Z

Capacitance C farad (F)

Charge q, Q, e coulomb (C)

Charge density:

Line C/m

Surface C/m2

Volume C/m3

Conductivity

Current I ampere A

Current density A/m2 A/m2

Density kg/m3 kg/m3

Dielectric constant

Electric dipole moment
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Quantity Common Symbol Unit Unit in Terms of Base SI Units

Electric field N/C

Electric flux

Electromotive force volt (V)

Energy E,U,K joule (J)

Entropy S J/K

Force newton (N)

Frequency f hertz (Hz) s−1

Heat Q joule (J)

Inductance L henry (H)

Length: meter m

Displacement

Distance d, h

Position

Magnetic dipole moment

Magnetic field tesla (T)

Magnetic flux weber (Wb)

Mass m, M kilogram kg

Molar specific heat C

Moment of inertia I

Momentum

Period T s s

Permeability of free space

Permittivity of free space

Potential V volt (V)
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Quantity Common Symbol Unit Unit in Terms of Base SI Units

Power P watt (W)

Pressure p pastcal (P)

Resistance R ohm (Ω)

Specific heat c

Speed m/s m/s

Temperature T kelvin K

Time t second s

Torque

Velocity m/s m/s

Volume V m3 m3

Wavelength m m

Work W joule (J)

Table A1 Units Used in Physics (Fundamental units in bold)

A • Units 543



544 A • Units

Access for free at openstax.org.



APPENDIX B
Conversion Factors

m cm km

1 meter 1 102 10−3

1 centimeter 10−2 1 10−5

1 kilometer 103 105 1

1 inch 2.540

1 foot 0.3048 30.48

1 mile 1609 1.609

1 angstrom 10−10

1 fermi 10−15

1 light-year

in. ft mi

1 meter 39.37 3.281

1 centimeter 0.3937

1 kilometer 0.6214

1 inch 1

1 foot 12 1

1 mile 5280 1

Table B1 Length

Area

Volume

B • Conversion Factors 545



s min h day yr

1 second 1

1 minute 60 1

1 hour 3600 60 1

1 day 1440 24 1

1 year 365.25 1

Table B2 Time

m/s cm/s ft/s mi/h

1 meter/second 1 102 3.281 2.237

1 centimeter/second 10−2 1

1 foot/second 0.3048 30.48 1 0.6818

1 mile/hour 0.4470 44.70 1.467 1

Table B3 Speed

Acceleration

kg g slug u

1 kilogram 1 103

1 gram 10−3 1

1 slug 14.59 1

1 atomic mass unit 1

1 metric ton 1000

Table B4 Mass
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N dyne lb

newton 1 105 0.2248

dyne 10−5 1

pound 4.448 1

Table B5 Force

Pa dyne/cm2 atm cmHg lb/in.2

1 pascal 1 10

1 dyne/centimeter2 10−1 1

1 atmosphere 1 76 14.70

1 centimeter mercury* 1 0.1934

1 pound/inch2 5.171 1

1 bar 105

1 torr 1 (mmHg)

*Where the acceleration due to gravity is and the temperature is

Table B6 Pressure

J erg ft.lb

1 joule 1 107 0.7376

1 erg 10−7 1

1 foot-pound 1.356 1

1 electron-volt

1 calorie 4.186 3.088

1 British thermal unit

1 kilowatt-hour

eV cal Btu

1 joule 0.2389

1 erg
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J erg ft.lb

1 foot-pound 0.3239

1 electron-volt 1

1 calorie 1

1 British thermal unit 1

Table B7 Work, Energy, Heat

Power

Angle
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APPENDIX C
Fundamental Constants

Quantity Symbol Value

Atomic mass unit u

Avogadro’s number

Bohr magneton ℏ

Bohr radius ℏ

Boltzmann’s constant

Compton wavelength

Coulomb constant

Deuteron mass

Electron mass

Electron volt eV

Elementary charge e

Gas constant R

Gravitational constant G

Neutron mass
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Quantity Symbol Value

Nuclear magneton
ℏ

Permeability of free space

Permittivity of free space

Planck’s constant
h
ℏ

Proton mass

Rydberg constant

Speed of light in vacuum c

Table C1 Fundamental Constants Note: These constants are the values recommended in 2006 by CODATA,
based on a least-squares adjustment of data from different measurements. The numbers in parentheses for
the values represent the uncertainties of the last two digits.

Useful combinations of constants for calculations:

ℏ
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APPENDIX D
Astronomical Data

Celestial
Object

Mean Distance from
Sun (million km)

Period of Revolution (d =
days) (y = years)

Period of Rotation
at Equator

Eccentricity
of Orbit

Sun − − 27 d −

Mercury 57.9 88 d 59 d 0.206

Venus 108.2 224.7 d 243 d 0.007

Earth 149.6 365.25 d 23 h 56 min 4 s 0.017

Mars 227.9 687 d 24 h 37 min 23 s 0.093

Jupiter 778.4 11.9 y 9 h 50 min 30 s 0.048

Saturn 1426.7 29.5 y 10 h 14 min 0.054

Uranus 2871.0 84.0 y 17 h 14 min 0.047

Neptune 4498.3 164.8 y 16 h 0.009

Earth’s
Moon

149.6 (0.386 from Earth) 27.3 d 27.3 d 0.055

Celestial
Object

Equatorial Diameter
(km)

Mass (Earth = 1) Density (g/cm3)

Sun 1,392,000 333,000.00 1.4

Mercury 4879 0.06 5.4

Venus 12,104 0.82 5.2

Earth 12,756 1.00 5.5

Mars 6794 0.11 3.9

Jupiter 142,984 317.83 1.3

Saturn 120,536 95.16 0.7

Uranus 51,118 14.54 1.3

Neptune 49,528 17.15 1.6
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Celestial
Object

Mean Distance from
Sun (million km)

Period of Revolution (d =
days) (y = years)

Period of Rotation
at Equator

Eccentricity
of Orbit

Earth’s
Moon

3476 0.01 3.3

Table D1 Astronomical Data

Other Data:

Mass of Earth:

Mass of the Moon:

Mass of the Sun:

552 D • Astronomical Data

Access for free at openstax.org.



APPENDIX E
Mathematical Formulas
Quadratic formula

If then

Triangle of base and height Area

Circle of radius Circumference Area

Sphere of radius Surface area Volume

Cylinder of radius and height Area of curved surface Volume

Table E1 Geometry

Trigonometry

Trigonometric Identities

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

13.
14.
15.

16.

Triangles

1. Law of sines:

2. Law of cosines:
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3. Pythagorean theorem:

Series expansions

1. Binomial theorem:

2.

3.

4.

5.

6.

7.

8.

Derivatives

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
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13.

14.

15.

16.

Integrals

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.
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APPENDIX F
Chemistry
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APPENDIX G
The Greek Alphabet

Name Capital Lowercase Name Capital Lowercase

Alpha A Nu N

Beta B Xi

Gamma Omicron O

Delta Pi

Epsilon E Rho P

Zeta Z Sigma

Eta H Tau T

Theta Upsilon

lota I Phi

Kappa K Chi X

Lambda Psi

Mu M Omega

Table G1 The Greek Alphabet
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ANSWER KEY
Chapter 1
Check Your Understanding
1.1 2.1% (to two significant figures)
1.2
1.3 air to water, because the condition that the second medium must have a smaller index of refraction is not

satisfied
1.4 9.3 cm
1.5 becomes longer, tilts further away from the surface, and the refracted ray tilts away from the

normal.
1.6 also
1.7 There will be only refraction but no reflection.

Conceptual Questions
1. Light can be modeled as a ray when devices are large compared to wavelength, and as a wave when devices

are comparable or small compared to wavelength.
3. This fact simply proves that the speed of light is greater than that of sound. If one knows the distance to the

location of the lightning and the speed of sound, one could, in principle, determine the speed of light from
the data. In practice, because the speed of light is so great, the data would have to be known to impractically
high precision.

5. Powder consists of many small particles with randomly oriented surfaces. This leads to diffuse reflection,
reducing shine.

7. “toward” when increasing n (air to water, water to glass); “away” when decreasing n (glass to air)
9. A ray from a leg emerges from water after refraction. The observer in air perceives an apparent location for

the source, as if a ray traveled in a straight line. See the dashed ray below.

11. The gemstone becomes invisible when its index of refraction is the same, or at least similar to, the water
surrounding it. Because diamond has a particularly high index of refraction, it can still sparkle as a result
of total internal reflection, not invisible.

13. One can measure the critical angle by looking for the onset of total internal reflection as the angle of
incidence is varied. Equation 1.5 can then be applied to compute the index of refraction.

15. In addition to total internal reflection, rays that refract into and out of diamond crystals are subject to
dispersion due to varying values of n across the spectrum, resulting in a sparkling display of colors.

