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PREFACE TO 3RD EDITION

Al- “Hamd.o-lillah”, the 3rd edition is out for the readers. The delay in this
(gition is apologized, but the authors feel happy in presenting this edition with the

following mentionable features:

(a)  The content has been improved by introducing the following topics:
(i) Orthogonal trajecto'rics in chapter 7.

(ii) Solution of the differential equations with undetermined coefficients in
~ chapter 8. B ;

(iii) The detailed discussion on permutation groups in chapter 2.

(b) The proofs of some of the results ‘have been revised in the light of the
suggestions received from our colleagues, friends and the readers.

(c) In order to elaborate some of the concepts more, new solved examples
have been added in the content and a few unsolved, problems have been
incerted in some of the exercises. '

(d) The authors do not claim mistake-free content but they claim of putting
‘hard work to reduce the errors and insert the omissions in order 10

improve upon it.

(¢). Unnecessary matter has been deleted after careful examination and
discussion with our colleagues and friends.

We feel it our duty tb acknowledge - the cooperation of our colleagues, friends -
and the readers in general who rendered their sincere cooperation and gave their moral
support to us. The pames of Mr. Mohammad Akram and Prof. Arif Javed in this

regard are mentionable in particular.

The authors owe. thanks to. the Caravan Book House (Publishers) and
Mr. Shahbaz Muzammil whose efforts have made it possible to present it to the rcaders
in this form. _

At the last and not the least at any standard, we thank, in anticipation to all those
who will communicate their suggestions to the authors / publishers, for the

improvement of this book.

Dated at Lahore the 3rd Sept., 1998 -  Authors



Preface to thg Second Edition

Although, the pian and most of the features of the original manuscri
retained in this edition but some addition's deletions and refinements have
increase clarity and achieve satisfaction to the liking of the readers. Notable changes yre
made through reorganization of exercise 4.1 and insertion of ‘some additional problems i
exercise 4.5. A few solved examples have been added wherever thought necessary.

Pt have beg,
been mage to

We are indebted and deeply grateful to all our colleagues and well wishérs -who
contributed to the improvement of the present edition either by writing us their words of
encouragement, by constructive criticism or by helpful remarks and suggestions. In thjg
regard we feel thankful, in particular to Sh. Mohammad Hafeez, Dr. Shamim Arif, M,
Munir Abdi, Nazir Ahmad Cheema, Abdul Hameed, Mohammad Alam, Mohammag
Saeed, Mohammad Mudassir, Abdul Karim, Mohammad Mushtaq, Dr. Sabir H. Shah,
Abdul Rauf, Abdul Wahab, Obaid Ullah, Miss Shama Javed, Miss Abida, Mohammad
Rafaq Siddqui, Abdur Raheem, Mohammad Nawaz Shina and Mohammad Imtiaz,

Lahore:

Authors
Sept., 1, 1992

Preface to the First Edition

Our long experience of teaching mathematics. developed. us with the feeling of
necessity of bringing scme competition in the quantity and quality of good text books at the
degree level. Probably no book is ever written withcut 2 lot of help and encouragement. In
putting forward a humble attempt in the shape of this book, the motivation and help is
provided by our sincere colieaguas and teachers of the degree classes. This book comprises
the introduction of some of the essential mathematical techniques for an easy understanding
of the various topics. It provides the reader a foundation for further study in a broad variety
of mathematical disciplines. The content being- restricted to the current syllabus
recommended for the B.A./B.Sc. degree classes of various local universities, has been
presented in a simple manner without ignoring the mathematical vigour of the concepts. The-
subject matter is supported by liberal typical worked out examples followed by well-
arranged exercises selected from standard books. In fact, the students are introduced, in this
book, to the process of abstraction as a way of making it easier to conceptualize and cope

with the problems. Every care has been taken to ‘avoid printing and other mistakes but
perfection cannot be claimed. So any intimation of errors and suggestions for improvement
will be duly appreciated and acknowledged. ‘

The authors owe an immense gratitude to their worth
- authors of the books from which they sought help durin
mathematics at any stage. ,

The authors are grateful ©o M/s The Caravan Book
responsibility of publishing this work.

y _teachers and respectable
g the process of learning

House for taking up the

Thanks are also due to the Design Dynamic Group who extended their cooperation in
its publishable shape.

l Authors
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COMPLEX NUMBER

1.1 INTRODUCTION

We assume that the reader is already famlllar with ° the concept of complex
number while considering the solution of x* + 1
satisfying this equation. We then introduce the imaginary number i = '\I 1-by. solvmg‘ '

. this equation getting i and —i as its roots. In order to solve ax* +- bx + c = 0 and in:-
general, the equation R .o

. , Ford g
X'+ ax™! + a,x“‘2'+ L+ an 0, .o 'f'
we introduce the complex number x + iy whlch is the sum of a real number X/ and an
imaginary number iy.