17. yes
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19. No. Sound waves are not transverse waves.
21. Energy is absorbed into the filters.
23. Sunsets are viewed with light traveling straight from the Sun toward us. When blue light is scattered out of

this path, the remaining red light dominates the overall appearance of the setting Sun.
25. The axis of polarization for the sunglasses has been rotated .

Problems
27. ;
29. ice at
31. 1.03 ns
33. 337 m
35. proof
37. proof
39. reflection, ; refraction,
41.
43. 1.53
45. a. 2.9 m; b. 1.4 m
47. a. ; b.
49.
51. a. 1.43, fluorite; b.
53. a. ; b.
55. for red, for violet
57. a. ; b. 1.3 m
59.
61. for red, for violet
63. 0.500
65. 0.125 or 1/8
67.
69.
71. a. 0.500; b. 0.250; c. 0.187
73.
75.

Additional Problems
77. 114 radian/s
79. 3.72 mm
81.
83. a. 1.92. The gem is not a diamond (it is zircon). b.
85. a. 0.898; b. We cannot have , since this would imply a speed greater than c. c. The refracted angle

is too big relative to the angle of incidence.
87.
89. a. ; b. yes

Challenge Problems
91. First part: . The remainder depends on the complexity of the solution the reader constructs.
93. proof; 1.33
95. a. 0.750; b. 0.563; c. 1.33
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Chapter 2
Check Your Understanding

Conceptual Questions
1. Virtual image cannot be projected on a screen. You cannot distinguish a real image from a virtual image

simply by judging from the image perceived with your eye.
3. Yes, you can photograph a virtual image. For example, if you photograph your reflection from a plane

mirror, you get a photograph of a virtual image. The camera focuses the light that enters its lens to form an
image; whether the source of the light is a real object or a reflection from mirror (i.e., a virtual image) does
not matter.

5. No, you can see the real image the same way you can see the virtual image. The retina of your eye effectively
serves as a screen.

7. The mirror should be half your size and its top edge should be at the level of your eyes. The size does not
depend on your distance from the mirror.

9. when the object is at infinity; see the mirror equation
11. Yes, negative magnification simply means that the image is upside down; this does not prevent the image

from being larger than the object. For instance, for a concave mirror, if distance to the object is larger than
one focal distance but smaller than two focal distances the image will be inverted and magnified.

13. answers may vary
15. The focal length of the lens is fixed, so the image distance changes as a function of object distance.
17. Yes, the focal length will change. The lens maker’s equation shows that the focal length depends on the

index of refraction of the medium surrounding the lens. Because the index of refraction of water differs
from that of air, the focal length of the lens will change when submerged in water.

19. A relaxed, normal-vision eye will focus parallel rays of light onto the retina.
21. A person with an internal lens will need glasses to read because their muscles cannot distort the lens as

they do with biological lenses, so they cannot focus on near objects. To correct nearsightedness, the power
of the intraocular lens must be less than that of the removed lens.

23. Microscopes create images of macroscopic size, so geometric optics applies.
25. The eyepiece would be moved slightly farther from the objective so that the image formed by the objective

falls just beyond the focal length of the eyepiece.
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Problems
27.

29. It is in the focal point of the big mirror and at the center of curvature of the small mirror.
31.
33.
35. Step 1: Image formation by a mirror is involved.

Step 2: Draw the problem set up when possible.
Step 3: Use thin-lens equations to solve this problem.
Step 4: Find f.
Step 5: Given: .
Step 6: No ray tracing is needed.

Step 7: Using . Then, .

Step 8: The image is virtual because the image distance is negative. The focal length is positive, so the
mirror is concave.

37. a. for a convex mirror ; b. (behind the cornea);
c.

39.

41.
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43.

45.
47.
49. proof
51. a. ;

b. , so that

53. a. ;

b. , so the maximum height is ;

c. This seems quite reasonable, since at 3.00 m it is possible to get a full length picture of a person.
55. a. ;

b.

57. a. Using , . Then we can determine the magnification, . b.

and ; c. The magnification m increases rapidly as you increase the object
distance toward the focal length.

59.

61.

63. 83 cm to the right of the converging lens,
65.

67.

69. a. ;

b. ;

c.
71.

73. Originally, the close vision was 51.0 D. Therefore,

75. originally, ; because the power for normal distant vision is 50.0 D, the power should be
decreased by 20.0 D

77.

79. a. ;

b.
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81. We need when , so

83. Let = far point

85.

87.
l

l

89.
91.

93.

95.

97. a. ;

b.
99. a. behind the objective lens;

b. ;

c.

in front of the eyepiece; d. ;
e.

101.
103.

105.

107. Answers will vary.
109. 12 cm to the left of the mirror,
111. 27 cm in front of the mirror, , orientation upright
113. The following figure shows three successive images beginning with the image in mirror . is

the image in mirror , whose image in mirror is whose image in mirror is the real image
.
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115. 5.4 cm from the axis
117. Let the vertex of the concave mirror be the origin of the coordinate system. Image 1 is at −10/3 cm (−3.3

cm), image 2 is at −40/11 cm (−3.6 cm). These serve as objects for subsequent images, which are at −310/
83 cm (−3.7 cm), −9340/2501 cm (−3.7 cm), −140,720/37,681 cm (−3.7 cm). All remaining images are at
approximately −3.7 cm.

119.

121.

123. −5 D
125. 11

Additional Problems
127. a.

b.
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c.

d. similar to the previous picture but with point P outside the focal length; e. Repeat (a)–(d) for a point
object off the axis. For a point object placed off axis in front of a concave mirror corresponding to parts
(a) and (b), the case for convex mirror left as exercises.
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129. , upright
131. proof
133.

Triangles BAO and are similar triangles. Thus, .Triangles NOF and are

similar triangles. Thus, . Noting that gives or .

Inverting this gives Equating the two expressions for the ratio gives .

Dividing through by gives or .

135. 70 cm
137. The plane mirror has an infinite focal point, so that . The total apparent distance of the man in
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the mirror will be his actual distance, plus the apparent image distance, or . If this
distance must be less than 20 cm, he should stand at .

139. Here we want . If near point, . Thus,
. Using gives , so the near point is 29.7 cm.

141. Assuming a lens at 2.00 cm from the boy’s eye, the image distance must be
For an infinite-distance object, the required power is

. Therefore, the lens will correct the nearsightedness.

143.

145. Use, . The image distance for the objective is . Using

gives . We want this image to be at the focal
point of the eyepiece so that the eyepiece forms an image at infinity for comfortable viewing. Thus, the
distance d between the lenses should be .

147. a. focal length of the corrective lens ; b. −1.25 D
149.
151.

Chapter 3
Check Your Understanding
3.1 , respectively
3.2 a. 853 nm, 1097 nm; b. 731 nm, 975 nm
3.3 a. too small; b. up to

Conceptual Questions
1. No. Two independent light sources do not have coherent phase.
3. Because both the sodium lamps are not coherent pairs of light sources. Two lasers operating independently

are also not coherent so no interference pattern results.
5. Monochromatic sources produce fringes at angles according to . With white light, each

constituent wavelength will produce fringes at its own set of angles, blending into the fringes of adjacent
wavelengths. This results in rainbow patterns.

7. Differing path lengths result in different phases at destination resulting in constructive or destructive
interference accordingly. Reflection can cause a phase change, which also affects how waves interfere.
Refraction into another medium changes the wavelength inside that medium such that a wave can emerge
from the medium with a different phase compared to another wave that travelled the same distance in a
different medium.

9. Phase changes occur upon reflection at the top of glass cover and the top of glass slide only.
11. The surface of the ham being moist means there is a thin layer of fluid, resulting in thin-film interference.

Because the exact thickness of the film varies across the piece of ham, which is illuminated by white light,
different wavelengths produce bright fringes at different locations, resulting in rainbow colors.

13. Other wavelengths will not generally satisfy for the same value of t so reflections will result in
completely destructive interference. For an incidence angle , the path length inside the coating will be
increased by a factor so the new condition for destructive interference becomes .

15. In one arm, place a transparent chamber to be filled with the gas. See Example 3.6.

Problems
17.
19.
21.
23. 62.5; since m must be an integer, the highest order is then .
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25.
27. a. ; b. ; c. 5.76, the highest order is .
29. a. 2.37 cm; b. 1.78 cm
31. 560 nm
33. 1.2 mm
35. a. b.
37. 1:9
39. 532 nm (green)
41.
43. 620 nm (orange)
45. 380 nm
47. a. Assuming n for the plane is greater than 1.20, then there are two phase changes: 0.833 cm. b. It is too

thick, and the plane would be too heavy. c. It is unreasonable to think the layer of material could be any
thickness when used on a real aircraft.

49.
51.

Additional Problems
53.
55. a. 4.26 cm; b. 2.84 cm
57. 6
59. 0.20 m
61. 0.0839 mm
63. a. 9.8, 10.4, 11.7, and 15.7 cm; b. 3.9 cm
65.
67. 700 nm
69. 189 nm
71. a. green (504 nm); b. magenta (white minus green)
73. 1.29
75. and
77. 125 nm
79. 413 nm and 689 nm
81.
83. 47
85.
87.

Challenge Problems
89. Bright and dark fringes switch places.
91. The path length must be less than one-fourth of the shortest visible wavelength in oil. The thickness of the

oil is half the path length, so it must be less than one-eighth of the shortest visible wavelength in oil. If we
take 380 nm to be the shortest visible wavelength in air, 33.9 nm.

93.
95. for one phase change: 950 nm (infrared); for three phase changes: 317 nm (ultraviolet); Therefore, the oil

film will appear black, since the reflected light is not in the visible part of the spectrum.

Chapter 4
Check Your Understanding
4.1 , , ; no
4.2 ,
4.3 From , the interference maximum occurs at for From Equation 4.1, this is also
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the angle for the second diffraction minimum. (Note: Both equations use the index m but they refer to
separate phenomena.)

4.4 or 300 lines per millimeter
4.5 , 3000 times broader than the Hubble Telescope
4.6 and ; Between , orders 1, 2, and 3, are all that exist.

Conceptual Questions
1. The diffraction pattern becomes wider.
3. Walkie-talkies use radio waves whose wavelengths are comparable to the size of the hill and are thus able to

diffract around the hill. Visible wavelengths of the flashlight travel as rays at this size scale.
5. The diffraction pattern becomes two-dimensional, with main fringes, which are now spots, running in

perpendicular directions and fainter spots in intermediate directions.
7. The parameter is the arc angle shown in the phasor diagram in Figure 4.7. The phase difference

between the first and last Huygens wavelet across the single slit is and is related to the curvature of the
arc that forms the resultant phasor that determines the light intensity.

9. blue; The shorter wavelength of blue light results in a smaller angle for diffraction limit.
11. No, these distances are three orders of magnitude smaller than the wavelength of visible light, so visible

light makes a poor probe for atoms.
13. UV wavelengths are much larger than lattice spacings in crystals such that there is no diffraction. The

Bragg equation implies a value for sin θ greater than unity, which has no solution.
15. Image will appear at slightly different location and/or size when viewed using shorter wavelength but

at exactly half the wavelength, a higher-order interference reconstructs the original image, different color.

Problems
17. a. ; b. no
19. a. ; b.
21. 750 nm
23. 2.4 mm, 4.7 mm
25. a. b. c.
27. 1.92 m
29.
31.
33.
35. 0.200
37. 3
39. 9
41.
43.
45. 707 nm
47. a. , , , ; b. , , , ; c. Decreasing the number of lines per centimeter

by a factor of x means that the angle for the x-order maximum is the same as the original angle for the
first-order maximum.

49. a. using b. using
51. a. 26,300 lines/cm; b. yes; c. no
53.
55. 107 m
57. a. b. 23.2 m; c. 590 km
59. a. b. 5.81 km; c. 0.179 mm; d. can resolve details 0.2 mm apart at arm’s length
61.
63. 6.0 cm
65. 7.71 km
67. 1.0 m
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69. 1.2 cm or closer
71. no
73. 0.120 nm
75.
77.

Additional Problems
79. a. 2.2 mm; b. , second-order yellow and third-order violet coincide
81. 2.2 km
83. 1.3 cm
85. a. 0.28 mm; b. 0.28 m; c. 280 m; d. 113 km
87. 33 m
89. a. vertically; b. , ; c. 0, , ; d. 89 cm; e. 71 cm
91. 0.98 cm
93.
95. 340 nm
97. a. 0.082 rad and 0.087 rad; b. 480 nm and 660 nm
99. two orders
101. yes and N/A
103. 600 nm
105. a. ; b.
107. 0.63 m
109. 1
111. 0.17 for only, no higher orders
113.
115. a. 42.3 nm; b. This wavelength is not in the visible spectrum. c. The number of slits in this diffraction

grating is too large. Etching in integrated circuits can be done to a resolution of 50 nm, so slit separations
of 400 nm are at the limit of what we can do today. This line spacing is too small to produce diffraction of
light.

117. a. 549 km; b. This is an unreasonably large telescope. c. Unreasonable to assume diffraction limit for
optical telescopes unless in space due to atmospheric effects.

Challenge Problems
119. a. ; b.
121. 12,800
123.

Chapter 5
Check Your Understanding
5.1 Special relativity applies only to objects moving at constant velocity, whereas general relativity applies to

objects that undergo acceleration.
5.2

5.3 a.

5.3 b. Only the relative speed of the two spacecraft matters because there is no absolute motion through
space. The signal is emitted from a fixed location in the frame of reference of A, so the proper time interval
of its emission is The duration of the signal measured from frame of reference B is then
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5.4

5.5 Start with the definition of the proper time increment:

where (dx, dy, dx, cdt) are measured in the inertial frame of an observer who does not necessarily see that
particle at rest. This therefore becomes

5.6 Although displacements perpendicular to the relative motion are the same in both frames of reference,
the time interval between events differ, and differences in dt and lead to different velocities seen from
the two frames.

5.7 We can substitute the data directly into the equation for relativistic Doppler frequency:

5.8 Substitute the data into the given equation:

5.9

Conceptual Questions
1. the second postulate, involving the speed of light; classical physics already included the idea that the laws

of mechanics, at least, were the same in all inertial frames, but the velocity of a light pulse was different in
different frames moving with respect to each other

3. yes, provided the plane is flying at constant velocity relative to the Earth; in that case, an object with no
force acting on it within the plane has no change in velocity relative to the plane and no change in velocity
relative to the Earth; both the plane and the ground are inertial frames for describing the motion of the
object

5. The observer moving with the process sees its interval of proper time, which is the shortest seen by any
observer.

7. The length of an object is greatest to an observer who is moving with the object, and therefore measures its
proper length.

9. a. No, not within the astronaut’s own frame of reference. b. He sees Earth clocks to be in their rest frame
moving by him, and therefore sees them slowed. c. No, not within the astronaut’s own frame of reference. d.
Yes, he measures the distance between the two stars to be shorter. e. The two observers agree on their
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relative speed.
11. There is no measured change in wavelength or frequency in this case. The relativistic Doppler effect

depends only on the relative velocity of the source and the observer, not any speed relative to a medium
for the light waves.

13. It shows that the stars are getting more distant from Earth, that the universe is expanding, and doing so at
an accelerating rate, with greater velocity for more distant stars.]

15. Yes. This can happen if the external force is balanced by other externally applied forces, so that the net
external force is zero.

17. Because it loses thermal energy, which is the kinetic energy of the random motion of its constituent
particles, its mass decreases by an extremely small amount, as described by energy-mass equivalence.

19. Yes, in principle there would be a similar effect on mass for any decrease in energy, but the change would
be so small for the energy changes in a chemical reaction that it would be undetectable in practice.

21. Not according to special relativity. Nothing with mass can attain the speed of light.

Problems
23. a. 1.0328; b. 1.15
25.
27. 0.800c
29. 0.140c
31. 48.6 m
33. Using the values given in Example 5.3: a. 0.627 km; b. 2.00 km; c. 2.00 km
35. a. 10.0c; b. The resulting speed of the canister is greater than c, an impossibility. c. It is unreasonable to

assume that the canister will move toward the earth at 1.20c.
37. The angle α approaches and the and rotate toward the edge of the light cone.
39. 15 m/s east
41. 32 m/s
43. a. The second ball approaches with velocity −v and comes to rest while the other ball continues with

velocity −v; b. This conserves momentum.

45. a. b.

47. 0.615c
49. 0.696c
51. (Proof)
53.
55. a. b. 1.000000005
57.
59. 0.512 MeV according to the number of significant figures stated. The exact value is closer to 0.511 MeV.
61. to two digits because the difference in rest mass energies is found to two digits
63. a. b.
65. a. b. c. is greater for hydrogen
67. a. 208; b. 0.999988c; six digits used to show difference from c
69. a. b. 1.54
71. a. 0.914c; b. The rest mass energy of an electron is 0.511 MeV, so the kinetic energy is approximately

150% of the rest mass energy. The electron should be traveling close to the speed of light.

Additional Problems
73. a. 0.866c; b. 0.995c

75. a. 4.303 y to four digits to show any effect; b. 0.1434 y; c.

77. a. 4.00; b.
79. a. A sends a radio pulse at each heartbeat to B, who knows their relative velocity and uses the time dilation
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formula to calculate the proper time interval between heartbeats from the observed signal. b.