This introduction of complex numbers is not sansfactory, for it makes them appear as
objects not existing in reality, that is, imaginary in the literal sense of the word

So we intrOduce the complcx numbe'r by the following axiomatic approach:
1.1.1 THE COMPLEX NUMBER SYSTEM

The complex number system is the set C = R x R = [(rr,b)

= 'a,be R)
“whose elements satisfy the followmg properties;

@) (a,b) = (I,m) ©a =1 ad b = m
@) (@b)+(¢m) = (@+lb+m) |
(i) Ifrisanyreal number

r(a', b) = (ra,rb)

(iv)  (@b)-(,m) = (al-bm,am+bl)

= 0. There is no real numberl;‘- '
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nber
The elements of R X R are complex numbers. In a complex nur )
, ‘¢ imaginary part.

z = (a,b) e €, ais called the real part of z and b its imaginary p

In symbols,
4 =TRe(), b = Im@

1.1.2 ALGEBRAIC ASPECTS

It can be easily verified that the above mentioned operations of addition and
multiplication obey all the rules of algebra. i.e. The commutative, dssolcllatwe ia:nd
distributive laws. The reader has already verified them in intermediate classes. For

revision purposes we enlist them below;
1. COMMUTATIVE LAWS

Viz,2e C
W) zn+z, = z+z,
i) z-.z,0 =.7z,.74 '
2. ASSOCIATIVE LAWS W+ e B

VZ;,ZQ,Z:;EG:
) @+z)+z, = Z + (2, +2,)

i) @z = 7@z |

3.  DISTRIBUTIVE LAW
Z,(Zg+Zg)=212¢+Z,lg

Note: unlike real numbers, no two com

< or >. So the statment, that a compl

for any pair z,, z, of complex numbers.

plex- numbers are comparable by the ordering
X number z, > z, or z, < z, is meaningless

\ IP]C complex numbers (0, 0) and (I, 0) assume the role of additive and
multiplicative identities respectively. The inverse operations of addition and
mul[lpllCa[{()nS e pamely, subtraction and division — Can always be performed within
C, except for division by (0, 0). This is evidenced by the followine formulas:

Itz =(a,b) and 2z =(a,b) and -z, = (-q,, 1), then
0 z,-7z =2+ (-2) '

= ((ll. b)) + (_alv '"b.!)
= (a, - ay,, b, - by)
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i)

z,
23

a,a, + b]bz: azhl -—(I,b; ) .
o A A

which can be easily verified.

’Ijhi:s' can also be _vqri.ﬁcd that C is closed with respect to addition, subtraction,
multiplication and division, except for division by (0, 0); In other words € forms
the structure of a field

“»

C contains a subset C, = ((ay 0)/a.e R}

We write (@, 0) £ (b,0) = (atb,0) | ,

(@,0) (5,0) = (ab,0) Coe .
(a, 0) _ qa N
soby (@ 0) ——a YaeR

the set Cp 1s n one-to-one correspondence with the real setR. .

1

Moreover, (a,b) = (a,0) + (b, 0) (0, 1

bt O,DO 1) = (1,0  e—— 1= i

Cwriting  (¢,0) = a
(b,0 = b
on =i
(a,b) = a+ib or a+bi

1.1.3 GEOMETRIC REPRESENTATION OF COMPLEX NUMBERS

The one-to-one (1 — 1) correspondence between € 'and R x R = R? (say) -
suggests a geometric interpretation of the:complex numl.ers. All one has to doisto
let a point P(x, y) in a rectangular co-ordinate system represent the complex number
z = X +1y. Co ‘

1

In that way every complex number is mapped uniquely onto a specified point of
the xy — plane and, vice versa, every point of that plane corresponds to one and
only one complex number. The plane involved is called the complex, or Gaussiai
plane and is denoted by € or z-plane. . ’

In the C-plane, the x-axis of the co-ordinate system is qallcd the xrcul_ axis,

whereas the; y-axis is called the imaginary axis. . :

%
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{14, POLAR REPRESENTATION OF COMPLEX NUMBERS

It is convenient to have representation of z in .the polar' c;g;o;dl?ates by
troducing (r, 8) as the pair of polar co-ordinates of the point (x, y) in the z-plane.
in ’ |

Thus, X =rcos®, and y=rsin@

X y
LA 2 cos® =7, sinb =
from which we obtain 1=+ +y* . > 0, T T

Yﬁ‘

y——--é-- z=X+iy

10y PR

\/
.0‘

> X

The positive: quaritity r is called the modulus or absolute value of z and is

denoted by  r = | z |, while 6 is called the argument or amplitude of z and is
denoted by ' o . ,

0 = arg (z) = arg(x + iy) = tan"‘G)

Argument of z is not single-valued function, since to
infinitely many values of arg (z). We shall say
i.e. If 6 is one of the values of arg (z), we have _
arg(z) =0 +2kn, k= 0,+1, +2,

If,-® <0< thenois

Arg (2). Therefore, if 8 is princip

any z # O there correspond
that arg (z) is a multi-valued function.

LI

called the principal argument of z and is denoted by
al argument then we write

0 = Arg (2)
So, from the above figure, ‘
z =x+iy=rcosﬁ+irsin9
=r1(cos © + isin 0)
If we use the abbreviation - _
»  cos0 +isin® = cis 0
z=r1cis6 = |z|=r, : .|cise | =1

The complex number x — iy is called the conjugate of z = x + iy.