81. a. first photon: at second photon:

b. simultaneous in A, not simultaneous in B

83.

85.

since we can ignore the term and find

The breakdown of Newtonian simultaneity is negligibly small, but not exactly zero, at realistic train
speeds of 50 m/s.

87.

89. Note that all answers to this problem are reported to five significant figures, to distinguish the results. a.
0.99947c; b. c.

91. a. –0.400c; b. –0.909c
93. a. 1.65 km/s; b. Yes, if the speed of light were this small, speeds that we can achieve in everyday life would

be larger than 1% of the speed of light and we could observe relativistic effects much more often.
95. 775 MHz
97. a. b. The small speed tells us that the mass of a protein is substantially smaller than that

of even a tiny amount of macroscopic matter.
99. a.
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b.

101. 90.0 MeV
103. a. b. yes
105.
107. a. b. therefore,

109. a. 0.314c; b. 0.99995c (Five digits used to show difference from c)
111. a. 1.00 kg; b. This much mass would be measurable, but probably not observable just by looking because

it is 0.01% of the total mass.
113. a. b. c. d. 0.32%

Chapter 6
Check Your Understanding
6.1 Bunsen’s burner
6.2 The wavelength of the radiation maximum decreases with increasing temperature.
6.3 so the star is hotter.
6.4
6.5 No, because then
6.6 V; 1040 nm
6.7
6.8 at a angle;
6.9 121.5 nm and 91.1 nm; no, these spectral bands are in the ultraviolet
6.10 ℏ
6.11 29 pm
6.12
6.13
6.14
6.15 doubles it

Conceptual Questions
1. yellow
3. goes from red to violet through the rainbow of colors
5. would not differ
7. human eye does not see IR radiation
9. No
11. from the slope
13. Answers may vary
15. the particle character
17. Answers may vary
19. no; yes
21. no
23. right angle
25. no
27. They are at ground state.
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29. Answers may vary
31. increase
33. for larger n
35. Yes, the excess of 13.6 eV will become kinetic energy of a free electron.
37. no
39. X-rays, best resolving power
41. proton
43. negligibly small de Broglie’s wavelengths
45. to avoid collisions with air molecules
47. Answers may vary
49. Answers may vary
51. yes
53. yes

Problems
55. a. 0.81 eV; b. c. 2 min 20 sec
57. a. 7245 K; b. 3.62 μm
59. about 3 K
61. Hz; 0.620 Å
63. 263 nm; no
65. 3.68 eV
67. 4.09 eV
69. 5.60 eV
71. a. 1.89 eV; b. 459 THz; c. 1.21 V
73. 264 nm; UV
75.
77.
79. 56.21 eV
81. 124 keV
83. 82.9 fm; 15 MeV
85. (Proof)
87.
89. 121.5 nm
91. a. 0.661 eV; b. –10.2 eV; c. 1.511 eV
93. 3038 THz
95. 97.33 nm
97. a. h/ b. 3.4 eV; c. – 6.8 eV; d. – 3.4 eV
99.
101. 365 nm; UV
103. no
105. 7
107. 145.5 pm
109. 20 fm; 9 fm
111. a. 2.103 eV; b. 0.846 nm
113. 80.9 pm
115.
117.
119. 0.00124 fm
121. 24.11 V
123. a. b. c. 74.91 m/s
125.
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Additional Problems
127.
129. 1.034 eV
131.
133. 387.8 nm
135. a. b. 0.533 mW
137. a. b. 0.533 mW; c. 0.644 mA; d. 2.57 ns
139. a. 0.132 pm; b. 9.39 MeV; c. 0.047 MeV
141. a. 2 kJ; b. c. d. yes
143. a. 0.003 nm; b.
145.
147. a. b. c.
149. a. 36; b. 18.2 nm; c. UV
151. 396 nm; 5.23 neV
153. 7.3 keV
155. 728 m/s;
157.

159.
161. (Proof)
163.

Chapter 7
Check Your Understanding
7.1
7.2
7.3
7.4 ;
7.5
7.6 None. The first function has a discontinuity; the second function is double-valued; and the third function

diverges so is not normalizable.
7.7 a. 9.1%; b. 25%
7.8 a. 295 N/m; b. 0.277 eV
7.9
7.10

Conceptual Questions
1. where ; 1/L, where
3. The wave function does not correspond directly to any measured quantity. It is a tool for predicting the

values of physical quantities.
5. The average value of the physical quantity for a large number of particles with the same wave function.
7. Yes, if its position is completely unknown. Yes, if its momentum is completely unknown.
9. No. According to the uncertainty principle, if the uncertainty on the particle’s position is small, the

uncertainty on its momentum is large. Similarly, if the uncertainty on the particle’s position is large, the
uncertainty on its momentum is small.

11. No, it means that predictions about the particle (expressed in terms of probabilities) are time-
independent.

13. No, because the probability of the particle existing in a narrow (infinitesimally small) interval at the
discontinuity is undefined.

15. No. For an infinite square well, the spacing between energy levels increases with the quantum number n.
The smallest energy measured corresponds to the transition from n = 2 to 1, which is three times the

578

Access for free at openstax.org.



ground state energy. The largest energy measured corresponds to a transition from ∞ to 1, which is

infinity. (Note: Even particles with extremely large energies remain bound to an infinite square well—they
can never “escape”)

17. No. This energy corresponds to , but n must be an integer.
19. Because the smallest allowed value of the quantum number n for a simple harmonic oscillator is 0. No,

because quantum mechanics and classical mechanics agree only in the limit of large .
21. Yes, within the constraints of the uncertainty principle. If the oscillating particle is localized, the

momentum and therefore energy of the oscillator are distributed.
23. doubling the barrier width
25. No, the restoring force on the particle at the walls of an infinite square well is infinity.

Problems
27.
29. (a) and (e), can be normalized
31. a. ; b. ; c. ; d. ; e. ℏ
33. a. ; b. ; c.
35.
37. a. ; b.

39. Carrying out the derivatives yields

41. Carrying out the derivatives (as above) for the sine function gives a cosine on the right side the equation,
so the equality fails. The same occurs for the cosine solution.

43. ℏ 

45. ℏ    ; The particle has definite momentum and therefore definite momentum squared.

47. 9.4 eV, 64%
49. 0.38 nm
51. 1.82 MeV
53. 24.7 nm
55.
57. a.

;
b.

59. proof
61.
63.
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65.   ℏ ; ℏ

67. proof
69. A complex function of the form, , satisfies Schrӧdinger’s time-independent equation. The operators

for kinetic and total energy are linear, so any linear combination of such wave functions is also a valid
solution to Schrӧdinger’s equation. Therefore, we conclude that Equation 7.68 satisfies Equation 7.61, and
Equation 7.69 satisfies Equation 7.63.

71. a. 4.21%; b. 0.84%; c. 0.06%
73. a. 0.13%; b. close to 0%
75. 0.38 nm

Additional Problems
77. proof
79. a. 4.0 %; b. 1.4 %; c. 4.0%; d. 1.4%
81. a. ; b.
83. proof
85. 1.2 N/m
87. 0

Challenge Problems
89.
91. 3.92%
93. proof

Chapter 8
Check Your Understanding
8.1 No. The quantum number Thus, the magnitude of is always less than L

because
8.2
8.3 frequency quadruples

Conceptual Questions
1. n (principal quantum number) total energy

(orbital angular quantum number) total absolute magnitude of the orbital angular momentum m
(orbital angular projection quantum number) z-component of the orbital angular momentum

3. The Bohr model describes the electron as a particle that moves around the proton in well-defined orbits.
Schrödinger’s model describes the electron as a wave, and knowledge about the position of the electron is
restricted to probability statements. The total energy of the electron in the ground state (and all excited
states) is the same for both models. However, the orbital angular momentum of the ground state is different
for these models. In Bohr’s model, , and in Schrödinger’s model, .

5. a, c, d; The total energy is changed (Zeeman splitting). The work done on the hydrogen atom rotates the
atom, so the z-component of angular momentum and polar angle are affected. However, the angular
momentum is not affected.

7. Even in the ground state ( ), a hydrogen atom has magnetic properties due the intrinsic (internal)
electron spin. The magnetic moment of an electron is proportional to its spin.

9. For all electrons, and As we will see, not all particles have the same spin quantum number.
For example, a photon as a spin 1 ( ), and a Higgs boson has spin 0 ( ).

11. An electron has a magnetic moment associated with its intrinsic (internal) spin. Spin-orbit coupling
occurs when this interacts with the magnetic field produced by the orbital angular momentum of the
electron.
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13. Elements that belong in the same column in the periodic table of elements have the same fillings of their
outer shells, and therefore the same number of valence electrons. For example:
Li: (one valence electron in the shell)
Na: (one valence electron in the shell)
Both, Li and Na belong to first column.

15. Atomic and molecular spectra are said to be “discrete,” because only certain spectral lines are observed.
In contrast, spectra from a white light source (consisting of many photon frequencies) are continuous
because a continuous “rainbow” of colors is observed.

17. UV light consists of relatively high frequency (short wavelength) photons. So the energy of the absorbed
photon and the energy transition ( ) in the atom is relatively large. In comparison, visible light consists
of relatively lower-frequency photons. Therefore, the energy transition in the atom and the energy of the
emitted photon is relatively small.

19. For macroscopic systems, the quantum numbers are very large, so the energy difference ( ) between
adjacent energy levels (orbits) is very small. The energy released in transitions between these closely
space energy levels is much too small to be detected.

21. Laser light relies on the process of stimulated emission. In this process, electrons must be prepared in an
excited (upper) metastable state such that the passage of light through the system produces de-excitations
and, therefore, additional light.

23. A Blu-Ray player uses blue laser light to probe the bumps and pits of the disc and a CD player uses red
laser light. The relatively short-wavelength blue light is necessary to probe the smaller pits and bumps on
a Blu-ray disc; smaller pits and bumps correspond to higher storage densities.

Problems
25.
27. are possible
29. 18
31.

33. (1, 1, 1)
35. For the orbital angular momentum quantum number, l, the allowed values of:

.
With the exception of , the total number is just 2l because the number of states on either side of

is just l. Including , the total number of orbital angular momentum states for the orbital
angular momentum quantum number, l, is: Later, when we consider electron spin, the total
number of angular momentum states will be found to twice this value because each orbital angular
momentum states is associated with two states of electron spin: spin up and spin down).

37. The probability that the 1s electron of a hydrogen atom is found outside of the Bohr radius is
∞

39. For , (1 state), and (3 states). The total is 4.
41. The 3p state corresponds to , . Therefore,
43. The ratio of their masses is 1/207, so the ratio of their magnetic moments is 207. The electron’s magnetic

moment is more than 200 times larger than the muon.
45. a. The 3d state corresponds to , . So,

b. The maximum torque occurs when the magnetic moment and external magnetic field vectors are at
right angles ( . In this case:

47. A 3p electron is in the state and . The minimum torque magnitude occurs when the magnetic
moment and external magnetic field vectors are most parallel (antiparallel). This occurs when

.The torque magnitude is given by
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Where

For we have:

49. An infinitesimal work dW done by a magnetic torque to rotate the magnetic moment through an angle
:

,
where . Work done is interpreted as a drop in potential energy U, so

The total energy change is determined by summing over infinitesimal changes in the potential energy:

51. Spin up (relative to positive z-axis):

Spin down (relative to positive z-axis):

53. The spin projection quantum number is , so the z-component of the magnetic moment is

The potential energy associated with the interaction between the electron and the external magnetic field
is

The energy difference between these states is , so the wavelength of light produced is

55. It is increased by a factor of 2.
57. a. 32; b.

59. a. and e. are allowed; the others are not allowed.
b. not allowed for
c. Cannot have three electrons in s subshell because
d. Cannot have seven electrons in p subshell (max of 6)

61.
63. a. The minimum value of is to have nine electrons in it.

b.
65.
67. For , one electron “orbits” a nucleus with two protons and two neutrons ( ). Ionization energy

refers to the energy required to remove the electron from the atom. The energy needed to remove the
electron in the ground state of ion to infinity is negative the value of the ground state energy, written:

Thus, the energy to ionize the electron is
Similarly, the energy needed to remove an electron in the first excited state of ion to infinity is
negative the value of the first excited state energy, written:

The energy to ionize the electron is 30.6 eV.
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69. The wavelength of the laser is given by:

where is the energy of the photon and is the magnitude of the energy difference. Solving for the
latter, we get:

The negative sign indicates that the electron lost energy in the transition.
71.
73. According to the conservation of the energy, the potential energy of the electron is converted completely

into kinetic energy. The initial kinetic energy of the electron is zero (the electron begins at rest). So, the
kinetic energy of the electron just before it strikes the target is:

If all of this energy is converted into braking radiation, the frequency of the emitted radiation is a
maximum, therefore:

When the emitted frequency is a maximum, then the emitted wavelength is a minimum, so:

75. A muon is 200 times heavier than an electron, but the minimum wavelength does not depend on mass, so
the result is unchanged.

77.
79. 72.5 keV
81. The atomic numbers for Cu and Au are and 79, respectively. The X-ray photon frequency for gold

is greater than copper by a factor:

Therefore, the X-ray wavelength of Au is about eight times shorter than for copper.
83. a. If flesh has the same density as water, then we used photons. b. 2.52 MW

Additional Problems

85. The smallest angle corresponds to and . Therefore

87. a. According to Equation 8.1, when , ∞ , and when ∞ b. The former result

suggests that the electron can have an infinite negative potential energy. The quantum model of the
hydrogen atom avoids this possibility because the probability density at is zero.

89. A formal solution using sums is somewhat complicated. However, the answer easily found by studying the
mathematical pattern between the principal quantum number and the total number of orbital angular
momentum states.
For , the total number of orbital angular momentum states is 1; for , the total number is 4; and,
when , the total number is 9, and so on. The pattern suggests the total number of orbital angular
momentum states for the nth shell is .
(Later, when we consider electron spin, the total number of angular momentum states will be found to be

, because each orbital angular momentum states is associated with two states of electron spin; spin up
and spin down).

91. 50
93. The maximum number of orbital angular momentum electron states in the nth shell of an atom is .

Each of these states can be filled by a spin up and spin down electron. So, the maximum number of
electron states in the nth shell is .

95. a., c., and e. are allowed; the others are not allowed. b. is not allowed.
d.

97.
99. The atomic numbers for Cu and Ag are and 47, respectively. The X-ray photon frequency for silver

is greater than copper by the following factor:
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Therefore, the X-ray wavelength of Ag is about three times shorter than for copper.
101. a. 3.24; b. is not an integer. c. The wavelength must not be correct. Because the assumption

that the line was from the Balmer series is possible, but the wavelength of the light did not produce an
integer value for . If the wavelength is correct, then the assumption that the gas is hydrogen is not
correct; it might be sodium instead.

Chapter 9
Check Your Understanding
9.1 It corresponds to a repulsive force between core electrons in the ions.
9.2 the moment of inertia
9.3 more difficult
9.4 It decreases.
9.5 The forward bias current is much larger. To a good approximation, diodes permit current flow in only one

direction.
9.6 a low temperature and low magnetic field

Conceptual Questions
1. An ionic bond is formed by the attraction of a positive and negative ion. A covalent bond is formed by the

sharing of one or more electrons between atoms. A van der Waals bond is formed by the attraction of two
electrically polarized molecules.

3. 1. An electron is removed from one atom. The resulting atom is a positive ion. 2. An electron is absorbed
from another atom. The result atom is a negative ion. 3. The positive and negative ions are attracted
together until an equilibrium separation is reached.

5. Bonding is associated with a spatial function that is symmetric under exchange of the two electrons. In this
state, the electron density is largest between the atoms. The total function must be antisymmetric (since
electrons are fermions), so the spin function must be antisymmetric. In this state, the spins of the electrons
are antiparallel.

7. rotational energy, vibrational energy, and atomic energy
9. Each ion is in the field of multiple ions of the other opposite charge.
11. 6, 6
13. 0.399 nm

15. increases by a factor of
17. For larger energies, the number of accessible states increases.
19. (1) Solve Schrödinger’s equation for the allowed states and energies. (2) Determine energy levels for the

case of a very large lattice spacing and then determine the energy levels as this spacing is reduced.
21. For N atoms spaced far apart, there are N different wave functions, all with the same energy (similar to the

case of an electron in the double well of As the atoms are pushed together, the energies of these N
different wave functions are split. By the exclusion principle, each electron must each have a unique set of
quantum numbers, so the N atoms bringing N electrons together must have at least N states.

23. For a semiconductor, there is a relatively large energy gap between the lowest completely filled band and
the next available unfilled band. Typically, a number of electrons traverse the gap and therefore the
electrical conductivity is small. The properties of a semiconductor are sensitivity to temperature: As the
temperature is increased, thermal excitations promote charge carriers from the valence band across the
gap and into the conduction band.

25. a. Germanium has four valence electrons. If germanium doped with arsenic (five valence electrons), four
are used in bonding and one electron will be left for conduction. This produces an n-type material. b. If
germanium is doped with gallium (three valence electrons), all three electrons are used in bonding,
leaving one hole for conduction. This results in a p-type material.

27. The Hall effect is the production of a potential difference due to motion of a conductor through an external
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magnetic field. This effect can be used to determine the drift velocity of the charge carriers (electrons or
hole). If the current density is measured, this effect can also determine the number of charge carriers per
unit volume.

29. It produces new unfilled energy levels just above the filled valence band. These levels accept electrons
from the valence band.

31. The electric field produced by the uncovered ions reduces further diffusion. In equilibrium, the diffusion
and drift currents cancel so the net current is zero. Therefore, the resistance of the depletion region is
large.

33. The positive terminal is applied to the n-side, which uncovers more ions near the junction (widens the
depletion layer), increases the junction voltage difference, and therefore reduces the diffusion of holes
across the junction.

35. Sound moves a diaphragm in and out, which varies the input or base current of the transistor circuit. The
transistor amplifies this signal (p-n-p semiconductor). The output or collector current drives a speaker.

37. BSC theory explains superconductivity in terms of the interactions between electron pairs (Cooper pairs).
One electron in a pair interacts with the lattice, which interacts with the second electron. The combine
electron-lattice-electron interaction binds the electron pair together in a way that overcomes their mutual
repulsion.

39. As the magnitude of the magnetic field is increased, the critical temperature decreases.

Problems
41.
43.
45. The measured value is 0.484 nm, and the actual value is close to 0.127 nm. The laboratory results are the

same order of magnitude, but a factor 4 high.
47. 0.110 nm
49. a. ; b.
51. 0.65 nm
53.
55. 2196 kcal
57. 11.5
59. a. ; b. ; for very large values of the quantum numbers, the spacing between adjacent

energy levels is very small (“in the continuum”). This is consistent with the expectation that for large
quantum numbers, quantum and classical mechanics give approximately the same predictions.

61. 10.0 eV
63.
65. Fermi energy, Temperature,
67. For an insulator, the energy gap between the valence band and the conduction band is larger than for a

semiconductor.
69. 4.13 keV
71.
73. 5 T
75.
77.
79.
81. 61 kV

Additional Problems

83.

85.
87. ; (no rotation);

;
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89. i. They are fairly hard and stable.
ii. They vaporize at relatively high temperatures (1000 to 2000 K).

iii. They are transparent to visible radiation, because photons in the visible portion of the spectrum are
not energetic enough to excite an electron from its ground state to an excited state.

iv. They are poor electrical conductors because they contain effectively no free electrons.
v. They are usually soluble in water, because the water molecule has a large dipole moment whose

electric field is strong enough to break the electrostatic bonds between the ions.
91. No, He atoms do not contain valence electrons that can be shared in the formation of a chemical bond.

93. so
95. An impurity band will be formed when the density of the donor atoms is high enough that the orbits of the

extra electrons overlap. We saw earlier that the orbital radius is about 50 Angstroms, so the maximum
distance between the impurities for a band to form is 100 Angstroms. Thus if we use 1 Angstrom as the
interatomic distance between the Si atoms, we find that 1 out of 100 atoms along a linear chain must be a
donor atom. And in a three-dimensional crystal, roughly 1 out of atoms must be replaced by a donor
atom in order for an impurity band to form.

97. a. ; b. ; c.
99.

Challenge Problems
101. In three dimensions, the energy of an electron is given by:

where . Each allowed energy state corresponds to node in N space
. The number of particles corresponds to the number of states (nodes) in the first octant,

within a sphere of radius, R. This number is given by: where the factor 2 accounts
for two states of spin. The density of states is found by differentiating this expression by energy:

. Integrating gives:

Chapter 10
Check Your Understanding
10.1 eight
10.2 harder
10.3 Half-life is inversely related to decay rate, so the half-life is short. Activity depends on both the number of

decaying particles and the decay rate, so the activity can be great or small.
10.4 Neither; it stays the same.
10.5 the same
10.6 the conversion of mass to energy
10.7 power

Conceptual Questions
1. The nucleus of an atom is made of one or more nucleons. A nucleon refers to either a proton or neutron. A

nuclide is a stable nucleus.
3. A bound system should have less mass than its components because of energy-mass equivalence

If the energy of a system is reduced, the total mass of the system is reduced. If two bricks are
placed next to one another, the attraction between them is purely gravitational, assuming the bricks are
electrically neutral. The gravitational force between the bricks is relatively small (compared to the strong
nuclear force), so the mass defect is much too small to be observed. If the bricks are glued together with
cement, the mass defect is likewise small because the electrical interactions between the electrons involved
in the bonding are still relatively small.

5. Nucleons at the surface of a nucleus interact with fewer nucleons. This reduces the binding energy per
nucleon, which is based on an average over all the nucleons in the nucleus.
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7. That it is constant.
9. Gamma (γ) rays are produced by nuclear interactions and X-rays and light are produced by atomic

interactions. Gamma rays are typically shorter wavelength than X-rays, and X-rays are shorter wavelength
than light.

11. Assume a rectangular coordinate system with an xy-plane that corresponds to the plane of the paper.
bends into the page (trajectory parabolic in the xz-plane); bends into the page (trajectory parabolic in
the xz-plane); and is unbent.

13. Yes. An atomic bomb is a fission bomb, and a fission bomb occurs by splitting the nucleus of atom.
15. Short-range forces between nucleons in a nucleus are analogous to the forces between water molecules in

a water droplet. In particular, the forces between nucleons at the surface of the nucleus produce a surface
tension similar to that of a water droplet.

17. The nuclei produced in the fusion process have a larger binding energy per nucleon than the nuclei that
are fused. That is, nuclear fusion decreases average energy of the nucleons in the system. The energy
difference is carried away as radiation.

19. Alpha particles do not penetrate materials such as skin and clothes easily. (Recall that alpha radiation is
barely able to pass through a thin sheet of paper.) However, when produce inside the body, neighboring
cells are vulnerable.

Problems
21. Use the rule

Atomic Number (Z) Neutron Number (N) Mass Number (A)

(a) 29 29 58

(b) 11 13 24

(c) 84 126 210

(d) 20 25 45

(e) 82 124 206

23. a. ;

b.
25. side length
27. 92.4 MeV
29.
31. a. 7.570 MeV; b.
33. The decay constant is equal to the negative value of the slope or The half-life of the nuclei, and

thus the material, is
35. a. The decay constant is . b. Since strontium-91 has an atomic mass of 90.90 g, the

number of nuclei in a 1.00-g sample is initially

The initial activity for strontium-91 is

The activity at is

37. ; ;
39. a. 0.988 Ci; b. The half-life of is more precisely known than it was when the Ci unit was established.
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41. a. ; b.
43. a. ; b.
45. a. 4.273 MeV; b. ; c. Since is a slowly decaying substance, only a very small number of

nuclei decay on human timescales; therefore, although those nuclei that decay lose a noticeable fraction of
their mass, the change in the total mass of the sample is not detectable for a macroscopic sample.

47. a. ; b. 0.546 MeV
49.
51. a. ; b. 0.862 MeV
53. a. ; b. 33.05 MeV
55. a. 177.1 MeV; b. This value is approximately equal to the average BEN for heavy nuclei. c.

57. a. ; b. ; c. 991 kg

59. i. ;

ii. ;

iii.

61. 26.73 MeV
63. a. ; b. ;

This huge number is indicative of how rarely a neutrino interacts, since large detectors observe very few
per day.

65. a. The atomic mass of deuterium ( ) is 2.014102 u, while that of tritium ( ) is 3.016049 u, for a total of
5.032151 u per reaction. So a mole of reactants has a mass of 5.03 g, and in 1.00 kg, there are

of reactants. The number of reactions that take place is therefore
.

The total energy output is the number of reactions times the energy per reaction:

b. Power is energy per unit time. One year has so

We expect nuclear processes to yield large amounts of energy, and this is certainly the case here. The
energy output of from fusing 1.00 kg of deuterium and tritium is equivalent to 2.6 million
gallons of gasoline and about eight times the energy output of the bomb that destroyed Hiroshima. Yet the
average backyard swimming pool has about 6 kg of deuterium in it, so that fuel is plentiful if it can be
utilized in a controlled manner.

67. : a. 0.01 Gy; b. 0.0025 Gy; c. 0.16 Gy
69. 1.24 MeV
71. 1.69 mm

73. For cancer: The risk each year of dying from induced cancer is 30 in a

million. For genetic defect: The chance each year of an induced genetic

defect is 10 in a million.
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Additional Problems
75.
77. a. ; b. This mass is impossibly large; it is greater than the mass of the entire Milky Way

galaxy. c. is not produced through natural processes operating over long times on Earth, but through
artificial processes in a nuclear reactor.

79. If of rays are left after 2.00 cm, then only are left after 4.00 cm. This is much
smaller than your lab partner’s result ( ).

81. a. ; (b) From Appendix B, the energy released per decay is 4.27 MeV, so ; (c)
The monetary value of the energy is

83. We know that and
Thus, the age of the tomb is

Challenge Problems
85. a. ; b. 6.24 kW; c. 5.67 kW
87. a. Due to the leak, the pressure in the turbine chamber has dropped significantly. The pressure difference

between the turbine chamber and steam condenser is now very low. b. A large pressure difference is
required for steam to pass through the turbine chamber and turn the turbine.

89. The energies are

. Notice that most of the energy goes to the ray.

Chapter 11
Check Your Understanding
11.1 1
11.2 0
11.3 0
11.4 0
11.5 1 eV
11.6 The radius of the track is cut in half.
11.7 The colliding particles have identical mass but opposite vector momenta.
11.8 blueshifted
11.9 about the same

Conceptual Questions
1. Strong nuclear force: interaction between quarks, mediated by gluons. Electromagnetic force: interaction

between charge particles, mediated photons. Weak nuclear force: interactions between fermions, mediated
by heavy bosons. Gravitational force: interactions between material (massive) particle, mediate by
hypothetical gravitons.

3. electron, muon, tau; electron neutrino, muon neutrino, tau neutrino; down quark, strange quark, bottom
quark; up quark, charm quark, top quark

5. Conservation energy, momentum, and charge (familiar to classical and relativistic mechanics). Also,
conservation of baryon number, lepton number, and strangeness—numbers that do not change before and
after a collision or decay.

7. It means that the theory that requires the conservation law is not understood. The failure of a long-
established theory often leads to a deeper understanding of nature.

9. 3 quarks, 2 quarks (a quark-antiquark pair)
11. Baryons with the same quark composition differ in rest energy because this energy depends on the

internal energy of the quarks . So, a baryon that contains a quark with a large angular
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momentum is expected to be more massive than the same baryon with less angular momentum.
13. the “linac” to accelerate the particles in a straight line, a synchrotron to accelerate and store the moving

particles in a circular ring, and a detector to measure the products of the collisions
15. In a colliding beam experiment, the energy of the colliding particles goes into the rest mass energy of the

new particle. In a fix-target experiment, some of this energy is lost to the momentum of the new particle
since the center-of-mass of colliding particles is not fixed.

17. The Standard Model is a model of elementary particle interactions. This model contains the electroweak
theory and quantum chromodynamics (QCD). It describes the interaction of leptons and quarks though
the exchange of photons (electromagnetism) and bosons (weak theory), and the interaction of quark
through the exchange of gluons (QCD). This model does not describe gravitational interactions.

19. To explain particle interactions that involve the strong nuclear, electromagnetic, and weak nuclear forces
in a unified way.

21. No, however it will explain why the W and Z bosons are massive (since the Higgs “imparts” mass to these
particles), and therefore why the weak force is short ranged.

23. Cosmological expansion is an expansion of space. This expansion is different than the explosion of a
bomb where particles pass rapidly through space. A plot of the recessional speed of a galaxy is
proportional to its distance. This speed is measured using the red shift of distant starlight.

25. With distance, the absolute brightness is the same, but the apparent brightness is inversely proportional
to the square of its distance (or by Hubble’s law recessional velocity).

27. The observed expansion of the universe and the cosmic background radiation spectrum.
29. If light slow down, it takes long to reach Earth than expected. We conclude that the object is much closer

than it really is. Thus, for every recessional velocity (based on the frequency of light, which we assume is
not disturbed by the slowing), the distance is smaller than the “true” value, Hubble’s constant is larger
than the “true” value, and the age of the universe is smaller than the “true” value.

Problems
31. 1.022 MeV
33. 0.511 MeV, ,
35. a, b, and c

37. a. ; b. or ; c. or ; d. or ; e. or
39. A proton consists of two up quarks and one down quark. The total charge of a proton is therefore

41. The meson is composed of an up quark and a strange antiquark ( ). Since the changes of this quark
and antiquark are 2e/3 and e/3, respectively, the net charge of the meson is e, in agreement with its
known value. Two spin particles can combine to produce a particle with spin of either 0 or 1,
consistent with the meson’s spin of 0. The net strangeness of the up quark and strange antiquark is

, in agreement with the measured strangeness of the meson.
43. a. color; b. quark-antiquark

45.
47. 965 GeV
49. According to Example 11.7,

This is the mass of the upsilon (1S) meson first observed at Fermi lab in 1977. The upsilon meson consists

of a bottom quark and its antiparticle .

51. 0.135 fm; Since this distance is too short to make a track, the presence of the must be inferred from
its decay products.

53. 3.33 MV
55. The graviton is massless, so like the photon is associated with a force of infinite range.
57. 67.5 MeV
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59. a. 33.9 MeV; b. By conservation of momentum, . By conservation of energy,

61.
63.
65.
67. a. ; b. Greater, since if it was moving slower in the past it would take less

more to travel the distance.

69.

Additional Problems
71. a. ; b. ; c. ; d. ; e. f.
73.
75.
77. a. b.

Challenge Problems
79. a. ; b. divide the number of particles by the area they hit:
81. a. 2.01; b. ; c. 6.50 m

83.

85. a. 938.27 MeV; b.
87. a. ; b. 0.3; Unification of the three forces breaks down shortly after the

separation of gravity from the unification force (near the Planck time interval). The uncertainty in time
then becomes greater. Hence the energy available becomes less than the needed unification energy.
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INDEX
Symbols
αα-particles 262
αα-rays 262
β-ray 262
γ-rays 262

A
aberration 63
absorber 240
absorption spectrum 260
acceptor impurity 418
accommodation 81
activity 452
Albert Einstein 179
ALICE detector 515
alpha (αα) rays 456
alpha decay 457
amorphous solids 402
amplifier 425
angular magnification 89
angular momentum orbital
quantum number 351
angular momentum projection
quantum number 351
anti-symmetric function 305
antielectrons 456
antineutrino 459
antiparticle 497
aperture 158
apparent depth 65
atomic bomb 467
atomic mass 445
atomic mass unit 445
atomic nucleus 442
atomic number 442
atomic orbital 356

B
Balmer 261
Balmer formula 261
Balmer series 261
Bardeen 430
baryon number 499
baryons 496
base current 424

BCS theory 430
Becquerel 450
becquerels 453
beta (ββ) rays 456
beta decay 458
Betelgeuse 242
Bethe 471
Big Bang 522
binding energy (BE) 447
binding energy per nucleon
(BEN) 448
birefringent 40
blackbody 240
blackbody radiation 240
Blu-Ray player 383
body-centered cubic (BCC) 404
Bohr 263, 466
Bohr magneton 359
Bohr model 348
Bohr radius of hydrogen 264
Bohr’s model of the hydrogen
atom 263
bond length 395
Born interpretation 297
boson 495
Brackett series 261
Bragg 165, 272, 272
Bragg planes 166
braking radiation 375
breakdown voltage 423
breeder reactor 469
Brewster’s angle 35
Brewster’s law 35

C
Cameras 86
carbon-14 dating 454
Cassegrain design 98
CD player 382
Chadwick 262
chain reaction 466
charge-coupled device (CCD) 86
chart of the nuclides 443
chemical group 369
chromatic aberrations 71

cladding 20
classical (Galilean) velocity
addition 211
coherent waves 115
collector current 424
color 507
coma 64
complex function 303
compound microscope 92
Compton 256
Compton effect 256
Compton shift 256
Compton wavelength 258
concave 68
concave mirror 54
conduction band 415
constructive interference 116
converging lens 68
convex 68
convex mirror 54
Cooper 430
Cooper pair 430
Copenhagen interpretation 301
cornea 80
Cornell Electron Storage
Ring 511
corner reflector 12
correspondence principle 307,
320
cosmic microwave background
radiation 527
cosmological principle 524
cosmology 522
covalent bond 371, 394
critical angle 17
critical magnetic field 427
critical mass 467
critical temperature 427
criticality 467
curie (Ci) 453
curved mirror 54
cut-off frequency 250
cut-off wavelength 252
cyclotron 510
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D
dark energy 532
dark matter 531
daughter nucleus 457
Davisson 271
Davisson–Germer
experiment 271
de Broglie 268
de Broglie wave 269
de Broglie’s hypothesis of matter
waves 268
decay 450
decay constant 451
decay series 460
density of states 411
depletion layer 420
destructive interference 116
destructive interference for a
single slit 144
deuterium 444
diamonds 21
diffraction 142
diffraction grating 154
diffraction limit 159
Diffused light 11
diopters 81
Dirac 278
direction of polarization 31
dissociation energy 395, 406
diverging lens 68
DNA 164
donor impurity 418
doping 417
double-slit interference
experiment 276
drift velocity 419

E
Einstein 251
electric dipole transition 399
electron affinity 394
electron configuration 367
electron microscopy 279
electron number density 411
electroweak force 495
emission spectrum 260
emitter 240
endoscope 19
energy band 414

energy gap 415
energy levels 316
energy of a photon 251
energy quantum number 316
energy spectrum of
hydrogen 265
energy-time uncertainty
principle 310
equilibrium separation
distance 395
even function 305
event 199
exchange symmetry 397, 495
excited energy states of a
hydrogen atom 265
expectation value 304
eyepiece 92, 96

F
face-centered cubic (FCC) 403
far point 81
Farsightedness 83
Fermi 464, 468
Fermi energy 409
Fermi factor 411
Fermi temperature 412
fermion 495
Feynman 517
Feynman diagram 517
Fiber optics 18
field emission 334
fine structure 364
first focus 67
first postulate 181
fission 464
Fizeau 7
Fluorescence 375
focal length 55
focal plane 72
focal point 55
forward bias configuration 422
Foucault 7
Fraunhofer 260
Fraunhofer lines 260
free electron model 409
Fresnel 141
fringes 118
fundamental force 494

G
Gabor 168
Galilean relativity 180
Galilean transformation 200
Galileo 95
gamma (γγ) rays 456
gamma decay 460
Gamow 327
Gell-Mann 504
geometric optics 10
Germer 271
gluon 496
grand unified theory 495
ground state 351
ground state energy 316
ground state energy of the
hydrogen atom 265
group velocity 269

H
hadron 496
Hahn 464
half-life 451
Heisenberg 278
Heisenberg uncertainty
principle 278, 458
Heisenberg’s uncertainty
principle 307
Hermite polynomial 322
high bandwidth 20
high dose 480
hole 417
hologram 166
holography 167
horizontally polarized 31
Hubble Space Telescope 160
Hubble telescope 99
Hubble’s constant 522
Hubble’s law 522
Humphreys series 261
Hund 327
Huygens 113
Huygens’s principle 26, 143
hybridization 398
Hydrogen-like ions 268
hyperfine structure 365
hyperopia 83
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I
image distance 53
image focus 67
imaginary number 313
impurity atom 417
impurity band 418
incoherent 115
index of refraction 7
inelastic scattering 258
inertial frame of reference 181
infinite square well 314
interference fringes 114
interferometer 127
ionic bond 371, 394
ionization energy 265
ionization limit of the hydrogen
atom 265
iridescence 155
isotopes 444

J
junction transistor 424

K
Keck telescope 99

L
Large Hadron Collider
(LHC) 512
laser 381
lattice 402
law of reflection 10
law of refraction 15
Length contraction 195
lens maker’s equation 74
lepton 495
lepton number 501
lifetime 452
light cone 205
linear accelerator 509
linear magnification 60
liquid crystal displays (LCDs) 38
liquid drop model 466
Lorentz factor 187
Lorentz transformation 201
low dose 480
Lyman series 261

M
Madelung constant 397
magnetic orbital quantum
number 360
magnetogram 360
magnification 53
magnifying glass 88
majority carrier 419
Malus’s law 33
mass defect 447
mass number 442
Maxwell's equations 180
mesons 496
metallic bonding 409
metastable state 381
Michelson 7, 127
Michelson-Morley
experiment 181
minority carrier 419
mirror equation 60
missing order 151
moderate dose 480
momentum operator 304
monochromatic 115, 381
Moseley plot 378
Moseley’s law 378
muons 188
myopia 83

N
n-type semiconductor 418
nanotechnology 336
near point 81
Nearsightedness 83
net magnification 93
neutrino 459
neutron number 442
neutrons 442
Newton 98
Newton’s rings 126
Newtonian design 98
Newtonian mechanics 180
nonreflective coatings 124
normalization 355
normalization condition 298
nuclear fusion 470
nuclear fusion reactor 474
nuclear model of the atom 262
nuclear reactor 468

nucleons 442
nucleosynthesis 471, 528
nuclide 442

O
object distance 53
object focus 67
objective 92, 95
odd function 305
optical axis 54
optical power 81
Optical stress analysis 39
optically active 39
orbital magnetic dipole
moment 358
order 117

P
p-n junction 420
p-type semiconductor 418
parent nucleus 457
particle accelerator 508
particle detector 513
Paschen series 261
Pauli’s exclusion principle 366,
495
Penzias 529
periodic table 369
Pfund series 261
phasor diagram 146
photocurrent 249
photoelectric effect 248
photoelectrode 248
photoelectrons 248
photon 251
Planck 245
Planck’s constant 246
Planck’s hypothesis of energy
quanta 246
plane mirror 52
Poisson’s spot 141
polarized 31
polyatomic molecule 398
population inversion 382
position operator 304
positron 497
positron emission tomography
(PET) 478
positrons 456
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postulates of Bohr’s model 263
potential barrier 326
power intensity 241
Pozzi 277
principal maxima 121
principal quantum
number 316, 350
principal rays 58
probability density 297
propagation vector 255
Proper length 195
proper time 187
proton-proton chain 471
protons 442

Q
Q value 471
quantized energies 245
quantum chromodynamics
(QCD) 516
quantum dot 336
quantum electrodynamics
(QED) 516
quantum number 246, 265
quantum phenomenon 251
quantum state of a Planck
oscillator 246
quantum tunneling 326
quark 495
qubit 302

R
rad 479
radial probability density
function 355
radiation dose unit 479
radioactive dating 454
radioactive decay 331
radioactive decay law 451
radioactive tags 476
radioactivity 450
radiopharmaceutical 476
radius of a nucleus 446
rainbow 22
ray 9
ray model of light 10
ray tracing 57, 70
Rayleigh criterion 159
Rayleigh–Jeans law 245

real image 53
redshift 523
reduced Planck’s constant 255
refraction 14
relative biological
effectiveness 479
Relativistic kinetic energy 219
Relativistic momentum 216
relativistic velocity addition 211
repulsion constant 405
resolution 159
resonant tunneling 336
resonant-tunneling diode 336
Rest energy 223
rest frame 180
rest mass 217
retina 80
reverse bias configuration 422
Rigel 242
Roemer 6
roentgen equivalent man
(rem) 480
rotational energy level 399
Ruska 279
Rutherford 262
Rutherford gold foil
experiment 262
Rydberg constant for
hydrogen 261
Rydberg formula 261

S
scanning electron microscope
(SEM) 280
scanning tunneling microscope
(STM) 335
scattering angle 256
Schrieffer 430
Schrödinger 278
Schrödinger’s cat 302
Schrödinger’s equation 348
Schrӧdinger’s time-dependent
equation 312
Schrӧdinger’s time-independent
equation 313
second focus 67
second postulate of special
relativity 182
secondary maximum 121

selection rule 399
selection rules 372
semiconductor 416
shell 367
sievert (Sv) 480
sign conventions 75
simple cubic 404
simple magnifier 88
Simultaneity 184, 208
single-photon-emission CT
(SPECT) 477
single-slit diffraction
pattern 142
small-angle approximation 57
Snell 15
Snell’s law 15
soap bubble 123
space-time 204
special theory of relativity 180
spectroscopic dispersion 156
spectroscopic notation 351
speed of light 181, 220
spherical aberration 64
spin projection quantum
number 362
spin quantum number 362
spin-flip transitions 365
spin-orbit coupling 363
Standard Model 516
standing wave state 316
state reduction 301
stationary state 316
Stefan–Boltzmann constant 243
Stefan’s law 243
Stern-Gerlach experiment 364
stimulated emission 382
stopping potential 249
strangeness 503
Strassman 464
strong nuclear force 445, 494
subshell 367
synchrotron 510
synchrotron radiation 511

T
theory of everything 495
thin lenses 70
thin-film interference 122
thin-lens approximation 74
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thin-lens equation 73
Thomson 262
thought experiment 184
Time dilation 186
time-modulation factor 313
Tonomura 277
Total energy 222
total internal reflection 17
transition metal 370
transmission electron
microscope (TEM) 279
transmission probability 328
transuranic element 461
tritium 444
tunnel diode 336
tunneling probability 328
twin paradox 192, 206
two-slit interference 296
type I superconductor 427
type II superconductor 427

U
ultraviolet catastrophe 245
unpolarized 32

V
valence band 415
valence electron 368
Van de Graaff accelerator 508
van der Waals bond 394
vertex 54
vertically polarized 31
vibrational energy level 400
virtual image 52
virtual particle 517
von Laue 165

W
W and Z boson 496
wave function 296
wave function collapse 301
wave number 255
wave optics 26, 113

wave packet 278, 308
wave quantum mechanics 268
wave-particle duality 276
weak nuclear force 494
Wheeler 466
width of the central peak 150
Wien’s displacement law 242
Wilkinson Microwave Anisotropy
Probe (WMAP) 529
Wilson 529
work function 251
world line 204

X
X-ray diffraction 164

Y
Young 114

Z
Zeeman effect 360
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